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It is noted that the deformation of piles is predominantly governed by the soil-pile interaction. 

This is for the simple reason that the movement of the piles and the surrounding soil is 

mutually dependent. Piles subjected to lateral loads deforms relative to the surrounding soil 

and conversely, the surrounding soil deforms relative to the deformation of the piles. In 

common engineering practice, long and flexible piles are used. For this type of piles subjected 

to lateral loads, its deformation is not observed over its entire length as it attenuates with 

increasing depth. Significant pile deformation is rather observed to occur only at the upper 

region near the ground surface. Therefore, this length covering the region of significant 

deformation, called the active pile length, La, is important in developing solutions for laterally 

loaded pile. This active pile length is a parameter reflective of the soil-pile interaction as it is 

characterized by the stiffness of the pile relative to the stiffness of the surrounding soil. 

Along this active pile length, a soil wedge in the passive region can be fully mobilized with 

large external lateral loading. This wedge is indicative of the ultimate side soil resistance and 

hence, the ultimate lateral pile resistance. Therefore, this study intends to establish 

relationship of the ultimate lateral pile resistance and the simple soil-pile interaction 

parameter, active pile length, La.  

The active pile length, La, is said to be proportional to the characteristic length, Lc, which is a 

ratio of the pile stiffness and the soil stiffness. In this study, Konagai’s formula is used. This 

formula is a function of the pile stiffnes, EIp and shear modulus, G. The main difference with 

the expression commonly used in engineering (Chang’s formula) is the use of shear modulus 

to represent the soil stiffness rather than relying on the coefficient of horizontal subgrade 

reaction, kh. The substitution of the shear modulus for the characteristic length allows to 

capture inherently the stiffness of the soil and provide more convenient in-situ test for getting 

the shear modulus through shear velocity without the need for size effect correction. 
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The research takes off with the numerical simulation of laterally loaded piles in two-

dimensional (2D) system. In this simulation, the elasto-plastic behaviour of sand is 

considered with elastic piles embedded in it. It is acknowledged that in reality, the soil-pile 

problem is innately a three-dimensional (3D) problem and having soil-pile interaction in 2D 

and in out-of-plane direction. Hence, in this case, piles considered is limited to capture 

behavior of walls, row piles or sheet piles. Nevertheless, the main intention is to simply 

investigate the formation of the passive soil wedge during nonlinear scenario and relate it to 

the active pile length. Moreover, the behavior of the active pile length can be established 

varying the contributing parameters such as the pile and soil stiffness. Results show a 

proportional relationship of the active pile length with the characteristic length. More 

importantly, there is a high correlation with the relationship of active pile length and the 

ultimate lateral pile capacity. 

Hence, the concept of active pile length is applied in the three-dimensional platform for single 

piles embedded in sand. From the results of the rigorous solution, a simplified method to 

evaluate the ultimate lateral resistance of single piles in sand using the key parameter, La, is 

presented.  

In the progressive formation of the active pile length, two stages are highlighted: the initial 

stage and the ultimate stage. First, the active pile length at the initial stage, L0, is determined 

on the basis of known parameters such as the pile stiffness, EIp, and small-strain shear 

stiffness, Gmax. Capturing the elasto-plastic behavior of the surrounding soil, where there is 

degradation of surrounding soil stiffness, the active pile length at the ultimate stage or at 

larger deformations, Lau, can be determined by application of a correction factor. This 

parameter together with other pile and soil parameters that describes the mobilized passive 

soil wedge such as the outer pile radius, R0, unit weight, γ, and Rankine passive earth pressure 

coefficient, Kp, is presented to be highly correlated with the ultimate lateral pile resistance, 

Pult. 

With these findings for single piles, the concept of active pile length is extended to closely-

spaced grouped pile which could be analyzed as an equivalent single vertical pile. Grouped 

piles having spacing to diameter, s/dp, equal to 1.5, 2.5, 3.5 and 4.5 is considered as closely 

grouped piles in this study. The relative pile stiffness to the surrounding soil stiffness is 

similarly the predominant driving parameter to describe the lateral deformation along the 

length of the grouped piles. Generally, results show that similar relationships and processes 

can be found with the single piles in evaluating the ultimate lateral pile resistance. Special 

attention must be made to the definition of parameters such as the grouped pile stiffness, EIg 

and R0 which is derived specifically for closely grouped piles. There is a difference of 13% for 

evaluating the ultimate lateral pile resistance of single and closely grouped pile. However, 

superimposing all cases considered for the single and closely-spaced grouped piles, a very 

high correlation (R2=0.97) is still observed.  

Thus, the determination of the ultimate lateral pile capacity using simple parameters with 

physical basis and reflective of the mechanisms of the laterally loaded piles provides more 

practical approach in the seismic design and assessment of piles and can be extended to 

different soil-pile configurations under more complex loadings and conditions. 
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Chapter 1  
Introduction 

1.1 Background  

Piles are commonly used as deep foundations to transfer induced load down to deeper and harder stratum. They are 
stratum. They are usually used to support important structures such as building, bridges, and nuclear 
nuclear power plants, turbines, among others (see  

Figure 1 - 1).  
 
 

 

 
 
Figure 1 - 1. Piles as deep foundation for important structures: (a) buildings (IHA), (b) bridges (SIRAJ consulting 

engineers), (c) powerplant (Alamy, 2014)and (d) turbines (Alamy, 2013) 

  
These piles are most susceptible to one or a combination of external lateral loads that could be in 

the form of wind, wave actions, earthquakes and/or large earth pressure. In the instance where 

the induced lateral loads are greater than the ultimate lateral capacity of piles, the structural 

integrity of the piles are at risk and leads to failure. This failure may be due to the loss of support 

from the resistance of the surrounding soil, which may allow excessive lateral deformations or 

formation of plastic hinges in the pile. An example showing failure of laterally loaded piles is 

shown in Figure 1 - 2 (Wei et al., 2008).  In this photo of Luanghe bridge, taken after the 1976 

Tangshan earthquake (M7.8) in China, pier deformations and dislocation of girders are observed 

due to the settlement and the lateral bending deformation of the piles. Given this actual disastrous 

scenario, it shows the importance of determining the ultimate lateral pile capacity. This definition 

allows to have an upper limit in the design and assessment of piles to resist the induced loads and 

realize the target performance.  

(a) 

(c) 

(b) 

(d) 
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Figure 1 - 2. Girders dislocated in Luanghe bridge after Tangshan Earthquake (from Wei et al., 2008) 

Practicing engineers have vital roles in the design of infrastructures in the society. Thus, the 

definition of the ultimate lateral pile capacity must appeal to them by being simple and practical. 

Yet more importantly, the salient feature of the definition of the ultimate lateral pile capacity is it 

should have physical basis and reflective of the mechanisms of the laterally loaded piles through 

simple parameters.   

In deep foundations, there is the presence of two elements, the soil and the pile. When these piles 

are subjected to lateral load, the movements of the piles and their side soils are mutually 

dependent. The deformation of the piles is relative to the deformation of the soil. Conversely 

speaking, the deformation of the soil is relative to the deformation of the piles. Hence, the lateral 

resistance of piles is governed by soil-pile interaction. In common engineering practice, long and 

flexible piles are normally used. The deformations of these piles when subjected to lateral load 

does not transpire over the entire actual length. Instead, the pile deformation becomes negligible 

at some depth level from the ground surface (Figure 1 - 3). In effect, the actual pile length is not 

considered but rather the length that has significant deformation is ought to be the key parameter 

for developing solutions for laterally loaded piles to consider a more pragmatic approach. This 

length of significant deformation is called the active pile length, also referred as effective length 

by other researchers. This active pile length, is a parameter reflective of the soil-pile interaction 

as it is characterized by the stiffness of the pile relative to the stiffness of the surrounding soil. 

 

 

Figure 1 - 3. Lateral load transfer mechanism 

La

External Lateral Load

Lateral Resistance
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In the scenario where piles are subjected to a lateral load especially under strong occurrences, the 

pile moves parallel to the direction of the load and pushing the front soil surrounding it (Figure 1 

- 3). Consequently, compressive and shear stresses and strains are generated in the passive region 

of the soil, in consort with its nonlinear behaviour. A soil wedge is formed and mobilized along 

this active pile length. This side soil resistance, represented by the wedge, against the pile 

corresponds to the lateral pile capacity. 

Therefore, it is inferred that the ultimate lateral pile resistance can be described by active pile 

length for the resiliency and response of piles within target structural and seismic performance. 

 

1.2 Research Significance 

With the advent of high computing powers and advanced technology, rigorous tools have been 

developed to allow simple to complex soil-pile configurations to be modelled and simulated under 

different conditions. While it is indeed a powerful tool, fact remains that it is also a tedious job, 

not to mention the expert modelling skills and techniques needed to implement a careful, precise 

and correct simulation. To add to that, expensive computing time and memory is required with 

the increase in complexity of systems to simulate the scenario as close to reality. Thus, it is 

warranted that simple yet high calibre solutions are to be made available especially to practicing 

engineers.  

Many attempts have been done to provide simplified approach in semi-empirical or analytical in 

nature, despite the challenges in the complexity of pile design especially in the interest of the 

lateral pile capacity. However, with the simplifications comes the consideration of simple and 

conservative conditions like treatment of soil as an elastic medium.  

This research proposes a method that echoes the simplistic nature of the existing methods yet at 

the same time, is founded on rigorous solutions offered by the more advanced and powerful tool. 

Problematic simplified treatment of soil as elastic medium of existing methods are addressed 

through consideration of the elasto-plastic behaviour of soil in the modelling and simulation of 

the system to produce rigorous solutions. The use of simple parameters with physical meaning 

such as the active pile length, reflective of the soil-pile interaction, provides a more valuable 

meaning and relevant to the practicing engineers.     

The goal of this research to provide a simplified expression for the ultimate lateral pile resistance 

based on the active pile length parameter yields a more practical approach in the design and 

assessment of piles. 

  

1.3 Objectives 

Generally, the objective of this study is to bridge the gap between the available rigorous methods 

and the world of practicing engineers by providing a rational simplified method for determining 

the ultimate lateral pile resistance and have the structures performed within target performance 

under expected loads (Figure 1 - 4). 
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Figure 1 - 4. Schematic diagram of the main objective 

Specifically, this study aims to do the following:  

 Take advantage of the available rigorous methods like the finite element method (FEM) 

to model different soil-pile configurations with consideration of the elasto-plastic nature 

of the soil. This allows to simulate the soil-pile system as close to reality. 

 

 Analyse the lateral deformation along the pile length in the interest to determine the 

active pile length progression with increasing load for several case studies from the 

results of these simulations. Correspondingly, describe the soil wedge formation around 

the laterally loaded pile represented by the side soil ultimate resistance. 

 

 Finally, establish the relationship of the ultimate lateral pile resistance with the active pile 

length. In this way, a rational simplified expression for the ultimate lateral pile resistance 

based on a parameter indicative of the soil-pile interaction i.e. active pile length, and other 

soil properties could be provided for a more practical approach. 

 

1.4 Methodology 

This research entails a three-tier process as described in Figure 1- 5. The research process starts 

with the (1) numerical simulation followed by (2) the post-processing of the results and finally 

(3) the analysis to arrive at a rational simplified expression.   

 

 

Figure 1- 5. Overview of the research process 

 

©http://www.forum8.co.jp/

Rational 

Simplified 

Expression

easier, economical, and reliable 

for practicing engineers

Numerical Simulation

Post-Processing

Analysis
1

(Table 1-1)

Investigation of pile deformation with

the corresponding soil deformation.

Derivation of active pile length.

2

3

Establishment of relationship between 

the ultimate lateral pile capacity and 

parameters i.e. active pile length
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To achieve the objectives abovementioned, a rigorous solution using finite element method (FEM) 

is initially performed. The modeling of the soil-pile system is intended to simulate the response of 

piles under lateral loading considering the general configuration listed in Error! Reference source 

not found.. Parametric analysis considering variations of pile parameters and soil type is 

performed for different cases (i.e. single and grouped piles). 

 
 
Table 1- 1. Soil-pile system general configuration 

 

A post-processing is done from the results of the rigorous method.  Investigation and analysis is 

done in terms of the pile deformation with the corresponding soil deformation around the 

laterally loaded pile. The active pile lengths are derived based on setting the criteria for the 

negligible deformation as the depth where the lateral displacement is only 3% of the pile head 

lateral displacement. Correspondingly, the ultimate side soil resistance is derived for all the cases. 

Finally, the nonlinear response of piles embedded in sand, specifically in the interest of the side 

soil resistance is described by the active pile length. With the establishment of the relationship of 

these two parameters, a simplified expression could be provided for the ultimate lateral pile 

capacity.  

 

1.5 Scope of Research 

In this research, the interest is the use of active pile length as a key parameter in developing 

solutions for the ultimate capacity of laterally loaded piles. Hence, the focus of this research is on 

long and flexible piles. For short and stiff piles, a different behaviour and failure mechanism can 

be observed such that the concept of active pile length would be irrelevant.    

Moreover, it is acknowledge that there are several combinations of soil-pile configuration under 

different conditions possible. To discuss and delved into all these issues would be impossible 

given the time constraint. Hence, this study aims to limit the study in way that it could still provide 

valuable contributions based on realistic scenarios. This research intends to provide a seed 

concept that could be built up on for extension to more complex ideas (see Figure 1- 6).   

In modelling the piles, its behaviour is considered as an elastic case where the confinement of the 

soil around the pile is assumed to be a sufficient support even with formation of plastic hinges in 

the pile itself. For grouped piles, closely grouped piles are investigated on in the intention to 

extend the analysis for single fixed head piles to grouped piles that could be treated as equivalent 

single piles. Hence, the spacing to diameter ratio considered is small i.e. s/dp = 1.5, 2.5 and 4.5 to 

ensure grouped piles under the category of closely grouped piles. Moreover, a square 

configuration of the grouped piles is dealt with at this stage. 

Soil Homogeneous Sand 

Soil Model Elasto-plastic behavior 

Pile Type Fixed Head, Long, End bearing Piles 

Pile Model Linear Elastic 

Analysis FEM, static and monotonic loading 
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For treatment of soils, it is recognized that the stratigraphy of soil medium in existent is not 

homogeneous in terms of relative density, more so of the presence of various types of soil 

throughout the entire soil depth. However, given at this early stage, treating the soil medium as 

homogeneous puts a leverage in establishing the behaviour of the active pile length for a particular 

type of surrounding soil condition and its effect to the corresponding side soil resistance. In this 

particular research, the focus is on soil medium made up of a homogeneous dry clean sand. This 

could be related in the actual case where the top layer is made up of uniform sand and 

groundwater is not high, or perhaps a conservative approach for predominantly sandy soils, 

where the weighted average of soil properties along the entire depth is considered to be the 

equivalent homogeneous soil property.  In any case, strain localization in the soil is not yet 

accounted for. 

In terms of the load cases, the lateral load is applied on the pile heads in a static pushover method. 

In this case, the pile is subjected to a lateral load in a monotonic displacement-controlled pattern 

that continuously increases until large displacements are reached. 

The cases considered for piles, soils and the loading condition in this research would serve as a 

jump-off in the analysis for more complex scenario. In a way, this perceived modularity of this 

research also makes it flexible to cater to specific problems once the whole system is built up.  

 

 

 

Figure 1- 6. Scope and limitation of this research 

 

 

 

On Piles On Soils Loading Conditions

• Linear Elastic Model

• Closely grouped piles. s/dp

= 1.5, 2.5, 4.5 with square

configuration (2x2 and

3x3).

• Dry Clean Sand

• Homogeneous

• Static Monotonic Case

• No Strain Localization

• Long and Flexible, End 

bearing piles
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1.6 Organization of the Thesis 

The following summarizes the organization of thesis and a brief description of each chapter. 

Chapter 1: Introduction  

Chapter 1 provides the overview of the study. This includes the background and thrusts of this 

research, the objectives, a view on the research investigation tools, and the outline of this research 

dissertation.  

Chapter 2: Review of Related Literature  

Chapter 2 presents a comprehensive review of existing researches on the laterally loaded pile 

behaviour. This chapter presents the different approaches on determining the ultimate lateral pile 

resistance available in this aspect and highlight the need for this present study. 

Chapter 3: Characteristic Length  

Chapter 3 presents the definition of the characteristic length which is proportional to the active 

pile length. The use of Chang’s formula to determine this characteristic length as current practice 

in Japan is presented. Particularly, Chang’s formula’s dependency on the use of subgrade reaction 

is investigated on. This chapter highlights the physical basis, or the lack thereof, of this coefficient 

of horizontal subgrade reaction and proposes a more rational expression considering the shear 

modulus to represent the soil stiffness. The potential merits and solutions to improve the current 

practice using the new expression to determine the characteristic length is discussed. 

Chapter 4: Preliminary Study on the Concept of Active Pile Length for Piles Embedded in Sand (2D) 

Chapter 4 delves on the concept of the active pile length in relation to the characteristic length. As 

a preliminary study, this chapter presents the study considering a 2D soil-pile system, to which 

piles could be deemed as sheet piles embedded in sand. Parameters affecting the active pile length 

is highlighted. The potential of active pile length to describe the ultimate lateral pile resistance is 

presented.  

Chapter 5: Application of Active Pile Length in the Ultimate Lateral Resistance of Single Fixed Head 

Piles Embedded in Sand  

Chapter 5 discusses the applicability of the active pile length on determining the ultimate lateral 

pile resistance in a three-dimensional level. This chapter presents the process of arriving at the 

simplified expression based on the rigorous solution of simulating a long single fixed-head pile 

embedded in an elasto-plastic sand.  

Chapter 6: Extension of the Applicability of Active Pile Length for the Ultimate Lateral Resistance of 

Closely Grouped Piles 

Considering the applicability of active pile length on determining the ultimate lateral pile 

resistance of single piles in sand, Chapter 6 extends this idea for closely grouped piles that could 

be considered as equivalent single pile. 

 

Chapter 7: Conclusions and Recommendations 
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Chapter 7 summarizes valuable contributions derived from this research and highlights the main 

findings for the simplified method to determine the ultimate lateral pile resistance based on 

simple active pile length parameter. This chapter also contains the recommendations on the 

potential extension on the use of active pile length on the same application considering more 

complex soil-pile configuration and under different kinds of loading.   

References 

Appendix A Code for the subloading tij for 2D case 

Appendix B Code for the user-defined material (hypoplastic) (Abaqus) 

Appendix C Sample input file for the 3D numerical simulation (Abaqus)  

Appendix D Sample input file for the element test using the hypoplastic model (Abaqus) 
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Chapter 2 
 Review of Related Literature 

2.1 Lateral Pile Resistance 

External lateral load is one of the components of the total external forces that engineers have to 

address when it comes in designing the piles under expected loads.  One researcher (Rao et al., 

1998) say that the percentage of lateral loads that may induce onshore structure are in the order 

of 10-15% and even worse for offshore structures, exceeding 30%. Perhaps, one of the common 

lateral forces that could induce on the pile supported structures are wind gusts (Basu et al., 2008). 

Other major sources of lateral loads are the horizontal forces generated from the horizontal 

ground shaking when earthquakes occur. A more obvious case would be the exposure of piles to 

lateral earth pressure, among others. However, there also structures, where the piles are 

intentionally designed to mainly resist the lateral loads, where deemed to be the critical loads. 

Examples of these structures are oil production platforms, wharfs and jetties and earth retaining 

structures (Basu et al., 2008). Particularly for earth retaining structures, the main role of pile to 

resist lateral forces is evident in the cases where piles are installed in slopes to impede ground 

movements and piles are used to support open excavations.  All of these scenarios manifest 

exposure and vulnerability of piles to lateral loads.  

The critical problem for the lateral loading is the loss of lateral bearing resistance of the soil in the 

passive region.  When the lateral loads induced on the piles reaches the ultimate lateral capacity, 

failure happens. One actual example of this failure is the collapse of pile supported reinforced soil 

wall in a mixed-used development in the southern part of Malaysia (Shaw-shong et al., 2010). 

Investigations showed that the failure is caused by the rise of water table in the ground due to the 

perpetual heavy rainfall, where the saturation level of the soil is eventually reached causing 

excessive lateral load to the piles. The excessive lateral stress imposed on the pile exceeded the 

ultimate lateral resistance of the piles that resulted to the collapse of the central portion composite 

wall-pile structure. Another failure case is due to the lateral seismic loads generated from the 1976 

Tangshan earthquake on Luanghe Bridge in China (Wei et al., 2008) as previously discussed in the 

introduction in Chapter 1. The imposed lateral loads reached the ultimate side soil resistance limit 

conditions that allowed for the excessive lateral displacements of piles, consequently, causing 

displacements of bridge spans from the seat decks.  

To mitigate the potential disastrous failures, there are three criteria that need to be satisfied in 

addressing the lateral forces (Mokwa, 1999):(1) The ultimate side soil resistance should be 

adequate enough to resist the generated stresses and strains from the external lateral loads. (2) 

Pile deformations should be within acceptable limits and (3) there structural integrity of the 

foundation system should be kept intact.  

It is indeed crucial to determine some limit conditions for the structures to perform the way they 

are intended to and provide safety to the users. Thus, the lateral resistance is an important 

element for the design of piles to consider (Abdrabbo and Gaaver, 2012). 
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2.2 Methods for predicting the lateral resistance 

There are several methods in determining the lateral pile resistance and finding solutions for the 

response of laterally loaded pile.  These methods can be categorized to (1) Limit States, (2) Semi-

Empirical, (3) Elastic Continuum and (4) Numerical Simulations. Lateral response of piles is 

complicated to be evaluated, hence methods under (1) and (2) are attempts to provide simple 

solutions based on some basic idealizations.  Methods under (3) made closed form continuum 

solutions available but limited to consideration of soil as elastic. Recent advances in technology 

offered methods under (4) that allow rigorous solutions and flexibility in dealing with various 

soil-pile configurations. These methods have its advantages and limitations. These will be 

discussed in the following sections and are summarized in Error! Reference source not found.. 

2.2.1 Limit States 

The first criteria can be addressed during design using ultimate resistance theories such as those 

Broms (1965) or Brinch Hansen (1961). Brom’s method is based on the earth pressure theory for 

elastic medium soils that may be applicable to the cohesionless or cohesive soils, short and long 

piles with fixed or free-condition. Similar development is made by Hansen, but is limited only for 

the rigid and cohesive soils only. Other researchers have also proposed similar limit states 

formulation ( Fleming et al., (2009), Reese et al., (1974), Meyerhof et al., (1988)). Noteworthy, is 

that these methods produce different values that may lead confusion to practicing engineers. 

2.2.2 Semi-Empirical (Subgrade Reaction Method) 

The concept is based on a beam resting on a soil medium represented by discrete springs. This is 

known as the Winkler model (Hetenyi, 1946). This is commonly used in analysing the behavior of 

foundations and where piles are treated as thin elastic strip. The difficulty in using this method is 

the determination of reasonable value of the modulus of the subgrade reaction. This is parameter 

is not a fundamental property of soil and is depended to many parameters such as the pile 

diameter, pile head conditions etc. Mostly, the coefficient of subgrade reaction is empirically 

derived. (Davisson and Prakash, 1963; Terzaghi, 1955) Hence, for the earlier developments of 

solutions to laterally loaded piles, soil medium are commonly treated as an elastic continuum or 

as Winkler spring medium. (Elson, 1989) Wot 

This modulus of subgrade reaction is used and extended in developing the p-y curves (Matlock 

and Reese, 1960a).  In this model, the soil is represented by a series of nonlinear p-y curves (load-

deformation curves). This is semi-empirical in nature as these curves are derived from the field 

load tests. From the model initially developed by Matlock and Reese (1960), these has been 

modified by other researchers by representing p-y curve as hyperbolic curve (Kondner, 1963). 

Evans and Duncan (1982) modified it to account for the silty soils having cohesion and frictional 

angle properties. Mokwa (1999) applied p-multipliers to extend for the grouped piles. From here 

on forward, constant modifications have been done by researchers to come up with a p-y 0curve 

for improvement and dealing with different conditions like Abdrabbo and Gaaver  (2012); Farid 

et al. (2013); Georgiadis and Georgiadis (2012); Guo et al. (2014); Han et al. (2015); 

Papadopoulou and Comodromos (2014); Salgado et al. (2014); Su and Yan (2013); Wu et al. 

(2015) among others.  
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The p-y method may lack some adequate theoretical background and may need back-calculation 

for reasonable prediction of suitable p-y curves. The accuracy of the output is highly dependent 

on the selection of p-y curve and reliable field test data. 

2.2.3 Elastic Continuum Solutions 

Contrary to the Winkler models, elastic and continuum solutions treat the soil as continuous 

medium. The analysis for both single and grouped piles for this particular approach assumes soil 

to be in linear elastic. Suitable secant modulus of soil is needed for satisfactory results. 

Researchers like Poulos, Banerjee and a more recent research Abedzadeh and Pak (Abedzadeh 

and Pak, 2004; Banerjee, 1978; Poulos, 1981) provide elastic solutions with these assumptions.  

However, soil is more complex than being an elastic type of medium. It exhibits an elasto-plastic 

behaviour. Thus, treatment of a more realistic behaviour of soil is needed. 

2.2.4 Numerical Approach  

With the development of high computing tools, the rise of finite element method to model the 

response of laterally loaded piles in soil have been made available. Proper modelling techniques 

such as adequate discretization are needed to have reasonably accurate results. Complex systems, 

such as considering the non-linearity of the soil and the pile are made possible. Yet, one 

disadvantage is the cumbersome modelling, and the expensive computing time and memory with 

the complexity of systems. Thus, this type of approach is usually done by researchers and rarely 

used in the engineering practice. Many have used this with the pioneering works of Muqtadir and 

Desai (1986), Brown and Shie (1990), Kimura et al., (1991), Trochanis et al. (1991) until recent 

works of Wakai et al. (1999), Yang and Jeremi, (2002)  Zhang, (2009) and Naveen et al. (2012) 

among many.  

Though commonly among these models, the soil model used are elastic-perfectly plastic such as 

the Mohr-Coloumb model, Drucker-Prager and Von Mises constitutive soils.  

2.3 Experiments 

Many lateral load tests have been conducted be it in the lab or field. For the lab, model tests in 1g 

and centrifuge tests are conducted. The lateral load – deformation curves are to be derived. The 

lateral load field tests originates from the works of Feagin (1937) along with the construction of 

pile-supported lock and dam along the Mississippi river. Another big pile data were derived during 

the construction of Arkansas River Navigation Project (Alizadeh and Davisson, 1970). These tests 

provide adequate enough to drive research studies in laterally loaded piles. From these 

experimental tests, it can be observed that with the increase of the load, the active length also 

increases considering some percentages of the pile head deformation as the negligible 

deformation. 

The load deformation curves are easier observed through the laboratory tests where parameters 

are much under control. Lab tests in the form of 1g and centrifuge tests are commonly conducted.  

Majority of the lab tests are conducted using the 1g as it is relatively cheaper than centrifuge tests. 

Different soil-pile configurations can be varied under different loading conditions. Cox et al. 

(1984) and Liu (1991) started the lab tests for large grouped piles. Models are careful used with 

scaling effect to model the behaviour of prototypes. Centrifuge model tests on pile groups have 
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been firstly conducted by (Barton, 1984). Other pioneering works are from Adachi et al. (1994),  

Zhang and Hu (1991) and (McVay et al., 1994) among many.  

2.3.1 Pile Deformation 

For performing lateral load test in the field, the pile lateral deformation along the soil depth is also 

of crucial interest along with the pile head deformation curves. This correspondingly determines 

the effect on the surrounding soil in the passive region. Normally, inclinometer probes are used at 

0.6m interval installed at the pile. The displacements at the pile need to be held constant for 15-

20 minutes while the deformations are being measured. Now, recent methods use the shape 

accelerometer consisting of triaxial chips at 0.3m interval. This can provide continuous reading of 

the displacement, velocity, acceleration and rotation at the location of the accelerometers (Rollins 

et al., 2008). In any case, these methods show the pile lateral deformation along the soil depth. 

Results show that the active pile length increases with increasing pile head displacement and not 

constant that can be observed when soils are treated as elastic medium.  

2.3.2 Soil Deformation 

Conventional failure passive wedge around laterally loaded piles are assumed as an inverse 

pyramidal shape (Reese et al., 1974a). However, recent model test using X-ray CT-scan (Otani et 

al., 2006) show that there is a conical wedge formed in the passive region with the increase of pile 

head loading. The X-ray CT scan results visualizes this wedge in progressive formation with the 

increase in pile head displacement. However, at larger displacements, the volume of this wedge 

reaches an ultimate value.  Thus, this shows that the ultimate side soil resistance, hence the 

ultimate lateral pile resistance of piles can be represented by this failure wedge as the pile 

deformation pushes it.  

2.4 Summary and Conclusion 

Several methods are available to determine solutions for laterally loaded piles. Researchers and 

engineers can choose from simple idealized models to rigorous models that can deal complex soil-

pile configuration. For simple models, simplifications on the soil medium are assumed such as 

treating the soil as an elastic medium, in Winkler or continuum model. On the other hand, for 

complex models such as finite element method, tedious and meticulous handling of model is 

required and may require a lot of time and memory resources. That is why, this type of modelling 

is usually left for researchers and rarely used in practice. In the attempt to marry the advantages 

of simple and complex models, this study intends to provide solution that is rigorously and 

theoretically based i.e. can capture the soil natural behaviour but simple enough to use in the 

engineering practice. Establishing the relationship of the pile deformation with the corresponding 

soil deformation in the passive region is the major thrust in this study.  
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Table 2- 1. Existing methods in determining the lateral response of piles. 

Methods Limit States Semi-Emprical Elastic Continuum Solutions Numerical Approach 

Literataures 

Broms (1965)  
Brinch Hansen (1961) 
Fleming et al., (2009) 
Reese et al., (1974) 
Meyerhof et al., (1988) 

Hetenyi (1946) 
Davisson and Prakash (1963) 
Terzaghi (1955) 
Kondner (1963) 
 Evans and Duncan (1982) 
 Mokwa (1999)  
Abdrabbo and Gaaver  (2012) 
Georgiadis and Georgiadis (2012) 
Farid et al. (2013)  
Salgado et al. (2014); Su and Yan (2013) 
Papadopoulou and Comodromos (2014) 
Guo et al. (2014); Han et al. (2015) 
Wu et al. (2015)  

Banerjee (1978) 
Poulos (1981) 
Abedzadeh and Pak (2004) 
 
 

Muqtadir and Desai (1986) 
Brown and Shie (1990) 
Kimura et al., (1991) 
Trochanis et al. (1991)  
Wakai et al. (1999),  
Yang and Jeremi, (2002)   
Zhang, (2009)  
Naveen et al. (2012)  
 

Advantages Simple solutions Simple Solution 
Treatment of Soil as 
Continuum 

Flezible 

Limitations Elastic Case Discrete, use of subgrade reaction Elastic 
Computationally expensive 
and memory, time, effort 

 

 

 

 

 



 

14 

 

Chapter 3 
Characteristic Length, Lc 

3.1 Introduction 

The characteristic length, 𝐿𝑐 , serves as the predominant criteria for estimating the deformation of 

piles. It is reflective of the soil-pile interaction, inherent in deep foundations or any structures 

embedded in soil. Chang’s formula is known to estimate this characteristic length in common 

engineering practice. This formula is even used in Japan code (Specifications for Highway Bridges). 

This is based on the popular Winkler’s theory or the subgrade reaction concept. In this model, the 

deformation of the piles are captured by the pile stiffness, 𝐸𝐼𝑝 and the soil stiffness is represented 

by the soil springs through the coefficient of subgrade reaction, 𝑘𝐻. However, the main question 

arises as to whether this coefficient of subgrade reaction, 𝑘𝐻, is considered to be a fundamental 

soil property. Having said that, a more rational expression for the characteristic length expression 

is proposed by Konagai considering the same pile stiffness, 𝐸𝐼𝑝, but considers the shear modulus, 

G, to represent the soil property. Hereafter, this expression shall be called as Konagai formula.  

In this chapter, the characteristic length in the form of Chang’s formula and Konagai’s formula (a 

function of 𝐸𝐼𝑝and G) are presented and compared. The current practice in Japan is delved into, 

particularly in the use of the Chang’s formula, and more essentially in the derivation of the 

coefficient of horizontal subgrade reaction. Further questions drawn based on this review of 

conventional method, considering the more complex behaviour of soil, are investigated on. Lastly, 

given the Konagai’s formula, the potential valuable improvements it could add on are discussed. 

 

3.2 Definition of Characteristic Length, Lc 

The characteristic length, 𝐿𝑐, is observed to be closely related to the active pile length, 𝐿𝑎,  as seen 

in Figure 3-1 (Randolph, 1981; Velez et al., 1983). Such that, multiplying the characteristic length 

by a constant factor, 𝛼, the active pile length can be derived as expressed in Equation 3.1.  

 

 𝐿𝑎 = 𝛼𝐿𝑐 (3.1) 

 

This characteristic length, 𝐿𝑐, from the name itself, characterizes the pile deformation. Knowing 

that the pile behaviour is predominantly governed by the soil pile interaction, this parameter 

describes the ratio of the pile stiffness relative to the surrounding soil stiffness.  

There are two expressions of characteristic length presented in this section: (1) Chang’s Formula 

(Chang, 1937) and (2): Konagai’s formula, as a function of 𝐸𝐼𝑝 and G. (Konagai, 2000) 

Chang’s formula (Chang, 1937) given by Equation 3.2 is the common characteristic length 

parameter widely used in engineering practice. The ratio of the stiffness of pile to that of the soil 

is a function of the pile stiffness, 𝐸𝐼𝑝  and the soil stiffness represented by the spring stiffness 
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described by the product of the horizontal coefficient of subgrade reaction, 𝑘𝐻 and pile diameter, 

𝑑𝑝.  

However, a more rational approach was proposed (Konagai, 2000) considering the soil stiffness 

to be represented by the shear modulus, 𝐺  as it was arguable if the coefficient of horizontal 

subgrade coefficient is a fundamental soil property. This is expressed by Equation 3.4. 

 
 
  where,  𝛽: inverse of characteristic length 

 
𝑘𝐻: horizontal coefficient of subgrade reaction 

  𝑑: diameter of the pile 

  𝐸𝐼𝑝: pile stiffness  

 

 where, 𝐸𝐼𝑝: pile stiffness 

 𝐺 : shear modulus 

 

In summary, the main difference of expressions 3.2 and 3.4 is the representation of the soil 

property, probing on which has more of the physical basis and being the innate or fundamental 

property of the soil.   

 

3.3 Current Practice in Japan 

In this section, Chang’s formula will be looked on more closely and its implementation in the 

specification of Japan Highway. Firstly, the background and the derivation of Chang’s formula is 

discussed, then followed by the estimation of the coefficient of horizontal subgrade reaction that 

constitutes the Chang’s formula. 

3.3.1 Chang’s Formula 

The simplistic appeal of Chang’s formula has made it mainstream in the engineering practitioners’ 

worlds then and now. This Chang’s formula is based on the Winkler model or the subgrade 

reaction concept, which is one of the oldest and most popular methods for investigating the 

behaviour of laterally loaded pile (e.g. Davisson and Prakash, 1963; Hetenyi, 1946; Hirai, 2012; 

Huang, 2011; Kramer and Heavey, 1988; Matlock and Reese, 1960; Terzaghi, 1955). The Winkler 

 𝐿𝑐 =
1

𝛽
    (3.2) 

  𝛽 = √𝑘𝐻𝑑 4𝐸𝐼𝑝⁄4     (3.3) 

 𝐿𝑐 = √
𝐸𝐼𝑝

𝐺
   

4

 (3.4) 

  

  

Figure 3-1. Schematic representation and 

relationship of active pile length and 

characteristic length 
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model assumes piles to behave like a horizontal beam resting on a half-space elastic foundation 

supported by discrete springs as shown in Figure 3-2.  

 

 

Figure 3- 2. Winkler Model (Beam on Elastic Foundation) 

In any simple method that is based on the Winkler’s model, the deformation of the soil at any point 
(z coordinate) depends on the local force per unit length given by Equation 3.5, where the k, is the 
stiffness of these springs, called as the modulus of subgrade reaction, (in force/length2 unit) 
exhibiting the material property of the soil medium. Simply put, it assumes the soil-pile system to 
exhibit a linear elastic behaviour, where the deformation of the soil is linearly proportional to the 
external force.  
 
 

 𝑝(𝑧) = −𝑘𝑢(𝑧) (3.5) 

 
 
The governing equation for a prismatic pile on a Winkler foundation is given by the differential 
equation in 3.6, where the spring modulus, 𝑘, is represented by the product of the coefficient of 
horizontal subgrade reaction (force per cubic length) and pile diameter given by 𝑘𝐻𝑑𝑝. 

 
 

 𝐸𝐼𝑝
𝑑4𝑢

𝑑𝑧4
+ 𝑘𝐻𝑑𝑝𝑢 = 0 (3.6) 

 

 

The equation above can be re-written as follows: 

 

 
𝑑4𝑢

𝑑𝑧4
+ 4

𝑘𝐻𝑑𝑝

4𝐸𝐼
𝑢 =

𝑑4𝑢

𝑑𝑧4
+ 4𝛽4𝑢 = 0   (3.7) 

 

where we note 𝛽 to be one of the real part of the four complex roots for the solution as expressed 

below. 

 𝛽 = √𝑘𝐻𝑑𝑝 4𝐸𝐼𝑝⁄
4

    (3.8) 

Then the general solution for this higher ordered differential equation is given by: 
 

 𝑢(𝑧) =  𝑒𝛽𝑧(𝐶1 cos𝛽𝑧 + 𝐶2 sin𝛽𝑧) + 𝑒−𝛽𝑧(𝐶3 cos𝛽𝑧 + 𝐶4 sin 𝛽𝑧) (3.9)  

u

z

P

M
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where constants 𝐶1, 𝐶2, 𝐶3 and 𝐶4 are integration constants that can be obtained based on given 
boundary conditions. And since 𝛽 has a unit of one over length, then the inverse of it is thought to 
be the characteristic length.  
 

3.3.2 Coefficient of horizontal subgrade reaction 

The coefficient of horizontal subgrade reaction is assumed to be a property of the soil 

representative of the soil stiffness. The determination of the horizontal subgrade reaction can be 

in the form of in-situ tests like the horizontal plate loading test, the soil borehole investigation 

using the number of blows (N) or from laboratory tests. Generally, the coefficient horizontal 

subgrade reaction is derived using “Equation 9.6.4” of the Specification of Highway Bridges (Japan 

Road Association, 2012) considering correction for the size effect of the small plate used to be 

applied on actual sized pile diameters. This is also given by the equation below, designated herein 

as Equation 3.10. 

