CHAPTER 5

T cell subpopulations mediating inhibition of FIV replication

in mucosally infected cats
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Abstract

FIV infection induces an increase of two subpopulations
(CD8a"B'“" and CD8a'B”) within CD8" PBLs of cats. It is known that
depletion of CD8" cells often results in augmentation of FIV
proliferation in PBL culture, similar to the case of HIV. In
this CHAPTER, the author attempted to define PBL subpopulations
mediating antiviral activity in five cats intravaginally
infected with a molecularly cloned FIV isolate. Several
subpopulations (CD8c'B*, CD8a'B”, and CD4" cells) were shown to
participate in inhibition of the FIV replication, at least in
part, by an MHC-unrestricted manner. Interestingly, the
subpopulations showing anti-FIV activity were different among
theindividual cats. Theseresultsindicatethatanti-FIV factors,

if any, canbe secreted from a variety of subpopulations of PBLs.
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Introduction

FIV [Pedersen et al., 1987], a member of the genus
Lentivirus, infectsdomesticcatsandcausesanAIDS-likedisease
after a protracted asymptomatic phase of several years [Ackley
et al., 1990; Yamamoto et al., 1988]. Both virus-specific
cytotoxic T cell [Beatty et al., 1996; Burkhard et al., 2001;
Flynn et al., 2002; Li et al., 1995; Song et al., 1992, 1995]
and non-cytotoxic antiviral activities [Bucci et al., 1998a,
b; Choi et al., 2000; Crawford et al., 2001; Flynn et al., 1999,
2002; Gebhard et al., 1999; Hohdatsu et al., 1998b, 2000; Jeng
et al., 1996] are observed within CD8" PBLs of the infected cats
in early through asymptomatic phase. These findings resemble
human immunity in HIV infection [Yang & Walker, 1997].
Furthermore, FIV infection in cats can be achieved via genital
and rectal mucosa [Burkhard et al., 2001; Finerty et al., 2000,
2002; Jordan et al., 1998; Kohmoto et al., 2003; Matteucci et
al., 2000; Obert & Hoover, 2002]. Therefore, the FIV/cat system
is a useful animal model to examine immunoclogical responses in
mucosal infection and develop vaccines or antiviral therapies.

Previously the author reported an increase of two
subpopulations, CD8a'B'®” and CD8a'R” cells, in CD8* PBLs of
FIV-infected cats [Shimojima, et al., 1998a]. The CD8a'B'*" cells
increase as early as 3 to 4 wks post infection [Bucci et al.,

1998b; Willett et al., 1993] and are maintained through the
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asymptomatic phase. Bucci et al. [1998b] and Flynn et al. [2002]

low

reported the strong anti-FIV activity within CD8u'B cells of
both acute and chronic infections. A time of CD8x'B” cell
increasing after infection is yet to be elucidated, however the
cells are often observed in relatively long-term infected cats
[Gebhard et al., 1999, Hohdatsu et al., 2003; Shimojima et al.,
1998a]. Their role in FIV infection or correlation with disease
progression has not been investigated, due to insufficient
expansion of the cells in a short term after infection [Gebhard
et al., 1999].

Inthis CHAPTER, tobetterunderstandthecellular immunity
in the mucosal infection, the author investigated the antiviral
activities of these CD8" subpopulations or other cells (CD4*
lymphocytes) of catsmucosallyinfectedwithamolecularlycloned
FIV isolate by two means, “depletion” and “reconstitution”

assays.

- 133 -



Materials & Methods
Experimental animals

The procedures used for inoculating SPF cats with FIV were
reported previously [Kohmoto et al., 1998a, 2003]. Six female
SPF cats (Cats 301-306) 5 to 7 months old were used: Cats 301
and 304, Cats 302 and 305, and Cats 303 and 306 were from the
same litters. Briefly the cats were inoculqted via the vagina
withMYA-1cells (a feline T-lymphoblastoidcell line) [Miyazawa
et al., 1989] infected with FIV strain TM2. Consequently five
cats (301-305) became positive for proviral DNA in PBMCs within
8 weeks post-inoculation. Four years after infection, anti-FIV
antibodies were observed in these cats at ahigh level as observed
in the earlyphase of infection and these cats were asymptomatic.
Plasma samples of these cats were inoculated onto 2 x 10° MYA-1
cells at dilutions of 1:5 and 1:50 and the cells were cultured
for 16 days, however no evidence of viral infectionwas confirmed
by IFA of the cells [Kawaguchi et al., 1990] nor by ELISA of
the culture supernatants in any cases, indicating no or very
low viral titers in plasma [Kohmoto et al., 1998b]. One cat (Cat
306) didnot become positive for provirusor antibody, indicating

no establishment of infection in this animal.

Depletion and culture of PBMCs (depletion assay)

PBMCs were isolated fromheparin-treatedperipheral blood
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with Ficoll-paque (Amersham Pharmacia Biotech). Aliquots were
used to analyse the expression of two surface molecules, CD8«x
and CD8B, on PBLs by two-color FCM as described previously
[Shimojima et al., 1998a]. For depletion by panning, isolated
PBMCs were divided into three and then incubatedwith no antibody
(mock), anti-CD8aB vpg9 (to deplete CD8R™ but not CD8a'B™ cells)
or anti-CD8ux 12A3 (to deplete all CD8" cells), respectively.
After wash, the cells were seeded on a Petri dish (Bio-Bik) which
had been pre-treated with goat anti-mouse IgG antibodies
(Rockland) (see CHAPTER 3 for details) . Non-adherent cells were
harvested by gentle washing of the dish, and aliquots were
analysedbyFCMtoestimatedepletionefficiencies. Theharvested
PBMCs (1.5 x 10° cells) were mixed with MYA-1 cells (1 x 10°
cells) as indicator cells, stimulated with Con A for 3 days,
and cultured for a further 9 days in the presence of IL-2. Culture
supernatants were harvested at days 6, 9 and 12 for measurement

of p24 FIV antigen by ELISA.

Reconstitution of PBMCs (reconstitution assay)

Isolated PBMCs were directly seeded on pre-treated Petri
dishes to remove non-specifically adhered <cells (most
granulocytes and monocytes, Fig. 1). Then non-adherent cells
(lymphocytes, Fig. 1) were harvested, labeled with adequate

antibodies, and then panned as described above. In addition to
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non-adherent (target) cells, specificadherent (effector) cells
werealsoharvestedwithcell scrapersandusedinthecell culture.
These effector and target «cells were co-cultured at
concentrations of 1 x 10° effector, 1.5 x 10° target, and 1 x
10° indicator cells per 1 ml, and then cultured as described
for the depletion assay. When infected MYA-1 was used as the
target, indicator cells were not added. The measurement of p24
was performed only at day 12 though for FIV-1l4-infected MYA-1,

it was made at day 9.

Measurement of FIV p24 antigen

p24 antigen in culture supernatant was detected using a
commercial kit (FIV Antigen Test Kit) (IDEXX). In the depletion
assay, an ODgss of more than 0.5 was regarded as positive for
the proliferation of FIV. In the reconstitution assay, %
inhibition was calculated as follows: (p24 of target cells- p24
of target cells co-cultured with effector cells)/ (p24 of target
cells- p24 of effector cells without target cells) x 100 (%).
Inco-culturewithinfectedMYA-1 as targetcells, effectorcells
co-culturedwithuninfectedMYA-1wereusedas the “target-absent
effector”. Antiviral activity was regarded as significantly

positive when the % inhibition was more than 50.
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Antibodies

To deplete subpopulations of PBMCs by panning, anti-CD8uop
vpg9 (specific for of heterodimer) ([Willett et al., 19937,
anti-CD8x12A3 [Shimojimaetal., 1998b], anti-CD3e [Y. Nishimura
et al., unpublished), anti~CD4 44A8 [Shimojima et al., 1997]
and anti-CD16 [Y. Nishimura et al., unpublished] were used. For
surface Ig* cell depletion, Petri dishes which were coated with
rabbit anti-cat IgG (Rockland) were used. For FCM analysis,
FITC-labeled anti-CD8x antibodies 2D7, 10C7, 12A3 and anti-CD4
4D9 [Shimojima et al., 1997, 1998b] and PE-labeled anti-CD8p
antibody FT2 (Southern Biotechnology Associates, Birmingham,
AL) were used.

To estimate epitope properties of vpg9 and FT2 mAbs, PBLs
of Cats 301 and 302 were incubated with vpg9, being followed
by incubation with PE-labeled FT2 mAb. For 2D7, 10C7, and 12A3
epitopes, feline PBLs were incubated with three unlabeled mAbs
separately, then incubated with either of FITC-labeled mAbs.
After incubation with second mAbs, cells were washed with wash

buffer (CHAPTER 1) and analyzed by FACScan.

Preparation of infected MYA-1 cells
Two infectiousmolecular clones, pTM219 (strain TM2) [Maki
et al., 1992] and pFIV-14 (strain Petaluma) [Olmsted et al.,

1989], were transfected into CRFK cells by an electroporation
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method. Two days after transfection, each culture supernatant
was inoculated onto MYA-1 cell culture. Fourteen days pi, the
supernatants were harvested and stocked in aliquots at -80 °C
until use for infection of fresh MYA-1 cells at a multiplicity
of infectionof 0.01. The titers of virus stocks were determined
as described previously [Kawaguchi et al., 1990]. In some
experiments, these infected MYA-1 cellswere used for co-culture

with isolated PBMCs.
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Results & Discussion
Subpopulations of CD8" PBLs in intravaginally infected cats
For this study, five FIV-intravaginally infected cats
(Cats 301-305) and one uninfected control cat (Cat 306) were
used. Four years passed after FIV inoculation. In FCM, the author
observed reduced or diminished expression levels of CD8 B chain
in cD8" PBLs in these infected cats, a unique characteristic
of PBLs in FIV-intraperitoneally infected cats [Shimojima et
al., 1998a]. Borderlines between high and low levels of CD8R
were set arbitrarily to separate the two peaks, and then
percentages were calculated. The percentages of CD8c B 9" /R1" /R~
within total PBLs were as follows: Cat 301, 16%/15%/10%; Cat
302, 25%/11%/16%; Cat 303, 16%/19%/38%; Cat 304, 10%/14%/4%;
Cat 305, 18%/12%/6%. In contrast, the control Cat 306 exhibited
a PBL composition of 21%/2%/2% which was characteristic of
uninfectedcats [Shimojima et al., 1998a]. No remarkable changes
of these percentages were observed during this study. This
observation togetherwith previous reports [Bucci et al., 1998b;
Flynn et al., 2002; Gebhard et al., 1999; Lehmann et al., 1992;
Orandle et al., 2000; Shimojima et al., 1998a; Willett et al.,
1993] revealed that FIV infection can be characterized by the
reduction in the expression level of the CD8 3 chain on peripheral
blood CD8" lymphocytes irrespective of the infection route

(intravaginal, intravenous or intraperitoneal) or viral strain
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used (Japanese, Swiss, British and American isolates). The
reductionof f chain, but not achain, hasnot beenwell documented
in other wviral infections in other animals, however to the
author’s knowledge, a similar phenotype is reported in only two
studies; Borna disease virus-infected cats [Berg et al., 1999]
and HIV-infected patients [Schmitz et al., 1998]. The B chain
reduction is not identical to a transient reduction of both o
and $ chains along with TCR, which usually occurs after T cell
interaction with a peptide-presenting MHC class I molecule
[Kambayashi et al., 2001]. Recently, rat splenic yd T cells were
reported to reduce the expression of CD8B, but not CD8«x, after
invitroco-stimulation through TCRand CD28 [Straube & Herrmann,
2001]. Unfortunately, no analysis of TCR expression on feline
lymphocytes has been reported. The phenomenon of CD8 B chain

reduction should be well analyzed also in various species.

