Mathematics

On the Spectrum of Some Hamiltonian Operator

By Teruo USHIJIMA

Institute of Mathematics and Department of Pure and Applied Sciences,
College of General Education, University of Tokyo

(Received August 30, 1966)

1. In the previous paper [3], the author investigated the spectral properties
of L=L,+V in L*R"), where L, is a multiplying operator by the real homo-
geneous elliptic polynomial p(k) and V is a convolution operator with the
kernel v(k). The fundamental tool of this investigation was the T-matrix
method of Faddeev [1]. In the present paper we note that the same method

can he applied to a Hamiltonian operator: i(u’?aﬂc +bj(x)>2~1~q(x) in L*R"),
J=1 Ay

where n¥=3. We consider only its momentum representation :
(LAY y=Ref (k) -+ [l )RR,

When we need no modification or change, we use the terminology and nota-
tions in [3], without noticing explicitly.
We impose the following conditions (1) and (2) on v.

(1) vk, k)==v(k’, k).
(2) Let m(k, k"y=1-4min(|k|, |#"|). There exist constants C, 6, and /z(,<80>n,
Ly>- %) such that the function v satisjies

[v(l, kY| SCmik, k) (14| k—k )00
and
|k, kY —v(ky, k)|

<Cmk, B+ k—k )00 [ o—k, |0 | k! —T, | )
for any R, ky (J|k—Rk| 1) and B, By ([RI—R/|Z1).

If we put 5.,(/e)=(27r)”“fb Ax)e % dx and (}(k):(2n)‘"j‘q(x)e‘“‘“’”(lx, we have

1) We denote the dimension of independent variables by n throughout this paper.
2) The symbol % is an independent variable in R® and k2 its scalar product.. We
write only the integral sign whenever the domain of integration is the whole R™
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o, )= [ (06) (o) B, = 1)

+ j bk —k"b (k" — k') dR” |4-glle—R?)

((k); is the j-th component of k). Therefore if b; and g are real-valued, and
if beByyi1,. and §eBy, ., assumptions (1) and (2) are fulfilled.”

Consider the free Hamiltonian in $=L*(R"), namely (L,f)(k)=k*/(k), with
the domain ®={f|(1+k*f=H}. We note that L, is self adjoint, and that its
spectrum lies on the whole positive real line and is absolutely continuous.

LEMMA 1. Put (VF)(k)= jv(/e, kOf(R)dR . Then the operator L=Lq-+ V with
the domain D is self adjoint.
Proof. By (2), we have

l {ve, k’)f(la’)a’/e” SO L=k [y (L4 | ) (1) e

The inequality, 1+{k’|<Cle)-+e|k’|?, holds for any e&>0. Since &,>n, the
Fourier image of (1-+|%]|)"% is a bounded function. Therefore we conclude
that there exist ¢, 0<a<1 and b>0 such that | Vf|=a|Lfl+blf| for feD.
We have the assertion by the argument of [2].

Our results are the following theorems.

THEOREM 1. The point specirum of L is an at most countable set on the
real line, which is bounded below. Zero is the only possible limiting point of
negative eigenvalues. Positive eigenvalues, if they exist, have not a finite limil-
ing point. The multiplicity of any eigenvalue is finite.

THEOREM 2. The continuous spectrum of L is absolutely continuous and
consists of the whole positive real line except for the point spectrum.

THEOREM 3. The absolutely continuous part of L is unitarily equivalent
to L,. :

2. For a complex number &, Rex=0 and Imer0, we consider A(x)=VR,(x*)
(Ry&®)=(Ly—x%"1) as an operator from By, to By,.. Once the estimate of
VAU o, s 01,0 1S Obtained, we can treat the problem along the same methods
as in [1] and [3]. Therefore, we need only to prove the next lemma.