 

 𝑘𝐻 = 𝑘𝐻0 (
𝐵𝐻
0.3

)
−3/4

   (3.10) 

 

 

where, 𝐵𝐻: Equivalent loading width (m)  

 𝐵𝐻 = √𝑑𝑝 𝛽⁄  (3.11) 

The expression for 𝐵𝐻 as abovementioned is specifically for a pile foundation based on 

Table 9.6.2 (Japan Road Association, 2012) 
   

𝑑𝑝: outer diameter of pile  

𝛽: Chang’s formula given by Equation 3.8.  

𝑘𝐻0: Coefficient of horizontal subgrade reaction from a plate load test (𝑘𝑁 𝑚3⁄ ).  

 

The coefficient of the horizontal subgrade reaction can be derived normally by using the 

horizontal plate loading test. In this in-situ test, a vertical pit is excavated then lined with metal 

sheet for support. This sheet has a hole intended for the vertical plate. This plate has typical cross-

sectional dimension ratio of B/L=2. Then, the vertical disk is loaded by a hydraulic jack. It pushes 

the vertical plate laterally on the side soil (as shown in Figure 3-3). From the incremental lateral 

load, the corresponding displacements are recorded. The lateral load – deflection curve is then 

plotted as seen in Figure 3 - 4. The coefficient of horizontal subgrade reaction, 𝑘𝐻0, is determined 

from the secant moduli of horizontal load-deformation curves at given displacement.   
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If the modulus of soil deformation 𝐸0 (𝑘𝑁 𝑚2⁄ ) is known from performing one of the methods 

listed in Table 3-1 (Table 9.6.1 from (Japan Road Association, 2012) ), the following equation can 

be used: 

 𝑘𝐻0 =
1

0.3
𝛼𝐸0   (3.12) 

 

where,  𝛼: correction factor dependent on the method and load case and listed in Table 3-1. 

Implicitly, an iteration is needed to determine the coefficient of horizontal subgrade reaction as 

shown in Equation 3.10, where this expression would be dependent on Equation 3.11  and 

correspondingly to Equation 3.8.   

 

Table 3 - 1. Correction factor, 𝜶,  for the following methods and load case (after Table 9.6.1 in Japan Road Association, 

2012) 

Methods for measuring 𝐸0 

correction factor α for 

ordinary cases 
and typhoons 

earthquakes 

Half of the modulus of soil deformation obtained 
from cyclic plate load test 1 2 

Modulus of soil deformation obtained from 
downhole horizontal loading test 

4 8 

Modulus of soil deformation obtained from either 
uniaxial or triaxial compression test 4 8 

From blow count N in a SPT, 𝐸0 = 2800 ∙ 𝑁 1 2 
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Figure 3 - 4. Schematic diagram of horizontal plate loading 

test (based on Yoshida and Yoshinaka, 1972) 
Figure 3 - 3. Load-deformation curve for 

determination of coefficient of subgrade reaction 
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3.4 Doubts and limitation of current practice 

One of the obvious drawbacks of the models based on Winkler concept is the failure to account for 

the continuity of the soil since the soil medium is explicitly represented by discrete springs.  

Coupled with this, is the more prevailing question on the physical basis of the coefficient of 

horizontal subgrade reaction. As previously said, the coefficient of horizontal subgrade reaction is 

intuitively thought to be a representative of the soil stiffness characteristics. However, it is noted 

that this is mainly derived through experiments and empirical equations. It has already been 

pointed out by other researchers (Kog et al., 2015; Reese and Van Impe, 2001; Teodoru and Toma, 

2009; Terzaghi, 1955; Varghese, 2012) that this coefficient of horizontal subgrade reaction is 

influenced by several pile related factors such as bending stiffness and pile geometry. Still, the 

coefficient of the horizontal subgrade reaction derived using the code in the Specifications of 

Highway Bridges is closely examined. 

From equation 3.10, it can be implicitly said that an iteration is needed to derive the characteristic 

length. Exactly speaking, the derivation of  𝑘𝐻 is a function of the horizontal subgrade reaction 

from the plate load test,  𝑘𝐻0  and the corresponding plate size correction factor, 𝐵𝐻 . From 

equation 3.11, it is noted that, 𝐵𝐻 is a function of pile diameter, 𝑑𝑝 and 𝛽.  Correspondingly,  𝛽 is a 

function of pile stiffness and the coefficient of horizontal subgrade reaction, 𝑘𝐻. Hence in this case, 

it can be clearly seen that the coefficient of the horizontal subgrade reaction is not solely a function 

of soil characteristic as previously thought but also a function of the pile stiffness, hence, inherent 

of the influence of the soil-pile interaction.  

Moreover, while the 𝑘𝐻0 can be extracted directly from the plate load test, a size effect correction 

factor in the form of 𝐵𝐻 is needed to be applied. This is for the reason that the spring stiffness 

reaction under a small rigid plate is representative only of the local deformations directly under 

the plate coverage but fails to capture the real soil response under bigger or real size foundations. 

It is also known that Winkler-based models yields accurate results within ranges of small strains. 

This basically considers the soil in linear elastic. Similar limitations applies in the use of Equation 

3.10, where it considers the ground to be within a linear elastic strain and perform under a certain 

allowable displacement. This served as the design philosophy for typical design calculation 

methods. The displacement of the foundation determined must be within the allowable 

displacement of 1% times the foundation pile width or less than or equal to 50mm (Japan Road 

Association, 2012). This assumes no cracking found within the depth of the pile and the possible 

onset of visible threats of crack markings to be observed in the surface only for immediate repair. 

However, even for elastic range, a study (Shirato et al., 2009) showed that the design threshold 

displacement based on field test data sets could be even larger than 1% of the pile diameter. It is 

proposed to be 2% to 4% of the pile diameter. The problem of laterally loaded pile is more 

complex because soils in real field situations behave nonlinearly, particularly in the upper region 

surrounding the pile. Also, the hard rule for the allowable target displacement can be very limiting 

for a wide range of type of structures of different purposes, allowing lapse of judgment on the 

balance of economy, safety and resiliency. 

These limitations lead to study the characteristic length as a function of the pile stiffness and the 

shear modulus and explore its potential advantages.   
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3.5 Improvements of Proposed Characteristic Length Parameter 
 

3.5.1 Shear Modulus as an Inherent Soil Characteristic: A Parameter for More 
Practical Field Test 

 

It is established that the coefficient of horizontal subgrade reaction is not a sole function of the 

soil property itself but is influenced by the stiffness of the pile, and consequently, a function of the 

soil-pile interaction. Thus, the shear stiffness is more appropriately represented by the shear 

modulus.  

In this section, Chang’s formula and the Konagai’s formula (a function of pile stiffness, 𝐸𝐼𝑝 and 

shear modulus, 𝐺) in an elastic medium is compared. From (Koseki et al., 2001), the derivation of 

the coefficient of horizontal subgrade reaction for a homogeneous soil medium that is completely 

in linear elastic is using the same equation with Equation 

3.10 except with the exponent changed to -1 given by the 

expression below.  

 

 
 
 

 
 
 
The modulus of soil deformation, 𝐸0, was used from a simulated drained compression triaxial test. 
In a more detailed discussion, the procedure of deriving the soil deformation is as follows: (1) The 
stress applied for the triaxial test is based on an equivalent uniform pressure distribution as 
shown in Figure 3-5 for h =1.45m (model test). (2) The 𝐸50 is derived from the deviator stress – 
axial strain relationship graph. The secant elastic modulus (𝐸50) is equal to the slope from zero to 
half of the maximum deviator stress (q50). Correspondingly, the q50 is plotted down to the 
volumetric-axial strain relationship graph. Then,  𝜈50  is derived from the slope from 0 to the 
extended plot (red point). These steps are shown in Figure 3-6, where q: deviator stress, εa: axial 
strain and εv : volumetric strain. 
 
This monotonic loading falls under the ordinary type of load case. Thus, referring to Table 3-1, 

correction factor, 𝛼 = 4, is used. This is then applied to equation 3.10. 

 𝑘𝐻 = 𝑘𝐻0 (
𝐵𝐻
0.3

)
−1

 (3.13) 

q
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From an iteration, 𝑘𝐻 is derived then correspondingly the Chang’s formula is derived for various 

pile diameters (d=10mm, d=20mm, d=25mm, d=30mm and d=40mm) embedded in three 

different soils. This is plotted on the y-axis of Figure 3-7.  

The shear modulus is derived based on the relationship of 𝐸50 and 𝜈50 as shown in the equation 

3.14: 

 𝐺50 =
4𝐸50

2(1 + 𝑣50)
 (3.14) 

 
This value is substituted to Equation 3.4 where 𝐺 = 𝐺50  to get the characteristic length. Then 
plotted in the x-axis of Figure 3-7.  
 

 

Figure 3- 7. Chang's Formula vs Lc(EI,G) 

 

It can be seen that there is a one to one correspondence between these two parameters: Chang’s 

formula and Lc(EI,G). The (4/𝑘𝐻𝑑) in Chang’s formula eventually approaches the shear modulus, 

G. And it could be said that G automatically captures the size effect phenomenon. The current 

practice requires the use of the horizontal subgrade reaction which can be estimated using the in-

situ static horizontal plate load test or the laboratory static load test. In conjunction with, is the 

prerequisite of accounting of the influence of loading width on the modulus of horizontal subgrade 

reaction. But with the use of shear modulus, there is no need to apply correction on the coefficient 

of subgrade reaction against the experimental plate used to capture the actual soil response from 

a real dimension diameter. With that said, it is indicative that shear modulus is a fundamental 

property of the soil.  

So rather considering a soil constant, with the use of soil spring coefficients, the ground strength 

represented by shear modulus, could be of more important focus. This shear modulus can be 

determined from soil investigation methods through the shear wave velocity. To have an apple to 
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apple comparison with the Chang’s formula, 𝐺50  is used in this instance. Note that in the next 

chapter of this paper, it will be illustrated how the Lc(EI,G)  is related to the active pile length 

based on Equation 3.2a. The proportional factor, α, will just change dependent on the type of G 

used.  In the field, the small-strain shear modulus or maximum shear modulus is usually derived 

from the shear wave velocity. Therefore, it is utmost important to focus on this for practical 

purposes.  

In-situ tests to derive this could be the PS logging, cross-hole, the down-hole, the SASW techniques 

or other new emerging techniques such as ReMi (Refraction Micrometer). Though they generally 

are in agreement with each other, the most accurate technique would be the PS logging (Pérez-

santisteban et al., 2011). What is essential is for these methods to be performed properly and with 

integrity. In addition, in congruence with these soil investigation for shear modulus would be 

techniques to determine the type of soil inherent in the soil medium. 

3.5.2 Performance-Based Design 

The current practice has been defined that the deformation of the pile foundation is limited to 1% 

of the pile diameter or less than or equal to 50mm (Japan Road Association, 2012). This falls 

within the linear elastic case. This is based on the idea that no crack shall appear along the pile 

depth and can be seen only at the surface. Thus, it could just be pulled out with the onset of 

evidence of cracks found in the surface. However, considering the wide range of type of structures 

that demand different needs in terms of performance, life cycle and costs, this hard-lock rule of 

allowable displacement may not be reasonable to some projects. Thus, the thrust of performance-

based design is initiated, where a target displacement is decided on discretion of the required 

performance.  

Conventional designs are based on the demand capacity relationship given by a factor of safety. 

This means that to exceed the capacity of structure would be a worst case scenario.  However, the 

severity of this worst scenario is not clearly defined (Kramer and Arduino, 2009) . This is in 

agreement with what Bolton would say “Traditional approach is potentially wasteful”. He instead 

encourages designers to explicitly consider and assess the possible capacity of deformation and 

strength of soil which should be within the expected deformation mechanism of geo-structure 

(Bolton, 2012) . Hence, there’s the need to push in the direction of performance based design.  

The main design philosophy of this performance based design is to have a target deformation 

based on the strength and deformation mechanisms of the soil, as far as geo-structures are 

concerned. In this sense, it could also be based on the damage levels or losses on operation 

expectations on the structure. Currently, there are four level of damages that could serve as basis 

(Iai, 2004; Shinoda et al., 2009) as seen in Table 3-2. These are the acceptable level of damages 

based on structural resiliency and operational life required.  In the economical point of view, this 

would become more reasonable as a balance is sought to find between how much damage a 

structure could take and how much cost is the client willing to spend for the repair and 

maintenance of the structure. Given these damage levels, a wide range of spectrum is possible for 

the required performance of a structure. The extreme damage level, degree IV, allows client the 

option of utilization of the entire life cycle of the structure, exhausting the residual deformation 

and providing a completely new structure after, which may be deemed more cost-efficient in this 

case. Meanwhile, on the safe side level, for degree I, where very important structures could be of 

structures in mind, i.e. nuclear power plants. The smallest deformation could be of critical one, 

therefore the target allowable displacement should fall within the linear elastic range.  
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Table 3 - 2. Acceptable level of damage in performance-based design (from Iai, 2001) 

Acceptable level of 
damage 

Structural Operational 

Degree I: Serviceable Minor or so damage 
Little or no loss of 

serviceability 
Degree II: Repairable Controlled Damage Short-term of Serviceability 

Degree III: Near Collapse 
Extensive Damage in near 

collapse 
Long term or Complete Loss of 

Serviceability 
Degree IV: Collapse Complete Loss of Structure Complete Loss of Serviceability 

 
However, the deformation criteria, based on the soil properties, is quintessential for the 
performance based design. Given an ultimate limit state, one could have the discretion to decide 
based on it. Hence, this is what the ultimate side soil resistance of piles offer. A criteria, where the 
option is not limited only to 1% the pile diameter or less than 50mm but at the same time, offers 
a knowledge or awareness of the critical state to which the lateral bearing resistance for the piles 
is reached.  
 

Hence, the use of a simple parameter, Lc(EIp,G), which is founded on fundamental properties of 

pile and soil, is of valuable study. It can be used to provide simple expression for the ultimate 

lateral pile resistance, useful for a performance-based design. 

 

3.6 Summary 

The use of Chang’s formula is implemented in the Specifications of Highway Bridges in Japan. 

Acknowledging its simplistic approach and acceptable accuracy given the assumptions for the 

linear elastic case. It’s still inherent that there are some questions in this model that could be 

answered with other parameters. These are: 

 the obvious drawback of idealization of soil medium with discrete springs 
 the physical basis and the intrinsic nature of the coefficient of horizontal subgrade 

reaction as a soil property. 
 allowable displacement within the linear elastic range 

 

A pragmatic approach is given by the substitution of the shear modulus for the characteristic 

length. This allows to: 

 capture inherently the stiffness of the soil.  
 provide more convenient in-situ test for getting the shear modulus through shear velocity 

without the need for size effect correction. 
 be a good parameter to describe the pile behaviour in relation to the surrounding soil 

strength. Therefore, this can be used for describing ultimate limit states, i.e. lateral pile 
resistance which is useful for performance-based design. 
 

This characteristic length, Lc(EI,G), in relation to the active pile length can be applied to provide a 

simplified expression of ultimate lateral pile resistance for practical approach in the design and 

assessment of piles within target structural and seismic response. This will be shown in the next 

chapter. 



 

24 

 

Chapter 4 
Preliminary Study on the Concept of the Active Pile 

Length for Piles Embedded in Sand using Two-
Dimensional System Analysis 

4.1 Introduction 

The soil-pile configuration in this chapter is idealized in a plane strain condition similar to the 

works of Kok et al. (2008), Naveed et al. (2012) and Hazzar et al. (2013). It is acknowledge that 

inaccuracies are expected in this type of idealization given that the actual response of pile 

foundations is a principally a three-dimensional (3D) problem. This preliminary study is 

conducted to have an idea on the behaviour of active pile length varying the parameters of the 

piles and the surrounding soil condition. With the consideration of the 2D case, where the soil-pile 

interaction is not accounted for in the out-of-plane direction, this two-dimensional (2D) system 

may be limited only to capture the behaviour of piles considered as walls, row piles or sheet piles. 

Nevertheless, the intention to take this research off to a start using the 2D platform, is to simply 

investigate the formation of the passive soil wedge during nonlinear scenario and relate it to the 

active pile length. This idea is extended to a 3D platform in later chapters to realistically capture 

the behaviour of piles.  

 

4.2 Active pile length 

The behaviour of piles embedded in soil are generally governed by the deformation along its 

length. For long and flexible laterally loaded piles, significant deformation is observed near the 

ground surface. A clear cut-off criteria for negligible deformation is set considering the ranges 

from other researches (Velez et al., 1983; Wang and Liao, 1988). In this study, the La is defined 

from the ground surface down to the point where the deformation is equal to 3% of the maximum 

pile head deformation. Within this region of significant deformation, pile can be described as a 

cantilever beam, assuming fixity for the deeper region of negligible deformation. In common 

engineering practice as mentioned in Chapter 3, Chang’s formula (Chang, 1937) (Equation 4.1) is 

used to define the characteristic length in Equation 4.20. 

 

 4

4 p

ph
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In Equation 4.1, kh is the coefficient of horizontal subgrade reaction, dp is the pile width. However, 
in this 2D case, this pile width is set to bt, which is the side edges parallel to the loading direction, 
and EIp is the pile stiffness. As previously discussed in Chapter 3, it is noted that the numerator 
khd is not an inherent property of the soil. Thus, a more rational expression is proposed by Konagai 
(2003) noting the stiffness of the pile relative to the surrounding soil (Equation 4.3).   
 
 

 4

G

EI
L

p

c   (4.3) 

 
 

 ca LL   (4.4) 

 
 
In Equation 4.3, EIp refers to the pile stiffness and G represents the soil shear modulus. This 

Konagai’s formula is deemed linearly proportional to the active pile length (Equation (4.4)). The 

La is closely investigated on by varying the parameters directly affecting it such as the EIp and G. 

Particularly, the factors pile thickness, bt, Young’s modulus, Ep, pile length, Lp, and the initial void 

ratio, eo, are varied. 

4.2 Numerical Analysis 

To simply investigate the idea of the formation of the soil wedge in the passive region of laterally 

loaded piles in relation to the active pile length, La, the soil-pile system is modelled as 2D plane 

strain condition using the finite element method. The simulation of the response of laterally 

loaded single piles in two-dimension were performed using a program named FEM2D developed 

by Kyokawa and Kikumoto (Kyokawa and Kikumoto, 2013) using a C++ platform. This software 

is for two-dimensional finite element analysis that is implemented with various elasto-plastic soil 

models including the subloading tij model. This software is modified to include continuum-beam 

based elements for the pile modelling and joint elements for simulation of the slipping in the 

interface of the soil and the pile elements. In this section, the procedure for the soil-pile 

idealization and the cases considered in this study is discussed in details.  

4.2.1 Soil-Pile Idealization 

Generally, the soil-pile system includes a single end bearing pile embedded in a homogeneous 

sandy soil subjected to a lateral load. The soil-pile configuration properties and techniques 

implemented are presented herein.  

Figure 4 - 1 shows the general layout of the soil-pile system in 2D plane strain condition using the 

finite element method. A pile with width, bt, and a unit thickness in the out of plane direction and 

length, Lp, is embedded in a homogeneous soil having a width, bs = 20m, on each opposite side of 

the pile.  

A 2D solid quadrilateral-shaped element is used for the automated meshing for all the material 

type used – soil, pile and joint. Joint elements with zero thickness are used at the interface of the 

soil and pile elements.  
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The bottom end of the soil-pile system is considered as the hard strata, therefore, it is fixed in all 

degrees of freedom along the x and y-axis. On the other hand, the sides are fixed only in x direction. 

 

 

 

Figure 4 - 1. Soil-pile configuration 

 

4.2.2 Material Model and Elements 

4.2.2.1 Pile Model 
A continuum based beam element (Yoon et al., 2012) is used for modelling the pile in elastic case.  

For 2D case, this coincides with the line beam elements but with the displacements and forces 

extrapolated to the nodes of the quadrilateral solid element. The salient feature of this model is 

the flexibility to handle various cross-sectional type of beams especially if this developed program 

is extended to three-dimensional platform. The advantage of this can be seen clearly and 

immensely in the three-dimensional case. This model uses much smaller number of elements 

compared to the conventional use of 3D solid elements. This model would allow to analyse the 3D 

case as a line, with displacements and forces extrapolated to the surface nodes of the pile cross 

section.  

Because of the continuum mechanic formulation, where the cross-section is discretised with 

nodes, the cross-sectional properties are inherently accounted for. Thus, pre-calculation of area, 

second moment of area, etc. are not needed. In addition, the analysis of short, long, and deep beams 

is automatically considered.  

Using the continuum beam based elements, geometry and displacements interpolation are made. 

First, the cross-section and the longitudinal section of the beam is discretised (see Figure 4 - 2). 

Detailed formulation and discussions can be found in Yoon (2012). Based on these nodes, 

geometry interpolation is made using interpolation polynomials for the usual isoparametric 

procedure. These are expressed by product of the linear and quadratic shape functions given by 

equation 4.5.     

Joint Element (no thickness)

Soil (Elastoplastic Subloading tij) 

Pile (Linear Elastic)

Legend

bt

top of pile is 0.1m from the ground

surface (fixed head condition)

bs bs

Lp

x

y
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Figure 4 - 2. The concept of the continuum-mechanics based beam finite element. (a) the 3D beam used discretised 

at the cross-section and in the longitudinal axis. (b) discretization along the longitudinal axis. (c) cross-sectional 

area discretization (after Yoon et al., 2012) 

 

 𝑥 (𝑚) = ∑ℎ𝑘(𝑟)

𝑞

𝑘=1

∑ℎ𝑘(𝑠, 𝑡)𝑥 𝑘
𝑗(𝑚)

𝑝

𝑗=1

 (4.5) 

 

where 𝑥 (𝑚): the position vector of the solid element m in the Cartesian system 𝑟, 𝑠, 𝑡.The ℎ𝑘(𝑟) and 

the ℎ𝑘(𝑠, 𝑡) are the linear and quadratic shape functions. 𝑥 𝑘
𝑗(𝑚)

 is the position vector of the jth 

cross sectional nodes on plane k. Considering Figure 4 - 2, we note that: q=3 (3 cross-sectional 

planes), p=16 (16 nodes in each cross-section), and m=1 (consider 1 serendipity element of 16 

nodes).  

The basic kinematic assumption of Timoshenko beam theory are implemented in this model, 
where plane remains plane even during deformations, though not necessarily perpendicular to 
the midline of the deformed beam. Considering this, equation  4.5 can be written as; 
 
 

 𝑥 (𝑚) =∑ℎ𝑘(𝑟)𝑥 𝑘

𝑞

𝑘=1

+∑ℎ𝑘(𝑟)𝑦𝑘̅̅ ̅
(𝑚)𝑉𝑦̅⃗⃗⃗⃗ 

𝑘
𝑞

𝑘=1

+∑ℎ𝑘(𝑟)𝑧𝑘̅̅̅
(𝑚)𝑉𝑧̅⃗⃗  ⃗

𝑘
𝑞

𝑘=1

 (4.6) 

 
 

and 

 𝑦̅𝑘
(𝑚) = ∑ ℎ𝑗(𝑠, 𝑡)𝑦𝑘̅̅ ̅

𝑗(𝑚)𝑝
𝑗=1   (4.7) 

   

 𝑧𝑘̅
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𝑗(𝑚)

𝑝
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  (4.8) 
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where: ℎ𝑗(𝑠, 𝑡) is the quadratic shape function for the cross-sectional plane. In Figure 4 - 2c, the 

serendipity isoparametric function for 16 nodes is used.   𝑦̅𝑘
𝑗(𝑚)  and 𝑧𝑘̅

𝑗(𝑚) : are the nodal 

coordinates in the cross-sectional plane, 𝑉𝑦̅⃗⃗⃗⃗ 
𝑘

and 𝑉𝑧̅⃗⃗  ⃗
𝑘

are direction vectors and are perpendicular 

to each other. 

Considering a beam with a unit dimension in the out-of-plane direction, the geometric 

interpolations are reduced as follows: 

 𝑥 = ∑ℎ𝑘(𝑟)𝑥𝑘

𝑞

𝑘=1

 (4.9) 

 

 𝑦 =
𝑏𝑡
2
𝑠 (4.10) 

 

where: 𝑥𝑘: x coordinates of the longitudinal nodes, 𝑏𝑡: width of the beam section parallel to the 

loading. 

 Based on these, the displacement interpolation can now be made accordingly similar with Bathe 

(1996). For 2D case, we assume deflection is along v-axis and rotation along z, therefore the 

reduced equations are as follows.  

 𝑢 =
𝑠

2
∑𝑏𝑡ℎ𝑘(𝑟)

𝑞

𝑘=1

𝜃𝑧 (4.11) 

 

 𝑣 = ∑ℎ𝑘(𝑟)𝑣

𝑞

𝑘=1

 (4.12) 

 

where u, v: the translations at x and y axis and 𝜃𝑧: the rotation at z axis.  

Given these equations, solutions are performed similar with conventional finite element method 

incorporating the Gauss quadrature.  

 

4.2.2.2 Joint Model 
A joint element of virtual thickness is introduced between the soil and the pile to simulate the 

vertical slipping of soil against the pile during nonlinearity (Beer, 1985).  The kinematic 

formulation is discussed in detailed by Beer (1985). The joint element is modelled using two-

dimensional solid finite elements with isoparametric formulation or shape functions.  

However, the slip occurring at the interface is described by an elasto-plastic constitutive model 

instead of the Mohr-Coulomb model used by Beer (1985).  Irreversible slip at the interface 

happens when the shear strength of the joint is exceeded. The elasto-plastic yield function is 

defined by the expression below.  
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 𝑓 =
|𝑡𝑆|

𝑡𝑛
− 𝑡𝑎𝑛𝜙 − 𝜑𝛿𝑠

𝑝
=0 (4.13) 

 
where 𝑡𝑆 : shear tractions, 𝑡𝑛 : contract pressure, 𝜙 : angle of internal friction, 𝜑 :hardening 

parameter , and 𝛿𝑠
𝑝

:plastic shear strain. In this case, the hardening parameter is considered as 

extremely small.  

Meanwhile, the potential function for this model is defined by the expression below. 
 

 𝑔=|𝑡𝑆|=0 (4.14) 

 

The strain increment of the slipping surface consists of the elastic, 𝛿̇𝑒 and the plastic part, 𝛿̇𝑝. 
 

 𝛿̇ = 𝛿̇𝑒 + 𝛿̇𝑝 (4.15) 

 

Considering the elastic part, the incremental traction forces and the incremental strains are 

relation by the equation below. 

 {
𝑡𝑠
𝑡𝑛̇
}
̇
= [

𝑘𝑠 0
0 𝑘𝑛

] {
𝛿𝑠

𝑒̇

𝛿𝑛̇
𝑒} (4.16) 

 

The values for shear and normal stiffness, 𝑘𝑠  and 𝑘𝑛 , should be extremely large since the 

stiffnesses of joints in contact are theoretically infinite.  To define the large value, it should be 

adequate enough such that the elastic slip is negligible relative to the elements adjoined in the 

joint elements.  

Equation 4.16 can be re-written as: 
 
 

 𝒕̇ = 𝑫𝒆𝜹̇𝒆 (4.17) 

 
 
Invoking the consistency condition, 𝑑𝑓 = 0, gives the expression below: 
 
 
 

 𝑑𝑓 =
𝜕𝑓

𝜕𝑡
𝒕̇ +

𝜕𝑓

𝜕𝛿𝑠
𝑝 𝛿𝑠

𝑝̇
= 0 (4.18) 

 

 

Assuming a non-associated flow rule gives Equation 4.19. 
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 𝛿̇𝑃 = ∆
𝜕𝑔

𝜕𝑡
= 0 (4.19) 

where ∆: proportional factor. 

Re-writing equation 4.17 using equation 4.15 gives 
 

 𝒕̇ = 𝑫𝒆(𝜹̇ − 𝜹̇𝒆) (4.20) 

 

Multiplying equation 4.20 with the 
𝜕𝑓

𝜕𝑡
 and substituting equation gives the following expression 

 
 

 
𝜕𝑓

𝜕𝑡
𝒕̇ =

𝜕𝑓

𝜕𝑡
𝑫𝒆(𝜹̇ − ∆

𝜕𝑔

𝜕𝑡
) (4.21) 

 
 
Substituting equation 4.21 to equation 4.18, the proportional constant, ∆, can be derived given in 

the equation below.  

 

 ∆=

𝜕𝑓
𝜕𝑡

𝑫𝒆𝜹̇

𝜕𝑓
𝜕𝑡

𝑫𝒆 𝜕𝑔
𝜕𝑡

−
𝜕𝑓
𝜕𝑡

𝜕𝑔

𝜕𝛿𝑠
𝑝

 (4.22) 

 

The deformation and strength of the interface can be evaluated already from the stress-strain 
increment expressed in the equation below using equations 4.20 and 4.22. 
 
 

 𝒕̇ =

[
 
 
 

𝑫𝒆 −
𝑫𝒆 𝜕𝑔

𝜕𝑡
𝜕𝑓
𝜕𝑡

𝑇

𝑫𝒆

𝜕𝑓
𝜕𝑡

𝑫𝒆 𝜕𝑔
𝜕𝑡

−
𝜕𝑓

𝜕𝛿𝑠
𝑝
𝜕𝑔
𝜕𝑡 ]
 
 
 

𝜹̇ (4.23) 

 

The angle of internal friction of the joint element considered is 25° (Wakai et al., 1999). 

 

4.2.2.3 Soil Model 

(a) Background of Subloading tij 

The subloading tij  is a product of advanced researches on development of constitutive models to 

capture the elasto-plastic behaviour of the soil. This springs back from the onset of the Cam-clay 

model (Schofield and Wroth, 1968). The Cam clay model is essentially the first elasto-plastic 

model that requires few and simple material parameters with physical basis (Nakai, 2007). This 

simplistic nature of the Cam clay model leaves room for some limitations. At the very least, it could 

capture the shear deformation and consolidation of the soil in the field. Yet the more salient factors 

such as influence of the intermediate principal stresses and the influence of density and/or 

confining pressure are not accounted for. These limitations are addressed by the Subloading tij 

model, thus, showing its advantages. Moreover, it offers a simple model having material 
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parameters that are fundamentally similar with Cam clay model and just few departures even if it 

can simulate the complex behaviour of the soil. 

Nakai and Matsuoka (1987) introduced the subloading tij based on the concept of SMP (spatially 

mobilized plane) (see Figure 4 - 3). The influence of the intermediate stresses on the deformation 

and strength of soil are accounted for by the modified stress tij from the SMP. The stress invariants, 

tij, represent the normal and shear stresses on the SMP. Correspondingly, the normal, εN, and shear, 

εS, strains are used. The comparison of the modified stress tij concept from the ordinary concept 

is summarize in Table 4 - 1 below.  

 

Figure 4 - 3. SMP Plane (a) Definition of tN and tS (b) Definition of dεN* and dεS* (after Nakai, 2007) 

 

Table 4 - 1. Comparison between tensors and scalars related to stress and strain in ordinary concept and tij concept 

(after Nakai, 2007) 

 ordinary concept tij concept 
tensor normal to reference plane 𝛿𝑖𝑗 𝑎𝑖𝑗 

stress tensor 𝜎𝑖𝑗 𝑡𝑖𝑗 

mean stress 𝑝 = 𝜎𝑖𝑗𝛿𝑖𝑗/3 𝑡𝑁 = 𝑡𝑖𝑗𝑎𝑖𝑗 

deviatoric stress tensor 𝑠𝑖𝑗 = 𝜎𝑖𝑗 − 𝑝𝛿𝑖𝑗 𝑡𝑖𝑗
′ = 𝑡𝑖𝑗 − 𝑡𝑁𝑎𝑖𝑗 

deviatoric stress 𝑞 = √(3/2)𝑠𝑖𝑗𝑠𝑖𝑗 𝑡𝑆 = √𝑡𝑖𝑗
′𝑡𝑖𝑗

′ 

stress ratio tensor 𝜂𝑖𝑗 = 𝑠𝑖𝑗/𝑝 𝑥𝑖𝑗 = 𝑡𝑖𝑗
′/𝑡𝑁 

stress ratio 𝜂 = 𝑞/𝑝 𝑋 = 𝑡𝑆/𝑡𝑁 
deviatoric strain increment tensor 𝑑𝜀𝑣 = 𝑑𝜀𝑖𝑗𝛿𝑖𝑗 𝑑𝜀𝑁

∗ = 𝑑𝜀𝑖𝑗𝑎𝑖𝑗 

strain increment parallel to reference 
plane 

𝑑𝜀𝑖𝑗 = 𝑑𝜀𝑖𝑗 − 𝑑𝜀𝑣𝛿𝑖𝑗/3 𝑑𝜀𝑖𝑗
′ = 𝑑𝜀𝑖𝑗 − 𝑑𝜀𝑁

∗𝑎𝑖𝑗 

strain increment parallel to reference 
plane 

𝑑𝜀𝑑 = √(2/3)𝑑𝑒𝑖𝑗𝑑𝑒𝑖𝑗 𝑑𝜀𝑆
∗ = √𝑑𝜀𝑖𝑗′𝑑𝜀𝑖𝑗′ 
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Moreover, this model follows a subloading 

surface that expands or contracts 

following the current stress point. 

Computation becomes stable considering 

the smooth transition from the elastic to 

the plastic formation from the continuous 

stress-strain rate described in the loading 

process. More so, the smooth triangular 

failure surface makes it a good modelling 

base. This compares favourably than that 

of conventional models such as Mohr-

Coulomb and extended Mises as seen in 

Error! Reference source not found.. This is 

indicative of the good performance of the 

model in capturing the behaviour of soil 

not only under compression, but also in 

triaxial extension, plain strain and true 

triaxial conditions.  

 

In considering the intermediate stresses with influence of density and/or confining pressure to 

describe realistically the deformation and strength of soil, the yield function is formulated using 

the stress invariants from the SMP plane and density state variable, ρ, given by the expression 

below. These are derived and discussed in further details in the following references: (Kyokawa, 

2011; Nakai and Matsuoka, 1987; Nakai, 2013, 2007; Nakai et al., 2011; Pedroso and Farias, 2005; 

Pedroso et al., 2005) 

 𝑓 = 𝐹 − {𝐻 + (𝜌0 − 𝜌)} = 0 (4.24) 

 

where 𝐹 = (𝜆 − 𝜅){(ln (𝑡𝑁/𝑡𝑁0) + 𝜁(𝑋)} , 𝐻 = (−∆𝑒)𝑝  , 𝜌 : current density function, 𝜌0 : density 

function at initial state, 𝜆: compression index, 𝜅: swelling index, 𝑡𝑁: mean stress tensor at current 

state, 𝑡𝑁0: mean stress at initial state, (−∆𝑒)𝑝 : irrecoverable plastic component of change of void 

ratio, 𝜁(𝑋) = (
1

𝛽𝑆
)(

𝑋

𝑀∗)
𝛽𝑆

, the stress ratio tensor, 𝑋 =
𝑡𝑆

𝑡𝑁
, the intercept with vertical intercept of 

the stress dilatancy relationship for the modified tij,  𝑀∗ = (𝑋𝐶𝑆
𝛽𝑆 + 𝑋𝐶𝑆

𝛽𝑆−1𝑌𝐶𝑆)
1/𝛽𝑆 ,  𝑋𝐶𝑆 =

(√2/3)(√𝑅𝐶𝑆 − (1/√𝑅𝐶𝑆)) , 𝑌𝐶𝑆 = (1 − √𝑅𝐶𝑆)/(√2(√𝑅𝐶𝑆 + 0. )), βS: shape of yield surface, and 

the principal stress ratio at critical state in triaxial compression, and  𝑅𝐶𝑆 = (𝜎1/𝜎3)𝐶𝑆𝑐 𝑚𝑝.  

Invoking the consistency condition, where the derivative of the yield function (Equation 4.24) is 

equal to zero (𝑑𝑓 =0), and considering associated flow rule assumed in tij space gives: 

 

 𝑑𝑓 = 𝑑𝐹 − (𝑑𝐻 − 𝑑𝜌) =
𝜕𝐹

𝜕𝜎𝑖𝑗
𝑑𝜎𝑖𝑗 − {(1 + 𝑒0)Λ

𝜕𝐹

𝜕𝑡𝑘𝑘
− 𝑑𝜌} = 0 (4.25) 

σ1

σ2 σ3

θ=0o

(comp.)

θ=60o θ=60o

(ext.) (ext.)

(comp.) (comp.)

subloading tij

extended Mises
mohr-coulomb

Figure 4- 4.  Failure criteria surface of different constitutive 

models in octahedral plane (Adopted from Nakai, 2007) 
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where Λ:  the proportionality constant which represents the magnitude of the plastic deformation.  

Given that F is a dimensionless function, the proportional constant, Λ, has a unit of stress, hence, 

the term, (𝜕𝐹/𝜕𝑡𝑘𝑘)  has the dimension of inverse of stress. Also, it is noted that the state variable 

ρ decreases with the development of the plastic deformation and finally reaches to ρ=0.  Hence, 

satisfying these conditions, the evolution rule for the state variable, 𝜌, (Equation 4.26 ) can be 

represented using the monotonically increasing function, 𝐺(𝜌), which  becomes 0 when 𝜌 = 0.  

 

 𝑑𝜌 = −Λ ∙ (1 + 𝑒0) ∙ 𝐿(𝜌, 𝑡𝑁) = Λ ∙ (1 + 𝑒0)
−𝐺(𝜌)

𝑡𝑁
 (4.26) 

 

𝐺(𝜌) is given as quadratic function of state variable expressed below.  

 𝐺(𝜌) = 𝑎𝐹𝜌
2 (4.27) 

 

where 𝑎𝐹 is the material constant parameter responsible in the  influence of density.  Substituting 

equation 4.26 to equation 4.25. 

 

 Λ = ⟨

𝜕𝐹
𝜕𝜎𝑘𝑙

𝑑𝜎𝑘𝑙

(1 + 𝑒0) {
𝜕𝑓
𝜕𝑡𝑘𝑘

+
𝐺(𝜌)
𝑡𝑁

}
⟩ = ⟨

𝑑𝐹

ℎ𝑝
⟩ (4.28) 

 

The plastic strain increment is calculated by substituting equation to the equation below.   

