On E. Hille's Theorem

Ву Nobuko Уамамото

Institute of Mathematics, Faculty of Science, University of Tokyo (Received March 1, 1957)

1. Let G be a locally compact abelian group and \hat{G} the dual group of G. The elements of G and \hat{G} are denoted by x, y, \dots and \hat{x}, \hat{y}, \dots respectively; (x, \hat{x}) will mean the value of the character \hat{x} at x.

 $L^1(G)$, C(G) denote as usual the set of all integrable functions on G with respect to Haar measure, and the set of all continuous functions on G, respectively, τ_a the translation by $a \in G$, i.e. $\tau_a f(x) = f(xa^{-1})$. For $f, g \in L^1(G)$, f * g means the convolution product of f and g. We shall denote by $\mathbb{C}[L^1(G)]$, $\mathbb{C}[C(G)]$ the set of all bounded linear transformations on $L^1(G)$, C(G) to itself. The subset of $\mathbb{C}[L^1(G)]$, $\mathbb{C}[C(G)]$ consisting of all elements which commute with every translation τ_a , $a \in G$, will be denoted by $A[L^1(G)]$, A[C(G)].

E. Hille¹⁾ has proved that the following propositions hold in the cases where G is either the additive group of real numbers or the toral groups.

(a) For every element T of $A[L^1(G)]$ there exists uniquely a function $\mu(\hat{x})$, called the factor function of T, which is continuous in $\hat{x} \in \hat{G}$, such that:

$$\widehat{T \cdot f}(\widehat{x}) = \mu(\widehat{x})\widehat{f}(\widehat{x}).$$

(b) There exists a bounded Radon measure on G, $\mathfrak{M}(\hat{x})$, such that: $\mathring{\mathfrak{M}}(\hat{x}) = \mu(\hat{x}) \quad \text{and} \quad T \cdot f = f * \mathfrak{M} \left(= \int \overline{f(xy^{-1})} d\mathfrak{M}(y) \right)$

(c) Let $\mathfrak{S}=\{T(\xi), \xi>0\}$ be a semi-group in $A[L^1(G)]$, i.e. a set of eleme ts of $A[L^1(G)]$ defined for a positive real parameter ξ , satisfying

$$T(\xi_1+\xi_2)=T(\xi_1)T(\xi_2).$$

If we denote by $\mu(\hat{x}, \xi)$ the factor function of $T(\xi)$, then we have $\mu(\hat{x}, \xi_1 + \xi_2) = \mu(\hat{x}, \xi_1) \, \mu(\hat{x}, \xi_2),$

and the properties of $T(\xi)$ such as being weakly continuous in ξ , possessing infinitesimal generator, have their counter-parts in properties of $\mu(\hat{x}, \xi)$. (c.f. Theorem 4. below).

¹⁾ E. Hille, Functional analysis and semi-groups, p. 368 (1946).

Though it is not certain that all these hold for any locally compact abelian group G, we could establish the following results.

- (a') The proposition (a) of Hille hold for every locally compact abelian group. (Theorem 1 below).
- (b') The proposition (b) of Hille holds for every discrete abelian group. It holds also for compact abelian groups, if $A[L^1(G)]$ is replaced by A[C(G)]. (Theorem 2.3. below).
- (c') The proposition (c) of Hille holds for every locally compact abelian group. (Theorem 4 below).

Our proofs are simpler than that of Hille in that we do not need the classical Zygmund's theorem²⁾. The author wishes to present here her hearty thanks to Prof. S. Iyanaga and Prof. K. Yosida for their kind criticisms.

2. First we shall consider a single linear bounded transformation $T \in \mathbb{C}[L^1(G)]$ as given, and define that linear transformation \hat{T} on $\widehat{L^1(G)}$ to itself by:

$$\hat{T} \cdot \hat{f} = \widehat{T} \cdot \hat{f}$$
.

Then we have:

LEMMA. $T\tau_a=\tau_a T \iff \hat{T}(a^{-1}, \hat{x})=(a^{-1}, \hat{x})\hat{T}$ for all $\hat{x} \in \hat{G}$.