CD8a’B" and CD8a’B~ lymphocytes are involved in the anti-FIV
activity

To examine theanti-FIVactivityof the CD8" subpopulations,
depletions of the subpopulations from PBLs were performed by
panning. Representative FCM-results of CD8R- or CD8c-depleted
PBLs in the depletion assay are shown in Figure 1. Incubation
of mock-treated PBMCs (Fig. la) had negligible effects onratios

of the CD8" subpopulations (data not shown). In each cat, cell
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populations positive for CD8fR and CD8x after depletion of CD8R
and CD8a were <1% (Fig. 1lb) and <3% (Fig. 1lc), respectively.
While anti-CD8af vpg9 (used for depletion) slightly blocked the
binding of anti-CD8B FT2 (used for FCM, Fig. 2), vpg9 antibody
wasnot detectedinthedepleted PBMCs (datanot shown) .Anti-CD8u
12A3 used for depletion did not block the binding of anti-CD8ux
10C7 for FCM analysis (Fig. 3). From these facts, the author
concluded that the depletion of the cell populations observed
in the FCM analysis was not due to epitope masking and that the
depletion of the CD8B or CD8ua population by the panning was
properly performed. Further, the author’s panning method used
for the depletion also removed non-lymphoid cells such as
monocytes and granulocytes that adhere to plastic dishes
non-specifically (Fig. 4). Thus, the present study can be
interpretedasananalysisof lymphocytesrather thanmononuclear
cells.

The author co-cultured the depleted cells with indicator
cells (MYA-1) and measured p24 antigen in the supernatants as
described inMaterials & Methods. As shown in Figure 5, a striking
increase in p24 was observed at day 12 in several cases. In Cat
301, neither mock- nor CD8B-depletion resulted in an increase
of p24 antigen, however CD8oa-depletion did. In Cat 302, an
increase in p24 was observed irrespective of depletions. In Cat

303, no increase of p24 was observed even in the CD8a-depleted
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cell culture. In Cats 304 and 305, mock-treatment did not result
in increase in p24, while both CD8B- and CD8a- depletion did.
These data indicate that anti-FIV activities are present within
CD8a'R" in Cats 304 and 305, and CD8a'B” lymphocytes in Cat 301.
These findings do not exclude the possibility that CD8o'p*
lymphocytes in Cats 301 and 303 have antiviral activity, because
if other populations had enough antiviral activity, the author
should not have detected the effect caused by the depletion of
CD8a'B* cells. While several groups reported suppressive
activities within CD8" lymphocytes in FIV-infected cats, there
are few studies mentioning the relationships between the
different expressionlevelsof theCD8 B chainandthe suppressive
activities. Two groups reported suppressive activities in
purified CD8a'B**" cells [Bucci etal., 1998b; Flynnetal., 20021,
and Gebhard et al. [1999] obtained a similar result by use of
anti-CD8B and CD62L antibodies to sort the subpopulation.
ConcerningtheCD8d%hmhcells,theresultsbyFlynnetal.[2002]
were inconsistent with those by others [Bucci et al., 1998b;
Gebhard et al., 1999]; the former detected antiviral activities
in the subpopulation, while the latter did not. The author did
not elucidatethedistinct populationswithinCD8a'p" lymphocytes

high and

that had antiviral activity, because separation of CD8B
CD8R'™™ cells by sorting was difficult due to the unclear

borderline between high and low levels of B-chain expression
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as shown in Fig. 1. As performed by Gebhard et al. [1999], use
of the CD62L (L-selectin) marker may be more suitable for the
subdivision of responsible cells than use of the CD8B molecule.

NofunctionalstudieshavebeendoneforCDSd?‘,probably
due to insufficient expansion of the population in a relatively
short time (1 to 3 years) after FIV infection [Gebhard et al.,
1999], while differential tissue dynamics of CD8a'p™9", B'*" and
B cells were reported in neonatally infected cats [Crawford
et al., 2001]. However, at least regarding the suppression of
the p24 increase in culture supernatants, the author observed
that CD8a'B” cells in one cat (Cat 301) had suppressive activity
as CD8a'B" cells did in the other cats. Similar results were
also observed using cryopreserved PBMCs of the cat (Fig. 6).
More detailed studies will be required for these subpopulations
in relation to a mechanism of the antiviral activity and
maintenance of the asymptomatic phase or acquisition of
immunodeficiency.

Thus, both CD8a'B* and CD8a'B~ PBLs were shown to have
antiviral activity. However, in the case of Cat 302 that had
a typical characteristic of CD8" PBLs of FIV-infected cats (Fig.
la), there was no antiviral activity observed (Fig. 5). This
means that CD8«'B'°” and CD8«'R~ PBLs observed in asymptomatic
phase of FIV infection dose not always show such activity in

vitro. Considering that FIV could not be isolated from plasma
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of the animal (described in Materilas & Methods) and that the
animal is asymptomatic like the others, neutralizing antibodies
or other mechanisms may be responsible for the regulation of
FIV proliferation in this cat in vivo. Jeng et al. [1996] and
Hohdatsu et al. [1998b] also reported viral replication in
undepleted PBMCs of infected cats, but without analysis for

detailed CD8 phenotypes or viremia.

CD4” lymphocytes also can be responsible for anti-FIV activity

In the case of Cat 303, the CD8-depletion from PBLs did
not result in FIV replication (Fig. 5). Similar results were
observed using cryopreserved PBMCs of the cat (Fig. 6). There
are two possibilities to explain this phenomenon: this cat no
longer had infected cells in the isolated PBMCs or FIV could
not replicate in the depleted PBLs for some reason. To determine
which 1s correct, the author co-cultured FIV TM219- or
FIV-14-infected MYA-1 cells with CD8-depleted PBLs of Cat 303.
No increase of p24 was observed in the co-culture, although the
peak of p24 production was observed at day 12 for TM2- or day
9 for FIV-14-infected MYA-1 cells (data not shown). The result
indicated that anti-viral activity was present in CD8 negative
cells in this animal. Next the author depleted other
subpopulations (CD3e*, surface Ig*, or CD16" cells) from the PBLs

of Cat 303, and then conducted co-cultures with FIV-infected
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MYA-1 cells. As shown in Figure 7a, CD3eg-depletion induced an
increase in p24 in the FIV-1l4-infected MYA-1 cell culture.
Because the CD3¢" population is mostly composed of CD4* and cD8"
cells (CHAPTER 1), depletionof CD4*orcD8*cellswasalsocarried
out. As shown in Figure 7b, a p24 increase was observed in both
CD3e- and CD4-depleted, but not CD8a-depleted, PBLs co-cultured
with FIV-14-infected MYA-1. In the last experiment, uninfected
MYA-lwas alsoused for theco-culture, andasignificant increase
in endogenous p24 was observed in the CD3e-depleted cell culture
(Fig. 7c). In addition, though not significant (0ODgs:<0.5), an
increase in p24 was observed in the CD4-depleted cell culture
compared with the mock-treated cell culture. Hence, this cat
certainly had infected cells in the periphery, and cD4"
lymphocytes were the principal effector hindering FIV
replication in PBLs. The non-proliferation of endogenous or
exogenous virus in cultures of CD8-depleted PBLs was due to this
potent antiviral activity of CD4* lymphocytes. However, CD8"
lymphocytes also might have weak antiviral activities in this
cat, because CD3e¢-depletion inducedmore viral replication from
an FIV-l4-infected cell line than CD4-depletion (Fig. 7b,
endogenous FIVreplicationwasnegligible, datanot shown) . These
results suggest that more than two distinct populations in one
individual canbeinvolvedinthe suppressionof FIV-replication.

No replication of virus in CD8~depleted PBMCs of infected
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individuals like in the case of Cat 303 was occasionally reported
in FIV [Bucci et al., 1998a; Jeng et al., 1996] and HIV [Walker
et al., 1986] studies. Several reasons for the phenomenon could
be proposed, however detailed immunological analyses for these
individuals have not been done. The author consider that CD4"
PBLs, although 1less frequent than CD8" PBLs, can control
lentivirus replication and that the infected individuals
described above might control FIV or HIV replication by CD4*
lymphocyte-mediated cytotoxicity [Curiel et al., 1993; Kundu
et al., 1992, Kundu & Merigan, 1992; Siliciano et al., 1988],
secretion of interferon-y and B chemokines [Furci et al., 1997;
Rosenberg et al., 1997] or other unidentified mechanisms. The
lackof a correlation between CD8" cell numbers and non-cytolytic
activities [Bucci et al., 1998a; Flynn et al., 2002; Hohdatsu
et al., 2003; Jeng et al., 1996] may be explained by the activity
of these CD8-negative lymphocytes. Studies with larger numbers

of cats will be needed to test this hypothesis.

