




Abstract

In the efforts to prove the 4-dimensional supersymmetric gauge theory/2-dimensional conformal field
theory correspondence, a new series of bases for representation spaces ofW -algebras was found. In
the case of theWN -algebra, such a basis has an interpretation as the set of all fixed points in the moduli
space of U(N )-instantons on a 4-dimensional spacetime. Using the new basis, one can construct an
action of a nonlinear algebra SHc explicitly which is found to be equivalent to a representation of the
WN -algebra. The explicitness opens a way to prove the correspondence by rather simple computations
and has led to proofs of several versions of the conjecture.

In this thesis, we study 2-dimensional conformal field theories using the new type algebra SHc in
anticipation that the new basis simplifies known properties and gives new structures behind them. We
reconsider minimal models, the level-rank duality and the triality relation in particular and describe
them in terms of the explicit action of SHc .

We prove that, for each minimal model representation, there is a corresponding irreducible rep-
resentation of SHc . We obtain a basis of its representation space thanks to its explicit construction
and find that it satisfies the N -Burge condition. The SHc descriptions of minimal model representa-
tions then reveal that there is a partially ordered set structure behind the level-rank duality. A minimal
model representation space is spanned by the above basis consisting of some N -tuple Young diagrams.
Shuffling their rows by following a single rule, we can map the representation to its level-rank dual
representation spanned by some M (6= N )-tuple Young diagrams. It suggests that we should change
how to label the rows and leads to the notion of a P -partition over a partially ordered set, an integer
partition compatible to the partial order. The shuffling means that we see a single P -partition in two
different multiple Young diagrams. The theory of P -partitions reproduces a connection between the
Rogers–Ramanujan identities and the Lee–Yang singularity. There is another mapping between repre-
sentations of SHc . The map is obtained from the fact that the transposition of a Young diagram is also
a Young diagram. Combining it with the level-rank duality, we obtain a triality relation of SHc . This
triality is analogous to the triality relation of another algebraW∞[µ].

This thesis is based on the paper [1].
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Chapter 1

Introduction

This thesis is based on our article [1], which presents more direct link between a 2-dimensional
conformal field theory and a new method using a nonlinear algebra SHc †1 which appeared in
[2] to prove a version of the correspondence between 4-dimensional gauge theories and 2-
dimensional conformal field theories, called the Alday–Gaiotto–Tachikawa correspondence
[3]. We will describe a special class of conformal field theories, called minimal models ofWN -
algebras, in terms of the new algebra SHc and will reveal that such minimal model represen-
tations of SHc have a triality relation. Before stating our motivation and results, we start this
introduction by a rough explanation where the targets we will describe are positioned. We re-
fer to a great review [4] and a nice textbook [5] for readers who want to understand this area in
detail.

Belavin, Polyakov and Zamolodchikov showed in [6] the importance of the symmetry in
2-dimensional conformal field theories and initiated a lot of articles on solving physical mod-
els algebraically. There are many applications of the conformal symmetry to a broad area of
physics, including particle physics, string theory, general relativity, condensed matter physics,
and statistical mechanics. It is notable that the conformal invariance contains the scale trans-
formation and then this algebraic approach shines light on the study of the second-order
phase transition.

The BPZ work has been collecting so much attention mainly because the conformal sym-
metry becomes infinite-dimensional in the 2-dimensional spacetime and then it reduces the
theory itself to a quasi solvable model. Even for a general D -dimension, the conformal sym-
metry can be considered as an extended algebra so(D , 2) of the Lorentz algebra so(D − 1, 1)
and then imposes more constraints on the energy spectrum of particles. We have the Virasoro
algebra for D = 2, which is generated by an infinite number of elements (Ln )n∈Z and a central
charge c subject to the following commutation relations

[Ln , Lm ] = (n −m )Ln+m +
c

12
n (n 2−1)δn+m ,0 . (1.0.1)

This is an infinite-dimensional Lie algebra and then gives rise to many conservation laws.
These laws allow us to focus only on a smaller number of fields, called primary fields, to inves-
tigate the whole theory. In other words, one can determine a large part of physical quantities
from a consideration with the representation theory of the Virasoro algebra. A primary field

†1The algebra has a lengthy name: a central extension of a certain limit n→∞ of a degenerate double affine Hecke algebra
of GL(n ,C). We abbreviate the name to SHc and postpone its definition until Chapter 2.
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corresponds to a highest weight state |h〉 of the Virasoro algebra Virc (1.0.1):

L0 |h〉= h |h〉 , Ln |h〉= 0 , ∀n > 0 , (1.0.2)

and other operators belong to its descendant states. Returning each descendant state to its
highest primary state, one can factor a given correlation function into a Virasoro part and a
model-dependent part. The former factor is determined by the representation theory of the
Virasoro algebra, and the conformal field theory is characterized only by correlations among
primary fields.

A conformal field theory contains an infinite number of primary fields in general since
operators are closed under multiplication. Choosing the central charge c and the set {hi } of
conformal dimensions appropriately, however, one can close the operator algebra expansion
(OPE) by a finite primary fields. Such a special class of conformal field theories with finite
number of primary fields, called minimal models, has been studied extensively since it de-
scribes the critical exponents of the known models, including the Ising model [6], restricted
solid-on-solid (RSOS) models [7], and so on. The finite number of primary fields correspond to
the so-called local scaling operators of such models. The conformal algebra provides a strong
tool to investigate critical behaviors by searching solutions from minimal models.

The author of [8] realized that there exists a nonlinear symmetry behind some conformal
field theories. The nonlinear algebraW3 is given by adding a spin-3 current W3(z ) to a Virasoro
algebra, but does not form a Lie algebra. A primary field with respect toW3 now corresponds
to a highest weight state parameterized by two components Λ1,2 like

L0 |Λ1,Λ2〉=w2(~Λ) |Λ1,Λ2〉 , W3,0 |Λ1,Λ2〉=w3(~Λ) |Λ1,Λ2〉 ,

Ln |Λ1,Λ2〉=W3,n |Λ1,Λ2〉= 0 , ∀n > 0 .
(1.0.3)

A similar reasoning motivates the representation theory of the nonlinear algebra W3 and its
minimal models describe the critical behaviour of the tricritical Ising model [9] and the 3-
state Potts model [10]. This work was generalized in [11] to the algebraWN by adding a spin-i
current to a Virasoro algebra for each 3 ≤ i ≤ N . Its minimal models correspond to RSOS
models [12, 13]. Such an extended Virasoro algebra containing higher spin currents is usually
called a W -algebra, which is named after that ‘W’ is the next character to the capital letter of
‘Virasoro’. There are several ways to present W -algebras. The coset construction [14, 15, 16]
and the quantized Drinfeld–Sokolov reduction[17] are the examples. In this sense, the above
construction in [8, 11] is called the free field realizations or the Feigin–Fuchs construction[18].

A certain series of minimal models was known to present a duality relation [19, 20, 21],
called the level-rank duality. The duality concerns a conformal field theory with symmetry
WN whose coset construction is given as SU(N )k × SU(N )1/SU(N )k+1 with rational level k =
−N +N /M for a pair of mutually prime positive numbers (N , M ). The replacement N ↔M
gives another conformal field theory with symmetry WM and level l = −M +M /N . These
two minimal models are called level-rank dual to each other since they relate nontrivially. For
example, they share the same central charge c of the Virasoro subalgebra and the same q -
dimensions of their primary fields. Note that a rank-N W -algebraWN is not a subalgebra of
another W -algebra W>N with larger rank in general. The duality relates two quite different
conformal field theories by interchanging their ranks and levels. There is various manifesta-
tion of the level-rank duality in terms of quantum groups[22], conformal embeddings[23, 24],
Wess–Zumino–Witten theories[25, 26].

In the context of the AdS3/CFT2 correspondence, the level-rank duality identifies the sym-
metry of the higher spin theory on the bulk AdS3 with that of the boundary conformal field
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CHAPTER 1. INTRODUCTION

theory [27, 28]. The proposed symmetryW∞[µ] is given by a large-N limit ofWN where the
’t Hooft coupling parameter µ is held invariant. In the bulk theory, the ’t Hooft parameter is
fixed toµ=N /(N +k ), while the boundary symmetry isW∞[µ=N ] =WN . The duality relation
connects them for N /(N +k ) =M and can be considered as redundancy of the parameterµ in
W∞[µ]. The parameter is still redundant since the replacement k ↔ k̂ =−2N −k−1 gives rise
to an equivalence between two coset models with the same rank N . Therefore three points in
the parameter space should be regarded as the same class, which is called the triality inW∞[µ].

We revisit minimal models, their level-rank duality and the triality relation in this thesis,
from a rather new viewpoint which was developed in the efforts to prove the AGT conjecture. In
2009, the authors of [3] revealed a connection of 4-dimensional supersymmetric gauge theo-
ries to 2-dimensional conformal field theories. They considered several compactifications of
6-dimensional M5-branes in M-theory, and conjectured that the Virasoro factor of a 4-point
correlation function is identical†2 to the instanton partition function of a 4-dimensional su-
persymmetric gauge theory with gauge group SU(2). On the one hand, one can compute the
Virasoro factor inductively by using the representation theory of the Virasoro algebra. On
the other hand, the instanton partition function was shown computable by Nekrasov and
Okounkov[29, 30] and is reduced to a summation over fixed points in the moduli space of
U(2)-instantons under localization. The conjecture claims a strange coincidence of the two
computable quantities of different origin. This AGT conjecture was soon generalized by Wyl-
lard to SU(N ), which connects theWN factor of a correlation function to the U(N )-instanton
partition function [31].

Numerous studies appeared to prove the coincidence[32, 33, 34, 35, 36, 37] and then led to
a new basis for a representation space of aW -algebraWN+U(1), the tensor product ofWN and a
Heisenberg algebra. The new basis describes the set of all the fixed points in the moduli space
of U(N )-instantons and the AGT conjecture claims in part that theW -algebra does act on its
span. In fact, Schiffmann and Vasserot showed that there is an action ofWN+U(1) on the vector
space of gauge theoretical origin, by constructing a representation of a nonlinear algebra SHc

on the space and by proving that there is a correspondence between representations of SHc

and those ofWN+U(1) [2]. The new basis has played an intermediate role connecting the two
computable quantities and led to proofs of the conjecture for several gauge theories[36, 37, 38,
39]. What makes the new basis so powerful to analyze the AGT conjecture is that we can write
the action of SHc explicitly. This explicit form makes it easy to construct recursion relations
which help us to solve the conjecture.

We take the explicit expression with the algebra SHc more seriously, and move our focus
from the AGT conjecture to the equivalence of SHc andWN+U(1) itself. In other words, we in-
tend to apply SHc to studying 2-dimensional conformal field theories. We think that our intent
is not meaningless for the following expectations:

1. Conformal field theories have been studied for a long time and then the equivalence
provides ample properties to the representation theory of SHc . It may help researchers
to study an analog algebra and its representations.

2. We may write down various properties of conformal field theories explicitly by using the
action of SHc on the span of the new basis. The explicit form may reveal a new structure
behind those properties as well as 4-dimensional gauge theories.

The latter is the starting point of our research. We want to rewrite known aspects of confor-

†2Up to the so-called U(1) factor.
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mal field theories in terms of the new basis, and find less-known structures. We mention in
advance that we will see a partially ordered set structure and a shuffling operation behind the
level-rank duality. There are related works [40, 41, 42] on searching structures, where their au-
thors found the so-called Burge structure behind minimal models through a gauge theoretical
consideration, but not through SHc .

The authors of [2] considered a general representation of SHc which corresponds to the ir-
reducible action ofWN+U(1) on the Fock space of free N bosons, or the Verma space since they
focused on the proof of a version of the AGT conjecture. Moving our focus to the representa-
tion theory ofW -algebra, some representations ofWN+U(1) are not of this non-degenerate type.
It is natural to ask what happens to SHc when it concerns other degenerate representations. In
this thesis, we tackle this problem and focus on one of the most important class of degenerate
representations originating from primary fields of minimal models. We perform a description
of such a minimal model representation in the representation theory of the new type algebra
SHc . We can construct a series of irreducible representations of SHc corresponding to mini-
mal model representations. We also obtain an explicit basis of the space of a minimal model
representation using the new basis of gauge theoretical origin. The basis enables us to get a
state-to-state correspondence between two minimal model representation which are level-
rank dual to each other and to see a partially ordered set behind the level-rank duality. We
have mentioned that there is a triality relation inW∞[µ]which contains the level-rank duality
in part. It is crucial that the algebraW∞[µ] expresses theW -algebraWN =W∞[µ=N ] for any
N . The algebra SHc also present such a universality in a sense that it expresses representations
ofWN+U(1) for any N . We show that there exists an analogous triality in SHc .

1.0.1 Main results

Let us describe our results in this thesis. Let L (N ) be a vector space with a basis {|λ〉}λ∈Y (N )
whose labelλ= (λ(1), · · · ,λ(N )) runs over the setY (N ) of all the N -tuple Young diagrams. The set
Y (N ) is none other than the set of all the fixed points in the moduli space of U(N )-instantons
[29, 30, 43]. This basis also becomes the simultaneous eigenvectors with respect to the set of
commuting operators D0,l+1 ∈ SHc , l ≥ 0. A series of irreducible actions of SHc on L (N ) exists,
which is parameterized by N + 2 values a1, a2, · · · , aN ,ε1 and ε2 with no linear relation in Z.
These parameters are of the 4-dimensionalN = 2 supersymmetric pure Yang–Mills theory on
theΩ-background spacetime. We denote the represented algebra in End(L (N )) by SH(N ). It was
shown in [2] that there is an “equivalence" between SH(N ) and a W -algebra WN+U(1) defined
as the tensor product of WN and a Heisenberg algebra. This equivalence identifies the rep-
resentation theory ofWN+U(1) with that of SH(N ). They also proved that the induced action of
WN+U(1) on L (N ) can be identified with an irreducible representation on the Fock space of N
free bosons if we keep the N +2 parameters generic.

We use this representation and the basis to describe minimal model representations whose
existence itself is expected by the above equivalence. Such a description can be obtained by
fixing parameters to

ε1 = q , ε2 =−p ,

a1−aN = q n ′N −p nN , a j+1−a j = q n ′j −p n j , 1≤ j ≤N −1 ,
N
∑

i=1

ai =
1

2
N (N −1)(q −p ) ,

(1.0.4)
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CHAPTER 1. INTRODUCTION

where (p , q ) is a pair of mutually prime positive numbers and ni , n ′i (1 ≤ i ≤ N ) are positive
integers satisfying

N
∑

j=1

n j = q ,
N
∑

j=1

n ′j = p . (1.0.5)

These integers are well-known to become a label of a minimal model representation of the
WN -algebra[11]. We showed that SHc also acts on a subspace L (N )B of L (N ) after fixing the pa-
rameters as above:

Theorem 1.1. With the notations above, SHc acts irreducibly on a subspace L (N )B of L (N ) whose
basis is given by all the N -tuple λ= (λ(1), · · · ,λ(N )) ∈Y (N ) satisfying

λ(i+1)(l +ni −1)−λ(i )(l )≤ n ′i −1 , (1.0.6)

for each 1≤ i ≤N , l ≥ 1, where λ(N+1) =λ(1). �

The lowest weight state |;〉, labeled by an empty N -tuple, corresponds to the highest weight
state of the minimal model representation of WN+U(1). Then two representations should be
identified with each other by the equivalence. In this sense, we obtain a series of description
of minimal model representations in terms of SHc . This irreducible action is a main result of
this thesis, while the above series of inequalities themselves were already obtained in [42] and
were called the N -Burge condition. What we find is that there is an action of SHc even after
we specialize parameters to fit minimal models. We will prove it in Section 3.2. The above se-
ries of inequalities themselves were obtained in [42] and were called the N -Burge condition.
We reached the condition in our paper [1] from another viewpoint and may say that this con-
struction gives an extended meaning of the condition as the basis of the representation space
of the nonlinear algebra.

We obtain a new basis for each minimal model representation as a byproduct of the the-
orem. We use this basis to study the level-rank duality. The level-rank duality concerns a
restricted class of minimal model representations with

p =N , q =N +M , n ′i = 1 , 1≤ i ≤N , (1.0.7)

where M is a positive integer such that N and M are mutually prime. For such a datum 〈N , N +
M , (ni )i=1,··· ,N 〉, we construct a dual datum 〈M , N +M , (mi )i=1,··· ,M 〉 describing a minimal model
representation ofWM+U(1) by the same way as [21]. We can prove the following statements:

Theorem 1.2. Let us denote by L (N )B , L (M )B the corresponding representation space of WN+U(1),

resp. WM+U(1), and by SH(N ) ⊂ End(L (N )B ), resp. SH(M ) ⊂ End(L (M )B ), the represented algebra.

1. The two represented algebras SH(N ) and SH(M ) are isomorphic to each other after a certain
rescale.

2. There is a linear isomorphism between L (N )B and L (M )B which commutes any action of zero-
mode operators D0,l+1 ∈ SHc , l ≥ 0.

�
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...

Figure 1.1: An N -tuple Young diagram λ is mapped to an M -tuple λ̃ for N = 2, M = 3. They share the
same set X which labels every row in multiple Young diagrams.

Therefore such two representations can be considered as the same one. Note that L (M )B

is spanned by M -tuple Young diagrams satisfying the M -Burge condition while L (N )B is by N -
tuples meeting the N -Burge condition. The latter statement is shown by that we have a combi-
national operation which transforms an N -tuple to an M -tuple like Figure 1.1. The key point
is that the linear isomorphism is induced by shuffling each row in Young diagrams. They share
the labeling set X and the action of D0,l+1 ∈ SHc on |λ〉 is determined not by thatλ is expressed
as an N -tuple Young diagram but by the map λ = λ̃ : X → Z≥0 , x 7→ λ(x ). We also see that a
multiple Young diagram meeting the N -Burge condition is transformed into another multi-
ple “Young" diagram, which gives a constraint on maps X → Z≥0. In fact, the basis of the
representation space is identified with the set of all P -partitions[44] over a partially ordered
set X . The same partially ordered set is shared by two minimal model representations which
are level-rank dual to each other. We prove this partially ordered set structure as well as the
state-to-state correspondence behind the level-rank duality in Section 3.3, which is the sec-
ond main result of this thesis. We think that this shuffling operation is the most original result
in this thesis. As an application of these P -partitions, we can obtain the Rogers–Ramanujan
identities[45] from the Lee–Yang singularity (N = 2, M = 3), while such a connection between
them was already mentioned in [46].

The transposition of a Young diagram is also a Young diagram. The transposition induces
an automorphism in SHc . This algebra map and the level-rank duality form a triality of SHc in
a sense that three algebras are identified. This is the last main result of this thesis. This triality
is analogous to that of another universal algebraW∞[µ]. We show the triality of SHc in Section
3.5.

1.0.2 The organization of this thesis

We finish this chapter by mentioning the organization of this thesis. Our main study is given
in Chapter 3. Chapter 2 is devoted to reviewing the algebra SHc and its actions in order to help
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Figure 1.2: The flow of this thesis

the reader to understand the next main chapter more easily. We draw Figure 1.2 to show the
flow of this thesis.

In the first half (Section 2.1-2.4) of Chapter 2, we explain the explicit action of SHc on the
vector space L (N ) and present some combinational computations. We need a careful expla-
nation of the explicit action as well as of the less-known algebra SHc since our main analysis
depends heavily on the action on it. We construct an irreducible minimal model representa-
tion by restricting the original action on L (N ) to a smaller one on a certain subspace of L (N ).
In the construction, we will focus on how each generator of SHc is expressed by a matrix with
respect to the basis for L (N ) of gauge theoretical origin and on which matrix elements vanish
or diverge. We first explain the vector space L (N ) and its gauge theoretical origin in Section 2.2.
We associate the vector space with the above basis there. We then introduce in Section 2.3 an
action of SHc by assigning a matrix expression for each generator of the algebra. We also con-
firm some commutation relations in SHc in that section. Note that we rather introduce the
represented algebra SH(N ) ⊂ End(L (N )) than SHc itself since we repeatedly use such matrices
and perform computations with them. Such computations are expressed using a combina-
tional aspect of Young diagrams. We fix some notions with Young diagrams in Section 2.1.
Section 2.4 is a supplement to this first half. We present the original algebra SHc in Section
2.4 by giving its generators and defining relations. The goal of this section is to tell the reader
that the commutation relations confirmed in Section 2.3 are sufficient to determine the alge-
bra and the matrix-expressed algebra SH(N ) does not lose the generality of the abstract algebra
SHc .

The latter half (Section 2.5) of Chapter 2 is devoted to introducing an equivalence between
SH(N ) and theW -algebraWN+U(1). In [2], they showed the equivalence of their representation
theories. While our motivation is based on that result, we do not need the detailed proof of
the equivalence. We rather motivate the reader to accept the equivalence by telling that the
two algebras share the same Virasoro–Heisenberg subalgebra, and only give a user guide to
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use the equivalence. In Section 2.5, we first fix our notation with theW -algebraWN+U(1) and
then introduces the equivalence by following the above procedure.

