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ABSTRACT 

A new type of steel connection, which is named steel cone-to-cylinder socket 

connection, is developed in the Steel Structure Laboratory of the University of Tokyo to 

reduce the seismic damage occurred at the pile head of building structures. Strength of the 

connections under axial compression has been studied since 2005. Four potential failure 

modes: cylinder edge failure, ring tension failure, cone bending failure, and cone buckling 

failure were summarized. Several models were created and formulae for predicting the 

yield strength, full plastic strength, and collapse strength of connections were proposed. 

However, several issues have not been clarified up to now. Though the simple law of 

friction proposed by Amonton and Coulomb can be employed to simulate the friction 

contact between cone and cylinder, how to set the value of the friction coefficient for 

practical design has not been made clear. The distributions of stress and deformation in 

the connections have not been investigated. The plastic regions in cylindrical wall, 

tapered ring, conical wall and lid plate at yield, full plastic and ultimate loads respectively, 

have not been analyzed. The failure modes need to be reinvestigated in detail, especially 

for the welded connections with cone buckling failure, because the predicted strength is 

much greater than the experimental results. Furthermore, the influence of interaction of 

stress resultants on the failure mechanisms has not been studied. 

This thesis is aimed to clarify the failure mechanisms and proposed more precise and 

easy-to-use formulae for predicting the strength of all the connections. This thesis first 

estimates effective Finite Element (FE) models by considering the influence of friction 

coefficient on collapse strength and then clarifies the stress transformation mechanisms. 

Secondly, the failure mechanisms are judged based on the FE Analysis results and the 

previous experimental results. Thirdly, the interaction of stress resultants is investigated, 

and then the complicated equation of Mises’ yield condition for revolutional shells under 

axisymmetric loading is simplified into an explicit and easy-to-use form and validated by 
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the effective FEA results. Finally, plastic collapse mechanisms are proposed and limit 

analysis is undertaken by considering the interaction of axial (meridional) stress resultants 

with hoop stress resultant and axial (meridional) bending moment. More precise and 

easy-to-use formulae for strength of connections are proposed and validated by 

comparing them with the previous ones and the relevant experimental and FEA results. 
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NOMENCLATURE 

 D  External diameter 

 E  Young’s modulus 

 L  Length of segment in plastic collapse mechanism 

 M  Bending moment per unit length in hoop direction  

 N  Normal stress resultant per unit length in hoop direction  

 P  Strength under compressive loading 

 Q  Shear stress resultant per unit length in hoop direction 

 Δ  Axial deformation 

  
 d   Center-to-center diameter 

 e  True strain 

 s  True stress 

 t  Thickness of wall 

z      Radially outward distance from the middle surface of walls 

 w  Deformation in radial or normal direction 

 ϕ  Rotation angle of plastic hinges 
α      Semi-vertex angle of conical shell 

 β  Confinement factor of tapered ring on maximum strength 

γ     Influence factor when the influence of external work by axial force on  

plastic collapse mechanism is considered.  
 ε  Engineering strain  

 η  Eccentricity ratio of axial force 

 μ  Friction coefficient 

 ξ   Factor for predicting general yield strength based on full plastic strength 

 ρ  Factor for predicting collapse strength based on full plastic strength 

 σ  Engineering stress 

 τ  Shear stress 

 χ   Fundamental parameter for predicting full plastic strength   

ψ Factor when the influence of meridional stress resultant on plastic collapse 
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mechanism is considered 

 
 
Subscripts 
 C  Conical shell 

 P  Cylindrical shell 

 R  Ring 

   max    At ultimate load for models with perfectly plastic material  

 p  Plastic 

 r   Radial direction 

 s  Meridional direction of conical shell  

 t  Normal direction of conical shell 

 u  Ultimate  

 x  Axial direction 

 y  Yield 

 θ  Hoop (Circumferential) direction 

 

 
Sign convention 
 Tension:  +ve 

 Compression:  -ve 

 (But strength under compressive loading: +ve) 

 Outward radial deflection:  +ve 

 Inward radial deflection:  -ve 

 Shear stress:  clock rotation  +ve 

    Bending moment: external surface of shell wall is under tension: +ve 

 
 (Terms not shown here are defined in the text and figure) 
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CHAPTER 1 INTRODUCTION 

1.1 Background  

1.1.1 Advantage of Steel Cone-to-Cylinder Socket Connections 

A new type of steel connection, which is named steel cone-to-cylinder socket 

connection, is developed by Kuwamura et al. (2005a) in order to facilitate connecting a 

circular hollow section member to another cylindrical or different shaped section member. 

As shown in Fig. 1-1, this connection consists of four parts: a conical shell, a cylindrical 

shell, a tapered ring and a lid plate. In general, the lid plate is attached in advance to the 

foot of the conical shell in order to serve as a splice to fix the connected member. Then, 

the apex part of the conical shell is inserted into the open end of the cylindrical shell. The 

tapered ring is used to strengthen the cylinder edge, if necessary.  

 

 

(a) Components                       (b) Connection 
Fig. 1-1 Components of steel cone-to-cylinder socket connections 

 

 

(a) Rigid pile head                          (b) Proposed new pile head 
Fig. 1-2 Major advantage of steel cone-to-cylinder socket connections 
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Motivation for this connection comes from the seismic damages at pile heads of 

building structure, which were largely observed in pile foundations in 1995 Kobe 

Earthquake (Kuwamura and Ito 2009). Past studies (Rutenberg A. et al. 1982; Hayashi Y. 

et al. 1999; Iwashita K. et al. 2003) have pointed out that the effects of rocking vibration 

accompanied with uplift motion may reduce the seismic damage to buildings subjected to 

strong earthquake ground motions. Some kinds of pile head with uplifting and rocking 

vibration concept have been employed in building structure successfully (Nishimura et al. 

2004; Ishizaki et al. 2006). As described in Fig. 1-2(a), the ordinary cylindrical pile head 

is usually rigid and fixed to foundation beam. It is easy to have a damage or even failure 

due to the great bending moment induced by horizontal earthquake load. The proposed 

connection shown in Fig. 1-2(b) can protect the pile head from damage by reducing the 

bending moment substantially, because it can uplift and rock during earthquake. This is 

the major advantage of the connections. Another benefit is that field construction can be 

substantially simplified. After conical wall collapses, it can be replaced easily and 

quickly.  

1.1.2 Research Subject of Steel Cone-to-Cylinder Socket Connections 

This socket connection can be not only applied to pile head, but also to some other 

cases: such as column base, pin-support of truss, and pipeline reducer, as listed in Fig. 1-3. 

In addition to the applications by considering uplifting and rocking vibration concept, it 

should be noted that when it is employed in pipeline structure, welding between cone and 

cylinder is necessary, since the pipeline is usually filled with dangerous chemical, such as 

oil or gas. Moreover, welded cone-to-cylinder connections, as the most common form of 

intersections in engineering applications within marine, mechanical and architectural 

industries, are often found in steel silos and tanks with a conical roof, elevated conical 

water tanks with a cylindrical shell support and pressure vessels with a conical end 

closure (Teng 2000).  
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(a) Pile head   (b) Column base          (c) Truss support        (d) Pipeline reducer 
Fig. 1-3 Applications of steel cone-to-cylinder socket connection 

 

 

 (a) Metal touch connection            (b) Welded connection 
Fig. 1-4 Two main kinds of the socket connection 

 

Thus, the socket connections with welding between cone and cylinder are employed 

from a practical point of view. Furthermore, it is also necessary for comparative research 

on metal touch socket connections. Finally, steel cone-to-cylinder socket connections are 

classified to be two main kinds: one is “metal touch connection”, in which cylinder edge 

will be strengthened by tapered ring if necessary; and the other is “welded connection”, as 

shown in Fig. 1-4.  

In order to make the steel cone-to-cylinder socket connections to be practical, 

research work has been conducted since 2005, by both experimental study and numerical 

analysis. The main research subject is to make clear the failure mechanism of the 

connections under compressive loading and then to predict the strength effectively.  

1.2 Previous Research and Unclarified Issues  

Kuwamura et al. (2005a) revealed that the connection is strong and stiff enough to be 

applied to the construction practice of low to middle-rise buildings, based on the results 

of Feasibility Assessment tests. The potential ultimate modes of this connection were 
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(+Ring)
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classified into six cases: cylinder edge failure, ring tension failure, cone edge failure, cone 

bending failure, cone buckling failure and lid-cone bending failure. The strength of 

connections under axially uniform compression were mainly studied with bending theory 

of shells. After the pilot tests, a series of tests with more than 100 specimens were 

conducted by Tomioka et al. (2005). The strength obtained from experiments was 

compared with the predicted values by the proposed formulae. The analysis results 

indicated that 

① For connections with cylinder edge failure, the influence of bending of cylindrical 

wall needs to be considered, especially for predicting collapse strength; 

② For connections with ring tension failure, the reinforcement effect of tapered ring on 

the yield strength of connections would reach the highest limit, even though the 

thickness of ring in vertical direction increases. It seems that not the whole section of 

ring plays a role on strengthening the connections; 

③ For connections with cone bending failure, large friction coefficient is favorable, 

because the expansion of the cone due to Poisson’s ratio makes the cone sit on the    

edge of the cylinder; 

④ For connections with cone buckling failure, the predicted plastic buckling strength is 

greater than the collapse strength of experimental results; 

⑤ For connections with lid-cone bending failure, the load carrying capacity of conical 

shell controls the strength of connections; 

⑥ In future, the determination of failure mode and friction coefficient is necessary to be 

reinvestigated (Tomioka 2006).  

  After then, Kuwamura and Ito (2007) investigated the frictional resistance of a 

rotating steel cone in contact with the inner edge of a steel cylinder theoretically on the 

basis of the classical law of friction proposed by Amonton and Coulomb, and suggested 

that the simple theory works well for the prediction of the frictional rotation resistance of 

the socket connection. Ito et al. (2008) reinvestigated the cylinder edge failure of the 

connections by means of FEM and theoretical analysis. It indicated that the previously 
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proposed model for the yield load is found satisfactory, while the models for the full 

plastic and ultimate loads are modified to Eason-Shield model (1955) which provides 

better prediction because the influence of bending in cylindrical wall is considered. Ehara 

et al. (2007) investigated the influence of initial imperfections of the cylinder and the 

friction coefficient between cone and cylinder on the stiffness and strength of connections 

with cylinder edge failure, and suggested that friction coefficient controls the strength and 

initial imperfection controls the stiffness. Fujimoto and Kuwamura (2009) reinvestigated 

the yield strength of connections with ring tension failure by considering the rotation of 

ring and found that the predicted value becomes better than the previous formula for some 

of the models, while not for other models. Fujimoto and Kuwamua (2010) reinvestigated 

the yield and ultimate strength of connections with ring tension failure by considering the 

contact effect of the bottom edge of ring with cylindrical wall and found that the 

prediction was closer to the experimental results than before. Up to now, the connections 

with cone bending failure, cone buckling failure and lid-cone bending failure has not been 

reinvestigated.    

The previous research stated above is summarized and the unclarified issues are 

listed as follow: 

① Though the simple law of friction proposed by Amonton and Coulomb can be 

employed to simulate the friction contact between cone and cylinder, how to 

determine the values of friction coefficient has not been made clear; 

② The distributions of stress and deformation in the connections with ring tension failure, 

cone bending failure, cone buckling failure and lid-cone bending failure have not been 

investigated. The plastic regions in cylindrical wall, tapered ring, conical wall and lid 

plate at yield, full plastic and ultimate loads respectively, have not been analyzed; 

③ The influence of axial stress resultant on failure mechanisms has not been studied; 

④ The failure modes need to be reanalyzed in detail, especially for connections with 

cone buckling failure. 
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1.3 Objective and Scope of this Thesis 

This study focuses on the prediction of the strength of steel cone-to-cylinder socket 

connections under axial compression. The objectives are as follow: 

① to find a way to determine the friction coefficient between cone and cylinder for metal 

touch connections; 

② to clarify the failure mechanisms of all the connections; 

③ to investigate the interaction among stresses in failure mechanisms; 

④ to propose more precise and easy-to-use formulae for predicting the strength of 

connections. 

It should be mentioned that prediction of the stiffness of connections under axial 

compression is outside the scope of this study. In addition, prediction of the strength of 

connections under local or eccentric load is also not undertaken. Thus, the lid-cone 

bending failure will be not analyzed in the following chapters.  

1.4 Outline of this Thesis 

According to the study plan, this thesis includes the following seven chapters. The 

configuration of this thesis is shown in Fig. 1-5. 

Chapter 1 Introduction 

The concept and advantage of steel cone-to-cylinder socket connections are 

introduced. A comprehensive review of the study related with the steel cone-to-cylinder 

connections are carried out. The unclarified issues are addressed, and the purpose and 

scope of the dissertation are presented. 

Chapter 2 Discussion on Failure Modes Based on Previous Experimental 

Results 

The whole schedule of the previous experiments is addressed. The strength and 

ultimate behavior of specimens are analyzed. The failure modes are reinvestigated based  
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Fig. 1-5 Configuration of this thesis 

on the experimental results. 

Chapter 3 Strength of Metal Touch Connections with Cylinder Edge Failure 

A comprehensive review of the preceding study on cylinder edge failure is addressed. 

Effective FEA (Finite Element Analysis) is then employed to analyze the friction 

coefficient between cone and cylinder and investigate the distributions of stresses and 

deformations of cylinder edge. Based on the FEA results and the preceding experimental 

results, the failure mode is determined by the proposed criteria. The limitations of the 

previous mechanical models are presented, and then a new mechanical model is created. 

Limit analysis is undertaken and the formula for predicting the full plastic strength of 

models is proposed. Based on the formula for full plastic strength, the prediction of 

ultimate strength and general yield strength is undertaken. 
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Chapter 4 Strength of Metal Touch Connections with Tapered Ring Failure 

A comprehensive review of the preceding study on the reinforcement effect of rings 

on strength of cylindrical shells is addressed. FEA is employed to analyze the friction 

coefficients both between cone and cylinder and between cylinder and ring. And then, the 

distributions of stress and deformation of tapered ring are investigated. The failure mode 

is judged by the proposed criterion. The limitations of the previous mechanical model are 

presented, and then a new mechanical model is created. Limit analysis is undertaken and 

formula for predicting the full plastic strength of models is proposed. Based on the 

formula for full plastic strength, the prediction of ultimate strength and general yield 

strength is undertaken. 

Chapter 5 Strength of Metal Touch Connections with Conical Wall Failure 

A comprehensive review of conical wall failure under external pressure or along 

with axial compression is addressed. FEA is employed to analyze the friction coefficient 

between cone and cylinder. And then, the distributions of stress and deformation of 

conical wall are investigated. The failure mode is judged by the proposed criteria. The 

limitations of the previous mechanical model are presented, and then a new mechanical 

model is created. Limit analysis is undertaken and the formula for predicting the full 

plastic strength of models is proposed. Based on the formula for full plastic strength, the 

prediction of ultimate strength and general yield strength is undertaken. 

Chapter 6 Strength of Welded Connections with Joint Region Failure 

A comprehensive review of prediction of strength of welded cone-to-cylinder 

connections is addressed. FEA is employed to investigate the distributions of stress and 

deformation of conical and cylindrical walls. The failure mode is judged by the proposed 

criteria for plastic collapse. A new mechanical model is created and then limit analysis is 

undertaken. The formula for predicting the full plastic strength of models is proposed. 

Based on the formula for full plastic strength, the prediction of ultimate strength and 

general yield strength is undertaken. 

Chapter 7 Conclusions and Future Research 
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CHAPTER 2 DISCUSSION ON FAILURE 
MODES BASED ON PREVIOUS 
EXPERIMENTAL RESULTS 

2.1 Introduction 

The feasibility of cone-to-cylinder socket connections was verified according to the 

results of pilot tests under compressive loading (Kuwamura et al. 2005a). Further 

experimental study including 104 specimens was then performed by Tomioka et al. (2006) 

to investigate the failure mechanisms of connections. Figure 2-1 gives the set-up of 

experiments under axial compression. The compressive loading was transformed to the 

connections through a round loading plate. The axial deformation, which is the shortening 

of the entire length of a specimen in the loading direction was measured by four laser 

displacement sensors. For each specimen, the bottom edge of cylindrial shell was 

metal-touched with foundation and the top edge of conical shell was welded to lid plate. 

Four kinds of boundary condition between conical wall and cylinder edge were adopted, 

such as “Metal touch”, “Metal touch + weak ring”, “Metal touch + strong ring” and 

“Welding”, as shown in Fig. 2-2. For specimens with the boundary of “Metal touch”, the 

cylindrical shell was designed to be much thinner than conical one in order to make it fail 

first; For specimens with the boundary of “Metal touch + thin ring”, the cylindrical shell 

was also designed to be much weaker than conical shell. Tapered ring of various thickness 

was then employed to investigate its reinforcement effect on the strength of specimens; 

For specimens with the boundary of “Metal touch + thick ring”, ring was designed to be 

strong enouch to make sure conical shell fail first; For specimens with the boundary of 

“Welding”, failure near to the weld region between conical wall and cylinder edge was 

investigated. The necessary parameters of connections for realizing these objectives are 

shown in Fig. 2-3. Table 2-1 lists their actually measured data. It should be noted that as 
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this study focuses on the specimens under axial compression, the information of those 

under local or eccential compression are omitted. 

 

    

Fig. 2-1 Set-up of experiments under axial compression 
(A metal touch connection is taken for example) 

 

 

(a) “Metal touch”  (b) “Metal touch +thin ring” (c) “Metal touch +thick ring”    (d) “Welding” 
Fig. 2-2 Boundary conditions between cone and cylinder  

 

 

Fig. 2-3 Parameters of specimens 
Note: (  ) gives the types of mild steel material  
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Table 2-1 Actual measurements of all the specimens under axial compression 

 

Note: the specimens of Nos.16~25, 39~42, 54~63 and 75~84 under local or eccentric compression are not included in this table. 

Semi-
angle

Thick-
ness

Upper
height

External
diameter

Thick-
ness Width

Thick-
ness

Thick-
ness

Top
width

Bottom
width

α t C H CU D P t P B L t L t R t R T t R B

° mm mm mm mm mm mm mm mm mm

1 31.97 8.74 50.07 139.80 3.32 239.65 11.62 - - -
2 32.26 8.77 49.17 139.80 4.20 239.05 11.66 - - -
3 32.64 8.67 48.77 140.50 6.03 240.55 11.63 - - -
4 46.81 8.56 47.06 139.80 3.32 279.95 11.67 - - -
5 45.91 8.53 48.27 140.00 4.30 279.70 11.86 - - -
6 46.45 8.53 46.22 140.00 6.06 279.20 11.68 - - -
7 59.26 8.63 50.78 140.05 3.33 358.85 11.60 - - -
8 59.52 8.62 49.67 139.90 4.20 359.15 11.65 - - -
9 59.97 8.64 49.07 140.00 6.03 360.20 11.62 - - -
10 32.72 8.46 49.53 114.50 4.24 219.50 11.65 - - -
11 32.74 8.51 49.85 165.60 5.58 259.40 11.66 - - -
12 47.34 8.50 45.05 114.30 4.23 259.90 11.65 - - -
13 45.69 8.64 50.42 165.50 5.64 299.85 11.64 - - -
14 59.71 8.64 48.79 114.40 4.25 318.40 11.82 - - -
15 60.15 8.66 47.09 165.65 5.62 375.20 11.69 - - -
26 46.28 8.74 47.18 139.85 3.27 239.65 11.62 6.11 5.88 4.57
27 46.25 8.77 49.16 139.75 3.34 239.05 11.66 9.16 9.07 7.85
28 45.03 8.67 51.37 139.90 3.28 240.55 11.63 11.99 12.01 10.64
29 46.64 8.56 47.28 139.75 4.13 279.95 11.67 6.01 5.83 4.60
30 45.86 8.53 48.88 139.80 4.17 279.70 11.86 9.05 9.04 7.61
31 45.93 8.53 48.87 139.80 4.15 279.20 11.68 12.00 11.98 10.58
32 45.67 8.63 49.08 139.90 6.00 358.85 11.60 6.12 6.04 4.56
33 45.33 8.62 51.87 139.90 6.01 359.15 11.65 9.04 9.07 7.73
34 46.08 8.64 49.28 139.85 5.99 360.20 11.62 12.00 12.00 10.55
35 33.38 8.46 51.85 139.85 4.21 219.50 11.65 9.07 9.02 7.72
36 62.39 8.51 40.46 139.90 4.14 259.40 11.66 9.06 8.99 8.69
37 49.02 8.50 50.08 114.30 4.24 259.90 11.65 9.07 8.93 7.71
38 45.94 8.64 48.79 165.30 5.64 299.85 11.64 9.02 8.85 7.38
43 33.27 3.05 49.33 139.90 4.21 239.50 11.70 12.07 12.01 10.62
44 33.51 4.24 47.16 139.95 4.23 240.00 11.65 11.99 12.01 10.64
45 33.10 5.78 49.84 139.85 4.23 239.00 11.75 11.99 11.99 10.61
46 46.03 3.05 49.80 139.90 4.24 280.00 11.62 11.98 12.02 10.66
47 46.68 4.27 49.39 139.85 4.21 280.00 11.62 12.01 12.03 10.62
48 48.01 5.74 48.23 139.95 4.19 280.00 11.63 12.02 12.03 10.62
49 61.37 3.05 46.32 139.80 4.19 359.00 11.62 12.05 12.05 10.67
50 60.56 4.25 48.80 139.85 4.20 359.00 11.62 11.98 12.01 10.59
51 59.58 5.64 50.14 139.90 4.17 359.50 11.62 11.96 11.96 10.69
52 44.80 4.29 52.48 114.50 4.26 259.50 11.71 12.01 11.98 10.58
53 46.24 4.20 49.97 165.80 5.62 300.00 11.68 12.04 11.99 10.59
64 30.47 3.20 49.80 139.90 4.31 239.50 12.00 - - -
65 29.54 4.50 49.39 139.90 4.34 239.50 11.68 - - -
66 30.96 6.00 51.53 139.90 4.31 239.50 11.60 - - -
67 46.04 3.20 49.39 139.95 4.32 279.50 11.65 - - -
68 43.96 4.50 49.94 139.90 4.34 280.00 11.68 - - -
69 43.64 6.00 49.92 139.95 4.37 279.50 11.60 - - -
70 59.04 3.20 51.53 139.85 4.31 359.50 11.65 - - -
71 57.38 4.50 49.92 139.90 4.29 359.50 11.63 - - -
72 58.60 6.00 51.53 139.90 4.34 359.50 11.67 - - -
73 44.29 4.50 49.39 114.50 4.27 260.00 11.86 - - -
74 46.05 4.50 49.97 165.20 5.61 299.50 11.68 - - -

"Metal touch"

"Metal touch
+thin ring"

"Metal touch
+thick ring"

"Welding"

Boundary
condition

(cone-
cylinder)

Specimen
No.

Lid plateCone Cylinder Tapered  ring
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Fig. 2-4 Potential failure modes proposed by previous research 
 

The failure mode of specimens under axial compression was classified into four 

cases: cylinder edge failure, ring tension failure, and cone bending failure for metal touch 

connections and cone buckling failure for welded connections, as shown in Fig. 2-4. The 

strength of connections with all the modes was derived theoretically (Kuwamura et al. 

2005b, Fujimoto et al. 2010). It was found that for metal touch connections with cylinder 

edge failure, strength was predicted by assuming that cylinder edge expands with the 

same slope of conical wall; For metal touch connections with ring tension failure, the top 

edge of cylindrical wall was assuemd to be supported by the bottom end of ring; For 

metal touch connections with conical wall failure, strength was predicted by assuming 

that friction coefficient between conical wall and cylinder edge to be 1.0, which is a 

coefficient of static friction. Schey (1983) proposed that the maximum value of kinetic 

friction coefficient can never exceed 1/ 3  according to von Mises yield criterion even 

in a strain-hardening material. The assumption that the expansion of conical wall due to 

Poisson’s ratio makes the cone sit on the edge of cylinder needs to be discussed; Lastly, 

for welded connections with cone buckling failure, strength was predicted by assuming 

cylindrical wall is rigid. However, the predicted buckling strength of cone was greater 

than the experimental results. Therefore, these failure modes need to be reinvestigated. 

 

(a) Cyliner edge failure (b) Ring tension failure

(c) Cone bending failure (d) Cone buckling failure

Cylinder is
rigid

bottom end of
ring contacts

with cylindrical
wall

Conical wall
sits on the

top of
cylinder edge

Cylinder edge
expands in the

angle of α
α

α
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2.2 Material Properties of Connections 

To obtain the material properties of all the members in the connections, tensile 

coupons are manufactured and then coupon test are undertaken. The results of coupon 

tests are listed in Appendix A. It should be noted that for cylindrical shell and tapered ring, 

the previous coupon test results (Tomioka 2006) are referred; while for conical shell and 

lid plate, the new coupon test results are obtained from the connections which still 

remain.  

2.2.1 Cylindrical Shell 

The tensile coupons were cut from cold-formed cylindrical shell used in the 

connection, as shown in Fig. 2-5. For each kind of cylindrical shell, three coupons were 

manufactured to obtain the average material properties. The effective results are shown in 

Fig. 2-6. It can be found that not all the results of coupons are employed. The yield 

plateau does not occur for all the coupons because of the effect of cold forming. The type 

of average curve is determined by the better result of coupons. The yield stress, tensile 

tress and relevant strain are listed in Table 2-2. It can be found that the 

diameter-to-thickness ratio has obvious effect on the yield stress of cold-formed 

cylindrical shells.   

 

 

Fig. 2-5 Position of coupons for cylindrical shell 
 

Weld
seam

Coupon

(STK400)
Cylindrical shell
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(a) DP114.3mm☓tP4.5mm            (b) DP139.8mm☓tP3.5mm 

   

(c) DP139.8mm☓tP4.5mm            (d) DP139.8mm☓tP6.0mm 

 

 (d) DP165.2mm☓tP6.0mm 
Fig. 2-6 Engineering stress versus engineering strain curves of effective coupons of 

cylindrical shell  
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Table 2-2 Measured material properties of steel STK400 used in cylindrical shell 

 

Note:  σy: yield stress, σu: tensile stress, εy: engineering strain at yield stress and εu: engineering strain at 

ultimate stress.  

