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1. Let G be a locally compact abelian group and G the dual group of G.

The elements of G and G are denoted by %, Yy e and £, .9 ...... respectively ;
(x, #) will mean the value of the character £ at x.

LI(G), C(G) denote as usual the set of all integrable functions on G with
respect to Haar measure, and the set of all continuous functions on G,
respectively, 7, the translation by @ e G, ie. T, f(x)=f(xa"1). For f, ge LI(G),
f* g means the convolution product of f and g. We shall denote by E[LI(G)],
GLC(G)] the set of all bounded linear transformations on LUG), C(G) to
itself. The subset of ELLI(G)], €[C(G)] consisting of all elements which
commute with every translation 7, @€ G, will be denoted by A[ZWG)],
ACC(G)].

E. Hillel’ has proved that the following propositions hold in the cases
where G is either the additive group of real numbers or the toral groups.

(a) For every element T of ACIMG)] there exists uniquely a function
n(®), called the factor function of 7, which is continuous in £ e C:‘, such that :

=N AL
T f(2)=p(R)f(£).
(b) There exists a bounded Radon measure on G, M(E), such that:
A - ,
DNy=p(#) and T-f=f+M ( =§f<xy~1>d9n<y>)
(¢) Let ©S={T(&), £€>0} be a semi-group in ALLMG)], ie. a set of ele-
me-ts of ALL(G)] defined for a positive real parameter &, satisfying
T(E +E)=TCEDT(E2).
If we denote by (%, £) the factor function of 7(&), then we have
w(, E1+E2) = pu(d, & p@, &2),
and the properties of 7(¢) such as being weakly continuous in &, possessing

infinitesimal generator, have their counter-parts in properties of u(#, &).
(c.f. Theorem 4. below).

1) E. Hille, Functional analysis and semi-groups, p. 368 (1946).
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Though it is not certain that all these hold for any locally compact abelian
group G, we could establish the following results.

(a’) The proposition (a) of Hille hold for every locally compact abelian
group. (Theorem 1 below).

(b') The proposition (b) of Hille holds for every discrete abelian group.
It holds also for compact abelian groups, if A[ Z1(G)]is replaced by ALC(G)].
(Theorem 2.3. below).

(c’) The proposition (¢) of Hille holds for every locally compact abelian
group. (Theorem 4 below).

Our proofs are simpler than that of Hille in that we do not need the
classical Zygmund's theorem?. The author wishes to present here her hearty
thanks to Prof. S. Iyanaga and Prof. K. Yosida for their kind criticisms.

2. First we shall consider a single linear bounded transformation
. . A — '
Te @G ILI(G)] as given, and define that linear transformation 7" on Ll(b) to
itself by: ‘ '
A A N
T f=T-f.
Then we have:
Levmma. T re=me T<::> f(a”l, )=(a}, f)j'fm‘ all #eC.
Proof. Let f be any element of ZLI(G). Taking Fourier transforrn we

TN TN
have (T'r,lf(x)) &)= Tf(xa 1)(m) Tj f(xa*l) Cx, 2)dx=1T S f(x) Cax, Z)dx

On the other hand we have . =T(a"1, £)f(%).

PN N
(Ta T(x))(E)= (TF)(xa (x)"j (T (wa=1y (%, %) dx =(a~\, &) TJ‘(A)
THEOREM 1. There exists a continuous function w(%) on G for TeCGLLYG)]
with Tf:,uf, if and only if TeALILMG)], de. Tra=7.T for all aeG.
Moyveover if Te ALLV(G)], then the function u(Z) is uniquely deiermined.
Proof. Assume Tre=7,7 for all ae G, then we show the existence of p.
First we have the following relation for arbitrary f, g in L(G):
T(f+)=(THxg=Ff=(Tg.

In fact, We- have fxg(x) ;SGf(xy*’) 2(y)dy :—*L'ryf (%) g(y) dy,

and so, T(f» g) = Try fx) () dy= o TV g03) dy = (TF) » o
As G is an abelian group, T(f+g)=f+ (Tg).