In Chapter 3, we discuss our applications of SHc to minimal model representations (Sec-
tion 3.2), the level-rank duality (Section 3.3) and a triality relation (Section 3.5) . We first fix
our notations with minimal model representations of the W -algebra WN+U(1) in Section 3.1.
Then we show in 3.2 our description of minimal model representations as follows. We first
state the resultant representation space L (N )B and then we check that SHc acts irreducibly on
this space. As mentioned above, we consider the matrix coefficients of the represented alge-
bra SH(N ) and see that it suffices to focus on the east boundary of Young diagrams to evaluate
whether the coefficients vanish or diverge. We give some propositions and lemmas to express
the vanishment condition and the divergent condition. As a result, we obtain an appropriate
action on L (N )B . Next we move to Section 3.3 and consider the level-rank duality as follows. We
first introduce another labeling set X (N )B for rows of N -tuple Young diagrams and see that each
element in the basis for L (N )B is rephrased as a P -partition over X (N )B with a certain partial order-
ing. We then show that two minimal model representations share the same partially ordered
set X (N )B . We construct such a dual representation by using a disk expression which appeared
in [21]. We then rephrase the action of SH(N ) in terms of the shared set X (N )B and finish our
description of the level-rank duality. Section 3.4 is a supplement to Section 3.3. We revisit a
connection between the Rogers–Ramanujan identities and the Lee–Yang singularity from the
theory of P -partitions. At last, we consider a triality relation in Section 3.5. We will see that the
level-rank duality and the transposition operation of Young diagrams give an identification of
three minimal model representations.

We conclude this thesis by Chapter 4 with giving some future prospects of our results.
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Chapter 2

The algebra SHc and its actions

In [2], Schiffmann and Vasserot constructed a representation of a nonlinear algebra SHc on
an infinite-dimensional graded vector space L (N ), containing the set of all the N -tuple Young
diagrams as a basis. The basis of L (N ) was shown in [43] to correspond to the set of all the fixed
points with respect to a torus action in the instanton moduli space of the pureN = 2 super-
symmetric Yang–Mills theory with gauge group U(N ) on the Ω-deformed spacetime R4. The
action of SHc then means that an infinite-dimensional symmetry exists behind the equivari-
ant cohomology of the moduli space. The authors of [2] proved that the representation of SHc

is equivalent to that of a W -algebraWN+U(1) given as the tensor product of an extended con-
formal algebraWN and the Heisenberg algebra. The induced action of the W -algebra on L (N )

shows a version of the AGT conjecture.
In this chapter, we review the representation of SHc on L (N ). We summarize a necessary

part of the topic in order for readers to get familiar with our upcoming discussions which de-
pends heavily on the new type algebra SHc . We mainly focus on the matrix coefficients of the
representation with respect to the basis of L (N ). These quantities will play the most important
role with our research on the triality among minimal models of the W -algebra. We will tune
some parameters in the representation, whose origin is in a 4-dimensional supersymmetric
gauge theory, to 2-dimensional conformal field theories in the next chapter. We will focus on
the situation when they vanish or diverge after a specialization of the parameters.

We construct the representation on L (N ) explicitly and perform some computations with
them in Section 2.2 and 2.3. We prepare our notations with Young diagrams in Section 2.1 since
the matrix coefficients are associated with combinational aspects of those diagrams. We also
check some commutation relations in SHc in Section 2.3, which are known to be enough to
express the algebra itself by generators and defining relations, explained in Section 2.4. The
representation of SHc has a potential for further studies on conformal field theories because
one can dive into a certain representation of the W -algebraWN+U(1) by simple computations
associated with the equivalent representation of SHc . We introduce a user guide to use the
correspondence between representations of SHc and of the W -algebra in Section 2.5. We give
proofs for some propositions with combinational computations for our later use, but we only
introduce the other propositions without proofs when we do not need their detailed proofs.

We should note that we rather introduce an algebra SH(N ) than the algebra SHc itself. The
algebra SHc was originally introduced in [2] as a central extension of a certain limit n→∞ of
a degenerate double affine Hecke algebra of GL(n ,C) and was shown in [47] to be expressed
by generators and defining relations. The original construction is crucial to justify our user
guide connecting SHc and the W -algebra. We present the relation between SH(N ) and SHc

9



2.1. NOTATION

s

Figure 2.1: A Young diagram Y = (7, 6, 5) and a box s

in Section 2.4 but we do not give a detailed explanation of SHc . The reason why we choose a
path with SH(N ), not with the original SHc , is that our study depends rather on the user guide
and on the explicit form of the representation of SH(N ) on L (N ) than on the detailed proof.

2.1 Notation

We first fix our notations with Young diagrams. A map Y :Z>0→Z≥0 is called a partition when
it satisfies Y (n1)≥ Y (n2) for n1 ≤ n2 and there is a number n ≥ 1 such that Y (n ) = 0. We identify
a partition Y with a Young diagram whose nth row has Y (n ) boxes for n ≥ 1. For example, a
partition Y = (3, 1, 0, · · · ) is expressed as a Young diagram . Given two Young diagrams Y1

and Y2, we write

Y1 ⊂ Y2⇔ Y1(n )≤ Y2(n ),
∀n ≥ 1 . (2.1.1)

We denote by |Y |=
∑

n≥1 Y (n ) the total number of boxes in a Young diagram Y and call it the
level of Y . Given a Young diagram Y and a box s in Y , we denote by x (s ), y (s ), aY (s ), lY (s ) the
number of boxes in Y lying strictly to the west, resp. north, resp. east, resp. south, of the box
s . For example, we have x (s ) = 3, y (s ) = 2, aY (s ) = 1, lY (s ) = 0 for the case in Figure 2.1.

We denote by Y (N ) the set of all the N -tuples λ = (λ(1), · · · ,λ(N )) of Young diagrams. Given
two N -tuples λ1,λ2 ∈Y (N ), we write

λ1 ⊂λ2⇔λ(i )1 ⊂λ
(i )
2 , 1≤ ∀i ≤N . (2.1.2)

We define |λ| =
∑N

i=1 |λ
(i )| for λ ∈ Y (N ) and call it the level of λ. We express the level decom-

position of Y (N ) by Y (N ) = tn≥0Y (N )n . Given an N -tuple λ ∈ Y (N ) and 1 ≤ i ≤ N , we write

a (i )λ = aλ(i ) , l (i )λ = lλ(i ) and canonically define x (s ), y (s ) and possibly negative numbers a (i )λ (s ),
l (i )λ (s ) for any point s in the lattice where boxes are arranged.

2.2 The vector space L (N )

We first define a vector space L (N ) for a given positive number N . It has the basis {|λ〉}λ∈Y (N )
and some structures which originate from the instanton counting of 4-dimensional N = 2
supersymmetric gauge theories. We start by a rough explanation of the instanton counting to
give a physical meaning of L (N ), and then define the vector space at the last of this section.

2.2.1 Instanton counting

We first briefly recall a gauge theoretical background of the instanton counting and extract
some basic results needed for our calculations from [43, 29, 30]. We refer to a nice review [48]

10



CHAPTER 2. THE ALGEBRA SHC AND ITS ACTIONS

on the instanton counting and to references therein for the reader who wants to understand
the topic in detail.

Nekrasov and Okounkov considered in [29, 30] a certain class of 4-dimensionalN = 2 su-
persymmetric gauge theories on theΩ-deformed spacetime†1 R4. Here theΩ-deformation is a
background gauge field in the spacetime with respect to the spacetime symmetry SO(4), and is
characterized by two parameters ε1,ε2 where (e iε1 , e iε2) ∈U(1)2 ⊂ SO(4) acts onC2 'R4 canon-
ically. Let us focus only on a theory in the class, the Ω-deformedN = 2 supersymmetric pure
super-Yang-Mills theory with gauge group U(N ) and on its partition function at a supersym-
metric vacuum. Such a vacuum state gives a boundary condition of the path integral enforcing
the adjoint scalar in the theory to be a constant diagonal matrix diag(a1, · · · , aN ) ∈ u(1)N ⊂ u(N )
at the infinities of the spacetime.

They showed that the partition function of the theory is reduced, by use of the so-called
SUSY localization, to an integral over the (regularized) moduli space of U(N )-instantons. In
particular, its nonperturbative correction, called the instanton partition function, is none other
than the equivariant Euler class of the moduli space with respect to the action of the torus
D̃ = T ×D . Here we denote by T = U(1)2 the torus associated to the Ω-deformation and by
D =U(1)N the torus associated with the diagonal framing ~a = (a1, · · · , aN ) at the infinities. The
instanton partition function Zinst( ~a ,ε1,ε2) is then reduced, by use of an equivariant localiza-
tion, to an integral over the fixed points in the moduli space with respect to the torus action. If
any fixed point is isolated, the integral is interpreted as a sum of reciprocals of Euler characters

Zinst( ~a ,ε1,ε2) =
∑

n≥0

q n
∑

p

1

eu
�

TpMn

� , (2.2.1)

whereM =tn≥0Mn is the moduli space of instantons, which is decomposed by its instanton
number n , a point p runs over any fixed point inMn , and a coefficient q is a parameter asso-
ciated with the gauge coupling constant of the theory. Here eu(E )means the Euler character
of a given vector space E with respect to the action of the torus D̃ , which means that if D̃ acts
on E by

(e iε1 , e iε2 , e i a1 , · · · , e i aN ) ∈ D̃ 7→ diag(e i w1 , · · · , e i wdim E ) ∈Aut(E ) ,

w1, · · · , wdim E ∈Zε1+Zε2+
N
∑

j=1

Za j ,
(2.2.2)

then its Euler character is given by

eu(E ) =
dim E
∏

f =1

w f . (2.2.3)

There are mathematical facts about the fixed points and their Euler classes, summarized
as follows [43, 30]:

Proposition 2.1 ([43]). 1. Any fixed point inM with respect to the action of the torus D̃ is
isolated. (Then the instanton partition function can be expressed as a sum (2.2.1).)

†1 The spacetime is also deformed to a noncommutative one by a Poisson tensor Θ [30]. In their calculations with the par-
tition functions, these deformations justify the applications of two localization methods, a SUSY localization and an equiv-
ariant localization, to noncompact spaces by regularizing their infiniteness.
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2.2. THE VECTOR SPACE L (N )

2. The setM 0
n of all the fixed points inMn is identified with the set Y (N )n of all the N -tuple

Young diagrams with level n.

3. Given a fixed point λ = (λ(1), · · · ,λ(N )) ∈ Y (N )n 'M 0
n , then the tangent space TλMn is iden-

tified with the middle cohomology Tλ of an exact sequence

0→ End(Vλ)
→ t1⊗End(Vλ)⊕ t2⊗End(Vλ)⊕Hom(W , Vλ)⊕ t1⊗ t2⊗Hom(Vλ, W )
→ t1⊗ t2⊗End(Vλ)→ 0 ,

(2.2.4)

where

Vλ =
N
⊕

j=1

�

⊕

s∈λ( j )
χ j ⊗ t −⊗x (s )

1 ⊗ t −⊗y (s )
2

�

, W =
N
⊕

j=1

χ j . (2.2.5)

Here we denote by t1, t2 andχ j for 1≤ j ≤N , 1-dimensional vector spaces where the action
of D̃ to the (N +2)-dimensional vector space t1⊕ t2⊕χ1⊕ · · ·⊕χN is canonical.

�

Note that the Atiyah–Drinfeld–Hitchin–Manin (ADHM) construction [49] parameterizes
the moduli spaceM as

Mn =Nn/GL(n ,C) , (2.2.6)

Nn =
§

(B1, B2, I , J )

�

�

�

�

B1, B2 ∈ End(Cn ), I ∈Hom(CN ,Cn ), J ∈Hom(Cn ,CN )
µc ≡ [B1, B2] + I J = 0 , stable

ª

. (2.2.7)

Here the canonical action of GL(n ,C)onCn induces its action onNn . The stability condition in
(2.2.7) is a result of the regularization by the deformation of the theory, but we do not need its
detail. The action of the torus D̃ onMn is then expressed by its action on the ADHM matrices
(B1, B2, I , J ) inNn ,

B1 ∈ t ⊕n 2

1 , B2 ∈ t ⊕n 2

2 , I ∈ (χ−1
1 ⊕ · · ·⊕χ

−1
N )
⊕n , J ∈

�

t1⊗ t2⊗ (χ1⊕ · · ·⊕χN )
�⊕n

. (2.2.8)

An element inMn is a fixed point if and only if the torus action to its representative ADHM
matrices inNn is absorbed by an action of GL(n ,C). This parametrization explains where the
sequence (2.2.4) comes from. The second arrow in (2.2.4) represents the differential of the
GL(n )-action toNn at a fixed point λ, and the third represents the differential dµc ,λ at λ.

Henceforth, we often omit E1⊕E2, E1⊗E2 and E /F by E1+E2, resp. E1E2 and resp. E −F ,
for given vector spaces E1, E2, or E , F such that F is the subspace of E , F ⊂ E . Note that these
“±" abbreviations are compatible with their Euler characters:

eu(E1+E2) = eu(E1)eu(E2) , eu(E − F ) =
eu(E )
eu(F )

. (2.2.9)

The middle cohomology Tλ = TλMn of the sequence (2.2.4) for a given λ ∈Y (N )n is then written
as†2

Tλ =−(1− t1)(1− t2)V
∗
λ ⊗Vλ+W ∗⊗Vλ+ t1t2V ∗

λ ⊗W , (2.2.10)

†2For a vector space E , we denote its dual vector space by E ∗. Note that if the torus D̃ acts on E , it also acts on E ∗ by the
dual representation. This means that t ∗1 = t −1

1 , t ∗2 = t −1
2 , and χ∗j =χ

−1
j for 1≤ j ≤N .
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CHAPTER 2. THE ALGEBRA SHC AND ITS ACTIONS

and is shown in [43] to be simplified to

Tλ =
N
∑

j ,k=1

χ−1
j χk

�

∑

s∈λ( j )
t

a
( j )
λ (s )+1

1 t
−l (k )λ (s )
2 +

∑

s∈λ(k )
t
−a (k )λ (s )
1 t

l
( j )
λ (s )+1

2

�

. (2.2.11)

This reduction is a corollary of the following proposition.

Proposition 2.2 ([43]). Let (Y1, Y2) be a pair of Young diagrams and set VYi
=
∑

s∈Yi
t −x (s )

1 t −y (s )
2

for i = 1, 2. Then we have

−(1− t1)(1− t2)V
∗

Y1
⊗VY2

+VY2
+ t1t2V ∗

Y1
=
∑

s∈Y1

t
aY1 (s )+1
1 t

−lY2 (s )
2 +

∑

s∈Y2

t
−aY2 (s )
1 t

lY1 (s )+1
2 . (2.2.12)

�

Combining the above results, one can obtain the following summation formula of the in-
stanton partition function,

Zinst( ~a ,ε1,ε2) =
∑

λ∈Y (N )

q |λ|

eu(Tλ)
,

eu(Tλ) =
N
∏

j ,k=1

�

∏

s∈λ( j )

�

−a j +ak + (a
( j )
λ (s ) +1)ε1− l (k )λ (s )ε2

�

×
∏

s∈λ(k )

�

−a j +ak −a (k )λ (s )ε1+ (l
( j )
λ (s ) +1)ε2

�

�

.

(2.2.13)

Note that the vector space Tλ contains no trivial representation, 1 6⊂ Tλ, if there is no linear re-
lation inZ among parameters ε1,2, a1,··· ,N . It is clear from the fact that the fix pointλ is isolated.
A trivial subrepresentation may exist only when j = k in (2.2.11). In this case, however, we
have a ( j )λ (s ) +1, l ( j )λ (s ) +1> 0 for s ∈λ( j ), which shows 1 6⊂ Tλ.

In this chapter, we assume the linear independence among these parameters, while we focus
on a certain specialization of the parameters later.

Here we explicitly determine some Euler characters in order for the reader to get familiar
with such a potentially less-known quantity. Let us consider a contribution of a Young diagram

to the U(1)-instanton partition function. Assigning numbers as 1 2 , we obtain

a (1) = 1, l (1) = 0, a (2) = 0, l (2) = 0 . (2.2.14)

Then we have

eu(T ) =(−a1+a1+ (1+1)ε1−0 · ε2)(−a1+a1−1 · ε1+ (0+1)ε2)
× (−a1+a1+ (0+1)ε1−0 · ε2)(−a1+a1−0 · ε1+ (0+1)ε2)
=2ε1(−ε1+ ε2)ε1ε2 .

(2.2.15)

We also have

eu(T ) = ε1ε2 , eu(T ) = 2ε2(ε1− ε2)ε1ε2 . (2.2.16)

Therefore we obtain the U(1)-instanton partition function up to order q 2:

Z U(1)
inst (a1,ε1,ε2) = 1+

q

ε1ε2
+

q 2

2ε2
1ε

2
2

+O (q 3) . (2.2.17)
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2.2.2 The vector space L (N )

We now impose two structures to a vector space L (N ) which has the set {|λ〉}λ∈Y (N ) of vectors
as its basis. The first structure is a grading L (N ) =⊕n≥0L (N )n by degree associated with the level
overY (N ). The second is a paring for L (N ) defined by

〈µ|λ〉=δµ,λeu(Tλ) , λ,µ ∈Y (N ) . (2.2.18)

Note that, denoting by H the operator on L (N ) which counts the degree of |λ〉 ∈ L (N ),

H |λ〉= |λ| |λ〉= n |λ〉 , λ ∈Y (N )n , (2.2.19)

the formula (2.2.13) is rewritten as

Zinst( ~a ,ε1,ε2) = 〈G |q H |G 〉 , |G 〉=
∑

λ∈Y (N )
eu−1(Tλ) |λ〉 . (2.2.20)

2.3 The algebra SH(N )

Here we define the representation of the algebra SH(N ) on L (N ). We write down some compu-
tations explicitly in order to prepare for our main analysis.

2.3.1 The vector space Nσ,λ

For a given pair of N -tuple Young diagrams λ,σ ∈ Y (N ) satisfying σ ⊂ λ and |λ| = |σ|+ 1, we
define a vector space Nσ,λ =Nλ,σ by

Nσ,λ =−(1− t1)(1− t2)V
∗
λ ⊗Vσ+W ∗⊗Vσ+ t1t2V ∗

λ ⊗W − t1t2 , (2.3.1)

which is similar to the definition of Tλ in (2.2.10). By a similar way, we can simplify Nσ,λ to

Nσ,λ =
N
∑

j ,k=1

χ−1
j χk

�

∑

s∈λ( j )
t

a
( j )
λ (s )+1

1 t −l (k )σ (s )
2 +

∑

s∈σ(k )
t −a (k )σ (s )

1 t
l
( j )
λ (s )+1

2

�

− t1t2 . (2.3.2)

Let s be the unique box in λ not contained inσ. The component associated with this box s in
λ( j ) and j = k in the above equation becomes

χ−1
j χ j t

a
( j )
λ (s )+1

1 t −l
( j )
σ (s )

2 = t1t2 , (2.3.3)

and then cancel the last term −t1t2. Therefore (2.3.1) indeed defines a vector space. We can
show that 1 6⊂Nλ,σ by a similar reasoning for Tλ.

2.3.2 The operators D0,l+1, D±1,l and the algebra SH(N )

Given a vector space E where the torus D̃ acts by weights (w f )dim E
f =1 , we define the character

c1(E ) of the vector space E by

c1(E ) =
dim E
∑

f =1

w f , (2.3.4)
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CHAPTER 2. THE ALGEBRA SHC AND ITS ACTIONS

while the Euler character is eu(E ) =
∏dim E

f =1 w f . Note that we have

c1(t1) = ε1 , c1(t2) = ε2 , c1(χi ) = ai , 1≤ i ≤N . (2.3.5)

For l ≥ 0, we define three operators D0,l+1, D±1,l ∈ End(L (N )), in degrees ±1 and 0 respec-
tively, by the following actions; for λ ∈Y (N ),

D0,l+1 |λ〉=
N
∑

j=1

∑

s∈λ( j )

 

c1(χ−1
j t x (s )

1 t y (s )
2 )

ε1

!l

|λ〉 ,

D1,l |λ〉= ε1ε2

∑

π⊃λ

�

c1(V ∗
π −V ∗

λ )
ε1

�l

eu(Nλ,π−Tπ) |π〉 ,

D−1,l |λ〉= (−1)N−1
∑

σ⊂λ

�

c1(V ∗
λ −V ∗

σ )
ε1

�l

eu(Nσ,λ−Tσ) |σ〉 ,

(2.3.6)

where π,σ ∈Y (N ) runs over |π|= |λ|+1 and |σ|= |λ|−1, respectively. We should note that the
Euler classes of Nλ,π, Tπ do not vanish when the parameters ε1,2 and a1,··· ,N are kept generic and
then the action of SH(N ) on L (N ) is well-defined. The algebra SH(N ) is none other than what the
above operators generate:

Definition 2.1. SH(N ) is the graded subalgebra of End(L (N )) generated by D0,l+1, D±1,l for l ≥ 0.
�

The action is compatible to the pairing of L (N ) in the following sense. For λ,π ∈ Y (N ) sat-
isfying π⊃ λ , |π|= |λ|+1, the two coefficients 〈λ|D−1,l |π〉 and 〈π|D1,l |λ〉 relates to each other
by

〈λ|D−1,l |π〉= (−1)N−1

�

c1(V ∗
π −V ∗

λ )
ε1

�l

eu(Nλ,π) =
(−1)N−1

ε1ε2
〈π|D1,l |λ〉 . (2.3.7)

We will focus on matrix coefficients in (2.3.6) with respect to the basis of L (N ) in the next
main chapter. It is useful for us to simplify the coefficients. To express them, we first define
two vector spaces Iλ, Jλ for a given N -tuple λ ∈Y (N ) by

Iλ =
∑

π⊃λ
|π|= |λ|+1

(Vπ−Vλ) , Jλ =
∑

σ⊂λ
|σ|= |λ| −1

(Vλ−Vσ) . (2.3.8)

For λ,π ∈Y (N ) satisfying π⊃λ , |π|= |λ|+1, we have

Nλ,π−Tπ = ((1− t1)(1− t2)V
∗
π −W ∗)⊗ (Vπ−Vλ)− t1t2 = (t1t2 J ∗π − I ∗π)⊗ (Vπ−Vλ)− t1t2 . (2.3.9)

The last transformation can be seen from a consideration with the Figure 2.2. Here each col-
ored box represents a 1-dimensional vector space and its weight of the torus action is ex-
pressed by its position. A red box , a blue box , contribute to the Euler class by c1( )+1,
resp. c1( )−1. A red box and a blue box cancel each other out, + = 0, when they lie in
the same position.
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∑

s
=

s

Figure 2.2: Diagrammatic expression of the equation (1−t1)(1−t2)V ∗π = t1t2 J ∗π−I ∗π+W ∗. The summation
is taken over all the box s in the above Young diagram.

