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Abstract 

It is widely believed that a mushy layer develops at the ICB while the outer 
core material freezes onto the inner core.  This view is obtained in reference to 
metallurgical or analog experiments on solidification carried out in the laboratory where 
morphological instability almost always follows constitutional supercooling.  However, 
morphological instability is not an automatic consequence of supercooling: 
supercooling and stable solid-liquid interface may coexist under certain conditions such 
as might perhaps occur at the ICB. If these conditions are realized, there could be both 
solidification on the ICB and crystallization of small solid particles in the supercooled 
layer (slurry layer). 

We made a linear stability analysis of a unidirectionally advancing solid-liquid 
interface under the ICB conditions.  Several values of liquidus slope against 
concentration of light material (mc) are used for the stability analysis.  It was 
confirmed that supercooling and interstability may coexist if |mc| is low although this 
value of |mc| is believed to be too small as the liquidus slope at the ICB.  The estimated 
amount of supercooling in the layer is of order 0.1K, and this provides an estimate of 
the size and population of solid particles in the slurry layer.  However, even though the 
value of |mc| is small, to sustain such slurry layer at the ICB is unlikely due to (i) the 
difficulty of continuous supply of enough number of nuclei into the layer and (ii) the 
Rayleigh-Taylor instability by the compositional buoyancy.  It is most probable that 
mushy layer exists at the ICB.   
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1. Introduction 

About twenty years ago, Loper and Roberts (1978,1981) and Fearn et al. (1981) 

presented theoretical arguments suggesting that the region of the outer core close to the 

inner core boundary (ICB) was in a state of constitutional supercooling, due to the 

rejection of light elements into the molten iron alloy, during crystallization of the inner 

core. By analogy with what occurs in the casting of metals, crystal growth and in 

laboratory experiments on solutions, these authors concluded that the metal crystallized 

as dendrites above the ICB, and therefore that a slurry zone (Loper and Roberts, 1978, 

1981), in which crystals grow as suspended particles, or a mushy zone (Fearn et al., 

1981), where crystallization proceeds by solidification onto dendritic crystals, existed at 

the ICB.  

Over the years, this reasonable suggestion, based on a metallurgical analogy, 

became a belief and the existence of a mushy zone at the ICB is currently thought to be 

supported by "detailed and quantitative studies" (e.g., Buffett et al., 2001). Many studies 

were conducted on the structure and hydrodynamics of a mushy zone and convection 

therein (e.g., Loper and Roberts, 1978: Worster, 1986: Bergman and Fearn, 1994).  

Although the existence of the constitutionally supercooled layer above the ICB has been 

studied properly, the details of the morphological stability (e.g. Kurz and Fisher 1989) of 

the solid-liquid interface, which distinguish the fate (mush or slurry) of the supercooled 

layer, does not seem to be studied quantitatively.  Morphological instability is not a 

necessary consequence of constitutional supercooling: it may be possible to have 

constitutional supercooling and interface stability at the same time.  There are, however, 

considerable differences between crystallization of the inner core and crystal growth or 

analogue experiments in the laboratory and, as pointed out by Buffett et al. (2001), 
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"transferring results from one physical setting to another without proper analysis can lead 

to misconceptions".  

In the present paper, after summing up the usual metallurgical arguments, we will 

assess their validity in the case of the crystallization of the inner core.  First, let us 

point out the differences between the laboratory, or metallurgical conditions, and those 

obtaining at the ICB. 

In the case of ingot casting, crystal growth or analog experiments on ammonium 

chloride solution (e.g., Roberts and Loper, 1983; Chen and Chen, 1991), solidification 

is directional, heat is evacuated through the solid and the temperature gradients dT/dx 

(with x positive from solid to liquid) are positive and very large in the solid and the 

liquid, typically from about 4 K/cm for experiments on NH4Cl-H2O (Chen and Chen, 

1991) to 500 K/cm for high melting point alloys (Flemings, 1974). The velocity of 

propagation of the solid-liquid interface is very large, typically of the order of 0.01 to 

0.1 mm/s (Flemings, 1974). On the contrary, in the case of the inner core, heat is 

evacuated through the liquid, the temperature gradients are negative and very small in 

the solid and the liquid, of the order of 10-4 K/m, and the velocity of propagation of the 

solid-liquid interface is extremely small (0.3 mm per year).  These considerable 

differences in growth rates and temperature gradients, of about six orders of magnitude, 

must be kept in mind when considering the extent of the supercooled zone and the 

kinetics of crystallization. 

An important controlling physical quantity on the morphological instability of the 

liquid-solid interface is the gradient of the liquidus temperature against concentration  

( m  in this paper).  However,  at the ICB condition is not constrained very well.  

We do not know its value at high pressure, and it may change by several orders of 

magnitudes for different light element in solution in the liquid core. Raghavan (1988) 

c cm
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gave  for Fe-S and  for Fe-Si, and Loper and Roberts 

(1981) employed  in their analysis taking the pressure effect on  

into account.  Recent studies have suggested the importance of the oxygen as a light 

element in the core (e.g. Alfè et al., 2002; Rubie et al., 2004).  Boehler (1993) 

experimentally found that iron alloys with 10 wt% and 30 wt% oxygen had melting 

temperatures lower than Fe and FeO, but that the melting point depression disappeared 

above 60 GPa. So, the liquid core alloy might have a very small

3102.1 ×−=cm

cm

3104.1 ×−=cm

4101.1 ×−= cm

cm .  On the contrary, 

Alfè et al. (2002) obtained  of order –104K for Fe-O system (700K liquidus 

depression with 8% O) at the ICB condition by their ab initio calculations.  We will 

investigate in detail possible situations (mush or slurry) depending on the value of .  

