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1. Introduction®2

After the work of M. A. Krein and R. A. Rutman [6] on positive compact
operators, S. Karlin tried in [5] to generalize the theory to the case of positive
operators, not necessarily compact, and has found among others the following
interesting fact: The spectral properties of positive operators on the spectral
circle are determined, in some respects, by the spectral properties at the single
point, “the worst singularity at the spectral radius »(T)”. A little later, in
connection with these, H. H. Schaefer raised in [157 the following problems of
a positive operator T':

a) If #(T) is an isolated singularity of the resolvent R(1, T), is every
singularity of R(A, T') on the spectral circle isolated ?

b) If »(T) is a pole of R(A,T), is every singularity of R(2, T) on the
spectral circle a pole of R(1, T)?

Since then many contributions have been done to this field: G.-C. Rota
(123, H. H. Schaefer [16], [17], [18] and 1. Sawashima [13].

The principal purpose of this note is to establish the following:

MAIN THEOREM. Lel E be an arbitrary Banach lattice and T be an bounded
operator of QE) with the following properties:
D) T is positive.
II) T is irreducible.
) 2=#(T) is a pole of the resolvent R(A,T).

1y The principal results of this paper were announced in [117.
2) For the notations and terminologies, see section 2.
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Then the spectrum of T on the spectral circle coincides with the set of k-th
roots of unity multiplied by »(T), each of which is a simple pole of R(A, T),
where k is a fixed positive integer determined by T.

The authors have already proved the special case of this theorem where
Eis I, (1<p<co) in [9], L, (1<p<eo) in [10] or C(S) in [14]%.

In section 2 notations and terminologies are given.

In section 3 we apply Kakutani’s representation of (AM) space, as H.H.
Schaefer did in [18], to a certain subset of a Banach lattice E.

In section 4 we discuss positive irreducible operators and their direct
consequences.

In sections 5),---,8) we prove our main theorem. To prove the theorem
we must show the following three assertions, namely,

A) The point spectrum on the spectral circle satisfies the concluding con-
dition of the main theorem.

B) The residual spectrum on the spectral circle is void.

C) The continous spectrum on the spectral circle is void. A

In section 5 we prove assertion A). The proof of this part was already
established essentially by H.H. Schaefer in [18].

In section 6 we prove assertion B). The principal idea to prove this part
can be found in the corresponding part of [14], i.e., the reduction theory of
an operator which is not necessarily completely reducible.

In section 7 we extend the space E to an (AL) space L. This extension
induces the extension of T to the space L.

In section 8, with the preparations established in section 7, we proceed to
prove assertion C) as in the corresponding part of [10]. ;

In the last section 9 problem b) of H.H. Schaefer is answered, as a con-
sequence of the main theorem, affirmatively for positive irreducible operators
in an arbitrary Banach lattice.

Finally we consider the problem to weaken the assumption of irreducibility
in the main theorem.. Theorem 9.2 and examples 9.1 and 9.2 solve this problem
in some extents, which also solve partially the problem to weaken the assump-
tion of irreducibility in H. H. Schaefer’s problem b).

2. Notations and terminologies

We denote by E a Banach lattice, i.e., a Banach space and a vector lattice
such that, for any x, yeE,

|x|<ly| implies [z =[] .

3) We knew that H.H. Schaefer had proved in [19] and [20] the special case of
this theorem where E is C(S) or L, after this manuscript was prepared.
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By a normed lattice we mean the space for which all the assumption of Banach
lattice are satisfied with the only exception of the completeness assumption
w.r.t. (with regard to) the norm. We make use as usual of the following
notations and terminologies of a Banach lattice: xVy, xAy, x., 2, |x], Vxw
Nxa (6-)complete and so on. An interval [a,b] is the set {x; agxéb}.a A
s:ilbset {x,} of E is called bounded by e=E if, for each «, holds the relation
[x.]<e. An element xeE is called bounded w.r.l. esE if there exists a
positive number ¢ such that |x|=ce. K is the positive cone of E, and {(E)
is the set of bounded linear operators in E. E¥*, K* and T# are the duals of
E, K and TeQ(E) respectively. A subset F of E is called solid if

yeF and |x|Zly| imply x&F.

Evidently a solid subspace is a sublattice of E which is not necessarily closed.
An element ecK is called a weak order unit (Freudenthal unit) if xAe=0
implies x==0, a guasi-inner element of K if the interval [0,¢] is total in E,
i.e., the smallest solid subspace of E containing ¢ is dense in E, and finally a
non-support element of K if e is not a support point of the convex set X, i.e.,
for any non-zero functional fe K* always holds f(¢)>0. Dually a functional
JfeK* is called strictly positive if, for.any non-zero element x < K, always holds
f(x)>0. The w*-limit and the w*-topology are the ones w.r.t. the duality
o(E*, E), i.e., as functionals of E respectively. Let P (T), R, (T), C/T), o(T),
o(T) and R(2,T) (or simply R(Z)) be assigned to the usual meanings. r»(T) is
the spectral radius of T, i.e,,
r(T)=max {|4] ; Aea(T)}.
By I' we denote the spectral circle of T, i.e,
I={2; |2|=r(T)}.

The approximate spectrum of T, denoted by A,(T), is, by definition, the set
of complex numbers A for which there exists a sequence x,=F with the
properties:
" Txn"' 23{11.“ -0

and

[2af=1.
It is clear that

P(T\JCAT)TALT)Co(T) .

TeR(E) is called positive if T leaves K invariant, i.e.,

TKCK.

An operator Te8(E) is called irreducible if there exists no non-trivial closed
solid subspace invariant under 7. A positive operator TeR(F) is called
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quasi-inner if there exists a positive number A>7(T) such that TR(1, T)x is
a quasi-inner point of K for every non-zero xe K, and semi-non-support if, for
any non-zero r& K and any non-zero feK*, there exists a positive integer n
such that f(T"x)>0. Further a positive operator Te&(E) is called non-support
if, for any non-zero x=K and any non-zero feK*, there exists a positive
integer n, such that f(7"x)>0 whenever n=n, Finally C(S) stands for the
set of all continuous functions defined on a compact Hausdorff space S.

3. Some properties of a Banach lattice

In this section we investigaté some properties, fundamental for us or
interesting in themselves, of an arbitrary Banach lattice. Its o-completeness
will be assumed only in the approximation lemma.

We denote by E, the set of elements bounded w.r.t. ¢, then E, is clearly
the smallest solid subspace containing ¢. For each xeE,, define a new norm
by

fxfl;=inf {c; [x] =ce} .
Under this norm E, is easily seen to be a Banach space satisfying
el =l xllellelt - 3.1)

Inducing the order in E, from E, E, becomes a Banach lattice satisfying

X

2V ylle=max (|« |31 (% y20).

Moreover ¢ is the unit element in the sense of Kakutani [4]. Therefore, by
his representation theory, E, is isomorphic and isometric as a Banach lattice
to the space C(I), the set of continuous functions defined on a compact
Hausdorff space M. We write this representation by

X .

Then clearly
e=1.

Hereafter we shall always assign to E, the above defined new norm |-|,.
Since E, is a sublattice of E, it can be seen that for any x,y,zeE,

xVy=z in E if and only if xVy=z in E,.
Moreover we can easily prove
LEmMA 31. Let x,x,=E,. Then
}{/xﬂzx tn E if and only if yxazx in E,.
By this lemma we get

PROPOSITION 3.1. For any x,ysE there exists in E the element
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\t}/((cos ) x-+(sin 8)y) (3.2)

Proof. Put
e=|x|+]y],
then clearly x,yveFE,. Going over to Kakutani’s representation space, we can

see that the above supremum (3.2) exists in E,. Lemma 3.1 then proves the
proposition.’

