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Localization algorithms for wireless sensor networks (WSNs) have been designed to find per-

node location information, which is a key requirement in many applications of WSNs. Generally

speaking, based on the type of information required for positioning, protocols can be divided

into two categories: (i) range-based and (ii) range-free protocols. In this thesis, we focus on the

investigation of localization algorithms for traditional WSNs, mobility-assisted WSNs, mobile

sensor network, and wireless underground sensor networks.

In this thesis, we study the node localization problem in wireless sensor networks. Based on

the statistical signal processing technology, several novel algorithms are proposed. Both range-

based and range-free protocols are studied in the thesis. For range-free localization, we proposed

a radical line based algorithm using the radio range of sensor nodes. With a slight increase in

computations, this method provides a more accurate range-free localization based on the rad-

ical line of intersecting circles. Furthermore, a cooperative localization algorithm is proposed

that considers the existence of obstacles in mobility-assisted wireless sensor networks (WSNs).

This method is also a range-free method. An optimal movement scheduling method with mo-

bile elements (MEs) is proposed to address limitations of static WSNs in node localization. For

achieving high localization accuracy and coverage, a novel convex position estimation algorithm

is proposed, which can effectively solve the problem when infeasible points occur because of

the effects of radio irregularity and obstacles. For mobile sensor network and wireless under-

ground sensor network, we propose the related algorithms which achieve high accuracy. It is

more difficult to obtain the time-difference-of-arrival (TDOA) measurements in WUSNs than

in terrestrial wireless sensor networks because of the unfavorable channel characteristics in the

underground environment. In our thesis, the robust Chinese remainder theorem (RCRT) is used

to robustly estimate TDOA or range difference in WUSNs and therefore improves the ranging

accuracy in such networks. After obtaining the range difference, distributed source localization

algorithms based on a diffusion strategy are proposed to decrease the communication cost while

satisfying the localization accuracy requirement. This distributed source localization method is

a range-based method for WUSNs.
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Chapter 1

Introduction

Recent advances in wireless communications and micro electro-mechanical system (MEMS)

technologies have enabled the development of low-cost, low-power and small size wireless sen-

sor nodes. Wireless sensor networks (WSNs) have become the current hot spot of networking

area and have been used for various applications, such as oceanic resource exploration, pollution

monitoring, tsunami warnings and mine reconnaissance. For all these applications, it is essential

to know the locations of the data. Localization algorithms for wireless sensor networks (WSNs)

have been designed to find per-node location information, which is a key requirement in many

applications of WSNs.

1.1 Challenges for Network Localization

Localization plays a important role in many sensor network applications, however, itself is a

difficult problem to be solved, because of the demanding requirements for low cost, high energy

efficiency, and the scalable for the change of network size, as well as practical issues associ-

ated with node deployments. Herein, we summarize some major challenges we meet to design

accurate and efficient node localization in wireless sensor networks.

Distributed and Energy Efficient The algorithm should be distributed. It can be robust to the case

when the central node is dead. The algorithm should be with less traffic and power consumption.

The requirement of less power consumption prohibits the use of special hardware.

Infrastructure Less Environment Sensor networks are normally deployed in some special areas.

In these areas, infrastructure are less, such as base station from mobile phone network or radio

signals from wireless AP towers. Hence, the designed algorithms should be autonomic without

human calibration and extensive environment profiling.

1



Chapter 1. Introduction 2

Realizing the challenges for network localization, this dissertation aims to study the localization

problem in sensor networks. We try to study the practical problem to find the tradeoff between

the accuracy and energy cost for achieving excellent localization algorithms in sensor networks.

1.2 Motivation

A lot of localization algorithms have been proposed in this area. Generally speaking, based on

the type of information required for positioning, protocols can be divided into two categories:

(i) range-based and (ii) range-free protocols. Some ranging techniques that are available for

localization include angle-of-arrival (AOA), received signal strength indicator (RSSI), time-of-

arrival (TOA) and time-difference-of-arrival (TDOA) schemes. On the other hand, we may adopt

range-free approaches in which one can find the positions of non-anchor nodes by calculating

their distances from the designated but sparse anchor nodes with known positions, also known as

landmarks. Due to the hardware limitations and power constraints of sensor nodes, solutions of

range-free localization are often more preferable and can be considered as cost-effective options

in some scenario where the higher localization accuracy is not strictly required.

Furthermore, the WSN connectivity and topology are subject to changes due to node addition

and failure, irregular environment as well as node mobility. It is also important to address the

negative effect from non-line-of-sight measurements, which occur when direct signal transmis-

sion paths between sensor pairs are blocked, because they will include large errors for node

localization.

It is still a difficult problem to find an accurate and efficient localization algorithm in sensor net-

works. Hence, this thesis consider self-configuration and self-monitoring problem of estimating

the position of unknown-position sensors with higher accuracy and lower power consumption

using the information from anchor nodes. In this thesis, we study the node localization problem

in wireless sensor networks from both range-based and range-free methods. Some statistical

signal processing technology and optimization theory are applied in the thesis. Based on the

statistical signal processing technology, several novel algorithms are proposed. In the thesis, we

focus on both range-free and range-based techniques to study the benefits from both two tech-

niques. We find it is a good idea to combine range-free and range-based methods together to

address the node localization problem in the future. For range-free localization in static sensor

network, we proposed a radical line based algorithm using the radio range of sensor nodes. With

a slight increase in computations, this method provides a more accurate range-free localization

based on the radical line of intersecting circles. Furthermore, a cooperative localization algo-

rithm is proposed that considers the existence of obstacles in mobility-assisted wireless sensor

networks (WSNs), which is also a range-free based method. An optimal movement schedul-

ing method with mobile elements (MEs) is proposed to address limitations of static WSNs in
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node localization. In this scheme, a mobile anchor node cooperates with static sensor nodes

and moves actively to refine location performance. It takes advantage of cooperation between

MEs and static sensors while, at the same time, taking into account the relay node availability

to make the best use of beacon signals and address the effect of obstacle. For achieving high

localization accuracy and coverage, a novel convex position estimation algorithm is proposed,

which can effectively solve the problem when infeasible points occur because of the effects of

radio irregularity and obstacles. This method is the only range-free based convex method to

solve the localization problem when the feasible set of localization inequalities is empty. Sim-

ulation results demonstrate the effectiveness of this algorithm. For mobile sensor network and

wireless underground sensor network, we propose the related algorithms which achieve high

accuracy. For mobile sensor network, all anchors and sensors are moving, which is different the

case with only one mobile anchor. In mobile sensor network, it is more complicated and the

particle filter technology is used in this scenario. In some special application areas, the local-

ization algorithm meets special requirement and the related challenges. Hence, we discuss the

localization problem in wireless underground sensor networks. It is more difficult to obtain the

time-difference-of-arrival (TDOA) measurements in WUSNs than in terrestrial wireless sensor

networks because of the unfavorable channel characteristics in the underground environment.

The robust Chinese remainder theorem (RCRT) has been shown to be an effective tool for solv-

ing the phase ambiguity problem and frequency estimation problem in wireless sensor networks.

In our thesis, the RCRT is used to robustly estimate TDOA or range difference in WUSNs and

therefore improves the ranging accuracy in such networks. After obtaining the range difference,

distributed source localization algorithms based on a diffusion strategy are proposed to decrease

the communication cost while satisfying the localization accuracy requirement.

As we completed this work, we are happy to find localization attracts a lot of attention and plays

important role for the application of WSNs. However, it is still a tough problem to be addressed

well. We have done some work to find the gap between the accuracy and efficiency for node

localization. It is still an interesting topic to investigate and propose hybrid solutions so as to

leverage the advantages of both range-based and range-free types. The close error bound for

range-free algorithms are still opened. Furthermore, based on the derived error bound, to derive

the optimal anchor placement is another interesting problem under our consideration.

1.3 Main Contributions

This thesis makes contributions to both range-based and range-free localization techniques. The

main target is to design localization algorithms with high accuracy and energy efficiency. As

shown in Fig. 1.1, we show an overview of the main work for this thesis. The main contributions

of this thesis can be summarized as follows:
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Radical line based range-free Mobile anchor assisted Localization in mobile sensor networks Distributed 
localization 
in WUSN

range free− range based−

Cost

Accuracy

Figure 1.1: Overview on the main work of the thesis

• We present a range-free localization technique based on the radical line of intersecting

circles. The intersection of radical lines is normally within the common region of the

circles constructed by anchors. It is the basic idea to improve the localization accuracy

against the shortcoming of the traditional centroid method. When there are more than

three anchors in range, we select two anchors and use them only to significantly decrease

the computational cost. This technique provides greater accuracy than the centroid algo-

rithm, at the expense of a slight increase in computational load. Simulation results show

that for the scenarios studied, the radical line method can give an approximately 2 to 30%

increase in accuracy over the centroid algorithm, depending on whether or not the anchors

have identical ranges, and on the value of DOI.

• We present a new cooperative localization scheme that can achieve high localization ac-

curacy in mobility-assisted wireless sensor networks when obstacles exist. Considering

the complex localization scenario, namely, the feasible set is empty, a convex localiza-

tion algorithm has been presented to address the effects of non-ideal transmission of radio

signals. We have developed an optimal movement schedule for MEs that can achieve

a shortest path under expected localization accuracy. To address the effect of obstacle,

the optimal relay node is selected to transmit the beacon signal to the unknown-position

nodes within the special area of obstacle. It has been shown in the simulation results that

the proposed cooperative localization scheme can achieve high localization accuracy by

including a mobile element.
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• We present a distributed hop distance measurement and particle filter-based cooperative

localization algorithm for mobile WSNs. Our proposal is scalable, robust, and self-

adaptive to the dynamics of a mobile sensor network. Our proposed algorithm can reduce

the hop distance estimation error accumulated over multiple hops by using a differen-

tial error correction scheme. In order to efficiently suppress redundant broadcasts and to

reduce communication overhead, a backoff-based broadcast mechanism is proposed. It

also improves localization performance by including particle filtering technology. Sim-

ulation results show that the proposed algorithm achieves better performance than other

state-of-the-art algorithms.

• We present energy efficient localization schemes that can achieve high localization accu-

racy in wireless underground sensor networks. These distributed localization algorithms

require low computational complexity and energy consumption based on a diffusion strat-

egy. An accurate RCRT based ranging scheme using TDOA to determine range differ-

ences between sensors and source that does not require time synchronization is also pro-

posed. We notice that the TDOA can usually be obtained from the measurement of a

signals phase which is susceptible to phase ambiguity problems in WUSN. The Chinese

remainder theorem (CRT) offers a closed-form analytical algorithm to calculate a dividend

from several of its corresponding divisors and remainders, and can be applied to solve the

ambiguity problem here. It has been shown via simulation results that the proposed lo-

calization algorithms achieve excellent localization accuracy with lower communication

cost.

1.4 Thesis Outline

The rest of this thesis is organized as follows.

Chapter 2 introduces some related work, including range-based localization, range-free local-

ization and node localization in mobile sensor network.

In Chapter 3, we propose a range-free localization algorithm based on the radical line.

In Chapter 4 we study node localization in mobility-assisted sensor network. One mobile ele-

ment is included to improve the localization performance. The optimal moving trace for mobile

element is also derived.

In Chapter 5, we propose a localization algorithm for mobile sensor network. Different with

previous work, in this scenario, all of the nodes are moving. It is more difficult to estimate node

position accurately.
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In Chapter 6, a distributed source localization algorithm for wireless underground sensor net-

work is proposed.



Chapter 2

Localization Measurements and
Algorithms

Making sensing data geographically meaningful, location information plays important role for

many applications of WSN, and a lot network functions can be helped based on the location

information, including network routing, topology control, coverage, boundary detection, clus-

tering, etc. In this chapter, we study a large number of existing localization approaches with

focuses on error control and energy efficient, the two important factors to evaluate the perfor-

mance of a localization algorithm. With summarizing the related works in this area, we can

easily to understand the state-of-the-art. The limitations for previous works are also pointed out

in the chapter. Then, the reason why we focus on some algorithms in this thesis is introduced as

well.

This chapter reviews measurements widely used in WSN and the selected publications related

to the topics on localization algorithm in wireless sensor networks. Both range-based and range-

free algorithms and the case node with mobility ability are introduced. In Section 2.1, measure-

ments used in WSN localization are introduced. In Section 2.2, we summarize current research

works on range-based localization. In Section 2.3, we introduce range-free localization. Finally,

Section 2.4 presents localization algorithms in mobile sensor networks.

2.1 Measurements

Pair-wise measurements plays important role to develop reliable localization systems in WSN.

However, it is difficult to accurately obtain the measurements since the wireless channel between

pair-wise nodes is affected by obstructions, reflectors, people and objects in motion.

7
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Time of arrival (TOA), time difference of arrival (TDOA), received signal strength, and an-

gle of arrival (AOA) are widely used measurements to achieve location estimation in wireless

networks. Although received signal strength (RSS) measurements are easily available, but the

major drawback of the method is that multi-path reflections, non line-of-sight conditions, and

other shadowing effects might lead to erroneous distance estimates. Angle of arrival (AOA)

measurements is an attractive method due to the simplicity of subsequent calculations (trian-

gulation). But the main drawback of this technique for terrestrial systems is the possibility of

error in estimating the directions caused by multi-path reflections. Time-of-arrival and time-

difference-of-arrival (TOA, TDOA) measurements: which may be used to estimate the distance

from a set of reference points by measuring the propagation times (or differences there of) of

signals. TOA has a disadvantage compared to TDOA as processing delays and non-LOS propa-

gation can introduce errors.

The measurement model is important to obtain accurate measurements. Obstacle can affect

the measurement significantly. Normally, some distribution for measurement error and non-

line-of-sight error are assumed. However, depending on the different environments, the actual

distributions are very difficult to obtain. That is the main error for localization. Some works have

done several measurement experiments in order to determine accurate statistical models for RSS

and TOA measurements in indoor wireless sensor networks. It is still an open problem to find

more accurate measurement model or use some physical features to improve the performance.

2.2 Range-based Localization

Range-based protocols estimate absolute point-to-point distance to calculate the location be-

tween neighboring sensors. Range-based algorithms are typically based on angle-of-arrival

(AOA), RSSI [40], time-of-arrival (TOA) or time-difference-of-arrival (TDOA) measurements.

A promising technology is the ultra wideband (UWB) technology where precise ranging can be

embedded into data communication.

Recent work demonstrated that the sensing performance of WSNs can be improved by using

mobility capability node. Xing et al. [60] study target detection for mobility-assisted WSNs.

They exploited reactive mobility to improve the target detection performance of WSNs. In their

approach, mobile sensors collaborate with static sensors and move reactively to achieve the

required detection performance. Wang et al. [55] used Voronoi diagrams to detect the coverage

holes and devised three movement-assisted sensor deployment protocols based on the principle

of moving sensors from densely deployed areas to sparsely deployed areas. Wang et al. [54]

presented a mobility-assisted network for field coverage which can be remarkably improved

by integrating a small set of mobile sensors. They offered an optimal algorithm to calculate
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the coverage contributions, which explores the potentials of the mobile sensors and extends the

network lifetime.

