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ABSTRACT

DNA, RNA and proteins are basic biopolymers that are used universally among
almost all biological systems. Inferring the functions of these molecules from their
sequential or structural information is one of the most important problems in compu-
tational biology. As the so-called next generation sequencing (NGS) technologies and
molecular dynamics simulation technologies are developed, it has become realistic to
comprehensively investigate the space of sequences/structures that have never been
observed. To advance such studies further, we need to develop efficient data analy-
sis methods that are not dependent on alignment and more sophisticated (de novo)
genome assemblers that can handle large and complex genomes such as metagenomes
or eukaryotic genomes. We study these problems in this thesis.

In the study of alignment-free data analysis methods, we investigate the possibili-
ties of alignment-free annotation methods for sequences and structures. Classification
by composition-based string kernels and support vector machines (SVMs) is an exist-
ing alignment-free method for function prediction. Particularly, the spectrum kernel
achieves relatively high classification accuracy and highly efficient computation based
on the suffix tree. Thus, we start from this method and design better methods by
applying more advanced data structures developed in string algorithms community.

In Chapter 3, we propose the b-suffix array data structure to make it possible to
compute the kernel function that we introduce in Chapter 4 in time independent of
the dimension of the feature space. This data structure is a generalization of the suffix
array and it can also be applied as a string index that supports the search of patterns
with wildcards in predetermined positions. Such pattern matching problems arise in
spaced seed-based sequence homology search. We also propose non-trivial construction
algorithms for the b-suffix array.

In Chapter 4, we propose the gapped spectrum kernel, a string kernel that is
based on the frequency of substrings as well as the spectrum kernel. Different to the
spectrum kernel, we introduce gaps (wildcards in pattern matching) to the substrings.
A similar idea is used in an existing method called wildcard kernel. The wildcard kernel
achieves high prediction accuracy by considering all gap patterns of a given pattern
length and weights, but it was not known what happens when multiple but not all
gap patterns are used. Applying the results from Chapter 3, we propose an efficient
algorithm to calculate the gapped spectrum kernel and an algorithm to make a SVM
prediction in time independent of the size of the support vectors. We also show that
the sum of the gapped spectrum kernels corresponding to a given length and weights
matches the wildcard kernel. From this relationship, efficient methods for wildcard
kernel computation and prediction are derived. We also experimentally show that the
sum of a few gapped spectrum kernels corresponding to randomly chosen parameters
can predict protein families comparatively accurately as the wildcard kernel.

In Chapter 5, we study protein structure analysis. Protein structures are more
directly related to functions than sequences are and thus, if available, they can be
important clues to infer functions. On the other hand, structural alignment, the de
facto standard method to measure structural similarities, is more computationally
expensive than sequence alignment. Thus, in Chapter 5, we give an alignment-free
kernel for protein structures applying the techniques for alignment-free kernels for
sequences we saw in Chapter 4. Also, we propose an efficient method for kernel
computation, which is based on an existing data structure called the two-dimensional
suffix tree, and prediction method that takes time independent of the size of support
vectors. We experimentally show that, compared to the most accurate similar existing
method, the proposed method can achieve comparative accuracy while it runs more
than 300 times faster.



We consider genome assembly problem in Chapter 6. Most existing genome assem-
blers first construct a graph that represents the overlaps of reads and try to recover
the original sequence or long substring of it by following a path of the graph. While
graph construction has been studied extensively, there is no established method for
the part of recovering the original sequence from the graph. Particularly, one big
open problem is how to process substructures introduced into the assembly graph by
sequencing errors, repeat regions, diploidy/polyploidy or possibly other reasons. Ex-
isting methods detect such substructures by using simple motifs. Sometimes, however,
complex substructures that cannot be detected by simple motifs considered in previ-
ous work do appear. What is required ultimately is to determine how to process these
substructures but, different to simple motifs, detecting such complex substructures
is already non-trivial. We, therefore, give a graph theoretic characterization of these
complex substructures, which we name superbubbles, and clarify several properties
of them. We also propose an efficient algorithm to detect all superbubbles in a given
graph. The algorithm takes time quadratic to the number of vertices in the worst-case,
but it runs very efficiently in practice. We show the algorithm runs in linear time in
expectation under a probabilistic model.

As a whole, in this thesis, we develop alignment-free algorithms to facilitate com-
prehensive studies of biological sequences and structures.



論文要旨

DNA, RNA, タンパク質といった高分子は全ての生物において基本的な役割を果たし

ている. これらの機能や性質をその配列や構造の情報から予測することは計算生物学の

最も重要な問題である. 次世代シーケンサー（NGS）や分子動力学シミュレーション技

術の発展にともない今までは観測されてこなかった配列・構造空間の網羅的な探索が可

能となってきている. そのような研究をさらに推し進めるには, アラインメントに基づ

かない, より効率的なデータ解析手法の設計および, メタゲノムや真核生物のゲノムな

ど巨大で複雑なゲノムにも対応できるより高度な (de novo) ゲノムアセンブリ手法が求

められている. 本論文では網羅的な配列・構造データのアラインメントフリーな解析を

実現するために, これらの問題に取り組む.

アラインメントに基づかないデータ解析手法の研究では, アラインメントフリーな配

列・構造データのアノテーション手法の可能性を探る. 機能予測におけるアラインメ

ントフリーな既存手法として部分文字列などの頻度に基づく文字列カーネルと support

vector machine (SVM) を使った分類手法がある. とくに spectrum kernel という既存

手法では比較的高い予測精度に加え, 接尾辞木を用いた高速な計算が可能である. そこ

で, この手法をベースに, 文字列アルゴリズムの分野で発展してきたより高度なデータ

構造も援用しつつ, さらに発展的な手法の開発を行う.

まず３章では, ４章で提案するカーネル関数を特徴空間の次元によらない計算量で求

めるために, 接尾辞配列の一般化である b接尾辞配列というデータ構造を提案する. こ

のデータ構造は接尾辞配列の一般化であり, 特定の位置にワイルドカードを含むパター

ンの検索にも応用可能である. このようなパターンマッチングは実際に spaced seed を

用いた配列相同性検索において必要とされている. ３章ではこの他に b接尾辞配列の非

自明な構築アルゴリズムも提案する.

４章では spectrum kernelと同様に部分文字列の頻度に基づく gapped spectrum kernel

という文字列カーネルを提案する. Spectrum kernel との違いは部分文字列の中にギャッ

プ（パターンマッチにおけるワイルドカード）を導入することである. 類似のアイディ

アは wildcard kernel という既存手法でも使われている. Wildcard kernel は特定のサイ

ズと重みのギャップパターンを全て同時に考慮することで spectrum kernel よりも高い

予測精度を実現しているが, 必ずしも全てではない複数のギャップパターンを考慮した場

合にどのようなことが起きるのかは知られていなかった. ３章の結果を応用し, gapped

spectrum kernel を求める効率的なアルゴリズムを提案する他, SVMを使った予測に必

要な計算をサポートベクターのサイズによらない計算量で行う手法も提案する. また,

特定のサイズと重みに対応した gapped spectrum kernel の和が wildcard kernel に等

しいことを示す. この関係により, wildcard kernel の計算と SVMのための効率的な

アルゴリズムが得られる. また, 計算機実験により, 少数のランダムに選んだ gapped

spectrum kernel の和によって, wildcard kernel を用いるのと遜色のない精度でタンパ

ク質の family を予測できることを示す.



５章ではタンパク質立体構造に対するアノテーションに取り組む. タンパク質の構造

は配列よりも直接的に機能に関係しており, 既知であれば機能推定のための重要な手が

かりになる. 一方立体構造の類似度の指標として標準的に使われている構造アラインメ

ントとよばれる手法は配列アラインメントよりもさらに多くの計算量を必要とする. そ

こで５章では４章において考えた部分文字列の頻度に基づくアラインメントフリーな文

字列カーネルのテクニックを立体構造に応用し, 構造に対するアラインメントフリーな

カーネルを与える. また, 二次元接尾辞木とよばれる既存のデータ構造を用いた効率的

なカーネルの計算法と, サポートベクターのサイズによらない予測法を提案する. タン

パク質 superfamilyの予測実験では, 提案手法が類似の既存手法で最も精度のよいもの

と同程度の予測精度を, 300倍以上高速に達成できることを示す.

ゲノムアセンブリに関しては６章で扱う. 既存のゲノムアセンブリ手法ではまずリー

ドのオーバーラップを表すグラフを作り, そのグラフのパスをたどることで元の配列, ま

たはその中に含まれる長い部分文字列を復元するというアプローチが主流である. グラ

フの構築に関してはすでに多くの研究が行われているが, グラフから元の配列を復元す

る部分に関してはまだ確立された方法は存在しない. とくにシーケンスエラー, リピー

ト配列, 多倍体ゲノムなどによってグラフの中に導入される部分構造をどのように処理

するかが一つの大きな問題となっている. 既存手法ではグラフに含まれるシンプルなモ

チーフを使ってこのような部分構造を検出していた. しかし場合によっては既存手法で

考えられていたようなシンプルなモチーフでは検出できない複雑な部分構造が出現する

ことがある. 最終的にはこれらの部分構造をどう処理するかが問題になるが, それ以前

にこれらの部分構造はよりシンプルなモチーフと異なり検出自体が非自明である. そこ

で我々はこのような複雑な部分構造のグラフ理論的な特徴づけとして superbubble とい

う部分グラフのクラスを定義し, その性質を明らかにする. また, 与えられたグラフに含

まれる全ての superbubble を検出するための効率的な手法を提案する. 提案手法はグラ

フの頂点数に対して最悪で二乗の計算量を必要とするが, 実際にはひじょうに効率的に

動作する. 我々は確率的なモデルのもと, 提案手法が平均的に線形時間で動作すること

を示す.

全体として, 本論文では網羅的な生物学的配列・構造研究にむけたアラインメントフ

リーアルゴリズムを開発する.
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Chapter 1

Introduction

1.1 Background

Nucleic acids (DNA and RNA) and proteins are responsible for almost all biolog-
ical functions. Understanding these molecules is the central problem of molecular
biology and has a practical impact on medicine.

The sequential or structural aspects of these molecules are intimately re-
lated to their meanings and functions. For example, DNA sequences1 contain
blueprints of proteins and programs to control protein production processes and
the structures of enzyme proteins specifically determine which enzyme acts on
which substrate. While it is usually difficult and time-consuming to determine
the function of molecules directly by experiments, there are various technologies
to obtain the sequence or structure data of biological molecules. Thus, it is
important to automatically annotate these sequences and structures.

What underlies most sequence analysis methods is the assumption that se-
quential similarities imply functional similarities. This assumption is not always
but often true. The standard method to measure sequence similarities is se-
quence alignment such as global alignment [97] or local alignment [125]. Align-
ment is a type of generalization of the edit distance and intuitively, it represents
‘alignment’ of sequences such as the one in Figure 1.1. Given a newly found
sequence, one way to predict its function is database search, i.e., to find se-
quences in the database that are similar to the new sequence. Since exhaustive
comparison by alignment is too slow, heuristic database search methods such as
FASTA [78] and BLAST [3] were developed. A more accurate annotation method
is to extract highly conserved patterns, called motifs, from sequences that are
already associated to some function. Upon a newly derived sequence is given, the
prediction is made by checking if the motif matches to the new sequence. The
types of motifs include consensus sequences [120, 121], position specific scoring
matrices [127] and hidden Markov models [63]. Even more accurate annotation
is possible by deriving discrimination rules using both positive data (associated
to the function) and negative data (not associated to the function). The com-
bination of support vector machines(SVMs) [133] and string kernels is a major
class of methods in this category.

Protein structures are more directly related to the functions than sequences
are. Also, there are proteins that are not similar at sequential level but share

1In biology and related fields, the term‘ sequence ’is used to mean string. We use these
terms exchangeably in this thesis.
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Figure 1.1: An example of the sequence alignment. ACACAG can be transformed to
CATCAT by deleting the first A, inserting T just before the second C and modifying
the last character from G to T.

similar structures and functions.2 Therefore, if the structure of a protein with
unknown function is obtained, structure analysis is an important tool to infer its
function. Alignment is also considered for protein structures, where correspon-
dence between atoms (usually α-carbons) is considered [129, 40, 118, 146]. How-
ever, different from sequence alignment, there is no de facto standard method for
the alignment of protein structures. A commonality is the high computational
cost compared to sequence alignment.

1.2 Alignment-free Methods for Comprehensive Studies
of Biological Molecules

The recent advent of the so-called next generation sequencing (NGS) technolo-
gies made it possible to obtain massive amount of sequence data very quickly
at low cost. Also, because of the progress in the methods for protein structure
identification, especially molecular dynamics (MD) simulation, unprecedented
amount of protein structure data are being produced these days. These tech-
nologies enabled us to collect large-scale data that are less biased. Previously,
due to the high cost of genome sequencing, sequence analyses, especially whole
genome analyses, were focused on few model organisms. Similarly, currently
known protein structures are biased towards those proteins that are amenable
to experimental structure identification methods such as X-ray crystallography
or nuclear magnetic resonance. Advancements in NGS and MD simulation are
opening the possibility of more comprehensive studies of the molecular biology.
However, in order to realize such comprehensive studies, several problems must
be addressed.

First, data analysis methods geared to large-scale and less biased data are
needed. Most existing analysis methods are based on alignment. While align-
ment is suitable for the close examination of few sequences, it has several draw-
backs. For one thing, calculating the optimal alignment is often computation-
ally expensive. It takes O(n2)-time to calculate the edit distance (the most
simple case of alignment) between length n sequences by dynamic program-
ming [137, 97, 114, 115, 138, 139] and there is an evidence that this time com-
plexity is (modulo logarithmic factors) optimal [6]. Also, aligning objects with

2It is also possible that structurally similar proteins do not share functions.
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Figure 1.2: The relationship between problems and techniques related to this
thesis.

low similarities often results into meaningless outputs.
Second, de novo genome assemblers that can handle reads from comprehen-

sive studies such as metagenome analysis are needed. Although NGS made it
possible to collect massive amount of DNA sequences at a very low cost, existing
DNA sequencing technologies cannot read a DNA sequence without cutting it
into short fragments called reads. To take the full advantage of NGS, we need a
method to reconstruct the whole genome sequence from reads. This problem is
called genome assembly. When a reference genome, the whole genome sequence
of an organism from the same or close species as the sequenced individual, is
available, one usually assembles reads by mapping them to the reference genome.
When there is no reference genome, one needs to recover the whole genome only
from reads, which is called de novo genome assembly. Although mapping is much
easier than de novo genome assembly, it is not applicable for comprehensive stud-
ies such as metagenome analysis (analysis of genomes from multiple organisms
in various environments such as soils, seawaters or human gut.) because reads
are derived from a mixture of possibly unknown species. Even for the study of
intra species-level phenomena of some organisms of particular interest, in order
to perform whole genome analysis, one needs to do de novo assembly at least
once. Because we consider only de novo assembly in this thesis, we omit the term
‘de novo’ for brevity. Although genome assembly have been studied extensively
in bioinformatics community, currently, it is still difficult to assemble complex
and large-scale genomes such as eukaryotic genomes or metagenomes.

In this thesis, we study alignment-free methods for functional annotation of
biological sequences/structures and genome assembly problem to pave the road
towards more effective and comprehensive studies of biological molecules. The
high level overview of our work is summarized in Figure 1.2.

Function prediction. Most existing annotation methods are based on align-
ment and thus, inherit the aforementioned drawbacks of alignment. To solve the
root of this problem, it is necessary to design sequence similarity measures that
are free from alignment.

Previously, alignment-free sequence analysis has been studied in the context
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of phylogenetics, the study of evolutionary histories. In phylogenetic problems
where evolutionary distant sequences need to be compared, sequence alignment
often results into meaningless outputs. Thus, string similarity measures based
on substring composition, average common substring length, information theory
and iterated maps have been developed [135, 136]. However, there were almost
no similar methods for function annotation.

A notable exception is the string kernel proposed by Leslie et al. [73], called
the spectrum kernel, and related string kernels [126, 71, 72]. In general, string
kernels are similarity measures for strings that can be plugged into SVMs. The
spectrum kernel and the related kernels are based on the composition of sub-
structures such as substrings of some length and in particular, they are free from
alignment. One thing that makes these sequence similarity measures particularly
interesting is that these measures can sometimes be calculated very efficiently
by applying the string index data structures. For example, the spectrum ker-
nel [73] for two strings of length n can be calculated in optimal O(n)-time by
applying the suffix tree [142, 25] data structure. It is in stark contrast to the
time complexity of O(n2) for sequence alignment.

Because SVMs accept any similarity measures as long as it satisfies a prop-
erty called positive semi-definiteness, there can be many possible ways to further
improve and extend these composition-based string kernels. Also, mainly since
1990s, in string algorithm community, many advanced suffix tree-like data struc-
tures and related algorithms have been developed [142, 51, 83, 16, 25, 26, 36, 55,
61, 99]. Therefore, it is very promising to, starting from the spectrum kernel, de-
sign more advanced string kernels applying the advanced index data structures.

Genome assembly. The state-of-the-art genome assemblers today are based
on some graphs encoding the overlap information of reads. Each edge of such a
graph is labeled by a string and, if constructed successfully, the original sequence
(or at least a long substring of it) corresponds to a tour. In the past several
years, many studies have been made on the step to construct assembly graphs
and this part is now well established [13, 131]. On the other hand, how to
recover the original whole genome sequence from the assembly graph remains
open. In particular, it is known that if there exist many similar (but not the
same) reads, which are possibly introduced by sequencing errors, repeat regions
and diploidy/polyploidy, then, genome assembly usually becomes very difficult.
Another factor that complicates assembly is that the graph usually contains
spurious edges introduced by sequencing errors. We study this problem through
graph theoretic approach.

1.3 Overview of Our Contributions

In this section, we briefly explain each of the four main contributions of this
thesis.

1.3.1 Text Indexing with Gaps.

We introduce a new string kernel the gapped spectrum kernel in Chapter 4. Al-
though this kernel and the combination of multiple instances of it can be used
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to predict protein families more accurately than the spectrum kernel [73], the
dimension of feature vector depends exponentially on a parameter. On the other
hand, the spectrum kernel can be computed in time linear to the input size (the
size of strings) by applying the suffix tree [126]. While the spectrum kernel is
based on the frequencies of substrings of some particular length, the gapped
spectrum kernel is based on the frequencies of the substrings of some particular
length with gaps in particular positions. Therefore, it is natural to apply data
structures that are similar to the suffix tree but supports search of gapped pat-
terns to the computation of the gapped spectrum kernel. In pattern matching
terminology, gaps here are called wildcards. In literature, several suffix tree-
based data structures that support the search of patterns with wildcards have
been studied. However, these data structures either takes super-linear space or
search time involves terms that depends exponentially to the parameter. They
are also very complex. We, instead, propose the b-suffix array, a very simple
variant of the suffix array that supports the search of patterns with wildcards
in predetermined positions. Although our main motivation for this data struc-
ture is the application to the computation of the gapped spectrum kernel, we
treat it independently in Chapter 3 because it may have other applications. In
particular, aside from the application to Chapter 4, the b-suffix array can also
be used as a text index that supports the search of patterns with wildcards in
predetermined positions. Such a pattern matching problem occurs, e.g., in the
context of spaced seed search in sequence homology search. The technical con-
tributions in Chapter 3 are construction algorithms for the b-suffix array. The
b-suffix array can be constructed näıvely by radix sort. At each bucket sort in
the radix sort, suffixes are sorted by single character. We show how to modify
radix sort so that multiple characters can be taken into account at each bucket
sort.

The results in Chapter 3 were originally published in [102].

1.3.2 The Gapped Spectrum Kernel for Support Vector Machines

In the context of comprehensive studies of ‘protein universe’, computationally
efficient protein sequence annotation is needed. The spectrum kernel [73] is
a particularly promising approach to this problem. A string kernel is a sim-
ilarity measure for strings that can be plugged into support vector machines
(SVMs). The resulting SVMs can learn the discrimination rules from annotated
sequences and can be applied to automatically annotate newly found sequences.
The spectrum kernel is known to be able to achieve computational efficiency and
prediction accuracy both at high levels.

Though the spectrum kernel characterizes strings by the composition of con-
tiguous patterns included in the string, a simple calculation indicates that using
gapped patterns instead of contiguous patterns leads to better prediction. Indeed
the wildcard kernel [71] achieves higher prediction accuracy than the spectrum
kernel by taking into account all possible gap patterns of particular length and
weights. However, it was not known whether it is necessary to consider all gap
patterns for that purpose. In Chapter 4, we investigate it.

We first introduce the gapped spectrum kernel and an efficient algorithm
to compute it. The gapped spectrum kernel is based on the composition of
non-contiguous patterns of particular gap positions. The kernel computation
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algorithm is based on the b-suffix array data structure introduced in Chapter 3
and runs in time independent of the dimension of the feature space. Also, we
show how to perform the prediction phase of SVMs based on this kernel function
in time that is independent of the size of the support vectors. Then, we show that
the sum of the gapped spectrum kernels for all gap patterns of a particular length
and weights matches the wildcard kernel. Thus, we can derive an interpolation
between single gapped spectrum kernel and the wildcard kernel. Together with
the aforementioned prediction algorithm, this gives a prediction algorithm for
the wildcard kernel with time complexity independent of the size of the support
vectors (the existing algorithm depends linearly). Also, we experimentally show
that the sum of the gapped spectrum kernels corresponding to a few randomly
selected gap patterns can predict protein families comparatively accurately as
the wildcard kernel.

The results in Chapter 4 were originally published in [103].

1.3.3 Fast Classification of Protein Structures by an Alignment-free
Kernel

Though protein structure data are more difficult to obtain than sequences are,
analyzing structures is important because structures are more directly related
to the protein functions. In order to extract useful information from structure
data, especially those derived by molecular dynamics simulation studies, not
only accurate but also computationally efficient structure annotation methods
are needed. Structural alignment is the de facto standard method for protein
structure comparison. However, structural alignment is computationally very
expensive. The time complexity depends on the formulation but even the best
known bound based on heuristics is still O(n4) where n is the size of the pro-
tein [108]. Therefore, the merit of alignment-freeness should be even bigger for
protein structures than it is for sequences. In spite of that, there was no research
focusing on the alignment-free analysis of protein structures.

In Chapter 5, we propose an alignment-free kernel for protein structures that
is based on a novel use of protein contact maps, a notion introduced in the context
of structural alignment. One can plug the proposed kernel into SVMs and apply
it to classification. The proposed kernel can be computed in quadratic time
by using the two dimensional suffix tree [32, 59]. Furthermore, the prediction
based on the proposed kernel can be made in time independent of the size of the
support vectors (existing methods depends linearly). Also, we experimentally
demonstrate that the proposed classification method is comparatively accurate
as the most accurate existing method, which is based on structural alignment,
while it runs more than 300 times faster. This result indicates that alignment-
free methods are promising for the analysis of protein structures in general.

The results in Chapter 5 are not published yet.

1.3.4 Detecting Superbubbles in Assembly Graphs

The standard approach to genome assembly today is graph-based [96, 107]. In
this approach, one first constructs a graph encoding the overlap information
of reads and then reconstructs the original sequence by ‘linearizing’ the graph.
While researchers have been studying the graph construction phase vigorously,
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relatively few studies have been made on the second phase of reconstructing
the original sequence from the graph. Also, most existing work on the second
phase is ad hoc. In Chapter 6, we broaden the realm of systematic studies a step
further towards the second phase.

The difficult part of the reconstruction phase is the linearization of complex
substructures of the graph, which presumably originate from repeat regions of
the original sequence, sequencing errors or diploidy/polyploidy. Though iden-
tifying the real origins of these substructures is important, just finding such
substructures is already highly non-trivial. On the other hand, once found, it
seems possible to apply elaborate analysis algorithms such as multiple align-
ment to these complex substructures even if such elaborate algorithms are not
applicable to the entire graph. Therefore, we define superbubbles, a graph the-
oretic characterization of the complex substructures, presumably introduced by
repeats, errors or diploidy/polyploidy, and clarify their properties. We also give
an efficient algorithm to enumerate all superbubbles in a given assembly graph.
Though this algorithm takes Θ(n2)-time in the worst case where n is the number
of vertices, it runs very fast in practice. We explain this behavior of the proposed
algorithm by using a probabilistic model.

The results in Chapter 6 were originally published in [101].

1.4 Organization of the Thesis

The rest of this paper is organized as follows. We introduce the preliminary
knowledge in the next chapter. In Chapter 3, we describe the b-suffix array data
structure and related algorithms. In Chapter 4, we explain the new string kernel
for protein sequences. In Chapter 5, we account for the alignment-free kernel
for protein structures. Then in Chapter 6, we describe our study on genome
assembly. We conclude in the last chapter.
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Chapter 2

Preliminaries

2.1 Basic Assumptions

In this section, we introduce the model of computation and an assumption on
strings that we use throughout this thesis. We do not need to be aware of these
topics in most parts of this thesis, but we rely on them, explicitly or not, in the
linear time construction of the suffix array, the linear time construction of the
Isuffix tree and the constant time computation of range minimum query after
linear time preprocessing in Section 2.3.

Machine model. Throughout this thesis, we use the word RAM model of
computation. In this model, the computer has an infinite size random access
memory consisting of words. Each word consists of a fixed number of bits.
When we write, e.g., O(n)-space or the size of something is O(n), we mean O(n)
words, not bits. Let w be the number of bits of each word. The computer can
perform algebraic operations such as <, +,−,×, /, mod on w bits integers all in
constant time. Also, it is assumed that w = Θ(log n) where n is the size of the
input.1 In particular, this assumption means that the address of a word used in
any polynomial time computation fits in a constant number of words. This is a
reasonable model of modern computers and is widely accepted in the algorithms
community.

Integer alphabet. In this thesis, we assume that each character of a string
or an entry of a matrix is encoded as an integer that fits in a constant number
of words and that both encoding and decoding can be done in constant time.
For example, the characters A, T, G, and C of DNA sequences (cf. Section 2.5)
can be encoded as integers 0, 1, 2 and 3 respectively on computer memories.
The set of code words in this assumption is called integer alphabet. We call
this assumption the integer alphabet assumption. Integer alphabet assumption
is a reasonable way to treat character encodings used in modern computers
such as ASCII code in a general fashion and thus, it is widely used by string
algorithms community. The strings we consider in this thesis, namely, DNA
sequences and protein sequences have constant size alphabet (cf. Section 2.5)

1This assumption may sound weird because it means that the machine will change according
to the size of the input. Another way to think about it is there are different machines for
different sizes of the input.
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and thus, integer alphabet assumption may look overly strong.2 There are,
however, two reasons it is preferable in this thesis too. First, we sometimes
introduce additional characters to strings for technical reasons. For example,
string algorithm researchers often treat a collection of strings as a single string by
concatenating all member strings. When doing this, they delimit different strings
by additional unique characters. In such a case, the alphabet size increases as
the database grows. Second, problems for strings on integer alphabet often have
as efficient solutions as the corresponding problems for strings on constant size
alphabet. If this is the case, an integer alphabet is clearly preferable to constant
alphabet because it is more general.

2.2 Notations

In this section, we introduce notations that are used in the rest of this chapter
and the following chapters.

We denote the alphabet by Σ and the size of Σ by σ. The symbol ◦ represents
the concatenation of strings and characters. For example, when S1 and S2 are
strings, S1 ◦S2 is the string derived by appending S2 to S1. Similarly, when S is
a string and c is a character, S ◦ c is the string derived by appending c to S. We
denote the set of length k strings on Σ by Σk and the set of finite length strings
on Σ by Σ∗.

For a string T , we denote the i-th character by T [i] and the substring from
the i-th to the j-th character inclusive by T [i : j]. We denote the length of T by
|T |. For a pair of strings S and T , lcp(S, T ) denotes the longest common prefix
of S and T . For a pair of strings T of length n and P of length m with m ≤ n, an
occurrence of P in T is an integer i ∈ [1, n−m+1] such that T [i : i+m−1] = P .
For an m×n matrix M and a p×q matrix P with p ≤ m and q ≤ n, an occurrence
of P in M is a pair of integers (i, j) ∈ [1, m − p + 1] × [1, n − q + 1] such that
M [i : i + p− 1, j : j + q − 1] = P .

We denote the submatrix from the i1-th row to the i2-th row and the j1-th
column to the j2-th column of a matrix M as M [i1 : i2, j1 : j2]. We also write
M [i, j1 : j2] to mean M [i : i, j1 : j2] and write M [i1 : i2, j] to mean M [i1 : i2, j : j].

We use bold face symbols such as x to denote vectors. The expression x⊤

means the transpose of vector x.
For a finite set S with a total preorder ⪯, the leftmost rank of an element

x ∈ S is defined to be #{y ∈ S : y ⪯ x, x ̸⪯ y}. For brevity, we sometimes use
the word rank to mean leftmost rank.

2.3 The Suffix Tree and the Suffix Array

The suffix tree [142] and the suffix array [83] are data structures that are very
useful in problems related to strings, especially the search problem. These data
structures are directly related to the contents of Chapter 3 and Chapter 4. It
has also an indirect relationship with the contents of Chapter 6. We also need
a variant of the suffix tree called the Isuffix tree in Chapter 5. Thus, in this
section, we introduce these data structures.

2In Chapter 5, we consider binary matrices.
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2.3.1 The Suffix Tree

For exposition, we first introduce the trie and the compressed trie.

Trie. The trie [28] data structure is a tree that stores a collection C of strings.
Each edge is labeled by a character. For any u with children v and w, the label
of edge (u, v) is not equal to the label of edge (u, w). For each string S in C,
there is a vertex v such that the concatenation of the edge labels of the edges in
the path from the root to v is S. There are several ways to store the children
of each vertex. We choose to store them in a sorted list (sorted by the label).
Each vertex has at most σ children. Thus, at each vertex u and character c, the
children v of u s.t. (u, v) is labeled by c can be found, if any, in O(log σ)-time
by binary search.

Given a trie, and a query string P of length m, one can find if P is in C
by Algorithm 2.1. Because the while loop is executed at most m times, this
algorithm takes O(m log σ)-time.

Algorithm 2.1 Search algorithm for trie
Ensure: If P ∈ C then return true; otherwise return false

1: u← root of the trie
2: i← 1
3: while true do
4: if i > |P | then
5: return true
6: else if u has a child v s.t. (u, v) is labeled by P [i] then
7: u← v
8: i← i + 1
9: else

10: return null

Compressed trie. The compressed trie [93]3 is another data structure repre-
senting a collection of strings C. It is defined to be the tree derived from the
trie for C by contracting each path without any branching node to a single edge
labeled by the concatenation of the labels of the original edges. The compressed
trie has the following properties:

1. The first characters of the labels of the edges between an internal node
and its children are different;

2. Each internal node has more than 1 children;

At each internal node, we store the children in a list sorted by the first characters
of their labels.

We define some notation and terminology for the compact trie. We denote
the label of edge e, which is a string, by label(e). For brevity we sometimes write
label(u, v) to mean label((u, v)). For a node v, let child(v, c) denote the child
u of v such that the first character of label(u, v) is c if such a child exists. A

3The compressed trie is called PATRICIA in the original paper.

10



locus is a concept that represents a node of the trie underlying the compressed
trie. Formally, it is a triplet (v, c, i) where v is a node, c is a character and i is
a non-negative integer. For a locus to be valid, either i = 0 or child(v, c) exists
and i is smaller than the length of label(v, child(v, c)). In the following, we only
consider valid locuses. The path label of a locus ℓ = (v, c, i), which we denote by
str(ℓ), is the concatenation of the labels of the edges in the path from the root
to v and length i prefix of label(v, child(v, c)). We use locus (v, c, 0) and node v
exchangeably and sometimes write, say, str(v) to mean str((v, c, 0)).