Remark 3.1. Let @, be a dense subset of the interval [0,2z], then the
famous theorem of Dini shows that the above supremum (3.2) is, in the sense
of ||-|le, a limit point of the following sequence:

V _ {(cos O,)x+(sin 8,,)y) .

l=msEn
By (3.1) this remains true in the sense of the initial norm | -J.
The following proposition is also a direct consequence of lemma 3.1.

PROPOSITION 3.2. E is (o-)complete if and only if E, is (o-)complete for
each e K.

For x,eeK, put
X,=XAne.

Then x, is a non-decreasing bounded sequence belonging to E. Without the
assumption of o-completeness for E, \/x, may not exist. However we have
n

ProrOSITION 3.3. An element esK is a weak order unit if and only if, for
each x& K, holds the equality:
VixAne)=x.
n

Proof. Since xAe=0 implies xAne=0, the “if ’ part is evident. To prove
the ‘only if’ part, we assume ¢ to be a weak order unit and x to be an element
of K. Let yeK satisfy

y=xANe (n=1,2, ). (3.3)
Put

ey=e-hx+4y.
Then clearly ¢, x and y belong to F,,.

Since Kakutani’s representation preserves order, we have
Fp)zmin {£(), nép)}  peM n=L2-). (3.4)
Put
Re={p; é(p)>0} .

Then (3.4) implies

m=xM)  heR).
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Since £ and § are continuous on M, we get

Jmzim  ped).
It is sufficient to prove
=M.

To prove N=IN, suppose the contrary, i.e.,

PIER)
Then there exist
poeR  and 2eCON)

which satisfy the relations:

2(D0)=l ;

=0 (e
and

Zpz0  (ped).
Then clearly

consequently
eNz=0,

Since ¢ is a weak order unit, we get from this
z=0.

This is a contradiction and the proposition is proved.

LEMMA 3.2. Let ¢ be a non-support element of K. Then, for eacﬁ rxe kK,
xAne converges to x strongly.

Proof. For any feK*, define

g(x):liqu(x/\fw) (xeK).

Then it ig evident that g is a positively homogeneous and additive functional

on K. The natural extension of this functional to E, denoted by the same

letter g, satisfies »
gel*,

O=g=rf
and
gle)=f(e) .
Since ¢ is a non-support element of K, these relations yield
f=g.

That is, for any xe K and for any fe K* holds
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im f(x Ane)=f(x) . (3.5)

Since E*=K*—[*, above relation (3.5) holds for any feE®* This implies
that the non-decreasing sequence xAne converges to x weakly. Then, e. g,
by lemma 2 in S. Karlin [5], the sequence converges to x strongly for any
re K.

From this lemma we get

THEOREM 3.1. Let e be a positive element of a Banach lattice E. Then the
Jfollowing four conditions for e are equivalent to each other:

(i) e is a quasi-inner element of K.

(ii) The smallest closed solid subspace containing e coincides with E.

(iii) For any xe K, the non-decreasing sequence xAne converges to x strongly
(weakly).

(iv) e is a non-support element of K.

Proof. Since E,, the smallest solid subspace containing ¢, is the smallest
subspace containing [0, ¢] conditions (i) and (ii) are equivalent. By lemma 3.2
(iv) implies (iii), and (iii) clearly implies (ii). Therefore we have only to prove
that (ii) implies (iv). This can be proved from the following evident assertion:

If fe K* and f(e)=0, then f(x)==0 for each xeE,.

Theorem 3.1, combined with proposition 3.3, proves the following well
known

COROLLARY 3.1. An element ecK is a weak order unit if it is a non-
support element of K.

Since the dual E* of an arbitrary Banach lattice- £ is complete, there
always exists, for any bounded non-decreasing sequence f,&E*, \/f,. Con-
n
cerning this we can prove without difficulty

PROPOSITION 3.4. Let f,eE* be a bounded non-decreasing sequence. Then
fn converges fo \/f, in the w*-topology.
n
Remark 3.2. By this proposition we can see that for a-‘monotone sequence

in E* the order convergence is equivalent to the w*-convergence.

In the rest of this section we investigate the complexification of a Banach
lattice. The complexification, denoted by £, of a Banach lattice Eis a complex
Banach space consisting of elements

Z=x+1y (x,yeE).

We can define, according to propositiori 3.1, the extended absolute value by
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|z]=|x+1iy|= \{{ ((cos B)x+(sin )y) . (3.6)

We also define as usual

lzl=l1zll-

Therefore, we have

THEOREM 3.2. The complexification E of a Banach lattice E (even if it is
not o-complete) has an extended absolute value (3.6) with properties:

|zl 12| implies 2|2l (z,2/€E),
lxl, Iyl slx+y| Slxl+1yl (xy€E),
=l Iyl xFalslxl+Ivl - (xy€E),

dz4pz | S Al |zl F iz (z,27eE and 2, ¢ be
arbitrary complex numbers).

In particular, if z, ZeF satisfy the relation
lziAlz/[=0,
then, for any complex numbers A and p, we have
|Az+pz' | =12 |z]+|pl 2] . (3.7)

Remark 3.3. By this theorem the assumption concerning the extendability
of absolute value of theorem 3.4 in H.H. Schaefer [18], p. 275 is not needed.

As we defined E,, we can define (£), by the set of element zeE bounded
w.r.t. e, i.e., for which there exists a positive number ¢ such that

|zl =ce.

By defining a similar norm as the real case, we can see that (E), is isometric
to the complexification (£, of E, as complex Banach spaces with extended
absolute value. Therefore we denote them simply by E,. It is also seen
easily that E, is isometric to C@M), the set of complex-valued continuous
functions defined on M.

U. Krenger gave in [8]

APPROXIMATION LEMMA. Let E be the complexification of a o-complete
Banach lattice E. Then, for each ze& E and each positive number e, there exist
yel and complex numbers 2 (I=1,---,n) such that

x;/\xm—:O (lqﬁm)
and
[z— (22,4 - +2,7,) | Sel 2]

By the discussions above, we can give another proof of this lemma.
Namely, put |z|=¢ and let E, be represented by C(M). By proposition 3.2,
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the compact space 9 is basically disconnected, i.e, each F, open set in M
has an open closure®. From this property the lemma follows easily.

Concerning the complexification and the dualization of a Banach Ilattice,
the following proposition was given in U. Krenger [8], p. 77 under the addi-
tional assumption that E is o-complete.

PROPOSITION 35. Let E be a Banach lattice and E* be its dual, and let E
and E* be their complexifications respectively. Then E* can be considered as
the complex dual of E. In other words there exists a bijective isometry between
the complex Banach spaces E* and EN*, where £ is the complex dual of E.

To prove the proposition we need the following two lemmas.

LEMMA 3.3. Let fieK* (I=1,.--,n) satisfy

LiNfa=0  (l=m).

Then, for every positive number ¢ and for every xeK, there exists a decomposi-
tion xy, -, %, of x such that

x—__—_xl_.{.. _.]-x”,

Xy, €K
and

Silx)<e  ([=m). (3.8)

Proof. We prove the lemma by mathematical induction.

(i) n=2. Since

T
&y, ToE K

0=(/iAfIE)=_inf_(fi(x)+ilx)

there exist x,, ¥, K, such that
Xyt X=X
and
Ja(xy)+Falx) <6
These x, and x, clearly statisfy the desired condition.
(i) n—1=sn. Put

it o =g
Then clearly

ENfa=0.
By the discussion given above, there exist y, x,X such that
It+x=x,
glx,)<e and f,(y<e.