Proof. Let f be any element of $L^1(G)$. Taking Fourier transform, we have $(T\tau_a f(x))$ $(\hat{x}) = Tf(xa^{-1})$ $(\hat{x}) = \hat{T} \int_G f(xa^{-1}) \overline{(x, \hat{x})} dx = \hat{T} \int_G f(x) \overline{(ax, \hat{x})} dx$

$$(\widehat{\tau_a} \ \widehat{Tf(x)})(\hat{x}) = (\widehat{Tf})(xa^{-1} \ (\hat{x}) = \int_G (Tf)(xa^{-1}) \ (x, \hat{x}) \ dx = (a^{-1}, \hat{x}) \ \widehat{Tf}(\hat{x}).$$

Theorem 1. There exists a continuous function $\mu(\hat{x})$ on G for $T \in \mathbb{C}[L^1(G)]$ with $\hat{T}f = \mu \hat{f}$, if and only if $T \in A[L^1(G)]$, i.e. $T_{\tau_a} = \tau_a T$ for all $a \in G$. Moreover if $T \in A[L^1(G)]$, then the function $\mu(\hat{x})$ is uniquely determined.

Proof. Assume $T\tau_a=\tau_aT$ for all $a\in G$, then we show the existence of μ . First we have the following relation for arbitrary f, g in L(G):

$$T(f * g) = (Tf) * g = f * (Tg).$$

In fact, we have $f * g(x) = \int_G f(xy^{-1}) g(y) dy = \int_G \tau_y f(x) g(y) dy$,

and so,
$$T(f * g(x)) = \int_G T \tau_y f(x) g(y) dy = \int_G \tau_y T f(x) g(y) dy = (Tf) * g(x),$$

As G is an abelian group, T(f * g) = f * (Tg).

Hence taking the Fourier transforms of both sides of the above equation, we obtain:

$$(1) \qquad \qquad (\hat{T}\hat{f})\hat{g} = \hat{f}(\hat{T}\hat{g})$$

²⁾ A. Zygmund, Trigonometrical series, p. 332 Warszawa (1935).

By H. Cartan's theorem³⁾, there exists for arbitrary compact set \hat{K} in \hat{G} , and a compact neighborhood \hat{V} of \hat{K} , a function f in $L^1(G)$ such that

$$\hat{f}(\hat{x}) = \begin{cases} 1 & \text{for } \hat{x} \in \hat{K} \\ 0 & \text{for } \hat{x} \in \hat{V}^c \end{cases}$$

 $(\hat{V}^c \text{ means the complementary set of } \hat{V} \text{ in } \hat{G}).$

Therefore we may define μ as $\hat{T}\hat{f}/\hat{f} = \mu$. It is obvious that μ is continuous and independent of f from (1). The uniqueness of μ is also clear from the above. Conversely, if there exists such a function μ , then we have $\hat{T}\hat{f} = \mu\hat{f}$, so that $\hat{T}(a^{-1}, \hat{x})\hat{f} = (a^{-1}, \hat{x})\hat{T}\hat{f}$. So we have by lemma $T\tau_a f = \tau_a Tf$, and the proof is completed.

Theorem 2. Let G be a discrete group and $T \in A[L^1(G)]$, then we have

$$\mu(\hat{x}) = \sum_{g \in G} a_g (g, \hat{x})$$

where $\alpha = (a_g)$ is an element of $L^1(G)$; i.e.

$$\sum_{g \in G} |a_g| < \infty$$
.

And G has a bounded Radon measure M such that $\hat{\mathbb{M}}=\mu$.

Proof. As \hat{G} is compact, there exists an element α_0 in $L^1(G)$ such that $\hat{\alpha}_0(\hat{x}) \equiv 1$. Therefore $\hat{T}\hat{\alpha}_0 = \mu$, hence we have

$$\mu(\hat{x}) = \hat{T}\hat{\alpha}_0(\hat{x}) = \sum_{g \in G} a_g(g, \hat{x}), \quad T\alpha_0 = \alpha \in L^1(G),$$

and this α may be considered as a bounded Radon measure \mathfrak{M} .