CD4:CD8 ratios

FIV infection induces the decrease of CD4:CD8 ratios of
PBLs of the infected cats and the decreases are often used to
estimate immunological disorders [Ackley et al., 1990; Beatty
et al., 1996, Kohmoto et al., 1998b; Willett et al., 1993]. The

CD4:CD8ux ratios of the cats used in this study were as follows:
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Cat 301, 0.77; Cat 302, 0.59; Cat 303, 0.33; Cat 304, 0.95; Cat
305, 0.59; Cat 306, 0.77. Three out of five FIV-infected cats
showed lower ratios than that of uninfected one (Cat 306) . There
seemed to be no apparent correlation between the CD4:CD8x ratios
and the increases of CD8B-decreased subpopulations within cD8"
PBLs or lymphocyte-phenotypes responsible for inhibitionof FIV
replication. Surprisingly, Cat 303, whose CD4" PBLs showed the
potent antiviral activity (Fig. 7), had the lowest CD4:CD8aratio

among the cats.

Reconstitution assay

To further analyze the antiviral activities, a
reconstitutionassaywas performedbasedon the results obtained
from the depletion assay. CD8a" cells from Cats 301, 304 and
305, and CD4" cells from Cat 303 were isolated by panning from
each animal as effector cells that were regarded to suppress
FIV replication. The purity of the effector cells for CD8x or
CD4 was over 80 % (data not shown) . PBMCs depleted of the effector
cells served as target cells where FIV could proliferate.
Mock-treated PBMCs of Cat 302 and FIV TM2- or FIV-14-infected
MYA-1 cells were also used as target cells. These effector and
target cells were mixed in all combinations, cultured, and then
measured for p24 antigens in culture at day 12 or 9 (Table 1).

Effectorcells fromCats 301, 303and 305 inhibitedp24 production
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from self-PBMCs significantly (> 50% inhibition), confirming
the results in the depletion assay, while those from Cat 304
did not. The failure of inhibition in Cat 304 might be due to
effector cellular damage. Effectors from Cats 301, 303 and 305
also inhibited FIV proliferation in non-self targets and in
homologous (TM2) or heterologous (FIV-14) FIV strain-infected
MYA-1 cells, although not in all combinations. These results
suggest that the antiviral activity of CD4" as well as cD8*
lymphocytes was mediated in a non-restricted manner by MHC, and
possibly in an antigen-non specific manner. No restriction of
the activity to homologous isolates was reported [Flynn et al.,
1999]. The reason for the absence of suppressive activity of
effectors against viral replication in Cat 302 PBLs is unclear.

In conclusion, the author has demonstrated that various
subpopulations of PBLs in FIV-intravaginally infected cats
(CD8a"B*, CD8a'p”, and CD4" phenotypes) are involved in the
suppression of FIV replication, at 1least in part, in a
MHC-non-restricted manner. A detailed understanding of immune
responses 1in mucosal infection may help with wvaccine- or
antiviral drug-development against both FIV and HIV, therefore
further analysis of these cells carrying antiviral activities

is important.
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Figure legends
Fig. 1

Depletionof CD8BYor CD8x’ cells from PBMCs of FIV-infected
cats. Representative FCM results of Cat 302 PBLs are shown. PBMCs
were labeled with no mAb (mock), anti-CD8op or anti-CD8«a, and
depleted of the intended cell populations by the panning method.
Then non-adherent cells were harvested as mock-treated (a),
CD8B-depleted (b) and CD8a~depleted (c) PBLs and used for the

depletion assay (Fig. 5).

Fig. 2

Blocking effects of vpg9 mAb (anti-CD8af complex) on FT2
mAb (anti-CD8B) binding. PBMCs of Cat 301 and 302 were pretreated
with unlabeled control mouse serum (thin lines) or vpg9 (bold

lines), and incubated with PE-labeled FT2.

Fig. 3

Epitopes of three anti-CD8o mAbs: 2D7, 10C7, and 12A3
[Shimojima et al., 1998b]. PBMCs were pretreated with unlabeled
mAbs, and then further treated with FITC-labeled mAbs in all
combinations. White histograms were the results of pretreatment
with control mouse serum, and black histograns were the results
of 2D7-, 10C7-, or 12A3-pretreatment. Note that 12A3 mAb did

not block binding of 10C7 mAb.
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Fig. 4

Light scatters in FCM for PBMCs of Cats 301 (a, b) and
302 (c, d). Isolated PBMCs (a, c) were seeded on anti-mouse
IgG-coated Petri dishes, and then non-adherent cells were

harvested (b, d).

Fig. 5

Depletion assay: FIV replication in depleted PBLs.
Mock-treated (O), CD8R-depleted (A) andCD8o~depleted (1) PBLs
of FIV-infected cats (Cats 301-305) were mixed with FIV-highly
sensitive T-lymphoblastoid cell line (MYA-1 cells), stimulated
by Con A for 3 days and cultured for a total of 12 days. Culture
supernatants were harvested on the days indicated and measured
for the FIVp24 Gag antigens by ELISA. Experiments were performed
in duplicate and the averages of ODg¢ss values are shown. A value
greater than 0.5 was regarded as indicating positivity for

FIV-proliferation.

Fig. 6

Depletion assay using cryopreserved PBMCs of Cat 301 and
303. ELISA for culture supernatnats were performed only at day
12. “ACD8beta” means CD8B-depleted PBLs, and “mock” means PBLs

labeled with no mAb for panning. Results are shown as the mean
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* SD of quadruplicate data. White bars are results in MYA-1 cell

culture without mixing of the depleted cells.

Fig. 7

Effects of depletion of other subpopulations in Cat 303
PBLs on FIV replication. By the panning method, the
PBMC-subpopulations indicated were depleted from PBLs of Cat
303 (for example, “ACD3” means CD3e-depleted PBLs, and “mock”
means PBLs labeled with nomAb for panning) . These depleted cells
were mixed with FIV-14-infected (a, b) or uninfected (c) MYA-1
cells and cultured. p24 anfigens in culture supernatants were
measured by ELISA at day 9 (a, b) or at day 12 (c). Black bars
are results in infected MYA-1 cell culture without mixing of
the depleted cells. Results are shown as the mean * SD of
quadruplicate data. The background (uninfected MYA-1 cell

culture alone) is approximately 0.1 ODgss.
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CHAPTER 5/Fig. 1
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CHAPTER 5/Fig. 2
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CHAPTER 5/Fig. 4
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CHAPTER 5/Fig.
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CHAPTER 5/Fig. 6
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CHAPTER 5/Fig. 7
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CHAPTER 5/Table 1
Reconstitution assay: co-culture of effector cells with self-
or non-self-target cells from FIV-infected cats or with an in

vitro-infected cell line (MYA-1).

%a

Inhibition

Target cell

Cat301Cat302Cat303 Cat304 Cat305 TM2- FIV14-
inf. inf.

Effector ACD8a" whole ACD4 ACD8« ACD8ax MYA-1° MYA-1

301 cD8a” 74 15 99 21 95 61 16
303 CD4 97 8 98 100 95 54 84
304 CD8« 33 23 -19 46 43 29 19
305 CD8« 94 -7 32 84 71 48 46

*Inhibition percentages were calculated as described in
Materials & Methods. More than 50% is regarded as significantly
positive.

PCcD8o-depleted PBLs of Cat 301.

“MYA-1 cells infected with FIV strain TM2 at an moi of 0.01.

dcp8at cells isolated from Cat 301 PBLs.
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CHAPTER 6

Phenotypic changes in CD8' PBLs in cats infected with FIV

Microbes and Infection 2003; 5:1171-6
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Abstract

It is well documented that several cell surface molecules
of T lymphocytes are altered by immune activation. The author
previously reported that FIV infection induces a reduction in
CD8 B chain expression of PBLs in cats. In this CHAPTER, the
author performed three-color FCM analyses for
activation-associated cell surface molecules (CD2, CbDlla,
CD45RA-1ike and MHC II) and light scatters (cellular size and
complexity) to examine whether phenotypic changes occurred also
in CD4" PBLs, in addition to CD8" PBLs, of five FIV-infected
cats and one uninfected cat. It was shown that (i) CD8a' PBLs,
but not CD4" PBLs, had a distinct subpopulation with increased
CDllaexpressionaccompanyinga reducedCD8 3 chainand increased
intracellular granules (ii) CD8a' PBLs, but not CD4" PBLs,
expressed CD45RA-1like antigen with diverse expression levels
and (iii) MHC II expression was greater in CD8a’ PBLs than CD4"
PBLs and the CD8 B chain reduction was correlated with the MHC
II decrease within CD8a" PBLs. These results suggest that FIV
infection induces phenotypically heterogeneous subpopulations
in CD8" PBLs, including activated phenotypes, rather than in

CD4" PBLs.
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Introduction

The activation of T cells results in phenotypic changes
of cell surface antigens such as co-stimulatory and adhesion
molecules. The changes affect the interaction of T cells with
other lymphocytes, APCs and vascular endothelial cells. Naive
and memory/effector T cells can now be discerned from the
expression levels of these molecules. For example, CD8" T cells
are distinguishable as CDl1b cD28*cD62L* or naive,
CD11b CD28'CD62L'"" or memory, and CD11b*'CD28°CD62L or effector
cells in humans [Hamann et al., 1997] and mice [Zimmermann et
al., 1996].

FIV infections in domestic cats have an early phase
characterized by viremia and rapid CD8" lymphocytosis in
circulation, followed by an asymptomatic phase in which CcD4"
cell numbers decrease gradually, and then immunodeficiency-1like
syndromes are terminally induced [Ackley et al., 1990; Kohmoto
et al., 1998b; Willett et al., 1993; Yamamoto et al., 1988].
Previously the author reported that the increase in CD8' PBLs
includes unique subsets having reduced or no expression of the
CD8 B chain, but not o chain [Shimocjima et al., 1998a]. The §
chain reduction has not been well documented in other viral
infections, but is a common phenomenon in HIV infection [Schmitz
etal.,1998].Recently,the[3chain—reducedCD8+PBLswereshown

to have anti-viral effects in vitro [Bucci et al., 1998b; Flynn
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et al., 2002]. However little is known about phenotypes of T
lymphocytes in response to FIV-infectionincats. In the CHAPTER,
the author analyzed CD4* PBLs in addition to CD8x«" PBLs of
FIV-infected or uninfected cats by FCM for expression of cell
surfacemolecules (CD2, CDlla, CD45RA-1ike andMHC II) and light
scatters (cellular size and complexity), which are thought to
be altered by immune activation [Hamann et al., 1997; Sanders

et al., 1988; Zimmermann et al., 1996].
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Materials & Methods
Experimental animals
Five infected cats and one uninfected cat used were

described in CHAPTER 5.