Several studies exploited the effect of mobile nodes on node localization for WSNs. In these

methods, a small number of mobile devices referred to as MAs roam about sensing fields and

assist to improve localization performance. Luo et al. [31] proposed a TDOA localization

algorithm for movement-assisted sensor networks. A mobile beacon is used to measure the

mobility-differentiated TOA in [31], which will increase mobile beacon’s communication cost.

Based on the RF-based technology, [62] presented three algorithms for tracking transceiver-free

moving objects in an indoor WSN.

RSSI has been widely used as a distance measure in the context of static WSNs because of

its simplicity. The impact of a number of parameters, such as the operating frequency, the

transmitter–receiver distance, the variation of transceivers, the antenna orientation, and the en-

vironment, on (received signal strength) RSS measurements were investigated using Tmote Sky

nodes in real outdoor environments [48].

After studying the exist range-based algorithms, we can see that radio, UWB, and acoustic

signals are the most investigated technologies for range-based localization in wireless sensor

networks. However, for UWB and acoustic signals, the communication range is limited although

can achieve higher ranging performance. For radio signal, the radio range is large but also relies

on the hardware which increases the cost for a sensor node. TOA-based range errors in multi-

path or non-line-of-sight environments can be greater than those caused by additive noise alone.

In a word, range-based method can achieve higher accuracy but also including higher cost and

energy consumption. In wireless underground sensor networks, it is difficult to accurately obtain

the ranging information. Thus, we use robust Chinese remaind theorem to improve the ranging

performance. To decrease the energy consumption, a distributed source localization is proposed

in this thesis based on the diffusion strategy.

2.3 Range-free Localization

Vivekanandan et al. [52] proposed a concentric anchor beacon (CAB) localization algorithm for

WSNs. In the CAB approach, each anchor node emits beacon signals at different transmission

power levels to constrain the node to be localized to a small intersection area. After receiving

the beacon signals, a node can determine in which annular ring it is located within each anchor

node and uses the geometric center of the intersection of the rings as its position estimate. Ssu

et al. [46] proposed a range-free localization scheme using mobile anchor points. In order to

reduce the impact of obstacles, an enhanced beacon point selection method is proposed in their

approach. Xiao et al. [59] proposed a distributed algorithm for locating sensor nodes using
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a single mobile beacon. Three beacon movement strategies and their impacts on localization

performance were studied. However, their algorithm considers only one mobile beacon and

hence fails to exploit the cooperation among multiple mobile beacons. Moreover, in order to

achieve high localization accuracy in their algorithm, the moving step of the mobile anchor

becomes quite small, which in turn requires frequent broadcasting and consequent higher power

consumption.

DV-Hop [35], MDS-MAP [39], RPA [37], Amorphous [34], which are based on the network

connectivity information, proposed using local neighborhood sensing to calculate hop-based

virtual distances for large-scale sensor network localization. In those systems, only a small

number of anchors are necessary for constructing the global coordinates, which significantly

reduces the system cost. The problems of “holes” and “complex shapes” , caused from the prac-

tical irregular node deployment with obstacles have been studied in [27] [53] [24]. However,

we found that localization by means of connectivity alone does not make full use of information

available from local neighborhood sensing. Recently, event-driven methods such as Lighthouse

[36], Spotlight [47] and etc., have been recognized as another important branch of range-free

localization, in which localization events embedding temporal and spatial relationships are gen-

erated and distributed across the network area for determining nodes positions. Although event

driven localization provides tradeoffs between localization accuracy and system cost, generat-

ing localization events may not be easy and convenient in some scenarios. MDS-MAP [39] is a

popular range-free method which is based on multidimensional scaling (MDS), a data analysis

technique that takes O(n3) time for a network of n nodes. The method first derives a relative

map of the network and then transform it to absolute coordinates if anchors are available. It

has been shown in [39] that the MDS–MAP method always outperforms all previously men-

tioned range–free methods but [18] when the network is relatively uniform with few anchors.

In [18], Geogetti et al. propose a neural network (self–organizing map, SOM) based method,

which, compared to the MDS–MAP method, can offer better performance for networks with low

connectivity level (< 10) and comparable performance for those with higher connectivity level.

Therefore, we use the MDS–MAP method for direct comparison in our simulations, where all

tested networks are assumed of relatively high connectivity level in 2-D space (generalization

to 3-D networks is easy). However, A drawback of MDS–MAP is that the anchors’ position

are only used for absolute coordinates transformation from relative map rather than relative map

generation but which is central to MDS–MAP. It is because of this drawback that the method

works nicely when there are few or no anchors, but not as well when there are more anchors

(especially when a number of “virtual anchors” can be generated by a mobile anchor).

Semidefinite programming (SDP) [6] has also been introduced and applied to sensor network

localization. However, most of the proposed methods deal with the range-based sensor network

localization problem, e.g., [41] [30] [3].
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Normally, range-free localization algorithms based on network connectivity or anchor proximity

achieve low overhead for communication and computation, but, its accuracy is not high. Cen-

troid and APIT methods achieve good performance with lower energy consumption than range-

based method. However, high anchor density is required to achieve higher accuracy. For DV-hop

method, the performance is not good if the network topology is complicated, such as a concave

area. Since in this area, it is difficult to obtain an accurate hop-distance. Another drawback for

DV-hop is the requirement of flooding, which significantly increases the communication cost for

the whole network. Hence, in this thesis, a more effective hop-distance is proposed. To reduce

the communication cost, a back-off based method is applied in our localization algorithm for

mobile sensor networks.

Some applications of wireless sensor networks involve stationary sensors. In the normally static

WSN, a range-free method using radical line is proposed in the thesis. Different with the centroid

or weighted centroid method, we rely on radical line to assure the estimate will within the

common area of the circles constructed by anchors. It is the basic idea to increase the accuracy.

In order to decrease the computational cost when there are more than 3 anchors in range, we

propose a method to select only two anchors. This is an interesting point for the anchor selection

since the increase number of anchors cannot always increase the localization accuracy as studied

before. However, our radical line based method is still not an optimal solution. To find the

optimal estimate for this kind of radio range based methods is a very interesting topic.

2.4 Localization in Mobile Sensor Networks

Several works have been proposed for mobile WSNs. MCL [22] is designed for mobile sensor

networks based on the sequential Monte Carlo method. A range-based version of MCL has also

been proposed [15], which combines range-based and range-free location information to reduce

the estimation error. Baggio et al. [2] improve the Monte Carlo localization scheme by reducing

the sample prediction area. Their work, called MCB, draws valid samples faster and reduces

the number of iterations necessary to fill the sample set. Computation overhead is reduced by

this mechanism, but it still depends on specific parameters such as the fixed radio transmission

range. Hsieh et al. [21] have proposed a localization algorithm which dynamically updates and

makes use of reference information for cost-efficiency, and has a feasible solution for nodes

receiving insufficient anchor information.

Depending on the anchor density of a network, there will be occasions when a regular node

will not communicate with any anchor, which undermines the localization process. One idea

to avoid the lack of coverage is to also allow regular nodes to participate in the cooperative

localization process. While MCL uses anchor information only in the filtering stage, we also

can apply it to constrain the area from which the samples are drawn in the prediction stage. As
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a result, sampling efficiency is increased, as less samples are rejected by the filtering process,

saving node’s energy. Based on these two possible directions, we derive a localization algorithm

for mobile sensor networks.

Different from the former work on localization algorithms for mobile WSNs, we study the co-

operation between neighbor nodes that achieve high localization performance. Our scheme

belongs to the range-free category of localization algorithms. Our approach differs from the

above mentioned works in three significant ways: first, different from DV-Hop [35] and Gradi-

ent [34], which are based on simple flooding mechanism, we propose a backoff-based flooding

to efficiently suppress redundant broadcasts and reduce communication overhead. For the hop

distance measurement, a differential error correction scheme is devised to reduce the measure-

ment error accumulated over multiple hops for the average hop distance. Second, our approach

draws a more effective particle prediction area, borrowing some ideas from MCB, based on the

positions of virtual anchor nodes, created with the active cooperation between regular nodes and

its neighbors. Third, the sensor information is used to reduce even more the prediction area,

thus reducing the estimation error of the non-anchor nodes. Furthermore, our approach does not

require previous knowledge of the radio transmission range for filtering.



Chapter 3

Range-free Localization with the
Radical Line

A wireless sensor network (WSN) [19] typically consists of anchors and sensors communicating

with each other. An anchor broadcasts its position coordinates, together with operating instruc-

tions, to the sensors. A sensor needs to determine its position to report to the anchors. Position

determination can come from time-of-arrival, time-difference-of-arrival or angle-of-arrival mea-

surements [31]. But when the sensors are low cost, low power and expandable units, with limited

resources for computation, they often rely on range-free (RF) localization instead [8]. In this

chapter, we propose a range-free localization algorithm based on the radical line for static sensor

networks.

The rest of this chapter is organized as follows. In Section 3.1 we introduce the background

of radical line based range-free localization. Section 3.2 gives the development of the RL

algorithm (RLA). Section 3.3 contains simulation results, which show that the RLA is more

accurate than the CA, especially when the radii Ri are different. Conclusions are given in Section

3.4.

3.1 Introduction

In RF localization, a sensor P determines its unknown position P = [x, y]T from N in-contact

anchors ai at known positions ai = [xi, yi]T and having radio ranges Ri, i = 1, ...,N. The sensor

position must satisfy

‖P − ai‖1/2 = [(x − xi)2 + (y − yi)2]1/2

6 Ri, i = 1, 2, . . . ,N.
(3.1)

13
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Figure 3.1: The CA and radical line solutions

Solving (3.1) requires nonlinear programming, and there is not a unique answer. The Centroid

Algorithm (CA) [3] gives a simple estimate P̂ = [x̂, ŷ]T , where

x̂ =

N∑
i=1

xi

N
and ŷ =

N∑
i=1

yi

N
. (3.2)

But P̂ from (3.2) sometimes is outside the region of intersections (RI) of the circles centered at

ai with radii R, as defined by (3.1). For example, the P̂ in Fig. 3.1 is outside the RI (shaded area)

of the three circles.

This paper proposes a new RF algorithm that has better accuracy than CA, but with a marginal

increase in computations. However, the additional computations are well within the capability

of present day sensors.

The line joining the intersection points of two circles is the radical line (RL) [13]. In Fig. 3.1,

the RI contains a segment of the RL of any two circles, and the three RLs meet at a point inside

the RI. Indeed, [13] proves that for three circles whose centers are not collinear, their three RLs

always intersect at a point. Although sometimes this point can be outside the RI, it is inside in

most cases.
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3.2 The Radical Line Algorithm

In WSNs, a sensor can determine whether it is in the transmission range of an anchor node ac-

cording to the beacon signal received from the anchor. Most literature on range-free localization

assume a nominal range (or detection range) R, i.e., an anchor can communicate with a sensor

within R meters from it. However, the actual range in practice is dependent on the propagation

conditions. A measure of the variation in range coverage is the degree of irregularity (DOI).

Its value denotes the maximum range variation per unit degree change in the direction of radio

propagation. Recently, [33] gives a condition required for a successful anchor-to-sensor contact.

Let W(ai) be the power received by a sensor from ai, Q be the ambient noise power, and S the

interference power in the WSNs. Then there is a contact only if

W(ai)
Q + S

> T H, (3.3)

where T H is a hardware dependent threshold.

Let a sensor P be at an unknown position P = [x, y]T , in contact with N anchors ai at known

positions ai = [xi, yi]T and having radio ranges Ri. Hence P must lie in the RI of the N circles,

centered at ai with radii Ri. Depending on N, there are three cases to consider.

3.2.1 N > 3

For N circles, there are N!
2!(N−2)! RLs. To reduce computations, RLA selects only the RLs of the

two circles whose centers are separated by the largest distance among the N circles. The idea

behind this choice is that the RL of these two circles will be the shortest, and hence their RL has

the highest probability of appearing inside the RI of all the N circles.

Let

di j =
∥∥∥ai − a j

∥∥∥1/2
= d ji, i, j = 1, . . . ,N (3.4)

be the distance between the centers of ai and a j and let dqk be the maximum of the values in

(3.4). For illustration simplicity, let q = 1, and k = 2. Referring to Fig. 3.2, the end points of the

RL are Ia = [xa, ya]T and Ib = [xb, yb]T , and O = [xo, yo]T is the intersection between the RL

and the line joining a1 and a2.

Let

do1 = ‖O − a1‖1/2 (3.5)



Chapter 3. Range-free localization with the radical line 16

and

do2 = ‖O − a2‖1/2. (3.6)

It follows that

d2
o1 + m2 = R2

1 (3.7)

and

d2
o2 + m2 = R2

2. (3.8)

Subtracting (3.8) from (3.7) gives

2(x2 − x1)xo + 2(y2 − y1)yo = R2
1 − R2

2 + k2 − k1, (3.9)

where

ki = x2
i + y2

i . (3.10)

Further, equating the slopes of the a1 to O and a2 to a1 lines in Fig. 3.2 yields

y2 − yo

x2 − xo
=

y2 − y1

x2 − x1
, (3.11)

giving

(y2 − y1)xo − (x2 − x1)yo = x2(y2 − y1) − y2(x2 − x1). (3.12)

Solving (3.9) and (3.12) then gives O(xo, yo).

Let d12 = D. Then

R2
1 − d2

o1 = m2 = R2
2 − (D − do1)2, (3.13)

so that

do1 =
R2

1 − R2
2 + D2

2D
(3.14)

and

m = (R2
1 − d2

o1)1/2. (3.15)
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a1
a2
Ib

Ia
m

O

R2
R1

Figure 3.2: The end points of an RL

Now in Fig. 3.2, the following trigonometric relations hold:

xo − xa

m
=

yo − y1

do1
(3.16)

and

yo − ya

m
=

xo − x1

do1
. (3.17)

From (3.16) and (3.17), the coordinates for Ia are

xa = xo − m
do1

(yo − y1) (3.18)

and

ya = yo +
m

do1
(xo − x1). (3.19)

Following the same procedure gives

xb = xo +
m

do1
(yo − y1) (3.20)

and

yb = yo − m
do1

(xo − x1). (3.21)
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Next, RLA selects L test points tl = [xl, yl]T , l = 1, . . . , L, on RL, by taking equal increments

between Ia and Ib to give

xl = xa +
l(xb − xa)

L + 1
(3.22)

and

yl = ya +
l(yb − ya)

L + 1
. (3.23)

L is a user parameter, depending on the resolution required. In the simulation experiment in

Section 3.3, L = 4. At each tl, RLA checks whether tl is inside the RI, and if not, how far away

from the RI it is, by computing the error

εli = ‖tl − ai‖1/2 − Ri =


εli i f εli > 0

0 i f εli 6 0
(3.24)

and then summing the errors over all ai to give

S l =

N∑

i=1

εli. (3.25)

If an S l = 0, the corresponding tl is inside the RI and is the estimate for P. If all S l > 0, the RL

is not inside the RI of the N circles. It is then necessary to compute the CA errors

S c =

N∑

i=1

εci (3.26)

where εci comes from (3.24), with c = [x̂, ŷ]T from (3.2) replacing tl. The final estimate for P,

P̂, comes from choosing the tl or c, whose corresponding S l or S c is the minimum.