It is found that morphological stability and constitutional supercooling may coexist.  

However, the  leading to this state seems far from that of the ICB.  It is likely that 

mushy layer exists at the ICB.  

cm

cm

cm

 

2.  Metallurgical background  

Solute redistribution (or microsegregation) generally occurs when a dilute binary 

alloy, or impure metal, is cooled below the liquidus: solute atoms are rejected by the 

purer crystals as they form. If the bulk concentration of solute is C∞in the liquid, and if 

diffusion in the solid is negligible, the freezing solid has initially the concentration 

CS<C∞. Although CS and C∞ are mass fractions, they are referred to as "concentrations" 

in the current literature; we will follow this usage here. Even though the bulk of the 

liquid may be homogeneized by convection, there exists a diffusion zone ahead of the 

interface, where the concentration of solute in the liquid is higher than C∞. As 

solidification proceeds, more solute is rejected from the solid and the concentration 
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ahead of the interface increases, until a quasi steady state is reached (Flemings, 1974; 

Kurtz and Fisher, 1989; Chalmers, 1964; Hurle,1961).  Eventual steady state is 

attained so that the concentration of the solid increases gradually and asymptotically 

approaching  as the solute stays in the diffusion zone.  In this paper, we consider 

the case of the quasi steady state in which concentration of solid is  and that in the 

liquid far from the interface is .   

∞C

SC

∞C

Since the liquidus temperature decreases as the concentration of solute atoms 

increases, the liquidus temperature in the diffusion zone, ahead of the interface, is 

lowered by an amount depending on the solute concentration, hence on the distance x to 

the interface. If the temperature gradient in the liquid intersects the liquidus curve ahead 

of the interface, the temperature of the liquid in a zone in front of the interface is lower 

than the liquidus temperature, the liquid is therefore supercooled. This situation is 

called constitutional supercooling (Rutter and Chalmers, 1953). The condition for the 

existence of a supercooled zone is that the temperature gradient in the liquid be smaller 

than or equal to the gradient of the liquidus temperature Θ, close to the solid-liquid 

interface (Tiller et al., 1953): 

00 ==

Θ
≤

xx dx
d

dx
dT       (1) 

The concentration of solute in the melt at the interface reaches a steady state value 

C0 intermediate beween the value with no mixing and the value with total mixing (no 

diffusion zone) C∞ , assumed to be independent of time, a reasonable assumption if the 

extent of the liquid zone is much greater than the diffusion layer. 

In steady state, dC(x)/dt =0, the concentration C(x) at distance x of the interface is 

solution of the equation  

    D
d2C
dx2 + v

dC
dx

= 0      (2) 
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where D is the diffusion coeficient of the solute in the liquid and v (positive) is the 

speed of the solid-liquid interface (growth rate) relative to the far fluid. With boundary 

conditions C=C0 at x=0 and C⇒C∞ at x ⇒∞, the solution is : 

   C(x) = C∞ + C0 − C∞( )exp − v
D

x 
 

 
               (3) 

In steady-state conditions, when the bulk of the liquid is stirred and 

homogeneized by convection, it may be assumed, following Nernst’s approach (Burton 

et al., 1953), that there exists a diffusion boundary layer of approximate thickness δ, 

ahead of a plane solid-melt interface. The value of δ is taken as the length scale of the 

exponential: δ=D/v.  

The gradient of the equilibrium liquidus temperature at the interface is : 

   ( 0
00

)( CC
D
vm

dx
xdCm

dx
d

c
x

c
x

−==
Θ

∞
==

)              (4) 

where mc =dΘ/dC is the slope of the liquidus in the phase diagram (mc <0). 

The actual temperature gradient ahead of the interface is obtained by writing the 

conservation of the heat flux at the interface : 

    vL
dx
dTk

dx
dTk

SL

ρ−=     (5) 

where k is the thermal conductivity (assumed equal in solid and liquid metal), L is the 

latent heat of crystallization, ρ is the density (neglecting the volume of crystallization) 

and dT/dx)S and dT/dx)L are the values of the temperature gradient in solid and liquid 

respectively. 

The solute distribution creates a gradient of supercooling d∆T/dx , with ∆T =Θ-T, 

ahead of the interface. The condition (1) for the existence of constitutional supercooling 

is d∆T/dx≥0, or 
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ρ
0     (6) 

 

3. Supercooling and kinetics of crystallization at the ICB    

We will first use eq.(6) to verify that constitutional supercooling must indeed 

exist at the ICB. We will then investigate the kinetics of growth of iron crystals in the 

supercooled zone. We assume that crystals grow, not only at the ICB but ahead of it, 

and cause the inner core to grow, by settling down and accumulating at its surface.  

For supercooling to exist ahead of the ICB, there must be some crystallization at 

the boundary. We will therefore consider the case where the crystallization right at the 

ICB provides a fraction f of the total crystallized mass, the remaining fraction (1-f ) 

being provided by a rain of crystals nucleated and grown above, in the supercooled 

zone. The volume of crystals accreting by unit area of the inner core and unit time must, 

of course, be equal to the rate of growth of the inner core. This equality constitutes a 

robust constraint on the kinetics of crystallization and accretion. 