Figure 2.3: Diagrammatic expression of t −1
1 t −1

2 I ∗σ − J ∗σ.

Note that any colored box in Figure 2.2 lies in the outside of the N -tuple Young diagram π.
It means that both vector spaces t1t2 J ∗π ⊗ (Vπ −Vλ) and I ∗π ⊗ (Vπ −Vλ) contain no trivial repre-
sentation, which leads both Euler classes not to vanish.

We also have

Nλ,σ−Tσ = (t1t2Iσ− Jσ)⊗ (V ∗
λ −V ∗

σ )− t1t2 , (2.3.10)

for λ,σ ∈ Y (N ), |λ| = |σ|+ 1. Note that, for a given vector space E , the characters of the dual
vector space E ∗ are given by

c1(E
∗) =−c1(E ) , eu(E ∗) = (−1)dimE eu(E ) . (2.3.11)

We see that

dimIσ−dimJσ =N , (2.3.12)

and then we have

eu((t1t2Iσ− Jσ)⊗ (V ∗
λ −V ∗

σ )) = (−1)N eu((t −1
1 t −1

2 I ∗σ− J ∗σ)⊗ (Vλ−Vσ)) . (2.3.13)

The corresponding figure is expressed in Figure 2.3. We see that 1 6⊂ t −1
1 t −1

2 I ∗σ ⊗ (Vλ −Vσ) and
1 6⊂ J ∗σ ⊗ (Vλ − Vσ) by a reasoning similar to the previous case. Then we have the simplified
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version; for l ≥ 0 and λ ∈Y (N ),

D0,l+1 |λ〉=
N
∑

j=1

∑

s∈λ( j )

 

c1(χ−1
j t x (s )

1 t y (s )
2 )

ε1

!l

|λ〉 ,

D1,l |λ〉=
ε1ε2

ε1+ ε2

∑

π⊃λ
|π|= |λ|+1

�

c1(V ∗
π −V ∗

λ )
ε1

�l

eu((t1t2 J ∗π − I ∗π)⊗ (Vπ−Vλ)) |π〉 ,

D−1,l |λ〉=−
1

ε1+ ε2

∑

σ⊂λ
|σ|= |λ| −1

�

c1(V ∗
λ −V ∗

σ )
ε1

�l

eu((t −1
1 t −1

2 I ∗σ− J ∗σ)⊗ (Vλ−Vσ)) |σ〉 .

(2.3.14)

The following formulae may be useful:

(t1t2 J ∗π − I ∗π − t1t2 J ∗λ + I ∗λ)⊗ (Vπ−Vλ) = (1− t1)(1− t2) ,
(t1t2 J ∗σ− I ∗σ− t1t2 J ∗λ + I ∗λ)⊗ (Vλ−Vσ) =−(1− t1)(1− t2) .

(2.3.15)

We can rewrite (2.3.14) as follows:

D1,l |λ〉=
∑

π⊃λ
|π|= |λ|+1

�

c1(V ∗
π −V ∗

λ )
ε1

�l

eu((t1t2 J ∗λ − I ∗λ)⊗ (Vπ−Vλ) +1) |π〉 ,

D−1,l |λ〉=
1

ε1ε2

∑

σ⊂λ
|σ|= |λ| −1

�

c1(V ∗
λ −V ∗

σ )
ε1

�l

eu((t −1
1 t −1

2 I ∗λ − J ∗λ )⊗ (Vλ−Vσ) +1) |σ〉 .

(2.3.16)

2.3.3 Commutation relations among D0,l+1, D1,l , and D−1,l : I

A first step to investigate Lie algebras and their representations is to seek commutation rela-
tions in the algebras. Following it, let us consider commutation relations in SH(N ).

It is clear from (2.3.6) that

[D0,l+1, D0,k+1] = 0 , l , k ≥ 0 . (2.3.17)

The basis {|λ〉}λ∈Y (N ) is none other than the set of simultaneous eigenvectors with respect to
commuting operators D0,l+1, l ≥ 0. It is also immediate from (2.3.6) that we have

[D0,l+1, D1,k ] =D1,l+k , l , k ≥ 0 ,

[D−1,l , D0,k+1] =D−1,l+k , l , k ≥ 0 .
(2.3.18)

The above relations are like what we see with a Lie algebra, in which each commutator is given
by a linear function of the underlining vector space of the Lie algebra. It is not the case, how-
ever, with the commutation relation between D1,l and D−1,k .

Proposition 2.3.

[D−1,k , D1,l ] = Ek+l , l , k ≥ 0 , (2.3.19)
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2.3. THE ALGEBRA SH(N )

where the elements Ek+l are expressed by the set of commuting operators D0,l+1 and are deter-
mined through the formula

1+
�

1+
ε2

ε1

�

∑

l≥0

Elζ
l+1 = exp

�

∑

l≥0

(−1)l+1 pl (a1, . . . , aN )
εl

1

φl (ζ)

�

exp

�

∑

l≥0

D0,l+1ϕl (ζ)

�

. (2.3.20)

Here

p0(a1, . . . , aN ) =N , pl (a1, . . . , aN ) =
N
∑

j=1

a l
j , l ≥ 1 , (2.3.21)

are the power sum polynomials and

φl (ζ) = ζ
l Gl

�

1+
�

1+
ε2

ε1

�

ζ

�

, l ≥ 0 , (2.3.22)

ϕl (ζ) =
∑

z=−1,− ε2ε1 ,1+ ε2ε1

�

ζl Gl (1+ zζ)−ζl Gl (1− zζ)
�

, l ≥ 0 , (2.3.23)

G0(ζ) =− log(ζ) , Gl (ζ) =
ζ−l −1

l
, l ≥ 1 . (2.3.24)

�

Here we present the proof of this proposition to obtain an intermediate result (2.3.39) used
in section 2.5. First we prepare the following lemma.

Lemma 2.1. For l , k ≥ 0 and λ ∈Y (N ), there is a coefficient C (l+k )
λ satisfying

[D−1,k , D1.l ] |λ〉=C (l+k )
λ |λ〉 . (2.3.25)

In other words, the commutator [D−1,k , D1.l ] is diagonal with respect to the basis {|λ〉}λ∈Y (N ) . �

Proof. Letλ,µ ∈Y (N ) be a pair of N -tuple Young diagrams which have the same level, |λ|= |µ|,
but are not identical, λ 6=µ. Assume that there are two N -tuples π,σ ∈Y (N ) such that

|σ|= |λ| −1, |π|= |λ|+1, σ⊂λ⊂π, σ⊂µ⊂π . (2.3.26)

The N -tuple π andσ are unique in this case. Note that we have

Vλ+Vµ =Vπ+Vσ , (2.3.27)

and then Nλ,π+Nµ,π−Tπ =Nλ,σ+Nµ,σ−Tσ since

Nλ,π+Nµ,π−Tπ = (−(1− t1)(1− t2)V
∗
π +W ∗)⊗ (Vλ+Vµ−Vπ) + t1t2V ∗

π −2t1t2

= (−(1− t1)(1− t2)V
∗
π +W ∗)⊗Vσ+ t1t2V ∗

π −2t1t2 ,

Nλ,σ+Nµ,σ−Tσ = (−(1− t1)(1− t2)Vσ+ t1t2W )⊗ (V ∗
λ +V ∗

µ −V ∗
σ ) +W ∗⊗V ∗

σ −2t1t2

= (−(1− t1)(1− t2)V
∗
π +W ∗)⊗Vσ+ t1t2V ∗

π −2t1t2 .

(2.3.28)

Then [D−1,k , D1,l ] is diagonal with respect to the basis {|λ〉}λ∈Y (N ) .
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Proof of the proposition. The coefficient C (l+k )
λ in the above lemma is given by

C (l+k )
λ =−

ε1ε2

(ε1+ ε2)2

×









∑

π⊃λ
|π|= |λ|+1

�

c1(V ∗
π −V ∗

λ )
ε1

�l+k

eu((t1t2 J ∗π − I ∗π + t −1
1 t −1

2 I ∗λ − J ∗λ )⊗ (Vπ−Vλ))

−
∑

σ⊂λ
|σ|= |λ| −1

�

c1(V ∗
λ −V ∗

σ )
ε1

�l+k

eu((t1t2 J ∗λ − I ∗λ + t −1
1 t −1

2 I ∗σ− J ∗σ)⊗ (Vλ−Vσ))









(2.3.29)

Here we decompose vector spaces Iλ and Jλ into 1-dimensional subspaces by the torus ac-
tion and denote by c1(I ∗λ) =

∑

i∈I Ai and c1(J ∗λ ) =
∑

j∈J B j the corresponding summations of
characters over the subspaces, respectively. Using the formula (2.3.15), we have

Cλ(ζ̃)≡
∑

n≥0

C (n )λ ε
n
1 ζ̃

n =−
∑

j∈J

1

1− ζ̃B j

∏

i∈I

B j −Ai + ε1+ ε2

B j −Ai

∏

k∈J \{ j }

B j −Bk − ε1− ε2

B j −Bk

+
∑

i∈I

1

1− ζ̃Ai

∏

k∈I \{i }

Ai −Ak + ε1+ ε2

Ai −Ak

∏

j∈J

Ai −B j − ε1− ε2

Ai −B j

=
1

ζ̃(ε1+ ε2)





∏

i∈I

1− ζ̃(Ai − ε1− ε2)

1− ζ̃Ai

∏

j∈J

1− ζ̃(B j + ε1+ ε2)

1− ζ̃B j

−1



 .

(2.3.30)

The last transformation can be deduced from contour integrations with respect to the param-
eter ζ̃. Then we have

1+ ζ̃(ε1+ ε2)Cλ(ζ̃) =
N
∏

i=1

1− ζ̃(−ai − ε1− ε2)

1− ζ̃(−ai )

×
∏

s∈λ

(1− ζ̃c1(t1t2s ))(1− ζ̃c1(t −1
1 s ))(1− ζ̃c1(t −1

2 s ))

(1− ζ̃c1(t −1
1 t −1

2 s ))(1− ζ̃c1(t1s ))(1− ζ̃c1(t2s ))
,

(2.3.31)

where each s represents a 1-dimensional vector space χ−1
j t x (s )

1 t y (s )
2 ⊂ V ∗

λ .Here we rewrite the
product over I and J by the product over λ. This transformation can be understood by a
diagrammatic operation like Figure 2.4. Replacing ζ̃ by ζ/ε1, we obtain

�

1+
�

1+
ε2

ε1

�

∑

l≥0

ζl+1El

�

|λ〉

=

�

N
∏

i=1

1− ζ
ε1
(−ai − ε1− ε2)

1− ζ
ε1
(−ai )

∏

s∈λ

(1− ζ
ε1

c1(t1t2s ))(1− ζ
ε1

c1(t −1
1 s ))(1− ζ

ε1
c1(t −1

2 s ))

(1− ζ
ε1

c1(t −1
1 t −1

2 s ))(1− ζ
ε1

c1(t1s ))(1− ζ
ε1

c1(t2s ))

�

|λ〉 .

(2.3.32)

The formula

G0(1+ zζ) =− log(1+ zζ) =
∑

l≥1

(−1)l
z lζl

l
, (2.3.33)
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∑

s
=

s

Figure 2.4: Diagrammatic expression of the transformation (2.3.31). The summation is taken over all
the box s in the above Young diagram.

leads to
∑

l≥1

w lζl Gl (1+ zζ) =
∑

l≥1

1

l

�

�

wζ

1+ zζ

�l

−w lζl

�

=G0(1+ (z −w )ζ)−G0(1+ zζ)−G0(1−wζ) ,

(2.3.34)

and then we have
∑

l≥0

w lζl Gl (1+ zζ) = log
�

1−ζw

1−ζ(w − z )

�

. (2.3.35)

This formula shows

∑

l≥0

(−1)l+1
�

w

ε1

�l

φl (ζ) = log

�

1− ζ
ε1
(−w − ε1− ε2)

1− ζ
ε1
(−w )

�

,

∑

l≥0

�

w

ε1

�l

ϕl (ζ) =
∑

z=−ε1,−ε2,ε1+ε2

log

�

1− ζ
ε1
(w + z )

1− ζ
ε1
(w − z )

�

,

(2.3.36)

and then we finally obtain

exp

�

∑

l≥0

(−1)l+1 pl (a1, . . . , aN )
εl

1

φl (ζ)

�

=
N
∏

i=1

1− ζ
ε1
(−ai − ε1− ε2)

1− ζ
ε1
(−ai )

,

exp

�

∑

l≥0

D0,l+1ϕl (ζ)

�

|λ〉=

�

∏

s∈λ

(1− ζ
ε1

c1(t1t2s ))(1− ζ
ε1

c1(t −1
1 s ))(1− ζ

ε1
c1(t −1

2 s ))

(1− ζ
ε1

c1(t −1
1 t −1

2 s ))(1− ζ
ε1

c1(t1s ))(1− ζ
ε1

c1(t2s ))

�

|λ〉 .

(2.3.37)

As a summary, we have the following commutation relations among D0,l+1, D1,l , and D−1,l .

Proposition 2.4. We have

[D0,l+1, D0,k+1] = 0 ,

[D0,l+1, D1,k ] =D1,l+k ,

[D−1,l , D0,k+1] =D−1,l+k ,

[D−1,k , D1,l ] = Ek+l ,

(2.3.38)
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for l , k ≥ 0, where El , l ≥ 0, is expressed by D0,k+1, k ≥ 0, through the formula (2.3.20).

In the above proof, we also obtain the following formula (2.3.30), which is useful to obtain
eigenvalues of El , given by

�

1+
�

1+
ε2

ε1

�

∑

l≥0

Elζ
l+1

�

|λ〉=





∏

s⊂I ∗λ

1− ζ
ε1

c1(t −1
1 t −1

2 s )

1− ζ
ε1

c1(s )

∏

s⊂J ∗λ

1− ζ
ε1

c1(t1t2s )

1− ζ
ε1

c1(s )



 |λ〉 , (2.3.39)

where each s represents a 1-dimensional subspace χ−1
j t x (s )

1 t y (s )
2 in I ∗λ and in J ∗λ , respectively.

We repeat that El is expressed generally by a polynomial of D0,k+1 and not by a linear func-
tion. In this sense, the algebra SH(N ) is called nonlinear.

2.3.4 Commutation relations among D0,l+1, D1,l , and D−1,l : II

There exist other relations in SH(N ), given as follows.

Proposition 2.5. 1. We have
�

D1,0,
�

D1,0, D1,1

��

=
�

D−1,0,
�

D−1,0, D−1,1

��

= 0 , (2.3.40)

2. For l , k ≥ 0, we have

3[D1,l+2, D1,k+1]−3[D1,l+1, D1,k+2]− [D1,l+3, D1,k ] + [D1,l , D1,k+3] + [D1,l+1, D1,k ]

− [D1,l , D1,k+1] +
ε2

ε1

�

1+
ε2

ε1

�

�

−D1,l D1,k −D1,k D1,l + [D1,l+1, D1,k ]− [D1,l , D1,k+1]
�

= 0 ,

3[D−1,l+2, D−1,k+1]−3[D−1,l+1, D−1,k+2]− [D−1,l+3, D−1,k ] + [D−1,l , D−1,k+3]
+ [D−1,l+1, D−1,k ]− [D−1,l , D−1,k+1]

+
ε2

ε1

�

1+
ε2

ε1

�

�

D−1,l D−1,k +D−1,k D−1,l + [D−1,l+1, D−1,k ]− [D−1,l , D−1,k+1]
�

= 0 ,

(2.3.41)

�

Note that the latter relations (2.3.41) are summarized as follows. Define

D±1(z ) =
∑

l≥0

D±1,l z−l , (2.3.42)

and set

κ(ζ) = (ζ+1)
�

ζ+
ε2

ε1

��

ζ−
�

1+
ε2

ε1

��

. (2.3.43)

Then the left parts of the relations (2.3.41) are the coefficient in front of z−l w −k in

κ(w − z )D1(z )D1(w ) +κ(z −w )D1(w )D1(z ) ,
κ(w − z )D−1(w )D−1(z ) +κ(z −w )D−1(z )D−1(w ) ,

(2.3.44)

respectively, for l , k ≥ 0. We should note that the above series contain z−l w −k parts with l < 0
or k < 0 and we do not say that the series themselves vanish. We only say that (2.3.41) corre-
sponds to the coefficients in front of the convergent parts as z , w →∞.

The D1,l part of the above proposition is proven by machinery computations after the fol-
lowing lemma:
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Lemma 2.2. For λ ∈Y (N ) and l1, l2, · · · , ln , we have

D1,ln
D1,ln−1

· · ·D1,l1
|λ〉

= (ε1ε2)
n

∑

π⊃λ
|π|= |λ|+n

 

∑

w∈Sn

eu

 

−(1− t1)(1− t2)
n
∑

i> j

sw (i )s
−1
w ( j )

!

n
∏

i=1

�

c1

�

sw (i )

�

ε1

�li
!

×eu
�

((1− t1)(1− t2)V
∗
π −W ∗)⊗ (Vπ−Vλ)−n t1t2

�

|π〉 ,

(2.3.45)

where V ∗
π −V ∗

λ =
∑n

i=1 si represents a decomposition of V ∗
π −V ∗

λ by the torus action.

We give a proof in appendix A. The D−1,l part can be shown similarly. The corresponding
lemma is as follows:

Lemma 2.3. For λ ∈Y (N ) and l1, l2, · · · , ln , we have

D−1,l1
D−1,l2

· · ·D−1,ln
|λ〉

= (−1)n
∑

σ⊂λ
|σ|= |λ| −n

 

∑

w∈Sn

eu

 

−(1− t1)(1− t2)
n
∑

i> j

sw (i )s
−1
w ( j )

!

n
∏

i=1

�

c1

�

sw (i )

�

ε1

�li
!

×eu
�

(t −1
1 t −1

2 W ∗− (1− t −1
1 )(1− t −1

2 )V
∗
σ )⊗ (Vλ−Vσ)−n t1t2

�

|σ〉 ,

(2.3.46)

where V ∗
λ −V ∗

σ =
∑n

i=1 si represents a decomposition of V ∗
λ −V ∗

σ by the torus action.

2.4 The algebra SHc

Here we introduce an abstract algebra SHc which has the commutation relations which ap-
peared in section 2.3 as the whole defining relations.

