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ABSTRACT

A new type of steel connection, which is named steel cone-to-cylinder socket
connection, is developed in the Steel Structure Laboratory of the University of Tokyo to
reduce the seismic damage occurred at the pile head of building structures. Strength of the
connections under axial compression has been studied since 2005. Four potential failure
modes: cylinder edge failure, ring tension failure, cone bending failure, and cone buckling
failure were summarized. Several models were created and formulae for predicting the
yield strength, full plastic strength, and collapse strength of connections were proposed.
However, several issues have not been clarified up to now. Though the simple law of
friction proposed by Amonton and Coulomb can be employed to simulate the friction
contact between cone and cylinder, how to set the value of the friction coefficient for
practical design has not been made clear. The distributions of stress and deformation in
the connections have not been investigated. The plastic regions in cylindrical wall,
tapered ring, conical wall and lid plate at yield, full plastic and ultimate loads respectively,
have not been analyzed. The failure modes need to be reinvestigated in detail, especially
for the welded connections with cone buckling failure, because the predicted strength is
much greater than the experimental results. Furthermore, the influence of interaction of
stress resultants on the failure mechanisms has not been studied.

This thesis is aimed to clarify the failure mechanisms and proposed more precise and
easy-to-use formulae for predicting the strength of all the connections. This thesis first
estimates effective Finite Element (FE) models by considering the influence of friction
coefficient on collapse strength and then clarifies the stress transformation mechanisms.
Secondly, the failure mechanisms are judged based on the FE Analysis results and the
previous experimental results. Thirdly, the interaction of stress resultants is investigated,
and then the complicated equation of Mises’ yield condition for revolutional shells under

axisymmetric loading is simplified into an explicit and easy-to-use form and validated by
I



the effective FEA results. Finally, plastic collapse mechanisms are proposed and limit
analysis is undertaken by considering the interaction of axial (meridional) stress resultants
with hoop stress resultant and axial (meridional) bending moment. More precise and
easy-to-use formulae for strength of connections are proposed and validated by

comparing them with the previous ones and the relevant experimental and FEA results.
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NOMENCLATURE

External diameter

Young’s modulus

Length of segment in plastic collapse mechanism
Bending moment per unit length in hoop direction
Normal stress resultant per unit length in hoop direction
Strength under compressive loading

Shear stress resultant per unit length in hoop direction

Axial deformation

Center-to-center diameter

True strain

True stress

Thickness of wall

Radially outward distance from the middle surface of walls
Deformation in radial or normal direction

Rotation angle of plastic hinges

Semi-vertex angle of conical shell

Confinement factor of tapered ring on maximum strength
Influence factor when the influence of external work by axial force on

plastic collapse mechanism is considered.

Engineering strain

Eccentricity ratio of axial force

Friction coefficient

Factor for predicting general yield strength based on full plastic strength
Factor for predicting collapse strength based on full plastic strength
Engineering stress

Shear stress

Fundamental parameter for predicting full plastic strength

Factor when the influence of meridional stress resultant on plastic collapse
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mechanism is considered

Subscripts
C Conical shell
P Cylindrical shell
R Ring
max At ultimate load for models with perfectly plastic material
)% Plastic
r Radial direction
s Meridional direction of conical shell
t Normal direction of conical shell
u Ultimate
X Axial direction
y Yield
0 Hoop (Circumferential) direction

Sign convention
Tension: +ve
Compression:  -ve
(But strength under compressive loading: +ve)
Outward radial deflection:  +ve
Inward radial deflection: -ve
Shear stress: clock rotation +ve

Bending moment: external surface of shell wall is under tension: +ve

(Terms not shown here are defined in the text and figure)
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CHAPTER 1 INTRODUCTION

1.1 Background

1.1.1 Advantage of Steel Cone-to-Cylinder Socket Connections

A new type of steel connection, which is named steel cone-to-cylinder socket
connection, is developed by Kuwamura et al. (2005a) in order to facilitate connecting a
circular hollow section member to another cylindrical or different shaped section member.
As shown in Fig. 1-1, this connection consists of four parts: a conical shell, a cylindrical
shell, a tapered ring and a lid plate. In general, the lid plate is attached in advance to the
foot of the conical shell in order to serve as a splice to fix the connected member. Then,
the apex part of the conical shell is inserted into the open end of the cylindrical shell. The

tapered ring is used to strengthen the cylinder edge, if necessary.