Antibodies & reagents

Anti~feline CD4 4D9 [Shimojima et al., 1997] and
anti-feline CD8x 10C7 [Shimojima et al., 1998b] antibodies were
used after being labeled with FITC or biotin. Biotin-labeled
anti-feline CD8B FT2 (Southern Biotechnology Associates),
PE-labeled anti-mouse IgG (H+L) (Vector Laboratories,
Burlingame, CA), and streptavidin PerCP (Becton Dickinson) were
purchased commercially. Anti-feline CD2 SKR2 (CHAPTER 1),
anti-feline CDl11la TMMlla (CHAPTER 2) and anti-feline MHC II vpg3
(kindly provided by Dr. B. J. Willett, University of Glasgow)
[Willett et al., 1991] were used without labeling. Previously,
Masuoka et al. [1992] reported that 15B3 antibody recognized
220 kDa molecules of feline T lymphoma and were reactive with
B cells and a population of T cells in lymph node but not with
thymocytes in cats. The staining pattern was strikingly
associated with the human CD45RA isoform [Pulido et al., 1988],
therefore the antibody was used as “anti-CD45RA-1like” in the

thesis.
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Three-color FCM

PBMCs were isolated as described in CHAPTER 1 and washed
with cold wash buffer (CHAPTER 1). Cells were incubated on ice
with antibodies or reagents in the following order: unlabeled
antibodies (anti-CD2, anti-CDlla, anti-CD45RA-like, anti-MHC
IT or mouse serum), PE-labeled secondary antibody, FITC-labeled
antibody (anti-CD4 or anti-CD8uw) simultaneously with
biotin-labeled antibody (anti-CD8x or anti-CD8R) and
streptavidin PerCP. After incubation with secondary antibody,
excess binding sites were blocked using mouse serum. The washing
of cells with cold wash buffer was performed two or three times
after each incubation. Labeled cells were analyzed after gating
for lymphocytes based on FSC and SSC using FACScan flow cytometer
with Cell Quest soft wear (Becton Dickinson) . FSC and SSC values
were also used for analyses of cellular size and complexity,

respectively.
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Results
Phenotypic comparison between CD4” and CD8a’ PBLs

PBMCs were labeled for three antigens, CD4, CD8x and
molecules of interest (CD2, CDhlla, CD45RA-1ike and MHC II), and
then analyzed after gating for CD4-single positive and
CD8a-single positive PBLs (Fig. la) by FCM. Representative
results are showninFig. 1. CD2 expressionwas observed inalmost
all cD4" (> 97%) and CD8a" (> 96%) PBLs with a similar MFI (Fig.
lc).CDllawas also expressedconstitutively inbothpopulations
(> 99%) . However a distinct subpopulation of CD8o" PBLs, but
not CD4" PBLs, showed increased expression of the antigen (Fig.
1d) . While a substantial but diverse expression of CD45RA-1like
antigen was observed within CD8a" PBLs (7.4 - 44.4%), only a
very small population of CD4" PBLs (0.8 — 2.3%) expressed the
antigen (Fig. le). Almost all CD4" and CD8a' PBLs expressed MHC
II antigen (> 99%), and MFI ratios (MFI in CD8a*/MFI in CD4"
PBLs) were greater than 1 (Table 1), indicating that CD8u' PBLs

expressed the antigen more than cD4* PBLs.

Increase of CDl1la expression in CD8a’ PBLs accompanies cellular
complexity

CcD8a'CD11a™ PBLs were further analyzed for cellular size
and complexity after subdivision into two subpopulations

depending on CDlla expression, CD1la'®” and CD11a"'?". As shown
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in Table 1, mean SSC value ratios (SSC in CD8x'CD11a™9"/ssSC in
CD8x’CD11a'®” PBLs) were greater than 1, indicating that
CD8a'CD11a™9" PBLshadmorecellularcomplexity. Similaranalyses
were performed for other combinations (Table 1). The SSC ratio
of CD8a'/CD4* in the uninfected cat (Cat 306) was 0.94, but values
for infected cats were over 1. SSC ratios in CD8u'CD11la'“"/CD4”"
of cats except one infected animal (Cat 301) did not exceed 1.
Taken together, with the fact that the uninfected cat did not
have sufficient numbers of CD8a'CD11a™9" PBLs (Fig. 1g), these
results showed that CD8c'CD11a™9" PBLs had more cellular
complexity than CD8x'CD11a'”" and CD4* PBLs. No apparent tendency
in FSC ratios among these populations was observed (ratios of

0.96 to 1.02).

Relationships with CD8 B chain expression

To examine relationships among the expression of CDlla,
CD45RA-1ike and MHC II antigens with CD8 B chain expression,
PBMCs were labeled for combinations of CD8«, CD8B and molecules
of interest and then analyzed after gating for CD8a' PBLs (Fig.
2a) . As shown in Fig. 2, the CDlla increase was strictly limited
inCD8a'R'°Y and CD8a'R but not inCD8a*R™ " PBLs (Fig. 2c) . However,
very small subpopulations of CD8x'f'"" and CD8«™B” PBLs did not
show such increases, but rather a slightlydecreased expression,

and similar subpopulations were also observed in the uninfected
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cat (Fig. 2d) . Both CD45RA-1ike positive and negative cells were

observed in each subpopulation of CD8a' lymphocytes, and
additionally, a median expression level of the antigen was also
observed particularly within CD8a'B™9" lymphocytes (Fig. 2e,
f). CD8 B chain reduction was accompanied by a reduction in MHC
II MFI, but not in one infected cat (Cat 303) (Fig. 3). CDS8

R-negative cells (CD8«'B’) had a still lower MHC II MFI than

CD8o'R™?" or CD8u'B'“™ PBLs (Figs. 2g, 3).
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Discussion

In HIV-infected individuals, a selective increase of
activation antigens such as HLA-DR, CDlla and CD38 has been
demonstrated in both CD4* and CD8" cells [Ho et al., 1993; Kestens
etal., 1992, 1994; Scala et al., 1995]. The author found various
phenotypes within CD8a’ PBLs of FIV-infected cats, as well as
CD8 B chain reduction, that were previously reported [Shimojima
et al., 1998a]. Within cD4* PBLs, however, distinct
subpopulation(s) were not found, and did not appear with
infection. These results indicate that CD8" PBLs rather than
CD4" PBLs profoundly respond to FIV infection in cats.

CDlla (an oL chain of LFA-1, a member of the B2 integrin
family) 1is expressed in all leukocytes and functions as an
adhesion molecule between the cells and target cells for
cytotoxity, vascular endothelial cells, and the cell itself via
ICAMs. CDlla expression in CD8' memory/activated lymphocytes
isup-regulatedwhen comparedwith that innaivecells, therefore
the up-regqulation can be used as a reliable marker for
memory/activated lymphocytes in various mammals, including
humans [Hviid et al., 1993; Okumura et al., 1993; Scala et al.,
1995], monkeys [Pitcher et al., 2002], mice [Andersson et al.,
1995; Slifka et al., 2000] and rats [Hedlund et al., 1995]. It

low

is reasonable that feline CD8a'R*”" or CD8a'B” PBLs, which increase

with FIV infection and have anti-FIV activities [Bucci et al.,
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1998b; Flynn et al., 2002; CHAPTER 5], show the up-regulation
of the CDl1la molecule (Fig. 2c). Besides CDlla, the expression
levels of several surface antigens were also reported to change
within CD8a' PBLs of FIV-infected cats, however the use of them
isshowntobedifficult fordivisionintodifferent immune stages
[Gebhard et al., 1999; Kern et al., 1994; Mobley et al., 1994;
Zimmermann et al., 1996]. In the future, anti-CDlla antibody
TMMlla will be a useful reagent with which to analyze
immunological states in FIV-infection.

In humans and mice, memory/activated CD8" PBLs show
increased values of FSC as well as SSC [Hoflich et al., 1998;
Zimmermann et al., 1996]. In FIV-infected cats, while the author
could not detect such increased values in FSC of CD8o" PBLs,
an increase of SSC was observed, suggesting that the cells
actively synthesize cytokines such as perforin, IFN-y and TNF-«
[Hamann et al., 1997; Hoflich et al., 1998] which would function
as anti-viral factors [Bucci et al., 1998b; Flynn et al., 2002].

The CD45RA molecule is expressed in naive CD4" and CD8*
lymphocytes by nature, gradually down-regulated as the memory
state after the first encounter with specific antigens, and
re-up-regulated upon a re-encounter as the effector state of
CD8 lymphocytes in humans [Okumura et al., 1993]. In cp4”*
lymphocytes, re-up-regulation of CD45RA does not occur in humans

[Okumura et al., 1993] and mice [Lee & Vitetta, 1991]. In the
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study, the author observed a similar diverse expression (high,
low and negative) of CD45RA-like antigen in CD8" T lymphocytes
incats (Fig. le) . Theseresults suggest that CD45RA"9" and CD45RA”
cells within CD8a'B'“" “* "cD11a™?" PBLs (Fig. 2) are effector and
memory T lymphocytes, respectively. However, the expression
pattern within CD8aB"*9" PBLs of cats is inconsistent with that
of humans. In humans, the loss of CD45RA always accompanies an
up-regulation of CDlla [Hoflich et al., 1998; Okumura et al.,
1993].AsshowninFig. 2, incats, CD45RA-1ike antigen apparently
decreases without this wup-regulation. In addition, the
uninfected cat, in which the immune system was not so activated,
did not have enough CD4" PBLs expressing CD45RA-like antigens

(2.0%$inCD4"PBLs) . It is yet tobedefinedwhether the discrepancy
is due to species differences or the 15B3 antibody used in this
study does not exactly detect the feline CD45RA homologue.
Further characterization of the antigen recognized by 15B3
antigen may be needed.

The author’s results also showed that CD8" cells with
increased CDlla expression and intracellular granules, namely
activated CD8" PBLs, had down-regulated MHC II expression

compared with CD8c"p"9"

, perhaps unprimed lymphocytes (Fig. 3).
However this is not consistent with other reports in which MHC

II expression was increased by FIV infection [Rideout et al.,

1992; Willett et al., 1993]. The reason for the discrepancy is
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unclear, but may be the difference in infection duration,

infection route or virus strains used.