3) In [3] we assumed that the function, which was used to estimate v, took the
form (1—;-1k—k’{)*00<(00>~;l—>, since v(k, k) =g(k—Fk"). We note that the function

m(k, k") corresponds to first derivatives in L.
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LEMMA 2. For the given 0y, p, (0,Sn—1, 1zp,>0), the following assertions
hold if we choose 0, as 0<8,—0,<1, pt, as 0< s <pty and p<min (g, t)-

1° The operator A(x) belongs to L(0y, pty; 8,4, 1t5), and A(o--i7)(0=0) has a
[imit A(a:tiO)::li?g Aloxir) in LG, 1y ; 0, pa).

2° There exists a positive constant C such that for any r (including the
boundary poini k=010, 0=20) we have

(3) ” A(":) ”(01,/11: 02./xg)§ C(l”|‘ Ré’lﬂ)gg"n-\ s

and such that for g, and &, (belonging lo the same half plane including the
half real axis) satisfying |k,—k,| 1, we have

4) I Aey) — A o3, 05 09, >
<C(1+ Rer)?3-01| gy —r, | “0~50) .
3° For any 0=n—1, u<p, and 0<e<1, there exists C>0 such that
®) 1A @, 0,0 =CQAA~| Imre])=* .
Proof. For feB,,(0<n—1), we have

Ay ty={YEE) sk

Let £ be a unit surface of R”, w a unit vector, dw surface element and ¢ real.
We define