(a) Components (b) Connection

Fig. 1-1 Components of steel cone-to-cylinder socket connections

Earthquake ‘ . .
load | t
) Uplifting
Bending | Bending
moment IL moment
Damage of pile
head -
Steel cone-to-cylinder
socket connection

(a) Rigid pile head (b) Proposed new pile head
Fig. 1-2 Major advantage of steel cone-to-cylinder socket connections
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Motivation for this connection comes from the seismic damages at pile heads of
building structure, which were largely observed in pile foundations in 1995 Kobe
Earthquake (Kuwamura and Ito 2009). Past studies (Rutenberg A. et al. 1982; Hayashi Y.
et al. 1999; Iwashita K. et al. 2003) have pointed out that the effects of rocking vibration
accompanied with uplift motion may reduce the seismic damage to buildings subjected to
strong earthquake ground motions. Some kinds of pile head with uplifting and rocking
vibration concept have been employed in building structure successfully (Nishimura et al.
2004; Ishizaki et al. 2006). As described in Fig. 1-2(a), the ordinary cylindrical pile head
is usually rigid and fixed to foundation beam. It is easy to have a damage or even failure
due to the great bending moment induced by horizontal earthquake load. The proposed
connection shown in Fig. 1-2(b) can protect the pile head from damage by reducing the
bending moment substantially, because it can uplift and rock during earthquake. This is
the major advantage of the connections. Another benefit is that field construction can be
substantially simplified. After conical wall collapses, it can be replaced easily and

quickly.

1.1.2 Research Subject of Steel Cone-to-Cylinder Socket Connections

This socket connection can be not only applied to pile head, but also to some other
cases: such as column base, pin-support of truss, and pipeline reducer, as listed in Fig. 1-3.
In addition to the applications by considering uplifting and rocking vibration concept, it
should be noted that when it is employed in pipeline structure, welding between cone and
cylinder is necessary, since the pipeline is usually filled with dangerous chemical, such as
oil or gas. Moreover, welded cone-to-cylinder connections, as the most common form of
intersections in engineering applications within marine, mechanical and architectural
industries, are often found in steel silos and tanks with a conical roof, elevated conical
water tanks with a cylindrical shell support and pressure vessels with a conical end

closure (Teng 2000).



Welding is

A% needed

(a) Pile head  (b) Column base (c) Truss support (d) Pipeline reducer
Fig. 1-3 Applications of steel cone-to-cylinder socket connection

L LR

Metal touch |
(No ring)

(a) Metal touch connection (b) Welded connection
Fig. 1-4 Two main kinds of the socket connection

Thus, the socket connections with welding between cone and cylinder are employed
from a practical point of view. Furthermore, it is also necessary for comparative research
on metal touch socket connections. Finally, steel cone-to-cylinder socket connections are
classified to be two main kinds: one is “metal touch connection”, in which cylinder edge
will be strengthened by tapered ring if necessary; and the other is “welded connection”, as
shown in Fig. 1-4.

In order to make the steel cone-to-cylinder socket connections to be practical,
research work has been conducted since 2005, by both experimental study and numerical
analysis. The main research subject is to make clear the failure mechanism of the

connections under compressive loading and then to predict the strength effectively.