MHCiKIexpressionlevelsjleD4+PBLsmaykxadown—regulated
by FIV infection, consistent with a previous study using cD4"
cell line [Willett et al., 1991]. This speculation is based on
the finding that the ratio of MHC II MFI (CD8x' vs CD4%) was
increased by FIV infection (Table 1) even though the infection
resulted in CD8a' subpopulations with decreased MHC II (Fig.
3) . However, the possibility can not be excluded that FIV
infection causesMHC II up-reqgulationof whole CD8a' PBLs. Lerner
et al. [1998] reported upregulation of MHC II in FIV-infected
CD4"CD8" cell line MCH5-4. Further analyses of MHC II dynamics
in both CD4" and CD8a" PBLs will be necessary.

The author has shown that FIV infection causes

phenotypically heterogenous subpopulations in CD8" PBLs.
Although no apparent phenotypic changes were found within cp4"
PBLs, analyses of other surface antigens (CD28, CD38, CD45RO,
CD95, CCR7) or cytokines (IL-2, IL-4, IFN-y) will be helpful
to elucidate the dynamics of CD4' PBLs as well as CD8' PBLs in

response to FIV infection.
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Figure legends
Fig. 1

Three-color FCMof feline PBLs. Isolated PBMCs were labeled
for combinations of CD4 (FL1), CD8x (FL3) and other molecules
(FL2) and CD4*CD8a” and CD4 CD8a" PBLs were gated (a) for analyses
of the expressionofmoleculesof interest (b-g). Thesemolecules
are control (b), CD2 (c), CDlla (d, g), CD45RA-1ike antigen (e),
and MHC II (f). Fine and bold lines are results for gated CD4"
and CD8c' PBLs, respectively. PBMCs were isolated from

FIV-infected (a-f) and uninfected (g) cats.

Fig. 2
FCM analyses of CD8x" PBLs in cats. PBMCs were labeled

for combinations of CD8a (FL1), CD8R (FL3) and other molecules

(FL2) . CD8a" PBLs were gated (a) to analyze the correlation of
the molecules of interest with the CD8 B chain (b-g). These
molecules are control (b), CDlla (c, d), CD45RA-like antigen
(e, £f) and MHC II (g). X and Y axes are fluorescence intensities
for the molecules and CD8 B chain, respectively (b-g). PBMCs
were isolated from FIV-infected (a-c, e, g) and uninfected (d,

f) cats.

Fig. 3

MFI of MHC II antigens in CD8a'8"'9", CD8a*B'*" and CD8u'B"
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PBLs. The results obtained in Fig. 2g were re-analyzed for
expression of MHC II in each subpopulation. OO, Cat 301; A, Cat

302; OO, cat 303; @, cat 304; A, cat 305; HM, cat 306.
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CHAPTER 6/Fig. 1
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CHAPTER 6/Fig. 2
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CHAPTER 6/Fig. 3
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CHAPTER 6/Table 1

Table 1. Ratios of MFI or SSC in FCM analysis

MHC II-MFI ratio SSC ratio
CD8a’ CD8a'CD11a"'®"  cD8x" cCD8a'CD11a'™
VS A vS VS

Infection cp4’ CD8a'CD11a'™ cpa’ cp4’
Infected

Cat301 1.26 1.22 1.13 1.05
Cat302 1.23 1.22 1.01 0.95
Cat303 1.34 1.19 1.06 0.93
Cat304 1.78 1.20 1.13 1.00
Cat305 1.55 1.21 1.05 0.96
Uninfected

Cat306 1.09 1.21 0.94 0.95

Antigen expression levels (MFI) and cellular complexity (SSC)
were analyzed by FCM for each subpopulation indicated, and then

ratios were calculated.
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PART IV

Characterization of MYA-1 cells, a feline T-lymphoblastoid cell

line
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MYA-1 cells established by T. Miyazawa are a feline
T-lymphoblastoid cell line which expresses CD4 and shows
IL-2-dependent growth. Thecell line isoftenused for FIVstudies
because of it’s high sensitivity to FIV infection.

In PART IV, to characterize MYA-1 cells more, the author
generated anmAb to feline CD56 and then analyzed CD56 expression
in feline cells as well as MYA-1 (CHAPTER 7) and correlation

of it’s expression and FIV infection in MYA-1 cells (CHAPTER

8) .
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CHAPTER 7

CD56 expression in feline lymphoid cells

The Journal of Veterinary Medical Science 2003; 65:769-73
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Abstract

The N-CAM consists of three major types of polypeptides
(180, 140, and 120 kDa) whose predominant differences exist
withinthe transmembrane andcytoplasmicdomains. Inthis CHAPTER,
the author generated an mAb, termed SZK1l, reactive to feline
CD56 molecules (140 kDa form of N-CAM) expressed by the
baculovirus expression system and investigated CD56 expression
in feline lymphoid cells. In FCM analysis, SZKl was reactive
to a feline T-1lymphoblastoid cell line MYA-1. Further, SZK1 was
reactive to a very small population (1.1-1.7%) of freshly
isolated PBLs of three SPF cats, and the reactivity was increased
by culturing of PBLs in the presence of IL-2 following Con
A-stimulation (>10%) . In immunoblottinganalysis, SZK1 detected
an approximately 160 kDa antigen from MYA-1 cells, while from
RNA of the cells RT-PCR amplified the fragment resembling 140
kDa form of N-CAM. These finding suggest that feline CD56 has

similar characteristics with human CD56.
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Introduction

The N-CAM is a member of the immunoglobulin superfamily
that mediates homotypic adhesive interactions of cells inneural
and muscle tissues [Cunningham et al., 1987]. N-CAM consists
of three major types of polypeptides (180, 140, and 120 kDa,
estimated by SDS-PAGE) generated by alternative mRNA splicing
from a single gene in mammalians and avians [Barthels et al.,
1988; Hemperly et al., 1990; Murray et al., 1986a, b; Small et
al., 1987]. Thepredominant differences in these forms arewithin
the transmembrane and cytoplasmic domains [Cunningham et al.,
1987]. The 140 kDa form lacks an insert of approximately 270
aa in the cytoplasmic region, which is present within the 180
kDa form [Goridis & Brunet, 1992]. The120kDa formlacks amembrane
spanning domain and is linked to a glyco-phosphatidylinositol
[Hemperly et al., 1986]. In addition, the three forms have the
optional sequences within extracellular domains that arise by
the splicing of smaller RNA segments and correspond to 10-40
aa [Goridis & Brunet, 1992]. The form(s) of N-CAMthat is expressed
seems to be dependent on the developmental-stages andcell types.
Inbrain, 180 kDa formaremainly expressed by postmitotic neuron
and 140 kDa formaremorewidelydistributed. 120 kDa form appears
during nerve systemdevelopment. Inmuscle, 140 and 120 kDa forms
are distributed [Goridis & Brunet, 1992; Rutishauer & Goridis,

1986] .

- 183 -



In humans, CD56 (Leul9, NKH-1) antigen is expressed on
approximately 15% of PBLs that are mainly composed of NK cells
(x10%) and CD3" T lymphocytes (<5%) [Lanier et al., 1986]. Both
CD56" NK cells and CD56" T cells mediate non-MHC-restricted
cytotoxicity [Hercendetal., 1985; Lanieretal., 1986; Tarazona
et al., 2000]. CD56 has been shown to be identical to the 140
kDa form of N-CAM [Lanier et al., 1989], however the antigen
as well as other forms of N-CAM undergoes posttranslational
modifications including addition of polysialic acids in some
cell-types such as lymphocytes, resulting in showing larger MW
[Goridis & Brunet, 1992; Hercend et al., 1985; Lanier et al.,
1986, 1989].

Little is known about feline NK cells or CD56 expression
in feline T cells. Recently Nishimura et al. [1999b] cloned a
cDNA encoding feline homologue of N-CAM from a feline thymus
cDNA library, that corresponds to 140 kDa form at the level of
the gene. In the present CHAPTER, the author generated an mAb
to CD56, termed SZK1l, and examined the expression and molecular
size of the antigen recognized by SZK1 mAb in feline lymphoid

cells by FCM, immunoblotting, and RT-PCR.
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Materials & Methods
Cell culture

MYA-1 cells, an IL-2 dependent feline T-lymphoblastoid
cell line [Miyazawa et al., 1989], were cultured as described
in CHAPTER 1. The culture was passaged every three or four days
to achieve approximately 5 x 10° cells/ml. PBMCs were separated
as described in CHAPTER 1 from heparin-treated whole blood of
three 11 to 13-years old, SPFcats (Cats 201, 102 and 202 obtained
from Dr. K. Nakano, Kitasato University). PBMCs were stimulated
by Con A (10 pg/ml) for three days and maintained as described

for MYA-1 cells.

mAb

mAbs to CD56 were generated as described previously
[Shimojima et al., 1997]. Briefly, BALB/c mice were immunized
withaninsectcell line, HighFive™cells (Invitrogen), infected
with the recombinant baculovirus rAcfCD56F140 [Nishimuraetal.,
199%a], which contains feline CD56 cDNA (140 kDa form of N-CAM)
under the control of a polyhedrin promoter. Hybridomas, which
were generated by the fusion of mouse spleen cells with P3U1
myeloma, were screened with Con A-stimulated, cultured feline
PBLs by IFA (CHAPTER 1) . The isotype of antibody was determined
by IsoDetect™ mouse mAb isotyping kit (Stratagene, La Jolla,

CA) .
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Immunoblotting

Immunoblotting was performed as described in CHAPTER 2.
As the first antibodies, mouse ascitic fluids wereusedat 1:2000
dilution. Antibodies on membrane were detected using goat
anti-mouse IgG + IgM conjugated with horse radish peroxidase
together with 3, 3’ -diaminobenzidine, tetra hydrochloride or

enhanced chemiluminescence (Amersham Pharmacia Biotech).

FCM

FCM analysis was performed as described in CHAPTER 1. It
was confirmed that the IgG2a-specific antibody does not
cross-react with SZK1 (IgGl) or with other IgGl mAbs (data not

shown) .