Hence taking the Fourier transforms of both sides of the above equation,
we obtain: :

(1) (THeg=Ff(Te

2) A. Zygmund, Trigonometrical series, p. 332 Warszawa (1935).
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By H. Cartan’s theorem?, there exists for arbitrary compact set K in é,
and a compact neighborhood V of K, a function f in ZI(G) such that

1 for tekK
x4
0 for £ e_V
(V¢ means the complementary set of Vin é).

f(ac->={

Therefore we may define u as Tﬁf =k,
It is obvious that w is continuous and independent of f from (1). The
unigueness of';/, is also clear from the above. Cdnversely, if there exists
such a fanction w, then we have f"f:: ;Lf, so that f‘(a'l, 92)_)‘?: (a~!, :C)ff
So we have by lemma T7ef= 7, Tf, and the proof is completed.

Turorem 2. Let G be a discrete group and Te ALL'(G), then we have

(R = 2 ds (’é,"&f)
wlzere a=(ag) is an element of LI(G)
Zu l ag |< 0.

And G has a bounded Radmz measure M such that 9)?——;&

Proof. As G is compact, there exists an element ¢, in LI(G) such that

Zxo(’i‘) = 1. Therefore Tf‘&ozu, hence we have

u(@) = Tou(8) = S1as(g, ), Too= e IO,
and this & may be considered as a bounded Radon measure M.

Tueorem 3. Let G be a compact group and Te ALC(G)]). Then there

exists a bounded Radom mzasure WM on G such that Tf=f+M, and

this measure W is uniquely determined. ‘

Proof. a). C.{G) may be considered as a Banach space with the uniform
norm, ie || flle=sup|f(x)], and ae}\C\G)AC LI(G) in this case, T has by
theorem 1 the factor function w: 7f = pf.

w is not only continuous, but also bounded, because (%, £)==fo(x) is an element
of C(G) and the Fourier transfoun of fo(x) vanishes except at the point £.

Thus we have |u(£)|<| Tfo e K| Tholle S K| folle = K< 0, where
E=| T'||e.

b). Construction of . ;

Put S(x, ) = u(#) then S maps G (= C(G)) in the complex number field.
We shall show that a necessary and sufficient condition for S to be extended
linearly and continuously all over C(G), is that p has the property:

glx) = 5 ¢ (x, 1,)_q:> Nl gllm e (B

Cz M(x,

3) cf. R. Godement, Théorémes taubériens et théorie spactrale. Ann. Scz Ecole Norm.
Sup. (3) 64, 119-138 (1947). :
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In fact A(x) =gx-1) = E‘c, (x, £) and Tk(x) = k(x), then we have

B(E) = Th(®) = u(®) h(z) = 1/wa,) ¢i 8%, %
Let us consider the function k’(m) deﬁned by
R(x) = 3"Cz w(®) (x, &),

then k'('h) = L ci p(£i) 62, 34

By the uniqueness of the Foumer transform, we have k(x) = E/(x).
Therefore [za, i) = | K| SNk llo SEN| A flo = K- ]
Thus the nece551ty of 1he property () is proved. We shall show now the
sufficiency. If g(x) —«i}: 1ci(x, £, then we shall define S(g(x)) as c, (&)