Let C be the set of strings stored in the compressed trie. We assume that
any string in C is not a prefix of another string in C. Note that, in this case,
for any string s ∈ C, there is a leaf ℓ such that str(ℓ) = s. One can find
all leaves corresponding to strings in C prefixed by a query P of length m by
Algorithm 2.2. In line 5 v can be found in O(log σ)-time by binary search. The
while loop is executed for at most m times. In the string comparison in line 7,
if P [i] is matched to some character in S, then P [i] is never used in the later
comparisons. Thus, the contribution of line 7 to the total runtime is O(m).
Thus, the while loop takes O(m log σ)-time. Because every internal node has
more than one children, for any vertex v, the size of the subtree rooted at v is
linear to the number of the leaves of the subtree. Therefore, it takes O(occ)-time
to report all leaves of the subtree rooted at r in line 18 where occ is the number
of the outputs.

Algorithm 2.2 Prefix search algorithm for the compressed trie
Require: Any string in C is not a prefix of another string in C
Ensure: Output all strings in C prefixed by query P of length m

1: u← root of the compressed trie
2: i← 1
3: while true do
4: if child(u, P [i]) exists then
5: v ← child(u, P [i])
6: S ← label(u, v)
7: h← |lcp(P [i : m], S)|
8: if h = m− i + 1 then
9: if h = |S| then

10: ℓ← (v, P [i], 0) and exit from while loop
11: ℓ← (u, P [i], h) and exit from while loop
12: if h < |S| then
13: abort
14: (u, i)← (v, i + |S|)
15: else
16: abort
17: r ← vertex v s.t. ℓ = (v, c, i) for some c and i
18: return all leaves of the subtree rooted at v

Definition of the suffix tree. Let T be a string of length n. We assume no
suffix of T is a prefix of another suffix. One can guarantee that this assumption
is met by appending to T a character that does not appear in T , which is denoted
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Figure 2.1: An example of the suffix tree. Edges under each internal node are
sorted from left right by the first characters of the labels. The character $ is
assumed to be smaller than any other characters.

by $. The suffix tree of T is defined to be the compressed trie storing all suffixes
of T . The leaf with path label T [i : n], which we denote by leaf(i), is labeled
by i; See Figure 2.1 for an example of the suffix tree. The suffix tree has the
following properties:

1. Each edge is labeled by a substring of T ;

2. The first characters of the labels of the edges between an internal node
and its children differ;

3. Each internal node has more than 1 children;

4. It has n leaves leaf(1), leaf(2), . . . , leaf(n) and they are aligned from left
to right by the lexicographic order of the corresponding suffixes.

Because the number of internal nodes of a tree that satisfies the third property
is equal to or less than the number of its leaves minus one, the suffix tree has
at most n − 1 internal nodes. Because the number of leaves of a tree is the
number of vertices minus one, the number of leaves of the suffix tree is at most
n+(n−1)−1 = 2n−2. Each edge label, for example, T [i : j], can be represented
by the tuple (i, j). Thus, the size of the suffix tree is Θ(n).

Search. Let P be another string of length m ≤ n. The expression T [i :
i + m − 1] = P holds if and only if T [i : n] is prefixed by P . Therefore, all
occurrences of P in T can be enumerated in O(m log σ + occ)-time by the prefix
search algorithm for the compressed trie (Algorithm 2.2).

Construction. The construction algorithms for the suffix tree have a long his-
tory. Weiner proposed an O(nσ)-time algorithm to construct the suffix tree for
a length n string on size σ alphabets [142]. McCreight improved it to O(n log σ)-
time [87]. Ukkonen proposed an algorithm with the same time complexity as
McCreight’s algorithm but that can run online [130]. Farach proposed an O(n)-
time algorithm under integer alphabet assumption [25]. Although we do not
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describe the details of these algorithms here because they are not directly re-
lated to the current thesis, let us mention that the most efficient algorithm by
Farach [25] shares the essential ideas with the suffix array construction algorithm
by Kärkkäinen and Sanders [55], which we will cover in the next subsection. It
is also worth mentioning that, if necessary, the suffix tree can be constructed in
O(n)-time from the suffix array.

The generalized suffix tree. The suffix tree is a data structure defined for
a single string. It is useful when one wants to perform many instances of string
search on a single large text. However, there are many applications where one
wants to perform search over a collection of texts instead of just one text. One
can use the generalized suffix tree in such cases.

Let T = {T1, T2, . . . , Tn} be a collection of strings. Let T be T1 ◦$1 ◦T2 ◦$2 ◦
· · · ◦ $n−1 ◦ Tn$n where $i is a unique character that does not appear anywhere
else in T . The generalized suffix tree of T is defined to be the suffix tree of T
with a caveat that the leaf corresponding to Ti[j : |Ti] ◦ $i ◦ Ti+1 ◦ · · · ◦ Tn ◦ $n

be labeled by tuple (i, j). One can use the generalized suffix tree in almost the
same manner as the suffix tree to search all occurrences a pattern of length m
in the collection in O(m log σ + occ)-time.

2.3.2 The Suffix Array

Definition. Let T be a string of length n. The suffix array of T , which we
denote by SAT , is an array containing 1, 2, . . . , n, sorted by the lexicographic
order of T [1 : n], T [2 : n], . . . , T [n : n], respectively. It was introduced as a
compact analogue of the suffix tree. Though both the suffix tree and the suffix
array takes O(n)-space, the constant factor of the suffix array is smaller. The
suffix array takes 4n bytes assuming that each entry is represented by a 32 bit
integer while the suffix tree takes 20n bytes even if implemented carefully [66].
To simulate the functionality of the suffix tree, it is often useful to prepare
another data structure called the height array. The height array for T , which
we denote by HGTT , is an array of size n such that

HGTT [i] =

0 if i = 0
|lcp(T [SAT [i− 1] : n], T [SAT [i] : n])| otherwise.

See figure 2.2 for an example. The suffix array coincides with the labels of the
leaves of the suffix tree aligned from left to right. We usually omit the subscript
T of SAT and HGTT because it is obvious from the context. Even if it is not, we
usually choose to state what the underlying string is explicitly and avoid writing
the subscript for brevity.

Search. Let P be a string of length m. Let left(P ) be min{i : P ⪯ T [SA[i] :
n]} if {i : P ⪯ T [SA[i] : n]} is non-empty and n+1 otherwise. Also, let right(P )
be max{T [SA[i] : n] ⪯ P} if {T [SA[i] : n] ⪯ P} is non-empty and 0 otherwise.
P = T [i : i + m − 1] iff i = SA[j] for some j ∈ [left(P ), right(P )]. One can
find each of left(P ) and right(P ) by binary search. The pseudocode is shown
in Algorithm 2.3. Each comparison of this binary search (line 9) is between
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Figure 2.2: An example of the suffix array and the height array. The character
$ is assumed to be smaller than any other character.

strings and takes O(m)-time. Thus, the whole binary search takes O(m log n)-
time. Once left(P ) and right(P ) are derived, one can report all occurrences in
O(occ)-time by scanning the interval.

Algorithm 2.3 O(m log n)-time algorithm to find left(P )
Ensure: left = left(P )

1: if P ⪯ T [SA[1] : n] then
2: left← 1
3: else if P ≻ T [SA[n] : n] then
4: left← n + 1
5: else
6: (L, R)← (1, n)
7: while R− L > 1 do
8: M ← ⌊(L + R)/2⌋
9: if P ⪯ T [SA[M ] : n] then

10: R←M
11: else
12: L←M
13: left← R

In the paper that introduced the suffix array, Manber and Myers showed how
to find left(P ) and right(P ) in O(m + log n)-time with a slight modification to
Algorithm 2.3 [83]. The algorithm to find left(P ) is shown in Algorithm 2.4.
We start from the whole array and successively halve the intervals that contain
left(P ). Let L and R be the index of the left and right boundaries of the current
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interval respectively and let M be ⌊ ℓ+r
2 ⌋. We maintain ℓ := |lcp(P, T [SA[L] : n])|

and r := |lcp(P, T [SA[R] : n])|. If ℓ ≥ r, the interval is halved as follows. We
compute llcp := lcp(T [SA[L] : n], T [SA[M ] : n]) in constant time. We explain
how to do this shortly. If llcp > ℓ then left(P ) is in [M, R] and ℓ is unchanged.
If llcp < ℓ then left(P ) is in [L, M ] and r will be llcp. If llcp = ℓ then we need
to compare P and T [SA[M ] : n] to determine if left(P ) is in [L, M ] or [M, R].
Because lcp(P, T [SA[L] : n]) = ℓ = llcp = lcp(T [SA[L] : n], T [SA[M ] : n]),
P and T [SA[M ] : n] share the first ℓ characters. Thus, it suffices to compare
T [SA[M ] + ℓ : n] and P [ℓ + 1 : m]. If P [i] is matched to some character of
T [SA[M ] + ℓ : n] in this comparison, then, P [i] is never used in the comparison
made in future. Thus, if ℓ ≥ r, either the number of the characters in P that
can be used for comparison decreases or the interval [L, R] is halved in constant
time. The same is true for the case when ℓ < r. Therefore, this algorithm takes
O(m + log n)-time. The value right(P ) can also be found in O(m + log n)-time
similarly. Thus, all occurrences of P can be listed in O(m + log n + occ)-time.

Now we explain how to compute llcp = lcp(T [SA[L] : n], T [SA[M ] : n]) in
constant time. Manber and Myers proposed to prepare a table of all possible
values of L and M . Here we show a method based on the height array. Note
that

|lcp(T [SA[i] : n], T [SA[j] : n])| = min{HGT [k] : i < k ≤ j}

for all 1 ≤ i < j ≤ n. Therefore, to compute the length of the longest common
prefix of any two suffixes, it suffices to perform the range minimum query (RMQ)
over the height array. In RMQ problem (on array), the input is an integer array
A of size n and two indices i and j with i ≤ j. The output is the index of
minimum element in the subarray A[i, . . . , j]. Bender and Farach-Colton proved
the following:4

Theorem 2.1 (Bender and Farach-Colton [9]). After O(n)-time preprocessing,
one can answer range minimum query on array in O(1)-time.

In order to implement Algorithm 2.4, we construct the suffix array from
the text, and construct the height from the suffix array and then construct the
range minimum data structure for the height array. We show the construction
algorithm for the suffix array and the height array below.

Construction. One can construct the suffix array in linear time by construct-
ing the suffix tree and output the leaf labels in the order of depth first search.
However, this is not a satisfactory solution, because the use of the suffix tree
nullifies the space efficiency of the suffix array. For this reason, many algorithms
to construct the suffix array without constructing the suffix tree have been pro-
posed. Here, we explain the algorithm by Kärkkäinen and Sanders [55] because
it is relevant to this thesis, especially Chapter 3.

This algorithm takes a string T of length n on integer alphabet. We assume
that n is divisible by 3 for brevity. Other cases can be handled with slight
modifications. The algorithm is as follows:

4Strictly speaking, they showed a reduction from RMQ to lowest common ancestor (LCA)
problem. They also proposed a simple algorithm to solve LCA problem in O(1)-time after
O(n)-time preprocessing but this bound was first proven by Harel and Tarjan [38].
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Algorithm 2.4 O(m + log n)-time algorithm to find left(P )
Ensure: left = left(P )

1: ℓ← lcp(P, T [SA[1] : n])
2: r ← lcp(P, T [SA[n] : n])
3: if ℓ = m or P [ℓ + 1] ≤ T [SA[1] + ℓ] then
4: left← 1
5: else if r < m and P [r + 1] > T [SA[n] + r] then
6: left← n + 1
7: else
8: (L, R)← (1, n)
9: while R− L > 1 do

10: M ← ⌊(L + R)/2⌋
11: if ℓ ≥ r then
12: llcp← lcp(T [SA[L] : n], T [SA[M ] : n])
13: if llcp ≥ ℓ then
14: mid← ℓ + lcp(T [SA[M ] + ℓ : n], P [ℓ + 1 : m])
15: else
16: mid← llcp

17: else
18: rlcp← lcp(T [SA[R] : n], T [SA[M ] : n])
19: if rlcp ≥ r then
20: mid← r + lcp(T [SA[M ] + r : n], P [r + 1 : m])
21: else
22: mid← rlcp

23: if mid = m or P [mid + 1] ≤ T [SA[M ] + mid] then
24: (R, r)← (M, mid)
25: else
26: (L, ℓ)← (M, mid)
27: left← R

1. Radix sort tuples {(T [i], T [i + 1], T [i + 2]) : 1 ≤ i ≤ n};

2. Let r(i) be the rank of (T [i], T [i + 1], T [i + 2]). Construct the table for r
from the sorted array derived at previous step;

3. Prepare strings T1 := r(1) ◦ r(4) ◦ · · · ◦ r(n − 2), T2 := r(2) ◦ r(5) ◦ · · · ◦
r(n− 1), T12 := T1 ◦ 0 ◦ T2;

4. Recursively construct SA′, the suffix array for T12. This is equivalent to
sorting {T [i : n] : i ≡ 1 or 2 (mod 3)};

5. Let r′(i) be the rank of r(3i + 1) ◦ r(3i + 4) ◦ · · · ◦ r(n − 2) among the
suffixes of T1. Construct the table for r′ from SA′;

6. Radix sort tuples {(T [3i], r′(i)) : 1 ≤ i ≤ n/3}. This is equivalent to
sorting {T [i : n] : i ≡ 0 (mod 3)};

7. At this point, we essentially have two sorted arrays: one for {T [i : n] : i ≡
1 or 2 (mod 3)} and the other for {T [i : n] : i ≡ 0 (mod 3)}. Prepare the
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table for the ranks of {T [i : n] : i ≡ 1 or 2 (mod 3)}. Merge the sorted
arrays. The comparison between T [i : n] with i ≡ 1 or 2 (mod 3) and
T [j : n] with j ≡ 0 (mod 3) is done as follows:

• If i ≡ 1 (mod 3), compare T [i] and T [j]. If they match, compare
T [i + 1 : n] and T [j + 1 : n]. The latter comparison can be done by
looking up the rank table because i + 1 ≡ 2 (mod 3) and j + 1 ≡ 1
(mod 3);
• If i ≡ 2 (mod 3), compare T [i : i + 1] and T [j : j + 1]. If they match,

compare T [i + 2 : n] and T [j + 2 : n]. The latter comparison can be
done by looking up the rank table because i + 2 ≡ 1 (mod 3) and
j + 2 ≡ 2 (mod 3).

Every step but step 4 takes O(n)-time. Because T12 consists of 2n/3+1 characters
from integer alphabet, step 4 takes time at most f(2

3n + 1) where f(n) is the
maximum time needed in total. Thus, f(n) ≤ f(2

3n + 1) + c1n for some constant
c1. Also, f(c2) = O(1) for any constant c2. Therefore, f(n) = O(n).

Height Array Construction. Kasai et al. gave an O(n)-time algorithm to
construct the height array from the suffix array [56]. For brevity, we assume
the last character of T , T [n], is smaller than any other character in T . One
can guarantee that this assumption is met by appending a character with this
property to T . The algorithm is described in Algorithm 2.5. The logic is as
follows. At the i-th iteration of the while loop, the algorithm computes the
length of lcp between T [i : n] and its predecessor in the suffix array, for example,
T [j : n]. If |lcp(T [i : n], T [j : n])| = h > 0, |lcp(T [i + 1 : n], T [j + 1 : n])| = h− 1
and T [j + 1 : n] < T [i + 1 : n]. In this case, the length of lcp between T [i + 1 : n]
and its predecessor in the suffix array is at least h − 1. Thus, at the i + 1-th
iteration, it suffices to start comparing strings from the h-th characters. Each
of line 2,7 and 11 takes constant time and thus, all operations except line 9 take
Θ(n)-time. Because h is the length of lcp, it cannot be larger than n. Also, h is
decremented (at line 7) for at most n times. Thus, the number of times line 9 is
executed is bounded by 2n. Therefore, this algorithm takes Θ(n)-time in total.

Algorithm 2.5 Construction of the height array.
Ensure: HGT is the height array of T

1: for i = 1 to n do
2: R[SA[i]] = i

3: HGT [1]← 0
4: h← 0
5: for i = 1 to n− 1 do
6: h← max{h− 1, 0}
7: while T [SA[R[i]] + h] = T [SA[R[i]− 1] + h] do
8: h← h + 1
9: HGT [R[i]]← h
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The generalized suffix array. As well as the suffix tree, one can also apply
the suffix array to a collection of strings. Let T = {T1, T2, . . . , Tn} be a collection
of strings. The generalized suffix array is defined to be the suffix array of the
string T1 ◦$1 ◦T2 ◦$2 ◦ · · · ◦$n−1 ◦Tn where $i is a character that does not appear
in any other place in T . Because this is just the suffix array for a long string, the
height array is also defined for the generalized suffix array and algorithms for
search and construction for the suffix array can also be applied to the generalized
suffix array. When ∑j−1

k=1(|Tk| + 1) < i ≤ ∑j
k=1(|Tk| + 1) − 1, we say that the

index i belongs to Tj.

2.3.3 The Isuffix Tree

Definition. Next, we describe a generalization of the suffix tree for matrices.
There are several data structures for this purpose generically called the two
dimensional suffix trees [31, 32, 59]. Here, we focus on the Isuffix tree by Kim
et al. [59] because it can be constructed in linear time.

An Istring is a string of strings defined for a square matrix. For an n × n
square matrix M , the Istring of M , denoted by I(M) is a length 2n − 1 string
of strings. The characters of I(M) are defined as follows:

I(M)[i] =

M [1 : (i + 1)/2, (i + 1)/2] if i is odd
M [i/2 + 1, 1 : i/2] if i is even.

The string I(M)[i] for each i is called an Icharacter. An Istring Is1 is defined
to precede another Istring Is2 if Is1 is a null Istring or Is1[1] precedes Is2[1]
or Is1[2 : |Is1|] precedes Is2[2 : |Is2|]. Note that it is equivalent to I1[1] ◦
I1[2] ◦ · · · ◦ I1[|I1|] precedes I2[1] ◦ I2[2] ◦ · · · ◦ I2[|I2|]. The suffix of an m × n
matrix M at position (i, j), denoted by Mi,j, is M [i : i + k, j : j + k] where
k = min{m − i, n − j}. In other words, Mi,j is the largest square submatrix of
M whose upper left corner is (i, j).

The Isuffix tree of an m×n matrix M is a compressed trie storing Istrings of
all suffixes of M ; see Figure 2.3 for an example. Note that while the suffix tree
stores strings, the Isuffix tree stores Istrings, i.e., strings of strings. Therefore,
each edge label is an Istring instead of a string. Because each edge label is equal
to I(Mi′,j′)[i : j] for some suffix Mi′,j′ and i, j, it can be represented by tuple
(i′, j′, i, j). Thus, the Isuffix tree takes Θ(mn)-space. The path label of a node
is the concatenation of the edge labels of edges in the path from the root to the
node. The depth of a node is the number of Icharacters in the path label of the
node. To guarantee the one-to-one correspondence between leaves and suffixes,
one can append a row at the bottom of M and a column on the right of M
consisting of unique elements.

Search. Let M be an n1 × n2 matrix and P be an m×m matrix. To find all
occurrences of P in M , it suffices to find suffixes of M whose Istring is prefixed
by I(P ). Because the Isuffix tree is a compressed trie, the prefix search algorithm
for the compressed trie shown in Algorithm 2.2 is also applicable to the Isuffix
tree.

The difference is that edge labels of the Isuffix tree are Istrings and thus, to
find the edge to follow at each internal node, we need to perform binary search
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Figure 2.3: An example of the Isuffix tree. Length 1 suffixes (those submatrices
consisting only of 1 entry $i for 1 ≤ i ≤ 7) are not shown.

on strings instead of characters. The length of each string is at most m. Also,
the number of children of each internal node can be larger than σ. At any rate,
it is never greater than the number of leaves n1n2. Thus, the binary search at
each node takes O(m log n1n2)-time. Because I(P ) contains 2m− 1 Icharacters,
the search takes O(m2 log n1n2)-time in total.

Construction. Kim et al. [59] proposed an algorithm to construct the Isuffix
tree for an m × n matrix on an integer alphabet in O(mn)-time. Instead of
covering the detail of this algorithm, we just mention that the proposed algorithm
follows the recursive strategy similar to the suffix tree construction algorithm
by Farach [25] and the suffix array construction algorithm by Kärkkäinen and
Sanders [55].

The generalized Isuffix tree. Let Mi be an mi × ni dimensional matrix for
1 ≤ i ≤ ℓ. Let m := max{mi}+1. Let M be the matrix derived by the following
procedure:

1. Let M ′
k be an m× (nk + 1) matrix s.t.

M ′
k[i : j] =

Mk[i : j] if 1 ≤ i ≤ mk, 1 ≤ j ≤ nk

dummy otherwise;

2. Concatenate M ′
1, M ′

2, . . . , M ′
ℓ from left to right;

3. Replace each dummy by a unique character.

We define the generalized Isuffix tree of M1, M2, . . . , Mℓ as the Isuffix tree of M .
M is an m× (∑ℓ

i=1 ni + ℓ)-dimensional matrix. Thus, the generalized Isuffix tree
of M takes Θ(m∑ℓ

i=1 ni)-space.
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2.4 Support Vector Machines and Kernel Methods

Support vector machines (SVMs) are a group of classification problems under
supervised setting and algorithms to solve these problems.5 We apply SVMs for
protein sequence classification in Chapter 4 and protein structure classification
in Chapter 5. The purpose of this section is to give the background on SVMs
necessary to read these forthcoming chapters. Fortunately, we apply SVMs
through techniques called kernel methods, which works in modular fashion with
SVMs. This enables us to restrict most of our attention to “kernel”s instead of
SVMs in the latter chapters. Thus, we make the explanation of SVMs as concise
as possible and put an emphasis on its relationship with kernel methods. Each
of SVMs and kernel methods has a rich theory that is not covered here. For
more detailed information about SVMs and kernel methods, refer to the book
by Vapnik [133] and the book by Shawe-Taylor and Cristianini [117] respectively.

This section involves descriptions of optimization problems. For a variable x
of an optimization problem, we denote the setting of x that attains the optimal
solution of the problem as x∗.

2.4.1 Supervised Classification Problem

We first briefly explain what classification problems are in supervised settings.
A supervised classification problem is a problem such as inferring the type of
characters from the image of handwritten characters. For these problems, it is
difficult for a programmer to hard code a function that maps any (or even most)
input image to the correct character type because such a function would be too
complex to handle explicitly. Instead, a reasonable approach is to let the machine
acquire classification rules by itself through concrete examples with the guidance
of a human (or any other exterior entity) acting as a teacher. In fact, it seems
more similar to the way we humans learn characters. Researchers have been
studying methods to let machines to do such inductive reasoning, not necessarily
be limited to classification, for decades. Originally, these studies started in the
context of artificial intelligence. However, the scope of the theory and methods
developed in this area has been gradually expanded to more practical realm
and, at present, the applications include image recognition, audio recognition
and anomaly detection to name a few.

In general, a supervised classification problem conform to the following frame-
work:

• At first, the algorithm is given the training set, a set of data already labeled
by their groups;

• (Learning phase) From the training set, the algorithm learns the rule of
classification by any efficient computation;

• (Prediction phase) The algorithm is given the test set, another set of data
that is not labeled. It predicts the group to which data in the test set
should belong by applying the classification rule it learned in the learning
phase.

5SVMs are also applied to regression. We use them only for classification in this thesis.
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The important assumption that must be made in any classification problem is
that the training set and the test set are derived from the same source. For
example, in character recognition, if the training set consists of the images of
Japanese characters, then the images for test should also be Japanese characters,
not, for example, Roman characters. Otherwise, it is trivially impossible to solve
classification problem. In theoretical work, this assumption is usually formulated
by letting the training and test set sampled from the same universe with the same
probability distribution independently.

Once the classification problem is set up as above, one engineering type
goal is to derive better algorithms for the learning phase and prediction phase.
Shawe-Taylor and Cristianini listed 3 properties that a learning algorithm should
possess [117]:

• (Computational efficiency) Learning algorithm runs efficiently;

• (Robustness) Errors in the input does not have much effect on the result
of learning;

• (Statistical stability) The choice of training set does not have much effect
on the result of learning.

2.4.2 Support Vector Machines

As is mentioned at the beginning of this section, SVMs are a group of supervised
learning problems and methods to solve these problems. In these problems,
each datum is a point in the Euclidean space. Each point in the training set
is labeled as either positive or negative. In the learning phase, the algorithm
finds a hyperplane that separate positively labeled points and negatively labeled
points with as large “margin” as possible. In the prediction phase, the algorithm
classifies each test datum according to which side of the hyperplane it resides.
In general, the positively labeled points and negatively labeled points are not
linearly separable. Thus, errors are allowed with penalties. The formal definition
of the learning phase of SVM is as follows:6

Problem 2.1 (Learning phase of SVM).

Given {xi, yi}ℓ
i=1 ⊂ Rd × {−1, 1} and C > 0,

minimize − γ + C
ℓ∑

i=1
ζi,

subject to yi(w⊤xi + b) ≥ γ − ζi, ζi ≥ 0 for i = 1, 2, . . . , ℓ

and ∥w∥ = 1.

Note that yi(w⊤xi + b) is the distance between the hyperplane w⊤x = 0 and
xi where a negative number means xi is on the wrong side of the hyperplane.
The objective function prefers a larger γ and smaller ζi’s and therefore larger
yi(w⊤xi + b)’s. Thus, parameters γ, ζi and C can be interpreted as the size
of the margin, penalty for misclassifying xi and the weight of penalties respec-
tively. This problem is an instance of convex optimization problem and can be

6Precisely speaking, this problem is called 1-norm soft margin SVM.
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efficiently solved. Also, there is a theoretical bound for the error probability in
the prediction phase. (See, for example, the Theorem 7.30 of [117]) Therefore,
SVMs satisfy the 3 desirable properties of learning algorithms mentioned in the
previous subsection.

In prediction phase, query x is judged to be positive (resp. negative) if
w∗⊤x + b∗ is positive (resp. negative). Thus, the prediction phase takes Θ(d)-
time.

However, this formulation has two drawbacks:

1. it assumes the inputs to be points in Euclidean space;

2. it captures the boundary between the classes only by a hyperplane and
cannot, for example, separate intertwined input points by a curve.

2.4.3 Kernel Methods for Support Vector Machines

A natural way to avoid the aforementioned drawbacks of SVMs is to introduce
feature map ϕ, a map from the space of data to Euclidean space, and instead of
feeding data themselves to SVMs, feeding the image of feature maps to SVMs.
The range of feature map is called feature space and an image of feature map is
called a feature vector. Any map is a valid feature map if the feature space is in
Euclidean space. One can apply SVMs to non-vectorial data by first mapping
the data to feature vectors by feature map. Also, though SVMs can only handle
hyperplanes, the feature map may be non-linear. In fact, feature maps can
be such that linearity is not even defined. Of course, to achieve a meaningful
classification, the feature map should capture the properties of the data that are
relevant to classification.

One can use feature maps for Problem 2.1. In this case, the input data
x1, x2, . . . , xℓ are not necessarily vectors. By some feature map ϕ, we map these
data to d-dimensional vectors ϕ(x1), ϕ(x2), . . . , ϕ(xℓ). The learning problem is
the same as Problem 2.1 except that xi is replaced by ϕ(xi). In the prediction
phase, we map query x to ϕ(x) and calculate the sign of w∗⊤ϕ(x) + b. While
this use of feature maps is already useful, in some cases, it is more advantageous
to use feature maps for the dual problem of Problem 2.1.

The dual problem of Problem 2.1 is as follows:

Problem 2.2 (The dual problem of SVM learning).

Given {xi, yi}ℓ
i=1 ⊂ S × {−1, 1} and C > 0,

maximize −
ℓ∑

i,j=1
yiyjαiαjx⊤

i xj,

subject to
ℓ∑

i=1
yiαi = 0,

ℓ∑
i=1

αi = 1

and 0 ≤ αi ≤ C for i = 1, 2, . . . , ℓ.

Let α := (α1, α2, . . . , αℓ). Let xneg and xpos be two inputs s.t. yneg =
−1, ypos + 1 and 0 < α∗

neg, α∗
pos < C. The optimal parameters w∗, b∗ and γ∗
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of Problem 2.1 is related to α∗ as follows:

w∗ =
ℓ∑

i=1
yiα

∗
i xi;

b∗ = −1
2
(
x⊤

negw∗ + x⊤
posw∗

)
;

γ∗ = x⊤
posw + b∗.

In learning phase, query x is judged to be positive (resp. negative) if w∗⊤x+b∗ is
positive (resp. negative). In the learning algorithm for Problem 2.2, xi’s always
appear as inner products such as x⊤

i xj (See page 223 of [117] for the algorithm.).
Similarly, in the prediction phase, xi’s and x always appear as inner products.

When we use feature map ϕ for Problem 2.2, the input data x1, x2, . . . , xℓ

are not necessarily vectors. The description above remains unchanged except
that each xi is replaced by ϕ(xi). The real advantage of using feature maps
for Problem 2.2 is that, for some feature maps, it is possible to compute the
kernel function K(x, y) := ϕ(x)⊤ϕ(y) without constructing the feature vectors.
Because, as we have observed above, both learning and prediction can be imple-
mented without using the (feature) vectors xi = ϕ(xi)’s and x = ϕ(x) as long
as the kernel function can be computed, we do not need to compute the feature
vectors at all. If we compute K(x, y) by explicitly constructing ϕ(x) and ϕ(y),
it takes at least Θ(d)-time where d is the dimension of ϕ(x) and ϕ(y). On the
other hand, if we can compute K(x, y) directly from x and y, sometimes it is
possible to compute it in time independent or less dependent on d. This enables
us to consider feature maps with high dimensional feature space without grow-
ing computational cost much and it often is advantageous to design accurate
classifiers. This implicit use of feature maps through kernel functions is called
kernel methods.

Another good property of kernel methods is the modularity. As long as it has
an access to the oracle for the kernel function, SVM solvers can run. Therefore,
the user of SVM solvers can focus on the design of kernel functions appropriate
for the problem at hand.

Multiple kernels also work in modular fashion. If K1 (resp. K2) is a kernel
function with corresponding feature map ϕ1 (resp. ϕ2), then for any non-negative
real numbers α1 and α2, α1K1 + α2K2 : (x, y) 7→ α1K1(x, y) + α2K2(x, y) is a
kernel function. The corresponding feature map maps x to the concatenation of√

α1ϕ1(x) and √α2ϕ2(x).

Summary of kernel-based SVMs. In this thesis, we use SVMs only in the
form of Problem 2.2 and with kernel methods. Thus, we summarize computa-
tions needed in this case.

Let x1, x2, . . . , xℓ be the input for the learning phase, i.e., the training data
set. Then, we need to compute the kernel function value K(xi, xj) for every
pair of data (xi, xj). The ℓ × ℓ matrix containing K(Xi, xj) at the i, j entry is
called the kernel matrix. Then we input the kernel matrix to SVM solvers such
as LIBSVM [19] and obtain α∗ and b∗. In the prediction phase, we are given a
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query x and need to compute w∗⊤ϕ(x) + b∗ using the following equation:

w∗⊤ϕ(x) =
(

ℓ∑
i=1

yiα
∗
i ϕ(xi)

)⊤

ϕ(x)

=
ℓ∑

i=1
yiα

∗
i ϕ(xi)⊤ϕ(x)

=
ℓ∑

i=1
yiα

∗
i K(xi, x).

