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Abstract

FIV infection induces an increase of two subpopulations

(CD8 α+β
low and CD8

α+β-) within CD8+ PBLs of cats.It is known that

depletion of CD8+ cells often results in augmentation of FIV

proliferation in PBL culture,similar to the case of HIV.In

this CHAPTER,the author attempted to define PBL subpopulations

mediating antiviral activity in five cats intravaginally

infected with a molecularly cloned FIV isolate.Several

subpopulations(CD8 α+β+,CD8α+β-, and CD4+ cells)were shown to

participate in inhibition of the FIV replication,at least in

part,by an MHC-unrestrictedmanner.Interestingly,the

subpopulations showing anti-FIV activity were different among

the individual cats.These results indicate that anti-FIV factors,

if any,can be secreted from a variety of subpopulations of PBLs.
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Introduction

FIV[Pedersen et al.,1987],a member of the genus

Lentivirus,infects domestic cats and causes anAIDS-like disease

after a protracted asymptomatic phase of several years[Ackley

et al.,1990;Yamamoto et al.,1988].Both virus-specific

cytotoxic T cell[Beatty et al.,1996;Burkhard et al.,2001;

Flynn et al.,2002;Li et al.,1995;Song et al.,1992,1995]

and non-cytotoxic antiviral activities[Bucci et al.,1998a,

b;Choi et al.,2000;Crawford et al.,2001;Flynn et al.,1999,

2002;Gebhard et al.,1999;Hohdatsu et al.,1998b,2000;Jeng

et al.,1996]are observed within CD8+ PBLs of the infected cats

in early through asymptomatic phase.These findings resemble

human immunity in HIV infection[Yang&Walker,1997].

Furthermore,FIV infection in cats can be achieved via genital

and rectal mucosa[Burkhard et al.,2001;Finerty et al.,2000,

2002;Jordan et al.,1998;Kohmoto et al.,2003;Matteucci et

al.,2000;Obert&Hoover,2002].Therefore,the FIV/cat system

is a useful animal model to examine immunological responses in

mucosal infection and develop vaccines or antiviral therapies.

Previously the author reported an increase of two

subpopulations,CD8 α+βlow  and CD8 α+β-  cells,in CD8+ PBLs of

FIV-infected cats[Shimojima,et al.,1998a].The CD8 α+βlow cells

increase as early as 3 to 4 wks post infection[Bucci et al.,

1998b;Willett et al.,1993]and are maintained through the
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asymptomatic phase.Bucci et al.[1998b]and Flynn et al.[2002]

reported the strong anti-FIV activity within CD8 α+βlow  cells of

both acute and chronic infections.A time of CD8 α+β-  cell

increasing after infection is yet to be elucidated,however the

cells are often observed in relatively long-term infected cats

[Gebhard et al.,1999,Hohdatsu et al.,2003;Shimojima et al.,

1998a].Their role in FIV infection or correlation with disease

progression has not been investigated,due to insufficient

expansion of the cells in a short term after infection[Gebhard

et al.,1999].

In this CHAPTER,to better understand the cellular immunity

in the mucosal infection,the author investigated the antiviral

activities of these CD8+ subpopulations or other cells(CD4+

lymphocytes)of cats mucosally infectedwith a molecularly cloned

FIV isolate by two means,"depletion"and"reconstitution"

assays.
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Materials&Methods

Experimental animals

The procedures used for inoculating SPF cats with FIV were

reported previously[Kohmoto et al.,1998a,2003].Six female

SPF cats(Cats301-306)5 to 7 months old were used:Cats 301

and 304,Cats 302 and 305,and Cats 303 and 306 were from the

same litters.Briefly the cats were inoculated via the vagina

withMYA-1 cells(a feline T-lymphoblastoid cell line)[Miyazawa

et al.,1989]infected with FIV strain TM2.Consequently five

cats(301-305)became positive for proviral DNA in PBMCs within

8 weeks post-inoculation.Four years after infection,anti-FIV

antibodies were observed in these cats at a high level as observed

in the early phase of infection and these cats were asymptomatic.

Plasma samples of these cats were inoculated onto 2x105 MYA-1

cells at dilutions of 1:5 and 1:50 and the cells were cultured

for 16 days,however no evidence of viral infection was confirmed

by IFA of the cells[Kawaguchi et al.,1990]nor by ELISA of

the culture supernatants in any cases,indicating no or very

low viral titers in plasma[Kohmoto et al.,1998b].One cat(Cat

306)did not become positive for provirus or antibody,indicating

no establishment of infection in this animal.

Depletion and culture of PBMCs(depletion assay)

PBMCs were isolated from heparin-treated peripheral blood
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with Ficoll-paque(Amersham Pharmacia Biotech).Aliquots were

used to analyse the expression of two surface molecules, CD8α

and CD8β, on PBLs by two-color FCM as described previously

[Shimojima et al.,1998a].For depletion by panning,isolated

PBMCs were divided into three and then incubated with no antibody

(mock),anti-CD8 α β vpg9(to deplete  CD8β+  but not CD 8α+β-  cells)

or anti- CD8α  12A3(to deplete all CD8+ cells),respectively.

After wash,the cells were seeded on a Petri dish(Bio-Bik)which

had been pre-treated with goat anti-mouse IgG antibodies

(Rockland)(see CHAPTER 3 for details).Non-adherent cells were

harvested by gentle washing of the dish,and aliquots were

analysed by FCM to estimate depletion efficiencies.The harvested

PBMCs(1.5×105 cells) were mixed with MIA-1 cells (1×105

cells)as indicator cells,stimulated with Con A for 3 days,

and cultured for a further 9 days in the presence of IL-2.Culture

supernatants were harvested at days 6,9 and 12 for measurement

of p24 FIV antigen by ELISA.

Reconstitution of PBMCs(reconstitution assay)

Isolated PBMCs were directly seeded on pre-treated Petri

dishes to remove non-specifically adhered cells (most

granulocytes and monocytes,Fig.1).Then non-adherent cells

(lymphocytes,Fig.1)were harvested,labeled with adequate

antibodies,and then panned as described above.In addition to
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non-adherent(target)cells,specific adherent(effector)cells

were also harvested with cell scrapers and used in the cell culture.

These effector and target cells were co-cultured at

concentrations o 1×105  effector, 1.5×105  target,and 1 ×

105 indicator cells per 1 ml,and then cultured as described

for the depletion assay.When infected MYA-1 was used as the

target,indicator cells were not added.The measurement of p24

was performed only at day 12 though for FIV-14-infected MYA-1,

it was made at day 9.

Measurement of FIV p24 antigen

p24 antigen in culture supernatant was detected using a

commercial kit(FIV Antigen Test Kit)(IDEXX).In the depletion

assay,an OD655 of more than 0.5 was regarded as positive for

the proliferation of FIV.In the reconstitution assay,%

inhibition was calculated as follows:(p24 of target cells-p24

of target cells co-cultured with effector cells)/(p24 of target

cells-p24 of effector cells without target cells) ×100(%).

In co-culture with infectedMYA-1as target cells,effector cells

co-cultured with uninfected MYA-1 were used as the"target-absent

effector".Antiviral activity was regarded as significantly

positive when the%inhibition was more than 50.
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Antibodies

To deplete subpopulations of PBMCs by panning,anti- CD8α β

vpg9(specific for  α β  heterodimer)[Willett et al.,1993],

anti-CD8α  12A3[Shimojima et al.,1998b],anti-CD3ε[Y.Nishimura

et al.,unpublished),anti-CD4 44A8[Shimojima et al.,1997]

and and-CD16[Y.Nishimura et al.,unpublished]were used.For

surface Ig+ cell depletion,Petri dishes which were coated with

rabbit anti-cat IgG(Rockland) were used.For FCM analysis,

FITC-labeled anti- CD8α  antibodies 2D7,10C7,12A3 and anti-CD4

4D9[Shimojima et al.,1997,1998b]and PE-labeled anti- CD8β

antibody FT2(Southern Biotechnology Associates,Birmingham,

AL)were used.

To estimate epitope properties of vpg9 and FT2 mAbs,PBLs

of Cats 301 and 302 were incubated with vpg9,being followed

by incubation with PE-labeled FT2 mAb.For 2D7,10C7,and 12A3

epitopes,feline PBLs were incubated with three unlabeled mAbs

separately,then incubated with either of FITC-labeled mAbs.

After incubation with second mAbs,cells were washed with wash

buffer(CHAPTER 1)and analyzed by FACScan.

Preparation of infected MYA-1 cells

Two infectious molecular clones,pTM219(strain TM2)[Maki

et al.,1992]and pFIV-14(strain Petaluma)[Olmsted et al.,

1989],were transfected into CRFK cells by an electroporation
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method.Two days after transfection,each culture supernatant

was inoculated onto MYA-1 cell culture.Fourteen days pi,the

supernatants were harvested and stocked in aliquots at -80℃

until use for infection of fresh MYA-1 cells at a multiplicity

of infection of 0.01.The titers of virus stocks were determined

as described previously [Kawaguchi et al.,1990].In some

experiments,these infectedMYA-1 cells were used for co-culture

with isolated PBMCs.
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Results&Discussion

Subpopulations of CD8+ PBLs in intravaginally infected cats

For this study,five FIV-intravaginally infected cats

(Cats 301-305)and one uninfected control cat(Cat 306)were

used.Four years passed after FIV inoculation.In FCM,the author

observed reduced or diminished expression levels of CD8 β chain

in CD8+ PBLs in these infected cats,a unique characteristic

of PBLs in FIV-intraperitoneally infected cats[Shimojima et

al.,1998a].Borderlines between high and low levels of  CD8β

were set arbitrarily to separate the two peaks,and then

percentages were calculated.The percentages of  CD8α+βhigh/βlow/β-

within total PBLs were as follows:Cat 301,16%/15%/10%;Cat

302,25%/11%/16%;Cat 303,16%/19%/38%;Cat 304,10%/14%/4%;

Cat 305,18%/12%/6%.In contrast,the control Cat 306 exhibited

a PBL composition of 21%/2%/2% which was characteristic of

uninfected cats[Shimojima et al.,1998a].No remarkable changes

of these percentages were observed during this study.This

observation together with previous reports[Bucci et al.,1998b;

Flynn et al.,2002;Gebhard et al.,1999;Lehmann et al.,1992;

Orandle et al.,2000;Shimojima et al.,1998a;Willett et al.,

1993]revealed that FIV infection can be characterized by the

reduction in the expression level of the  CD8β chain  on peripheral

blood CD8+ lymphocytes irrespective of the infection route

(intravaginal,intravenous or intraperitoneal)or viral strain

―139―



used(Japanese,Swiss,British and American isolates).The

reduction  of β chain,butnot α chain, has not been well documented

in other viral infections in other animals,however to the

author's knowledge,a similar phenotype is reported in only two

studies;Borna disease virus-infected cats[Berg et al.,1999]

and HIV-infected patients[Schmitz et al.,1998]. The β chain

reduction is not identical to a transient reduction of both  α

and β chains  along with TCR,which usually occurs after T cell

interaction with a peptide-presenting MHC class I molecule

[Kambayashi et al.,2001].Recently, rat splenic γδ T cells were

reported to reduce the expression of  CD8β,but not CD8α, after

in vitro co-stimulation through TCR and CD28[Straube&Herrmann,

2001].Unfortunately,no analysis of TCR expression on feline

lymphocytes has been reported.The phenomenon of  CD8β chain

reduction should be well analyzed also in various species.