3.2.2 N = 2 and N = 3

When N = 2, P̂ is the same as O(xo, yo). When N = 3, RLA computes the intersection of the

three RLs. Let that intersection point be I = [xI , yI]T . Extending Fig. 3.2 to three circles yields

(xI − xi)2 + (yI − yi)2 + h2 = R2
i , i = 1, 2, 3 (3.27)

where h2 ≤ m2. Subtracting this expression for i = 2, 3 from that for i = 1 results in

AI = b (3.28)
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where

A =


x2 − x1 y2 − y1

x3 − x1 y3 − y1

 , (3.29)

and b =
1
2


k2 − k1 + R2

1 − R2
2

k3 − k1 + R2
1 − R2

3

 . (3.30)

Solving (3.28) gives

I = A−1b. (3.31)

If the determinant of A equals 0, then the three circles are collinear. Or if ‖I − ai‖1/2 > Ri for

any i, then I is outside the RI. For these two cases, RLA takes the centroid of the two circles

with the largest separation as P̂.

3.3 Simulation Results

In the simulation experiments, the WSN has an area of 100 m x 100 m, and contains 100 ran-

domly placed (different for each trial) sensors. For a given number of anchors (NA), occupying

random (different for each trial) but known positions, the number of anchors N in contact with

an arbitrary sensor can vary from 2 to NA. Some anchors have R = Rmax = 45m, and some have

R = 0.5Rmax. The localization errors decrease with increasing NA. For 100 independent trials,

the error as a fraction of Rmax is

e(NA) =
1

100

100∑

j=1



100∑
i=1

∥∥∥p j(i) − p̂ j(i)
∥∥∥1/2

100Rmax


. (3.32)

In (3.32), p j(i) is the true ith sensor position at trial j, and p̂ j(i) is its estimate.

In an experiment where DOI = 0, a sensor that lies within the nominal Ri of an anchor is

in contact with that anchor. When DOI , 0, the actual Ri is smaller, given by Ri(DOI) =

Ri(1 − DOI).

Fig. 3.3 is a snapshot of one trial in the anchor-sensor geometry with NA = 30 and different

transmission ranges, together with the placement of P̂. A dotted line joins P to P̂. Comparing

Fig. 3.3(a) to Fig. 3.3(b), the dotted lines for RLA are generally shorter than those for CA.
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(a) Localization error of RLA (DOI=0.1, error = 0.1929)
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(b) Localization error of CA (DOI=0.1, error = 0.2872)

Figure 3.3: Location error with different transmission ranges

3.4 Summary

Range-free localization, while not as accurate as range-based, has the principal advantage of

simplicity, i.e., there is no requirement for special hardware to measure time-of-arrival or time-

difference-of-arrival. This is important for WSN in which sensors are low cost units, and in

some applications where knowing accurate sensor positions is not critical. While determining P̂

from CA is simple, it is possible to improve on its accuracy with some additional computations.

The RLA provides such an option and the simulation results in Section 3.3 show that there

is approximately a 2 to 30% gain in accuracy, depending on whether or not the anchors have

identical ranges, and on the value of DOI.



Chapter 4

Mobile Element Assisted Cooperative
Localization for Wireless Sensor
Networks with Obstacles

When the sensor network is deployed in some special areas, the people cannot move in this area.

If some anchors are dead, we need to use one mobile anchor, such as a robot, to cooperate with

static sensors in the area. We study the localization algorithm in this scenario. In this chapter,

we propose a multi-power-level mobile anchor assisted range-free algorithm for mobile anchor

assisted WSNs with obstacles, in which the node localization problem is formulated as a convex

optimization problem. By using a relay node, our scheme can effectively reduce the effects of

obstacles on node localization. Furthermore, our scheme can calculate the positions of infeasible

points caused by a complex radio transmission environment, which is recognized as a problem

when the feasible set for localization inequalities is empty. Based on the derived localization

error bound, an optimal movement scheduling method is proposed to reduce the total moving

distance of the mobile element (ME) while assuring high localization performance, which can

efficiently extend the lifetime of the ME.

4.1 Collaborative Localization using Mobile Element

In this section, we propose a collaborative node localization approach using an ME. We first

introduce the technical preliminaries of our algorithm in subsection 4.1.1 and then formulate

the localization problem as an optimization problem in subsection 4.1.2. We propose an algo-

rithm for decreasing the impact of obstacles in subsection 4.1.3 and the movement scheduling

algorithm for the MEs in subsection 4.1.4.

21
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4.1.1 Background

In WSNs, a node can determine whether it is in the transmission radius of an anchor node

according to the beacon signal received from the one-hop anchor. The anchor node can adjust

its transmission radius by tuning the transmission power. For example, the TelosB mote is

equipped with an IEEE 802.15.4 compliant Chipcon CC2420 radio, which has 31 transmission

power levels between -25 and 0 dBm.

We assume an anchor node has M levels of transmission power, and the corresponding trans-

mission radii are Ri, i = 1, 2, . . . ,M. Normally, the ME is assumed to have a global positioning

system (GPS) receiver and knows its position [58] [29]. During the moving period, the ME

transmits beacon signals at varying power levels consecutively including its ID, current po-

sition, transmission power and transmission radius. After receiving these beacon signals, an

unknown-position sensor can construct an effective constraint on its position.

For example, we assume that the current position for the ME is a and its transmission radius is

R. If the unknown-position sensor, at position x, receives the beacon signal, we can conclude

that the distance between the two nodes satisfies

||x − a|| ≤ R. (4.1)

Otherwise,

||x − a|| > R. (4.2)

Using the multiple transmission radius of the ME by tuning the transmission power at each

position, the unknown-position sensor can obtain a set of inequalities on x:

ri < ||x − ai|| ≤ Ri, i = 1, 2, ..., n (4.3)

where ai is the position of the ME at the time i, ri (it might be zero) and Ri are valid radii for that

time. Herein, the valid constraint radii denote the corresponding lower and upper bounds, for

the tightest constraint among all of the constraints that are constructed by all of the transmission

powers for the mobile anchor node at position ai.

Hence, the localization problem based on an ME with multiple transmission radius can be con-

verted into the problem of solving a set of quadratic inequalities (4.3). Some algorithms (e.g.,

[52] [59]) are also based on the solution of a set of quadratic inequalities. However, their meth-

ods all assume that the set of quadratic inequalities (4.3) must have solutions. But, because

of the complex transmission environment, there are two different location scenarios: the set of

quadratic inequalities has a solution (i.e., the feasible set is nonempty); and the set of quadratic
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inequalities have no solution (i.e., the feasible set is empty). For these two different scenarios,

we propose a novel localization algorithm based on convex optimization to solve the problem

whether the feasible set is empty or not. To the best of our knowledge, our proposed method is

the only range-free algorithm using convex optimization to solve the problem when the feasible

set is empty.

Note that the communications between wireless terminals are affected by several phenomena in

practice, such as signal path loss, channel fading and shadowing [25]. The transmission radius

and the location accuracy are affected by such phenomena. However, it is very difficult to quan-

tify these effects as these practical factors are often unknown and complicated. Thus, in this

work, we assume deterministic transmission radii, i.e., two wireless terminals cannot commu-

nicate if they are farther apart than the transmission radius. We note that such a deterministic

model has been widely adopted in previous work on localization in WSNs, e.g. [52] [46] [59],

and it is a reasonable approximation to the real communication behavior. Specifically, we use

a numerical example to illustrate the impacts. We use the link model in [64] with the settings

of the MICA2 mote to compute the packet reception ratio (PRR) between two sensors. The

link model in [64] accounts for signal path loss and channel fading. Fig. 4.1 plots the PRR

versus the distance between the two sensors under various transmission powers. Denote by PT x

the transmission power of the ME. When PT x = 0 dBm, we set the transmission radius to be

R0 dBm = 9 m. When PT x = 15 dBm, we set the transmission radius to be R15 dBm = 18 m. We

note that the ME is more powerful than the deployed low-cost motes and hence the transmission

power of the ME can be much larger than that of the low-cost motes. We now compute the

probability that a mote located in the ring region from R0 dBm to R15 dBm centered at the ME is

successfully localized in the ring region. We note that a mote is localized in the ring region if

it cannot hear the beacon packet when PT x = 0 dBm and it can hear the beacon packet when

PT x increases to 15 dBm. From Fig. 4.1, the average probabilities that a mote located in the ring

region cannot and can hear beacon packet when PT x = 0 dBm and PT x = 15 dBm are 0.936

and 0.888, respectively. Therefore, the average probability that a mote located in the ring is

successfully localized in the region is 0.936 × 0.888 = 0.831. We note that we can improve this

success probability by adopting a larger transmission power interval, e.g., we can use 0 dBm and

20 dBm. However, doing so will introduce larger range estimation error, i.e., e given by (4.11)

below. In practice, we can balance such a trade-off to meet different requirements on localization

performance.

4.1.2 Localization Algorithm using Convex Optimization

In real environments, the actual transmission radius varies in different directions of radio propa-

gation because of the non-isotropic properties of the propagation medium and the heterogeneous

properties of devices. According to the model of [19] to model this radio irregularity, all nodes
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Figure 4.1: The packet reception ratio (PRR) vs. the distance between two MICA2 motes
under various transmission powers.

within half of the maximum transmission radius of anchors are guaranteed to hear from the an-

chor. If nodes are beyond the maximum transmission radius, they cannot hear from the anchor.

If nodes are between the maximum transmission radius and half of that radius, three scenar-

ios are possible: (1) symmetric communication, (2) unidirectional asymmetric communication,

and (3) no communication. Therefore, it is possible that there is no communication between two

nodes although their relative distance is smaller than their ideal transmission radius. In this case,

the inequalities for the original optimization problem will have no solutions and an infeasible

case would occur.

In order to deal with the case with an empty feasible set, we propose a novel convex position

estimation algorithm, which can provide good position estimation accuracy in both the feasible

case and the infeasible case.

As shown in Fig. 4.2, for the single constraint case (r < ||x − a|| < R), it is easy to see that an

efficient position estimate lies on the circle with center a and radius R+r
2 . In the figure, the square

indicates the possible position for the optimal position estimate and the black dot denotes the

anchor node with position a.

The position estimate can be found by minimizing the following expression:

(||x − a|| − r)2 + (||x − a|| − R)2.

Inspired by the single constraint case, for the inequalities under multiple constraints, we can

seek an optimal position estimate by solving the following problem:

min
x

∑

i

[
(||x − ai|| − ri)2 + (||x − ai|| − Ri)2

]
. (4.4)
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Figure 4.2: The single constraint case

Obviously, the problem (4.4) is nonconvex. Moreover, this problem cannot be directly approxi-

mated by using convex relaxation techniques like that of [3]. To approximately solve the prob-

lem via convex relaxation techniques, we transform it to the following problem1:

min
x

√∑

i

[
(||x − ai||2 − r2

i )2 + (||x − ai||2 − R2
i )2

]
. (4.5)

Although, the problem (4.5) is still nonconvex, we can turn it into a convex problem by using a

convex relaxation technique. Firstly, we write the problem as follows:

min
x,y

√√√√√∑

i


(y − 2aT

i x + ‖ai‖2 − r2
i )2

+(y − 2aT
i x + ‖ai‖2 − R2

i )2



s.t. y = ‖x‖2.

(4.6)

Then by relaxing the equality constraint in (4.6) into an inequality constraint, we obtain the

following convex problem:

min
x,y

√√√√√∑

i


(y − 2aT

i x + ‖ai‖2 − r2
i )2

+(y − 2aT
i x + ‖ai‖2 − R2

i )2



s.t. ‖x‖2 ≤ y.

(4.7)

1The possible case where there is only the lower bound ri or the upper bound Ri is not considered in this formu-
lation. However, such a case can still be handled by using the same convex relaxation technique.
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Using epigraph form[6], we can further transform it into a standard linear cone programming

problem:

min
x,y,v,t

t

s.t. ||v|| ≤ t

y − 2aT
i x + ‖ai‖2 − r2

i = vi1

y − 2aT
i x + ‖ai‖2 − R2

i = vi2 ∀i

‖x‖2 ≤ y (4.8)

where v =
[

v11 v12 · · · vi1 vi2 · · · vn1 vn2

]T
. Herein, in order to write in the stan-

dard form, we introduce a dummy variable t. t is also introduced in the epigraph model of the

problem; please refer to [6]. All vector variables in this paper are column vector. The resulting

problem can be solved by using efficient interior-point algorithms, e.g., the solver SeDuMi[50].

4.1.3 Algorithm for Decreasing the Impact of Obstacles

In this paper, we assume that boundary nodes around the obstacle have been discovered by some

boundary recognition algorithms [16], so that each sensor node knows whether it is a boundary

node or not. Only boundary nodes can participate in contention for relaying beacons from the

ME because their rebroadcasts may cover some blind areas as shown in Fig. 4.3. Hearing a

beacon from the ME, boundary nodes will compete to relay this location information through

a distributed contention process. The probability that a candidate node wins the contention

depends on the node’s remaining energy and the number of neighboring sensors. The node with

greater remaining energy and greater number of neighbors has higher priority to be the optimal

relay node. The proposed selection scheme for the optimal relay node is concluded as follows:

Receiving a beacon from the ME, a boundary node sets a backoff timer which defines the amount

of time that the node must wait before rebroadcasting the location information. The backoff time

δ is calculated as

δ = (α(used energy/initial energy) +

β/num neighbors) ∗ max delay (4.9)

where α and β are the modification coefficients to provide different weights for different param-

eters. We can see that a greater remaining energy and a greater number of neighbors will lead to

a shorter backoff time. If a candidate boundary node does not hear any beacon signal from other

sensors during its backoff time, it will rebroadcast the beacon signal and other boundary nodes

will cancel their contentions if they receive the rebroadcast of the beacon. As a result, the node

with the highest priority will rebroadcast first and win the competition to serve as the relay for
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Figure 4.3: A sensor network with an obstacle

the ME’s beacon signal. Note that this distributed relay node selection process is triggered by

the reception of a beacon message from the ME. Therefore, we do not require an explicit time

synchronization protocol among the candidate relays. They are implicitly synchronized by the

beacon message. However, due to the existence of propagation delay and receive-to-transmit

switch time, the relay selection may fail when one relay cannot hear the best relay’s rebroadcast

of the beacon message. This is the case when the backoff timer of a candidate relay expires

before the rebroadcast of the best relay arrives at it. However, such a case is rare according to

the analysis in [5]. For example, selecting c/λ = 1/200 will result in a collision probability

less than 0.6% where c is the propagation delay and switching time and λ is the max delay in

equation (4.9). Typically c = 5µs, this means the max delay can be 1 ms, which implies the

best relay will be selected within 1 ms. In this way, we can deliver the ME’s location informa-

tion to some areas that cannot receive the ME’s direct communication. Similarly to (4.3), the

unknown-position sensor in these special areas can obtain a set of inequality constraints on x :

∣∣∣Ri − Rrelay
∣∣∣ 6 ‖x − ai‖ 6 Ri + Rrelay, i = 1, 2, . . . , n (4.10)

where Rrelay is the current transmission radius for the relay node and
∣∣∣Ri − Rrelay

∣∣∣ is absolute

value. We can also use the proposed convex localization algorithm to solve the problem (4.10).