4) See, e.g., L. Gillman and M. Jerison [2].
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Then, by the assumption of induction, there exists a decomposition x,, -, X,_,
of y for the functionals f,,--,f,-;. It is clear that x,-.-,x,_, x, are the
desired ones. :

Let E and F be Banach lattices and £ and F be their complexifications
respectively, and let Te&(£, F). We define the operator TeE F ) by

Tx+iny=Tx+iTy  (x,y=E).
In particular, for fe E*, we define the functional feﬁ* by
Fatin=f+if(5)  (xyeE).
Under these notations we have
LEMMA 3.4. Let Te8(E, F) be positive, then
| T2| <7}z (ze k).
In particular, for feK*, we have
If@i=fz)  (zeb).
Proof. By the definition of eXtended.absolute value and the positivities
of T and f, we can prove the lemma without difficulty.
Proof of proposition 3.5. For each

h=f+ige E* (f,geE*),
define as usual

h=f+igek .
In other words, for each

z=xtiyel (x,y€E),

h(2)=f(x)—g( ) +i( F(9) +g(x) .
Therefore we have
[E .

Then it is easy to see that this correspondence
he—h,

is a bijective linear topological mapping between the complex Banach spaces
E* and E¥. We have only to show that this mapping is an isometry, i.e,

Il=1k1 - (heE¥). (3.9)
First we prove this for feK*. Since f is an extension of f, it is clear that
1A =171 -

On the other hand, by lemma 3.4, we get
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NGV EDE VN TEEY T NE

This holds for any zeF, therefore we have

I71=171.
Next we show (3.9) for
h=2,f1+ - + 2 S0 s
where f, -, f,eK* satisfy
Sinfw=0  (I#m)
and Ay, -+, A, are complex numbers of absolute value 1. By (3.7) in. theorem

3.2, we get ’
[hl=f1t+ = +fa- (3.10)

By lemma 3.4 and (3.10) we get, for each ze £,
1h@)] =] 2Ji(&)+ -+ +2.]u(2)]
CEIAL@1 T
sfillzD)4 - +faullz])
=(fit+ - +f)(lz])

=|h|(lz]).

From this we get
| E i
We then prove the coaverse inequality. For any positive number &, there
exists x=F such that
x)=1
and
Iali=N1AII<]1A](x)] +e.

“Therefore we have ‘

Il <thl(|x])+e. (3.11)

For given ¢ and f,, -, f,, estgblish the decomposition x,, -+, x, of | x| obtained
in lemma 3.3, and define zeF by
2= 20 e 42,70, B CA )
Then we have
: lz]Sx+ o +x,=]x].
Consequently
lzl=lxl=1. (3.13)

By (3.10), (3.12), (3.8) and a simple calculation, we get

5) It can be seen easily that this restriction is not essential.
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[RI(|x])—h(z)] <2n(n—1)e. (3.14)
By (3.11) and (3.14) we get

IRl < |A(2)] +(@n2—2n-+1e. (3.15)
Since ¢ is an arbitrary positive number, (3.15) and (3.13) show
IR < A

Therefore (3.9) is proved in this case. Finally We prove the general case.
Since E* is complete, we can apply approximation lemma to E*. For each
heE* and for each positive number ¢ there exists h'e£* of the preceding
case such that

|h—h'|<e
and

A li=Hr1 -
Since the mapping h«—/ is topological, we get conclusion {3.9).

Hereafter we shall omit the symbol ~ from £, 7 and f if there arises no
confusion.

4. Irreducible operaters

In the following part of this paper except for the last section we assume
that the dimension of E is at least two®. First we establish the following

PROPOSITION 4.1. For a positive operator TER(E) the following three con-
ditions are equivalent to each other:

@ T is irreducible.

(i) T s quasi-inner.

(iii) T is semi-non-support.

Proof. The equivalence of (i) and (ii) is shown in H.H. Schaefer [18], p.
269, and that of (ii) and (iii) is clear by theorem 3.1.

Remark 41. It goes without saying that if E is the space L, with o-
finite measure then T is irreducible if and only if it is indecomposable in the
sense of [10].

Remark 4.2. If E is one-dimensional, then the proposition fails to hold.
Indeed the zero operator is irreducible, but it is neither quasi-inner nor semi-
non-support.

By theorems 1 and 2 in [13], we get

6) For this restriction, see remark 4.2 below.
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PRrOPOSITION 4.2. Let TeR(E) be positive and its resolvent R(A,T) has a
pole at 2=v(T). Then T is irreducible if and only if the following three asser-
tions hold:

1) The eigenspace of T for »(T) is one-dimensional.

2) The eigenspace of T for v(T) contains a non-support element of K.

3) The eigenspace of T* for v(T) contains a strictly positive linear func-
tional.

PROPOSITION 4.3. Let TeQ(E) be positive and its resolvent has a pole at
A=r(T). Further, if T is irreducible, then we have

i) #(T)>0.

(ii) A=11is a simple pole of R(A,T).

(ii1) The eigenspace of T* for 1 is one-dimensional.

We can extend these propositions partially to the following propositions
44 and 45, the proofs of which will be obtained by simply modifying the
one of proposition 3.2 in H. H. Schaefer [18] p. 270.

PROPOSITION 4.4. Let Tel(E) be a positive irreducible operator. Suppose
that there exists a non-zero positive functional f of K* satisfying

T*f=r(D)f

and further that there exist a non-zero element x of E and a complex number
A, satisfying

Tx=2x and |A|=r(T).
Then the assertions 1), 2) and 8) of proposition 4.2 hold.

PROPOSITION 4.5. Under the assumplion of proposition 4.4, r(T) must be
positive.

5. The point spectrum of 7' on the spectral circle
In this section we prove assertion A) of our main theorem, namely,

THEOREM 5.1. Under the assumption of the main theorem, the point spec-
trum of T on I" coincides with the set of k-th roots of unity multiplied by r(T)
each of which is a simple pole of R(A, T).

The proof of this theorem is obtained from theorem 5.2 below.

Throughout this paper except in the last section we assume that T satis-
fies assumptions I), II) and III) in the main theorem. Then by proposition 4.3,
we can assume r(T)=L Proposition 4.2 also assures the unique existence of
a non-support element ecK and a strictly positive linear functional f,eK*
such that
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lefl=1
and
Sole)=1.
Let P be the projection corresponding to the eigenvalue 1 and let
Q=I—-P.

Then P is a positive projection and Q is a projection such that
Px=f(x)e  (x€E),

TP=PT=P
and
(T Q=QU—-T)=I-T.

It can be shown that the restriction of 2/—T(A>1) to QF has a bounded
inverse and the operator norm of them is uniformly bounded in {4; A>1}.
We denote this bound by b. All these assumptions and notations are used
in sections 5, 6, 7 and 8.

We can show easily that T leaves E, invariant, Since E, is represented
by C(W), we can treat, in stead of E,C(0) where theorem 3.3 in H. H. Schaefer
[18] may be applied. However, the restriction of T on E, is not known to
satisfy the assumption of his theorem. Nevertheless we can reformulate his
theorem into the following lemma 5.1(I) which is applicable for our purpose.
The proof of lemma 5.1(I) will be obtained by checking the one of H.H.
Schaefer’s theorem 3.3, and that of lemma 5.1(II) is easy.

LeMMA 51. Let, for a positive operator Us(C(S)) with r(U)=1, there
exist a strictly posilive linear functional f satisfying

Utf=r.
() If there exist x,&C(S) and a complex number A, such that
Uxy=2%, |[A1=1 and |x]|=1.
then the operators S and S-* defined by

Sx(t)=x,(t)x(1) o (teS, x=C(S))
and '

’ Six(t)=x,()"1x(1) (teS, x=C(S))
have the following properties: ‘

SS1=8-18=1, S|xj=x,, |Sx|=|S"x|=]x] (x€C(S))
and v , ‘
U=2,"1871US.
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(D If 4, is an eigenvalue of U and a n-th root of unity and also if the
eigenspace of U for 1 is a one-dimensional subspace containing the element
1=C(S), then we have

(1) There exists an element x,&C(S) satisfying

Uxy=2%,, |x%|=x =1 for k=min{m; " =1, m=1}.