CD8α+β+ and CD8α+β-  lymphocytes are involved in the anti-FIV

activity

To examine the anti-FIV activity of the CD8+ subpopulations,

depletions of the subpopulations from PBLs were performed by

panning.Representative FCM-results of  CD8β-or CD8α-depleted

PBLs in the depletion assay are shown in Figure 1.Incubation

of mock-treated PBMCs(Fig.1a)had negligible effects on ratios

of the CD8+ subpopulations(data not shown).In each cat,cell
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populations positive for  CD8β and CD8α  after depletion of  CD8β

and CD8α were<1%(Fig.1b)and<3%(Fig.1c), respectively.

While anti-CD8α β vpg9(used for depletion)slightly blocked the

binding of  anti-CD8β  FT2(used for FCM,Fig.2),vpg9 antibody

was not detected in the depleted PBMCs(data not shown).Anti-CD 8α

12A3 used for depletion did not block the binding of and-CD 8α

10C7 for FCM analysis(Fig.3).From these facts,the author

concluded that the depletion of the cell populations observed

in the FCM analysis was not due to epitope masking and that the

depletion of the  CD8β or CD8α  population by the panning was

properly performed.Further,the author's panning method used

for the depletion also removed non-lymphoid cells such as

monocytes and granulocytes that adhere to plastic dishes

non-specifically(Fig.4).Thus,the present study can be

interpreted as an analysis of lymphocytes rather than mononuclear

cells.

The author co-cultured the depleted cells with indicator

cells(MYA-1) and measured p24 antigen in the supernatants as

described in Materials&Methods.As shown in Figure 5,a striking

increase in p24 was observed at day 12 in several cases.In Cat

301,neither mock-nor  CD8β-depletion  resulted in an increase

of p24 antigen,however  CD8α-depletion  did.In Cat 302,an

increase in p24 was observed irrespective of depletions.In Cat

303,no increase of p24 was observed even in the  CD8α-depleted
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cell culture.In Cats 304 and 305,mock-treatment did not result

in increase in p24,while both  CD8β- and CD8α-  depletion did.

These data indicate that anti-FIV activities are present within

CD8α+β+  in Cats 304 and 305,and  CD8α+β-  lymphocytes in Cat 301.

These findings do not exclude the possibility that  CD8α+β+

lymphocytes in Cats 301 and 303 have antiviral activity,because

if other populations had enough antiviral activity,the author

should not have detected the effect caused by the depletion of

CD8α+β+  cells.While several groups reported suppressive

activities within CD8+ lymphocytes in FIV-infected cats,there

are few studies mentioning the relationships between the

different expression levels of the  CD8β  chain and thesuppressive

activities.Two groups reported suppressive activities in

purified CD8α+βlow  cells[Bucci et al.,1998b;Flynn et al.,2002],

and Gebhard et al.[1999]obtained a similar result by use of

anti-CD8β  and CD62L antibodies to sort the subpopulation.

Concerning the  CD8α+βhigh  cells,the results by Flynn et al.[2002]

were inconsistent with those by others[Bucci et al.,1998b;

Gebhard et al.,1999];the former detected antiviral activities

in the subpopulation,while the latter did not.The author did

not elucidate the distinct populations within  CD8α+β+  lymphocytes

that had antiviral activity,because separation of  CD8βhigh  and

CD8βlow  cells by sorting was difficult due to the unclear

borderline between high and low levels of  β-chain  expression
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as shown in Fig.1.As performed by Gebhard et a1.[1999],use

of the CD62L(L-selectin)marker may be more suitable for the

subdivision of responsible cells than use of the CD8β molecule.

No functional studies have been done for CD8α+β-,probably

due to insufficient expansion of the population in a relatively

short time(1 to 3 years)after FIV infection[Gebhard et a1.,

1999],while differential tissue dynamics of CD8α+βhigh,βlow and

β-cells were reported in neonatally infected cats[Crawford

et a1.,2001].However,at least regarding the suppression of

the p24 increase in culture supernatants,the author observed

that CD8α+β- cells in one cat(Cat 301)had suppressive activity

asCD8α+β+ cells did in the other cats.Similar results were

also observed using cryopreserved PBMCs of the cat(Fig.6).

More detailed studies will be required for these subpopulations

in relation to a mechanism of the antiviral activity and

maintenance of the asymptomatic phase or acquisition of

immunodeficiency.

Thus,both CD8α+β+ and CD8α+β- PBLs were shown to have

antiviral activity.However,in the case of Cat 302 that had

a typical characteristic of CD8+ PBLs of FIV-infected cats(Fig.

1a),there was no antiviral activity observed(Fiq.5).This

means that CD8α+βlow and CD8α+β- PBLs observed in asymptomatic

phase of FIV infection dose not always show such activity in

vitro.Considering that FIV could not be isolated from plasma
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of the animal(described in Materilas&Methods)and that the

animal is asymptomatic like the others,neutralizing antibodies

or other mechanisms may be responsible for the regulation of

FIV proliferation in this cat in vivo.Jeng et al.[1996]and

Hohdatsu et al.[1998b]also reported viral replication in

undepleted PBMCs of infected cats,but without analysis for

detailed CD8phenotypes or viremia.

CD4+lymphocytes also can be responsible for anti-FIV activity

In the case of Cat303,the CD8-depletion from PBLs did

not result in FIV replication(Fig.5).Similar results were

observed using cryopreserved PBMCs of the cat(Fig.6).There

are two possibilities to explain this phenomenon:this cat no

longer had infected cells in the isolated PBMCs or FIV could

not replicate in the depleted PBLs for some reason.To determine

which is correct,the author co-cultured FIV TM219-or

FIV-14-infected MYA-1cells with CD8-depleted PBLs of Cat303.

No increase of p24was observed in the co-culture,although the

peak of p24production was observed at day12for TM2-or day

9for FIV-14-infected MYA-1cells(data not shown).The result

indicated that anti-viral activity was present in CD8negative

cells in this animal.Next the author depleted other

subpopulations (CD3ε+,surface Ig+, or CD16+cells) from the PBLs

of Cat303,and then conducted co-cultures with FIV-infected
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MYA-1 cells.As shown in Figure 7a, CD3ε-depletion  induced an

increase in p24 in the FIV-14-infected MYA-1 cell culture.

Because the CD3ε+  population is mostly composed of CD4+ and CD8+

cells(CHAPTER1),depletion of CD4+ or CD8+ cells was also carried

out.As shown in Figure7b,a p24 increase was observed in both

CD3ε-and  CD4-depleted,but not  CD8α-depleted, PBLs co-cultured

with FIV-14-infected MYA-1.In the last experiment,uninfected

MYA-1 was also used for the co-culture,and a significant increase

in endogenous p24 was observed in the  CD3ε-depleted  cell culture

(Fig.7c).In addition,though not significant(OD655<0.5),an

increase in p24was observed in the CD4-depleted cell culture

compared with the mock-treated cell culture.Hence,this cat

certainly had infected cells in the periphery,and CD4+

lymphocytes were the principal effector hindering FIV

replication in PBLs.The non-proliferation of endogenous or

exogenous virus in cultures of CD8-depleted PBLs was due to this

potent antiviral activity of CD4+ lymphocytes.However,CD8+

lymphocytes also might have weak antiviral activities in this

cat,because  CD3ε-depletion induced more viral replication from

an FIV-14-infected cell line than CD4-depletion(Fig.7b,

endogenous FIV replication was negligible,data not shown).These

results suggest that more than two distinct populations in one

individual can be involved in the suppression of FIV-replication.

No replication of virus in CD8-depleted PBMCs of infected
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individuals like in the case of Cat 303 was occasionally reported

in FIV[Bucci et al.,1998a;Jeng et al.,1996]and HIV[Walker

et al.,1986]studies.Several reasons for the phenomenon could

be proposed,however detailed immunological analyses for these

individuals have not been done.The author consider that CD4+

PBLs,although less frequent than CD8+ PBLs,can control

lentivirus replication and that the infected individuals

described above might control FIV or HIV replication by CD4+

lymphocyte-mediated cytotoxicity[Curiel et al.,1993;Kundu

et al.,1992,Kundu&Merigan,1992;Siliciano et al.,1988],

secretion of interferon -γandβ chemokines[Furci et al.,1997;

Rosenberg et al.,1997]or other unidentified mechanisms.The

lack of a correlation between CD8+ cell numbers and non-cytolytic

activities[Bucci et al.,1998a;Flynn et al.,2002;Hohdatsu

et al.,2003;Jeng et al.,1996]may be explained by the activity

of these CD8-negative lymphocytes.Studies with larger numbers

of cats will be needed to test this hypothesis.

CD4:CD8 ratios

FIV infection induces the decrease of CD4:CD8 ratios of

PBLs of the infected cats and the decreases are often used to

estimate immunological disorders[Ackley et al.,1990;Beatty

et al.,1996;Kohmoto et al.,1998b;Willett et al.,1993].The

CD4:CD8α ratios of the cats used in this study were as follows:
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Cat 301,0.77;Cat 302,0.59;Cat 303,0.33;Cat 304,0.95;Cat

305,0.59;Cat 306,0.77.Three out of five FIV-infected cats

showed lower ratios than that of uninfected one(Cat 306).There

seemed to be no apparent correlation between the CD4:CD8 α ratios

and the increases of  CD8β-decreased  subpopulations within CD8+

PBLs or lymphocyte-phenotypes responsible for inhibition of FIV

replication.Surprisingly,Cat 303,whose CD4+ PBLs showed the

potent antiviral activity(Fig.7),had the lowest CD4: CD8α ratio

among the cats.

Reconstitution assay

To further analyze the antiviral activities,a

reconstitution assay was performed based on the results obtained

from the depletion assay. CD8α+  cells from Cats 301,304 and

305,and CD4+cells from Cat 303 were isolated by panning from

each animal as effector cells that were regarded to suppress

FIV replication.The purity of the effector cells for  CD8α or

CD4 was over 80%(data not shown).PBMCs depleted of the effector

cells served as target cells where FIV could proliferate.

Mock-treated PBMCs of Cat 302 and FIV TM2-or FIV-14-infected

MYA-1 cells were also used as target cells.These effector and

target cells were mixed in all combinations,cultured,and then

measured for p24 antigens in culture at day 12 or 9(Table1).