Based on this scheme, we can efficiently decrease the impact of the obstacle on node localization

and improve the location accuracy.

Note that the beacon signal transmission is affected by several affecting phenomena such as

signal path loss and channel fading. It is difficult to solve this problem well in WSNs due to its

hardware constraints. The sensors that cannot be covered directly by the ME due to physical

obstacles will have larger localization errors than the requirement since (4.10) gives a looser
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bound than (4.3). Due to fading and shadowing of wireless channels, it is possible that the relay

node cannot successfully relay the beacon signal to the unknown-position sensor within the

area that cannot receive the ME’s direct communication. However, the ME will transmit beacon

signals at varying power levels consecutively when it is stationary. With different beacon signals

at a given position of ME, the selected relay node will differ. Thus it will increase the probability

of covering the unknown-position sensor within the area that cannot receive the ME’s direct

communication. In the worst case, if the relay node still cannot cover it, we will consider it as a

blind node that cannot be localized.

4.1.4 Movement Scheduling for Mobile Elements

Several types of MEs capable of free movement are currently available, e.g., Packbot [45] and

Robomote [14]. In practice, the ME cannot visit some positions due to physical obstacles. We

assume that the regions that the ME cannot visit are known. We only consider the minimal

set of hexagons that cover the visitable region. Due to power constraints, the ME is capable of

only low-speed and short-distance movement in practical deployments. For instance, the normal

speed of several mobile sensor platforms (e.g., Packbot and XYZ) is only 0.5 ∼ 2m/s. An XYZ

mobile sensor node that is powered by two AA batteries can move only about 165 meters before

exhausting its power. Therefore, the movement trace of the ME must be efficiently planned in

order to maximize the number of localized unknown-position sensors with the required local-

ization accuracy.

The optimal movement schedule for MEs in our algorithm needs to achieve the shortest path

length so that the ME covers the entire area with the shortest time and consumes the minimum

energy. Based on the derived localization error bound (which will be derived in Section 4.2), we

propose an optimal movement schedule for MEs as follows:

When the ME has no prior information about sensors’ positions, in order to guarantee that each

sensor is localized with error ε, the entire geographical region should be covered by disks with

radii rd centered at the beacon points of the ME. The most efficient coverage is the hexagonal

tiling of the entire region, in which the edge length of each hexagon is rd and each beacon

point is at the center of each hexagon. In the optimal movement schedule of the ME, the center

of a hexagon is visited by the ME once. Obviously, the shortest length of a path that crosses

a hexagon is
√

3rd. In the line-by-line scan as shown in Fig. 4.4, the shortest path length is

achieved. Therefore, the line-by-line scan is an optimal movement schedule of the ME.

When each sensor has coarse prior information about its position, the ME does not need to cover

the entire region. Suppose there are N sensors and sensor i is in region Ai with high probability.

Let {Hi} denote the minimal set of hexagons that covers the united regions
⋃N

i=1 Ai, where Hi is

one of the hexagons in the hexagonal tilings of the entire geographical region. Note that {Hi}
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Algorithm 1 Find the shortest Hamiltonian path
Input: G = (V, E), starting point v0
Output: The shortest Hamiltonian path in G

1: cost = INT MAX

2: for v ∈ V\v0 do
3: creat edge e that connects v0 and v with cost of -INT MAX

4: E′ = E
⋃

e, G′ = (V, E′)
5: P = TSPsolver(G′)
6: if |P\e| < cost then
7: hpath = P\e
8: cost = |P\e|
9: end if

10: end for
11: return hpath

can be found by checking whether each hexagon has intersection with
⋃N

i=1 Ai, and hence in

polynomial time. Construct a undirectional graph G = (V, E), where V is the set of centers

of {Hi} and E is the set of Euclidean distances between any two points in V . The movement

schedule of the ME can be formulated as the shortest Hamiltonian path problem. Specifically,

given a starting point that is a vertex in V , find the shortest path that visits each vertex in V

exactly once. We note that the problem of finding a Hamiltonian path is NP-complete and

therefore the problem of finding the shortest Hamiltonian path is also NP-complete [17].

We now propose a heuristic algorithm to solve the movement scheduling problem formulated

above by using any solver of the travelling salesman problem (TSP). Note that the optimal so-

lution to the TSP is the shortest Hamiltonian cycle for the given graph G. Our basic idea is as

follows. We first connect a vertex v and the starting point with an edge of large negative cost,

and then apply the TSP solver to the modified graph. Heuristically, this added edge will be

included in the TSP solution and the shorest Hamiltonian path that ends at vi can be found by

removing the added edge from the TSP solution. By iterating v ∈ V , we can find the shortest

Hamiltonian path. Algorithm 1 shows the pesudo code of the heuristic algorithm. In the pe-

sudo code, INT MAX represents the maximum integer of the programming language, and |P\e|
represents the cumulative cost of the path P\e.

4.2 Performance Analysis

4.2.1 Localization Error Bounds

Wang et al. [57] investigated the network coverage for range-based target localization applica-

tions. We compare our method with their method implemented in the ideal environment without

obstacles. As the simulation results shown in subsection 4.3.3, our algorithm outperforms their

method. Hence, based on their analytical localization error bound, it is feasible to extend their
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Figure 4.4: The optimal movement schedule of the mobile anchor when no information about
sensors’ positions is available. The triangles represent the way points of the mobile anchor.

The edge length of each hexagon is rd.

t′ tdt,t′

wi

di,t′

di,t

θ
φ

Rc

no beacon point

in this sector

Figure 4.5: The ME cannot distinguish two points t and t′.

analysis to the scenario of range-free localization using an ME and thereby to derive a loose

localization error bound for our localization algorithm. In [57], Wang et al. proved a sufficient

condition for achieving a target localization error of 4
√

3e
3 , where e is the maximal range es-

timation error. The major limitation of their result is that they consider only a specific value

of localization error. In this section, we will extend their result to the scenario of range-free

localization using ME with any required localization error.

We first derive the maximal range estimation error, i.e., e, under the scenario of range-free

localization.

Let Ri denote the transmission radius when the ME broadcast beacon using the ith transmission

power level. We assume Ri < R j if i < j. The ME can determine the distance from a sensor,

denoted by d, which satisfies Ri ≤ d ≤ Ri+1. The optimal estimate of the sensor position lies on

the circle centered at the ME and with radius Ri+Ri+1
2 . Hence, the distance estimate made by the

ME is Ri+Ri+1
2 and the maximal range estimation error is given by

e = max
i

{Ri+1 − Ri

2

}
. (4.11)

In [57], the network resolution is defined to facilitate derivation of the localization error bound.

We now extend this definition to the scenario of range-free localization using an ME.
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Definition 1: Two points t and t′ are distinguishable if the ME can always distinguish whether

a sensor is at point t or t′ through the measurements provided by the ME at different locations.

The network resolution is the minimal distance l, such that the ME can distinguish any pair of

points when the distance between them is larger than l.

The following lemma gives the relationship between network resolution and the localization

error bound, which has been proved in [57]. We refer interested readers to [57] for the details of

the proof. We note that it also holds for the scenario of range-free localization using ME.

Lemma 1 [57]: If the network resolution is better than
√

3ε, the localization error is upper

bounded by ε.

The following theorem gives a sufficient condition for achieving a localization error of ε, which

enables us to schedule the movement of ME to satisfy the required localization error.

Theorem 1: The localization error is upper bounded by ε if there is at least one ME beacon point

in any arbitrary sector of radius Rc and angle φ, where Rc is the maximal transmission radius of

the ME, φ is given by

φ = 2 arccos
(

2e√
3ε

)
, (4.12)

and ε > 2√
3
e. Note that e is the maximal distance estimation error of the ME when the sensor is

within Rc meters from the ME, which is given by (4.11).

Proof: From Lemma 1, a sufficient condition for the localization error of ε is that the network

resolution provided by the ME is
√

3ε. We prove this theorem by contradiction. Suppose the

network resolution is worse than
√

3ε, i.e., we can find at least one pair of points t and t′ which

are apart by more than
√

3ε, and the ME cannot distinguish them. Now we will prove that if the

conditions for this theorem are satisfied, such a network resolution cannot be true and hence the

localization error of ε is guaranteed.

Suppose two points, t and t′, cannot be distinguished by the ME and the distance between them

is dt,t′ ≥
√

3ε. We denote the sector of radius Rc and angle φ by (Rc, φ). As we assumed that

there is at least one ME beacon point in any sector of (Rc, φ), there must be at least one beacon

point within Rc meters from t. Suppose this beacon point is wi as shown in Fig. 4.5. A necessary

condition for t and t′ to be indistinguishable is

|di,t − di,t′ | ≤ 2e; (4.13)

otherwise, t and t′ can be distinguished by the ME at beacon point wi. Moreover, t′ must be

within Rc meters from wi, as otherwise t and t′ can be distinguished by the ME. Without loss of

generality, we assume di,t ≤ di,t′ and therefore di,t′ ≤ di,t + 2e according to the above necessary
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condition. As shown in Fig. 4.5, according to the law of cosines, we have

cos θ =
d2

i,t + d2
t,t′ − d2

i,t′

2di,tdt,t′
(4.14)

≥
d2

i,t + d2
t,t′ − (di,t + 2e)2

2di,tdt,t′
(4.15)

=
d2

t,t′ − 4e2 − 4di,te

2di,tdt,t′
. (4.16)

As dt,t′ ≥
√

3ε > 2e, we have d2
t,t′ − 4e2 > 0. Therefore,

cos θ > − 2e
dt,t′
≥ − 2e√

3ε
. (4.17)

Accordingly,

0 ≤ θ < arccos
(
− 2e√

3ε

)
= π − arccos

(
2e√
3ε

)
(4.18)

and

φ < 2(π − θ) ≤ 2π. (4.19)

There is no beacon point within the sector of (Rc, 2(π − θ)) centered at t and bisected by ray t′t,

otherwise, t and t′ can be distinguished. However, as 2(π − θ) > φ, this result is a contradiction

to the assumption that there is at least one beacon point in any sector (Rc, φ).

From Theorem 1, when ε ∈
(

2√
3
e,∞

)
, φ ∈ (0, π). Theorem 1 can be extended to the disk

coverage model as follows.

Corollary 1: The localization error is upper bounded by ε if disks of radius sin φ
2

1+sin φ
2

Rc centered

at the ME’s beacon points cover the entire field, where Rc is the maximal transmission radius of

the ME and φ is given by (4.12).

Proof: A sector of (R, φ) contains an inscribed circle of radius rd =
sin φ

2

1+sin φ
2

Rc. Therefore, if

the disks of radius rd centered at the ME’s beacon points cover the entire field, there will be

no sector (Rc, φ) which contains no sensor and hence the location estimation error bound is

guaranteed according to Theorem 1.

We note that the disc coverage model has several advantages over the sector coverage model.

First, the disc coverage problem has been extensively studied in the previous literature [7]. The

previous results and algorithms can be applied to schedule the movement of the ME. Second,

the disc model is easier than the sector model in the geometric treatment due to its simplicity.

Therefore, we adopt the disc coverage model to schedule the movement of ME in this paper.



Chapter 4. Mobile Element Assisted Cooperative Localization for Wireless Sensor Networks
with Obstacles 33

4.2.2 Communication Cost and Power Consumption

The number of messages that a sensor node needs to transmit is treated as the communication

cost in our localization algorithm. In our localization process, the MEs will perform the broad-

casting operation at every time slot. Thus the communication cost is related to the number of

beacon signals, which can be calculated as follows:

For the communication cost in the line-by-line case, on letting l be the width of the deployment

area, the number of hexagonal tilings in a row can be calculated as l/
√

3rd. In the same way,

on letting h be the height of the deployment area, the number of rows is h/
√

3rd. For each

hexagonal tiling, we assume the ME will beacon twice. Therefore, the total number of beacons

is 2hl/3r2
d. For the communication cost in the TSP case, the number of beacon points is 2{Hi},

i.e., two times the size of the set {Hi}. Thus, it is upper bounded by the communication cost

of the line-by-line case. The ME broadcasts to unknown-position sensors a hello message with

its ID, location and some recognize-bits which amounts to only several bytes. For low beacon

point density, this would require roughly hundreds of bytes.

We can evaluate the corresponding energy consumptions of our approach. We account for the

energy consumed in locomotion of the ME, wireless communication, and idle state at local

sensors. We assume that the ME is a wheeled robot such as the Robomote [14]. The en-

ergy consumed in locomotion by a wheeled robot, denoted by EM(d), can be approximated by

EM(d) = k · d [56], where d is the moving distance and k = 2 J/m if the ME moves at optimal

speed. For typical low-power transceivers such as CC2420, the energy consumed in wireless

communication, denoted by EC(d), can be modeled as EC(d) = m · (a + b · d2) [38], where d is

the transmission distance, m is the number of bits transmitted, and a and b are constants. a and

b can be set to be 0.6 × 10−7 J/bit and 4 × 10−10 J/m2 · bit according to the experiments in [38].

The power consumption of an idle node is set to be 21 mW, which is consistent with that of the

TelosB mote [1]. We assume that a node stays asleep when it is outside of the communication

range of the ME during the localization phase. Moreover, we ignore the power consumption of

a sleep node, as it is much less than the idle state power consumption. For instance, a TelosB

mote consumes 1 µW in sleep mode [1].

In our line-by-line case, the energy consumed in wireless communication by the ME is Ec(Ri) =

m·(a+b·R2
i )· 2hl

3r2
d
(J), the energy consumed in locomotion by the ME is Em(d) = 2

(
hl√
3rd
− √3rd

)
(J),

and the average power consumption of sensors in the ME radio coverage area is Es = 21 ·
Ns(mW), where Ns is the average number of sensors in the ME radio coverage. Therefore,

Ns = ρ · πR2
i =

NπR2
i

A , where N is the total number of sensors and A is the total area of the

network.
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For the method of [59], if it adopts the dense-straight-line (DSL) movement pattern and the

broadcasting interval of the beacon is 0.25 meters, the energy consumed in wireless communi-

cation of their method is Ec = m · (a+b ·R2
i )( hl

4R2
i
+ h

2Ri
) ·4(J), the energy consumed in locomotion

by the mobile beacon is Em = 2
[
(l + 2Ri) · ( h

2Ri
+ 1) + h

]
(J), and the power consumption of sen-

sors in the ME radio coverage area is Es = 21 · Ns(mW).