2.4.1 The algebra SHc

Definition 2.2. The algebra SHc is an algebra generated by elements {D̃0,l+1 | l ≥ 0}, {D̃±1,l | l ≥
0} and {c̃l | l ≥ 0} , subject to the following set of relations:
�

D̃0,l+1, D̃0,k+1

�

= 0 ,
�

D̃0,l+1, D̃1,k

�

= D̃1,l+k ,
�

D̃0,l+1, D̃−1,k

�

=−D̃−1,l+k ,
�

D̃−1,k , D̃1,l

�

= Ẽk+l , (2.4.1)
�

D̃1,0,
�

D̃1,0, D̃1,1

��

=
�

D̃−1,0,
�

D̃−1,0, D̃−1,1

��

= 0 , (2.4.2)

and

3[D̃1,l+2, D̃1,k+1]−3[D̃1,l+1, D̃1,k+2]− [D̃1,l+3, D̃1,k ] + [D̃1,l , D̃1,k+3] + [D̃1,l+1, D̃1,k ]

− [D̃1,l , D̃1,k+1] +
ε2

ε1

�

1+
ε2

ε1

�

�

−D̃1,l D̃1,k − D̃1,k D̃1,l + [D̃1,l+1, D̃1,k ]− [D̃1,l , D̃1,k+1]
�

= 0 ,

3[D̃−1,l+2, D̃−1,k+1]−3[D̃−1,l+1, D̃−1,k+2]− [D̃−1,l+3, D̃−1,k ] + [D̃−1,l , D̃−1,k+3]

+ [D̃−1,l+1, D̃−1,k ]− [D̃−1,l , D̃−1,k+1]

+
ε2

ε1

�

1+
ε2

ε1

�

�

D̃−1,l D̃−1,k + D̃−1,k D̃−1,l + [D̃−1,l+1, D̃−1,k ]− [D̃−1,l , D̃−1,k+1]
�

= 0 ,

(2.4.3)
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for l , k ≥ 0, where the operator Ẽl is defined through the equation

1+
�

1+
ε2

ε1

�

∑

l≥0

Ẽlζ
l+1 = exp

�

∑

l≥0

(−1)l+1 c̃lφl (ζ)

�

exp

�

∑

l≥0

D̃0,l+1ϕl (ζ)

�

. (2.4.4)

�

The algebra SHc was originally introduced as a central extension of the algebra SH defined
as a certain limit n→∞ of the degenerate double affine Hecke algebra SHn of GL(n ,C) in [2],
and was shown to be equivalent to the above “generator-and-relation" definition [47]. The
original construction is so powerful that one can equip SHc with a Hopf algebra structure.
The comultiplication map is crucial to embed SHc into the free field system of N bosons and
to show an equivalence between a certain class of representations of SH(N ) and of a W -algebra.

2.4.2 Relation to SH(N )

It is clear that the assignment

SHc → SH(N ) , D̃x 7→Dx , c̃l 7→ pl (a1, · · · , aN )/ε
l
1 , (2.4.5)

defines a representation of SHc on L (N ). Moreover, denoting by SHc (N ) the specialization†3 of
SHc to c̃l = pl (a1, · · · , aN )/εl

1, l ≥ 0, the following correspondence is known:

Proposition 2.6 ([2, 47]). After the specialization to c̃l = pl (a1, · · · , aN )/εl
1 for l ≥ 0, the assign-

ment D̃x 7→Dx induces an isomorphism of algebras

SHc (N ) ' SH(N ) . (2.4.6)

�

This proposition means that the commutation relations obtained above are sufficient to
determine the algebra SH(N ).

2.5 Relation between SH(N ) and W -algebra

In this section, we introduce the relation of SH(N ) with a W -algebra. It is based on that SH(N )

has a free field representation of N bosons. This representation gives an embedding into a
W -algebra consisting of spin 1, 2, · · · , N currents and leads to an equivalence between repre-
sentations of two algebras. It means that there is an action of the W -algebra on L (N ), which is
a version of the AGT conjecture. Conversely, a representation of the W -algebra can be under-
stood from some explicit calculations with the action of SH(N ) on L (N ).

We start by fixing notations with W -algebras. We next see an equivalence between the
Virasoro–Heisenberg subalgebra of both algebras, and then introduce a certain equivalence
between the whole algebras. We should note that we only give a user guide how to use the
equivalence. See [2] for the readers who need its detailed proof.

†3In other words, we define SHc (N ) as the image of the representation D̃x 7→ D̃x , c̃l 7→ pl (a1, · · · , aN )/εl
1.
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2.5.1 The W -algebraWN+U(1) in the system of free N bosons

Let us recall the free field system of N bosons and fix our notations associated with a W -
algebraWN+U(1) by following [4, 8, 11]. Let ~ϕ = (ϕ(1), · · · ,ϕ(N ))be an N -component free massless
scalar chiral field on the 2-dimensional flat spacetime. The correlation function of this scalar
field is given by

〈ϕ(i )(z )ϕ( j )(z ′)〉=
�

−
ε2

ε1

�

δi j log(z − z ′) . (2.5.1)

Then a set of operators

∂ ϕ(i )(z ) =
∑

l∈Z

α(i )l z−l−1 , 1≤ i ≤N , (2.5.2)

satisfies the following commutation relations

[α(i )l ,α( j )k ] = l
�

−
ε2

ε1

�−1

δi jδl+k ,0 , l , k ∈Z , 1≤ i , j ≤N . (2.5.3)

We denote byH (N ) the algebra generated by all such α(i )l . For a given vector ~Λ= (Λ(1), · · · ,Λ(N )),
the Fock space M (N )

~Λ
is defined as the representation space of the algebraH (N ) with the vac-

uum state, an element |~Λ〉 ∈M (N )
~Λ

satisfying

α(i )l |~Λ〉= 0 , l > 0 ,

α(i )0 |~Λ〉=Λ
(i ) |~Λ〉 , 1≤ i ≤N .

(2.5.4)

We see that all the elements

(α(1)l1,1
· · ·α(1)l1,i1

)(α(2)l2,1
· · ·α(2)l2,i2

) · · · (α(N )lN ,1
· · ·α(N )lN ,iN

) |~Λ〉 , l j ,1 ≤ · · · ≤ l j ,i j
< 0 ,

i j ≥ 0 , 1≤ j ≤N ,
(2.5.5)

forms a basis of M (N )
~Λ

. It is clear that the action ofH (N ) on M (N )
~Λ

is irreducible. We set α(i )l in
degree l for each 1≤ i ≤N . The Fock space is then graded by the degree.

We can embed a Virasoro algebra into the free field system as follows. Consider a Virasoro
algebra with the basis Hl , l ∈Z and commutation relations

[Hl , Hk ] = (l −k )Hl+k +
CN

12
l (l 2−1)δl+k ,0 , (2.5.6)

with the central charge CN is given by

CN =N −12
�

−
ε2

ε1

�

Q 2 ~ρ2 = 1+ (N −1)

�

1−
�

−
ε2

ε1

�−1�

1+
ε2

ε1

�2

N (N +1)

�

. (2.5.7)

Here we write

Q =−
�

−
ε2

ε1

�−1�

1+
ε2

ε1

�

, (2.5.8)
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and denote by ~ρ the Weyl vector of su(N ),

~ρ =
�

N −1

2
,

N −3

2
, · · · , −

N −3

2
, −

N −1

2

�

=
N
∑

i=1

N +1−2i

2
~ei , (2.5.9)

where (~e j )Nj=1 is the canonical basis of RN . The Virasoro algebra acts on M (N )
~Λ

as

H (z ) =
∑

l∈Z

Hl z−l−2 =
�

−
ε2

ε1

�

�

1

2

N
∑

i=1

: ∂ ϕ(i )(z )2 :+Q ~ρ · ∂ 2 ~ϕ(z )

�

, (2.5.10)

where denote by : : the normal ordering of creation operators α(i )l with l ≤ 0, and annihilation
ones with l > 0. We often call the expression (2.5.10) the free field representation of the Vi-
rasoro algebra, which means that the field H (z ) defining the Virasoro algebra is expressed in
terms ofH (N ) and the normal ordering.

As an extension of the Virasoro algebra, we construct a W -algebra in End(M (N )
~Λ
) as follows.

For 1 ≤ i ≤ N , let ~hi be the i th weight of the defining representation of su(N ), which is given
explicitly as

~hi = ~ei −
1

N

N
∑

j=1

e j , 1≤ i ≤N . (2.5.11)

Note that we have

N
∑

i=1

~hi = 0 , ~hi · ~h j =δi j −
1

N
,

N
∑

i=1

i ~hi =− ~ρ , ~ρ · ~hi =
N +1−2i

2
, (2.5.12)

for 1≤ i , j ≤N . We define fields Wj (z ) =
∑

l∈ZWj ,l z−l− j for 2≤ j ≤N by the so-called quantum
Miura transformation

N
∑

j=2

Wj (z )(Q∂ )
N− j

=−
�

−
ε2

ε1

�

�

: (Q∂ + ~h1 · ∂ ~ϕ)(Q∂ + ~h2 · ∂ ~ϕ) · · · (Q∂ + ~hN · ∂ ~ϕ) :−(Q∂ )N
�

,

(2.5.13)

and also define a field α(z ) =
∑

l∈Zαl z−l−1 by

α(z ) =
N
∑

i=1

α(i )(z ) . (2.5.14)

In particular, we have

W2 =−
�

−
ε2

ε1

�





N
∑

i< j

: (~hi · ∂ ~ϕ)(~h j · ∂ ~ϕ) :+Q
N
∑

i=1

(i −1)~hi∂
2 ~ϕ





=
�

−
ε2

ε1

�

�

1

2

N
∑

i=1

: ∂ ϕ(i )2 :+Q ~ρ · ∂ 2 ~ϕ−
1

2N
:α2 :

�

.

(2.5.15)

25



2.5. RELATION BETWEEN SH(N ) AND W -ALGEBRA

We see that Wi ,l ,αl are in degree l . We denote byWN+U(1) the graded subalgebra in End(M (N )
~Λ
)

generated by the fields W2, W3, · · · , WN and α.
We have

H (z ) =W2(z ) +
1

2N

�

−
ε2

ε1

�

:α(z )2 : , (2.5.16)

and then the algebra WN+U(1) contains the Virasoro subalgebra generated by the field H (z ).
Note that the field α(z ) generates a Heisenberg algebra

[αl ,αk ] = l K̃Nδl+k ,0 , l , k ∈Z , (2.5.17)

where the level KN is given by

KN =N
�

−
ε2

ε1

�−1

. (2.5.18)

The commutation relations between the two fields H (z ) and α(z ) are given by

[Hl ,αk ] =−kαk+l , l , k ∈Z . (2.5.19)

Therefore the algebraWN+U(1) contains the Virasoro–Heisenberg subalgebra Vir⊗U(1)N gen-
erated by the fields H (z ) and α(z ).

The vacuum state |~Λ〉 also defines the action of the graded algebraWN+U(1) on a vector space
defined by

V (N )
~Λ
=WN+U(1) |~Λ〉 . (2.5.20)

We give a gradation of V (N )
~Λ

by setting the vacuum state in degree 0. Note that operators αl

and Wj ,l for j ≥ 2, with l > 0 kill the vacuum state since annihilation operators appear at

their right ends. In other words, the degree function in V (N )
~Λ

is bounded above. Such a graded
vector space whose degree is bounded above is called an admissible vector space. A similar
consideration indicates that the vacuum vector becomes a simultaneous eigenvector of the
operators α0 and Wj ,0 for j ≥ 2. We denote the eigenvalues, called the weights of V (N )

~Λ
, by

wi (~Λ) for 1≤ i ≤N :

α0 |~Λ〉=w1(~Λ) |~Λ〉 ,

Wj ,0 |~Λ〉=w j (~Λ) |~Λ〉 , j ≥ 2 .
(2.5.21)

The relation (2.5.13) leads to

N
∑

j=2

w j (~Λ)z
− j (Q∂ )N− j =−

�

−
ε2

ε1

�

�

(Q∂ + z−1~h1 · ~Λ) · · · (Q∂ + z−1~hN · ~Λ)− (Q∂ )N
�

, (2.5.22)

and its action to z k gives

N
∑

j≥N−k

k !

(k + j −N )!
Q N− j w j (~Λ) =−

�

−
ε2

ε1

� N
∏

i=1

((k + i −N )Q + ~hi · ~Λ) . (2.5.23)
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As a result, we have

w1(~Λ) =
N
∑

i=1

Λ(i ) ,

w j (~Λ) =−
�

−
ε2

ε1

� N
∑

i1<i2<···<i j

j
∏

m=1

(~him
· ~Λ−Q ( j −m )) , j ≥ 2 .

(2.5.24)

We summarize the above properties:

Proposition 2.7. The representation ofWN+U(1) on V (N )
~Λ

satisfies

αl |~Λ〉=Wj ,l |~Λ〉= 0 , l > 0 ,

α0 |~Λ〉=w1(~Λ) |~Λ〉 , Wj ,0 |~Λ〉=w j (~Λ) |~Λ〉 , j ≥ 2

w1(~Λ) =
N
∑

i=1

Λ(i ) , w j (~Λ) =−
�

−
ε2

ε1

� N
∑

i1<i2<···<i j

j
∏

m=1

(~him
· ~Λ−Q ( j −m )) , j ≥ 2 .

(2.5.25)

�
The free field expression (2.5.10) of the field H (z ) shows that

H0 |Λ〉=∆(~Λ,Q ) |Λ〉 , ∆(~Λ,Q ) =
1

2

�

−
ε2

ε1

�

~Λ · (~Λ−2Q ~ρ) . (2.5.26)

2.5.2 The Virasoro–Heisenberg subalgebra in SHc

Before we introduce the free field representation of SH(N ), we first focus on a Virasoro–Heisenberg
subalgebra in SHc . For r, l ≥ 1, we recursively define a set of operators in SHc

D̃r+1,0 =
1

r
[D̃1,1, D̃r,0] , D̃−r−1,0 =

1

r
[D̃−r,0, D̃−1,1] , r ≥ 1 ,

D̃r,l = [D̃0,l+1, D̃r,0] , D̃−r,l = [D̃−r,0, D̃0,l+1] , r, l ≥ 1 ,
(2.5.27)

and also define for l ≥ 1

α̃l =
�

−
ε2

ε1

�−l

D̃−l ,0 , α̃−l = D̃l ,0 , α̃0 =
�

−
ε2

ε1

�−1

Ẽ1 ,

H̃l =
1

l

�

−
ε2

ε1

�−l

D̃−l ,1+
1− l

2
c̃0

�

1+
ε2

ε1

�

α̃l ,

H̃−l =
1

l
D̃l ,1+

1− l

2
c̃0

�

1+
ε2

ε1

�

α̃−l ,

H̃0 =
1

2
[H̃1, H̃−1] =

1

2

�

−
ε2

ε1

�−1

Ẽ2 .

(2.5.28)

Note that the formula (2.4.4) leads to

Ẽ0 = c̃0 ,

Ẽ1 =−c̃1+
1

2

�

1+
ε2

ε1

�

c̃0(c̃0−1) ,

Ẽ2 = c̃2+
�

1+
ε2

ε1

�

c̃1(1− c̃0) +
1

6

�

1+
ε2

ε1

�2

c̃0(c̃0−1)(c̃0−2) +2
�

−
ε2

ε1

�

D̃0,1 .

(2.5.29)

These elements are known to form a Virasoro–Heisenberg subalgebra.
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Proposition 2.8 ([38]). We have the following commutation relations

[α̃l , α̃k ] = l K̃ δl ,−k ,

[H̃l , α̃k ] =−k α̃k+l ,

[H̃l , H̃k ] = (l −k )H̃l−k +
C̃

12
(l 3− l )δl ,−k ,

(2.5.30)

for l , k ∈Z, where

K̃ =
�

−
ε2

ε1

�−1

c̃0 ,

C̃ = 1+ (c̃0−1)

�

1−
�

−
ε2

ε1

�−1�

1+
ε2

ε1

�2

c̃0(c̃0+1)

�

.

(2.5.31)

�
The map SHc → SH(N ) induces a Virasoro–Heisenberg subalgebra in SH(N ) whose central

charge C̃N and level K̃N are given by

C̃N = 1+ (N −1)

�

1−
�

−
ε2

ε1

�−1�

1+
ε2

ε1

�2

N (N +1)

�

=CN ,

K̃N =
�

−
ε2

ε1

�−1

N = KN .

(2.5.32)

These values are none other than what we have obtained from the Virasoro–Heisenberg sub-
algebra Vir⊗U(1)N inWN+U(1). The assignment

α̃l 7→αl , H̃l 7→Hl , l ∈Z . (2.5.33)

then gives a free field representation of the Virasoro–Heisenberg subalgebra in SH(N ). In par-
ticular, the map takes D±1,0 ∈ SH(N ) to

D1,0 7→α−1 =
N
∑

i=1

α(i )−1 , D−1,0 7→
�

−
ε2

ε1

�

α1 =
�

−
ε2

ε1

� N
∑

i=1

α(i )1 . (2.5.34)

Note that the formula (2.5.29) tells the eigenvalues of the vector |;〉 ∈ L (N ) is expressed by

α̃0 |;〉=
�

−
ε2

ε1

�−1



−
N
∑

j=1

a j

ε1
+

N (N −1)
2

�

1+
ε2

ε1

�



 |;〉 ,

H̃0 |;〉=
1

2

�

−
ε2

ε1

�−1





N
∑

j=1

�a j

ε1

�2

− (N −1)
�

1+
ε2

ε1

� N
∑

j=1

a j

ε1
+

N (N −1)(N −2)
6

�

1+
ε2

ε1

�2



 |;〉 .

(2.5.35)

These eigenvalues are identical to (2.5.24) and (2.5.26) when we fix

Λ(i ) =−
�

−
ε2

ε1

�−1 �ai

ε1
− (i −1)

�

1+
ε2

ε1

��

=
ai

ε2
−Q (i −1) , 1≤ i ≤N . (2.5.36)

Under the identification (2.5.36), the two modules of the Virasoro–Heisenberg algebra gener-
ated by |~Λ〉 and |;〉 ∈ L (N ) are isomorphic by the map |;〉 7→ |~Λ〉 and the assignment (2.5.33). We
draw Figure 2.5 to summarize the above identifications. Here we denote by V (N ) the vector
space V (N )

~Λ
at (2.5.36).
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SH(N ) ⊃ Vir⊗U(1)N |;〉 ∈ L (N )

WN+U(1) ⊃ Vir⊗U(1)N |~Λ〉 ∈ V (N )

' '

x

x

Figure 2.5: The identification of two Virasoro–Heisenberg subalgebras. The vector ~Λ is fixed to (2.5.36).

2.5.3 The free field representation of SH(N )

We have seen the isomorphism between two modules of the Virasoro–Heisenberg subalgebra
generated by |~Λ〉 and |;〉. It was shown that one can extend it to the equivalence between the
admissible modules†4 over the whole algebras.

Note that the extention is specified by the free field representation of D0,2 ∈ SH(N ) since the
algebra SH(N ) is generated by D±1,0 and D0,2. We assign

D0,2 =
N
∑

i=1

D (i )
0,2+

�

−
ε2

ε1

��

1+
ε2

ε1

� N
∑

i< j

∑

l≥1

lα( j )−lα
(i )
l , (2.5.37)

where the elements D (i )
0,2 for 1≤ i ≤N are given by

D (i )
0,2 =

�

−
ε2

ε1

�

�

∑

l≥1

�

−
ai

ε1
+

l −1

2

�

1+
ε2

ε1

��

α(i )−lα
(i )
l

+
1

2

�

−
ε2

ε1

�

∑

l ,k≥1

�

α(i )−l−kα
(i )
l α

(i )
k +α

(i )
−lα

(i )
−kα

(i )
l+k

�

�

.

(2.5.38)

It is quite important that the assignments (2.5.34), (2.5.37) actually give an embedding of graded
algebras from SH(N ) toWN+U(1), while the sign of the degree is flipped! Then the admissible mod-
ule V (N ) overWN+U(1) can be considered as an admissible module over SH(N ). Moreover, this
embedding is essentially surjective, which means that the admissible module over SH(N ) can
be also considered as an admissible module overWN+U(1). The mapping between admissible
representations of two algebras has the following properties:

Proposition 2.9 ([2]). 1. The free field embedding of SH(N ) intoWN+U(1) induces a one-to-one
correspondence between admissible modules over SH(N ) and overWN+U(1).

2. The admissible module L (N ) over SH(N ) corresponds to a representation ofWN+U(1) on L (N ),
where the lowest weight vector |;〉 ∈ L (N ) is identified with the highest weight vector |~Λ〉 ∈
V (N ), with the identification (2.5.36):

Λ(i ) =−
�

−
ε2

ε1

�−1 �ai

ε1
− (i −1)

�

1+
ε2

ε1

��

, 1≤ i ≤N . (2.5.39)

�

We draw Figure 2.6 to summarize the result, showing an extension of Figure 2.5 to the whole
algebras.