Effector cells from Cats 301,303 and 305 inhibitedp24production

―147―



from self-PBMCs significantly(>50%inhibition),confirming

the results in the depletion assay,while those from Cat 304

did not.The failure of inhibition in Cat 304 might be due to

effector cellular damage.Effectors from Cats 301,303 and 305

also inhibited FIV proliferation in non-self targets and in

homologous(TM2)or heterologous(FIV-14)FIV strain-infected

MYA-1 cells,although not in all combinations.These results

suggest that the antiviral activity of CD4+ as well as CD8+

lymphocytes was mediated in a non-restricted manner by MHC,and

possibly in an antigen-non specific manner.No restriction of

the activity to homologous isolates was reported[Flynn et al.,

1999].The reason for the absence of suppressive activity of

effectors against viral replication in Cat 302 PBLs is unclear.

In conclusion,the author has demonstrated that various

subpopulations of PBLs in FIV-intravaginally infected cats

(CD8α+ β+,CD8α+ β-,and CD4+ phenotypes) are involved in the

suppression of FIV replication,at least in part,in a

MHC-non-restricted manner.A detailed understanding of immune

responses in mucosal infection may help with vaccine-or

antiviral drug-development against both FIV and HIV,therefore

further analysis of these cells carrying antiviral activities

is important.
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Figure legends

Fig.1

Depletion of  CD8β+  or  CD8α+  cells from PBMCs of FIV-infected

cats.Representative FCM results of Cat 302 PBLs are shown.PBMCs

were labeled with no mAb(mock),anti -CD8α β
 or  anti-CD8α, and

depleted of the intended cell populations by the panning method.

Then non-adherent cells were harvested as mock-treated(a),

CD8β -depleted(b)and
 CD8α- depleted(c)PBLs and used for the

depletion assay(Fig.5).

Fig.2

Blocking effects of vpg9 mAb(anti- CD8α β complex)on FT2

m Ab (anti-CD8β) binding.PBMCs of Cat 301 and 302 were pretreated

with unlabeled control mouse serum(thin lines)or vpg9(bold

lines),and incubated with PE-labeled FT2.

Fig.3

Epitopes of three  anti-CD8α  mAbs:2D7,10C7,and 12A3

[Shimojima et al.,1998b].PBMCs were pretreated with unlabeled

mAbs,and then further treated with FITC-labeled mAbs in all

combinations.White histograms were the results of pretreatment

with control mouse serum,and black histograns were the results

of 2D7-,1007-,or 12A3-pretreatment.Note that 12A3 mAb did

not block binding of 1007 mAb.
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Fig.4

Light scatters in FCM for PBMCs of Cats 301(a,b)and

302(c,d).Isolated PBMCs(a,c)were seeded on anti-mouse

IgG-coated Petri dishes,and then non-adherent cells were

harvested(b,d).

Fig.5

Depletion assay:FIV replication in depleted PBLs.

Mock-treated (○), CD8β-depleted(△) and CD8α-depleted(□) PBLs

of FIV-infected cats(Cats 301-305)were mixed with FIV-highly

sensitive T-lymphoblastoid cell line(MYA-1cells),stimulated

by Con A for 3 days and cultured for a total of 12 days.Culture

supernatants were harvested on the days indicated and measured

for the FIV p24 Gag antigens by ELISA.Experiments were performed

in duplicate and the averages of OD655 values are shown.A value

greater than 0.5 was regarded as indicating positivity for

FIV-proliferation.

Fig.6

Depletion assay using cryopreserved PBMCs of Cat 301 and

303.ELISA for culture supernatnats were performed only at day

12.
"△CD8beta"

means  CD8β- depleted PBLs,and"mock"means PBLs

labeled with no mAb for panning.Results are shown as the mean
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± SD of quadruplicate data.White bars are results in MYA-1 cell

culture without mixing of the depleted cells.

Fig.7

Effects of depletion of other subpopulations in Cat 303

PBLs on FIV replication.By the panning method,the

PBMC-subpopulations indicated were depleted from PBLs of Cat

303(for example, "△CD3"means CD3ε-depleted PBLs
, and"mock"

means PBLs labeled with no mAb for panning).These depleted cells

were mixed with FIV-14-infected(a,b)or uninfected(c)MYA-1

cells and cultured.p24antigens in culture supernatants were

measured by ELISA at day 9(a,b)or at day 12(c).Black bars

are results in infected MYA-1 cell culture without mixing of

the depleted cells.Results are shown as the  mean±SD of

quadruplicate data.The background(uninfected MYA-1 cell

culture alone)is approximately 0.1OD655.

―151―



CHAPTER 5/Fig.1
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CHAPTER 5/Fig.2
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CHAPTER 5/Fig.3
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CHAPTER 5/Fig.4
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CHAPTER 5/Fig.5
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CHAPTER 5/Fig.6

―157―



CHAPTER 5/Fig.7

(a)  (b)  (c)
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CHAPTER 5/Table 1

Reconstitution assay:co-culture of effector cells with self-

or non-self-target cells from FIV-infected cats or with an in

vitro-infected cell line(MYA-1).

aInhibition percentaqes 
were calculated as described in

Materials & Methods.More than  50 % is regarded as significantly

positive.

bCD8α -depieted PBLs of Cat 301.

cMYA -1  cells infected with FIV strain TM2 at an moi of 0.01.

dCD8α+
 cells isolated from Cat 301 PBLs.
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CHAPTER 6

Phenotypic changes in  CD8+  PBLs in cats infected with FIV

Microbes and Infection 2003;5:1171-6
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Abstract

It is well documented that several cell surface molecules

of T lymphocytes are altered by immune activation.The author

previously reported that FIV infection induces a reduction in

CD8 β chain expression of PBLs in cats.In this CHAPTER,the

author performed three-color FCM analyses for

activation-associated cell surface molecules(CD2,CD11a,

CD45RA-like and MHC II)and light scatters(cellular size and

complexity)to examine whether phenotypic changes occurred also

in CD4+ PBLs,in addition to CD8+ PBLs,of five FIV-infected

cats and one uninfected cat.It was shown that(i)CD8a+ PBLs,

but not CD4+ PBLs,had a distinct subpopulation with increased

CD11a expression accompanying a reduced  CD8 β chain and increased

intracellular granules(ii) CD8α+  PBLs,but not CD4+ PBLs,

expressed CD45RA-like antigen with diverse expression levels

and(iii)MHC II expression was greater in CD8α+  PBLs than CD4+

PBLs and the  CD8 β chain reduction was correlated with the MHC

II decrease within  CD8α+  PBLs.These results suggest that FIV

infection induces phenotypically heterogeneous subpopulations

in CDB+ PBLs,including activated phenotypes,rather than in

CD4+ PBLs.
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Introduction

The activation of T cells results in phenotypic changes

of cell surface antigens such as co-stimulatory and adhesion

molecules.The changes affect the interaction of T cells with

other lymphocytes,APCs and vascular endothelial cells.Naive

and memory/effector T cells can now be discerned from the

expression levels of these molecules.For example,CD8+ T cells

are distinguishable as CD11b- CD28+ CD62L+ or naive,

CD11b- CD28+ CD62Llow or memory,and CD11b+ CD28- CD62L- or effector

cells in humans[Hamann et al.,1997]and mice[Zimmermann et

al.,1996].

FIV infections in domestic cats have an early phase

characterized by viremia and rapid CD8+ lymphocytosis in

circulation,followed by an asymptomatic phase in which CD4+

cell numbers decrease gradually,and then immunodeficiency-like

syndromes are terminally induced[Ackley et al.,1990;Kohmoto

et al.,1998b;Willett et al.,1993;Yamamoto et al.,1988].

Previously the author reported that the increase in CD8+ PBLs

includes unique subsets having reduced or no expression of the

CD8 β chain,butnot α chain[Shimojima et al.,1998a].The β

chain reduction has not been well documented in other viral

infections,but is a common phenomenon in HIV infection[Schmitz

et al.,1998].Recently, the β chain-reduced CD8+ PBLs were shown

to have anti-viral effects in vitro[Bucci et al.,1998b;Flynn
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et al.,2002].However little is known about phenotypes of T

lymphocytes in response to FIV-infection in cats.In the CHAPTER,

the author analyzed CD4+ PBLs in addition to  CD8α+  PBLs of

FIV-infected or uninfected cats by FCM for expression of cell

surface molecules(CD2,CD11a,CD45RA-like and MHC II)and light

scatters(cellular size and complexity),which are thought to

be altered by immune activation[Hamann et al.,1997;Sanders

et al.,1988;Zimmermann et al.,1996].
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Materials&Methods

Experimental animals

Five infected cats and one uninfected cat used were

described in CHAPTER 5.

Antibodies&reagents

Anti-feline CD4 4D9[Shimojima et al.,1997]and

anti-feline CD8α 10C7 [Shimojima et al., 1998b] antibodies were

used after being labeled with FITC or biotin. Biotin-labeled

anti-feline CD8β FT2 (Southern Biotechnology Associates),

PE-labeled anti-mouse IgG (H+L) (Vector Laboratories,

Burlingame, CA), and streptavidin PerCP (Becton Dickinson) were

purchased commercially. Anti-feline CD2 SKR2 (CHAPTER 1),

anti-feline CD11a TMM11a (CHAPTER 2) and anti-feline MHC II vpg3 

(kindly provided by Dr. B. J. Willett, University of Glasgow) 

[Willett et al., 1991] were used without labeling. Previously, 

Masuoka et al. [1992] reported that 15B3 antibody recognized 

220 kDa molecules of feline T lymphoma and were reactive with 

B cells and a population of T cells in lymph node but not with 

thymocytes in cats. The staining pattern was strikingly 

associated with the human CD45RA isoform [Pulido et al., 1988], 

therefore the antibody was used as "anti-CD45RA-like" in the 

thesis.
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Three-color FCM

PBMCs were isolated as described in CHAPTER 1 and washed

with cold wash buffer(CHAPTER 1).Cells were incubated on ice

with antibodies or reagents in the following order:unlabeled

antibodies(anti-CD2,anti-CD11a,anti-CD45RA-like,anti-MHC

II or mouse serum),PE-labeled secondary antibody,FITC-labeled

antibody(anti-CD4 or  anti-CD8α) simultaneously with

biotin-labeled antibody (anti-CD8α or anti-CD8β) and

streptavidin PerCP.After incubation with secondary antibody,

excess binding sites were blocked using mouse serum.The washing

of cells with cold wash buffer was performed two or three times

after each incubation.Labeled cells were analyzed after gating

for lymphocytes based on FSC and SSC using FACScan flow cytometer

with Cell Quest soft wear(Becton Dickinson).FSC and SSC values

were also used for analyses of cellular size and complexity,

respectively.
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Results

Phenotypic comparison between CD4+ and CD8α+ PBLs

PBMCs were labeled for three antigens,CD4, CD8α and

molecules of interest(CD2,CD11a,CD45RA-like and MHC II),and

then analyzed after gating for CD4-single positive and

CD8α-single positive PBLs(Fig.1a)by FCM.Representative

results are shown in Fig.1.CD2 expression was observed in almost

all CD4+ (>97%)and CD8α+ (>96%)PBLs with a similar MFI(Fig.