It may happen that g(x) = % ci(x, &) = }_Jc, (%, £;), then we have },1‘(0,—0’,)
(%, &) =0, and >(c;i—¢é:7) ;L(,x,) 0 by(*‘) so that e n(2)=2"¢"; p(%;). Thus
S(g(x)) is uniquely determined for such g(x). Now let f(x) be any element
of C(G). There exists a sequence {g,} approximating f(x¥) uniformly such
that each g, is a finite linear combination of characters of G.
Then we define S(f(x)) = lim S(g,(x)).
It is obvious from above tﬁ}'& we have |Sg| < K-|| glle S is continuous and
S(f(x)) is independent of the approximating sequence of f(x).
Therefore S defines a bounded Radon measure. Denoting it by I we have
u() = S B = [ G B amee = s,
hence 9?&:: p, and Tf=fFf+M
¢). Uniqueness of M.
As we have shown above, we have 2'/J\E=;u. Hence by the uniqueness of p
and of the Fourier transform, M is also uniquely determined.
CororLrary. Let G be a compact abelian group, p a continuous function on
G. Then there exists a bounded linear transformation T of C(G) to itself,
with w as a factor function, if and only if p has the following property :
there exists a positive yeal number K for any complex numbers c1, co, ... ... p,
and for any %1, %a, ... , Xp in G such tlzat

Jch pEH|= cz(x, ﬁz‘)l_

xeG

3. Now we shall consider a one-parameter semi-group of bounded linear
transformations on a locally compact abelian group.

Turorem 4. Let G be a locally compact abelian group and © ={T(E),

£ >0} be a semi-group in ALLNGY). Then the factor functions u(%,E)

satisfy the following equation : p(%, &1+E2) = u(®, 1) p(Z, £2).

If Tg) is weakly measurable, %, &) is L-measurable in & for any fixed %.
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A

Mogeover there exist two disjoint sets Jy and J| of G whose union is G,
such that p(%, &) =0 or p(f, &) =exp (—EN(E)) according as xe ]y or
tei. A mecessary condition for © to have an infinitesimal generator A
with dense domain /{s: Jo=2. i

If Fe DAY, then Af(2)=—NZE(X), and N(&) is continuous.

Proof. We have for any fe LI(G)

N R
T+ £ (%) = u(E, E1+EDF(R).
On the other hand

Yf&ﬁ?ﬂf( T(S T(E’Zf(l) T(é"z)f(%)
= TCE) ulk £ >fm = p(, &) p(, EDAR)
Therefore we have p(#, &1-+E2) = p(%, &1) M(%\éz) (1D

Let 7T(&) be weakly measurable, then T = ,u(x f) f(:b) is L-measurable
in & for all fe Ll(G) and fixed £ from the definition. From the functional
equation (i), we have either u(#, &)=0 or exp (—&M%)) for fixed £ Let
Jo=<{4; pu(x, £)=0 for all £>0%.

Since w(%, &) is continuous in # for any & >0, J; is a closed set in G and
J1 = G—J, is open. In order to obtain a necessary condition for & to have
an infinitesimal generator A, let us prove first the following proposition.

If T(é)(g_‘mﬂ (strongly), then u(Z, E)f(ff)(g_m;f(ﬁ) (uniformly) for allfe LYG).
Indeed, we have for fe LM (G)
171k = sup | A0 | < | 173 =1 £ I

zeG
Therefore T(¢)—>1 (s’mongly) & TEF—F (fe LI(G))

EDNTES -0 IlT )f——-f]].,., — O{-—:} w(E, &) f#)— A% (uniformly).
Let A be the infinitesimal generator of &: i
lim - C7(8) f—1-f1 = Af.
If Jo3c ¢, then there exists £e J, such that w(%, &) =0.
Therefore by H. Cartan’s theorem there exists fe LI(G), for Rc Jo: f(;ﬁ)——_O
on a neighborhood of X, f(#)3=0 in X, and w(k, &) f(;%) A £CR) (uniformiy),
which is a contradiction. Hence, if A has a dense domain, we must have
Jo=¢. Let feD[A], then ﬂe have
~. A A
Aftd) =Tim - CIEFH—~#] = Hm—-Cexp (—EAG)—1041)
=—MAAD.

From this equation we can show easily the continuity of A(£).

Remark. If G is a compact abelian group, and © is a semi-group in

A[C(G)] then the conclusions of theorem 4 can be easily reformulated as
the facts on Radon measures M(E).




