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1. One of the authors has given in a former paper [1] a formulation of
the well-known Tannaka duality theorem as a characterization of the right
translation of the ring of Fourier polynomials on a compact group. The pur-
pose of this paper is to extend this theorem to the case of homogeneous spaces
which are factor spaces of compact groups. ‘

Let G3a,b,..., x,... be a compact group acting transitively on a compact
space Me P, @,.... Let us fix a point Py of M and we denote by A the isotropy
group of Py:

H={aeG; aPy=PF,}.
Then the mapping aH—« Py is a homeomorphism from the homogenous space
G/H onto M.

Now let us denote by C(G), C(M) the algebra of all corﬁplex valued
continuous functions on G, M respectively. C(G), C(M) are algebras over the
field of complex numbers. To fe C(M), we associate a function f e C(G) as
follows : £ (@)=f(aPy) (aeG). Then the mapping f—»fis an injection from C(M)
into C(G). We shall regard C(M) as a subalgebra of C(G) under this injec-
tion: C(M)=C((z). Then it is clear that a function FeC(G) is in C(dI) if
and only if £ is constant on every coset of H, i. e.

fal)=f(x) for every xeG, heH.

For an element « in G, left (right) translation L, (R,) is defined as a

linear operator on C(G) as follows:
(Lo )(0=f(a %), (R.fXx)=f(xa) (xeG, feC(&)).

It is obvious that C(M) is a stable subspace under every L.,(aeG). Now a
function feC(G) is called Fourier polynomial on G if the set 1L.f; aeGY
contains only a finite number of linearly independent functions. In other
words, a function f in C(G) is a Fourier polynomial if and only if the smallest
left G-invariant subspace M (F) of C(G) containing 7 is finite-dimensional.
Let us denote by R(G) the set of all Fourier polynomials on G. Then R(G)
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is a subalgebra of C(G). In factif f1, foe R(G), then the product M(/1)-M(f2)
is also a finite-dimensional G-invariant subspace of C(G) containing f f». Hence
we have M{A )M ) - M(f) and dim M(f f2)<eo. Thus we have
Af2e R(G). Similarly we have ;42 € R(G) for every complex number 2, .
We note that a function f in C(G) belongs to R(G) if and only if f is
expressible in the form:
(1) F(D=0{Pd3(x) (finite sum)

where ¢{¥’s are complex numbers and ;7'(x)'s are components of some con-

tinuous irreducible representation x—D@ (x)=(d{*(x)) of G by matrices of a
finite degree. Infact, by L,di?'=Sd(a~1)d, we have di¥ e R(G). Hence if
S has the form (1), then fe R(G). Conversely, if fe R(G), then the smallest
left G-invariant subspace M(7) of C(G) is finite dimensional. Let fi, ..., fx be
a base of M(F) such that

(2> j Ji()f;(x)dx=d;; (dx: a Haar measure of G).
G

L.7; is a linear combination of the f,'s:
(3D L fi=33d ji(a)f ;.
J

Then e—D(a)=(d; () is a representation of G. Moreover d;; is a continuous
function on G as is seen from the following equation:

di (@ =(Lof f;,-):j Fila DT D
G
Then, decomposing the representation ¢--»D(a) into irreducible components,

we see that every d,; is of the form (1). Now by (3) we have

filaD)=2d ;:(a)f;(¢) (e: the unit element of G).
J

Since dx is left-invariant, D(¢) is a unitary matrix. Thus we have
(4> fila)=32d jiCa1)f (e)=32d, j(a) fiCe)-

Hence every f; is of the form (1). Then f is also of the form (1).
Thus our assertion is verified.
Now let us put

(5) R(M)=R(G)NC(M).
Then R(M) is a subalgebra of R(G). A function f in R(M) is called a
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spherical function on M (under the operation of G). In other words, a con-
tinuous function f on A is called a spherical function on M if the set {L.f;
a@e G} contains only a finite number of linearly independent functions, i.e. if
dim M(fF)<eo. (If fis a spherical function and M (f) if G-irreducible, then
IM(s) defines an irreducible representation #—+D(z) as in (3). Then f is
called a spherical function of irreducible type D.)

Now let us note that every continuous function on M can be approximated
uniformly on M by spherical functions on M. In fact, let f be any function
in C(M). Then by Peter-Weyl's theorem, there exists for any ¢>0, a function
fo in R(G) such that

(6 [ f()—F(x)|<e (for any xeG).