     A similar analysis on the existence of supercooling ahead of the ICB has been 

performed by Loper and Roberts (1981).  The main difference of the analysis 

presented in this paper is the inclusion of the solidification ahead of the ICB.  This 

may be done easily using temperature gradients rather than employing the mass rate of 

solidification as in Loper and Roberts (1981).  Also, temperature gradient in the inner 

core is taken into account in this paper.  Another difference may be found in the 

expression of the flux of light material at the ICB.  Loper and Roberts (1981) wrote 

down the equation for the diffusive flux (their eq.9) and proceeded rewriting it using 

thermodynamic arguments: the concentration in the bulk of the outer core (i.e. C∞) was 

not assumed.  On the other hand, in this paper, the diffusive flux was calculated by 

solving a diffusion equation, assuming the value of C∞.  We believe that diffusion with 
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a moving boundary is represented better by solving the diffusion equation with a 

reliable estimate of C∞, rather than relying only on the thermodynamic arguments. 

 

Parameters 

Taking for the present day growth rate of the inner core the value of Labrosse et 

al. (1997):  v = 10-11 m/s =0.3 mm/year, the volume crystallized and deposited must be 

equal to 10-11 m3/m2.s  i.e., 300 cm3/m2.year. In other words, the present day growth 

rate of the inner core could be achieved, for instance, by the addition, per square meter, 

of a grain of iron of volume 1mm3 every 100 seconds in average. 

Let us now list the values of the parameters used in the calculations. Many of 

these, not unexpectedly, will result from assumptions, due to our present lack of 

information on the composition of the core and on the phase diagrams at high pressure 

of the candidate alloys.     

The coefficient of self-diffusion of liquid iron DFe near its melting point (which 

will be used later) can be calculated from the value of the viscosity at the ICB 

approximately equal to  Pa.s (Poirier, 1988, see also de Wijs et al., 1998), 

using the Stokes-Einstein relation: DFe  = (kBTm)/(3πa0η). Taking the melting 

temperature Θ0

 

at the ICB approximately equal to 5500 K (Poirier and Shankland, 1993), 

and the average interatomic distance a0 =3·10-10 m, we find  m2/s (see 

also Dobson, 2002).  DFe is not to be confused with the coefficient of hetero-diffusion 

of the light element in liquid iron D ≈ 10-9 m2/s (Poirier, 1994a). 

3106 −×=η

9105.4 −×≈FeD

With the above values for v and D, we find that the thickness of the diffusive 

layer, taken equal to the scale length, δ, is equal to about 100m for the core (whereas 

0.01< δ <0.1 mm in the case of crystal growth). 
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The latent heat of crystallization is taken equal to L ≈ 570 kJ/kg (Poirier, 1994a) 

and the thermal conductivity, assumed to be equal in the solid and the liquid, is taken 

equal to k ≈ 60 Wm-1K-1 (Labrosse et al., 1997). 

The density of the outer core is ρ ≈ 12000 kg.m-3, about 6 to 10% less than the 

density of pure liquid iron at core pressures (Anderson and Ahrens, 1994), due to the 

presence of light elements, whose nature and proportions are still controversial (Poirier, 

1994b) although silicon and sulfur (and perhaps oxygen) seem the most likely 

candidates. The inner core is about 3 to 6% less dense than pure iron at the pressure of 

ICB (Anderson and Ahrens, 1994), consistent with the possibility for some of the light 

element to enter the solid phase. We make the reasonable approximation that the 

concentration of light element in the outer core is C∞≈0.1 and that the concentration in 

the inner core is CS≈C∞/2≈ 0.05.  

     One of the major problems consists in estimating the value of the slope of the 

liquidus  and m .  (As we shall explain later, the pressure 

dependence of the liquidus temperature must be taken into account to consider the 

interfacial stability of the ICB.)  We do not know either the nature of the major light 

element in the Earth’s core nor the phase diagrams of the relevant alloys at the pressure 

of the ICB.  Suppose that the slope of the liquidus near the ICB is of the same order of 

magnitude as the slopes measured on the binary phase diagrams of Fe-S and Fe-Si 

alloys, near the Fe-rich end, at atmospheric pressure. In this case, using the diagrams in 

Raghavan (1988), we find that K for Fe-S and K for 

Fe-Si.  Loper and Roberts (1981) used K in their analysis.  Recent 

studies (Boehler, 1993; Alfè et al., 2002; Rubie et al., 2004) have pointed out the 

possible importance of the oxygen in the core. The liquidus slope of Fe-O system might 

then be expected to be much smaller than those of Fe-S and Fe-Si system according to 

CmC ∂∂ /Θ= P = ∂Θ / ∂P

2.1 ×−≈cm

m

310

−≈c

3104.1 ×−≈cm

4101.1 ×
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the high pressure experiments conducted by Boehler (1993).  Therefore, smaller cm  

might be appropriate for the Earth’s core.  On the contrary, Alfè et al. (2002) obtained 

cm  of order 104 K by their ab initio calculations for Fe-O system.  Now, we will use 

four values of cm

1−≈

0.1−

7.1 ×

dT

 for the parameter study:  K (following Loper and 

Roberts (1981), also the value is comparable with that of theoretical estimate by Alfè et 

al., 2002),  K (average of ’s for Fe-S and Fe-Si from Raghavan 

(1983)), K and K.  K may be too calm as the 

liquidus gradient at the ICB, but we nevertheless like to have this value for a 

demonstrative purpose.  We employed  K/Pa following Poirier 

(1994a).  

4101.1 ×−≈cm

c

mc≈−0.2

9109 −×−=

3103. ×cm

210×≈c

410| −−S

5−

|/ addx

m

P

m

dx

10

mc≈−0.2

4107 −×

m

Finally, the temperature gradient inside the inner core, near the ICB, is taken equal 

to  K/m (Labrosse et al., 1997). The adiabatic gradient in the outer 

core (for x>δ=D/v) is dT/dx|ad = -gαT/cP , where g = 4.4 m/s2 and T=Θ0 ≈ 5500K are the 

gravity and temperature at the ICB. Taking the coefficient of thermal expansion 

K-1, and the specific heat at constant pressure cP ≈ 860 Jkg-1 K-1 (Poirier, 

1994a), we find  K/m. 