2.2.2 Conical Shell 

The tensile coupons are cut from cold-formed conical shell used in the connection, 

as shown in Fig. 2-7. For each kind of conical shell, three coupons are manufactured to 

obtain the average material properties. If the results of former two coupons are well, the 

last one will be not undertaken. The effective results are shown in Fig. 2-8. The yield 

plateau does not occur for all the coupons because of the effect of cold forming. The 

material properties are listed in Table 2-3. It should be noted that the material properties 

of conical shells with thicknesses of 3.2 and 6.0 mm are not measured. They are assumed 

to be the same as those of conical shell with thickness of 4.5mm. 

 

 

Size (D P×t P) t P σyP σuP

mm×mm mm MPa MPa
14-45-1 4.22 373 413 0.0036 0.0648
14-45-2 4.23 365 413 0.0033 0.0765
average 4.23 369 413 0.0034 0.0707
39-35-3 3.30 331 396 0.0037 0.1978
average 3.30 331 396 0.0037 0.1978
39-45-1 4.31 339 403 0.0033 0.1230
39-45-2 4.25 347 409 0.0032 0.1602
average 4.28 343 406 0.0033 0.1416
 39-6-1 5.61 369 425 0.0040 0.1760
 39-6-2 5.55 353 416 0.0039 0.1632

average 5.58 361 421 0.0039 0.1696
 65-6-1 5.65 348 417 0.0037 0.1299
 65-6-2 5.67 350 410 0.0037 0.1272
 65-6-3 5.65 331 399 0.0036 0.1719

average 5.66 343 409 0.0036 0.1430

139.8×6.0

165.2×6.0

ε yP ε uP
Steel
grade No.

STK400

114.3×4.5

139.8×3.5

139.8×4.5
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Fig. 2-7 Position of coupons for conical shell 
 

   

 (a) tC =4.5mm                       (B) tC =9.0mm 
Fig. 2-8 Engineering stress versus engineering strain curves of effective coupons of 

conical shell 
 

Table 2-3 Measured material properties of steel SS400 used in conical shell 

 

Note: The material properties of conical shells with thicknesses of 3.2 and 6.0 mm were not measured. 

They are assumed to be the same as those of conical shell with thickness of 4.5mm.  

2.2.3 Tapered Ring 

The tensile coupons were cut from a plate as shown in Fig. 2-9. The tapered rings are 

manufactured from the plate. By considering the fabrication process, the thicknesses of 
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Size (t C ) t C σyC σuC

mm mm MPa MPa
40-45-1 4.20 296 437 0.0034 0.2156
40-45-3 4.22 302 439 0.0033 0.1891
average 4.20 299 438 0.0034 0.2024
 40-9-1 8.77 312 414 0.0037 0.2135
 40-9-3 8.27 322 417 0.0035 0.2227

average 8.52 317 416 0.0036 0.2181

Steel
grade No. ε yC ε uC

SS400

4.5

9.0
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plate were set to be 9mm, 12mm and 16mm, which are all a little greater than those of 

tapered ring. For each kind of ring, three coupons were manufactured to obtain the 

average material properties. The results are shown in Fig. 2-10. Not all the results of 

coupons were employed. The yield plateau occurs for all the coupons. The type of 

average curve is determined by the better result of coupons. The material properties are 

listed in Table 2-4. It can be found that the thickness of coupon has little effect on yield 

stress.  

 

Fig. 2-9 Position of coupon for tapered ring 
 

   

(a) tR =6mm                          (b) tR =9mm 

Coupon

(SM490)
Plate

0 0.05 0.1 0.15 0.2
0

100

200

300

400

500

600

(Average)

En
gi

ne
er

in
g 

st
re

ss
σ 

(M
Pa

)

Engineering strain ε

49-9-3

0 0.05 0.1 0.15 0.2
0

100

200

300

400

500

600

49-12-3

49-12-2

Average

En
gi

ne
er

in
g 

st
re

ss
σ 

(M
Pa

)

Engineering strain ε



 

18 

 

 

 (c) tR =12mm 
Fig. 2-10 Engineering stress versus engineering strain curves of effective coupons of 

tapered ring 
 

Table 2-4 Measured material properties steel SM490 used in tapered ring 

 

Note: Tapered rings with thicknesses of 6, 9, and 12mm were produced from the plates with thicknesses 

of 9,12, and 16mm respectively.  

2.2.4 Lid Plate 

Three coupons parallel to x direction and three coupons parallel to y direction are cut 

from the plate used in the connection, as shown in Fig. 2-11. For the coupons in each 

direction, if the results of former two coupons are well, the last one will be not undertaken. 

The effective results are shown in Fig. 2-12. The yield plateau occurs for all the coupons. 

The material properties are listed in Table 2-5. The type of steel of lid plate is the same as 

that of conical shell. Comparing with the yield stress of conical shell with the thickness of 

9mm shown in Table 2-3, the yield stress of lid plate is much smaller. It indicates again 
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Size (t R ) t coupon σyR σuR

mm mm MPa MPa
 49-9-3 8.74 319 485 0.0017 0.1661

average 8.74 319 485 0.0017 0.1661
 49-12-2 11.81 321 497 0.0036 0.1355
 49-12-3 11.81 321 490 0.0022 0.1557
average 11.81 321 494 0.0029 0.1456
 49-16-1 15.66 321 502 0.0019 0.1386
 49-16-2 15.70 324 501 0.0024 0.1571
average 15.68 322 502 0.0022 0.1478

12

SM490

Steel
grade

No. ε yR ε uR

6

9
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that the effect of cold forming is great for the yield stress of shell structures.  

 

 

Fig. 2-11 Position of coupon for lid plate 
 

 

Fig. 2-12 Engineering stress versus engineering strain curves of effective coupons of lid 
plate (tL=12mmm) 

 
 Table 2-5 Measured material properties steel SS400 used in lid plate 

 

2.3 Diameter-to-Thickness Ratios of Cylindrical and Conical 

Shells 

In this study, conical and cylindrical shells are designed to fail in plastic condition. It 
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40-12-X-1 11.50 235 374 0.0020 0.2176
40-12-X-3 11.60 235 373 0.0022 0.2400
40-12-Y-1 11.50 221 388 0.0022 0.2428
40-12-Y-3 11.40 227 386 0.0020 0.2474
average 11.50 230 380 0.0021 0.2370
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is necessary to control their diameter-to-thickness ratios smaller than the limit values of 

elastic buckling. The classical buckling stress of a smooth-walled perfect cylinder was 

proposed by Donnell (1933), as shown in Eq. (2-1).  

 
0

2

2
3(1 )

P
crP

P

E t
d

σ
ν

=
−

 (2-1) 

where, elastic modulus E0=205,000MPa, ν=0.3. 

Then, the elastic buckling stress of a long circular cone was studied by Seide (1956). 

For the socket connections, assuming the buckle of conical shell is close to the top edge 

of cylindrical shell, the equation for elastic buckling stress of cone is expressed as  

 
0

2

2cos cos
3(1 )

C
crC crP

P

E t
d

σ σ α α
ν

= =
−

 (2-2) 

The design standard for steel structures in Japan (2002) suggests that the limit 

diameter-to-thickness ratio of cylindrical shell for practical design work is 

 
limit_

23500P

P yPP

d
t σ

 
= 

 
 (2-3) 

Based on Eqs. (2-2) and (2-3), the limit diameter-to-thickness ratio of conical shell 

for practical design work can be expressed as  

 
limit_

23500 cosP

C yCC

d
t

α
σ

 
= 

 
 (2-4) 

The diameter-to-thickness ratios of cylindrical and conical shells in the connections 

are compared with the limit values shown in Eqs. (2-3) and (2-4), respectively. The results 

are listed in Table 2-6. It can be found that most of the ratios are much smaller than 1.0, 

except for specimen Nos. 49 and 70. As these limit diameter-to-thickness ratios are 

smaller than the theoretical values, all the shells in this study can be thought to fail in 

plastic condition. 
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Table 2-6 Comparison of diameter-to-thickness ratios of shells with the limit values  

 

Cylinder Cone Cylinder Cone Cyliner Cone
Semi-
angle

Thick-
ness

Yield
stress

External
diameter

Thick-
ness

Yield
stress

α t C σ yC D P t P σ yP

° mm mm mm mm mm d P /t P d P /t C Eq. (2-3) Eq. (2-4)

1 31.97 8.74 317 139.80 3.32 331 41.11 14.39 71.00 62.89 0.58 0.23
2 32.26 8.77 317 139.80 4.20 343 32.29 14.14 68.51 62.69 0.47 0.23
3 32.64 8.67 317 140.50 6.03 361 22.30 13.97 65.10 62.42 0.34 0.22
4 46.81 8.56 317 139.80 3.32 331 41.11 14.87 71.00 50.73 0.58 0.29
5 45.91 8.53 317 140.00 4.30 343 31.56 14.71 68.51 51.58 0.46 0.29
6 46.45 8.53 317 140.00 6.06 361 22.10 14.30 65.10 51.07 0.34 0.28
7 59.26 8.63 317 140.05 3.33 331 41.06 14.95 71.00 37.89 0.58 0.39
8 59.52 8.62 317 139.90 4.20 343 32.31 14.75 68.51 37.60 0.47 0.39
9 59.97 8.64 317 140.00 6.03 361 22.22 14.31 65.10 37.10 0.34 0.39
10 32.72 8.46 317 114.50 4.24 369 26.00 11.69 63.69 62.37 0.41 0.19
11 32.74 8.51 317 165.60 5.58 343 28.68 17.31 68.51 62.36 0.42 0.28
12 47.34 8.50 317 114.30 4.23 369 26.02 11.77 63.69 50.23 0.41 0.23
13 45.69 8.64 317 165.50 5.64 343 28.34 17.15 68.51 51.78 0.41 0.33
14 59.71 8.64 317 114.40 4.25 369 25.92 11.75 63.69 37.40 0.41 0.31
15 60.15 8.66 317 165.65 5.62 343 28.48 17.33 68.51 36.90 0.42 0.47
26 46.28 8.74 317 139.85 3.27 331 41.77 14.56 71.00 51.23 0.59 0.28
27 46.25 8.77 317 139.75 3.34 331 40.84 14.48 71.00 51.26 0.58 0.28
28 45.03 8.67 317 139.90 3.28 331 41.65 14.67 71.00 52.39 0.59 0.28
29 46.64 8.56 317 139.75 4.13 343 32.84 14.67 68.51 50.90 0.48 0.29
30 45.86 8.53 317 139.80 4.17 343 32.53 14.72 68.51 51.63 0.47 0.29
31 45.93 8.53 317 139.80 4.15 343 32.69 14.72 68.51 51.56 0.48 0.29
32 45.67 8.63 317 139.90 6.00 361 22.32 14.12 65.10 51.80 0.34 0.27
33 45.33 8.62 317 139.90 6.01 361 22.28 14.13 65.10 52.12 0.34 0.27
34 46.08 8.64 317 139.85 5.99 361 22.35 14.11 65.10 51.42 0.34 0.27
35 33.38 8.46 317 139.85 4.21 343 32.22 14.70 68.51 61.90 0.47 0.24
36 62.39 8.51 317 139.90 4.14 343 32.79 15.00 68.51 34.36 0.48 0.44
37 49.02 8.50 317 114.30 4.24 369 25.96 11.79 63.69 48.61 0.41 0.24
38 45.94 8.64 317 165.30 5.64 343 28.31 17.13 68.51 51.55 0.41 0.33
43 33.27 3.05 299 139.90 4.21 343 32.23 42.27 68.51 65.71 0.47 0.64
44 33.51 4.24 299 139.95 4.23 343 32.09 30.18 68.51 65.53 0.47 0.46
45 33.10 5.78 299 139.85 4.23 343 32.06 21.89 68.51 65.84 0.47 0.33
46 46.03 3.05 299 139.90 4.24 343 32.00 42.39 68.51 54.57 0.47 0.78
47 46.68 4.27 299 139.85 4.21 343 32.22 30.09 68.51 53.93 0.47 0.56
48 48.01 5.74 299 139.95 4.19 343 32.40 22.25 68.51 52.58 0.47 0.42
49 61.37 3.05 299 139.80 4.19 343 32.37 42.61 68.51 37.66 0.47 1.13
50 60.56 4.25 299 139.85 4.20 343 32.30 30.44 68.51 38.63 0.47 0.79
51 59.58 5.64 299 139.90 4.17 343 32.55 22.82 68.51 39.79 0.48 0.57
52 44.80 4.29 299 114.50 4.26 369 25.88 23.99 63.69 55.77 0.41 0.43
53 46.24 4.20 299 165.80 5.62 343 28.50 36.11 68.51 54.36 0.42 0.66
64 30.47 3.20 299 139.90 4.31 343 31.46 40.16 68.51 67.74 0.46 0.59
65 29.54 4.50 299 139.90 4.34 343 31.24 28.29 68.51 68.38 0.46 0.41
66 30.96 6.00 299 139.90 4.31 343 31.46 21.02 68.51 67.39 0.46 0.31
67 46.04 3.20 299 139.95 4.32 343 31.40 40.34 68.51 54.56 0.46 0.74
68 43.96 4.50 299 139.90 4.34 343 31.24 28.44 68.51 56.58 0.46 0.50
69 43.64 6.00 299 139.95 4.37 343 31.03 21.14 68.51 56.88 0.45 0.37
70 59.04 3.20 299 139.85 4.31 343 31.45 40.49 68.51 40.44 0.46 1.00
71 57.38 4.50 299 139.90 4.29 343 31.61 28.64 68.51 42.37 0.46 0.68
72 58.60 6.00 299 139.90 4.34 343 31.24 21.35 68.51 40.95 0.46 0.52
73 44.29 4.50 299 114.50 4.27 369 25.81 22.83 63.69 56.26 0.41 0.41
74 46.05 4.50 299 165.20 5.61 343 28.45 33.52 68.51 54.54 0.42 0.61

"Metal touch
+thick ring"

Boundary
condition

(cone-
cylinder)

Specimen
No.

Cone Cylinder 

Diameter-to-
thickness ratio (*)

Limit diameter-to-
thickness ratio (**)

ratio of (*) to (**)

"Metal touch"

"Metal touch
+thin ring"

"Welding"
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2.4 Definitions of Strength and Axial Deformation 

In this thesis, the collapse strength, full plastic strength and general yield strength of 

the connections are studied. The definitions of them and relevant axial deformation are 

shown in Fig 2-13. For collapse strength Pu, it is defined as the peak load of load-axial 

deformation curves. For full plastic strength Pp, several methods were proposed by many 

scholars (Wardenieer 1982; Tateyama et al. 1988; Morita et al. 1989; and Kuwamura et al. 

2014). However, unified way cannot be found because the type of connections has 

obvious influence on the determination of full plastic strength. In this study, Pp is defined 

as the load where the slope of load versus axial deformation curve reduces to one sixth of 

the initial stiffness K0 (Tateyama et al. 1988). For general yield strength Py, the research 

on its definition has been undertaken since 1939 ( Johnston 1939a, b; Packer et al. 1980; 

Kurobane et al. 1984, Zhao and Hancock 1991; et al). In this study, Py is defined as the 

load where the slope of load versus axial deformation curve reduces to one third of the 

initial stiffness K0 (Johnston 1939). This method is recommended in steel structure 

engineering in Japan (Building Research Institute et al. 2002).  

In addition, the theoretical elastic axial deformation of specimen when full plastic 

strength is reached is defined as Δpe. The axial deformation of specimen at ultimate load is 

defined as Δu.   

 

Fig. 2-13 Standard load-axial deformation curves of specimens and definitions of strength 
and deformation 

0

K0 K0/3
K0/6
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Load P
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2.5 Discussion on Failure Modes of Specimens 

2.5.1 Specimens with Boundary of “Metal touch” 

The behavior of connections with boundary of “Metal touch” after large 

deformation is shown in Fig. 2-14. It can be found that specimens Nos.1~8 and 10~14 

failed like a trumpet, at the top edge of cylinder wall in an axisymmetric type. While, 

specimens No. 9 failed in conical wall with the shape of depression. In addition, 

specimen No.15 failed in both conical wall and cylinder edge asymmetrically. Thus, 

the specimens mainly occurred at cylinder edge. 

 

    

    

   

   

No.1 No.2 No.3

No.4 No.5 No.6

No.7 No.8 No.10

No.11 No.12 No.13
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(a) Specimens with cylinder edge failure 
 

  

(b) Specimens with other failure modes 

Fig. 2-14 Behavior of specimens with boundary of “Metal touch” after testing 
 

Table 2-7 Strength of specimens with cylinder edge failure 

Specimen 
No. 

Main parameters 
General 

yield 
strength

Plastic 
strength

Collapse 
strength Δu Pu-EXP 

/Pp-EXP 

Cone Cylinder 

Semi- 
angle 

Thick- 
ness 

External 
diameter 

α tP DP Py-EXP Pp-EXP Pu-EXP 
o mm mm kN kN kN mm 

1 32.0 3.3 139.8 43.6 48.8 58.8 2.89 1.20 

2 32.3 4.2 139.8 94.2 116.4 120.8 2.98 1.04 

3 32.6 6.0 140.5 149.5 164.0 174.9 3.72 1.07 

4 46.8 3.3 139.8 80.8 102.4 112.1 2.28 1.09 

5 45.9 4.3 140.0 129.2 148.2 169.7 2.85 1.15 

6 46.5 6.1 140.0 222.7 275.0 336.6 6.12 1.22 

7 59.3 3.3 140.1 194.1 207.5 215.1 3.40 1.04 

8 59.5 4.2 139.9 264.0 280.8 285.0 2.31 1.01 

10 32.7 4.2 114.5 80.0 90.8 99.4 2.67 1.09 

11 32.7 5.6 165.6 125.6 137.5 160.2 5.72 1.16 

12 47.3 4.2 114.3 140.0 160.0 176.8 2.56 1.11 

13 45.7 5.6 165.5 268.2 281.8 302.8 3.54 1.07 

14 59.7 4.3 114.4 234.0 242.0 246.9 3.16 1.02 

 

The strength and deformation of specimen Nos.1~8 and 10~14 which failed at 

cylinder edge are listed in Table 2-15. It can be found that as thickness Pt  or semi-vertex 

angle α  increases, the strength of specimens will become larger. By comparing the 

No.14

No.9 No.15
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strength of specimen No.7 with those of specimen Nos. 1 and 4, it is found that as the 

value of α increases, the strength become larger, but the ratio of Pu-EXP to Pp-EXP becomes 

smaller. By comparing the strength of specimen No.6 with those of specimen Nos. 4 and 

5, it is found that as the value of Pt  increases, not only the strength but also the ratio of 

Pu-EXP to Pp-EXP become greater.  

The ultimate behavior of specimens with cylinder edge failure is sketched in the 

axisymmetric coordinate system ( , , )r xθ , as shown in Fig. 2-15. The radial deformation 

of the top edge of cylinder is defined as ruPw . It can be obtained by 

 tanruP uw α= −Δ    (2-5) 

Then, the strain in hoop direction can be obtained as  

 
2 tanu

uP
P PD tθ

αε − Δ=
−   (2-6) 

based on the assumption of uniaxial stress state. In order to investigate the failure mode of 

cylinder edge, it is compared with yield strain yPε , as shown in Table 2-8. It can be found 

that their ratios are in the range of 7~29. The uPθε  is larger than yPε , but still much less 

than strain at tensile stress uPε . The top edge of cylindrical wall entered into plastic 

condition when ultimate load arrived. However, the length of plastic region cannot be 

obtained because the radial deformation along x direction cannot be measured. For shell 

structures, out of plane deformation not only induces hoop stress, but also induces 

bending stress. Whether cylinder edge failure is controlled by hoop tension or by axial 

bending cannot be judged based on the experimental results.  
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Fig. 2-15 Sketch of ultimate behavior of specimen with cylinder edge failure 
 

Table 2-8 Ultimate radial deformation at the top edge of cylinder for specimens with 
cylinder edge failure 

Specimen 
No. 

Main parameters 

Δu wruP 
εθuP εyP 

εθuP/ 

εyP 

Cone Cylinder 

Semi-vertex 
angle 

Thickness 
External 
diameter 

α tP DP 

deg. mm mm mm mm 

1 32.0 3.3 139.8 2.89 1.81 0.0265  0.0037  7.15 
2 32.3 4.2 139.8 2.98 1.88 0.0278  0.0033  8.42 
3 32.6 6.0 140.5 3.72 2.38 0.0354  0.0039  9.07 
4 46.8 3.3 139.8 2.28 2.43 0.0356  0.0037  9.63 
5 45.9 4.3 140.0 2.85 2.94 0.0433  0.0033  13.13 
6 46.5 6.1 140.0 6.12 6.45 0.0964  0.0039  24.71 
7 59.3 3.3 140.1 3.40 5.72 0.0837  0.0037  22.62 
8 59.5 4.2 139.9 2.31 3.92 0.0578  0.0033  17.52 

10 32.7 4.2 114.5 2.67 1.72 0.0311  0.0034  9.16 
11 32.7 5.6 165.6 5.72 3.67 0.0459  0.0036  12.75 
12 47.3 4.2 114.3 2.56 2.77 0.0504  0.0034  14.82 
13 45.7 5.6 165.5 3.54 3.63 0.0454  0.0036  12.62 
14 59.7 4.3 114.4 3.16 5.41 0.0983  0.0034  28.90 

 

 

 

Δu
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2.5.2 Specimens with Boundary of “Metal touch + thin ring” 

The ultimate behavior of specimens with boundary of “Metal touch + thin ring” is 

shown in Fig. 2-16. It can be found that specimen Nos. 26~30, 35 and 37 failed at 

cylinder edge, specimen Nos. 34 and 36 failed in conical wall with the type of depression, 

specimen No. 31 failed in “elephant foot buckling” of cylindrical shell, and specimen Nos. 

32, 33 and 38 failed asymmetrically. For all the specimens, the tapered ring did not drop 

when ultimate load arrived.  

 

      

     

     

  (a) Specimens with tapered ring failure 
 

     

No.26 No.27 No.28

No.29 No.30 No.35

No.37

No.34 No.36 No.31



 

28 

 

   

(b) Specimens with other failure modes 
Fig. 2-16 Ultimate behavior of specimens with boundary of “Metal touch + thin ring”  

 
Table 2-9 Strength and deformations of specimens with boundary of  

“Metal touch + thin ring” failed at the top edge of cylinder 

Specimen 
No. 

Main parameters 
General 

yield 
strength

Full 
plastic 

strength

Collapse 
strength Δu Pu-EXP 

./Pp-EXP

Cone Cylinder Ring 

Semi-
angle 

Thick
-ness 

External 
diameter 

Thick-
ness 

α tP DP tR Py-EXP. Pp-EXP. Pu-EXP. 

deg. mm mm mm kN kN kN mm 

26 46.3 3.3 139.9 6.1 160.1 165.2 182.4 2.48 1.10 

27 46.3 3.3 139.8 9.2 260.0 287.5 342.3 3.25 1.19 

28 45.0 3.3 139.9 12.0 293.3 333.3 420.0 4.73 1.26 

29 46.6 4.1 139.8 6.0 230.4 257.0 277.0 2.80 1.08 

30 45.9 4.2 139.8 9.1 356.4 417.9 509.0 3.87 1.22 

35 33.4 4.2 139.9 9.1 405.0 463.9 530.6 10.08 1.14 

37 49.0 4.2 114.3 9.1 338.0 432.0 472.7 5.21 1.09 

 

The strength and deformation of specimens Nos.26~30, 35 and 37 which failed at the 

top edge of cylindrical wall are listed in Table 2-9. By comparing the strength among 

specimen Nos.26~28, it can be found that as the thickness Rt  of tapered ring increases, 

the strength of specimens become greater. Meanwhile, the ratio of Pu to Pp also increases.  

 

No.32 No.33 No.38
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Fig. 2-17 Sketch of ultimate behavior of specimens with boundary of “Metal touch + thin 
ring” failed at the top edge of cylindrical shell   

 
Table 2-10 Ultimate radial deformations of specimens with boundary of “Metal touch + 

thin ring” failed at the top edge of cylinder   

Specimen 
No. 

Main parameters 

wruP 
εθuR εyR 

εθuR/ 

εyR 

Cone Cylinder Ring 

Semi-vertex 
angle 

Thickness
External 
diameter

Thickness

α tP DP tR 

deg. mm mm mm mm 

26 46.3 3.3 139.9 6.1 2.59 0.0355  0.0017  20.90 
27 46.3 3.3 139.8 9.2 3.41 0.0457  0.0029  15.77 
28 45.0 3.3 139.9 12.0 4.73 0.0623  0.0022  28.30 
29 46.6 4.1 139.8 6.0 2.96 0.0407  0.0017  23.93 
30 45.9 4.2 139.8 9.1 3.99 0.0536  0.0029  18.48 
35 33.4 4.2 139.9 9.1 6.64 0.0892  0.0029  30.76 
37 49.0 4.2 114.3 9.1 5.99 0.0972  0.0029  33.50 

 

The ultimate behavior of the specimens with boundary of “Metal touch +thin ring” 

failed at the top edge of cylindrical shell is sketched in Fig. 2-17. In order to investigate 

the failure mode of tapered ring, its average hoop strain is obtained by  

 
2 tanruP u

uR
R R

w
d dθ

αε − Δ= =   (2-7) 

Δu

wruP

dR / 2

x

r

α

θ

Undeformed

At Pu
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It is compared with yield strain yRε  of tapered ring, as shown in Table 2-10. It is found 

that their ratios are in the range of 15~34. Tapered rings entered into plastic condition as 

ultimate load arrived. It can be assumed that the specimen with boundary of “Metal touch 

+ thin ring” failed in tapered ring. 

2.5.3 Specimens with Boundary of “Metal touch + thick ring” 

The ultimate behavior of specimens with boundary of “Metal touch + thick ring” is 

shown in Fig. 2-18. It can be found that specimen Nos. 43, 44, and 46~53 failed in 

conical wall, as no obvious deformation was found in cylindrical wall and tapered ring 

after testing. In addition, specimen No.45 failed asymmetrically. As the typical case, the 

deformation of conical wall in specimen No. 47 after testing is shown in Fig. 2-19. 

Obvious bending deformation in the conical wall can be found. 