 

 𝑑𝜀𝑖𝑗
𝑝 = Λ(

𝜕𝐹

𝜕𝑡𝑁
 
𝜕𝑡𝑁
𝜕𝑡𝑖𝑗

+
𝜕𝐹

𝜕𝑋
 
𝜕𝑋

𝜕𝑡𝑖𝑗
) (4.29) 

 

 

(b) Soil Model Parameters 

The subloading tij model is used to describe the elasto-plastic behaviour of soils (Kyokawa, 2011; 

Nakai, 2013; Nakai et al., 2011). In this case, the homogeneous soil is taken as Toyoura sand, 

named as TS, herafter. The material parameters used for this type of soil is summarized in Table 

4 - 2. These are calibrated from the drained compression and extension tests shown in Figure 4-2 

(Kyokawa, 2011).  

A variation of initial void ratios (eo = 0.6, 0.7, 0.8 and 0.9) is considered. The relationship between 

the stress and strain, and volumetric strain-axial strain, εv-εa, relationship for the various initial 

void rations considered are plotted in Figure 4-2. Generally, a more dilatant behavior is depicted 
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by the dense sand than that of the loose sand. Extreme relative density for the surrounding soil, 

loose (eo = 0.9) and dense (eo = 0.6) is considered to investigate its effect on the active pile length. 

Table 4 - 2. Toyoura sand (TS) material parameters for the subloading tij 

 

 

 

    

Figure 4 - 5. Drained compression and extension test for Toyoura Sand (Taken from Kyokawa 2011) 

 

 

 

Figure 4 - 6. Stress ratio-εa and εv-εa relationship of Toyoura sand with varying void ratios, eo at p’o=98kPa. 
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eₒ=0.6

eₒ=0.7

eₒ=0.8

eₒ=0.9

Material Parameters  
Compression Index, λ  0.070 
Swelling Index, κ 0.0045 

Stress Ratio at critical state, Rcs 3.2 

Shape of yield surface, βs 2.0 
Void Ratio at normal consolidation at Pa=98kPa, eNC 1.10 
Atmospheric Pressure (kPa), Pa 98 
Controlling Decay Rate of the influence of density, aF 33 
Poisson’s Ratio, ν 0.2 
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4.3 Parametric Analysis 

4.3.1 Effect of Pile Stiffness 

The La is predominantly influenced by the pile stiffness, EIp. This pile stiffness is a function of the 

pile geometric properties, and hence, the effect of pile thickness, bt, on the active length is 

investigated. A single pile with length, Lp, of 30m having Ep of 30GPa, is embedded in TS soil 

considering the initial void ratios of 0.6 and 0.9. The variable parameter in the analysis is the pile 

thickness, bt. The parameter bt is varied from 0.3m, 0.5m, 0.6m, 1.0m, 1.2m, 1.5m up to 2.0m, while 

the other parameters are kept constant. In effect, this variation also changes the pile stiffness with 

respect to the same surrounding side soils.  

Figure 4-4 shows the relationship of the variation of the bt and its corresponding La, where both 

parameters are normalized with the Lp for piles embedded in the dense and loose condition. 

Generally, an increasing in bt gives an increase in EIp and consequently, produces an increase in La. 

However, it can be closely observed that for piles with ratios of La/Lp < 0.75 and bt/Lp <0.032, the 

difference in La of piles embedded in loose and dense sands increases with increasing bt as seen 

by the divergence in Figure 4-4. But when the bt/Lp reached 0.032, where the ratio, La/Lp, becomes 

greater than 0.75, the difference in the La’s for piles embedded in loose and dense sand starts to 

decrease and converges to a point. This scenario means that as the pile thickness increases, the 

pile stiffness increases, therefore, the active pile length increases eventually reaching a saturation 

point, where La is approximately equal to 0.9Lp. La becomes constant with increasing lateral pile 

head deformations as restrained by the fixity at the bottom of pile. In this study, flexible piles are 

of interests. Thus, only piles having La/Lp < 0.75 are considered. 

 

 

Figure 4 - 7. Variation of pile thickness, bt , with the active pile length, La 
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The piles having Ep = 200GPa with pile thickness, bt, equal to 0.3m, 0.35m, 0.4m and 0.5m and 

embedded in loose Toyoura sand were considered. The obtained active pile lengths were 

superimposed to those of piles having Ep = 30GPa with pile thickness, bt, equal to 0.3m, 0.5m, 0.6m 

and 0.8m. The combined effect of the Young’s modulus, Ep, and the pile thickness, bt, using the pile 

stiffness parameter, EIp, is plotted against the active pile length for all the cases considered in this 

particular parametric analysis as seen in Figure 4-5. All the data points lie on a unique line defined 

by the linear function y = 2.891x + 3, where y and x are the active pile length and the fourth-root 

of the pile stiffness, respectively. Thus, there is indeed a linear relationship between the active pile 

length, La and the (EIp)0.25. 

 

 

Figure 4 - 8. Effect of pile stiffness, EIp, on active pile length, La 

 

4.3.2 Effect of Pile Length 

The effect of pile length on the active pile length is investigated. In this case, the single pile having 

EIp equal to 312.5MN-m2 and 2500MN-m2 were taken into consideration. Each pile is embedded 

in the loose sand with e0 = 0.90, varying the pile lengths to 10m, 20m, 30m, 60m and 100m.  

In Figure 4-6, for piles with stiffness EIp of 2500MN-m2 (red line), the La continues to increase with 

increasing Lp until it reaches to a ratio of La/Lp = 0.77, where the Lp is at 30m. The increase in 

active pile length means that it may actually need to be longer than the actual pile length but is 

restricted with the bottom boundary conditions, thus behaving as stiff piles. But when it reached 

the Lp of 60m, the effect of Lp on the La becomes negligible. This point is more prominent for the 

pile stiffness equal to 312.5 MN-m2 given by the blue line. Similar trend shows that as La/Lp 

becomes less than 0.76, the active pile length, La, becomes constant despite increasing the actual 

pile length, Lp. This means that the expected active pile length has been reached given the pile’s 

actual pile length. Figure 4-7 shows the relationship between La/Lp and the actual pile length, Lp. 

For La/Lp <0.75 approximately, there is an asymptotic behavior with increasing Lp.  
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Figure 4 - 9. Variation of active pile length, La with pile length, Lp 

 

 

Figure 4 - 10. La/Lp with actual pile length, Lp 
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The shear modulus also needs to take account the shear degradation of the soil with increasing 
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corresponding deformed La. Then, this shear strain is plotted in the shear degradation curves to 

get the corresponding shear modulus. Figure 4-8 plots the variation of the La, with the Lo given by 
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varying bt, Ep embedded in dense and loose sand. It can be deduced from this figure, that there is 

a linear relationship with the active pile length and characteristic length for various pile head 

displacements. Thus, at this stage, it can be established that La= αLc. Moreover, there is a linear 

function describing the relationship between La and (EIp/G)0.25.  

 

 

Figure 4 - 11. Variation of active pile length, La, with the Lo for all cases at different lateral pile head deformation 

 

The progressive active pile length with the corresponding lateral pile head deformations were 

derived for piles embedded in dense and loose sand. These active pile length are normalized with 

the characteristic length, Lc=(EI/G)0.25, where the shear modulus, G, is the maximum shear 

modulus, Gmax which can be easily obtained in the field. The variation of the ratio of the active pile 

length to this initial characteristic length with the lateral pile head deformation is plotted in Figure 

4-9. It can be seen that the curves reaches to a constant line at around α=5.8. Therefore, it can be 

said the initial active pile length is important as it can determine the active pile length at the 

ultimate stage by a factor of 5.8.   It can be observed though that the piles in dense sand reaches 

the plateau line faster, with the small rate of change in the progression of the active pile length 

with increasing lateral pile head displacements (Figure 4-9a) while the rate of change of active 

pile length is larger for piles in the loose sand (Figure 4-9b). 
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(a) piles in dense sand 

 

(b) piles in loose sand 

Figure 4  - 12. Variation of the ratio of the active pile length to the initial characteristic length with respect to the 

lateral pile head displacement. 

 

4.4 Application to the Ultimate Lateral Pile Resistance 

The numerical simulations done in this research show that a soil wedge is progressively formed 

at the passive region upon application of lateral load to the pile head. Figure 4-10 plots the lateral 

force at the pile head given by the black line. The pile resistance based on the active pile length at 

1m pile head displacement (where the La starts to become constant and shear strain is 

approximately greater than 5%) given by the blue line. The side soil resistance is derived by the 

difference of the lateral force at the pile head and the pile resistance. The soil resistance increases 

with increase in the pile head displacement and approaches a constant value. This is where the 

ultimate lateral pile resistance, Pultimate, is derived for all cases.  
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Figure 4 - 13. Force-deformation curve 

 

The force representation of the wedge can be described by the unit weight, γ, and the Rankine 

passive earth pressure coefficient, Kp. The values for the γ and Kp are given in Table 4-2 based on 

the following expressions: 
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45tan 2 o

pK  (4.31) 

 

where  sG   specific gravity of soil 

w   unit weight of water (9.81kN/m3) 

               peak angle of internal friction 

 

The following soil parameters are used for the cases taken into account. The ϕ used is the peak 

angle of internal friction from the element test simulations. 

 

Table 4- 3. Soil Parameters of Toyoura Sand (TS) (Gs = 2.65) 

Initial void ratio, eo ϕ (deg)  (kN/m3) 

0.60 43.51 16.25 
0.70 40.53 15.29 
0.80 37.47 14.44 
0.90 34.67 13.68 
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Together with the Lau, the soil parameters such as the unit weight of the soil, γ, Rankine passive 

coefficient, Kp are used to estimate the ultimate lateral resistance. Figure 4-11 shows the 

correlation of the ultimate side soil reaction force and the parameters KpγLau2 for all the cases 

considered in this analysis having La/Lp <0.75. In this figure, it can be observed that there is a high 

linear correlation between the Pult and KpγLau 2 having an R2=0.99. Therefore, the Pult can be given 

by this equation: 

 
2153.0 aupult LKP   (4.32) 

 

 

 

Figure 4 - 14. Correlation between Pult and KpγLau2 

 

4.5 Summary and Conclusion 

To ensure the use of flexible piles in the analysis, a La/Lp<0.75 were taken into consideration to 

discount the limiting effect of the bottom boundary condition for shorter piles. For flexible piles, 

the active pile length is generally governed by the stiffness of the pile relative to the surrounding 

soil stiffness. Particularly, there is a linear relationship with the fourth-root of the ratio of pile 

stiffness and soil stiffness at various lateral pile head deformation. Moreover, the active pile length 

at the initial stage is critical as it allows to estimate the active pile length at the ultimate stage. The 

use of active pile length to get the pile resistance and derive the side soil reaction from the load-

deflection response curve at the pile head is indicative that the active pile length is a key 

parameter to define the ultimate lateral resistance. Together with other important soil parameters 

such as the soil unit weight and Rankine passive coefficient, the ultimate lateral resistance of the 

side soil can be estimated. This simplified expression can be useful for more practical approach in 

the seismic and assessment of piles. This idea can also be extended to the 3D case and for a more 

complicated scenario such as for group piles, among others. 
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Chapter 5  
Application of Active Pile Length in the Ultimate Lateral 
Resistance of Single Fixed Head Piles Embedded in Sand 

5.1 Introduction 

The active pile length, La, governs the equivalent cantilever beam behaviour that can be derived 

from the deformation of long and flexible piles caused by the lateral loads applied at the pile head. 

This deformation is fully characterized by the ratio of the pile stiffness with the soil stiffness, 

represented by parameter, Lc (discussed in Chapter 3).  Considering the soil wedge formed in the 

passive region from the lateral push as the pile deforms, the driving question is if this simple 

parameter can describe the ultimate lateral pile resistance. This chapter aims to address this 

question by presenting numerical simulations of laterally loaded single pile embedded in 

homogeneous sandy soil using the ABAQUSv6.13.  In this soil-pile system, the elasto-plastic 

behavior of the soil is modeled using hypoplastic model of von Wolffersdorff  while only the elastic 

nature of the pile is momentarily considered. From the results of the rigorous solution, the process 

of arriving at the simplified method to define the ultimate lateral resistance of single piles in sands 

using the active pile length, La as the key parameter, is discussed. 

 

5.2 Definitions 

Two concepts have been the driving force of this research: (1) Active pile length, La and (2) lateral 

pile resistance. The definitions of these concepts 

are discussed in this section. 

5.2.1 Active Pile Length 

Long and flexible piles are exposed to one or 

combinations of many lateral loads which may 

be in the form of wind, waves, large lateral earth 

pressure and/or seismic waves. The lateral pile 

resistance of piles is governed by the soil-pile 

interaction, simply because with the mere 

presence of piles and soil in the system. The 

deformation of the piles are relative to the 

deformation of the soil and vice versa. The 

deformation along the length of the piles can be 

described by the characteristic length, Lc, as 

defined in Chapter 3. The pile is observed to have 

large deformation at the region near the ground 

surface and becomes negligible with increasing 

depth. The fixity is assumed at the depths where 

the deeper embedment starts to have negligible 

deformation as seen in Figure 5 - 1. Therefore, the pile can be assumed as cantilever beam with 

LaLa

Lp

Figure 5 - 1. Active pile length 
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length, La. To derive the sole pile resistance would mean to get the product of the stiffness of this 

equivalent cantilever beam and the pile head deformation. 

5.2.2 Ultimate Lateral Pile Resistance 

 

 

 

 

 

In the event when large 

lateral loads are applied on long and flexible piles, the lateral deformation of the pile pushes a soil 

wedge up in the passive region. The formed soil wedge along this active pile length is said to be 

the ultimate side soil resistance and correspondingly, the ultimate lateral pile resistance as seen 

in Figure 5 - 2.   

As evidence, Otani et al. (2006) conducted a model test of a single flexible pile embedded in dense 

sand applied with a lateral force using Xray CT Scan. The research did a visualization of the lateral 

deformation around laterally loaded pile in the passive region as seen in Figure 5 - 3. It can be 

observed that with increasing pile head deformation, the soil wedge formation is progressively 

formed. However, with large displacements there appears to be an ultimate value where the soil 

wedge shape becomes constant. 

 

5.3 Numerical Simulations of Laterally Loaded Single Pile 

The simulation of the response of laterally loaded single piles in three-dimension (3D) were 

performed using the ABAQUS v6.13. The ABAQUS v6.13 is a commercial Finite Element Analysis 

(FEA) software (Dassault Systemes Simulia, 2013a) that allows rigorous simulations of the 

behaviour of simple model systems up to the more complicated ones. In this program, a user-

friendly interface is built in to navigate smoothly through the modelling process. It also provides 

readily available interface models for cases of existence of contact surfaces of two-element models, 

necessary for the soil-pile interface. At the same time, it offers option to provide input in code 

command forms for more user-controlled environment. The modular nature of this software 

La

soil wedge

Figure 5 - 2. Soil wedge formation 

around laterally loaded pile 
Figure 5 - 3. X-ray CT scan of the failure deformation around laterally loaded pile 
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allows the user to apply user-defined material constitutive models, perfect for incorporating soil 

constitutive models reflecting the elasto-plastic behaviour of soil.     

In this section, the procedure for the soil-pile idealization and the cases considered in this study 

is discussed in details. The Finite Element Methods (FEM) implemented are validated through 

comparison of previous study as benchmark for simulating the cases. 

5.3.1 Soil-Pile System Idealization 

The soil-pile system includes a single end bearing pile embedded in a homogeneous sandy soil 

subjected to a lateral load. The soil-pile configuration properties and techniques implemented are 

presented herein. 

5.3.1.1 Geometry of the Model 
While the programs based on FEM can rigorously model any soil-pile configurations, the 

computing time and memory requirement increases with complexity. Thus, only the half mesh of 

the soil-pile system is modelled in view of the symmetry (Figure 5 - 4). This soil-pile system is 

modelled with 3D solid deformable body. The maroon elements represent the soil medium, while 

the green elements represent the pile. 

 

Figure 5 - 4. Soil-pile geometric properties and meshing in (a) plan view, (b) 3D Perspective view and (c) cross-

sectional view 

The soil models are dimensioned dependent on the size of the pile diameter, dp, to minimize the 

boundary effects, though this is negligible for static cases. The soil is dimensioned as 30xdp in the 

30dp

1
0d

p
1
.4
5
m

0.05m

pile

soil

(a) Plan view

(c) Cross-sectional view

(b) 3D Perspective View
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longitudinal direction (x-axis) and 10xdp in the transverse direction (y-axis) as seen in the plan 

view of Figure 5 - 4. The depth of the soil medium is 1.45m while the actual length of the pile, Lp, 

is 1.5m (Figure 5 - 4.c).    

A 3d hexahedron-shaped element type used for the automated meshing. Non-uniform meshing is 

implemented to save computing time and memory. Finer meshing is done around the pile as seen 

in Figure 5-4a and near the ground surface as seen in Figure 5-4c. 

5.3.1.2 Boundary Conditions 
The boundary planes in the soil-pile system are designated as follows: (1) bottom (XY plane), (2) 

side (ZY plane), (3) back (ZX plane) and (4) plane of symmetry as shown in Figure 5 - 5. The plane 

designations is used to define the boundary conditions implemented in this section.   

The bottom of the soil medium is considered as a hard stratum and the pile as an end bearing type. 

In this case, the bottom surface of the soil and the pile is considered fixed, where it is restrained 

at all degrees of freedom. The sides of the soil medium is restrained at the x-axis while the back is 

restrained at the y-axis. The plane of symmetry is enforced with symmetric boundary conditions, 

where the translations are restrained at the y-axis and rotations at z and x-axis.  

 

 

Figure 5 - 5. Boundary planes of the soil-pile system 

 

bottom
plane of symmetry

back

side
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5.3.1.3 Soil- Pile Interface 
 

 

 

The contact pairs in the soil-pile system need to be identified to define the slipping and/or gapping 

behaviour between the soil and the pile. Specifically, each surface should be designated as either 

the master surface or the slave surface. The master surface is usually that of a stiffer body in which 

the slave surface behaviour tends to be dependent on. Thus for this case, the master surface is part 

of the pile in contact with the soil and the slave surface is part of the soil located at the hole 

intended for pile installation as seen in Figure 5 - 6.  

Normally, numerical simulations dealing with models having contact pairs face difficulty for 

solutions to converge.  Therefore, some suggested points are to consider for solving contact pair 

problems (King and Richards, 2013) especially for the soil-pile system considered in this study: 

(1) In modelling the contact pairs, the slave surface is suggested to be meshed finer than the 

master surface to avoid possible penetration of the master surface as implemented in Figure 5 - 4. 

(2) Considering the opposite normal direction of contact surfaces of the soil-pile interface, 

surface-to-surface discretization is deemed more appropriate (Figure 5 - 7). This type of 

discretization avoids penetration of surfaces to each other. It also need not require the matching 

of meshes of the master-slave surfaces as it inherently smoothens the contact surfaces through 

the coupling of nodes.  With this action, good response to the behaviour of the master surface is 

more expected and thus allows improved convergence and accurate contact stresses. (3) In 

addition to the surface-to-surface discretization, extra reinforcement of “auto-smoothing” is 

implemented through adjustment of interference fit at the initial stage. Lastly, (4) Finite sliding 

between these two surfaces is chosen in consideration of large displacements. 

The interaction between the soil and pile contact surface can be decomposed to the (1) normal 

component and (2) tangential component. The normal behaviour of the interface is modelled as 

“hard” contact. This means that separation between the contact surfaces occur when the contact 

pressure becomes zero or when there is tension deemed to happen given by a negative value. On 

the other hand, the tangential behaviour is modelled using the penalty algorithm characterized by 

a coefficient of friction between the surface of the pile and the soil. In this case, since the pile 

material is aluminium rested against a sandy soil, the coefficient of friction used is 0.47 or 

Master surface
(pile)

Slave surface
(soil)

surface-to-surface
slave

master

node-to-surface

slave

master

Figure 5 - 6. Master-slave surface definition Figure 5 - 7.  Comparison of surface-to-
surface discretization and node-to-surface 
discretization 
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equivalent to the soil-pile interface’s internal angle of friction, equal to 2  degrees (Wakai et al., 

1999). All other settings are set to default. 

5.3.1.4 Material Model and Elements 

(1) Pile Modeling 

The pile is modelled using 3d solid hexahedron elements. However, the question is whether to use 

an 8-node linear brick element or a 20-node quadratic brick element (Figure 5 - 8). To address 

this, sensitivity analysis is done to compare with the analytical solution of a simple cantilever 

beam with a concentrated force at the end. The following cases were considered: Two cases of 

using linear hexahedral elements with coarse mesh (C3D8R-152 elements) and finer mesh 

(C3D8R-6000 elements), and one case using quadratic hexahedral elements.  

 

 

Figure 5 - 8. Types of hexahedral elements (C3D8R and C3D20R) 

For a beam with bending stiffness EIp of length Lp, subjected with a concentrated force, P at the 
end, the maximum deflection at the end (Figure 5 - 9) is given by the following equation: 
 

 𝑦𝑚𝑎𝑥 =
𝑃𝐿𝑝

3

3𝐸𝐼𝑝
   (5.1) 

 

 

Figure 5 - 9. Maximum deflection for a cantilever beam subjected to a concentrated force at the end 

 

The pile head deflections (ymax) given the monotonic increase of load, P  is plotted in Figure 5  - 10. 

It can be seen that using the linear hexahedral elements (C3D8R) with coarser mesh (152 

elements), the difference of pile head displacements from the analytical solution considering a 

load of 1.5N is 28.20%. From the trend in Figure 5  - 10, this difference even increases with 

increasing load, hence accuracy fall short.  But by making the mesh finer, using 6000 elements, the 

numerical solution gets nearer the same value of the analytical solution with a difference of 7%. 

Yet, this seems considerably tedious given that only piles are considered now. Imagine what the 

numerical scenario would look like when piles are embedded in the sand. Now, using the quadratic 

hexahedral elements of a very coarse mesh, with only 152 elements, the numerical solution is in 

agreement with the numerical solution. Therefore, to optimize the computing time, the C3D20R 

elements are used for the piles. 

𝑦𝑚𝑎𝑥

P

EIp

Lp

𝑦

𝑥
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Figure 5  - 10. Load-deflection curve of a cantilever beam using C3D8 and C3D20 elements 

 

Since the three-dimensional hexahedral elements has only the translational degrees of freedom, 

the rotational constraints at the head cannot be enforced directly. Therefore, a rigid mass is 

attached to the pile head as a cap, enforced with a rigid constraint, where the less stiff material is 

bound to have a deformation relative to it (Figure 5 - 11). In this case, the pile head nodes are tied 

with the rigid cap. Then, a reference point is set at the centroid of the cap, and set the node with 

symmetric condition and zero rotation. To verify if this approach suits the expected deformation, 

it is compared with analytical solution. 

The analytical solution for the beam is as follows: For a beam (Figure 5 - 12)  with bending stiffness 

EIp of length Lp, with constrained rotation at the end and subjected with a concentrated force, P, 

the maximum deflection at the end is given by the Equation 5.2. 
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 𝑦𝑚𝑎𝑥 =
𝑃𝐿𝑝

3

12𝐸𝐼𝑝
    (5.2) 

 

 

Figure 5 - 13. Numerical solution vs. analytical solution of fixed-head pile 

 

From Figure 5 - 13, it can be seen that the numerical solution with the FEM techniques 

implemented is in agreement with the analytical solution. Therefore, this approach is 

implemented in the soil-pile system.  

In this study, the piles considered are in elastic material which is defined by the following 

parameters: (1) Young’s modulus, Ep and (2) Poisson’s ratio, ν. 

 

(2) Soil Modelling 

 

In the soil-pile system, a homogeneous Toyoura sand is considered as the soil medium. A user-

defined constitutive model is implemented in the Abaqus v6.13 to model the mechanical 

behaviour of the granular soil, particularly of Toyoura sand.  This model is based on the Abaqus 

UMAT (User Material) (Dassault Systemes Simulia, 2013b) code from the soilmodels.info 

(Gudehus et al., 2008) with minor code alteration to be installed and run with the FEA program. 

The code is based on formulation of the basic model of hypo-plasticity model for granular 

materials (von Wolffersdorff, 1996) and  small-strain extension (Niemunis and Herle, 1997) 

suitable for cyclic loading cases. In this study, only the basic model is utilized.  

In this section, the description of the hypoplastic model and the required parameters are 

discussed. The calibration of parameters to simulate the behaviour of the Toyoura sand is 

presented. 
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(a) Background of the hypoplastic model 

The nonlinear and inelastic behaviour of the soil, notwithstanding the elastic part, is captured 

using the hypoplastic model by von Wolffersdorff (von Wolffersdorff, 1996). This model is rooted 

from the elasto-plasticity theory models of the hypoplastic Drucker-Prager model (Drucker and 

Prager, 1952) with implementation of the yield criterion of the Matsuoka-Nakai failure surface 

(Matsuoka and Nakai, 1977). The difference of this model with the conventional elasto-plastic 

models is the formulation of only one tensorial function.  

The general form of the constitutive equation for the current hypoplastic model is given by the 
expression:  
 

 𝑻𝑠̊ = 𝑭(𝑻𝑠, 𝑒, 𝑫) (5.3) 

 

where 𝑻𝑠̊ : the objective Jaumman stress rate tensor. This tensor is a function of the Cauchy stress 

tensor, 𝑻𝑠, the current void ratio, 𝑒, and the stretching tensor, 𝑫. This equation clearly depicts the 

assumptions made by this constitutive model. The hypo-plasticity model treats the granular soil 

as a composition of grains, making up its skeleton. The current condition of skeleton of the 

granular soil is described by the contact between the grains, known as the effective stress, 𝑻𝑠  and 

the void ratio, 𝑒. The deformation of the granular soil is described by the stretching tensor, 𝑫 

which is based on the rearrangement of the grains that includes evolution and decay of grain 

contact (Niemunis and Herle, 1997). It is noted together with these assumptions that the general 

form and size of the grains are kept as is, such that particle crushing, compression, abrasion, 

surface and thermal effects are not yet accounted for. 

The function 𝑭  in equation 5.3 can be decomposed to two terms given by the function of A and B. 

The function of A  represents the hypoelastic behaviour (Bower, 2010) of the soil and the function 

of B  represents the nonlinearity and inelasticity. Therefore, equation 5.3 can be re-written as 

equation 5.4: 

 𝑻𝑠̊ = 𝑨(𝑻𝑠, 𝑒, 𝑫) + 𝑩(𝑒, 𝑻𝑠)‖𝑫‖ (5.4) 

 

where ‖𝑫‖ is the Euclidian norm √tr𝑫2. It is warranted that functions A and B can be further 
decomposed to factors that would allow convenience in separating components for calibration of 
material parameters. Considering satisfaction of the sweep-out-of memory1 (SOM) and critical 
states, A and B are replaced with dimensionless factors: 𝑓𝑒 , 𝑓𝑏 , 𝑓𝑑 , depicting the dependence on the 
relative density and pressure. The dimensionless factors: 𝑓𝑒  and 𝑓𝑏  represent the pycnotropy 
(density) factor and 𝑓𝑑 represents the barotropy (pressure).  
 

 𝑻𝑠̊ = 𝑓𝑒𝑓𝑏( (𝑻̂𝑠, 𝑫) + 𝑓𝑑𝑵(𝑻̂𝑠)‖𝑫‖)  (5.5) 

 

where,   and N‖𝑫‖depend on the stretching tensor, D and the stress ratio tensor, 𝑻̂𝑠 =
𝑻𝒔

tr𝑻𝒔
. The 

stress ratio tensor is coaxial with the the principal axes of 𝑻𝒔.  

                                                                 
1 Sweep-out- Memory state (SOM) is one of the boundary states of hypoplastic model. It means that 
for proportional strain paths, there are corresponding proportional stress paths. Influence of initial 
stresses and density vanishes with monotonic deformation (Anaraki, 2008; Mašín and Herle, 2006)  
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From equation 5.5, the Matusoka-Nakai yield surface condition is implemented and gives the 
equation 5.6.  
 

 𝑻𝑠̊ = 𝑓𝑒𝑓𝑏
1

tr𝑻̂𝒔𝟐
(𝐹2𝑫+ 𝑎2tr(𝑻̂𝑠𝑫)𝑻̂𝑠 + 𝑓𝑑𝑎𝐹(𝑻̂𝑠 + 𝑻̂𝒔

∗)‖𝑫‖)  (5.6) 

 

where 𝑎 and 𝐹 are given by equations 5.7 and equation 5.8 respectively. Basically, these equations 
is primarily based on the critical angle of internal friction, 𝜑𝑐, material parameter, 
 

 𝑎 = √
3

8

(3 − sin𝜑𝑐)

sin𝜑𝑐
 (5.7) 

 

 𝐹 = √
1

8
tan2𝜓 +

(2 − tan2𝜓)

2 + √2 tan𝜓 cos 3𝜃
−

1

2√2
tan𝜓   (5.8) 

 
where the invariants are given by the following equations: 
 

 tan𝜓 = √3‖𝑻̂𝒔
∗‖     (5.9) 

 

 cos 3𝜃 = −√6
tr𝑻̂𝒔

∗𝟑

(tr𝑻̂𝒔∗
𝟐
)

3
2

   (5.10) 

 
and 𝑻̂𝒔

∗ is the deviatoric stress ratio tensor given by equation 5.11. 
 

  𝑻̂𝒔
∗  = 𝑻̂𝑠 −

1

3
𝑰   (5.11) 

where I is the unit tensor. 

(b) Soil Model Parameters 

One advantage of this model is that the parameters has physical basis and can be determined 

simply through conventional tests on dry sand to determine the mechanical behaviour of soil.  

Considering the dependence of the model on the void ratio, three characteristic void ratios, 

namely, 𝑒𝑐0, 𝑒𝑖0 and 𝑒𝑑0 are needed as parameters. These are the reference void ratios at mean 

pressure equal to zero, that characterize the position of limiting void ratio curves as seen in Figure 

5 - 14. 

The void ratio at the critical state is related to the mean pressure, p= −(tr𝑻𝒔)/3) where  tr𝑻𝒔 <0 

is for compression, by the following equation: 

 
𝑒𝑐
𝑒𝑐0

= 𝑒𝑥𝑝 [−(−
tr𝑻𝒔
ℎ𝑠

)
𝑛

] (5.12) 

 

Other characteristic void ratio such as the minimum, 𝑒𝑑0,  and maximum void ratio, 𝑒𝑖0  are related 
with the mean pressure in similar form with the critical void ratio given by the equation below.  
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𝑒𝑖
𝑒𝑖0

=
𝑒𝑑
𝑒𝑑0

= 𝑒𝑥𝑝 [−(−
tr𝑻𝒔
ℎ𝑠

)
𝑛

]    (5.13) 

 
where ℎ𝑠, 𝑛 are  additional material constants.  
 

 

Figure 5 - 14. Void ratio vs. mean pressure in logartithmic scale (after Herle and Gudehus, 1999) 

 

The granular stiffness, ℎ𝑠  and 𝑛 also control the limiting void ratio curves and are two of the 

parameters that describe the normal compression and critical state line.  

Equation 5.14 describes the pycnotropy factor, 𝑓𝑑 . This control the stress-strain relationship 
describing the transition to the peak friction angle, the dilative behaviour and critical state, with 
a material constant, 𝛼ℎ . When, fd = 1 , the critical state is reached.  
 

 𝑓𝑑 = (
𝑒 − 𝑒𝑑
𝑒𝑐 − 𝑒𝑑

)
𝛼ℎ

  (5.14) 

 
The other pycnotropy factor, fe, controls the influence of the void ratio e on the incremental 
stiffness. Considering that there is increase in the stiffness with the decrease in void ratio, the 
density factor is related to the void ratio, 𝑒𝑐, of the  soil by the following  equation. 
 

 𝑓𝑒 = (
𝑒𝑐
𝑒
)
𝛽ℎ

 (5.15) 

 
The barotropic factor, 𝑓𝑏  , accounts the increase of the stiffness with the increase of the mean 
stress. This can be directly determined from one-dimensional isotropic compression test or 
oedometer tests.  
 

 𝑓𝑏 =
ℎ𝑠
𝑛
(
1 + 𝑒𝑖
𝑒𝑖

) (
𝑒𝑖0
𝑒𝑐0

)
𝛽ℎ

(−
tr𝑻

ℎ𝑠
)
1−𝑛

[3 + 𝑎2 −√3𝑎 (
𝑒𝑖0 − 𝑒𝑑0
𝑒𝑐0 − 𝑒𝑑0

)
𝛼ℎ

]
−1

   (5.16) 

 
In summary, there are 8 parameters required for the basic hypoplastic model: (1) The critical 

friction angle, 𝜑𝑐, (2) the granular stiffness, ℎ𝑠, (3) 𝑛, the characteristic void ratios:  (4) 𝑒𝑑0, (5) 
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𝑒𝑐0 and (6) 𝑒𝑖0, (7)  𝛼ℎ, that controls the peak friction angle based on the relative density and (8) 

the  𝛽ℎ  that controls the dependency of stiffness on the relative density. 

From Herle and Gudehus (1999), the materials can be calibrated from simple mechanical tests for 

dry sand. The critical friction angle is determined from the angle of repose of the loose material. 

On the other hand, the 𝑒𝑖0  and 𝑒𝑑0  correspond to the maximum and minimum void ratio 

respectively. The ℎ𝑠 and 𝑛 can be determined from the oedometer tests.  

Herle and Gudehus (1999) have performed calibration for the Toyoura sand yet are re-calibrated 

and compared with conventional drained compression triaxial test. The following parameters are 

used: 

 

Table 5 - 1. Material parameters for Toyoura sand 

Angle of internal friction at critical state, φc 30 
Granular stiffness, hs[GPa] 2.6 
Exponential material constant, n 0.35 
Reference minimum characteristic void ratio, ed0  .61 
Reference characteristic void ratio at critical state, ec0 .98 
Reference maximum characteristic void ratio, ec0 1.1 
Parameter for controlling peak friction angle based on relative density, 𝛼ℎ 0.18 
Parameter for controlling dependence of stiffness on the relative density, 𝛽ℎ  1.1 

 

A single element test was conducted using FEM in Abaqus, where the following material 

parameters are implemented with initial mean stress, 𝑝0 = 196𝑘𝑃𝑎. This simulation is compared 

with the experiment on the conventional drained compression triaxial test and numerical 

simulation of the elasto-plastic model, subloading tij.  

 

Figure 5 - 15. Comparison between experimental and numerical result for the stress-strain relationship of Toyoura 

sand (after (Kyokawa, 2011)) 
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The stress ratio, q/p are plotted in Figure 5 - 15 with the corresponding shear strain, εd, for all 

cases considering loose and dense sand condition. Alongside with this is the dilative behaviour, 

εv- εd, from all the tests. The colored lines are the simulations using the hypoplasticity model. This 

is superimposed with the results from the drained compression triaxial test and the numerical 

simulation using the subloading tij. It can be seen that the simulations are in agreement with the 

experimental results.  

 

5.3.1.5 Loading Procedure 
 

Three steps were undertaken in the simulation of the lateral response of single piles. First, the 

initial conditions were defined which includes the boundary conditions, the interface properties 

and the pre-defined fields needed for the geostatic stresses and user-defined solutions.  

In the first step, the initial conditions are called on. In the geostatic stresses, the expected vertical 

stresses at the top and bottom are entered and the horizontal factor, K0. In the initial condition, 

the user-defined material is introduced and directed to.  

Next, is the geostatic stresses s where initial soil stresses are to be developed but the strains are 

back to 0 and back to the equilibrium condition as seen in Figure 5-16. In this case, a selfweight 

analysis is conducted and the last stage is equal to the vertical stresses, γh and horizontal stress, 

0.5γh. In this case, the soil-pile interface properties are not yet activated, and the holes are 

constrained to move at x and y-axis, to assume the non-existence of the pile. Then a gravity load 

equivalent to the selfweight is applied to the whole soil medium. Vertical stresses (S33) are 

generated varying with depth (see Figure 5 - 16(1.a)) and with the horizontal stresses (S22) equal 

to 0.5(S33) (see Figure 5 - 16(1.c)). Then the strains generated are put back to the equilibrium 

state with zero or at the very least, very negligible displacements (U33) as seen in Figure 5 - 

16(1.b).  

Then, in the monotonic loading process under displacement controlled until it reaches, 0.5m or 

just to allow a large displacement. The lateral displacement is applied at the pile head as shown in 

Figure 5 - 16(2). In this step, the boundary conditions at the hole for the piles are removed and 

the interaction properties are activated. 
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          (1.a)                                                                                                      (1.b)     

          

                                                    (1.c)                                                                                        (2) 

Figure 5 - 16. Loading Process: (1) Initial Stress Condition Simulation: (a) Vertical Stress Condition (b) Vertical 

Displacement Distribution (c) Horizontal Stress Condition and (2) Application of Lateral Load 

 

 

 

uy
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5.3.2 Simple Validation of FEM Techniques from Elastic Case 

The previously mentioned techniques are verified using a simple elastic case similarly used by the 

OpenSeesPL (Lu et al., 2011). This is done to serve as benchmark for the cases to be simulated.  

This material parameters are used in this study is exactly the same parameters modelled by Lu et. 

al (2011) in the intention to compare with the analytic solution of Pak (2004) . 

A cylindrical pile with hollow section having properties listed in Table 5-2 is considered. The soil 

domain where the pile is embedded is assumed to be homogeneous and in linear elastic with 

properties listed in Table 5-3. Also, the pile is assumed to be in perfect contact with the soil, 

therefore, rough tangential behaviour is implemented in the interface property. 

Table 5 - 2. Pile properties 

Outer Radius, Ro 8 in (0.203m) 

Wall thickness, h 0.1Ro 

Pile Length, Lp  33.3 ft (10.15m) 

Young’s Modulus of Pile, Ep  29000 ksi (200 GPa) 

Moment of Inertia of Pile, Ip 1286.8 in4 (5.356E-04 m4) 

Poisson’s Ratio, ν 0.345 

 

Table 5 - 3. Soil Properties 

Shear Modulus of Soil, G 7.98 ksi (55MPa) 

Poisson’s Ratio, ν 0.25 

Submerged unit weight,  γ` 62.8 pcf (9.865 kN/m3) 

 

Initial stresses are generated using the selfweight analysis but the strains are put back to 

equilibrium. Then, the pile head with a free head condition is applied with a horizontal load of 

31.5kips (140.12kN). The solution from the FEM using the Abaqus is compared with the elastic 

solution of Abedzadeh and Pak (2004) and the solutions using the OpenSees PL using different 

brick elements (8-node and 20-node) in terms of the pile deformation along the depth as seen in 

Figure 5-17.   
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Figure 5 - 17. Comparison of the pile defomation along the pile depth (after (Lu et al., 2011) 

 

Figure 5-17 shows that the pile deformation along the pile length from the results of FEM using 

Abaqus is in agreement with solutions using OpenseesPL and the elastic solution of Abedzadeh 

and Pak (2004). This deformation along the pile depth is of utmost focus since the active pile 

length is of interest. Therefore, the FEM techniques to simulate the response of laterally loaded 

piles are adequate.  
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5.3.3 Validation of FEM Techniques from Field Test using Elasto-plastic Case 

The FEM techniques are also verified with the results from Arkansas Field Test conducted by the 

U.S. Army Engineer in the Arkansas River downstream from the Pine Bluff (Alizadeh and Davisson  

(1970) and Fan (1996)).  This serves as benchmark model for the cases to be simulated.  