The xi s.t. αi ̸= 0 is called a support vector.7 In the prediction phase, we do not
need to compute the term yiα

∗
i K(xi, x) if xi is not a support vector.

2.5 Basic Concepts from Molecular Biology

In this section, we introduce prerequisite knowledge of molecular biology nec-
essary to read the following chapters. For more detailed information about
molecular biology, refer to the book by Alberts et al. [2].

Cells are the basic building block that is observed in all organisms.8 There
are two types of cells: prokaryotic cells and eukaryotic cells. Eukaryotic cells
contain organella, structures separated from other parts of the cell by membranes
while prokaryotic cells are more primitive and do not have such structures.

At molecular level, Deoxyribonucleic acid (DNA), Ribonucleic acid (RNA),
and proteins are three macromolecules that are essential for most organisms.
The central dogma of molecular biology [22], roughly speaking, states that, in
biological systems, information flow from DNA to RNA, RNA to proteins or
DNA to DNA.9 We elaborate on how these processes work.

DNA and RNA molecules consist of linearly connected nucleotides. A nu-
cleotide consists of a sugar, a phosphate group and nitrogenous base. The type
of a nucleotide depends on the base type.10 The base types in DNA are adenine
(A), guanine (G), cytosine (C) and thymine (T). RNA contains uracil (U) instead
of T. A DNA molecule consists of two chains of nucleic acids, which form a
double helical structure. The nucleotides in one helix are associated to those in
the other helix through the base-paring rule of Watson and Crick [141] (A-T and
G-C). Thus, the sequence on one helix determines the other, and a DNA molecule
can be thought of as a string on alphabet A, G, C, T. In an RNA molecule the
chain usually does not form such a pair. Thus, an RNA molecule can be thought
of as a string on alphabet A, G, C, U. Proteins consist of linearly connected amino
acids. There are 20 types of amino acids and thus, an protein can be thought of
as a sequence on a size 20 alphabet.

7In the original SVM problem where the input data are vectors, the support vectors are
vectors. In this thesis, we use the term support vectors even if the input data are not really
vectors.

8Viruses do not have cells. There is no consensus on whether viruses should be considered
as living or not.

9There is some exceptions to the central dogma. Most notably, a retrovirus stores its genetic
information in RNA and create the copies of it by first transcribing it into DNA and injecting
it into the genome of host organisms. The injected DNA is transcribed to RNA by the host.

10The difference between DNA and RNA are the type of sugars. The sugar in DNA is
deoxyribose while that in RNA is ribose.
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The function of DNA is to store information. Some parts of DNA sequence
called genes encode proteins.11 A gene can be transformed into an RNA se-
quence (transcription), which, in turn, can be transformed into a protein se-
quence (translation). The protein (resp. RNA) sequence is uniquely determined
by the RNA (resp. DNA) sequence. This process of protein production is called
gene expression. DNA sequences also contain regulatory sequences, which are
sequences that encode information on how much proteins should be produced in
what situations. For example, a promoter is a sequence that, by binding to a
particular protein, initiates the transcription of a particular gene.

In a protein molecule, amino acids are connected linearly by peptide bond.
Figure 2.4 shows how two amino acids are connected. The 20 types of amino
acids represent 20 types of side-chains. Proteins are involved in numerous biolog-
ical phenomena. For example, some proteins can recognize a particular promoter
sequence (cf. the previous paragraph) and initiate transcription. Other typical
functions of proteins include the catalysis of biochemical processes and DNA
replication. They are also structural building block of living things. These func-
tions of proteins are determined by their 3-dimensional structures. In natural
environment, a protein molecule is folded into a particular shape called the na-
tive structure and it is this shape that determines the function of the protein;
see also Figure 2.5 to get a grasp on the protein structures. For example, an
enzyme’s selectivity is realized by the shape of its substructure that fits to the
molecules it acts on. The 3-dimensional structure of a protein is often repre-
sented by the sequence of the coordinates of Cα atoms on backbone (See the
legend of Figure 2.4 for the definition of Cα atoms and backbone). By the na-
ture of peptide bond, the distance between a pair of Cα atoms neighboring on
the backbone is restricted to be about 3.8Å.

Individual organism can create other individuals of the same species and this
process is called reproduction. There are two types of reproductions: asexual
reproduction and sexual reproduction. In asexual reproduction, children inherit
the copy of the parent’s DNA sequence. In sexual reproduction, each child has
two parents and is given a DNA sequence generated from the parents’ DNA
sequence. Sometimes, DNA sequences are accidentally modified by replication
errors or external factors such as exposure to radiation. Therefore, the DNA
sequences of the descendants of the common ancestor diverge as generations
go by. Accordingly, protein sequences, which are encoded by DNA sequences,
also acquire variations. Sequences with the common ancestry are said to be
homologous.12 This diversification process is affected by natural selection. Some
variations affect the probability of themselves being passed to the next gener-
ation. While those variations that increase the probability are more likely to
spread among the population, those variations that decrease the probability are
less likely to spread and sometimes go extinct.

11Sometimes, the term ’gene’ is also defined to be the basic unit of evolution.
12The word ’homology’ is also used to refer to anatomical features derived from the same

ancestry.
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Figure 2.4: Peptide bond. A circle with thick outline represents an α-carbon
(Cα). A square represents a side-chain. Proteins are made up of 20 types of
side-chains. Thick lines represent the backbone.

Figure 2.5: The 3-dimensional structure of a protein called ribonuclease S (PDB
ID 2RNS). The image was produced by JSmol program at www.rcsb.org.
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2.6 Sequence Alignment

In this section, we briefly explain sequence alignment, the foundation of bio-
logical sequence comparison. For more detailed explanation about sequence
alignment, refer to the book by Gusfield [37]. As is mentioned in the previ-
ous section, through evolution, DNA and protein sequences acquire variations
over time. The evolutionary relationships, i.e., homologies between sequences
provide clues to infer the functions of genes or proteins. Because homologies
are not directly observable, usually, sequence similarities are used as a proxy
for homologies. Sequence alignment is a standard method to measure biological
sequence similarities.

We describe the simplest type of alignment called global alignment. Let S
(resp. T ) be a string of length n (resp. m). Let Γ := Σ∪{-}, where - is a special
symbol that is not in Σ. An alignment A between S and T is a 2× ℓ matrix of
elements of Γ that satisfies the following conditions: (See also Figure 1.1)

1. max n, m ≤ ℓ ≤ n + m;

2. The concatenation of the characters in the first (resp. second) row of A
that belongs to Σ must be S (resp. T );

3. At least one character of each column must belong to Σ.

For each pair (c1, c2) ∈ Γ × Γ, cost δ(c1, c2) is defined. The cost of alignment
δ(A) is defined to be ∑ℓ

i=1 δ(A[1][i], A[2][i]).
In global alignment problem, the input is S, T and δ and the goal is to

find alignment A of S and T that minimizes δ(A). Though the number of
possible alignments is exponential to the input size, the optimal alignment can be
computed in O(nm)-time by dynamic programming [137, 97, 114, 115, 138, 139]

The biological interpretation of alignments goes as follows: If S[i] and T [j]
are aligned, i.e., they are in the same column, and S[i] = T [j], these characters
are thought to be representing the same nucleotide or amino acid that was passed
from the common ancestor. If S[i] and T [j] are aligned but S[i] ̸= T [j], then
these characters are thought to be representing the mutation of single nucleotide
or amino acid. A column consisting of a character from Σ and - indicates that
insertion or deletion of single nucleotide or amino acid.

There are many variations of alignment problems other than global align-
ment. For example, in local alignment, the optimal score among all global align-
ments between all pairs of substrings of S and T is sought [125]. This is useful
for detecting similar sequences embedded in unrelated sequences. There are
also more complex scoring schemes. For example, in a scheme called affine gap
penalty, creating gaps is more expensive than extending them [35]. There are
algorithms with better time bounds for the cases when the input sequences or
the score matrix satisfies some assumptions [68, 95, 90, 30]. However, the best
existing time bound for the general sequence alignment is O(n2/polylog(n))-time
where n is the size of the input sequences [85, 23]. It is known that the exis-
tence of O(n2−ϵ)-time algorithm for any constant ϵ > 0 would refute a famous
conjecture in computational complexity theory called strong exponential time
hypothesis [6]. Also, there exist an approximation algorithm for sequence align-
ment that runs in O(n1+ϵ)-time for any constant ϵ > 0 but the approximation
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factor is polylog(n). Therefore, developing algorithms with better time bounds
for general sequence alignment problem seems to be very difficult.

2.7 A Hash Function for Strings

In this section, we introduce a concrete construction of a hash function for (fixed
length) strings we use in Chapter 4 and Chapter 5. The contents of this section
are based on the textbook by Mitzenmacher and Upfal [91]. Let V be the set
{1, 2, . . . , m} and let U be the universe of the keys of size larger than m.

First we prepare a definition and a proposition.

Definition 2.1. A family of hash functions H from U to V is said to be strongly
universal if, for any keys k1, k2 ∈ U s.t. k1 ̸= k2 and any values v1, v2 ∈ V ,
Pr[h(k1) = v1 and h(k2) = v2] = 1/m2.

Proposition 2.1. If H is strongly universal and h is a hash function chosen
from H uniformly randomly, then for any {k1, k2, . . . , kn} ∈ U and any k ∈ U ,
E[#{i : h(ki) = h(k)}] ≤ 1 + n/m where E[·] denotes the expectation.

Proof. Let Ii be a random variable s.t. Ii = 1 if h(ki) = h(k); 0 otherwise. Then,
E[#{i : h(ki) = h(k)}] = E[∑i Ii] = ∑

i E[Ii] = ∑
i Pr[h(ki) = h(k)]. Also,

Pr[h(ki) = h(k)] = ∑m
j=1 Pr[h(ki) = j and h(k) = j] = ∑m

j=1 1/m2 = 1/m if
ki ̸= k (The second equality follows from the strong universality) and Pr[h(ki) =
h(k)] = 1 if ki = k. Thus, ∑n

i=1 Pr[h(ki) = h(k)] ≤ 1+(n−1)/m < 1+n/m.

Corollary 2.1. If we implement a hash table by a strongly universal hash func-
tion family, and set the table size linear to the number of items, then, each
operation takes constant time in expectation.

We use the following proposition to construct the hash function for strings.
Let key k be a length ℓ string.

Proposition 2.2 ([91] Lemma 13.8). Let p be a large prime number s.t. p > σ.
For a := (a1, a2, . . . , ak) with 0 ≤ ai ≤ p−1(1 ≤ i ≤ ℓ), and value b with 0 ≤ b ≤
p−1, let ha,b be a map from {1, . . . , p}ℓ to {1, . . . , p} s.t. ha,b(k) = (∑ℓ

i=1 aik[i]+
b) mod p. Then, the set of functions {ha,b : 0 ≤ ai, b ≤ p− 1 for all 1 ≤ i ≤ ℓ}
is strongly universal.

Corollary 2.2. With the same settings as Proposition 2.2, let ha,b be a map
from {1, . . . , p}ℓ to {1, . . . , n} s.t. ha,b(k) = ((∑ℓ

i=1 aik[i] + b) mod p) mod m
where m < p. Then, {ha,b : 0 ≤ ai, b ≤ p − 1 for all 1 ≤ i ≤ ℓ} is strongly
universal.

To sum up, we showed a concrete construction of strong universal hash func-
tion family for fixed length strings. By Corollary 2.1, the hash table imple-
mented by this hash function family, when the table is allocated size linear to
the number of items contained, can perform every operations in O(1)-time in
expectation.
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Chapter 3

Text Indexing with Gaps

3.1 Overview

In this chapter, we introduce a data structure and its construction algorithms
we use in Chapter 4. The proposed data structure is a variant of the suffix
array, which we call the b-suffix array. The parameter b is a binary string and,
informally, the b-suffix array is an array containing suffixes sorted considering
only the i-th characters s.t. b[i] = 1; see Figure 3.1 for an example.

The main motivation to introduce the b-suffix array is the application to the
computation of the kernel function for strings we introduce in Chapter 4. By
using the b-suffix array, one can compute the kernel function without computing
the corresponding feature vectors explicitly. This algorithm for kernel func-
tion computation makes it possible to consider high dimensional feature vectors
keeping the computational cost independent of the dimension. The detail of the
string kernel is described in Chapter 4.

Aside from the application to Chapter 4, the b-suffix array, as a text index,
supports the search of patterns with wildcards in certain predetermined posi-
tions in time logarithmic to the length of the text. A wildcard ? is a special
character that can match any character. For example, when Σ = {A, C, G, T},
the pattern A?C matches AAC, ACC, AGC and ATC. Such patterns arise in spaced
seed-based filtering algorithms for sequence homology search. We explain about
it in Subsection 3.1.1.

Construction algorithms. The technical contributions of this chapter are the
construction algorithms for the b-suffix array. Informally, the main problem and
the results are summarized as follows (for formal statements, see Theorem 3.1
and 3.2):

Problem 3.1. Given a string T of length n and a binary string b of length m,
sort the suffixes of T considering only the i-th characters for i s.t. b[i] = 1 and
construct a size n array b-SA s.t. b-SA[i] = j iff the rank of T [j : n] is i.

Result 3.1. Problem 3.1 can be solved either in Θ(gn)-time and Θ(n)-space
where g is the number of runs of ones in b or in Θ( mn

ϵ log m
)-time and Θ(mϵn)-

space where ϵ is any constant s.t. 0 < ϵ < 1.

Since Problem 3.1 is a newly introduced problem, we assess Result 3.1 by
comparing it against a näıve solution. A natural näıve solution for this problem
is radix sort, i.e., sorting the suffixes by the i-th character for each i ∈ {1 ≤ i ≤
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m : b[i] = 1} in descending order. It takes Θ(wn)-time and Θ(n)-space where w
is the number of ones in b. Thus, the time complexity of the first (resp. second)
solution in Result 3.1 is asymptotically smaller than that of the radix sort if
g = o(w) (resp. m

log m
= o(w)). By using these results, we can obtain bounds for

the computation of the string kernel we introduce in Chapter 4 and an existing
string kernel. We explain the detail of these bounds in Chapter 4.

We also consider the following problem and give the result below it (See
Theorem 3.3 for formal statement.):

Problem 3.2. Given a string T of length n, a binary string b of length m, sort
the suffixes of T considering only i-th characters for i s.t. b[i mod m] = 1 and
construct a size n array b∗-SA s.t. b∗-SA[i] = j iff the rank of T [j : n] is i.

Result 3.2. Problem 3.2 can be solved in Θ(t(T, b)+n)-time and Θ(s(T, b)+n)-
space where t(T, b) (resp. s(T, b)) is the time (resp. space) needed to solve
Problem 3.1.

Problem 3.2 asks constructing the b-suffix array for the cases when the po-
sitions of wildcards in the pattern are periodic. Such periodic patterns arise in
spaced seed-based filtering algorithms such as WABA [58] and PerM [20].

One can also solve Problem 3.2 näıvely by radix sort, i.e., sorting the suffixes
by the i-th character for each i ∈ {1 ≤ i ≤ n : b[i mod m] = 1]} in descending
order. It takes Θ(n2w/m)-time. Thus, the time complexity of the solution in
Result 3.2 with the complexities of the first (resp. second) solution of Result 3.1
plugged in to t is asymptotically smaller than that of radix sort if g = o(nw/m)
(resp. m2/ log m = o(wn)).

3.1.1 Related Work

As is mentioned above, the b-suffix array supports the search of patterns with
wildcards in predetermined positions. More precisely, if the b-suffix array of a
length n string S is given, the occurrences of a pattern P s.t. P [i] ̸= ? iff b[i] = 1
is enumerated in O(w log n+occ)-time (or O(w +log n+occ)-time if the b-height
array (cf. Subsection 3.3.1) is also prepared) where w is the number of non-
wildcard characters in P and occ is the number of occurrences. In this subsection,
we explain the context in which such pattern matching problem arises. We also
review the results of existing work on data structures that support search of
patterns with wildcards.

Spaced Seed-based Homology Search Algorithms. In sequence homol-
ogy search, one is given a database of sequences and a query sequence and the
goal is to find all database elements that can be aligned to the query within a
given cost.1 Homology search is helpful to infer the functional or evolutionary
relationships between biological sequences and have been studied intensively in
bioinformatics community.

Modern algorithms for sequence homology search typified by BLAST [3] are
based on filtering. These algorithms first extract short patterns called seeds
from the query (See also Figure 3.1) and locate the occurrences of them in the

1For simplicity, we assume that the database is represented as a single string even if it is
composed of multiple strings.
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Figure 3.1: The extraction of seeds and spaced seeds. On the left, the set
of seeds is {ACA, CAC, CAG}. The right half corresponds to the case when the
wildcard position is represented by a binary string 101. The set of spaced seed
is {A?A, C?C, C?G}.

database to select elements that are potentially similar to the query. Then, each
of these potential matches is verified by sequence alignment. For example, in
BLAST for nucleotide sequences, if query length is m, each of m − 10 query
substrings of length 11 is used as a seed. Because filtering-based algorithms can
fail to find some solutions, they are often evaluated by the sensitivity, i.e., the
ratio of the number of solutions found to the number of all solutions.

While classical algorithms such as FASTA [106] and BLAST [3] use contigu-
ous seeds, more modern algorithms such as PatternHunter [81], PerM [20] and
ZOOM [77] use spaced seeds, which are the same as seeds except that characters
of certain fixed positions are wildcards (See also Figure 3.1). It is known that
the use of spaced seeds instead of contiguous seeds improves the filtering-based
algorithm both in terms speed and sensitivity.

There are many possible combinations of wildcard positions. For example,
if we represent the position of a wildcard (resp. non-wildcard) by 0 (resp. 1)
and fix the length of the spaced seed to 5 and fix the number of wildcards to 2,
there are 8 possible combinations, namely, 11100, 11010, 11001, 10110, 10101,
01110, 01101, 00111.2 It is known that the performance gain of spaced seeds
over contiguous seeds depends heavily on the choice of wildcard positions. Thus,
modern algorithms based on spaced seed use some fixed set of wildcard posi-
tions that are carefully designed to achieve high sensitivity. For example, Ma et
al. [81] recommended using positions b0 := 111010010100110111 for nucleotide
sequences. If we preprocess the database sequence and prepare the b-suffix array
of it where b is the binary string representing the predetermined wildcard posi-
tions, the occurrences of a spaced seed can be located in O(w log n + occ)-time
(or O(w + log n + occ)-time if we also construct the b-height array).

Text indices for patterns with wildcards. Pattern matching problems al-
lowing errors such as mismatches, insertions and deletions have also been studied
in string algorithm community. In particular, we review the results of existing
text indices that support the search of patterns containing wildcards.

We first introduce some notations. In the rest of this subsection, we denote
the length of the text and the pattern (including wildcards) by n and m respec-
tively. P is the pattern and occ(P ) is the number of the occurrences of P in the

2Some patterns listed here are essentially the same. For example, 11100, 01110 and 00111
are the same if we ignore zeros not surrounded by ones.
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text. We denote the number of wildcards in the pattern by d and the number of
contiguous groups of wildcards in the pattern by h. In other words, the pattern
P can be decomposed as P1◦?d1◦P2◦?d2◦P3◦· · ·◦Ph◦?dh◦Ph+1 where ck denotes
character c repeated for k times, di’s are positive integers satisfying ∑h

i=1 di = d
and each of Pi’s is a substrings of P that does not include any wildcard. In the
context of spaced seed search, d1, d2, . . . , dh and |P1|, |P2|, . . . , |Ph+1| are all fixed
and known. In such cases, the b-suffix array (in combination with the b-height
array) takes O(n)-size and supports finding occurrences of patterns in the text
in O(m + log n + occ(P ))-time.

Cole et al. [21] designed a text index that supports the search of patterns with
up to k wildcards (i.e., d ≤ k) where k is a number that is chosen at the time of
index construction. Their index structure takes O(n logk n)-space and supports
the search of patterns with up to k wildcards in O(m+2d log log n+occ(P ))-time.
Bille et al. [12] gave a data structure that takes O(σk2

n logk log n)-space and
supports the search of patterns with up to k wildcards in O(m + occ(P ))-time.
They also proposed an O(n)-space data structure that supports the search of
patterns with unbounded number of wildcards in O(m + σd log log n + occ(P ))-
time. Iliopoulos and Rahman [48] proposed an O(n)-space index that can be
built in O(n)-time and supports search of patterns in O(m + α)-time where
α := ∑

1≤i≤h+1 occ(Pi). Lam et al. [67] improved this bound for the search
time to O(m + hβ) with the same space and preprocessing time where β :=
min1≤i≤h+1 occ(Pi). Both α and β can be Θ(n) even if occ(P ) = 0. These data
structures cannot be compared directly with the b-suffix array because they do
not assume that the wildcard positions in the pattern are fixed and known at
the time of index construction.

There is also another type of text index that is more similar to the b-suffix
array. The gapped suffix array [24] is a generalization of the suffix array and
a special case of the b-suffix array. More specifically, the (g0, g1)-gapped suffix
array of a text is the b-suffix array of the case when b = 1g0 ◦ 0g1 ◦ 1n−g0−g1 . It
supports the search of patterns with wildcards in g0 +1-th to g0 +g1-th positions.

3.2 Notations and Definitions

Here, we introduce notations used in the rest of this chapter.
Let T be a length n string. We denote T [i : n] by Ti for i ≤ n.
The wildcard ? is a special character not included in Σ. We denote Σ ∪ {?}

by Γ. We denote the set of length k strings on Γ by Γk and the set of finite
length strings on Γ by Γ∗. A pattern P ∈ Γm is said to occur at position i of T
if P [j] = T [i+ j−1] for any j from 1 to m such that P [j] ̸= ?. Let b be a binary
string (a string on alphabet {0, 1}) of length m. We denote {1 ≤ i ≤ m|b[i] = 1}
(resp. {1 ≤ i ≤ m|b[i] = 0}) by 1b (resp. 0b). We call the cardinality of 1b

the weight of b and denote it by w(b). Let 1 ≤ i1 < i2 < · · · < iw ≤ m
be the elements of 1b sorted in ascending order. maskb(T ) is defined to be
T [i1] ◦T [i2] ◦ · · · ◦T [iw(b)] if iw(b) ≤ n and T [i1] ◦T [i2] ◦ · · · ◦T [ij] if ij ≤ n < ij+1
for some j between 1 and w(b)− 1. For strings S and T , the expression S ⪯b T
means maskb(S) is lexicographically less than or equal to maskb(T ). The relation
⪯b is a preorder and we call it the b-lexicographic order. The expression S =b T
means S ⪯b T and T ⪯b S.
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Figure 3.2: The suffix array and 101-suffix array of “ACCAAC”.

When c is a character or a string, we denote c repeated for k times by ck.
For a string T of length n and a character c, we say T [i : j] is a run of c if a)
T [i : j] = cj−i+1 and b) i = 1 or T [i− 1] ̸= c and c) j = n or T [j + 1] ̸= c, then
we say T [i : j].

Let T be a string of length n. For an integer h > 0 and i ∈ {1, 2, . . . , n}, the
h-rank of i is the rank of i when sorted by T [i : i + h − 1] and we denote it by
rh(i). Note that rh(SA[i]) ≤ rh(SA[i + 1]) for any i ∈ {1, 2, . . . , n − 1}. For a
binary string b and i ∈ {1, 2, . . . , n}, the b-rank of i is the rank of i when sorted
by maskb(T [i : n]) and we denote it by rb(i).

3.3 b-Suffix Array

3.3.1 Definition

Definition 3.1. The b-suffix array of a string T of length n, which we denote
by b-SAT , is an array containing 1, 2, . . . , n sorted by the b-lexicographic order
of T1, T2, . . . , Tn where the tie is broken by i.

An example of the b-suffix array is shown in Figure 3.2.

Definition 3.2. The b-height array of a string T , which we denote by b-HGTT ,
is an array of size n such that

b-HGTT [i] =

0 if i = 1
|lcp(maskb(Tb-SA[i−1]), maskb(Tb-SA[i]))| otherwise.

Because we do not consider multiple strings, we omit the subscript T of SAT ,
b-SAT , HGTT and b-HGTT in the rest of this chapter.

3.3.2 Search Method

Let T be a string of length n, b be a binary string of weight w and b-SA be
the b-suffix array of T . Let P be a pattern of length p ≤ |b| s.t. P [i] = ?
for i ∈ 0b and P [i] ∈ Σ for i ∈ 1b. Let left(P ) be min{i : P ⪯b Tb-SA[i]} if
{i : P ⪯b Tb-SA[i]} is non-empty and n + 1 otherwise. Also, let right(P ) be
max{i : Tb-SA[i] ⪯ P} if {i : Tb-SA[i] ⪯ P} is non-empty and 0 otherwise. The
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value left(P ) can be located by Algorithm 3.1. Each time we compare P and
a suffix according to ⪯b, it takes O(w)-time. Thus, each of the two cases from
line 1 to line 2 and from line 3 to line 4 takes O(w)-time and the while loop
from line 7 to line 12 takes O(w log n)-time. Thus, in total, this algorithm takes
O(w log n)-time. The value right(P ) can be located similarly in O(w log n)-time.
Because P =b T [i : i + p − 1] iff i = b-SA[j] for some j ∈ [left(P ), right(P )],
all occurrences of P in T can be found in O(w log n + occ)-time where occ is the
number of occurrences.

Algorithm 3.1 O(w log n)-time algorithm to find left(P )
Ensure: left = left(P )

1: if P ⪯b Tb-SA[1] then
2: left← 1
3: else if P ≻b Tb-SA[n] then
4: left← n + 1
5: else
6: (L, R)← (1, n)
7: while R− L > 1 do
8: M ← ⌊(L + R)/2⌋
9: if P ⪯b Tb-SA[M ] then

10: R←M
11: else
12: L←M
13: left← R

If we prepare the b-height array of T and the range minimum data structure
(cf. Theorem 2.1), for b-HGT , then left(P ) can be found in O(w+log n)-time by
the same technique as the O(m+log n)-time search algorithm for the suffix array.
Let 1 ≤ i1 < i2 < · · · < iw ≤ |b| be the indices of ones of b. We maintain ℓ :=
|lcp(maskb(P ), maskb(Tb-SA[L]))| (resp. r := |lcp(maskb(P ), maskb(Tb-SA[R]))|)
where L (resp. R) is the index of the left (resp. right) boundary of the interval
we successively halve in binary search. If ℓ ≥ r, we compare ℓ and llcp :=
|lcp(maskb(Tb-SA[L]), maskb(Tb-SA[M ]))| where M = ⌊(L + R)/2⌋. llcp can be
computed in constant time by the range minimum data structure because llcp =
min{b-HGT [i] : L ≤ i ≤ M}. If llcp > ℓ, then left(P ) is in [M, R]. If llcp < ℓ,
then left(P ) is in [L, M ]. If llcp = ℓ, then we need to compare maskb(P )
and maskb(Tb-SA[M ]) to determine if left(P ) is in [M, R] or [L, M ]. However,
ℓ = |lcp(maskb(P ), maskb(Tb-SA[L]))| = |lcp(maskb(Tb-SA[L]), maskb(Tb-SA[M ]))|,
maskb(P ) and maskb(Tb-SA[M ]) share the first ℓ characters and thus, it suffices
to compare them from ℓ + 1-th character, ℓ + 2-th character and so on. If
maskb(P )[j] = P [ij] is matched to some character of Tb-SA[M ] in this comparison,
then, P [ij] is never used in the comparison made in future. Thus, if ℓ ≥ r, either
the number of characters in maskb(P ) that can be used for comparison decreases
or the interval [L, R] is halved in constant time. The same thing is true for the
case when ℓ < r. Therefore, this algorithm takes O(w + log n)-time. right(P )
can also be found in O(w + log n)-time and thus, all occurrences of P can be
listed in O(w + log n + occ)-time.
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Algorithm 3.2 O(w + log n)-time algorithm to find left(P )
Ensure: left = left(P )

1: ℓ← lcp(maskb(Tb-SA[1]), maskb(P ))
2: r ← lcp(maskb(Tb-SA[n]), maskb(P ))
3: if ℓ = w or P [iℓ+1] ≤ T [b-SA[1] + iℓ+1 − 1] then
4: left← 1
5: else if r < w and P [ir+1] > T [b-SA[n] + ir+1 − 1] then
6: left← n + 1
7: else
8: (L, R)← (1, n)
9: while R− L > 1 do

10: M ← ⌊(L + R)/2⌋
11: if ℓ ≥ r then
12: llcp← lcp(maskb(Tb-SA[L]), maskb(Tb-SA[M ]))
13: if llcp ≥ ℓ then
14: mid← ℓ+lcp(maskb[iℓ+1:m](Tb-SA[M ]+iℓ+1−1), maskb[iℓ+1:m](Piℓ+1))
15: else
16: mid← llcp

17: else
18: rlcp← lcp(maskb(Tb-SA[R]), maskb(Tb-SA[M ]))
19: if rlcp ≥ r then
20: mid← r+lcp(maskb[ir+1:m](Tb-SA[M ]+ir+1−1), maskb[ir+1:m](Pir+1))
21: else
22: mid← rlcp

23: if mid = w or P [imid+1] ≤ T [b-SA[M ] + imid+1 − 1] then
24: (R, r)← (M, mid)
25: else
26: (L, ℓ)← (M, mid)
27: left← R

3.3.3 Construction of the b-Suffix Array for General b

Basic Idea

Let T be a string of length n and b be a binary string of weight w. As is mentioned
in Section 3.1, one can construct the b-SAT by radix sort, i.e., repeatedly sorting
i ∈ {1, 2, . . . , n} by T [i + j − 1] while j runs through all i ∈ 1b in descending
order. It takes Θ(wn)-time and Θ(n)-space. In the following of this subsection,
we show non-trivial algorithms to construct the b-suffix arrays. The key idea is
to modify the radix sort so that each bucket sort can take into account multiple
characters instead of single character.

O(gn)-time, O(n)-space Algorithm

We first prove the following theorem:

Theorem 3.1. Given a text T of length n and a wildcard position b of length
m, the b-suffix array b-SA and the b-height array b-HGT can be constructed in
O(gn)-time and O(n)-space where g is the number of runs of ones in b.
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The binary string b can be divided into runs as 0ℓ′
1◦1ℓ1◦0ℓ′

1◦· · ·◦0ℓ′
g◦1ℓg◦0ℓ′

g+1 .
Let sj be the index of the first character of the j-th run of one. If we can stably
sort 1, 2, . . . , n using Ti[sj : sj + ℓj − 1] as the key of i in O(n)-time for any
j ∈ {1, 2, . . . , g}, then we can construct the b-suffix array in O(gn)-time by
repeatedly applying this stable sort for all j from g to 1. Thus, it suffices to
show that each of these g stable sort can be done in O(n)-time.

Because Ti[sj : sj + ℓj − 1] = Ti+sj−1[1 : ℓj], sorting by Ti[sj : sj + ℓj − 1]
is equivalent to sorting by Ti+sj−1[1 : ℓj]. Also, the rank of i in this sorting
is rℓj

(i + sj − 1) because Ti+sj−1[1 : ℓj] is a length ℓj prefix of Ti+sj−1. If
HGT [i] < h, the h-rank of TSA[i] is i. Otherwise, TSA[i][1 : h] = TSA[i−1][1 : h]
and rh(SA[i]) = rh(SA[i − 1]). Therefore, h-ranks for all i ∈ {1, 2, . . . , n} can
be calculated in O(n)-time by Algorithm 3.3.