       

        

     

      

(a) Specimens with conical wall failure 

No.43 No.44 No.46

No.47 No.48 No.49

No.50 No.51 No.52

No.53
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(b) Specimen with asymmetric failure mode 
Fig. 2-18 Ultimate behavior of specimens with boundary of “Metal touch + thick ring”  

 

 

Fig. 2-19 Deformation of conical wall after testing in specimen No. 47 
 

The strength and deformation of specimen Nos. 43, 44, and 46~53 with conical wall 

failure are listed in Table 2-11. Those of specimen Nos. 9, 34 and 36 which failed in 

conical wall are also included. By comparing the strength of specimen No.50 with those 

of specimen Nos. 44 and 47, it is found that as semi-vertex angle α increases, not only the 

strength of conical wall but also the ratio of Pu-EXP to Pp-EXP become smaller. By 

comparing the strength of specimen No.48 with those of specimen Nos. 46 and 47, it is 

found that as thickness tC increases, not only the strength of conical wall but also the ratio 

of Pu-EXP to Pp-EXP become greater.  
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Table 2-11 Strength and deformation of specimens with conical wall failure 

Specimen 
No. 

Main parameters 
General 

yield 
strength

Full 
plastic 

strength

Collapse 
strength Δu Pu-EXP. 

/Pp-EXP

Cone Cylinder Ring 

Semi-
angle 

Thick-
ness 

Thick-
ness 

External 
diameter

Thick-
ness 

α tC tP DP tR Py-EXP. Pp-EXP. Pu-EXP. 

deg. mm mm mm mm kN kN kN mm 

9 60.0 8.6 6.0 140.0  482.6 561.5 601.2 5.35 1.07 

34 46.1 8.6 6.0 139.9 12.0 543.8 620.0 872.8 15.46 1.41 

36 62.4 8.6 4.1 139.9 9.1 390.9 527.3 625.7 8.92 1.19 

43 33.3 3.1 4.2 139.9 12.1 139.1 153.6 234.9 12.00 1.53 

44 33.5 4.2 4.2 140.0 12.0 263.0 294.7 389.9 14.12 1.32 

46 46.0 3.1 4.2 139.9 12.0 127.5 158.7 178.4 5.81 1.12 

47 46.7 4.3 4.2 139.9 12.0 192.6 218.5 274.2 7.62 1.25 

48 48.0 5.7 4.2 140.0 12.0 314.8 400.0 510.0 9.13 1.27 

49 61.4 3.1 4.2 139.8 12.1 120.9 123.5 125.2 5.42 1.01 

50 60.6 4.3 4.2 139.9 12.0 182.8 190.0 194.9 6.98 1.03 

51 59.6 5.6 4.2 139.9 12.0 325.0 336.5 352.8 7.37 1.05 

52 44.8 4.3 4.3 114.5 12.0 171.1 208.5 251.8 8.68 1.21 

53 46.2 4.2 5.6 165.8 12.0 200.0 254.3 309.3 8.02 1.22 

 

 

Fig. 2-20 Sketch of ultimate behavior of specimens with conical wall failure 
 

The ultimate behavior of the specimens failed in conical wall is sketched in Fig. 2-20. 

The section in conical wall which contacts with cylinder edge at ultimate load is set to be 

Sect. F. It is originally located at section “F0”. The slip of conical wall is defined as Lslip, 

Δu

wtuC

F
Lslip

F0x
s

t
rθ

K

Undeformed
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which is equal to the distance from “F0” to “F”. It is quite difficult to be measured in 

experiments. The normal deformation of Sect. F in t direction is defined as tuCw . It is 

obtained by the following equation:  

 ( )cos sintuC u slipw L α α= Δ −   (2-8) 

If neglecting Lslip, tuCw  will be simplified as  

 sintuC uw α= Δ   (2-9) 

Then, hoop strain of Sect. F can be obtained by 

 F
F F

2 2 sin coscostuC u
uC

C C

w
d dθ

α αε α Δ= =   (2-10) 

 
Table 2-12 Ultimate deformation of specimens with conical wall failure 

Specimen 
No. 

Main parameters 

Δu wtuC
εθuC εyC 

εθuC/ 
εyC 

Cone Cylinder Ring 

Semi- 
angle 

Thick- 
ness 

Thick- 
ness 

External 
diameter 

Thick-
ness 

α tC tP DP tR 

deg. mm mm mm mm mm mm 

9 60.0 8.6 6.0 140.0  5.35 4.63 0.0346 0.0036 10.17 
34 46.1 8.6 6.0 139.9 12.0 15.46 11.14 0.1154 0.0036 33.94 
36 62.4 8.6 4.1 139.9 9.1 8.92 7.91 0.0540 0.0036 15.87 
43 33.3 3.1 4.2 139.9 12.1 12.00 6.59 0.0812 0.0034 23.88 
44 33.5 4.2 4.2 140.0 12.0 14.12 7.79 0.0957 0.0034 28.16 
46 46.0 3.1 4.2 139.9 12.0 5.81 4.18 0.0428 0.0034 12.59 
47 46.7 4.3 4.2 139.9 12.0 7.62 5.55 0.0561 0.0034 16.50 
48 48.0 5.7 4.2 140.0 12.0 9.13 6.79 0.0669 0.0034 19.68 
49 61.4 3.1 4.2 139.8 12.1 5.42 4.76 0.0336 0.0034 9.88 
50 60.6 4.3 4.2 139.9 12.0 6.98 6.08 0.0440 0.0034 12.94 
51 59.6 5.6 4.2 139.9 12.0 7.37 6.35 0.0474 0.0034 13.94 
52 44.8 4.3 4.3 114.5 12.0 8.68 6.11 0.0787 0.0034 23.15 
53 46.2 4.2 5.6 165.8 12.0 8.02 5.78 0.0500 0.0034 14.70 
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It is compared with yield strain yCε  of conical wall, as shown in Table 2-12. Their 

ratios are found to be in the range of 10~34. It indicates that the contact region in conical 

wall entered into plastic condition as ultimate load arrived. Just like the specimens with 

cylinder edge failure, the out of plane deformation of conical wall not only induces hoop 

compression but also induces meridional bending. Thus, whether the failure is controlled 

by hoop compression or by meridional bending is difficult to be determined by 

experimental results.  

2.5.4 Specimens with Boundary of “Welding” 

The ultimate behavior of specimens with boundary of “Welding” is shown in Fig. 

2-21. It can be found that specimen Nos. 64, 65, and 67~74 failed near to the joint region 

between conical wall and cylinder edge. The deformation at cylinder edge is not obvious. 

In addition, specimen No. 66 failed in “elephant foot buckling” mode near to the bottom 

edge of cylindrical wall. It is found that the failure of specimens mainly occurred in the 

welded joint region. 

 

  

     

No.64 No.65 No.67

No.68 No.69 No.70
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(a) Specimens with joint region failure 
 

 

(b) Specimen with elephant foot buckling of cylindrical wall 
Fig. 2-21 Pictures of specimens with boundary of “Welding” at ultimate load 

 

The strength and deformation of specimens Nos. 64, 65, and 67~74 which failed in 

joint region are listed in Table 2-13. It can be found that for specimen Nos. 70, 71 and 72, 

the averages of the ratios of Pu to Pp are similar to those of specimen Nos. 7, 8 and 14 in 

cylinder edge failure and Nos.49, 50 and 51 in conical wall failure. 

The perspective and profile of the specimen after testing are sketched in Fig. 2-22. 

The hoop strain jθε  of external point j of Sec. J and axial displacement kΔ  of the 

lowest point k of Sect. K are calculated as follows.  
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where, Lj0－the measured circumference of cylinder at point j before testing; 

Lj1－the measured circumference of cylinder at point j after testing. 

Then, kΔ  of Sect. K is obtained by  

 k k1 k0 =170.7-171.88=-1.18mmH HΔ = −    (2-12) 

where, Hk0－the measured distance from point k to the bottom edge of cylindrical wall 

before testing. 

Hk1－the measured distance from point k to the bottom edge of cylindrical wall 

after testing. 

Based on Eqs. (2-11) and (2-12), it can be found that the top edge of cylindrical wall 

moved along –r direction during testing, and entered into plastic condition after testing. In 

addition, the deformation along -x direction occurred in the lowest part of conical wall 

after testing. 

 

Fig. 2-23 Sketch of ultimate deformation of specimens with boundary of “Welding”  
 

The ultimate behavior of specimens failed in joint region is sketched in Fig. 2-23. 

The radial deformation of cylinder edge at ultimate load is defined to be ruPw . It is 

difficult to be measured from experiments. The joint region of cone-to-cylinder is 

simplified to be Sect. F. Its normal deformation tuCw  can be calculated by   

Δu
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 sin costuC u ruPw wα α= Δ +   (2-13) 

If neglecting ruPw , tuCw  will be simplified as  

 sintuC uw α= Δ   (2-14) 

Then, hoop strain in Sect. F is obtained as 

 
2 2 sin coscostuC u

uC
C P P

w
d D tθ

α αε α Δ= =
−   (2-15) 

It is compared with yield strain yCε  of conical wall, as shown in Table 2-14. It can 

be found that their ratios are in the range of 2~6. They are much smaller than those in the 

specimens with conical wall failure listed in Table 2-12, but it have to be said that the 

joint region of welded connection also entered into plastic as ultimate load arrived.  

 
Table 2-14 Ultimate deformation of welded specimens with joint region failure 

Specimen 
No. 

Main parameters 

Δu wtuC
εθuC εyC 

εθuC/ 
εyC 

Cone Cylinder 

Semi- 
angle 

Thick- 
ness 

Thick- 
ness 

External 
diameter

α tC tP DP 

deg. mm mm mm mm mm 

64 30.5 3.2 4.3 139.9 1.16 0.59 0.0073 0.0034  2.14 
65 29.5 4.5 4.3 139.9 1.47 0.73 0.0090 0.0034  2.65 
67 46.0 3.2 4.3 140.0 1.06 0.77 0.0076 0.0034  2.23 
68 44.0 4.5 4.3 139.9 1.60 1.11 0.0114 0.0034  3.36 
69 43.6 6.0 4.4 140.0 2.67 1.84 0.0190 0.0034  5.60 
70 59.0 3.2 4.3 139.9 1.53 1.31 0.0096 0.0034  2.83 
71 57.4 4.5 4.3 139.9 1.59 1.34 0.0104 0.0034  3.04 
72 58.6 6.0 4.3 139.9 2.22 1.90 0.0141 0.0034  4.15 
73 44.3 4.5 4.3 114.5 1.48 1.04 0.0130 0.0034  3.81 
74 46.1 4.5 5.6 165.2 1.96 1.41 0.0119 0.0034  3.49 
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Fig. 2-24 Comparison of Normalized load versus axial deformation relationships between 
specimens with boundary of “Welding” and those with boundary of “Metal touch + thick 

ring”  
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The normalized load versus axial deformation relationships between specimens with 

the boundary of “Welding” and thosed with the boundary of “Metal touch +thick ring” are 

compared, as shown in Fig. 2-24. Representative specimen Nos. 65, 68 and 71 and Nos. 

44, 47 and 50 are employed. It can be found that strength degradation of specimens with 

the boundary of “Welding” is not rapider than that of specimens with the boundary of 

“Metal touch + thick ring”. The failue modes of the two kinds of connections are difficult 

to be distinguished based on the experimental results.   

 

       

 (a) Cylinder edge failure (b) Tapered ring failure (c) Conical wall failure   (d) Joint region failure 
Fig. 2-25 Proposed failure modes based on failure positions 

2.6 Summaries 

This chapter focuses on the reinvestigation of the failure modes of experimental 

specimens. Based on the above analysis, the following conclusions can be obtained. 

(1) For specimens with boundary of “Metal touch”, “Metal touch + thin ring” and “Metal 

touch + thick ring”, failure of connections mainly occurred at cylinder edge, tapered 

ring and conical wall, respectively. However, the plastic region cannot be measured 

because of the limitation of the experiments. Thus, the failure mechanisms are 

difficult to be clarified in detail.  

(2) For specimens with boundary of “Welding”, because the top edge of cylindrical wall 

moved along inward direction and the bottom edge of conical wall moved along 

downward direction, joint region between conical wall and cylinder edge may have 

some deformation during loading process. The ratio of collapse strength to full plastic 

strength is quite small, but similar to some metal touch specimens. Moreover, their 
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strength degradation is not rapider than that of metal touch specimens. Though the 

post-failure was mainly observed in the upper part of conical wall, the failure mode 

could not be determined to be “cone buckling failure” directly.   

The failure modes of connections are summaried in Fig. 2-25, based on the failure 

positions. In the following chapters, Finite Element Analysis will be employed to 

investigate the stress and deformation distributions. After then, failure mechanisms will 

be determined 
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CHAPTER 3 STRENGTH OF METAL 
TOUCH CONNECTIONS WITH 
CYLINDER EDGE FAILURE  

3.1 Introduction 

The strength of cylinder edge failure was first studied by Kuwamura et al. (2005) by 

means of experiments and theoretical analysis. A simple hoop tension failure mechanism 

was assumed based on the assumption of uniaxial stress state. The formulae for full 

plastic strength and ultimate strength were proposed. But the influences of axial bending 

moment and axial stress resultant on the failure mechanism were not considered. His 

work was extended by Ito et al. (2008), in which Finite Element Analysis (FEA) was 

employed to investigate the friction property between cone and cylinder, and stress 

behaviors in cylindrical walls. The plastic collapse mechanism proposed by Eason and 

Shield (1955) was employed to consider the effect of axial bending moment on failure 

mechanism. More precise formulae for strength were proposed. Especially for the cases 

of high axial stress resultant, previous studies (Tsang and Harding 1984, Zhao and 

Hancock 1993, Cao et al. 1998, et al) indicated that the interaction of hoop stress resultant 

or axial bending moment with axial stress resultant has an influence on the failure 

mechanism. It needs to be analyzed for the connections in this study. 

In the first part of this chapter, solid axisymmetric FEA models are first created and 

validated by comparing their strength and deformation with experimental results. The 

friction property in the contact region between cone and cylinder is discussed. Then, FEA 

is undertaken not only for the existing experimental specimens, but also for six newly 

added models which have relatively larger axial stress resultants. The changing 

distributions of stress resultants under increasing load are investigated, and the 
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correlations among stress resultants are analyzed. The ultimate deformation of models is 

also investigated. Based on the analysis results, the failure mode is determined by the 

proposed criterion. 

In the second part of this chapter, Mises’ yield condition in the form of stress 

resultants for axisymmetrically loaded revolutional shells with perfectly-plastic material 

is simplified and validated by the effective FEA results. Then, a new plastic collapse 

mechanism for cylinder edge failure is proposed, in which the correlations of axial stress 

resultant with axial bending moment and hoop stress resultant are considered. The limit 

analysis is undertaken and the maximum strength of models with perfectly-plastic 

material is derived, which corresponds to the full plastic strength of models with actual 

strain hardening material. The prediction of ultimate strength and general yield strength of 

models with actual material are then proposed respectively, based on the formula for full 

plastic strength. The precision of the proposed formulae are examined through comparing 

them with previous ones and the experimental and FEA results. 

3.2 FE Modeling 

 

Fig. 3-1 Details of FEA axisymmetric solid model 
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3.2.1 General  

The details of axisymmetric solid model in ABAQUS FE package (Hibbitt et al. 2011) 

are shown in Fig.3-1. The cylindrical coordinate (r, θ, x) system is chosen. Cylindrical wall 

is simply supported at the base. Static loading is controlled by displacement Δ. Because 

both the geometry of specimens and loading are axisymmetric, linear quadrilateral and 

triangular axisymmetric solid element CAX4R and CAX3 are employed. The contact 

between cone and cylinder is defined using the CONTACT PAIRS option 

(surface-to-surface contact). The external surface of conical wall is set to be “Master 

surface”, and the right-angled edges of contact region in cylindrical wall are set to be 

“Slave surface”. The height of contact region is assumed as the thickness tP of cylindrical 

wall. Finite sliding and node-to-surface discretization method are adopted. Mesh size in 

contact region is set to be 1/4 of that in general region to consider the local stress 

concentration phenomenon. When mesh size in general region is smaller than tP/6, ultimate 

strength is found to be convergent. As the smallest thickness of cylindrical walls for all the 

specimens is 3.3 mm, mesh size in general region is set to be a constant of 0.5mm. 

The stress-strain curves for the mild steel used in cylindrical walls are shown in Fig. 

3-2. Equivalent plastic strain ep, obtained by Eqs. (3-1)~(3-3), is used for defining the strain 

hardening behavior of mild steel materials in ABAQUS FE package. The s~ep curves of 

cylindrical walls with different diameter-to-thickness ratios are shown in Fig. 3-3. 

Moreover, the perfectly-elastic plastic materials whose yield stress is equal to that of the 

actual ones are also employed for the later analysis.  

 (1 )s σ ε= +   (3-1) 

 ln(1 )e ε= +   (3-2) 

 0/pe e s E= −   (3-3) 

Herein, s is true stress, e is true strain, σ is engineering stress, ε is engineering strain, ep is 

equivalent plastic strain, and E0 is initial Young’s modulus, set to be a constant of 
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205,000MPa for all the models.  

 

Fig. 3-2 True stress-strain curves for material STK400 used in cylindrical shells 
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Fig. 3-3 s~ep curves of cylindrical shells input in ABAQUS  
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(a)                                (b)  
Fig. 3-4 Definition of strength of FE models  

3.2.2 Definitions of Strength of FE Models 

As shown in Fig. 3-4(a), for FE models with actual strain hardening materials, the 

definitions of strength are the same as those introduced in Chapter 2. In addition, for FE 

models with perfectly-elastic plastic materials, their collapse strength is defined to be 

“maximum strength Pmax”, as shown in Fig. 3-4(b). The Pmax is employed to examine the 

precision of the theoretical prediction of strength based on limit analysis and the full 

plastic strength Pp of models with actual material.  

3.2.3 Effectiveness of FE models 

Thomsen et al. (1965) suggested that it is necessary to assume that µ remains 

constant during the forming operation and its use is necessary to make the theoretical 

equations amenable to relatively simple analytical solutions. Hence, 

Amontons-Coulomb’s friction law with formulation of Penalty is adopted and friction 

coefficient µ is assumed to be a constant during the whole deformation process in this 

study. The variation of collapse strength in FEA along with the increase of µ is shown in 

Fig. 3-5. It can be seen that the correlation with each other is great. The collapse strength 

of FE model becomes about equal to that of experimental specimen by calibrating the 

value of µ. As a result, the values of µ for all the modes are obtained, as shown in Table 
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3-1. It is found that their average is 0.18 with a Coefficient of Variation (COV) of 0.29. 

The values of full plastic strength and general yield strength of FE models are then 

compared with those of experimental specimens by the same value of µ. It is found that 

the averages of ratios are 1.02 for full plastic strength and 1.04 for general yield strength, 

with small COV of 0.05 and 0.09, respectively. The strength of cylinder edge failure can 

be predicted well with a constant value of μ for each model.  

 

 

 

Fig. 3-5 Variation of collapse strength of models with cylinder edge failure along with the 
increase of friction coefficient between conical wall and cylinder edge 
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Table 3-1 Comparison of strength between FE models and experimental specimens for 
models with cylinder edge failure 

Model 
NO. 

Experiments FEA Comparison 

Collapse 
strength 

Full 
plastic 

strength 

General 
yield 

strength 
COF

Collapse
strength

Full 
plastic

strength

General 
yield 

strength Pu-FEA/ 
Pu-EXP 

Pp-FEA/ 
Pp-EXP 

Py-FEA/ 
Py-EXPPu-EXP Pp-EXP Py-EXP 

µ 
Pu-FEA Pp-FEA Py-FEA 

(kN) (kN) (kN) (kN) (kN) (kN) 

1 58.8 48.8 43.6 0.09 58.2 52.0 43.5 0.99 1.07 1.00 

2 120.8 116.4 94.2 0.27 119.1 108.4 98.8 0.99 0.93 1.05 

3 174.9 164.0 149.5 0.15 176.3 162.9 140.3 1.01 0.99 0.94 

4 112.1 102.4 80.8 0.16 112.9 102.5 91.1 1.01 1.00 1.13 

5 169.7 148.2 129.2 0.18 167.8 157.0 144.4 0.99 1.06 1.12 

6 336.6 275.0 222.7 0.22 333.4 317.7 285.8 0.99 1.16 1.28 

7 220.1 207.5 194.1 0.23 222.7 214.8 190.9 1.01 1.04 0.98 

8 285.0 280.8 264.0 0.19 284.9 277.3 258.4 1.00 0.99 0.98 

10 99.4 90.8 80.0 0.17 98.2 88.4 80.7 0.99 0.97 1.01 

11 160.2 137.5 125.6 0.13 161.0 146.2 123.3 1.01 1.06 0.98 

12 176.8 160.0 140.0 0.20 173.0 167.2 152.2 0.98 1.05 1.09 

13 302.8 281.8 268.2 0.21 304.2 286.8 253.6 1.00 1.02 0.95 

14 246.9 242.0 234.0 0.14 247.2 240.9 223.8 1.00 1.00 0.96 

Avg. 
 

0.18 
 

1.00 1.02 1.04 

COV 0.29 0.01 0.05 0.09 

Note: µ is friction coefficient in the contact region between cone and cylinder. 
 

Then, the maximum strength Pmax of models with perfectly-plastic material is 

compared with the full plastic strength Pp of models with actual material, as shown in Fig. 

3-6. The average of the ratios is 1.00, with a small standard deviation of 0.03. If Pmax is 

assumed as the ideal full plastic strength Pp of models with actual material, it can be 

found that the method of “K0/6 slope factor” proposed by Tateyama (1988) is effective to 

determine the full plastic strength from experimental load versus axial deformation 

curves.   

 In addition, the load versus axial deformation curves and ultimate deformation of 

FE models are compared with the relevant experimental results, as shown in Appendix B. 
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The effectiveness of all the models is verified. 
 

 

Fig. 3-6 Comparison of maximum strength to full plastic strength for models with 
cylinder edge failure 

3.2.4 Discussion on Friction Coefficient for Practical Design 

Friction has an obviously influence on the strength of cylinder edge failure (Ito et al. 

2008). Whitehead (1950) suggested that the increase of friction coefficient µ is due to the 

breakdown of oxide film. Its value is difficult to be derived theoretically in this study. The 

µ needs to be determined in advance for practical design. The average of µ calibrated in 

section 3.2.3 is 0.18. But it cannot represent the actual value, because the influence of 

other factors, for example residual stress, was not considered. Kuwamura and Ito (2007) 

suggested that friction coefficient µ might be 0.21~0.36 due to the plastic flow of steel 

materials based on the experimental study.  

Thus, it is suggested that µ = 0.20 for models with cylinder edge failure in practical 

design. The predicted strength by FEA is compared with the experimental result. The 

results are listed in Table 3-2. It is found that the averages of ratios are 1.05, 1.06 and 1.10, 

for collapse strength, full plastic strength and general yield strength respectively. The 

values of COV are not small, but can be acceptable. 
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Table 3-2 Comparison of strength between FEA and experiment with the assumption of  
µ= 0.20 for models with cylinder edge failure 

Model 
NO. 

Experiments FEA Comparison 

Collapse 
strength 

Full 
plastic 

strength 

General 
yield 

strength 
COF

Collapse
strength

Full 
plastic

strength

General 
yield 

strength Pu-FEA/ 
Pu-EXP 

Pp-FEA/ 
Pp-EXP 

Py-FEA/ 
Py-EXPPu-EXP Pp-EXP Py-EXP 

µ 
Pu-FEA Pp-FEA Py-FEA 

(kN) (kN) (kN) (kN) (kN) (kN) 

1 58.8 48.8 43.6 

0.20 

72.9 61.5 57.1 1.24  1.26  1.31 

2 120.8 116.4 94.2 104.9 91.6 86.5 0.87  0.79  0.92 

3 174.9 164.0 149.5 195.1 182.2 160.0 1.12  1.11  1.07 

4 112.1 102.4 80.8 122.4 112.0 103.1 1.09  1.09  1.28 

5 169.7 148.2 129.2 175.3 162.4 155.8 1.03  1.10  1.21 

6 336.6 275.0 222.7 320.5 303.2 276.3 0.95  1.10  1.24 

7 220.1 207.5 194.1 204.8 197.1 187.0 0.93  0.95  0.90 

8 285.0 280.8 264.0 292.7 270.0 255.2 1.03  0.96  0.97 

10 99.4 90.8 80.0 104.6 94.1 89.9 1.05  1.04  1.12 

11 160.2 137.5 125.6 186.1 167.3 140.0 1.16  1.22  1.11 

12 176.8 160.0 140.0 173.0 165.5 158.5 0.98  1.03  1.13 

13 302.8 281.8 268.2 298.0 280.5 259.0 0.98  1.00  0.97 

14 246.9 242.0 234.0 285.2 275.4 265.5 1.16  1.14  1.13 

Avg. 
 

1.05 1.06 1.10 

COV 0.10 0.12 0.12 

 

3.3 FE Analysis Results  

3.3.1 Definitions of Stress Resultants 

The internal forces acting on an infinitesimal body cut out from the cylindrical wall 

are defined in Fig. 3-7. Hoop stress resultant Nθ , axial stress resultant xN , axial bending 

moment xM , and shear stress resultant xQ  are defined as 

 
/2 /2 /2 /2

/2 /2 /2 /2
; ; ; and

t t t t

x x x x rx rxt t t t
N s dz N s dz M s zdz Q dzθ θ τ

− − − −
= = = =      (3-4) 
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Herein, s is true normal stress, τ is shear stress, t is the thickness of cylindrical wall, and z is 

the radially outward distance from its middle surface. It should be noted that the subscript 

“P” for cylindrical shell is omitted in the equations (The same hereinafter in this chapter). 

 

 

Fig. 3-7 Definition of stress resultants in cylindrical wall 
 

The following dimensionless variables are introduced for the stress resultants. 
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= = = =   (3-5) 

Where, 2
0 / 4xp yM tσ= . The yσ  is the yield stress of cylindrical wall and set to be 

positive both for tension and compression. 

3.3.2 Distributions of Stress Resultants  

Model No.8 is taken as a typical case to investigate the changing distributions of 

axial stress resultant xn , axial bending moment xm , shear stress resultant rxq , and hoop 

stress resultant nθ  under general yield load Py, full plastic load Pp and ultimate load Pu, 
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respectively. As shown in Fig. 3-8(a), |nx| increases as load increases. It can be assumed 

as a constant along x direction at each load. As shown in Fig. 3-8(b), |mx| also increases 

as load increases. Section A is defined to be the section where local concentrated 

deformation in the contact region starts to disappear. The assumption that line elements 

normal to the middle surface remain normal during the deformation is obeyed below Sect. 

A. Section B is defined to be the section with peak value of axial bending moment. The 

|mxu| in Sect. B does not reach 1.0 at Pu. It must be due to the effect of interaction 

between xun  and xum . As shown in Fig. 3-8(c), the value of rxq  at each load decreases 

almost in a straight line from Sects. A to B, and becomes close to 0 at Sect. B. The 

changing distributions of nθ , as shown in Fig. 3-8(d), are a little difficult to assimilate. 