1.2 Previous Research and Unclarified Issues

Kuwamura et al. (2005a) revealed that the connection is strong and stiff enough to be
applied to the construction practice of low to middle-rise buildings, based on the results

of Feasibility Assessment tests. The potential ultimate modes of this connection were



classified into six cases: cylinder edge failure, ring tension failure, cone edge failure, cone
bending failure, cone buckling failure and lid-cone bending failure. The strength of
connections under axially uniform compression were mainly studied with bending theory
of shells. After the pilot tests, a series of tests with more than 100 specimens were
conducted by Tomioka et al. (2005). The strength obtained from experiments was
compared with the predicted values by the proposed formulae. The analysis results
indicated that

(D For connections with cylinder edge failure, the influence of bending of cylindrical
wall needs to be considered, especially for predicting collapse strength;

(2 For connections with ring tension failure, the reinforcement effect of tapered ring on
the yield strength of connections would reach the highest limit, even though the
thickness of ring in vertical direction increases. It seems that not the whole section of
ring plays a role on strengthening the connections;

@ For connections with cone bending failure, large friction coefficient is favorable,
because the expansion of the cone due to Poisson’s ratio makes the cone sit on the
edge of the cylinder;

@ For connections with cone buckling failure, the predicted plastic buckling strength is
greater than the collapse strength of experimental results;

(® For connections with lid-cone bending failure, the load carrying capacity of conical
shell controls the strength of connections;

© In future, the determination of failure mode and friction coefficient is necessary to be
reinvestigated (Tomioka 2006).

After then, Kuwamura and Ito (2007) investigated the frictional resistance of a
rotating steel cone in contact with the inner edge of a steel cylinder theoretically on the
basis of the classical law of friction proposed by Amonton and Coulomb, and suggested
that the simple theory works well for the prediction of the frictional rotation resistance of
the socket connection. Ito et al. (2008) reinvestigated the cylinder edge failure of the

connections by means of FEM and theoretical analysis. It indicated that the previously

4



proposed model for the yield load is found satisfactory, while the models for the full

plastic and ultimate loads are modified to Eason-Shield model (1955) which provides

better prediction because the influence of bending in cylindrical wall is considered. Ehara
et al. (2007) investigated the influence of initial imperfections of the cylinder and the
friction coefficient between cone and cylinder on the stiffness and strength of connections
with cylinder edge failure, and suggested that friction coefficient controls the strength and
initial imperfection controls the stiffness. Fujimoto and Kuwamura (2009) reinvestigated
the yield strength of connections with ring tension failure by considering the rotation of
ring and found that the predicted value becomes better than the previous formula for some
of the models, while not for other models. Fujimoto and Kuwamua (2010) reinvestigated
the yield and ultimate strength of connections with ring tension failure by considering the
contact effect of the bottom edge of ring with cylindrical wall and found that the
prediction was closer to the experimental results than before. Up to now, the connections
with cone bending failure, cone buckling failure and lid-cone bending failure has not been
reinvestigated.

The previous research stated above is summarized and the unclarified issues are
listed as follow:

(D Though the simple law of friction proposed by Amonton and Coulomb can be
employed to simulate the friction contact between cone and cylinder, how to
determine the values of friction coefficient has not been made clear;

@ The distributions of stress and deformation in the connections with ring tension failure,
cone bending failure, cone buckling failure and lid-cone bending failure have not been
investigated. The plastic regions in cylindrical wall, tapered ring, conical wall and lid
plate at yield, full plastic and ultimate loads respectively, have not been analyzed;

(3 The influence of axial stress resultant on failure mechanisms has not been studied;

@ The failure modes need to be reanalyzed in detail, especially for connections with

cone buckling failure.



1.3 Objective and Scope of this Thesis

This study focuses on the prediction of the strength of steel cone-to-cylinder socket
connections under axial compression. The objectives are as follow:
(D to find a way to determine the friction coefficient between cone and cylinder for metal

touch connections;
@ to clarify the failure mechanisms of all the connections;
@ to investigate the interaction among stresses in failure mechanisms;
@ to propose more precise and easy-to-use formulae for predicting the strength of
connections.

It should be mentioned that prediction of the stiffness of connections under axial
compression is outside the scope of this study. In addition, prediction of the strength of
connections under local or eccentric load is also not undertaken. Thus, the lid-cone

bending failure will be not analyzed in the following chapters.