1c).CD11a was also expressed constitutively in both populations

(>99%).However a distinct subpopulation of CD8α+  PBLs,but

not  CD4+  PBLs,showed increased expression of the antigen(Fig.

1d).While a substantial but diverse expression of CD45RA-like

antigen was observed within CD8α+  PBLs(7.4-44.4%),only a

very small population of CD4+ PBLs(0.8-2.3%)expressed the

antigen(Fig.1e).Almost all CD4+ and CD8α+  PBLs expressed MHC

II antigen(>99%),and MFI ratios(MFI in CD8α+/MFI in CD4+

PBLs)were greater than 1(Table 1),indicating that CD8α+ PBLs

expressed the antigen more than CD4+ PBLs.

Increase of CD11a expression in CD8α+  PBLs accompanies cellular

complexity

CD8α+ CD11a+  PBLs were further analyzed for cellular size

and complexity after subdivision into two subpopulations

depending on CD11a expression, CD11alow and CD11ahigh. As shown
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in Table 1, mean SSC value ratios (SSC in CD8α+CDllahigh/SSC in

CD8α+CDllalow PBLs) were greater than 1, indicatinq that

CD8α+CDllahigh PBLs hadmore cellular complexity. Similar analyses

were performed for other combinations (Table 1). The SSC ratio

of CD8α+/CD4+ in the uninfected cat (Cat 306) was 0.94, but values

for infected cats were over 1. SSC ratios in CD8α+CDllalow/CD4+

of cats except one infected animal (Cat 301) did not exceed 1.

Taken together, with the fact that the uninfected cat did not

have sufficient numbers of CD8α+CDllahigh PBLs (Fig.19), these

results showed that CD8α+CDllahigh PBLs had more cellular

complexitythan CD8α+CDllalow and CD4+PBLs. No apParent tendency

in FSC ratios among these populations was observed (ratios of

0.96 to 1.02).

Relationships with CD8β chain expression

To examine relationships amonq the expression of CDlla,

CD45RA-like and MHC II antigens with CD8 β chain expression,

PBMCs were labeled for combinations of CD8 α, CD8 β and molecules

of interest and then analyzed after gating for CD8α+PBLs (Fig.

2a). As shown in Fig.2, the CDlla increase was strictly limited

in CD8α+βlow and CD8α+β-but not in CD8α+βhigh PBLs (Fig.2c). However,

very small subpopulations of CD8α+βlow and CD8α+β- PBLs did not

show such increases, but rather a sliqhtly decreased expression,

and similar subpopulations were also observed in the uninfected
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cat (Fig. 2d). Both CD45RA-like positive and negative cells were

observed in each subpopulation of CD8α+ lymphocytes, and

additionally, a median expression level of the antigen was also

observed particularly within CD8α+βhigh lymphocytes (Fig.2e,

f). CD8 β chain reduction was accompanied by a reduction in MHC

II MFI, but not in one infected cat (Cat 303) (Fiq.3). CD8

β-neqative cells (CD8α+β-) had a still lower MHC II MFI than

CD8α+βhlgh or CD8α+βlow PBLs (Figs.2q, 3).
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Discussion

In HIV-infected individuals,a selective increase of

activation antigens such as HLA-DR,CDlla and CD38 has been

demonstrated in both CD4+ and CD8+ cells[Ho et al.,1993;Kestens

et al.,1992,1994;Scala et al.,1995].The author found various

phenotypes within CD8 α
+

 PBLs of FIV-infected cats,as well as

CD8  β chain reduction,that were previously reported[Shimojima

et al.,1998a].Within CD4+ PBLs,however,distinct

subpopulation(s)were not found,and did not appear with

infection.These results indicate that CD8+ PBLs rather than

CD4+ PBLs profoundly respond to FIV infection in cats.

CD11a(an aL chain of LFA-1,a member of the  β2  integrin

family)is expressed in all leukocytes and functions as an

adhesion molecule between the cells and target cells for

cytotoxity,vascular endothelial cells,and the cell itself via

ICAMs.CD11a expression in CD8+ memory/activated lymphocytes

is up-regulatedwhen compared with that in naive cells,therefore

the up-regulation can be used as a reliable marker for

memory/activated lymphocytes in various mammals,including

humans[Hviid et al.,1993;Okumura et al.,1993;Scala et al.,

1995],monkeys[Pitcher et al.,2002],mice[Andersson et al.,

1995;Slifka et al.,2000]and rats[Hedlund et al.,1995].It

is reasonable that feline CD8 α+ β
low

 or CD8 α+ β- PBLs,which increase

with FIV infection and have anti-FIV activities[Bucci et al.,
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1998b;Flynn et al.,2002;CHAPTER 5],show the up-regulation

of the CD11a molecule(Fig.2c).Besides CD11a,the expression

levels of several surface antigens were also reported to change

within CD8 α
+
 PBLs of FIV-infected cats,however the use of them

is shown to be difficult for division into different immune stages

[Gebhard et al.,1999;Kern et al.,1994;Mobley et al.,1994;

Zimmermann et al.,1996].In the future,anti-CD11a antibody

TMMlla will be a useful reagent with which to analyze

immunological states in FIV-infection.

In humans and mice,memory/activated CD8+ PBLs show

increased values of FSC as well as SSC[Hoflich et al.,1998;

Zimmermann et al.,1996].In FIV-infected cats,while the author

could not detect such increased values in FSC of CD8 α
+

 PBLs,

an increase of SSC was observed,suggesting that the cells

actively synthesize cytokines such asperforin,IFN -γ  and TNF -α

[Hamann et al.,1997;Hoflich et al.,1998]which would function

as and-viral factors[Bucci et al.,1998b;Flynn et al.,2002].

The CD45RA molecule is expressed in naive CD4+ and CD8+

lymphocytes by nature,gradually down-regulated as the memory

state after the first encounter with specific antigens,and

re-up-regulated upon a re-encounter as the effector state of

CD8 lymphocytes in humans[Okumura et al.,1993].In CD4+

lymphocytes,re-up-regulation of CD45RA does not occur in humans

[Okumura et al.,1993]and mice[Lee&Vitetta,1991].In the
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study,the author observed a similar diverse expression(high,

low and negative)of CD45RA-like antigen in CD8+ T lymphocytes

in cats(Fig.le).These results suggest that CD45RAhigh and CD45RA-

cells within CD8 α+ β
low or- CD11a high PBLs(Fig

.2)are effector and

memory T lymphocytes,respectively.However,the expression

pattern within CD8 α+ β
high PBLs of cats is inconsistent with that

of humans.In humans,the loss of CD45RA always accompanies an

up-regulation of CD11a[Hoflich et al.,1998;Okumura et al.,

1993].As shown in Fig.2,in cats,CD45RA-like antigen apparently

decreases without this up-regulation.In addition,the

uninfected cat,in which the immune system was not so activated,

did not have enough CD4+ PBLs expressing CD45RA-like antigens

(2.0%in CD4+ PBLs).It is yet to be defined whether the discrepancy

is due to species differences or the 15B3 antibody used in this

study does not exactly detect the feline CD45RA homologue.

Further characterization of the antigen recognized by 15B3

antigen may be needed.

The author's results also showed that CD8+ cells with

increased CD11a expression and intracellular granules,namely

activated CD8+ PBLs,had down-regulated MHC II expression

compared with CD8 α+ β
high,perhaps unprimed lymphocytes(Fig .3).

However this is not consistent with other reports in which MHC

II expression was increased by FIV infection[Rideout et al.,

1992;Willett et al.,1993].The reason for the discrepancy is
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unclear,but may be the difference in infection duration,

infection route or virus strains used.

MHC II expression levels in CD4+ PBLs may be down-regulated

by FIV infection,consistent with a previous study using CD4+

cell line[Willett et al.,1991].This speculation is based on

the finding that the ratio of MHC II MFI(CD8 α
+

 vs CD4+)was

increased by FIV infection(Table 1)even though the infection

resulted in CD8 α
+

 subpopulations with decreased MHC II(Fig.

3).However,the possibility can not be excluded that FIV

infection causes MHC II up-regulation of whole CD8 α
+
 PBLs.Lerner

et al.[1998]reported upregulation of MHC II in FIV-infected

CD4+ CD8+ cell line MCH5-4.Further analyses of MHC II dynamics

in both CD4+and CD8 α
+

 PBLs will be necessary.

The author has shown that FIV infection causes

phenotypically heterogenous subpopulations in CD8+ PBLs.

Although no apparent phenotypic changes were found within CD4+

PBLs,analyses of other surface antigens(CD28,CD38,CD45RO,

CD95,CCR7)or cytokines(IL-2,IL-4,IFN -γ) will be helpful

to elucidate the dynamics of CD4+ PBLs as well as CD8+ PBLs in

response to FIV infection.
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Figure legends

Fig.1

Three-color FCM of feline PBLs.Isolated PBMCs were labeled

for combinations of CD4(FL1),CD8α(FIL3)and other molecules

(FL2)andCD4+ CD8α- andCD4- CD8α+ PBLs were gated(a)for analyses

of the expression of molecules of interest(b-g) .These molecules

are control(b),CD2(c),CD11a(d,g),CD45RA-like antiqen(e)
,

and MHC II(f).Fine and bold lines are results for gated CD4+

and CD8α+ PBLs,respectively.PBMCs were isolated from

FIV-infected(a-f)and uninfected(g)cats.

Fig.2

FCM analyses of CD8α+ PBLs incats.PBMCs were labeled

for combinations of CD8α(FL1),CD8β(FL3)and other molecules

(FL2).CD8α+ PBLs were gated(a)to analyze the correlation of

the molecules of interest with the CD8 β chain(b-g).These

molecules are control(b),CD11a(c,d),CD45RA-like antigen

(e,f)and MHC II(g).X and Y axes are fluorescence intensities

for the molecules and CD8 β chain,respectively(b-q).PBMCs

were isolated from FIV-infected(a-c,e,g)and uninfected(d,

f)cats.

Fig.3

MFI of MHC II antigens in CD8α+ βhigh,CD8α+ βlow and CD8α+ β-
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PBLs.The results obtained in Fig.2g were re-analyzed for

expression of MHC II in each subpopulation. ○, Cat 301; △, Cat

302;□,Cat 303;●,Cat 304;▲,Cat 305;■,Cat 306.
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CHAPTER 6/Fig.1
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CHAPTER 6/Fig.2
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CHAPTER  6/Fig.3

MFI of MHC II antigen
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CHAPTER 6/Table 1

Table 1.Ratios of MFI or SSC in FCM analysis

Antigen expression levels(MFI)and cellular complexity(SSC)

were analyzed by FCM for each subpopulation indicated,and then

ratios were calculated.
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PART IV

Characterization of MYA-1 cells,a feline T-lymphoblastoid cell

line
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MYA-1 cells established by T.Miyazawa are a feline

T-lymphoblastoid cell line which expresses CD4 and shows

IL-2-dependent growth.The cell line is often used for FIV studies

because of it's high sensitivity to FIV infection.