By setting φ = 2π
3 and Ri = 45 m, we have the following conclusion. The energy consumed in

wireless communication by the ME in our approach is slightly smaller than that of the method

in [59]. However, the energy consumed in locomotion of the ME in our method is significantly

smaller than that of the method in [59]. The power consumption of idle sensors is almost the

same for both methods.

4.3 Numerical Results

In this section, simulation results are presented and analyzed. We consider a 2-dimensional

region with a size of 100 m x 100 m. We assume the ME has two level transmission power with

the transmission radii r and R = 2r, respectively. First, we deploy 100 sensor nodes randomly

and the transmission radius r is set to 15 meters. All simulation results are averaged over 100

network scenarios. The average localization error is used to evaluate the performance for our

localization algorithm. The average localization error is defined as follows:

error =
1
N

N∑

i=1

‖xi − x̂i‖ × 1
r
, (4.20)

where xi is the real position for node i, r is the maximum transmission radius and x̂i is the esti-

mated position of node i. Note that we normalize the absolute localization error using maximum

transmission radius. For instance, the error 20% means that the real localization error is 20% of

maximum transmission radius.

4.3.1 Performance in the Ideal Environment

In this subsection, we give the simulation results for different algorithms in the ideal situation,

namely, there is no obstacle in the sensing area. We use the degree of irregularity (DOI) to indi-

cate the radio irregularity characteristic. Its value denotes the maximum range variation per unit

degree change in the direction of radio propagation. Fig.4.6(a) and 4.6(b) show the simulation

results in this ideal situation, where the true nodes are denoted by circles, the position estimates

are denoted by asterisks, and the lines that link the true nodes and the estimates represent the

estimation errors. It is clear from Fig.4.6(a) and 4.6(b) that our algorithm works better than the

algorithm of [59] in terms of the average localization error.
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In practical environments, the actual transmission radius varies in different directions of radio

propagation because of the non-isotropic properties of the propagation medium and the hetero-

geneous properties of devices. In this experiment, we investigate the impact of irregular radio

patterns on the precision of our proposed localization algorithm. similar to [59], we use a random

value to denote the variance of path loss, and this random value follows a Weibull distribution.

Parameter DOI determines the maximum variance. Using this DOI model, we not only obtain

the property that the variance of path loss is distinct in every direction but also show that pass

losses in the same direction may be varying due to the dynamic changing of environment. As

shown in Fig.4.7(a), the localization accuracy of our algorithm decreases as the DOI increases.

When the DOI is smaller than 0.1, the localization error varies slightly. Fig.4.7(a) indicates that

our method outperforms the method of [59] in terms of the average localization error with the

various values of DOI. We evaluate the localization accuracy of our localization algorithm in

both the proposed and random movement strategy with the different DOI. Fig.4.7(b) indicates

that our localization algorithm using the proposed movement strategy outperforms than that

using the random movement strategy.

4.3.2 Performance in the Non-ideal Environment

For the next set of experiments, we use channel fading model to indicate the effect of obstacle

on localization accuracy. Herein, we use a fading coefficient (f) that represents the percentage

of total mobile beacon points that cannot be heard by the sensor at any given time. This models

obstacles encountered in the sensing area that limit the number of mobile beacon points that

can be heard at any point. As Fig.4.8(a) and 4.8(b) illustrate, our algorithm outperforms the

algorithm of [59] in terms of the average localization error in this non-ideal environment.

4.3.3 Performance Comparison with a Range-based Method

In this section, we employ the range-based localization algorithm in [57] as the baseline. Fig.4.9(a)

and 4.9(b) show the localization results by our method and the baseline algorithm, respectively,

in the ideal environment without an obstacle. We can see from these two figures that our method

outperforms the baseline algorithm in terms of average localization error. Specifically, the av-

erage localization errors are 12.03% and 18.68%, respectively. Note that the settings of our

method can be configured to meet any required localization error as discussed in section 4.2.1.

However, the baseline algorithm can only achieve a specific localization error that depends on

the range estimation error of the ME. Therefore, our method outperforms the baseline method.
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Figure 4.6: Performance comparison: (a) Localization error of our method (DOI=0.2, error =

11.68%); (b) Localization error of method [59] (DOI=0.2, error = 13.7%)

4.4 Summary

We have presented a new cooperative localization scheme that can achieve high localization

accuracy in mobility-assisted wireless sensor networks when obstacles exist. Considering the

complex localization scenario, namely, the feasible set is empty, a convex localization algorithm

has been presented to address the effects of non-ideal transmission of radio signals. We have de-

veloped an optimal movement schedule for MEs that can achieve a shortest path under expected

localization accuracy. It has been shown in the simulation results that the proposed coopera-

tive localization scheme can achieve high localization accuracy by including a mobile element.

In future work, we intend to verify and improve the proposed cooperative localization scheme

using real sensors in a mobility-assisted wireless sensor networks. We will extend our work to

address other limited mobility models of MEs, such as the straight-line mobility model of the

XYZ mobile sensor [32]. Using distributed space-time-codes [5] to reduce the impact of chan-

nel fading on the cooperative localization algorithm is also an important issue to be considered
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Figure 4.7: Performance comparison: (a) The average localization error vs. DOI; (b) Impact
of movement strategy

in the future.
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Figure 4.8: Performance comparison in the non-ideal environment: (a) Localization error
of our method (DOI=0.25, f =0.1, error = 17.07%); (b) Localization error of method [59]

(DOI=0.25, f =0.1, error = 19.34%)
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Figure 4.9: Performance comparison with a range-based method: (a) Localization error of
our method (DOI=0.25, error = 12.03%); (b) Localization error of method [59] (DOI=0.25,

error = 18.68%)



Chapter 5

Accurate and Efficient Node
Localization for Mobile Sensor
Networks

In Chapter 4, we include only one mobile anchor. In some scenario, all anchors and sensors are

moving, such as mobile sensor networks. In this case, the movement trace may more compli-

cated than we studied in the Chapter 4. The localization problem for mobile sensor networks

is also very interest and important. In this chapter, we propose a range-free cooperative lo-

calization algorithm for mobile sensor networks by combining hop distance measurements and

particle filtering. In the hop distance measurement step, a differential error correction scheme

is devised to reduce the positioning error accumulated over multiple hops. A backoff-based

broadcast mechanism is also introduced in our localization algorithm. It efficiently suppresses

redundant broadcasts and reduces message overhead. The proposed localization method has fast

converges with small location estimation error. We verify our algorithm in various scenarios and

compare it with conventional localization methods. Simulation results show that our proposal is

superior to the state-of-the-art localization algorithms for mobile sensor networks.

5.1 Algorithm Development

In this section, we provide the details of our proposed hop distance measurement and particle

filter-based cooperative localization algorithm for mobile WSNs. For simplification purposes,

we present our algorithm for the two-dimensional scenario. Intuitively, our work can be easily

extended to the three-dimensional case. Our proposal can be divided into two main steps:

40
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5.1.1 Hop Distance Estimation and Backoff-based Message Broadcast

In the first step, each anchor node broadcasts a beacon message throughout the network. The

beacon message contains the anchor’s location and a hop count with an initial value of zero.

Each receiving node maintains the minimum hop count value per anchor node from all beacon

messages it receives. Beacon messages with a higher hop count value from a given anchor

node are ignored and discarded. On the other hand, valid beacon messages are forwarded with

an incremented hop count after each hop. In this way, all nodes in the network can find their

minimum hop counts to each anchor node. Nonetheless, this simple flooding method may result

in excessive message overhead. To deal with this issue, we propose a backoff-based broadcasting

mechanism described at the end of this section.

Conventional hop count localization methods require two separate flooding stages: (a) hop count

accumulation and (b) average hop distance (correction). In comparison, our method combines

the correction process with the hop count accumulation stage to reduce message transmissions.

When the effective hop distance is calculated in the flooding process, the hop count is broad-

casted simultaneously to all the nodes in the network. This approach effectively helps to reduce

the number of transmitted messages, consequently reducing the network energy consumption

and the time spent on computing a node’s position.

Once an anchor node receives the hop count value from another anchor node, it estimates the

average distance of one hop, namely hop distance, which will be used as a correction factor to

be transmitted to the entire network. After receiving the hop distance, regular nodes multiply it

by the hop count number to derive their estimated physical distances to the anchor nodes. For

instance, the average hop distance between anchor nodes i and j is calculated as:

HopDistancei, j =

∑

i, j

√
(xi − x j)2 + (yi − y j)2)

∑

i, j

hi, j

(5.1)

where (xi, yi) and (x j, y j) are the coordinates of anchors i and j, respectively, and hi, j is the

number of hops between them. After hop distance estimation, it is straightforward to estimate

the distance between two anchor nodes i and j as follows.

di, j
est = HopDistancei, j × hi, j. (5.2)

On the other hand, the actual distance, di, j
true, between anchor nodes i and j is given by

di, j
true =

√
(xi − x j)2 + (yi − y j)2 (5.3)
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Following (5.2) and (5.3), the difference between the estimated and actual distances, denoted by

ei, j, can be expressed as

ei, j = di, j
est − di, j

true, (5.4)

which corresponds to the estimation error.

Here, we propose the usage of the differential error in (5.4) as a correction term to the original

hop distance estimation presented in (5.1). The effective average hop distance, E f f HopDistancei, j,

between anchor nodes i and j is defined as [12]:

E f f HopDistancei, j = HopDistancei, j − ei, j + ei,m

hi, j + hi,m
, (5.5)

where hi,m is the number of hops in-between, and m is the second-closest anchor node to the

unknown-position node k.

When anchor nodes i and m broadcast their average hop distances from j to regular node k, the

related hop count value will also be broadcasted simultaneously to reduce the total number of

transmitted messages. After obtaining both messages from i and m, k calculates ei, j and ei,m

using eq. (5.4). Subsequently, the effective average hop distance can be calculated using the

received beacon information via eq. (5.5). Based on eq. (5.5), k can compute its distance dk, j
e f f to

anchor node j:

dk, j
e f f = E f f HopDistancek, j × hk, j (5.6)

If i is the closest anchor node to k, it is more accurate to estimate the distance between k and j by

using E f f HopDistancei, j. From this principle, a generalization to any regular node is possible.

That is, a given regular node can use the effective average hop distance obtained from its closest

anchor node to calculate the distances to its neighbor nodes.

As shown in Fig. 5.1, simple flooding method suffers from high message overhead when used

to provide location information to neighbor nodes, thus we propose a backoff-based broadcast

mechanism to suppress redundant messages. A node may receive sequential beacon messages

about the same anchor and each one of them leads to a smaller hop count. As a result, this

node may need to forward it several times. Fig. 5.1 illustrates an anchor message propagation

initiated by anchor node A. Due to the random exponential backoff of the MAC layer, node

C may broadcast A’s message before node B. Suppose that node D wins the next channel

contention, and both nodes E and F set their minimum hop count to 3. It is possible that node B

further fails the channel contention dispute with node E, and thus node E broadcasts an anchor

message containing the wrong minimum hop count information before it notices the right value.

Once the order is altered, the error is accumulated from each broadcast. Node E only needs to

broadcast another anchor message after hearing the lower hop count information from node B,

but nodes that are farther away from the anchor node may need to forward it several times to
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correct the accumulated error. We observe that nodes at the border of the transmission range of

A
B

C D

E

F
G

Figure 5.1: An example of anchor message propagation

a sender have the widest coverage of its two-hop neighbors. Therefore, we should give these

nodes the highest priority to broadcast. This has been extensively studied to reduce redundant

broadcasts and collisions [4, 20, 61]. However, previous methods only alleviate the redundancy

problem rather than completely suppressing it.

Giving receivers farther away from a sender higher priority to broadcast could solve the re-

dundancy mentioned above. However, node G still suffers from redundant broadcast. Previous

methods would allow node B to broadcast before node C. According to these methods, node E

should broadcast before node D and it is likely that node E would also broadcast before node C.

If node F wins the following channel contention, node G would get a wrong hop count of 3.

Based on these observations, we propose a backoff-based flooding which works as follows.

Nodes that are far away from the sender are expected to have a weaker received signal strength.

Therefore, we set IS S = Pr − RXThresh for each node, where IS S is the increase in signal

strength, Pr denotes the received signal power, and RXThresh denotes the minimum signal

power for successfully decoding a packet. Each node defers its broadcast of the anchor message

for IS S ∗ unit delay time units, where unit delay should be large enough to cope with the

random backoff of the MAC layer. Otherwise, node C may still broadcast before node B due to

its winning of contention in channel access.

Supposing that node B is on the border of the transmission range of node A, it will broadcast

immediately after hearing an anchor message from node A. Node E should calculate its sending

deferment according to the same rule. In order to cope with the loop problem, node E should

wait for an additional delay before initiating its transmission. In general, if a node is not a one-

hop neighbor of an anchor node, it should wait for an additional period before forwarding the

anchor’s message. Suppose all nodes that need to broadcast are located within a ring characteris-

ticed by two circles with radius α×R and R, where α is determined by the node density obtained

by overhearing. As an example, in Figure 5.1, C may not need to broadcast if there are many

nodes located within the ring determined by two circles with radius 0.5R and R. The additional
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delay is then calculated with a Pr value that is expected at the 0.5R distance. Simulation results

show that in our proposed backoff-based flooding, all nodes broadcast only once.

5.1.2 Positioning via Particle Filtering

For the positioning step, due to location uncertainty inserted by mobility, a node inserts virtual

anchors to aid on constraining the localization error. Let (Xi,Yi) be the coordinates of a virtual

anchor node, where i = {1, 2, 3, · · · ,M}. Here, we select the midpoint of two one- or two-hop

neighbor nodes as the position of virtual anchor node as shown in Fig. 5.2. Note that a node

can estimate its distance to an anchor node and other regular nodes using the effective average

hop distance and the number of hops in-between. These distances are used to constrain a small

prediction area, from which particles are drawn and filtered.As shown in Fig. 5.2, the gray

rectangle indicates the prediction area from where particles representing possible locations are

extracted. The node’s current velocity is also used to minimize the prediction area. The speed

information can be collected from sensor data. For instance, sensor nodes are able to estimate

their velocities using a three-dimensional accelerometer. As shown in Fig. 5.2, a regular node k

Figure 5.2: Building the prediction box.

located at the center of the intersection area is able to directly communicate with three one-hop

neighbors. For each pair of one-hop neighbors, a virtual anchor node i is created and k builds a

square of size 2 ∗ dk,i
e f f centered at i, dk,i

e f f being the estimated distance between k and i. Based on

the current velocity of sensor node, the coordinates of the reduced sampling rectangle area are

calculated as follows:

xmin = max(
n

max
i=1

(Xi − dk,i
e f f ), xt−1 − vt)

xmax = max(
n

min
i=1

(Xi + dk,i
e f f ), xt−1 − vt)

ymin = max(
n

max
i=1

(Yi − dk,i
e f f ), yt−1 − vt)

ymax = max(
n

min
j=1

(Yi + dk,i
e f f ), yt−1 − vt),
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where (Xt−1, Yt−1) are the coordinates of particle lt−1. When we consider two-hop neighbors,

we replace dk, j
e f f with the estimated distance between regular node k and its two-hop neighbor

virtual anchor nodes. Based on Fig. 5.3, let the distance between anchor nodes A and B be d2,

Figure 5.3: System model

the distance between A and regular node E be d1 and the distance between regular node E and

anchor node B be d3. The distance between the virtual anchor node D and regular node E is

defined as d0. Finally, θ is the angle between line segments AB and AE, which can be calculated

from the cosine rule. After obtaining the values of d1, d2 and d3 from triangle 4ABE, we have:

cos θ =
d2

2 + d2
1 − d2

3

2d1d2
. (5.7)

Similarly, in triangle 4ADE, we have:

cos θ =
(d2

2/4) + d2
1 − d2

0

d1d2
. (5.8)

Thus, we can calculate the value of d0 based on eqs. (5.7) and (5.8) as follows:

d0 =

√
2d2

1 + 2d2
3 − d2

2

2
. (5.9)

Prediction Phase If the anchor’s distance and speed constraint are disjointed, for example at

initialization time, the node excludes the speed constraint when calculating the prediction area.