Let dh be the Haar measure on A such that J dh=1. Let us denote by r¥,
H
fo* the “right means” of £, fy on H, i.e.

f"“(x):j FCxhddh, fﬁ(x):j Folahydh, (xeG.

H H
Then, since fe C(M) we have f(xh)=f(x) for every he H, xe G. Hence f=f*
Moreover we have f*(xh) =f,*(x) for every e H, xeG. Thus f* is in C(M).
Now 7,* is in R(G). In fact, since f, has the form

Flo)=2:P(x)  (d;3'(x)'s are components of representations of G), we have
L

(s d;}:)(l)g di(hydh.

C;
Liz
@i, j “‘,',J

[ ()= “"j 4% (xhddh= 3
H

Hence f,* has the form (1). Thus we have fi* € R(M).

Now integrating |f(xh)—fo(xi)|<e (xeG, he H) over H with respect to
B, we have |/*()—ff(0)|Ls, ie. | F(x)—fo%(x)]Se. Thus our assertion is
verified.

Now let us denote by N(H) the nomalizer of H in G:

N(H)={aeG; aHa "'=H?}.
Then we have the following
Levmva. A right translation R, leaves C(M) invariant if and ' only if a

e NCH).
In fact, let e N(H), feC(M), Then for any ZeH, we can choose an
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element %’'e I such that he=al’. Hence we have
b (x]m)::ftxalz’):f( xa) (since fe C(M)).

This means that R, (R.f)=R.f (for any e H). Hence we have RofeC(M).
Conversely let R,(C(M))=C(M). Then, for any feC(M) we have

R.feC(M), i e f(sha)=f(xa) (xeG, heH). Now, any two different points
of M can be separated by a function in C(AM). In other words, if by, by € G
satisfies

F(h)=r(bs) for any fe CAL),
then we have 0 H=bH. Hence we have

xhaH=xaH for any xeG, hell

Then we have ¢e N(H). Thus our lemma is proved.

CorovLary. A right translation R, leaves R(M) invariant if and only if a
e NCH).

If e N(CH), we have R (C(M))xC(M), R,(R(GND=R(G). Hence we have
R, (R(M))< R(M). Conversely, let R,(R(M))=R(M). Since R(M) is unifor-
mly dense in C(M) and R, conserves. the uniform norm, we have
R.(CCMMN=C(M). Thus ae N(H), g.e.d.

2. Now let us denote by A the full automorphism group of the algebra
R(AM). An automorphism S of the algebra R(M) is called real if

Si=Sf for any feR(M),

where j denotes the complex conjugate of f (note that R(M)=R(M)). Then
the set @ of all real automorphisms in the automorphism group % forms a sub-
group of % Obviously, the restriction of L, on R(M) (which we denote by
L,") is in the real automorphism group @, for any ¢eG. The set {L,; aeG}
is a subgroup of ®. This subgroup is denoted by G.

Now, let us denote by Z() the centralizer of G in ®:

Z(G)={Se®; SL,/=L,’S for any aeG}.

For a e N(H), the restriction of R, on R(M) (which we denote by R,")
is in Z(C:‘). In fact, B, is in @ and L, R,/=R,’ L, for any beG.

Thus we obtain a homomorphism ¢—R,” from the group N(#) into the
group Z(G). Now our extension of Tannaka duality theorem is stated as follows :

TusoreM. The homomorphism a—R, from NCH) into Z(G) is an onto-
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homomorphism with kernel H:
NCH)Y/HAZ(G).

This contains Tannaka duality theorem as formulated in [17] as the special
case H={e¢}. The proof runs analogously to the proof in [[1]. But we shall
give it here for completeness’ sake.