The lateral load test set-up and configuration is illustrated in Figure 5- 18. The properties of the 

test piles and the in-situ surrounding soil are listed in Table 5 - 4 and Table 5 - 5 respectively.  

 

 

Figure 5- 18. Arkansas Field Test Set-up (after Fan(1996)) 

 

In the field test, the test steel pile (Ep=2.09x108 kN/m2) considered is a hollow cylinder having an 

outside diameter of 0.406 and a wall thickness of 7.925mm. The pile has a length equal to 15.3m. 

From flexural field test, the pile has an EIp equal to 6.998x104 kNm2.  

 

Table 5 - 4. Pile properties of the Arkansas Field Test Pile 

Outer Radius, Ro 0.203m 

Wall thickness, h 7.925mm 

Cross-sectional area, A 1. 39 𝑥 10−2m2 

Pile Length, Lp  15.3m 

Young’s Modulus of Pile, Ep  2.09x108 kPa 

Flexural stiffness, EIp 6.998x104 kNm2 

Poisson’s Ratio, ν 0.345 
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The test pile is installed with electric strain gauges along the length of the piles and spaced as 

shown in Figure 5- 18. The test pile is installed with extensometers at the pile head to measure 

the lateral displacements. Then piles are driven in the soil. It should be noted that the protection 

on the pile consisting of the channels against potential damage from the pile driving has an 

additional contribution to the cross-sectional area of the piles, thus a total area of 1. 39 𝑥 10−2 m2 

is considered in the numerical modelling. The lateral load is then monotonically applied at the pile 

head which is 0.107m from the ground at a rate of 17.8 kN per minute. .  

The soil properties were derived from exploratory borings and laboratory tests. Detailed 

descriptions of the soil profile, dry density and SPT values can be referred to (Alizadeh and 

Davisson  (1970) and Fan (1996)) with English units and Metric units respectively.  

The soil condition stated herein are based on the discussion of Fan (1996). Generally, the soil 

stratum is made up of relatively dense medium to fine sands with thin layers of silt and clay at 

depth levels of 12 to 19m.  The average unit weight of the soil medium varies from 14.2 to 17.1 

kN/m3 and with soil medium submerged with groundwater, the submerged unit weight of sand is 

considered as 9.88kN/m3. Laboratory tests like the drained shear tests on the reconstituted soil 

samples taken from the site show the average friction angle of the sand ranging from 31 to 35 

degrees and the friction angle at the interface of the pile and the soil is at 23-30 degrees. The soil 

properties at the site are summarized in Table 5 - 5. 

 

Table 5 - 5. Soil properties at the Arkansas  Field Test Site 

Dry unit weight, γ 14.2 to 17.1 kN/m3 

Submerged unit weight,  γsub 9.88kN/m3 

Average Angle of Internal Friction, φ 31  – 35   

Friction angle at the soil-pile interface 23  – 30  

 

A three-dimensional modelling of the Arkansas Field test set-up is performed. The following 

Figure 5 - 19 shows the soil-pile idealization of the Arkansas Field Test.  

The pile properties in the situ tests are exactly reflected in the numerical modelling. The soil-pile 

interface angle of friction used is 25°. The soil properties used are basically based on the SPT field 

tests and laboratory tests and mainly from back calculation based on the load-deflection curves of 

the Arkansas field tests given the many uncertainties in the soil properties and the possible effect 

of the pile driving. Similar with  Fan (1996), the soil medium is treated as homogeneous soil. Given 

from the pile lateral deflection-depth curves, it can be seen that only the shallow layer is of 

importance as negligible deformation is observed at deeper levels. This shallow layer is 

considered to be the top 5.5m of the soil which is uniformly made up of sand. The average angle 

of friction for this layer is 41.5 degrees. This shows that the sand is dense with an initial void ratio 

of 0.73.  Herle and Gudehus (1999) listed the critical angle of friction for various sands, this ranges 

from 30 to 33. Thus, the angle of friction chosen is 31°. Similarly, in terms of the characteristic 

void ratios (ed0, ec0, ei0), the minimum and the maximum void ratios were chosen within the usual 

range for sand. The rest of the parameters are calibrated to capture the results of the Arkansas 

Field Tests i.e. load-deflection curve at the pile head and the lateral pile deformation shown in 

Figure 5- 20 and Figure 5 - 21 respectively.  Figure 5- 20 shows the lateral load applied at the pile 

head with the corresponding lateral displacements at the groundline. The red data shows the data 
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results from the field test and the black curve is from the output of the numerical simulation. It 

can be seen that the field test and the numerical simulation results are in agreement with each 

other. The soil parameters used for this simulation is summarized in Table 5 - 6. Furthermore, the 

lateral pile head displacement vs. depth are compared with the results of the numerical simulation 

for the lateral loads at 69kN, 109kN, 138kN, 172 kN and 208kN. The results are also in agreement 

with each other which establishes that the FEM techniques can be applied to do some simulations 

for different case scenarios.  

 

Figure 5 - 19. Arkansas Field Test FEM Model 

 

 

Table 5 - 6. Soil parameters for the Arkansas Field Test 

Angle of internal friction at critical state, φc 31 
Granular stiffness, hs[GPa] 2.6 
Exponential material constant, n 0.5 
Reference minimum characteristic void ratio, ed0  .61 
Reference characteristic void ratio at critical state, ec0 .98 
Reference maximum characteristic void ratio, ec0 1.1 
Parameter for controlling peak friction angle based on relative density, 𝛼ℎ 0.25 
Parameter for controlling dependence of stiffness on the relative density, 𝛽ℎ  1.5 
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Figure 5- 20. Comparison of Lateral Load - Deflection curves of the Arkansas Field Test and Numerical Simulations 

(Observed results from Alizadeh and Davisson  (1970) and Fan (1996)) 

 

 

Figure 5 - 21. Lateral Pile Head Deformations vs. Depth for the Arkansas Field Test (Observed results from 

Alizadeh and Davisson  (1970) and Fan (1996) 

 

More notable in this simulations and field test, is the observed progression of the active pile length 

with increase of lateral loads. Based on the established definition of the active pile length until 

3%uy which is plotted in Figure 5 - 22, this trend can be seen.  
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Figure 5 - 22. Active pile length progression in the Arkansas Field Test 

 

5.3.4 Summary of Cases Considered  

A number of static pushover tests for single end bearing pile embedded in a homogeneous 

Toyoura sand were simulated in this study. The static pushover test was conducted using a 

displacement control at pile head, where it is considered fixed.  A lateral displacement is applied 

at the pile head until it reaches the final load of 0.5m. A total of 18 cases are considered where the 

diameter of a circular pile was varied from 10mm to 50mm. Table 5-4 summarizes the different 

geometric and material properties of the piles used in the simulation study. These piles are 

embedded in sands having initial void ratios, e0=0.7392, 0.80 and 0.90. The material parameters 

of the corresponding sand is listed in Table 5-4.   

 

Table 5 - 7. Summary of pile and soil properties 

Case 
No. 

Pile Properties Soil Properties 

Ep (MPa) dp (mm) EIp (Nmm2) e0 γd (N/mm3) ϕpeak 

1 

68600 

10 3.367E+07 

0.7392 1.49E-05 41 

2 20 5.388E+08 

3 25 1.315E+09 

4 30 2.728E+09 

5 40 8.621E+09 

6 50 2.105E+10 

7 

68600 

10 3.367E+07 

0.80 1.44E-05 35 
8 20 5.388E+08 

9 25 1.315E+09 

10 30 2.728E+09 
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Case 
No. 

Pile Properties Soil Properties 

Ep (MPa) dp (mm) EIp (Nmm2) e0 γd (N/mm3) ϕpeak 

11 40 8.621E+09 

12 50 2.105E+10 

13 

68600 

10 3.367E+07 

0.90 1.37E-05 31 

14 20 5.388E+08 

15 25 1.315E+09 

16 30 2.728E+09 

17 40 8.621E+09 

18 50 2.105E+10 

 

 

5.4 Results and Discussion of Numerical Simulations: On Active Pile Length 
 

 

This active pile length is closely related to the characteristic length by 
factor α as given by Equation 5.17 as observed in some formulas 
(Randolph, 1981; Velez et al., 1983).  
 
 

 
 

The length from the pile head down to the point of negligible 

deformation is called the active pile length, 𝐿𝑎  . Velez et al. (1983) 

defined the active length, 𝐿𝑎, to be the length until at a point along the 

pile length where the pile’s lateral displacement is  % of the pile head 

displacement.  Wang and Liao (1988) used 0.3% of the pile head 

displacement as the fixity point. Therefore, in this paper, the point of 

fixity or zero bending is defined at midrange of previous literatures 

such as 3% of the maximum pile head displacement. 

 

Xxxx 

Xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
 

 𝐿𝑎 = 𝛼𝐿𝑐 (5.17) 

La

=3%uy

Figure 5 - 23. Definition of 

active pile length 
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5.4.1 Active Pile Length Progression with Increasing Pile Head Displacement 
 

 

Figure 5 - 24: Active pile length progression with increase in pile head deformation 

 

The active pile length based on the criteria of 3%uy is determined for all cases considered in Table 

5-4 and plotted in Figure 5 - 24 with the corresponding pile head deformation. The zero value in 

the vertical axis corresponds the ground surface, or the pile head. It can be observed in Figure 5-

19 that as the pile head displacement applied increases, the active pile length progressively gets 

longer for all the cases considered and starts to stagnate at higher pile head deformation.   

More importantly, some inherent trends can be observed considering the pile stiffness and the 

relative density of the soil. For the piles having the same pile stiffness, the active pile length is 

longer for piles embedded in loose sand than that of piles in dense sand. Furthermore, the rate of 

increase in active pile length is faster in loose soil than in dense soil due to the higher degree of 

softening of the soil. Conversely, given the same soil condition, the active pile length increases 

with increasing pile stiffness specifically for long and flexible piles.  
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5.4.2 Establishment of Criteria of the Slenderness Ratio for Long Piles 
 

 

 

Figure 5 - 25. Slenderness criteria for long piles 

 

A pile length, Lp= 1.45m of various diameters (d=10 to 50mm) based on the list in the summary 

of cases embedded in both loose and dense sand is considered. Then the fourth root of the pile 

stiffness versus the active pile length at the ultimate stage is plotted in x and y axis respectively 

(Figure 5 - 25). These parameters are normalized with the actual pile length, Lp. In this case, it can 

be observed that difference in active pile length for piles embedded in dense and loose sand 

increases until the point where the ratio of La and Lp or the slenderness ratio is equal to 0.75 given 

by the red line. Beyond this ratio, the difference in the active pile length for increasing pile stiffness 

starts to have a converging behaviour. It reaches a saturation point, where despite the increase in 

pile head displacement, the active pile length is the same. This is due to the fact that the active pile 

length reaches the actual pile length. Given the bottom restraint of the actual pile length, the 

supposed active pile length that should have been formed is being restrained. In this case, the piles 

are considered short or stiff piles. For this study, only the long and slender piles will be considered 

where the concept of active pile length could be observed. 

 

5.4.3 Initial Active Pile Length 

The initial active pile length, L0, is defined as the active pile length formed in the small strain region 

or at the elastic stage. In this section, the initial active pile length in relation with the characteristic 

length is discussed. 
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5.4.3.1 Active Pile Length in Elastic Soil Medium and Non-linear Soil Medium 
 

 

Figure 5- 26. Sample comparison of active pile length progression for piles embedded in elastic and elasto-plastic 

behaviour 

The piles with dp=25mm embedded in the loose condition is taken as an example to compare the 

active pile length for piles embedded ins sand considered as elastic and elasto-plastic. The 

progression of active pile length with the increase in pile head displacements are plotted in Figure 

5- 26. It can be seen that the active pile length progression for piles embedded in elastic is constant 

regardless of the increase in deformation at the pile head. However, considering the more realistic 

nature of the soil, which is in elasto-plastic, it can be seen that there is progression in the active 

pile length with an increase pile head and reaches an ultimate value. Nevertheless, it is noted that 

the initial active length for both cases is the same. The initial active pile lengths for all the cases 

for various pile diameters embedded in different soils in elastic and elasto-plastic case are plotted 

in x and y axis respectively as seen in Figure 5- 27. It can be seen that there’s a 1:1 correspondence. 

It starts to deviate from the linear line as the diameter increases, since these diameters are already 

nearing the short and pile behaviour. 

 

 

Figure 5- 27. Comparison of initial active pile length between soil medium considered as elastic and elasto-plastic 
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Therefore, at the initial stage, the active pile length is equal to the elastic active pile length. 

5.4.3.2 Relationship of Characteristic Length and Initial Active Pile Length 
 

As defined in Chapter 3, the characteristic length is the ratio of the pile stiffness to the surrounding 

soil stiffness. The modified characteristic length (Konagai, 2000) is given by the equation below: 

 

 𝐿𝑐 = √
𝐸𝐼𝑝

𝐺
   

4

 (5.18) 

 
The pile stiffness of piles. EIp, can be easily computed just based on the cross sectional geometric 
properties and material of the piles. For the Gmax, this can be easily derived in the site through the 
PS logging or other similar methods. Considering the small strain stiffness of the Toyoura sand 
that was used in the model. The empirical formula (Gu et al., 2013) is given in equation 5.19 which 
is fitted based on the series  tests on Toyoura sand using resonant column (RC) apparatus with a 
torsional shear function and installed with bender elements.  

  𝐺𝑚𝑎𝑥 = 9 . (𝑀𝑃𝑎)(
𝜎′

𝑃𝑎
)

0.41
(2.17 − 𝑒0)

2

1 + 𝑒0
 (5.19) 

 

Where σ’: the effective vertical stress, Pa=reference atmospheric pressure, 98kPa and e0: initial void 
ratio of the sand. Similar trend can be seen with the discussion of Archer and Heymann (2015) plotting 
the shear stiffness versus depth for different relative densities of sand. 

The characteristic length from Equation 5.18 using G=Gmax is derived, and plotted in the x-axis as 
seen in Figure 5 - 28. There exists a linear relationship between the active pile length at the initial 
stage and the characteristic length. The proportional factor, α equal to 6.38. This is described by 
the equation below: 
 

 𝐿0 = 6.38 𝐿𝑐 (5.20) 

 

 

Figure 5 - 28. Relationship of Lc and L0 using G=Gmax 

y = 6.38x

R² = 0.93

0

250

500

750

1000

0 50 100 150

L
0
, 
(m

m
)

Lc=(EIp/Gmax)
0.25 (mm)

dp=10mm, e₀ =0.73

dp=10mm, e₀ =0.80

dp=10mm, e₀ =0.90

dp=20mm, e₀ =0.73

dp=20mm, e₀ =0.80

dp=20mm, e₀ =0.90

dp=30mm, e₀ =0.73

dp=30mm, e₀ =0.80

dp=30mm, e₀ =0.90

dp=25mm, e₀ =0.73

dp=25mm, e₀ =0.80

dp=25mm, e₀ =0.73

dp=25mm, e₀ =0.80

dp=25mm, e₀ =0.90



68 

 

Therefore, given just the pile stiffness and the shear modulus, the initial active pile length can be 

determined. The active pile length formed at the initial stage can be the key parameter for 

describing the active pile length at the progressive stage due to increase in pile head deformations, 

more importantly at the ultimate stage.  

5.4.4 Active Pile Length at the Ultimate Stage 

Given that the active pile length at the initial stage can be a determining factor in describing the 

active pile length at the ultimate stage, the progressive active pile length is normalized with the 

initial active pile length. This parameter, La/L0 for various pile diameters in each soil type, e0=0.73, 

e0=0.80 and e0=0.90 is plotted in the y-axis with the corresponding pile head displacement in x-

axis. The plots are seen in Figure 5- 29, Figure 5- 30 and Figure 5- 31. 

 

Figure 5- 29. Relationship of normalized active pile length with pile head displacement for piles embedded in 

e0=0.73 

 

Figure 5- 30. Relationship of normalized active pile length with pile head displacement for piles embedded in 

e0=0.80 
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Figure 5- 31. Relationship of normalized active pile length with pile head displacement for piles embedded in 

e0=0.90 

From these figures above, it can be observed that there is a constant value of the ratio of the active 

pile length to the initial active pile length where all the cases tend to converge on. The smaller the 

pile stiffness, the faster it reaches the constant value. At the same time, the looser the surrounding 

soil condition, the higher the La/L0 value. This behaviour means that the increase in the active pile 

length from the active pile length initially formed is large due to the softening of the soil.  

The relationship of the average shear strain formed in the area of the mobilized wedge, which is 

the pile head displacement divided by the corresponding active pile length and the ratio of the 

active pile length to the initial active pile length ratio is of interest. For various cases of pile head 

diameter embedded in a specific type of sand, there exists a unique curve as seen in Figure 5- 32, 

Figure 5- 33 and Figure 5- 34. This unique approaches a constant value at higher shear strains. It 

can be observed that for all the surrounding soil type, the La/L0 parameter becomes constant at 

shear strain equal to around 2%. This means that at 2% average shear strain, the failure surface 

has already raptured and the wedge fully formed. The constant ultimate active pile length job is 

to push the mobilized wedge in the passive region.   

 

Figure 5- 32. Relationship of normalized active pile length with the shear strain for piles embedded in e0=0.73 
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Figure 5- 33. Relationship of normalized active pile length with the shear strain for piles embedded in e0=0.80 

 

 

Figure 5- 34. Relationship of normalized active pile length with the shear strain for piles embedded in e0=0.90 

 

The convergence value of La/L0 varies for each type of soil. Plotting the void ratio with the 

parameter La/L0, there’s a linear relationship given by the following equation (Figure 5- 35). It can 

be noted that the y-intercept could be related to the minimum void ratio of the type of soil and the 

coefficient 1.05 is close to the reference critical void used in the material parameter for this type 

of soil. 
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Figure 5- 35. Relationship of the La/L0 with the initial void ratio 

 

The linear relationship for this soil, and generally for sands, can be described in the following 

equation. 

 𝐿𝑎𝑢 = 𝐿0(1.0 1 𝑒0 + 0.6  ) (5.21) 

 

The active pile length can be determined based on the active pile length at the initial stage by 

applying this correction factor. 

 

5.5 Application of Active Pile Length on Ultimate Lateral Pile Resistance 

5.5.1 Derivation of the Ultimate Lateral Pile Resistance 

Numerical simulations show that there exists a wedge formed in the passive region. The load 

displacement curve from the overall response of the soil-pile system subjected to the lateral load 

is plotted given by the black line shown in Figure 5 - 36. 

Considering the active pile length concept. When piles subjected with lateral loads, the pile 

deforms significantly near the ground surface and decreases with increasing depth. Where at the 

start of negligible deformation, the point of fixity. For deeper depths or embedment length, the 

piles as negligible deformation. Therefore, up to this point the pile can be considered as cantilever 

beam. The pile resistance alone is based on the piles considering as cantilever length. The load 

deformation of pile resistance is plotted using the blue line in Figure 5 - 36.  
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Figure 5 - 36. Load deformation curve 

 

Subtracting the load-deformation of the pile resistance alone from the overall behaviour gives the 

side soil reaction as plotted by the red line seen in Figure 5 - 36. This side soil reaction reaches a 

constant line, the value of this line is called the ultimate side soil reaction. This is how the ultimate 

side soil reaction is derived for all cases.  

 

5.5.2 Simplified Expression of the Ultimate Side Soil Resistance 

 

Figure 5- 37. Relationship of ultimate lateral pile resistance with active pile length and other soil parameters 
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pile length, La, Rankine passive earth coefficient, Kp. and the outer pile radius, R0 and multiplied 

with the unit weight, γ.  

These simple parameters are plotted in the x-axis with the corresponding ultimate lateral pile 

resistance for all the cases as shown in Figure 5- 37. It can be seen that there is a linear relationship 

with high correlation between these terms. Thus, a simplified expression can describe the ultimate 

lateral pile resistance given by equation 5.22.  

 𝑃𝑢𝑙𝑡 = 0.87𝛾𝐿𝑎
2𝐾𝑝𝑅0 (5.22) 

 

5.6 Summary and Conclusions 

The active pile length is a simple parameter reflective of the soil-pile interaction. For long and 

flexible piles, the active pile length is established to be governed by the stiffness of the pile relative 

to the surrounding soil stiffness. Given known parameters EIp and Gmax, the active pile length 

initially formed at the elastic range can be easily determined.  

Considering the elasto-plastic nature of the soil, the active pile length is progressively formed with 

an increase in the applied load.  Once an average shear strain of 2% is reached at the passive region, 

the failure surface ruptures and the soil wedge is fully mobilized. This is evident of the constant 

active pile length at the ultimate stage. This active pile length at the ultimate stage is largely 

dependent on the initial active pile length, as this can be determined by applying a correction 

factor expressed as a function of the void ratio.   

With the formation of the soil wedge at the passive region along this so-called active pile length, 

the ultimate lateral pile resistance is deemed to be dependent on this simple parameter. This is 

proven true with the high correlation of the ultimate side soil resistance and the parameters 

representative of the weight of this soil wedge. The ultimate lateral pile resistance of piles can be 

expressed by simple parameters such as Lau, γ, Kp and R0. 

The summary of the simplified expression approach is shown in Figure 5 - 38. This simplified 

expression for the ultimate lateral pile resistance for flexible single end bearing piles embedded 

in sand can be useful for more practical approach in the seismic and assessment of piles. This idea 

can be extended to a more complicated scenario such as for group piles and other related cases. 
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Figure 5 - 38. Flowchart for the simplified expression of ultimate lateral pile resistance 
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Chapter 6 
Extension of the Applicability of Active Pile Length for 

the Ultimate Lateral Resistance of Closely Grouped Piles 

6.1 Introduction 

The active pile length has been established to be a key parameter in determining the ultimate 

lateral resistance of single piles embedded in sand in Chapter 5. This method is useful in giving 

insight into the mechanics of soil-pile interaction and the formation of the soil wedge in the 

passive region. However, piles are commonly used in practice as grouped piles in a foundation 

system. For grouped piles with wide spacing, piles can be treated as individual piles while for 

closely spaced grouped piles, it could be treated as an equivalent vertical single pile. Hence, this 

chapter presents the extension of concept of active pile length as key parameter in determining 

the ultimate lateral pile resistance developed for single piles to closely grouped piles embedded 

in sand.   

6.2 Definition of Closely Grouped Piles 

According to Bogard and Matlock (1983), the spacing in between or among piles dictates the 
stress formation and the deformation around the piles within this group. Lateral loads induced on 
the pile groups generate normal and shear stresses and strains in the passive region and 
diminishes radially outward the pile vicinity as response to the external loading. The group with 
piles widely spaced from each other tend to have localized plastic flow zones around them. The 
adequate space between and among piles within this group allow each to behave individually with 
negligible effect on the surrounding piles, or totally none for much wider space. Hence, the piles 
belonging in this widely spaced grouped pile could be treated as individual piles and the ultimate 
lateral resistance could just be the summation of these individual piles. The closely grouped piles’ 
behaviour is different as the dense spacing results in a pile group effect.  The mechanism behind 
this group effect for the closely spaced grouped piles is due to the overlapping and development 
of plastic zones around the piles within the group. Therefore, this brings stronger effect among 
the piles that allows the piles to act as a unit. Thus, closely grouped piles can be treated as an 
equivalent pile as can be seen in the Figure 6-1.  
 
 
                                     

                                                                
 

 

 

Figure 6 - 1 Schematic illustration of the patterns of stress and 

deformation around laterally loaded grouped piles (a) closely 

grouped piles (b) widely spaced grouped piles (after Bogard and 

Matlock (1983)) 

 

Figure 6 - 2 Equivalent Single Beam 

from Lateral Field Test (after 

(Konagai et al., 2003))  

(a)                                                 (b) 
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Figure 6 - 3 Lateral pile group effects for different s/d ratios (after Konagai et al. (2003) ) 

 

Konagai et. al. (2003) showed the tolerable limits for the pile-to-pile spacing to define the closely 
grouped piles and widely spaced grouped piles. The stiffness ratio, ηL, with respect to the different 
spacing to diameter (s/dp) ratio is plotted in y and x axis, respectively (see Figure 6-3). The 
normalized grouped pile stiffness ratio, ηL, is given by the following equation. 
 
 

 𝜂𝐿 =
(𝐾𝑥𝑥𝐺𝑃 𝑛𝑝⁄ )

𝐾𝑥𝑥𝑆𝑃
 (6.1) 

 
 
where: 𝐾𝑥𝑥𝐺𝑃 is the static stiffness of the grouped pile, 𝑛𝑝 is the number of piles in the group and 

𝐾𝑥𝑥𝑆𝑃 is the static stiffness of a  single pile. This parameter, 𝜂𝐿, dependent on the s/dp, serves as 

an index in the consideration of pile group effect, where 𝜂𝐿 < 1 accounts for the pile group effect 

and 𝜂𝐿 > 1 means otherwise. Two geometric grouped pile configurations were taken into account: 

(1) 2 x 2 and (2) 3 x 3 where the s/dp ratios are varied to 1, 3, 5, 10 and extreme cases such as 30 

and 80. The stiffness of these grouped pile were derived using the rigorous method and the 

equivalent single beam analogy (Konagai et al., 2003). From Figure 6-3, it could be observed that 

for s/dp < 20, the rigorous solution and the single beam analogy are well within considerable 

agreement and for s/dp > 20, there is an obvious deviation between the two methods. This is 

because the piles within the grouped piles already have very wide spacing from each other that 

they behave as individual piles and can no longer be treated as a unit.      

6.3 Numerical Simulation of Grouped Piles 

The simulation of the response of laterally loaded closely grouped piles in three-dimension (3D) 

were also performed using the ABAQUS v6.13. This gives an advantage of allowing rigorous 

simulation of the additional complexity of the laterally loaded piles as they come in group.   

Basically, similar finite element method techniques implemented in the numerical simulation of 

the single piles are applied to the modelling of the grouped piles. In this section, the soil-pile 
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idealization of the closely grouped pile and the cases considered in this study are discussed in 

details.  

6.3.1 Soil-pile system idealization of closely grouped piles 

The additional complexity of the grouped pile demands a lot more computing time and memory. 

Hence, modelling the cases in view of their symmetry is of utmost importance. Similar with the 

case of single piles, the soil-pile system is modelled with 3D solid deformable body. The maroon 

elements represent the soil medium, the green elements represent the pile, and the grey elements 

represent the pile cap connecting the individual piles.  

The diameter of the individual pile for all the cases of grouped pile is taken to be dp=20mm to 

ensure having a case of long and flexible piles.  The soil models are dimensioned dependent on the 

size of the pile diameter, dp. For the 2x2 grouped pile, the longitudinal length (along the x-axis) is 

taken to be 35dp. or equal to 0.7m as seen in Figure 6 - 4b. Covering a bigger area for the 3x3 

grouped pile, the longitudinal length (along the x-axis) is taken to be 55dp  or equal to 1.10m as 

seen in Figure 6 - 5b. The transverse length is dimensioned to maintain a longitudinal to 

transverse length ratio of approximately 2.35. Hence, the transverse length (along the y-axis) for 

the 2x2 and 3x3 grouped pile model is 0.35m and 0.45m respectively. In general, the geometric 

configuration the soil medium should be adequate enough to allow mobilization of soil and 

minimize the boundary effects, though this is negligible for static cases. The depth of the soil 

medium is 1.45m while the actual length of the pile, Lp, is 1.5m (Figure 6 - 4c and Figure 6 - 5c).    

The piles in the grouped pile are separated with a center-to-center spacing, s. (Figure 6 - 4a and 

Figure 6 - 5a).  Note that for the 2x2 grouped pile, the piles are positioned 0.5s from the plane of 

symmetry and the cut at the pile cap is coplanar with it. For the 3x3 grouped pile, the plane of 

symmetry cuts through the middle of the center row of grouped piles, thus the farthest row of 

piles are positioned s from the plane of symmetry.  

A 3d hexahedron-shaped element type used for the automated meshing. A linear hexahedron 

element type is adequate for the soil elements while a quadratic hexahedron element is used for 

the piles having 20 nodes to be in agreement with the kinematic action of the piles as a flexural 

structure discussed in Chapter 5.  Non-uniform meshing is also implemented in the intention to 

cut down computing time and memory. Finer meshing is done around the pile as seen in Figure 6 

- 4b and Figure 6 - 5b for the 2x2 and 3x3 grouped pile respectively. Also, similar case of meshing 

is implemented near the ground surface as seen in Figure 6 - 4c and Figure 6 - 5c. A total of 24671 

elements are used for the 2x2 grouped pile and 40667 elements for the 3x3 grouped pile. 

With reference to Figure 5 - 5, similar boundary planes are designed to that of the soil-pile model 

for the all the cases of grouped piles namely: (1) bottom (XY plane), (2) side (ZY plane), (3) back 

(ZX plane) and (4) plane of symmetry.  

The following boundary conditions are implemented to the abovementioned boundary plane 

designations.  

(1) Bottom (XY plane) – Fixed. All the degrees of freedom are restrained 

(2) Side (ZY plane) – Restrained at x-axis  

(3) Back (ZX plane) – Restrained at y-axis 

(4) Plane of Symmetry – Translations are restrained at y-axis and Rotations at z- and x-axis 
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Figure 6 - 4. Soil-pile configuration for 2x2 grouped piles. (a) 3D Perspective View, (b) Plan View. Note: Pile cap not 

shown and (c) Cross-sectional view. 

 

Figure 6 - 5. Soil-pile configuration for 3x3 grouped piles. (a) 3D perspective view, (b) Plan view. Note: Pile cap not 

shown and (c) Cross-sectional view 
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Another important model technique is the implementation of the slipping and gapping at the soil-

pile interface. In this case, the contact pairs are present around each individual piles as seen in 

Figure 6 - 6. Similar with the single piles, the master and slave surface are identified being the pile 

and soil contact surface respectively. The same interface properties are implemented since the 

material of the pile and the soil conditions are not changed. 

 

Figure 6 - 6. Soil-pile interface for grouped piles 

6.3.2 Summary of Cases Considered 

The spacing to diameter ratio of s/dp <10 is chosen. Particularly s/dp= 1.5, 2.5 and 4.5 were 

considered for the following grouped piles: 2x2 and 3x3. This is to ensure that a set of closely 

grouped piles is considered based on the abovementioned definition. The summary of cases 

considered is listed in Table 6-1 along with the corresponding equivalent single beam parameters 

such as R0  and EIg.  

Table 6 - 1 Summary of cases considered for grouped piles 

Grouped Pile  s/dp R0 (mm) EIg(x109 mm4) e0 
2x2 1.5 28.21 2.16 0.73 
2x2 2.5 39.49 2.16 0.73 
2x2 4.5 62.06 2.16 0.73 
3x3 2.5 67.70 4.85 0.73 
2x2 1.5 28.21 2.16 0.80 
2x2 2.5 39.49 2.16 0.80 
3x3 2.5 67.70 4.85 0.80 
2x2 1.5 28.21 2.16 0.90 
2x2 2.5 39.49 2.16 0.90 
3x3 2.5 67.70 4.85 0.90 
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The idealization for the equivalent single beam analogy for grouped piles consisting of the 

composite number of piles, 𝑛𝑝, and the soil entrapped among these piles as illustrated in Figure 6 

- 7.   

 

 

Figure 6 - 7. Equivalent single beam analogy idealization 

 

From this idealization, the equivalent single beam parameters such as the cross-sectional area, 𝐴𝑔, 

and the grouped pile stiffness, 𝐸𝐼𝑔, are defined given by Equation 6.2 and 6.3 respectively. 

 𝐴𝑔 = 𝜋𝑅 
2 (6.2) 

 
 

𝐸𝐼𝑔 = 𝑛𝑝𝐸𝐼𝑝 (6.3) 

The broken lines in Figure 6 - 7 circumscribing the outermost piles in the group determines its 

cross section Ag. This cross-sectional area is a square with the sides equal to the length running 

until the edges of the outermost piles. From this cross-sectional area, the equivalent radius, R0 is 

derived.  

The stiffness of the grouped piles, EIg, is defined by the product of the number of piles, np, and the 

stiffness of the individual piles, EIp with the assumption that pile elements within a horizontal slice 

of soil deforms but keep their spacing constant and the entrapped soil moves with them. It is noted 

that to consider the cross-sectional area to calculate the bending stiffness of the grouped pile 

would mean an overestimation since the stiffness of the soil entrapped in the pile is much greater 

than the stiffness of the pile, and thus justifies the method. All the grouped piles are embedded in 

various sand with initial void ratios of 0.73, 0.80 and 0.90.  

6.4 Results and Discussion of Numerical Simulations: On Active Pile Length 
 

From these rigorous solutions, the lateral deformations along the length of the pile is observed. 

Noting that closely grouped piles can be treated as an equivalent single pile, the relationships 

established in determining the characteristic lengths, the initial active pile length and the ultimate 

active pile length for single fixed head pile is extended and applied for closely grouped piles. 

Finally, the established active pile length, La, is used to describe the relationship of the ultimate 

lateral pile resistance for the grouped pile.  

Ag
Ag

s
dp

s s

dp
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6.4.1 Characteristic Length 

The characteristic length is the ratio of the relative stiffness of the piles to the surrounding soil 

stiffness. The stiffness of the grouped pile treating the closely grouped pile as equivalent single 

pile is given by Equation 6.3. Therefore, the stiffness, EIp, for the single fixed head pile is changed 

to EIg and correspondingly, the characteristic length for closely grouped pile can be given by the 

equation below. 

 

 𝐿𝑐 = √
𝐸𝐼𝑔

𝐺

4

 (6.4) 

 

Thus considering the s/dp < 10 within the definition of closely grouped piles, the spacing between 

the piles does not play significantly in the closely grouped pile lateral deformation. In this case, 

given the same number of piles in a closely grouped pile, the individual pile stiffness governs.   

6.4.2 Active Pile Length in Grouped Piles 

The same criteria of active pile length is implemented in this case. The progressive lateral 

deformation of piles with increasing pile head displacement is derived considering the point of 

negligible deformation equal to 3%uy. Considering presence of composite number of single piles 

in grouped pile, the active pile length formation is initially observed in the passive side of each 

piles in the group. In this section, the definition of the active pile length used for this closely 

grouped pile is discussed. Moreover, the effect of spacing and number of piles in the progression 

of active pile length is shown.  

6.4.2.1 Passive Soil Mobilization in Grouped Piles 
 

The soil mobilization in the passive region for single piles is observed at the passive edge of the 

single piles. In the case of closely grouped piles, the soil wedge mobilization in the passive region 

is due to the onset of the lateral deformation of the lead pile. The lead pile is defined to be the pile 

at the forefront of the lateral loading. To illustrate the case, sample cases are shown in Figure 6- 8 

and Figure 6- 9  considering the grouped piles with geometric configurations of 2x2 and 3x3. Both 

cases have s/dp ratio equal to 2.5 and embedded in dense sand. The lead piles in this figures are 

the pile (2x2 configuration in view of symmetry of the model) and the column of piles (3x3 

configuration in view of symmetry of the model) located at the leftmost of the grouped pile. The 

soil lateral displacement distributions around the piles for 2x2 and 3x3 are illustrated in Figure 6- 

8  and Figure 6- 9  respectively using isosurfaces. This shows that the active pile length of the lead 

piles at the passive side is deemed to be crucial as it leads the direction and progression of soil 

mobilization. For this reason, the active pile length of concern would be from the lead piles. The 

active pile length formulation at the initial stage and ultimate stage would be based on this active 

pile length. Noting that there are two piles as the lead piles for 2x2 grouped pile configuration and 

3 lead piles for 3x3 grouped piles, the average of the active pile length of these piles are considered, 

though differences of the lateral deformation of among the piles in the lead column are negligible.   
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Figure 6- 8. Soil lateral displacement distribution at the passive region for 2x2 grouped piles 

 

Figure 6- 9. Soil lateral displacement distribution at the passive region for 3x3 grouped piles 
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Figure 6 - 10. Active pile length progression at lead piles for closely grouped piles embedded in dense sand 

 

Figure 6 - 11. Active pile length progression at lead piles for closely grouped piles embedded in medium dense 

sand 

 

Figure 6 - 12. Active pile length progression at lead piles for closely grouped piles embedded in loose sand 
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A summary of the progression of the active pile length of the lead piles for all the pile configuration 

cases taken into consideration which are embedded in soils with initial void ratios of 0.73, 0.80 

and 0.90 are presented in Figure 6 - 10, Figure 6 - 11 and Figure 6 - 12 respectively in reference 

to the single fixed head pile with diameter, dp=20mm. All these data are plotted with reference to 

the definition of the active pile length as abovementioned. 

In these figures, the zero value in the y-axis is the level of the pile head and the 1.5m level is 

equivalent to the bottom of the pile. From these illustrations, similar trends of active pile length 

progression, in terms of the effect of the pile stiffness and soil property is observed with the single 

fixed head piles. For piles embedded in the same soil condition, the higher the pile stiffness, the 

longer the active pile lengths. Hence, for grouped piles, the more number of piles, the longer the 

active pile length. On the other hand, given the same grouped pile configurations, longer active 

pile length is observed in loose condition due to the softening of the soil. Yet, it is noted that the 

spacing inherent in the pile group, do not have a contributing effect to the active pile length 

formation in the lead piles. This is highlighted in Figure 6 - 10. Looking at the 2x2 pile 

configuration, the active pile length progression is practically the same considering varied s/dp 

ratios of 1.5, 2.5 and 4.5. This is also seen in the remaining two figures (Figure 6 - 11and Figure 6 

- 12), for the 2x2 pile configurations. 

6.4.2.2 Effect of Spacing and Number of Piles in a Group in Active Pile Length 
Whilst the effect of the spacing is not shown in the active pile length of the lead piles, the extent of 

the grouped pile is looked at considering the average of the active pile length of all the piles in the 

grouped pile. By taking the average, this considers the range from the lead piles to the outer 

trailing piles.  The average active pile length of the grouped piles is plotted against the lateral pile 

head displacements with reference to the single fixed head pile. A sample case is shown for 

grouped piles embedded in dense sand with initial void ratio, e0=0.73.  This figure shows that with 

the increase of spacing to diameter ratio, s/dp, the average active pile length decreases and 

approaches the active pile length progression of the single fixed head pile. The average active pile 

length parameter supports claim that widely spaced grouped piles can be treated as individual 

single piles.  