Its maximum value does not occur in Sect. A. Moreover, its value in Sect. B at Pu is 

slightly smaller than that at Pp. The reason might be the effect of interaction of unθ  with 

nxu and mxu. 

 

   

    (a)                                (b) 

−0.6 −0.4 −0.2 0
−50

−40

−30

−20

−10

0

Lo
ca

tio
n

x
(m

m
)

Axial stress resultant  nx

Pu Pp Py

−1 −0.5 0 0.5 1
−50

−40

−30

−20

−10

0

Lo
ca

tio
n

x
(m

m
)

Axial bending moment mx

Sect. B

Pu
Pp

Py

Sect. A



 

55 

 

   

    (c)                                (d) 
Fig. 3-8 Changing distribution of stress resultants in the cylindrical wall of model No.8 

under increasing load 

3.3.3 Correlation of Stress Resultants at Ultimate Load 

By setting the friction coefficient µ of model Nos. 7, 8 and 14 to be 0.3 and 0.4 

respectively, additional six models, which named Nos.7-μ03, 7-μ04, 8-μ03, 8-μ04, 14-μ03 

and 14-μ04, are designed to investigate the influence of high axial stress resultant on the 

failure mechanism.  

The model Nos. 2, 5, 8, 8-μ03 and 8-μ04, with axial stress resultant nxu of -0.20, 

-0.27, -0.46, -0.61, and -0.78 respectively, are taken as typical cases to analyze the 

correlation among stress resultants at ultimate load. For the correlation between nxu and 

nθu, nθu decreases as |nxu| increases for each section, as shown in Fig.3-9(a). The 

correlation between nxu and mxu is a little different. As shown in Fig. 3-9(b), for the region 

where mxu is positive, mxu increases as |nxu| increases; while for the region where mxu is 

negative, |mxu| decreases as |nxu| increases. The detailed results in Sects. A and B for all the 

models are plotted in Fig. 3-9. It can be found that the stress resultants have high 

correlation with each other. 

 

−0.1 0 0.1 0.2 0.3
−50

−40

−30

−20

−10

0

Lo
ca

tio
n

x
(m

m
)

Shear stress resultant  qrx

Sect. B

Pu Pp
Py

Sect. A

−1 −0.5 0 0.5 1
−50

−40

−30

−20

−10

0

Lo
ca

tio
n

x
(m

m
)

Hoop stress resultant nθ

Sect. B

Pu
Pp

Py

Sect. A



 

56 

 

  

   (a) nθu                              (b) mxu 
Fig. 3-9 Distribution of ultimate stress resultants in the plastic region of models with 

actual material  
       

   

  (a) nθu vs. nxu                           (b) mxu vs. nxu 
Fig. 3-10 Correlation among stress resultants at ultimate load in Sects. A and B of all the 

models with cylinder edge failure  

3.3.4 Distributions of Ultimate Deformation 

The ultimate behavior of the top edge of cylinder for model No.8 is illustrated in Fig. 

3-11. It can be found that the out of plane deformation at ultimate load in the region from 

Sect. A to Sect. B is quite small. 

The ultimate radial deformations in the region AB for model Nos. 2, 5, 8, 8-μ03 and 

8-μ04 are shown in Fig. 3-12. It is found that the variation of deformation curves along 
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No. 8-μ04, the radial deformation becomes much larger than other models due to the great 

value of axial stress resultant.   

 

 

Fig. 3-11 Ultimate deformation of the top edge of cylinder for model No.8  
  

 

Fig. 3-12 Distribution of ultimate radial deformation in the plastic region of models with 
actual material 
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and 14-μ04, uφ  increases even though |nxu| increases. Because all the values of uφ are 

smaller than 0.1, the small deformation theory can be employed in the later analysis. 

 

 

Fig. 3-13 Ratios of wruA in Sect. A to the length of L along with the increase of |nxu| 

3.4 Judgement of Failure Mode  

3.4.1 Definition of the Criterion of Failure Mode 

The ratio of average equivalent stress eqs  in a section to yield stress yσ  is defined 

as  

 
/2

/2=

t

eqeq t

y y

s dzsr
tσ σ

−=    (3-6) 

Herein, equivalent stress eqs  can be obtained by  

 2 2 3eq x x rxs s s s sθ θ τ= − + +   (3-7) 

If r  in the section where axial bending moment mx reaches the local peak, satisfies 

that ( )m =mx x,peak
r ≈1.0, a plastic hinge is assumed to form there. If the number of plastic 

hinges becomes sufficient and the kinematically admissible state is reached just prior to or 

at collapse load, the failure is assumed to be governed by “plastic collapse”. It should be 
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noted that  

(1) Because of the strain hardening effect of materials, ( )m =ms s,peak
r  in some section where 

plastic deformation is great, is possible to exceed 1.0; 

(2) Some section with peak meridional bending moment does not enter into plastic range 

at ultimate load. From the engineering point of view, ( ) 0.8u m =msu su,peak
r ≥  is acceptable 

for the determination of plastic hinge.  

3.4.2 Failure Mode of Models  

Figure 3-14 shows the changing distributions of ratio r at Py, Pp, and Pu in the 

cylindrical wall of model No.8. It is found that r increases as the load increases for each 

section. Finally, ru in Sect. B becomes very close to 1.0. It indicates that a plastic hinge 

form there. The region between Sect. B and Sect. A enters into plastic condition at 

ultimate load. Because of the strain hardening effect of material, the nearer a section gets 

to Sect. A, the larger is ru. 

The ru in Sect. B for all the models are listed in Fig. 3-15. It is seen that all the values 

are close to 1.0. Their average is 1.01, with a small COV of 0.02. Therefore, the failure 

mode of cylinder edge can be assumed to be controlled by “plastic collapse”, as shown in 

Fig. 3-16.  

 

 

Fig. 3-14 Changing distributions of average equivalent stress in the cylindrical wall of 
model No.8 under increasing load 
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Fig. 3-15 Ratios of average equivalent stress to yield stress at ultimate load in Sect. B of 
all the models with cylinder edge failure 

 

 

Fig. 3-16 Proposed failure mechanism for models with cylinder edge failure  
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equation for stress resultants at ultimate load constitutes the yield condition of cylindrical 

shells under axisymmetric loading, which has been first published by Drucker (1953). His 

work was developed by Onat (1955) and Hodge (1961). The latter one is for 

Perfectly-plastic material obeying Mises’ yield criterion and the associated flow rule. The 

yield surface equations are expressed by stress resultants, in closed parametric form as 

shown in Eq. (3-8).  

max

max

2 2

max 2 2

2 cos cos
sin( )3

1 cos cos (1 sin ) (1 sin ) cos cosln
2 sin( ) (1 sin ) (1 sin ) 3 sin( )

2 cos cos (1 sin ) (1 sin ) cos cos (sin sin )ln 4
sin ( ) (1 sin ) (1 sin )3 3 sin (

x

x

p qn
p - q

p q q p p qn
p - q q p p - q

p q q p p q q pm
p - q q p

θ

−= ±

 + − −= ± − + − + 

+ − −= ± −
− + )p - q

 
 
 

 (3-8) 

Herein, the p and q are two parameters, which satisfy either of the following 

inequalities. 
3;

2 2 2 2
p q q pπ π π π− ≤ < ≤ ≤ < ≤  

Three special curves on the yield surface were discovered by Hodge (1961). One is 

given by   

  2
max max max max

1 30; 1
2 4x x xm n n nθ= = ± −  (3-9) 

The other two are given by  

 2
max max max max

2 30.5 ; (1 )
43x x xn n m nθ = = ± −   (3-10)  

(1) Simplification of Mises’ Yield Condition Equation  

The characteristic curves for maxxn = 1.0, 0.8, 0.6 , …, -0.6, -0.8, -1.0 on Mises’ yield 

surface, and the three special curves in Eqs. (3-9) and (3-10) are plotted in Fig. 3-17. It 

can be seen that the yield surface is antisymmetric with respect to the plane 

max max0.5 xn nθ = . The projections of these curves for max 0xn ≤  onto the plane max 0xn =  
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are shown in Fig. 3-18. The shape of these curves resembles an ellipse and are symmetric 

with respect to the plane maxxm = 0. The vertexes of these ellipselike curves lie on the 

curves of Eqs. (3-9) and (3-10). The curves for max 0xn >  are omitted here because of 

antisymmetry. 

 

Fig. 3-17 Characteristic curves on Mises’ yield surface of axisymmetrically loaded 
revolutional shells with Perfectly-plastic material 

 

   

Fig. 3-18 Projections of characteristic curves onto the plane max 0xn =  
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Denoting the center as (0, c), the semi-major axis in the maxnθ  direction a, and the 

semi-minor axis in the maxxm  direction b, as indicated in Fig. 3-18, these ellipselike 

curves are assumed to satisfy the form 

 max max 1
i j

xn c m
a b

θ − + =   (3-11)  

The c is set to be 

 max0.5 xc n=  (3-12a) 

Then, a and b can be obtained based on Eqs. (3-9) and (3-10). 

 
max

2
max ( 0) max

31
4xm xa n c nθ == − = −   (3-12b) 

 max max

2
max ( 0.5 ) max

2 3(1 )
43xx n n xb m n

θ == = −   (3-12c) 

The i and j are determined by a curve-fitting approach. 

 2.5; 2i j= =   (3-13) 

 

Consequently, substitutions of Eqs. (3-12) and (3-13) into Eq. (3-11) give the 

simplified explicit formula for Mises’ yield surface. 

 
2.5 2

max max max
22
maxmax

2 2 3 1
4 34 3

x x

xx

n n m
nn

θ  − + =  −−  
  (3-14) 

The expression of mxmax can be obtained as 

 
2.5

max max
max max 2

max

22 3(1 ) 1
43 4 3

2 x
x x

x

n nm = n
n

θ −± − −
−

  (3-15) 

The characteristic curves for maxxn =-1.0, -0.8, -0.6, …, 0 in Eq. (3-14) are compared 

with those in Eq. (3-8). Good agreement can be observed as shown in Fig. 3-19. 
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Fig. 3-19 Comparison of the characteristic curves between Mises’ yield surface equation 
and the simplified approximation 

(2) Validation of the Simplified Formula by FEA Results  

Figure 3-20 shows the comparison between the interaction of maxnθ  with maxxm  

along with the increase of maxnθ  in FEA and the corresponding curves in Eq. (3-14). It 

can be found that the data of stress resultants in the range max 0xm >  for FEA models 

with different diameter-thickness ratios all approximately lie on the relevant curves in Eq. 

(3-14). Whereas, when max 0xm < , they do not. The reason might be the influence of shear 

stress resultant on yield condition. 

Based on the above analysis, the simplified formula in Eq. (3-14) for Mises’ yield 

surface is found to be close to the original one in Eq. (3-8). The proposed formula in Eq. 

(3-14) is validated by comparing with the stress resultants of FEA models with 

perfectly-elastic plastic material.  
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(a) Diameter-to-thickness ratio / 41.0d t ≈   

 

(b) Diameter-to-thickness ratio / 32.0d t ≈  

 

(c) Diameter-to-thickness ratio / 26.0d t ≈  
Fig. 3-20 Comparison of the simplified interaction of stress resultants with the results of 

the FE models with perfectly-plastic material 
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3.5.2 Prediction of Full Plastic Strength 

3.5.2.1 Equilibriums in the Cylindrical Wall  

Limit analysis is employed to derive the maximum strength of models with 

perfectly-plastic material. The external forces acted at cylinder edge are shown in Fig. 

3-21. Compressive force R  and frictional force Rμ , which are transmitted from 

conical wall to cylindrical wall, are equivalent to radial force rF , axial force xF  and 

axial bending moment xF tη  applied at the center of sect. A. It should be noted that they 

are defined to be applied in 360 degrees in hoop direction. The tη  is the radially 

outward eccentricity of axial force xF , in which η  means the eccentricity ratio in sect. 

A. The exact value of η  is difficult to be derived from the point of plastic theory of solid 

mechanics. In this study, it is obtained by  

 

/2

max A/2
/2

max A/2

t

xt
t

xt

s zdz

t s dz
η −

−

= 


  (3-16) 

where, z is the radially outward distance from the middle surface of cylindrical walls.  

The values of η  are listed in Fig. 3-22. It is found that their average is -0.20 with a 

COV of 0.12. In this study, η  of all the models is assumed to be a constant -0.20. 

 

 

Fig. 3-21 Equivalent external forces at maximum load in cylindrical wall  
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Fig. 3-22 Distribution of eccentricity ratio η  along with the increase of maxxn  

 

The equilibriums for external forces are given by  

 cos sinxF R Rμ α α= +   (3-17a) 

 cos sinrF R Rα μ α= −  (3-17b) 

Combining Eqs. (3-17a) and (3-17b) by eliminating R , The relationship between xF  

and rF  is expressed as 

  
1 tan
tanr xF Fμ α

α μ
−= −

+   (3-18) 

Maximum strength maxP  can be given by 

 max xP F= −   (3-19) 

In addition, the axial external force is equal to the axial stress resultant numerically. 

 maxx x yF d n tπ σ= ⋅   (3-20) 

where, d is the center-to-center diameter of cylinder. 
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3.5.2.2 Proposed Plastic Collapse Mechanism 

Plastic collapse mechanism based on upper bound theory has been employed 

successfully for estimating the collapse strength of cylindrical shells under radial pressure 

or along with axial compression (Drucker 1954, Eason and Shield 1955, Onat 1955, 

Tsang and Harding 1984, et al.). Plastic hinges are assumed to absorb the strain energy 

done by axial bending moment and the straight segments between plastic hinges are 

assumed to absorb the strain energy done by hoop stress resultant. Tsang and Harding 

(1984) considered the influence of axial stress resultant on the failure mechanism. 

Especially for plastic hinges, they assumed that bending deformation takes places under 

plane strain condition. But the evidence for the interaction between axial stress resultant 

and axial bending moment has not been clear.  

 

 

Fig. 3-23 Proposed plastic collapse mechanism for models with cylinder edge failure 
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bending moment max ABxm  is equal to zero because of the assumption that segment AB is 

in a straight line. Substitution of max AB 0xm =  into Eq. (3-14) gives the interaction 

between axial stress resultant and hoop stress resultant in the segment AB. 

 2
maxAB max max

1 3+ 1
2 4x xn n nθ = −   (3-21) 

where, max ABnθ  is positive, and maxxn is assumed to be uniform along x direction. 

For plastic hinge B, max B 0θε =  because of the assumption of rigid-plastic material. 

Assuming t L  and very long (infinite) in hoop direction, plastic hinge B is under 

cylindrical bending. In this case, plane strain condition can be employed (Save, 1997). It 

indicates that  

  max B max
1
2 xn nθ =        (3-22) 

and 

 2
max B max

2 3( 1 )
43x xm n= − +   (3-23) 

3.5.2.3 Derivation of Virtual Work Equations 

Based on the principle of virtual work, the equilibrium of external work dW and 

dissipation of internal energy dU  for the whole mechanism in 360 degrees in hoop 

direction during a virtual change of rotation dφ  is given by  

 d =dU W   (3-24)   

where 

 1 2 3d d d dU U U U= + +     

1 2 3d d d dW W W W= + +  

Herein, for internal energy, 1dU  is done by hoop stress resultant max yn tθ σ , 2dU  is 

done by axial stress resultant maxx yn tσ  and 3dU  is done by axial bending moment 
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2
max

1
4x ym tσ ; For external work, 1dW  is done by radial force rF , 2dW  is done by axial 

force xF  and 3dW  is done by axial bending moment xF tη .  

The components of dU and dW  are derived as follows.  

 

 

Fig. 3-24 Axial shortening compatible with the circumferential stretching of the segment 
AB in plastic collapse mechanism 
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A small segment of length dl  is considered, as shown in Fig. 3-24. Increase in 
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 1d ( )[sin( d ) sin ] ( )cos dU L l L lφ φ φ φ φΔ = − + − ≈ −   (3-25) 

The strain rate in hoop direction is given by 

 max
( ) cos d

/ 2 ( )sin
L l

d L lθ
φε φ

φ
−=

+ −
   (3-26) 

This may be approximated to  

  max
( )cos d

/ 2
L l
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The 1dU  during the increase in length in hoop direction for the whole length of the 

mechanism can be obtained as  

 
max AB

1 max AB max0 0

2
max AB

cos d
d d ( )d

/ 2
cos d

L Ly
y

y

n t
U d n t l d L l l

d
n tL

θ
θ θ

θ

σ φ φ
π σ ε π

π σ φ φ

= = −

=

 
  (3-28) 

② 2dU  

Since the deformations in the plastic failure mechanism except plastic hinge B take 

place under Mises’ yield condition as shown in Eq. (3-29), a flow rule must be adopted to 

determine the change in the strain rate (Save, 1997).  

 2 2
max max AB max max AB 1 0x xf n n n nθ θ= + − − =   (3-29) 

Thus, 

 max max maxAB
max

= (2 )x x
x

f n n
n θε λ λ∂= −

∂
   (3-30) 

and 

 max maxAB max
maxAB

= (2 )x
f n n

nθ θ
θ

ε λ λ∂= −
∂

   (3-31) 

where λ  is a positive scalar factor. 

Combining Eqs. (3-30) and (3-31) gives 

 max max AB
max max

max AB max

2
2

x
x

x

n n
n n

θ
θ

θ

ε ε−=
−

    (3-32) 

Substituting Eq. (3-27) into Eq. (3-32) and integrating maxxε , the shortening in 

length 2d UΔ  in the longitudinal direction for the whole length of the mechanism, as 

shown in Fig. 3-24, is given by 

 

max max AB
2 max0 0

max AB max

2 max max AB

max AB max

2 cos dd d ( )d
2 / 2

2 cos d
2

L L x
U x

x

x

x

n nl L l l
n n d

n nL
n n d

θ

θ

θ

θ

φ φε

φ φ

−Δ = = −
−

−=
−

 

  (3-33) 
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The 2dU  can be obtained by 

 
2 max 2

2 max max AB
max

max AB max

d d
2 cos d
2

x y U

x
x y

x

U dn t
n nn tL
n n

θ

θ

π σ

π σ φ φ

= Δ

−=
−

  (3-34) 

③ 3dU  

The 3dU  by axial bending moment 2
max B

1
4x ym tσ  is obtained by 

 2
3 max B

1d d
4x yU d m tπ σ φ= ⋅  (3-35) 

 

 

Fig. 3-25 Virtual deformation due to an incremental rotation of the plastic hinge 
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 1d cos drW F L φ φ=   (3-37) 

 

⑤ 2dW  

After the virtual change of rotation dφ , the virtual axial deformation by axial force 

xF , excluding the virtual strain deformation 2d UΔ in Eq. (3-33), is defined as 2d WΔ  in 

Fig. 3-25.  

 2d cos( d ) cos sin dW L L L aφ φ φ φ φΔ = + − ≈ −    (3-38) 

Thus, the work 2dW  can be written as  

 
2 2 2

2 max max AB

max AB max

d (d d )
2 cos( sin d d )
2

x W U

x
x

x

W F
n nF L L
n n d

θ

θ

φφ φ φ

= Δ + Δ
−= − +

−
     (3-39) 

⑥ 3dW   

The work 3dW  by external axial bending moment is given by  

 3d dxW F tη φ= −    (3-40)  

Substituting Eqs. (3-28), (3-34), (3-35), (3-37), (3-39) and (3-40) into Eq. (3-24) and 

eliminating dφ  give the general equation that 

 2 2
max AB max B

1cos sin cos
4r x x y x yF L F L F t n tL dm tθφ φ η π σ φ π σ− − = −  (3-41) 

3.5.2.4 Proposed Formula for Full Plastic Strength  

Based on the small deformation theory, sin ,  cos 1φ φ φ= = . Eq. (3-41) can be 

simplified to be that 

 2 2
max AB max B

1
4r y x y x xF L n tL dm t F t F Lθπ σ π σ η φ= − + +           (3-42) 

Dividing the both sides of Eq. (3-42) by L  and substituting Eq. (3-19) into it, rF  can 

be expressed as 



 

74 

 

 
2

max B
max AB max

4
4

x y x
r y

dm t F t
F n tL P

Lθ

π σ η
π σ φ

− +
= + −   (3-43)  

Based on upper bound theorem, rF  can be obtained by d 0
d

rF
L

= . Thus, 

 max B max max AB max4r x x yF m n n t dt Pθη πσ φ= − + ⋅ −   (3-44) 

Herein, η is assumed to be a constant of -0.2 as shown in Fig. 3-21, and L  is given by 

 max B max

max AB

4
4

x xm nL dt
nθ

η− +=   (3-45) 

Substituting max ABnθ  in Eq. (3-21) and max Bxm  in Eq. (3-23) into Eq. (3-45), L  is 

finally obtained as 

 
max max

2
max max

2 3(1 ) 0.8
1 43
2 1 31

2 4

2
x x

x x

n n
L dt

n n

− −
= ⋅

+ −
  (3-46) 

The length of plastic region L  varies with the increasing of axial stress resultant. Its 

prediction in Eq. (3-46) is compared with the corresponding results of FE models with 

perfectly plastic material, as shown in Fig. 3-26. The average of the ratios is 0.99, with a 

standard deviation 0.08. Good agreement can be found with each other. 
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Fig. 3-26 Comparison of the predicted length of plastic region with that of FE models 
with perfectly plastic material 

 

Substituting Eqs. (3-18), (3-19), (3-20), (3-21) and (3-23) into Eq. (3-44) and 

dividing the both sides of Eq. (3-44) by yd tπ σ , maximum axial stress resultant maxxn  is 

obtained by the implicit expression as follow: 

 maxxn ψ γ χ= − ⋅ ⋅     (3-47) 

where, ψ  is a factor in which the interaction of axial stress resultant with hoop stress 

resultant and axial bending moment in the failure mechanism is considered. 

 2 2
max max max max

2 3 1 3(1 ) 0.8 1
4 2 43 x x x xn n n nψ = − − + −    (3-48) 

The γ  is a reduction factor by considering the external work of axial force.  
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The χ  is a parameter including the dimensionless quantities of diameter-to-thickness 

ratio d t , friction coefficient μ , and semi-convex angle α . It is the fundamental 

10 15 20 25
10

15

20

25

LFEA (mm)

LPRED

(mm)

Average 0.99
St.dev 0.08



 

76 

 

parameter for calculating maximum strength. 

 tan
1 tan

t
d

α μχ
μ α

+=
−

  (3-50) 

  

The arrays of (ψ , maxxn ) where max [0, 0.8]xn ∈ −  are plotted in Fig. 3-27. The 

variation of ψ  with maxxn  may be closely approximated by the quadratic equation as 

 2
max max0.87 0.16 1.07x xn nψ = − − +   (3-51) 

The values of ψ  for all the models are also plotted. It can be seen that the smallest one 

is low to about 0.6. The relationship between γ  and φ  for all the FE models is shown 

in Fig. 3-28. It is found that as φ  increases, γ  almost keeps being constant except for 

the model Nos. 7_µ04, 8_µ04 and 14_µ04. Because high axial stress resultants make their 

radial deformations a little more complicated than those of other models. The average of 

γ  is 0.93, with a small COV of 0.04. Thus, it can be simplified to be 0.93 in this study.  

 

 

Fig. 3-27 Plot of ψ  and the relevant values of FEA models in series I 
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Fig. 3-28 Relationship between γ  and φ  of FEA models in series I 

 

Substituting Eq. (3-51) and 0.93γ =  into Eq. (3-47), maxxn  can be expressed in the 

following quadratic equation. 

 2
max max max(0.81 0.15 1.00)x x xn n n χ= + −   (3-52) 

The solution of maxxn  is 

 
2

max
0.15 1 3.26 0.3 1

1.62xn
χ χ χ

χ
− + − − +

=   (3-53) 

 Therefore, maxP  can be finally expressed as 

 
2

max max
0.15 1 3.26 0.3 1

1.62x y yP n dt dt
χ χ χ

π σ π σ
χ

+ + − +
= − =   (3-54) 

Comparison of max PREDP −  expressed in Eq. (3-54) with max FEAP −  is shown in Fig. 

3-29. The average of the ratios is 1.02 with a quite small COV of 0.02. Formula in Eq. 

(3-54) can predict well the maximum strength of models with perfectly plastic material. It 

means that the full plastic strength pP  can be predicted by   

  
20.15 1 3.26 0.3 1

1.62p PRED yP dt
χ χ χ

π σ
χ−

+ + − +
=   (3-55) 
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Comparison of p PREDP −  with p FEAP −  is shown in Fig. 3-30. The average of the 

ratios is 0.98 with a quite small COV of 0.04. Therefore, full plastic strength of specimens 

with cylinder edge failure can be predicted well by the proposed formula.  

 

  

Fig. 3-29 Comparison of predicted maximum strength of models with the relevant FEA 
results 

 

Fig. 3-30 Comparison of predicted full plastic strength of specimens with the relevant 
effective FEA results 
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3.5.3 Prediction of Collapse Strength 

Because of the strain hardening effect of mild steel material, the strength continues 

to increase after full plastic strength arrives. A simple way to prediction collapse strength 

is multiplying full plastic strength by an enhancement factor ρ . Based on the assumption 

of uniaxial stress state, it is usually assumed to be /u yσ σ  (Morita 1988) or 

( ) / (2 )y u yσ σ σ+  (Kuwamura et al. 2015). The latter one is smaller than the former one 

and gives a little safer prediction of collapse strength. But if the interaction of axial stress 

resultant with hoop stress resultant and axial bending moment is considered, the stress 

state in the failure mechanism will become multi-axial. Thus, the two factors of /u yσ σ  

and ( ) / (2 )y u yσ σ σ+  are not reasonable to be employed in this study. The factor ρ  is 

assumed to be the average of the ratios of collapse strength to full plastic strength of both 

experimental specimens and FEA models, which is shown in Fig. 3-31. It is found that the 

average is 1.08 with a COV of 0.05. Collapse strength uP  is predicted by 

 -u PRED p PREDP Pρ −=  (3-56)  

where, 1.08ρ = . 

The predicted collapse strength uP  in Eq. (3-56) and the previous formulae 

proposed by Kuwamura et al. (2005) and Ito et al. (2008) are compared with those of FEA 

models. The ratios along with xun  are shown in Fig. 3-32. It can be found that the COV 

of the new proposed formula in Eq. (3-56) are much smaller than those of previous ones. 