Let S be in Z(G). We first establish that
7> | rwa={ o
G ¢

for every fin R(M). Let M(f) be the smallest left G-invariant subspace of
C(M) containing f. Let ‘

WM =My + M, (direct sum)

be a decomposition of M(F) into irreducible components. Then, f can be ex-
pressed as f=f1+ 41, fieM (=1, ..., 7). )

Hence we may prove (7) under the assumption that 2M(7) is irreducible. In
case where M( ) is irreducible, we distinguish the following two cases:
(i) The representation of G on M(S) is trivial, i. e. the case where M(f) is
one-dimensional and

L.f=f for every aegG.
Then s is constant and we have Sf=f. Thus we have (7) in this case.
(ii) The representation of G on M( ) is non-trivial. Let 73, ..., fu be a base

of M) which satisfies (2). Then the matrix (d;;(«)) defined in (3) is a
unitary one. From (3) and SL,'=L,'S, we have

LaS 'g——:zcithIl)Sfj,
J

(SF (e )=Sd;: (a)(Sf;)(x) (a, xeG).
J
Putting ‘x=e, we have

(Sfa e )=32d;,(a)(Sfi)(e),
or
SfoXa)=3%d: ;@) Sr)e)  (aelG).
Now, since the representation ¢—(d;;(a)) is irreducible and non-trivial, we

have S (Sfi)(a)da=0. On the other hand (4) implies that j fiCa)da=0.
G e
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Thus (7) holds for any f3, ..., fu, hence for 7 also.
From (7) we have
(8) HSf”Qp:”f”—'z‘» (»=1 2,.)

for any fe R(M), where
1 1
1 les=3) |FCopda =0\ (f(x)7C))edx* .
= reopasf<|| |

In fact, since S is a real automorphism of R(A ), we have

S(fPe)=|Sfe.
Now (8) implies that
(9) IS Ae=lrl-

for any fe R(M), where “fl]w::maé(]f(x)]. In fact, the well-known formula
Xe
”f”“zlim Hf”m
preo

and (8) imply (9.

Thus S is continuous with respect to the uniform norm in R(M), S can
be uniquely extended to a continuous linear operator S of C(A). § is an
automorphism of the algebra C(A}) since S-1 has also the extension to C(M)
which is the inverse of S. Obviously S commutes with the restriction L.”
of L, on C(M) for any ee(. Let a be any element of G. We denote by I,
the maximal ideal of C(M) defined by

10 So={reC(M); f(a)=0}.

Obviously if a;, a2 are congruent mod. H, then J,,=3,, and conversely. Every
maximal ideal I of C(AM) is expressed in the form 3=, for some ¢eG. Now
since S is an automorphism of the algebra C(M), §(3e) is also a maximal ideal
of C(M). Hence there exists an element b in & such that

S‘(Sc‘):rab
Now, as is seen easily, we have L,"(J,)=3.; for any ¢eG. Now let f be

any function in C(M). Put g=S5f. Let a be any element in G. Then we have
f—f(a)eJ,. Hence we have

(@) e (S)=L."3)=L"(3)=Ls"J1=Sas-
Thus we have

glab)=f(a) for any aeG.
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Writing ab==x, we have g(x)=f(ab"1), i.e.
Sf=Ry-i7.

Thus, we see that the right translation R,-, leaves C(A) invariant and the
restriction of R,-; on C(M) coincides with S. Hence we have beN(H) by
the lemma, and we see that the restriction R,-," of R,~1 on R(M) coincides
with S. Thus, we have established that the homomorphism. ¢—R,” from
N(H) into Z(() is an onto-homomorphism.

Now the kernel of the homomorphism e¢—K,’ is determined easily: R,'=1
implies that

an flxa)=f(x)

for any fe R(M) and xeG. Then, since R(M) is dense in C(AL), (11) holds
for any feC(M) and xeG, then xeH=xH for any xe G. Thus we have ve
Conversely, if a eeH, then we have clearly R,’=1. Thus our theorem is
proved.

Remark. Let us introduce in the group Z(G)={R,’; @ N(H)} the weak
topology: for any finite sequence fi, ..., fr € R(M) and for any >0, put

NSy o S5 D={S € Z(E); ISA—All<a, oos [Sfe—rill <)

Then taking {U(fy, ..., x5 )} as the neighborhood system of the unit element
in Z(G), Z(G) becomes a topological group. Moreover the homomorphism ¢—R,’
is a continuous mapping from the compact group N(H) onto Z(G). Thus, we
have N(H)/H~Z(G) as topological groups.

Example. Let G be a connected, compact Lie group, and A be a maximal
torus in G. Then, N(H)/H is isomorphic with the Weyl group of G.  Or more
precisely, N(H)/H is isomorphic with the Weyl group of the complex form of
the Lie algebra of . Hence we have a characterization of the Weyl group
of G as the centralizer of G={L,’; @€ G} in the real automorphism group @
of the algebra of spherical functions on M=G/f.
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