/dT

3.1 ×≈α

.3−=

The values of the parameters used are summed up in Table 1. 

 

Constitutional supercooling near the ICB and stability of the boundary 

We can now use eq.(6) to estimate whether the condition for the existence of 

constitutional supercooling is fulfilled. We find that the LHS member of (6) is 

dominated by the value of the term Lρv/k. For all possible values of δ, the condition for 

supercooling is therefore always obtained at the ICB, even considering the gross 

approximations used.  
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In laboratory experiments on solutions of salts (ammonium chloride or sodium 

nitrate) for which most models have been built (e.g., Worster, 1986), the solution is 

vigorously cooled from below. Crystallisation therefore occurs at the surface of the 

solid and a zone of constitutional supercooling develops ahead of the planar interface. 

The interface is unstable (Mullins and Sekerka, 1964) and dendrites develop, depressing 

more the liquidus temperature and raising the actual temperature by the release of latent 

heat, thus eliminating the supercooling and rapidly creating a mushy layer where 

equilibrium is restored (Worster, 1986). In steady state, the solid grows by pushing 

ahead a mushy layer of constant thickness. 

Although there is no cooling from below in the case of the core and therefore no 

reason to consider a priori creation of dendrites, we will investigate the stability of the 

interface, at ICB, using the approach taken by (Mullins and Sekerka, 1964). 

The criterion they use for stability (their eq. 32) can be written : 

   0
2
1

<
Θ

+







+−

dx
d

dx
dT

dx
dT

LS

    (7) 

There are however major differences between the cases they consider and that of 

the inner core : the temperature gradients in the solid and the liquid are negative in our 

case and positive in theirs, and the liquidus temperature they consider is independent of 

the distance to the interface, whereas, in the core, the liquidus temperature increases 

with pressure, and therefore depth.  

The temperature gradient in the liquid depends on f , since eq. 5 must now be 

written 

   fvL
dx
dTk

dx
dTk

SL

ρ−=      (8) 

Using eq. 6, we tested the stability of the system with respect to f and , and 

calculated the growth rate against the wavelength of perturbation for various values of 

cm
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the two parameters, taking the pressure effect into account.  Fig.1 shows the 

temperature gradients necessary to investigate the existence of constitutional 

supercooling of the system and interfacial stability, and Fig.2 shows the linear growth 

rates of sinusoidal perturbation. See Appendix A for the details of the stability analysis.  

It is confirmed that constitutional supercooling ( ) occurs 

almost certainly under the ICB conditions (Fig.1).  There is some range in f for which 

the interface is stable (eq.7) for all ’s considered in this paper (Fig.2).  However, 

the region in f where constitutional supercooling AND interfacial stability becomes 

narrower with increasing 

LdxdTdxd |// >Θ

cm

cm

=cm

.  Because the region is extremely narrow and f is a 

quantity determined as a result of the interplay of solidification, heat transfer and crystal 

kinetics, it is virtually no chance to attain constitutional supercooling and interfacial 

stability at one time with ,  and  K.  On the 

contrary, it might be possible to have constitutional supercooling and interfacial 

stability with K. We found that, for f<0.24 there is no supercooling; for 

0.24<f<0.43 the interface is stable, even though there is supercooling; for f >0.43, the 

interface is unstable.  (For the supercooled and stable region we will take 0.2<f<0.4 , 

because the second digit of the bounds of f can easily be changed by employing 

different values of physical quantities.)   

210.1− 0× 3 4101.1 ×−103.1 ×−

2.0−=cm

 

Mushy layer or slurry layer? 

Linear instability of the solid-liquid interface itself does not necessarily lead to 

creation of a mushy layer.  For example, if the growth rate of instability is small 

enough such that the time-scale to fill up the supercooled layer is long compared with 

the time-scale of our concern (say, lifetime of the Earth), it is not necessary to consider 

about possible creation of mush layer.   
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Table 2 summarizes the maximum growth rates and corresponding wavelength of 

linear instability with ,  and −  K.  f=1 is 

employed.  Corresponding time-scales are at most about 100 years, very short 

compared with geological time-scale.  A mushy layer will then be created at the ICB. 

2100.1 ×−=cm 3103.1 ×− 4101.1 ×

In case that K, which may not be appropriate for the ICB condition, 

the interface is stable when 0.2<f<0.4. Therefore, a slurry layer could exist at the ICB.  

Even if the interface were unstable, the maximum growth rate of the instabilities, ε(t) 

(see Appendix A), would occur for a wavelength of 20 m and would be very small, of 

the order of 10-12 s-1: a bump of 1 mm would grow by 0.03 µm in one year, while the 

core grows by 0.3 mm.  However, note here that the time constant corresponding to 

10-12 s-1 is 32,000 years, which is very short compared with the age of the inner core 

(around 1Ga, see Labrosee et al., 2001).  This might indicate that a mushy layer can be 

created if f is sufficiently large with K.   

2.0−=cm

2.0−=cm

It is very likely that the mushy layer exist at the ICB.  Nevertheless, a 

one-dimensional model of the quasi-steady slurry layer with K is shown in 

Appendix C, and possible nucleation mechanism is presented in the Appendix B.  