The precision of Eq. (3-56) is verified. 
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Fig. 3-31 Ratios of collapse strength to full plastic strength for both experimental and 
FEA specimens 

 

Fig. 3-32 Comparison of collapse strength between the proposed formula and the 
previous ones 

3.5.4 Prediction of General Yield Strength  

General yield strength of connections was first studied by Johnston. B.G. (1939b). 

106 tests of differently proportioned steel pin-connected plates were undertaken and then 
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the prediction of general yield strength. However, most of them are based on empirical 
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method (Kurobane et al. 1984, Kamba et al. 1998, et al.). Moreover, as local region at the 

top edge of cylindrical wall has entered into plastic before general yield load arrived, 

Elastic solution from bending theory of shells cannot be applied. In this study, it is 

predicted based on the formulae for full plastic strength, which was derived precisely by 

limit analysis. The reduction factor is set to be ξ . It is assumed to be the average of the 

ratios of Py to Pp for both experimental specimens and FEA models. The results of the 

ratios are plotted in Fig. 3-33. It is found that the average is 0.90 with a small COV of 

0.05. Therefore, general yield strength Py is predicted by 

 y PRED p PREDP Pξ− −=  (3-57) 

where, 0.90ξ = . 

The predicted values of general yield strength are compared with those in FEA, as 

shown in Fig. 3-34. It can be seen that the average value is 1.01 with a COV of 0.07. The 

formula in Eq. (3-57) can predict well the general yield strength of models. 

 

 

Fig. 3-33 Ratios of Py to Pp for both experimental and FEA results 
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Fig. 3-34 Comparison of the predicted general yield strength of specimens with effective 
FEA results 

3.6 Summaries 

This chapter focuses on strength of metal touch connections with cylinder edge 

failure under axial compression. Based on the above analysis, the following conclusions 

can be obtained. 

(1) The effectiveness of axisymmetric solid model for predicting the strength of the 

socket connection under axial compression is validated. The friction coefficient 

between cone and cylinder is assumed to be a constant during the deformation process. 

For practical design work, it can be assumed to be 0.20;  

(2) The correlation among axial stress resultant, hoop stress resultant and axial bending 

moment in the plastic region of cylindrical wall is found to be significant; 

(3) The radial deformation at the top edge of cylindrical wall at ultimate load is found to 

be very small, by comparing it with the length of plastic region; 

(4) The failure of cylinder edge is controlled by “plastic collapse mechanism” based on 

the proposed criterion; 

(5) The simplification of Mises’ yield condition for axisymmetrically loaded revolutional 
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shells with perfectly-plastic material is proposed and then validated by comparing it 

with relevant FEA result; and 

(6) Easy-to-use formula for predicting full plastic strength is derived by limit analysis. 

The collapse and general yield strength of the experimental specimens is proposed 

based on the results of full plastic strength. Their precision is proved by comparing 

them with previous ones and the effective FEA results. 
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CHAPTER 4 STRENGTH OF METAL 
TOUCH CONNECTIONS WITH TAPERED 
RING FAILURE 

4.1 Introduction 

Rings are often employed to strengthen cylindrical shell structures when cylindrical 

walls sustain compression or tension in hoop direction (Teng et al. 1991, Chen el al. 

1998). Welding is usually added between ring and cylindrical wall, in which the ring is 

subjected not only to radial expansion or contraction, but also to axial bending. In this 

study, it is interesting that the ring is metal-touched with cylindrical wall. A failure 

mechanism was proposed by Kuwamura et al.(2005a) based on the assumption of 

uniaxial stress state. Fujimoto and Kuwamura (2009) updated it by considering the 

contact of the bottom edge of ring with cylindrical wall. But the ultimate behavior of ring 

was not investigated clearly. Moreover, the influence of axial stress resultant on the 

failure mechanism was also not considered.  

In this chapter, the effectiveness of FEA models is first validated by comparing their 

strength and deformation with experiments. The friction property in the contact region 

between cone and cylinder is determined. The influence of friction coefficient in the 

contact region between ring and cylinder on the strength of connections is analyzed. Then, 

the changing distributions of stress resultants in cylindrical wall and tapered ring under 

increasing load are studied. The ultimate deformation of connections is investigated. The 

failure mode is judged by the proposed criteria for both cylindrical shell and tapered ring. 

Finally, the full plastic strength is derived based on limit analysis. The prediction of 

collapse strength and general yield strength is undertaken based on the formula for full 

plastic strength. Their precision is validated by comparing them with the experimental 
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and FEA results and previous equation.  

4.2 FE Modeling 

 

Fig. 4-1 Details of FEA axisymmetric model with tapered ring failure 

4.2.1 General  

The details of FEA axisymmetric model are shown in Fig. 4-1. Mesh sizes in 

cylindrical and conical walls are the same as those in Chapter 3. Setting the mesh size of 

ring to be 0.25mm, twice that in the contact region of cylindrical wall, convergent 

ultimate strength of the connection can be obtained. Figure 4-2 shows stress-strain curves 

of mild steel used in tapered rings based on the results of coupon test. Tapered rings with 

thicknesses of 6, 9, and 12mm were produced from the plates with thicknesses of 9, 12, 

and 16mm respectively. The s~ep curves of the material are shown in Fig. 4-3. 

Perfectly-elastic plastic material is also defined for the following FE analysis, in order to 

verify the precision of proposed formula for full plastic strength of models. 
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Fig. 4-2 True stress-strain curves for material SM490 of tapered rings 
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Fig. 4-3 s~ep curves input in ABAQUS for materials of tapered rings 

4.2.2 Effectiveness of FE Models 

Amontons-Coulomb’s friction law with formulation of Penalty is adopted and 

friction coefficient µ is assumed to be a constant during the whole deformation process. 

The variation of collapse strength in FEA along with the increase of µ1, which is between 

conical wall and cylinder edge, is shown in Fig. 4-4. It can be seen that as µ1 increases, 

collapse strength of taper ring failure increases quickly. The collapse strength of FE 

model becomes about equal to that of experimental specimen by calibrating the value of 

µ1. As a result, the average of µ1 is 0.28, with a COV of 0.39, as shown in Table 4-1. It is a 

little greater than that of models with cylinder edge failure shown in Table 3-1. The 

reason might be the contact surface between cone and cylinder becomes a little rougher 

due to the confinement effect of tapered ring. The µ2 in the contact region between ring 

and cylinder, has no influence on the strength of connection, as shown in Fig. 4-5. But if 

µ2 is set to be 0.0, the iteration is difficult to become convergent before ultimate load 

arrives, even if the minimum increment size is defined as 10-50. Thus, µ2 is set to be 0.2 

for all the models. The full plastic strength and general yield strength of models are then 

compared with those of experimental specimens. It is found that the averages of ratios are 

1.02 for full plastic strength and 0.99 for general yield strength, with small COV of 0.11 

and 0.06, respectively.  
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Then, the maximum strength Pmax of models with perfectly-plastic material is 

compared with the full plastic strength Pp of models with actual material, as shown in Fig. 

4-6. The average of the ratios is 0.98, with a small standard deviation of 0.05. It is found 

that the method of “K0/6 slope factor” proposed by Tateyama (1988) is effective to 

determine the full plastic strength of models with tapered ring failure.  

 

 

Fig. 4-4 Variation of collapse strength of models with tapered ring failure along with the 
increase of friction coefficient between conical wall and cylinder edge 
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Table 4-1 Comparison of strength between FEA and experiments for models in series II  

Model 
NO. 

Experiments FEA Comparison 

Collapse 
strength 

Full 
plastic 

strength 

General 
yield 

strength 
COF 

Collapse
strength

Full 
plastic

strength

General 
yield 

strength Pu-FEA/ 
Pu-EXP 

Pp-FEA/ 
Pp-EXP

Py-FEA/ 
Py-EXP 

Pu-EXP Pp-EXP Py-EXP 
µ1 µ2 

Pu-FEA Pp-FEA Py-FEA 

(kN) (kN) (kN) (kN) (kN) (kN) 

26 182.4 165.2 160.1 0.16

0.20

189.0 170.5 160.0 1.04 1.03 1.00 

27 342.3 287.5 260.0 0.23 328.6 273.5 242.4 0.96 0.95 0.93 

28 420.0 333.3 293.3 0.26 413.8 395.0 309.3 0.99 1.19 1.05 

29 277.0 257.0 230.4 0.22 270.1 257.0 244.6 0.97 1.00 1.06 

30 509.0 417.9 356.4 0.35 503.3 467.3 359.7 0.99 1.12 1.01 

35 530.6 484.5 428.6 0.50 432.6 400.0 388.2 0.82 0.83 0.91 

37 472.7 432.0 338.0 0.27 469.0 431.4 328.8 0.99 1.00 0.97 

Avg. 
 

0.28
 

0.97 1.02 0.99 

COV 0.39 0.07 0.11 0.06 

Note: µ1 is the friction coefficient in the contact region between cone and cylinder. 
µ2 is the friction coefficient in the contact region between cylinder and ring. 

 

 

Fig. 4-5 Comparison of load versus axial deformation curves for model No.27 with 
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Fig. 4-6 Comparison of maximum strength to full plastic strength of models with tapered 
ring failure  

 

 

Fig. 4-7 Ultimate behavior of tapered ring in experimental specimen No. 35 
 

In addition, the load versus axial deformation curves and ultimate deformation of FE 

models are compared with the relevant experimental results, as shown in Appendix B. 

The effectiveness of FE models is validated. However, it should be mentioned that the 

strength of model No.35 obtained by FEA are much smaller than those from experiment 

even if µ1 is set to be 0.5, which is already a quite large value for general surface made of 

mild steel. The ultimate behavior of tapered ring in experimental specimen No. 35 is 

shown in Fig. 4-7. It can be seen that tapered ring upward rotated to contact with conical 

wall finally. The confinement effect of ring simulated in FE model No. 35 might be 
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smaller than that in experimental specimen. 

4.2.3 Discussion on Friction Coefficient for Practical Design 

As stated in section 4.2.2, the friction coefficient between cone and cylinder is 

somewhat greater than that of models with cylinder edge failure. The latter is advised to 

be 0.2 for practical design. In order to make the design work a little simpler and more 

convenient, it is also assumed that µ1 = 0.20 for models with tapered ring failure.  

The strength in FEA is then compared with experimental results. The ratios are listed 

in Table 4-2. It is found that the averages of ratios are 0.84, 0.87 and 0.92, for collapse 

strength, full plastic strength and general yield strength respectively. The values of COV 

are all about 0.2, because the ratios of model No. 35 are much smaller than others. The 

prediction of strength by assuming µ1 = 0.20 can be acceptable in practical design.  

 
Table 4-2 Comparison of strength between FEA and experiments by assuming µ1 = 0.20 

for models with tapered ring failure 

Model 
NO. 

Experiments FEA Comparison 

Collapse 
strength 

Full 
plastic 

strength 

General 
yield 

strength 
COF 

Collapse
strength

Full 
plastic 

strength

General 
yield 

strength Pu-FEA/ 
Pu-EXP 

Pp-FEA/ 
Pp-EXP

Py-FEA/ 
Py-EXP 

Pu-EXP Pp-EXP Py-EXP 
µ1 µ2 

Pu-FEA Pp-FEA Py-FEA 

(kN) (kN) (kN) (kN) (kN) (kN) 

26 182.4 165.2 160.1 

0.20 0.20

203.5 186.2 181.0 1.12  1.13 1.13 

27 342.3 287.5 260.0 305.9 260.0 236.8 0.89  0.90 1.01 

28 420.0 333.3 293.3 357.3 313.8 287.5 0.85  0.94 0.91 

29 277.0 257.0 230.4 260.0 252.6 236.5 0.94  0.98 1.03 

30 509.0 417.9 356.4 369.3 319.7 300.0 0.73  0.77 0.84 

35 530.6 484.5 428.6 276.9 250.0 240.7 0.52  0.52 0.56 

37 472.7 432.0 338.0 407.1 381.2 307.8 0.86  0.88 0.92 

Avg. 
 

0.84 0.87 0.92 

COV 0.18 0.19 0.18 

Note: µ1 is the friction coefficient in the contact region between cone and cylinder. 
µ2 is the friction coefficient in the contact region between cylinder and ring. 
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4.3 FE Analysis Results 

4.3.1 Distributions of Stress Resultants 

Model No.27 is taken as a typical case to investigate the changing distributions of 

stress resultants. Based on the results in Chapter 3, it has been known that for cylindrical 

wall, nx can be assumed to be distributed uniformly along axial direction at each load, but 

the changing distributions of nθ  are a little difficult to assimilate due to the interaction 

among it with other stress resultants. Thus in this chapter, changing distributions of axial 

bending moment xm  and shear stress resultant rxq  in cylindrical wall, at general yield 

load Py, full plastic load Pp and ultimate load Pu respectively, are focused. Then, the hoop 

stress distribution in tapered ring is also analyzed. 

The definitions of Sects. A and B are the same as those introduced in section 3.3.2. 

As shown in Fig. 4-8(a), |mx| in each section increases as load increases, especially near 

Sect. B. As shown in Fig. 4-8(b), the values of rxq  at Py and Pp decreases almost in a 

straight line from Sect. A to Sect. B. But its distribution at Pu has a quite different type. 

The value of rxq  at Pu in Sect. A is much larger than those at Py and Pp. It decreases 

rapidly to a value which turns to be smaller than those at Py and Pp. The reason is 

explained as follow.  

Figure 4-9 shows the changing distributions of resistance zone by ring under 

increasing load. It can be found that for the cases of both Py and Pp, the resistance zones 

by ring are almost at the top of cylindrical wall and a little higher than Sect. A. But it 

becomes a little lower than Sect. A when Pu arrives. Thus, shear stress resultant in Sect. A 

at Py or Pp only includes the value produced in cylindrical wall. While, when Pu arrives, it 

also includes the radial resistance by tapered ring. In addition, it can be seen that the 

bottom edge of tapered ring does not contact with cylindrical wall when Pu arrives 

because the radial stress sr is very small.   
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(a) Axial bending moment             (b) Shear stress resultant  
Fig. 4-8 Changing distributions of stress resultants under increasing load for model 

No.27 
 

   

(a) At Py                     (b) At Pp                  (c) At Pu 
Fig. 4-9 Changing distributions of resistance zone by the ring under increasing load 

for model No.27 
 

   

(b) At Py               (b) At Pp             (c) At Pu 
Fig. 4-10 Changing distributions of hoop stress in the ring under increasing load for 

model No.27 
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increasing load. It is seen that at both Py and Pp, the region near to bottom edge is under 

hoop compression, because it rotates downward when expanding outward. However, 

when Pu arrives, the whole section becomes under hoop tension. 

4.3.2 Distributions of Ultimate Deformation 

The ultimate behavior of the top edge of cylinder and tapered ring in model No.27 is 

illustrated in Fig. 4-11. It can be found that the out of plane bending deformation of 

cylinder edge makes the tapered ring rotate downward.  

The ultimate radial deformation in the region AB for model Nos. 26, 27 and 28 are 

shown in Fig. 4-12. Model No. 4 without the confinement by ring is employed as a 

comparison. It is found as the thickness of ting increases, the radial deformation will 

become greater. But the ratios of Aruw  in sect. A to the length L  of region AB are 

smaller than 0.1, the rotation of cylinder edge could be analyzed based on the assumption 

of small deformation theory.  

 

 

Fig. 4-11 Ultimate deformation of cylinder edge and tapered ring in model No.27 
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Fig. 4-12 Ultimate radial displacement distribution along x direction for models with 
different kinds of ring 

4.4 Judgement of Failure Modes  

4.4.1 Definition of the Criteria of Failure Mode 

The proposed criterion for plastic collapse of cylindrical wall is the same as that 

introduced in section 3.4.1. For tapered ring, another way for defining the failure mode is 

employed.  

When the open mouth of cylinder expands like a trumpet, the ring mainly sustains 

hoop tension. The ratio of its average hoop stress Rsθ  to yield stress yRσ  is defined as  

 
R

yR

sk θ

σ
=   (4-1) 

If 1.0k ≈ , hoop tension failure is assumed to occur in tapered ring. It should be noted 

that  

(1) Because of strain hardening effect of materials, ku at ultimate load is possible to 

exceed 1.0. 

0 0.5 1 1.5 2

−30

−25

−20

−15

−10

−5

0

Sect. A

Sect. B

Radial displacement wru

Location
x

 (mm) NO.4-tR=0 mm nxu=-0.24
NO.26-tR=6 mm nxu=-0.40
NO.27-tR=9 mm nxu=-0.69
NO.28-tR=12 mm nxu=-0.88



 

97 

 

(2) From the engineering point of view, 0.8uk ≥  at ultimate load is acceptable for the 

determination of hoop tension failure.  

4.4.2 Failure Mode of Models 

Figure 4-13 shows the changing distributions of ratio r at Py, Pp and Pu in the 

cylindrical wall of model No.27. It is found that r increases as the load increases for each 

section. The r in Sect. B at Pu becomes a little larger than 1.0. It indicates that a plastic 

hinge forms there.  

The values of r in Sect. B for all the models with tapered ring failure are listed in Fig. 

4-14. It is seen that all the data are close to 1.0. Therefore, the failure of cylinder edge can 

be assumed to be controlled by “plastic collapse mechanism”.  

In addition, Fig. 4-15 shows the values of ratio ku at ultimate load defined in Eq. (4-1) 

for all the models. It is seen that most of them are larger than 1.0 except for model No. 28, 

which is 0.88. The hoop stress distribution in tapered ring of model No. 28 is shown in 

Fig. 4-16. It is found that the region near to the bottom edge of ring is still under hoop 

compression, even if Pu arrives. It is the reason why ku of No. 28 is smaller than 1.0. But 

as the ku of No. 28 is greater than 0.80, it can be assumed that the failure of tapered rings 

is controlled by “Hoop tension mechanism”. The proposed failure mode for models with 

tapered ring failure is shown in Fig. 4-17. 
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Fig. 4-13 Changing distributions of average equivalent stress in cylindrical walls 
under increasing load for model No. 27 

 

 

Fig. 4-14 Ratios of average equivalent stress to yield stress at ultimate load in Sect. B 
of models with actual material  
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Fig. 4-15 Ratios of average hoop stress to yield stress at ultimate load in the rings of 
models with actual material 

 

         

   Fig. 4-16 Hoop stress distribution in the ring of model No.28 at ultimate load 
 

 

Fig. 4-17 Proposed failure mode for models with tapered ring failure 
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4.5 Predictions of Strength  

4.5.1 Prediction of Full Plastic Strength  

4.5.1.1 Proposed Plastic Collapse Mechanism 

 

Fig. 4-18 External forces in plastic collapse mechanism for models  
with tapered ring failure 

 

The external forces in plastic collapse mechanism for models with tapered ring 
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ratio η  is simplified to be a constant of -0.20, which is the same as that in section 3.5.2.  

The equilibrium for external forces is given by  

 
1 tan
tanrC xF Fμ α

α μ
−= −

+   (4-2)  

The rRF  is obtained by  

 max2 R R
rR

R

AF
d

θσ=   (4-3) 

Herein, Rd  is the center-to-center diameter of ring, RA  is the sectional area of ring, and 

max Rθσ  is assumed to be equal to yRσ .   

4.5.1.2 Proposed Formula for Full Plastic Strength 

Based on the principle of virtual work, the equilibrium of external work dW and 

dissipation of internal energy dU  for the whole mechanism in 360 degrees in hoop 

direction during a virtual change of rotation dφ  is given by  

 d =dU W   (4-4) 

 where 

 1 2 3dU dU dU dU= + +      

 1 2 3dW dW dW dW= + +   

Herein, for internal energy, 1dU  is done by hoop stress resultant maxAB yP Pn tθ σ  in 

segment AB, 2dU  is done by axial stress resultant maxx yP Pn tσ  in segment AB and 3dU  

is done by axial bending moment 2
max B

1
4x yP Pm tσ  at plastic hinge B; For external work, 

1dW  is done by radial forces rCF  and rRF , 2dW  is done by axial force xF , and 3dW  

is done by axial bending moment x PF tη .   

The derivation process for Eq. (4-4) is the same as that introduced in section 3.5.2 
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and is omitted here. Based on small deformation theory, sinϕ=ϕ and cosϕ=1. The general 

equation based on Eq. (4-4) can be obtained. 

 ( ) 2 2
max AB max B

1
4rC rR x x P yP P P x yP PF F L F L F t n t L d m tθφ η π σ π σ− − − = −    (4-5) 

Dividing the both sides of Eq. (4-5) by L and substituting maxxF P= −  into Eq. (4-5), FrC 

can be expressed as 

 
2

max B
max AB max

4
4

P x yP P x P
rC yP P rR

d m t F t
F n t L P F

Lθ

π σ η
π σ φ

− −
= + − +   (4-6) 

Based on upper bound theorem, rCF  can be obtained by 
d 0
d

rCF
L

= . Thus, 

 max B max max AB max4 P
rC x x yP P rR

P

tF m n n t P F
dθη σ φ= − − − +   (4-7)  

where, 0.20η = − .  

The length of plastic region L  is given by 

 max B max

max AB

4
4

x x
P P

m nL d t
nθ

η− −=   (4-8)  

The interaction of stress resultants is assumed as follow, which is the similar to that 

in the failure mechanism of cylinder edge failure introduced in section 3.5.2. 

For segment AB:   2
max AB max max

1 3= 1
2 4x xn n nθ + −           (4-9)  

For plastic hinge B:  2
max B max

2 3(1 )
43x xm n= − −      (4-10) 

Substituting Eqs. (4-2), (4-3), (4-9) and (4-10) into Eq. (4-7) and then dividing the 

both sides of Eq. (4-7), maxxn  can be expressed by two parts, one is induced by 

cylindrical wall, and the other by tapered ring.  

 max max maxx x P x Rn n n ψ γ χ β γ χ= + = − ⋅ ⋅ − ⋅ ⋅   (4-11) 

Herein, the parameters of ψ , γ , and χ  are expressed in the same equations as those in 

section 3.5.2.  
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   2 2
max max max max

2 3 1 3(1 ) 0.8 1
4 2 43 x x x xn n n nψ = − − + −   (4-12) 

  

1 tan
tan

1 tan
tan

μ α
α μγ μ α φ

α μ

−
+= − +

+

 (4-13) 

 
tan

1 tan
P

P

t
d

α μχ
μ α

+=
−

 (4-14) 

The β  is the reinforcement factor of tapered ring on the maximum strength of models. 

 
2 yR RP

R yP P P P

Ad
d t d t

σ
β

σ
=  (4-15) 

 

The ψ  is approximated in the following quadratic equation  

 2
max max0.87 0.16 1.07x xn nψ = − − +   (4-16) 

In addition, the relationship between γ  and φ  for all the models with tapered ring 

failure is shown in Fig. 4-19. It can be found that γ  almost keeps being constant as φ  

increases. It is simplified to be the average of 0.92 in this study.  

 

 

Fig. 4-19 Variation of factor γ  with φ  for models with tapered ring failure  
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Substituting Eq. (4-16) and 0.92γ =  into Eq. (4-11), the variation of maxxn  with 

the parameters of β  and χ  is expressed in a quadratic equation. 

 ( )2
max max max0.80 0.15 0.98 0.92x x xn n n χ β χ= + − − ⋅   (4-17) 

Its solution is  

 
2 2

max
0.15 1 3.16 0.3 1 2.9

1.6xn
χ χ χ χ β

χ
− + − − + +

=  (4-18) 

 

Prediction of the maximum strength maxP  of models is finally obtained as  

 
2 2

max_
0.15 1 3.16 0.3 1 2.9

1.6PRED P P yPP d t
χ χ χ χ β

π σ
χ

− + − + +
=   (4-19)  

Comparison of max_ PREDP  expressed in Eq. (4-19) with the maximum strength  

max_ FEAP  of models is shown in Fig. 4-20. It can be found that the average of ratios is 1.02 

with a COV of 0.09. Well prediction of maximum strength is obtained. But it should be 

mentioned that because the average hoop stress max Rθσ  in tapered ring at maximum load 

for model No. 28 is smaller than yield stress, assuming max Rθσ  to be equal to yRσ will 

overestimated the strength of models. It means that the reinforcement effect of tapered 

ring on the maximum strength of connections would reach the highest limit, even though 

the thickness of ring in vertical direction increases. It should be noticed in practical 

design work.  

Full plastic strength of models can be obtained as 

2 2

_PRED max_ PRED
0.15 1 3.16 0.3 1 2.9

1.6p P P yPP P d t
χ χ χ χ β

π σ
χ

− + − + +
= =  (4-20) 

Comparison of p_PREDP  with the full plastic strength _p EXPP  of experimental 

specimens is shown in Fig. 4-21. It can be found that the average of ratios is 1.02 with a 

COV of 0.16. Well prediction of full plastic strength for connections with tapered ring 
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failure is obtained. 

 

Fig. 4-20 Comparison of predicted maximum strength of models with FEA results 
 

 

Fig. 4-21 Comparison of predicted full plastic strength of specimens with experimental 
results 
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4.5.2 Discussion on Reinforcement Effect of Tapered Ring on Strength 

of models 

Model Nos. 4, 26, 27 and 28 are employed to discuss the reinforcement effect of 

tapered ring on the maximum strength of models. The thickness of ring is 0mm, 6mm, 

9mm, and 12mm, respectively.  

Figure 4-22 shows the values of reinforcement factor β  and maximum axial stress 

resultant of them. Especially, for model No. 4, 0β = , which means tapered ring is not 

employed. For other models, as the thickness of ring increases, β  increases rapidly. 

Meanwhile, the load carrying capacity of models also becomes greater. The larger the 

value of β , the greater is maxx Rn  while the smaller is maxx Pn . The latter is because of 

the influence of high axial stress resultant on the failure mechanism of cylindrical wall. 

 

  

Fig. 4-22 Reinforcement effect of ring on the maximum strength of models with tapered 
ring failure 
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However, as stated above, it is found that not the whole section plays a role on the 

reinforcement effect on strength when the thickness of ring increases to some limit value. 

In addition, if axial stress resultant in cylindrical wall increases to be very great, unstable 

phenomenon, for example, the “elephant foot buckling” as observed in experimental 

specimen No. 31, will occur before tapered ring failure. The prediction of elephant foot 

buckling of cylindrical wall needs to be studied in future. 

4.5.3 Prediction of Collapse Strength 

The collapse strength of models is predicted in the same way as that in Chapter 3. 