Algorithm 3.3 O(n)-time calculation of h-ranks
Require: the suffix array SA, the height array HGT
Ensure: R[i] is the h-rank of i

1: R[SA[1]]← 1
2: for i = 2 to n do
3: if HGT [i] < h then
4: j ← i

5: R[SA[i]]← j

Once ℓj-ranks are obtained, we can plug it into the standard radix sort.
Suppose we already have a list derived by iteratively sorting 1, 2, . . . , n using
Ti[sj : sj + ℓj − 1] as the key of i for all j from g to j0 + 1. We can further stably
sort this list using Ti[sj0 : sj0 + ℓj0 − 1] as the key of i as follows.

We prepare n queues Q1, Q2, . . . , Qn. Scanning the list, we push each element
i into Qrℓj

(i+sj−1). We prepare a new empty list and for all i from 1 to n, we pop
out the elements of Qi and append it to the new list. Then, the new list contains
what is needed. Therefore, we can construct the b-suffix array by applying this
procedure for all j from g to 1. The pseudocode of the whole algorithm is shown
in Algorithm 3.4. The calculation of R in line 5 is done by calling Algorithm 3.3
as a subroutine.
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Algorithm 3.4 The O(gn)-time construction of the b-suffix array
Require: text T of length n, binary string b of length m
Ensure: b-SA is the b-suffix array of T

1: for i from 1 to n do
2: b-SA[i]← i

3: construct the suffix array SA and the height array HGT
4: for j = g to 1 do
5: construct R s.t. R[i] = rℓj

(i)
6: for i = 1 to n do
7: push b-SA[i] to queue QR[b-SA[i]+sj−1]

8: i = 1
9: for k = 1 to n do

10: while Qk is not empty do
11: b-SA[i]← pop Qk

12: i← i + 1

As shown in Subsection 2.3.2, the suffix array can be constructed in O(n)-
time [55, 61, 99] and the height array can be constructed from the suffix array in
O(n)-time [56]. Thus, line 3 of Algorithm 3.4 takes O(n)-time. The procedures
in the for loop from line 4 to line 12, including the calculation of R in line 6
take O(n)-time. Therefore, the total time complexity is O(gn). We use constant
number of O(n)-size arrays, that is, SA, HGT, b-SA, R. Also we use n queues
and the total size of them is also O(n) because the total number of elements in
them are at most n. Thus the total space complexity is O(n).

Next, we prove the bound for the b-height array by showing how to con-
struct the b-height array from the b-suffix array in O(gn)-time. One can con-
struct the b-height array by computing lcp(maskb(Tb-SA[i−1]), maskb(Tb-SA[i])) for
all i from 2 to n. If we compute lcp(maskb(Tb-SA[i−1]), maskb(Tb-SA[i])) by com-
paring Tb-SA[i−1][j] and Tb-SA[i][j] for each j ∈ 1b in ascending order until the
first mismatch is found, it takes Θ(w)-time in the worst case and thus, this
method of height array construction takes Θ(wn)-time. As is mentioned in sub-
section 2.3.2, by constructing the data structure for range minimum query [9]
over the height array, one can calculate |lcp(Ti, Tj)| for any i and j in con-
stant time. The data structure for range minimum query can be constructed
in O(n)-time. By using this technique, we calculate |lcp(Tb-SA[i−1]+sj

, Tb-SA[i]+sj
)|

for each j from 1 to g. If the lcp value is greater than or equal to ℓj, then
Tb-SA[i−1][sj : sj + ℓj − 1] = Tb-SA[i][sj : sj + ℓj − 1] and thus, we proceed to the
comparison between Tb-SA[i−1][sj+1 : sj+1+ℓj+1−1] = Tb-SA[i][sj+1 : sj+1+ℓj+1−1].
Otherwise, b-HGT [i] is |lcp(Tb-SA[i−1]+sj

, Tb-SA[i]+sj
)| plus the number of charac-

ters matched so far. Either of these cases takes constant time and thus, the
comparison of each pair of suffixes takes O(g)-time. Overall, the b-height array
can be constructed in O(gn)-time. The pseudocode is presented in Algorithm 3.5.
We use constant number of arrays of size O(n), namely b-SA, HGT and b-HGT ,
and the auxiliary data structure for constant time longest common prefix query,
which also takes O(n)-space. Therefore, the algorithm uses O(n)-space.
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Algorithm 3.5 The O(gn)-time construction of the b-height array
Require: the b-Suffix array b-SA, the height array HGT
Ensure: b-HGT is the b-height array of T

1: initialize all elements of b-HGT by 0
2: preprocess HGT for constant time lcp computation
3: for i = 2 to n do
4: for j = 1 to g do
5: h← lcp(Tb-SA[i]+sj−1, Tb-SA[i−1]+sj−1)
6: b-HGT [i]← b-HGT [i] + min {h, ℓj}
7: if h < ℓj then
8: break

O( mn
ϵ log m

)-time and O(mϵn)-space Algorithm

The time complexity of Algorithm 3.4 depends on g, a variable that depends on
the problem. Here, we show the construction algorithm whose time and space
bounds involve a configurable variable. More precisely we prove the following
theorem:

Theorem 3.2. Given a text T of length n and a binary string b of length m,
the b-suffix array b-SA can be constructed in O( mn

ϵ log m
)-time and O(mϵn)-space.

where ϵ can be any constant s.t. 0 < ϵ < 1.

The strategy of this algorithm is also to modify radix sort in such a way
that multiple characters can be taken into account in single bucket sort. While
the number of characters taken into account in one bucket sort in Algorithm 3.4
varies among different of instances of bucket sort, in the current algorithm, we
fix it to some constant v ≤ m. For brevity, we assume v is a divisor of m. Let
bi := b[(i − 1)v + 1 : iv] for 1 ≤ i ≤ m/v. Starting from an array containing
1, 2, . . . , n, we iteratively update 0jv◦b[jv+1 : m]-SA to 0(j−1)v◦b[(j−1)v+1 : m]-
SA until we obtain b[1 : m]-SA = b-SA. In each update, elements of 0jv◦b[jv+1 :
m]-SA are stably sorted using mask0(j−1)v◦bj

(Ti) as the key of i. Note that
mask0(j−1)v◦bj

(Ti) = maskbj
(Ti+(j−1)v).

This update procedure can be done almost the same way as Algorithm 3.4.
Suppose we already have a list of 1, 2, . . . , n sorted by mask0jv◦b[jv+1:m](Ti) as
the key of i. We can stably sort this list as follows. We prepare n queues
Q1, Q2, . . . , Qn. Scanning the list, we push each element i into Qrbj

(i+(j−1)v).
(We show how to calculate bj-ranks shortly.) We prepare a new empty list and,
for all i from 1 to n, we pop out the elements of Qi and append it to the new
list. Then, the new list is sorted by mask0(j−1)v◦b[(j−1)v+1:m](Ti).

In the procedure above, we need to calculate bj-rank rbj
(i + (j − 1)v) to

determine which queue to push element i into. In order to do this, we prepare
the table of bj-ranks for every possible length v binary string b. b ◦ b′-rank
can be derived from b-rank and b′-rank in O(n)-time by two digits radix sort.
Therefore the b-ranks for all b of length k + 1 can be derived from b-ranks for b
of length k and length 1. There are 2v+1− 1 = O(2v) binary strings of length at
most v, thus the preprocessing takes O(2vn)-time. The construction except the
preprocessing takes O(mn/v)-time because each update from 0jv ◦ b[jv + 1 : m]-
SA to 0(j−1)v◦b[(j−1)v+1 : m]b-SA takes O(n)-time and there are m/v updates.
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Thus, the total time complexity is O(2vn + mn/v). It takes O(n)-space to store
the values of b-ranks for each b of length v and thus, the total space complexity
is O(2vn).

v is a parameter that we can choose. In particular, to minimize the total
time complexity, it is desirable to balance the preprocessing time and the time
for constructing b-SA. One way to do it is to let v to be ϵ log m where ϵ is a
constant s.t. 0 < ϵ < 1.3 In this case, the time complexity is O( mn

ϵ log m
) and the

space complexity is O(mϵn), which proves Theorem 3.2.

3.3.4 Construction of the b-Suffix Array by Sorting from Forward

The algorithms from the previous subsection construct the b-suffix array by suc-
cessive applications of bucket sort and each bucket sort takes Θ(n)-time. How-
ever, in the applications of radix sort, there are cases when only a few significant
digits are enough to uniquely determine the final result. For example, we can con-
clude that the 3-digit tuples t1 = (1, 5, 8), t2 = (4, 6, 7), t3 = (2, 7, 6), t4 = (3, 8, 5)
are sorted as t1, t3, t4, t2 even if we do not read the second and third digits of
these tuples because the first, i.e., the most significant, digits are enough to de-
termine the sorting. In this subsection, we show how to modify the O(gn)-time
algorithm in the previous subsections so that more significant digits are treated
before less significant digits although, in the worst case, the modified algorithm
takes O(gn log n)-time.

First, we explain MSD radix sort. MSD radix sort is a variant of radix
sort where more significant digits are treated before less significant digits. MSD
means ‘most significant digit’.4 We explain it in the case when sorted elements
are strings. In string sorting, each digit corresponds to a character. In MSD
radix sort, the elements are sorted at first using the first characters as the keys.
This procedure partitions the strings into groups in such a way that the elements
of each group share the same first character. Each of these groups are sorted
recursively. At the depth j recursion, the j-th character is used as the key. When
the group to be sorted consists of only one element, the group is already sorted
and thus, recursion stops.

Now we show an MSD radix sort-based construction algorithm for the b-
suffix array. We start from an array containing (1, 2, . . . , n) and the goal is
to sort these numbers using the g-tuple (Ti[s1 : s1 + ℓ1 − 1], Ti[s2 : s2 + ℓ2 −
1], . . . , Ti[sg : sg + ℓg − 1]) as the key for i. We do this by modifying MSD
radix sort so that at depth j recursion, Ti[sj : sj + ℓj − 1] is used as the key
for i. This is equivalent to sort using rℓj

(i + sj − 1) as the key for i because
Ti[sj : sj + ℓj − 1] = Ti+sj−1[1 : ℓj]. Suppose we already completed sorting by
(Ti[s1 : s1 + ℓ1 − 1], . . . , (Ti[sj1 : sj−1 + ℓ1 − 1] and need to sort n′ elements from
start-th by Ti[sj : sj + ℓ1 − 1]. Similar to Algorithm 3.4, we do this by pushing
each element i into queue Qr where r = rℓj

(i + sj − 1) and popping all elements
of Qr for smaller r’s to larger r’s.

However, if we implement this procedure by enumerating all possibly empty

3This choice of v does not balance the time complexity of preprocessing and b-SA construc-
tion exactly. We chose this setting because the optimal v cannot be expressed as an elementary
function.

4The standard radix sort is called LSD radix sort when it is necessary to clarify which type
of radix sort it means. LSD means ‘least significant digit’.
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queues Q1, Q2, . . . , Qn as Algorithm 3.4, it would take Θ(n)-time independent of
the number of elements to be sorted, i.e., n′. Also, if we calculate rℓj

(i + sj − 1)
by Algorithm 3.3, it also takes Θ(n)-time. To avoid this Θ(n)-time cost, we
maintain a dynamic set S of non-empty queues. There can be at most n′ non-
empty queues. As for rℓj

(i + sj− 1), we calculate it as follows. We construct the
range minimum query data structure (cf. Theorem 2.1) for the height array. As
is mentioned in Subsection 2.3.2, the range minimum query data structure can
be constructed in O(n)-time and given i and j (i ≤ j), the index k such that
HGT [k] is the minimum among HGT [i], HGT [i + 1], . . . , HGT [j] can be found
in O(1)-time. We also prepare a size n array R that satisfies R[SA[i]] = i for all
i from 1 to n at the beginning. Obviously, R can be constructed in O(n)-time
from SA. Note that rh(i) = max{j ≤ R[i] : HGT [j] < h}. To calculate rh(i),
we first calculate min{HGT [k] : 1 ≤ k ≤ R[i]}. If it is greater than or equal to
h, then rh(i) is 1. Otherwise, there is at least one k s.t. HGT [k] < h in [1, R[i]].
In general, we can find the maximum k in [left, right] s.t. HGT [k] < h (if there
is at least one such k) as follows. If left = right, then left is the answer. Let
mid := ⌊left + right/2⌋ and calculate mink{HGT [k] : left ≤ k ≤ mid} and
mink{HGT [k] : mid + 1 ≤ k ≤ right}. At least one of them must be smaller
than h. If mink{HGT [k] : mid + 1 ≤ k ≤ right} < h, recursively find the
maximum k in [mid + 1, right] s.t. HGT [k] < h. Otherwise, recursively find the
maximum k in [left, mid] s.t. HGT [k] < h. This procedure takes O(log n)-time.

The pseudocode of the construction algorithm is shown in Algorithm 3.6
and Algorithm 3.7. As is mentioned above, the computation of ℓj-rank in line
5 takes O(log n)-time. Insertion of element r into the dynamic set S in line 7
takes O(log n′)-time if we implement S by the self-balancing binary search tree.
Therefore, the for loop from line 4 to line 8 takes O(n′ log n)-time. The for
loop from line 11 to line 18 takes O(n′)-time. Overall, each recursive call takes
O(n′ log n)-time. In the worst case, there can be n elements sorted in depth j
recursions and thus, the depth j recursive calls take O(n log n)-time in total.
Therefore, it takes O(gn log n)-time in total.

Algorithm 3.6 Construction of the b-suffix array from forward
1: Construct SA, HGT, R and the range minimum data structure for HGT
2: Initialize b-SA by (1, 2, . . . , n)
3: RecursiveSort(1, n, 1)

3.3.5 Construction of the b-Suffix Array for Periodic b

In this section, we prove the following theorem.

Theorem 3.3. Given a text T of length n, a binary string b of length p, the b-
suffix array b-SA and an array b-RSA s.t. b-RSA[i] = rb(i), b∗-SA is obtained
in Θ(n)-time and Θ(n)-space where b∗ = b⌈n/p⌉.

The inequality Ti ⪯b∗ Tj holds iff a) Ti[1 : p] ⪯b Tj[1 : p] and Tj[1 : p] ̸⪯b

Ti[1 : p] (⇔ rb(i) < rb(j)) or b) Ti[1 : p] =b Tj[1 : p] (⇔ rb(i) = rb(j)) and
Ti+p ⪯b∗ Tj+p. Thus, ⪯b∗ on {Ti}i is equivalent to the lexicographic order on
strings {rb(i)◦rb(i+p)◦· · ·◦rb(i+⌈(n−i)/p⌉p)}i. To sort {Ti}i by ⪯b∗ , it suffices
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Algorithm 3.7 RecursiveSort(start, n′, j)
1: if n′ = 1 or j > g then
2: return
3: for i← start to start + n′ − 1 do
4: r ← rℓj

(bSA[i] + sj − 1)
5: push bSA[i] to Qr

6: add r to S if r ̸∈ S

7: i← 1, k ← 1
8: Boundary[k]← 1
9: for r ∈ S in ascending order do

10: while Qr is not empty do
11: bSA[i]← pop Qr

12: i← i + 1
13: k ← k + 1
14: Boundary[k]← i

15: for i← 1 to k − 1 do
16: RecursiveSort(B[i], B[i + 1]−B[i], j + 1)

to sort {rs(i)}i by lexicographic order where rs(i) := rb(i)◦ rb(i + p)◦ · · · ◦ rb(i +
⌈(n− i)/p⌉p). For i s.t. 1 ≤ i ≤ p and 0 ≤ k ≤ ⌈(n− i)/p⌉, rs(i + kp) is a suffix
of rs(i). We consider the string rs := rs(1) ◦ 0 ◦ rs(2) ◦ 0 ◦ · · · ◦ 0 ◦ rs(p). The
set {rs(i)}i can be sorted by sorting the suffixes of rs. It is easy to ignore the
suffixes starting from 0 because they gather to the head when sorted. Because
the comparison of two suffixes ends before or at the time when either of them
reaches the end, comparison of corresponding rs(i)’s is not affected by inserting
0s.

The running time is dominated by the suffix sorting of rs, which can be done
in Θ(n)-time. Therefore, the total time complexity is Θ(n). Space complexity
is also Θ(n). Therefore Theorem 3.3 follows. The pseudocode of the algorithm
is presented in Algorithm 3.8.

Algorithm 3.8 Construction of the b-suffix array for periodic b

Require: b-suffix array b-SA, b-rank b-RSA, assume p evenly divides n
Ensure: b∗-SA is the b∗-suffix array

1: construct rs = rs(1) ◦ 0 ◦ rs(2) ◦ 0 ◦ · · · ◦ 0 ◦ rs(p)
2: construct the suffix array of rs SA1
3: n′ ← n/p
4: for i = p to n + p− 1 do
5: j ← SA1[i]
6: q ← ⌊j/(n′ + 1)⌋
7: r ← j mod (n′ + 1)
8: b∗-SA[i− p + 1]← q + 1 + pr
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3.4 Discussion

In this chapter we introduced the b-suffix array, a variant of the suffix array. The
main motivation was the application to the computation of the kernel function
introduced in Chapter 4 (This application is described in Chapter 4.) Aside from
the application to kernel function computation, the b-suffix array, as a text index,
supports searching patterns with wildcards in predetermined positions within
time logarithmic to the size of the text. Such pattern matching problem arises
in the context of spaced seed-based homology search. The technical contributions
in this chapter were the construction algorithms of the b-suffix array. The näıve
construction algorithm by conventional radix sort takes O(wn)-time where w
is the number of ones in b. We proposed an O(gn)-time, O(n)-space algorithm
and O(mn/ϵ log m)-time, O(mϵn)-space algorithm to construct the b-suffix array
where g is the number of runs of one in b and ϵ is any number between 0 and
1. The algorithms above are based on radix sort. Although it does not improve
the worst-case time bound, we showed how to construct the b-suffix array by
applying the techniques of MSD radix sort instead of conventional LSD radix
sort. We also gave an O(gn)-time algorithm to construct the b-height array from
the b-suffix array. Last, we proposed an algorithm to construct the b∗-suffix array
from b-suffix array and b-ranks in O(n)-time and O(n)-space.

The proposed data structure is just a size n array containing 1, 2, . . . , n in
a specific order and very easy to implement. We use this data structure in
Chapter 4 in kernel function computation.

As a text index for spaced seed search, an interesting direction of research
is to design compact text indices. In data structure community, the technology
to compress data structures in such a way that operations can be done with-
out decompressing have been vigorously studied since early 2000s and is called
succinct data structure. This technology have been successfully applied to text
indices for searching contiguous patterns both in terms of theory and practice.
For example, when the length of the text is n, a data structure called FM-index
takes Θ(n) bits in the worst case or o(n) bits if the text is compressible while the
suffix array takes Θ(n log n) bits. The FM-index supports finding all occurrences
of a pattern of length m in O(m+occ logϵ n)-time [26]. In practice, the FM-index
occupies 3n bits while the suffix array takes 32n bits [44]. Though the search
time of the FM-index is larger than that of the suffix array in 2 or 3 orders of
magnitude [44], it was successfully applied to DNA mapping [74, 69] and genome
assembly [123]. On the other hand, there have been relatively few work on the
compression of text indices for non-contiguous patterns. Recently, Gagie et al.
proposed a method to compress multiple b-suffix arrays for different b’s by ap-
plying the techniques of succinct data structure [29]. This is a promising result
because multiple seed, the use of many spaced seeds corresponding to different
b’s, is known to be a powerful method to increases the sensitivity of homology
search [75]. As is mentioned by Gagie et al. themselves, an important open
problem is to extend such text index supporting the search of non-contiguous
patterns to the collection of similar strings such as DNA sequences from different
individuals.
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Chapter 4

The Gapped Spectrum Kernel for
Support Vector Machines

4.1 Overview

4.1.1 Background

The primary structure, i.e., the amino acid sequence of a protein contains in-
formation about the function or structure of the protein. For example, RING-
type zinc finger proteins are known to play a key role in ubiquitination path-
way [80, 144]. According to protein sequence motif database PROSITE [121],
these proteins share conserved sequential pattern CxHx[LIVMFY]CxxC[LIVMYA].
Each capital letter represents a particular type of amino acid while x represents
an arbitrary amino acid. At the fifth and the last position, any type of amino
acid in the brackets is valid. Thus, the function in ubiquitination pathway can
be associated with the sequence pattern. Because the primary structures of pro-
teins are relatively easier to determine, automatic methods to predict structural
or functional features of proteins from sequences have been studied. On the
other hand, there is an ongoing paradigm shift in protein study. Although the
total number of proteins in nature is difficult to estimate or even define, there
is no doubt that currently known proteins represent only a tiny and highly bi-
ased fraction of them. The recent development of DNA sequencing technologies
enabled us to collect DNA sequences of unprecedented amount by comprehen-
sive manner. Massive amount of protein sequence data are also derived from
these DNA sequences.1 For example, the protein sequence data collected dur-
ing Global Ocean Survey [112], in which the genomes of marine microbes were
sampled from around the world, amounted to about 6.1 million and quadrupled
the number of then-known proteins. This type of studies, called metagenomics,
are becoming more and more popular these days and producing a large amount
of sequence data. In order to analyze these data comprehensively, not only ac-
curate but also computationally efficient sequence analysis methods are needed.
String kernel is a promising approach to this goal.

A string kernel is a kernel function defined for strings and can be plugged
into SVMs to learn a rule to differentiate between positively labeled data (se-
quences with some property of interest) and negatively labeled data (sequences
without that property); see also Section 2.4. Compared to the approaches based

1Protein coding regions of prokaryotic genome can be identified by locating sufficiently long
open reading frames, regions that start with ATG and end with TAA, TAG or TGA.
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Figure 4.1: The feature vectors of the 2-spectrum kernel and the 101-gapped
spectrum kernel for the string ABABBBB.

on explicit signatures of protein groups such as the aforementioned motif from
PROSITE, string kernels are able to handle complex differentiation rules that
are hard for humans to comprehend. They also conform to the standard for-
mulation of supervised classification problem in computational learning theory
(cf. Subsection 2.4.1) and thus, one can apply various techniques developed in
computational learning community. In particular, the spectrum kernel [73] is
known to be able to achieve classification accuracy and computational efficiency
both at high levels. In this kernel, and its extensions, each string is characterized
by the frequencies of substructures such as substrings or subsequences contained
in the string. For example, in the spectrum kernel, a string is mapped to a
σk-dimensional vector where k is a parameter. Each dimension corresponds to
a k-mer2 and the value of the dimension is the number of occurrences of that
k-mer in the input string (See also Figure 4.1. We give the formal definition of
the spectrum kernel in Subsection 4.2.1). The kernel function of two strings is
defined to be the inner product of the corresponding vectors. Intuitively, this
kernel function measures the closeness of the k-mer compositions of strings.

4.1.2 Our Work

While the spectrum kernel is based on the frequencies of contiguous substrings,
there are many motifs of protein groups that are represented as non-contiguous
patterns exemplified by the signature of RING-type zinc finger proteins described
in Subsection 4.1.1. Thus, it seems reasonable to characterize protein sequences
by non-contiguous substructures.

2A k-mer means a length k string.
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Based on this consideration, we introduce the gapped spectrum kernel, a
new variant of the spectrum kernel that is based on the frequencies of gapped
patterns. In the gapped spectrum kernel, a string is mapped to a vector in a
similar way to the spectrum kernel except that characters of particular positions
in each k-mer are not taken into consideration. For example, the right half of
Figure 4.1 shows how sequence ABABBBB is mapped to a vector while ignoring the
second characters of each 3-mer. The gap positions are represented by a binary
string. The example in Figure 4.1 corresponds to the case of gap pattern 101,
meaning that the first and the third characters of each 3-mer are respected while
the second character is not. We introduce the gapped spectrum kernel formally
in Section 4.3.

In order to obtain a rough idea of how the introduction of gaps will affect
the string kernel, we calculated the expected values of the (gapped) spectrum
kernel between random sequences and those values between patterns contain-
ing a motif. To model sequences containing motifs, we selected two functional
motifs: [FILV]Qxxx[RK]Gxxx[RK]xx[FILVWY] for IQ calmodulin-binding motif
from [111] and [FL]xxxxxx[DN]xx[AGS]x[ST]xG[KRH]GxxGxxxR for Ribosomal
protein L3 signature from PROSITE [121]. Then, we calculated the expected
values of (gapped) spectrum kernel for gap patterns of weight (number of ones)
4 and length up to 6. The expectation was taken over all possible choices of
random strings where the character for x is chosen uniformly randomly from 20
possible amino acids and the character for groups enclosed in brackets are chosen
uniformly randomly from valid characters. We padded the left and right of the
pattern by 6 uniformly random characters. Because the number of ones in gap
patterns we tried are all the same, the expected values for random sequences
(without embedded motifs) is all the same. Table 4.1 shows the results. Note
that the gap pattern 1111 corresponds to contiguous pattern, i.e., the spectrum
kernel. Naturally enough, when patterns are embedded, the expected kernel
values increase. However, in almost all cases, the expected value of the gapped
spectrum kernel is greater than that of the spectrum kernel. Also, the gap
patterns that attain the highest kernel values are different for the two types of
motifs.

From the calculations above, we can expect that a) the prediction ability of
composition-based kernels can be enhanced by introducing gaps in the substruc-
tures counted and b) the effectiveness of gap patterns depends on the application.
In practice, even if there exists a simple motif characterizing the proteins with
the property of interest, that motif is not known a priori. In other words, we do
not know which gap pattern to use beforehand. Thus, it is reasonable to combine
multiple kernels corresponding to different gap patterns. Indeed, one existing
variant of the spectrum kernel called the wildcard kernel [71] corresponds to the
case when all possible gap patterns of particular length and weights are com-
bined. The wildcard kernel is known to be able to achieve higher classification
accuracy than the spectrum kernel but with higher computational cost. How-
ever, it was not known what happens if we incorporate multiple but not all gap
patterns. We investigate it in this chapter.

Results. In this paragraph, we describe several time bounds for kernel function
computation. In these bounds, n denotes the sum of the lengths of the two input
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Table 4.1: The expected values of (gapped) spectrum kernel for random se-
quences with motifs. The second column is for IQ calmodulin-binding site and
the third column is for Ribosomal protein L3 signature. The first row is the
expected values for random sequences (without motifs).

Random 0.002756 0.006006
Gap IQ Ribosomal
1111 0.424653 0.510544
11101 0.446694 0.718425
111001 1.241633 3.186738
11011 0.452865 0.475969
110101 1.168457 0.643206
110011 2.291657 0.584056
10111 0.446694 1.747987
101101 0.420833 0.736375
101011 1.464686 1.302725
100111 1.537861 0.482225

strings. We also describe time bounds for the learning and prediction phase of
SVM. In these bounds, ℓ denotes the number of sequences in the training set; N
is the total length of all input sequences; ℓ′ is the number of the support vectors;
N ′ is the total length of all support vectors; and q is the length of the query.

Our first result in this chapter is the introduction of the gapped spectrum
kernel and an algorithm to compute it within time independent of the dimension
of the feature space. The kernel computation algorithm applies the b-suffix array
data structure we introduced in Chapter 3. When the gap pattern is represented
by a binary string b, it takes O(gn)-time to compute the kernel function where
g is the number of runs of ones in b. By this algorithm for kernel function
computation, in the learning phase, the kernel matrix can be constructed in
O(gℓN)-time. In the prediction phase of SVMs, one can judge if the query
sequence belongs to the group observed in the learning phase in time O(wq)-
time where w is the weight of b.

Then we show that the sum of the gapped spectrum kernels for the parameter
b of length k and weights at least k −m is equal to the (k, m)-wildcard kernel.
Together with the algorithm for the gapped spectrum kernel computation above,
it gives an O(kmmn)-time algorithm to compute the (k, m)-wildcard kernel while
the existing algorithm proposed by Leslie et al. [71] takes O(km+1n)-time. By
this algorithm, the kernel matrix of the wildcard kernel can be computed in
O(km+1ℓN)-time. Also, together with the prediction algorithm for the gapped
spectrum kernel, it gives an O(km+1q)-time algorithm for the prediction phase
of the wildcard kernel. Different from the existing O(km+1(ℓ′q + N ′))-time algo-
rithm, our algorithm does not depend on the size of the support vectors.

We experimentally show that the sum of a few gapped spectrum kernels for
randomly chosen parameters b is able to predict the protein families compara-
tively accurately as the wildcard kernel. In order to obtain the wildcard kernel,
one needs to take the sum of ∑m

i=0

(
k
i

)
≤ ∑m

i=0 km = O(km) instances of the
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Table 4.2: The time complexities of kernel computation for learning and predic-
tion. ℓ is the number of training sequences. N is the total length of training
sequences. ℓ′ is the number of the support vectors. N ′ is the total length of
sequences corresponding to the support vectors. q is the length of the query. s is
the number of gap patterns considered in the multiple gapped spectrum kernel.

Kernel Learning Prediction
k-Spectrum [126] O(ℓN) O(q)

(k, m)-Wildcard [71] O(km+1ℓN) O(km+1(ℓ′q + N ′))
(k, m)-Wildcard (Our method) O(kmmℓN) O(km+1q)

b-Gapped O(gℓN) O(wq)
(k, m)-Multiple gapped O(smℓN) O(skq)

gapped spectrum kernels. Our result indicates that it may not be necessary to
take into account all possible gap patterns if we allow a small amount of decrease
of the classification accuracy.

Last, we show that the sum above (randomly chosen kernels) can predict pro-
tein families as accurately as the kernel derived by taking the sum of the gapped
spectrum kernels for different parameters b in a greedy order learned from the
training set. This result indicates that, in order to increase classification accu-
racy by using combining the gapped spectrum kernels for multiple parameters,
randomly selecting parameters is already a rather good strategy.

4.1.3 Related Work

Variants of the spectrum kernel. The existing string kernels that are di-
rectly relevant to our work are the spectrum kernel and the wildcard kernel.
However, there are other variants of the spectrum kernel and they are similar
to the wildcard kernel in the sense that they try to achieve higher classifica-
tion accuracies than the spectrum kernel by taking into account more general
substructures than (contiguous) substrings. Thus, here, we give a brief sum-
mary of these variants of the spectrum kernel. In this paragraph, we denote
the maximum length of input strings for kernel function as n. See Table 4.3 for
the summary of the time complexities of the computation of these kernels. The
(k, m)-mismatch kernel [72] considers the number of each k-mer that appears in
the string with at most m(< k) mismatches as the feature. The computation of
the kernel function takes O(αk,mn)-time where αk,m := ∑min {2m,k}

ℓ=0

(
k
ℓ

)
(k−ℓ) [65].

The k-subsequence kernel [79] considers the number of each k-mer that appears
as subsequences3 in the string as the feature4. It takes O(kn2)-time to compute
the corresponding kernel function. With an additional condition that the region
in the original sequence spanned by each subsequence must be at most h, the
(h, k)-restricted gappy string kernel is obtained and the time needed to compute
the kernel function drops to O(βh,kn)-time where βh,k := (h−k)hh−k+1 [71]. The

3A length k subsequence of a string S of length n is S[i1]◦S[i2]◦· · ·◦S[ik] where i1, i2, . . . , ik

are integers satisfying 1 ≤ i1 < i2 < · · · < ik ≤ n. Note that it is different from a substring.
4In the original paper [79], it is called ‘string subsequence kernel’ with k implicitly assumed.
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(k, m)-wildcard kernel [71] is similar to the (k, m)-mismatch kernel but there is a
subtlety. See section 4.2 for the detail of the wildcard kernel. The computation
takes O(km+1n)-time. Kuksa et al. [65] also gave bounds for the (h, k)-restricted
gappy kernel and (k, m)-wildcard kernel that are, except for some minor terms
and truncations in analyses, the same as the ones above.