(1) Let S; be the subset {t; x,(=27""} of S and y,; be its characteristic
Junction for each j=1,---, k. Then v, v, -, ¥, have the properties:
yJFEC(S) (j:]-yz:"'lk)’
wAy=0  (#]),
Y=Y AVt o A
[ %o =31t Pt oo+
and
Uy=p;-% (=12, k).
One of the direct consequences of this lemma is the following

THEOREM 5.2. Let Us&(E) be a positive operator with r(U)=r and satisfy
conditions 1), 2) and 3) in proposition 4.2 (T being replaced by U). Then, for
each eigenvalue Ayr of U on I' and ils eigenvector x,, there exist operators
D, D 1e&(F) satisfying

DD*=D"D=I, D|x)|=x,, |Dx|=|D"'x|=]x| (xeE)
and
U=4,"'D*UD .

show easily that »(U)>0. Therefore we assume r(U)==1. Let f be a strictly
positive eigenfunctional of UU* for 1. It can be shown, as usual, that
Ulxy|=]x,] - (5.1)
By assumption this proves |x,| to be a non-support element of K. Put
F:Emm .
Then F is a Banach lattice with the norm |-, and hence it is represented

by C(M) as in section 3. From (5.1) F is invariant under [J. Moreover we

can show that the operator [J defined by Ui= Ux® and the functional f defined
by f(fc):f(x) satisfy the condition of lemma 5.1(I). Therefore, by this lemma,
there exist operators S,S-'e8(F) such that

7) This part of the lemma is needed in the next section.
8) TFor the case j=1, this must be understood as Ty, =y,
9) % is the element of C(M) which corresponds to the element xe=F.



160 F. Niro and I. SAWASHIMA

SS-1=§-1S=1I, S|ml=x, |Sx|=|S"x|=|z| (x&F)
and
Ux=2A,"1S"1USx (xeF).

It can be shown that S and S-! have operator norm 1 w.r.t. the initial norm
of E. Since F is dense in E, the unique extension of S and S-?, denoted by
D and D~ respectively, satisfy the desired conditions.

From this theorem we can show easily that the assumption of this
theorem imply, among others, assertions (ii),---, (v) of theorem 3.3 in H.H.
Schaefer [18]. For example the following corollary corresponds to (iv) there.

COROLLARY b.1. Suppose that U satisfies the assumption of theorem 5.2 and
Jurther that the point spectrum on the spectral circle contains an isolated point
of this set, Then it coincides with v(U)H where H is the set of k-th roois of
unity for some kz1l.

Remark 5.1. If UsQ(E) satisfies the assumption of proposition 4.4, then
the conclusion of theorem 5.2 holds.

6. The voidness of the residual spectrum of 7' on the spectral circle
In this section we prove assertion B) of the main theorem, namely,

THEOREM 6.1. Under the assumption of the main theorem, the residual
spectrum is void on I.

The proof of this theorem is, after a sequence of propositions, given at
the end of this section.
We begin with the following

DEFINITION 6.1.  Let g be a non-zero positive linear functional and P,eQ(E*)
be the natural extension of the operator defined by

P.f=V(fAng)  (for each feK¥).

By propesition 3.4 we can show that P, is a lattice homomorphic projec-
tion satisfying ;
P f=w*lim (fAng) (feK¥),

0=P,<I, |Pl=1 (6.1)
and
E*,CP,E*,

where E*, is the set of elements of E* bounded w.r.t. g. Concerning this
projection we have
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LEMMA 6.1. (i) If f, is a bounded non-decreasing sequence of K*, then

P w*lim f,) =P, (\/ fr) =V Ppfp=w*-lim Pf, .

(i) If T*g=g then T*P,=P,T*P,.

Proof. (i) This is clear by proposition 3.4 and the following lattice
equality :
\/((\"{fn)/\WLg):}'{\7{(va/\771§):\7{y(fn/\’ng):ngfn'

(if) From (6.1) and T*=0 we have
T*P,=zP,T*P,.
On the other hand, since 7% is w*-continuous, it follows that

T*P, f=T*w*lim (f Ang))=w*lim T*(fAng)
Lwk-lim (T*f Ang)

=P, T*  (feK¥
which implies
T*P,<P,T*P,.
Therefore
T*pP,=P,T*P,.

We write simply
P.fo:Pﬂ
and also
I—Py=0,.
Then clearly
0=Q.=1, [Qyl=1o0r 0, and P,Q,=0.

By lemma 6.1

T*Py=P,T*P, 6.2)
and consequently

QQT*ZQoT*Qo . (6.3)

By (6.2) P,E* is invariant under 7% However it must be remarked that
Q,E* is not necessarily invariant under T*. We denote the restriction of T*
to P,E* by T*, and the one of Q,T* to Q,E* by T%*,

Let us investigate the relation between the spectrum of 7% and T*,. In
the case of E=C(S), there has already been the reduction theory established
recently by one of the authors (lemmas 1, 2, 3, 4 and propositions 1, 2 and 3
in [147). This reduction theory may be extended without any significant
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modifications to our case where E is an arbitrary Banach lattice!®. Therefore,
we have

PrOPOSITION 6.1. (i) The spectral radius of T*, is also 1, i. e,
r(T*)=1.

(i) On the spectral circle I', the point spectrum of T¥, coincides with that
of T*, 1.e.,
PATHNL =PAT*)N\I" .

(iii) On I', the spectrum of T* coincides with that of T%*,, i.e.,
o(THNC=o(T*)NI" .

(ivy On I', 2=2, 1s a pole of the resolvent R(A, T) if and only if it is a
pole of R(A, T*)).

In the case of E=C(S), E*;, is dense in P,E* strongly. But in the pre-
sent case this does not hold generally. Indeed, it is known that E*; is only
w*-dense in P,E*. The following discussions are necessary to overcome this
difficulty.

Let ¢ be the functional on E* defined by ¢(f)=f(e), in other words, ¢ is
the element of E** which corresponds to the element ¢ of E. Then ¢ satisfies

T*ep=gp. (6.4)

Since .
T*f(]:fo ’ (65)

T* leaves the (AM) space E*;, invariant. We denote the restriction of T* to
E*;, by T#*, Under these notations we get '

PrOPOSITION 6.2. (1) T%*, is a positive operator of L&(E*r) with spectral
radius 1.
(ii) The restriction of @ to E*r, denoted by ¢, is a strictly positive func-
tional of (E*1)* and satisfies
(T*) 0=, .

(ili) The eigenspace of T*, is one-dimensional containing f, which is a
non-support element of the positive cone of E*;,.

vy (el is an eigenvalue of T* if and only if it is an eigenvalue of
T*,, and then the corresponding eigenspaces ave identical with the other.

10) = Indeed, lemmas 1, 2 and 3 in [14] hold even if we replace T* and T*; by T and
T, respectively, under 'the assumption that E is an arbitrary Banach space not neces-
sarily assigned to order relation and T is an arbitrary bounded operator of (F) and
P is an arbitrary projection of @(E) such that TP=PTP.
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Proof. (i) is clear. Indeed, we can prove from (6.5) || 7% ,,=1.

Since ¢ is a non-support element of K, ¢ is strictly positive on K* satis-
fying (6.4). This proves (ii). Also this, combined with (iii) of proposition 4.3,
proves (iv) as in the proof of proposition 1in [14]. (iii) is a direct consequence
of (iv).

By (ii) and (iii) in proposition 6.2 the operator T*, satisfies conditions 1),
2) and 3) in proposition 4.2. N

By (iv) in proposition 6.2 it is shown that 1 is an isolated point of
Py(T*)NI". Therefore, we can apply corollary 5.1 to the operator 7%, Thus
using (iv) in proposition 6.2 again, we get

PROPOSITION 6.3. Let 2, be an eigenvalue of T* on I". Then A, is a k-th
root of unity for some positive integer k.