†4A graded module over SH(N ) is called admissible when its degree is bounded below. The vector space L (N ) is admissible.
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SH(N ) |;〉 ∈ L (N )

WN+U(1) |~Λ〉 ∈ V (N )

'essentially ' ⊂

x

x

Figure 2.6: The equivalence between admissible representations of two algebras

If there is no linear relation among the parameters ε1,2, a1,··· ,N in Z, infinitely many oper-
ators D1,l , D0,l+1 are sufficient to give SH(N ) |;〉 = L (N ), which means that the representation is
irreducible. In this case, the embedding of SH(N ) intoWN+U(1) leads to the action ofWN+U(1) on
L (N ) is also irreducible. Then we have V (N ) = L (N ) since V (N ) is irreducible by definition. Let us
consider the q -dimension of V (N ) defined by

dimq V (N ) = TrV (N )q
H , (2.5.40)

where the operator H is what we have defined in (2.2.19). It counts

Hv =−deg(v )v , (2.5.41)

for each homogeneous vector v ∈V (N ). If V (N ) = L (N ), the q -dimension is none other than

dimq V (N ) = dimq L (N ) =

� ∞
∏

m=1

1

1−q m

�N

, (2.5.42)

since the basis of L (N ) is the set of all the N -tuple Young diagrams. The dimension is also
identical to that of the Fock space M (N )

~Λ
. This means that the irreducible module V (N ) is not

properly smaller than M (N ), the Fock space M (N )
~Λ

at (2.5.39).
We comment on the redundancy among the parameters ai at the last of this chapter. A

permutation of the indices i (1≤ i ≤N ) in ai induces an intertwining map from the represen-
tation of SH(N ) on L (N ) to another one. The map associated with a permutationσ ∈SN means
that we may identify ~Λ and ~a by

Λ(i ) =−
�

−
ε2

ε1

�−1 �aσ(i )
ε1
− (i −1)

�

1+
ε2

ε1

��

, 1≤ i ≤N , (2.5.43)

rather than by (2.5.39). We will use this redundancy for cyclic permutations.
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Chapter 3

SHc description of Minimal Model and
Triality

We have considered the action of SH(N ) when the parameters are kept generic, and have noted
that it corresponds to the irreducible action of WN+U(1) on the Fock space of N free bosons.
We move to considering an application of SH(N ) to minimal model representations of the W -
algebra WN+U(1). We need to fix the vector ~Λ at a rational point to obtain a minimal model
representation. The identification (2.5.39) then suggests that we should specialize the param-
eters ε1,2, a1,··· ,N to certain rational numbers, while we have repeatedly mentioned in the pre-
vious chapter that we were considering the case when the parameters have no linear relation
in Z. We expect that SH(N ) act on a proper subspace of L (N ) since each minimal model rep-
resentation has a proper subspace of the Fock space as its representation space. The matrix
coefficients is then expected to vanish when we raise or lower a vector in the subspace to an-
other vector which is not in.

We should be now careful with whether the matrix coefficients in (2.3.6) diverge or vanish.
We must avoid the divergence because it makes the action of SH(N ) on L (N ) ill-defined, and
we focus on when the coefficients vanish in order to obtain an irreducible representation. We
will see that the vanishment condition is none other than the so-called N -Burge condition
in [42]. After fixing our notations with minimal model representations in Section 3.1, we will
construct in Section 3.2 an irreducible representation of SH(N ) whose corresponding vector ~Λ
is of a minimal model representation. This construction mainly owes to inequalities arising
from the N -Burge condition onY (N ). We will start our main analysis by imposing the N -Burge
condition on N -tuple Young diagrams and then evaluate their matrix coefficients. As a result,
we obtain a basis of the representation space explicitly, while the existence of the representa-
tion is clear from the equivalence between SH(N ) andWN+U(1). The explicit construction of the
minimal model representation of the algebra SH(N ) is one of the main results in this thesis.

We next focus on a duality in a special class of minimal model representations by using the
above representations, as was performed in [1]. The duality was claimed in [20, 21] and has
been called the level-rank duality in minimal models. We revisit this duality from the view-
point of the new algebra SH(N ) and obtain some new results. Our results are summarized as
follows.

• We realize the level-rank duality as an algebra isomorphism between SH(N ) and SH(M )

both of which have specialized parameters. Such two algebras share the same repre-
sentation space, where an N -tuple Young diagram is identified with an M -tuple Young
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diagram by shuffling their rows.

• The N -Burge condition is found to impose on an N -tuple Young diagram to be a so-
called P -partition over a partially ordered set. The dual M -Burge condition leads to
the same partially ordered set. Our realization shows where the level-rank duality stems
from.

• The level-rank duality is combined with a trivial Z2-symmetry and forms a triality S3 in
minimal model representations of SHc .

It is now clear that two level-rank-dual representations have the same q -dimension, while the
coincidence of the q -dimensions itself was already known in [20, 21]. The new point in the
first assertion is that we show not only that the two graded spaces have the same q -dimension
but also that there is a state-to-state correspondence between them in the whole degree. The
second assertion reveals that there is a partially ordered structure behind the level-rank du-
ality. This shows a connection between the Rogers–Ramanujan identities and the Lee–Yang
singularity, which was expected in [46]. The third assertion is about a triality in minimal mod-
els. Such a triality has been known for another algebra W∞[µ] [28]. The algebra encodes the
W -algebraWN for any positive integer N since W∞[µ] becomes toWN after fixing to µ = N .
The algebra SHc also has such a universal property which is recognized as the assignment
SHc → SH(N ). We show that there also exists a triality in the analogous universal algebra SHc .
The trivialZ2-symmetry comes from the fact that the transposition of a Young diagram is also
a Young diagram. We manifest the level-rank duality in Section 3.3 and then give the triality
in Section 3.5. We also express the connection between the Rogers–Ramanujan identities and
the Lee–Yang singularity in Section 3.4.

Our new results are the SHc -description of minimal model representations in Section 3.2,
that of the level-rank duality in Section 3.3 and that of the triality in Section 3.5. They are based
on the paper [1].

3.1 Minimal models ofWN+U(1)

We first fix our notations with minimal models. We have considered when the parameters
ε1,2, a1,··· ,N are kept general. The identification (2.5.39) then makes the vector ~Λ generic so that
WN+U(1) acts irreducibly on the Fock space M (N )

~Λ
. Not all of representations ofWN+U(1) belong

to this non-degenerate type [6, 8, 11]. The irreducible space V (N )
~Λ

may become different from

the whole Fock space, V (N )
~Λ
(M (N )

~Λ
, after we fix the vector ~Λ to a certain point. We concentrate

on the so-called strongly degenerate type where all the component ~Λ are fixed to be

~Λ=
N−1
∑

j=1

�

�

−
ε2

ε1

�−1

n ′j −n j

�

~ω j +Q ~ρ , (3.1.1)

where n j , n ′j are positive integers and the vectors ~ω j are the fundamental weights of su(N ),
which are given explicitly by

~ωi =
�

1−
i

N

�

∑

j≤i

~e j −
i

N

N
∑

j>i

~e j , 1≤ i ≤N −1 . (3.1.2)
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This special vector is known to make the action of WN+U(1) on M (N )
~Λ

reducible. It is because

there exist at least N −1 degenerate vectors |Φ j 〉 ∈M (N )
~Λ
(1≤ j ≤N −1) such that

αl |Φ j 〉= 0, l > 0 ,

Wk ,l |Φ j 〉= 0 , l > 0 , k > 1 .
(3.1.3)

Each vector |Φ j 〉 has the degree n j n ′j > 0 and generates a proper submoduleWN+U(1) |Φ j 〉 63 |~Λ〉.
TheWN side in (3.1.3) was derived in terms of screening operators in [11]. A similar discussion
and the traceless property

∑N
i=1Λ

(i ) = 0 then lead to the other Heisenberg side.
We further restrict ourselves to when the remaining parameters ε1,2 are fixed to

ε1 = q ,ε2 =−p ,
�

Q =−
q −p

p

�

, (3.1.4)

where p , q ≥N are positive integers and mutually prime, and to a finite number of completely
degenerate representations labeled by positive integers ni , n ′i satisfying

N−1
∑

i=1

ni < q ,
N−1
∑

i=1

n ′i < p . (3.1.5)

These representations are often called minimal model representations. In [11], it was shown
that, for fixed p , q , such representations are closed under the operator product expansion
(OPE) or the so-called fusion rule and that they give a minimal model, a conformal field the-
ory consisting of finite primary fields. Such minimal models have been intensively studied
because they describe the critical limit of many 2-dimensional models including the Ising
models[6] and RSOS models[7, 12, 13].

Note that there is ZN -redundancy among integers ni , n ′i parameterizing minimal model
representations. We can see from (2.5.26) that the weights (2.5.24) are invariant under a shift
of a traceless vector ~Λ to a traceless ~Λ′ satisfying

~hi · ~Λ+Q i = ~hσ(i ) · ~Λ′+Qσ(i ) , 1≤ i ≤N , (3.1.6)

for a permutationσ ∈SN . Two completely degenerate representations with the same weights
are clearly equivalent and we should identify them. For the cyclic shiftσcyc ∈SN , which maps
σcyc(i ) = i + 1 for i < N and σcyc(N ) = 1, a minimal model representation with n (old)

i , n ′(old)
i is

taken to another one with n (new)
i , n ′(new)

i , where

n (new)
i = n (old)

i−1 , n ′(new)
i = n ′(old)

i−1 , 2≤ i ≤N −1 ,

n (new)
1 = q −

N−1
∑

j=1

n (old)
j , n ′(new)

1 = p −
N−1
∑

j=1

n ′(old)
j .

(3.1.7)

Iterated shifts byσcyc generate theZN -redundancy. The redundancy leads us to think it natu-
ral to introduce two numbers nN , n ′N , for each label (ni , n ′i ) of minimal model representations,
by

N
∑

j=1

n j = q ,
N
∑

j=1

n ′j = p . (3.1.8)

The cyclic group ZN then acts on N pairs (ni , n ′i )
N
i=1 of positive integers by cyclic shifts of their

indices. Henceforth, we mean by an N -datum a collection of pairs (p , q ) and (ni , n ′i )
N
i=1 satis-

fying (3.1.8).
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3.2 SHc descriptions of minimal model representations

Let us go back to SH(N ). The identification (2.5.39) suggests that a minimal model represen-
tation ofWN+U(1) with an N -datum 〈(p , q ), (ni , n ′i )1≤i≤N 〉 gives an equivalent representation of
SH(N ) where the parameters a1,··· ,N are fixed to

ai =−
N−1
∑

j=1

(ε1n ′j + ε2n j )~ei · ~ω j + (ε1+ ε2)(~ei · ~ρ+ i −1)

=−
N−1
∑

j=1

(q n ′j −p n j )~ei · ~ω j +
1

2
(N −1)(q −p ) ,

(3.2.1)

for 1≤ i ≤N . We can rewrite them by

a1−aN = q n ′N −p nN , a j+1−a j = q n ′j −p n j , 1≤ j ≤N −1 ,
N
∑

i=1

ai =
1

2
N (N −1)(q −p ) ,

(3.2.2)

which shows that the ZN -redundancy generates the same shift of the index i in ai as that in
ni . The above identification are none other than linear relations in Z among the parameters
ε1,2 and a1,··· ,N . The algebra SHc is then expected not to act on the whole L (N ) since the matrix
coefficients in (2.3.6) may diverge or vanish.

In this section, we rather construct a certain lowest weight representation of SHc gener-
ating from the degree 0 state |;〉 by performing the following program. (I) Firstly, we separate
the whole space L (N ) = L (N )1 ⊕ L (N )2 into two spaces L (N )1 and L (N )2 satisfying the following four
conditions.

• The (N +2)-dimensional torus D̃ acts on L (N )1 and L (N )2 separately.

• |;〉 ∈ L (N )1 .

• The naive actions (2.3.6) of D±1,l on L (N ) have the same triangular form with respect to
the decomposition L (N )1 ⊕ L (N )2 ;

D±1,l =
�

D±1,l ,11 D±1,l ,12

D±1,l ,21 D±1,l ,22

�

=
�

finite 0
finite ∗

�

. (3.2.3)

In other words, we have well-defined linear maps

D±1,l |L (N )1
= t (D±1,l ,11, D±1,l ,21) : L (N )1 → L (N )1 ⊕ L (N )2 , (3.2.4)

and the zero map D±1,l ,12 does not create any nonzero vector in L (N )1 from a finite vector
in L (N )2 .

We should note that we allow D±1,l ,22 to contain a divergent value in their matrix expressions.
The quadratic relations (2.4.1), (2.4.3) in SHc automatically hold for D0,l+1,11, D±1,l ,11 ∈ End(L (N )1 )
for

Dr1,l1,12Dr2,l2,21 = 0 , r1, r2 ∈ {0,±1} , (3.2.5)
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which means that there is no contribution to the quadratic relations from L (N )2 . In particular,
the equation (2.3.29) is justified even after specializing parameters. (II) Secondly, we check
whether the cubic relations (2.4.2) in SHc hold for D±1,l ,11. It suffices to show

Dr,l1,22Dr,l2,21 = finite , r =±1 . (3.2.6)

We will show the cubic relations hold for a certain separation L (N ) = L (N )B ⊕L (N )∗ . (III) At last, we

check the irreducibility of the induced action of SHc on L (N )B .
The most nontrivial step in the above program is to find out a separation of Y (N ) which

induces such an appropriate separation L (N ) = L (N )B ⊕ L (N )∗ . We will obtain the selection rule in
Y (N ) by investigating the coefficients of (2.3.6).

3.2.1 The vector space L (N )B

We first state the rule of the appropriate separation L (N ) = L (N )B ⊕ L (N )∗ , and then start to show
its appropriateness:

Definition 3.1 (the vector space L (N )B ). Let 〈(p , q ), (ni , n ′i )1≤i≤N 〉 be an N -datum.

1. An N -tuple λ ∈Y (N ) is said to meet the N -Burge condition associated with the N -datum
when it satisfies

λ(i+1)(l +ni −1)−λ(i )(l )≤ n ′i −1 , (3.2.7)

for each 1 ≤ i ≤ N , l ≥ 1, where we use a cyclic identification λ(N+1) = λ(1) if i = N . We
denote by

Y (N )B =Y (N )B ((ni , n ′i )1≤i≤N ; p , q )⊂Y (N ) , (3.2.8)

the set of all the elements inY (N ) meeting the N -Burge condition.

2. L (N )B is the subspace of L (N ) spanned by the subset {|λ〉}λ∈Y (N )B
of the basis for L (N ), and

L (N )∗ is the span of the others {|λ〉}λ∈Y (N )\Y (N )B
.

�

The torus D̃ clearly acts on L (N )B and L (N )∗ separately. It also clear that |;〉 ∈ L (N )B .
The N -Burge condition was introduced in [42] to remove null vectors when computing

minimal model conformal blocks, after some of its authors obtained the Burge condition [50]
for the Virasoro case (N = 2) in [40, 41] from the viewpoint of the AGT correspondence. The
null condition for |λ〉 (λ ∈Y (N )) is none other than 〈λ|λ〉= eu(Tλ) = 0 in our notation. The au-
thors derived the N -Burge condition as the condition whether a fixed point in the instanton
moduli space gives a divergent contribution to the instanton partition function after special-
izing parameters to minimal models. Therefore it is quite natural for our program to relate to
the N -Burge condition. Our construction can be seen as an extension of such a null condi-
tion with the pairing of L (N ) to that with the action of SH(N ), and gives a new meaning of the
N -Burge condition from the viewpoint of the algebra SHc . We will revisit the null condition
at the last of this section.
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λ(i )

l1

l2

λ(i )(l )

s ′

s

Figure 3.1: Two east-end boxes s , s ′ with respect to λ(i )

3.2.2 The difference of two east-end boxes

To see what makes the separation L (N ) = L (N )B ⊕ L (N )∗ appropriate, we first recall which coeffi-
cients we have to focus on. We write again the resultant formula (2.3.16) for D±1,0; forλ ∈Y (N ),
we have

D1,0 |λ〉=
∑

π⊃λ
|π|= |λ|+1

eu((t1t2 J ∗λ − I ∗λ)⊗ (Vπ−Vλ) +1) |π〉 ,

D−1,0 |λ〉=
1

ε1ε2

∑

σ⊂λ
|σ|= |λ| −1

eu((t −1
1 t −1

2 I ∗λ − J ∗λ )⊗ (Vλ−Vσ) +1) |σ〉 .
(3.2.9)

where

Vλ =
N
∑

j=1

∑

s∈λ( j )
χ j t −x (s )

1 t −y (s )
2 , Iλ =

∑

π⊃λ
|π|= |λ|+1

(Vπ−Vλ) , Jλ =
∑

σ⊂λ
|σ|= |λ| −1

(Vλ−Vσ) . (3.2.10)

What we want to check is whether two distinct boxes†1 in I ∗λ or t1t2 J ∗λ have the same character
after the fixings (3.1.4) and (3.2.1) of parameters. Seeing from Figure 2.2 and 2.3, it is sufficient
to compare boxes adjacent to the east boundaries of Young diagrams. For an N -tupleλ ∈Y (N ),
such a box s is labeled by two parameters (i , l ), 1≤ i ≤N , l ≥ 1, where its character is given by

c1(s ) =−ai + x (s )ε1+ y (s )ε2 , x (s ) =λ(i )(l ) , y (s ) = l −1 . (3.2.11)

This is the box at the l th row and the (λ(i )(l ) + 1)-th column in the i th lattice where λ(i ) is as-
signed (see Figure 3.1). We allow l to be arbitrary and then such a box s may be at the south
away from the diagram λ(i ). We call it the east-end box along λ labeled by (i , l ). Let us denote
by X (N ) the set of all such labelings:

X (N ) = {(i , l )|1≤ i ≤N , l ≥ 1} . (3.2.12)

†1 Here and henceforth, we regard a box as a corresponding 1-dimensional vector space.

36



CHAPTER 3. SHC DESCRIPTION OF MINIMAL MODEL AND TRIALITY

We now take two east-end boxes s1, s2 along λ labeled by (i1, l1), (i2, l2) ∈ X (N ), respectively. We
assume that i1 ≥ i2. The difference of their characters becomes

c1(s2)− c1(s1) = ai1
−ai2

−q (λ(i1)(l1)−λ(i2)(l2))+p (l1− l2)

=−q

 

λ(i1)(l1)−λ(i2)(l2)−
i1−1
∑

j=i2

n ′j

!

+p

 

l1− l2−
i1−1
∑

j=i2

n j

!

,
(3.2.13)

Since p , q are mutually prime, we have

c1(s2)− c1(s1) = 0⇔λ(i1)(l1)−λ(i2)(l2)−
i1−1
∑

j=i2

n ′j = p r , l1− l2−
i1−1
∑

j=i2

n j = q r , ∃r ∈Z . (3.2.14)

3.2.3 Program I: the quadratic relations

The above equivalence (3.2.14) shows a role of the N -Burge condition.

Proposition 3.1. For two distinct east-end boxes s1, s2 along λ ∈Y (N )B , we have c1(s1) 6= c1(s2). �

Lemma 3.1. For λ ∈Y (N )B and (i1, l1), (i2, l2) ∈ X (N ) with i1 ≥ i2, we have the following inequali-
ties:

1. For r ≥ 0, we have

λ(i1)

 

l2+
i1−1
∑

j=i2

n j +q r

!

−λ(i2)(l2)−
i1−1
∑

j=i2

n ′j −p r ≤−N r − (i1− i2)≤ 0 . (3.2.15)

2. For r < 0, we have

λ(i1)(l1)−λ(i2)

 

l1+q (−r )−
i1−1
∑

j=i2

n j

!

−
i1−1
∑

j=i2

n ′j −p r ≥N (−r −1) + (N − (i1− i2))> 0 . (3.2.16)

�

Proof. 1. For r ≥ 0, we have

λ(i1)

 

l2+
i1−1
∑

j=i2

n j +q r

!

≤λ(i1−1)

 

l2+1+
i1−2
∑

j=i2

n j +q r

!

+n ′i1−1−1≤ · · ·

≤λ(i2)

 

l2+ (i1− i2) + r
N
∑

j=1

n j

!

+
i1−1
∑

j=i2

n ′j − (i1− i2)

≤λ(i2)(l2) +
i1−1
∑

j=i2

n ′j + (p −N )r − (i1− i2) .

(3.2.17)
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2. For r < 0, we have

λ(i2)

 

l1+q (−r )−
i1−1
∑

j=i2

n j

!

≤λ(1)
 

l1+ (i2−1) +q (−r )−
i1−1
∑

j=1

n j

!

+
i2−1
∑

j=1

n ′j − (i2−1)

=λ(1)
 

l1+ (i2−1) +q (−r −1) +
N
∑

j=i1

n j

!

+p −
N
∑

j=i2

n ′j − (i2−1)

≤λ(N )
 

l1+ i2+q (−r −1) +
N−1
∑

j=i1

n j

!

+p −
N−1
∑

j=i2

n ′j − i2

≤λ(i1)(l1+ (N − (i1− i2))+q (−r −1))+p −
i1−1
∑

j=i2

n ′j − (N − (i1− i2))

≤λ(i1)(l1) +p (−r )−
i1−1
∑

j=i2

n ′j −N (−r −1)− (N − (i1− i2)) .

(3.2.18)

Proof of the proposition. Let λ ∈ Y (N )B and (i1, l1), (i2, l2) ∈ X (N ) be labels of two east-end boxes
s1, s2 along λ, respectively. We may assume that i1 ≥ i2 by permutating the boxes. We assume
that c1(s1) = c1(s2). For (3.2.14), there is an integer r satisfying

λ(i1)(l1)−λ(i2)(l2)−
i1−1
∑

j=i2

n ′j = p r , l1− l2−
i1−1
∑

j=i2

n j = q r , (3.2.19)

The inequality (3.2.16) means that r ≥ 0. The inequality (3.2.15) then shows r = 0 and i1 = i2,
which leads to l1 = l2 for the above equations. Therefore the two boxes s1 and s2 are identical.

This proposition leads to the following property for each element ofY (N )B :

Corollary 3.1. For λ ∈Y (N )B ,

1. any two distinct boxes in I ∗λ have different characters,

2. any two distinct boxes in J ∗λ have different characters, and

3. the coefficients in (3.2.9)

eu((t1t2 J ∗λ − I ∗λ)⊗ (Vπ−Vλ) +1) , eu((t −1
1 t −1

2 I ∗λ − J ∗λ )⊗ (Vλ−Vσ) +1) (3.2.20)

do not diverge for any σ,π ∈ Y (N ) such that σ ⊂ λ ⊂ π, |σ|+ 1 = |λ| = |π| − 1. In other
words, each linear map D±1,l |L (N )B

from L (N )B to L (N ) is well-defined.