1.4 Outline of this Thesis

According to the study plan, this thesis includes the following seven chapters. The
configuration of this thesis is shown in Fig. 1-5.

Chapter 1 Introduction

The concept and advantage of steel cone-to-cylinder socket connections are
introduced. A comprehensive review of the study related with the steel cone-to-cylinder
connections are carried out. The unclarified issues are addressed, and the purpose and
scope of the dissertation are presented.

Chapter 2 Discussion on Failure Modes Based on Previous Experimental
Results

The whole schedule of the previous experiments is addressed. The strength and

ultimate behavior of specimens are analyzed. The failure modes are reinvestigated based
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Fig. 1-5 Configuration of this thesis

on the experimental results.

Chapter 3 Strength of Metal Touch Connections with Cylinder Edge Failure

A comprehensive review of the preceding study on cylinder edge failure is addressed.

Effective FEA (Finite Element Analysis) is then employed to analyze the friction

coefficient between cone and cylinder and investigate the distributions of stresses and

deformations of cylinder edge. Based on the FEA results and the preceding experimental

results, the failure mode is determined by the proposed criteria. The limitations of the

previous mechanical models are presented, and then a new mechanical model is created.

Limit analysis is undertaken and the formula for predicting the full plastic strength of

models is proposed. Based on the formula for full plastic strength, the prediction of

ultimate strength and general yield strength is undertaken.
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Chapter 4 Strength of Metal Touch Connections with Tapered Ring Failure

A comprehensive review of the preceding study on the reinforcement effect of rings
on strength of cylindrical shells is addressed. FEA is employed to analyze the friction
coefficients both between cone and cylinder and between cylinder and ring. And then, the
distributions of stress and deformation of tapered ring are investigated. The failure mode
is judged by the proposed criterion. The limitations of the previous mechanical model are
presented, and then a new mechanical model is created. Limit analysis is undertaken and
formula for predicting the full plastic strength of models is proposed. Based on the
formula for full plastic strength, the prediction of ultimate strength and general yield
strength is undertaken.

Chapter 5 Strength of Metal Touch Connections with Conical Wall Failure

A comprehensive review of conical wall failure under external pressure or along
with axial compression is addressed. FEA is employed to analyze the friction coefficient
between cone and cylinder. And then, the distributions of stress and deformation of
conical wall are investigated. The failure mode is judged by the proposed criteria. The
limitations of the previous mechanical model are presented, and then a new mechanical
model is created. Limit analysis is undertaken and the formula for predicting the full
plastic strength of models is proposed. Based on the formula for full plastic strength, the
prediction of ultimate strength and general yield strength is undertaken.

Chapter 6 Strength of Welded Connections with Joint Region Failure

A comprehensive review of prediction of strength of welded cone-to-cylinder
connections is addressed. FEA is employed to investigate the distributions of stress and
deformation of conical and cylindrical walls. The failure mode is judged by the proposed
criteria for plastic collapse. A new mechanical model is created and then limit analysis is
undertaken. The formula for predicting the full plastic strength of models is proposed.
Based on the formula for full plastic strength, the prediction of ultimate strength and
general yield strength is undertaken.

Chapter 7 Conclusions and Future Research
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CHAPTER 2 DISCUSSION ON FAILURE
MODES BASED ON PREVIOUS
EXPERIMENTAL RESULTS