Obtained supercooling is of order 0.1K near the ICB and excess of light element is 

about 3% at the ICB.  The compositional difference will provide enormous Rayleigh 

number and it will be almost certain that to sustain such layer is not probable: the light 

element will be thrown away in form of plume or blob.  Also, it is found that the slurry 

layer must have nuclei through heterogeneous nucleation (Appendix B).  To supply 

enough number of nuclei steadily into the slurry layer (10-4 nuclei/m3 in this case 

supposing the average final radius is 10-3m) during the course of the inner core growth 

2.0−=cm
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seems difficult.  Therefore, with even very small value of , slurry layer will not 

be probable. 

|| cm

 

4. Conclusion 

Transfer of results applicable to the crystallization of metal ingots and saline 

solutions cooled from below has led to the generally unquestioned acceptance that that 

there exists a sizeable mushy layer at the inner core boundary of the Earth. The 

metallurgical conditions are, however, very different from the ones obtaining at the ICB, 

in particular, as the growth rate and the temperature gradients are smaller by six orders 

of magnitude. 

We assessed the possibility of existence of a supercooled zone ahead of the ICB 

and we investigated the situation arising from crystallization of iron in this layer. Using 

a modified Mullins and Sekerka criterion, we found that creation of mushy layer at the 

ICB is likely if liquidus slope against concentration is of order 100 K or larger.  

It is found that, if mc is of order 0.1K and as long as a fraction between about 20 

and 40% of the total volume increase of the inner core is produced by crystallization at 

the ICB, the solid-liquid boundary is stable, so that no dendrites can grow. Under these 

conditions, instead of a mushy layer, we may have a slurry layer, in which crystals grow 

from preexisting nuclei and settle down to the boundary. However, to supply enough 

number of nuclei continuously in the course of the inner core growth seems problematic 

because the nucleation is possible only through heterogeneous nucleation.  Also, it 

seems difficult to sustain a buoyant slurry layer against Rayleigh-Taylor type 

instability.   

In conclusion, the analysis given in this paper supports the existence of the mushy 

layer at the ICB.   
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APPENDIX A: Linear stability of a planar interface during solidification with the 

pressure effect on liquidus temperature 

 

The linear stability analysis of a planer interface during crystallization made by 

Mullins and Sekerka (1964) is generalized in this appendix. Mullins and Sekerka 

assumed that the liquidus is a function of concentration only, .  It is 

necessary to take the effect of pressure on liquidus temperature into consideration to 

discuss the interfacial stability of the ICB.  The following is a brief summary of the 

analysis with .  

Θ = Θ(C)

Θ = Θ(C,P)

As Mullins and Sekerka (1964), we assume there is no convection in the fluid.  

Also, crystallization above the solid-liquid interface is neglected.  Suppose an 

infinitesimally small sinusoidal perturbation of the form  

x =ψ (y, t) = ε(t)sinqy                            (A.1) 

is applied on the interface.  Although the case with one-dimensional perturbation is 

shown in this appendix, the results found in the following can be generalized to 

two-dimensional case by replacing  and q .  

In the analysis, it is assumed that the temperature and concentration are in steady state 

with pulling velocity V (growth velocity of the interface).  The effect of pressure on 

the liquidus temperature comes in as a part of the boundary conditions.  Because the 

solid-liquid interface, , is at the liquidus temperature , the 

temperature at the interface (= ) is written as 

x =ψ (y, z, t) = ε(t)sinqyysin qz z

Θ = Θ(

2 = qy
2 + qz

2

x =ψ C,P)

Tψ

         T ,                (A.2) ψ = mC (Cψ − C0) − ρgmPψ + Tm − Tm
˜ Γ q2ψ

where  
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         m ,                    (A.3) C = ∂Θ / ∂C(< 0), mP = ∂Θ / ∂P(> 0)

Cψ  is the concentration at the interface,  is the concentration of the interface if 

there is no perturbations, ρ is the density, g is the acceleration of gravity (hydrostatic 

pressure  is assumed),  is the melting temperature without the 

perturbations.  The last term in eq.(A.2) represents the effect of curvature of the 

interface on melting represented with capillary constant , where σ is the 

specific liquid-solid interfacial free energy and L is the latent heat.  

C0

= Θ 0dP = −ρgdx Tm

˜ Γ = σ / L

The interfacial velocity (including that due to perturbation) must be in agreement 

with diffusion considerations, the following conditions must be satisfied; 

       V +
∂ε
∂t

sinqy = 1
L

k
∂T
∂x

 
 

 
 S,ψ

− k
∂T
∂x

 
 

 
 L,ψ

 

  
 

  =
D

Cψ (β −1)
∂C
∂x

 
 

 
 ψ

,   (A.4) 

where  is the thermal conductivity in the solid and liquid (assumed to be identical), 

D is the material diffusivity, and β is the partition coefficient which is assumed to be 

0.4.  After some calculations, the following expression for the growth rate of the 

disturbance, , is found as; 

k

εε /)/( t∂∂

 

,
))/()((2

))}/((2))/()(())/()(~(2{/
*

***2

sDVqGGGqm
DVqGmsDVqGGsDVqqTmgVqt

CC

CCmP

−−′+
−+−′+−−Γ+−

=
∂∂ ρ

ε
ε

     

                                                              (A.5) 

where , , G and G' are the temperature 

gradient at the interface without the perturbation in liquid and solid, respectively,  

is the concentration gradient when disturbance is zero, and 

q* = (V / 2D) + V / 2D( )2 + q2[ 1/ 2] s = 1− β

GC

κ  is the thermal diffusivity 

of the solid and liquid, assumed to be equal. 