The prediction area helps to draw valid particles in the prediction phase. The probability of a

given current location based on a previous estimate is given by the uniform distribution:

p(Lt|Lt−1)

=


1 if xmin ≤ xt ≤ xmax ∩ ymin ≤ yu ≤ ymax

0 otherwise,
(5.10)

where (xt, yt) are the coordinates of particle lt.
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Filtering Phase

In the prediction phase, each node generates a set of uniformly distributed random values inside

the prediction area. If the drawn particles are located inside the communication range of every

neighbor, the node saves this position for the final estimation. Otherwise, the node discards

it and repeats the prediction phase. The entire filtering phase in a node can be represented as

follows:

f ilter(lt) = ∀a ∈ M, d(lt, a) ≤ r + vt∩
∩ ∀b ∈ M, r − vt ≤ d(lt, b) ≤ 2r + vt,

where lt is the concerned particle, M and N are the sets of one-hop and two-hop neighbors,

respectively, r is the nodes radio range, d(lt, a) is the distance between particle lt and neighbor

a, and vt is the current velocity of a neighbor node. After obtaining a sufficient number of valid

particles, the final location estimate is calculated as the average of the particle set.

5.2 Lower Bound on the localization error

Nagpal et al. [34] have proposed a lower bound for the localization error in any range-free

localization algorithm in static sensor networks where the sensors only use the connectivity

information of the anchors within their first-hop neighborhood. However, there is a problem

related to the analysis mentioned in their method since we cannot simply compute the average

distance a sensor can move without changing the connectivity along a fixed direction. Inspired

from their work, we derive a lower bound on the localization error in our algorithm as following.

Let the continuous variable Z denote the maximum distance that a sensor can be moved without

changing its neighborhood. Then, the expected value E(Z) is a lower bound on the localization

error of sensors. As Fig. 3 illustrates, a sensor located on the circle of r can move distance z

without changing its connectivity if there is no sensor in the region A(z), which is consist with

the annular region between the circles r and r + z and the circle z.

The probability that Z < z is equal to the probability that there is at least one sensor in the

annular region between the circles r and r + z and the circle z as shown in the Fig. 3. Thus, we

have

F[Z] = Pr(Z ≤ z) = 1 − e−ρA(z) (5.11)

where ρ is equal to Ns/A in which A is the total area of the network region and Ns is the total

number of sensors in area A.
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Figure 5.4: Move distance on impact of connectivity

The area A(z) is given as

A(z) = π(2r + z)2 − π(2r)2 + πz2

= 2πz2 + 4πrz.
(5.12)

The probability density function of Z is given as

f [z] = (4ρπz + 4ρπr)e−ρ(2πz2+4πrz). (5.13)

Therefore, E(Z) can be calculated as:

E[Z] =

∫ r

0
z · f (z)dz

=

∫ r

0
(4ρπz2 + 4ρπrz) · e−ρ(2πz2+4πrz)dz

= 4ρπ



1

2(2ρπ)
3
2

γ

(
1
2
, 2ρπr2

)
+

r
4ρπ

γ
(
1, 2ρπr2

)

+
1

(4ρπr)3γ
(
3, 4ρπr2

)
+

r
(4ρπr)2γ

(
2, 4ρπr2

)



(5.14)

where γ (x, y) is the incomplete Gamma function.
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5.3 Performance Evaluation

The general performance of our algorithm was obtained through simulation, using an adapted

version of the simulator provided by the authors of MCL [22]. We evaluated the effectiveness

of the backoff-based broadcast mechanism and the location accuracy of our proposal in terms of

node speed, node density, anchor density, and communication irregularities, and compared it to

four other algorithms: Centroid, Gradient, MCL, and MCB.

For the following results, we consider a topology of 320 nodes, placed in a random uniform

manner over an area of 500 × 500 square units. Unless specified otherwise, we consider an

anchor density of 1, node density of 10, and radio propagation using the unit disk model. These

parameters were also varied and their evaluation can be seen in the next subsections. The radio

range was set to 50 units and the maximum speed to 50 units per time interval. Anchor and

regular nodes move using a modified version of the random waypoint model, with no pauses

between intervals in order to prevent the average speed decay problem [9].

In the case of MCL-based algorithms (MCL, MCB, and our approach), we used a fixed sampling

set of 50 units. Just like [22], we have verified that this is the best cost-benefit solution. While

maintaining more samples improves accuracy, it also increases computational overhead and

memory requirements. For each parameter, a set of 30 simulation runs was performed and

results were averaged.

5.3.1 Evaluation of the Broadcast Mechanism

We investigate the effectiveness of the backoff-based broadcast mechanism which is adopted

in step 1 of our proposal. Fig. 5.5 shows the number of beacon messages an anchor node

needs to broadcast using simple flooding and our proposed backoff-based flooding to guarantee

node localization. Nodes are ordered in increasing distance to the anchor node located at the

left bottom corner. The minimum hop count of the farthest node to the anchor is 9. We can

observe that some nodes have to broadcast the same related message up to five times in simple

flooding. Generally, the farther away a node is from the anchor node, the more messages it

needs to broadcast to correct the accumulated error. In contrast, in our proposed backoff-based

flooding all nodes obtain their correct minimum hop counts with an overhead of one message per

node. Therefore, our design effectively reduces the number of redundant messages. In another

experiment, we distribute 200 nodes in a 500m×500m field and vary the transmission range from

100 to 50 meters. The average total number of anchor messages used by all nodes is presented

in Fig. 5.6. In general, as the transmission range decreases, the accumulated error increases.

Distant nodes need to rebroadcast more times. A transmission range less than 60 meters cannot
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Figure 5.5: Number of anchor messages transmitted per node

ensure connectivity and thus the overhead decreases suddenly. Fig. 5.6 shows that our algorithm

scales well to network size and substantially suppresses redundant broadcasts.
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Figure 5.6: Average number of anchor messages used by all nodes

5.3.2 Convergence Time

The second simulation analysis concerns the location accuracy convergence. As it can be seen

from Fig. 5.7, the initial sharp decline on the estimation error curves of the MCL-based algo-

rithms is due to new location announcements from anchors being incorporated into the sequen-

tial Monte Carlo process. This is followed by a stable phase declaring the balance between

updates to the posterior location distribution and uncertainty introduced by mobility. MCB and

our proposal give similar performance, though the latter achieves slightly better accuracy. This

is due to a smaller sampling area, which effectively speeds up the collection of valid samples,

and also due to the optimized filtering phase, which uses actual sensor data for constraining the

filtering area, opposed to a theoretical maximum velocity boundary. Centroid and Gradient do

not exploit position history information, so their accuracy does not change over time.
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Figure 5.7: Accuracy comparison
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Figure 5.8: Impact of node density

5.3.3 Node density

Fig. 5.8 shows the impact of node density variation on the accuracy of each algorithm while the

anchor density is kept constant. Centroid and the MCL-based algorithms are slightly affected

by node density. In the case of the MCL-based algorithms, even when there are only two-hop

anchor neighbors, enough samples can be filtered to obtain a decent location estimate. For

Gradient, a higher density of nodes reduces the estimation error of the hop size leading to a

higher accuracy as well. In our simulation experiments, Gradient performs best when the node

density is over 16.

5.3.4 Anchor density

Increasing anchor density facilitates the retrieval of location information by regular nodes.

Fig. 5.9 shows the average estimate error of different localization algorithms when the anchor

density varies. We can see that all MCL-based algorithms take advantage of a higher anchor

density, as more position announcements will be available for filtering. The same happens to
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Centroid. In the case of Gradient, the impact over accuracy is negligible as information from the

whole network is used independent of the number of anchors available. Our proposal performs

better than the other algorithms for reasons explained above (smaller sampling area and better

filtering technique).
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Figure 5.9: Impact of anchor density

5.3.5 Node speed

As we can see from Fig. 5.10, for all the MCL-based algorithms the maximum speed variation

does not affect much the location accuracy. At higher speeds, nodes hear new anchors more

often which add new information to the filtering phase, keeping the sample set updated. On the

other hand, as larger distances are traversed at each time unit, the sampling area becomes larger,

decreasing the algorithm’s accuracy. In the case of Gradient, it is assumed that all network

information is provided to every node at each time unit, a condition that is too optimistic for a

real network. Therefore, node speed also does not affect its performance. Still, it can be seen

that its estimation error is higher than the MCL-based algorithms. Node speed also does not

affect Centroid.
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Figure 5.10: Impact of node speed
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5.3.6 Communication Irregularities

Although the unit disk model is a simple and easy-to-use communication framework, it does

not reflect the reality of wireless communication. The measured signal strength of radios can

vary substantially with environmental conditions and antenna irregularities. This also affects

the localization accuracy. Although many complex studies on radio propagation models have

been proposed, we decided to use the Degree of Irregularity (DoI) [19] to model transmission

and reception adversities for comparison purposes. The DoI parameter defines the radio sig-

nal strength variation on each direction of radio propagation. As its value increases, multihop

communication is affected and the localization error of every algorithm increases, except for

Centroid, as shown in Fig. 5.11. We can see from the results that our proposed algorithm de-

grades more gracefully. Despite the message exchange hardships, our proposal is still able to

filter a larger number of valid samples than the other MCL-based algorithms.
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Figure 5.11: Impact of communication irregularities

5.4 Summary

We present a distributed hop distance measurement and particle filter-based cooperative local-

ization algorithm for mobile WSNs. Our proposal is scalable, robust, and self-adaptive to the

dynamics of a mobile sensor network. Our proposed algorithm can reduce the hop distance es-

timation error accumulated over multiple hops by using a differential error correction scheme.

In order to efficiently suppress redundant broadcasts and to reduce communication overhead,

a backoff-based broadcast mechanism is proposed. It also improves localization performance

by including particle filtering technology. Simulation results show that the proposed algorithm

achieves better performance than other state-of-the-art algorithms. Influence of physical obsta-

cles over the communication model remains to be explored as future work.



Chapter 6

Distributed Source Localization in
Wireless Underground Sensor
Networks

In the previous chapters, we have studied range-free localization problems. Herein, we focus

on range-based method in wireless underground sensor networks. Considering the requirement

of the application area, the designed localization algorithm is more practical. Node localiza-

tion plays an important role in many practical applications of wireless underground sensor net-

works (WUSNs), such as finding the locations of earthquake epicenters, underground explo-

sions, and microseismic events in mines. It is more difficult to obtain the time-difference-of-

arrival (TDOA) measurements in WUSNs than in terrestrial wireless sensor networks because

of the unfavorable channel characteristics in the underground environment. The robust Chinese

remainder theorem (RCRT) has been shown to be an effective tool for solving the phase ambi-

guity problem and frequency estimation problem in wireless sensor networks. In this paper, the

RCRT is used to robustly estimate TDOA or range difference in WUSNs and therefore improves

the ranging accuracy in such networks. After obtaining the range difference, distributed source

localization algorithms based on a diffusion strategy are proposed to decrease the communica-

tion cost while satisfying the localization accuracy requirement. Simulation results confirm the

validity and efficiency of the proposed methods.

6.1 Introduction

Wireless underground sensor networks (WUSNs) are an important extension of terrestrial wire-

less sensor networks, as they can be used for estimating the locations of earthquake epicen-

ters, underground explosions, microseismic events in mines, etc. Normally, the sensor nodes in

53
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WUSNs are buried underground and exchange information wirelessly via the dispersive under-

ground channel. Some experimental results with WUSNs are reported in [42].

In terrestrial wireless sensor networks, time difference of arrival (TDOA) has been widely used

for node localization [31]. Because of the physical characteristics of the dispersive underground

channel and the heterogeneous network architecture of WUSNs, source localization for WUSNs

based on TDOA is much more complicated and challenging than that in terrestrial wireless sen-

sor networks [51]. In a dispersive medium, we cannot directly obtain the range differences

between the source and sensors from TDOA measurements since the propagation velocity is a

function of frequency due to the fact that different frequency components have different propa-

gation speeds [11].

Knowing the location of sensor nodes is important in many practical applications of wireless

underground sensor networks. The objective of a positioning system is to determine accurate

node locations with low complexity and communication cost. Localization algorithms for tradi-

tional terrestrial wireless sensor networks can be mainly classified into two types: range-based

methods and range-free methods. Range-based methods usually have higher location accuracy

than range-free ones while demanding additional hardware cost.

In [63], a distributed TDOA estimation method that relies only on radio transceivers without

other auxiliary measurement equipment was presented. Ultra-wideband (UWB) signaling can

be used to accurately achieve time of arrival (TOA) or TDOA measurements, which has the

advantages of low-cost and penetrating ability, but also has the weakness of short-range. TDOA

based algorithms provide high localization accuracy, and represent a practical method for es-

timating range differences and source positions in WUSNs. However, this method also faces

many challenges. In particular, limited range and directionality constraints decrease the accu-

racy of range difference estimation. We notice that the TDOA can usually be obtained from the

measurement of a signal’s phase which is susceptible to phase ambiguity problems. The Chi-

nese remainder theorem (CRT) offers a closed-form analytical algorithm to calculate a dividend

from several of its corresponding divisors and remainders, and can be applied to solve the am-

biguity problem here. In our ranging application, the remainders in the CRT are the measured

“remainder” wavelengths, the divisors are the measuring wavelengths, and the dividend is the

range difference to be estimated. However, directly using the CRT is not feasible due to its

over-sensitivity to noise, i.e. a small error in a remainder can lead to very large error in the esti-

mated dividend. To avoid this weakness of the CRT, we further propose to use a robust Chinese

remainder theorem (RCRT) algorithm to estimate the range difference, in which the dividend

can still be reconstructed with only a small error if the errors on remainders are bounded within

a certain level [28]. As a result, the range differences or TDOAs can be robustly estimated from

noisy measurements in WUSNs by using the RCRT.
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After obtaining the range differences using the RCRT, we can estimate the source position based

on statistical signal processing methods. For traditional terrestrial wireless sensor networks,

TDOA based localization algorithms are normally implemented in a centralized way. In the

centralized solution, all nodes relay their TDOA measurements to a fusion center, which uses

a conventional localization algorithm to obtain the source position, and then sends the global

estimate back to every node. This strategy requires a large amount of energy for communications

[10] and has a potential failure point (the central node). Distributed strategies are an attractive

alternative, since they are in general more robust, require less communications, and allow for

parallel processing. To address this limitation of centralized processing, we propose distributed

source localization algorithms using a diffusion strategy in this paper. Diffusion algorithms are

applicable to distributed implementations since nodes communicate in an isotropic manner with

their one-hop neighbor nodes, and no restrictive topology constraints are imposed. Thus the

algorithms are easier to implement and are also more robust to node and link failures, at the

expense of inferior performance compared to incremental or centralized solutions. However,

this approach allows nodes to obtain better estimates than they would without cooperation.