It is difficult to compare the accuracy of string kernels in general because
the performance of each kernel depends on the application. Leslie et al. [71]
compared the spectrum kernel, the mismatch kernel, the restricted gappy kernel
and the wildcard kernel in the context of protein sequence classification, and
reported that the mismatch kernel, the restricted gappy kernel and the wildcard
kernel are achieve higher prediction accuracies than the spectrum kernel while
their accuracies are similar to each other.

Table 4.3: Summary of the time needed to compute related string kernels. n
is the sum of input strings for the kernel function. ℓ is the number of training
sequences. N is the total length of training sequences. ℓ′ is the number of the
support vectors. N ′ is the total length of the support vectors. q is the length of
the query. αk,m := ∑min (2m,k)

s=0

(
k
s

)
(k − s). βh,k := (h− k)hh−k+1.

Kernel Kernel function Learning Prediction
(k, m)-mismatch [72] O(αk,mn) [65] O(αk,mℓN) O(kq)
k-subsequence [79] O(kn2) O(kN2) O(kN ′q)

(h, k)-restricted gappy [71] O(βh,kn) O(βh,kℓN) O(βh,k(ℓ′q + N ′))

Alignment-free sequence analysis. Sequence alignment is the standard
method to measure biological sequence similarity but it is not appropriate in
some cases. For example, although sequence alignment provides informative
results when applied to highly similar sequences, aligning sequences with low
similarities often lead to meaningless outputs. Also, it is not feasible to apply
sequence alignment to exhaustive analyses of large databases because sequence
alignment takes time quadratic to the input size. Therefore, though it is not
as popular as alignment-based methods, alignment-free methods for sequence
analysis have also been studied for a long time. For example, some pioneers in
1960s attempted to classify DNA or protein sequences by the composition of the
characters, i.e., nucleotides or amino acids [135]. There exist too many litera-
tures on alignment-free sequence analysis to summarize here. We recommend
the recent review articles compiled in a special issue of the journal Briefing of
Bioinformatics [136] for more detailed information about this topic. Here, we
focus on the relationship of the contents of this chapter to this field.

In general, alignment-free sequence analysis methods first map sequences to
Euclidean space and then apply various techniques to analyze vectorial data [135].
Composition-based string kernels such as the spectrum kernel conform to this
framework. In fact, one of the main approaches in alignment-free sequence
analysis is based on the frequencies of k-mers. (The pioneering work in 1960s
mentioned above belongs to the case when k = 1.) This is exactly what the
spectrum kernel does. Therefore, though the machine learning community and
alignment-free sequence analysis community do not seem to be aware of each
other, we think that the spectrum kernel and its extensions can also be applied
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to problems studied in alignment-free sequence analysis such as phylogenetics
and metagenomics. In particular, several recent work [45, 70, 92] reported that,
for phylogeny reconstruction problem5, using the frequencies of gapped patterns
leads to higher accuracies than using contiguous patterns.

4.2 Preliminaries

We first introduce notations we use in the rest of this chapter.
The symbol ? denotes a wildcard and Γ denotes Σ ∪ {?}. We denote the

set of length k strings on Γ by Γk and the set of finite length strings on Γ by
Γ∗. The symbol Γk

m (resp. Γk
≤m) is defined to be the set of length k strings on

Γ with exactly m (resp. at most m) ?’s. If a k-mer s ∈ Σk and a k-mer t ∈ Γk

satisfy s[i] = t[i] for all i s.t. t[i] ∈ Σ, we denote s ≈ t. An occurrence of t ∈ Γk

in S ∈ Σ∗ is an index i such that S[i : i + k − 1] ≈ t. We denote the number of
occurrences of a string P (on Σ or Γ) in another string T ∈ Σ∗ by occ(P, T ).

We denote the weight of a binary string b by w(b). Let b be a binary string
of length k and weight w and m be k − w. The set Γb is defined to be {S ∈
Γk

m : S[i] = Σ iff b[i] = 1}. We call each element of Γb as a b-mer. Let ij be
the index of the j-th one in b. In other words, 1 ≤ i1 < i2 < · · · < iw ≤ k and
b[i1] = b[i2] = · · · = b[iw] = 1. We define maskb be the map Σk ∋ x1 ◦ x2 ◦ · · · ◦
xk 7→ xi1 ◦ xi2 ◦ · · · ◦ xiw ∈ Σw. We also define mask′

b be the map from Σk to Γk
m

such that mask′
b(S)[i] is S[i] if b[i] = 1; ? otherwise.

4.2.1 The Spectrum Kernel

Definition. The feature vector ϕk(S) of the k-spectrum kernel is the vector
defined as follows:

ϕk(S) : = (#{i : S[i : i + k − 1] = s})s∈Σk

= (occ(s, S))s∈Σk .

Note that the feature vector has σk dimensions each corresponding to some k-
mer. Thus, the kernel function of two strings S1 and S2 is

Kk(S1, S2) : = ϕk(S1)⊤ϕk(S2)
=
∑

s∈Σk

occ(s, S1)occ(s, S2).

Kernel computation. Let n := |S1| + |S2|. Leslie et al. [73] showed an
algorithm based of the suffix tree to compute Kk(S, T ) in O(kn)-time. Smola
and Vishwanathan [126] improved it to O(n)-time. We show a version that is
based on the suffix array in Algorithm 4.1. We first construct the generalized
suffix array SA of S1 and S2, i.e., the suffix array of S := S1 ◦ $ ◦S2 where $ is a
character that does not appear in S1 and S2. We also construct the height array
HGT for SA. Because S[SA[1] : n + 1], S[SA[2] : n + 1], . . . , S[SA[n] : n + 1]
are lexicographically sorted, for each k-mer s, indices i s.t. S[SA[i] : n + 1] is
prefixed by s are laid in a consecutive region of the suffix array (if there is any

5The phylogeny reconstruction is the problem of reconstructing the history of evolution,
e.g., how humans, chimpanzees, gorillas and orangutans emerged from their common ancestor.

49



such index). Let’s call such a consecutive region of the suffix array as a k-region.
The suffix array can be decomposed into k-regions. By the definition of the
height array, an index i is the first index of a k-region iff HGT [i] < k. We scan
SA k-region-wise. We maintain the number c1 of the indices i in the current
k-region s.t. SA[i] ≤ |S1|. For each such i, S1[SA[i] : SA[i] + k − 1] = s where
s is the k-mer corresponding to the current k-region. In other words, c1 is the
number of occurrences of s in S1. We also maintain the number of occurrences of
s in S2 similarly. When we reach the end of a k-region, we compute the product
c1c2. The kernel value is the sum of these products. The construction of SA
and HGT takes O(n)-time. The main computation is also O(n)-time because
all operations in the for loop from line 4 takes constant time. Thus, the total
time complexity is O(n).

In practice, Algorithm 4.1 is preferable to the suffix tree-based algorithm
because the suffix array is more compact than the suffix tree. Also, the main
part of Algorithm 4.1 (the for loop from line 4) is an array scan while the
corresponding part of the suffix tree-based algorithm is a tree traversal. Thus,
the suffix array-based algorithm is more cache friendly.

Algorithm 4.1 The computation of the k-spectrum kernel Kk(S, T )
Ensure: K = Kk(S, T )

1: Construct the (generalized) suffix array SA of S and T
2: Construct the height array HGT of corresponding to SA
3: (K, c1, c2)← (0, 0, 0)
4: for i = 1 to n do
5: if HGT [i] < k then
6: K ← K + c1c2
7: (c1, c2)← (0, 0)
8: else
9: if SA[i] ≤ |S| then

10: c1 ← c1 + 1
11: else
12: c2 ← c2 + 1
13: K ← K + c1c2

Learning. If the training data consist of ℓ strings S1, S2, . . . , Sℓ of length n1,
n2, . . . , nℓ respectively, then, the total time to compute the kernel matrix is∑

1≤i,j≤ℓ O(ni + nj) = O(ℓN) where N := ∑ℓ
i=1 ni.

Prediction. In the prediction phase, the expression

ℓ′∑
i=1

yiα
∗
i Kk(Si, Q) =

ℓ′∑
i=1

yiα
∗
i ϕk(Si)⊤ϕk(Q) (4.1)

is evaluated where S1, S2, . . . , Sℓ′ are the support vectors, Q is the query se-
quence, yi is an input for learning phase and α∗

i is a constant derived in the
learning phase (cf. Subsection 2.4.3). The obvious calculation of this expression
involves ℓ′ kernel function evaluations. The time complexity of this procedure
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is O(∑ℓ′

i=1(q + ni)) = O(qℓ′ + N ′) where q = |Q|, ni = |Si| and N ′ = ∑ℓ′

i=1 ni.
Leslie et al. [73] proposed an O(kq)-time algorithm based on table lookup but
they did not explain the detail. Smola and Vishwanathan proposed an O(q)-
time algorithm based on the suffix tree [126]. Though it is not as efficient as
Smola et al.’s algorithm, here, we present an average-case O(kq)-time algorithm.
The algorithm is based on the algorithm of Leslie et al. but we fill a gap in the
original description. We choose to present this algorithm because it has a simi-
larity to the prediction algorithm for the gapped spectrum kernel we introduce
in Section 4.3. The pseudocode is shown in Algorithm 4.2.

First observe that
ℓ′∑

i=1
yiα

∗
i ϕk(Si)⊤ϕk(Q) =

ℓ′∑
i=1

yiα
∗
i

∑
s∈Σk

occ(s, Si)occ(s, Q)

=
∑

s∈Σk

 ℓ′∑
i=1

yiα
∗
i occ(s, Si)

 occ(s, Q)

=
q−k+1∑

s=1

 ℓ′∑
i=1

yiα
∗
i occ(Q[s : s + k − 1], Si)

 .

We preprocess the support vectors and prepare the hash table table s.t.
table[h(u)] = ∑ℓ′

i=1 yiα
∗
i occ(u, Si) for any k-mer u s.t. occ(u, Si) > 0 for some i.

When a query Q is given, we lookup table[h(Q[s : s+k−1])] = ∑ℓ′

i=1 yiα
∗
i occ(Q[s :

s + k− 1], Si) for all s from 1 to q− k + 1 and output the sum. To implement h,
we use the construction described in Section 2.7. Each lookup takes O(k)-time
to calculate h(Q[s : s + k − 1]) and O(1)-time in expectation to table lookup.
Thus, the total time complexity is O(kq) in expectation.

Algorithm 4.2 An O(kq)-time prediction algorithm for the spectrum kernel

Require: table[h(t)] = ∑ℓ′

i=1 yiα
∗
i occ(t, Si) for any k-mer u s.t. occ(u, Si) > 0

for some i.
Ensure: K = ∑ℓ′

i=1 yiα
∗
i Kk(Si, Q)

1: K ← 0
2: for i← 1 to q − k + 1 do
3: K ← K + table[h(Q[i : i + k − 1])]

4.2.2 The Wildcard Kernel

The feature vector ϕk,m(S) of the (k, m)-wildcard kernel is the vector defined as
follows:

ϕk,m(S) = (#{i : S[i : i + k − 1] ≈ t})t∈Γk
≤m

= (occ(t, S))t∈Γk
≤m

.

Note that each dimension of the feature vector corresponds to some k-mer that
contains up to m wildcards. Although both the (k, m)-wildcard kernel and the
(k, m)-mismatch kernel are based on the counts of occurrences of the k-mers in
the input allowing at most m mismatches, only the former distinguishes where
the mismatches occur.
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Leslie et al. proposed an O(km+1n)-time algorithm to compute the ker-
nel function Kk,m(S, T ) := ϕk,m(S)⊤ϕk,m(T ) where n = |S| + |T | [71]. By
using this algorithm in the learning phase of SVM, the kernel matrix for ℓ
strings S1, S2, . . . , Sℓ of length n1, n2, . . . , nℓ respectively can be computed in∑

1≤i,j≤ℓ O(km+1(ni + nj)) = O(km+1ℓN)-time where N := ∑ℓ
i=1 ni.

In the prediction phase,

ℓ′∑
i=1

yiα
∗
i ϕk,m(Si)⊤ϕk,m(Q) + b∗ =

ℓ′∑
i=1

yiα
∗
i Kk,m(Si, Q) + b∗

is evaluated where S1, S2, . . . , Sℓ′ are the support vectors, Q is the query se-
quence, yi is an input for learning phase and α∗

i and b∗ are constants derived
in the learning phase (cf. Subsection 2.4.3). It takes ∑ℓ′

i=1 O(km+1(q + ni) =
O(km+1(ℓ′q + N ′)-time where q := |Q|, ni := |Si| and N ′ := ∑ℓ′

i=1 ni.

4.3 The Gapped Spectrum Kernel

Definition. Let b be a binary string of length k and weight w. The feature
vector ϕb(S) of the b-gapped spectrum kernel is the vector defined as follows:

ϕb(S) = (#{i : mask′
b(S[i : i + k − 1]) = t})t∈Γb

= (occ(t, S))t∈Γb .

Note that each dimension of the feature vector corresponds to some b-mer. This
feature map is a natural generalization of that of the k-spectrum kernel (It
coincides with the k-spectrum kernel when b = 1k.),

Kernel computation. By using the b-suffix array, the kernel function Kb :
(S1, S2) 7→ ϕb(S1)⊤ϕb(S2) can be calculated by an algorithm similar to Algo-
rithm 4.1. The pseudocode is described in Algorithm 4.3. Let n := |S1| + |S2|.
We first construct the generalized b-suffix array b-SA of S1 and S2, i.e., the b-
suffix array of S := S1 ◦$k ◦S2 where $ is a character that does not appear in S1
and S2 and $k is $ repeated for k times. We need k $’s to delimit S1 and S2 in-
dependent of b.6 We also construct the b-height array b-HGT for b-SA. Because
maskb(S[b-SA[1] : |S|]), maskb(S[b-SA[2] : |S|]), . . . , maskb(S[b-SA[n] : |S|]) are
lexicographically sorted, for each w-mer s, indices i s.t. maskb(S[SA[i] : |S|])
is prefixed by s are laid in a consecutive region of the b-suffix array (if there
is any such index). Let’s call such a consecutive region of the b-suffix array
as a w-region. The b-suffix array can be decomposed into w-regions. By the
definition of the b-height array, an index i is the first index of a w-region iff
b-HGT [i] < w. We scan b-SA w-region-wise. We maintain the number c1 of the
suffixes in the current w-region, i.e., indices i s.t. b-SA[i] ≤ |S1|. For each such
i, maskb(S1[b-SA[i] : b-SA[i+k−1]]) = s where s is the w-mer corresponding to
the current w-region. In other words, c1 is the number of occurrences of pattern
p s.t. maskb(p) = s in S1. We also maintain the number of occurrences of such
pattern in S2 similarly. When we reach the end of a w-region, we compute the
product c1c2. The kernel value is the sum of these products. The construction

6For example, if b = 101, the gapped 3-mer of S1 ◦ $ ◦ S2 from the |S1|-th position is
maskb(S1[|S1|]$S2[1]) = S1[|S1|]S2[1], which is a chimeric string of characters from S1 and S2.

52



of b-SA and b-HGT takes O(gn)-time where g is the number of runs of ones in
b. The main computation takes O(n)-time because all operations in the for loop
from line 5 takes constant time. Thus, the total time complexity is O(gn).

Algorithm 4.3 The computation of the b-gapped spectrum kernel Kb(S1, S2)
Ensure: K = Kb(S1, S2)

1: Construct the (generalized) b-suffix array b-SA of S = S1 ◦ $k ◦ S2
2: Construct the b-height array b-HGT of S
3: (K, c1, c2)← (0, 0, 0)
4: w ← weight of b
5: for i = 1 to |S| do
6: if b-HGT [i] < w then
7: K ← K + c1c2
8: (c1, c2)← (0, 0)
9: else

10: if b-SA[i] ≤ |S1| then
11: c1 ← c1 + 1
12: else if b-SA[i] > |S1|+ k then
13: c2 ← c2 + 1
14: K ← K + c1c2

Learning. If the training data consist of ℓ strings S1, S2, . . . , Sℓ of length n1,
n2, . . . , nℓ respectively, then the total time to compute the kernel matrix is∑

1≤i,j≤ℓ O(g(ni + nj)) = O(gℓN) where N := ∑ℓ
i=1 ni.

Prediction. The expression
ℓ′∑

i=1
yiαiKb(Si, Q) =

ℓ′∑
i=1

yiαi
∗ϕb(Si)⊤ϕb(Q)

can be evaluated in O(wq)-time. The pseudocode is shown in Algorithm 4.4.
First observe that

ℓ′∑
i=1

yiα
∗
i ϕb(Si)⊤ϕb(Q) =

ℓ′∑
i=1

yiα
∗
i

∑
t∈Γb

occ(t, Si)occ(t, Q)

=
∑
t∈Γb

 ℓ′∑
i=1

yiα
∗
i occ(t, Si)

 occ(t, Q)

=
q−k+1∑

s=1

 ℓ′∑
i=1

yiα
∗
i occ(mask′

b(Q[s : s + k − 1]), Si)

 .

We preprocess the support vectors and prepare the hash table table s.t. table(h[u]) =∑ℓ′

i=1 yiα
∗
i occ(u, Si) for any b-mer u s.t. occ(u, Si) > 0 for some i. When a query Q

is given, we lookup table[h(mask′
b(Q[s : s+k−1]))] = ∑ℓ′

i=1 yiα
∗
i occ(mask′

b(Q[s :
s + k − 1]), Si) for all s from 1 to q − k + 1 and output the sum. To imple-
ment hash function h, we use the construction described in Section 2.7 Each
mask′

b(Q[i : i+k−1]) can be represented by a w-mer maskb(Q[i : i+k−1]) and
thus, each lookup takes O(w)-time in expectation and the total time is O(wq)
in expectation.
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Algorithm 4.4 An O(wq)-time prediction algorithm for the gapped spectrum
kernel
Require: table[h(u)] = ∑ℓ′

i=1 yiα
∗
i occ(u, Si) for any b-mer u s.t. occ(u, Si) > 0

for some i.
Ensure: K = ∑ℓ′

i=1 yiα
∗
i Kb(Si, Q)

1: K ← 0
2: for i← 1 to q − k + 1 do
3: K ← K + table[h(mask′

b(Q[i : i + k − 1]))]

4.3.1 The Multiple Gapped Spectrum Kernel

The gapped spectrum kernel and the wildcard kernel are linked through the
following equation:

Kk,m(S, T ) =
∑

b of length k
weight ≥k−m

Kb(S, T ). (4.2)

As is mentioned in Subsection 2.4.3, taking the sum of kernel functions is equiva-
lent to concatenating the corresponding feature vectors. Let ϕk,m(S) be the con-
catenation ϕb(S) for all binary strings of length k and weights less than or equal
to m. Here, we concatenate ϕb(S)’s in such a way that (ϕk,m(S))(b,s) = (ϕb(S))s

for any (b, s) ∈ {0, 1}k × Σk−i.
Suppose there is a one-to-one map from Γk

m to ∪m
i=0({0, 1}k × Σk−i) s.t. if

f(t) = (b, s) then (ϕk,m(S))t = (ϕb(S))s for any S. Then,

Kk,m(S, T ) = ϕk,m(S)⊤ϕk,m(T )
=
∑

t∈Γk
m

ϕk,m(S)tϕk,m(T )t

=
∑

(b,s)∈∪m
i=0{0,1}k×Σk−i

ϕb(S)sϕb(T )s

=
∑

b of length k
weight ≥k−m

Kb(S, T ).

Thus, it suffices to show such a map f exists.
Let f be the following map from Γk

≤m to ∪m
i=0({0, 1}k

i ×Σk−i): if f(t) = (b, s),
b[i] = 1 iff t[i] ∈ Σ and s is the concatenation of the non-wildcard characters of t.
If f(t) = (b, s), for any string S, S[i : i+k−1] ≈ t iff maskb(S[i : i+k−1]) = s.
Thus, f satisfies the required condition.

From this observation, we define the multiple gapped spectrum kernels as
follows. The parameters k, m and some order on {0, 1}k

≤m = ∪0≤i≤m{0, 1}k
i are

chosen and let bi be the i-th element of {0, 1}k
≤m. We call Σj

i=1Kbi
as the j-th

multiple gapped spectrum kernel. From equation (4.2), the last kernel of this
sequence matches the wildcard kernel. Let n = |S|+ |T |. Because each gapped
spectrum kernel can be computed in O(mn)-time by the algorithm described
in Section 4.3, the s-th multiple gapped spectrum kernel can be computed in
O(smn)-time. This gives O(kmmn)-time bound for the wildcard kernel compu-
tation, which is a k/m-factor improvement over the best existing bound proposed
by Leslie et al. [71].
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In the learning phase, the kernel matrix of the s-th multiple gapped spec-
trum kernel for strings S1, S2, . . . , Sℓ of length n1, n2, . . . , nℓ can be computed in∑

1≤i,j≤ℓ O(sm(ni + nj)) = O(smℓN)-time. In particular, the kernel matrix of
the wildcard kernel can be computed in O(kmmℓN)-time.

In the prediction phase, we compute contributions from each gap patterns by
the prediction algorithm for the gapped spectrum kernel and take the sum. This
gives O(skq)-time bound for the prediction phase of the s-th multiple gapped
spectrum kernel. In particular, it gives an O(km+1q)-time prediction algorithm of
the wildcard kernel. Previously, the only existing algorithm for this problem was
to compute the ℓ terms of equation 4.1 separately, which takes O(km+1(ℓn+N ′))-
time.

4.4 Experiments

4.4.1 SCOP Database

To evaluate the efficacy of the proposed methods, we conducted computational
experiments of protein family classification. We took the data set from the
SCOP database [94, 18, 27]. SCOP had been used in many studies of string ker-
nels [49, 73, 71, 64] and is the de facto standard data set in this area. SCOP is
a hierarchical database, namely, all proteins in it are first classified into Classes,
then members of each Class are further classified into Folds, then into Superfam-
ilies, Families and so on. The levels above Superfamily are classified based on
structural features. The levels under Superfamily are based on inferred evolu-
tionary relationships. Superfamily is based both on structural and evolutionary
relationships.

There is a caveat for using SCOP data. A SCOP entry represents a domain
of a protein instead of the entire protein. A domain is a region of a protein that is
considered to be able to function or evolve independently of other parts. A pro-
tein can be a single domain or consist of multiple domains. Domain boundaries
are not known a priori and, in practice, input protein sequences, which is not
annotated, may consist of multiple domains. Though it does not exactly reflect
the application scenario, we treat each SCOP entry as single datum in order to
make our work consistent to the existing work using SCOP data [49, 73, 71, 64].
In practice, if the domain boundaries of the query are unknown, we recommend
the user to use all substrings of some fixed length of the original query as the
query. It is reasonable to assume that the sizes of the domains in a protein
are not drastically different from each other because domains are considered
to originate from independent (single domain) proteins. Thus, if the length of
substrings is chosen appropriately, most domains contain at least one substring.
Also, because the composition-based kernels considered in this chapter do not
respect the global position of substructures, they produce similar results for
substrings contained in a domain and for the domain itself. Therefore, the rel-
ative (dis)advantage of each kernel does not seem to be affected much by such
modification.

55



4.4.2 Experiment Design

We test the ability of multiple gapped spectrum kernel to predict protein Families
and compare it to the wildcard kernel. We also test if the ability of multiple
gapped spectrum kernel is sensitive to the choice of gap patterns considered. For
that purpose, we applied the following procedures for each Family F of the 13
Families including at least 50 protein sequences:

1. split the whole database into two groups, namely, the training set R and
the test set E;

2. train the SVM with R∩F as the positive data set and R\F as the negative
data set;

(a) for each binary string b of length 5 with at most 2 0’s, calculate the
b-gapped spectrum kernel;

(b) generate 10 independently random permutations of binary strings of
length 5 with at most 2 0’s;

(c) continuously add gapped spectrum kernels according to the permuta-
tion giving rise to a multiple gapped spectrum kernels for each per-
mutation;

3. test the SVM with T ∩F as the positive test set and R \F as the negative
data set trying every kernel of every sequence.

Note that each set of the multiple gapped spectrum kernels converges to the
(5, 2)-wildcard kernel because of the equation (4.2). Thus, this experiment yields
a kind of interpolations of the gapped spectrum kernel and the wildcard kernel.

As for the performance evaluation, we used the area under the receiver oper-
ation characteristic (ROC) curve [88]. ROC curve is the curve drawn by plotting
the false positive rate as the x-coordinate and the true positive rate as the y-
coordinate shifting the threshold of classification as a parameter. As we relax the
threshold and become more likely to judge one data positive both the true posi-
tive rate and the true negative rate increase, producing upper trend ROC curve.
Because the increase in terms of the y-coordinate is a good thing while that of
the x-coordinate is a bad thing, the more ROC curve extends to upper-left the
better. Thus, the performance of a kernel is quantized as area under ROC curve
(AUC), which is some value between 0 and 1. Note that the expectation of AUC
of uniformly random classification is 0.5, not 0.

In order to assess the effectiveness of the random choice, we also tried a
seemingly better yet time expensive method and compared the result with the
results of the above experiment. At this time, we conduct 2-fold cross validation
in the training set R. Then, we obtained multiple gapped spectrum kernels by
greedily adding the gapped spectrum kernels in the order of the score from the
highest to the lowest.

Also, we tried k-spectrum kernels for 3 ≤ k ≤ 5 because if the k-spectrum
kernel was better than the gapped spectrum kernel or any other kernel, there
would be no reason to use that kernel in the first place.
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4.4.3 Results

Because it is difficult to argue on the whole results all at once, we first show the
summary and, as an example of the result for each Family, the result for Family
b.1.1.1. We put the results for other families at the end of this chapter.
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(b) Result for Family b.1.1.1

Before explanations and discussions, let us mention that the Figure (a) is
meant to convey the gist of the results as quickly as possible to the reader and
is not suitable for careful analyses. In particular, it went through some post
processing, about which we will explain shortly, thus refer to the results for each
Family for serious examination.

The original result we obtained for each of the 13 Families looks similar
to Figure (b). In each of these figures, the horizontal axis corresponds to the
number of the merged kernels and the vertical axis corresponds to the AUC. The
black line, the red line and the dashed horizontal line, represent the performances
of the random order merges, the greedy order merge and the best k-spectrum
kernel respectively. The summary shown in Figure (a) is a kind of ‘average’ of the
results for all Families. Each component is the ‘average’ version of its counterpart
in the results for Families, that is, the black line/dots, the red line/dots and the
dashed line represent the ‘averages’ of the performances of random order merges,
the greedy order merges and the best k-spectrum kernels respectively. Besides
its construction, Figure (a) clearly demonstrates a) the fast convergence of the
sequence of the random order merged multiple gapped spectrum kernels to the
wildcard kernel, the rightmost dot; b) good competitiveness of random order
strategy against greedy order strategy. Therefore, by using the multiple gapped
spectrum kernel derived by merging randomly chosen s gapped spectrum kernels,
instead of the wildcard kernel, we can save the computation time by a factor
of about ∑m

i=0

(
k
i

)
/s and still be able to expect comparatively accurate results.

There are several Families for which the k-spectrum kernel performs very well,
e.g., c.2.1.2 (Figure (g)), c.37.1.8 (Figure (h)). This is not a problem because
the computation of the k-spectrum kernel is cheap and we can just try them first
if we want.

Last, we describe how Figure (a) is derived. For each result for a Family, the
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horizontal axis was normalized so that the score for the wildcard kernel will be
1 and the average score of the k-spectrum kernels will be 0. Then, black lines
are averaged over all the trials. After that, all the components are averaged over
all the Families. The vertical bars stabbing black dots represent the average
standard deviation.

4.5 Discussion

Predicting protein functions or structures from their sequences is one of the
most fundamental problems in bioinformatics. Because the recent development
of high-throughput DNA sequencing technologies enabled us to collect virtually
unbounded amount of sequence data, not only accurate but also computationally
efficient methods for automatic protein function/structure prediction is impor-
tant. In this chapter, motivated by the existence of motifs including gaps in
nature, we first introduced a new variant of the spectrum kernel the gapped
spectrum kernel, which is based on the frequencies of gapped patterns in strings.
A prototypical calculation indicated that combining multiple gapped spectrum
kernels corresponding to different gap patterns is a reasonable approach to design
more accurate string kernels. Although a similar idea is used by the wildcard
kernel [71], it takes into account all possible gap patterns of a given length
and weights and it was not known what happens if we use multiple but not all
gap patterns. We experimentally showed that the combination of a few gapped
spectrum kernels for randomly chosen gap patterns can predict protein families
comparatively as accurately as the wildcard kernel. We also showed that the
sum of all gapped spectrum kernels for a given pattern length and weights ex-
actly matches the wildcard kernel. Through this relationship, the algorithms for
the gapped spectrum kernel computation and prediction, which are based on the
b-suffix array we introduced in Chapter 4, translate to corresponding algorithms
for the wildcard kernel. In particular, the time complexity of the derived pre-
diction algorithm does not depend on the size of the support vectors while that
of the existing algorithm depends linearly on the size of the support vectors.

Users’ Perspective. The training phase of SVM requires annotated sequences.
While a large amount of unannotated protein sequences are available and even
more are expected to be generated in the future, e.g., by metagenome studies,
the number of annotated sequences is relatively small. Thus, in most practical
sequence classification problems, prediction phase is more likely to become the
computational bottleneck than the learning phase. We raise an example.

A concrete problem to which our methods may be useful is the study of
‘protein universe’, the set of all possible proteins. Koonin et al. [62] estimated
the number of proteins existing in nature to be about 5 × 1010 and stated that
determining how these real proteins are distributed in protein universe as a fun-
damental problem.7 They also pointed out that “to extract any useful informa-
tion from this distribution, it needs to be explored in quantitative detail, which
can be done only within the framework of a hierarchical taxonomy of proteins”.

7The estimate of the number of real proteins varies among literature. For example, Godzik
concludes that the number of eukaryotic proteins can be safely assumed to exceed 1012 even
without counting intra-species variations [33].
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Protein classifications such as SCOP [94, 18, 27] and CATH [104, 122] do provide
such hierarchical taxonomies. In this context, because the supply of sequence
data from high throughput DNA sequencing technologies is virtually unlimited,
it is reasonable to achieve computational efficiency sacrificing accuracy.

Following existing work [73], we did not tune the soft margin parameter
of SVMs in the experiment. However, in general, when one applies machine
learning methods to practical purposes, one should tune hyperparameters, i.e.,
the parameters that are not optimized in the learning phase of the algorithm.
Investigating the effect of the soft margin parameter of SVMs on the proposed
method is a future work.

As is mentioned in Subsection 4.1.3, it seems possible to apply composition-
based string kernels to problems studied in alignment-free sequence analysis
community. In particular, Břinda et al. [17] have recently showed that scores
based on gapped pattern occurrences can be applied to increase the accuracy
of metagenome classification8. Although the problem requires to compare short
sequences (reads) to long sequences (reference genome), metagenome studies
seems to be a promising direction because it often involves a large-scale data
and computational efficiency is critically important. Also, in studies on DNA
sequences, relatively large k and m are used compared to studies on amino acid
sequences. For example, one gap pattern mentioned by Břinda et al. has k = 36
and m = 12. In such cases, it is very time-consuming to enumerate all gap
patterns with the same length and weight and the methods such as the one
developed in this chapter may become crucial.