In PART IV,to characterize MYA-1cells more,the author

generated an mAb to feline CD56 and then analyzed CD56 expression

in feline cells as well as MYA-1(CHAPTER 7)and correlation

of it's expression and FIV infection in MYA-1 cells(CHAPTER

8).

―180―



CHAPTER 7

CD56 expression in feline lymphoid cells

The Journal of Veterinary Medical Science 2003;65:769-73
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Abstract

The N-CAM consists of three major types of polypeptides

(180,140,and 120 kDa)whose predominant differences exist

within the transmembrane and cytoplasmic domains.In this CHAPTER,

the author generated an mAb,termed SZK1,reactive to feline

CD56 molecules(140 kDa form of N-CAM)expressed by the

baculovirus expression system and investigated CD56 expression

in feline lymphoid cells.In FCM analysis,SZK1 was reactive

to a feline T-lymphoblastoid cell line MYA-1.Further,SZK1 was

reactive to a very small population(1.1-1.7%)of freshly

isolated PBLs of three SPF cats,and the reactivity was increased

by culturing of PBLs in the presence of IL-2 following Con

A-stimulation(>10%).In immunoblotting analysis, SZK1 detected

an approximately 160 kDa antigen from MYA-1 cells,while from

RNA of the cells RT-PCR amplified the fragment resembling 140

kDa form of N-CAM.These finding suggest that feline CD56 has

similar characteristics with human CD56.
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Introduction

The N-CAM is a member of the immunoglobulin superfamily

that mediates homotypic adhesive interactions of cells in neural

and muscle tissues[Cunningham et al.,1987].N-CAM consists

of three major types of polypeptides(180,140,and 120 kDa,

estimated by SDS-PAGE)generated by alternative mRNA splicing

from a single gene in mammalians and avians[Barthels et al.,

1988;Hemperly et al.,1990;Murray et al.,1986a,b;Small et

al.,1987].The predominant differences in these forms are within

the transmembrane and cytoplasmic domains[Cunningham et al.,

1987].The 140 kDa form lacks an insert of approximately 270

aa in the cytoplasmic region,which is present within the 180

kDa form[Goridis&Brunet,1992].The 120 kDa form lacks amembrane

spanning domain and is linked to a glyco-phosphatidylinositol

[Hemperly et al.,1986].In addition,the three forms have the

optional sequences within extracellular domains that arise by

the splicing of smaller RNA segments and correspond to 10-40

aa[Goridis&Brunet,1992].The form(s)of N-CAM that is expressed

seems to be dependent on the developmental-stages and cell types.

In brain,180 kDa form are mainly expressed by postmitotic neuron

and 140 kDa form are more widely distributed.120 kDa form appears

during nerve system development.In muscle,140 and 120 kDa forms

are distributed[Goridis&Brunet, 1992;Rutishauer&Goridis,

1986].
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In humans,CD56(Leu19,NKH-1)antigen is expressed on

approximately 15% of PBLs that are mainly composed of NK cells

(=10%)and CD3+ T lymphocytes(<5%)[Lanier et al.,1986].Both

CD56+ NK cells and CD56+ T cells mediate non-MHC-restricted

cytotoxicity[Hercend et al.,1985;Lanier et al.,1986;Tarazona

et al.,2000].CD56 has been shown to be identical to the 140

kDa form of N-CAM[Lanier et al.,1989],however the antigen

as well as other forms of N-CAM undergoes posttranslational

modifications including addition of polysialic acids in some

cell-types such as lymphocytes,resulting in showing larger MW

[Goridis&Brunet,1992;Hercend et al.,1985;Lanier et al.,

1986,1989].

Little is known about feline NK cells or CD56 expression

in  feline T cells.Recently Nishimura et al.[1999b]cloned a

cDNA encoding feline homologue of N-CAM from a feline thymus

cDNA library,that corresponds to 140 kDa form at the level of

the gene.In the present CHAPTER,the author generated an mAb

to CD56,termed SZK1,and examined the expression and molecular

size of the antigen recognized by SZK1 mAb in feline lymphoid

cells by FCM,immunoblotting,and RT-PCR.
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Materials&Methods

Cell culture

MYA-1 cells,an IL-2 dependent feline T-lymphoblastoid

cell line[Miyazawa et al.,1989],were cultured as described

in CHAPTER 1.The culture was passaged every three or four days

to achieve approximately 5 × 105 cells/ml.PBMCs were separated

as described in CHAPTER 1 from heparin-treated whole blood of

three 11 to 13-years old,SPF cats(Cats 201,102 and 202 obtained

from Dr.K.Nakano,Kitasato University).PBMCs were stimulated

by Con A(10 μg/ml) for three days and maintained as described

for MYA-1 cells.

mAb

mAbs to CD56 were generated as described previously

[Shimojima et al.,1997].Briefly,BALB/c mice were immunized

with an insect cell line,High FiveTM cells(Invitrogen),infected

with the recombinant baculovirus rAcfCD56F140[Nishimura etal.,

1999a],which contains feline CD56 cDNA(140 kDa form of N-CAM)

under the control of a polyhedrin promoter.Hybridomas,which

were generated by the fusion of mouse spleen cells with P3U1

myeloma,were screened with Con A-stimulated,cultured feline

PBLs by IFA(CHAPTER 1).The isotype of antibody was determined

by IsoDetectTM mouse mAb isotyping kit(Stratagene,La Jolla,

CA).
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Immunoblotting

Immunoblotting was performed as described in CHAPTER 2.

As the first antibodies,mouse ascitic fluids were used at 1:2000

dilution.Antibodies on membrane were detected using goat

anti-mouse IgG+IgM conjugated with horse radish peroxidase

together with 3,3'-diaminobenzidine,tetra hydrochloride or

enhanced chemiluminescence(Amersham Pharmacia Biotech).

FCM

FCM analysis was performed as described in CHAPTER 1.It

was confirmed that the IgG2a-specific antibody does not

cross-react with SZK1(IgG1)or with other IgG1 mAbs(data not

shown).

Panning

To purify CD56+ or CD56- MYA-1 cells,panning using SZK1

mAb was performed (CHAPTER 3). MYA-1 cells (5×106 in 4ml of

culture medium) were seeded on the mAb-coated Petri dish and

incubated at 4℃ for 90min. Non-adherent cells were harvested

as feline CD56-MYA-1. After the dish was washed well with 2FCS-PBS,

adherent cells were harvested as feline CD56+ MYA-1 by cell

scrapers.
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RT-PCR

Total RNA was prepared from MYA-1 cells by ISOGEN-LS and

cDNA was synthesized using an oligo(dT)primer and Super Script

II RT as bescribed in CHAPTER 1.For the subsequent PCR,the

author used the primers fCD56/3'-2

5'-CAGGCACTACCTGGTCAAGTACCGAG-3'(nt position 2102-2127)and

fCD56R2 5'-TCTGCTCATTTCTTGTCACCCATCA-3' (nt position

2775-2751).Both primers have been used for the cloning of feline

CD56 cDNA[Nishimura et al.,1999b].Amplified fragments obtained

with the primer pair from the 140 kDa N-CAM would be approximately

650 bp.In the case of the 180 kDa form,the amplified fragments

would be more than 1.4 kbp long due to an additional exon

(approximately 800 bp[Goridis&Brunet,1992]).
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Results

mAb to feline CD56

From hybridomas obtained from mice immunized with

rAcfCD56F140-infected insect cells,one clone SZK1(IgG1)was

established according to its reactivity with cultured feline

PBLs.The mAb was reactive to rAcfCD56F140-infected cells,but

not to control baculovirus-infected cells in IFA(data not shown).

In the immunoblotting analysis,SZK1 mAb detected a broad band

ranging from 130 to 140 kDa in the rAcfCD56F140-infected cells,

but not in the control baculovirus-infected Sf9 cells(Fig.1).

CD56 expression in feline lymphoid cells

No apparent fCD56+ population was found in feline PBLs

freshly isolated from three SPF cats by FCM with SZK1(data not

shown).However,a feline T-lymphoblastoidMYA-1 cell line,which

has been established by long term(over 11 months)culture of

feline PBLs with IL-2 after Con A-stimulation[Miyazawa et al.,

1989],showed approximately 20% reactivity to SZK1 mAb(Fig.

2a).To determine whether the culture increases CD56 expression,

feline PBLs were stimulated and cultured as described for MYA-1

cells in the presence of IL-2,and then analyzed.As shown in

Figure 2b,the cultured feline PBLs showed 5.6% reactivity to

CD56 mAb as early as at day 7 of culture,and the percentage

of CD56+ cells increased up to 16% at day 38,while fresh PBLs
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showed only 1.1-1.7% reactivities(day 0).In the indirect

single-color FCM analysis,no binding of normal mouse-serum to

MYA-1 cells,fresh PBMCs or cultured PBMCs(days 7 and 38)were

observed(data not shown)when compared with the cells treated

only with secondary antibodies.In two-color FCM at day 22,CD56

expression was observed in both CD4+ and CD8 α
+

 cells(6-20% in

CD4+ cells and2-14% in CD8 α
+

 cells,Fig.3).

Molecular size of feline CD56

Immunoblotting analysis was performed for two types of

cells,CD56+(>98% CD56+ in FCM)and CD56-(<5% CD56+)MYA-1 cells.

SZK1 detected approximately 160 kDa molecules from CD56+ but

not from fCD56- MYA-1 cells(Fig.4).Control mAb did not detect

any specific bands(Fig.4).In RT-PCR,an approximately 650

fragment was amplified from MYA-1 RNA(Fig.5).
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Discussion

In humans,unprimed,normal individuals have CD56+ cells

in periphery that comprise 10-15% of PBLs and exhibit

non-MHC-restricted cytotoxicity[Hercend et al.,1985;Lanier

et al.,1986].The author could not detect apparent CD56+ cell

population in freshly isolated PBLs of SPF cats in this CHAPTER

(<2%).Tompkins et al.[1983]reported that PBMCs of clinically

normal,nonimmune cats(4 to 9 years old)which had been in an

isolation ward for over 3 years showed natural cytotoxic cell

activities against virus-infected cells(e.g.35% cytotoxicity

at E:T ratio of 50:1).Hanlon et al.[1993]reported that PBMCs

of SPF cats(6 months old)showed NK-mediated cytotoxicities

against hamster BHK cells(e.g.10% cytotoxicity at E:T ratios

of 50:1).CD56 expression is not essential to the cytotoxic

function of human NK cells[Lanier et al.,1987,1991;Nitta

et al.,1989],and further,to my knowledge,CD56 expression

on murine and rat lymphoid cells including NK cells has not been

reported.Therefore,it is unlikely that only a small population

(<2%),but not other population,exhibits such NK activities,

and cats may have a CD56- population as MHC-unrestricted

cytotoxicity-exhibiting cells in addition to CD56+ population.