LEMMA 6.2. Let g, and g, be positive functionals of E¥. Then the following
conditions are equivalent to each other.

1) g:Ag=0.

(i)  Po(f)APg(f)=0 (fi./r€K*).

(iii) Pgy + Pgy=0.

iv) P51+P€2:P8’1+L’2>

From these we get

PROPOSITION 6.4. - Let ,#1 be an eigenvalue of T* on I'. Then there exist
operators D, D& R(P,E*) satisfying

DD l=D"1D=], (6.6)

|Df|=|f] (feP,E¥) (6.7)
and

T¥,=2,"1D'T*,D . (6.8)

Proof. By proposition 6.3, 4, is a k-th root of unity. We assume £ to be
the smallest positive integer satisfying this property. Then 2, is a primitive
k-th root of unity and k>1. We represent E*; by C(R) and consider the
operator (Tq‘o) belonging to {(C(M)). By propositions 6.2 and 6.3 and fuzl,
the assumptions of lemma 5.1(II) are all satisfied by (f}"o). Therefore, coming
back to the original space, there exist elements A, g, -, g€ E*s, such that

T*h=2,h ,

[hl=fo,

aing=0 (%)),
fo=g gt o 8k,



164 F. Nuro and 1. SAWASHIMA

h=g,~+ A g+ -+ A, g,
and
T*,=2,"1S1T*,S 6.9)

where S and S-* are defined respectively by

é}:/’q\f and Sf}fzwéA (feE*s,).

Making use of these elements g,, -+, gz, we extend the operators S, S-'e L(E*;,)
to operators D, D-'=&(P,E*) as follows: ‘
Df=(Pgy+ APyt -+ +2,"Pg) f (feP.E¥)
and
D= (Pay+ A Pyt =+ + A7 BPL)f  (FEPEY).
We must prove that these operators D, D-! are the desired ones. By lemma

6.4, we have
POZPgl'f‘Pgﬁ“ +ng

and
Py« Pg;=0  (i#)).
By these equalities, we can prove
DD =D"D=1]I.

Since E*y, is lattice isomorphic to C(MY), we have

PN - AN "
Pof=Poif=\Frngy=g,f  (feE*nK*).
Consequently
AN na ) ) A
Sf=hf=(g1+28o - + 4220 f

=Pyt 2Pyt - +2FP)F (FeE%r).
From this we get

Sf=(Pgy+ 2, Pgyt- - +,{0ﬂ—lpgh_)f (feE*s).

This proves that D is an extension of S to the space P,E*. Let f be any
positive element of P,E*. Then fAnf, isa non-decreasing sequence belonging
to E*;, which converges to f in the sense of ¢(E*, E). Since D is an extension
of S, we get from (6.9)

2DT*(fAnf)=T*,D(f A\nfy) . (6.10)

By lemma 6.1(i) it can be seen that, for every bounded non-decreasing sequ-
ence f, of K* Df, converges to D(\/f,) in the w*-topology. This property,
combined with (6.10) and the fact that T* is positive and w*-continuous, shows

ADT*=T*Df  (feP,E*nK*).
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Since this equality, as can easily be shown, holds for any feP,E*, we get
ADT#*,=T%D. Therefore, using (6.6), we get (6.8). Finally we have
IDf|=|Poyf+ 2P oy S+ + 2,7 1Py, ]

S|P fl 4+ Pepfl+ - 4| P, Sl

SP 1+ Pl f |+ - + Py lf]

=Pfl=Ifl  (JePE¥).
Similarly D! is an extension of S-! and satisfies

(D=1l (JEPE®).
Therefore
\fI=|DDF=|DFI 1S

This proves (6.7) and the proof is completed.

Proof of theorem 6.1. To prove the theorem we suppose the contrary, i.e.,
there exists a complex number 2, which belongs to R,(T)~I". Then clearly

AWAEPATHNT and 2A,#1.

Therefore, by proposition 6.4, there exist operators D, D& 8(P,E*) satisfying
(6.6), (6.7) and (6.8). By proposition 6.1, =1 is a pole of R(4, T%,). This fact,
combined with formula (6.8), shows that A1=2, is a pole of R(1, T%,). Again
by proposition 6.1, 2=4, is a pole of R(2, T*). Therefore, by considering the
facts o(T)=0(T*) and R(4, T)*=R(, T*), we can see that A=2, is a pole of
R(2, T). Hence we have ‘

AEPATYNT .
This is a contradiction and the theorem is proved.

By theorem 5.1 and the above proof we get

CorOLLARY 6.1. Under the assumption of the theorem the point speclrum
of T on I' coincides with that of T% on I, i.c.,

Pa(T)f\F:Pu(T*)mlﬁ .

7. The space L and the extension of 7 to L
For every xeE, define a new norm
_ lxlz=ro(l %)) .
Then this norm |-||; makes E a normed lattice. Since

lxllz= Al Xl (7.1)
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the topology defined by this norm | .||, is weaker than that defined by |-|.
The completion of E under this new norm is denoted by L, an element x of
which consists of mutually equivalent fundamental sequences {x,} in the
norm |-||;. Let us write conveniently

x={x,}.

If there exist fundamental sequences {x,} and {y,} which represent x and
y respectively such that
X0 Yy (n=1,2,-)
then we define
xzy.
Under these definitions we get
PROPOSITION 7.1. L is a Banach lattice under the norm and order defined
above, and the new order is an extension of the old one defined in E, in other

words, for x,yeE,
xzy in Eif and only if x=y in L.

Proof. We only check an essential point of the proof which seems to be
obvious. First, for x,,y,=E, the following relations are well known:

Ixn\/yn_'xmvym! :<: Ixn‘—xml + |yn'—ym| (72)
and

Ixn\/y'n."’xn' é [ xn_yn] . (73)
Then, remembering f,e K*, we get from them

”xn\/yn—xm\/ym”Lé [Ixn"'xm”L'{' ”.yn"ym”L . (72,)
and

”xnvyﬂ_xn”Lé ”xn*‘yn"L . (7'3/)

From (7.3') we conclude the following assertion:

() If {x,} and {y,} are mutually equivalent fundamental sequences, then
{x,Vy,} and {x,A»,} are both fundamental sequences which are equivalent to
the given ones.

Using (x) and (7.2"), we can show that L is a lattice, indeed, for x={x,}
and y={y,}, {x,Vy,} is a fundamental sequence representing x\Vy.

It is clear that f, can be extended uniquely to L, denoted by the same
letter f,. Then f, is a strictly positive linear functional belonging to L* with
norm 1 and satisfies the relation

Fox)=lxll o~ x-]z .
and

SollxD=llx].
By (7.1), we have
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L¥*CE*, (7.4)
that is, for every element fe L*, the restriction of f to E is an element of E*.

More precisely, it can be shown that L¥ is isomorphic as a Banach lattice to
E*;,. Denote the positive cone of L by K,. Then, by (7.4), we get

PROPOSITION 7.2. e is a non-support element of K,

Since a non-support element is a weak order unit, L is, by Kakutani [3],
isomorphic as a Banach lattice to a concrete L, space on a compact Hausdorff
space with finite measure. It can be seen that the operator norms of T and

RQ,T) (2>1) w.r.t. the norm ||, are 1 and 2—1—1 respectively. Therefore

they can be extended uniquely to operators of £(L) without changing their
norms. Let us denote them by T and R.(4, T') respectively. Then clearly

R, (A, T)=R(A Ty (A>13.
Further we denote by P, and @, the extensions to L of the projections P and
Q defined in section 5. Then these extensions satisfy the relations similar to
the old ones, e. g,
Px)=fxle (xel).
From now on we investigate the properties of 7. In the first place we have

PROPOSITION 7.3. Ty is a positive operator of &(L) and the eigenspace of
T, (resp. T.*) for 1 is one-dimensional and contains the nen-support element e
(resp. the strictly positive functional f,).»