Panning

To purify CD56" or CD56  MYA-1 cells, panning using SZK1
mAb was performed (CHAPTER 3). MYA-1 cells (5 x 10° in 4 ml of
culture medium) were seeded on the mAb-coated Petri dish and
incubated at 4 °C for 90 min. Non-adherent cells were harvested
as felineCD56 MYA-1. After thedishwaswashedwell with 2FCS-PBS,

adherent cells were harvested as feline CD56" MYA-1 by cell

Scrapers.
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RT-PCR

Total RNA was prepared from MYA-1 cells by ISOGEN-LS and
cDNA was synthesized using an oligo (dT) primer and Super Script
IT RT as bescribed in CHAPTER 1. For the subsequent PCR, the
author used the primers fCD56/3" -2
5" -CAGGCACTACCTGGTCAAGTACCGAG-3’ (nt position 2102-2127) and
fCD56R2 5’ -TCTGCTCATTTCTTGTCACCCATCA-3’ (nt position
2775-2751) . Bothprimers have been used for the cloningof feline
CD56 cDNA [Nishimuraetal., 1999b].Amplified fragmentsobtained
with the primer pair fromthe 140 kDa N-CAM would be approximately
650 bp. In the case of the 180 kDa form, the amplified fragments
would be more than 1.4 kbp long due to an additional exon

(approximately 800 bp [Goridis & Brunet, 1992]).
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Results
mAb to feline CD56

From hybridomas obtained from mice immunized with
rAcfCD56Fl40-infected insect cells, one clone SZK1 (IgGl) was
established according to its reactivity with cultured feline
PBLs. The mAb was reactive to rAcfCD56Fl140-infected cells, but
not tocontrol baculovirus—-infectedcells in IFA (datanot shown) .
In the immunoblotting analysis, SZK1 mAb detected a broad band
ranging from 130 to 140 kDa in the rAcfCD56F140-infected cells,

but not in the control baculovirus-infected Sf9 cells (Fig. 1).

CD56 expression in feline lymphoid cells

No apparent fCD56" population was found in feline PBLs
freshly isolated from three SPF cats by FCM with SZK1 (data not
shown) . However, a feline T-lymphoblastoidMYA-1cell line, which
has been established by long term (over 11 months) culture of
feline PBLs with IL-2 after Con A-stimulation [Miyazawa et al.,
1989], showed approximately 20% reactivity to SZK1 mAb (Fig.
2a) . Todetermine whether the culture increases CD56 expression,
feline PBLs were stimulated and cultured as described for MYA-1
cells in the presence of IL-2, and then analyzed. As shown in
Figure 2b, the cultured feline PBLs showed 5.6% reactivity to
CD56 mAb as early as at day 7 of culture, and the percentage

of CD56" cells increased up to 16% at day 38, while fresh PBLs
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showed only 1.1-1.7% reactivities (day 0). In the indirect
single-color FCM analysis, no binding of normal mouse-serum to
MYA-1 cells, fresh PBMCs or cultured PBMCs (days 7 and 38) were
observed (data not shown) when compared with the cells treated
only with secondary antibodies. In two-color FCM at day 22, CD56
expression was observed in both CD4* and CD8a* cells (6-20% in

CD4* cells and 2-14% in CD8a* cells, Fig. 3).

Molecular size of feline CD56

Immunoblotting analysis was performed for two types of
cells, CD56" (>98% CD56" in FCM) and CD56  (<5% CD56%) MYA-1 cells.
SZK1 detected approximately 160 kDa molecules from CD56% but
not from £CD56 MYA-1 cells (Fig. 4). Control mAb did not detect
any specific bands (Fig. 4). In RT-PCR, an approximately 650

fragment was amplified from MYA-1 RNA (Fig. 5).
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Discussion

In humans, unprimed, normal individuals have CD56" cells
in periphery that comprise 10-15% of PBLs and exhibit
non-MHC-restricted cytotoxicity [Hercend et al., 1985; Lanier
et al., 1986]. The author could not detect apparent CD56" cell
population in freshly isolated PBLs of SPF cats in this CHAPTER
(< 2%) . Tompkins et al. [1983] reported that PBMCs of clinically
normal, nonimmune cats (4 to 9 years old) which had been in an
isolation ward for over 3 years showed natural cytotoxic cell
activities against virus-infected cells (e.g. 35% cytotoxicity
at E:T ratio of 50:1). Hanlon et al. [1993] reported that PBMCs
of SPF cats (6 months old) showed NK-mediated cytotoxicities
against hamster BHK cells (e.g. 10% cytotoxicity at E:T ratios
of 50:1). CD56 expression is not essential to the cytotoxic
function of human NK cells [Lanier et al., 1987, 1991; Nitta
et al., 1989], and further, to my knowledge, CD56 expression
on murine and rat lymphoid cells including NK cells has not been
reported. Therefore, it isunlikely that only a small population
(< 2%), but not other population, exhibits such NK activities,
and cats may have a CD56 population as MHC-unrestricted
cytotoxicity-exhibiting cells in addition to CD56" population.
Identification of distinct population(s) exhibiting
MHC-unrestricted activity might be possible by using other cell

antigens such as NK markers [Ryan et al., 2001} and CD57 [Zhao
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et al., 1995].
In addition to the MYA-1 cell line, both cultured cD4*

and CD8a" PBLs that have been stimulated by Con A and cultured

in the presence of IL-2, expressed CD56 antigens. MYA-1 cells
express CD3e (>98% in indirect FCM, data not shown) and are
IL-2-dependent [Miyazawa et al., 1989]. The cultured PBLs had
also the same characteristics (datanot shown). The significance
of CD56 expression in MYA-1 cells or the cultured PBLs is yet
tobe clarified, however the finding is consistent with Lanier’s
report ([1987] that CD56 1is expressed on most cD4* and cCD8"
IL-2-dependent human T cell lines and clones that have been
maintained in long term culture. Also Lerner et al. [1998]
detected CD56 mRNA by PCR in both CD4" and CD8" IL-2-dependent
feline T cell lines. However, it is unclear whether feline CD56"
cells in cultured PBLs are the lineage of fresh CD56" PBLs or
not. Further experiments using purified CD56" PBLs or
CD56-depleted PBLs will be needed.

The molecular size of feline CD56 expressed in MYA-1 cells
was larger than 140 kDa (Fig. 4), therefore, the author examined
thecytoplasmicregionof N-CAM expressed inMYA-1 cellsbyRT-PCR.
While there are small variants (approximately 40 aa at most)
within the extracellular domain, the changes of MW affected by
them are slight compared with those occurred within cytoplasmic

region (270 aa) in other animals. The author detected a 650 bp
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fragment from the cDNA of MYA-1 cells, indicating that the
amplified fragment corresponds to a partial sequence of the 140
kDa form which does not contain an insertion (exon 18 in other
animals [Barthels et al., 1988; Hemperly et al., 1990; Murray
et al., 1986a; Ramos et al., 1989]) specific for the 180 kDa
form within the fragment. Thus, as in humans, feline CD56
molecules of MYA-1 cells might be structurally identical to the
140 kDa form of N-CAM but have a greater MW (160 kDa in appearance)
because of a modification with, for example, abundant sialic
acid residues [Lanier et al., 1989]. This speculation is also
supported by the result in the insect expression system in which
proteins are not usually sialylated [Marchal et al., 2001]; as
shown in Fig. 1, “140 kDa form”-coding baculovirus produces
approximately 140 kDa molecules in insect cells detected by the
anti-feline CD56 mAb. The difference of MW between MYA-1 and
insect cells was also observed when analyzed using the same gel

for immunoblotting (Fig. 6).
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Figure legends
Fig. 1.

Reactivity of anti-feline CD56 mAb SZK1 to control
baculovirus (lanel)-orrAcfCD56F140 (lane2)-infectedSf9cells
on immunoblotting. Numbers on the left represent molecular size
markers (kDa). The results are very similar to those for
anti-human CD56 mAb (YLEM, Roma, Italy) [Nishimura et al.,

1999a].

Fig. 2.

CD56 expression in a feline T-lymphoblastoid cell line
MYA-1 (a) and cultured feline PBLs (b) in FCM. Feline PBLs were
stimulated by Con A and cultured in the presence of IL-2, then
CD56 expression was examined on the days indicated (b). Three

SPF cats were used: Cat 201 (O), Cat 102 (A) and Cat 202 ().

Fig. 3.

Feline CD56 expression in CD4% and CD8a’ PBLs. Two-color

FCM was performed at day 22 (Cat 202).

Fig. 4.
Immunoblotting of CD56 in MYA-1 cells. MYA-1 cells were

separated into two types, CD56" (lanes 1 and 3) and CD56 (lanes

2 and 4), by a panning method and used with anti-feline CD56
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(lanes 1 and 2) or irrelevant (lanes 3 and 4) mAbs. Numbers on

the left represent molecular size markers.

Fig. 5.
RT-PCR to amplify a partial fragment of feline CD56 cDNA
from total RNA of MYA-1 cells without (lane 1) or with (lane

2) RT. Numbers on the left represent molecular size markers.

Fig. 6.

Immunoblotting of feline CD56 in insect cells (lane 1)

and feline MYA-1 cells (lane 2).
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CHAPTER 8

CD56 expression and FIV replication in MYA-1 cells
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Abstract

The author investigated correlations between CD56
expression and FIV infection in MYA-1 cells. Further, long
term-culture effects of the cells on FIV infection were
investigated.MYA—lSGcells,whichwereobtainedbypanningfrom
long—termculturedMYA—lcellsandwerealmostallCD56+(>95%),
were shown to be more useful than parental cells for FIV
investigation in regard to viral propagation and analysis of
CD4 reduction. MYA-156 cells showed more profound CPE (mainly
syncytium formation) by FIV infection than the original MYA-1
cellswith lowpassages, however viral productivities of MYA-156
were lessthanthatof theoriginal. Properusage of MYA-1 sublines

was suggested to be important according to aims of FIV studies.
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Introduction

MYA-1 cells are a feline T-1lymphoblastoid cell line, which
are CD4" and IL-2-dependent [Miyazawa et al., 1989]. Because
of high sensitivity for FIV infection [Miyazawa et al., 19927,
the cell line has been used for propagation and titration of
FIV. Other feline viruses, feline herpes virus type 1 [Horimoto
et al., 1991], feline calicivirus [Kawaguchi et al., 1994], and
feline parvovirus [Miyazawa et al., 1999}, also can infect MYA-1
cell line.

In this CHAPTER, the author described unexpected increase
of CD56 expression and correlation of the expression and FIV
infection on long term-cultured MYA-1 cells. Further the author
described comparison of the long term (> 2 years)-cultured
MYA-156 and the original MYA-1 soon after the establishment in

late 1980’'s, regarding to FIV infection.
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Materials & Methods
MYA-1 cells

Culture of MYA-1 cells was as described in CHAPTER 1.
Culture of all its sublines (below) was performed by the same
method for MYA-1 cells. Division of MYA-1 cells into two parts
was performed by panning (CHAPTERS 3) with anti-feline CD56 mAb

(CHAPTER 7) to obtain CD56" and CD56  MYA-1 cells (see CHAPTER

7 for details).