Identification of distinct population(s)exhibiting

MHC-unrestricted activity might be possible by using other cell

antigens such as NK markers[Ryan et al.,2001]and CD57[Zhao
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et al.,1995].

In addition to the MYA-1cell line,both cultured CD4+

and CD8 α
+
 PBLs that have been stimulated by Con A and cultured

in the presence of IL-2,expressed CD56 antigens.MYA-1 cells

express CD3 ε (>98% in indirect FCM,data not shown)and are

IL-2-dependent[Miyazawa et al.,1989].The cultured PBLs had

also the same characteristics(data not shown).The significance

of CD56 expression in MYA-1 cells or the cultured PBLs is yet

to be clarified,however the finding is consistent with Lanier's

report[1987]that CD56 is expressed on most CD4+ and CD8+

IL-2-dependent human T cell lines and clones that have been

maintained in long term culture.Also Lerner et al.[1998]

detected CD56 mRNA by PCR in both CD4+ and CD8+ IL-2-dependent

feline T cell lines.However,it is unclear whether feline CD56+

cells in cultured PBLs are the lineage of fresh CD56+ PBLs or

not.Further experiments using purified CD56+ PBLs or

CD56-depleted PBLs will be needed.

The molecular size of feline CD56 expressed in MYA-1 cells

was larger than 140 kDa(Fig.4),therefore,the author examined

the cytoplasmic region of N-CAM expressed in MYA-1 cells by RT-PCR.

While there are small variants(approximately 40 aa at most)

within the extracellular domain,the changes of MW affected by

them are slight compared with those occurred within cytoplasmic

region(270 aa)in other animals.The author detected a 650 bp
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fragment from the cDNA of MYA-1 cells,indicating that the

amplified fragment corresponds to a partial sequence of the 140

kDa form which does not contain an insertion(exon 18 in other

animals[Barthels et al.,1988; Hemperly et al.,1990;Murray

et al.,1986a; Ramos et al.,1989]) specific for the 180 kDa

form within the fragment.Thus,as in humans,feline CD56

molecules of MYA-1 cells might be structurally identical to the

140 kDa form of N-CAM but have a greater MW(160 kDa in appearance)

because of a modification with,for example,abundant sialic

acid residues[Lanier et al.,1989]. This speculation is also

supported by the result in the insect expression system in which

proteins are not usually sialylated[Marchal et al.,2001];as

shown in Fig.1,"140 kDa form"-coding baculovirus produces

approximately 140 kDa molecules in insect cells detected by the

anti-feline CD56 mAb.The difference of MW between MYA-1 and

insect cells was also observed when analyzed using the same gel

for immunoblotting(Fig.6).
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Figure legends

Fig.1.

Reactivity of anti-feline CD56 mAb SZK1 to control

baculovirus(lane1)-or rAcfCD56F140(lane2)-infected Sf9 cells

on immunoblotting.Numbers on the left represent molecular size

markers(kDa).The results are very similar to those for

anti-human CD56 mAb(YLEM,Roma,Italy)[Nishimura et al.,

1999a].

Fig.2.

CD56 expression in a feline T-lymphoblastoid cell line

MYA-1(a)and cultured feline PBLs(b)in FCM.Feline PBLs were

stimulated by Con A and cultured in the presence of IL-2,then

CD56 expression was examined on the days indicated(b).Three

SPF cats were used:Cat 201 (○) ,Cat 102 (△) and Cat 202 (□).

Fig.3.

Feline CD56 expression in CD4+ and CD8 α
+

 PBLs.Two-color

FCM was performed at day 22(Cat 202).

Fig.4.

Immunoblotting of CD56 in MYA-1 cells.MYA-1 cells were

separated into two types,CD56+(lanes 1 and 3)and CD56-(lanes

2 and 4),by a panning method and used with anti-feline CD56
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(lanes 1 and 2)or irrelevant(lanes 3 and 4)mAbs.Numbers on

the left represent molecular size markers.

Fig.5.

RT-PCR to amplify a partial fragment of feline CD56 cDNA

from total RNA of MYA-1cells without(lane 1)or with(lane

2)RT.Numbers on the left represent molecular size markers.

Fig.6.

Immunoblotting of feline CD56 in insect cells(lane 1)

and feline MYA-1cells(lane 2).
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CHAPTER7/Fig.2

(a)

(b)
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CHAPTER 7/Fig.3
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CHAPTER 7/Fig.4
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CHAPTER 7/Fig.5
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CHAPTER 7/Fig.6
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CHAPTER 8

CD56 expression and FIV replication in MYA-1 cells
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Abstract

The author investigated correlations between CD56

expression and FIV infection in MYA-1 cells.Further,long

term-culture effects of the cells on FIV infection were

investigated.MYA-156 cells,which were obtained by panning from

long-term cultured MYA-1 cells and were almost all CD56+(>95%),

were shown to be more useful than parental cells for FIV

investigation in regard to viral propagation and analysis of

CD4 reduction.MYA-156 cells showed more profound CPE(mainly

syncytium formation)by FIV infection than the original MYA-1

cells with low passages,however viral productivities of MYA-156

were less than that of the original.Proper usage of MYA-1 sublines

was suggested to be important according to aims of FIV studies.
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Introduction

MYA-1 cells are a feline T-lymphoblastoid cell line,which

are CD4+ and IL-2-dependent[Miyazawa et al.,1989].Because

of high sensitivity for FIV infection[Miyazawa et al.,1992],

the cell line has been used for propagation and titration of

FIV.Other feline viruses,feline herpes virus type1[Horimoto

et al.,1991],feline calicivirus[Kawaguchi et al.,1994],and

feline parvovirus[Miyazawa et al.,1999],also can infect MYA-1

cell line.

In this CHAPTER,the author described unexpected increase

of CD56expression and correlation of the expression and FIV

infection on long term-cultured MYA-1 cells.Further the author

described comparison of the long term(>2years)-cultured

MYA-156 and the original MYA-1 soon after the establishment in

late 1980's,regarding to FIV infection.
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Materials&Methods

MYA-1 cells

Culture of MYA-1 cells was as described in CHAPTER 1.

Culture of all its sublines(below)was performed by the same

method for MYA-1 cells.Division of MYA-1 cells into two parts

was performed by panning(CHAPTERS 3)with anti-feline CD56 mAb

(CHAPTER 7)to obtain CD56+ and CD56- MYA-1 cells(see CHAPTER

7 for details).

FCM

mAbs used for FCM were anti-feline CD4 4D9[Shimojima et

al.,1997],anti-feline CD56SZK1(CHAPTER 7),and anti-FIV Env

5F7(IDEXX)mAbs.All of these mAbs were mouse IgG1 isotype and

an isotype-matched mAb anti-feline CD8α 10C7[Shimoj ima et al.,

1998b]was used as a negative control.Single-color FCM was

performed to examine positive%and MFI of molecules.For

two-color FCM,cells were incubated with antibodies as following

order;CD4(4D9)or FIV Env(5F7)mAb,PE-labeled anti-mouse

IgG1 antibody(Exalpha),CD4 or FIV Env mAb(for blocking),and

FITC-labeled CD56(SZK1)mAb.Cells were washed with wash buffer

two or three times after each incubation and then analyzed as

described in CHAPTER 1.

Cell proliferation
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To compare proliferation kinetics of MYA-1 sublines,cells

were seeded at a concentration of 50×104/ml  at day0and counted

by use of Burker-Turk counters at days 3 and 6.

FIV infection

Preparation of three infectious molecular clones,pFIV-14

[Olmsted et al.,1989],pFTM191CG[Miyazawa et al.,1991],and

pTM219[Maki et al.,1992],and infection of MYA-1 cells(and

its sublines)were as described inCHAPTER 3.These cells and

their supernatants were harvested at indicated days and used

for FCM orCPE observation or p24 ELISA measurement(IDEXX),

respectively.

To compare FIV-productivity or infection-sensitivity of

cells,FIV stocks were serially diluted at 10-1 to 10-5 and then

used for infection quadruplicately as reported by Kawaguchi et

al.[1990].Briefly,100 μl of the diluted virus was inoculated

onto 1×105 cells in 1 ml, and then incubated until use. IFA

of the cells and p24 ELISA of culture supernatants were performed

at 10 days pi.
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Results&Discussion

CD56+ cells in MYA-1 cell culture

The author already described CD56 expression in=20% of

MYA-1 cells in CHAPTER 7.Surprisingly,the percentage of CD56

expression increased along with continuous cultivation of the

cells(Fig.1)and maintained over 90% for more than6months

(data not shown).No apparent change of CD56 expression level

(not percentage)was observed in CD56+ cells by FCM(data not

shown).Next the author divided MYA-1 cells by panning with CD56

mAb and compared their growth kinetics with that of parental

MYA-1 cells.Two populations which were positively-(>95%

positive)or negatively-(<10% positive)obtained from MYA-1

cells were designated MYA-156 and MYA-056 cells,respectively.

As shown in Fig.2,MYA-156 proliferatedmore thanparental MYA-1,

and MYA-056 less than parental MYA-1.Positive percentages for

CD56 expression of parental MYA-1 cells were 40 to 70 during

the proliferation study and following FIV-infection studies

(below)(data not shown).These results suggested that CD56+

cells could proliferate more rapidly than CD56- cells.By the

way,CD56 percentage of MYA-056 tended to the increase,therefore

repeats of panning were necessary to keep it under 10%,but not

necessary for MYA-156 cells.CD56 percentage of MYA-156 would

not decrease and keep a high percentage(98-99%)without

additional panning.The facts were very likely consistent with
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the rapid proliferation of CD56+ cells against CD56- cells.Both

of MYA-156 and MYA-056 cells conserved IL-2 dependency in

proliferation(data not shown),similar to MYA-1 cells[Miyazawa

et al.,1989].Parental MYA-1 cells often showed clusters of

cells in its culture,and so did both of MYA-156 and MYA-056

cells(data not shown),suggesting that molecule(s)responsible

for the cluster formation by MYA-1 cells,which is different

from homophilic adhesion molecule CD56[Nishimura et al.,1999a;

Nitta et al.,1989;Pizzey et al.,1981],such asCD2/LFA-3 or

LFA-1/ICAM-1,must exist.

FIV proliferation and cell surface antigens in MYA-156 and

MYA-056 cells

Many viral replication depends on activation status of

the infected cells.The author infected parental MYA-1,MYA-156,

and MYA-056 cells with three FIV molecular clones(FIV-14,TM1,

and TM2)at moi of 0.01 and compared viral growth.Culture

supernatants were harvested 7days pi and p24 antigens were

measured by ELISA.Results are shown in Fig.3.Each FIV clones

replicated more in MYA-156 and less in MYA-056 than in parental

MYA-1 cells.The infected or mock-infected cells at the point

were further investigated of their cell surface expression of

FIV Env and CD4 by FCM.Results for FIV Env were shown in Fig.