THEOREM 3. Let G be a compact group and $T \in A[C(G)]$. Then there exists a bounded Radon measure \mathfrak{M} on G such that $Tf = f * \mathfrak{M}$, and this measure \mathfrak{M} is uniquely determined.

Proof. a). C(G) may be considered as a Banach space with the uniform norm, i.e. $||f||_{\infty} = \sup |f(x)|$, and as $C(G) \subset L^1(G)$ in this case, T has by theorem 1 the factor function μ : $\widehat{Tf} = \mu \widehat{f}$.

 μ is not only continuous, but also bounded, because $(x, \hat{x}) = f_0(x)$ is an element of C(G) and the Fourier transform of $f_0(x)$ vanishes except at the point \hat{x} .

Thus we have $|\mu(\hat{x})| \leq ||Tf_0||_{\infty} \leq ||Tf_0||_{\infty} \leq K||f_0||_{\infty} = K < \infty$, where $K = ||T||_{\infty}$.

b). Construction of M.

Put $S(x, \hat{x}) = \mu(\hat{x})$ then S maps $\hat{G}(\subseteq C(G))$ in the complex number field. We shall show that a necessary and sufficient condition for S to be extended linearly and continuously all over C(G), is that μ has the property:

$$g(x) = \sum_{i=1}^{p} c_i (\overline{x, \hat{x}_i}) \longrightarrow \Big| \sum_{i=1}^{p} c_i \mu(\hat{x}_i) \Big| \leq K ||g||_{\infty} \dots (*)$$

³⁾ cf. R. Godement, Théorèmes taubériens et théorie spectrale. Ann. Sci. École Norm. Sup. (3) 64, 119-138 (1947).

In fact $h(x) = g(x^{-1}) = \sum_{i=1}^{p} c_i(x, \hat{x}_i)$ and Th(x) = k(x), then we have

$$\hat{k}(\hat{x}) = \hat{T}\hat{h}(\hat{x}) = \mu(\hat{x}) \, \hat{h}(\hat{x}) = \sum_{i=1}^{p} \mu(\hat{x}_i) \, c_i \, \delta_{\hat{x}_i} \hat{x}_i$$

$$k'(x) = \sum_{\substack{i=1\\ j \neq 1}}^{p} c_i \ \mu(\hat{x}_i) \ (x, \hat{x}_i),$$

 $\hat{k}(\hat{x}) = \hat{T}\hat{h}(\hat{x}) = \mu(\hat{x}) \ \hat{h}(\hat{x}) = \sum_{i=1}^{p} \mu(\hat{x}_i) \ c_i \ \delta_{\hat{x}, \hat{x}_i}.$ Let us consider the function k'(x) defined by $k'(x) = \sum_{i=1}^{p} c_i \ \mu(\hat{x}_i) \ (x, \hat{x}_i),$ then $\hat{k}'(\hat{x}) = \sum_{i=1}^{p} c_i \ \mu(\hat{x}_i) \ \delta_{\hat{x}, \hat{x}_i}.$ By the uniqueness of the Fourier transform, we have k(x) = k'(x). Therefore $\left|\sum_{i=1}^{p} c_i \ \mu(\hat{x}_i)\right| = |k(e)| \le |k| \|k\|_{\infty} \le K \|k\|_{\infty} = K \cdot \|g\|_{\infty}.$ Thus the necessity of the property (*) is proved. We shall show now the sufficiency. If $g(x) = \sum_{i=1}^{p} c_i(x, \hat{x}_i)$, then we shall define S(g(x)) as $\sum_{i=1}^{p} c_i \ \mu(\hat{x}_i)$.