The enhancement factor ρ  is assumed as the average of the ratios of collapse strength to 

full plastic strength for both experimental specimens and FEA models. Their average is 

1.13 with a small COV of 0.06, as shown in Fig. 4-23. Collapse strength uP  is predicted 

by 

 -u PRED p PREDP Pρ −=   (4-21) 

where, 1.13.ρ =  

The predicted values of collapse strength of uP  in Eq. (4-21) are compared with 

those by the previous formula (Fujimoto et al. 2005). The ratios of them to the 

experimental results are shown in Fig. 4-24. It can be found that the average of the ratios 

in the case of the proposed formula in Eq. (4-21) is 0.99 with a small COV of 0.13, much 

smaller than that by the previous one. Better prediction is obtained by the proposed 

method. 
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Fig. 4-23 Ratios of Pu to Pp for both experimental specimens and FEA models with 
tapered ring failure 

 

 

Fig. 4-24 Comparison of collapse strength between the proposed formula with the 
previous one for models with tapered ring failure  
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ratios are listed in Fig. 4-25. It can be found that the average is 0.87 with a small COV of 

0.08. The prediction of general yield strength Py is obtained by 

 -y PRED p PREDP Pξ −=  (4-22) 

where, 0.87ξ = .  

The predicted results are compared with those in experiments, as shown in Fig. 4-26. 

It can be seen that the average of the ratios is 1.00 with a small COV of 0.16. The formula 

in Eq. (4-22) can predict well the general yield strength of specimens.  

 

 

Fig. 4-25  Ratios of Py to Pp for both experimental and FEA results for models with 
tapered ring failure 
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Fig. 4-26 Comparison of predicted general yield strength of specimens with 
experimental results for models with tapered ring failure 

4.6 Summaries 

This chapter focuses on the prediction of the strength of models with tapered ring 

failure. Based on the above analysis, the following conclusions are obtained. 

(1) The value of friction coefficient between cone and cylinder can be simplified to be 0.2 

for practical design work, like that of models with cylinder edge failure. The friction 

between cylinder and tapered ring has no effect on the strength of models.  

(2) The failure of the models is not only controlled by “hoop tension” of tapered ring, but 

also by “plastic collapse” of cylindrical shell. 

(3) Effective and Easy-to-use formulae for predicting the full plastic strength is derived 

by limit analysis. The reinforcement effect of tapered ring is found to be obvious, by 

increasing its thickness. However, it is necessary to be noticed that as the axial stress 

resultant of cylindrical wall increases to reach some limit value, another failure 

mechanism, for example, “elephant foot buckling” of cylindrical shell will occur. It 

was already observed from the experiments.  
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(4) The prediction of collapse and general yield strength of experimental specimens is 

proposed based on the formula for full plastic strength. Well agreement is found 

between them and the experimental results. 
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CHAPTER 5 STRENGTH OF METAL 
TOUCH CONNECTIONS WITH CONICAL 
WALL FAILURE 

5.1 Introduction 

For the strength of the metal touch connections with conical wall failure, Kuwamura 

et al. (2005a) proposed a theoretical solution for elastic limit strength of conical wall from 

bending theory of shells (Timoshenko 1940). The formula is complicated and not suitable 

in practice. After then, Tomioka (2006) proposed an empirical formula for yield strength 

based on the experimental results. Multiplying  it by some factors, full plastic strength 

and collapse strength of connections were then predicted. The results were found to be 

more easy-to-use but the theoretical background is much weaker than previous ones. 

Moreover, the friction coefficient between cone and cylinder was set to be 1.0, which 

needs further investigation.  

In this chapter, solid axisymmetric FEA models are first created and validated by 

comparing their strength and deformation with experimental results. The friction property 

in the contact region between cone and cylinder is discussed. Then, FEA is undertaken to 

investigate the distributions of stress resultants and deformations. The failure mode is 

determined by the proposed criterion. Full plastic strength of models is derived by limit 

analysis. Then, collapse strength and general yield strength are obtained based on the 

formula for full plastic strength. Finally, their precision is validated by comparing them 

with the experimental and FEA results. 
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Fig. 5-1 Details of axisymmetric solid FEA models with conical wall failure  

5.2 FE Modeling 

5.2.1 General  

Figure 5-1 illustrates the details of axisymmetric solid model for specimens with 

conical wall failure. Two coordinates, (r, θ, x) and (t, θ, s), are employed for conical shells, 

in which t means normal direction and s means meridional direction. The mesh size for 

conical walls is set to be 0.5mm, which is the same as that in the general region of 

cylindrical walls. The convergence of analysis results is verified. 
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Fig. 5-2 True stress-strain curves for material SS400 of conical shells 
 

  

Fig. 5-3 s~ep curves input in ABAQUS for materials of conical walls 
 

5.2.2 Effectiveness of FE Models 

Table 5-1 gives the comparison of the strength of FE models with that of 
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The variation of collapse strength in FEA along with the increase of friction 

coefficient µ1 in the contact surface between cone and cylinder is shown in Fig. 5-4. It is 

found that the correlation between each other is not significant, comparing with those of 

models with cylinder edge failure and tapered ring failure.  
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The collapse strength of FE model becomes about equal to that of experimental 

specimen by calibrating the value of µ1. It should be noted that the upper bound of the 

value of µ1 is set to be 0.50. As a result, the average of µ1 is 0.43, with a COV of 0.27. It is 

much larger than those of models with cylinder edge failure and tapered ring failure. The 

reason might be that large plastic deformation of conical wall destroyed its oxide film and 

then made the contact surface rougher than those of models with cylinder edge failure and 

tapered ring failure. In addition, as friction coefficient µ2 in the contact surface between 

cylinder and ring has no effect on the strength of specimen, it is set to be 0.20 in order to 

keep the iteration procedure convergent.  

Full plastic strength and general yield strength of FE models are then compared with 

those of experimental specimens. It is found that the averages of the ratios are 0.94 for 

full plastic strength and 0.99 for general yield strength, with the COV of 0.09 and 0.14 

respectively. The strength of conical wall failure can be predicted well with a constant 

value of μ1 for each model.  

In addition, the load versus axial deformation curves and ultimate deformation of FE 

models are compared with the relevant experimental results, as shown in Appendix B. 

The effectiveness of FE models is verified.  

 

 

Fig. 5-4 Variation of collapse strength of models with conical wall failure along with the 
increase of friction coefficient between conical wall and cylinder edge 
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Table 5-1 Comparison of strength of FE models with those of experimental ones 

Model 
NO. 

Experiments FEA Comparison 

Collapse 
strength 

Full 
plastic 

strength

General 
yield 

strength 
COF 

Collapse
strength

Full 
plastic 

strength

General 
yield 

strength Pu-FEA/ 
Pu-EXP 

Pp-FEA/ 
Pp-EXP

Py-FEA/ 
Py-EXP 

Pu-EXP. Pp-EXP. Py-EXP. 
µ1 µ2 

Pu-FEA Pp-FEA Py-FEA 

(kN) (kN) (kN) (kN) (kN) (kN) 

9 601.2 561.5 482.6 0.18

0.20

614.2 525.4 481.8 1.02 0.94 1.00 
34 872.8 620.0 543.8 0.50 873.6 688.9 636.4 1.00 1.11 1.17 
36 625.7 527.3 390.9 0.50 581.8 500.0 451.5 0.93 0.95 1.16 
43 234.9 153.6 139.1 0.50 206.3 141.9 127.5 0.88 0.92 0.92 
44 389.9 294.7 263.0 0.50 358.1 232.6 206.5 0.92 0.79 0.79 

46 178.4 158.7 127.5 0.50 161.9 140.5 118.5 0.91 0.89 0.93 
47 274.2 218.5 192.6 0.40 265.2 219.6 200.2 0.97 1.01 1.04 
48 510.0 400.0 314.8 0.50 435.7 366.1 337.5 0.85 0.92 1.07 
49 125.2 123.5 120.9 0.50 122.9 112.2 95.4 0.98 0.91 0.79 
50 194.9 190.0 182.8 0.21 190.6 169.6 149.2 0.98 0.89 0.82 
51 352.8 336.5 325.0 0.50 337.2 307.0 272.8 0.96 0.91 0.84 
52 251.8 208.5 171.1 0.31 246.9 190.6 179.9 0.98 0.91 1.05 
53 309.3 254.3 200.0 0.50 287.3 240.4 216.4 0.93 0.95 1.08 

Avg. 
 

0.43
 0.95 0.94 0.99

COV 0.27 0.06 0.09 0.14 
Note: µ1 is the friction coefficient in the contact region between cone and cylinder. Its upper limit is set 
to be 0.50. 

µ2 is the friction coefficient in the contact region between cylinder and ring. 
 

The maximum strength Pmax of models with perfectly-plastic material is compared 

with the full plastic strength Pp of models with actual material, as shown in Fig. 5-5. The 

average of ratios is 1.04, with a small COV of 0.06. It is found that the method of “K0/6 

slope factor” proposed by Tateyama (1988) is also effective to determine the full plastic 

strength of models with conical wall failure. 
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Fig. 5-5 Comparison of maximum strength to full plastic strength of FE models with 
conical wall failure 

5.2.3 Discussion on Friction Coefficient for Practical Design 

As stated in section 5.2.2, the friction coefficient between cone and cylinder is 

greater than those of models with cylinder edge failure and tapered ring failure. The latter 

two have been suggested to be 0.20 for practical design. Here, it is also assumed that µ1 = 

0.2 for models with conical wall failure. 

The results of strength in FEA are then compared with experimental results, as 

shown in Table 5-2. It is found that the averages of ratios are 0.88, 0.81 and 0.83, for 

collapse strength, full plastic strength and general yield strength respectively. The values 

of COV are all about 0.1. The strength by assuming µ1 = 0.20 has 10~20% 

under-prediction on a safe side, and can be acceptable in practical design. 
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Table 5-2 Comparison of strength of FE models with those of experimental ones 

Model 
NO. 

Experiments FEA Comparison 

Collapse 
strength 

Full 
plastic 

strength

General 
yield 

strength 
COF 

Collapse
strength

Full 
plastic

strength

General 
yield 

strength Pu-FEA/ 
Pu-EXP 

Pp-FEA/ 
Pp-EXP

Py-FEA/ 
Py-EXPPu-EXP Pp-EXP Py-EXP 

µ1 µ2
Pu-FEA Pp-FEA Py-FEA 

(kN) (kN) (kN) (kN) (kN) (kN) 

9 601.2 561.5 482.6 

0.20 0.20

614.2 525.4 481.8  1.02  0.94 1.00 
34 872.8 620.0 543.8 807.5 505.6 473.4  0.93  0.82 0.87 
36 625.7 527.3 390.9 554.6 474.5 422.3  0.89  0.90 1.08 
43 234.9 153.6 139.1 181.4 110.2 92.4  0.77  0.72 0.66 
44 389.9 294.7 263.0 328.5 181.4 165.5  0.84  0.62 0.63 

46 178.4 158.7 127.5 143.5 114.9 102.7  0.80  0.72 0.81 
47 274.2 218.5 192.6 246.0 190.1 168.6  0.90  0.87 0.88 
48 510.0 400.0 314.8 392.0 302.3 265.9  0.77  0.76 0.84 
49 125.2 123.5 120.9 110.9 97.3 84.4  0.89  0.79 0.70 
50 194.9 190.0 182.8 190.6 169.6 149.2  0.98  0.89 0.82 
51 352.8 336.5 325.0 306.0 270.2 234.8  0.87  0.80 0.72 
52 251.8 208.5 171.1 239.3 179.8 158.1  0.95  0.86 0.92 
53 309.3 254.3 200.0 257.1 203.4 169.5  0.83  0.80 0.85 

Avg. 
 0.88 0.81 0.83 

COV 0.08 0.09 0.13 

5.3 FE Analysis Results 

5.3.1 Definition of Stress Resultants  

The internal forces acting on an infinitesimal body cut out from conical wall are 

defined in Fig. 5-6. Hoop stress resultant Nθ , meridional stress resultant sN , meridional 

bending moment sM , and shear stress resultant stQ  are defined as 

 
/2 /2 /2 /2

/2 /2 /2 /2
; ; ; and

t t t t

s s s s st stt t t t
N s dz N s dz M s zdz Q dzθ θ τ

− − − −
= = = =      (5-1)  

Herein, s is normal stress, τ is shear stress, t is the thickness of conical wall, and z is the 

radially outward distance from its middle surface. The subscript C for conical shells is 
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omitted in the equations (The same hereinafter in this chapter). 

The following dimensionless variables are introduced for stress resultant distributions. 

 
0

3; ; ; ands s st
s s st

y y sp y

N N M Qn n m q
t t M t

θ
θσ σ σ

= = = =   (5-2) 

 Where, 2
0 / 4sp yM tσ= . The yσ is set to be positive for both tension and compression. 

 

 

Fig. 5-6 Definition of stress resultants in conical wall 
 

5.3.2 Distributions of Stress Resultants  

In order to investigate the failure mechanism of conical wall, the characteristics of 

stress resultant distribution are discussed. Model No.47 is taken as a typical case.  

Figures 5-7(a~e) show the changing distributions of stress resultants xn , sm , stq , 

sn  and nθ  under increasing load, respectively. It can be found that  
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① For xn , its absolute values in the upper part increase from top end to the contact 

section. They are much larger than those in the lower part, as the confinement effect from 

cylindrical wall is mainly concentrated in the upper part of conical wall.  

② For sm , its distribution type is like the letter of “ W ”. The sm  increases as load 

increases. The sections where sum  reaches local peak value are defined as Sects. E, F 

and G.  

③ For stq , its direction has a sudden change in Sect. F at which reaction force from 

cylindrical wall is applied. It decreases from Sect. F and reaches about 0 in Sects. E and G 

respectively.  

④ For sn , its distribution type is a little different from that of xn . Especially in the 

upper part of conical wall, the largest value of sn  does not occur in Sect. F, but close to 

Sect. E. The reason might be that the vertical component of sn in Sect. F is cancelled out 

partially by stq .  

⑤ For nθ , its distribution is concentrated in the region from Sect. E to Sect. G, where 

compressive deformation in hoop direction is much larger than that in other regions.   
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(a) Axial stress resultant xn  

 

 

(b) Meridional bending moment sm   
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  (c) Shear stress resultant stq   

 

 

(d) Meridional stress resultant sn          
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(e) Hoop stress resultant nθ  

Fig. 5-7 Changing distributions of stress resultants in conical wall under increasing load 
for model No. 47 with actual material 

5.3.3 Distribution of Deformation 

The ultimate deformation of conical wall in model No. 47 is shown in Fig. 5-8. It is 

found that the conical wall seems to be symmetric with respect to t-axis. Like the upper 

part, the lower part also takes an important role in failure mechanism. It is not just a free 

edge of conical wall. In addition, as the normal direction of contact region at ultimate 

load is close to the one before testing, the upper part does not sit on the cylindrical wall.  

Figure 5-9 gives the changing distributions of normal displacement wt under 

increasing load. It can be found that wt at Pu is much larger than those at Py and Pp, and 

actually it is not distributed in a perfectly axisymmetric type. The wt in the upper part is 

slightly greater than that in the lower part.   

 

−60
−40

−2
0

0
20

40
60

80 −1.5

−1

−0.5
0

0.5
1

1.5

Top end

Bottom end

Sect. G
Sect. F

Sect. E

Lo
ca

tio
n s (m

m)

Hoop stress resultant n
θ

PuPy

Pp



 

125 

 

 

Fig. 5-8 Ultimate behavior of model No.47  
 

 

Fig. 5-9 Changing distributions of normal deformation tw  in conical wall under 

increasing load for model No.47  

5.4 Judgement of Failure Mode  
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for cylinder edge failure. The ratio of average equivalent stress eqs  in a section to yield 

stress yσ  is defined as  

 
/2

/2
d

=

t

eqeq t

y y

s zsr
tσ σ

−=    (5-3)  

where, equivalent stress  in each small mesh of FE model is obtained by  

 2 2 3eq s s sts s s s sθ θ τ= − + +   (5-4)  

If r  in the section where meridional bending moment ms reaches the local peak, 

satisfies that ( )m =ms s,peak
r ≈1.0, a plastic hinge is assumed to form there. If the number of 

plastic hinges becomes sufficient and the kinematically admissible state is reached just 

prior to or at collapse load, the failure is assumed to be governed by “plastic collapse”. It 

should be noted that  

(1) Because of the strain hardening effect of materials, ( )u m =msu su,peak
r  at ultimate load is 

possible to exceed 1.0; 

(2) From the engineering point of view, ( ) 0.8u m =msu su,peak
r ≥  is acceptable for the 

determination of plastic hinge.  

5.4.2 Failure Mode of models 

Figure 5-10 shows the changing distributions of ratios r at Py, Pp, and Pu in the 

conical wall of model No.47. It is found that r increases as load increases for each section. 

The ry near to Sect. F have already exceeded 1.0 as Py is reached, which means the 

contact region has entered into plastic as general yield load arrives. Finally, ru in Sects. E, 

F and G are all greater than 1.0. It indicates that three plastic hinges form there. Because 

of the strain hardening effect of material, the nearer a section get to Sect. F where the 

plastic deformation is the greatest, the larger is ru. 

The ru in Sects. E, F and G for all the models with actual material are listed in Fig. 

eqs
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5-10. It is seen that all the values are larger than 1.0. Especially the values in Sect. F are 

much greater than those in Sects. E and G. The failure mode can be assumed to be 

controlled by “plastic collapse” of conical wall.  

 

 

Fig. 5-10 Changing distributions of average equivalent stress in the conical wall under 
increasing load for model No.47  

 

 

Fig. 5-11 Ratios of average equivalent stress to yield stress at ultimate load for Sects. E, F 
and G of models with conical wall failure. 
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5.5 Prediction of Strength  

5.5.1 Prediction of Full Plastic Strength 

5.5.1.1 Proposed Plastic Collapse Mechanism 

The plastic collapse mechanism has been employed successfully for estimating the 

collapse strength of conical shell fixed in two ends under axisymmetric loading (Panzeri 

et al. 1999, Chryssanthopoulos et al. 2001). The proposed formula by them predicted well 

the collapse strength. But it was in complicated implicit form and difficult to be applied in 

practical design. In this section, a new plastic collapse mechanism is proposed and then 

limit analysis is undertaken. Finally, a simple and easy-to-use formula is obtained for 

prediction of full plastic strength.  

In the plastic collapse mechanism shown in Fig. 5-12, R and μR are the reaction 

force and frictional force acted in Sect. F respectively. They are defined to be applied in 

360 degrees in hoop direction. The equilibriums for external forces are given by 

 

Fig. 5-12 Proposed plastic collapse mechanism for models with conical wall failure 
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 ( ) ( )( )max E Ecos sinP R μ α φ α φ= − + + +   (5-5) 

Like the failure mechanism of cylinder edge failure, it is assumed that stress 

resultants in plastic hinges are in plane strain state and those in segments are in plane 

stress state, the interactions of stress resultants are shown as follows: 

For plastic hinge E,  

 2
max E max E

2 3(1 )
43s sm n= −   (5-6a)  

where max
max E

E coss
y

Pn
d tπ σ α

=   (5-6b) 

and E F FE E2 sin( )d d L α φ= + +  (5-6c) 

For plastic hinge F, 

 2
max F max F

2 3( 1 )
43s sm n= − +   (5-7a) 

where ( )
max

max F
F Ecoss

y

Pn
d tπ σ α φ

=
+  (5-7b) 

For plastic hinge G, as meridional stress resultant is zero, 

 max G
2
3sm =   (5-8) 

In addition,  G F FG G2 sin( )d d L α φ= − −   (5-9) 

For segment FE, as maxsn varies along with the location in meridional direction, hoop 

stress resultant ( )FEmax lnθ for an arbitrary section is assumed as 

 ( ) ( ) ( )FE FE FE

2
max max max

1 31
2 4l s l s ln n nθ = − −   (5-10a) 

where ( ) ( )FE

FE

max
max

( ) Ecoss l
l y

Pn
d tπ σ α φ

=
+  (5-10b) 

and 
FE( ) F FE E2 sin( )ld d l α φ= + +  (5-10c) 
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For segment FG, as meridional stress resultant nsmaxFG is zero, hoop stress 

resultant max FGnθ  is assumed to be that 

 max FG 1nθ = −   (5-11)  

5.5.1.2 Derivation of Virtual Work Equations 

Based on the principle of virtual work, the equilibrium of external work dW and 

dissipation of internal energy dU  of the whole mechanism in 360 degrees in hoop 

direction during a virtual change of rotation Edφ  at plastic hinge E, Gdφ  at plastic hinge 

G and E G(d d )φ φ+  at plastic hinge F, is given by  

 d =dU W   (5-12) 

where 

 1 2 3d d d dU U U U= + +     

1 2d d dW W W= +  

Herein, for internal energy, 1dU  is done by hoop stress resultant max yn tθ σ , 2dU  is 

done by meridional stress resultant maxs yn tσ , and 3dU  is done by meridional bending 

moment 2
max

1
4s ym tσ ; For external work, 1dW  is done by reaction force R , and 2dW  

is done by meridional force max

cos
P

α
−

 acted in Sect. E because of the shortening of segment 

FE in meridional direction. The friction energy dissipation produced by frictional force 

Rμ  is neglected. 
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Fig. 5-13 Meridional shortening compatible with the circumferential stretching of the 
segments in plastic collapse mechanism of conical wall failure 

 

①  1dU  

A small segment of length dl for segments FE and FG is considered respectively, as 

shown in Fig. 5-13. For segment FE, the increase in length 1FEd UΔ  in hoop direction 

after the virtual change of rotation Edφ  can be derived as  

 FE1( ) FE FE E E E E

FE FE E E E

d ( )[sin( d ) sin ]cos( )
( ) cos d cos( )

U l L l

L l

φ φ φ α φ
φ φ α φ

Δ = − − + − +

≈ − − +
  (5-13)  

The strain rate in hoop direction is given by 

 F E

FE

FE FE E E
max( ) E

( )

2( ) cos cos( ) dl
l

L l
dθ

φ α φε φ− − +=   (5-14) 

For segment FG, the increase in length 1FGd UΔ  in hoop direction after the virtual change 

of rotation Gdφ  can be derived as 

 F G1( ) FG FG G G G G

FG FG G G G

d ( )[sin( d ) sin ]cos( )

( ) cos d cos( )
U l L l

L l

φ φ φ α φ
φ φ α φ

Δ = − − + − −

≈ − − −
 (5-15) 

The strain rate in hoop direction is given by 
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 F G

FG

FG FG G G
( ) G

( )

2( )cos cos( ) dl
l

L l
dθ

φ α φε φ− − −=   (5-16a) 

where   
FG( ) F FG G2 sin( )ld d l α φ= − −  (5-16b) 

Thus, 1dU  during the increase in length in hoop direction for segments FE and FG can 

be obtained as  

( )

FE ( ) FG ( )FE FG

FE FE F G

FE ( )FE

FE FE

1 max( ) ( ) max FG ( )0 0 0 0

2
max( ) ( ) FG G G G0 0

d = d d d d

d d cos cos d

l l

l

L d L d

l y l y l

L d

l y l y

U n t y l n t y l

n t y l tL

π π

θ θ θ θ

π

θ θ

σ ε σ ε

σ ε πσ α φ φ φ

+

≈ + −

   
 

 


  (5-17)  

Herein, dy  is differential in hoop direction. The integral of 
FEmax( )lnθ  is not expressed 

because of the quite complicated form. 

②  2dU  

Since the deformations in segment FE take place under Mises’ yield condition as 

shown in Eq. (5-18), a flow rule must be adopted to determine the change in the strain 

rate (Save, 1997).  

 ( ) ( ) ( ) ( )FE FE FE FE

2 2
max max max max 1 0s l l s l lf n n n nθ θ= + − − =   (5-18)  

Thus, 

 ( )
( )

( ) ( )FE FE FE

FE

max max max
max

= (2 )s l s l l
s l

f n n
n θε λ λ∂= −

∂
   (5-19) 

and ( )
( )

( ) ( )FE FE FE

FE

max max max
max

= (2 )l l s l
l

f n n
nθ θ

θ

ε λ λ∂= −
∂

  (5-20) 

where λ  is a positive scalar factor. 

Combining Eqs. (5-19) and (5-20) gives 

 ( )
( ) ( )

( ) ( )
( )

FE FE

FE FE

FE FE

max max
max max

max max

2
2

s l l
s l l

l s l

n n
n n

θ
θ

θ

ε ε
−

=
−

   (5-21) 

Substituting Eq. (5-14) into Eq. (5-21) and integrating ( )FEmaxs lε , the shortening in length 

2d UΔ  in the meridional direction, as shown in Fig. 5-13, is given by 
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( ) ( )

( ) ( )

( ) ( )

FE

FE FE

FE FE FE

FEFE FE

2 2 max0

max max FE FE E E
E0

( )max max

d =d d

2 2( ) cos( ) cos d d
2

L

U U l s l

L s l l

ll s l

l

n n L l l
n n d

θ

θ

ε

α φ φ φ

Δ Δ =

− − +≈ −
−







  (5-22)  

Thus, 2dU  can be obtained by 

 
( )

( ) ( )

( ) ( )

( )FE

FE FE FE

FE FE

FEFE FE

2 max FE 20

max max FE FE E E
( ) Emax0

( )max max

d d

2 2( ) cos( ) cos d d
2

ld

s y U

L s l l
l ys l

ll s l

U n t

n n L ld n t l
n n d

π

θ

θ

σ

α φ φπ σ φ

= Δ

− − += −
−




  

  (5-23)  

③ 3dU  

The 3dU  by meridional bending moment in plastic hinges E, F, and G is obtained 

as: 

( ) 2
3 E max E E F max F E G G max G G

1d d (d d ) d
4s s s yU d m d m d m tπ φ π φ φ π φ σ= − + +  (5-24) 

 

 

Fig. 5-14 Virtual deformations due to an incremental rotation of plastic hinges 
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④ 1dW  

After the virtual change of rotation Gdφ , the virtual deformation by reaction force 

R  acted in Sect. F is defined as 1d WΔ  in Fig. 5-14.  

 1 FG G FG G G FG G Gd sin sin( d ) cos dW L L Lφ φ φ φ φΔ = − + ≈ −   (5-25)  

The work 1dW  is obtained by  

 1 F FG G Gd cos dW d RLπ φ φ= −   (5-26)  

⑤ 2dW  

For segment FE, after the virtual change of rotation Edφ , the virtual meridional 

deformation by meridional force max

cos
P

α
−

, excluding the virtual strain deformation 2d UΔ in 

Eq. (5-25), is defined as 2d WΔ  in Fig. 5-14.  