4.Consistent with the results in p24(Fig.3),FIV Env antigens
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were more expressed in MYA-156 and less in MYA-056 than in parental

MYA-1 cells.Moreover,in MYA-1 cell population which includes

CD56+ and CD56- cells,CD56+ cells expressed FIV Env at a higher

level than CD56- cells after FIV infection(Fig.5c).

FIV infection of CD4+ lymphoid cells were reported to reduce

surface CD4 expression on the cells[Johnson et al.,1996;Willett

et al.,1991],similar to the case with HIV.However,the lymphoid

cells used in their studies,FCD4-D[Johnson et al.,1996]and

Q201[Willett et al.,1991],contained CD4- ceils(20-35%),

therefore reduction of CD4 expression by FIV infection could

not be analyzed precisely.As shown in Fig.6,almost all of

each MYA-1 sublines expressed CD4 antigen;>99% for MYA-1 and

MYA-156,>96% for MYA-056,suggesting MYA-1 and MYA-156 cells

as useful cells for studies to analyze CD4 reduction .MFI of

CD4 expression were reduced more severely by each FIV infection

in MYA-156 than in MYA-1 cells,while CD4% of infected cells

were lower in MYA-1 than in MYA-156 cells(compare left and center

panels in Fig.6).FIV infection inMYA-056 cells seemed to induce

increase of CD4- cells rather than CD4 reduction in CD4+ cells

(Fig.6right panel).

Taken together,it was strongly suggested that FIV could

proliferate more productively in CD56+ cells than in CD56- cells

and,at the same time,FIV induced infection-effects,such as
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CD4 reduction,more profoundly in CD56+ cells than in CD56- cells.

Namely,MYA-156 cells were suggested to be useful to propagate

FIV and investigate infection with FIV.

Comparison with original MYA-1 cells

In the report concerning phenotypic analyses of MYA-1 cells

[Miyazawa et al.,1992],CD4 was only expressed on a subpopulation

of the cells(=50%),in contrast to long-term cultured MYA-1

cells(Fig.6).Therefore,the author compared MYA-156cells

and the"original"MYA-1 cells in respect of FIV infection.The

original MYA-1 cells used were stocked in liquid nitrogen in

December 1988 until use in the study(in March 2002)and were

used within 33days after culture starting from the stock,

indicating short term-cultured MYA-1 cells;the establishment

of MYA-1 cells was reported in 1989[Miyazawa et al.].MYA-156

cells were propagated from the stocks in April 1997 and maintained

for at least 2years by the author,indicating with comparatively

high passages.Isolation of MYA-156 from parental MYA-1 cells

was described above.

Two FIV clones,FIV-14 and TM2,were serially diluted and

co-cultured with MYA-156 or the original MYA-1 cells.Ten days

later,many cells in MYA-156 culture showed severe CPE such as

cell death and syncytium formation at the dilution of 10-1 by

either FIV-14 or TM2(Fi.g7a).In contrast,a few original MYA-1
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cells showed CPE(Fig.7b).Different patterns of IFA results

for FIV antigen were observed for FIV-14 infection ,but not for

TM2 infection only at a dilution of 10-2;in MYA-156 cells ,2/4

were positive and in the original MYA-1 cells ,3/4 were positive

(Table1).Culture supernatants were pooled within the same viral

dilutions and measured for p24 antigens .MYA-156 cells produced

lower amounts of p24 than the original MYA-1 cells at viral(either

FIV-14 or TM2)dilutions of 10-2 and 10-1(Fig .8).Thus MYA-156

cells showed severe CPE by infection than the original MYA-1

cells, while the latterproducedmore FIV amounts than the former .

Sensitivities to FIV infection were almost similar between the

two cell populations, but the original MYA-1 might be slightly

more sensitive than MYA-156 cells .

CD56+ MYA-1 population with high passages were suggested

to be useful for investigation of FIV infection ,judging from

productivities of FIV antigen and reduced degrees of CD4

expression,compared with CD56- population .Because CD56+ cell

ratio in MYA-1 cells increased by long term-culture itself ,

longer culture might confer more suited MYA-1 condition for the

FIV investigation.But the original MYA-1 cells showed =20%

reactivity for CD56 expression(data not shown) ,and a reason

for the unexpected increase of CD56 expression from Dec 2000

are not clear.However,long term-cultured cells were apparently
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inferior in FIV production to the original MYA-1 cells which

were the ones soon after its establishment and with low passages .

In other word,the original MYA-1 cells rather than MYA-156 cells

were more suited for preparation of FIV itself .Change of MYA-1

subline usage was strongly suggested;for example,the original

MYA-1 usage for propagation of FIV,MYA-156 usage for analyses

of infection influence(viral antigen expression,CD4 reduction ,

CPE).CD4+ population within(the original)MYA-1 cells might

be correlated with syncytium formation and CD4- populations with

FIV production.Further characterization of the original MYA-1

or MYA-156 cells will be necessary to elucidate mechanisms of

FIV infection, propagation, and syncytium formation .
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Figure legends

Fig.1

MYA-1 cells were continuously cultured and expression of

CD56 molecule was evaluated by FCM with anti-feline CD56 mAb

SZK1(CHAPTER 7)on indicated dates.

Fig.2

Growth kinetics of(parental)MYA-1 cells and two sublines

MYA-156 and MYA-056,which were obtained from MYA-1 cells by

panning.These cells were seeded at a concentration of 50x104

cells/ml at day 0,cultured and then counted at indicated days

by Burker-Turk counters.Results are shown as the mean ±SD of

triplicate data.

Fig.3

MYA-1,MYA-156,and MYA-056 cells were infected with FIV-14,

TM1,and TM2,separately,at moi of 0.01(CHAPTER 5)and p24

viral antigens in culture supernatant were measured by ELISA

after 7days pi.Results are shown as the mean of duplicate data.

Fig.4

FIV-infected cells after 7days pi(the same cells for

Fig.3)were investigated for expression of FIV antigens by FCM

with anti-FIV Env mAb.A gating bar was set to obtain<1% positive
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to a negative control mAb against mock-infected MYA-1 cells(data

not shown)and then the same setting was used for other cases.

Numbers above bars are % positivities and numbers under bars

are MFI for FIV Env staining.Representative of duplicate data

are shown.

Fig.5

Two-color FCM of(parental)MYA-1 cells.Mock-infected

cells were stained for CD4/CD56(a)and infected cells for

CD4/CD56(b)or FIV Env/CD56(c).

Fig.6

FIV-infected cells after 7days pi(the same cells for

Fig.3)were investigated for expression of CD4 by FCM.A gating

bar was set to obtain<1% positive to a negative control mAb

against mock-infected MYA-1 cells(data not shown)and then the

same setting was used for other cases.Numbers above bars are %

positivities and numbers under bars are MFI for CD4 staining.

Fig.7

CPE by FIV infection observed in(a)MYA-156 and(b)the

original MYA-1 cells.The cells were infected with FIV

quadruplicately at the viral dilution of 10-1 and cultured for

10days.Representative results are shown.Note that CPE such
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as syncytium and cell death are observed in MYA-156 cells more

than the original MYA-1 cells.

Fig.8

MYA-156 and the original MYA-1 cells were infected

quadruplicately with FIV at the indicated dilutions and cultured

for 10days.Culture supernatants were pooled and then measured

for p24 antigen by ELISA.
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CHAPTER 8/Fig.1
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CHAPTER 8/Fig.2
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CHAPTER 8/Fig.3
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CHAPTER 8/Fig.4
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CHAPTER 8/Fig.5

(a)

(b)

(c)
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CHAPTER 8/Fig.6
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CHAPTER 8/Fig.7

(a) MYA-156

(b) original MYA-1
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CHAPTER 8/Fig.8
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Table1

Sensitivities of MYA-156 and original MYA-1 cells to FIV-14 and

TM2 infection

a+
, positive;-, negative for  Viral antigen
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CONCLUSION
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FIV is the pathogen which causes AIDS-like diseases for

cats.At present,vaccines for the virus are needed and there

is a dramatically increasing interest in feline immune system.

Some studies have been reported the significance of T cells in

regulation of the viral infection in vivo or dynamics of CD4+

and CD8+ lymphocytes composing the T cells,but with insufficient

analyses.Aims of the thesis are to elucidate T cell immune

responses against FIV infection in order to support vaccine

improvement or efficient vaccine development.

Little availability of antibodies for feline cells

prompted the author to generate antibodies against

immunologically important molecules.In CHAPTERS 1,2,&7,the

author performed cDNA-isolation,expression,and

mAb-generation for several targeted molecules.In CHAPTER 3,

the author performed improvement of expression cloning to

identifymolecule(s)recognizedbymAbs showing some interesting

characteristics such as inhibition/induction of certain

interactions.In CHAPTER 4,the author performed application

of the improved method(CHAPTER3)with use of FIV instead of

mAbs to identify cell surface molecule(s)interactive woth FIV.

In CHAPTERS 5&6,the author analyzed immune T cells of

FIV-infected cats functionally and phenotypically by using

generated mAbs and already-reported mAbs.In CHAPTERS 7&8,

the author performed further characterization of FIV-highly
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sensitive MYA-1 cell lines in correlation with CD56 expression.

Abstract of CHAPTERS 1 to 8 are as followed:

In CHAPTER 1,the author identified feline CD2 cDNA and

generated an mAb(clone SKR2)to feline CD2 antigen expressed.

Feline CD2 conserved several aa sequences important for human

or other animal CD2 structure/signal transduction.Feline

CD2-expressing COS cells as well as feline PBMCs could form

rosette with human RBCs and the rosette formation were blocked

by SKR2 mAb,being indicative of the similarity of feline and

human CD2 structures.In addition,SKR2 mAb was shown to be useful

to detect feline peripheral blood monocytes as well as T cells.

SKR2 mAb was used also in CHAPTER 6.

In CHAPTER 2,the author generated TMMlla mAb to feline

CD11a antigen expressed by baculovirus expression system,which

would be useful for FCM analysis of the molecule.Further,the

author identified partial cDNA encoding feline CD122(IL-2R β

chain)and expressed histidine tag-fusion proteins of feline

TCR α, TCR δ, and CD122,either of which is thought to be a useful

tool to investigate molecular-biologically the respective

molecules.TMM11a mAb was used also in CHAPTER 6.

In CHAPTER 3,the author improved MLV-mediated expression

cloning to reduce the time necessary for its screening step.

Though limited in case of identification of cell surface antigens
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by antibodies,the screening step could be accomplished within

only 1wk by the use of myeloma target cells and a panning selection

method.The improved method could be thought to be applied to

identify interactive molecules/receptors of ligands/virus.