It may happen that $g(x) = \sum_{i=1}^{p} c_i(x, \hat{x}_i) = \sum_{i=1}^{p} c_i'(x, \hat{x}_i)$, then we have $\sum_{i=1}^{p} (c_i - c'_i)$ $(x, \hat{x}_i) = 0$, and $\sum (c_i - \hat{c}_i) \mu(\hat{x}_i) = 0$ by (*) so that $\sum c_i \mu(\hat{x}_i) = \sum c'_i \mu(\hat{x}_i)$. Thus S(g(x)) is uniquely determined for such g(x). Now let f(x) be any element of C(G). There exists a sequence $\{g_n\}$ approximating f(x) uniformly such that each g_n is a finite linear combination of characters of G.

Then we define $S(f(x)) = \lim_{n \to \infty} S(g_n(x))$. It is obvious from above that we have $|Sg| \leq K \cdot ||g||_{\infty}$, S is continuous and S(f(x)) is independent of the approximating sequence of f(x).

Therefore S defines a bounded Radon measure. Denoting it by $\mathfrak M$ we have

$$\mu(\hat{x}) = S(\overline{x}, \hat{x}) = \int_{G} (\overline{x}, \hat{x}) d\mathfrak{M}(x) = \hat{\mathfrak{M}}(\hat{x}),$$

$$\hat{\mathfrak{M}} = \mu, \text{ and } Tf = f * \mathfrak{M}.$$

hence

c). Uniqueness of M.

As we have shown above, we have $\widehat{\mathfrak{M}}=\mu$. Hence by the uniqueness of μ and of the Fourier transform, M is also uniquely determined.

Corollary. Let G be a compact abelian group, μ a continuous function on G. Then there exists a bounded linear transformation T of C(G) to itself, with μ as a factor function, if and only if μ has the following property: there exists a positive real number K for any complex numbers c_1, c_2, \ldots, c_p and for any \hat{x}_1 , \hat{x}_2 ,, \hat{x}_p in \hat{G} such that

$$\left|\sum_{i=1}^{p} c_i \,\mu(\hat{x}_i)\right| \leq K \cdot \sup_{x \in G} \left|\sum_{i=1}^{p} c_i \overline{(x, \hat{x}_i)}\right|.$$

3. Now we shall consider a one-parameter semi-group of bounded linear transformations on a locally compact abelian group.

THEOREM 4. Let G be a locally compact abelian group and $\mathfrak{S} = \{T(\xi),$ $\xi > 0$ } be a semi-group in $A[L^1(G)]$. Then the factor functions $\mu(\hat{x}, \xi)$ satisfy the following equation: $\mu(\hat{x}, \xi_1 + \xi_2) = \mu(\hat{x}, \xi_1) \mu(\hat{x}, \xi_2)$. If $T(\xi)$ is weakly measurable, $\mu(\hat{x}, \xi)$ is L-measurable in ξ for any fixed \hat{x} . Moreover there exist two disjoint sets J_0 and J_1 of \hat{G} whose union is \hat{G} , such that $\mu(\hat{x}, \xi) = 0$ or $\mu(\hat{x}, \xi) = \exp(-\xi \lambda(\hat{x}))$ according as $x \in J_0$ or $\hat{x} \in J_1$. A necessary condition for \mathfrak{S} to have an infinitesimal generator A with dense domain is: $J_0 = \phi$.

If $f \in \mathfrak{D}[A]$, then $\hat{Af}(\hat{x}) = -\lambda(\hat{x})\hat{f}(\hat{x})$, and $\lambda(\hat{x})$ is continuous.

Proof. We have for any $f \in L^1(G)$

$$T(\xi_1+\xi_2)f(\hat{x}) = \mu(\hat{x}, \xi_1+\xi_2)\hat{f}(\hat{x}).$$

On the other hand

$$\widehat{T(\xi_1 + \xi_2)}f(\hat{x}) = \widehat{T(\xi_1)}\widehat{T(\xi_2)}f(\hat{x}) = \widehat{T(\xi_1)}\widehat{T(\xi_2)}f(\hat{x})$$

$$= \widehat{T(\xi_1)}\mu(\hat{x}, \xi_2)\hat{f}(\hat{x}) = \mu(\hat{x}, \xi_1)\mu(\hat{x}, \xi_2)\hat{f}(\hat{x}).$$