 

Figure 6- 13. Average active pile length progression for grouped piles embedded in dense sand, e0=0.73. 
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The active pile length progression for each piles in the grouped pile are observed and plotted as 

seen in Figure 6- 14. This plot is case for the 2x2 grouped piles embedded in dense sand with 

varying spacing to diameter ratio. For the 2x2 pile configuration, the leftmost column of piles are 

termed as the lead piles and the rightmost column of piles are termed as the trailing pile. All the 

solid lines represent the active pile length progression at the lead piles and the all the dashed lines 

are for the active pile length progression of the trailing piles. Generally speaking, the active pile 

length of the lead piles are longer that those of the trailing piles. Moreover, spacing wise, it can be 

observed that considering low s/dp ratio, say=1.5, given by the blue line in the graph below, the 

active pile length progressions are practically the same with that of the lead and trailing piles. This 

means that the spacing is not enough for the development of the mobilization of the soil within 

the grouped pile. With the increase of spacing to diameter ratio, the differences between the active 

pile length of the lead piles and the trail piles also increases i.e the active pile length of the trailing 

piles decreases. This spacing have allowed some soil mobilization already before reaching the 

trailing pile. Thus, given a widely spaced grouped pile, soil mobilization develops without the 

inhibition of the trailing pile. 

 

Figure 6- 14. Active pile length progression of the individual piles in the 2x2 grouped piles embedded in dense 

sand, e0=0.73 

The active pile lengths of individual piles in grouped piles having a 3x3 configuration embedded 

in soil with initial void ratios, e0=0.73, 0.80 and 0.90 are observed and shown in Figure 6- 15, 

Figure 6- 16and Figure 6- 17 respectively. The zero level at the y-axis is the pile head. The red, 

blue and green lines represent the active pile length in the lead piles, middle piles and outer piles 

respectively. Similar trend is seen where the active pile length is the longest at the lead pile and 

decreases with the trailing outer piles. It can be noted that the difference between the middle piles 

and the outer trailing piles is significantly lower compared to the difference between the lead piles 

with the middle piles and the lead piles with the outer trailing piles even for different soil 

conditions. On the other hand, the difference of the active pile length of the lead piles with the 

other trailing piles increases with decrease in soil stiffness.  

In summary, the active pile length at the lead piles is a critical factor for the soil mobilization at 

the passive region. The spacing controls the extent of the soil mobilization within the grouped pile. 

The number of piles significantly increases the pile stiffness of the grouped piles.   
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Figure 6- 15. Active pile length progression of individual piles in 3x3 grouped piles embedded in e0=0.73 

 

Figure 6- 16. Active pile length progression of individual piles in 3x3 grouped piles embedded in e0=0.80 

 

Figure 6- 17. Active pile length progression of individual piles in 3x3 grouped piles embedded in e0=0.90 
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6.4.3 Initial Active Pile Length 

 
Figure 6- 18. Relationship of characteristic length to the initial active pile length for closely grouped piles. 

 

Similar with the single fixed head piles, the active pile length is needed to derive the active pile 

length at the ultimate stage. It is warranted that this parameter be determined just with the basis 

of known parameters such as the pile and soil stiffness. Thus, the relationship of the characteristic 

length and the active pile length at the initial stage is established. The active pile length at the 

initial stage of the lead piles are plotted in the y-axis of Figure 6- 18. The characteristic length of 

all cases are derived using equation 6.4 similar with that of the single fixed head pile but using the 

grouped pile stiffness from equation 6.3. The plots for the cases of grouped piles are superimposed 

with the single fixed head piles represented by the gray dots. It can be seen that the data for the 

grouped pile lies within the relationship of Lc and L0 established for the single fixed head pile. This 

is given with the expression below:  

 𝐿0 = 6.38 𝐿𝑐 (6.5) 

 

6.4.4 Active Pile Length at the Ultimate Stage 

Given that the active pile length at the initial stage has been established, the active pile length at 

the ultimate stage can be determined correspondingly. The average shear strain is plotted with 

the La/L0 for all the grouped piles embedded in soil with e0=0.73, 0.80 and 0.90 and with reference 

to the plots of the single fixed head piles represented by the grey dots as showed in Figure 6- 19, 

Figure 6- 20 and Figure 6- 21 respectively. Generally, the plots come close to the trend of that of 

the single fixed head pile.  The active pile length at the ultimate stage is reached when the average 

shear strain is at 2%. For the same pile configuration, say 2x2 but with varying s/dp, the data lie 

in a unique curve. However, it can be noted that the La/L0 ratio decreases with the increase of 

number of piles in a group. The La/L0 limits are summarized in Table 6 - 2. The La/L0 values for the 

grouped piles are normalized with that of the single piles to see the departure from the single piles. 

This is summarized in Table 6 - 3 in accordance with the number of piles in a grouped pile. It can 

be seen that a reduction factor of 0.96 and 0.92 is applied to the La/L0 of the single piles. Therefore, 

the difference from the relationship established with that of the single pile is just 4% and 8% for 

the 2x2 and 3x3 grouped pile respectively, which is practically small.  
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Figure 6- 19. Relationship of La/L0 with average shear strain for grouped piles embedded in soil with e0=0,73 

 

Figure 6- 20. Relationship of La/L0 with average shear strain for grouped piles embedded in soil with e0=0,80 

 

Figure 6- 21. Relationship of La/L0 with average shear strain for grouped piles embedded in soil with e0=0,90 
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Table 6 - 2. La/L0 values for the single and grouped piles embedded in e0=0.73, 0.80 and 0.90 

Initial void ratio, e0 La/L0 value 
Single 2x2 3x3 

0.73 1.43 1.37 1.29 
0.80 1.50 1.46 1.40 
0.90 1.60 1.52 1.487 

 

Table 6 - 3. La/L0 values normalized with La/L0 (single piles) 

No. of Piles Reduction Factor for Grouped Piles at the 
Ultimate Stage (x La/L0)single piles 

1 1.00 
4 0.96 
9 0.92  

 

Hence, the equation to get the active pile length at the ultimate is given by the expression below: 

 

 𝐿𝑎𝑢 = 𝐿0(1.0 1 𝑒0 + 0.6  ) (6.6) 

But if to be exact,  

 𝐿𝑎𝑢 = 𝜒𝐿0(1.0 1 𝑒0 + 0.6  ) (6.7) 

where 𝜒 is the reduction factor dependent on the number of piles. This might matter if a huge 

number of piles is to be used.  

6.5 Application of Active Pile Length on Ultimate Lateral Pile Resistance 

Since the active pile length concept for the single fixed head piles has been established to be 

applicable for the closely grouped piles. This is implemented in describing the ultimate lateral pile 

resistance for grouped piles in this section. 

6.5.1 Derivation of the Ultimate Lateral Pile Resistance 

A similar way of the derivation of the ultimate lateral pile resistance for single piles is done with 

the closely grouped pile as shown in Figure 6- 22. The overall behaviour of the response of the 

grouped pile with the application pile head loading is described with the black line.  

To determine the sole pile resistance of grouped pile is not as straightforward as the application 

of the analytical solution for single cantilever beam with fixed rotation at the end given the length, 

La. In order to calculate the grouped pile resistance, the grouped pile is modelled without the 

surrounding soil as seen in Figure 6- 23. The length of the piles is designated to be equal to the 

active pile length at the ultimate stage. Then, a pile head displacement is applied. The pile 

resistance is plotted in Figure 6- 22 represented by the blue line.  

The side soil reaction is derived as the difference of overall behaviour minus the pile resistance. 

The constant line that appears at the larger displacement for the side soil reaction curve is the 
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ultimate side soil reaction or the ultimate lateral pile resistance for all cases of closely grouped 

piles. 

 

Figure 6- 22 Load deformation curves for grouped piles 

 

 

 

Figure 6- 23. Simulation of the laterally loaded grouped pile without the soil. 
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6.5.2 Simplified Expression of the Ultimate Resistance 

 

Figure 6- 24 Relationship of ultimate lateral pile resistance with active pile length and other soil parameters 

 

The same set of parameters to describe to soil wedge in the passive region of a laterally loaded 

single piles is basically considered. The soil parameters used are the dry unit weight, γ and the 

Rankine passive coefficient, Kp describing the volume of the soil mobilized in the passive region. 

The pile radius in this case, is the equivalent radius of closely grouped pile, R0, as shown in Figure 

6- 24. The soil-pile interaction parameter used is the active pile length of the lead piles at the 

ultimate stage, Lau.  From Figure 6- 24, there’s a high correspondence with the linear relationship 

of the ultimate lateral pile resistance and the simple combination of parameters given in the x-

axis. The relationship established with ultimate lateral pile resistance can be expressed in the 

equation below: 

 

 𝑃𝑢𝑙𝑡 = 0.768𝛾𝐿𝑎𝑢
2 𝐾𝑝𝑅0 (6.8) 

 

From the data plotted above, it can be seen that with increase in the number of piles in a grouped 

pile, the higher the ultimate pile resistance. Moreover, increasing the spacing could give the 

additional capacity because of the wider soil entrapment coverage represented by R0, but limited 

to such spacing so that it is not under the category of widely spaced grouped pile.  Ideally, the 

stiffer the soil and the stiffer the piles contributes to a big lateral pile capacity. 
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6.5.3 Superposition of Single and Closely Grouped Piles 

 

Figure 6- 25 Superposition of the simplified approach for the single and closely grouped piles 

 

It has been established in Chapter 5 that the soil wedge for laterally loaded single pile, 

representative of the ultimate lateral pile resistance can be determined using the simple 

parameter, La, reflective of the soil-pile interaction and combining it with other soil parameters 

and pile parameter. Same relationship has been observed for the closely grouped piles. While 

there is 13% difference between the coefficients of the simplified expressions for single and 

closely grouped piles, it can be said that they are in agreement. Superimposing the data points for 

the single piles and grouped piles, and considering all the points, it can be noted that there is a 

high linear correlation between the ultimate lateral pile resistance and the simple parameters. 

Hence, overall, the ultimate lateral pile resistance can be expressed by the equation below.  

 

 𝑃𝑢𝑙𝑡 = 0.77𝛾𝐿𝑎𝑢
2 𝐾𝑝𝑅0 (6.9) 

  

6.6 Summary and Conclusion 

Grouped piles behave as equivalent single piles where the spacing to diameter ratio is less than 

10. The relative pile stiffness to the surrounding soil stiffness is similarly the predominant driving 

parameter to describe the lateral deformation along the length of the grouped piles. While the 

same number of piles gives the same pile group stiffness and correspondingly almost the same 

active pile length, the coverage of the soil entrapped in within the piles, indicative of the equivalent 

R0, gives the additional lateral pile capacity. The concept of the active pile length for the single 

piles to the formation of the soil wedge in the passive region can be extended for closely grouped 
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resistance of single and closely grouped pile, a high correlation is still observed considering all the 

cases for both single and closely grouped piles.  

Below is the flowchart for determining the ultimate lateral pile capacity for closely grouped pile. 

 

Figure 6 - 26. Flowchart for determining the ultimate lateral pile capacity of grouped piles 
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Chapter 7 
Conclusions and Recommendations 

7.1 Conclusions 

Recent advances in numerical simulations have made it possible to simulate complex ideas. Case 

in point is the soil-pile interaction using tools such as finite element method. However, 

practitioners still clamour for the convenience and fast solutions especially for projects that need 

immediate attention. This for the reason, that even to this day simple formula is used. In common 

engineering practice, Chang’s formula based on Winkler model is used in determining the 

characteristic length. In this case, the soil is assumed as an elastic medium discretised in springs 

representative of the soil stiffness. This soil stiffness is given by the coefficient of the subgrade 

reaction. The limitations of this model is that the continuum nature of the soil is not accounted for. 

More importantly, the coefficient of the subgrade reaction is not a fundamental property of the 

soil.  

In Chapter 3, this point is elucidated. Although practitioners need simple and fast solutions, the 

accuracy and foundation on rigorous solution must not be compromised. Thus, the thrust for a 

more rational expression of the characteristic length is proposed. In this expression, the soil 

stiffness is changed to the shear modulus. This allows a more practical solution for field extraction 

without the need for size correction factor to capture the actual size of pile foundations. This 

characteristic length defines the relative stiffness of the pile to the surrounding soil stiffness. It 

predominantly characterizes the pile deformation relative to the surrounding soil that can be 

related to the passive soil wedge formation. Hence, it serves as a good parameter for describing 

the limit state useful in performance based design. 

In Chapter 4, a preliminary study is done for the concept of the active pile length in two-

dimensional analysis. It is established that the pile stiffness and soil stiffness predominantly affect 

the active pile length formation. It was observed that increasing the pile stiffness given the same 

surrounding soil stiffness increases the active pile length. The looser the surrounding soil medium 

for the same pile stiffness, the longer the active pile length. This behaviour is general for the long 

piles where La/Lp <0.75. For practicality purposes, the active pile length is critical for developing 

solutions for the laterally loaded piles since deformations are not formed over its entire length i.e. 

once the active pile length is developed, increasing the pile length over and beyond this value does 

not matter.  

The results derived in Chapter 4 are formidable and has showed potential for establishing the 

relationship of the active pile length with the ultimate lateral pile resistance. Thus, this concept is 

extended to the three-dimensional platform where a simplified approach is developed in 

describing the ultimate lateral pile resistance based on the active pile length as discussed in 

Chapter 5. For long and flexible piles, the characteristic length can be determined by both the 

known parameters: pile stiffness, EIp and soil stiffness, Gmax. The initial active pile length, L0, 

formed at the elastic stage where the pile head displacements is small can be determined by this 

characteristic length by multiplying it with just the proportionality factor.   

It is noted that in an elasto-plastic soil medium, the active pile length is progressively formed. The 

active pile length becomes constant when the average shear strain reaches 2%. This means that 
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the soil wedge is fully mobilized and this constant active pile length just continues to push it up. 

This is the active pile length at the ultimate stage. A relationship is established between the initial 

active pile length and the active pile length at the ultimate stage. This means that a correction 

factor applied to the active pile length formed at the elastic stage can yield the active pile length 

considering the nonlinearity and plasticity of the soil.  

The formation of the soil wedge in the passive region with the increase of the pile head 

displacements along this so-called active pile length gives reasonable and physical basis for the 

ultimate lateral pile resistance to be dependent on this simple parameter. As evidence, a high 

correlation is seen with the ultimate side soil resistance and the parameters representative of the 

weight of this soil wedge. The ultimate lateral pile resistance of piles can be expressed by simple 

parameters such as Lau, γ, Kp and Ro. 

In practice, grouped piles are commonly used. Considering the clear relationship of these simple 

parameters with the ultimate lateral pile resistance, this can be implemented similarly with 

closely spaced grouped piles. In Chapter 6, this idea is extended to closely grouped piles where it 

can be considered to be an equivalent single beam for grouped piles having spacing to diameter 

ratio (s/dp) <10. The pile stiffness considered for the group is equal to the product of the number 

of piles in the group and the individual stiffness. The increase in capacity contributed by the 

entrapped soil is represented by the equivalent radius, R0.  In comparison with the single piles, a 

13% discrepancy is observed in the coefficient for determining the ultimate lateral pile resistance. 

Yet, if all data cases are to be considered, there is still a high correlation observed with the ultimate 

side soil resistance and the simple parameters including the active pile length and other soil 

parameters.  

 

7.2 Recommendations 

One valuable contribution of this research is establishing the relationship of the active pile length 

with the ultimate lateral pile resistance considering the non-linearity and plasticity behaviour of 

the soil. The main intention of this study is to provide a seed concept to start with laying out the 

foundations in terms of characterizing the limit states of the soil wedge formation in the passive 

region using the active pile length. It is recognized in this study that a lot of simplifications have 

been dealt with and limits the results for dealing with systems having soil as dry homogeneous 

sand with elastic piles embedded in it. Of course in reality, more complicated scenarios are 

inherent. Thus, this concept could be extended on those directions in the future studies.  New 

research ideas could be built on this by just changing the material models for the piles, soils and 

loading conditions (see Figure 7- 1). 

7.2.1 On piles 

In this study, piles as elastic materials are considered. Also, it is assumed that the cross section of 

the piles remain the same from the start of the application of the load until the end. Thus, the 

material and geometric nonlinearities of the pile have not been accounted for. This assumption 

the pile may not be valid in many cases. One main dilemma in dealing pile as an elastic in this case 

would be piles reaching failure before reaching the ultimate lateral pile resistance. Hence, 

nonlinear behaviour of the pile in both its material and geometric properties could be the next 

step.  
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7.2.2 On soils 

With the rise of finite element, comes more advance and efficient elasto-plastic constitutive 

materials for soils such that non-convergence numerical problem could be addressed. Advanced 

models could be used such as the SANISAND, the subloading tij and other models that are already 

in a sense a unification of dealing other properties of sand such as its structures, loading history, 

anisotropy, crushing, thermal effects etc.  

 

Specific constitutive models could be applied dependent on the condition of the soil one is interest 

to capture. Liquefaction models, though in research working progress, are to be made available 

and may be implemented with FEM tools. In this case, with cyclic loading and undrained case, 

natural behaviour of soil could be captured.   

Moreover, an interest for frozen soil may arise especially for structures located in cold regions.  In 

this case, a multi-phase soil constitutive model could be implemented in the model. With the 

freezing of soil, comes the increase of the stiffness of soil in the upper part dependent on the depth 

of freezing. This could be treated as a multi-layered soil medium of different stiffness. 

In lieu of that, the soil medium in reality is stratified and made up of different soil type per layer. 

Hence, the next step would be dealing with multi-layered soil system. For the current practice, the 

characteristic length using Chang’s formula for multi-layered system is derived in iteration by 

getting the average of the coefficient of subgrade reaction up to the length of the characteristic 

length. For future work, this could be considered but with consideration of the position of the soil 

type. It is noted that the position of the layers is very important. Given the homogeneous soil 

medium, pile deformation appears to be significant in the upper region near the ground surface. 

Thus, taking for example a two-layered soil of same thickness, different behaviour is expected to 

be observed for piles where it has dense soil material above the loose soil as compared to the 

opposite case where loose soil is located above the dense soil. It is for this reason that an average 

of soil stiffness considering the thickness only is not adequate. Furthermore, different ground 

geometric configurations could be considered such as piles embedded in slopes. 

7.2.3 On loading conditions 

In this current study, a static monotonic loading is applied in the pile head system. In this case, the 

passive wedge is formed in just one side towards the direction of the loading. An interesting 

research would be the effect on the active pile length and the ultimate lateral pile resistance of the 

small back and forth application of the loading, which is called the ratcheting effect. In this case, 

the active and passive soil wedges are interchangeably formed with the application of loading. 

One issue with this type of phenomena is the settlement of the backfilled soil. An extension to this 

ratcheting would be the cyclic loading, which is needed to simulate the liquefaction case for 

undrained soil. An extension to dealing with the liquefaction would be the additional axial loads 

induced on embedded structures due to the liquefied layer sandwiched between non-liquefied 

soils. This consequently affect the active pile length deformations. A more complex scenario would 

be the natural loading orientation of the earthquakes which is random multi-directional lateral 

loading. Hence, this captures realistically the formation of the soil wedge indicative of the ultimate 

lateral pile resistance. In addition, real seismic load could be implemented. 
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Figure 7- 1. Future Direction of Research 
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APPENDIX A.  
Subloading tij constitutive model code 

The main code done in C++ platform for the 2D analysis is mainly from Dr. Hiroyuki Kyokawa 

with modications done to account for the slipping interface and the addition of 2D continuum 

beam-based elements. The whole program is very long and complicated with many layered 

functions. Hence, attached herein is the abridge code, intending to showcase the constitutive 

model used to simulate the elasto-plastic behaviour of soil. The code used here is the subloading 

tij.   
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/******************************************************************************* 
 
   MatSubloadingTij (FEAC Ver.0.00) 
   Copyright (C) 2012 Hiroyuki Kyokawa, All rights reserved. 
   e-mail: h.kyokawa@gmail.com 
 
*******************************************************************************/ 
#include "MatSubloadingTij.h" 
#include "PropSubloadingTij.h" 
 
void MatSubloadingTij::eigenValueAndVector(Matrix& eigenValue, Matrix& eigenVector){ 
        // [eigenVector.transpose()] * [generalCoordinate] * [eigenVector] = [eigenValue] 
        // eigenValue  : general stress(strain) matrix to principal stress(strain) matrix 
        // eigenVector : orthogonal transform matrix from general to principal axis 
 
#define EIGEN_ZERO 1.0E-12 
        eigenVector = Matrix(3,3, 
                             1.0, 0.0, 0.0, 
                             0.0, 1.0, 0.0, 
                             0.0, 0.0, 1.0); 
        double W1,W2,a,b,c; 
        double tc,ts; 
        Matrix trans; 
        double sum = fabs(eigenValue[0][1]) + fabs(eigenValue[0][2]) + fabs(eigenValue[1][2]); 
        double elimitss = 3.0*EIGEN_ZERO; 
        while (sum > elimitss){ 
                if (fabs(eigenValue[0][1]) > EIGEN_ZERO){ 
                        a = eigenValue[0][1]; b = eigenValue[0][0]; c = eigenValue[1][1]; 
                        W1 = b - c; 
                        W2 = 2.0 * a / (fabs(W1)+sqrt(W1*W1+4.0*a*a)); 
                        if(W1 < 0.0) W2 *= -1.0; 
                        tc = 1.0 / sqrt(1.0+W2*W2); 
                        ts = tc * W2; 
                        trans = Matrix(3,3, 
                                       tc,  -ts, 0.0, 
                                       ts,  tc,  0.0, 
                                       0.0, 0.0, 1.0); 
                        eigenValue = trans.transpose() * eigenValue * trans; 
                        eigenVector *= trans; 
                } 
                if (fabs(eigenValue[0][2]) > EIGEN_ZERO){ 
                        a = eigenValue[0][2]; b = eigenValue[0][0]; c = eigenValue[2][2]; 
                        W1 = b - c; 
                        W2 = 2.0 * a / (fabs(W1)+sqrt(W1*W1+4.0*a*a)); 
                        if(W1 < 0.0) W2 *= -1.0; 
                        tc = 1.0 / sqrt(1.0+W2*W2); 
                        ts = tc * W2; 
                        trans = Matrix(3,3, 
                                       tc,  0.0, -ts, 
                                       0.0, 1.0, 0.0, 
                                       ts,  0.0, tc); 
                        eigenValue = trans.transpose() * eigenValue * trans; 
                        eigenVector *= trans; 
                } 
                if (fabs(eigenValue[1][2]) > EIGEN_ZERO){ 
                        a = eigenValue[1][2]; b = eigenValue[1][1]; c = eigenValue[2][2]; 
                        W1 = b - c; 
                        W2 = 2.0 * a / (fabs(W1)+sqrt(W1*W1+4.0*a*a)); 
                        if (W1 < 0.0) W2 *= -1.0; 
                        tc = 1.0/sqrt(1.0 + W2*W2); 
                        ts = tc * W2; 
                        trans = Matrix(3,3, 
                                       1.0, 0.0, 0.0, 
                                       0.0, tc,  -ts, 
                                       0.0, ts,  tc); 
                        eigenValue = trans.transpose() * eigenValue * trans; 
                        eigenVector *= trans; 
                } 
                sum = fabs(eigenValue[0][1]) + fabs(eigenValue[0][2]) + fabs(eigenValue[1][2]); 
        } 
         

// Set order of principal stresses, i.e., major, intermediate and minor principal stress 
        int swapPos; 
        for (int i=0; i<2; i++){ 
                sum = eigenValue[i][i]; 
                swapPos =i; 
                for (int j=(i+1); j<3; j++) 
                if (eigenValue[j][j] > sum){ 
                        sum = eigenValue[j][j]; 
                        swapPos = j; 
                } 
                if (swapPos != i){ 
                        eigenValue[swapPos][swapPos] = eigenValue[i][i]; 
                        eigenValue[i][i] = sum; 
                        for (int j=0; j<3; j++){ 
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                                sum = eigenVector[j][i]; 
                                eigenVector[j][i] = eigenVector[j][swapPos]; 
                                eigenVector[j][swapPos] = sum; 
                        } 
                } 
        }                                                                               
#undef EIGEN_ZERO 
} 
 
Prop* MatSubloadingTij::NewProp(void){ 
        return new (class PropSubloadingTij); 
} 
 
double MatSubloadingTij::getGamma(void){ 
        return gamma; 
} 
 
double MatSubloadingTij::getK_Zero(void){ 
        return K_Zero; 
} 
 
double MatSubloadingTij::getPoissonRatio(void){ 
        return poissonRatio; 
} 
 
double MatSubloadingTij::getInitialVoidRatio(void){ 
  return e0; 
} 
 
#ifdef DYNAMIC_ANALYSIS 
double MatSubloadingTij::getDensityOfMass(void){ 
  return densityOfSoil; 
} 
 
double MatSubloadingTij::getDensityOfSoil(void){ 
  return densityOfSoil; 
} 
#endif 
 
#ifdef WATER_COUPLED 
Matrix MatSubloadingTij::getPermeability(void){ 
  return Matrix(2,2, 
            kx, 0.0, 

         0.0, ky); 
} 
 
double MatSubloadingTij::getDensityOfWater(void){ 
  return densityOfWater; 
} 
#endif 
 
Matrix MatSubloadingTij::getDe(Prop* prop){ 
        //------ Compression is positive in soil mechanics --------------------- 
        Matrix stress = -prop->getStress(); 
        Matrix stressMatrix(3,3, 
                            stress(0,0), stress(3,0), stress(5,0), 
                            stress(3,0), stress(1,0), stress(4,0), 
                            stress(5,0), stress(4,0), stress(2,0)); 
  // unit tensor 
  Matrix deltaij(3,3, 
            1.0,0.0,0.0, 
             0.0,1.0,0.0, 
            0.0,0.0,1.0); 
#ifdef WATER_COUPLED 
  double uW = prop->getUw(); 
  stressMatrix -= uW*deltaij; // Effective stress 
#endif 
  //---------------------------------------------------------------------- 
        double p = stressMatrix.trace()/3.0; 
        Matrix D_d_p(6,6, 
                      lambda_p_2G_d_p , lambda_d_p            , lambda_d_p            , 0.0     , 0.0     , 0.0, 

                      lambda_d_p            , lambda_p_2G_d_p , lambda_d_p           , 0.0     , 0.0     , 0.0, 
                      lambda_d_p            , lambda_d_p            , lambda_p_2G_d_p , 0.0     , 0.0     , 0.0, 
                      0.0              , 0.0             , 0.0             , G_d_p   , 0.0     , 0.0, 
                      0.0              , 0.0             , 0.0             , 0.0     , G_d_p   , 0.0, 
                      0.0              , 0.0             , 0.0             , 0.0     , 0.0     , G_d_p); 
        return D_d_p * p; 
} 
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Matrix MatSubloadingTij::getDeInverse(Prop* prop){ 
        //------ Compression is positive in soil mechanics --------------------- 
        Matrix stress = -prop->getStress(); 
        Matrix stressMatrix(3,3, 
                             stress(0,0), stress(3,0), stress(5,0), 
                              stress(3,0), stress(1,0), stress(4,0), 
                              stress(5,0), stress(4,0), stress(2,0)); 
   

// unit tensor 
  Matrix deltaij(3,3, 
        1.0,0.0,0.0, 
        0.0,1.0,0.0, 
        0.0,0.0,1.0); 
#ifdef WATER_COUPLED 
  double uW = prop->getUw(); 
  stressMatrix -= uW*deltaij; // Effective stress 
#endif 
  //---------------------------------------------------------------------- 
        double p = stressMatrix.trace()/3.0; 
        double youngModulus = youngModulus_d_p * p; 
        double Ediv = 1.0/youngModulus; 
        double EPdiv = -poissonRatio/youngModulus; 
        double Gdiv = 1.0 / (G_d_p * p); 
        return Matrix(6,6, 
                       Ediv  , EPdiv , EPdiv , 0.0  , 0.0  , 0.0 , 
                       EPdiv , Ediv , EPdiv , 0.0 , 0.0  , 0.0 , 
                       EPdiv , EPdiv , Ediv , 0.0  , 0.0  , 0.0 , 
                       0.0   , 0.0   , 0.0   , Gdiv , 0.0  , 0.0 , 
                       0.0   , 0.0   , 0.0   , 0.0  , Gdiv , 0.0 , 
                       0.0   , 0.0   , 0.0   , 0.0  , 0.0  , Gdiv); 
} 
 
char* MatSubloadingTij::getType(void){ 
        return "SubloadingTij"; 
} 
 
void MatSubloadingTij::read(istream& is){ 
          is >> lambda         // Compression index 
               >> kappa          // Swelling index 
                >> Rcs            // Principal stress ratio at critical state 
     >> beta  // Shpae of yield surface 
     >> eNC  // Void ratio on NCL under atmospheric pressure 
     >> Pa  // Atmospheric pressure 
     >> a  // Controlling decay rate of the influence of density 
     >> poissonRatio   // Poisson ratio 
                >> gamma          // Unit weight 
                >> K_Zero         // K0 
                >> e0;  // Initial void ratio 
#ifdef WATER_COUPLED 
  is >> kx  // Permeability in x direction 
     >> ky  // Permeability in y direction 
     >> densityOfWater; // Density of water 
#endif 
#ifdef DYNAMIC_ANALYSIS 
  is >> densityOfSoil; // Density of soil 
#endif 
        // elasticity 
        youngModulus_d_p  = 3.0 * (1.0+e0) * (1.0-2.0*poissonRatio) / kappa; 
        G_d_p              = youngModulus_d_p / 2.0 / (1.0+poissonRatio); 
        lambda_d_p         = (poissonRatio * youngModulus_d_p) / ((1.0-2.0*poissonRatio) * (1.0+poissonRatio)); 
        lambda_p_2G_d_p   = lambda_d_p + 2.0*G_d_p; 
        // failure func. 
        Xcs       = sqrt(2.0) * (sqrt(Rcs)-1.0/sqrt(Rcs)) / 3.0; 
        Ycs        = (1.0-sqrt(Rcs)) / (sqrt(2.0) * (sqrt(Rcs)+0.5)); 
        Mstar     = pow((pow(Xcs,beta) + pow(Xcs,beta-1.0)*Ycs),1.0/beta); 
        Cp        = (lambda-kappa)/(1.0+e0); 
} 
 
void MatSubloadingTij::show(ostream& os){ 
                          os << "Material Type  : MatSubloadingTij"   << endl 
     << "Lambda                : " << lambda << endl 

     << "Kappa                   : " << kappa << endl 
     << "Stress Ratio at Critical State : " << Rcs  << endl 
     << "Beta                            : " << beta           << endl 
               << "eNC                             : " << eNC            << endl 
                << "Atmospheric pressure           : " << Pa             << endl 
     << "Ifluence of density             : " << a              << endl 
                << "e0                              : " << e0  << endl 
                << "Unit Weight                     : " << gamma  << endl 
                << "K_0                             : " << K_Zero; 
} 
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Matrix MatSubloadingTij::getDep(Prop* prop){ 
        Matrix De = getDe(prop); 
        //------ Initial loading condition is elasitc in first step of stage --- 
        if(prop->getLoadingDirection() == -100){ // neutralized 
                prop->setLoadingDirection(-1); 
                prop->setDep(De); 
                return De; 
        } 
   
        //------ Compression is positive in soil mechanics ---------------------- 
        Matrix stress  = -prop->getStress(); 
  Matrix dStrain = -prop->getDTotalStrain(); 
  Matrix stressMatrix(3,3, 
                               stress(0,0), stress(3,0), stress(5,0), 
                               stress(3,0), stress(1,0), stress(4,0), 
                               stress(5,0), stress(4,0), stress(2,0)); 
         // unit tensor 
  Matrix deltaij(3,3, 
    1.0,0.0,0.0, 
    0.0,1.0,0.0, 
    0.0,0.0,1.0); 
#ifdef WATER_COUPLED 
  double uW = prop->getUw(); 
  stressMatrix -= uW*deltaij; // Effective stress 
#endif 
         
        //+++++ calculate components of ordinary stress ƒÐij +++++++++++++++++++ 
  double p = stressMatrix.trace()/3.0; 
        // calculation of principal stress and axis 
        Matrix principalStress = stressMatrix; 
        Matrix principalAxis(3,3); // orthogonal transform matrix from general to principal axis 
        eigenValueAndVector(principalStress,principalAxis); 
        // invariant of stress tensor 
        double I1 = stressMatrix.trace(); 
        double I2 = 0.5*(pow(stressMatrix.trace(),2.0)-(stressMatrix*stressMatrix).trace()); 
        double I3 = stressMatrix.determinant(); 
        //+++++ calculate components of modified stress tij ++++++++++++++++++++ 
        // aii,aij,tii,tij 
        Matrix aii(3,3, // PS = principalStress 
                   sqrt(I3/(I2*principalStress(0,0))), 0.0,                                0.0, 
                   0.0,                                sqrt(I3/(I2*principalStress(1,1))), 0.0, 
                   0.0,                                0.0,                                sqrt(I3/(I2*principalStress(2,2)))); 
        Matrix aij = principalAxis * aii * principalAxis.transpose(); 
        Matrix tii = aii*principalStress; 
        Matrix tij = aij*stressMatrix; 
        double tN = 3.0*I3/I2; // tN 
        //---------------------------------------------------------------------- 
        Matrix dFdsVector = getDFds(prop); 
  Matrix dFdtVecter = getDFdt(prop); 
  // hardening function 
  double rho = prop->getRho(); 
  double G   = a*rho*fabs(rho); 
  double hp  = 0.0; 
 
#ifdef FINITE_DEFORMATION 
  double J   = prop->getF().determinant(); // Jacobian 
  hp  = (J*(dFdtVecter(0,0)+dFdtVecter(1,0)+dFdtVecter(2,0)) + G/tN)/Cp; 
#else 
  hp  = (dFdtVecter(0,0)+dFdtVecter(1,0)+dFdtVecter(2,0) + G/tN)/Cp; 
#endif 
  //---- Loading judgement and Elasto-plastic stifness matrix ------------ 
          double dFe = dFdsVector.transpose() * De * dStrain; 
  double capLambda = dFe/(hp+dFdsVector.transpose()*De*dFdtVecter); 
  if(prop->getLoadingDirection() == -1){ 
    if(capLambda<=0.0){ 
#ifdef CONVERGENCE_CALCULATION 
  prop->setLoadingDirection(1); 
#endif 
  prop->setDep(De); 
  return De; 
    } 

else{ 
  Matrix Dep = De - De*dFdtVecter*dFdsVector.transpose()*De/ (hp+dFdsVector.transpose()*De*dFdtVecter); 
#ifdef CONVERGENCE_CALCULATION 
  prop->setLoadingDirection(2); 
#endif 
  prop->setDep(Dep); 
  return Dep; 
    } 
  } 
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#ifdef CONVERGENCE_CALCULATION 
  else if(prop->getLoadingDirection() == 1){ 
    prop->setDep(De); 
    return De; 
  } 
  else{ //prop->getLoadingDirection() == 2 
    Matrix Dep = De - De*dFdtVecter*dFdsVector.transpose()*De 
        / (hp+dFdsVector.transpose()*De*dFdtVecter); 
    prop->setDep(Dep); 
    return Dep; 
  } 
#endif 
} 
 
Matrix MatSubloadingTij::getBuiltDep(Prop* prop){ 
        return prop->getBuiltDep(); 
} 
 
Matrix MatSubloadingTij::getDFds(Prop* prop){ 
  //------ Compression is positive in soil mechanics ---------------------- 
        Matrix stress = -prop->getStress(); 
        Matrix stressMatrix(3,3, 
                            stress(0,0), stress(3,0), stress(5,0), 
                            stress(3,0), stress(1,0), stress(4,0), 
                            stress(5,0), stress(4,0), stress(2,0)); 
  // unit tensor 
  Matrix deltaij(3,3, 
        1.0,0.0,0.0, 
        0.0,1.0,0.0, 
        0.0,0.0,1.0); 
#ifdef WATER_COUPLED 
  double uW = prop->getUw(); 
  stressMatrix -= uW*deltaij; // Effective stress 
#endif 
        //+++++ calculate components of ordinary stress ƒÐij +++++++++++++++++++ 
  double p = stressMatrix.trace()/3.0; 
        // calculation of principal stress and axis 
        Matrix principalStress = stressMatrix; 
        Matrix principalAxis(3,3); // orthogonal transform matrix from general to principal axis 
        eigenValueAndVector(principalStress,principalAxis); 
        // invariant of stress tensor 
        double I1 = stressMatrix.trace(); 
        double I2 = 0.5*(pow(stressMatrix.trace(),2.0)-(stressMatrix*stressMatrix).trace()); 
        double I3 = stressMatrix.determinant(); 
        //+++++ calculate components of modified stress tij ++++++++++++++++++++ 
        // aii,aij,tii,tij 
        Matrix aii(3,3, // PS = principalStress 
                   sqrt(I3/(I2*principalStress(0,0))), 0.0,                                0.0, 
                   0.0,                                sqrt(I3/(I2*principalStress(1,1))), 0.0, 
                   0.0,                                0.0,                                sqrt(I3/(I2*principalStress(2,2)))); 
        Matrix aij = principalAxis * aii * principalAxis.transpose(); 
        Matrix tii = aii*principalStress; 
        Matrix tij = aij*stressMatrix; 
        // tN 
        double tN = 3.0*I3/I2; 
        // xij,X 
        Matrix xij = tij/tN - aij; 
        double X = xij.getNorm(); 
        //+++++ calculate derivative of failure function F +++++++++++++++++++++ 
        //+++++ with respect to modified stress tij ++++++++++++++++++++++++++++ 
        // •ÝF/•ÝtN 
        double dFdtN = 1.0/tN; 
        // �ÝƒÄ/�ÝX 
        double dZetadX = 0.0; 
        if(X != 0.0) 
                dZetadX = pow(X/Mstar,beta-1.0)/Mstar; 
        // •ÝF/•ÝX = •ÝZita/•ÝX 
        double dFdX = dZetadX; 
        //+++++ calculate derivative of failure function F +++++++++++++++++++++ 
        //+++++ with respect to ordinary stress ƒÐij +++++++++++++++++++++++++++ 
        // �ÝI1/�ÝƒÐij 