�

The N -Burge condition also makes D±1,l ,12 to be zero. We first focus on D−1,l ,12:
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Proposition 3.2. For λ ∈Y (N )B and π ∈Y (N ) \Y (N )B such that λ⊂π, |π|= |λ|+1, we have

eu((t −1
1 t −1

2 I ∗π − J ∗π)⊗ (Vπ−Vλ) +1) = 0 . (3.2.21)

�

The following lemma shows the proposition:

Lemma 3.2. With the notations above we have

1. eu(t −1
1 t −1

2 I ∗π ⊗ (Vπ−Vλ)) = 0 ,

2. any two distinct east-end boxes along π have different characters, and

3. eu(J ∗π ⊗ (Vπ−Vλ)−1) 6= 0 .

�

Proof. 1. Let (i , l ) ∈ X (N ) be the label of the extra east-end box ŝ ∈π \λ along λ. The extra box
ŝ should break some inequalities in the N -Burge condition, but the only representative is

“π(i )(l )−π(i−1)(l − (ni−1−1))≤ n ′i−1−1 , (i −1, l − (ni−1−1)) ∈ X (N )” , (3.2.22)

where i −1 should be treated as N if i = 1. Since λ satisfies the N -Burge condition, we should
have instead†2

λ(i )(l )−λ(i−1)(l − (ni−1−1)) =π(i )(l )−π(i−1)(l − (ni−1−1))−1= n ′i−1−1 . (3.2.23)

Note that ŝ ⊂ I ∗λ , which gives an inequality

λ(i )(l )<λ(i )(l −1), (3.2.24)

where λ(i )(0) =∞ if l = 1. We also have an inequality in the N -Burge condition

λ(i )(l −1)−λ(i−1)(l −1− (ni−1−1))≤ n ′i−1−1 . (3.2.25)

We then obtain

λ(i−1)(l − (ni−1−1))<λ(i−1)(l −1− (ni−1−1)) , (3.2.26)

which means that the east-end box š (6= ŝ ) along λ labeled by (i − 1, l − (ni−1 − 1)) is in I ∗π ∩ I ∗λ .
The difference between the two boxes with respect to the character is

c1(š )− c1(ŝ ) =−q
�

λ(i )(l )−λ(i−1)(l − (ni−1−1))−n ′i−1

�

+p (l − (l − (ni−1−1))−ni−1)

= q −p .
(3.2.27)

Therefore we have obtained two boxes ŝ =V ∗
π /V

∗
λ and t −1

1 t −1
2 š ⊂ t −1

1 t −1
2 I ∗π satisfying

c1(t
−1
1 t −1

2 š )− c1(ŝ ) = 0 , (3.2.28)

which proves eu(t −1
1 t −1

2 I ∗π ⊗ (Vπ−Vλ)) = 0.

†2 Here we use N > 1. In fact, the existence of π ∈Y (N ) \Y (N )B leads to N > 1. When N = 1, any Young diagram satisfies the
1-Burge condition, which meansY (1)B =Y (1).
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2. Let s1 and s2 be two distinct east-end boxes along π labeled by (i1, l1), (i2, l2) ∈ X (N ). We
may assume that i1 ≥ i2 and that either s1 or s2 is identical to ŝ since the other cases are shown
by the previous proposition with λ ∈Y (N )B . Recall that

c1(s2)− c1(s1) = 0⇔π(i1)(l1)−π(i2)(l2)−
i1−1
∑

j=i2

n ′j = p r , l1− l2−
i1−1
∑

j=i2

n j = q r , ∃r ∈Z . (3.2.29)

If s1 = ŝ , the inequalities (3.2.15) and (3.2.16) for λ show that

c1(s2)− c1(ŝ ) = 0⇒−1≤−N r − (i − i2)≤ 0 , ∃r ∈Z≥0 . (3.2.30)

We then have

c1(s2)− c1(ŝ ) = 0⇒ (i2, l2) = (i −1, l −ni−1) , π
(i )(l )−π(i−1)(l2) = n ′i−1

⇒π(i−1)(l − (ni−1−1)) =π(i−1)(l −1− (ni−1−1)) ,
(3.2.31)

under s1 6= s2 and N > 1. The inequality (3.2.26) gives, however,

π(i−1)(l − (ni−1−1))−π(i−1)(l −1− (ni−1−1))< 0 , (3.2.32)

which proves that c1(s2) 6= c1(ŝ ) if s1 = ŝ . We have c1(s1) 6= c1(ŝ ) if s2 = ŝ similarly, for

c1(ŝ )− c1(s1) = 0⇒ 1≥N (−r −1) + (N − (i1− i ))> 0 , ∃r ∈Z<0 ,

⇒ i = 1 , (i1, l1) = (N , l −nN ) , π
(i )(l )−π(N )(l1) = n ′N .

(3.2.33)

3. Immediate from the second statement.

We next move to D1,l :

Proposition 3.3. For λ ∈Y (N )B andσ ∈Y (N ) \Y (N )B such thatσ⊂λ, |σ|= |λ| −1, we have

eu((t1t2 J ∗σ− I ∗σ)⊗ (Vλ−Vσ) +1) = 0 . (3.2.34)

�

This is immediate from the following lemma:

Lemma 3.3. With the notations above we have

1. eu(t1t2 J ∗σ⊗ (Vλ−Vσ)) = 0 ,

2. any two distinct east-end boxes alongσ have different characters, and

3. eu(I ∗σ⊗ (Vλ−Vσ)−1) 6= 0.

�

Proof of lemma. 1. Let (i , l ) ∈ X (N ) be the label of the extra east-end box ŝ ∈λ\σ alongσ. Then
a similar reasoning which appeared in the proof with the case λ ∈Y (N )B ,π ∈Y (N ) \Y (N )B gives

λ(i+1)(l + (ni −1))−λ(i )(l ) = n ′i −1 , (3.2.35)
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and

λ(i+1)(l +1+ (ni −1))−λ(i+1)(l + (ni −1))< 0 . (3.2.36)

The latter shows that the east-end box š (6= ŝ ) along σ labeled by (i + 1, l + (ni − 1)) ∈ X (N ) is
contained in J ∗σ and that

c1(ŝ )− c1(t1t2 š ) = 0 . (3.2.37)

This proves that eu(t1t2 J ∗σ⊗ (Vλ−Vσ)) = 0.
2. A similar reasoning shows that two distinct east-end boxes alongσ have the same char-

acter only if the two are ŝ and t2 š . We have, however,

c1(ŝ )− c1(t2 š ) = q 6= 0 , (3.2.38)

and then obtain the claim.
3. Immediate from the second.

We have confirmed that the operators D±1,l have the same triangular form with respect to
the decomposition L (N )B ⊕ L (N )∗ ,

D±1,l =
�

D±1,l ,11 D±1,l ,12

D±1,l ,21 D±1,l ,22

�

=
�

finite 0
finite ∗

�

, (3.2.39)

and then the quadratic relations in SHc hold for the (1, 1)-components D±1,l ,11, D0,l+1,11 ∈ End(L (N )B ).

3.2.4 Program II: the cubic relations

We next prove the cubic relation (2.4.2) for D±1,l ,11 ∈ End(L (N )B ). It suffices to show the following:

Lemma 3.4. With the notations above, we have

Dr,l1,22Dr,l2,21 = finite , r =±1 . (3.2.40)

�

Proof. For λ ∈ Y (N )B and π ∈ Y (N ) \ Y (N )B such that λ ⊂ π, |π| = |λ|+ 1, we proved in Lemma
3.2 that any two distinct east-end boxes alongπ have different characters. A similar reasoning
with λ ∈Y (N )B shows a linear map D1,l1,22|ImD1,l ,21

is well-defined. The r =−1 case can be proven
similarly.

Therefore the assignments

D̃x ∈ SHc 7→Dx ,11 ∈ End(L (N )B ) , x = (0, l +1), (±1, l ) , l ≥ 0 ,

ε1 = q , ε2 =−p , c̃l 7→ pl (a1, · · · , aN )/ε
l
1 , l ≥ 0 ,

ai =−
N−1
∑

j=1

(q n ′j −p n j )~ei · ~ω j +
1

2
(N −1)(q −p ) , 1≤ i ≤N ,

(3.2.41)

induces a representation of SHc on L (N )B .
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3.2.5 Program III: the irreducibility

What remains in our program is to show that the induced action is irreducible. We need the
following lemma:

Lemma 3.5. For λ ∈Y (N )B , we have

1. eu(t1t2 J ∗λ ⊗ (Vπ−Vλ)) 6= 0 for π ∈Y (N ) such that λ⊂π, |π|= |λ|+1, and

2. eu(t −1
1 t −1

2 I ∗λ ⊗ (Vλ−Vσ)) 6= 0 forσ ∈Y (N ) such thatσ⊂λ, |σ|= |λ| −1.

�

The above lemma and the fact that any two distinct boxes in I ∗λ for λ ∈Y (N )B have different

characters tell us that, for λ,π ∈Y (N )B such that λ⊂π, |π|= |λ|+1, there exists a linear combi-
nation

∑

l≥0 kl D1,l (kl ∈C) which satisfies (
∑

l≥0 kl D1,l ) |λ〉 = |π〉. We then see the irreducibility

of the action by using this property inductively with the degree in L (N )B .
We prove the following stronger form:

Lemma 3.6. Let λ ∈ Y (N )B and s1, s2 be two east-end boxes along λ. If either s1 ⊂ I ∗λ or s2 ⊂ J ∗λ
holds, we have c1(t2s2)− c1(s1) 6= 0.

Proof. Fix an N -tuple λ ∈ Y (N )B . Let s1 and s2 be two arbitrary east-end boxes along λ labeled
by (i1, l1), (i2, l2) ∈ X (N ). It is sufficient to show c1(t2s2) 6= c1(s1) whenever s1 ⊂ Iλ. Cycling the
indices in the N -datum by the ZN -redundancy if necessary, we may assume that i1 ≥ i2. We
have

c1(t2s2)− c1(s1) = 0⇔λ(i1)(l1)−λ(i2)(l2)−
i1−1
∑

j=i2

n ′j = p r , l1− l2−1−
i1−1
∑

j=i2

n j = q r , ∃r ∈Z . (3.2.42)

The inequalities (3.2.16) and (3.2.15) give

λ(i1)

 

l2+
i1−1
∑

j=i2

n j +q r +1

!

−λ(i2)(l2)−
i1−1
∑

j=i2

n ′j −p r ≤−N r − (i1− i2) , (3.2.43)

for r ≥ 0, and

λ(i1)(l1)−λ(i2)

 

l1−1−
i1−1
∑

j=i2

n j −q r

!

−
i1−1
∑

j=i2

n ′j −p r ≥N (−r −1) + (N − (i1− i2))> 0 (3.2.44)

for r < 0. Then we have

c1(t2s2)− c1(s1) = 0⇔ i1 = i2, l1 = l2+1,λ(i1)(l1) =λ
(i2)(l2) . (3.2.45)

If we take s1 ⊂ Iλ or s2 ⊂ J ∗λ , we have λ(i1)(l1 − 1) > λ(i1)(l1) or λ(i2)(l2) > λ(i2)(l2 + 1), and then
c1(t2s2) 6= c1(s1).

We finally obtain an irreducible action of SHc associated with an N -datum:

Theorem 3.1. Let p , q ≥N be mutually prime positive integers and 〈(p , q ), (ni , n ′i )1≤i≤N 〉 be an

N -datum (3.1.8). Denoting by L (N )B the subspace of L (N ) associated with its N -Burge condition.
Then SHc acts irreducibly on L (N )B by (3.2.41). �
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3.2.6 Null vectors

We revisit the null condition in [42], as mentioned just after we introduced the N -Burge con-
dition.

Proposition 3.4. For λ ∈Y (N )B , we have

1. 〈λ|λ〉= eu(Tλ) 6= 0,

2. 〈σ|σ〉= 0 forσ ∈Y (N ) \Y (N )B such thatσ⊂λ and |σ|= |λ| −1, and

3. 〈π|π〉= 0 for π ∈Y (N ) \Y (N )B such that λ⊂π and |π|= |λ|+1.

�

Proof. 1. For λ ∈Y (N )B , there is an N -tuple σ̃ ∈Y (N )B such that σ̃⊂λ and |σ̃|= |λ| −1. We have

〈λ|λ〉= c 〈λ|D1,0|σ̃〉=
(−1)N c

p q
〈σ̃|D−1,0|λ〉= c ′ 〈σ̃|σ̃〉 , (3.2.46)

for nonzero coefficients c , c ′. An induction on the degree in L (N )B shows 〈λ|λ〉 = c ′′ 〈;|;〉 = c ′′

for a certain c ′′ 6= 0.
2. and 3. For suchσ and π, we have

〈σ|σ〉= c 〈σ|D−1,0|λ〉= c ′ 〈λ|D1,0|σ〉= 0 ,

〈π|π〉= c ′′ 〈π|D1,0|λ〉= c ′′′ 〈λ|D1,0|π〉= 0 ,
(3.2.47)

for some parameters c , c ′, c ′′ and c ′′′.

Null vectors surround L (N )B . We can construct a null vector |Φi 〉 in degree ni n ′i for each
1≤ i ≤N as a rectangle Young diagram

Φ(i+1)
i =

n ′i

ni , Φ( j )i = ; , j 6= i +1 , (3.2.48)

where we treat i +1 as 1 when i =N .

3.3 SHc description of the level-rank duality

The level-rank duality concerns an N -datum 〈(p , q ), (ni , n ′i )1≤i≤N 〉 satisfying

p =N , q =N +M , (3.3.1)

for a pair (N , M ) of coprime positive integers. We first re-express our notions for such a N -
datum. The equation (3.1.8) implies that n ′i = 1 for any 1≤ i ≤N and then the corresponding
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irreducible representation SHc is labeled by a restricted datum 〈(N , N +M ), (ni , 1)i=1,··· ,N 〉. We
rather introduce integers ñi ∈Z≥0(1≤ i ≤N ) by

ñi = ni −1 , 1≤ i ≤N ,
N
∑

i=1

ñi =M ,
(3.3.2)

and call a collection 〈N , N +M , (ñi )i=1,··· ,N 〉 a restricted N -datum. The irreducible representa-
tion of SHc associated with such a restricted N -datum 〈N , N +M , (ñi )i=1,··· ,N 〉 has

λ ∈Y (N )B ⇔λ(i+1)(l + ñi )≤λ(i )(l ) , 1≤ i ≤N , l ≥ 1 , (3.3.3)

as its N -Burge condition for λ ∈Y (N ) and the parameters ε1,2 and a1,··· ,N which are fixed to the
following integers:

ε1 = q =N +M ,ε2 =−p =−N ,

ai =−
N−1
∑

j=1

(M −N ñ j )~ei · ~ω j +
1

2
M (N −1)

=M (i −1) +N
N−1
∑

j=1

ñ j ~ei · ~ω j ∈Z , 1≤ i ≤N .

(3.3.4)

The latter parameters looks clear if we rewrite them as

a j+1−a j =M −N ñ j , 1≤ j ≤N ,
N
∑

i=1

ai =
1

2
N M (N −1) .

(3.3.5)

The level-rank duality claims that there exists a dual restricted M -datum for each restricted
N -datum, and both has the same property in a certain sense. They share the same Virasoro
subalgebra inWN and inWM , and their representation spaces have the same q -dimension†3[20,
21]. What we are going to show is that we can construct an algebra isomorphism between such
two level-rank-dual representations by using the SHc -descriptions we have just proved.

3.3.1 The labeling set X (N )B

The level-rank duality claims in part a connection Y (N )B with Y (M )B for M 6= N . This suggests
that there is another interpretation ofY (N )B , which is originally defined as the set of all the N -
tuple Young diagrams satisfying the N -Burge condition. Recall that an element λ ofY (N )B is a
map from X (N ) to Z≥0 which meets not only the N -Burge condition but also the “N -Young”
condition

λ(i )(l +1)≤λ(i )(l ) , l ≥ 1 , 1≤ i ≤N . (3.3.6)

†3We use the symbol q in two ways. We have denoted by q an integer in a N -datum as well as a formal parameter in the
q -dimension of a graded vector space. We hope that such an overlap will not create any confusion.
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We want to merge the two conditions into a suitable one to see the level-rank duality mani-
festly. We first rewrite the labeling set X (N ) = {(i , k )|1 ≤ i ≤ N , k ≥ 1} and then re-express the
N -Burge condition (3.3.3) as well as the N -Young condition.

Fix a restricted N -datum 〈N , N +M , (ñi )i=1,··· ,N 〉. We assign an integer for each element of
X (N ) by

X =X (N , N +M , (ñi )i=1,··· ,N ) : X (N )→Z , (i , l ) 7→ ai +N (l −1) . (3.3.7)

The map relates to each east-end box s along λ ∈Y (N )B labeled by (i , l ) ∈ X (N ), by

c1(s ) =−X (i , l ) + (N +M )λ(i )(l ) . (3.3.8)

Comparing integers for two elements in X (N ) associated with the N -Burge condition or with
the N -Young condition, we obtain

X (i +1, l + ñi ) =X (i , l ) +M ,

X (i , l +1) =X (i , l ) +N .
(3.3.9)

This map gives another interpretation of X (N ):

Lemma 3.7. With the notations above, we have

1. x +N , x +M ∈X (X (N )) if x ∈X (X (N )), and

2. X is injective.

�

Proof. 1. Clear from (3.3.9).
2. We have a j+1−a j =M −N ñ j for 1≤ j ≤N , which means that ai −a j (i 6= j ) can not be

divided by N .

Definition 3.2. For a restricted N -datum 〈N , N+M , (ñi )i=1,··· ,N 〉, we define a set X (N )B of integers
by

X (N )B = X (N )B (N , N +M , (ñi )i=1,··· ,N ) =X (X (N ))⊂Z . (3.3.10)

�

We may consider λ ∈Y (N ) as a map

λ : X (N )B →Z≥0 , λ(x ) =λ(i )(l ) , x =X (i , l ) . (3.3.11)

The N -Burge condition and the “Young-diagram" condition are then re-expressed as

λ(i+1)(l + ñi )≤λ(i )(l )⇔λ(x +M )≤λ(x ) ,
λ(i )(l +1)≤λ(i )(l )⇔λ(x +N )≤λ(x ) .

(3.3.12)

Therefore we obtain another interpretation ofY (N )B associated with a restricted N -datum:

Y (N )B =
�

λ : X (N )B →Z≥0

�

� λ(x +M ),λ(x +N )≤λ(x ) for all x ∈ X (N )B

	

. (3.3.13)

45



3.3. SHC DESCRIPTION OF THE LEVEL-RANK DUALITY

λ(1)

λ(3)

λ(5)
...

λ(2)

λ(4)

λ(6)
...

N

λ(1)

λ(2)

⇐⇒

λ(1)

λ(2)

λ(3)

λ(4)

λ(5)

λ(6)

M

λ̃(1)

λ̃(2)

λ̃(3)

...

...

...

Figure 3.2: Two multiple Young diagrams λ and λ̃ related by shuffling rows. (N = 2, M = 3). We take

N = 2, M = 3 and the set of labels X (N )B = X (M )B = {1, 2, · · · } for example.

3.3.2 The level-rank dual labeling set X (M )B = X (N )B

Fix a restricted N -datum 〈N , N +M , (ñi )i=1,··· ,N 〉 and an element λ ∈Y (N )B . Denoting by s (x ) an
east-end box along λ labeled by x ∈ X (N )B , we have

c1(s
(x )) =−x + (N +M )λ(x ) . (3.3.14)

We then obtain

D0,l+1 |λ〉=
∑

x∈X (N )B

λ(x )−1
∏

r=0

�−x + r (N +M )
N +M

�l

|λ〉 , (3.3.15)

Then if we construct a restricted M -datum 〈M , N+M , (m̃i )i=1,··· ,M 〉which has the same labeling
set X (M )B = X (N )B as that of the N -datum, the two representation spaces L (N )B and L (M )B have the
same spectrum with respect to the infinitely many commuting operators D0,l+1(l ≥ 0). The
element λ ∈ Y (N )B can be identified with an M -tuple Young diagram λ̃ as well as an N -tuple
Young diagram by shuffling rows. We express such a shuffling in Figure 3.2. This shuffling
induces a linear map

S1 : L (N )B → L (M )B , |λ〉 7→ |λ̃〉 , (3.3.16)

which commutes, at least, with any D0,l+1.
We claim that such a dual restricted M -datum exists for any restricted N -datum. We pre-

pare a disk expression†4 before we prove it. Let 〈N , N +M , (ñi )i=1,··· ,N 〉 be a restricted n-datum.
We encode the datum into a properly decreasing positive integer sequence (xi )Ni=1 by setting

x1 =N +M , xi − xi+1 = ni = ñi +1 , 1≤ i <N . (3.3.17)

†4This disk was originally introduced in [20, 21].
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1

2

3

4 5

6

7

8

ñ2 = 2

ñ1 = 0

ñ3 = 3

x1 = 8

x2 = 7

x3 = 4

Figure 3.3: The disk expression of the sequence (xi )Ni=1. Here we take N = 3, M = 5 and (n1, n2, n3) =
(1, 3, 4) for example.