 2 FE E E FE E FE E Ed cos( d ) cos sin dW L L Lφ φ φ φ φΔ = + − ≈ −   (5-27) 

The work 2dW  can be obtained as  

 max max max
2 2 2 FE E E 2d d d sin d d

cos cos cosW U
P P PW L Uφ φ

α α α
− −= Δ + Δ = +      (5-28)   

herein, 2dU  is expressed in Eq. (5-23). 

Substituting Eqs. (5-17), (5-23), (5-24), (5-26), and (5-28) into Eq. (5-12), the 

following general equation can be obtained. 

( )

( )

FE ( )FE

FE FE

max
FG G G FE E E

2
max( ) ( ) FG G G G0 0

2
E max E E F max F E G G max G G y

cos d sin d
cos

d d cos cos d

1d (d d ) d
4

lL d

l y l y

s s s

PRL L

n t y l tL

d m d m d m t

π

θ θ

φ φ φ φ
α
σ ε πσ α φ φ φ

π φ π φ φ π φ σ

− + =

+ − +

− + +

    (5-29) 

5.5.1.3 Proposed Formula for Full Plastic Strength 

The general equation (5-29) is difficult to be solved by hand calculation，because the 
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results of integral of 
FEmax( )lnθ  is quite complicated. Moreover, the 3dU  in Eq. (5-24) is 

also difficult to be derived because of the different diameters at the three plastic hinges. In 

order to obtain simple solution for practical design, Eq. (5-29) is simplified as follow. 

First, based on small deformation theory, G Ecos =cos 1.0φ φ = , G Gsinφ φ= , and 

E Esinφ φ= . Because E G,φ φ α , E Gα φ α φ α+ = − = .  

Then, 
FEmax( )lnθ in Eq. (3-24) is simplified. For segment FE, because

FEmaxF max( ) max Eln n nθ θ θ≤ ≤ , FEmax( ) max E

max F max F

1 ln n
n n
θ θ

θ θ

≤ ≤ . The variation of upper bound max E

max F

n
n

θ

θ
 

along with maxFnθ  for all the FEA models is listed in Fig. 5-15. The maximum value is 

1.18 and the minimum one is 1.00. The average is assumed to be (1.18+1.00)/2=1.09. 

Based on Eq. (5-10a), 
FEmax( )lnθ  is simplified to be  

 
FE

2
max( ) max FE max F maxF maxF

1 1.09 1 3= 1.05 1
2 2 4l s sn n n n nθ θ θ

 += = − −  
 

  (5-30) 

 

 

Fig. 5-15 Variation of ratio max E

max F

n
n

θ

θ
 along with axial stress resultant maxFsn  for FE 

models with conical wall failure 
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Next, 3dU  in Eq. (5-24) simplified. It is defined to be 3d exactU  and approximated 

to be that  

 ( ) 2
3 max F E max G max F G F y

1d 2 d + d
4

approximated
s s sU m m m d tφ φ π σ= − −     (5-31) 

By assuming that FE E FG Gd dL Lφ φ= , FGE

G FE

d
d

L
L

φ
φ

= . The variation of ratios FG

FE

L
L  along 

with maxFsn  for all the FE models is listed in Fig. 5-16. It is seen that the average is 1.27, 

with a COV of 0.09. By setting E

G

d 1.27
d

φ
φ

= , the 3d approximatedU  in Eq. (5-31) is compared 

with the 3d exactU  in Eq. (5-24). Variation of their ratios along with maxFsn  for all the 

models is listed in Fig.5-17. The average of the ratios is assumed to be 

(1.20+1.01)/2=1.11, as the trend is almost in a straight line. Thus, 3dU  is assumed that  

 3 3d =1.11dexact approximatedU U   (5-32) 

 

Fig. 5-16 Variation of FG
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Fig. 5-17 Distribution of 3

3

d
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U
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 along with maxFsn  for FE models  

 

Finally, by substituting Eqs. (5-30) ~ (5-32) into Eq. (5-29), the general equation is 

simplified to be that 

2max
E maxF maxF FE FG

2max F max F max G
F

FE FG

1 31.05 1 cos cos
cos 2 4

2 11.11 +
4

s s y y

s s s
y

PR n n tL tL

m m m d t
L L

φ π σ α πσ α
α

π σ

 
= − + − − −  

 
 −+  
 

 

 (5-33) 

Based on upper bound theory, the true value of R  is obtained by 
FE

0R
L
∂ =

∂ , and 

FG

0R
L
∂ =

∂ . Thus,  

2
max F maxF maxF max F F

F

max
E

1 3 21.05 2.1 1 cos
2 4 3

cos

s s s s y
tR m n n m d t

d

P

π σ α

φ
α

  
 = − − − − + −     

+

 

                 (5-34) 

The lengths of segments FE and FG are obtained as 
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max F

FE F
2

maxF maxF

0.53
1 31 cos
2 4

s

s s

mL d t
n n α

=
 

− − 
 

 (5-35)  

 maxF
FG F

0.31 0.26
cos

smL d t
α

−=  (5-36) 

respectively.  

Substituting Eqs. (5-5), (5-7a) and (5-11) into Eq. (5-34), and Dividing both sides of Eq. 

(5-34) by Fytdπσ , the following equation for max Fsn  can be obtained. 

 max Fsn ψ χ γ= − ⋅ ⋅    (5-37) 

where, 

 2 2 2
max F maxF maxF max F

4.2 3 1 3 4 31.05 1 1
4 2 4 23 3s s s sn n n nψ

    = − + − − + −       
  (5-38)

F

cos

cos
cos sin

t
d

α
χ α

μ α α

=

+

 (5-39) 

and  
E

cos
cos sin
cos

cos sin

α
μ α αγ α φ

μ α α

+=
+

+

 (5-40) 

 

The variation of ψ  along with max Fsn  is listed in Fig. 5-18. It can be approximated in a 

quadratic equation as follow 

 2
maxF maxF1.76 0.68 3.22s sn nψ = − − +   (5-41)  

The values of γ  for all the FE models are shown in Fig. 5-19. It can be found that the 

average is 0.92, with a small COV of 0.01. Thus, γ  is simplified to be 0.92. 

 



 

139 

 

 

Fig. 5-18 Variation of factor ψ  along with axial stress resultant max Fsn  for models with 

conical wall failure  
 

 

Fig. 5-19 Variation of factor γ  along with rotational angle Eφ  for FE models with 

conical wall failure  
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Substituting Eq. (5-41) and 0.92γ =  into Eq. (5-37), max Fsn  can be expressed as 

 ( )2
max F maxF max F0.92 1.76 0.68 3.22s s sn n n χ= + −   (5-42) 

The solution is  

 
2

maxF
0.63 1 19.58 1.26 1

3.24sn
χ χ χ

χ
− + − − +

=   (5-43) 

Prediction of the maximum strength of models can be finally obtained as  

 
2

max F
0.63 1 19.58 1.26 1

cos
3.24PRED yP d t

χ χ χ
π σ α

χ−

− + − +
=  (5-44) 

The comparison of max PREDP −  in Eq. (5-44) with the maximum strength max FEAP −  is 

undertaken, as shown in Fig. 5-20. The average of ratios is 0.91 with a small COV of 0.08. 

The predicted values of model Nos. 9, 34 and 36 are found to be a little smaller than the 

FEA results. Their diameter-to-thickness ratios at Sect. F are only about 15.5, and the 

height-to-thickness ratios of the upper part of conical walls are only about 5.6. Thus, the 

influence of the confinement effect of boundary on the strength of models will be great. 

The maximum strength will be under-predicted based on the proposed plastic collapse 

mechanism.  

 Full plastic collapse of models can be predicted by  

 
2

max F
0.63 1 19.58 1.26 1

cos
3.24p PRED PRED yP P d t

χ χ χ
π σ α

χ− −

− + − +
= =   (5-45) 

The comparison of p PREDP −  with the full plastic strength p EXPP −  of experimental 

specimens is undertaken, as shown in Fig. 5-21. The average of ratios is found to be 0.89 

with a small COV of 0.08. Well prediction on full plastic strength of specimens with 

conical wall failure is obtained.  
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Fig. 5-22 Comparison of predicted full plastic strength with experimental results for 
specimens with conical wall failure 

5.5.2 Prediction of Collapse Strength  

The enhancement factor ρ  is assumed as the average of the ratios of collapse 

strength to full plastic strength for both experimental specimens and FEA models. Their 

average is 1.23 with a COV of 0.11, as shown in Fig. 5-23. Collapse strength uP  is 

predicted by 

 - 1.23u PRED p PRED p PREDP P Pρ − −= ⋅ =   (5-46) 

Comparing the predicted collapse strength of uP  in Eq. (5-46) with the u EXPP −  of 

all the models, the ratios are shown in Fig. 5-24. The average is 0.92, with a COV of 0.13. 

It can be found that the prediction by the proposed formula in Eq. (5-46) can predict well 

the collapse strength of experimental specimens. 
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Fig. 5-23 Ratios of collapse strength to full plastic strength for both experimental and 
FEA results of models with conical wall failure 

 

 

Fig. 5-24 Comparison of predicted collapse strength with experimental results for 
specimens with conical wall failure 

5.5.3 Prediction of General Yield Strength 
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 0.88y PRED p PRED p PREDP P Pξ− − −= =  (5-47) 

The predicted results are compared with those of the experimental specimens, as 

shown in Fig. 5-26. It is found that the average value is 0.92 with a coefficient of 

variation of 0.11. The formula in Eq. (5-47) can predict well the general yield strength of 

experimental specimens. 

 

 

Fig. 5-25 Ratios of general yield strength to full plastic strength for both experimental and 
FEA results of models with conical wall failure 

 

Fig. 5-26 Comparison of predicted general yield strength with experimental results for 
specimens with conical wall failure 
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5.6 Summaries  

This chapter focuses on prediction of the strength of metal touch connections with 

conical wall failure. Based on the above analysis, the following conclusions are obtained. 

(1) The axisymmetric solid models are effective to simulate conical wall failure of the 

socket connections. The friction coefficient between cone and cylinder is found to be 

greater than that of models with cylinder edge failure and tapered ring failure. But in 

practical design work, setting it to be 0.20 is also acceptable. 

(2) The failure of the conical walls is assumed to be controlled by “plastic collapse” based 

on the proposed criterion.  

(3) Easy-to-use formulae for predicting the full plastic strength is derived by limit 

analysis. Some satisfactory simplification is employed. The predicted values agree 

well with the effective FEA results, especially for the models with relatively large 

diameter to thickness ratios. While, for the models Nos. 9, 34 and 36, with quite small 

diameter-to-thickness ratios and height-to-thickness ratios, under-prediction is 

obtained.  

(4) The collapse strength and general yield strength of experimental specimens are 

proposed based on the formula for full plastic strength. Their precision is proved by 

comparing them with the experimental results. 
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CHAPTER 6 STRENGTH OF WELDED 
CONNECTIONS WITH JOINT REGION 
FAILURE 

6.1 Introduction 

Relatively thick conical shells of low values of the diameter-to-thickness ratio are 

usually used as structural components in engineering applications, such as pipelines, 

offshore platforms and transition elements between cylinders of different diameters. If a 

conical shell is fixed at both ends and then compressed axially, “plastic buckling of cone” 

is probable to occur (Chryssanthopoulos and Poggi 2001, Blachut et al. 2010, Ifayefunmi 

2015). While, it may be not typical in the case of a cone-to-cylinder intersection, because 

that the slope discontinuity in shell meridian, leading to local high bending and 

circumferential stresses, makes the joint region become a structural weakness (Teng and 

Rotter 1991). “Plastic collapse of joint region” is possible to control the failure of 

intersection. 

However, “Plastic collapse” and “plastic buckling”, as two main failure modes for 

relatively thick shells or intersections under compressive loading, or along with radial 

pressure, is rather blurred to be distinguished (Kuwamura and Ito 2009). This is partly 

due to the fact that the onset of buckling in the shell walls is difficult to pinpoint 

experimentally (Wilbert, et al. 2011). Collapse load is usually defined as the peak load of 

load-deformation curves. But how to determine eigenvalue plastic buckling (bifurcation) 

load is difficult even by finite element analysis (FEA) because of the limitation of some 

commercial software, such as ABAQUS FE package (Hibbitt et al. 2011), in which the 

inelastic material properties are ignored during eigenvalue buckling analysis. Riks 

method algorithm (Riks 1979) based on a Lagrangean formulation for moderately large 
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deflections is implemented in ABAQUS to simulate nonlinear post-buckling and collapse 

behaviors. But it cannot obtain bifurcation load directly and rigorously.  

For the welded cone-to-cylinder socket connections in this study, it was observed 

that the failure occurred close to the joint region between cone and cylinder. Kuwamura et 

al. (2005) proposed a formula for plastic buckling strength of conical wall based on the 

assumptions that cylindrical wall is rigid and conical wall is in membrane stress condition. 

Tomioka (2006) found that it overestimated the collapse strength of experimental 

specimens. The reason might be the actual boundary and stress conditions at ultimate load 

are different from the assumption. Plastic collapse of the intersection may be another 

possibility. For example, Teng and Rotter (1991) proposed a plastic collapse mechanism 

for steel silo transition junctions under internal pressure and frictional downward drag on 

the hopper and predicted the strength effectively. Therefore, the failure mechanism and 

strength of the welded connections are necessary to be discussed in further.  

In the first half of this chapter, FEA models are created and their effectiveness is 

validated. Distributions of deformation and stress resultants in conical and cylindrical 

walls are analyzed. The failure mode is judged based on the proposed criteria. It should be 

noted that no further discussion is given on plastic buckling of cone in this chapter; 

instead the effort is concentrated on the plastic collapse mechanism of welded 

connections. 

In the second half of this chapter, the strength of connections is predicted by limit 

analysis. And then, the precision of the proposed formulae is validated by comparing 

them with the experimental results. 

6.2 FE Modeling 

6.2.1 General  

Figure 6-1 shows the details of FEA models in ABAQUS (Hibbitt et al. 2011). Two 

coordinates, (r, θ, x) and (t, θ, s), are employed, in which t means normal direction and s 
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means meridional direction. The location of origin “O” in x direction is defined to 

coincide with the middle point of Sect. F, which is at the top edge of weld. The weld is 

simulated by the quadrilateral and triangular axisymmetric solid element CAX4R and 

CAX3. For all the parts in the model, mesh size is set to be 0.5mm, which is about equal 

to 1/6 of the smallest thickness of conical wall. The convergence of analysis results is 

verified.  

 

 

Fig. 6-1 Details of welded FE models  

6.2.2 Influence of Weld Length on Collapse Strength of Connections 

The material of weld is assumed to be the same as that of cylindrical wall. The 

softening of heat-affected zone and residual stress due to welding are not considered in 

this study. In this section, the influence of weld length on collapse strength of connections 

is investigated by FEA. Model No. 68 is taken as a typical case. The variation of collapse 

strength along with the ratio of weld length Wt  to the thickness of cylindrical wall Pt  is 

shown in Fig. 6-2. It is found that positive linear correlation occurs between them. As 

weld length Wt  increases from Pt  to 2 Pt , collapse strength u FEAP −  increases by about 
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connections in this study, the weld length is difficult to be measured exactly. Moreover, it 

is usually just a little greater than base metal. In this study, weld length Wt  in 

cone-to-cylinder joint is assumed to be 3 Pt  for all the connections. As the thickness 

Pt  of cylindrical wall is about 4.3mm, weld length Wt  is 7.4mm and about 3mm longer 

than Pt , which is satisfactory in this study.  

 

 

Fig. 6-2 Variation of collapse strength of connections along with the increase of weld 
length in cone-to-cylinder joint (Model No.68 is taken as a typical case) 

6.2.3 Effectiveness of FE Models 

Table 6-1 gives the comparisons of collapse strength Pu, full plastic strength Pp and 

general yield strength Py obtained by FEA with those from experiments. Their definitions 

are the same as those shown in Chapter 3. It can be found that the averages of ratios are 

1.01 for Pu, 0.95 for Pp and 0.94 for Py respectively. The coefficients of variation (COV) 

for them are all very small.  

In addition, the load versus axial deformation curves and ultimate deformation of FE 
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Figure 6-2 shows the comparison of load versus axial deformation curves between FEA 

0
0.2
0.4
0.6
0.8
1.0

0.88

1.06
0.97

1.2

0 0.5 1 1.5 2

tW

tP

Pu-FEA

Pu-EXP

tw

tP



 

151 

 

and experiment for the typical model No. 68. It can be seen strength agrees well with each 

other. While, the degradation of load-axial deformation curve after collapse of FE model 

seems a little slower than that of experimental result. The reason might be that the 

residual stress, weld size, and the actual boundary condition in the welding region are not 

simulated precisely. But the FE models are effective for this study. 

Maximum strength Pmax of models with perfectly-plastic material is compared with 

Full plastic strength Pp of models with actual material, as shown in Fig. 6-4. The average 

of the ratios is 1.00, with a small COV of 0.02. It is found that the method of “K0/6 slope 

factor” proposed by Tateyama (1988) is also effective to determine the full plastic 

strength of welded models with joint region failure. 

 
Table 6-1 Comparison of strength between FEA and experiments for the welded 

connections with joint region failure 

Model 
NO. 

Experiments FEA Comparison 

Collapse 
strength 

Full 
plastic 

strength 

General 
yield 

strength

Collapse
strength

Full 
plastic 

strength

General 
yield 

strength Pu-FEA/ 
Pu-EXP 

Pp-FEA/ 
Pp-EXP

Py-FEA/ 
Py-EXPPu-EXP Pp-EXP Py-EXP Pu-FEA Pp-FEA Py-FEA 

(kN) (kN) (kN) (kN) (kN) (kN) 

64 409.0  390.0  365.0 403.1 369.2 344.7 0.99  0.95 0.94 

65 576.7  547.7  519.0 581.4 514.1 481.8 1.01  0.94 0.93 

67 305.0  294.4  276.9 307.0 286.0 256.2 1.01  0.97 0.93 

68 460.0  450.0  418.4 463.1 419.1 388.1 1.01  0.93 0.93 

69 641.4  581.5  546.2 639.8 563.1 524.3 1.00  0.97 0.96 

70 220.7  216.1  209.7 216.5 201.4 187.5 0.98  0.93 0.89 

71 322.7  316.1  291.3 335.4 305.8 290.1 1.04  0.97 1.00 

72 474.7  460.8  435.9 462.5 422.1 385.7 0.97  0.92 0.88 

73 409.0  394.1  361.8 414.0 375.2 340.2 1.01  0.95 0.94 

74 497.2  467.5  413.0 520.5 466.3 411.6 1.05  1.00 1.00 

Avg. 
 

1.01 0.95 0.94 

COV 0.02 0.03 0.04 
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Fig. 6-3 Comparison of load versus axial deformation curves of model No. 68 between 
FEA and experiment 

 

 

Fig. 6-4 Comparison of maximum strength to full plastic strength for welded models with 
joint region failure 
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distributions are analyzed. It is noted that the definitions of stress resultants in conical and 

cylindrical walls are omitted here because they are the same as those in Chapters 3 and 5. 

Model No.68 with actual material is taken as a typical case.  

Figure 6-5 shows the changing distributions of shear stress resultant stτ  in conical 

wall and xrτ  in cylindrical wall under increasing load. It can be found that stτ  at Sect. F 

decreases rapidly from the upper part of conical wall. The xrτ  at cylinder edge is the 

greatest in cylindrical wall. 

 

 

Fig. 6-5 Changing distributions of shear stress resultant in both conical and 
cylindrical walls under increasing load for model No.68  

 

Figure 6-6 shows the changing distributions of meridional bending moment sm  in 

conical wall and axial bending moment xm  in cylindrical wall under increasing load. It 

can be found that for sm  in conical wall, its distribution type is the letter of “ W ”, which 

is similar to that of models with conical wall failure in Chapter 5. The sm  increases as 
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load increases. The sections where sum  reaches local peak value are defined as Sects. E, 

F and G. It is found that sum  reaches peak value in negative direction in Sect. F, which is 

located at the top edge of welding. For xm  in cylindrical wall, it reaches local peak 

value at Sect. H. The nearer a section get to the top end of cylinder wall, the smaller is 

xm . Finally, it becomes close to zero at the top end.  

 

 

Fig. 6-6 Changing distributions of bending moment in both conical and cylindrical 
walls under increasing load for model No.68  

 

Figure 6-7 shows the changing distributions of hoop stress resultant nθ  in conical 

and cylindrical walls under increasing load. Their distribution is concentrated in two 

regions. One is from Sect. E to Sect. G in conical wall; the other is from the top end of 

cylinder wall to Sect. H. Thus, the joint region will be weak because local high bending 

moment and hoop stress occur there.  
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Fig. 6-7 Changing distributions of hoop stress resultant in conical and cylindrical 
walls under increasing load for model No.68  

6.3.2 Distribution of Deformation 

Model No.68 with actual material is taken as a representative case to introduce the 

deformation characteristics of models. Its behavior with the increase of loading is shown 

in Fig. 6-8, where the deformation scale factor is set to be 10. It can be found that the 

deformation is concentrated in the joint region. Not only in the upper part of conical shell, 

but also in the lower part of it and in the top edge of cylindrical shell, bending behavior is 

obvious. 
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Fig. 6-8 Changing distributions of deformation in conical and cylindrical walls under 
increasing load for model No.68  

(Deformation scale factor is set to be 10) 

6.4 Judgement of Failure Mode 

6.4.1 Definition of the Criteria of Failure Mode 

The criterion of “plastic collapse” is defined as follow. The ratio of average equivalent 

stress eqs  in a section to yield stress yσ  is defined as  

 
/2

/2
d

=

t

eqeq t

y y

s zsr
tσ σ

−=    (6-1) 

where, equivalent stress  in each small mesh is obtained by  

 2 2 3eq s s sts s s s sθ θ τ= − + +  

herein, s is true normal stress, τ is true shear stress, and σ is engineering normal stress.   

If r  in a section with peak meridional bending moment ms satisfies that ( )m =ms s,peak
r

Pp
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Py

Undeformed

eqs
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≈1.0, a plastic hinge is assumed to form there. If the number of plastic hinges becomes 

sufficient and the kinematically admissible state is reached just prior to or at collapse load, 

the failure is assumed to be governed by “plastic collapse”. It should be noted that  

(1) Because of the strain hardening effect of materials, ( )m =ms s,peak
r  in some section 

where plastic deformation is great, is possible to exceed 1.0; 

(2) Some section with peak meridional bending moment does not enter into plastic range 

at ultimate load. From the engineering point of view, ( ) 0.8u m =msu su,peak
r ≥  is acceptable for 

the determination of plastic hinge.  

6.4.2 Failure mode of Models 

Figure 6-9 shows the changing distributions of r in conical and cylindrical walls 

under increasing load for model No.68. It is found that the region near to Sect. F enters 

into plastic when general yield load arrives. The ru in Sects. E, F, G and H are all greater 

than 1.0 when collapse load arrives. It indicates that four plastic hinges will form there.  

The ru in Sects. E, F, G and H for all the welded models with joint region failure are 

listed in Fig. 6-10. It is found that all the values of ru are close to or larger than 1.0. 

Therefore, the failure mode can be assumed to be controlled by “plastic collapse of joint 

intersection”.  

Based on the above analysis, it is known that for each model, the number of plastic 

hinges is sufficient and the kinematically admissible state is reached at ultimate load. 

Therefore, the failure of welded cone-to-cylinder connections in this study is assumed to 

be controlled by “plastic collapse of joint region”.  
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Fig. 6-9 Changing distributions of average equivalent stress in both conical and 
cylindrical walls under increasing load for model No.68   

 

Fig. 6-10 Ratio ru of average equivalent stress to yield stress in Sects. E, F, G and H 
for welded models with joint region failure  
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6.5 Prediction of Strength  

6.5.1 Prediction of Full Plastic Strength 

A plastic collapse mechanism shown in Fig. 6-11 is proposed. The dissipation of 

internal energy is absorbed by plastic hinges E, F1, F2, G and H, and segments EF1, F2G, 

and F3H. It totally includes two parts: one is absorbed by conical wall and the other by 

cylindrical wall. It should be noted that the distance among Sects. F1, F2 and F3 is defined 

to be zero. The location of Sects F1, F2 and F3 is the same as Sect. F in the model. The 

welding region is neglected in the failure mechanism and the top edge of cylinder wall is 

assumed to coincide with Sect. F 

 

 

Fig. 6-11 Proposed plastic collapse mechanism for welded models with joint region 
failure mode 
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(a) In conical wall                        (b) In cylindrical wall 

Fig. 6-12 External forces applied in conical and cylindrical walls  
 

For conical wall, reaction forces tR  and sR  from cylindrical wall are assumed to 

be applied in Sect. F1, as shown in Fig. 6-12(a). For cylindrical wall, external forces maxP  

and rF  from conical wall are assumed to be applied in Sect. F3, as shown in Fig. 6-12(b). 

It is noted that all the external forces are defined to be acted in the whole model in 360 

degrees in hoop direction. Their equilibriums are given by 

 ( ) ( )E E maxsin + cos +t sR R Pα φ α φ− − =   (6-2a) 

 ( ) ( )E Ecos + sin +t s rR R Fα φ α φ− + =   (6-2b)  

Combining Eqs. (6-2a) and (6-2b) by eliminating sR , the relationship among maxP , tR  

and rF  is expressed as 

 ( ) ( )max
E Esin + tan +

t rR FP
α φ α φ
− −= +   (6-3) 

It indicates that ultimate strength includes two parts: the former one induced by 

conical shell, and the latter one by cylindrical shell. They are assumed to be independent 
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with each other.  

For the one induced by conical wall, tR  can be derived based on the principle of 

virtual work as introduced in section 5.5.1. From Eq. (5-34), it can be obtained. The 

derivation procedure is omitted here. 

1 1 2 1

1

2
max F1 maxF maxF max F F

F

max
E

1 3 21.05 2.1 1 cos
2 4 3

cos

t s s s s y
tR m n n m d t

d

P

π σ α

φ
α

  
 = − − − − + −     

+

  (6-4a) 

Herein, the stress resultants are assumed as follow:  

 1 2 1

2
max F max F max F

2 3( 1 )
43s s sm m n= = − +  (6-4b) 

For the other induced in cylindrical wall, rF  can be derived based on virtual work 

principle as introduced in section 3.5.2. It should be mentioned that the top edge of 

cylindrical shell is under hoop compression, and no axial bending moment is acted in Sect. 