8In metagenome classification, one is required to map reads, short fragments of DNA se-
quences, derived from metagenomic studies to appropriate taxonomical unit, such as mammals
or primates.
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Chapter 5

Fast Classification of Protein Structures
by an Alignment-free Kernel

5.1 Overview

5.1.1 Background

The functions of proteins are determined mainly by their 3-dimensional struc-
tures. For example, an enzyme can recognize its substrate (the substance it
acts on) because it has a region called recognition site. The recognition site
has a shape that is complementary to the substrate. This complementarity is
so strict that the enzyme can recognize substrate specifically. Therefore, if the
3-dimensional structure of a protein is known, we can infer the protein’s prop-
erties or functions from the structure more directly than from sequences. In
some situations, however, computational cost of structure analyses may become
a serious concern.

One such situation is the analysis of structure data derived by simulation
studies. The methods to obtain protein 3-dimensional structures are categorized
into experimental methods and computational predictions. X-ray crystallogra-
phy and nuclear magnetic resonance are highly successful experimental methods
and the throughputs of these technologies are increasing. On the other hand,
computational methods, especially molecular dynamics simulation, have several
advantages over experimental methods. First, while experimental methods, es-
pecially X-ray crystallography, require high quality samples, simulation studies
are free from such restrictions. Also, while the structures obtained through
experimental methods are basically static, simulation studies can provide high-
resolution snapshots of protein folding processes or protein fluctuations. As more
computational resources become available, molecular dynamics simulations are
starting to produce large amounts of structure data. In a typical molecular dy-
namics simulation study today, the timestep is on the order of 1 femtosecond
= 10−15 second and simulation time is on the order of micro to millisecond. If
we simulate 1 microsecond of protein folding using 1 femtosecond timesteps and
sample every 100 femtoseconds, we ends up with 107 structures, only for single
simulation. To analyze such large-scale data, computationally efficient methods
should be necessary.

Computational efficiency may become important even if the supply of newly
identified structure data is limited. One reasonable way to predict the function
of a protein from its structure is to categorize proteins with known functions
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into groups and, using the structural information, predict the group to which
the protein of interest belongs. There, indeed, exist several protein structure
databases that maintain classifications such as SCOP [94, 27], CATH [104, 122],
and FSSP [41, 42, 43]. However, depending on the applications, one may want
to classify proteins differently from these databases. Each time one creates such
a new classification, one also needs to rebuild the model used for prediction as
well.

Structural alignment. Comparison is the foundation of most analyses. In
the past, researchers have developed a group of problems and methods to eval-
uate the similarities of protein structures called structural alignment. While
sequence alignment algorithms align characters, structural alignment algorithms
align amino acids. If performed successfully, structural alignment gives results
close to the work by human experts and the results are easy to interpret. How-
ever, structural alignment is computationally too expensive to apply to classifi-
cation for the following reasons. First, most formulations of structural alignment
involve finding a good correspondence between amino acids in one protein and
amino acids in another protein. This gives rise to hard combinatorial optimiza-
tion problems. Second, most formulations involve complex algebraic scores such
as the root mean square deviation. This makes it difficult to classify data by
the structural similarity even if the correspondence between amino acids is fixed.
There are many instances of structural alignment. For more information about
these methods, refer to the review article by Hasegawa and Holm [39].

5.1.2 Our Work

In this chapter, we propose a new similarity measure for protein structures.
The similarity measure is a kernel function and we apply it to develop a fast
supervised learning method to classify proteins according to their 3-dimensional
structures. Our main idea is to apply the techniques of alignment-free method
for sequence analysis we saw in Chapter 4 to protein structures to avoid the
high computational cost of structural alignment. In fact, the time complexities
of most formulations of structural alignment are much higher than quadratic
time of sequence alignment. Therefore, the merit of alignment-freeness should
be even greater in structure analysis than in sequence analysis. Concretely, we
define an alignment-free kernel function for protein structures through a novel
use of protein contact maps. The contact map of a protein is a graph with
totally ordered vertices representing the amino acids and edges representing the
proximity of amino acids in the native state. It was introduced in the context of
structural alignment and researchers have used it mainly to formulate contact
map overlap problem, where optimal order preserving correspondence between
vertices from different contact maps are sought [34]. We, instead, respect the
sequential aspect of proteins and characterize each protein by the histogram
of square submatrices of the adjacency matrix of the contact map. See also
Figure 5.1. We define a feature map for proteins through the histogram of such
submatrices.

Physically, the characterization of proteins described above corresponds to
focusing on the amino acids contiguous on the backbone chain and counting the
patterns of interactions between pairs of such contiguous amino acids. This is a
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Figure 5.1: The characterization of proteins based on contact map. The left
image illustrates a length 3 sub-chain of a protein contacting another length 3
sub-chain. Each circle represents an amino acid. The thin lines are peptide
bonds. The doted lines are some possibly long regions of the backbone. The
thick lines represent spatial proximities. The right image is the adjacency matrix
of the contact map of the protein. The part shown in the left image corresponds
to the submatrix shown in the right image.

natural thing to do for two reasons. First, interactions between spatially close
amino acids have much more significant impact on the global structure than those
between spatially remote amino acids do. In fact, Vassura et al. [134] proposed a
method to reliably reconstruct the protein structures from their contact maps1.
Therefore, by representing proteins by contact map instead of, say, distance
matrix (cf. subsection 5.1.3), we lose some information but the loss should
be minor. On the other hand, the combinatorial nature of the contact map
opens the possibility of efficient solution. Second, amino acids close on the chain
are close in space. Thus, we can treat a set of contiguous amino acids as a
unit of interaction. In existing work, researchers chose the set of amino acids
that are actually spatially close as units of interaction [140, 10]. This is also a
reasonable choice indeed but by using the proximity on the chain, and the contact
map representation, we can apply the very efficient techniques of combinatorial
pattern matching for the computation of the kernel function.

The results of this chapter are summarized as follows:

• We propose a novel alignment-free kernel function for protein structures
that is based on protein contact maps;

• We propose an efficient algorithm to calculate the proposed kernel function.
The algorithm is based on the two dimensional suffix tree [32, 59] and runs
in Θ(n2)-time where n is the size of input proteins. This bound matches
the best existing time bound [140].

• We also propose an algorithm for the prediction phase of the SVMs based
the kernel we introduce. The time complexity of the algorithm does not
depend on the size of the support vectors;

1They reported that contact maps with the threshold value between 10Å and 18Å are
usually not realized by multiple drastically different structures.
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• We give simple tricks to make the kernel practical that are based on the
rigidity and locality of substructures;

• We experimentally show that the combination of the proposed kernel func-
tion and the SVMs achieves an accuracy comparative to the most accurate
existing method [10] while it runs more than 300 times faster even when
implemented by a suboptimal algorithm.

5.1.3 Related Work

Wang et al. [140] and Bhattacharya et al. [10] worked on the same problem
addressed in this chapter. For a comparison of the performances of these methods
and ours, see Table 5.1, Table 5.2 and Table 5.3. Wang et al. proposed a kernel
function for protein structures that incorporates both sequential information,
i.e., amino acid types, and structural information. They used the set of amino
acids within some distance from an amino acid as a unit of interaction. Their
method was also alignment-free, though they did not put an emphasis on this
point, and the fastest but the least accurate among the methods we tested.
Bhattacharya et al. took the opposite approach to ours and proposed kernel
functions based on structural alignment. They used the set of a fixed number
of amino acids closest to an amino acid as a unit of interaction. Their method
was the most accurate but the slowest among the methods we tested. Qiu et
al. [110] also proposed a kernel function based on structural alignment but in a
different context of function annotation. This method may be applicable to the
problem considered in this chapter but we did not test it because it is similar to
Bhattacharya et al.’s method.

DALI [40] is a famous structural alignment algorithm used behind FSSP [41,
42, 43]. It is similar to our method in the sense that it is based on a matrix
representation of proteins. However, instead of the contact map, DALI is based
on the distance matrix. The distance matrix of a protein of length n is a n× n
matrix whose (i, j) element is the distance between the i-th amino acid and the
j-th amino acid. The contact map can be thought of as a kind of binarized
version of the distance matrix. In principle, it is possible to use discretized
distance matrices in our method but probably contact map is more robust to
the error introduced by discretization.

Alignment-free analysis is a well-studied topic for sequential data [136]. The
aim of it is to avoid the quadratic cost of pairwise alignment or NP-hardness of
multiple alignment. In this chapter, we try the same thing for protein structures,
for which even pairwise alignment is hard. In particular, our method can be seen
as a two dimensional analogue of the spectrum kernel [73].

5.2 Alignment-free Kernel for Protein Structures

5.2.1 Notation

In this chapter, we model a protein as a sequence of three dimensional coordi-
nates. Each coordinate represents the position of a Cα atom (cf. Figure 2.4).
Remember that the distance between neighboring Cα atoms is always about
3.8Å.
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Figure 5.2: The adjacency matrix of the contact map of ribonuclease S (The
protein shown in Figure 2.5). t is 12Å. Each black (resp. gray) pixel represents
1 (resp. 0).

Let P = (p1, p2, . . . , pn) be a protein. The contact map of P is a graph
consisting of n totally ordered vertices v1 ≺ v2 ≺ · · · ≺ vn. There exists an edge
between vi and vj iff the distance between pi and pj is less than a parameter
t > 0. See Figure 5.2 for an example of the adjacency matrix of a contact map.

For a matrices H and M , we denote the number of occurrences of H in M
by occ(H, M).

5.2.2 Definition of the Kernel Function

Let P be a protein and AP be the adjacency matrix of the contact map of P .
Let k > 0 andMk be the space of all k× k binary matrices. The feature vector
Φk(P ) is a vector defined as follows:

Φk(P ) : = (#{(i, j) : AP [i : i + k − 1, j : j + k − 1] = H})H∈Mk

= (occ(H, AP )H∈Mk
.

See also Figure 5.3. In this figure, k = 2. Each dimension of the feature vector
corresponds to a 2 × 2 binary matrix. The dimension corresponding to zero
matrix has value 0 because there is no occurrence of 2 × 2 zero matrix in the
adjacency matrix of the contact map. Other values are specified similarly.

The kernel function Kk is the function that takes two proteins P1 and P2 and
outputs the inner product of Φk(P1) and Φk(P2).
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Figure 5.3: The feature map for protein structures.

Table 5.1: Comparison of time complexities. ℓ is the number of training proteins.
ni is the length of the i-th input protein. n is maxℓ

i=1 ni. ℓ′ is the number of the
support vectors. q is the length of query protein.

Method Pairwise Learning Prediction
Ours O((n1 + n2)2) O(ℓ2n2) O(q2k2)
[140] O((n1 + n2)2) O(ℓ2n2) O(ℓ′(n + q)2)
[10] O(align(n1, n2)) O(∑1≤i,j≤ℓ align(ni, nj)) O(∑ℓ′

i=1 align(ni, q))

5.2.3 Algorithms

In this subsection, we describe the algorithm to calculate the proposed kernel
function Kk and algorithms to apply the kernel to the learning and prediction
phases of SVM.

Table 5.1 shows the comparison of the time complexities of existing methods
and our method. align(m, n) is the time needed to structurally align proteins of
length m and n. align(m, n) depends on the definition of structural alignment
and the algorithms used. Usually, it is not even bounded by polynomial of m
and n. In terms of the pairwise kernel function evaluation and learning phase,
the time complexity of our algorithm matches the best existing time bound.
Also, while the time complexity of the prediction phase of Wang et al.’s method
depends linearly on the size of the support vectors ℓ′n, ours does not depend on
it.

Kernel computation. Let P1 and P2 be proteins of length n1 and n2 respec-
tively. We compute Kk(P1, P2) as follows; see also Algorithm 5.1. First, we
construct the contact maps of P1 and P2. From contact maps, we compute ad-
jacency matrices AP1 and AP2 . Then we construct the generalized Isuffix tree of
AP1 and AP2 . Next, we traverse the Isuffix tree in depth first order. During the
traversal, the depth of the current node goes up and down. While we are at a
node of depth greater than or equal to 2k − 1, we count the number of leaves
from AP1 that we have encountered since the last time we were at a node of
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depth less than 2k−1. We also count the same number for AP2 . When we climb
up from a node of depth greater or equal to 2k − 1 to a node of depth less than
2k − 1 we add the product of these counts to K and reset counters to 0. After
finishing the traversal, the algorithm outputs K.

Let v be a vertex such that the depth of v is greater than or equal to 2k − 1
and the depth of v’s parent is less than 2k − 1. Let H be the k × k matrix
s.t. I(M) = the length 2k − 1 prefix of v’s path label. The set of labels of
the leaves of the subtree rooted at v is equal to the set of occurrences of H.
When the depth first traversal goes up from v to v’s parent, the algorithm adds
(#occurrences of M in AP1) × (#occurrences of M in AP2) to K. This is done
for all H that appears in AP1 or AP2 . Thus, K = Kk(P1, P2).

Let n := max{n1, n2}. The sizes of adjacency matrices and the Isuffix tree
are all Θ(n2). The computation of adjacency matrices and the Isuffix tree and
the traversal of the Isuffix tree take Θ(n2)-time. The contact maps can be
constructed in Θ(n)-time probabilistically by hashing 2 but we spend Θ(n2)-
time for other part of the algorithm and thus, we construct the contact map
of Pi by calculating the distance of all pairs of coordinates in Pi for i = 1, 2,
spending O(n2)-time.

Algorithm 5.1 Computation of Kk(P1, P2)
Ensure: K is Kk(P1, P2)

1: Compute AP1 and AP2

2: Construct the generalized Isuffix tree of AP1 and AP2

3: (K, c1, c2)← (0, 0, 0)
4: while traversal of the Isuffix tree in depth first order do
5: if depth of the current node < 2k − 1 then
6: K ← K + c1c2
7: (c1, c2)← (0, 0)
8: else
9: if the current node is a leaf from AP1 then

10: c1 ← c1 + 1
11: if the current node is a leaf from AP2 then
12: c2 ← c2 + 1

Learning. If the training data consist of ℓ proteins P1, P2, . . . , Pℓ of length
n1, n2, . . . , nℓ respectively, then the total time to compute the kernel matrix is∑

1≤i,j≤ℓ O((ni + nj)2) = O(ℓ∑1≤i≤ℓ n2
i ) = O(ℓ2n2) where n := maxi ni.

Prediction. Remember that, in the prediction phase, the expression
ℓ′∑

i=1
yiα

∗
i Φ(Pi)⊤Φ(Q) =

ℓ′∑
i=1

yiα
∗
i Kk(Pi, Q)

is evaluated where P1, P2, . . . , Pℓ′ are the support vectors, Q is a query protein,
y1, y2, . . . , yℓ′ are inputs for learning phase and α∗

1, α∗
2, . . . , α∗

ℓ′ are constants de-
rived in the learning phase (cf. Subsection 2.4.3). This can be done in O(k2q2-
time where q is the length of Q. The pseudocode is shown in Algorithm 5.2.

2This bound uses the sparsity of protein contact maps. See a discussion in section 5.4.
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First, observe that

ℓ′∑
i=1

yiα
∗
i Kk(Pi, Q) =

ℓ′∑
i=1

yiα
∗
i

∑
H∈Mk

occ(H, APi
)occ(H, AQ)

=
∑

H∈Mk

 ℓ′∑
i=1

yiα
∗
i occ(H, APi

)

 occ(H, AQ)

=
∑

1≤s,t≤q−k+1

 ℓ′∑
i=1

yiα
∗
i occ(AQ[s : s + k − 1, t : t + k − 1], APi

)

 .

We preprocess the support vectors and prepare the hash table table s.t. table[h(u)] =∑ℓ′

i=1 yiα
∗
i occ(u, APi

) for any k × k matrix u s.t. occ(u, APi
) > 0 for some i.

When a query Q is given, we compute AQ and lookup table[h(Q[s : s + k− 1, t :
t + k − 1])] = ∑ℓ′

i=1 yiα
∗
i occ(AQ[s : s + k − 1, t : t + k − 1], APi

) for all s, t from
1 to q − k + 1 and output the sum. To implement hash function h, we use the
construction described in Section 2.7 treating k×k matrices as length k2 strings.
Each lookup takes O(k2)-time to calculate h(Q[s : s + k − 1, t : t + k − 1]) and
O(1)-time in expectation for table lookup. Thus, the total time complexity is
O(k2q2) in expectation.

Algorithm 5.2 An O(k2q2)-time prediction algorithm for Kk

Require: table[h(u)] = ∑ℓ′

i=1 yiα
∗
i occ(u, APi

) for any k × k matrix u s.t.
occ(u, APi

) > 0 for some i.
Ensure: K = ∑ℓ′

i=1 yiα
∗
i Kk(Q, Pi)

1: Calculate AQ

2: K = 0
3: for s = 1 to q − k + 1 do
4: for t = 1 to q − k + 1 do
5: K ← K + table[h(Q[s : s + k − 1, t : t + k − 1)]

5.2.4 Practical Considerations

Rigidity. The adjacency matrix of a protein contact map is sparse. See Fig-
ure 5.2 for an example. Therefore, Kk, as it is, is dominated by the contributions
from sparse submatrices such as the zero matrix and fails to capture the struc-
tural similarity correctly. An easy way to fix this problem is throwing away too
sparse submatrices. Although this may seem ad hoc, it has a conceptual justifi-
cation. Imagine the space of configurations of an amino acid chain conforming
to a given contact map. In one extreme, the contact map does not have an
entry whose value is 1 except when it is forced to do so by the neighborhood
relationships on the chain. At this point, the chain can take many configurations
though it is not completely free. As you add entries of value 1, the space of al-
lowable configurations will shrink. Therefore, throwing away sparse submatrices
corresponds to considering only relatively rigid parts of the protein. This makes
sense because we can reliably identify the three dimensional structure from the
contact map only when the space of configurations that conform to the contact
map is small.
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Diagonals and local interactions. Because amino acids close on the chain
are close in space, usually, an adjacency matrix has a band of entries of value 1
around the diagonal. See Figure 5.2 for an example. These interactions do not
contain much information and thus, it is desirable to discount the contribution
of these parts from the kernel function. An easy way to do it is throwing away
submatrices too close to the diagonal. It corresponds to counting only interac-
tions between regions remote on the chain. In the experiment, we chose to count
only submatrices whose upper left corner (i, j) satisfies |i − j| ≥ k. Because k
is the size of a sub-chain, this is equivalent to counting only mutually exclusive
sub-chains. On the other hand, interactions within single group of contiguous
amino acids should capture local structures such as helices. To incorporate this
information, we define local feature vector Ψk(P ) as

Ψk(P ) := (#{i : AP [i : i + k − 1, i : i + k − 1] = H})H∈Mk

and local kernel function Lk(P1, P2) as the inner product of Ψk(P1) and Ψk(P2).
Without surprise, Lk by itself cannot classify protein structures accurately (re-
sults not shown). However, you can increase the accuracy of Kk by combining
it with Lk by addition. Note that throwing away local interactions first and
then combining local kernel function is not the same as not throwing away local
interactions from the beginning.

Formalism. For a protein P , let

Φ′
k(P ) := (#{(i, j) : AP [i : i + k − 1, j : j + k − 1] = H, |i− j| ≥ k})H∈M′

k

where M′
k is the set of all k × k binary matrices with at least k 1’s. Let

K ′
k(P1, P2) = Φ′

k(P1)⊤Φ′
k(P2) and K ′′

k (P1, P2) := K ′
k(P1, P2) + Lk(P1, P2).

Computation. The above modifications can be implemented without increas-
ing the time complexities. The pseudocode of the algorithm to calculate the
kernel value K ′′

k (P1, P2) is shown in Algorithm 5.3. The algorithm calculates K ′
k,

and Lk in parallel and outputs the sum. In line 3, we prepare the prefix sums of
AP1 and AP2 . The prefix sum of a binary matrix A is a matrix whose (i, j) entry
is the number of entries of value 1 in A[1 : i, 1 : j]. Obviously, one can compute
the prefix sum in Θ(n2)-time and once it is derived, one can count the number
of entries of value 1 in any submatrix of A by at most 4 lookups to the prefix
sum. This method to count entries of value 1 is used in line 12 and line 17 to
check if A[i : i + k − 1, j : j + k − 1] contains at least k entries of value 1 or not
in constant time. All operations in the while loop takes constant time and thus,
the algorithm takes Θ(n2)-time.

The algorithm for prediction phase is shown in Algorithm 5.4. In prediction
phase, we calculate

ℓ′∑
i=1

yiα
∗
i K ′′

k (Pi, Q) =
ℓ′∑

i=1
yiα

∗
i K ′

k(Pi, Q) +
ℓ′∑

i=1
yiα

∗
i Lk(Pi, Q).

Each term on the right hand side can be calculated in a similar way as the
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Algorithm 5.3 Computation of K ′′
k (P1, P2)

Ensure: K ′′ is K ′′
k (P1, P2)

1: Compute AP1 and AP2

2: Construct the generalized Isuffix tree of AP1 and AP2

3: Compute prefix sums of Ap1 and AP2

4: (K ′′, K ′, L, c1, c2, cloc
1 , cloc

2 )← (0, 0, 0, 0, 0, 0, 0)
5: while traversal of the Isuffix tree in depth first order do
6: if depth of the current node < 2k − 1 then
7: K ′ ← K ′ + c1c2
8: L← L + cloc

1 cloc
2

9: (c1, c2, cloc
1 , cloc

2 )← (0, 0, 0, 0)
10: else
11: if the current node is a leaf representing suffix (AP1)i,j then
12: if AP1 [i : i + k − 1, j : j + k − 1] contains ≥ k 1’s and |i− j| > k

then
13: c1 ← c1 + 1
14: if i = j then
15: cloc

1 ← cloc
1 + 1

16: if the current node is a leaf representing suffix (AP2)i,j then
17: if AP2 [i : i + k − 1, j : j + k − 1] contains ≥ k 1’s and |i− j| > k

then
18: c2 ← c2 + 1
19: if i = j then
20: cloc

2 ← cloc
2 + 1

21: K ′′ ← K ′ + L

prediction phase of Kk. Observe that

ℓ′∑
i=1

yiα
∗
i K ′

k(Pi, Q) =
ℓ′∑

i=1
yiα

∗
i

∑
H∈M′

k

occ′(H, APi
)occ′(H, AQ)

=
∑

H∈M′
k

 ℓ′∑
i=1

yiα
∗
i occ′(H, APi

)

 occ′(H, AQ)

=
∑

1≤s,t≤q−k+1
|s−t|≥k

AQ[s:s+k−1,t:t+k−1]∈M′
k

 ℓ′∑
i=1

yiα
∗
i occ′(AQ[s : s + k − 1, t : t + k − 1], APi

)



where, for k × k matrix H and another matrix M , occ′(H, M) is defined to be
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#{(i, j) : M [i : i + k − 1, j : j + k − 1] = H, |i− j| ≥ k}. Similarly,

ℓ′∑
i=1

yiα
∗
i Lk(Pi, Q) =

ℓ′∑
i=1

yiα
∗
i

∑
H∈Mk

occloc(H, APi
)occloc(H, AQ)

=
∑

H∈Mk

 ℓ′∑
i=1

yiα
∗
i occloc(H, APi

)

 occloc(H, AQ)

=
∑

1≤s≤q−k+1

 ℓ′∑
i=1

yiα
∗
i occloc(AQ[s : s + k − 1, s : s + k − 1], APi

)


where, for k × k matrix H and another matrix M , occloc(H, M) is defined to be
#{i : M [i : i + k − 1, i : i + k − 1] = H}.

To calculate these values, we prepare the support vectors and prepare a
hash table table′ s.t. table′[h′(u)] = yiα

∗
i occ′(u, APi

) for any k × k matrix u s.t.
occ′(u, APi

) > 0 for some i and another hash table tableloc s.t. tableloc[hloc(u)] =
occloc(u, APi

) for any k × k matrix u s.t. occloc(u, APi
) > 0 for some i. When a

query Q is given, we compute AQ. To calculate K ′ := ∑ℓ′

i=1 yiα
∗
i K ′

k(Pi, Q), we
lookup table′[h′(AQ[s : s + k − 1, t : t + k − 1])] for all s, t from 1 to q − k + 1
s.t. AQ[s : s + k − 1, t : t + k − 1] ∈ M′

k and take the sum. To calculate
L := ∑ℓ′

i=1 yiα
∗
i Lk(Pi, Q), we lookup tableloc[hloc(AQ[s : s + k − 1, s : s + k − 1])]

for all s from 1 to q−k + 1 and take the sum. Then, K ′′ is the sum of K ′ and L.
To implement h′ and hloc, we use the construction described in Section 2.7. We
lookup the hash tables for O(k2q2) times and each table lookup takes O(1)-time
in expectation and thus, the total time complexity is O(k2q2) in expectation.

Algorithm 5.4 An O(k2q2)-time prediction algorithm for K ′′
k

Require: table′[h′(u)] = yiα
∗
i occ′(u, APi

) for any k × k matrix u s.t.
occ′(u, APi

) > 0 for some i; tableloc s.t. tableloc[hloc(u)] = occloc(u, APi
) for

any k × k matrix u s.t. occloc(u, APi
) > 0 for some i.

Ensure: K ′′ = ∑ℓ′

i=1 yiα
∗
i K ′′

k (Pi, Q)
1: Calculate AQ

2: (K ′′, K ′, L) = (0, 0, 0)
3: for s = 1 to q − k + 1 do
4: for t = 1 to q − k + 1 do
5: if AQ[s : s + k − 1, t : t + k − 1] ∈M′

k then
6: K ′ ← K ′ + table′[h′(AQ[s : s + k − 1, t : t + k − 1])]
7: if s = t then
8: L← L + tableloc[hloc(AQ[s : s + k − 1, t : t + k − 1])]
9: K ′′ ← K ′ + L

5.3 Experiments

To assess the effectiveness of our algorithm, we tested if it can recover the clas-
sification of existing classified databases correctly. We prepared the dataset as
follows. First we retrieved the subset of entries of SCOP database [27] with less
than 40% sequence identity. Among these, we randomly selected 50 proteins
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of length between 100 and 200 from each of the 13 superfamilies containing at
least 50 such proteins. Thus, the dataset consists of 13 classes of size 50. We
performed 2-fold cross-validation on this dataset using LIBSVM [19]. In 2-fold
cross validation, the dataset is randomly divided into two: the training data and
the test data. The learning phase of SVM is run on the training data and the
labels of the test data are predicted using the results of the learning phase. The
same procedure is repeated reversing the role of the training and test data. The
average prediction accuracies (the fraction of the data that are assigned correct
labels) is output. Each score reported here is the average of the accuracies of 10
independent cross-validations with different training and test sets.

Because the cross-validation involves SVM for multi-class data, we briefly
explain how multi-class SVM is constructed from binary SVM in LIBSVM. Let
C1, C2, . . . , Cℓ be the classes of data. LIBSVM adopts a one-to-one strategy [60,
86]. In this strategy, the binary classifier for each pair Ci, Cj(1 ≤ i < j ≤ ℓ) is
created in the learning phase. There are different methods to use these ℓ(ℓ−1)/2
classifiers in the prediction phase. In LIBSVM, to predict the class of a test
datum x, for each 1 ≤ i < j ≤ ℓ, it is predicted if x belongs to Ci or Cj (by
using the binary classifier). If x is predicted to belong to Ci, then Ci receives
one vote; otherwise Cj receives one vote. After repeating this procedure for all
pairs i, j, the class that received the largest vote is output.

As well as the experiment in Chapter 4, there is a caveat that each entry of
SCOP database is a protein domain instead of a whole protein. We used SCOP
entries for the experiment in order to make our results easier to compare with
existing work [140, 10] that use SCOP data. In practical applications where the
query proteins for prediction phase are not annotated, domain boundaries are
not known a priori, and thus, our experimental setting is not completely the
same as practical situations. If the input is a possibly multi-domain protein, we
recommend users to use all sub-chains of a particular length of the original query
as queries. It does not seem that relative (dis)advantages of different kernels are
affected by such a modification.

For the threshold t for contact maps, we used 12 (Å). As for the parameter
k, we tried 7 and 8. For each k, we report the performance of both Kk and
K ′′

k . Remember that K ′′
k is the kernel derived from Kk by throwing away too

sparse and too close-to-diagonal matrices and combining Lk. More precisely,
we counted neither submatrices that contain less than k entries of value 1 nor
submatrices that contain an entry on the diagonal of the enclosing matrix, and
we added kernel Lk to the resulting kernel.

We compared our method with the method of Wang et al. [140] and a method
of Bhattacharya et al. [10]. The former one is called K3Dball in the original paper.
The latter authors proposed many kernels but we only report the result of the
kernel called KAl

1 in the original paper because we found other kernels were
much less accurate than KAl

1 . The kernel KAl
1 takes the output of a structural

alignment algorithm and its performance depends on the structural alignment
algorithm. In the original paper, the authors used their own structural alignment
algorithm but they did not provide the detail. Thus, we used a famous structural
alignment algorithm called combinatorial extension [118] (CE) instead. For the
eigendecomposition needed in KAl

1 , we used LAPACK [5].
Table 5.2 shows the comparison of classification accuracies. Although KAl

1
was the most accurate, K ′′

8 and K ′′
9 were comparatively accurate. When we
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Table 5.2: Comparison of classification accuracies.

Method K3Dball [140] KAl
1 [10] K7 K8 K ′′

7 K ′′
8

Accuracy(%) 60.31 93.94 83.23 83.78 92.42 92.28

Table 5.3: Comparison of runtimes.

Method K3Dball [140] KAl
1 [10] Ours

Time 47 sec 6913 min 21 min

dropped off each trick described in subsection 5.2.4, the accuracy decreased
about 2 to 3 % (results not shown). Therefore, each of these tricks has a positive
effect on the performance.

Table 5.3 shows the comparison of runtimes. For KAl
1 and our methods, we

only measured the runtimes of the most time consuming steps. In KAl
1 , it was

structural alignment and in our kernels, it was suffix sorting. In both cases, other
steps took only a few seconds. There is only one entry for the runtimes of our
methods because we can use the same suffix tree for the computation of all kernels
of ours. For suffix sorting, we did not implement the Θ(n2)-time algorithm of
Kim et al. [59] and instead, we sorted suffixes just by qsort library function of C
language. This blows up the time complexity from Θ(n2) to Ω(n4 log n). (The
precise time complexity depends on the algorithm used inside qsort.) K3Dball

was the fastest. Among highly accurate methods, our methods were about 329
times faster than KAl

1 .
We also checked the effect of different settings of parameters t and k. Ta-

ble 5.4 shows the results. We observed a significant gap between t = 4 and
t = 6. This is probably because if t is too small compared to the distance
between neighboring Cα-atoms (3.8Å) on the backbone chain, the contact map
cannot have any edges. However, the proposed method can achieve high accu-
racy if t is sufficiently large. It seems that the best value of t will gradually
increase according to k increases.

Table 5.4: The effect of parameters on K ′
k.

k t
4 6 8 10 12 16

5 7.83 80.15 86.18 85.83 83.57 76.00
6 7.74 82.08 88.89 89.55 89.00 85.95
7 7.75 87.05 89.11 89.03 90.94 87.05
8 7.69 74.57 89.66 89.37 90.94 87.94
9 7.69 70.26 87.71 87.65 89.82 88.35
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5.4 Discussion

The 3-dimensional structures of proteins determine their functions. For proteins
with known structures, it is more direct and effective to study the structures
than the sequences. Though determining protein structures is more difficult
than determining sequences, the throughput of experimental methods to iden-
tify protein structures are increasing and computational simulations are also
producing a large amount of structural data. In this chapter, we proposed an
alignment-free kernel function for protein structures that is based on a novel
use of the protein contact map and an efficient algorithm to compute the kernel
function applying the two dimensional suffix tree. The prediction time of the
SVM based on the proposed kernel does not depend on the size of the support
vectors. We also experimentally showed that, by using the proposed kernel, one
can predict protein superfamilies from structures orders of magnitude faster than
the most accurate existing method while achieving an accuracy comparable to
it.