FCM

mAbs used for FCM were anti-feline CD4 4D9 [Shimojima et
al., 1997], anti-feline CD56 SZK1 (CHAPTER 7), and anti-FIV Env
5F7 (IDEXX) mAbs. All of these mAbs were mouse IgGl isotype and
an isotype-matched mAb anti-feline CD8x 10C7 [Shimojima et al.,
1998b] was used as a negative control. Single-color FCM was
performed to examine positive % and MFI of molecules. For
two-color FCM, cellswere incubatedwithantibodies as following
order; CD4 (4D9) or FIV Env (5F7) mAb, PE-labeled anti-mouse
IgGl antibody (Exalpha), CD4 or FIV Env mAb (for blocking), and
FITC-labeled CD56 (SZK1) mAb. Cells were washed with wash buffer
two or three times after each incubation and then analyzed as

described in CHAPTER 1.

Cell proliferation
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To compareproliferationkinetics of MYA-1sublines, cells
were seeded at a concentration of 50 x 10*/ml at day 0 and counted

by use of Burker-Turk counters at days 3 and 6.

FIV infection

Preparationof three infectiousmolecular clones, pFIV-14
[Olmsted et al., 1989], pFTM191CG [Miyazawa et al., 1991], and
pTM219 [Maki et al., 1992], and infection of MYA-1 cells (and
its sublines) were as described in CHAPTER 3. These cells and
their supernatants were harvested at indicated days and used
for FCM or CPE observation or p24 ELISA measurement (IDEXX),
respectively.

To compare FIV-productivity or infection-sensitivity of
cells, FIV stocks were serially diluted at 107! to 10™° and then
used for infection quadruplicately as reported by Kawaguchi et
al. [1990]. Briefly, 100 ul of the diluted virus was inoculated
onto 1 x 10° cells in 1 ml, and then incubated until use. IFA
of thecells andp24 ELISA of culture supernatants were performed

at 10 days pi.
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Results & Discussion
CD56" cells in MYA-1 cell culture

The author already described CD56 expression in =20% of
MYA-1 cells in CHAPTER 7. Surprisingly, the percentage of CD56
expression increased along with continuous cultivation of the
cells (Fig. 1) and maintained over 90% for more than 6 months
(data not shown). No apparent change of CD56 expression level
(not percentage) was observed in CD56" cells by FCM (data not
shown) . Next the author divided MYA-1 cells by panning with CD56
mAb and compared their growth kinetics with that of parental
MYA-1 cells. Two populations which were positively- (> 95%
positive) or negatively- (< 10% positive) obtained from MYA-1
cells were designated MYA-156 and MYA-056 cells, respectively.
As showninFig. 2, MYA-156proliferatedmore thanparental MYA-1,
and MYA-056 less than parental MYA-1. Positive percentages for
CD56 expression of parental MYA-1 cells were 40 to 70 during
the proliferation study and following FIV-infection studies
(below) (data not shown). These results suggested that CD56"
cells could proliferate more rapidly than CD56 cells. By the
way, CD56 percentage of MYA-056 tended to the increase, therefore
repeats of panning were necessary to keep it under 10%, but not
necessary for MYA-156 cells. CD56 percentage of MYA-156 would
not decrease and keep a high percentage (98-99%) without

additional panning. The facts were very likely consistent with
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the rapid proliferation of CD56" cells against CD56 cells. Both
of MYA-156 and MYA-056 cells conserved IL-2 dependency in
proliferation (datanot shown), similar toMYA-1 cells [Miyazawa
et al., 1989]. Parental MYA-1 cells often showed clusters of
cells in its culture, and so did both of MYA-156 and MYA-056
cells (datanot shown), suggesting that molecule (s) responsible
for the cluster formation by MYA-1 cells, which is different
fromhomophilic adhesionmolecule CD56 [Nishimura et al., 1999a;
Nitta et al., 1989; Pizzey et al., 1981], such as CD2/LFA-3 or

LFA-1/ICAM-1, must exist.

FIV proliferation and cell surface antigens in MYA-156 and
MYA-056 cells

Many viral replication depends on activation status of
the infectedcells. The author infectedparental MYA-1, MYA-156,
and MYA-056 cells with three FIVmolecular clones (FIV-14, TM1,
and TM2) at moi of 0.01 and compared viral growth. Culture
supernatants were harvested 7 days pi and p24 antigens were
measured by ELISA. Results are shown in Fig. 3. Each FIV clones
replicated more in MYA-156 and less in MYA-056 than in parental
MYA-1 cells. The infected or mock~infected cells at the point
were further investigated of their cell surface expression of
FIV Env and CD4 by FCM. Results for FIV Env were shown in Fig.

4. Consistent with the results in p24 (Fig. 3), FIV Env antigens
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weremore expressed inMYA-156 and less inMYA-056 than inparental
MYA-1 cells. Moreover, in MYA-1 cell population which includes
CD56" and CD56  cells, CD56" cells expressed FIV Env at a higher
level than CD56 cells after FIV infection (Fig. 5c).
FIVinfectionofCD4+lymphoidcellswerereportedtoreduce
surfaceCD4 expressiononthecells [Johnsonetal., 1996; Willett
etal., 1991], similar to the casewith HIV. However, the lymphoid
cells used in their studies, FCD4-D [Johnson et al., 1996] and
Q201 [Willett et al., 1991], contained CD4™ cells (20 - 35 %),
therefore reduction of CD4 expression by FIV infection could
not be analyzed precisely. As shown in Fig. 6, almost all of
each MYA-1 sublines expressed CD4 antigen; >99% for MYA-1 and
MYA-156, >96% for MYA-056, suggesting MYA-1 and MYA-156 cells
as useful cells for studies to analyze CD4 reduction. MFI of
CD4 expression were reduced more severely by each FIV infection
in MYA-156 than in MYA-1 cells, while CD4 ¢ of infected cells
were lower inMYA-1 than inMYA-156 cells (compare left and center
panels inFig. 6) . FIVinfection inMYA-056 cells seemed to induce

increase of CD4 cells rather than CD4 reduction in CD4% cells

(Fig. 6 right panel).
Taken together, it was strongly suggested that FIV could
proliferate more productively in CD56" cells than in CD56 cells

and, at the same time, FIV induced infection-effects, such as
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CD4 reduction, more profoundly in CD56* cells than in CD56 cells.
Namely, MYA-156 cells were suggested to be useful to propagate

FIV and investigate infection with FIV.

Comparison with original MYA-1 cells

Inthe report concerningphenotypicanalysesof MYA-1cells
[Miyazawa et al., 1992], CD4dwasonlyexpressedon a subpopulation
of the cells (x50%), in contrast to long-term cultured MYA-1
cells (Fig. 6). Therefore, the author compared MYA-156 cells
and the “original” MYA-1 cells in respect of FIV infection. The
original MYA-1 cells used were stocked in liquid nitrogen in
December 1988 until use in the study (in March 2002) and were
used within 33 days after culture starting from the stock,
indicating short term-cultured MYA-1 cells; the establishment
of MYA-1 cells was reported in 1989 [Miyazawa et al.]. MYA-156
cellswerepropagated fromthe stocks inApril 1997 andmaintained
for at least 2 years by the author, indicatingwith comparatively
high passages. Isolation of MYA-156 from parental MYA-1 cells
was described above.

Two FIV clones, FIV-14 and TM2, were serially diluted and
co-cultured with MYA-156 or the original MYA-1 cells. Ten days
later, many cells in MYA-156 culture showed severe CPE such as
cell death and syncytium formation at the dilution of 107! by

either FIV-14 or TM2 (Fi.g 7a). In contrast, a feworiginal MYA-1
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cells showed CPE (Fig. 7b). Different patterns of IFA results
for FIV antigen were observed for FIV-14 infection, but not for
TM2 infection only at a dilution of 107%; in MYA-156 cells, 2/4
werepositiveandJU1theoriginalMYA—1cells,3/4werepositive
(Table 1) . Culture supernatantswere pooledwithin the same viral
dilutionsandnmasuradforp24antigens.MYA—156cellsproduced
lower amountsofp24 thantheoriginal MYA-1cellsatviral (either
FIV-14 or TM2) dilutions of 107 and 10”’(Fig. 8) . Thus MYA-156
cells showed severe CPE by infection than the original MYA-1
cells, whilethe latter producedmore FIVamounts than the former.
Sensitivities to FIV infection were almost similar between the
two cell populations, but the original MYA-1 might be slightly

more sensitive than MYA-156 cells.

CD56" MYA-1 population with high passages were suggested
to be useful for investigation of FIV infection, judging from
productivities of FIV antigen and reduced degrees of CD4
expression, compared with CD56 population. Because CD56% cell
ratio in MYA-1 cells increased by long term-culture itself,
longer culture might confer more suited MYA-1 condition for the
FIV investigation. But the original MYA-1 cells showed %20%
reactivity for CD56 expression (data not shown), and a reason
for the unexpected increase of CD56 expression from Dec 2000

arenotclear.However,longterm—culturedcellswereapparently
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inferior in FIV production to the original MYA-1 cells which
weretheonessoonafteritsestablishmentandwithlowpassages.
Inother word, theoriginal MYA-1 cells rather than MYA-156 cells
were more suited for preparation of FIV itself. Change of MYA-1
sublineusagewasstronglysuggested;forexample,theoriginal
MYA-1 usage for propagation of FIV, MYA-156 usage for analyses
ofinfectioninfluence(viralantigenexpression,CD4reduction,
CPE) . CD4" population within (the original) MYA-1 cells might

becorrelatedwithsyncytiumformationandCD4"populationswith

FIV production. Further characterization of the original MYA-1
or MYA-156 cells will be necessary to elucidate mechanisms of

FIV infection, propagation, and syncytium formation.

- 211 -



Figure legends
Fig. 1

MYA-1 cells were continuously cultured and expression of
CD56 molecule was evaluated by FCM with anti-feline CD56 mAb

SZK1 (CHAPTER 7) on indicated dates.

Fig. 2

Growth kinetics of (parental) MYA-1 cells and two sublines
MYA-156 and MYA-056, which were obtained from MYA-1 cells by
panning. These cells were seeded at a concentration of 50 x 10°
cells/ml at day 0, cultured and then counted at indicated days
by Burker-Turk counters. Results are shown as the mean + SD of

triplicate data.