Proof. 1t is sufficient to prove that the eigenspaces are both one-dimen-
sional. The eigenspace of T.* is one-dimensional by (7.4). To show this for
T,, assume the contrary, i.e. the eigenspace of T, be not one-dimensional.
Then there exists xe L such that

Tipx=x and Qrx=y+0.

From these relations we get

TrLy=y. (7.5)
We can assume here
[¥lz=1. (7.6)
Put
T N I+TL+ ee "I“T],,"_l
L™ n
and

_ T e T

T,
n

Then T, coincides in E with T,, and

#) Added in proof: Indded, it can be shown that 7'y is irreducible,



168 F. Niro and 1. SAWASHIMA

ITpnllz=1.
Since £ is dense in L in the sense of norm ||-|,, there exists ze F such that
Iy=sl<g
IS
Therefore we have

HTL,nQL;v——TL,,,QLEHL<‘%,, ,
consequently
IITL.ny—Tan;|L<%» _
Then, by (7.5),

19— T,Qzl< - &

By theorem 5 in S. Karlin [5],

1T.Qz[—0  (n—c0).
Therefore

ITWQz1—0  (n—co).
This contradicts (7.6) and (7.7), and the proof is completed.
LemMA 7.1, For xeL, |x|Ze and 2>1, holds the relation
1R, TOQrx| =1 B2, T)ll ezl QU Lol

where || -|lqz s the operator norm of R(A, T) restricted on QE in the sense of
the old norm |-|.

Proof. Since E is dense in L, there exist x,€ E (n=1,2,-.+) satisfying

ez < 7.8
Here we can assume
%] =e. (7.9

For, if this is not the case, then, for x, satisfying (7.8), the sequence

(xaAe)V (—e)
satisfies (7.8) and (7.9). From (7.8) we get

IRDQur— Q= ke
Consequently ‘

IR (DQur < IRAQ, 22

Let n—oco. Then, using (7.9), we get
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| Re(A) Q] cShim | R(A)Qx, [l L= 1im | R(AQx,] ] fol

N=00 N0

<lim | R(A) gzl Q1 |1 %41l L full

n—00

SR ezl QU -

We do not know if the value A=1 is a pole of R(4, T;), however the pre-
ceding lemma shows a weaker result, namely,

PROPOSITION 7.4, For every positive number e, there exists a positive number
7 such that
nuel, |x|se, |ul<7
and
Trx—x=u
imply
1Qzxllz<e .
Proof. If the proposition is false, then there exist x, and u, (n=1,2,..)
in L and a positive number ¢ such that

mlSe, < b (7.10)
1Qx,ll.ze (7.11)
and
Tan“xn;un . (712)
Put
Qrx,=2,,
then
TLZu—anun (713)
and
Z,e@r L.

For any 2 (A>1), we have from (7.13)
(A=THz=@—1z,+ 1, .
Since R(2,T,) is positive for 2>1, we have
2, =(A—DRQA, To)zu+R(A, Tyl ,
2o+ = (A=D(RA, To)zp) e+ R4, To) |l

I zpsl o= A—=D(R(A, T zp) el 21 R To) | iz
therefore

2l S A—DIRA, Tzt linle

For a fixed A, let n—oo. Then, making use of lemma 7.1 and (7.10), we get
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I 2,42 (1) T [R(L T Quals

=@=DIRA Tzl QU I fol
=@=Db[QU Ll 5
where b is the number defined in p. 158. This holds for any 2 (2>1), therefore
lim |z, ,=0.
Since z,=Q.L, we have
llzoell 2=l 2n-l . -
Consequently

lzallz—0  (n—co).
This contradicts (7.11) and the proposition is proved.

Since L is a Banach lattice the complexification [ of L can be defined.
By consulting remark 3.1, it can be shown that [ is nothing other than the
(norm-jcompletion of the complex normed space £ the norm of which is de-
fined by f,(|x]). To denote the extension of operators in L to [ we use the
same letter, e.g., 7y is the extension of T, to L. Then, by proposition 7.4,
we get

PROPOSITION - 7.5. For every positive number ¢, there exists a positive num-
ber y such that «
x,uef, x| Ze, 7~‘Lx——xzu
and

lullz<y
imply .
1Qzxl<e.
Proof. 1t can be shown easily that both the real and imaginary parts of

x and corresponding parts of u satisfy the conditions of this proposition.
Then proposition 7.4 proves proposition 7.5.

Hereafter we denote by x(e) the positive number 7 determined by ¢ in
proposition 7.5.

PROPOSITION 7.6. For every positive number e, the positive number 77(2)
defined above satisfies the following condition :
Let
x,yel, xAy=0, x+y=e, Tix—x=u
and

lulz<n(-5-)-
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Then
xlz<e or |yle<e.

Proof. By proposition 7.5 we get

1Quxlz< -5~ and [Qrylz< 5

Without loss of generality we can assume

FolW)=7o(9).

Then, as in the proof of lemma 4 in [107, we get

0= (x| = folx)e+ | Qx| 2] Qx|
Consequently
I*l.=21Qzx]lL<e .
PROPOSITION 7.7. For every positive integer k and every positive number ¢

which is smaller than }5, the positive number 77(3) satisfies the following

condition :
Let xye L (I=1,2,.--, k) be such that

XA Xy=0 ({=#m)
e=x; Xyt - 2
ITon—nl<n(y)  U=L2-,k).
Then at least one | (1LI<k) satisfies
le—xllz<e.

Proof. By proposition 7.6 we can prove this proposition as one of the
authors has proved lemma 5 in [107].

8. The voidness of the continuous spectrum on the spectral circle
In this section we prove assertion C) of the main theorem, namely,

THEOREM 8.1. Under the assumption of the main theorem, the continuous
spectrum is void on I.
To prove this theorem, it is sufficient to show
AN PN .

Throughout this section, as we mentioned in section 3 for E, the symbol ~ is
omitted in the complexification of L and also in the extensions of operators to
this complexificated space.
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We begin with the following

DEFINITION 8.1. The normalized approximate spectrum of Ty, denoted by
NALTy), is the set of complex number Ay, for which there exist x,, u,&L

Tpxp—AXn=Un , (81)

|l =e 82
and

l1allz—0  (n—c0). 8.3)

With this definition we get

PROPOSITION 8.1. The approximate spectrum of T on I" is contained in the
normalized approximate spectrum of Ty, i.e.,

ATNCNALTOINT .
Proof. Assume
s AN .

By definition there exist x,, u,&E which satisfy, besides (8.1),

|2l =1
and

s =0 (n—00). (8.4)
From (8.1) we get

Tlxnlglxn!_,unl . (85)
Put
2,=Q| x,] .

Then, as in the proof of proposition 7.4, we get from (8.5)
folzni)=fo(zs-)—0.

Consequently

Izllz—0 - @6)
(8.4) shows

lallz—0. 8.7

Since lemma 6 in [14] remains true in the case where F is an arbitrary
Banach lattice, we get from the assumptions

tim 1,21 (83)

T -C0

If we consider x, and u, to be elements of L, then relations (8.1),\(8.6), 8.7

and (8.8) assure, as in the proof of proposition 4 in [10], the existence of new
sequences which satisfy relations (8.1), (8.2) and (8.3). This proves that

AENA(TL) .
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LEMMA 8.1. Let 2,&NA TN and 2,#1. Then for the sequence x, de-
scribed in definition 8.1 holds the relation:
1Petallz—0.  (n—00)
Proof. Since
Foltn) =Fo(Trxn— 2 %0) = (T¥fo— A fo) ()= (1= 20) fo(x,)
and
Pansz(xn)e ]

the lemma is evident.