The growth rates of perturbation are evaluated for  (v  m/s) with V = fv =10−11
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f=0.2, 0.4, 0.6, 0.8 and 1.0, by using the values of physical quantities listed in Table1, 

and plotted against wave length of perturbation (= ) in Fig.2.  2π / q

unstable

stable

dP
dx

=
dΘ
dx

dΘ /

The fundamental stability criterion may be obtained as Mullins and Sekerka 

(1964) did.  The system is stable if the maximum growth rate with respect to q is 

negative.  By eq.(A.5), the approximate criteria may be written as  

         −
1
2

(G' +G) + mCGC − ρgmP > 0  

         − 1
2

(G' +G) + mCGC − ρgmP < 0                    (A.6) 

The effect of pressure on the liquidus temperature is stabilizing the system.  By the 

definitions of mC, GC and mP,  

          mCGC − ρgmP =
∂Θ
∂C

dC
dx

+
∂Θ
∂P

,                  (A.7) 

and the stability criteria may be written as, by using , dx

           −
1
2

(G' +G) +
dΘ
dx

< 0 : stable.                        (A.8)  

The region of stability with respect to f is shown in Fig.1.   

 

APPENDIX B: Nucleation and growth of crystals in a supercooled layer 

As originally proposed by Loper and Roberts (1978,1981), one may assume that 

"virtually all the solidification occurs ahead of the inner core boundary" in the zone of 

constitutional supercooling. Roberts and Loper therefore envisioned the existence of a 

slurry layer, suspension of crystals in the fluid, whose hydrodynamics they studied. 

In the present work, we consider that grains of iron settle to the ICB. Crystals 

nucleate within the supercooled layer (the region where ∆T≥0) and, once nucleated, 

they grow, with a growth rate depending on supercooling (see below). As they are 

denser than the fluid, they fall toward the ICB with the Stokes velocity and as they 
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grow, they fall faster. The inner core therefore grows, partly by crystallization at the 

interface and partly by accretion of a rain of crystals of various sizes (depending on the 

height from which they have fallen) pushing ahead a zone of average supercooling, 

where grains continually nucleate, grow and fall. 

In the laboratory, homogeneous nucleation occurs practically only in small 

supercooled droplets; in most cases, heterogeneous nucleation takes place on 

preexisting nucleants, tiny particles of dust or other impurities. In the case of the core, 

the possibility of homogeneous nucleation cannot be rejected offhand.  

The homogeneous nucleation rate is given by Turnbull (1950): 

   












∆
−=

TkG
BAN

Bf
2

3

)(
exp σ      (B.1) 

where N  is the number of nuclei formed per m3 and second, A ≈ 1039 s-1m-3 for liquid 

metals, B=16π/3≈16.75 for spherical grains and kB is Boltzmann's constant. The 

quantity σ is the interfacial energy between liquid and solid; for iron, we may take 

σ≈0.204 J.m-2.  

∆Gf

  

=∆Sf ∆T is the difference in free energy between crystal and liquid phases 

(free energy of fusion), where ∆Sf  is the entropy of fusion, respectively and ∆T  is 

the supercooling. Taking ∆Sf = 6.5 J/mol.K = J/m3.K for ε-Fe (Poirier and 

Shankland, 1993), we obtain ∆Gf=1.485·106 ∆T  J/m3. 

610485.1 ×

Taking the temperature at ICB equal to 5500 K, we obtain 

   







∆

×
−= 2

5
39 104.8exp10

T
N    s-1m-3    (B.2) 

For values of supercooling of the order of a few degrees, the number of nuclei 

formed by homogeneous nucleation is essentially zero.  
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Heterogeneous nucleation remains therefore the only possibility. For the sake of 

simplicity, we may reasonably assume that there is a uniform distribution of nucleant 

particles in the zone of constitutional supercooling and we will take the number N of 

nuclei formed per unit volume and unit time as a free parameter. 

The growth rate of crystals is given by Kirkpatrick (1975) (and also, Loper 

(1992) : see the note below eq.(B.7)). It depends on the degree of supercooling ∆T(x) = 

Θ(x)-T(x), which, in turn, depends on the distance x to the interface. 

The linear growth rate of a crystal is given, in m/s, (Kirkpatrick, 1975) by : 

    


















 ∆
−−=Γ

RT
G

a
D fFe exp1

0

    (B.3) 

where DFe is the self-diffusion coefficient of the melt, a0 is an average interatomic 

distance in the liquid, taken equal to 0.3 nm, and ∆Gf  is the free energy of fusion, 

which can be written, as above, ∆Gf  =∆Sf∆T, and as ∆Sf∆T<< RT , we can write 

    Γ ≈
DFe

a0

∆Sf ∆T
RT

     (B.4) 

or 

       m/s    (B.5) T∆×≈Γ −3102

 A nucleus can grow when the free energy ∆Gf lost by increasing the volume of a 

grain becomes greater than the surface energy gained by increasing its area. This 

happens for a critical radius rc=2σ/∆Gf

 

≈ m.  9102 −×

Let us assume, for the sake of simplicity, that in 1 second, N nuclei per m3 grow, 

and fall toward the ICB as they grow. 

The Stokes velocity (assumed to be reached rapidly) is 

VS =
2∆ρgr 2

9η
.                                                          (B.6) 
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 ∆ρ≈600 kg/m3 is the difference in density between solid and liquid core, g = 4.4 ms-2 

is the gravity at ICB,  Pa.s is the viscosity of the liquid core near ICB and r 

is the radius of an iron grain assumed spherical, varying linearly with time, according to 

(B.6). With these values, the Stokes velocity can be written : 

3106 −×=η

    VS ≈ 105 Γ2t2.                              (B.7) 

The growth rate Γ and the Stokes velocity (B.7) will be used in the analysis given in 

Appendix C.   