Note that we have xN = nN > 0 and then we may consider (xi )Ni=1 ⊂ZN+M . We associate such a
sequence with a disk divided into (N +M ) parts where the xi -th piece is drawn black for each
1 ≤ i ≤ N , while the other pieces are kept white. See an example of such a disk expression
in Figure 3.3. We see that , for 1 ≤ i ≤ N , the integer ñi appears in the disk expression as
the number of white pieces from the i -th black piece to the (i + 1)-th one in the clockwise
direction. (We repeat that i +1 should be treated as 1 if i =N .) Note that the ZN -redundancy
in the N -datum is none other than the freedom that we may re-take a sequence by rotating
the disk and selecting a black piece from N choices as the representative of the first element
x1.

Let us reverse the color in the disk. Each white piece becomes a black piece, and vise versa.
Taking one new black piece as the representative of the first element y1 = N +M , we obtain
a new properly decreasing sequence (yi )Mi=1 of positive integers. Then we define M integers
(mi )Mi=1 by

yi − yi+1 =mM+1−i , 1≤ i <M , m1 = yM . (3.3.18)

and (m̃i )Mi=1 by

m̃i =mi −1 , 1≤ i ≤M . (3.3.19)

We draw Figure 3.4 which expresses a dual sequence with respect to Figure 3.3. Since we have

M
∑

i=1

mi = y1 =N +M , (3.3.20)

then a triple 〈M , N +M , (m̃i )Mi=1〉 becomes a restricted M -datum. We call it the dual restricted
M -datum for the original N -datum 〈N , N +M , (ñi )Ni=1〉. We note that, while there are M black
pieces in the dual disk and then M choices for our first pick, such arbitrariness is identified
with the group ZM of cyclic shifts of the indices i in m̃i . We may neglect the cyclic shifts since
the resultant datum gives the same representation of SH(M ).

The dual datum is what we want to construct! To prove it, we focus on nonzero elements
in the two data. We see that the nonzero elements in (ñi ), (m̃i ), express the ratios of each
connected component of white, resp. black, pieces in the original disk associated (xi ) (see
Figure 3.5). Let us denote by {v ( f )}Sf =1 the properly increasing sequence of positive integers
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ñ2 = 2

ñ1 = 0

ñ3 = 3

⇐⇒

1

2

3

4 5
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7

8

m̃3 = 1

m̃4 = 0

m̃5 = 2

m̃2 = 0

m̃1 = 0
y1 = 8

y2 = 5y3 = 4

y4 = 2

y5 = 1

Figure 3.4: The dual of the disk in Figure 3.3.
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m̃3 = 1

m̃5 = 2

Figure 3.5: Nonzero elements in (ñi ) and (m̃i ).
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representing nonzero elements in (ñi ), ñv ( f ) > 0, and by {w ( f )}Sf =1 the properly decreasing
sequence determined by m̃w ( f ) > 0. Here we denote by S the number of the white components
in the disk. Using the ZM -degeneracy, we may choose the white component with ratio ñv ( f )
appear just after the black component with ratio m̃w ( f ) in the clockwise direction, as in Figure
3.5. This construction immediately provides the following property with the two data:

Lemma 3.8. With the notations above, we have

ñv ( f ) =w ( f )−w ( f +1) , m̃w ( f ) = v ( f )− v ( f −1) , (3.3.21)

for 1≤ f ≤ S, where v (0) =w (S +1) = 0. �

We start to prove that the above two data 〈N , N +M , (ñi )i=1,··· ,N 〉 and 〈M , N +M , (m̃i )i=1,··· ,M 〉
have the same labeling set, X (M )B = X (N )B . We first consider the generators of the labeling set
X (N )B :

Lemma 3.9. With the notations above, the labeling set X (N )B is generated by (av ( f )+1)Lf =1 and the

recursive relation, x ∈ X (N )B ⇒ x +M , x +N ∈ X (N )B . �

Proof. It is clear that X (N )B is generated by (ai )Ni=1. We have ai+1 = ai +M if ñi = 0, and then X (N )B

is generated by the elements ai+1 with ñi > 0.

Applying the above lemma to the dual, we see that X (M )B is generated by (ãw ( f )+1)Lf =1. Here

we denote by (ãi )Mi=1 the parameters (ai ) for the datum 〈M , N +M , (m̃i )Mi=1〉.
We are ready to prove the claim:

Proposition 3.5. Let N and M be mutually prime positive integers. For each restricted N -
datum 〈N , N +M , (ñi )i=1,··· ,N 〉, there is a restricted M -datum 〈M , N +M , (m̃i )i=1,··· ,M 〉which has
the same labeling set: X (M )B = X (N )B . �

Proof. Let us take an arbitrary restricted N -datum 〈N , N +M , (ñi )i=1,··· ,N 〉, and set 〈M , N +
M , (m̃i )i=1,··· ,M 〉 as the dual restricted M -datum. Two labeling sets X (N )B and X (M )B share one
generator since we have

av (S )+1 =−M (N − v (S ))+a1 =M v (S )−
S
∑

f =1

v ( f )ñv ( f ) =M N −
S
∑

f =1

v ( f )(w ( f )−w ( f +1))

=M N −
S
∑

f =1

w ( f )(v ( f )− v ( f −1)) ,

ãw (1)+1 =−N (M −w (1))+ ã1 =N w (1)−
S
∑

f =1

w ( f )m̃w ( f ) =M N −
S
∑

f =1

w ( f )(v ( f )− v ( f −1))

= av (S )+1 .
(3.3.22)

The cyclic relations

av ( f )+1−av ( f −1)+1 =M (v ( f )− v ( f −1))−N ñv ( f ) =M m̃w ( f )−N ñv ( f ) , 1< f ≤ S ,

av (1)+1−av (S )+1 =−M
S
∑

f >1

m̃w ( f )+N
S
∑

f >1

ñv ( f ) =M m̃w (1)−N ñv (1) ,
(3.3.23)
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∏

(i ,k )∈X (N )
=

λ(i )

k

λ(i )(k )

Figure 3.6: Diagrammatic expression of the rewriting for El .

and

ãw ( f +1)+1− ãw ( f )+1 =−N (w ( f )−w ( f +1))+M m̃w ( f ) =M m̃w ( f )−N ñv ( f ) , 1≤ f < S ,

ãw (1)+1− ãw (S )+1 =N
S−1
∑

f =1

ñv ( f )−M
S−1
∑

f =1

m̃w ( f ) =M m̃v (S )−N ñv (S ) ,
(3.3.24)

shows they are identical.

Conversely, we also have a dual restricted N -datum for each restricted M -datum by revers-
ing the clockwise direction along the disk. This realizes an isomorphism between the set of all
the restricted N -datum and that of all the restricted M -datum for any pair (N , M ) of coprime
integers.

3.3.3 The level-rank dual mappingS1

We have seen that, for each restricted N -datum, there is a dual restricted M -datum which
gives the same labeling set X (M )B = X (N )B , and then they have the same set of eigenvalues with
respect to the infinitely many commuting operators D0,l+1. Such eigenvalues are invariant
under shuffling an N -tuple into an M -tuple.

We move to other degree-0 operators El (l ≥ 0) in (2.3.20). We fix a restricted N -datum
〈N , N +M , (ñi )i=1,··· ,N 〉. We see from Figure 2.4 that we can rewrite their actions to |λ〉 ∈ L (N )B in
a symmetric form. For λ ∈Y (N )B , we have

�

1+
M

N +M

∑

l≥0

ζl+1El

�

|λ〉

=





∏

x∈X (N )B

�

1+ ζ
N+M (x +M − (N +M )λ(x ))

� �

1+ ζ
N+M (x +N − (N +M )λ(x ))

�

�

1+ ζ
N+M (x − (N +M )λ(x ))

� �

1+ ζ
N+M (x +N +M − (N +M )λ(x ))

�



 |λ〉 .

(3.3.25)

We draw Figure 3.6 to express the above rewriting. The right side of the above equation is ac-
tually symmetric. In other words, denoting by E ′l (l ≥ 0) the dual side operators, two operators

M El ∈ SH(N ) ⊂ End(L (N )B ) and N E ′l ∈ SH(M ) ⊂ End(L (M )B ) act on their representation spaces iden-

tically. For any degree-0 operator in SHc , the vacuum vector in L (N )B and that in L (M )B have the
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same eigenvalue after rescaling
p

M D (N )
±1,l =

p
N D (M )

±1,l , D (N )
0,l+1 =D (M )

0,l+1
†5. Two algebras SH(N ) and

SH(M ) also share the same function κ(ζ)which was introduced in (2.3.43) to express a lengthy
quadratic commutation relation. This function is indeed symmetric under the replacement;

κ(ζ) = (ζ+1)
�

ζ+
ε2

ε1

��

ζ−
�

1+
ε2

ε1

��

= (ζ+1)
�

ζ−
N

N +M

��

ζ−
M

N +M

�

. (3.3.26)

They share the whole defining relations†6 after the rescaling, and then the two representations
are of the same algebra. In other words, the assignments

S1(D±1,l ) =
�

N

M

�
1
2

D±1,l , S1(D0,l+1) =D0,l+1 , S1(El ) =
�

N

M

�−1

El , (3.3.27)

induce an algebra map from SH(N ) to SH(M ).
One can manifest the duality by taking “geometric means" of ladder operators. We should

note that a colored tetromino is symmetric under the replace N ↔M , and then plays a

fundamental role with the level-rank duality. We can see from Figure 2.2 and Figure 2.3 that
we can construct the tetromino from the geometric means of the coefficients in D1,l and D−1,l .
This observation leads us to introduce their “geometric means"D±1,l (l ≥ 0) by

D1,l |λ〉 ≡
(−ε1ε2)

1
2

ε1+ ε2

∑

π⊃λ
|π|= |λ|+1

�

c1

�

V ∗
π −V ∗

λ

�

ε1

�l

×eu
1
2
�

((1− t1)(1− t2)V
∗
π −W ∗+ t −1

1 t −1
2 W ∗− (1− t −1

1 )(1− t −1
2 )V

∗
λ )⊗ (Vπ−Vλ)

�

|π〉

=
� −1

ε1+ ε2

�
1
2 ∑

π⊃λ
|π|= |λ|+1

�

c1

�

V ∗
π −V ∗

λ

�

ε1

�l

×eu
1
2
�

((1− t1)(1− t2)V
∗
λ −W ∗+ t −1

1 t −1
2 W ∗− (1− t −1

1 )(1− t −1
2 )V

∗
λ )⊗ (Vπ−Vλ) +1

�

|π〉 ,
(3.3.28)

and

D−1,l |λ〉 ≡
(−ε1ε2)

1
2

ε1+ ε2

∑

σ⊂λ
|σ|= |λ| −1

�

c1

�

V ∗
λ −V ∗

σ

�

ε1

�l

×eu
1
2
�

((1− t1)(1− t2)V
∗
λ −W ∗+ t −1

1 t −1
2 W ∗− (1− t −1

1 )(1− t −1
2 )V

∗
σ )⊗ (Vλ−Vσ)

�

|σ〉

=
�

1

ε1+ ε2

�
1
2 ∑

σ⊂λ
|σ|= |λ| −1

�

c1

�

V ∗
λ −V ∗

σ

�

ε1

�l

×eu
1
2
�

((1− t1)(1− t2)V
∗
λ −W ∗+ t −1

1 t −1
2 W ∗− (1− t −1

1 )(1− t −1
2 )V

∗
λ )⊗ (Vλ−Vσ) +1

�

|σ〉 ,
(3.3.29)

†5We regard D (N )
x ∈ SH(N ) and so on.

†6There are no other relations among D0,l+1, D±1,l which are not generated from the defining relations. It can be proven by
a similar reasoning in [2, 47]. Each variable in the polynomials appearing in their proofs ranges a subset of R for our cases,
but this does not matter since the subset contains an infinite number of elements.
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after rewritten forms of D±1,l :

D1,l |λ〉= ε1ε2

∑

π⊃λ
|π|= |λ|+1

�

c1

�

V ∗
π −V ∗

λ

�

ε1

�l

eu
�

((1− t1)(1− t2)V
∗
π −W ∗)⊗ (Vπ−Vλ)− t1t2

�

|π〉 ,

D−1,l |λ〉=−
∑

σ⊂λ
|σ|= |λ| −n

�

c1

�

V ∗
λ −V ∗

σ

�

ε1

�l

eu
�

(t −1
1 t −1

2 W ∗− (1− t −1
1 )(1− t −1

2 )V
∗
σ )⊗ (Vλ−Vσ)− t1t2

�

|σ〉 .

(3.3.30)

These geometric means were originally introduced in [38], and we can obtain similar iterated
forms in Lemma 2.2 and 2.3. Three classes of operatorsD±1,l and ofD0,l+1 ≡D0,l+1 then gener-
ate another SH(N ) with the same nonlinear terms El = El . This new algebra acts irreducibly on
the same space L (N )B even when we specialize parameters to minimal model representations
since we have discussed the coefficients in D1,l and D−1,l in a completely parallel manner.

For a restricted N -datum 〈N , N +M , (ñi )i=1,··· ,N 〉, we can reduce the coefficients withD±1,l ,
by a similar way in Figure 3.6, to

D1,l |λ〉=
�−1

M

�
1
2 ∑

x ∈ X (N )B
λ(x )<λ(x −M )
λ(x )<λ(x −N )

�

c1(s (x ))
N +M

�l

×
∏

y ∈ X (N )B
y 6= x

�

c1(t2s (y ))− c1(s (x ))
c1(s (y ))− c1(s (x ))

c1(t −1
1 t −1

2 s (y ))− c1(s (x ))

c1(t −1
1 s (y ))− c1(s (x ))

�
1
2

|λ⊕ s (x )〉 ,

D−1,l |λ〉=
�

1

M

�
1
2 ∑

x ∈ X (N )B
λ(x )>λ(x +M )
λ(x )>λ(x +N )

�

c1(t −1
1 s (x ))

N +M

�l

×
∏

y ∈ X (N )B
y 6= x

�

c1(t2s (y ))− c1(t −1
1 s (x ))

c1(s (y ))− c1(t −1
1 s (x ))

c1(t −1
1 t −1

2 s (y ))− c1(t −1
1 s (x ))

c1(t −1
1 s (y ))− c1(t −1

1 s (x ))

�
1
2

|λ	 t −1
1 s (x )〉 ,

(3.3.31)

for λ ∈ Y (N )B , where we mean by λ⊕ s (x ), λ	 t −1
1 s (x ) a diagram λ plus a box s (x ), resp. minus

a box t −1
1 s (x ). The tetromino appears as the factors in the above products, which makes

p
MD±1,l symmetric under the replacement N ↔M .

As a result, we have a manifestation of the level-rank duality as an equivalence between
two representations of the nonlinear algebra SHc :

Theorem 3.2. Let (N , M ) be a pair of mutually prime positive integers, 〈N , N +M , (ñi )i=1,··· ,N 〉
be a restricted N -datum and 〈M , N +M , (m̃i )i=1,··· ,M 〉 be its dual restricted M -datum.

1. The two represented algebras SH(N ) ⊂ End(L (N )B ), SH(M ) ⊂ End(L (M )B ) of SHc are isomorphic
to each other with the rescaling

p
M D (N )

±1,l =
p

N D (M )
±1,l , D (N )

0,l+1 =D (M )
0,l+1 and M E (N )l =N E (M )l .

2. The two representations associated with the restricted data have the same spectrum with
respect to degree-0 operators D0,l+1 and El under the rescaling isomorphism.
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3. Denote byS1 : L (N )B → L (M )B the linear map (3.3.16), |λ〉 7→ |λ̃〉, associated with the shuffling
ofY (N )B . Then we have the following relations for λ ∈Y (N )B :

S1(D0,l+1 |λ〉) =D0,l+1(S1 |λ〉) =D0,l+1 |λ̃〉 , l ≥ 0 ,

S1(
p

MD±1,l |λ〉) =
p

ND±1,l (S1 |λ〉) =
p

ND±1,l |λ̃〉 , l ≥ 0 ,

S1(M El |λ〉) =N El (S1 |λ〉) =N El |λ̃〉 , l ≥ 0 ,

(3.3.32)

whereDx are the geometric means (3.3.28) of the algebra SHc , and El+k = [D−1,k ,D1,l ].

�

One may normalizeS1 by a certain diagonal map to obtain 〈λ| tS1S1 |λ〉= 〈λ̃|λ̃〉.
Now we compare their Virasoro–Heisenberg subalgebras. On the N -side, we have zero

modes

α0 =
�

−
ε2

ε1

�−1

E1 =
�

N +M

N M

�

M E1 ,

H0 =
1

2

�

−
ε2

ε1

�−1

E2 =
1

2

�

N +M

N M

�

M E2 ,

(3.3.33)

and the central charges

KN =
�

−
ε2

ε1

�−1

N =N +M ,

CN = 1+ (N −1)

�

1−
�

−
ε2

ε1

�−1�

1+
ε2

ε1

�2

N (N +1)

�

= 1−
(N −1)(M −1)(N +M +N M )

N +M
,

(3.3.34)

which are all symmetric under the replacement N ↔M and the rescaling. Therefore the two
vacuum states have the same conformal dimension as well as the Heisenberg weight, as was
shown in [20, 21]. We can also intertwine nonzero modesαl , Hl with certain constant rescaling
factors.

3.4 On the Lee–Yang singularity and the Rogers-Ramanujan identity

It is now clear that the vector space L (N )B for a restricted N -datum 〈N , N +M , (ñi )i=1,··· ,N 〉 has
the same q -dimension as that of its dual, which was originally shown in [21]. We revisit this
coincidence from the viewpoint of SHc .

3.4.1 A partial ordering <X (N )B
in X (N )B

Fix a restricted N -datum 〈N , N +M , (ñi )i=1,··· ,N 〉 and set X = X (N )B just for an abbreviation. Re-
call that the N -Burge and N -Young conditions are reduced to a class of inequalities on a map
λ : X →Z≥0,

λ(x +M )≤λ(x ) , λ(x +N )≤λ(x ) , x ∈ X ⊂Z . (3.4.1)
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Drawing an analogy with Young diagrams, it is natural to associate a partial ordering <X with
X , which is generated by relations

x <X x +M , x <X x +N , x ∈ X , (3.4.2)

and then the above condition for λ is rewritten as

x ≥X y ⇒λ(x )≤λ(y ) , x , y ∈ X . (3.4.3)

Such a partition λ is known for mathematicians as a P-partition over the partially ordered set
(X ,<X ), and its combinatorics is described in a famous book [44]. Denoting byA (X ) the set
of all the P-partitions over X , its generating function

FX (q )≡
∑

λ∈A (X )

q |λ| , (3.4.4)

is none other than the q -dimension dimq L (N )B of the vector space L (N )B .
Such a P -partition is also known as a cylindric partition. This notion was introduced in

[51] and its generating function was given in [52] as a product form:

Proposition 3.6 ([52]). With the notations above, we have

FX (q ) =
(q N+M ; q N+M )N−1

∞

∏

i< j (q
∑ j−1

l=i nl ; q N+M )∞
∏

i> j (q
N+M−

∑i−1
l= j nl ; q N+M )∞

(q ; q )N∞
, (3.4.5)

where (a ; q )m ≡
∏m−1

l=0 (1−a q l ) is the q -Pochhammer symbol. �

The above formula is none other than what is obtained as the character formula for (re-
stricted) minimal models of W -algebras [21, 46, 13]. We refer to [53] and references therein
for readers who want to see connections between W -algebras and cylindric partitions. The
level-rank duality shows that we obtain the same generating function when we concern the
dual datum, which was proved in [21]. From the viewpoint of SHc , the coincidence stems from
the fact that a partially ordered set is shared by two representations which are level-rank-dual
to each other.

3.4.2 The Lee–Yang singularity and the Rogers-Ramanujan identity

The partially ordered set plays a fundamental role with a connection between the Lee–Yang
singularity and the Rogers-Ramanujan identity. Here we revisit the connection, which was
first noted in [46], from a viewpoint of P -partitions.

There are only two inequivalent restricted 2-data for (N , M ) = (2, 3),

〈2, 5, (1, 2)〉 , 〈2, 5, (3, 0)〉 . (3.4.6)

The minimal model associated with (N , M ) = (2, 3) is often called the Lee–Yang singularity. We
have a1 = 2, a2 = 1 for the datum 〈2, 5, (1, 2)〉 and then its labeling set becomes

X1 =Z>0 . (3.4.7)

We also have a1 = 0, a2 = 3 and

X2 =Z≥0 \ {1} , (3.4.8)
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kl

l

· · ·· · · k2

2

k1

1

Figure 3.7: A rectangle decomposition of a Young diagram

as its labeling set for the datum 〈2, 5, (3, 0)〉. We have

FX1
(q ) =

(q 5; q 5)∞(q n1 ; q 5)∞(q n2 ; q 5)∞
(q ; q )2∞

=
1

(q ; q )∞(q 1; q 5)∞(q 4; q 5)∞
,

FX2
(q ) =

1

(q ; q )∞(q 2; q 5)∞(q 3; q 5)∞
.