Users’ perspective. A possible application of the proposed method is the
analysis of molecular dynamics simulation trajectories. As we mentioned in Sub-
section 5.1.1, computer simulation is a method to identify the native structure
of proteins. In simulation studies, not only the native structure, but also the
information about dynamic processes such as folding, conformation transition
driven by environmental factors and thermodynamic fluctuations are produced.
Data of dynamic actions of proteins derived through simulation studies can lead
to more comprehensive understanding of important biological concepts such as
prions or allosteric regulations. The method proposed in this chapter may be
applicable to assigning structural classes to dynamically moving structures and
finding the point where the properties of structures shift. In applications involv-
ing large-scale data such as simulation motion trajectories, it is reasonable to
slightly sacrifice annotation accuracies to achieve significant speed-up.

Another possible application is the maintenance of protein structure databases.
Several databases of structurally classified proteins exist. The most notable ones
are FSSP [41, 42, 43], CATH [104, 122] and SCOP [94, 27]. Though FSSP is
maintained completely automatically, CATH and SCOP are maintained by au-
tomatic methods based on structural alignment and manual work by experts.
Because manual curation by experts does not seem to be able to keep up with
the pace of database growth, the method proposed in this chapter may be ap-
plicable to support the experts. In this application scenario, the user should be
aware of the caveat mentioned in the third paragraph of Section 5.3.

Future work. We close this chapter with some discussions and open prob-
lems. Although the number of annotated protein structures are not likely to
greatly increase in near future, for large training datasets, the time needed for
the learning phase of SVMs may become a serious problem. There are several
papers addressing this problem [52, 116]. These results are orthogonal to ours.

In the experiment, we did not fine tune the soft-margin parameter of SVM. As
we discussed in Section 4.5, however, it is important to tune hyperparameters to
apply machine learning methods to practical problems. Investigating the effect
of the soft-margin parameter on the proposed method is a future work.
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The proposed kernel involves 2 major parameters: the threshold t for contacts
and the size k of submatrices counted. There can also be different ways to throw
away too sparse or too close-to-diagonal submatrices. How to optimize these
parameters is left as an important future work. However, let us point out that
at least learning parameters except t should be computationally cheap because
the two dimensional suffix tree is independent of these parameters and thus one
can reuse the result of the most time consuming step, the suffix sorting, for
different settings of the parameters.

There are several possible ways to improve the proposed method. First, one
may be able to speed up our method further by implementing Kim et al’s suffix
sorting algorithm [59]. This algorithm is based on the same idea as the string
suffix sorting algorithm by Kärkkäinen and Sanders [55]. Because the latter is
fast in practice, we expect the same is true for the former. Second, one may
be able to make our method more accurate by introducing weight rather than
throwing away too sparse or too close-to-diagonal submatrices.

When t is independent of n, protein contact maps are sparse because there
is a limit on the number of amino acids packed in a certain volume of space.
Our algorithm needs quadratic time because it does not take into account the
sparsity. Measuring structural similarity of proteins in o(n2)-time is an open
problem.

Another idea is to introduce gaps to the kernel function proposed in this
chapter in a similar way as the gapped spectrum kernel in Chapter 4. Although
it seems to be technically possible, it is not clear if such modification is advan-
tageous or not because we do not have the counterpart of the argument made in
Subsection 4.1.2.

One of the main sources of discrepancies between existing classifications of
protein structures such as FSSP, CATH and SCOP is that they use different
definition of domains of proteins. Domains of proteins are substructures that
frequently appear among different proteins and existing databases sometimes
choose domains as the database element instead of proteins. In this chapter,
we assumed that domains are given but in practice, one needs to determine
domains or any other appropriate atomic unit of database first. In principle,
domains should be defined by structural comparison according to the defini-
tion. However, in existing databases they are chosen heuristically because it is
infeasible to perform pairwise structural comparison over the entire database.
It is interesting to see if the method developed in this chapter can be used for
systematic identification of domains based only on structural information.

Alignment-free analysis of protein structures in general is a vastly open topic.
The rapid advancement of DNA sequencing technologies has been increasing
the importance of alignment-free methods in sequence analysis. Similarly, for
protein structures, alignment-free analysis is a promising approach to achieve
efficient analysis, which is going to be more important as the experimental or
computational methods to determine protein structures are further developed.
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Chapter 6

Detecting Superbubbles in Assembly
Graphs

6.1 Overview

In this chapter, we leave database analysis and shift our focus to the de novo
genome assembly problem. We start by reviewing the problem.

6.1.1 Genome Assembly

DNA sequences are one of the most fundamental information of life and thus,
tremendous efforts have been put on developing methods for DNA sequencing,
i.e. identifying the sequence of nucleotides in DNA molecules. In particular, since
mid 2000s, the so-called next-generation sequencers (NGS) started to appear in
the market [132]. By the high throughput and low cost, NGS technologies made
whole genome analyses within the reach of smaller laboratories and thus, are
revolutionizing the genome research. However, in spite of the extensive efforts
put on the development of DNA sequencing technologies, currently there is no
method that can read a DNA sequence without splitting it into short fragments
called reads. Typical length of an NGS read (in base pairs) is in the order of
102 to 103 while human genome consists of 3.2× 109 base pairs and even among
bacteria, genome sizes in the order of 106 or greater is common.1 Therefore,
genome assembly, the reconstructing the whole genome from reads, became the
problem of prime importance.

When the whole genome sequence of an individual of a species, called ref-
erence, is available, the genome sequence of another individual of that species
or closely related species are usually assembled by associating each read to the
similar region of the reference. This procedure is called mapping. On the other
hand, when the reference is not available, genome assembly has to be done only
from reads. This type of assembly, called de novo genome assembly, is, gener-
ally speaking, more complicated and needs more computational resources than
mapping. Nevertheless, de novo genome assembly is necessary to study the or-

1A technology called single-molecule real-time sequencing of Pacific Biosciences supports
read length of up to 60 kbp. However, this technology is currently not widely used because
its cost of reading sequences is relatively higher than the competitor’s. As of October 2015,
Sequel system from Pacific Biosciences costs around $10,000 to sequence a human genome at
30× coverage while HiSeq X Ten system from Illumina costs less than $1,000. Also, SMRT
technologies have a high error rate (more than 10%).
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Figure 6.1: Construction of a unipath graph.

(1) A tip (2) A bubble (3) A cross link
Figure 6.2: Assembly graph simple motifs.

ganisms for which references are unavailable. De novo genome assembly is also
needed for metagenome analysis, the analysis of DNA sequences derived from a
collection of organisms in environments such as soils. Because we consider only
about de novo approach here, in the following, we omit the term ‘de novo’ for
brevity.

Most assembly algorithms construct some graph in their first stage. They
are categorized into two types depending on the types of the graph. Many
old-time assemblers utilize a graph called the overlap graph, in which a vertex
corresponds to a read and an edge corresponds to a pair of reads that have an
enough-length overlap [7, 46, 96]. More recent algorithms often utilize a graph
called the de Bruijn graph, in which an edge corresponds to a k-mer that exists
in reads and a vertex corresponds to the shared (k−1)-mer between the adjacent
k-mers [50, 76, 82, 107, 113, 124, 145]. The de Bruijn graph is said to be more
suitable for NGS short reads of large depth.

The next step of most sequencing algorithms after constructing the graph is
to simplify the obtained graph by decomposing a maximal unbranched sequence
of edges (which is called a unipath) into one single edge [50, 82, 113] (Fig. 6.1).
The obtained graph is called a unipath graph. After obtained the unipath graph,
many sequencing algorithms next detect simple typical motif structures caused
by sequencing errors. The most common motifs are tips, bubbles, and cross
links [50, 76, 113, 145] (Fig. 6.2).

A tip (Fig. 6.2 (1)) is a low-frequency edge whose end (or start) vertex has
no outgoing (resp. incoming) edges, which goes out from (resp. comes into) a
high-frequency vertex1. This motif often appears in case there are some error(s)
around the end of a read. A bubble (Fig. 6.2 (2)) consists of multiple edges (with
the same direction) between a pair of vertices, which is often caused by error(s)
somewhere in the middle of a read. A cross link (Fig. 6.2 (3)) is a low-frequency
edge that lies between high-frequency vertices. This appears when a substring
of a read accidentally becomes (by error) the same substring that appears in a
different region.

1We say ’low/high’-frequency vertices/edges for vertices/edges that correspond to
few/many reads.
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6.1.2 Our work

Problem. All of the aforementioned simple motifs are easy to find in linear
time. However, we should consider much more complex structures if input reads
are erroneous (as in the case of the third generation sequencers), have many re-
peats (as in many large-scale genomes/meta-genomes), or have many mutations
(as in cancer genomes). Fig. 6.3 shows an example of a subgraph of a unipath
graph obtained from actual whole human genome reads (the same set of reads
used in the experiments in section 6.4). In this subgraph, paths from the left-
most vertex branch to many paths but they converge into the rightmost single
vertex in the end. There are no cycles in this subgraph, i.e., the subgraph forms
a directed acyclic graph (DAG). The vertices between the leftmost vertex and
the rightmost vertex have no outgoing/incoming edges to/from external vertices
(i.e., vertices not in this subgraph). An important point is that all the paths have
similar labels with similar lengths.2 We call this kind of a subgraph a superbub-
ble, as it can be considered as an extension of an ordinary simple bubble (more
detailed definition of superbubbles will be given in section 6.2). Superbubbles
are complicated, but it is apparent that many of them are formed as a result of
errors, inexact repeats, diploid/polyploid 3 genomes, or frequent mutations.

Our ideas and results. Given the existence of superbubbles, one important
problem, of course, is to find a way to unentangle these structures. However, be-
fore finding such methods, we must find the superbubbles themselves. Thinking
about the shape of superbubbles, finding them should be helpful for the later
analysis too. For example, further time-consuming complicated algorithms (e.g.,
optimal alignment, paired-end read analyses, etc.) are applicable against the su-
perbubbles, even if they are too computationally expensive to use against the
entire graph. However, unlike simple motifs like a bubble, finding superbubbles
is not at all trivial. In this chapter, we propose an efficient method to detect
superbubbles. In order to do so, we first give a graph theoretic characterization
of superbubbles. We, then, prove some properties of superbubbles. In particular,
we prove that the number of superbubbles in a graph is bounded by the number
of vertices. This motivates the linear time enumeration of superbubbles. Unfor-
tunately, we could not find linear time algorithm but instead, we give a simple
algorithm that takes quadratic time in the worst case but runs very efficiently
in practice. We also give an explanation on why the proposed algorithm runs
fast by showing a linear time bound under a probabilistic model.

6.2 Preliminaries

6.2.1 Superbubble

Here, we formally define superbubbles and show some of their properties which
are necessary in the rest of the chapter.

2The experiments in section 6.4 will show that the path label lengths of a superbubble are
only at most 5% different in more than 85% of the detected superbubbles.

3A diploid (resp. polyploid) cell or organism has a pair (resp. a set) of DNA sequences.
These sequences are basically the same but not complete copy of each other. Because genome
sequencers cannot divide them, reads from different copies are mixed up.
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Definition 6.1. Let G = (V, E) be a directed graph. If an ordered pair of distinct
vertices (s, t) satisfies the following:

reachability t is reachable from s;

matching the set of vertices reachable from s without passing4 through t is
equal to the set of vertices from which t is reachable without passing through
s;

acyclicity the subgraph induced by U is acyclic where U is the set of vertices
in the above condition;

minimality no vertex in U other than t forms a pair with s that satisfies the
conditions above,

then we say that the subgraph in the description of the acyclicity condition is a
superbubble and s, t and U \{s, t} are this superbubble’s entrance, exit and inte-
rior respectively. For any pair of vertices (s, t) that satisfies the above conditions,
we denote the superbubble as ⟨s, t⟩.

To take full advantage of the notation ⟨s, t⟩, we first need to confirm that if
(s1, t1) ̸= (s2, t2) then ⟨s1, t1⟩ ̸= ⟨s2, t2⟩. The following remark ensures it.

Remark 6.1. There is a one-to-one correspondence between the vertex pairs
satisfying the conditions in Definition 6.1 and superbubbles.

Proof. The acyclicity condition ensures the vertices of a superbubble can be
topologically sorted, i.e., each vertex v can be assigned an integer ord(v) in such
a way that ord(u) < ord(v) if v is reachable from u. The vertex s is the vertex
of the minimum order because all vertices in ⟨s, t⟩ it is reachable from s. The
vertex t is the vertex of the maximum order because t is reachable from any
vertex in ⟨s, t⟩.

Now we observe a proposition, which clarifies the situation and motivates
linear time enumeration of superbubbles.

Proposition 6.1. Any vertex can be the entrance (resp. exit) of at most one
superbubble.

Note that this proposition does not exclude the possibility that a vertex is
the entrance of a superbubble and the exit of another superbubble.

Proof. We prove the proposition by reductio ad absurdum. Suppose ⟨s, t1⟩ and
⟨s, t2⟩ are distinct superbubbles.

If t2 is reachable from s without passing through t1, then t2 is in the interior
of ⟨s, t1⟩ and (s, t2) satisfies reachability, matching and acyclicity conditions of
superbubble. This contradicts to the minimality of ⟨s, t1⟩.

If every path from s to t2 passes through t1, then t1 is in the interior of ⟨s, t2⟩
and (s, t1) satisfies reachability, matching and acyclicity conditions of superbub-
ble. This contradicts to the minimality of ⟨s, t2⟩.

4Passing through a vertex means that visiting and then leaving it, not just visiting or
leaving alone.
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Corollary 6.1. There are O(n) superbubbles in a graph with n vertices.

Before closing this subsection, let us mention yet another property of super-
bubbles that is not directly necessary for this work but worth mentioning to
grasp the picture.

Proposition 6.2. If two distinct superbubbles share a vertex, either one’s exit
is the other’s entrance or one is included in the other’s interior.

We use the following lemmas to prove Proposition 6.2.

Lemma 6.1. For any superbubble ⟨s, t⟩ and any vertex v, t is reachable from s
without passing through v.

Lemma 6.2. Let ⟨s1, t1⟩ and ⟨s2, t2⟩ be distinct superbubbles such that s2 ̸= t1
and s1 ̸= t2. If s2 and t2 are vertices of ⟨s1, t1⟩, then ⟨s2, t2⟩ is included in the
interior of ⟨s1, t1⟩.

Proof of Proposition 6.2. Suppose ⟨s1, t1⟩ and ⟨s2, t2⟩ are distinct superbubbles
sharing a vertex v and t1 ̸= s2, t2 ̸= s1.

If v = t1, because t1 ̸= t2 and t1 ̸= s2, t1 belongs to the interior of ⟨s2, t2⟩.
By Lemma 6.1, there is a path from s1 to t1 that does not pass through s2 and
thus s1 ∈ ⟨s2, t2⟩. By Lemma 6.2, ⟨s1, t1⟩ included in the interior of ⟨s2, t2⟩.

If v ̸= t1 and t2 is reachable from v without passing through t1, then t2 ∈
⟨s1, t1⟩. By Lemma 6.1, t2 is reachable from s2 without passing through s1 and
thus, s2 ∈ ⟨s1, t1⟩. By Lemma 6.2, ⟨s1, t1⟩ is included in the interior of ⟨s1, t1⟩.

If v ̸= t1 and t2 is reachable from v without passing through t1, then t1 ∈
⟨s2, t2⟩. By Lemma 6.1, t1 is reachable from s1 without passing through s2 and
thus, s1 ∈ ⟨s2, t2⟩. By Lemma 6.2, ⟨s2, t2⟩ is included in the interior of ⟨s2, t2⟩.

Proof of Lemma 6.2. Because ⟨s1, t1⟩ and ⟨s2, t2⟩ are distinct, s2 ̸= s1 and t2 ̸=
t1. Thus, s2 and t2 are in the interior of ⟨s1, t1⟩. By Lemma 6.1 t2 is reachable
from s2 without passing through t1 and thus, ⟨s2, t2⟩ is included in the interior
of ⟨s1, t1⟩.

Proof of Lemma 6.1. The lemma obviously holds if v is not in the interior of
⟨s, t⟩. We consider the case when v is in the interior of ⟨s, t⟩. We prove the
lemma by reductio ad absurdum. Suppose every path from s to t passes v.
Of course, v is reachable from s. Let V1 be the set of vertices reachable from
s without passing through v. Let V2 be the set of vertices from which v is
reachable without passing through s. Both V1 and V2 are subsets of vertices of
⟨s, t⟩. For any u ∈ V1, any path from u to t passes through v because otherwise,
t is reachable from s without passing through v. Thus, V1 ⊂ V2. For any
u ∈ V2, any path from s to u does not pass through v because otherwise, there
is a path from v to v contradicting to the acyclicity of ⟨s, t⟩. Thus, V2 ⊂ V1.
Therefore, V1 = V2. The subgraph of ⟨s, t⟩ induced by V1 is acyclic because ⟨s, t⟩
is acyclic. Therefore, s and v satisfies the first three conditions of superbubble
but it contradicts to the minimality of ⟨s, t⟩.
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Figure 6.4: Top right: The input set R, top left: The de Bruijn graph of R
with k = 3, d = 1, bottom left: the unipath graph, bottom right: the succinct
de Bruijn graph and the unipath graph. Non-branching nodes are removed. We
store only last, B, W and F .

6.2.2 Construction of a Unipath Graph

Given a set R of reads, we first construct the de Bruijn graph [107]. Let T =
T [1, m] be a read of length m in R. The k-mers of T are length-k substrings of
T , that is, T [i, i + k−1] for i = 1, 2, . . . , m−k + 1. Let K denote the multiset of
k-mers of all reads in R, and Kd denote the set of (distinct) k-mers that appear
at least d times in K. A k-mer in Kd is called a solid k-mer.

The de Bruijn graph G = (V, E) of R is defined as follows. The vertex set V
is the set of (k − 1)-mers defined as V = {T [1, k − 1] | T [1, k] ∈ Kd} ∪ {T [2, k] |
T [1, k] ∈ Kd}. The edge set E is defined as {(u, v) | ∃T [1, k] ∈ Kd, u = T [1, k −
1], v = T [2, k]}. The edge label of (u, v) is T [k] if u = T [1, k − 1], v = T [2, k].
Typical values of k and d are k = 28, d = 3.

We use the succinct de Bruijn graph [13], which is a compressed represen-
tation of the de Bruijn graph of R. For a set of m solid k-mers, the succinct
de Bruijn graph uses 4m + o(m) bits to encode the graph, and supports the
following operations.

• outdeg(v) (resp. indeg(v)) returns the number of outgoing (resp. incoming)
edges from (resp. to) vertex v in O(1)-time.

• outgoing(v, c) returns the vertex w pointed to by the outgoing edge of
vertex v with edge label c in O(1)-time. If no such vertex exists, it returns
−1.

• incoming(v, c) returns the vertex w = T [1, k−1] such that there is an edge
from w and v and T [1] = c in O(k)-time. If no such vertex exists, it returns
−1.
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From a de Bruijn graph G = (V, E), we construct a unipath graph G′ =
(V ′, E ′) as follows. The vertex set V ′ is a subset of V such that any vertex in
V ′ has more than one outgoing edges or more than one incoming edges. The
edge set E ′ is the multiset of all pairs (u, v) such that u, v ∈ V ′ and there is
a path u, x1, x2, . . . , xℓ, v in G and outdegrees and indegrees of x1, x2, . . . , xℓ

are all one. The edge label of (u, v) is the concatenation of edge labels of
(u, x1), (x1, x2), . . . , (xℓ−1, xℓ), (xℓ, v) in G. The length of the edge label is ℓ + 1.

In addition to the data structure of the succinct de Bruijn graph, we use a
bit vector B[1, m] where m = |E| is the number of edges in G to represent the
unipath graph G′. We set B[v] = 1 if and only if the vertex v of G is also a
vertex of G′. The outdegree and the indegree of v in G′ is equal to those of v in
G. To find the vertex outgoing(v, c) in G′, we first compute w = outgoing(v, c) in
G. We, then, repeatedly traverse the unique outgoing edge of w until B[w] = 1.
The resulting vertex is the answer. The unipath graph is constructed in linear
time from the succinct de Bruijn graph because each of the outdeg, indeg, and
outgoing operations takes constant time. Figure 6.4 shows an example.

6.3 Algorithm

Here, we explain how to enumerate all superbubbles in a given graph. As we
have seen in subsection 6.2.1, each vertex can be the entrance of at most one
superbubble. Therefore, once we have a way to check if a vertex s has another
vertex t s.t. (s, t) is an entrance/exit pair, then we can find all superbubbles
by iterating this procedure for all s ∈ V . Below, we focus our attention on this
reduced problem.

Description. The algorithm is similar to the topological sorting algorithm by
Kahn [54]. The pseudocode is shown in Algorithm 6.1. It takes a directed graph
G = (V, E) and s ∈ V as inputs, and returns t ∈ V s.t. (s, t) is an entrance/exit
pair of a superbubble if such t exists. We call the procedures from line 8 to
line 22 of the algorithm as visit to v (v is the vertex dequeued from S in line
8) and denote it by visit(v). Let indeg(v) denote the indegree of vertex v.
The algorithm, first, traverses the graph and constructs a table containing the
indegrees of all vertices. During the execution of the main loop from line 7 to
line 27, the algorithm maintains four dynamically changing values/sets.

• label label(v) ∈ {unseen, seen, visitable, visited} for each vertex v;

• a queue S containing vertices with label visitable;

• nseen is the number of vertices with label seen;

• for each vertex v, the number of vertex u such that (u, v) ∈ E and
label(u) = visited is maintained in a variable ctr(v).

Initially, label(v) = unseen for every v ̸= s and label(s) = visitable. Thus,
initially, S = {s}, nseen = 0 and ctr(v) = 0 for every vertex v. In visit(v), label(v)
is changed to visited. For each vertex u s.t. (v, u) ∈ E, if label(u) = unseen,
label(u) is changed to seen and nseen is incremented. If all the vertices v s.t.
(v, u) ∈ E have label visited, label(u) is changed to visitable, u is enqueued into
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S and nseen is decremented. The algorithm aborts anytime when it visits a vertex
v of outdegree 0, which means a tip, or a vertex v s.t. (v, s) ∈ E, which means
a cycle because any vertex visited is reachable from s. After visiting a vertex,
the algorithm tests if it is going to visit the exit at the next step as follows.
First it checks if S consists of one vertex, for example t, and if nseen = 0, i.e., if
no vertex has label seen. If not, the test is negative. Otherwise, the algorithm
further checks if (t, s) ∈ E or not. If (t, s) ∈ E, the algorithm aborts because it
just found a path from s to s, a cycle. Otherwise, the algorithm returns t. The
algorithm aborts if S becomes empty.

Algorithm 6.1 The algorithm to find the corresponding exit of a potential
entrance
Require: directed graph G = (V, E), s ∈ V
Ensure: returns t s.t. (s, t) is an entrance/exit pair of a superbubble if it exists

1: traverse the graph and construct the table of indeg(v)
2: label(v)← unseen for every vertex v
3: label(s)← visitable
4: queue S ← {s} // S contains vertices that are not visited but can be visited
5: nseen ← 0
6: ctr(v)← 0 for every vertex v
7: repeat
8: dequeue a vertex v ∈ S
9: label(v)← visited

10: if there is no u s.t. (v, u) ∈ E then
11: abort // tip
12: for every vertex u s.t. (directed) (v, u) ∈ E do
13: if u = s then
14: abort // cycle including s

15: if label(u) = unseen then
16: label(u)← seen
17: nseen ← nseen + 1
18: ctr(u)← ctr(u) + 1
19: if ctr(u) = indeg(u) then // label(w) = visited for ∀w s.t. (w, u) ∈ E
20: label(u)← visitable
21: nseen ← nseen − 1
22: enqueue u into S

23: if only one vertex t is left in S and nseen = 0 then
24: if (t, s) ̸∈ E then return t
25: else
26: abort // cycle including s

27: until |S| = 0 // abort because no vertex is labeled visitable

Correctness. Each vertex v can be enqueued into S at most once because
it happens when the labels of all the vertices u s.t. (u, v) ∈ E are changed
to visited and once a vertex is labeled visited the label is not changed. Thus,
the algorithm can dequeue a vertex from S at most n times and in particular
it halts. Below, we prove the correctness of the returned value, which reduces
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to the followings: a) If the algorithm returns vertex v, then (s, v) satisfies the
conditions of superbubbles except the minimality condition; b) If the input s
is the entrance of a superbubble, then the algorithm returns the corresponding
exit. To prove a) and b), we first prove two lemmas.

Lemma 6.3. If a vertex v is labeled seen at some point of the algorithm, then
v is reachable from the input s. Also, for any vertices u and v, if u has never
been enqueued into S when v is labeled seen, then, v is reachable from the input
vertex s without passing through u.

Proof. Let v be a vertex that is labeled seen at some point of the algorithm.
Because s is labeled visitable at the beginning, v ̸= s. There is a vertex p(v)
s.t. v is labeled seen during visit(p(v)). The edge (p(v), v) exists. Because
label(p(v)) = visited when v is labeled seen, if p(v) ̸= s, p(v) is also labeled seen
at some point of the algorithm. Consider the following procedure: we initialize
a variable x by v, and then, we reassign the value p(x) to x (in other words,
x ← p(x)) while x ̸= s. Because the time x is labeled seen becomes earlier
every time we reassign a value to x, no vertex is assigned to the variable x more
than once. Thus, this loop halts and the last vertex assigned to x must be s.
Suppose k is an integer s.t. pk(v) = s where pk is p applied for k times. Then,
(pk(v), pk−1(v), . . . , p(v), v) is a path from s to v. Thus, the first half of the
lemma holds. If a vertex u has never been enqueued into S when a vertex v is
labeled seen, pℓ(v) ̸= u for 1 ≤ ∀ℓ ≤ k because pℓ(v) is enqueued into S before
v is labeled seen. Thus, the last half of the lemma holds.

Let Vunseen, Vseen, Vvisitable and Vvisited be the set of vertices labeled as unseen,
seen, visitable and visited respectively. Let Vto be the set of vertices that are
reachable from s without passing through any element of Vvisitable ∪ Vseen and let
Vfrom be the set of vertices from which at least one element of Vvisited ∪ Vvisitable is
reachable without following an edge to s.

Lemma 6.4. After each execution of the main loop from line 7 to 27 of the
pseudocode in Algorithm 6.1, Vto = Vvisited ∪ Vvisitable ∪ Vseen and Vfrom = Vvisited ∪
Vvisitable.

Proof. We prove the first half by mathematical induction on the number of
iteration steps of the main loop. After the first visit , Vvisited, Vvisitable, Vseen
consist of s, vertices v s.t. (s, v) ∈ E and indeg(v) = 1 and vertices v s.t.
(s, v) ∈ E and indeg(v) > 1 respectively. Therefore, the lemma holds. Suppose
the lemma holds up to some iteration. During the next visit to a vertex, for
example v,

1. v is removed from Vvisitable and added to Vvisited;

2. all u ∈ Vunseen s.t. (v, u) ∈ E are removed from Vunseen and added to Vseen;

3. all u ∈ Vseen s.t. (v, u) ∈ E and ctr(u) = indeg(u), i.e., label(w) = visited
for every vertex w s.t. (w, u) ∈ E, are removed from Vseen and added to
Vvisitable.

Consequently, because label(v) is changed from visitable to visited, Vto acquires
those vertices u s.t. (v, u) ∈ E and label(u) was unseen before visit(v). Because
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these are also the vertices that Vvisited ∪ Vvisitable ∪ Vseen acquires, Vto = Vvisited ∪
Vvisitable ∪ Vseen still holds. After visit(v), Vvisited ∪ Vvisitable acquires those vertices
u for which, just before visit(v), v is the only vertex w s.t. (w, u) ∈ E and
label(w) ̸= visited. The set Vfrom also acquires these vertices because, by the
definition of Vfrom, Vvisited ∪ Vvisitable ⊆ Vfrom always holds. They are the only
vertices that Vfrom acquires because any path to such a vertex u must pass some
w s.t. (w, u) ∈ E and, before visit(v) is executed, such a vertex w is already in
Vvisited ∪ Vvisitable ⊆ Vfrom. Thus, Vfrom = Vvisited ∪ Vvisitable still holds.

Proof of a). In this proof, unless otherwise stated, we consider the labels at the
time when the algorithm halts. Suppose that the algorithm returns a vertex t.
The label of t is visitable. Also, t ̸= s because s is labeled visited soon after the
algorithm starts running. Thus, t is labeled seen at some point of the algorithm.
By Lemma 6.3, t is reachable from s, i.e., the reachability condition holds.

By the condition that the if statement from line 23 is executed, Vseen = ∅,
Vvisitable = {t}. Thus, Vto = Vvisited ∪ {t} = Vfrom. We first show that the
subgraph induced by Vfrom = Vto does not contain a cycle. Then, we show
that the matching condition holds and the set of the vertices reachable from s
without passing through t, which is equal to the set of the vertices from which t
is reachable without passing through s, is equal to Vfrom = Vto. These two claims
mean that the acyclicity condition also holds and thus, the proof completes.

We show that the subgraph induced by Vfrom = Vto does not contain a cycle
by showing that it contains neither a cycle including s nor a cycle not including
s. If there was an edge (v, s) for v ∈ Vvisited, then the algorithm should have
aborted in line 14 of visit(v). If there was an edge (t, s), then the algorithm
should have aborted in line 26 of the last visit. Therefore, (v, s) ̸∈ E for any
v ∈ Vfrom = Vvisited ∪ {t}. Thus, the subgraph induced by Vfrom does not contain
a cycle including s. Suppose the subgraph induced by Vfrom contains a cycle not
including s. Every vertex in this subgraph has label visited or visitable. Let v
be the first vertex that was labeled visitable in the cycle. When v was labeled
visitable, every vertex u s.t. (u, v) ∈ E must have label visited. Thus, the vertex
u in the cycle s.t. (u, v) ∈ E must have been labeled visitable before v was.
However, this contradicts to the way v was chosen. Therefore, Vfrom does not
contain a cycle not including s.

Now we show that the matching condition holds and the vertices reachable
from s without passing through t is Vfrom = Vto. The last half follows because
Vvisitable ∪ Vseen = ∅ ∪ {t} = {t}. To prove the first half, it suffices to show that
Vfrom consists of all vertices from which t is reachable without passing through
s. For each v ∈ Vvisited, there is some u s.t. (v, u) ∈ E because otherwise, the
algorithm should have aborted in line 11 of visit(v). Also, for such a vertex
u, label(u) = seen or visitable or visited because label(u) is changed to seen if it
was unseen in line 16 of visit(v). This means that u is also in Vvisited or u = t
because Vvisitable = ∅ and Vseen = {t}. Thus, from a vertex in Vvisited ⊆ Vfrom,
we can repeat following an edge to another vertex in Vfrom. We can repeat this
edge following procedure as long as we do not reach t. On the other hand, as we
already showed, the subgraph induced by Vfrom = Vvisited∪{t} does not contain a
cycle. Thus, the edge following procedure above cannot be repeated forever and
must end up reaching t. Therefore, Vfrom is the vertices from which t is reachable
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without passing an edge to s, which is equal to the set of vertices from which t
is reachable without passing through s. Thus, the matching condition holds.

Proof of b). Let t be the exit corresponding to s. We first show that the al-
gorithm does not halt before t is enqueued into S. Then we show that, if t is
enqueued into S, then the algorithm outputs t.