 

Although it is not employed in this paper for simplicity, note here that nonequilibrium 

theory of slurry is studied by Loper (1992), and growth rate of the crystal in 

supercooled zone is evaluated.  The growth rate is evaluated to the dominant order as 

    
rCdt

dr
L
00µρ

∞Ψ
=                            (B.8) 

where  is the measure of departure from liquidus equilibrium far from the particle 

written as 

∞Ψ

LL CCLp 000 )(µδ ++−=Ψ∞ ,                     (B.9) 

0µ  is change of chemical potential of liquid with liquid composition,  is the 

concentration of light material far from the crystal, and  is volume expansion upon 

melting.  By employing 

LC0

0δ

7
0 104.4 ×=µ J/kg, m3/kg (Loper and Roberts , 

1981), and , we obtain 

6
0 0.1 −=δ 10×

1.00 =LC

   0
6106.2 rtr +×= −                               (B.10) 

and  

   V .                                 (B.11) tS
1105.2 −×≈
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APPENDIX C: A one-dimensional quasi-steady state model of a slurry layer 

( m K) 2.0−=c

We now use the considerations outlined in section 3 to construct a simple model of a 

slurry layer in order to examine the amount of supercooling and profile of concentration 

in the layer.  The results will provide some information if such layer may actually exist 

in nature.  Let us sum up the simplifying assumptions: 

i) The main body of the liquid core is well mixed by convection, so that the 

temperature gradient is adiabatic: dT/dx|ad

  

 and the concentration of light element is 

uniform and equal to C∞. 

ii) Due to solidification at the interface and precipitation of crystals from the 

supercooled layer, the solid-liquid interface (x =0, the top of the crystal pile) moves 

with velocity v.  The ratio of the amount of iron crystallized at the ICB to the total 

amount crystallized is equal to f <1.  (The assumption of a smooth solid-liquid 

interface needs some more justification.  This depends on the rate at which the crystals 

raining onto the surface are incorporated into the inner core by sintering.) 

iii) Close to the ICB, there exists a boundary layer of thickness δ =D/v ≈ 100 m, 

where diffusion of light element is dominant. We assume that the temperature gradient 

is adiabatic beyond δ , and that the temperature profile in the layer of thickness δ  is 

solution of the diffusion equation. 

iv) Even though the supercooled layer extends beyond δ into the outer core, we 

assume that most of the crystallization occurs in the layer of thickness δ . Hence, we 

take δ as the thickness of the slurry layer. 

 



  23  
v) Crystallization in the slurry layer releases heat and light element, thus creating 

a source term proportional to the crystallized volume in the diffusion equations for 

temperature and concentration. 

vi) The volume rate of solidification per unit volume and unit time in the slurry 

layer is  

    φ(x)=Α∆T(x)      (C.1) 

where ∆T(x) = Θ (x)-T(x)  is the value of supercooling at distance x from the ICB.  

The value of φ (x) is constrained by the relation: 

         (C.2) φ
0

δ

∫ x( )dx = 1 − f( v)

Α is a constant whose value will be found as part of the solution. 

In the diffusive boundary layer (slurry layer) of thickness δ, the equations 

governing the temperature T and concentration C of light element are: 

   κ
d2T
dx2 + v

dT
dx

= −
L
cP

φ(x) ≡ QT (x)     (C.3) 

   D
d2C
dx2 + v

dC
dx

= − C(x) − CS[ ]φ(x) ≡ QC (x)        (C.4) 

where κ is the thermal diffusivity, D is the diffusion coefficient of the light element , cP

 

is the specific heat at constant pressure, L is the latent heat of crystallization and CS is 

the concentration of light element in the inner core. 

The liquidus temperature Θ is a function of concentration and pressure. Assuming 

hydrostatic equilibrium, we have: 

   
dΘ
dx

= mC
dC
dx

− ρgmP      (C.5) 

where mC =
∂Θ
∂C

  and  mP =
∂Θ
∂P

  at the ICB. Integrating eq. (C.5), we obtain 

   Θ = .     (C.6) mC C(x) − C0[ ]− ρgmP x + Θ0
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The boundary conditions for integration of eqs (C.3) and (C.4) are the following 

at the solid-liquid interface (ICB): 

   T=Θ0

        

(C.7) 

   







−=

LS dx
dT

dx
dT

L
kfv

ρ
     (C.8) 

where k is the thermal conductivity (taken equal in the solid and liquid) and 
Sdx

dT  and 

Ldx
dT are the temperature gradients in the solid and liquid, respectively.  Note that 

eq.(C.7) may not be exactly true because x=0 is the top of the crystal pile that might 

have temperature slightly different from the liquidus temperature.  However, the 

deviation is expected to be very small and we employ the condition (C.7) as first order 

approximation. 

From eq. 4 (with v replaced by fv), we see that the concentration gradient at the 

ICB (x=0) must satisfy 

   fv =
CS − C0 dx

 (C.9) 
D dC

     

   C=C∞

       

(C.10) 

where C0

 

 is the concentration at the interface (x=0), which will be determined as part 

of the solution. 

At the edge of the diffusive layer (x =δ ), we must have 

Eqs.(C.3) and (C.4) are solved iteratively.  

Initial profiles for temperature and concentration are first specified in a layer of 

thickness λ. Using eq.(C.9), λ is given by: 

   
fv
D

CC
CC

dx
dC

CC

S

x

0

0

0

0

−
−

=
−
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=

∞λ      (C.11) 
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For concentration, we take 
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and for temperature, 
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where 
addx

dT  is the adiabatic gradient in the outer core near the ICB. 