        Matrix dI1dsij = deltaij; 
        // �ÝI2/�ÝƒÐij 
        Matrix dI2dsij = I1*deltaij - stressMatrix.transpose(); 
        // �ÝI3/�ÝƒÐij = 0.5*(Eist*Ejlm*ƒÐsl*ƒÐtm)�@ 
        Matrix S = stressMatrix; 
        Matrix dI3dsij(3,3, // S = stress 
                       S(1,1)*S(2,2)-S(1,2)*S(2,1), S(1,2)*S(2,0)-S(1,0)*S(2,2), S(1,0)*S(2,1)-S(1,1)*S(2,0), 
                       S(2,1)*S(0,2)-S(2,2)*S(0,1), S(2,2)*S(0,0)-S(2,0)*S(0,2), S(2,0)*S(0,1)-S(2,1)*S(0,0), 
                       S(0,1)*S(1,2)-S(0,2)*S(1,1), S(0,2)*S(1,0)-S(0,0)*S(1,2), S(0,0)*S(1,1)-S(0,1)*S(1,0)); 
        // �ÝtN/�ÝƒÐij = �Ý(I3/I2)/•ÝƒÐij 
        Matrix dtNdsij = 3.0*(1.0/I2*dI3dsij - I3/(I2*I2)*dI2dsij); 
        // �ÝX/�ÝƒÐij = �Ý(sqrt(I1*I2/9*I3-1)/�ÝƒÐij 
        Matrix dXdsij(3,3); 
        if(X != 0.0) 
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                dXdsij = (I2*dI1dsij + I1*dI2dsij - I1*I2/I3*dI3dsij) / (18.0*X*I3); 
        // �ÝF/�ÝƒÐij 
        Matrix dFdsij = dFdtN*dtNdsij + dFdX*dXdsij; 
        Matrix dFdsVector(6,1,dFdsij(0,0),dFdsij(1,1),dFdsij(2,2),2.0*dFdsij(0,1),2.0*dFdsij(1,2),2.0*dFdsij(2,0)); 
  //---------------------------------------------------------------------- 
        if(p < 0.0){ // Sm < 0 
                return Matrix(6,1, 
                              -0.5773502691896257, 
                              -0.5773502691896257, 
                              -0.5773502691896257, 
                              0.0, 
                              0.0, 
                              0.0); 
        } 
        return dFdsVector; 
} 
 
Matrix MatSubloadingTij::getDFdt(Prop* prop){ 
  //------ Compression is positive in soil mechanics ---------------------- 
        Matrix stress = -prop->getStress(); 
        Matrix stressMatrix(3,3, 
                            stress(0,0), stress(3,0), stress(5,0), 
                            stress(3,0), stress(1,0), stress(4,0), 
                            stress(5,0), stress(4,0), stress(2,0)); 
  // unit tensor 
  Matrix deltaij(3,3, 
        1.0,0.0,0.0, 
        0.0,1.0,0.0, 
        0.0,0.0,1.0); 
#ifdef WATER_COUPLED 
  double uW = prop->getUw(); 
  stressMatrix -= uW*deltaij; // Effective stress 
#endif 
        //+++++ calculate components of ordinary stress ƒÐij +++++++++++++++++++ 
        double p = stressMatrix.trace()/3.0; 
  // calculation of principal stress and axis 
        Matrix principalStress = stressMatrix; 
        Matrix principalAxis(3,3); // orthogonal transform matrix from general to principal axis 
        eigenValueAndVector(principalStress,principalAxis); 
        // invariant of stress tensor 
        double I1 = stressMatrix.trace(); 
        double I2 = 0.5*(pow(stressMatrix.trace(),2.0)-(stressMatrix*stressMatrix).trace()); 
        double I3 = stressMatrix.determinant(); 
        //+++++ calculate components of modified stress tij ++++++++++++++++++++ 
        // aii,aij,tii,tij 
        Matrix aii(3,3, // PS = principalStress 
                   sqrt(I3/(I2*principalStress(0,0))), 0.0,                                0.0, 
                   0.0,                                sqrt(I3/(I2*principalStress(1,1))), 0.0, 
                   0.0,                                0.0,                                sqrt(I3/(I2*principalStress(2,2)))); 
        Matrix aij = principalAxis * aii * principalAxis.transpose(); 
        Matrix tii = aii*principalStress; 
        Matrix tij = aij*stressMatrix; 
        // tN 
        double tN = 3.0*I3/I2; 
        // xij,X 
        Matrix xij = tij/tN - aij; 
        double X = xij.getNorm(); 
        //+++++ calculate derivative of failure function F +++++++++++++++++++++ 
        //+++++ with respect to modified stress tij ++++++++++++++++++++++++++++ 
        // •ÝF/•ÝtN 
        double dFdtN = 1.0/tN; 
        // �ÝƒÄ/�ÝX 
        double dZetadX = 0.0; 
        if(X != 0.0) 
                dZetadX = pow(X/Mstar,beta-1.0)/Mstar; 
        // •ÝF/•ÝX = •ÝZita/•ÝX 
        double dFdX = dZetadX; 
        // •ÝtN/•Ýtij 
        Matrix dtNdtij = aij; 
        // •ÝX/•Ýtij = •ÝX/•Ýxkl * •Ýxkl/•Ýtij 
        Matrix dXdtij(3,3); 

        if(X != 0.0) 
                dXdtij = (xij - X*X*aij) / (X*tN); 
        // •ÝF/•Ýtij 
        Matrix dFdtij = dFdtN*dtNdtij + dFdX*dXdtij; 
        Matrix dFdtVector(6,1,dFdtij(0,0),dFdtij(1,1),dFdtij(2,2),2.0*dFdtij(0,1),2.0*dFdtij(1,2),2.0*dFdtij(2,0)); 
  //---------------------------------------------------------------------- 
        if(p < 0.0){ // Sm < 0 
                return Matrix(6,1, 
                              -0.5773502691896257, 
                              -0.5773502691896257, 
                              -0.5773502691896257, 
                              0.0, 
                              0.0, 
                              0.0); 
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        } 
        return dFdtVector; 
} 
 
void MatSubloadingTij::initialize(Prop* prop){ 
  //------ Compression is positive in soil mechanics ---------------------- 
        Matrix stress = -prop->getStress(); 
  // stress tensor 
        Matrix stressMatrix(3,3, 
                            stress(0,0), stress(3,0), stress(5,0), 
                            stress(3,0), stress(1,0), stress(4,0), 
                            stress(5,0), stress(4,0), stress(2,0)); 
        // unit tensor 
        Matrix deltaij(3,3, 
                       1.0, 0.0, 0.0, 
                       0.0, 1.0, 0.0, 
                       0.0, 0.0, 1.0); 
#ifdef WATER_COUPLED 
  double uW = prop->getUw(); 
  stressMatrix -= uW*deltaij; 
#endif 
        // calculation of principal stress and axis 
        Matrix principalStress = stressMatrix; 
        Matrix principalAxis(3,3); 
        eigenValueAndVector(principalStress,principalAxis); 
        // invariant of stress tensor 
        //double I1 = stressMatrix.trace(); 
        double I2 = 0.5*(pow(stressMatrix.trace(),2.0)-(stressMatrix*stressMatrix).trace()); 
        double I3 = stressMatrix.determinant(); 
        // aii,aij,tii,tij 
        Matrix aii(3,3, 
                   sqrt(I3/(I2*principalStress(0,0))), 0.0,                                0.0, 
                   0.0,                                sqrt(I3/(I2*principalStress(1,1))), 0.0, 
                   0.0,                                0.0,                                sqrt(I3/(I2*principalStress(2,2)))); 
        Matrix aij = principalAxis * aii * principalAxis.transpose(); 
        Matrix tii = aii*principalStress; 
        Matrix tij = aij*stressMatrix; 
        // tN 
        double tN = 3.0*I3/I2; 
        Matrix xij = tij/tN - aij; 
        double X = xij.getNorm(); 
        // tN1•Fsize of current subloading surface 
  double tN1 = tN*exp(1.0/beta*pow(X/Mstar,beta)); 
     // e1 : void ratio on NCL under current stress 
        double e1 = eNC - lambda*log(tN1/Pa); 
        // tN0 : size of initial yield surface at tN-axis 
        double tN0 = tN*exp((e1-e0)/(lambda-kappa)); 
  // ƒÏ•Fparamter representing the influence density (OCR) 
        double rho = e1-e0; 
  // update hardening parameters 
  prop->setHardeningParameter(tN0); 
  prop->setInitialHardeningParameter(tN0); 
  prop->setRho(rho); 
} 
 
void MatSubloadingTij::update(Prop* prop){ 
        //------ Compression is positive in soil mechanics ---------------------- 
  Matrix plasticStrain   = -prop->getPlasticStrain(); 
  double plasticStrainV = plasticStrain(0,0)+plasticStrain(1,0)+plasticStrain(2,0); 
  // 
  Matrix stress = -prop->getStress(); 
  Matrix strain = -prop->getTotalStrain(); 
        Matrix stressMatrix(3,3, 
                            stress(0,0), stress(3,0), stress(5,0), 
                            stress(3,0), stress(1,0), stress(4,0), 
                            stress(5,0), stress(4,0), stress(2,0)); 
  Matrix strainMatrix(3,3, 
           strain(0,0), 0.5*strain(3,0), 0.5*strain(5,0), 
                            0.5*strain(3,0),     strain(1,0), 0.5*strain(4,0), 
                            0.5*strain(5,0), 0.5*strain(4,0),     strain(2,0)); 
  // unit tensor 

  Matrix deltaij(3,3, 
        1.0,0.0,0.0, 
        0.0,1.0,0.0, 
        0.0,0.0,1.0); 
#ifdef WATER_COUPLED 
  double uW = prop->getUw(); 
  stressMatrix -= uW*deltaij; // Effective stress 
#endif 
        // calculation of principal stress and axis 
        Matrix principalStress = stressMatrix; 
        Matrix principalAxis(3,3); 
        eigenValueAndVector(principalStress,principalAxis); 
        // invariant of stress tensor 
        double I2 = 0.5*(pow(stressMatrix.trace(),2.0)-(stressMatrix*stressMatrix).trace()); 
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        double I3 = stressMatrix.determinant(); 
        // aii,aij,tii,tij 
        Matrix aii(3,3, 
                   sqrt(I3/(I2*principalStress(0,0))), 0.0,                                0.0, 
                   0.0,                                sqrt(I3/(I2*principalStress(1,1))), 0.0, 
                   0.0,                                0.0,                                sqrt(I3/(I2*principalStress(2,2)))); 
        Matrix aij = principalAxis * aii * principalAxis.transpose(); 
        Matrix tii = aii*principalStress; 
        Matrix tij = aij*stressMatrix; 
        // tN 
        double tN   = 3.0*I3/I2; 
        // xij : deviatoric stress tensor in modified stress tij space 
        Matrix xij = tij/tN - aij; 
        // X 
        double X = xij.getNorm(); 
  // 
  double strainV    = strainMatrix.trace(); 
  double voidRatio0 = prop->getInitialVoidRatio(); 
  double voidRatio  = voidRatio0 - (1.0+voidRatio0)*strainV; 
   //---------------------------------------------------------------------- 
  // p0•Fsize of initial yield surface 
  double tN0  = prop->getInitialHardeningParamter(); 
  // p1e•Fsize of curent yield surface 
  double tN1e = tN0 * exp(plasticStrainV/Cp); 
  // p1•Fsize of subloading surface 
  double tN1  = tN * exp(pow(X/Mstar,beta)/beta); 
  // ƒÏ•Fparamter representing the influence density (OCR) 
  double rho = (lambda-kappa)*log(tN1e/tN1); 
  // update hardening parameters 
  prop->setVoidRatio(voidRatio); 
  prop->setHardeningParameter(tN1e); 
  prop->setRho(rho); 
} 
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APPENDIX B.  
User defined material code for the hypoplastic model 

 

The user-defined soil material is available in https\\: soilmodel.info and modified a bit to be 

successfully implemented in the Abaqus. Moreover, user-defined initial state definition thru the 

subroutine SDVINI is added so that initial conditions could be defined and called by the code.   
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! Copyright (C)  2009  C. Tamagnini, E. Sellari, D. Masin, P.A. von 
Wolffersdorff 
! 
! This program is free software; you can redistribute it and/or modify 
! it under the terms of the GNU General Public License as published 
by 
! the Free Software Foundation; either version 2 of the License, or 
! (at your option) any later version. 
! 
! This program is distributed in the hope that it will be useful, 
! but WITHOUT ANY WARRANTY; without even the implied warranty 
of 
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  
See the 
! GNU General Public License for more details. 
! 
! You should have received a copy of the GNU General Public License 
! along with this program; if not, write to the Free Software 
! Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-
1301, 
!  USA. 
 
c------------------------------------------------------------------------------ 
      subroutine umat(stress,statev,ddsdde,sse,spd,scd, 
     &  rpl,ddsddt,drplde,drpldt, 
     &  stran,dstran,time,dtime,temp,dtemp,predef,dpred,cmname, 
     &  ndi,nshr,ntens,nstatv,props,nprops,coords,drot,pnewdt, 
     &  celent,dfgrd0,dfgrd1,noel,npt,layer,kspt,kstep,kinc) 
c------------------------------------------------------------------------------ 
c user subroutine for Abaqus 
c------------------------------------------------------------------------------ 
c 
c Author: D. Masin, based on RKF23 implementation by C. 
Tamagnini 
c 
c---------------------------------------------------------------------------- 
c 
      implicit none 
c 
      character*80 cmname 
c 
      integer ntens, ndi, nshr, nstatv, nprops, noel, npt, 
     & layer, kspt, kstep, kinc, inittension 
c 
      double precision stress(ntens), statev(nstatv), 
     &  ddsdde(ntens,ntens), ddsddt(ntens), drplde(ntens), 
     &  stran(ntens), dstran(ntens), time(2), predef(1), dpred(1), 
     &  props(nprops), coords(3), drot(3,3), dfgrd0(3,3), dfgrd1(3,3) 
      double precision sse, spd, scd, rpl, drpldt, dtime, temp,  
     &  dtemp, pnewdt, celent 
c 
c ... 1. nasvdim    = maximum number of additional state variables 
c     2. tolintT    = prescribed error tolerance for the adaptive  
c                     substepping scheme 
c     3. maxnint    = maximum number of time substeps allowed. 
c                     If the limit is exceeded abaqus is forced to reduce  
c                     the overall time step size (cut-back)  
c     4. DTmin      = minimum substeps size allowed. 
c                     If the limit is exceeded abaqus is forced to reduce  
c                     the overall time step size (cut-back) 
c     5. perturb    = perturbation parameter for numerical computation of 
Jacobian matrices 
c     6. nfasv      = number of first additional state variable in statev field  
c     7. prsw       = switch for printing information 
c 
c ... declaration of local variables 
c 
        logical prsw,elprsw 
c 
      integer i,error,maxnint,nfev,testnan,maxninttest 
        integer nparms,nasvdim,nfasv,nydim,nasv,nyact,testing 
c 
        double precision dot_vect_h 
c        
      double precision parms(nprops),theta,tolintT,dtsub,DTmin,perturb 
      double precision sig_n(6),sig_np1(6),DDtan(6,6),pore 
        double precision deps_np1(6),depsv_np1,norm_deps,tolintTtest 
        double precision 
norm_deps2,pp,qq,cos3t,I1,I2,I3,norm_D2,norm_D 
        double precision 
ameanstress,avoid,youngel,tdepel0,tdepel1,nuel 
        double precision Eyoung0,Eyoung1,nu0,nu1 

c 
      parameter (nasvdim = 15) 
      parameter (nydim = 6+nasvdim) 
c       parameter (tolintT = 1.0d-3) ...orig value... 
        parameter (tolintT = 1.0d-3)  
        parameter (tolintTtest = 1.0d-1)  
c 
c       parameter (maxnint = 1000) ...orig value... 
        parameter (maxnint = 10000) 
        parameter (maxninttest = 1000) 
        parameter (DTmin = 1.0d-17) 
        parameter (perturb = 1.0d-5) 
        parameter (nfasv = 1) 
        parameter (prsw = .true.) 
 
c 
c ... additional state variables 
c 
      double precision  asv(nasvdim) 
c 
c ... solution vector (stresses, additional state variables) 
c 
      double precision  y(nydim),y_n(nydim),dy(nydim) 
c 
c 
c ... Error Management: 
c     ---------------- 
c     error =  0 ... no problem in time integration 
c     error =  1 ... problems in evaluation of the time rate, (e.g. undefined  
c                    stress state), reduce time integration substeps 
c     error =  3 ... problems in time integration, reduce abaqus load 
increment  
c                    (cut-back) 
c     error = 10 ... severe error, terminate calculation 
c 
      error=0 
c 
c ... check problem dimensions 
c 
                 
      if (ndi.ne.3) then 
c 
                write(1,*) 'ERROR: this UMAT can be used only for elm.' 
                write(1,*) 'with 3 direct stress/strain components' 
                write(1,*) 'noel = ',noel 
                error=10 
c 
      endif 
c 
c ... check material parameters and move them to array parms(nparms) 
c 
      call check_parms_h(props,nprops,parms,nparms,error) 
c 
c ... print informations about time integration, useful when problems 
occur 
c 
      elprsw = .false. 
      if (prsw) then 
c 
c ... print only in some defined elements 
c 
                if ((noel.eq.101).and.(npt.eq.1)) elprsw = .false. 
      endif 
c 
c ... define number of additional state variables 
c 
      call define_h(nasv) 
      nyact = 6 + nasv 
      if (nyact.gt.nydim) then 
          write(1,*) 'ERROR: nasvdim too small in UMAT' 
          error=10 

      endif 
c 
c ... suggested time substep size, and initial excess pore pressure 
c 
      dtsub = statev(13) 
      pore = -statev(8) 
c 
c ... initialise void ratio 
c 
      if (statev(7) .lt. 0.001) then 
            ameanstress=-(stress(1)+stress(2)+stress(3))/3 
            avoid=0 
            if(Props(16) .le. 10.0) then  
              if(ameanstress .lt. 0.001) then 
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                avoid=props(16) 
              else 
                avoid=props(16)*dexp(-(3*ameanstress/ 
     .                Props(3))**props(4)) 
         end if 
            else if(props(16) .gt. 10.0) then 
                  avoid=props(16)-10.0 
            endif 
            statev(7)=avoid 
      end if 
 
c 
c ... vector of additional state variables 
c 
      do i=1,nasv 
        asv(i) = statev(i-1+nfasv) 
      enddo 
c 
c ... compute volume strain increment and current effective stress 
tensor 
c 
      do i=1,6         
            sig_n(i)=0 
            deps_np1(i)=0 
      end do 
      call move_sig_h(stress,ntens,pore,sig_n) 
      call move_eps_h(dstran,ntens,deps_np1,depsv_np1) 
 
      norm_D2=dot_vect_h(2,deps_np1,deps_np1,6) 
      norm_D=sqrt(norm_D2) 
 
c ... check whether the strain rate from the ABAQUS is not NAN    
 
      testnan=0 
      call umatisnan_h(norm_D,testnan) 
      if (testnan .eq. 1) then  
      call 
wrista_h(3,y,nydim,deps_np1,dtime,coords,statev,nstatv, 
     &              parms,nparms,noel,npt,ndi,nshr,kstep,kinc) 
      write(1,*) 'Error in integration, noel ',noel 
      write(1,*) 'Try to decrease the global step size' 
      call xit_h 
      end if 
c 
c -------------------- 
c ... Time integration 
c -------------------- 
c 
 
      call iniy_h(y,nydim,nasv,ntens,sig_n,asv) 
      call push_h(y,y_n,nydim) 
 
c ... check whether the initial state is not tensile 
      inittension=0 
      call check_RKF_h(inittension,y,nyact,nasv,parms,nparms) 
c 
      if (elprsw) then 
        write(1,*) 
'===================================================' 
        write(1,*) 'Call of umat:' 
        write(1,*) 
'===================================================' 
        call wrista_h(3,y,nydim,deps_np1,dtime,coords,statev,nstatv, 
     &              parms,nparms,noel,npt,ndi,nshr,kstep,kinc) 
      endif 
 
c ... Switch for elasticity in the case tensile stress is reached 
      youngel=0 
c 
c ... local integration using adaptive RKF-23 method, consistent 
Jacobian and error estimation 

c 
      if((dtsub.le.0.0d0).or.(dtsub.gt.dtime)) then 
        dtsub = dtime 
      endif 
c 
      testing=0 
c     For use in PLAXIS, activate the following line 
c      if(kstep.eq.1 .AND. kinc.eq.1) testing=1 
c     For use in ABAQUS EXPLICIT, activate the following line 
c      if(kstep.eq.1 .AND. kinc.eq.1) testing=3 
c     For use in ABAQUS, the two lines above should be inactive 
  
      if(norm_D.eq.0) testing=2 
c     FEM asking for ddsdde only 

 
      nfev = 0 ! initialisation 
 
      if(inittension.eq.0) then 
 
      if(testing.eq.1) then 
          call rkf23_update_h(y,nyact,nasv,dtsub,tolintTtest, 
     &                      maxninttest,DTmin, 
     &                      deps_np1,parms,nparms,nfev,elprsw, 
     &                      dtime,error) 
c ... give original state if the model fails without substepping 
          if(error.eq.3) then 
            do i=1,nyact         
               y(i)=y_n(i) 
            end do 
            error=0 
          end if 
      else if(testing.eq.2) then 
            do i=1,nyact         
                  y(i)=y_n(i) 
            end do       
      else if(testing.eq.3) then 
       temp=parms(10) 
       parms(10)=0 
        call perturbate_h(y_n,y,nyact,nasv,dtsub, 
     &      tolintT,maxnint,DTmin, 
     &      deps_np1,parms,nparms,nfev,elprsw,theta,ntens,DDtan, 
     &      dtime,error)        
        parms(10)=temp 
        youngel=-100 
        nuel=0.3 
        call calc_elasti_h(y,nyact,nasv,dtsub,tolintT, 
     &      maxnint,DTmin, 
     &      deps_np1,parms,nparms,nfev,elprsw, 
     &     dtime,DDtan, 
     &     youngel,nuel,error) 
c ... Normal RKF23 integration 
      else   !inittension.eq.0 .and. testing.eq.0 
          call rkf23_update_h(y,nyact,nasv,dtsub,tolintT, 
     &                      maxnint,DTmin, 
     &                      deps_np1,parms,nparms,nfev, 
     &                      elprsw,dtime,error) 
      end if 
c 
c ... error conditions (if any) 
c 
      if (error.eq.3) then 
c 
c          pnewdt = 0.25d0 
c 
           write(1,*) 'UMAT: step rejected in element ' 
     &   ,noel,' point ',npt 
           call wrista_h(1,y,nydim,deps_np1,dtime, 
     &                coords,statev,nstatv, 
     &                parms,nparms,noel,npt,ndi,nshr,kstep,kinc) 
c          call xit_h 
c          return 
c ...      do not do anything, we are the most likely close to the tensile 
region 
           do i=1,nyact         
                  y(i)=y_n(i) 
           end do 
c 
      elseif (error.eq.10) then 
c 
           call wrista_h(2,y,nydim,deps_np1,dtime, 
     &                coords,statev,nstatv, 
     &                parms,nparms,noel,npt,ndi,nshr,kstep,kinc) 
           call xit_h 
      endif ! end error.eq.3 
 

c ... compute ddsdde 
 
      call perturbate_h(y_n,y,nyact,nasv,dtsub,tolintT,maxnint,DTmin, 
     &      deps_np1,parms,nparms,nfev,elprsw,theta,ntens,DDtan, 
     &      dtime,error) 
 
      else ! inittension.ne.0 
c          we were initilly in the tensile stress, calc elastic 
     youngel=100 
     nuel=0.48 
     call calc_elasti_h(y,nyact,nasv,dtsub,tolintT, 
     &                      maxnint,DTmin, 
     &                      deps_np1,parms,nparms,nfev,elprsw, 
     &       dtime,DDtan, 
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     &       youngel,nuel,error) 
      endif ! end inittension.eq.0 
c 
c ... update dtsub and nfev 
c 
      if(dtsub.le.0.0d0) then  
       dtsub = 0 
      else if(dtsub.ge.dtime) then  
       dtsub = dtime 
      end if 
      statev(13)=dtsub 
      statev(10)=dfloat(nfev) 
c ... convert solution (stress + cons. tangent) to abaqus format 
c     update pore pressure and compute total stresses  
c 
      call solout_h(stress,ntens,asv,nasv,ddsdde, 
     +            y,nydim,pore,depsv_np1,parms,nparms,DDtan) 
      
c 
c ... updated vector of additional state variables to abaqus statev vector 
c 
      do i=1,nasv 
           statev(i-1+nfasv) = asv(i)  
      end do 
c 
c ... transfer additional information to statev vector 
c 
      do i=1,6 
           sig_np1(i)=y(i) 
      end do 
      pp=-(sig_np1(1)+sig_np1(2)+sig_np1(3))/3 
c 
      statev(8) = -pore  
      statev(9) = pp 
 
      if(inittension.eq.0) then 
      call calc_statev_h(sig_np1,statev,parms,nparms,nasv, 
     &  nstatv,deps_np1) 
      end if 
 
c 
c ----------------------- 
c End of time integration 
c ----------------------- 
c 
      return 
      end 
c------------------------------------------------------------------------------ 
c----------------------------------------------------------------------------- 
      subroutine check_parms_h(props,nprops,parms,nparms,error) 
c----------------------------------------------------------------------------- 
c checks input material parameters  
c 
c written 10/2004 (Tamagnini & Sellari) 
c----------------------------------------------------------------------------- 
      implicit none 
c 
      integer nprops,nparms,i,error 
c 
      double precision props(nprops),parms(nprops) 
        double precision zero,one,four,pi,pi_deg 
        double precision phi_deg,phi,hs,en,ed0,ec0,ei0,alpha,beta 
        double precision m_R,m_T,r_uc,beta_r,chi,bulk_w,p_t 
c 
        parameter(zero=0.0d0,one=1.0d0,four=4.0d0,pi_deg=180.0d0) 
c 
        nparms=nprops 
c 
      do i=1,nprops 
                parms(i)=props(i) 
      enddo 

c 
c ... recover material parameters 
c 
        phi_deg=parms(1) 
        hs    =parms(3) 
        en    =parms(4) 
        ed0   =parms(5) 
        ec0   =parms(6) 
        ei0   =parms(7) 
        alpha =parms(8) 
        beta  =parms(9) 
        m_R=parms(10)  
        m_T=parms(11) 
        r_uc=parms(12) 

        beta_r=parms(13) 
        chi=parms(14) 
        bulk_w=parms(15)         
        p_t=parms(2) 
         
c 
        pi=four*datan(one) 
        phi=phi_deg*pi/pi_deg 
        parms(1)=phi 
c 
        if(phi.le.zero) then 
c        
                write(1,*) 'ERROR: subroutine CHECK_PARMS:' 
                write(1,*) 'phi = ',phi 
                error = 10 
                return  
c 
        end if 
c 
        if(m_R.lt.zero) then 
c        
                write(1,*) 'ERROR: subroutine CHECK_PARMS:' 
                write(1,*) 'm_R = ',m_R 
                error = 10  
                return  
c 
        end if 
c 
        if(m_T.lt.zero) then 
c        
                write(1,*) 'ERROR: subroutine CHECK_PARMS:' 
                write(1,*) 'm_T = ',m_T 
                error = 10  
                return  
c 
        end if 
c 
        if(r_uc.lt.zero) then 
c        
                write(1,*) 'ERROR: subroutine CHECK_PARMS:' 
                write(1,*) 'r_uc = ',r_uc 
                error = 10  
                return  
c 
        end if 
c 
        if(beta_r.lt.zero) then 
c        
                write(1,*) 'ERROR: subroutine CHECK_PARMS:' 
                write(1,*) 'beta_r = ',beta_r 
                error = 10  
                return  
c 
        end if 
c 
        if(chi.lt.zero) then 
c        
                write(1,*) 'ERROR: subroutine CHECK_PARMS:' 
                write(1,*) 'chi = ',chi 
                error = 10  
                return  
c 
        end if 
c  
        if(bulk_w.lt.zero) then 
c        
                write(1,*) 'ERROR: subroutine CHECK_PARMS:' 
                write(1,*) 'bulk_w = ',bulk_w 
                error = 10  
                return  
c 

        end if 
c  
        if(p_t.lt.zero) then 
c        
                write(1,*) 'ERROR: subroutine CHECK_PARMS:' 
                write(1,*) 'p_t = ',p_t 
                error = 10  
                return  
c 
        end if 
c  
      return 
      end 
c----------------------------------------------------------------------------- 
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      subroutine define_h(nasv) 
c----------------------------------------------------------------------------- 
      implicit none  
      integer nasv 
c 
c number of additional state variables  
c must be less than  18 (otherwise change nasvdim in umat) 
c 
c    nasv(1) ... del_11  intergranular strain component 
c    nasv(2) ... del_22  intergranular strain component 
c    nasv(3) ... del_33  intergranular strain component 
c    nasv(4) ... del_12  intergranular strain component 
c    nasv(5) ... del_13  intergranular strain component 
c    nasv(6) ... del_23  intergranular strain component 
c    nasv(7) ... void    void ratio 
c 
c modified 6/2005 (Tamagnini, Sellari & Miriano) 
c 
      nasv = 7 
      return 
      end 
c------------------------------------------------------------------------------ 
      double precision function dot_vect_h(flag,a,b,n) 
c------------------------------------------------------------------------------ 
c dot product of a 2nd order tensor, stored in Voigt notation 
c created 10/2004 (Tamagnini & Sellari) 
c 
c flag = 1 -> vectors are stresses in Voigt notation 
c flag = 2 -> vectors are strains in Voigt notation 
c flag = 3 -> ordinary dot product between R^n vectors 
c------------------------------------------------------------------------------ 
      implicit none 
        integer i,n,flag 
      double precision a(n),b(n) 
        double precision zero,half,one,two,coeff 
c 
        parameter(zero=0.0d0,half=0.5d0,one=1.0d0,two=2.0d0) 
c 
        if(flag.eq.1) then 
c 
c ... stress tensor (or the like) 
c 
                coeff=two 
c 
        elseif(flag.eq.2) then 
c 
c ... strain tensor (or the like) 
c 
                coeff=half 
c 
        else 
c 
c ... standard vectors 
c 
                coeff=one 
c        
        end if 
c 
        dot_vect_h=zero 
c 
        do i=1,n 
                if(i.le.3) then 
                      dot_vect_h = dot_vect_h+a(i)*b(i) 
                else 
                      dot_vect_h = dot_vect_h+coeff*a(i)*b(i) 
                end if 
        end do 
c 
      return 
      end 
c----------------------------------------------------------------------------- 

      subroutine get_F_sig_q_h(sig,q,nasv,parms,nparms, 
     &          deps,F_sig,F_q,error) 
c----------------------------------------------------------------------------- 
c 
c  finds vectors F_sigma and F_q in F(y) 
c 
c  written 6/2005 (Tamagnini, Sellari & Miriano) 
c----------------------------------------------------------------------------- 
        implicit none 
        double precision dot_vect_h 
         
c  
      integer nparms,nasv,ii 
c 

        double precision sig(6),q(nasv),parms(nparms),deps(6) 
        double precision MM(6,6),HH(nasv,6),F_sig(6),F_q(nasv) 
        double precision LL(6,6),NN(6),norm_D,norm_D2 
        integer istrain,error 
c 
c ... compute tangent operators 
c 
  if(parms(10) .le. 0.5) then 
   istrain=0  
  else  
   istrain=1 
  end if 
 
        call get_tan_h(deps,sig,q,nasv,parms,nparms,MM, 
     .        HH,LL,NN,istrain,error) 
c 
c ... compute F_sig=MM*deps 
c 
  if (istrain .eq. 1) then 
          call matmul_h(MM,deps,F_sig,6,6,1) 
        else  
          call matmul_h(LL,deps,F_sig,6,6,1) 
          norm_D2=dot_vect_h(2,deps,deps,6) 
          norm_D=sqrt(norm_D2) 
                do ii=1,6 
                     F_sig(ii)=F_sig(ii)+NN(ii)*norm_D 
                end do 
        end if 
c 
c ... compute F_q=HH*deps 
c 
        call matmul_h(HH,deps,F_q,nasv,6,1) 
c        
        return 
        end 
c----------------------------------------------------------------------------- 
      subroutine get_tan_h(deps,sig,q,nasv,parms,nparms,MM,HH, 
     .   LL,NN,istrain,error) 
c----------------------------------------------------------------------------- 
c  computes matrices M and H for Masin hypoplastic model for clays 
c  version with intergranular strains 
c 
c  NOTE: stress and strain convention: tension and extension positive 
c 
c  written 6/2005 (Tamagnini & Sellari) 
c----------------------------------------------------------------------------- 
        implicit none 
c  
      integer nparms,nasv,i,j,error 
c 
        double precision dot_vect_h 
c 
        double precision sig(6),q(nasv),parms(nparms),deps(6) 
        double precision eta(6),eta_dev(6),del(6),void,sig_star(6) 
        double precision eta_del(6),eta_delta(6),eta_eps(6) 
        double precision 
norm_del,norm_del2,norm_deps,norm_deps2,eta_dn2 
        double precision pp,qq,cos3t,I1,I2,I3,tanpsi 
        double precision a,a2,FF,fd,fs 
        double precision num,den,aF,Fa2,eta_n2,norm_m,norm_m2 
        double precision II(6,6),IU(6,6) 
        double precision 
MM(6,6),HH(nasv,6),LL(6,6),NN(6),AA(6,6),m(6) 
        integer istrain 
        double precision m_dir(6),m_dir1(6),Leta(6),H_del(6,6),H_e(6) 
        double precision load,rho 
        double precision zero,tiny,half,one,two,three,six,eight,nine 
        double precision onethird,sqrt3,twosqrt2,sqrt2,oneeight,ln2m1 
        double precision temp1,temp2,temp3,temp4 
        double precision phi,hs,en,ed0,ec0,ei0,alpha,beta,r_uc 
        double precision m_R,m_T,beta_r,chi,bulk_w,p_t,sinphi,sinphi2 

        double precision ec,ed,ei,bauer,fb,fe,sq2,sq3,sq6,az 
c 
        
parameter(zero=0.0d0,one=1.0d0,two=2.0d0,three=3.0d0,six=6.0d0) 
        parameter(tiny=1.0d-17,half=0.5d0,eight=8.0d0,nine=9.0d0) 
        parameter(sq2=1.4142135623730951455d0, 
     &          sq3=1.7320508075688771931d0, 
     &          sq6=2.4494897427831778813d0) 
 
c 
c ... initialize constants and vectors 
c 
        onethird=one/three 
        sqrt3=dsqrt(three) 
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        twosqrt2=two*dsqrt(two) 
        sqrt2=dsqrt(two) 
        oneeight=one/eight 
        onethird=one/three 
        ln2m1=one/dlog(two) 
c 
        do i=1,6 
                do j=1,6 
                        MM(i,j)=zero 
                        LL(i,j)=zero 
                        II(i,j)=zero 
                        IU(i,j)=zero 
                        H_del(i,j)=zero 
                end do 
                eta_del(i)=zero 
                eta_delta(i)=zero 
                eta_eps(i)=zero 
        end do 
c 
        do i=1,nasv 
                do j=1,6 
                        HH(i,j)=zero 
                end do 
        end do 
c 
c ... fourth order identity tensors in Voigt notation 
c 
        II(1,1)=one 
        II(2,2)=one 
        II(3,3)=one 
        II(4,4)=half 
        II(5,5)=half 
        II(6,6)=half 
c 
        IU(1,1)=one 
        IU(2,2)=one 
        IU(3,3)=one 
        IU(4,4)=one 
        IU(5,5)=one 
        IU(6,6)=one 
c 
c ... recover material parameters 
c 
        phi   =parms(1) 
        hs    =parms(3) 
        en    =parms(4) 
        ed0   =parms(5) 
        ec0   =parms(6) 
        ei0   =parms(7) 
        alpha =parms(8) 
        beta  =parms(9) 
        m_R=parms(10)  
        m_T=parms(11) 
        r_uc=parms(12) 
        beta_r=parms(13) 
        chi=parms(14) 
        bulk_w=parms(15) 
        p_t=parms(2) 
c 
        sinphi=dsin(phi) 
        sinphi2=sinphi*sinphi 
 
c 
c ... recover internal state variables 
c 
        del(1)=q(1) 
        del(2)=q(2) 
        del(3)=q(3) 
        del(4)=q(4) 
        del(5)=q(5) 
        del(6)=q(6) 

        void=q(7) 
c 
c ... axis translation due to cohesion (p_t>0) 
c 
        sig_star(1)=sig(1)-p_t 
        sig_star(2)=sig(2)-p_t 
        sig_star(3)=sig(3)-p_t 
        sig_star(4)=sig(4) 
        sig_star(5)=sig(5) 
        sig_star(6)=sig(6) 
c 
c ... strain increment and intergranular strain directions 
c 
        norm_deps2=dot_vect_h(2,deps,deps,6) 

        norm_del2=dot_vect_h(2,del,del,6) 
        norm_deps=dsqrt(norm_deps2) 
        norm_del=dsqrt(norm_del2) 
c 
        if(norm_del.ge.tiny) then 
c 
                do i=1,6 
                        eta_del(i)=del(i)/norm_del 
                end do 
c 
        end if 
c 
        eta_delta(1)=eta_del(1) 
        eta_delta(2)=eta_del(2) 
        eta_delta(3)=eta_del(3) 
        eta_delta(4)=half*eta_del(4) 
        eta_delta(5)=half*eta_del(5) 
        eta_delta(6)=half*eta_del(6) 
c 
        if(norm_deps.ge.tiny) then 
c 
                do i=1,6 
                        eta_eps(i)=deps(i)/norm_deps 
                end do 
c 
        end if 
c 
c ... auxiliary stress tensors 
c 
        call inv_sig_h(sig_star,pp,qq,cos3t,I1,I2,I3) 
c 
c        if (pp.gt.tiny) then 
c 
c ... if mean stress is negative, return with MM = 0, HH = 0 and error = 
10 (severe) 
c 
c                write(1,*) 'ERROR: subroutine GET_TAN:' 
c                write(1,*) 'Mean stress is positive (tension): p = ',pp 
c                error = 10 
c                return  
c 
c        end if 
c 
         