The rest of the paper is organized as follows: Section 6.2 establishes the mathematical model

of the problem, and derives the proposed ranging method based on the RCRT. Section 6.3 gives

the distributed source localization algorithm based on the diffusion strategy. Simulation results

are given in Section 6.4, and conclusions are drawn in Section 6.5.

6.2 System model and TDOA estimation via the robust CRT

Due to the large attenuations in underground environments, experimental results show that un-

derground to underground (UG2UG) communication is not feasible at the 2.4GHz frequency

band [49]. Underground communication becomes practical only at lower frequencies. As re-

ported in [43] and [44], a WUSN system operating at 433MHz with a maximum transmit power

of +10dBm usually achieves a communication range of around one meter for UG2UG commu-

nication and more than 30m for underground to aboveground (UG2AG) communication. These

communication ranges have already exceeded the wavelength of the transmitted signal, which

results in phase ambiguity when the distance difference is directly calculated from the phase. In

this section, we first propose a method based on the robust CRT to resolve this phase ambiguity

when computing the range distance.

Consider a WUSN with L sensor nodes at known positions (xi, yi), i = 1, 2, . . . , L, receiving a

signal from a source at an unknown position (x, y) through a dispersive medium, as shown in Fig.

6.1. Of course, the distance between the source and the i-th sensor is Ri =

√
(xi − x)2 + (yi − y)2.

The range difference (RD) between the i-th and j-th receivers, denoted as ri, j, is then ri, j =

Ri − R j.
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Figure 6.1: System model for WUSN localization.

If the medium is non-dispersive, the propagation delay for any frequency is constant. However,

in a dispersive medium, the signal propagation velocity is a function of the signal’s frequency,

denoted by v(ωk) for frequency ωk; that is, the propagation delay is frequency dependent. We

denote the delay of propagation at frequency ωk for sensor i as tk
i =

Ri
v(ωk) .

We assume that the source transmits a sinusoid signal sk(t) = e jωkt at frequency ωk. Then, the

i-th sensor receives the signal as

sk
i (t) =sk(t − tk

i ) + ni(t)

=e jωk(t−tki ) + ni(t),
(6.1)

where ni(t) is the noise at sensor i, and {ni(t)}, i = 1, 2, . . . , L are independent white Gaussian

noise processes. Similar to that of sensor i, the received signal at sensor j is

sk
j(t) = e jωk(t−tkj ) + n j(t). (6.2)

By taking the cross-correlation of sk
i (t) and sk

j(t), we have

Ik
i j =

∫ T
0 [sk

i (t)]∗sk
j(t)dt

T
. (6.3)

It is easy to find that Ik
i j is an unbiased estimator of e jωk(tki −tkj ), for which it follows that

lim
T→∞

Ik
i j = e jωk(tki −tkj ) = e j

ωkri, j
v(ωk) , (6.4)

where the range difference ri, j is contained in the phase of Ik
i j. We denote the phase of Ik

i j as

φi j(k), i.e.

φi j(k) =

(
ωkri, j

v(ωk)

)
mod 2π. (6.5)

One can determine ri, j from φi j(k). However, there are two issues of concern with this approach:

1) the value of φi j(k) is folded by 2π and 2) the measurements are noisy, i.e.

ωkri, j

v(ωk)
= φi j(k) + 2πb(k) + e(k), (6.6)

where b(k) is the folding integer, e(k) is the noise for frequency ωk.



Chapter 6. Distributed Source Localization in Wireless Underground Sensor Networks 57

For issue 1, no matter how large the actual ri, j is, the RD ri, j,k = φi j(k) · v(ωk)/ωk converted

directly from φi j(k) is always within one wavelength of the signal λk = 2πv(ωk)/ωk. Therefore,

ri, j can not be determined uniquely by a single φi j(k). We add more constraints to confine the

solution space by measuring the phase at different frequencies ωk, k = 1, 2, . . . ,K. The Chinese

remainder theorem (CRT) provides a solution of evaluating a dividend from its remainders.

We can regard ri, j as the dividend, λk as the divider, and ri, j,k as the corresponding remainder,

then evaluate ri, j via the CRT. It seems that the CRT gives a perfect solution to this problem.

However, when we consider the measurement noise, the traditional CRT is not suitable because

it is sensitive to noise. A small error in the remainder can result in a large error in the estimated

dividend. Therefore, we adopt a robust CRT method [28]. Theorem 1 in [28] proves that the

robust CRT can tolerate an error which is bounded by τ < M/4, where M is the greatest common

divider (GCD) among the dividers. To be more specific, if all the remainder errors are not greater

than the error bound τ, the estimation error of the unknown dividend is upper bounded by τ, i.e.

∣∣∣ri, j − r̂i, j
∣∣∣ ≤ τ. (6.7)

Based on this robust CRT, we provide the following solution to solve the problem:

Step 1. Estimate φi j(k) by calculating the phase of Ik
i j. Denoting the estimated phase as φ̃i j(k) ∈

[0, 2π), and the corresponding distance converted from the phase is

r̃k =
φ̃i j(k)

2π
λk ∈ [0, λk), k = 1, ...,K. (6.8)

Note that the CRT is commonly expressed in the integer ring while the distance is a real number.

Therefore, we extend the algorithm from the integers to the reals by introducing a real common

factor among the divisors. We assume that λk, k = 1, ...,K have a real common factor of M

which satisfies

λk = MΓk, (6.9)

where Γk are still co-prime integers, i.e. (Γm,Γn) = 1, for 1 ≤ m, n ≤ K,m , n, and (·, ·) denotes

GCD. According to the passages mentioned above, we have the following equation:

ri, j = nkλk + rk

= nkλk + r̃k + ∆rk

, k = 1, ...,K, (6.10)

where nk are the corresponding quotients (folding integers), ∆rk denotes the measurement errors

of r̃k with |∆rk| < τ, when τ is the error bound.

Step 2. For notational convenience, define the following symbols:

Γ ,
K∏

k=1

Γk, (6.11)
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γk = Γ/Γk. (6.12)

Calculate and find the sets,

S k ,
{

(n̄1, n̄k) = arg min
(n̂1,n̂k)∈Ωk

|n̂kλk + r̃k − n̂1λ1 − r̃1|
}
, k = 2, 3, ...,K, (6.13)

where

Ωk , {(n̂1, n̂k)|0 ≤ n̂1 ≤ γ1 − 1, 0 ≤ n̂k ≤ γk − 1} (6.14)

is the solution space of the quotients.

S k can be regarded as the optimal combination of the quotients n1 and nk with which the differ-

ence of the estimated dividends achieves its minimum.

Step 3. Let S k,1 denote the first element n̄1 of the 2-tuples,

S k,1 , {n̄1|(n̄1, n̄k) ∈ S k for some n̄k}. (6.15)

Calculate the intersection set of S k,1:

S ,
K⋂

k=2

S k,1. (6.16)

In [28], Li et al. prove that if the error bound is less than M/4, the set S contains only the true

value of n1, i.e. S = {n1}. In addition, nk can also be determined from S k, that is, if (n1, n̄k) ∈ S k,

then n̄k = nk for 2 ≤ k ≤ K. Therefore, with all the quotients being determined correctly, the

error of the estimated ri, j is therefore bounded by |r̂i, j − ri, j| ≤ τ, where r̂i, j is obtained by

averaging the estimations corresponding to different wavelengths, i.e.

r̂i, j =
1
K

K∑

k=1

(nkλk + r̃k). (6.17)

Remark: One may notice that to find the set S k in (6.13) we need to search among the possible

values of Ωk, which is a 2-D searching with the order of (Γ2Γ3...ΓL)2 and indeed requires a high

computation complexity. However, the complexity can be decreased by using a fast algorithm

proposed in [28] and [26] to a 1-D searching with the order of only 2(L − 1)Γi. One can easily

apply the fast algorithm to the application in this paper. We do not describe this fast algorithm

herein since this is not the focus of this paper.



Chapter 6. Distributed Source Localization in Wireless Underground Sensor Networks 59

6.3 Diffusion Algorithms for Source Localization

After obtainning the range differences using the RCRT, some localization algorithms can be

used to estimate the source position. Herein, we propose an algorithm for source localization,

which we term diffusion weighted least squares (WLS). To be fully distributed, this algorithm is

diffusion-based. First, the nodes in the cluster will send their measurements to the cluster head.

Then, the cluster head can give a local estimate using these measurements locally. After obtain-

ing the local estimate, cluster heads will exchange these local estimates to achieve a diffusion

estimate, which will be close to the global estimate. Before including the diffusion estimate,

we first introduce the global WLS estimate in the next subsection, in which all of the measure-

ments are sent to the fusion center for estimating the source location. Comparing with global

estimation, no fusion center is required in our algorithms and estimates are obtained through

local exchanges with neighbors only.

6.3.1 Global Weighted Least Square Problem

Consider a set of N cluster heads and K = MN sensor nodes (each cluster head is associated with

M sensor nodes) spatially distributed over some region with known locations xi’s (we consider

the 2-D Cartesian coordinate system). The objective of the network is to collectively estimate an

unknown deterministic column vector - the location x of a source. All the nodes (cluster heads

and sensor nodes) in the network can measure the signal transmitted from the source. The sensor

nodes transmit their measurements to the corresponding cluster head and each cluster head forms

a set of M TDOA measurements with itself being the reference. Then, cluster heads can send

their TDOA measurements to the fusion center. The TDOA measurements are formed one at

a time by comparing the signal from the cluster head and the signal from a sensor node, thus

leading to uncorrelated estimates if the estimation period is longer than the typical coherence

time of the mobile radio channel. Finally, the fusion center obtains altogether K TDOA based

range difference measurements ri, j’s in the network.

The scalar model for TDOA based range difference is given by

ri, j = ‖x − xi‖ − ‖x − x j‖ + ni, j; (6.18)

we stack all the ri, j’s in a vector and obtain

r = s(x) + n

where t = col{ri, j}, s(x) = col{‖x− xi‖ − ‖x− x j‖} and n = col{ni, j}. Each ri, j can be alternatively

denoted as [r]l to reflect its location in vector r. The corresponding covariance matrix for n is

denoted as W and W = diag{σ2
1, . . . , σ

2
K}.
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The global weighted least squares estimator for estimating x given t is thus

x̂G = arg min(r − s(x))T W−1(r − s(x))

= arg min
K∑

i=1

σ2
i ([r]i − [s(x)i])2. (6.19)

Assuming the ni, j’s are Gaussian, then the covariance of x̂G attains the corresponding CRLB,

which is given by [23]

cov(x̂G) = (PT W−1P)−1 (6.20)

where

[P]i, j =
∂[s(x)]i

∂[x] j

∣∣∣∣
x=x0

(6.21)

and x0 denotes the true position of the source.

For the TDOA measurements, P is a K × 2 matrix and the elements of P are given by

[P]l,1 =
[xi]1 − [x]1

‖xi − x‖ −
[x j]1 − [x]1

‖x j − x‖
∣∣∣∣
x=x0

,

[P]l,2 =
[xi]2 − [x]2

‖xi − x‖ −
[x j]2 − [x]2

‖x j − x‖
∣∣∣∣
x=x0

where we assume [s(x)]l involves nodes (a sensor node and a cluster head) i and j.

6.3.2 Local Weighted Least Squares Problem

For each cluster head k, it has access to limited data from its own and its neighbors. It can then

solve the WLS problem locally as

x̂k = arg min
K∑

i=1

ci,kσ
2
i ([r]i − [s(x)i])2 (6.22)

where ci,k’s are the associated weights for node k and ci,k = 0 if [t]i is not accessible for node k.

Let C denote the K × N matrix with elements ci,k. We require 1TC = 1T . So that the estimation

fusion method can use those local estimates to attain the performance of the global estimate

[10], where 1 denotes a N × 1 column vector with unity entries.

A local estimate can also be written as

x̂k = (PT W−1CkP)−1PT W−1Ckz , Lkz (6.23)

where Ck = diag{Cek} (ek is an N×1 vector with a unity entry in position k and zeros elsewhere)

and z = r − s(x) + Px|x=x0 . P can be estimated at x̂k.
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The covariance matrix associated with x̂k is given by cov(x̂k) = LkWLT
k . Here Lk contains only

local information due to the selection ability of Ck.

The estimation fusion method can then be used to fuse these local estimates in a distributed

manner by utilizing the local covariance matrices as proper weights and the estimation fusion

method can be shown to achieve the performance of the global estimation. However, it involves

covariance estimation and matrix inversion.

6.3.3 Diffusion Algorithm

Besides estimator fusion, we can also use a diffusion algorithm to perform distributed estimation.

For each cluster head k, at the ith time epoch, it exchanges its local estimate with its neighboring

cluster heads and updates its local estimate using a diffusion algorithm

x̂k,i =

N∑

l=1

al,k x̂l,i, (6.24)

where the al,k’s are the diffusion coefficients. Eq. (6.24) can be considered as a weighted average

of the local estimates in the neighborhood of node k. Assume all the local estimates are unbiased.

Then in order for x̂k,i to be unbiased, we require 1T ak = 1T where ak = [a1,k, . . . , aN,k]T . The

diffusion process is repeated until all the local estimates have converged, i.e., ‖x̂k,i+1 − x̂k,i‖ ≤
ε ∀k, where ε is a (small positive) design parameter.

One possible choice for the weights al,k is to consider the degree of connectivity, which is

al,k =



degl/
∑

n∈Nk

degn, l ∈ Nk

0, otherwise
(6.25)

where degl denotes the cardinality of cluster head l’s neighbors (also cluster heads) and Nk

denotes the set of neighboring cluster heads of head l. Such choice has been observed to yield

good results for the diffusion algorithm in general [10].

However, this method does not consider the reliability of different local estimates. The reliability

of a local estimate is reflected in its associated covariance matrix. But estimating the covariance

matrix is not an easy task for a nonlinear weighted least-squares estimator (WLSE). Here we

propose a method for setting appropriate al,k’s which reflects the reliability of different local

estimates to a certain extent without requiring use of the covariance matrices.