2.1 Introduction

The feasibility of cone-to-cylinder socket connections was verified according to the
results of pilot tests under compressive loading (Kuwamura et al. 2005a). Further
experimental study including 104 specimens was then performed by Tomioka et al. (2006)
to investigate the failure mechanisms of connections. Figure 2-1 gives the set-up of
experiments under axial compression. The compressive loading was transformed to the
connections through a round loading plate. The axial deformation, which is the shortening
of the entire length of a specimen in the loading direction was measured by four laser
displacement sensors. For each specimen, the bottom edge of cylindrial shell was
metal-touched with foundation and the top edge of conical shell was welded to lid plate.
Four kinds of boundary condition between conical wall and cylinder edge were adopted,
such as “Metal touch”, “Metal touch + weak ring”, “Metal touch + strong ring” and
“Welding”, as shown in Fig. 2-2. For specimens with the boundary of “Metal touch”, the
cylindrical shell was designed to be much thinner than conical one in order to make it fail
first; For specimens with the boundary of “Metal touch + thin ring”, the cylindrical shell
was also designed to be much weaker than conical shell. Tapered ring of various thickness
was then employed to investigate its reinforcement effect on the strength of specimens;
For specimens with the boundary of “Metal touch + thick ring”, ring was designed to be
strong enouch to make sure conical shell fail first; For specimens with the boundary of
“Welding”, failure near to the weld region between conical wall and cylinder edge was
investigated. The necessary parameters of connections for realizing these objectives are

shown in Fig. 2-3. Table 2-1 lists their actually measured data. It should be noted that as
9



this study focuses on the specimens under axial compression, the information of those

under local or eccential compression are omitted.

Load |
1 %E i _~Loading plate

—

elding

Metal touch

/

= G \Foundation

Fig. 2-1 Set-up of experiments under axial compression

(A metal touch connection is taken for example)

] [ ]
q \ . —Welding
metal Thin Thick

touch ring fing

(a) “Metal touch” (b) “Metal touch +thin ring” (c) “Metal touch +thick ring” (d) “Welding”
Fig. 2-2 Boundary conditions between cone and cylinder

Lid plate
(SS400)

cu

Cone

(SS400) | tﬂ‘
L Cylinder U L
(STK 400) teg

Tapered ring
(SM490)

Fig. 2-3 Parameters of specimens
Note: () gives the types of mild steel material
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Table 2-1 Actual measurements of all the specimens under axial compression