        eta(1)=sig_star(1)/I1 
        eta(2)=sig_star(2)/I1 
        eta(3)=sig_star(3)/I1 
        eta(4)=sig_star(4)/I1 
        eta(5)=sig_star(5)/I1 
        eta(6)=sig_star(6)/I1    
c 
        eta_dev(1)=eta(1)-onethird 
        eta_dev(2)=eta(2)-onethird 
        eta_dev(3)=eta(3)-onethird 
        eta_dev(4)=eta(4) 
        eta_dev(5)=eta(5) 
        eta_dev(6)=eta(6) 
c 
c ... functions a and F 
c 
        eta_dn2=dot_vect_h(1,eta_dev,eta_dev,6) 
        tanpsi=sqrt3*dsqrt(eta_dn2) 
        temp1=oneeight*tanpsi*tanpsi+ 
     &    (two-tanpsi*tanpsi)/(two+sqrt2*tanpsi*cos3t) 
        temp2=tanpsi/twosqrt2 
c 
        a=sqrt3*(three-sin(phi))/(twosqrt2*sin(phi)) 
        a2=a*a 
        FF=dsqrt(temp1)-temp2 
c 
c ... barotropy and pyknotropy functions 

c 
     bauer=dexp(-(-I1/hs)**en) 
       ed = ed0*bauer 
       ec = ec0*bauer 
       ei = ei0*bauer 
 
       temp1=three+a*a-a*sq3*((ei0-ed0)/(ec0-ed0))**alpha 
       if(temp1.lt.zero) stop 'factor fb not defined' 
     fb=hs/en/temp1*(one+ei)/ei*(ei0/ec0)**beta*(-
I1/hs)**(one-en) 
     fe=(ec/void)**beta 
              
        fs=fb*fe 
c 
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  if(void.ge.ed) then 
         fd=((void-ed)/(ec-ed))**alpha 
        else 
         fd=0 
        end if 
c 
c 
c ... tensor L 
c 
        eta_n2=dot_vect_h(1,eta,eta,6) 
        do i = 1,6 
                do j=1,6 
                        LL(i,j)=(II(i,j)*FF*FF+ 
     &                   a2*eta(i)*eta(j))/eta_n2 
                end do 
        end do 
 
c 
c ... tensor NN 
c 
 
       do i=1,6 
         NN(i) = FF*a*(eta(i)+eta_dev(i))/eta_n2 
       enddo 
         
c 
c ... BEGIN INTERGR. STRAIN 
c 
 
        if(istrain .eq. 1) then 
c 
c ... loading function 
c 
        load=dot_vect_h(2,eta_del,eta_eps,6) 
c 
c ... intergranular strain--related tensors 
c 
        rho=norm_del/r_uc 
c 
        if (rho.gt.one) then 
                rho=one 
        end if 
c 
        call matmul_h(LL,eta_del,Leta,6,6,1) 
c 
c ... tangent stiffness M(sig,q,eta_eps) 
c 
        temp1=((rho**chi)*m_T+(one-rho**chi)*m_R)*fs 
c 
        if (load.gt.zero) then 
c     
                temp2=(rho**chi)*(one-m_T)*fs 
                temp3=(rho**chi)*fs*fd 
c 
                do i=1,6 
                  do j=1,6 
                    AA(i,j)=temp2*Leta(i)*eta_delta(j) 
     &                      +temp3*NN(i)*eta_delta(j) 
                    MM(i,j)=temp1*LL(i,j)+AA(i,j) 
                  end do 
                end do 
c 
        else 
c 
                temp4=(rho**chi)*(m_R-m_T)*fs 
c 
                do i=1,6 
                  do j=1,6 
                        AA(i,j)=temp4*Leta(i)*eta_delta(j) 
                        MM(i,j)=temp1*LL(i,j)+AA(i,j) 
                  end do 

                end do 
c 
        end if 
c 
c ... intergranular strain evolution function 
c     NOTE: H_del transforms a strain-like vector into a strain-like vector 
c           eta_del(i) instead of eta_delta(i) 
c           I = 6x6 unit matrix 
c 
        if (load.gt.zero) then 
c 
                do i=1,6 
                  do j=1,6 
                H_del(i,j)=IU(i,j)-(rho**beta_r)*eta_del(i)*eta_delta(j) 

                  end do 
                end do 
c 
        else 
c 
                do i=1,6 
              H_del(i,i)=one 
                end do 
c 
        end if 
c 
c ... void ratio evolution function (tension positive) 
c 
        do i=1,6  
                if (i.le.3) then 
                  H_e(i)=one+void 
                else 
              H_e(i)=zero 
                end if 
        end do 
c 
c ... assemble hardening matrix 
c 
        do i=1,nasv 
                if (i.le.6) then 
                        do j=1,6 
                                HH(i,j)=H_del(i,j) 
                        end do 
                else 
                        do j=1,6 
                                HH(i,j)=H_e(j) 
                        end do 
                end if 
        end do 
c        
c ... end istrain 
        else if (istrain .eq. 0) then 
         
        do i=1,6  
                if (i.le.3) then 
                  H_e(i)=one+void 
                else 
              H_e(i)=zero 
                end if 
        end do         
        do i=1,nasv 
                if (i.le.6) then 
                        do j=1,6 
                                HH(i,j)=0 
                        end do 
                else 
                        do j=1,6 
                                HH(i,j)=H_e(j) 
                        end do 
                end if 
        end do         
c ... end istrain/noistrain switch         
        end if 
 
        do i=1,6 
           do j=1,6 
                LL(i,j)=LL(i,j)*fs 
           end do 
           NN(i)=NN(i)*fs*fd 
        end do         
 
        return 
        end 
c----------------------------------------------------------------------------- 
      subroutine iniy_h(y,nydim,nasv,ntens,sig,qq) 
c----------------------------------------------------------------------------- 

c initializes the vector of state variables 
c----------------------------------------------------------------------------- 
      implicit none 
c 
      integer i,nydim,nasv,ntens 
c 
      double precision y(nydim),qq(nasv),sig(ntens) 
c 
      do i=1,nydim 
        y(i) = 0 
      enddo 
c 
      do i=1,ntens 
        y(i) = sig(i) 
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      enddo 
c 
c additional state variables 
c 
      do i=1,nasv 
        y(6+i) = qq(i) 
      enddo 
c 
      return 
      end 
c------------------------------------------------------------------------------ 
      subroutine inv_eps_h(eps,eps_v,eps_s,sin3t) 
c------------------------------------------------------------------------------ 
c calculate invariants of strain tensor 
c------------------------------------------------------------------------------ 
c 
      implicit none 
c 
      integer i 
c 
      double precision eps(6),edev(6),edev2(6),ev3 
        double precision tredev3,eps_v,eps_s,sin3t 
        double precision norm2,numer,denom 
c 
      double precision zero,one,two,three,six 
      double precision onethird,twothirds,sqrt6 
c 
      data zero,one,two,three,six/0.0d0,1.0d0,2.0d0,3.0d0,6.0d0/ 
c 
c ... some constants 
c 
        onethird=one/three 
        twothirds=two/three 
        sqrt6=dsqrt(six) 
c 
c ... volumetric strain 
c 
      eps_v=eps(1)+eps(2)+eps(3) 
c 
      ev3=onethird*eps_v 
c 
c ... deviator strain 
c 
        edev(1)=eps(1)-ev3 
        edev(2)=eps(2)-ev3 
        edev(3)=eps(3)-ev3 
        edev(4)=eps(4)/two 
        edev(5)=eps(5)/two 
        edev(6)=eps(6)/two 
c 
c ... second invariant 
c 
        norm2=edev(1)*edev(1)+edev(2)*edev(2)+edev(3)*edev(3)+ 
     &      two*(edev(4)*edev(4)+edev(5)*edev(5)+edev(6)*edev(6)) 
c 
        eps_s=dsqrt(twothirds*norm2) 
c 
c ... components of (edev_ij)(edev_jk) 
c 
        edev2(1)=edev(1)*edev(1)+edev(4)*edev(4)+edev(5)*edev(5) 
        edev2(2)=edev(4)*edev(4)+edev(2)*edev(2)+edev(6)*edev(6) 
        edev2(3)=edev(6)*edev(6)+edev(5)*edev(5)+edev(3)*edev(3) 
        
edev2(4)=two*(edev(1)*edev(4)+edev(4)*edev(2)+edev(6)*edev(5)) 
        
edev2(5)=two*(edev(5)*edev(1)+edev(6)*edev(4)+edev(3)*edev(5)) 
        
edev2(6)=two*(edev(4)*edev(5)+edev(2)*edev(6)+edev(6)*edev(3)) 
c             
c ... Lode angle 
c 

        if(eps_s.eq.zero) then  
c 
                sin3t=-one 
c                
        else 
c 
                tredev3=zero 
                do i=1,6 
                        tredev3=tredev3+edev(i)*edev2(i) 
                end do 
c 
                numer=sqrt6*tredev3 
                denom=(dsqrt(norm2))**3 
                sin3t=numer/denom 

                if(dabs(sin3t).gt.one) then 
                        sin3t=sin3t/dabs(sin3t) 
                end if 
c 
        end if  
c 
      return 
      end 
c------------------------------------------------------------------------------ 
      subroutine inv_sig_h(sig,pp,qq,cos3t,I1,I2,I3) 
c------------------------------------------------------------------------------ 
c calculate invariants of stress tensor 
c 
c NOTE: Voigt notation is used with the following index conversion 
c 
c       11 -> 1 
c       22 -> 2 
c    33 -> 3 
c       12 -> 4 
c       13 -> 5 
c       23 -> 6 
c 
c------------------------------------------------------------------------------ 
c 
      implicit none 
c 
      double precision sig(6),sdev(6) 
      double precision eta(6),eta_d(6),eta_d2(6) 
      double precision xmin1,xmin2,xmin3 
      double precision tretadev3,pp,qq,cos3t,I1,I2,I3 
      double precision norm2,norm2sig,norm2eta,numer,denom 
c 
      double precision half,one,two,three,six 
      double precision onethird,threehalves,sqrt6,tiny 
c 
      double precision dot_vect_h 
c 
      data half,one/0.5d0,1.0d0/ 
      data two,three,six/2.0d0,3.0d0,6.0d0/ 
      data tiny/1.0d-18/ 
c 
c ... some constants 
c 
      onethird=one/three 
      threehalves=three/two 
      sqrt6=dsqrt(six) 
c 
c ... trace and mean stress 
c 
      I1=sig(1)+sig(2)+sig(3) 
      pp=onethird*I1 
c 
c ... deviator stress 
c 
      sdev(1)=sig(1)-pp 
      sdev(2)=sig(2)-pp 
      sdev(3)=sig(3)-pp 
      sdev(4)=sig(4) 
      sdev(5)=sig(5) 
      sdev(6)=sig(6) 
c 
c ... normalized stress and dev. normalized stress 
c 
 
      if(I1.ne.0) then 
         eta(1)=sig(1)/I1 
         eta(2)=sig(2)/I1 
         eta(3)=sig(3)/I1 
         eta(4)=sig(4)/I1 
         eta(5)=sig(5)/I1 
        eta(6)=sig(6)/I1 

      else 
        eta(1)=sig(1)/tiny 
        eta(2)=sig(2)/tiny 
        eta(3)=sig(3)/tiny 
        eta(4)=sig(4)/tiny 
        eta(5)=sig(5)/tiny 
        eta(6)=sig(6)/tiny         
      end if 
c 
      eta_d(1)=eta(1)-onethird 
      eta_d(2)=eta(2)-onethird 
      eta_d(3)=eta(3)-onethird 
      eta_d(4)=eta(4) 
      eta_d(5)=eta(5) 
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      eta_d(6)=eta(6) 
c 
c ... second invariants 
c 
      norm2=dot_vect_h(1,sdev,sdev,6) 
      norm2sig=dot_vect_h(1,sig,sig,6) 
      norm2eta=dot_vect_h(1,eta_d,eta_d,6) 
c 
      qq=dsqrt(threehalves*norm2) 
      I2=half*(norm2sig-I1*I1) 
c 
c ... components of (eta_d_ij)(eta_d_jk) 
c 
      
eta_d2(1)=eta_d(1)*eta_d(1)+eta_d(4)*eta_d(4)+eta_d(5)*eta_d(5) 
     
eta_d2(2)=eta_d(4)*eta_d(4)+eta_d(2)*eta_d(2)+eta_d(6)*eta_d(6) 
      
eta_d2(3)=eta_d(6)*eta_d(6)+eta_d(5)*eta_d(5)+eta_d(3)*eta_d(3) 
      
eta_d2(4)=eta_d(1)*eta_d(4)+eta_d(4)*eta_d(2)+eta_d(6)*eta_d(5) 
      
eta_d2(5)=eta_d(5)*eta_d(1)+eta_d(6)*eta_d(4)+eta_d(3)*eta_d(5) 
      
eta_d2(6)=eta_d(4)*eta_d(5)+eta_d(2)*eta_d(6)+eta_d(6)*eta_d(3) 
c            
c ... Lode angle 
c 
      if(norm2eta.lt.tiny) then  
c 
        cos3t=-one 
c                
      else 
c 
        tretadev3=dot_vect_h(1,eta_d,eta_d2,6) 
c 
        numer=-sqrt6*tretadev3 
        denom=(dsqrt(norm2eta))**3 
        cos3t=numer/denom 
        if(dabs(cos3t).gt.one) then 
             cos3t=cos3t/dabs(cos3t) 
        end if 
c 
      end if  
c 
c ... determinant 
c 
      xmin1=sig(2)*sig(3)-sig(6)*sig(6) 
      xmin2=sig(4)*sig(3)-sig(6)*sig(5) 
      xmin3=sig(4)*sig(6)-sig(5)*sig(2) 
c 
      I3=sig(1)*xmin1-sig(4)*xmin2+sig(5)*xmin3 
 
c 
      return 
      end 
c------------------------------------------------------------------------------ 
      subroutine matmul_h(a,b,c,l,m,n) 
c------------------------------------------------------------------------------ 
c matrix multiplication 
c------------------------------------------------------------------------------ 
      implicit none 
c 
      integer i,j,k,l,m,n 
c 
      double precision a(l,m),b(m,n),c(l,n) 
c 
      do i=1,l 
        do j=1,n 
          c(i,j) = 0.0d0 
          do k=1,m 

            c(i,j) = c(i,j) + a(i,k)*b(k,j) 
          enddo 
        enddo 
      enddo 
c 
      return 
      end 
c----------------------------------------------------------------------------- 
      subroutine move_asv_h(asv,nasv,qq_n) 
c----------------------------------------------------------------------------- 
c move internal variables in vector qq_n and changes intergranular 
strain  
c from continuum to soil mechanics convention 
c 

c NOTE: del has always 6 components 
c 
c written 6/2005 (Tamagnini, Sellari & Miriano) 
c----------------------------------------------------------------------------- 
      implicit none 
      integer nasv,i 
      double precision asv(nasv),qq_n(nasv),zero  
c 
        parameter(zero=0.0d0) 
c 
      do i=1,nasv 
                qq_n(i)=zero 
      enddo 
c 
c ... intergranular strain tensor stored in qq_n(1:6) 
c 
      do i=1,6 
                qq_n(i) = -asv(i) 
      enddo 
c 
c ... void ratio stored in qq_n(7) 
c 
        qq_n(7) = asv(7)  
c 
      return 
      end 
c----------------------------------------------------------------------------- 
      subroutine move_eps_h(dstran,ntens,deps,depsv) 
c----------------------------------------------------------------------------- 
c Move strain increment dstran into deps and computes  
c volumetric strain increment 
c 
c NOTE: all strains negative in compression; deps has always 6 
components 
c 
c written 7/2005 (Tamagnini, Sellari & Miriano) 
c----------------------------------------------------------------------------- 
      implicit none 
      integer ntens,i 
      double precision deps(6),dstran(ntens),depsv 
c 
      do i=1,ntens 
                deps(i) = dstran(i) 
      enddo 
c 
        depsv=deps(1)+deps(2)+deps(3) 
c 
      return 
      end 
c----------------------------------------------------------------------------- 
      subroutine move_sig_h(stress,ntens,pore,sig) 
c----------------------------------------------------------------------------- 
c computes effective stress from total stress (stress) and pore pressure 
(pore) 
c 
c NOTE: stress = total stress tensor (tension positive) 
c         pore   = exc. pore pressure (undrained conds., compression 
positive) 
c         sig    = effective stress (tension positive) 
c 
c       sig has always 6 components 
c 
c written 7/2005 (Tamagnini, Sellari & Miriano) 
c----------------------------------------------------------------------------- 
      implicit none 
      integer ntens,i 
      double precision sig(6),stress(ntens),pore,zero  
c 
        parameter(zero=0.0d0) 
c 
      do i=1,6 

                sig(i)=zero 
      enddo 
c 
      do i=1,ntens 
                if(i.le.3) then 
                        sig(i) = stress(i)+pore 
                else 
                        sig(i) = stress(i) 
                end if 
      enddo 
c 
      return 
      end 
c----------------------------------------------------------------------------- 
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      subroutine norm_res_h(y_til,y_hat,ny,nasv,norm_R) 
c----------------------------------------------------------------------------- 
c  evaluate norm of residual vector Res=||y_hat-y_til|| 
c 
c  written 6/2005 (Tamagnini, Sellari & Miriano) 
c----------------------------------------------------------------------------- 
        implicit none 
c  
      integer ny,nasv,ng,k,i,testnan 
c 
      double precision y_til(ny),y_hat(ny),void_til,void_hat,del_void 
      double precision err(ny),norm_R2,norm_R 
      double precision norm_sig2,norm_q2,norm_sig,norm_q 
      double precision sig_hat(6),sig_til(6),del_sig(6) 
      double precision q_hat(nasv),q_til(nasv),del_q(nasv) 
      double precision dot_vect_h,zero 
c 
      parameter(zero=0.0d0) 
c 
      ng=6*nasv 
      k=42+nasv 
c 
      do i=1,ny 
              err(i)=zero 
      end do 
c 
c ... recover stress tensor and internal variables 
c 
      do i=1,6 
                sig_hat(i)=y_hat(i) 
                sig_til(i)=y_til(i) 
                del_sig(i)=dabs(sig_hat(i)-sig_til(i)) 
      end do 
c 
      do i=1,nasv-1 
                q_hat(i)=y_hat(6+i) 
                q_til(i)=y_til(6+i) 
                del_q(i)=dabs(q_hat(i)-q_til(i)) 
      end do 
c 
      void_hat=y_hat(6+nasv) 
      void_til=y_til(6+nasv) 
      del_void=dabs(void_hat-void_til) 
c 
c ... relative error norms 
c 
      norm_sig2=dot_vect_h(1,sig_hat,sig_hat,6) 
      norm_q2=dot_vect_h(2,q_hat,q_hat,6) 
      norm_sig=dsqrt(norm_sig2) 
      norm_q=dsqrt(norm_q2) 
c 
      if(norm_sig.gt.zero) then 
                do i=1,6 
                        err(i)=del_sig(i)/norm_sig 
                end do 
      end if 
c 
      if(norm_q.gt.zero) then 
                do i=1,nasv-1 
                err(6+i)=del_q(i)/norm_q 
                end do 
      end if 
c 
      err(6+nasv)=del_void/void_hat 
c 
c ... global relative error norm 
c 
      norm_R2=dot_vect_h(3,err,err,ny) 
      norm_R=dsqrt(norm_R2) 
c 
      testnan=0 

      call umatisnan_h(norm_sig,testnan) 
      call umatisnan_h(norm_q,testnan) 
      call umatisnan_h(void_hat,testnan) 
      if(testnan.eq.1) then 
 norm_R=1.d20 
      end if 
 
      return 
      end 
 
c----------------------------------------------------------------------------- 
      subroutine perturbate_h(y_n,y_np1,n,nasv,dtsub,err_tol,maxnint, 
     &    DTmin,deps_np1,parms,nparms,nfev,elprsw,theta,ntens,DD, 
dtime, 

     &    error) 
c----------------------------------------------------------------------------- 
c 
c  compute numerically consistent tangent stiffness 
c 
c  written 12/2005 (Tamagnini) 
c----------------------------------------------------------------------------- 
      implicit none 
c  
      logical elprsw 
c 
      integer ntens,jj,kk,i 
      integer n,nasv,nparms,nfev 
      integer maxnint,error 
c 
      double precision y_n(n),y_np1(n),y_star(n),parms(nparms) 
      double precision dtsub,err_tol,DTmin, dtime 
      double precision theta,sig(6),q(nasv) 
      double precision deps_np1(6),deps_star(6) 
      double precision dsig(6),DD(6,6),HHtmp(nasv,6) 
      double precision LL(6,6),NN(6) 
      integer istrain 
      double precision zero 
c 
      parameter(zero=0.0d0) 
c 
c ... initialize DD and y_star 
c  
      if(parms(10) .le. 0.5) then 
          istrain=0  
      else  
          istrain=1 
      end if 
 
      do kk=1,6 
          do jj=1,6 
              DD(kk,jj)=zero 
          end do 
      end do 
      do i=1,6 
          sig(i)=y_n(i) 
      end do 
      do i=1,nasv 
          q(i)=y_n(6+i) 
      end do 
         
      call push_h(y_n,y_star,n) 
 
      if(error.ne.10) then 
          call get_tan_h(deps_np1,sig,q,nasv,parms,nparms, 
     .           DD,HHtmp,LL,NN,istrain,error)                 
        end if 
        if(istrain .eq. 0) then 
          do kk=1,6 
                do jj=1,6 
                       DD(kk,jj)=LL(kk,jj) 
                end do 
          end do 
        else 
          do kk=1,6 
                do jj=1,6 
                        DD(kk,jj)=parms(10)*LL(kk,jj) 
                end do 
          end do 
        end if 
 
        return 
        end         
         
c----------------------------------------------------------------------------- 
      subroutine push_h(a,b,n) 

c----------------------------------------------------------------------------- 
c push vector a into vector b 
c----------------------------------------------------------------------------- 
      implicit none 
      integer i,n 
      double precision a(n),b(n)  
c 
      do i=1,n 
                b(i)=a(i) 
      enddo 
c 
      return 
      end 
c----------------------------------------------------------------------------- 
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      subroutine rhs_h(y,ny,nasv,parms,nparms,deps,kRK,nfev,error) 
c----------------------------------------------------------------------------- 
c calculate coefficient kRK from current state y and strain increment 
deps 
c Masin hypoplastic model for clays with intergranular strains 
c 
c written 12/2005 (Tamagnini & Sellari) 
c----------------------------------------------------------------------------- 
      implicit none 
c 
        integer error,ny,nparms,nasv,i,nfev 
c 
      double precision zero,one,two,four  
        double precision y(ny),kRK(ny),parms(nparms),deps(6) 
        double precision sig(6),q(nasv) 
        double precision F_sig(6),F_q(nasv) 
c 
        parameter(zero=0.0d0,one=1.0d0,two=2.0d0,four=4.0d0) 
c 
c ... update counter for the number of function f(y) evaluations 
c 
        nfev=nfev+1 
c 
c ... initialize kRK 
c 
        do i=1,ny 
                kRK(i)=zero 
        end do 
c 
c ... recover current state variables (sig,q)                    
c 
        do i=1,6 
                sig(i)=y(i) 
        end do 
c 
      do i=1,nasv 
                q(i)=y(6+i) 
        end do 
c        
c ... build F_sig(6) and F_q(nasv) vectors and move them into kRK 
c 
        call 
get_F_sig_q_h(sig,q,nasv,parms,nparms,deps,F_sig,F_q,error) 
        if(error.eq.10) return 
c 
        do i=1,6 
c 
                kRK(i)=F_sig(i) 
c 
        end do                    
c        
        do i=1,nasv 
c 
                kRK(6+i)=F_q(i) 
c 
        end do                    
c 
      return 
      end 
c----------------------------------------------------------------------------- 
      subroutine rkf23_update_h(y,n,nasv,dtsub,err_tol,maxnint,DTmin, 
     &                        deps_np1,parms,nparms,nfev,elprsw,dtime, 
     &                        error) 
c----------------------------------------------------------------------------- 
c 
c  numerical solution of y'=f(y) 
c  explicit, adapive RKF23 scheme with local time step extrapolation 
c 
c  Tamagnini, Sellari & Miriano 6/2005 
c 
c----------------------------------------------------------------------------- 

        implicit none 
c 
        logical elprsw 
c 
      integer n,nasv,nparms,i,ksubst,kreject,nfev 
        integer maxnint,error,error_RKF 
c 
      double precision y(n),parms(nparms),dtsub,err_tol,DTmin 
        double precision zero,half,one,two,three,four,six 
        double precision ptnine,onesixth,onethird,twothirds,temp 
c 
        double precision deps_np1(6),y_k(n),y_2(n),y_3(n),y_til(n) 
        double precision y_hat(n) 
        double precision T_k,DT_k,dtime 

        double precision kRK_1(n),kRK_2(n),kRK_3(n) 
        double precision norm_R,S_hull 
c 
      parameter(zero=0.0d0,one=1.0d0,two=2.0d0,three=3.0d0) 
      parameter(four=4.0d0,six=6.0d0,half=0.5d0,ptnine=0.9d0) 
c 
c ... initialize y_k vector and other variables 
c 
        do i=1,n 
                y_k(i)=zero 
        end do 
c 
        onesixth=one/six 
        onethird=one/three 
        twothirds=two/three 
c 
c ... start of update process 
c 
                 
        error_RKF=0 
        T_k=zero       
        DT_k=dtsub/dtime 
        ksubst=0 
        kreject=0 
        nfev=0 
c 
        do i=1,n 
                y_k(i)=y(i) 
        end do 
c 
c ... start substepping  
c 
        do while(T_k.lt.one)  
c 
                ksubst=ksubst+1 
c 
c ... write substepping info 
c 
c               write(*,1234) ksubst,T_k,DT_k 
c1234           format('Substep no.',i4,' -- T_k = ',d12.4,' -- DT_k = ',d12.4) 
c 
c ... check for maximum number of substeps 
c 
                if(ksubst.gt.maxnint) then 
                        write(1,*) 'number of substeps ',ksubst, 
     &                             ' is too big, step rejected' 
                        error=3 
                        return 
                end if           
c 
c ... build RK functions 
c 
                call check_RKF_h(error_RKF,y_k,n,nasv,parms,nparms) 
                if(error_RKF.eq.1) then  
    error=3 
    return 
  else 
    call 
rhs_h(y_k,n,nasv,parms,nparms,deps_np1,kRK_1,nfev,error) 
  end if 
                if(error.eq.10) return 
c 
c ... find y_2 
c 
                temp=half*DT_k 
c 
                do i=1,n 
                        y_2(i)=y_k(i)+temp*kRK_1(i) 
                end do 
 
c                

                call check_RKF_h(error_RKF,y_2,n,nasv,parms,nparms) 
                if(error_RKF.eq.1) then  
    error=3 
    return 
  else 
    call 
rhs_h(y_2,n,nasv,parms,nparms,deps_np1,kRK_2,nfev,error) 
  end if 
                if(error.eq.10) return 
c                                        
c ... find y_3 
c 
 
                do i=1,n 
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                        y_3(i)=y_k(i)-DT_k*kRK_1(i)+two*DT_k*kRK_2(i) 
                end do 
c 
 
                call check_RKF_h(error_RKF,y_3,n,nasv,parms,nparms) 
                if(error_RKF.eq.1) then  
    error=3 
    return 
  else 
    call 
rhs_h(y_3,n,nasv,parms,nparms,deps_np1,kRK_3,nfev,error) 
                end if 
                if(error.eq.10) return 
 
c                                
c ... approx. solutions of 2nd (y_til) and 3rd (y_hat) order 
c 
                do i=1,n         
                        y_til(i)=y_k(i)+DT_k*kRK_2(i) 
                        y_hat(i)=y_k(i)+DT_k* 
     &          (onesixth*kRK_1(i)+twothirds*kRK_2(i)+onesixth*kRK_3(i)) 
                end do 
c 
c ... local error estimate 
c 
 
                call norm_res_h(y_til,y_hat,n,nasv,norm_R) 
c    check if output y_hat 
can be used as an input into the next step 
                call check_RKF_h(error_RKF,y_hat,n,nasv,parms,nparms) 
 
                if (error_RKF.ne.0) then 
c                 error=1.d20 
c                 error_RKF=0 
   error=3 
   return 
                end if 
c 
c ... time step size estimator according to Hull 
c         
  if(norm_R .ne. 0) then 
                 S_hull=ptnine*DT_k*(err_tol/norm_R)**onethird 
                else 
                 S_hull=1 
                end if 
c 
 
      if (norm_R.lt.err_tol) then                              
c 
c ... substep is accepted, update y_k and T_k and estimate new 
substep size DT_k 
c 
                 do i=1,n         
                        y_k(i)=y_hat(i) 
                 end do 
c 
                        T_k=T_k+DT_k 
                        DT_k=min(four*DT_k,S_hull) 
                        dtsub=DT_k*dtime 
                        DT_k=min((one-T_k),DT_k)         
c 
      else 
c 
c ... substep is not accepted, recompute with new (smaller) substep 
size DT 
c 
                 DT_k=max(DT_k/four,S_hull) 
c 
c ... check for minimum step size 
c 
                 if(DT_k.lt.DTmin) then 

                              write(1,*) 'substep size ',DT_k, 
     &                             ' is too small, step rejected' 
                              error=3 
                              return 
                 end if           
c                                        
      end if                                                   
c 
c ... bottom of while loop 
c 
      end do 
         
c 
c ... recover final state 

c 
      do i=1,n 
                y(i)=y_k(i) 
      end do 
c 
      return 
      end 
c 
 
c----------------------------------------------------------------------------- 
      subroutine check_RKF_h(error_RKF,y,ny,nasv,parms,nparms) 
c----------------------------------------------------------------------------- 
c Checks is RKF23 solout vector y is OK for hypoplasticity 
c----------------------------------------------------------------------------- 
      implicit none 
c 
        integer error_RKF,ny,nasv,i,nparms,testnan,iopt 
c 
        double precision y(ny),parms(nparms) 
        double precision sig(6),pmean,sig_star(6) 
        double precision xN1(3),xN2(3),xN3(3),S(3),P,Q,tmin 
        double precision p_t,minstress 
c 
        p_t    =parms(2) 
 minstress=p_t/4.d0 
        do i=1,6 
                sig(i)=y(i) 
        end do 
 
        sig_star(1)=sig(1)-p_t 
        sig_star(2)=sig(2)-p_t 
        sig_star(3)=sig(3)-p_t 
        sig_star(4)=sig(4) 
c changed order due to prnsig convention different from 
abaqus 
        sig_star(5)=sig(6) 
        sig_star(6)=sig(5) 
                 
     pmean=-(sig_star(1)+sig_star(2)+sig_star(3))/3 
      
c       check for positive mean stress 
        if(pmean .le. minstress) then 
         error_RKF=1 
        end if 
c 
c  calculate minimum principal stress 
c 
  iopt=0 
        Call PrnSig_h(iopt, sig_star, xN1, xN2, xN3, 
     &  S(1),S(2),S(3), P, Q) 
        tmin     = 1.0d+20 
        do i=1,3 
                if(tmin .ge. -S(i)) then 
                  tmin=-S(i) 
                endif   
        enddo  
c 
c  check for tension 
c 
        if(tmin .le. minstress) then 
                error_RKF=1 
        end if 
         
c  check for NAN 
     testnan=0 
        do i=1,ny 
          call umatisnan_h(y(i),testnan) 
        end do 
        if(testnan.eq.1) error_RKF=1 
         
c 

c 
      return 
      end 
c 
 
c----------------------------------------------------------------------------- 
      subroutine solout_h(stress,ntens,asv,nasv,ddsdde,y,nydim, 
     +                  pore,depsv_np1,parms,nparms,DD) 
c----------------------------------------------------------------------------- 
c copy the vector of state variables to umat output 
c modified 7/2005 (Tamagnini, Sellari) 
c 
c NOTE: solid mechanics convention for stress and strain components 
c       pore is always positive in compression 
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c----------------------------------------------------------------------------- 
      implicit none 
c 
      integer nydim,nasv,nparms,ntens,i,j 
c 
      double precision y(nydim),asv(nasv),stress(ntens) 
        double precision ddsdde(ntens,ntens),DD(6,6) 
        double precision parms(nparms),bulk_w,pore,depsv_np1  
c 
        bulk_w=parms(15) 
c 
c ... update excess pore pressure (if undrained conditions), 
compression positive 
c 
        pore=pore-bulk_w*depsv_np1 
c 
c updated total stresses (effective stresses stored in y(1:6)) 
c 
      do i=1,ntens 
                if (i.le.3) then 
                        stress(i) = y(i)-pore 
                else 
                        stress(i) = y(i) 
                end if 
        enddo 
c 
c additional state variables (first 6 components are intergranular 
strains) 
c 
      do i=1,nasv 
                asv(i) = y(6+i) 
      enddo 
c 
c consistent tangent stiffness 
c 
      do j=1,ntens 
        do i=1,ntens 
          ddsdde(i,j) = DD(i,j)       
        enddo 
      enddo 
c 
      do j=1,3 
        do i=1,3 
          ddsdde(i,j) = ddsdde(i,j)+bulk_w         
        enddo 
      enddo 
      return 
      end 
c----------------------------------------------------------------------------- 
      subroutine wrista_h(mode,y,nydim,deps_np1,dtime,coords,statev, 
     &           nstatv,parms,nparms,noel,npt,ndi,nshr,kstep,kinc) 
c----------------------------------------------------------------------------- 
c ... subroutine for managing output messages 
c 
c     mode 
c 
c     all = writes:             kstep, kinc, noel, npt 
c       2   = writes also:      error 
message,coords(3),parms(nparms),ndi,nshr,stress(nstress) 
c                                               deps(nstress),dtime,statev(nstatv) 
c     3   = writes also:        
stress(nstress),deps(nstress),dtime,statev(nstatv) 
c----------------------------------------------------------------------------- 
      implicit none 
c 
      integer mode,nydim,nstatv,nparms,noel,npt,ndi,nshr,kstep,kinc,i     
c 
      double precision y(nydim),statev(nstatv),parms(nparms) 
        double precision deps_np1(6),coords(3),dtime 
c 
c ... writes for mode = 2 

c 
      if (mode.eq.2) then 
        write(1,*) 
'===================================================' 
        write(1,*) 'ERROR: abaqus job failed during call of UMAT' 
        write(1,*) 
'===================================================' 
        write(1,*) 'state dump:' 
        write(1,*)  
      endif 
c 
c ... writes for all mode values 
c 
      write(1,111) 'Step: ',kstep, 'increment: ',kinc, 

     & 'element: ', noel, 'Integration point: ',npt 
      write(1,*)  
c 
c ... writes for mode = 2 
c 
      if (mode.eq.2) then 
        write(1,*) 'Co-ordinates of material point:' 
        write(1,104) 'x1 = ',coords(1),' x2 = ',coords(2),' x3 = ', 
     &    coords(3) 
        write(1,*)  
        write(1,*) 'Material parameters:' 
        write(1,*)  
        do i=1,nparms 
          write(1,105) 'prop(',i,') = ',parms(i) 
        enddo  
        write(1,*) 
        write(1,102) 'No. of mean components:  ',ndi 
        write(1,102) 'No. of shear components: ',nshr 
        write(1,*) 
      endif 
c 
c ... writes for mode = 2 or 3 
c 
      if ((mode.eq.2).or.(mode.eq.3)) then 
        write(1,*) 'Stresses:' 
        write(1,*)  
        write(1,101) 'sigma(1) = ',y(1) 
        write(1,101) 'sigma(2) = ',y(2) 
        write(1,101) 'sigma(3) = ',y(3) 
        write(1,101) 'sigma(4) = ',y(4) 
        write(1,101) 'sigma(5) = ',y(5) 
        write(1,101) 'sigma(6) = ',y(6) 
        write(1,*)  
        write(1,*) 'Strain increment:' 
        write(1,*)  
        write(1,101) 'deps_np1(1) = ',deps_np1(1) 
        write(1,101) 'deps_np1(2) = ',deps_np1(2) 
        write(1,101) 'deps_np1(3) = ',deps_np1(3) 
        write(1,101) 'deps_np1(4) = ',deps_np1(4) 
        write(1,101) 'deps_np1(5) = ',deps_np1(5) 
        write(1,101) 'deps_np1(6) = ',deps_np1(6) 
        write(1,*)  
        write(1,*) 'Time increment:' 
        write(1,*)  
        write(1,108) 'dtime = ',dtime 
        write(1,*)  
        write(1,*) 'Internal variables:' 
        write(1,*)  
        write(1,109) 'del(1) = ',statev(1) 
        write(1,109) 'del(2) = ',statev(2) 
        write(1,109) 'del(3) = ',statev(3) 
        write(1,109) 'del(4) = ',statev(4) 
        write(1,109) 'del(5) = ',statev(5) 
        write(1,109) 'del(6) = ',statev(6) 
        write(1,109) 'void   = ',statev(7) 
        write(1,*)  
        write(1,*) 
'===================================================' 
c 
      endif 
c 
101   format(1X,a15,e11.4) 
102   format(1X,a25,i1) 
103   format(1X,a7,i5) 
104   format(1X,3(a5,f10.4,2X)) 
105   format(1X,a5,i2,a4,f20.3) 
106   format(1X,3(a9,f12.4,2X)) 
107   format(1X,3(a10,f12.4,2X)) 
108   format(1X,a8,f12.4) 
109   format(1X,a6,f10.4) 
110   format(1X,a5,f10.4) 