Since each local estimate contains certain errors, when sorting them in respective dimensions

(each dimension of x̂k is treated separately), the middle ones are more reliable. Therefore, for

cluster head k, at the ith time epoch, it first finds the median x̃k,i along respective dimensions
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among its received local estimates x̂l,i’s. Then for each obtained local estimate, head k calculates

wi
l,k = exp(−‖x̂l,i − x̃k,i‖2/γ) if l ∈ Nk. Otherwise, wi

l,k = 0. γ is a parameter which controls how

rapidly the weight decays as ‖x̂l,i − x̃k,i‖ grows. The diffusion coefficient ai
l,k is then set to

ai
l,k = wi

l,k/
∑

j∈Nk

wi
j,k. (6.26)

Here we explicitly indicate the time epoch of wi
l,k and ai

l,k in the superscript. It can be seen that

the larger the deviation between a local estimate x̂l,i and x̃k,i, the smaller the weight assigned to

this local estimate and vice versa. Obviously, 1T ai
l,k = 1T .

Another method of interest is to use an optimization technique. That is, to set al,k’s such that the

trace of the covariance matrix of x̂k,i is minimized. We start by examining the first time epoch

i = 1. Then, we have

x̂k,i =

N∑

l=1

ai
l,k x̂l,i =

N∑

l=1

ai
l,kLl,iz (6.27)

where we have used (6.23).

The covariance matrix of x̂k,i is thus given by

cov(x̂k,i) = (
N∑

l=1

ai
l,kLl,i)W(

N∑

l=1

ai
l,kLl,i)T (6.28)

and its trace is

tr(cov(x̂k,i)) =

N∑

m,n=1

ai
m,kai

n,ktr(WLT
m,iLn,i) = (ai

k)T Qai
k (6.29)

where ai
k = [ai

1,k, . . . , a
i
N,k]T and [Q]m,n = tr(WLT

m,iLn,i). To be unbiased, we also require 1T ai
k =

1T .

Therefore, to find the optimal ai
k in the sense of minimizing the diffusion covariance matrix, we

need to solve an optimization problem:

âi
k = arg min(ai

k)T Qai
k, s.t. 1T ai

k = 1T , ai
k ≥ 0, ai

l,k = 0 ∀ l < Nk. (6.30)

This problem is convex if Q � 0 and thus can be solved fast and efficiently.

After determining âi
k at time epoch i, Ll,i+1 is updated as Ll,i+1 =

∑N
l=1 âi

l,kLl,i and Q will also

be updated accordingly. Then the above optimization process can be performed iteratively until

estimates converge.

This optimization method can enhance the distributed fusion performance at the cost of slightly

higher computational complexity compared with simply setting al,k according to (6.25).
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Figure 6.2: Relative estimation error decreases with increasing SNR.

To decrease the computational cost, the optimization process can be implemented only once for

the first diffusion at each node, and the weight ak remains the same for the latter diffusions.

Since after one diffusion, the updated local estimates becomes much less dissimilar and thus the

weights will have much less influence on the followed diffusions.

6.4 Simulation results

In this section, simulation results are given. We first study the ranging performance using the

RCRT in Subsection 6.4.1. Then, the localization accuracy is introduced in Subsection 6.4.2.

6.4.1 Ranging Performance

Assume that the signals are transmitted at 3 frequencies, i.e. K=3, M=80, Γk={15, 16, 17},
and the corresponding three dividers are Mk={1200, 1280, 1360} which represents the wave-

lengths of λk = {120, 128, 136}mm. According to the RCRT, the maximum estimation distance

is dmax = M
K∏

k=1
Γk=32640mm. Each trial of simulation generates a random integers ri, j, which

is uniformly distributed in [0, dmax]. And there are 1000 trials for each SNR. The result is shown

in Fig. 6.1.

Then we consider the effect of M on the performance. We set M = 100, 200, 300, respectively

and fix Γk={7,9}. The result is shown in Fig. 6.2 with 10000 trials for each SNR. According

to the result, changing M does not have significant influence on the relative error of distance

estimation.
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Figure 6.3: Comparison between the relative estimation errors for different values of M.

Next, we compare the performance under different values of Γk with constant M and K. In the

simulation, we fix M=50, K=3, and let Γk be {7, 11, 15}, {29, 33, 37}, {53, 57, 61}, respectively.

Fig.6.3 demonstrates that the estimation error increases with Γk. The results from Fig. 6.2

and Fig. 6.3 can be explained by equations (6.8) and (6.9): the phase measurement error is

amplified by M and Γk, i.e. the error of r̃k is ∆rk =
∆φ̃i j(k)

2π MΓk, where ∆φ̃i j(k) denotes the phase

measurement error of φ̃i j(k). The larger Γk is, the larger error results. However, M does not

affect the performance because the robustness of the algorithm also linearly increases with M

which cancels the performance deterioration of the increased M. (The error tolerance of the

algorithm is τ < M/4)

In addition, we consider the scenario in which different sets of Γk are compared under the con-

straint of constant maximum range dmax = M
K∏

k=1
Γk. In Fig. 6.4, We choose Γk={7, 11, 15},

{5, 11, 21}, {3, 11, 35}, respectively. The simulation results suggest that the performance is better

if the differences between the Γk are smaller.

Fig. 6.5 demonstrates that using more wavelengths results in better ranging performance. In this

simulation, we fix the maximum estimation distance dmax, and vary K. We consider the cases

when K=2,3,4, respectively, with M=50 and dmax=3465mm. Γk are set to {33, 35}, {7, 11, 15},
{3, 5, 7, 11}, respectively. Simulation results demonstrate that our RCRT based ranging scheme

can estimate the range differences with high accuracy.
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Figure 6.4: Comparison of the relative estimation error for different values of Γk, when M and
K are fixed.
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Figure 6.5: Comparison of the relative estimation error for different values of Γk, with M, K
and dmax fixed.

6.4.2 Comparison Results for Distributed Source Localization

We now show simulation results for source localization. The algorithms compared are: 1)

Global: the global weighted least square estimator (6.19), 2) Diff (con): the diffusion algorithm

with coefficients set by considering connectivity (6.25), 3) Diff (wei): the diffusion algorithm

with coefficients set by weighting (6.26), 4) Diff (opt): the diffusion algorithm with coefficients

set by optimization (6.30) and 5) Local: simple average of all the local estimates, i.e.,
∑N

k=1 x̂k/N.
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Figure 6.6: Comparison of the relative estimation error for different values of K.

The root mean square error (RMSE) is used as a performance metric, which is defined as√
E(‖x̂ − x‖2). The Cramer-Rao Lower Bound (CRLB) on the RMSE based on the entire data

(equals to
√

tr(cov(x̂G)) for Gaussian measurement noise) is also presented as a benchmark.

Each simulated point is averaged over 200 runs.

The simulated network consists of N cluster heads that are regularly deployed at grid points. The

distance between neighboring cluster heads is set to 50 (the units are meters, here and below).

Each cluster head has M associated sensor nodes which are distributed uniformly around the

corresponding cluster head. The source location is fixed at [60, 70] in all the simulations. The

TDOA measurements are generated according to (6.18) with ni, j’s being Gaussian noises. W is

set to W = σ2I with σ = 1. γ is set to 1. The initial point for the WLSE is always set as the

center of the deployment area.

Here we consider the scenario in which each cluster head exchanges its local measurements with

its neighboring cluster heads to perform a local estimate, and then exchanges its local estimate

with its neighboring cluster heads to perform diffusion until convergence. C is set to

ci,k =



čl,k, [t]i involves cluster head l, l ∈ Nk and l , k

čk,k, [t]i involves cluster head k

0, otherwise

(6.31)
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where

čl,k =



1/max{degl, degk}, l ∈ Nk, l , k

1 −
∑

l,k

čl,k, l = k

0, otherwise.

(6.32)

Here, čl,k denotes the weight assigned with respect to cluster heads l and k, and ci,k represents

the weight assigned to the ith measurement used by the cluster head k.

First, we fix N = 16 and vary the value of M, which changes from 5 to 50 with a step size of

5. The RMSEs of respective algorithms are shown in Fig. 6.7. It can be observed that Global

is the best which can attain the CRLB, local is the worst and Diff (con) is always better than

local. In general, Diff (opt) is better than Diff (wei), and Diff (wei) is better than Diff (con). The

performance improvement of Diff (opt) and Diff (wei) compared with Diff (con) comes from

the consideration of the reliability of the local estimates. Though the diffusion algorithms are

always worse than Global, the performance differences are not significant. As M grows, all the

algorithms perform better.

Fig. 6.8 shows the corresponding average CPU times of respective algorithms except Diff (opt)

whose CPU time is typically 10 times that of Global due to its numerical optimization nature

(the same below). It can be seen that Diff (con) is very time efficient with a CPU time almost the

same as local. Diff (wei) consumes a little more CPU time than Diff (con), while the CPU time

of Global is much larger. This demonstrates the advantage of the diffusion algorithm in terms of

CPU time and computational complexity. Furthermore, we can say the diffusion algorithm has

lower communication cost and computation complexity than the centralized solution, while the

localization accuracy is close to the centralized method.

Fig. 6.9 shows the average number of iterations before convergence of the three diffusion algo-

rithms. We can observe that Diff (opt) requires many fewer iterations compared with Diff (con)

and Diff (wei). Diff (wei) needs slightly more iterations than Diff (con), which may explain our

observation of a slightly longer CPU time consumed by Diff (wei).

Then we examine the effect of σ on the performance of the algorithms. We set N = 16 and

M = 10. The RMSEs of respective algorithms are shown in Fig. 6.10. The relative performance

of respective algorithms is the same as before. As σ enlarges, all of them show performance

degradation. The average CPU times and average number of iterations among different algo-

rithms have the same relationship as before and thus the figures are not shown here.

Finally, we examine the choice of γ on the performance of Diff (wei). We set N = 16, M = 10

and σ = 1. We generate 200 realizations of the overall TDOA measurement vector, then store

and use them for all the corresponding simulations. The corresponding RMSEs are shown in

Fig. 6.11. It can be seen that an optimal γ exists which results in the minimum RMSE for Diff
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Figure 6.7: RMSE versus M when N = 16.
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Figure 6.8: CPU time versus M when N = 16.
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Figure 6.9: Average number of iterations before convergence versus M when N = 16.

(wei). However, in a large range of the choice of γ, Diff (wei) can generate better results than
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Figure 6.10: RMSE versus σ.
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Figure 6.11: RMSE versus γ.

Diff (con).

6.5 Summary

We have presented energy efficient localization schemes that can achieve high localization accu-

racy in wireless underground sensor networks. These distributed localization algorithms require

low computational complexity and energy consumption based on a diffusion strategy. An accu-

rate RCRT based ranging scheme using TDOA to determine range differences between sensors

and source that does not require time synchronization is also proposed. It has been shown via

simulation results that the proposed localization algorithms achieve excellent localization ac-

curacy with lower communication cost. In future work, we plan to implement our localization

scheme in a testbed and verify its performance with an actual WUSN.



Chapter 7

Conclusions and Future Work

The theme of this thesis is to study node localization in wireless sensor networks. We have

proposed a series of novel approaches. Simulation results validate the effectiveness of our ap-

proaches. In this chapter, we summarize our work and point out some potential research direc-

tions.

7.1 Conclusions

Many localization algorithms have been developed and used to find the position of sensors.

Although a lot of algorithms are proposed, it is still difficult to estimate the node location ac-

curately and efficiently in WSN since the proposed algorithm should be with low complexity

to reduce the communication cost for WSN. In this thesis, we studied the localization algo-

rithm, especially focus on utilizing the statistical signal processing theory and techniques to

derive accurate, robust and computationally attractive WSN positioning algorithms. The bias

and variance performance measures of the developed algorithms are also produced.

• In Chapter 3, we present a range-free localization technique based on the radical line of

intersecting circles. This technique provides greater accuracy than the centroid algorithm,

at the expense of a slight increase in computational load. Simulation results show that for

the scenarios studied, the radical line method can give an approximately 2 to 30% increase

in accuracy over the centroid algorithm, depending on whether or not the anchors have

identical ranges, and on the value of DOI.

• In Chapter 4, we have presented a new cooperative localization scheme that can achieve

high localization accuracy in mobility-assisted wireless sensor networks when obstacles

exist. Considering the complex localization scenario, namely, the feasible set is empty,

a convex localization algorithm has been presented to address the effects of non-ideal

70
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transmission of radio signals. We have developed an optimal movement schedule for MEs

that can achieve a shortest path under expected localization accuracy. It has been shown

in the simulation results that the proposed cooperative localization scheme can achieve

high localization accuracy by including a mobile element.

• In Chapter 5, We present a distributed hop distance measurement and particle filter-based

cooperative localization algorithm for mobile WSNs. Our proposal is scalable, robust, and

self-adaptive to the dynamics of a mobile sensor network. Our proposed algorithm can

reduce the hop distance estimation error accumulated over multiple hops by using a differ-

ential error correction scheme. In order to efficiently suppress redundant broadcasts and

to reduce communication overhead, a backoff-based broadcast mechanism is proposed. It

also improves localization performance by including particle filtering technology. Sim-

ulation results show that the proposed algorithm achieves better performance than other

state-of-the-art algorithms.

• In Chapter 6, We have presented energy efficient localization schemes that can achieve

high localization accuracy in wireless underground sensor networks. These distributed

localization algorithms require low computational complexity and energy consumption

based on a diffusion strategy. An accurate RCRT based ranging scheme using TDOA to

determine range differences between sensors and source that does not require time syn-

chronization is also proposed. It has been shown via simulation results that the proposed

localization algorithms achieve excellent localization accuracy with lower communication

cost.

7.2 Future Work

An unknown-position sensor can be localized if there are three or more anchors making time-

of-arrival (TOA) measurements of a signal from it. However, the location errors can be very

large due to the fact that some of the measurements are from non-line-of-sight (NLOS) paths.

In the future, we will propose a semi-definite programming (SDP) based node localization algo-

rithm in NLOS environment for ultra-wideband (UWB) wireless sensor networks. The positions

of sensors can be estimated using the distance estimates from location-aware anchors as well as

other sensors. However, in the absence of line-of-sight (LOS) paths, e.g., in indoor networks, the

NLOS range estimates can be significantly biased. As a result, the NLOS error can remarkably

decrease the location accuracy, and it is not easy to accurately distinguish the LOS from NLOS

measurements. According to the information known about the prior probabilities and distribu-

tions of the NLOS errors, three different cases will be introduced and the related localization

problems will be addressed respectively in the future work.
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Anchor based approaches requires of a set of anchor nodes with known positions and the dis-

tribution for anchors. Hence, an optimal as well as robust scheme will be to have a minimum

number of beacons in a region and find the optimal distribution for anchors. Further work is re-

quired to find the minimum number of anchors and the optimal distribution to find each node’s

position with a higher accuracy.

It is also very important to verify our algorithms via real testbeds in our future work.
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