Cone Cylinder Lid plate Tapered ring
Boundary Semi- | Thick- Upper Ememal Thick- Width Thick- || Thick- Top Bo?tom
condition ||Specimen angle ness | height || diameter | ness ness ness | width width
(cone- No. o tc Hcu Dp tp B t tr [RT gB
cylinder)
° mm mm mm mm mm mm mm mm mm
1 31.97 8.74 50.07 139.80 3.32 239.65 11.62 - - -
2 32.26 8.77 49.17 139.80 4.20 239.05 11.66 - - -
3 32.64 8.67 48.77 140.50 6.03 240.55 11.63 - - -
4 46.81 8.56 47.06 139.80 3.32 279.95 11.67 - - -
5 45.91 8.53 48.27 140.00 4.30 279.70 11.86 - - -
6 46.45 8.53 46.22 140.00 6.06 279.20 11.68 - - -
7 59.26 8.63 50.78 140.05 3.33 358.85 11.60 - - -
"Metal touch" 8 59.52 8.62 49.67 139.90 4.20 359.15 11.65 - - -
9 59.97 8.64 49.07 140.00 6.03 360.20 11.62 - - -
10 32.72 8.46 49.53 114.50 4.24 219.50 11.65 - - -
11 32.74 8.51 49.85 165.60 5.58 259.40 11.66 - - -
12 47.34 8.50 45.05 114.30 4.23 259.90 11.65 - - -
13 45.69 8.64 50.42 165.50 5.64 299.85 11.64 - - -
14 59.71 8.64 48.79 114.40 4.25 318.40 11.82 - - -
15 60.15 8.66 47.09 165.65 5.62 375.20 11.69 - - -
26 46.28 8.74 47.18 139.85 3.27 239.65 11.62 6.11 5.88 4.57
27 46.25 8.77 49.16 139.75 3.34 239.05 11.66 9.16 9.07 7.85
28 45.03 8.67 51.37 139.90 3.28 240.55 11.63 1199 | 12.01 10.64
29 46.64 8.56 47.28 139.75 4.13 279.95 11.67 6.01 5.83 4.60
30 45.86 8.53 48.88 139.80 4.17 279.70 11.86 9.05 9.04 7.61
31 45.93 8.53 48.87 139.80 4.15 279.20 11.68 12.00 | 11.98 10.58
"Metal touch
+thin ring" 32 45.67 8.63 49.08 139.90 6.00 358.85 11.60 6.12 6.04 4.56
33 45.33 8.62 51.87 139.90 6.01 359.15 11.65 9.04 9.07 7.73
34 46.08 8.64 49.28 139.85 5.99 360.20 11.62 12.00 | 12.00 10.55
35 33.38 8.46 51.85 139.85 4.21 219.50 11.65 9.07 9.02 7.72
36 62.39 8.51 40.46 139.90 4.14 259.40 11.66 9.06 8.99 8.69
37 49.02 8.50 50.08 114.30 4.24 259.90 11.65 9.07 8.93 7.71
38 45.94 8.64 48.79 165.30 5.64 299.85 11.64 9.02 8.85 7.38
43 33.27 3.05 49.33 139.90 4.21 239.50 11.70 12.07 | 12.01 10.62
44 33.51 424 47.16 139.95 4.23 240.00 11.65 1199 | 12.01 10.64
45 33.10 5.78 49.84 139.85 4.23 239.00 11.75 11.99 | 11.99 10.61
46 46.03 3.05 49.80 139.90 4.24 280.00 11.62 1198 | 12.02 10.66
47 46.68 427 49.39 139.85 421 280.00 11.62 12.01 12.03 10.62
"Metal touch
tthick ring" 48 48.01 5.74 48.23 139.95 4.19 280.00 11.63 12.02 | 12.03 10.62
49 61.37 3.05 46.32 139.80 4.19 359.00 11.62 12.05 | 12.05 10.67
50 60.56 4.25 48.80 139.85 4.20 359.00 11.62 1198 | 12.01 10.59
51 59.58 5.64 50.14 139.90 4.17 359.50 11.62 1196 | 11.96 10.69
52 44.80 429 52.48 114.50 4.26 259.50 11.71 12.01 11.98 10.58
53 46.24 4.20 49.97 165.80 5.62 300.00 11.68 12.04 | 11.99 10.59
64 30.47 3.20 49.80 139.90 431 239.50 12.00 - - -
65 29.54 4.50 49.39 139.90 4.34 239.50 11.68 - - -
66 30.96 6.00 51.53 139.90 4.31 239.50 11.60 - - -
67 46.04 3.20 49.39 139.95 4.32 279.50 11.65 - - -
68 43.96 4.50 49.94 139.90 4.34 280.00 11.68 - - -
"Welding" 69 43.64 6.00 49.92 139.95 4.37 279.50 11.60 - - -
70 59.04 3.20 51.53 139.85 4.31 359.50 11.65 - - -
71 57.38 4.50 49.92 139.90 429 359.50 11.63 - - -
72 58.60 6.00 51.53 139.90 4.34 359.50 11.67 - - -
73 44.29 4.50 49.39 114.50 4.27 260.00 11.86 - - -
74 46.05 4.50 49.97 165.20 5.61 299.50 11.68 - - -

Note: the specimens of Nos.16~25, 39~42, 54~63 and 75~84 under local or eccentric compression are not included in this table.
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Fig. 2-4 Potential failure modes proposed by previous research

The failure mode of specimens under axial compression was classified into four
cases: cylinder edge failure, ring tension failure, and cone bending failure for metal touch
connections and cone buckling failure for welded connections, as shown in Fig. 2-4. The
strength of connections with all the modes was derived theoretically (Kuwamura et al.
2005b, Fujimoto et al. 2010). It was found that for metal touch connections with cylinder
edge failure, strength was predicted by assuming that cylinder edge expands with the
same slope of conical wall; For metal touch connections with ring tension failure, the top
edge of cylindrical wall was assuemd to be supported by the bottom end of ring; For
metal touch connections with conical wall failure, strength was predicted by assuming
that friction coefficient between conical wall and cylinder edge to be 1.0, which is a

coefficient of static friction. Schey (1983) proposed that the maximum value of kinetic
friction coefficient can never exceed 1/4/3 according to von Mises yield criterion even

in a strain-hardening material. The assumption that the expansion of conical wall due to
Poisson’s ratio makes the cone sit on the edge of cylinder needs to be discussed; Lastly,
for welded connections with cone buckling failure, strength was predicted by assuming
cylindrical wall is rigid. However, the predicted buckling strength of cone was greater

than the experimental results. Therefore, these failure modes need to be reinvestigated.
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2.2 Material Properties of Connections