111   format(1X,a6,i4,2X,a11,i4,2X,a9,i10,2X,a19,i4) 
c        
      return 
      end 
 
       
c----------------------------------------------------------------------------- 
      subroutine calc_statev_h(stress,statev,parms,nparms,nasv, 
     & nstatv,deps) 
c----------------------------------------------------------------------------- 
c 
c  computes additional state variables for postprocessing 
c 
c----------------------------------------------------------------------------- 
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        implicit none 
c  
        logical elprsw 
c 
      integer ntens,jj,kk,i 
      integer n,nasv,nparms,nfev,nstatv 
        integer maxnint,error 
c 
      double precision parms(nparms),dot_vect_h 
        double precision stress(6),statev(nstatv) 
        double precision deps(6),tmax,tmin 
        double precision MM(6,6),HHtmp(nasv,6) 
        double precision LL(6,6),NN(6) 
        integer istrain 
        double precision zero,two,four,iopt,three 
        double precision I1,I2,I3,cos3t,pp,qq 
        double precision sin2phi,sinphi,sig_star(6),p_t 
        double precision norm_del,norm_del2,del(6) 
c 
      parameter(zero=0.0d0,two=2.0d0,four=4.0d0,three=3.0d0) 
c 
 
c ... calc phimob (statev 11) from Matsuoka-Nakai YS 
 
      p_t    =parms(2) 
      do i=1,3 
              sig_star(i)=stress(i)-p_t 
      end do 
      do i=4,6 
              sig_star(i)=stress(i) 
      end do 
      call inv_sig_h(sig_star,pp,qq,cos3t,I1,I2,I3) 
   if(I3 .ne. 0) then 
        sin2phi=(9.d0+I1*I2/I3)/(1.d0+I1*I2/I3) 
      else  
       sin2phi=0 
      end if 
   if(sin2phi .lt. 0) then 
        sin2phi=0 
      end if  
   if(sin2phi .gt. 1) then 
        sin2phi=1 
      end if  
      sinphi=sqrt(sin2phi) 
       
      statev(11)= asin(sinphi)* 
     .   180.0d0/3.141592d0 
 
c ... calc norm. length of intergr. strain rho (statev 12) 
      if(parms(10) .le. 0.5) then 
          istrain=0  
      else  
          istrain=1 
      end if 
 
      if(istrain .eq. 1) then 
         
      do i=1,6 
          del(i)=statev(i) 
      enddo        
         
      norm_del2=dot_vect_h(2,del,del,6) 
      norm_del=dsqrt(norm_del2) 
      statev(12)=norm_del/parms(12) 
      
      else 
        statev(12)=0 
      end if 
 
      return 
      end         

             
c----------------------------------------------------------------------------- 
      subroutine umatisnan_h(chcknum,testnan) 
c----------------------------------------------------------------------------- 
c 
c  checks whether number is NaN 
c 
c----------------------------------------------------------------------------- 
        double precision chcknum 
        integer testnan 
 
     if (.not.(chcknum .ge. 0. .OR. chcknum .lt. 0.)) testnan=1         
     if (chcknum .gt. 1.d30) testnan=1         
     if (chcknum .lt. -1.d30) testnan=1         

      if (chcknum .ne. chcknum) testnan=1         
        
        return 
        end          
       
c----------------------------------------------------------------------------- 
        subroutine xit_h 
c----------------------------------------------------------------------------- 
        stop 
c 
        return 
        end 
 
C*********************************************************************** 
      Subroutine PrnSig_h(IOpt,S,xN1,xN2,xN3,S1,S2,S3,P,Q) 
      Implicit Double Precision (A-H,O-Z) 
      Dimension S(*),xN1(*),xN2(*),xN3(*) 
 
      If (iOpt.Eq.1) Then 
        Call Eig_3_h(0,S,xN1,xN2,xN3,S1,S2,S3,P,Q) ! with 
Eigenvectors 
      Else 
        Call Eig_3a_h(0,S,S1,S2,S3,P,Q) ! no Eigenvectors 
      End If 
      Return 
      End 
C*********************************************************************** 
      Subroutine Eig_3_h(iOpt,St,xN1,xN2,xN3,S1,S2,S3,P,Q) 
      Implicit Double Precision (A-H,O-Z) 
      Dimension St(6),A(3,3),V(3,3), 
     *          xN1(3),xN2(3),xN3(3) 
      ! 
      ! Get Eigenvalues/Eigenvectors for 3*3 matrix 
      ! Wim Bomhof 15/11/'01 
      ! PGB : adaption to Principal stress calculation 
      ! 
      ! Applied on principal stresses, directions 
      ! Stress vector St(): XX, YY, ZZ, XY, YZ, ZX 
      ! 
      A(1,1) = St(1) ! xx 
      A(1,2) = St(4) ! xy = yx 
      A(1,3) = St(6) ! zx = xz 
 
      A(2,1) = St(4) ! xy = yx 
      A(2,2) = St(2) ! yy 
      A(2,3) = St(5) ! zy = yz 
 
      A(3,1) = St(6) ! zx = xz 
      A(3,2) = St(5) ! zy = yz 
      A(3,3) = St(3) ! zz 
 
      ! Set V to unity matrix 
      V(1,1) = 1 
      V(2,1) = 0 
      V(3,1) = 0 
 
      V(1,2) = 0 
      V(2,2) = 1 
      V(3,2) = 0 
 
      V(1,3) = 0 
      V(2,3) = 0 
      V(3,3) = 1 
 
 
      abs_max_s=0.0 
      Do i=1,3 
        Do j=1,3 
          if (abs(a(i,j)) .Gt. abs_max_s) abs_max_s=abs(a(i,j)) 
        End Do 
      End Do 

      Tol = 1d-20 * abs_max_s 
      it = 0 
      itmax = 50 
      Do While ( it.Lt.itMax .And. 
     *           abs(a(1,2))+abs(a(2,3))+abs(a(1,3)) .Gt. Tol ) 
        it=it+1 
        Do k=1,3 
          If (k .Eq. 1) Then 
            ip=1 
            iq=2 
          Else If (k .Eq.2) Then 
            ip=2 
            iq=3 
          Else 
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            ip=1 
            iq=3 
          End If 
          If (abs(a(ip,iq)) .gt. Tol) Then 
            tau=(a(iq,iq)-a(ip,ip))/(2.0*a(ip,iq)) 
            If (tau .Ge.0.0) Then 
              sign_tau=1.0 
            Else 
              sign_tau=-1.0 
            End If 
            t=sign_tau/(abs(tau)+sqrt(1.0+tau*tau)) 
            c=1.0/sqrt(1.0+t*t) 
            s=t*c 
            a1p=c*a(1,ip)-s*a(1,iq) 
            a2p=c*a(2,ip)-s*a(2,iq) 
            a3p=c*a(3,ip)-s*a(3,iq) 
            a(1,iq)=s*a(1,ip)+c*a(1,iq) 
            a(2,iq)=s*a(2,ip)+c*a(2,iq) 
            a(3,iq)=s*a(3,ip)+c*a(3,iq) 
            a(1,ip)=a1p 
            a(2,ip)=a2p 
            a(3,ip)=a3p 
 
            v1p=c*v(1,ip)-s*v(1,iq) 
            v2p=c*v(2,ip)-s*v(2,iq) 
            v3p=c*v(3,ip)-s*v(3,iq) 
            v(1,iq)=s*v(1,ip)+c*v(1,iq) 
            v(2,iq)=s*v(2,ip)+c*v(2,iq) 
            v(3,iq)=s*v(3,ip)+c*v(3,iq) 
            v(1,ip)=v1p 
            v(2,ip)=v2p 
            v(3,ip)=v3p 
 
            ap1=c*a(ip,1)-s*a(iq,1) 
            ap2=c*a(ip,2)-s*a(iq,2) 
            ap3=c*a(ip,3)-s*a(iq,3) 
            a(iq,1)=s*a(ip,1)+c*a(iq,1) 
            a(iq,2)=s*a(ip,2)+c*a(iq,2) 
            a(iq,3)=s*a(ip,3)+c*a(iq,3) 
            a(ip,1)=ap1 
            a(ip,2)=ap2 
            a(ip,3)=ap3 
          End If ! a(ip,iq)<>0 
        End Do ! k 
      End Do ! While 
      ! principal values on diagonal of a 
      S1 = a(1,1) 
      S2 = a(2,2) 
      S3 = a(3,3) 
      ! Derived invariants 
      P = (S1+S2+S3)/3 
      Q = Sqrt( ( (S1-S2)**2 + (S2-S3)**2 + (S3-S1)**2 ) / 2 ) 
 
      ! Sort eigenvalues S1 <= S2 <= S3 
      is1 = 1 
      is2 = 2 
      is3 = 3 
      if (s1.Gt.s2) Then 
        t   = s2 
        s2  = s1 
        s1  = t 
        it  = is2 
        is2 = is1 
        is1 = it 
      End If 
      if (s2.Gt.s3) Then 
        t   = s3 
        s3  = s2 
        s2  = t 
        it  = is3 
        is3 = is2 

        is2 = it 
      End If 
      if (s1.Gt.s2) Then 
        t   = s2 
        s2  = s1 
        s1  = t 
        it  = is2 
        is2 = is1 
        is1 = it 
      End If 
      Do i=1,3 
        xN1(i) = v(i,is1) ! first  column 
        xN2(i) = v(i,is2) ! second column 
        xN3(i) = v(i,is3) ! third  column 

      End Do 
      Return 
      End ! Eig_3 
 
      Subroutine Eig_3a_h(iOpt,St,S1,S2,S3,P,Q) ! xN1,xN2,xN3, 
      Implicit Double Precision (A-H,O-Z) 
      Dimension St(6),A(3,3)   !  V(3,3),xN1(3),xN2(3),xN3(3) 
      ! 
      ! Get Eigenvalues ( no Eigenvectors) for 3*3 matrix 
      ! Wim Bomhof 15/11/'01 
      ! 
      ! Applied on principal stresses, directions 
      ! Stress vector XX, YY, ZZ, XY, YZ, ZX 
      ! 
      A(1,1) = St(1) ! xx 
      A(1,2) = St(4) ! xy = yx 
      A(1,3) = St(6) ! zx = xz 
 
      A(2,1) = St(4) ! xy = yx 
      A(2,2) = St(2) ! yy 
      A(2,3) = St(5) ! zy = yz 
 
      A(3,1) = St(6) ! zx = xz 
      A(3,2) = St(5) ! zy = yz 
      A(3,3) = St(3) ! zz 
 
      abs_max_s=0.0 
      Do i=1,3 
        Do j=1,3 
          if (abs(a(i,j)) .Gt. abs_max_s) abs_max_s=abs(a(i,j)) 
        End Do 
      End Do 
      Tol = 1d-20 * abs_max_s 
      If (iOpt.Eq.1) Tol = 1d-50*abs_max_s 
      it=0 
      itmax = 50 
 
      Do While ( it.lt.itmax .And. 
     *           abs(a(1,2))+abs(a(2,3))+abs(a(1,3)) .Gt. Tol ) 
 
        it=it+1 
        Do k=1,3 
          If (k .Eq. 1) Then 
            ip=1 
            iq=2 
          Else If (k .Eq.2) Then 
            ip=2 
            iq=3 
          Else 
            ip=1 
            iq=3 
          End If 
 
          If (abs(a(ip,iq)) .gt. Tol) Then         ! ongelijk nul ? 
            tau=(a(iq,iq)-a(ip,ip))/(2.0*a(ip,iq)) 
            If (tau .Ge.0.0) Then 
              sign_tau=1.0 
            Else 
              sign_tau=-1.0 
            End If 
            t=sign_tau/(abs(tau)+sqrt(1.0+tau*tau)) 
            c=1.0/sqrt(1.0+t*t) 
            s=t*c 
            a1p=c*a(1,ip)-s*a(1,iq) 
            a2p=c*a(2,ip)-s*a(2,iq) 
            a3p=c*a(3,ip)-s*a(3,iq) 
            a(1,iq)=s*a(1,ip)+c*a(1,iq) 
            a(2,iq)=s*a(2,ip)+c*a(2,iq) 
            a(3,iq)=s*a(3,ip)+c*a(3,iq) 
            a(1,ip)=a1p 
            a(2,ip)=a2p 

            a(3,ip)=a3p 
 
            ap1=c*a(ip,1)-s*a(iq,1) 
            ap2=c*a(ip,2)-s*a(iq,2) 
            ap3=c*a(ip,3)-s*a(iq,3) 
            a(iq,1)=s*a(ip,1)+c*a(iq,1) 
            a(iq,2)=s*a(ip,2)+c*a(iq,2) 
            a(iq,3)=s*a(ip,3)+c*a(iq,3) 
            a(ip,1)=ap1 
            a(ip,2)=ap2 
            a(ip,3)=ap3 
          End If ! a(ip,iq)<>0 
        End Do ! k 
      End Do ! While 
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      ! principal values on diagonal of a 
      S1 = a(1,1) 
      S2 = a(2,2) 
      S3 = a(3,3) 
      ! Derived invariants 
      P = (S1+S2+S3)/3 
      Q = Sqrt( ( (S1-S2)**2 + (S2-S3)**2 + (S3-S1)**2 ) / 2 ) 
 
      if (s1.Gt.s2) Then 
        t   = s2 
        s2  = s1 
        s1  = t 
      End If 
      if (s2.Gt.s3) Then 
        t   = s3 
        s3  = s2 
        s2  = t 
      End If 
      if (s1.Gt.s2) Then 
        t   = s2 
        s2  = s1 
        s1  = t 
      End If 
      Return 
      End ! Eig_3a 
       
c----------------------------------------------------------------------------- 
      subroutine calc_elasti_h(y,n,nasv,dtsub,err_tol,maxnint,DTmin, 
     &                        deps_np1,parms,nparms,nfev,elprsw, 
     &   
 dtime,DDtan,youngel,nuel,error) 
c----------------------------------------------------------------------------- 
c 
c  numerical solution of y'=f(y) 
c  explicit, adapive RKF23 scheme with local time step extrapolation 
c 
c  Tamagnini, Sellari & Miriano 6/2005 
c 
c----------------------------------------------------------------------------- 
        implicit none 
c 
        logical elprsw 
c 
      integer n,nasv,nparms,i,ksubst,kreject,nfev 
      integer maxnint,error,error_RKF,tension,j 
c 
      double precision y(n),parms(nparms),dtsub,err_tol,DTmin 
        double precision zero,half,one,two,three,four,six 
        double precision ptnine,onesixth,onethird,twothirds,temp 
c 
        double precision deps_np1(6),y_k(n),y_2(n),y_3(n),y_til(n) 
        double precision y_hat(n),DDtan(6,6) 
        double precision T_k,DT_k,dtime,II(6,6),krondelta(6) 
        double precision kRK_1(n),kRK_2(n),kRK_3(n) 
        double precision norm_R,S_hull,youngel,nuel,F_sig(6) 
c 
      parameter(zero=0.0d0,one=1.0d0,two=2.0d0,three=3.0d0) 
      parameter(four=4.0d0,six=6.0d0,half=0.5d0,ptnine=0.9d0) 
c 
c ... initialize y_k vector and other variables 
c 
        do i=1,n 
                y_k(i)=zero 
        end do 
c 
        onesixth=one/six 
        onethird=one/three 
        twothirds=two/three 
 
c 
c ... fourth order identity tensors in Voigt notation 

c 
        do i = 1,6 
          do j=1,6 
            II(i,j)=zero 
          end do 
        end do 
         
        II(1,1)=one 
        II(2,2)=one 
        II(3,3)=one 
        II(4,4)=half 
        II(5,5)=half 
        II(6,6)=half 
c 

        krondelta(1)=one 
        krondelta(2)=one 
        krondelta(3)=one 
        krondelta(4)=zero 
        krondelta(5)=zero 
        krondelta(6)=zero 
c 
c ... Elastic stiffness tensor  
c 
 if(youngel.gt.0) then 
        do i = 1,6 
          do j=1,6 
            DDtan(i,j)=(youngel/(1+nuel))*(II(i,j) +  
     &        nuel/(1-2*nuel)*krondelta(i)*krondelta(j)); 
          end do 
        end do 
        end if 
         
        call matmul_h(DDtan,deps_np1,F_sig,6,6,1) 
        do i=1,6 
                y(i)=y(i)+F_sig(i) 
        end do 
 
        return 
      end 
c 
 
c--------------------------------------------------------------------- 
      SUBROUTINE 
SDVINI(STATEV,COORDS,NSTATV,NCRDS,NOEL,NPT, 
     1 LAYER,KSPT,props,nprops) 
c--------------------------------------------------------------------- 
c ---------------------------------------------------------------------------- 
c The string for the material name may contain 9 characters. 
c ---------------------------------------------------------------------------- 
c Material constants: 
c        
c     --------------------------------------------------------------------- 
c     props(j)       
c     --------------------------------------------------------------------- 
c        1      phi  
c        2      p_t  
c        3      h_s 
c        4      n 
c        5      e_d0 
c        6      e_c0 
c        7      e_i0 
c        8      alpha 
c        9      beta 
c        10      m_R  
c        11      m_T 
c        12      RR 
c        13     beta_r  
c        14     chi 
c        15     bulk_w 
c        16  e0          
c 
c     ---------------------------------------------------------------------- 
c 
c Solution dependent state variables (statev): 
c definition via sdvini 
c 
c        1 ... del_11  intergranular strain component 
c        2 ... del_22  intergranular strain component 
c        3 ... del_33  intergranular strain component 
c        4 ... del_12  intergranular strain component 
c        5 ... del_13  intergranular strain component 
c        6 ... del_23  intergranular strain component 
c        7 ... void    void ratio 
c        8 ... pore    excess pore pressure (undrained conditions, 
bulk_w>>0) 

c        9 ... p       mean stress (o) 
c       10 ... nfev    number of function evaluation 
c       11 ... phi_mob phi_mob in degrees 
c       12 ... rho     normalised length of intergr. strain rho 
c       13 ... dtsub   suggested substep size 
c 
c       For undrained analyses with penalty approach: 
c       bulk_w: bulk modulus of water phase 
c 
 
      Implicit Double Precision (A-H, O-Z) 
 
      Dimension statev(nstatv), props(nprops) 
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c intialize state variables 
           
          statev(1)=1.0d0 
          statev(2)=1.0d0 
          statev(3)=1.0d0 
          statev(4)=1.0d0 
          statev(5)=1.0d0 
          statev(6)=1.0d0 
          statev(7)=0.7392 
          statev(8)=0 
          statev(9)=0 
          statev(10)=0.d0 
          statev(11)=0.d0 
          statev(12)=0.d0 
          statev(13)=0.D0 
       
      Return 
      End ! StVarIni 
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APPENDIX C.  
Sample Input code for the abaqus model with the user 

defined material 
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** m,kg,N,s 
*Heading 
** Job name: SPd20mm Model name: SPd20mm 
** Generated by: Abaqus/CAE 6.13-1 
*Preprint, echo=NO, model=NO, history=NO, contact=NO 
** 
** PARTS 
** 
*Part, name=Cap 
*Node 
      1, 0.0500000007,  0.176666662, 0.0250000004 
      2, 0.0500000007,  0.211666673, 0.0250000004 
      3, 0.0500000007,  0.176666662, 0.0125000002 
      4, 0.0500000007,  0.211666673, 0.0125000002 
      5, 0.0500000007,  0.176666662,           0. 
      6, 0.0500000007,  0.211666673,           0. 
      7,  0.075000003,  0.176666662, 0.0250000004 
      8,  0.075000003,  0.211666673, 0.0250000004 
      9,  0.075000003,  0.176666662, 0.0125000002 
     10,  0.075000003,  0.211666673, 0.0125000002 
     11,  0.075000003,  0.176666662,           0. 
     12,  0.075000003,  0.211666673,           0. 
     13,  0.100000001,  0.176666662, 0.0250000004 
     14,  0.100000001,  0.211666673, 0.0250000004 
     15,  0.100000001,  0.176666662, 0.0125000002 
     16,  0.100000001,  0.211666673, 0.0125000002 
     17,  0.100000001,  0.176666662,           0. 
     18,  0.100000001,  0.211666673,           0. 
*Element, type=C3D8 
1,  3,  4,  2,  1,  9, 10,  8,  7 
2,  5,  6,  4,  3, 11, 12, 10,  9 
3,  9, 10,  8,  7, 15, 16, 14, 13 
4, 11, 12, 10,  9, 17, 18, 16, 15 
*Nset, nset=RBC, generate 
  1,  18,   1 
*Elset, elset=RBC, generate 
 1,  4,  1 
** Section: RBC 
*Solid Section, elset=RBC, material=RBC 
, 
*End Part 
**   
*Part, name=Pile 
*Node 
      1, -0.150000006,           0.,   1.45000005 
      2, -0.129999995,           0.,   1.45000005 
   --------- truncated ----------------------- 
*Nset, nset=Pile, generate 
    1,  1124,     1 
*Elset, elset=Pile, generate 
   1,  190,    1 
** Section: Pile 
*Solid Section, elset=Pile, material=Pile 
*End Part 
**   
*Part, name=Sand 
*Node 
      1,  0.208090171, -0.0641221479,           0. 
      2,  0.205877855, -0.0619098283,           0. 
--------- truncated ----------------------- 
 
*Nset, nset=Soil, generate 
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     1,  19266,      1 
*Elset, elset=Soil, generate 
     1,  16948,      1 
** Section: Soil 
*Solid Section, elset=Soil, material=Soil 
, 
*End Part 
**   
** 
** ASSEMBLY 
** 
*Assembly, name=Assembly 
**   
*Instance, name=Pile-1, part=Pile 
0.470200002358994,        -0.07,           0. 
*End Instance 
**   
*Instance, name=Sand-1, part=Sand 
0.130200002342463,           0.,           0. 
*End Instance 
**   
*Instance, name=Cap-1, part=Cap 
0.255200002358994, -0.246666666666667,          1.5 
*End Instance 
**   
*Node 
      1,  0.330200016, -0.0700000003,   1.51250005 
*Nset, nset=Back, instance=Sand-1 
     9,    10,    48,    49,    50,    51,    52,    53,    54,    55,    56,    57,    58,    59,    60,    61 
--------- truncated ----------------------- 
*Elset, elset=Back, instance=Sand-1 
    38,    42,   214,   378,   380,   381,   401,   403,   411,   412,   415,   416,   418,   419,   421,   422 
--------- truncated ----------------------- 
 
*Nset, nset=Bottom, instance=Pile-1 
    5,    6,   57,   58,   59,   60,   61,   62,   63,   64,   77,   78,   79,   80,   81,   82 
--------- truncated ----------------------- 
*Nset, nset=Bottom, instance=Sand-1, generate 
   1,  494,    1 
*Elset, elset=Bottom, instance=Pile-1, generate 
 181,  190,    1 
*Elset, elset=Bottom, instance=Sand-1, generate 
   1,  446,    1 
*Nset, nset=Hole, instance=Sand-1 
     1,     2,     3,     4,     5,     6,     7,    12,    13,    14,    15,   495,   496,   497,   498,   499 
--------- truncated ----------------------- 
 
*Elset, elset=Hole, instance=Sand-1 
     2,     3,     4,     7,    10,    11,    59,    60,    85,    88,   448,   449,   450,   453,   456,   457 
--------- truncated ----------------------- 
*Nset, nset=PH, instance=Pile-1 
   3,   4,  15,  16,  17,  18,  19,  20,  21,  22,  71,  72,  73,  74,  75,  76 
 --------- truncated ----------------------- 
*Nset, nset=RP 
 1, 
*Nset, nset=Sides, instance=Sand-1 
     8,     9,    10,    11,    43,    44,    45,    46,    47,    63,    64,    65,    66,    67,   502,   503 
--------- truncated ----------------------- 
nset=Symm, instance=Pile-1 
    1,    2,    3,    4,    5,    6,   13,   14,   21,   22,   23,   24,   25,   26,   27,   28 
--------- truncated ----------------------- 
*Nset, nset=Symm, instance=Sand-1 
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     6,     7,     8,    11,    16,    17,    18,    19,    20,    21,    22,    23,    24,    25,    26,    27 
--------- truncated ----------------------- 
*Elset, elset=Symm, instance=Pile-1 
   1,   3,   5,  11,  13,  15,  21,  23,  25,  31,  33,  35,  41,  43,  45,  51 
--------- truncated ----------------------- 
*Elset, elset=Symm, instance=Sand-1 
     8,    11,    12,    13,    14,    16,    17,    19,    20,    21,    22,    23,    24,    25,    26,    27 
    28,    29,    30,    31,    33,    36,    37,    55,    59,    62,    63,    64,    65,    66,    67, *Elset, elset=_Master_Pile_S6, 
internal, instance=Pile-1 
   1,   5,  16,  26,  36,  46,  56,  66,  76,  86,  96, 106, 116, 126, 136, 146 
 156, 166, 176, 186 
*Elset, elset=_Master_Pile_S4, internal, instance=Pile-1 
   2,  14,  17,  18,  24,  27,  28,  34,  37,  38,  44,  47,  48,  54,  57,  58 
--------- truncated ----------------------- 
*Elset, elset=_Master_Pile_S5, internal, instance=Pile-1 
   4,   7,   8,  12,  22,  32,  42,  52,  62,  72,  82,  92, 102, 112, 122, 132 
 142, 152, 162, 172, 182 
*Elset, elset=_Master_Pile_S3, internal, instance=Pile-1 
   6,  11,  15,  21,  25,  31,  35,  41,  45,  51,  55,  61,  65,  71,  75,  81 
  85,  91,  95, 101, 105, 111, 115, 121, 125, 131, 135, 141, 145, 151, 155, 161 
 165, 171, 175, 181, 185 
*Surface, type=ELEMENT, name=Master_Pile 
_Master_Pile_S6, S6 
_Master_Pile_S4, S4 
_Master_Pile_S5, S5 
_Master_Pile_S3, S3 
*Elset, elset=_Slave_Soil_S5, internal, instance=Sand-1 
     2,    10,    59,    60,    85,   448,   456,   505,   506,   531,   894,   902,   951,   952,   977,  1340 
  1348,  1397,  1398,  1423,  1786,  1794,  1843,  1844,  1869,  2232,  2240,  2289,  2290,  2315,  2678,  2686 
*Elset, elset=_Slave_Soil_S3, internal, instance=Sand-1, generate 
     4,  16506,    446 
*Elset, elset=_Slave_Soil_S4, internal, instance=Sand-1, generate 
    88,  16590,    446 
*Surface, type=ELEMENT, name=Slave_Soil 
_Slave_Soil_S5, S5 
_Slave_Soil_S6, S6 
_Slave_Soil_S4, S4 
_Slave_Soil_S3, S3 
** Constraint: RB 
*Rigid Body, ref node=_PickedSet31, elset=Cap-1.RBC, tie nset=PH 
*Elset, elset=__Slip_Gap_msm_1_S6, internal, instance=Pile-1 
 1, 5 
*Elset, elset=__Slip_Gap_msm_1_S4, internal, instance=Pile-1 
 2, 
*Elset, elset=__Slip_Gap_msm_1_S5, internal, instance=Pile-1 
 4, 7, 8 
*Elset, elset=__Slip_Gap_msm_1_S3, internal, instance=Pile-1 
 6, 
*Surface, type=ELEMENT, name=_Slip_Gap_msm_1, internal 
__Slip_Gap_msm_1_S6, S6 
__Slip_Gap_msm_1_S4, S4 
__Slip_Gap_msm_1_S5, S5 
__Slip_Gap_msm_1_S3, S3 
*Elset, elset=__Slip_Gap_msm_2_S3, internal, instance=Pile-1 
  11,  15,  21,  25,  31,  35,  41,  45,  51,  55,  61,  65,  71,  75,  81,  85 
  91,  95, 101, 105, 111, 115, 121, 125, 131, 135, 141, 145, 151, 155, 161, 165 
 171, 175, 181, 185 
*Elset, elset=__Slip_Gap_msm_2_S5, internal, instance=Pile-1, generate 
  12,  182,   10 
*Elset, elset=__Slip_Gap_msm_2_S4, internal, instance=Pile-1 
  14,  17,  18,  24,  27,  28,  34,  37,  38,  44,  47,  48,  54,  57,  58,  64 
  67,  68,  74,  77,  78,  84,  87,  88,  94,  97,  98, 104, 107, 108, 114, 117 
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 118, 124, 127, 128, 134, 137, 138, 144, 147, 148, 154, 157, 158, 164, 167, 168 
 174, 177, 178, 184, 187, 188 
*Elset, elset=__Slip_Gap_msm_2_S6, internal, instance=Pile-1, generate 
  16,  186,   10 
*Surface, type=ELEMENT, name=_Slip_Gap_msm_2, internal 
__Slip_Gap_msm_2_S3, S3 
__Slip_Gap_msm_2_S5, S5 
__Slip_Gap_msm_2_S4, S4 
__Slip_Gap_msm_2_S6, S6 
*Elset, elset=__Slip_Gap_ssm_1_S5, internal, instance=Sand-1 
     2,    10,    59,    60,    85,   448,   456,   505,   506,   531,   894,   902,   951,   952,   977,  1340 
  1348,  1397,  1398,  1423,  1786,  1794,  1843,  1844,  1869,  2232,  2240,  2289,  2290,  2315,  2678,  2686 
  --------- truncated ----------------------- 
*Elset, elset=__Slip_Gap_ssm_1_S6, internal, instance=Sand-1 
     3,     7,    11,   449,   453,   457,   895,   899,   903,  1341,  1345,  1349,  1787,  1791,  1795,  2233 
  2237,  2241,  2679,  2683,  2687,  3125,  3129,  3133,  3571,  3575,  3579,  4017,  4021,  4025,  4463,  4467 
--------- truncated ----------------------- 
*Elset, elset=__Slip_Gap_ssm_1_S3, internal, instance=Sand-1, generate 
     4,  16506,    446 
*Elset, elset=__Slip_Gap_ssm_1_S4, internal, instance=Sand-1, generate 
    88,  16590,    446 
*Surface, type=ELEMENT, name=_Slip_Gap_ssm_1, internal 
__Slip_Gap_ssm_1_S5, S5 
__Slip_Gap_ssm_1_S6, S6 
__Slip_Gap_ssm_1_S4, S4 
__Slip_Gap_ssm_1_S3, S3 
*End Assembly 
**  
** MATERIALS 
**  
*Material, name=Pile 
*Density 
2600., 
*Elastic 
 6.86e+10, 0.347 
*Material, name=RBC 
*Elastic 
 5e+11, 0.3 
*Material, name=Soil 
*Density 
1442.77, 
*Depvar 
     13, 
*User Material, constants=16, unsymm 
30.,      0., 2.6e+09,    0.35,    0.61,    0.98,     1.1,    0.18 
     1.1,      0.,      0.,      0.,      0.,      0.,      0.,     0.80 
**  
** INTERACTION PROPERTIES 
**  
*Surface Interaction, name=Sip_Gap 
1., 
*Friction, slip tolerance=0.005 
 0.47, 
*Surface Behavior, pressure-overclosure=HARD 
*Surface Smoothing, name=Slip_Gap 
, _Slip_Gap_msm_1, CIRCUMFERENTIAL, 0.3302, -0.07, 0., 0.3302, -0.07, 1. 
, _Slip_Gap_msm_2, CIRCUMFERENTIAL, 0.3302, -0.07, 0., 0.3302, -0.07, 1. 
_Slip_Gap_ssm_1, , CIRCUMFERENTIAL, 0.3302, -0.07, 1.45, 0.3302, -0.07, 0.45 
**  
** BOUNDARY CONDITIONS 
**  
** Name: Back Type: Displacement/Rotation 
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*Boundary 
Back, 2, 2 
** Name: Bottom Type: Displacement/Rotation 
*Boundary 
Bottom, 1, 1 
Bottom, 2, 2 
Bottom, 3, 3 
Bottom, 4, 4 
Bottom, 5, 5 
Bottom, 6, 6 
** Name: Hole Type: Displacement/Rotation 
*Boundary 
Hole, 1, 1 
Hole, 2, 2 
** Name: Sides Type: Displacement/Rotation 
*Boundary 
Sides, 1, 1 
** Name: Symm Type: Symmetry/Antisymmetry/Encastre 
*Boundary 
Symm, YSYMM 
**  
** PREDEFINED FIELDS 
**  
** Name: SW   Type: Geostatic stress 
*Initial Conditions, type=STRESS, GEOSTATIC 
Sand-1.Soil, -20920.2, 0., 0., 1.45, 0.5, 0.5 
*Initial Conditions, type=Solution, user 
**  
** INTERACTIONS 
**  
** Interaction: Slip_Gap 
*Contact Pair, interaction=Sip_Gap, type=SURFACE TO SURFACE, adjust=0.0, geometric correction=Slip_Gap 
Slave_Soil, Master_Pile 
** ---------------------------------------------------------------- 
**  
** STEP: SW 
**  
*Step, name=SW, nlgeom=YES 
SW 
*Geostatic 
**  
** LOADS 
**  
** Name: SW_GRAVITY   Type: Gravity 
*Dload 
Sand-1.Soil, GRAV, 9.8, 0., 0., -1. 
**  
** INTERACTIONS 
**  
** Interaction: Slip_Gap 
*Model Change, type=CONTACT PAIR, remove 
Slave_Soil, Master_Pile 
** Contact Controls for Interaction: Slip_Gap 
*Contact Controls, master=Master_Pile, slave=Slave_Soil, reset 
*Contact Controls, master=Master_Pile, slave=Slave_Soil, stabilize=1. 
**  
** OUTPUT REQUESTS 
**  
*Restart, write, frequency=0 
**  
** FIELD OUTPUT: F-Output-1 
**  
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*Output, field, variable=PRESELECT 
**  
** HISTORY OUTPUT: H-Output-1 
**  
*Output, history, variable=PRESELECT 
*End Step 
** ---------------------------------------------------------------- 
**  
** STEP: Monotonic 
**  
*Step, name=Monotonic, nlgeom=YES, inc=1000 
*Static 
0.001, 6000., 1e-20, 1000. 
**  
** BOUNDARY CONDITIONS 
**  
** Name: Back Type: Displacement/Rotation 
*Boundary, op=NEW 
Back, 2, 2 
** Name: Bottom Type: Displacement/Rotation 
*Boundary, op=NEW 
Bottom, 1, 1 
Bottom, 2, 2 
Bottom, 3, 3 
Bottom, 4, 4 
Bottom, 5, 5 
Bottom, 6, 6 
** Name: Hole Type: Displacement/Rotation 
*Boundary, op=NEW 
** Name: PH Type: Displacement/Rotation 
*Boundary, op=NEW 
RP, 1, 1, 0.1 
RP, 2, 2 
RP, 4, 4 
RP, 5, 5 
RP, 6, 6 
** Name: Sides Type: Displacement/Rotation 
*Boundary, op=NEW 
Sides, 1, 1 
** Name: Symm Type: Symmetry/Antisymmetry/Encastre 
*Boundary, op=NEW 
Symm, YSYMM 
**  
** INTERACTIONS 
**  
** Interaction: Slip_Gap 
*Model Change, type=CONTACT PAIR, add 
Slave_Soil, Master_Pile 
**  
*controls, parameters=time incrementation 
12, 15, 9, 20, 10, 4, 12, 20, 5, 3, 50 
** OUTPUT REQUESTS 
**  
*Restart, write, frequency=0 
**  
** FIELD OUTPUT: F-Output-1 
**  
*Output, field 
**  
*Output, history 
 
*End Step 
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APPENDIX D.  
Element Test Abaqus for the hypoplastic model 
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*Heading 
** Job name: hpTS Model name: hpTS 
** Generated by: Abaqus/CAE 6.13-1 
*Preprint, echo=NO, model=NO, history=NO, contact=NO 
** 
** PARTS 
** 
*Part, name=Box 
*Node 
      1, -0.100000001, -0.119999997,          0.5 
      2, -0.100000001,  0.379999995,          0.5 
      3, -0.100000001, -0.119999997,           0. 
      4, -0.100000001,  0.379999995,           0. 
      5,  0.400000006, -0.119999997,          0.5 
      6,  0.400000006,  0.379999995,          0.5 
      7,  0.400000006, -0.119999997,           0. 
      8,  0.400000006,  0.379999995,           0. 
*Element, type=C3D8 
1, 3, 4, 2, 1, 7, 8, 6, 5 
*Nset, nset=Box, generate 
 1,  8,  1 
*Elset, elset=Box 
 1, 
** Section: S_Soil 
*Solid Section, elset=Box, material=TShypo 
, 
*End Part 
**   
** 
** ASSEMBLY 
** 
*Assembly, name=Assembly 
**   
*Instance, name=Box-1, part=Box 
*End Instance 
**   
*Nset, nset=Bottom, instance=Box-1 
 3, 4, 7, 8 
*Elset, elset=Bottom, instance=Box-1 
 1, 
*Nset, nset=Left, instance=Box-1, generate 
 1,  4,  1 
*Elset, elset=Left, instance=Box-1 
 1, 
*Nset, nset=PorePressure, instance=Box-1 
 1, 2, 5, 6 
*Nset, nset=Rear, instance=Box-1, generate 
 2,  8,  2 
*Elset, elset=Rear, instance=Box-1 
 1, 
*Nset, nset=TopDisplacement, instance=Box-1 
 1, 2, 5, 6 
*Elset, elset=TopDisplacement, instance=Box-1 
 1, 
*Elset, elset=_Front_S6, internal, instance=Box-1 
 1, 
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*Surface, type=ELEMENT, name=Front 
_Front_S6, S6 
*Elset, elset=_Right_S2, internal, instance=Box-1 
 1, 
*Surface, type=ELEMENT, name=Right 
_Right_S2, S2 
*Elset, elset=_Top_S5, internal, instance=Box-1 
 1, 
*Surface, type=ELEMENT, name=Top 
_Top_S5, S5 
*End Assembly 
**  
** MATERIALS 
**  
*Material, name=TShypo 
*Depvar 
     13, 
*User Material, constants=15 
30., 0., 2.6e+09,    0.35,    0.61,    0.98,     1.1,    0.18 
     1.1,     0.0,      0.,      0.,      0.,   0., 0.,   0.80 
**  
** BOUNDARY CONDITIONS 
**  
** Name: Bottom Type: Displacement/Rotation 
*Boundary 
Bottom, 3, 3 
** Name: Left Type: Displacement/Rotation 
*Boundary 
Left, 1, 1 
** Name: Rear Type: Displacement/Rotation 
*Boundary 
Rear, 2, 2 
**  
** PREDEFINED FIELDS 
**  
*INITIAL CONDITIONS, TYPE=SOLUTION, USER 
** Name: Predefined Field-2   Type: Geostatic stress 
*Initial Conditions, type=STRESS, GEOSTATIC 
Box-1.Box, -10612., 0., -10612., 0.5, 1., 1. 
** ---------------------------------------------------------------- 
**  
** STEP: Geostatic 
**  
*Step, name=Geostatic, nlgeom=NO 
*Geostatic 
**  
** LOADS 
**  
** Name: Front   Type: Pressure 
*Dsload 
Front, P, 10612. 
** Name: LoadSurface   Type: Pressure 
*Dsload 
Top, P, 10612. 
** Name: Right   Type: Pressure 
*Dsload 
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Right, P, 10612. 
**  
** OUTPUT REQUESTS 
**  
*Restart, write, frequency=0 
**  
** FIELD OUTPUT: F-Output-1 
**  
*Output, field, variable=PRESELECT 
**  
** HISTORY OUTPUT: H-Output-1 
**  
*Output, history, variable=PRESELECT 
*End Step 
** ---------------------------------------------------------------- 
**  
** STEP: Loading 
**  
*Step, name=Loading, nlgeom=NO, inc=100000 
*Static, direct 
1, 1500.,  
**  
** BOUNDARY CONDITIONS 
**  
** Name: TopDisplacement Type: Displacement/Rotation 
*Boundary 
TopDisplacement, 3, 3, -0.1 
**  
** OUTPUT REQUESTS 
**  
*Restart, write, frequency=0 
**  
** FIELD OUTPUT: F-Output-1 
**  
*Output, field, variable=PRESELECT 
**  
** HISTORY OUTPUT: H-Output-1 
**  
*Output, history, variable=PRESELECT 
*End Step 
 

 

 

 

 

 

 