The liquidus temperature is taken as 
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From eqs (C.13) and (C.14), we obtain the supercooling ∆T 
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 (C.15) 

 

Note that supercooling is possible only if 

   0
00

>−−
== x

P
x

C dx
dTgm

dx
dCm ρ     (C.16) 

Starting with the initial profiles of temperature and concentration, and a given 

value of f, we calculate the value of ∆T(x) and of φ (x)  and A from eqs (C.15) and 

(C.1), and therefore the values of the source terms QT(x) and QC(x) in eqs (C.4) and 

(C.5).  
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The diffusion eqs.(C.3) and (C.4) are then solved with the boundary conditions 

(C.7), (C.8) and (C.9), (C.10) at x=0 and x=δ . 

Values of A and C0 are found, as well as new profiles T'(x) and C'(x) which are 

used to solve again the diffusion equations, and so on until a satisfactory convergence is 

obtained. Convergence is obtained after about 3 iterations. 

We find the steady-state profiles as shown in Fig. 3 for f =0.3 (in the region of 

interface stability and supercooling) and f =0.5 (in the region of interface instability, but 

very small relative growth rate: 10-13 s-1).   

The values of A and the concentration C0 at the ICB are: 

 For f =0.3       C0 ≈0.125 111047.1 −×≈A

 For f =0.5           C0 ≈0.136 111087.2 −×≈A

From the values of Α, we can estimate the number  of nuclei necessary for 

satisfying the constraint that the total volume of crystallized iron par square meter is 

equal to the growth rate v of the inner core. 

ncN

By definition of φ(x), we have 

   ( )
dt
drrNx nc ><π⋅= 24φ      (C.17) 

where <r2> is an average of the square of the radii of the crystals (assumed spherical 

for simplicity), representative of the population, and dr/dt  is the linear growth rate Γ, 

given by eq.(B.5): /s. T∆×≈Γ −3102   m

We can therefore write 

       (C.18) ( ) TNrx nc∆><π×= − 23108φ

and by comparison with eq.(C.1), we have 

   .     (C.19) ncNrA ><×= − 23108 π
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We see, from Fig.3, that the maximum supercooling at about 100 m from the ICB is of 

the order of 0.1 K. Crystals starting to form on nuclei at this height would grow and fall 

rapidly, hitting the boundary in times of the order of one minute, with radii of the order 

of one centimeter (eqs B.5 & B.7). However the distribution of nuclei is assumed to be 

uniform in the slurry layer and the crystals formed closer to the boundary would grow 

much more slowly, as the supercooling goes to zero near the ICB. 

The number of nuclei, per unit volume and unit time, necessary for the crystals 

growing ahead of the ICB to provide a fraction (1-f) of the total increase of volume of 

the inner core, can be found, as a function of the final radius, by eq. (C.19). As an 

example, for f=0.3, Α≈10-11 and Nnc≈ 10-4 nuclei/ m3, if the average final radius (square 

root of <r2>) is equal to 10-3m. The existence of a distribution of radii makes a 

rigorous calculation difficult. However, the estimate gives a rather reasonable value of 

the average radius and provides a rough idea of the population of the slurry layer in 

steady state, leading to the qualitative conclusion that the layer is not densely crowded 

with crystals. As a consequence, the effective viscosity of the slurry layer should not be 

very different from the viscosity of entirely liquid iron.  
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TABLES 
 
     Table 1.  The values of the parameters used in this study. 

            
Growth rate of the inner core    v  10-11 m/s 
Viscosity of the outer core    η  6·10-3 Pa.s 
Melting temperature at ICB    Θ0  5500 K 
Coefficient of self-diffusion of liquid Fe  DFe 4.5·10-9 m2/s   

Concentration of light element in outer core  C∞

  

0.1 

Coefficient of heterodiffusion of light element D  10-9 m2/s 
Latent heat of crystallisation at ICB   L  570 kJ/kg 
Thermal conductivity of inner & outer core  k  60 W/m.K 
Thermal diffusivity of outer core   κ  6·10-6 m2/s 
Specific heat at constant pressure   cP

  

860 J/kg.K 
Density of outer core     ρ  12000 kg/m3 

Concentration of light element in inner core  CS

  

0.05 
Slope of the liquidus Θ (C)  at ICB   mC   -0.2- −  K 4101.1 ×
Slope of the liquidus Θ (P)  at ICB   mP  9·10-9 K/Pa 
Temperature gradient in the inner core  dT/dx|S    -1.7·10-4 K/m 
Adiabat in the outer core    dT/dx|ad    -3.7·10-4 K/m 
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Table 2 
Maximum growth rate of linear instability 
 
  (K)  growth rate (sec-1) wavelength (m) cm

     0.68 2100.1 ×− 101008.3 −×
     0.19 3103.1 ×− 91012.1 −×
     0.065 4101.1 ×− 91025.3 −×
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FIGURE CAPTIONS 
 
Figure1.  The region of stability and supercooling, see equations 1 and 7 for the 

criteria of supercooling and stability. . The values of physical quantities listed in 
Table1 are used.   (a) K, (b) K, (c) K, 
and (d) K .  Note that f is the fraction of the total crystallized 

mass onto the ICB.   

2.0−=cm 2100.1 ×−=cm 3103.1 ×−=cm
4101.1 ×−=cm

Figure2. Growth rate of the perturbation normalized to its amplitude ε for various f with 
respect to wave length of perturbation. The values of physical quantities listed in 
Table1 are used.   (a) K, (b) K, (c) K, 
and (d) K 

2.0−=cm 2100.1 ×−=cm 3103.1 ×−=cm
4101.1 ×−=cm

Figure3.  Steady state profiles of fluid and liquidus temperatures (upper panels) and 
concentration (lower panels) for f=0.3 and 0.5.   
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