Fig. 3

MYA-1, MYA-156, andMYA-056cellswereinfectedwithFIV-14,
™1, and TM2, separately, at moi of 0.01 (CHAPTER 5) and p24
viral antigens in culture supernatant were measured by ELISA

after 7 days pi. Results are shown as the mean of duplicate data.

Fig. 4
FIV-infected cells after 7 days pi (the same cells for
Fig. 3) were investigated for expression of FIV antigens by FCM

with anti-FIVEnvmAb. Agating bar was set toobtain< 1% positive
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toanegative control mAb against mock-infectedMYA-1cells (data
not shown) and then the same setting was used for other cases.
Numbers above bars are % positivities and numbers under bars
are MFI for FIV Env staining. Representative of duplicate data

are shown.

Fig. 5
Two-color FCM of (parental) MYA-1 cells. Mock-infected
cells were stained for CD4/CD56 (a) and infected cells for

CDh4/CD56 (b) or FIV Env/CD56 (c).

Fig. 6

FIV-infected cells after 7 days pi (the same cells for
Fig. 3) were investigated for expression of CD4 by FCM. A gating
bar was set to obtain < 1% positive to a negative control mAb
against mock-infected MYA-1 cells (data not shown) and then the
same setting was used for other cases. Numbers above bars are %

positivities and numbers under bars are MFI for CD4 staining.

Fig. 7

CPE by FIV infection observed in (a) MYA-156 and (b) the
original MYA-1 cells. The cells were infected with FIV
quadruplicately at the viral dilution of 107! and cultured for

10 days. Representative results are shown. Note that CPE such
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as syncytium and cell death are observed in MYA-156 cells more

than the original MYA-1 cells.

Fig. 8
MYA-156 and the original MYA-1 cells were infected
quadruplicatelywith FIVat the indicateddilutions and cultured

for 10 days. Culture supernatants were pooled and then measured

for p24 antigen by ELISA.

- 214 -



CHAPTER 8/Fig. 1

% positive to feline CD56 mAb

100+
80 1
60 -
40 -+
204
O 1 ] 1 ] L
dates
A
11/Dec/00
A
11/Feb/01
A
04/Apr/01
A
01/Nov/01
A
08/Feb/02

- 215 -



CHAPTER 8/Fig. 2

x 10* cells/ml

4001

3001

2004

1001

o
w
o

—o0— MYA-1
—A— MYA-156

—— MYA-056

- 216 -



3

CHAPTER 8/Fig.

p2 4 0D555

AW
QL]

I HEHHHHIHIHHBHHINIDNBMW
THTRRRN IR

AN
(R

0.87

MYA-156

MYA-056

MYA-1

O mock

B FIV-14
B M1

T™M2

%

- 217 -



CHAPTER 8/Fig. 4
[=) (=] [=]
o (=2 o
2 0.80 o 0.59 o 0.48
o
mock 2.97 @ 2.76 2.53
23 23 28
c [= c
3o 3o 3o
O~ QO O«
& 8 &
o [m] o
109 10! 102 10% 104 109 10" 102 10° 10*  10® 10" 102 10° 10t
FL1-H L1-H FL1-H
8- 8 8;
3 85.29 = 86.24 T 35.24
8] 0 8] o 8
FIV-14 ] 96.92 ] 199.43 ] 42.55
233 23 233
s So ] 2o ]
88- 831 83‘
o] o] o ]
& Ik N
o: . o: . o .
109 10" 102 105 10* 109 10! 102 105 10* 100 10! 102 105 10
FL1-H FL1-H FL1-H
g 8 g
8- 19.39 8- 36.89 2 8.18
™1 ] 9.61 15.70 5.70
237 £33 £3
S_ ] S ] €
LY LEE ag
C'.: c-_: o
N: N: ~&
o T " oA vy ™y (- o
109 10" 102 10% 10* 109 10" 102 105 10 100 10! 102 10° 10%
FL1-H FL1-H FL1-H
g 8. 8.
i 33.08 3 65. 37 - 18.84
T[T py—— A I 21
™2 ] 24.61 ] 48.13 13.57
237 237 23
S 3 S 3 S
ge: 39 &g
o] o] o
N ~ &
ol e rliprt o - o
109 10" 102 10° 10% 100 10" 102 10 10*  10° 10! 102 105 10%
FL1-H FLI-H FL1-H

218 -



CHAPTER 8/Fig. 5
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Table 1
Sensitivities of MYA-156 and original MYA-1 cells to FIV-14 and

TM2 infection

Results in IFA

Viral dilution
Cells/virus 107t 107° 1073 107* 1077

MYA-156/FIV-14

+2 + - - -
+ [ [ -— —
+ = — — -
+ + - - -
MYA-156/TM2
+ + - - -
+ + - - -
+ + - - -
+ + + - -
original/FIV-14
+ + - - -
+ - — — —_—
+ + - - -
+ + - - -
original/TM2
+ + - - -
+ + - - -
+ + + - -
+ + - - -

“+, positive; -, negative for viral antigen
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CONCLUSION
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FIV is the pathogen which causes AIDS-like diseases for
cats. At present, vaccines for the virus are needed and there
is a dramatically increasing interest in feline immune system.
Some studies have been reported the significance of T cells in
regulation of the viral infection in vivo or dynamics of CD4"
andCD8+lymphocytescomposingthefrcells,butwithinsufficient
analyses. Aims of the thesis are to elucidate T cell immune
responses against FIV infection in order to support vaccine
improvement or efficient vaccine development.

Little availability of antibodies for feline cells
prompted the author to generate antibodies against
immunologically important molecules. In CHAPTERS 1, 2, & 7, the
author performed cDNA-isolation, expression, and
mAb-generation for several targeted molecules. In CHAPTER 3,
the author performed improvement of expression cloning to
identifymolecule (s) recognizedbymAbs showing some interesting
characteristics such as inhibition/induction of certain
interactions. In CHAPTER 4, the author performed application
of the improved method (CHAPTER 3) with use of FIV instead of
mAbs to identify cell surface molecule(s) interactive woth FIV.

In CHAPTERS 5 &6, the author analyzed immune T cells of
FIV-infected cats functionally and phenotypically by using
generated mAbs and already-reported mAbs. In CHAPTERS 7 & 8,

the author performed further characterization of FIV-highly
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sensitive MYA-1 cell lines in correlation with CD56 expression.

Abstract of CHAPTERS 1 to 8 are as followed:

In CHAPTER 1, the author identified feline CD2 cDNA and
generated an mAb (clone SKR2) to feline CD2 antigen expressed.
Feline CD2 conserved several aa sequences important for human
or other animal CD2 structure/signal transduction. Feline
CD2-expressing COS cells as well as feline PBMCs could form
rosette with human RBCs and the rosette formation were blocked
by SKR2 mAb, being indicative of the similarity of feline and
human CD2 structures. Inaddition, SKR2 mAb was shown to be useful
to detect feline peripheral blood monocytes as well as T cells.
SKR2 mAb was used also in CHAPTER 6.

In CHAPTER 2, the author generated TMMlla mAb to feline
CDlla antigen expressed by baculovirus expression system, which
would be useful for FCM analysis of the molecule. Further, the
author identified partial cDNA encoding feline CD122 (IL-2R B
chain) and expressed histidine tag-fusion proteins of feline
TCRx, TCRO, and CD122, either of which is thought to be a useful
tool to investigate molecular-biologically the respective
molecules. TMMlla mAb was used also in CHAPTER 6.

In CHAPTER 3, the author improved MLV-mediated expression
cloning to reduce the time necessary for its screening step.

Though limited incaseof identificationof cell surface antigens
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by antibodies, the screening step could be accomplished within
onlylwkbytheuseofmyelomatargetcellsandapanningselection
method. The improved method could be thought to be applied to
identify interactive molecules/receptors of ligands/virus.

In CHAPTER 4, the author applied the improved expression
cloning method (CHAPTER 3) to identify the interactive cell
surface receptor(s) with FIVparticles. In the application, FIV
was used as an alternative of antibodies to capture targeted
cells. As results, helper T cell activation antigen 0X40 was
cloned and themolecule was shown tobe aprimarybinding receptor
for FIV. It was suggested that FIV pathogenesis is the result
of the viral tropism specific to activated helper T cells.

In CHAPTER 5, the author functionally analyzed PBL
subpopulations of FIV-infected cats to show antiviral effects
of various subpopulations, CD4* cells as well as CD8" cells (both
of CD8a'B* and CD8x'R”). The antiviral effects of each
subpopulation were thought to be mediated by non-MHC restricted
manner, at least in part. Interestingly, the subpopulations
showing anti-FIV activity were different among the individual
cats and not likely correlated with CD4:CD8 ratios.

In CHAPTER 6, the author phenotypically (expression of
CD2, CDlla, CD45RA~1ike and MHC II) analyzed FIV-infected cat

PBLs in correlation with CD4/CD8 expression or light scatters

in FCM. It was shown that CD8a’ PBLs had a distinct subpopulation
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with increased CDlla expression accompanying a reduced CD8 B
chain, increased intracellular granules, and MHC II decrease
and that CD8a' PBLs expressed CD45RA-1like antigen with diverse
expression levels. These phenotypic varieties were not found
in CD4" population.

In CHAPTER 7, the author generated anti-feline CD56 mAb
(SZK1) which could be used in IFA, FCM, and immunoblotting
analysis for feline CD56 molecule. Feline CD56 was observed to
be expressed in cultured feline T lymphoblasts as a 140 kDa form
with highly sialylation probably, suggesting similar

characteristics with human CD56. The mAb was used also in CHAPTER

In CHAPTER 8, the author showed the differences between
CD56' and CD56° MYA-1 cells and between long and short
term-cultured MYA-1 cells in respect of FIV infection. The

importance of MYA-1 cell culture period was suggested.

The studies in the thesis showed the significance of CD8"
T cells (and CD4" T cells in some case) and the existence of
many subpopulations in CD8' T cells during the regulation of
FIV infection. They also suggested requirement of further
investigations such as identification of other molecules or
ligands, cytokine quantification, and antigenicity analysis to

clarify a mechanism(s) of FIV infection-regulation. Although
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the author could not obtain results directly helpful to the
vaccine development, many findings elucidated by the author as
described above will be the firm foundations for FIV/cat
investigations in the future. Moreover, the findings in the
thesis will also contribute to the feline immunology including

allergy and autoimmune diseases.
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