The properties of T,=8(L), shown in the previous section, allow us to
develop the discussion for NAJToNI[ along the same line as one of the
authors did in [10]. Therefore we get the following proposition the corre-
sponding one of which is found in the proof of proposition 6 in [107].

PROPOSITION 8.2. If 1, belongs to NAJT)ONT, then, for every integer I, 2;}
belongs to NAAT )N .

In the previous paper [10], it was a direct consequence of this proposition
that 4, is a k-th root of unity. However in the present case, since R(4, Ty) is
not known to have a pole at A=1, we must prove

ProrosiTiON 83. If A, belongs to the normalized approximate spectrum of
Ty on I', then it is a k-th root of unity for a positive integer k.

Proof. Tq prove the proposition, assume the contrary, i, e., let the complex
number 1, belonging to NA(T,)~\I" be not a root of unity. - Then, by proposi-
tion 8.2, there exist complex numbers 2, (m=1,2,-+) such that

In€NALTINT
and

1
| 2= <

By definition and lemma 8.1 there exist x,& L such that
ENETS
T A <
" 2 mxm”L *773
and
P 1
IPotmllz< -
Then

1T = s S N Ton— Al A= Dl <

Therefore, by proposition 7.5, we get
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1Qzxml—0.
Hence

[2m ) e S NP2l o+ 1@zl 2 =0 .
This is a contradiction and the proof is completed.

We assume hereafter that 2,eNA(T,)NI" and 1,#1, then by proposition
8.3, 4, is a primitive k-th root of unity for a positive integer £>1. Also we
put as in [10]

Proposition 8.3 corresponds to proposition 6 in section 7 of [10]. The
discussion of the remaining parts of section 7 in [10] can be applied to our
present case with only slight modifications. In the first place, since we are
dealing with normalized approximate spectrum, proposition 7.5 stands for the
assumption that 1=1 is a pole of R(4, T;). Indeed, propositions 7.6 and 7.7 in
the present paper correspond to lemmas 4 and 5 in [10] respectively. In the
proof of proposition 7 in [107] we have made use of the property that from
every bounded sequence we can select a weakly convergent subsequence. This
property cannot be used in the present case. However, instead, we can use
here the property that from every bounded sequence x, we can select a sub-
SEQUENCe X,o, Such that fy(x,m) iS convergent. By this modification the proof
of proposition 7 can be applied to the present case. Therefore we can get
for T, and A,&NA,(T.) propositions which correspond to propositions 8, 9, 10
and 11 in [107]. Consequently we get the following proposition which corre-
sponds to theorem 7 in [10].

PROPOSITION 84. If A, belongs to the normalized approximate spectrum of
T, on I', then it belongs to the point spectrum of Ty on I, i.e.,
NAATINL CTPATINT .

Proof. In the proof of theorem 7 in [10] if we replace the definition of
3, and & by the following ones (i) and (ii) respectively, then the discussions
there remain true in the present case.

(i) Determine g, smaller than

(3e)

2k(2k—Tjc

(&) "

and  pop 1y -

(i) For every positive number 5(<"215>* determine a positive number 0 to

11) For the notation x(-) see p. 170.
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satisfy
Ny
5=m1n 0Oy, "E(:?-l*é*-:f)“ .

PrOPOSITION 85. If A, belongs to the point spectrum of Ty on I', then it
belongs to the point spectrum of T on I, i.e.,

Pa(TL>mPCPo'(T)m[’ .
Proof. To prove the proposition, assume the contrary, i.e.,
WEPLT). (8.9)
Put
N o/ wilie o S
(P"(Z) - ‘nklonk"‘l
and
pAY=2—2.
Then we have
@) @nldg)=1
and
@ 1pTenT=|| 42 =
|| L=
- nk
i I+TH oo -T2
T (I”T)< nk Wﬂ_P)H_}O’

where the last part of the discussion is justified by theorem 5 in S. Karlin
[5] which asserts

n

“ [T - +T”"1u-—P“»_»o. (8.10)

By theorem 6.1 and (8.10) we also have

(iii) The range of p(T) is dense in F and |j¢,(T")] is bounded uniformly
w.r.t. n. ‘
The above conditions (i), (ii)-and (iii) correspond to conditions (1), (2) and (5)
of theorem 3.9 in N. Dunford [1]. From the theorem we have, for each x= E,

ln(T) x| 0. (8.11)
By assumption, there exists x,& [ such that

xellz=1 (8.12)

and ,
Trxg=2Ax,. (8.13)
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Since E is dense in L, there exists x,/&E such that

1
”xo’"xo,“L< “‘3— .
Then the equality

leu(T)lz=1
yield

u(To) 50— pu Ty 1< 5 814
By (8.13) we get
Pu(Tr) X =%, .
Therefore (8.14) is reduced to the formula

10— T)x < 5 815)
This holds for any positive integer n.
By (8.11) there exists a positive integer n such that
1
W TV < e
len(T)xy | < 37l
Therefore
1 ,
len(T) 5y [l <5- - (8.16)
(8.15) and (8.16) imply

2
||I0HL<*3‘ .
This contradicts (8.12) and the proof is completed.

Proof of theorem 8.1. By propositions 8.1, 84 and 85 we get

AdTINTCPLTIN . (8.17)
This proves the theorem.

Remark 8.1. Since the converse inclusion in (8.17) is evident, it can be

easily proved that o(T), P,(T), P,(T.) and NALT;) are identical on I’ with
each other.

9. Concluding section

Theorems 5.1, 6.1 and 8.1 together show that our main theorem holds true.®

As a consequence of the main theorem, H. H. Schaefer’s problem b) men-
tioned in the introduction is answered affirmatively for positive irreducible
operators in an arbitrary Banach lattice.

%) Added in proof: Though in sections 4,..-,8 it has been always assumed that
the dimension of E is at least two, the main theorem holds trivially in the case where
E is one-dimensional. ‘
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As another consequence of the main theorem, we can see that the addi-
tional condition C) is not necessary in theorem 5 of [13], namely,

THEOREM 9.1. Let TeQ(E) be positive and A=r(T) be a pole of R(4,T).
Then T is a non-support operator if and only if T is irreducible and the
spectrum of T on I' consists only of one point r(T).

In the rest of this section we try to generalize the foregoing theory.
Condition II) in the main theorem is, under conditions I) and III), equivalent
to three conditions 1), 2) and 3) in proposition 4.2. By weakening 1) in the
assumption of the main theorem, we get

THEOREM 9.2. Let Te¥(E) satisfy conditions D), 1), 2) and 3) mentioned
above and, in place of 1), satisfy the following condition:

1y The eigenspace of T for v(T) is finite-dimensional.

Then the spectrum of T on I' is a finite union of sets, each of which 1is
the set of kyth roots of unity multiplied by r(T), and each point of the sets is
a simple pole of R(A, T), where k; (7=1,2,--+,h) are posilive integers and h is
the dimension of the eigenspace of T for r(T).

Remark 9.1. By this theorem the residual and continuous spectrum are
both void on [.

To prove the theorem we prepare five propositions below, in each of which
the assumptions of theorem 9.2 are also assumed. Since the theorem is trivial
in case »(7)=0, we assume further »(T)=1 for the sake of simplicity,

ProposiTiON 9.1. Let F be the eigenspace of T for 1, then F is a veclor
lattice w.r.t. the lattice operation defined already in E, i.e.,

for x,yeF, xVy and xAy belong lo F.
Consequently

for x,yeF, xAy=0 in Fif and only if xAy=0 1in E. (9.1)
Proof. Since T is positive, we have for x,yaF
Tavy)=TxV Ty=xVy. (9.2)

The existence of a strictly positive eigenfunctional of 7% for 1 assures the
equality in (9.2), and therefore the proposition is valid.