There are 4 possible reasons for Algorithm 6.1 to halt: 1) it finds a tip (line
11); 2) it finds a cycle including s (line 14 or line 16); 3) S becomes empty (line
27); 4) it finds a superbubble (line 24). We define type-1 (resp. type-2, 3 and
4) halt to be the event that the algorithm halts by reason 1 (resp. 2, 3, and 4)
before t is enqueued into S.

Suppose visit(v) is executed before t is enqueued into S. Because t has never
been enqueued into S when v is labeled seen, v is reachable from s without
passing through t by Lemma 6.3. Thus, v is a vertex of ⟨s, t⟩. Because v is a
vertex of ⟨s, t⟩, t is reachable from v. Thus, v is not a tip. Therefore, type-1
halt does not happen.

Suppose that, type-2 halt happens. If line 14 is executed, let v be the vertex
being visited at that time. If line 26 is executed, let v be the only vertex left in S
at that time. In any case, (v, s) ∈ E. The vertex t has never been enqueued into
S when v is labeled seen. Thus, by Lemma 6.3, v is reachable from s without
passing through t, i.e., v is a vertex of ⟨s, t⟩. However, (u, s) ̸∈ E for any vertex
u of ⟨s, t⟩ because otherwise, the concatenation of the path from s to u and
the edge (u, s) form a cycle, violating the acyclicity condition of ⟨s, t⟩. This
contradicts to (v, s) ∈ E. Thus, type-2 halt does not happen.

Next we prove that type-3 halt does not happen. We first show that type-
3 halt does not happen just after visit(s). Then, we show that if type-3 halt
happens just after visit(v) for some vertex v ̸= s, then, there is some vertex u
s.t. label(u) = seen at that time. Last, we show that the existence of such a
vertex u contradicts to the acyclicity condition of ⟨s, t⟩. We prove the first part.
Because ⟨s, t⟩ is a directed acyclic graph, each vertex v of ⟨s, t⟩ can be assigned
a topological order, i.e., an integer ord(v) satisfying that if v is reachable from u,
then ord(u) < ord(v). For any v in ⟨s, t⟩ s.t. v ̸= s, ord(s) < ord(v). Let s′ be a
vertex of the second smallest topological order. Then, s′ is reachable from s but it
is not reachable from any other vertex in ⟨s, t⟩. Thus, (s, s′) ∈ E and (u, s′) ̸∈ E
for any vertex u in ⟨s, t⟩ s.t. u ̸= s or s′. Therefore, just after visit(s), s′ ∈ S
and type-3 halt does not happen. Next, we prove the second part. Suppose that
type-3 halt happens just after visit(v) for some vertex v ̸= s. Because v ̸= s
there was a visit before visit(v). There is a vertex u s.t. label(u) = seen at
the beginning of visit(v), because otherwise, the algorithm should have aborted
in the if statement from line 23 to line 26 just after the last visit. Because
S = Vvisitable becomes empty just after visit(v), label(u) is not changed to visitable
in visit(v). Therefore, label(u) = seen when the algorithm halts. Now we prove
the third part. Because t has never been enqueued into S when u is labeled seen,
u is reachable from s without passing through t by Lemma 6.3. In other words,
u is in ⟨s, t⟩. In the following, unless we state otherwise, we consider labels of
the time when the algorithm halts. Let w be a vertex in ⟨s, t⟩ s.t. label(w) =
seen or unseen. Because s is the first vertex visited, label(s) = visited and thus,
w ̸= s. Because w is a vertex of ⟨s, t⟩, w is reachable from s. In particular,
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there is at least one vertex p(w) s.t. (p(w), w) ∈ E. Because t is reachable
from p(w) via w without passing through s, p(w) is a vertex of ⟨s, t⟩. Also,
we choose p(w) from Vseen ∪ Vunseen. It is possible because w ̸∈ Vvisitable has at
least one vertex w′ s.t. (w′, w) ∈ E and label(w′) ̸= visited and Vvisitable = ∅.
Because label(s) = visited ̸= label(p(w)) = seen or unseen, p(w) ̸= s. Consider
the following procedure: we initialize a variable x by u, and then, we reassign
the value p(x) to x (in other words, x← p(x)). Because the number of vertices
is finite while the procedure above can be repeated infinitely many times, there
is a pair of integers k, ℓ s.t. k > ℓ and pk(u) = pℓ(u) where pk is p applied
for k times. Therefore, ⟨s, t⟩ contains a cycle (pk(u), pk−1(u), . . . , pℓ(u)), which
contradicts to the acyclicity condition.

Suppose type-4 halt happens and t′ ̸= t is output. Because t has never been
enqueued into S when t′ is labeled seen, t′ is reachable from s without passing
through t, i.e., t′ is in ⟨s, t⟩. Also, (s, t′) satisfies all conditions of superbub-
bles except the minimality condition by a). However, this contradicts to the
minimality condition of ⟨s, t⟩. Therefore, type-4 halt does not happen.

We proved that the algorithm does not halt before t is enqueued into S. On
the other hand, suppose t is indeed enqueued into S. If, at that time, there is
a vertex v ̸= t in ⟨s, t⟩ with label(v) ̸= visited, there is a vertex u on the path
from v to t s.t. label(u) = visited or visitable and there is a vertex w with edge
(w, u) and label(w) ̸= visited. This contradicts to the condition by which u is
labeled visitable. Thus, all vertices in ⟨s, t⟩ other than t have label visited. Also,
because t is not visited yet, no vertices outside of ⟨s, t⟩ has been labeled seen.
Thus, there is no vertices labeled seen. Therefore, the algorithm outputs t.

Analysis. In the worst case, each execution of Algorithm 6.1 takes Θ(n + m)-
time and in total the calculation of all superbubbles takes Θ(n(n + m))-time.
Below, we show that, under a probabilistic model, the algorithm takes constant
time on average and thus all superbubbles can be found in Θ(n)-time in total.

We apply a generative model of network called configuration model [8].

Definition 6.2. An incoming (resp. outgoing) half-edge to (reps. from) a ver-
tex v is an edge (∗, v) (resp. (v, ∗) where ∗ represents a vertex that is not
determined yet. An incoming half-edge (u, ∗) and an outgoing half-edge (∗, v)
can be connected to form an edge (u, v). Given a sequence of pairs of integers
((p1, q1), (p2, q2), . . . , (pn, qn)) s.t. 0 ≤ pi, qi ≤ 4 and ∑

i pi = ∑
i qi =: m, the

graph is derived as follows; see also Figure 6.5:

1. One prepares vertices v1, v2, . . . , vn s.t. vi is attached pi incoming half-edges
and qi outgoing half-edges;

2. One selects a matching between m incoming half-edges and m outgoing
half-edges uniformly randomly and connects matched pairs.

Let a 1, 0-vertex be a vertex of indegree 1 and outdegree 0. We prove the
following:

Proposition 6.3. For a graph with n vertices that was derived from the model
of Definition 6.2 with at least ⌈cn⌉ 1, 0-vertices where 0 < c < 1 is a positive
constant, Algorithm 6.1 runs in constant time in expectation.
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Figure 6.5: Configuration model.

Before proving Proposition 6.3, we explain why this proposition is relevant for
the analysis of the asymptotic behavior of Algorithm 6.1, especially for the cases
when it is applied to the assembly graphs derived from currently existing DNA
sequencers. A 1,0-vertex corresponds to a tip in assembly graphs. Assembly
graphs usually contain many tips because reads generated by the current DNA
sequencers contain reading errors. It is often possible to detect a tip of this type
because compared to the edges corresponding to non-erroneous regions, such an
edge usually has a lower coverage, i.e., the number of reads that give rise to the
edge is relatively small. However, it is not reasonable that all tips can be removed
in this way. It is possible that some tips are introduced by errors in reads but
the coverage is not sufficient to reliably judge it to be derived from errors. Also,
because the coverage is not uniform across the original sequence, sometimes,
reads are not sampled from some regions of the original sequence. In this case,
the boundaries between regions from which reads are sampled and regions from
which reads are not sampled appear as tips in the assembly graphs. These tips
should not be removed because they correctly represent some parts of the original
sequence (assuming reading errors did not occur in the corresponding regions).
Because the number of tips is related to the error rates, the variance of the
coverage or possibly other properties of the DNA sequencing technologies, it is
not reasonable to think that the ratio of tips to the non-erroneous reads changes
asymptotically as the size of the graph grows. Therefore, here, we analyze the
asymptotic behavior of Algorithm 6.1 assuming that the ratio of 1,0-vertices to
other type of vertices is some positive constant.

Proof of Proposition 6.3. In line 12, the algorithm checks each edge from v and
see which vertex u it is connected to. If u is a 1, 0-vertex, it is enqueued into
S and the algorithm halts when it dequeues u from S or sometime before that.
On the other hand, if a vertex is enqueued into S at time t1 (counted from the
beginning) and dequeued from S at time t2, t2 = Θ(t1) because the size of S at
time t1 is O(t1) and each vertex dequeued from S is processed in constant time.
Thus, it suffices to show that, if the algorithm does not stop for other reasons,
the expectation of the time a 1, 0-vertex is enqueued into S for the first time is
bounded by a constant.

Because incoming half-edges correspond to outgoing half-edges one-to-one
and we check each edge at most once, we can think that, instead of a matching
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between incoming half-edges and outgoing half-edges is chosen at the beginning,
each time we check an edge from v in line 12, one outgoing half-edge from v is
connected to a uniformly randomly chosen incoming half-edge that is not yet
connected to an outgoing half-edge. Let’s focus on a particular edge checking
from, for example, a vertex v. For each i from 1 to n, let ri be the number
of half-edges (∗, vi) that was connected to an outgoing half-edge before that
point. For each vertex vj, the probability that an incoming half-edge (∗, vj)
is connected to (v, ∗) at the current edge checking is (pj − rj)/

∑n
i=1(pi − ri).

If vi is a 1, 0-vertex, pi = 1. The probability that the incoming-half edge of
a particular 1, 0-vertex is connected to (v, ∗) at the current edge checking is
1/
∑n

i=1(pi − ri) ≥ 1/
∑n

i=1 4 = 1/4n. If no 1, 0-vertex is enqueued into S so far,
no incoming half-edge of 1, 0-vertices was connected to an outgoing half-edge, and
thus, the probability that the incoming-half edge of any 1, 0-vertex is connected
to (v, ∗) at the current edge checking is at least cn × (1/4n) = c/4. For k ≥ 1,
the probability that the first incoming half-edge to a 1, 0-vertex is connected to
an outgoing half-edge at the k-th edge checking is at most (1 − c/4)k−1. Thus,
the expectation of such k is bounded by ∑∞

k=1 k(1−c/4)k−1 = 16/c2 = O(1).

In the graph we constructed from human genome reads (The same data we
use in Section 6.4), the fraction of the vertices of indegree 1 and outdegree 0 was
28%.

6.4 Experiment

Procedures. We first constructed the succinct de Bruijn graph with parameter
k = 27 and d = 3 for the read set SRX016231, which was derived by sequencing a
human individual by an Illumina sequencer. The length of each read is 100bp and
the coverage is about 40. Next, we constructed the unipath graph as described
in Subsection 6.2.2. The resulting unipath graph consists of 107,154,751 vertices
and 210,207,840 edges. Last, we found all superbubbles in the unipath graph by
the algorithm in section 6.3.

Results. Table 6.1 is the histogram of the size of superbubbles where the
size of a superbubble means the number of vertices in it. The superbubbles
of size 2 are omitted because they are ordinary bubbles. The superbubble of
Fig. 6.3 is of size 20 and this histogram tells, among other things, that there
are hundreds of equally or more complex superbubbles. On the other hand,
what matters the most for the application to the genome assembly problem
is whether superbubbles really capture erroneous or repeat/mutation abundant
regions, which topological complexity alone does not necessarily suggest. One
way to assess the relevance of a superbubble in this regard is to compare the
length of paths in it where length of an edge is the length of the sequence
represented by the edge. Note that topologically close paths can have a variety
of lengths because each edge can be originated from a unipath. However, among
23,078 superbubbles of size equal to or greater than 5 we found, 19,926 (86.3%)
of them have the longest/shortest path length ratio smaller than 1.05. Therefore,
superbubbles such as the one in Fig. 6.3 are indeed typical.

In terms of the computation time, it took 742.1 seconds for a Xeon 3.0GHz
CPU to enumerate all superbubbles including ordinary bubbles. The number of
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Table 6.1: Histogram of the size of superbubbles

size 3-9 10-19 20-29 30-39 40-49 50-59 60-
#S.B. 71663 4295 347 69 21 8 3

vertices visited was 126,537,254.

6.5 Discussion

We introduced the concept of superbubbles in assembly graphs and showed sev-
eral properties of superbubbles. We also proposed an efficient algorithm for
detecting them. The algorithm is very easy to implement (Our implementation
of Algorithm 6.1 needed only 228 lines of C code.).

Future work. Many tasks remain as future work. Several follow up work on
the enumeration of superbubbles appeared after the publication of the results
in this chapter. Sung et al. [128] gave an O(m log m)-time algorithm where m
is the number of edges. Recently, Brankovic et al. published a preprint paper
proposing a worst-case linear-time algorithm [15]. These studies did not provide
experimental results. To estimate the potential of further speed up in practice,
we compared the runtime of our algorithm and graph traversal by breadth first
order. For the graph derived from human genome reads, our algorithm takes
about 9.05 times longer than graph traversal. Therefore, it seems difficult to de-
sign algorithms that run faster than our method by more than that factor. Still,
developing a linear-time algorithm that is also practical remains open. There are
many future work on more biological issues. Developing methods for categoriz-
ing the detected superbubbles (e.g., errors, repeats, mutations, and polyploids),
and methods for fixing errors in superbubbles are important future tasks. It is
also interesting to extend our algorithm for other bubble-like structures (e.g. the
bulge structure [100]).

Users’ perspective. In this chapter, we focused on detection of superbubbles,
which is necessary no matter what one does by superbubbles. Here, we discuss
to what kind of problems superbubbles can possibly be applied.

A natural possible application is the correction of assembly graphs. As we
mentioned in Section 6.1, read errors introduce noise to the graph and ordinary
bubbles may not be sufficient to fix it. Often, assemblers try to iteratively re-
move bubbles to fix errors. However, complex structures such as Figure 6.3 are
not always decomposed into sequences of bubbles. Therefore, general concepts
such as superbubble are potentially useful. As well as bubbles, superbubbles can
also emerge for several reasons other than read errors such as repeat sequences,
mutations and diploid/polyploid genomes. One needs to identify which super-
bubble corresponds to sequencing errors. Conventional techniques for the same
problem for bubbles such as comparing coverage (the number of reads corre-
sponding to each vertex of the de Bruijn graph) or underlying strings of edges
seem to work for superbubbles as well. Coverage information should also be used
to remove errors.
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Table 6.2: Result of BLAT Search of tagtttgtattttttgttgagtgaatgt

chromosome strand start end
6 + 26818088 26818115
6 - 58268167 58268193
6 - 58300525 58300551
6 - 26785643 26785669

Table 6.3: Result of BLAT Search of cggcacaaaaatatgaggaaaaacagg

chromosome strand start end
6 + 26818042 26818068
6 - 58268214 58268239

Another potential application of superbubbles is evolutionary studies of re-
peated sequences. Repeats constitute a large portion of eukaryotic genomes. For
example about 50% of human genomes are repeats. One of the main sources of
repeated sequences is transposable elements (TEs), “selfish DNAs” that func-
tion in a similar way as viruses to host genomes. A TE usually codes proteins
that can recognize and cut5 the TE itself and paste possibly multiple and in-
exact copies of it onto other locations of genomes. Until 1990s, these inter-
spersed repeats were predominantly considered as “junk”s, sequences without
biological relevance [11]. They also complicate tasks such as genome assembly
and thus, methods to detect and remove them have been studied [1, 53, 109].
However, more recently, TEs, and thus repeat sequences, have acquired higher
status because a wide variety of functional or evolutionary roles of them became
known [11]. Repeats are likely to appear as superbubbles in assembly graphs.
For example, Table 6.2 (resp. Table 6.3) shows the result of BLAT search of the
longest (resp. second longest) edge label in the superbubble in Figure 6.3 on
human genome (NCBI36/hg18). These results means the superbubble in Fig-
ure 6.3 corresponds to inexact repeats in chromosome 6. Therefore, instead of
unentangling superbubbles, it may be more relevant to extract useful informa-
tion about repeat regions from superbubbles. In particular, cancer researchers
Atsushi Niida [98] and Yuichi Shiraishi [119] pointed out that it is promising to
use superbubbles as a tool to infer the evolutionary path of TEs in unassembled
genomes.

5Some TEs are, not cut but copied through transcription to RNA as an intermediate step.
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Chapter 7

Conclusion

In order to fully understand how complex and diverse phenomena of life emerge
from the fundamental molecules such as DNA, RNA and proteins, computational
approach, together with experimental studies, is essential. In particular, the
sequences or structures of biopolymers contain much information about their
functions and thus, computational methods to assign functional annotations to
sequences/structures have been studied extensively.

Currently, computational molecular biology is in the midst of a paradigm
shift driven by the emergence of new technologies. The advent of the so-called
next generation sequencing (NGS) technologies made it possible to obtain huge
amount of sequences at very low costs. The developments in the molecular dy-
namics (MD) models and the increase of available computational resources en-
abled millisecond-scale MD simulation of protein structures. The data provided
by these technologies are not only large-scale but also less biased. NGS made
whole genome analyses a common practice, e.g., in human genome research and
lead to drastically new type of studies such as metagenomics. MD simulations
not only predict structures of proteins that are not amenable to experimental
methods but also reveal the dynamic aspects of proteins, which were invisible in
the past.

Although these new technologies open the possibilities to understand the
comprehensive picture of the universe of biological molecules, there are several
problems to be resolved to fully achieve that goal. First, in order to analyze large-
scale data, more computationally efficient methods are needed. In particular, one
source of computational cost is alignment, which is used as a de facto standard
method for object comparison both in sequence analysis and structure analysis.
Second, de novo genome assembly methods that can cope with complex and large
genomes such as metagenomes or eukaryotic genomes are needed. Although NGS
has very high throughput, currently existing DNA sequencing methods cannot
read DNA without cutting it into short fragments. In this thesis, we studied
these problems.

In Chapter 4 and Chapter 5 we investigated the possibilities of automatic
sequence/structure annotation methods that are completely alignment-free. In
previous work, alignment-free sequence analyses were mainly studied in the con-
text of phylogenetics. A notable exception was composition-based string kernels
and its combination with support vector machines (SVMs) [133]. In particular,
the spectrum kernel [73] was particularly promising because it can achieve high
annotation accuracy and high computational efficiency at the same time: the
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kernel function can be computed in O(n)-time by applying the suffix tree [142]
in a stark contrast to the O(n2)-time needed for sequence alignment. Therefore,
we, starting from the spectrum kernel, tried to design better kernels applying
more advanced data structures developed in the string algorithms community.

In particular, in Chapter 4, we proposed the gapped spectrum kernel. This
kernel is a “gapped” analogue of the spectrum kernel and is based on an ex-
perimental observation that, while the spectrum kernel characterizes strings by
contiguous substrings, characterization by non-contiguous substrings seems to
lead to more accurate results. The idea of introducing gaps (or wildcards in
pattern matching) to the spectrum kernel has previously been studied in the
wildcard kernel [71]. The wildcard kernel achieves higher accuracy than that
of the spectrum kernel by considering all gap patterns of particular length and
weights. However, it was not known what happens if multiple but not all gap
patterns are considered. In order to compute the gapped spectrum kernel in time
independent of the dimension of feature space, we first proposed the b-suffix array
data structure in Chapter 3. This data structure is also related to pattern match-
ing problems that appear in the context of spaced seed search-based sequence
homology search. Also, we proposed several non-trivial construction algorithms
of the data structure in Chapter 3. In addition to the gapped spectrum kernel
computation based on the b-suffix array, we also proposed an algorithm for the
prediction phase of SVM that takes time independent of the size of the sup-
port vectors. Then, we showed that the sum of all gapped spectrum kernels
corresponding to all gap patterns of a given length and weights matches the
wildcard kernel. This relation gives a new bound for wildcard kernel computa-
tion and prediction. In particular, the prediction algorithm does not depend on
the size of the support vectors (Existing algorithm depends linearly on the size
of the support vectors.). Last, we experimentally showed that the combination
of a few randomly chosen gapped spectrum kernels can predict protein families
comparatively accuracy as the wildcard kernel.

On the other hand, in Chapter 5, we studied protein structure analysis. Com-
pared to protein sequences, structures are more directly related to functions and
thus, if available, structures should be very valuable clues to identify functions.
However, structural alignment is much more computationally expensive than
the sequence alignment. We showed how to apply the techniques of alignment-
free kernel considered in Chapter 4 to protein structures and thus, avoid the
cost of structural alignment. The key there was a novel use of protein contact
map, a concept previously used in the context of structural alignment [34]. The
proposed kernel function can be computed in time independent of the feature
space by applying the two dimensional suffix tree [59]. Also, we showed how to
perform the computation of the prediction phase of SVMs in time independent
of the size of the support vectors. We experimentally showed that the proposed
kernel can predict protein superfamilies comparatively accurately as the most
accurate existing method [10] while it runs more than 300 times faster.

Both the results of Chapter 4 and Chapter 5 can be used to sacrifice anno-
tation accuracy slightly to obtain a significant speed-up. In the comprehensive
studies of large-scale data such as metagenome sequences or protein motion
trajectories, the supply of unannotated data is huge and thus, such a trade is
reasonable. In almost all practical settings, the size of annotated data is dwarfed
by the size of unannotated data. Therefore, in the context of SVM-based classi-
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fication, the prediction phase is more likely to be the computational bottleneck
than the learning phase. Our methods are relevant to those cases because the
prediction time of our algorithm is independent of the size of the support vectors,
which can depend linearly on the size of the database.

We studied genome assembly problem in Chapter 6. Existing assembly algo-
rithms first construct some graph encoding the overlap of reads and then, try to
recover the original sequence by traversing the graph. The graph contains many
spurious edges introduced by sequencing errors, repeats, diploidy/polyploidy and
possibly others. In existing methods, these edges were removed by finding some
simple motifs. We noticed that very complex bubble-like substructures (typically
a directed acyclic graph with an “entrance” and an “exit”), which we named su-
perbubbles, sometimes emerge in assembly graphs. Ideally, it is desirable to
understand the true source of superbubbles and correct them if necessary. How-
ever, unlike simple motifs considered in existing work, it is not at all trivial how
to find superbubbles in the first place. On the other hand, once we find all super-
bubbles in the assembly graph, we should be able to apply elaborate algorithms
such as alignment to each superbubble instead of the entire graph. To detect
superbubbles, we first gave a graph theoretic characterization of superbubbles
and clarified some properties of it. For example, the number of superbubbles
in a graph is bounded by the number of vertices. Then, we proposed an effi-
cient algorithm to enumerate all superbubbles in a graph. This algorithm takes
quadratic time in the worst case but runs very efficiently in practice. We then
showed that, under a probabilistic model, the algorithm runs in linear time in
expectation.

The most likely application scenario of superbubbles is the noise removal of
assembly graphs. Existing genome assemblers often try to resolve complex struc-
tures by iteratively resolving simple bubbles. However, there may be structures
that cannot be resolved without taking into account related regions all simul-
taneously and the topological structure of superbubbles seems to be suitable to
capture the minimal regions that must be considered together.

Open problems. Several important open problems remain to be resolved to
further advance the comprehensive studies of computational molecular biology.

We considered protein sequence analysis in this thesis but DNA sequence
analysis is another important line of research. In particular, metagenome anal-
ysis is one of the most important applications of alignment-free methods today.
A typical problem in metagenome analysis is species estimation. In this prob-
lem, sequences (usually NGS reads) from a collection of (possibly unknown)
species are given. The goal is to predict which species in the database each
sequence was derived from. An input sequence may not belong to any species
in the database. In such a case, coarser taxonomical group, e.g., genus, fam-
ily and so on, should be assigned. Both alignment-based methods [47, 14] and
alignment-free methods [4, 143, 57, 105, 17] have been studied. It seems that
alignment-free methods are more promising especially for large-scale and highly
diverse data because alignment-based methods tend to suffer from higher com-
putational cost and low similarities of input data. Sequence comparison based
on k-mer counts/frequencies is one of the main approaches used in alignment-
free methods. As we mentioned in Section 4.5, Břinda et al. [17] showed that
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use of gapped k-mers instead of contiguous k-mers increase the annotation ac-
curacy. Although existing work indicates that alignment-free methods are very
promising approaches, currently there is no de facto standard method sequence
similarity measures for this problem. Important open problems include establish-
ing good similarity measures for metagenomic sequences and developing efficient
algorithms to annotate metagenomic sequences.

In this thesis, we considered annotation of protein MD simulation data. An-
other important problem related to MD simulation studies is data compression.
The outputs of MD simulations, called motion trajectories, are the snapshots
of atoms in the system. In typical simulation studies, the simulation time is in
the order of microseconds. Marais et al. [84] reported the size of several trajec-
tory files. For example, the trajectory file for 250,005 frames of protein ubiquitin
(consisting of 7053 atoms) takes 19.73 GB. Time step used in this simulation was
2 femtoseconds (= 2× 10−15 seconds). This means that trajectory file produced
by 1 microsecond simulation of ubiquitin will take 39,459 GB. Currently, only
few compression methods specialized to motion trajectory files exist [89, 84].
More compact representation of motion trajectories would greatly facilitate MD
simulation studies.

Alignment-free analysis is potentially relevant to problems outside of com-
putational molecular biology. The essence of an alignment is a correspondence
between linear objects. In sequence alignment, each object is a character while
in structural alignment, each object is a 3-dimensional coordinate. There are
many other linear objects in the world. For example, most time series data
can be represented as a sequence of numbers (1-dimensional coordinate). The
contour of an image is sometimes represented as a set of points sampled from
the contour. Because a contour is a curve, there are natural linear relationships
between these points. It seems that alignment can be generalized to any such
objects. However, such generalization should inherit the high computational
cost of sequence alignment as well. This may become problematic for large-scale
applications such as database search (There are huge supplies of both time series
data and image data.) and for those cases, alignment-free approach is promising.
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Markov models in computational biology: Applications to protein model-
ing. Journal of Molecular Biology, 235(5):1501 – 1531, 1994.

[64] R. Kuang, E. Ie, K. Wang, K. Wang, M. Siddiqi, Y. Freund, and C. Leslie.
Profile-based string kernels for remote homology detection and motif ex-
traction. In Computational Systems Bioinformatics Conference, 2004.

[65] P. P. Kuksa, P.-H. Huang, and V. Pavlovic. Scalable algorithms for string
kernels with inexact matching. In Advances in Neural Information Pro-
cessing Systems 21, pages 881–888. 2009.

[66] S. Kurtz. Reducing the space requirement of suffix trees. Softw. Pract.
Exper., 29(13):1149–1171, 1999.

[67] T.-W. Lam, W.-K. Sung, S.-L. Tam, and S.-M. Yiu. Space efficient indexes
for string matching with don’t cares. In Algorithms and Computation,
volume 4835 of Lecture Notes in Computer Science, pages 846–857. 2007.

[68] G. M. Landau and U. Vishkin. Introducing efficient parallelism into ap-
proximate string matching and a new serial algorithm. In Proceedings of
the 18th Annual ACM Symposium on Theory of Computing, pages 220–
230, 1986.

[69] B. Langmead, C. Trapnell, M. Pop, and S. Salzberg. Ultrafast and
memory-efficient alignment of short DNA sequences to the human genome.
Genome Biology, 10(3):R25, 2009.

[70] C.-A. Leimeister, M. Boden, S. Horwege, S. Lindner, and B. Morgenstern.
Fast alignment-free sequence comparison using spaced-word frequencies.
Bioinformatics, 30(14):1991–1999, 2014.

102



[71] C. Leslie and R. Kuang. Fast kernels for inexact string matching. In
Learning Theory and Kernel Machines, volume 2777 of Lecture Notes in
Computer Science, pages 114–128. 2003.

[72] C. S. Leslie, E. Eskin, A. Cohen, J. Weston, and W. S. Noble. Mis-
match string kernels for discriminative protein classification. Bioinformat-
ics, 20(4):467–476, 2004.

[73] C. S. Leslie, E. Eskin, and W. S. Noble. The spectrum kernel: A string
kernel for SVM protein classification. In Proceedings of Pacific Symposium
on Biocomputing, pages 566–575, 2002.

[74] H. Li and R. Durbin. Fast and accurate short read alignment with Burrows-
Wheeler transform. Bioinformatics, 25(14):1754–1760, 2009.

[75] M. Li, B. Ma, D. Kisman, and J. Tromp. Patternhunter II: Highly sensitive
and fast homology search. Journal of Bioinformatics and Computational
Biology, 02(03):417–439, 2004.

[76] R. Li, H. Zhu, J. Ruan, W. Qjan, X. Fang, Z. Shi, Y. Li, S. Li, G. Shan,
K. Kristiansen, H. Yang, and J. Wang. De novo assembly of human
genomes with massively parallel short read sequencing. Genome Research,
20:265–272, 2010.

[77] H. Lin, Z. Zhang, M. Q. Zhang, B. Ma, and M. Li. ZOOM! Zillions of
oligos mapped. Bioinformatics, 24(21):2431–2437, 2008.

[78] D. J. Lipman and W. R. Pearson. Rapid and sensitive protein similarity
searches. Science, 227(4693):1435–1441, 1985.

[79] H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, and C. Watkins.
Text classification using string kernels. J. Mach. Learn. Res., 2:419–444,
2002.

[80] K. L. Lorick, J. P. Jensen, S. Fang, A. M. Ong, S. Hatakeyama, and
A. M. Weissman. Ring fingers mediate ubiquitin-conjugating enzyme (E2)-
dependent ubiquitination. Proceedings of the National Academy of Sci-
ences, 96(20):11364–11369, 1999.

[81] B. Ma, J. Tromp, and M. Li. Patternhunter: faster and more sensitive
homology search. Bioinformatics, 18(3):440–445, 2002.

[82] I. MacCallum, D. Przybylski, S. Gnerre, J. Burton, I. Shlyakhter,
A. Gnirke, J. Malek, K. McKernan, S. Ranade, T. P. Shea, L. Williams,
S. Young, C. Nusbaum, and D. B. Jaffe. ALLPATHS 2: small genomes
assembled accurately and with high continuity from short paired reads.
Genome Biology, 10(R103), 2009.

[83] U. Manber and G. Myers. Suffix arrays: A new method for on-line string
searches. In Proceedings of the 1st Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 319–327, 1990.

103



[84] P. Marais, J. Kenwood, K. C. Smith, M. M. Kuttel, and J. Gain. Efficient
compression of molecular dynamics trajectory files. Journal of Computa-
tional Chemistry, 33(27):2131–2141, 2012.

[85] W. J. Masek and M. S. Paterson. A faster algorithm computing string edit
distances. Journal of Computer and System Sciences, 20(1):18 – 31, 1980.

[86] E. Mayoraz and E. Alpaydin. Support vector machines for multi-class
classification. In Engineering Applications of Bio-Inspired Artificial Neural
Networks, volume 1607 of Lecture Notes in Computer Science, pages 833–
842. 1999.

[87] E. M. McCreight. A space-economical suffix tree construction algorithm.
J. ACM, 23(2):262–272, 1976.

[88] C. E. Metz. Basic principles of ROC analysis. Seminars in Nuclear
Medicine, 8(4):283 – 298, 1978.

[89] T. Meyer, C. Ferrer-Costa, A. Pérez, M. Rueda, A. Bidon-Chanal, F. J.
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