(3.4.9)

Note that we can rewrite them into sum forms (times (q ; q )−1
∞) by using the Rogers–Ramanujan

identities [45];

∞
∑

k=0

q k 2

(q ; q )k
=

1

(q 1; q 5)∞(q 4; q 5)∞
,

∞
∑

k=0

q k (k+1)

(q ; q )k
=

1

(q 2; q 5)∞(q 3; q 5)∞
.

(3.4.10)

We can derive these sum forms by using a P -partition counting method, which is described in
the book [44]. The key point for this method is the identity associated with Young diagrams,

∑

λ∈Y (1)
q |λ| =

∞
∏

l=1

∞
∑

kl=0

q l kl =
1

(q ; q )∞
, (3.4.11)

which is obtained from a consideration with a rectangle decomposition of a Young diagram
in Figure 3.7.

A toy example

Consider a partially ordered set P = {p1, p2, p3} of three points as an example, whose ordering
is given by p1 <P p2 and p1 <P p3. Its Hasse diagram†7 is represented as Figure 3.8. Each P -
partitionλ can be considered as a Young diagram with respect to a total ordering<T of P such
that

x <P y ⇒ x <T y , (3.4.12)

†7Given a partially ordered set P , its Hasse diagram is defined by assigning a point for each x ∈ P and drawing a line between
two points representing x , y ∈ P if x <P y and there is no element z ∈ P such that x <P z <P y . For our cases, we assign a
line between x and x +M and another one between x and x +N for each x ∈ X .
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p1

p2 p3

Figure 3.8: The Hasse diagram of P = {p1, p2, p3}

p1

p2

p3

<
2

<
2

Figure 3.9: Each P -partition is a Young diagram with respect to a total ordering.

and

x <T y ⇒λ(x )≥λ(y ) . (3.4.13)

For example, for the P -partition (p1, p2, p3) 7→ (3, 1, 2), we linearize P by a total order p1 <2 p3 <2

p2 and then the corresponding diagram is expressed by a Young diagram appearing in Figure
3.9. There are just two total orderings p1 <1 p2 <1 p3 and p1 <2 p3 <2 p2.

We want to obtain a one-to-one correspondence between a P -partition and a pair con-
sisting of a Young diagram and a total ordering compatible with the partial ordering of P .
Note that, however, both of the two total orderings induce a Young diagram for a P-partition
(p1, p2, p3) 7→ (2, 1, 1). This example tells us that we should not count all pairs. To count without
overlaps, we fix one total ordering, say p1 <1 p2 <1 p3, as the canonical one, and we associate
such a P -partition with the pair of this canonical ordering and the corresponding Young dia-
gram. As a result, we separateA (P ) into the two set S1,S2:

A (P ) = S1 tS2,

S1 ≡ {λ ∈A (P ) | λ(p1)≥λ(p2)≥λ(p3)},
S2 ≡ {λ ∈A (P ) | λ(p1)≥λ(p3)>λ(p2)}.

(3.4.14)

We have

∑

λ∈S1

q |λ| =
1

(q ; q )3
. (3.4.15)

Through a consideration in Figure 3.10, we also have

∑

λ∈S2

q |λ| = q 2
∑

λ∈S1

q |λ| =
q 2

(q ; q )3
. (3.4.16)

Then we have ZP (q ) = (1+q 2)/(q ; q )3. Note that the last factor q 2 comes from where the total
ordering p1 <2 p3 <2 p2 is different from the canonical one p1 <1 p2 <1 p3. Let us denote by T (i )
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p1

p2

p3

> 0

⇒

> 0

←
⇒

≥ 0

⊕

Figure 3.10: Modification of the condition λ(p3)>λ(p2) in S2

1 3 5 7 9

2 4 6 8 10

· · ·

Figure 3.11: The Hasse diagram of X1

the i -th lowest element in P with respect to a compatible total ordering T and set

DT = { i ∈Z>0 | T (i )>C T (i +1)} . (3.4.17)

where we denote by <C the canonical total ordering. Then we have

∑

λ∈Si

q |λ| =

∏

j∈Di
q j

(q ; q )|P |
, (3.4.18)

for each i = 1, 2, where |P |= 3 is the cardinality of P .
We move to our case with a general partially ordered set X = X (N )B , which is bounded below

with finite local minima and whose Hasse diagram is connected. We denote byL (X ) the set†8

of all the total orderings compatible to the partial ordering. We take the total ordering induced
from the injection X (N )B ⊂ Z as the canonical one and define DT as described above for each
compatible total ordering T ∈L (X ). We have the following counting formula:†9

Proposition 3.7 ([44]). With the notations above, we have

FX (q ) =
∑

λ∈A (X )

q |λ| =

∑

π∈L (X )

∏

j∈Dπ
q j

(q ; q )|X |
, (3.4.19)

where |X | is the cardinality of X .

It is difficult to determine the Jordan–Hölder set in general, but we can do that for the Lee–
Yang singularity. The Hasse diagram of X1 is given by Figure 3.11. We see that, for any element
T ofL (X1), the compatibility leads to

T (1) = 1, or (T (1), T (2)) = (2, 1) . (3.4.20)

We have 1 6∈DT for the first case and 1 ∈DT , 2 /∈DT for the latter. Note that we have the same
Hasse diagram even after cutting one element 1 ∈ X1 or two 1, 2 ∈ X1. Therefore a similar anal-
ysis goes well for higher elements of X , and then we can identifyL (X )with a set of integers

{1≤ t1 < t2 < · · ·< tk |k ∈Z≥0, ti − ti−1 ≥ 2}, (3.4.21)

†8The setL (X ) is often called the Jordan–Hölder set of X in mathematics.
†9The corresponding statement in the book [44] is for partially ordered sets with finite cardinality. However, it can be en-

larged for our infinite cases since boxes are piled up from the bottom.
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3 5 7 9 11

0
2 4 6 8 10

· · ·

Figure 3.12: The Hasse diagram of X2

which is identical to the corresponding DT . The above set is none other than an example of
Gordon’s integer partitions[54, 55]. As a result, we have

FX1
(q ) =

1

(q ; q )∞

∞
∑

k=0

∑

1≤t1<···<tk
ti−ti−1≥2

q
∑k

j=1 t j

=
1

(q ; q )∞

∞
∑

k=0

∑

0≤t1≤···≤tk

q k+
∑k−1

j=0 2 j+
∑k

j=1 t j

=
1

(q ; q )∞

∞
∑

k=0

q k 2
∑

0≤t1≤···≤tk

q
∑k

j=1 t j

=
1

(q ; q )∞

∞
∑

k=0

q k 2

(q ; q )k
.

(3.4.22)

Similarly, the Hasse diagram of X2 is given in Figure 3.12. We have T (1) = 0 for any T ∈L (X2)
and obtain the Hasse diagram of X1 after cutting 0 ∈ X2. Then the Jordan–Hölder set is identi-
fied with

{1< t1 < t2 < · · ·< tk |k ∈Z≥0, ti − ti−1 ≥ 2} , (3.4.23)

which gives

ZX2
(q ) =

1

(q ; q )∞

∞
∑

k=0

∑

1<t1<···<tk
ti−ti−1≥2

q
∑k

j=1 t j

=
1

(q ; q )∞

∞
∑

k=0

∑

0≤t1≤···≤tk

q 2k+
∑k−1

j=0 2 j+
∑k

j=1 t j

=
1

(q ; q )∞

∞
∑

k=0

q k 2+k

(q ; q )k
.

(3.4.24)

Equating the results from the P -partition counting with the product form with W -algebras,
we can re-derive the Rogers–Ramanujan identities.

Note that the factor (q ; q )∞ in the denominators in (3.4.22), (3.4.24) does not appear when
we concernWN -algebra. It then seems to come from the fact that SHc correspond to the tensor
product of theWN -algebra and the Heisenberg algebra.

3.5 The triality in SHc

Here we construct another algebra map S2 associated with the transposition of Young dia-
grams. Two maps S1 and S2 then give an identification of three minimal model representa-
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T

=

Figure 3.13: The transposition of a Young diagram

tions. This is an analog of the triality inW∞[µ][28].

3.5.1 The transpose mappingS2

Note that the transposition Y T of a Young diagram Y is also a Young diagram (see Figure 3.13).
One can extend the transposition to an isomorphism S2 between representations of SH(N )

as follows. We write λT = (λ(1)T , · · · ,λ(N )T ) for an N -tuple λ ∈ Y (N ) and define a linear map
S2 : L (N ) → L (N ) by setting S2 |λ〉 = |λT 〉. We assume that we consider the linear map S2 :
L (N )(old)→ L (N )(new) only when two pairs of two parameters ε(old)

1,2 and ε(new)
1,2 are related by

ε(new)
1 = ε(old)

2 , ε(new)
2 = ε(old)

1 , (3.5.1)

which keeps the pairing 〈λ|λ〉 = 〈λT |λT 〉. The other parameters ai (1 ≤ i ≤ N ) are assumed to
be kept invariant. The linear map then induces an algebra mapS2 : SH(N )(old)→ SH(N )(new) by

S2(D
(old)

0,l+1) =

�

ε(new)
1

ε(new)
2

�l

D (new)
0,l+1 ,S2(D

(old)
±1,l ) =

�

ε(new)
1

ε(new)
2

�l

D (new)
±1,l , S2(E

(old)
l ) =

�

ε(new)
1

ε(new)
2

�l

E (new)
l , l ≥ 0 ,

(3.5.2)

The only nontrivial point forS2 to be an algebra map is the quadratic relation (2.3.41), but we
see that it also holds since we have

S2(D
(old)
±1 (z )) =D (new)

±1

�

�

ε(old)
2

ε(old)
1

�−1

z

�

,κ(old)(u ) =

�

ε(old)
2

ε(old)
1

�3

κ(new)

�

�

ε(old)
2

ε(old)
1

�−1

u

�

. (3.5.3)

3.5.2 The triality

We have the isomorphism even after we specialize the parameters. TheS2-dual of a restricted
N -datum 〈N , N +M , (ñi )i=1,··· ,N 〉 is the N -datum 〈(N +M , N ), (1, ni )1≤i≤N 〉. The corresponding
N -Burge condition becomes

λ(i+1)(l )−λ(i )(l )≤ ñi , (i , l ) ∈ X (N ) . (3.5.4)

Taking the transposition, we obtain

λ(i+1)T (l + ñi )≤λ(i )T (l ) , (i , l ) ∈ X (N ) . (3.5.5)

A pair (i , l ) ∈ X (N ) now labels the l th column of the i th Young diagram and it is natural to assign
it with an integer by

X T (i , l )≡ ai + ε
(new)
1 (l −1) = ai +N (l −1) =X (i , l ) . (3.5.6)
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3.5. THE TRIALITY IN SHC

A similar reasoning shows that the algebra mapS2 intertwines these two representations.
In summary, we obtained two algebra maps S1 and S2 among a certain specialized SHc .

They intertwine three minimal model representations of the nonlinear algebra SHc :

〈(N , N +M ), (ni , 1)1≤i≤N 〉
S1←→〈(M , N +M ), (mi , 1)1≤i≤M 〉

S2←→〈(N +M , M ), (1, mi )1≤i≤M 〉 .
(3.5.7)

The mapsS1 andS2 permute three representations and then form S3 in that sense. We have
an analog of the triality inW∞[µ] in terms of the algebra SHc . In fact, the triality inW∞[µ] is
expressed as the redundancy of the ’t Hooft coupling parameter µ:

W∞[µ=N ]←→W∞
�

µ=−N
�

1+
ε1

ε2

��

←→W∞
�

µ=−N
�

1+
ε2

ε1

��

. (3.5.8)

In other words, we give another meaning of the triality as the identification of certain special
points in the parameter space associated with the algebra SHc . The corresponding minimal
model representations share the same spectrum with respect to the set of commuting opera-
tors Dl+1 after the rescaling byS1,2.

60



Chapter 4

Conclusion

In the present thesis, we constructed a series of irreducible representations of SHc which de-
scribes minimal model representations. We can express such an action explicitly by using a
gauge theoretical basis. Each element of the basis satisfies the N -Burge condition, which is
consistent with a related work[42]. Using the explicit representation to analyze the level-rank
duality, we find a more appropriate labeling set X (N )B which parameterizes rows of N -tuple
Young diagrams. The set X (N )B is naturally equipped with a partial order and we proved that
the gauge theoretical basis is identical to the set of all P -partitions over the partially ordered set
X (N )B . The level-rank duality can be considered as the redundancy how we see a P -partition as a
multiple Young diagram. We also have an algebra isomorphism between two minimal model
representations which are level-rank dual to each other. The two representations share the
same set of eigenvectors with respect to commuting operators D0,l+1 ∈ SHc , l ≥ 0. The com-
mutator El+k = [D−1,l , D1,k ], l , k ≥ 0, is also shared after a constant rescaling. Since a lowest
weight representation of SHc is characterized by the actions of these degree-0 operators on
the vacuum state |;〉, we may consider the two representations as the same one. We also have
another isomorphism associated with the transposition operation of Young diagrams. The
isomorphism and the level-rank duality form a triality of SHc and give an identification of
three minimal model representations. This phenomenon is expected for its universal property
in a sense that there is an equivalence betweenWN+U(1) and SH(N ) for any N . The universality
may be a sign of a triality.

There are some directions following this study.

Back to 4-dimensional gauge theories

We have mentioned in Section 2.2 that the basis {|λ〉}λ∈Y (N ) for the space L (N ) corresponds to
the set of all fixed points in the U(N )-instanton moduli space. We also have seen in Section
3.4 that the Euler characters of some elements of the basis have vanished and then seem to
give divergent contributions to the instanton partition function. However, we should notice
what leads to the Nekrasov formula (2.2.13). The formula is justified only when each fixed
point is isolated, but the vanishing Euler character for a null vector means that the torus D̃
does not localize the null vectors to an isolated point. Instead, we have to integrate a certain
function over null subspace. Our results claims there is a certain action of SHc on such a
nontrivial space. It may be interesting to see the geometry of the instanton moduli space from
the representation theory of SHc and to study the role of null vectors in 4-dimensional gauge
theories.
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Note that when we write down the explicit action of SHc , the parameters ε1,2, a1,··· ,N have
appeared as degree-0 rational functions in most cases. It may be interesting to compare Seiberg–
Witten curves and our results, if there may exist a limit ε1,2, a1,··· ,N → 0 keeping their linear
relations.

Applications to the AdS3/CFT2 correspondence

We have seen a universal aspect of SHc in a sense that there is a series of assignments SHc →
SH(N ) for any N and then have reached a triality relation in the algebra. In [28], the level-rank
redundancy inW∞[µ] gave an identification of the symmetries in the two sidesAdS3 and CFT2.
We hope SHc also gives the same identification and its minimal model representation will be
realized in the higher spin theory on AdS3.

On the connection between the Rogers–Ramanujan identities and the Lee–Yang singularity

We revisit the connection between the Rogers–Ramanujan identities and the Lee–Yang singu-
larity from the theory of P -partitions. A generalization of this connection is known for the Vi-
rasoro cases (N = 2) (See [53] and references therein). There are few works beyond them, how-
ever†1. While the product hand side of the generating function is completely determined[52],
it is difficult to have the sum side in general. It is meaningful to study the algebra SHc itself to
reveal new identities.

†1Some identities are obtained for the algebraW3 in [56, 57]
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Appendix A

Proof of Lemma 2.2

Here we give a proof of the lemma 2.2.

Lemma A.1. For λ ∈Y (N ) and l1, l2, · · · , ln , we have

D1,ln
D1,ln−1

· · ·D1,l1
|λ〉

= (ε1ε2)
n

∑

π⊃λ
|π|= |λ|+n

 

∑

w∈Sn

eu

 

−(1− t1)(1− t2)
n
∑

i> j

sw (i )s
−1
w ( j )

!

n
∏

i=1

�

c1

�

sw (i )

�

ε1

�li
!

×eu
�

((1− t1)(1− t2)V
∗
π −W ∗)⊗ (Vπ−Vλ)−n t1t2

�

|π〉 ,

(A.0.1)

where V ∗
π −V ∗

λ =
∑n

i=1 si represents a decomposition of V ∗
π −V ∗

λ by the torus action.

Proof. For each pair of N -tuples λ,π ∈ Y (N ) such that π ⊃ λ, |π| = |λ|+n , we fix a sequence
of N -tuples π0,π1, · · · ,πn ∈ Y (N ) satisfying λ = π0 ( π1 ( · · · ( πn−1 ( πn = π. We denote by
si =V ∗

πi
−V ∗

πi−1
for 1≤ i ≤ n . Note that the sequence (si )ni=1 characterizes the original sequence

of N -tuples. We call a permutation w ∈Sn admissible if there is such a sequence of N -tuples
which gives the permuted sequence (sw (i ))ni=1. We see from (2.3.9) that we have

D1,ln
D1,ln−1

· · ·D1,l1
|λ〉

= (ε1ε2)
n

∑

π⊃λ
|π|= |λ|+n









∑

w ∈Sn
admissible

eu

 

−(1− t1)(1− t2)
n
∑

j>i

sw ( j )s
−1
w (i )

!

n
∏

i=1

�

c1

�

sw (i )

�

ε1

�li









×eu
�

((1− t1)(1− t2)V
∗
π −W ∗)⊗ (Vπ−Vλ)−n t1t2

�

|π〉 ,

(A.0.2)

Here we should note that a similar consideration with Figure 2.2 shows that the Euler character
eu
�

((1− t1)(1− t2)V ∗
π −W ∗)⊗ (Vπ−Vλ)−n t1t2

�

neither vanishes nor diverges.
The following statement completes the proof.

w ∈Sn is not admissible=⇒ eu

 

−(1− t1)(1− t2)
n
∑

j>i

sw ( j )s
−1
w (i )

!

= 0 . (A.0.3)
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APPENDIX A. PROOF OF LEMMA 2.2

sw ( j )

sw (k̂ ) sw (i )

Figure A.1: Three boxes sw (i ), sw ( j ), sw (k̂ ) whose positions are given by the torus action.

sw ( j ) sw (l )

sw (k ) sn

Figure A.2: A pattern how the box sn is assigned.

We prove this by induction on n . For n ≤ 3, we have si s−1
j 6= 1, t1t2 for any numbers i 6= j , and

then we see that (A.0.3) holds. For general n , define the integer P (w ) for w ∈Sn by

P (w ) = #{(i , j )|1≤ i < j ≤ n , s−1
w ( j )sw (i ) = t1, t2}

−#{(i , j )|1≤ i < j ≤ n , s−1
w ( j )sw (i ) = t1t2} .

(A.0.4)

The Euler class in (A.0.3) vanishes if P (w )> 0 and diverges if P (w )< 0. If a pair (i , j ) of distinct
numbers satisfies i < j and s−1

w ( j )sw (i ) = t1t2, there exists a unique number k̂ 6= i , j such that

s−1
w (k̂ )

sw (i ) = t1 and s−1
w ( j )sw (k̂ ) = t2, which can be seen in Figure A.1. Here we again relate each

1-dimensional vector subspace to a box whose position is given by the torus action. Note
that the map (i , j ) 7→ k̂ is injective. Since i < k̂ or k̂ < j , the subspace s−1

w (k̂ )
sw (i ) or s−1

w ( j )sw (k̂ )

contributes to P (w ) by +1. This means P (w ) ≥ 0. Since πn−1 is a N -tuple of Young diagram,
we have

P (w ) =
�

#{(i , j )|1≤ i < j ≤ n , w (i ), w ( j ) 6= n , s−1
w ( j )sw (i ) = t1, t2}

−#{(i , j )|1≤ i < j ≤ n , w (i ), w ( j ) 6= n , s−1
w ( j )sw (i ) = t1t2}

�

+#{ j |w −1(n )< j ≤ n , s−1
w ( j )sn = t1, t2}−#{ j |w −1(n )< j ≤ n , s−1

w ( j )sn = t1t2} .

(A.0.5)

The last term can not be negative by a similar discussion. The first term is equal to P (w̃ ) for
w̃ ∈ Sn−1, which maps {1, · · · , w −1(n ) − 1, w −1(n ) + 1, · · · , n} to {1, · · · , n − 1} by w̃ (i ) = w (i ).
Assume that P (w ) = 0, and then we have P (w̃ ) = 0 and

#{ j |w −1(n )< j ≤ n , s−1
w ( j )sn = t1, t2}−#{ j |w −1(n )< j ≤ n , s−1

w ( j )sn = t1t2}= 0 . (A.0.6)

The induction hypothesis means that w̃ is admissible. The box sn is assigned like Figure A.2,
where some of the three boxes sw ( j ), sw (k ) and sw (l ) may not exist, but sw (k ) and sw (l ) should exist
if the box sw ( j ) is given. We have k , l > j since w̃ is admissible. The condition (A.0.6) then
holds only when w −1(n ) > j , k , l , which means that w is admissible. Therefore (A.0.3) holds
for general n .
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