To obtain the material properties of all the members in the connections, tensile
coupons are manufactured and then coupon test are undertaken. The results of coupon
tests are listed in Appendix A. It should be noted that for cylindrical shell and tapered ring,
the previous coupon test results (Tomioka 2006) are referred; while for conical shell and
lid plate, the new coupon test results are obtained from the connections which still

remain.

2.2.1 Cylindrical Shell

The tensile coupons were cut from cold-formed cylindrical shell used in the
connection, as shown in Fig. 2-5. For each kind of cylindrical shell, three coupons were
manufactured to obtain the average material properties. The effective results are shown in
Fig. 2-6. It can be found that not all the results of coupons are employed. The yield
plateau does not occur for all the coupons because of the effect of cold forming. The type
of average curve is determined by the better result of coupons. The yield stress, tensile
tress and relevant strain are listed in Table 2-2. It can be found that the
diameter-to-thickness ratio has obvious effect on the yield stress of cold-formed

cylindrical shells.

——Cylindrical shell
(STK400)
Weld
seam e
Coupon
| —
~_

Fig. 2-5 Position of coupons for cylindrical shell
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Table 2-2 Measured material properties of steel STK400 used in cylindrical shell

Steel  Size (D p*xtp) No tp Oyp Oyp
grade mmxmm ' mm MPa MPa

14-45-1 4.22 373 413 0.0036 = 0.0648

114.3x4.5 14-45-2  4.23 365 413 0.0033  0.0765
average  4.23 369 413  0.0034 0.0707

39-35-3 3.30 331 396  0.0037 0.1978

average  3.30 331 396  0.0037 0.1978

39-45-1 431 339 403  0.0033  0.1230

139.8x4.5 39-45-2 425 347 409  0.0032  0.1602
STK400 average  4.28 343 406  0.0033 0.1416
39-6-1 5.61 369 425  0.0040 0.1760

139.8%6.0 39-6-2 5.55 353 416  0.0039  0.1632
average  5.58 361 421  0.0039 0.1696

65-6-1 5.65 348 417  0.0037  0.1299

65-6-2 5.67 350 410  0.0037  0.1272

65-6-3 5.65 331 399  0.0036 0.1719

average  5.66 343 409  0.0036 0.1430

Note: o,: yield stress, 0,: tensile stress, ¢, engineering strain at yield stress and ¢, engineering strain at

gyP Eyup

139.8%3.5

165.2x6.0

ultimate stress.

2.2.2 Conical Shell

The tensile coupons are cut from cold-formed conical shell used in the connection,
as shown in Fig. 2-7. For each kind of conical shell, three coupons are manufactured to
obtain the average material properties. If the results of former two coupons are well, the
last one will be not undertaken. The effective results are shown in Fig. 2-8. The yield
plateau does not occur for all the coupons because of the effect of cold forming. The
material properties are listed in Table 2-3. It should be noted that the material properties
of conical shells with thicknesses of 3.2 and 6.0 mm are not measured. They are assumed

to be the same as those of conical shell with thickness of 4.5mm.
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Fig. 2-8 Engineering stress versus engineering strain curves of effective coupons of
conical shell

Table 2-3 Measured material properties of steel SS400 used in conical shell

Steel  Size (t¢) tc OyC OuC
No. EyC EuC
grade mm mm MPa MPa
40-45-1 4.20 296 437 0.0034  0.2156
4.5 40-45-3  4.22 302 439 0.0033  0.1891
3400 average 4.20 299 438 0.0034 0.2024

40-9-1 8.77 312 414  0.0037  0.2135
9.0 40-9-3 8.27 322 417 0.0035  0.2227
average 8.52 317 416  0.0036 0.2181

Note: The material properties of conical shells with thicknesses of 3.2 and 6.0 mm were not measured.