Therefore we have $\mu(\hat{x}, \xi_1 + \xi_2) = \mu(\hat{x}, \xi_1) \mu(\hat{x}, \xi_2) \dots (i)$

Let $T(\xi)$ be weakly measurable, then $\widehat{T}(\xi)\widehat{f} = \mu(\hat{x}, \xi)\widehat{f}(\hat{x})$ is L-measurable in ξ for all $f \in L^1(G)$ and fixed \hat{x} from the definition. From the functional equation (i), we have either $\mu(\hat{x}, \xi) \equiv 0$ or $\exp(-\xi \lambda(\hat{x}))$ for fixed \hat{x} . Let $J_0 = \{\hat{x} : \mu(\hat{x}, \xi) \equiv 0 \text{ for all } \xi > 0\}$.

Since $\mu(\hat{x}, \xi)$ is continuous in \hat{x} for any $\xi > 0$, J_0 is a closed set in \hat{G} and $J_1 = \hat{G} - J_0$ is open. In order to obtain a necessary condition for \mathfrak{S} to have an infinitesimal generator A, let us prove first the following proposition. If $T(\xi) \longrightarrow 1$ (strongly), then $\mu(\hat{x}, \xi) f(\hat{x}) \longrightarrow \hat{f}(\hat{x})$ (uniformly) for all $f \in L^1(G)$.

If $T(\xi) \xrightarrow{(\xi \to 0)} 1$ (strongly), then $\mu(\hat{x}, \xi) f(\hat{x}) \xrightarrow{(\xi \to 0)} \hat{f}(\hat{x})$ (uniformly) for all $f \in L^1(G)$. Indeed, we have for $f \in L^1(G)$

$$||\hat{f}||_{\infty} = \sup_{\hat{x} \in \hat{G}} |\hat{f}(\hat{x})| \le \int_{G} |f(x)| dx = ||f||_{1}.$$

Therefore $T(\xi) \longrightarrow 1$ (strongly) $\iff T(\xi)f \longrightarrow f$ $(f \in L^1(G))$

 $\iff ||T(\xi)f - f||_1 \to 0 \Rightarrow ||\widehat{T(\xi)f} - \widehat{f}||_{\infty} \to 0 \iff \mu(\widehat{x}, \xi)\widehat{f}(\widehat{x}) \to \widehat{f}(\widehat{x}) \quad \text{(uniformly)}.$

Let A be the infinitesimal generator of \mathfrak{S} : i.e.

$$\lim_{\xi \to 0} \frac{1}{\xi} \left[T(\xi) f - 1 \cdot f \right] = Af.$$

If $J_0 \neq \phi$, then there exists $\hat{x} \in J_0$ such that $u(\hat{x}, \xi) \equiv 0$.

Therefore by H. Cartan's theorem there exists $f \in L^1(G)$, for $\hat{K} \subset J_0$: $\hat{f}(\hat{x}) = 0$ on a neighborhood of \hat{K} , $\hat{f}(\hat{x}) \not= 0$ in \hat{K} , and $\mu(\hat{x}, \xi) \hat{f}(\hat{x}) \not\to \hat{f}(\hat{x})$ (uniformly), which is a contradiction. Hence, if A has a dense domain, we must have $J^0 = \phi$. Let $f \in \mathfrak{D}[A]$, then we have

$$Af(\hat{x}) = \lim_{\xi \to 0} \frac{1}{\xi} \left[\widehat{T(\xi)} f(\hat{x}) - \widehat{f(\hat{x})} \right] = \lim_{\xi \to 1} \frac{1}{\xi} \left[\exp\left(-\xi \lambda(\hat{x}) - 1 \right] \widehat{f(\hat{x})} \right]$$
$$= -\lambda(\hat{x}) \widehat{f(\hat{x})}.$$

From this equation we can show easily the continuity of $\lambda(\hat{x})$.

Remark. If G is a compact abelian group, and \mathfrak{S} is a semi-group in A[C(G)] then the conclusions of theorem 4 can be easily reformulated as the facts on Radon measures $\mathfrak{M}(\xi)$.