In CHAPTER 4,the author applied the improved expression

cloning method(CHAPTER 3)to identify the interactive cell

surface receptor(s)with FIV particles.In the application,FIV

was used as an alternative of antibodies to capture targeted

cells.As results,helper T cell activation antigen OX40 was

cloned and the molecule was shown to be a primary binding receptor

for FIV.It was suggested that FIV pathogenesis is the result

of the viral tropism specific to activated helper T cells.

In CHAPTER 5,the author functionally analyzed PBL

subpopulations of FIV-infected cats to show antiviral effects

of various subpopulations,CD4+ cells as well as CD8+ cells(both

of CD8α+β+and CD8α+β-).The antiviral effects of each

subpopulation were thought to be mediated by non-MHC restricted

manner,at least in part.Interestingly,the subpopulations

showing anti-FIV activity were different among the individual

cats and not likely correlated with CD4:CD8 ratios.

In CHAPTER 6,the author phenotypically(expression of

CD2,CD11a,CD45RA-like and MHC II)analyzed FIV-infected cat

PBLs in correlation with CD4/CD8 expression or light scatters

in FCM Itwas shown that CD8α+PBLs had a distinct subpopulation
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with increased CD11a expression accompanying a reduced CD8 β

chain,increased intracellular granules,and MHC II decrease

and that CD8 α+ PBLs expressed CD45RA-like antigen with diverse

expression levels.These phenotypic varieties were not found

in CD4+ population.

In CHAPTER 7,the author generated anti-feline CD56 mAb

(SZK1)which could be used in IFA,FCM,and immunoblotting

analysis for feline CD56molecule.Feline CD56 was observed to

be expressed in cultured feline T lymphoblasts as a 140 kDa form

with highly sialylation probably,suggesting similar

characteristics with human CD56.The mAb was used also in CHAPTER

8.

In CHAPTER 8,the author showed the differences between

CD56+ and CD56- MYA-1 cells and between long and short

term-cultured MYA-1 cells in respect of FIV infection.The

importance of MYA-1 cell culture period was suggested.

The studies in the thesis showed the significance of CD8+

T cells(and CD4+ T cells in some case)and the existence of

many subpopulations in CD8+T cells during the regulation of

FIV infection.They also suggested requirement of further

investigations such as identification of other molecules or

ligands,cytokine quantification,and antigenicity analysis to

clarify a mechanism(s)of FIV infection-regulation.Although
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the author could not obtain results directly helpful to the

vaccine development,many findings elucidated by the author as

described above will be the firm foundations for FIV/cat

investigations in the future.Moreover,the findings in the

thesis will also contribute to the feline immunology including

allergy and autoimmune diseases.
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論 文 の 内 容 の 要 旨

獣医学専攻

平成12年 度博土課程入学

氏 名:下 島 昌幸

指導教官:明 石 博臣

論文題 目: T cell responses in feline immunodeficiency virus-infected cats

(ネコ免疫不全ウイルス感染ネコにおけるT細 胞応答)

ネコ免疫不全ウイルス(以 下FIV)は 、ネコに免疫不全様症状を引き起こす原因体である。こ

のウイルスに対するワクチンが現在必要とされており、ネコ免疫系への関心が高まっている。し

かし、感染制御におけるT細 胞の重要性やT細 胞を構成するCD4+・CD8+リ ンパ球の動態に関す

る報告はいくつかあるものの、十分な解析がなされているとは言いがたい。本研究は、より良

いワクチン作製やより効率的なワクチン開発に役立てるため、FIV感 染におけるT細 胞免疫応

答を明らかにすることを目的とした。

実験を行なう上で有用なツールである抗体の種類がネコこおいては限られており、まず そ

の充実化を試みた。第一・二・七章では、あらかじめ標的分子を設定し、そのcDNA同 定・発現・抗

体作製を行なった。第三章では、標的分子は不明であっても特徴ある性状(何 かの反応の阻害

や誘導等)を 示す抗体が得られた場合を想定し、その標的分子を短時間かつ簡便に同定する方

法を確立した。第四章では、第三章の方法が抗体以外の分子(こ こではFIV Envタ ンパク)にも
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応用可能であることを示した。

第五・六章では、得られた抗体や既存の抗体を用い、FIV感 染ネコの末梢血T細 胞の表面抗

原および機能解析を行なった。第七・八章は細胞株における解析であるが、得られた抗体の一

つ(抗CD56)を 用いてFIV感 染性について調べた。

各章の要約は以下の通りである。

第一章:T細 胞表面抗原CD2は 、T細 胞と抗原提示細胞等との接着やT細 胞の活性化に重要

な分子である。ネコCD2 cDNAを 、末梢血単核球由来cDNAよ りPCRに より新たに同

定した。ネコCD2の アミノ酸配列中には、ヒトやその他の動物のCD2分 子の立体構造・

細胞内シグナル伝達に重要な配列が高度に保存されていた。ネコCD2分 子を発現させ

その単クローン抗体(SKR2)を 得た。SKR2抗 体はネコCD2発 現細胞-ヒト赤血球間で認

められるロゼット形成を阻害した。これらのことは、ネコと特にヒトのCD2の 構造および

機能の類似性を示すものと考えられた。SKR2抗 体は、T細 胞に加え単球の検出にも有

用であった。本抗体は第六章でも用いた。

第二章:イ ンテグリンαL鎖CD11aは 、T細胞と抗原提示細胞等との接着に重要な分子である。

T細 胞受容体(TCR)は 、T細胞の抗原特異的な応答を規定する分子である。CD122は 、

IL-2受 容体を構成する β鎖で、IL-2に よるシグナル伝達に必須の分子である。昆虫

細胞発現ネコCD11aを 用いて抗ネコCD11a単 クローン抗体TMM11aを 得た。ネコ

TCRα およびTCRδ の定常領域に、ネコCD2(第 一章)の シグナルペプチド領域をN末 に、

ヒスタグ配列をC末 に付加して発現させた。ネコCD122のcDNAをPCRに より新たに

同定し、C末にヒスタグ配列を付加して発現させた。これらの発現により、TCRやCD122

分子に対する抗体作製などが容易になると考えられた。TMM11a抗 体は第六章でも用

いた。

第三章:抗 体が認識する細胞表面分子を同定する場合に発現クローニング法は極めて有効

である。そのスクリーニングが短時間かつ簡便に行なえる方法を確立した。モデルとし
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て、CD4+MYA-1細 胞のcDNAラ イブラリーからの、抗CD4抗 体によるCD4cDNAの

同定を試みた。ライブラリー導入法としてレトロウイルスベクター、ライブラリー導入細

胞としてミエローマ、選択法としてパンニングを用いた。その結果、わずか6日 間の培

養および3回 の培養液交換のみでスクリーニングを終え、効率よくCD4cDNAを 得る

ことができた。

第四章:第 三章で確立した方法を、FIVと 反応する細胞表面分子の同定に応用した。ライブラ

リー導入細胞の保持には、抗体ではなくウイルス液を用いた。その結果、FIVと の結合

性を有するヘルパーT細 胞活性化抗原OX40(CD134)を 同定した。OX40は 単にFIV

との結合性を有する分子であるだけでなくリンパ球指向性FIVの 感染に必要な分子

(受容体)で あり、FIV抗 原特異的なCD4+細 胞にFIVが 感染することがFIVの 病態の

根底にあると考えられた。

第五章:FIV感 染により、感染ネコの末梢血リンパ球(PBL)に はCD8β 鎖の減少したCD8+細 胞

が増加し、一方CD4+細 胞は減少する。抗CD8α ・抗CD8β ・抗CD4抗 体を用い、FIV TM2

株感染ネコのPBLの 機能解析を行なった。CD8α+β+細胞のみでなく、CD8α+β-細胞およ

びCD4+細 胞もFIV増 殖抑制作用を持つことが明らかとなった。いず れの細胞集団に

よる抑制作用も、少なくとも一部はMHC非 拘束性・抗原非特異的である可能性が示さ

れた。抗FIV活 性を主 に担う細胞 は個体により異なり、病態進行の指標とな りうる

CD4:CD8比 との関連も認められなかった。

第六章:白 血球共通抗原CD45は 、T細胞の分化段階(ナ イーブやメモリー等)に より発現型が

変化する分子である。主要組織適合抗原複合体(MHC)は 、抗原提示を行なう分子であ

る。FIV感 染ネコのPBLに おけるCD2・CD11a・CD45RA様 およびMHC II分 子の発現

について、CD4も しくはCD8(α および β鎖)分 子発現との関連性、または細胞サイズ

もしくは細胞内顆粒との関連性をフローサイトメトリーにより解析した。CD8α+PBL中 に

は、CD8β鎖の発現減少を伴うCD11a分 子発現増加・細胞内顆粒増加・MHC II分 子減
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少を示す亜群が存在した。CD8α+PBLのCD45RA様 分子の発現量は様々であった。こ

のような表現系の多様性はCD4+PBLで は認められず、FIV感 染は主にCD8+細 胞群

に様々な変化を誘導するものと考えられた。

第七章:CD56は 神経細胞接着分子(N-CAM)の 一つの型(140kDa型)で 、NK細 胞や一部の

T細 胞に発現する分子である。昆虫細胞発現ネコCD56を 用いて抗ネコCD56単 クロー

ン抗体を得た。本抗体はフローサイトメトリーのみでなくイムノブロット解析にも用いる

ことができた。ネコCD56分 子は培養ネコT細 胞(CD4+お よびCD8+)お よびMYA-1細

胞株に発現しており、N-CAMの140kDa型 ではあるが高度にシアル化されていると考

えられた。これらのことは、ネコCD56が ヒトCD56と 似た性状や分布を持つことを示す

と考えられた.抗 ネコCD56単 クローン抗体は第八章でも用いた。

第八章:MYA-1細 胞はFIVに 高感受性・IL-2依 存性のネコリンパ芽球細胞株である。MYA-1

細胞のCD56発 現・長期培養のFIV感 染性への影響を解析した。長期培養によりMYA-1

細胞のCD56陽 性率は増加し、CD56+MYA-1細 胞はCD56MYA-1細 胞に比べより多

くのFIV(抗 原)を 産生(発 現)し、またCD4分 子はFIV感 染によってより減少した。長期

培養のMYA-1細 胞では、FIVに よる細胞変性効果の出現は起こりやすくなったが、

FIV産 生量は減少した。FIV感 染の解析における、本細胞株の培養期間の重要性が示

唆された。

本研究により、FIV感 染制御におけるCD8+T細 胞(時 にCD4+T細 胞)の 重要 性や、CD8+T

細胞内に見られる多くの亜群の存在が示された。免疫応答機構の解明には、さらに多くのネコ

分子の同定やリガンド同定・サイトカイン定量・抗原 性解析等を行なう必要性が示唆された。ワク

チン開発に直接役立つような結 果は得られなかったが、著者の研究により明らかになった上述

の多くの事実は、今後のFIV/ネ コ研究の確固たる礎となるはず である。またアレルギーや自

己免疫疾患等の分野にも貢献するものであると期待する。
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