- ‘ .
~~~~~~ vk, tw)f(tw)dw for (=0
olt; f»,k)“J e 59 (
0 , for 1<0.

Then we can rewrite A(x)f(k) as

Since we assume Rerz=0, we have |[f--x|=]t| for 1=0.
Therefore, for t=0 we have

lo(t; £, k)|
<CUS lloal t1"2U4 1) [ (L | = t0])Podew .
The integral = f S =10y du(e> 0) is estimated by

TSCA4- | R~ (A4 [P [ k]| — 2] )7
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for any @ and B, a, =0, a+pB=n—1, where C depends on ¢ but not on «, f8
(this fact will be proved in 3). Then we have
lelt; &, k)|
SO e L1100 | [ =t )00 me 2L £]) 702
ZCNS Noul 1+ 1R TR =27

./71,»]
I+r
for Rex=0 if n=3, we can calculate the Holder continuity of ¢ as

Noticing that jf ( is uniformly bounded in the neighbourhood of zero

loU+1; &, k)—oll; &, k)|
SCONS Mol Lt L 1)L | LRI =) A [ £]) 72|
where |[|=1 and Z=min (g, y).
Put ¢(t)=¢(t; x, )=+ |k|; £, k). Then we have

1@ 1,2 <CA+1RD 1 f o, -

Consider the function

s = PLELR) g BU LR
Fiks wm)=] FGEia= [ 2 Etede.

Applying Lemma 2.2 of [3], we have
| Fth s &, &) | SCIf o141 RO (L4 |5~ R [ )
and
|Fll; ke, kY ~F(k; £, )|
SCUflloul 11RO | k= ] ) £ =8, | F
for 0<e<1 and |k—x,[=1. Since we have (14 |x—|k|])'S2(1+ Rex)(1--| k])?
for Rex=0, we can estimate A(k)f(k)=F(k; r,x) as

| () fU)| SCILS o, w1+ Rew)* (14 [ [) 702 .

We need to estimate the Holder coefficient of A(k)f(k) as a function of k in
order to have (3). But this estimation can be obtained similarly. We have
(4) by the analogous method. Finally we note that the inequality, |r—|k]||
=|Ime|, is used to derive (5).

By this lemma we see that A(x) is completely continuous from B, , to
By, if
(6) 0<f=n—-1 and O<pu<<yty.

The estimate (3) shows that non-zero eigenvalues and associated eigenfunctions
of A(x) as an operator in Bj, are common to all pairs of (0, ¢) satisfying (6).
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Therefore, we can define a set of singular points of L as S={r|—-1=s,} where
5. is the spectrum of A(x) in By, We have the following lemma correspond-
ing to Lemma 3.3 of [3].

LeMMaA 3. (I} The function D satisfies Lp=—w*) (w>0) if and only
if p=(k*+w®)¢ satisfies =By, and ¢+ A(*iw)p=0.

(2) For positive o, o4+i0€S if and only if o—i0eS. The eigen space of
A{o+10) corresponding to eigenvalue —1 is equal to that of A(c~1i0).

(3) The function gD satisfies Lp=w? (0>0)if and only if p=(k*—w?¢
satisfies =By, , and ¢+ Alw+i0)p=0.

(4) The set S does not contain a point k=01t (¢>0, v+0).

(5) If 01is an eigenvalue of L, then 0-+10&S.

We can prove Theorem 1 with the aid of Lemmas 2 and 3. Namely, the
lower boundedness of ¢,(L}, the point spectrum of L, is an immediate con-
sequence of (5). By one-to-one correspondence of w&S to w?ew,(L) in Lemma
3, we conclude any eigenvalue of L has a finite multiplicity since A(w) is
completely continuous. The limiting point argument is the same as [1], but
we cannot exclude the possibility of the sequence {4;|4;<0, ;50,(L)} tending
to 0 in this case.

Next, consider the integral equation

% tl, k' 5 2y =i, k) [ U0 B e, b 2k

For ¢, 0<e<l, we write

and [/, analogously. Put //#= \J [[*. Let I[, and I/ be either [I.* and

gl
I+ or JI,- and II-. We can establish the following lemma along the similar
treatment of Lemma 3.6 of [3].

LEMMA 4. There exists a solution t{k, k' z) of (7) for ze=ll, salisfving the

following estimates. For >0, 0<pu<y, and v\‘u(lww-w) there exists a con-
stant C depending on g, p and v such that

[k, k7, 2)) SCmlk, &)1+ k—Fk’| )"t
and
[tk k!, 2)—1(ky, ky's 21)|

<Cmil, (LA Le—h! [y (b |4 | B — Ry’ | - | 22, )

for z,zmell,, |2~z <1, |k—k | =1, and |k'—k/'| 1.
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Put Ky={k||k| =M}, the subset of R". We may assume the estimate of
tik, k’, z) takes the form

Clk, k!, 2)(1+4 | h—R! )+

where C(k, k’, z) is uniformly bounded in (%, &/, 2) & R* X KX I, or KyxX R*XI..
Noticing this fact, we can conclude that Lemmas 3.7 to 3.10 of [3] are valid
for this case if we replace p(k) by ki Therefore, we have Theorem 2 and 3.

3. First we note that for the fixed ¢ the integral / depends only on |Z|
and |¢|, and that I=I(|k], |t])=I(|t|, |k]). Put A=|t|-|k|™
In order to have the inequality, it is sufficient to prove

@) ISCE) L+ | )= (1| o] — 2] 1)~*

in the case of 0<A<1.

If O<Z§—é , it is easy to show I=<C(e)(14-|k|)~®v-% calculating the inte-

gral by the polar coordinate. Since |k|z|k|~|f|=|¢| in this case, we have (8).
Assume %glél Put I=n--e¢, then

T=Const T S Slnib__zqgl,gk, —
O 14 k) 1422—22c0s 8]

n-3

: (1l—p7) 2 0t
e ||} 1 22— 22| T

= Constj

Let s=1-—¢, then
n-3 " m-3

I:Constj 5
Ol R (A—A)242As ]

Noticing that
=C{R12@as)"F {1 R (=D 22s] ) 2
we have

Y ds
I=Const | k|~ : e -
S AL R (1= A2 4-245]1 2

Put r=14]k|2 « |(1—A)2424s], then

j::(zmk;z}—lj

1+ [ kl+ftll2
HEl+itll . ;d?’

1+ (fEl-itfi2

=(e2) 7 B+ =]~ — (LT R[4+ 12 [35)
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<Const| k|14 [R]—[t[])*.
Therefore, we have
I=Const| k|~ 1+ || k| —1t]])*.

From this inequality we have (8) for % <A1 and |k|=1. It is trivial that

(®) holds in the case -5 ==l and [k|<L.
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