We denote the positive cone of F by K, i.e.,
Kp=KNF.
Then by Sz. Nagy [21] we get
PROPOSITION 9.2. There exists a positive base e,, e,, -, e, of Ky, namely,

Cyy By, oo, GII/EI(F
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is a base of F such that, for
x=a,e,+Faye,t+ - fane,eF,
xeKp if and only if @y, @, o, @p=20.
By (9.1) we get
CoROLLARY 9.1. Under the notation of proposition 9.2 we have
ey Nep=0 ({£m) .
Put
e=e;Fey+ - ey .

Since, F contains a non-support element of K, it can be seen without difficulty
that ¢ is also a non-support element of X. Then we have

PROPOSITION 9.3. For each x=K and for each | (1<I<h), the sequence
xAne, converges strongly to an element x;cK (as n—oo) such that

r=xt et b,

and
X NX=0 (I£=m) .
Proof. Put '
XANE=X,,
and
XNANE=Xy, .

Then it is easy to see that
Oéxn,léxn-!-p,l (Oéléh: O< p) ’
Xt A Xy, =0 (l=m, 1<, m<h) (9.3)
and :
x71,0=xft,1+xn,2+ e +xn,h . (94)
Consequently '
xn-bp,o_“xn,(): (xn-!-p, 1""'xn,1)+(xn+p,2“'xn, 2)+ e +(xu~l~p,h_‘xn,n) .

Therefore, for each [ (1=</<h) and for each positive integers n and p,
ngn-kp,l"'xn, éxn-)-p,o""xn,o .

Then, making use of theorem 3.1, we can see that the sequence x, ; converges
strongly. If we denote the limit of this sequence by x;, then (9.3) and (9.4)
prove the proposition.

Under the above notations, let P, e&(E) be the natural extension of the

operator defined by
P x=1x (xeK).

Then P, is a positive projection of &£) such that



On the Spectral Properties of Positive Irreducible Operators 179

| Pox| AP,y =0 (x,yeE and [+m)
and

Po+Poyt - +P =1
Put

PyE=E, and P,K=K, (1sigh).

Then E; is invariant under T and E is the direct sum of E, E,, - ,E,. We
denote the restriction of T on E, by T,. We also have K;=FE;~nK. Under
these notations we get by theorem 3.1

PROPOSITION 9.4. For each | (1<I<h), ¢, is a non-support element” of K;
and satisfies
Tlelzel.

Let f be a strictly positive eigenfunctional of 7% for 1, and denote the
restriction of f to E; by f, (I=1,2,.--, k). Under these notations we get easily

PROPOSITION 9.5. . For each | (LEIZh), f1 is a strictly positive eigenfunctional
of T/* for 1.

Proof of theorem 9.2. Since each E; reduces T, by the well known (com-
plete) reduction theory each T satisfies III). It is clear that T, satisfies I).
By propositions 9.2 and 9.4 7T satisfies 1) and 2). Finally by proposition 9.5
T, satisfles' 3). Therefore for each 7, the main theorem is applicable. Then,
again by the (complete) reduction theory, theorem 9.2 is valid.

As a consequence of theorem 9.2, problem b) of H.IH. Schaefer is answered
affirmatively for a positive operator TeQ(E) which satisfies 1/), 2) and 3)
mentioned above.

It is natural to ask if condition 1) or 1’) is not necessary. However, if
neither 1) nor 1/) is assumed, then, all the other conditions being satisfied,
the essential parts of the main theorem are shown to fail. Indeed, example
9.1 shows that o(T")~I" contains a point which is not contained in P,(T)~/[".
Moreover, example 9.2 shows that there exists an eigenvalue on [' which is
not a pole of R(4,T). As a preparation for them we consider the four-
dimensional I, (1=p=<oc) space E,, elements of which will be denoted by

&4
In this space we define the operator A, , (or simply A4) by ®

12) Hereafter we do not distinguish an operator from its matrix representation.
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0 a b
0 b a
a 0 0
a b 00

AN - R )

Aa,bz

Let
0,620, a+b=1, and |a—b|z5 . ©95)
Then the operator A is positive and irreducible. Moreover, we can show

r(4)=1, lAf=1
and
o(A)=P,A)={x1, +i(a—b)}.

The eigenspace of A for 1, which is one-dimensional, contains the element

1
1
1
1
Similar situation holds for A*. By solving a linear equation we get for

e p(A)

D (A AVt L
R(, Aj=(— Ay = g s

A
A
1
1

A 1
A 1
1 A
1 A

NN

A -4 a—b b—a
-2 2 b—a a—b
b—a a—b 2 =2
a—b b—a —1 1 '

Therefore, putting
c=a—b, (9.6
we get

R(A, A>"“’m§_ A=D1 (12-11<), ©9.7)

where, for m=0, A4, is determined by the following relation:
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11 1 1 1 100
A—‘1< 1)m+111 +l 1m1100
AN 2 1111 4%V 2700011
1111 0 011

1 -1 ¢ —¢

. (__1)7n( 1 1 “_> "‘1 1 —C C

T 21 I—ciy™t (Ide)™ /| _, c 1 —1

¢ —c¢ -1 1

1 -1 0 0

+ (__1)71:.—-1( 1 _ 1 > —‘l 1 O 0

2¢r =)™  (14ci)™ 0 0 1 —1

0 0 —1 1

Therefore, for all m, we have
Al =d, 9.8)

where d is a positive constant independent of m and g, b under the condition
9.5).

Let E be the [, space whose range is the space E, mentioned above, i.e.,
E is the set of elements x={x,} for which

ek,
and

x|l is finite,
Here as usual we mean

(SImIn”  (=p<eo)
Ixl=
sup (|5} (p=co).

Again we define
x=20 by =x,20 (n=1,2, ..

Then E is clearly a Banach lattice. Indeed E is nothing other than the usual
I, (1=p=co). With these preparations established we give

Example 9.1. Let E be the space mentioned above, and for each x={x,},
define the operator Te&(E) by

Tx=T{x}={TuXu} ,
where, by definition,
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Tw=A- L, L.

an’ dn

Let us show that this example has the desired property. Since the norm
of the operator T is the supremum of the norms of the operators T,, T belongs
to (E) with |Tl=1. It is clear that T is positive. It is also clear that the
eigenspace of T for 1 contains a non-support element, indeed the element

e={ gy &)}  (for 1Sp<oo)

and
e={&}  (for p=co).
This proves also that
r(T)=1.

We can see similarly that the eigenspace of T* for 1 contains a strictly
positive functional. For any x=/{x,} define the operator S(4,T) by
S(A, Tyx={R(A, T,)x,} .
Then relations (9.7) and (9.8) show that
1S, TYll=sup [R(A, Ty} <o ([2-1]<1).

Therefore S(4, T) belongs to 8(F). Then it can be seen without difficulty that
S, TY=R(, T) (|A—1]<1).

Relations (9.7) and (9.8) also imply that 2=1 is a pole of R(A,T). Thus for T
all conditions of theorem 9.2 are satisfled except for 1/). However, it can he
easily seen that &1 belong to C,(T)UR,(T).

Example 9.2. Let E be the space mentioned in example 9.1. For any
x={x,} € E, defines the operator T/ by

Tlx:T/{xn}:{Tn—lxn} ]
where we define
To=As0

and, for n=1, T, is the operator defined in example 9.1.

As regards conditions I), III), 2) and 3) the situation is the same as the
former one. However, either of the eigenvalues +i is not a pole of R(4, T).
Indeed, it is not an isolated point of P,(T).

By these examples problem b) of H.H. Schaefer is solved negatively without
the assumption of irreducibility in the space [, even if T satisfles conditions
2) and 3). As for his problem a) there are two ways of interpretation, namely,
under the assumption described in section 1:
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a’) Is every element of ¢(T)~\/[" an isolated point of o(T)~\I" ?
a”) Is every element of o(T)~\I an isolated point of o(T)?

Under these interpretations example 9.2 provides a negative answer to problem
a”) but does not to problem a’).
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