F3. These are two key points different from models with cylinder edge failure. The rF  

can be obtained from Eq. (3-44). The derivation procedure is also omitted here. 

Because the direction of rF  is opposite to that in Eq. (3-44), 

 
3max H max F H max Hr x P P yP PF m n d t t Pθ σ π φ= − − +   (6-5a) 

Herein, the stress resultants are assumed as follow. 

 
3 3 3

2
maxF H max F H maxF H

1 31
2 4x xn n nθ = − −  (6-5b) 

 2
maxH max H

2 3(1 )
43x xm n= −  (6-5c)  

Substituting Eqs. (6-4) and (6-5) into Eq. (6-3), assuming that E+α φ α=  based on the 

small deformation theory, and then dividing the both sides of Eq. (6-3) by 
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1F
cosyC C Ct dσ π α , the follow equation for meridional stress resultant 

1max Fs Cn  is obtained.  

 ( )max F1s C C Pn ψ ψ β γ χ= − + ⋅  (6-6a) 

Herein, 

1 1 1 1

2 2 2
max F max F max F max F

4.2 3 1 3 4 31.05 1 1
4 2 4 23 3C s C s C s C s Cn n n nψ

    = − − − − + −       
 

   (6-6b) 

 2 2
max H max H max H

2 3 1 31 1
4 2 43P x x xn n nψ

  = − + − −     
  (6-6c) 

 cosyP P P

yC C C

t t
t t

σ
β α

σ
=  (6-6d)  

 
1F

cos
cos sin

C

C

t
d

αχ
α α

=  (6-6e)  

 ( )H E

cos sin
cos sin cos

α αγ
α α φ α φ

=
+ +  (6-6f) 

 

A quadratic approximation of Cψ  is obtained as  

 
1 1

2
max F max F1.76 0.68 3.22C s C s Cn nψ = − − +   (6-7) 

The variation of Pψ  in Eq. (6-6c) along with axial stress resultant max Hxn  is shown in 

Fig. 6-13. A quadratic approximation is obtained as  

 2
max H max H0.92 0.42 1.06P x xn nψ = − − +   (6-8a) 

Herein 

 
1max H max Fx s Cn nκ= ⋅  (6-8b) 

where  cosyC C

yP P

t
t

σ
κ α

σ
=   (6-8c) 

 

Then the variation of factor γ  in Eq. (6-6e) along with the rotational angle Eφ  in 
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Sect. E is shown in Fig. 6-14. It can be seen the average is 0.92, with a small COV of 

0.01.Thus, the γ  is assumed to be a constant of 0.92 for all the models. 

 

  

Fig. 6-13 Plot of Pψ  along with max Hxn  and the quadratic approximation 

 

  

Fig. 6-14 Variation of factor γ  along with rotational angle Eφ  for all the welded models 

with joint region failure 
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Substituting Eqs. (6-6), (6-7) and 0.92γ =  into Eq. (6-5a), the simplified equation 

for 
1maxFsn is obtained as 

( ) ( )
1 1

2 2
max F max F1.62 0.85 0.63 0.39 1 2.96 0.98 0s C s Cn nχ κ βχ χ κβχ χ βχ+ + + − − − =

  (6-9) 

The solution of 
1maxFsn  is 

1

2

max F 2

0.63 0.39 1 19.58 1.26 1 (10.06 6.35 3.48 0.49 0.78)

3.24 1.70s Cn

χχ κβχ χ χ κ κβχ χ κβχ
κ

χ κ βχ

+ − + − + + + + + −
= −

+

  (6-10)  

The prediction of maximum strength maxP  of models can be finally obtained as  

 
1 1max max F F cosPRED s C C C yCP n d tπ σ α− = −   (6-11)  

The predicted values of maxP  in Eq. (6-11) are compared with those of FEA results. 

The results are shown in Fig. 6-15. The average of ratios is 0.92 with a COV of 0.06. A 

good agreement with each other can be found. Thus, full plastic strength pP  of models is 

predicted by  

 
1 1max F F cosp PRED s C C C yCP n d tπ σ α− = −   (6-12) 

herein, 
1maxFsn is obtained by Eq. (6-10). 

The predicted values of pP  are compared with those of experimental results. The 

results are shown in Fig. 6-16. The average of ratios is 0.88 with a COV of 0.06. The full 

plastic strength of connections with joint region failure can be predicted well by the 

proposed mechanism. 
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Fig. 6-15 Comparison of predicted maximum strength with FEA results for welded 
models with joint region failure 

 

 

Fig. 6-16 Comparison of predicted full plastic strength with experimental results for 
welded models with joint region failure 

6.5.2 Prediction of Collapse Strength 

The enhancement factor ρ  is assumed as the average of the ratios of collapse 

strength to full plastic strength for both experimental specimens and FEA models. Their 
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average along with axial stress resultant Fspn  is 1.07 with a COV of 0.04, as shown in 

Fig. 6-17. Collapse strength uP  is predicted by 

 - 1.07u PRED p PRED p PREDP P Pρ − −= =      (6-13) 

The predicted values of collapse strength uP  by formula in Eq. (6-13) are compared 

with those by the plastic buckling equation of cone in Kuwamura et al. (2005b). The 

ratios of them to the experimental results are shown in Fig. 6-18. It is seen that the 

average in the case of the proposed formula in this study is 0.88. While, that in the case of 

plastic buckling equation is 1.28. It indicates that the proposed plastic collapse 

mechanism in the joint region can predict the collapse strength of welded models better 

than the plastic buckling mode of conical wall.  

 

 

Fig. 6-17 Ratios of collapse strength to full plastic strength of both experiments and 
FEA for welded models with joint region failure 
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Fig. 6-18 Comparison of proposed formula and previous one for collapse strength 
with experimental results for welded models with joint region failure 

6.5.3 Prediction of General Yield Strength 

The ratios ξ  of general yield strength Py to plastic strength Pp for both 

experimental and FEA results are listed in Fig. 6-19. It can be found that their average is 

0.93 with a small COV of 0.02. The prediction of general yield strength Py. is obtained by 

 - 0.93y PRED p PRED p PREDP P Pξ − −= =     (6-14) 

The predicted results are compared with those of experimental specimens, as shown 

in Fig. 6-20. It is found that the average value is 0.87 with a COV of 0.08. The proposed 

formula in Eq. (6-14) can predict well the general yield strength of experimental 

speicmens. 
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Fig. 6-19 Ratios ξ  of general yield strength to full plastic strength of both 

experiments and FEA for welded models with joint region failure 

 

 

Fig. 6-20 Comparison of predicted general yield strength with experimental results 
for welded models with joint region failure 

6.6 Summaries  

This chapter focuses on prediction of the strength of welded cone-to-cylinder socket 

connections with joint region failure. Based on the above analysis, the following 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

-1.0 -0.8 -0.6 -0.4 -0.2 0.0

ξ=
 P

y 
 / 

P
p

Axial stress resultant nxpF

Avg. 0.93
COV 0.02

EXP
FEA

100 200 300 400 500 600
100

200

300

400

500

600

Py-EXP

Avg. 0.87
COV 0.08

Py-PRED.

(kN)

(kN)



 

169 

 

conclusions are obtained. 

(1) The distributions of deformation and stress resultant in conical and cylindrical walls 

are made clear. The intersection of cone and cylinder is weak because meridional 

bending moment, hoop stress resultant and radial deformation are all greater than 

those in other regions. 

(2) The failure of the specimens is assumed to be governed by “plastic collapse of joint 

region” based on the proposed criteria, because the number of plastic hinges is 

sufficient and the kinematically admissible state is reached at ultimate load.  

(3) The proposed plastic collapse mechanism can predict well the full plastic strength of 

experimental specimens. In addition, the prediction of collapse strength and general 

yield strength of models is also proposed and validated by the experimental specimens. 

The proposed formula can predict the collapse strength of models better than the 

previous plastic buckling equation for conical shells. 

(4) The rigorous eigenvalue plastic buckling analysis needs to be undertaken in future to 

study the plastic buckling behavior of conical and cylindrical shells under axial 

compression.  
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CHAPTER 7 CONCLUSIONS AND 
FUTURE RESEARCH 

7.1 Main Conclusions 

For metal touch connections, the characteristics of frictional contact between conical 

and cylindrical walls are investigated. A satisfactory value of friction coefficient for 

practical design work is proposed. For both metal touch and welded connections, stress 

and deformation behaviors during the whole loading process are clarified. Their failure 

modes are determined based on the proposed criterion. The Mises’ yield condition 

expressed by stress resultants for axisymmetrically loaded revolutional shells with 

perfectly-plastic material is simplified and validated by effective finite element (FE) 

analysis. Full plastic strength is effectively predicted by limit analysis, in which the 

influence of the correlation of stress resultants on failure mechanisms is considered. 

Collapse strength and general yield strength are also well predicted based on the formula 

for full plastic strength. The detailed findings are given in the following. 

7.1.1 Metal Touch Connections 

Based on the experimental, numerical and theoretical studies on metal touch 

connections with cylinder edge failure, tapered ring failure, and conical wall failure, the 

following main conclusions can be drawn. 

(1) Failure mechanisms of connections with different kinds of boundary condition 

between conical wall and cylinder edge are determined by the proposed criterion. 

For the connections with cylinder edge failure, failure mode is controlled by 

plastic collapse of cylindrical shell; For the connections with tapered ring failure, 

failure mode is not only controlled by hoop tension of ring but also by plastic 
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collapse of cylindrical shell; and For the connections with conical wall failure, 

failure mode is controlled by plastic collapse of conical shell.  

(2) The simplification of Mises’ yield condition for axisymmetrically loaded 

revolutional shells with perfectly-plastic material, as shown in Eq. (7-1), can be 

employed as the basis of plastic analysis of shell structures. 

 
2.5 2

max max max
22
maxmax

2 2 3 1
4 34 3

s s

ss

n n m
nn

θ  − + =  −−  
 (7-1) 

where, maxnθ , maxsn , maxsm  are the normalization of hoop stress resultant, 

meridional stress resultant and meridional bending moment in shell walls.  

(3) The full plastic strength of connections is predicted well by plastic collapse 

mechanism, in which the correlation of stress resultants is considered. The 

prediction of collapse strength and general yield strength of connections, based 

on the formula for full plastic strength, are also in good agreement with 

experimental and FE analysis results. 

(4) In practical design, conical shell, employed as pile head, is desirable to fail 

before the edge of cylindrical pile in order to protect the pile from damage. 

When conical shell bends inward, friction coefficient μ between conical wall and 

cylinder edge will be greater than 0.20 due to the breakdown of oxide film. 

Therefore, setting 0.20μ =  can be acceptable because it gives an obvious 

under-prediction for the strength of pile. 

(5) In order to make sure that conical shell fails before the edge of cylindrical pile, 

it is necessary to know the collapse strength of connections with all the failure 

modes. The predicted collapse strength by the proposed formula for each mode 

is listed in Table 7-1. The failure mode with minimum collapse strength is 

assumed to occur. It is found that predicted mode coincides well with actual one. 

Taking specimen Nos. 34 and 36 for example, the expected failure mode before 

experiments is tapered ring failure. But actually they failed in conical wall 
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failure, which is the same as the prediction. It should be noted that the actual 

mode of specimen No.9 is conical wall failure, while prediction is cylinder edge 

failure. The reason is that the collapse strength of cylinder edge failure is 

underestimated when friction coefficient μ is set to be 0.20.  

 
Table 7-1 Comparison of predicted failure mode with actual one for metal touch 

connections with different kinds of boundary condition 

 

Note: specimen Nos. 15, 32, 33, 38, and 45 failed in asymmetric modes, and specimen No. 31 failed in 
cylindrical wall with elephant foot buckling mode. Their failure modes are outside the scope of this 
study and not included in this table. 

 

Semi-
angle

Thick-
ness

Yield
stress

External
diameter

Thick-
ness

Yield
stress

Thick-
ness

Yield
stress

P u1 P u2 P u3

α t C σyC D P t P σ yP t R σ yR

Cylinder
edge

failure

Tapered
ring

failure

Conical
wall

failure
° mm mm mm mm mm mm mm kN kN kN

1 31.97 8.74 317 139.80 3.32 331 - - 75.0 - 640.8 P u1 cylinder cylinder yes

2 32.26 8.77 317 139.80 4.20 343 - - 111.1 - 640.0 P u1 cylinder cylinder yes

3 32.64 8.67 317 140.50 6.03 361 - - 202.0 - 623.0 P u1 cylinder cylinder yes

4 46.81 8.56 317 139.80 3.32 331 - - 125.9 - 644.4 P u1 cylinder cylinder yes

5 45.91 8.53 317 140.00 4.30 343 - - 184.1 - 637.8 P u1 cylinder cylinder yes

6 46.45 8.53 317 140.00 6.06 361 - - 322.8 - 624.8 P u1 cylinder cylinder yes

7 59.26 8.63 317 140.05 3.33 331 - - 209.2 - 575.9 P u1 cylinder cylinder yes

8 59.52 8.62 317 139.90 4.20 343 - - 302.0 - 566.6 P u1 cylinder cylinder yes

9 59.97 8.64 317 140.00 6.03 361 - - 526.5 - 552.5 P u1 cylinder cone no

10 32.72 8.46 317 114.50 4.24 369 - - 110.8 - 532.4 P u1 cylinder cylinder yes

11 32.74 8.51 317 165.60 5.58 343 - - 187.7 - 681.9 P u1 cylinder cylinder yes

12 47.34 8.50 317 114.30 4.23 369 - - 181.5 - 542.0 P u1 cylinder cylinder yes

13 45.69 8.64 317 165.50 5.64 343 - - 296.5 - 722.9 P u1 cylinder cylinder yes

14 59.71 8.64 317 114.40 4.25 369 - - 292.1 - 481.4 P u1 cylinder cylinder yes

26 46.28 8.74 317 139.85 3.27 331 6.11 319 - 227.5 664.2 P u2 ring ring yes

27 46.25 8.77 317 139.75 3.34 331 9.16 321 - 347.5 666.4 P u2 ring ring yes

28 45.03 8.67 317 139.90 3.28 331 11.99 322 - 462.9 659.9 P u2 ring ring yes

29 46.64 8.56 317 139.75 4.13 343 6.01 319 - 282.3 639.3 P u2 ring ring yes

30 45.86 8.53 317 139.80 4.17 343 9.05 321 - 390.2 638.1 P u2 ring ring yes

34 46.08 8.64 317 139.85 5.99 361 12.00 322 - 663.8 636.2 P u3 cone cone yes

35 33.38 8.46 317 139.85 4.21 343 9.07 321 - 264.8 614.9 P u2 ring ring yes

36 62.39 8.51 317 139.90 4.14 343 9.06 321 - 673.1 528.8 P u3 cone cone yes

37 49.02 8.50 317 114.30 4.24 369 9.07 321 - 416.0 536.4 P u2 ring ring yes

43 33.27 3.05 299 139.90 4.21 343 12.07 322 - 366.7 136.2 P u3 cone cone yes

44 33.51 4.24 299 139.95 4.23 343 11.99 322 - 367.2 220.1 P u3 cone cone yes

46 46.03 3.05 299 139.90 4.24 343 11.98 322 - 535.6 145.5 P u3 cone cone yes

47 46.68 4.27 299 139.85 4.21 343 12.01 322 - 545.6 234.2 P u3 cone cone yes

48 48.01 5.74 299 139.95 4.19 343 12.02 322 - 567.0 351.4 P u3 cone cone yes

49 61.37 3.05 299 139.80 4.19 343 12.05 322 - 847.4 130.6 P u3 cone cone yes

50 60.56 4.25 299 139.85 4.20 343 11.98 322 - 823.3 208.1 P u3 cone cone yes

51 59.58 5.64 299 139.90 4.17 343 11.96 322 - 795.4 308.5 P u3 cone cone yes

52 44.80 4.29 299 114.50 4.26 369 12.01 322 - 493.3 207.2 P u3 cone cone yes

53 46.24 4.20 299 165.80 5.62 343 12.04 322 - 674.1 252.0 P u3 cone cone yes

Coincide
or not

"Metal
touch"

"Metal
touch
+weak
ring"

Boundary
condition

(cone-
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No.

Cone Cylinder Tapered ring
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ring"
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(μ= 0.20)

P u- min
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mode
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(6) The reinforcement effect of tapered ring on the strength of connections is found 

to be obvious and can be predicted well by the proposed formulae. However, 

tapered ring failure does not always occur along with the increase of the 

thickness of ring. The failure mode would be turned into plastic collapse of 

conical wall or elephant foot buckling of cylindrical wall. The lateral one is 

necessary to be studied in future.    

7.1.2 Welded Connections 

(1) The strength of intersection of conical wall and cylinder edge is weak because 

the meridional bending moment, hoop stress resultant and radial deformation are 

all much greater than those in other regions. 

(2) The failure mechanism of welded connections in this study is assumed to be 

governed by “plastic collapse of joint region” based on the proposed criteria, 

because the number of plastic hinges is sufficient and the kinematically 

admissible state is reached at ultimate load. 

(3) The proposed plastic collapse mechanism can predict the full plastic strength of 

models more precisely than the previously proposed plastic buckling equation 

for conical shell. 

(4) Plastic buckling strength of conical and cylindrical shells needs to be studied in 

order to make clear the bound of plastic collapse mechanism of joint region.  

7.2 Future work 

In future, the following items require further study on the steel cone-to-cylinder 

socket connections. 

(1) The elastic stiffness of connections under compression needs to be studied. 

(2) Plastic bifurcation buckling analysis needs to be undertaken to judge plastic 

buckling failure mode of shell structures. Some computer codes (eg. Bushnell, 
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1976; Teng and Rotter, 1989), which have been employed successfully in shell 

structures (Blachut, et al. 2010; Teng 1994a, b) will be studied. 

(3) The gap between conical wall and cylinder edge will occur inescapably when 

conical wall rotates. Appendix D gives a qualitative study on the influence of 

gap on collapse strength of metal touch connections by finite element analysis. 

The relevant study is necessary to be undertaken in further.  

(4) This study focuses on the strength of steel cone-to-cylinder socket connections 

under axial compression. Actually, shear force and bending moment are also 

transformed from upper structure due to earthquake or wind load. The socket 

connection will be compressed under eccentric loading. The corresponding 

strength and behavior of connections have not been clarified. Appendix E gives 

a qualitative study on the influence of eccentricity ratio of compressive loading 

on collapse strength of connections by finite element analysis. The relevant 

study needs to be undertaken in further.  

(5) The seismic performance of structure with metal touch cone-to-cylinder socket 

connections is interesting to be studied. 
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APPENDIX  

Appendix A Coupon Test Results of Connections 

A.1 Coupon Test Results of Cylindrical Shell 
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A.2 Coupon Test Results of Conical Shell  
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A.3 Coupon Test Results of Lid Plate 
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A.4 Coupon Test Results of Tapered Ring  
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Appendix B Load versus Axial Deformation Curves of All the 

Experimental Specimens 

B.1 Connections with Boundary of “Metal touch” 
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B.2 Connections with Boundary of “Metal touch +thin ring” 
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B.3 Connections with Boundary of “Metal touch +thick ring”  
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B.4 Connections with Boundary of “Welding” 
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Appendix D Influence of Gap between Conical Wall and 

Cylinder Edge on Collapse Strength of Metal Touch 

Connections 

D.1 Introduction 

For metal touch cone-to-cylinder socket connections, perfect contact between 

conical wall and cylinder edge is quite difficult to be realized in practice because of the 

rotation of conical wall. As shown in Fig. D-1, when conical wall rotates at an angle of θ, 

the contact surface of conical wall is turned into an ellipse. Gap with maximum length g 

will occur between conical wall and cylinder edge. The stress in the contact region will 

not be distributed uniformly any more. The corresponding behavior and strength of 

connections have not been made clear. In this appendix, the variation of gap length with 

the increase of rotational angle is first analyzed. And then, Finite element (FE) analysis is 

employed to investigate the influence of gap on strength of connections qualitatively. 

 

 

Fig. D-1 Gap between conical wall and cylinder edge after rotation of conical wall 
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D.2 Variation of Gap Length along with Rotation of Conical Wall 

The relationship between gap length and rotational angle of conical wall is derived 

based on geometry theorem. The result is expressed in Eq. (D-1). 

 ( )21 cos 1 (tan tan )g a b aθ α θ≡ − = − − ⋅    (D-1) 

where, g is the maximum length of gap, a is the radius of cylindrical wall, b is the minor 

axis of ellipse, α is semi-vertex angle of conical wall, and θ is rotational angle of conical 

wall.  

By setting radius a to be 65.72mm, semi-vertex angle α to be 30o, 45o, and 60o 

respectively, and tangent of rotational angle θ to be 0, 1/20, 1/10 and 1/5 respectively, the 

variation of gap length g with increase of rotational angle θ is plotted in Fig. D-2. It can 

be found that when α increases, the increase of gap length g becomes more rapidly along 

with tangent of rotational angle θ. In the lateral FEA, the representative models with 

α=45o are employed to investigate the influence of gap length g on the strength of 

connections.  

 

 

Fig. D-2 Increase of the length of gap along with rotation θ of conical wall  
Note: radius a is equal to 65.72mm. 
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Fig. D-4 Condition of connections with different rotational angles of conical wall (α=45o) 
 

Table D-1 Dimensions of models with different failure modes 

Model 
No. 

Failure 
mode 

tC tP tR α dP Boundary 
between cone 
and cylinder 

Boundary 
between ring 
and cylinder 

tan θ 
mm mm mm  mm 

1 

Cylinder 
edge failure 9.00 

4.21 

 

45 131.38
Frictional 
contact 
μ=0.20 

 

0 

2 1/20 

3 1/10 

4 1/5 

5 

Tapered ring 
failure 9.00 9.00 Tie 

0 

6 1/20 

7 1/10 

8 1/5 

9 

Conical wall 
failure 4.27  

Top edge of 
cylinder: 
Ux=Uz=0. 

Ring is not 
employed. 

0 

10 1/20 

11 1/10 

12 1/5 

Note: (1)  tC means thickness of conical wall; tP means thickness of cylindrical wall; tR means thickness 

of tapered ring; α means semi-convex angle of conical wall; and dP means diameter of cylindrical shell.  
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D.4 Summaries 

In this appendix, the relationship between gap length and rotational angle of conical 

wall is derived. And then, the influence of rotational angle on collapse strength of metal 

touch connections is investigated by FEA. The conclusions are shown as follows: 

(1) The gap length g increases as tan θ increases. If semi-vertex angle of conical wall 

is 45o, diameter of cylindrical shell is 131mm, and tan θ is 1/5, the gap length g will reach 

about 2.7mm. 

(2) Because of the deformation capacity of cylinder edge, the gap can be filled as 

load increases. 

(3) The collapse strength of metal touch connections almost keeps to be constant 

even if tan θ increases to be 1/10. From the seismic engineering point of view, tan θ of 

conical wall is similar to that of story drift angle of column, and usually less than 1/50 in 

practice. Therefore, the influence of gap length or rotational angle of conical wall on 

collapse strength of metal touch connections can be not considered.  
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Appendix E Influence of Eccentricity of Compressive Loading 

on Collapse Strength of Connections 

E.1 Introduction 

The body part of this thesis focuses on the strength of steel cone-to-cylinder socket 

connections under axial compression. Actually, shear force and bending moment are also 

transformed from upper structure due to earthquake or wind load, as shown in Fig. E-1. In 

this case, the socket connection will be compressed under eccentric loading. The strength 

and behavior of connections, which are different from those under axial compression, 

have not been clarified. In this appendix, Finite element (FE) analysis is employed to 

investigate the influence of eccentricity ratio of load on collapse strength of connections 

qualitatively.  

 

 

Fig. E-1 Conical pile head model in building structure 
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E.2 FE Analysis 

E.2.1 FE Modeling 

Half three-dimensional solid finite element (FE) model as illustrated in Fig. E-2 is 

established using ABAQUS 6.11 based on the consideration of geometrical symmetry and 

computing time. Four-node shell elements with reduced integration, S4R, are adopted for 

conical and cylindrical shells, and lid plate. Eight-node solid element with reduced 

integration, C3D8R, is adopted for ring, which is simplified to be rectangular. It should be 

noted that lid plate is defined to be elastic, with Young’s modulus E=205,000MPa and 

Poisson’s ratio ν=0.3; conical wall, cylindrical wall and tapered ring are defined to be 

actual.  

For the top edge of cone, it is tied to the bottom surface of lid plate. For plane z=0, 

the symmetric boundary condition as shown in the figure are applied. For the bottom end 

of cylinder, all the displacement freedoms are fixed.  

Displacement loading histories are applied at the top surface of lid plate. Eccentricity 

ratio of load is set to be 0, 1/8, 1/4, 3/8, and 1/2 respectively, as shown in Fig. E-3. It 

should be noted that the influence of loading length h on strength of connections is not 

considered and defined to be 16mm. The confinement effect of foundation beam on lid 

plate is also neglected. 

 

Fig. E-2 Half three-dimensional FE models under eccentric loading 
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Fig. E-3 Eccentricity ratios of loading employed in FE model 
 

Table E-1 Details of FE models with different modes    

Model 
No. 

Failure 
mode 

tC tP tR tL α dP Boundary 
between 
cone and 
cylinder 

Boundary 
between 
cylinder 
and ring 

Eccentricity 
ratio of 

load mm mm mm mm  mm 

1 

Cylinder 
edge 

failure 
9.00 

4.21 

 

12.00 45 131.38

Frictional 
contact 
μ=0.20 

 

0 

2 1/8 

3 1/4 

4 3/8 

5 1/2 

6 

Tapered 
ring 

failure 
9.00 9.00 Tie 

0 

7 1/8 

8 1/4 

9 3/8 

10 1/2 

11 

Conical 
wall 

failure 
4.27  

Top edge 
of 

cylinder: 
Ux=Uz=0. 

Ring is not 
employed. 

0 

12 1/8 

13 1/4 

14 3/8 

15 1/2 

16 

Joint 
region 
failure 

4.27  Tie  

0 

17 1/8 

18 1/4 

19 3/8 

20 1/2 

Note   

tC : thickness of conical wall; tP: thickness of cylindrical wall; tR: thickness of tapered ring; 

 α: semi-convex angle of conical wall; and dP: diameter of cylindrical shell.  
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strength is much greater than those of metal touch connections with three failure 

modes. It is because that conical wall only rotates, making the Mises stress 

distribution in distal side much smaller than that in proximal side. 

(5) The length of load region is set to be relatively small in this analysis. Its 

influence on the collapse strength of connections is necessary to be analyzed in 

future.    
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