They are assumed to be the same as those of conical shell with thickness of 4.5mm.

2.2.3 Tapered Ring

The tensile coupons were cut from a plate as shown in Fig. 2-9. The tapered rings are

manufactured from the plate. By considering the fabrication process, the thicknesses of
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plate were set to be 9mm, 12mm and 16mm, which are all a little greater than those of
tapered ring. For each kind of ring, three coupons were manufactured to obtain the
average material properties. The results are shown in Fig. 2-10. Not all the results of
coupons were employed. The yield plateau occurs for all the coupons. The type of
average curve is determined by the better result of coupons. The material properties are

listed in Table 2-4. It can be found that the thickness of coupon has little effect on yield

stress.
~
™ Plate
(SM490)
—
Coupon
Fig. 2-9 Position of coupon for tapered ring
‘©600 - - ' ‘© 600
% % 49-12-2
=500 < 500 | ;
o 49-9-3 o 49-12-3
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%300 % 300
()] (@)}
£200 £ 200
) % ----- Average
2100 £ 100
o 2
g o ‘ ‘ ) w O ‘ ‘ )
0 005 01 015 02 0 005 01 015 02
Engineering strain ¢ Engineering strain ¢
(a) tg=6mm (b) z=9mm
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Fig. 2-10 Engineering stress versus engineering strain curves of effective coupons of

tapered ring

Table 2-4 Measured material properties steel SM490 used in tapered ring

Steel Slze (t R) tcoupan GyR Our
No. EyR €ur
grade mm mm MPa MPa
6 49-9-3 8.74 319 485 0.0017 0.1661
average 8.74 319 485 0.0017 0.1661
49-12-2 11.81 321 497 0.0036 0.1355
9 49-12-3 11.81 321 490 0.0022 0.1557
SM490
average 11.81 321 494 0.0029 0.1456
49-16-1 15.66 321 502 0.0019 0.1386
12 49-16-2 15.70 324 501 0.0024 0.1571
average 15.68 322 502 0.0022 0.1478

0f 9,12, and 16mm respectively.

2.2.4 Lid Plate

Three coupons parallel to x direction and three coupons parallel to y direction are cut

18

Note: Tapered rings with thicknesses of 6, 9, and 12mm were produced from the plates with thicknesses

from the plate used in the connection, as shown in Fig. 2-11. For the coupons in each
direction, if the results of former two coupons are well, the last one will be not undertaken.
The effective results are shown in Fig. 2-12. The yield plateau occurs for all the coupons.
The material properties are listed in Table 2-5. The type of steel of lid plate is the same as
that of conical shell. Comparing with the yield stress of conical shell with the thickness of

9mm shown in Table 2-3, the yield stress of lid plate is much smaller. It indicates again



that the effect of cold forming is great for the yield stress of shell structures.

|
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o
o

Fig. 2-12 Engineering stress versus engineering strain curves of effective coupons of lid
plate (#;=12mmm)

Table 2-5 Measured material properties steel SS400 used in lid plate

Steel Size (tL) tr O, Oy,
No. = 8yL EuL

grade mm mm MPa MPa
40-12-X-1 11.50 235 374 0.0020 0.2176
40-12-X-3 11.60 235 373 0.0022 0.2400
SS400 12 40-12-Y-1 11.50 221 388 0.0022 0.2428
40-12-Y-3 11.40 227 386 0.0020 0.2474
average 11.50 230 380 0.0021 0.2370

2.3 Diameter-to-Thickness Ratios of Cylindrical and Conical

Shells

In this study, conical and cylindrical shells are designed to fail in plastic condition. It
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is necessary to control their diameter-to-thickness ratios smaller than the limit values of
elastic buckling. The classical buckling stress of a smooth-walled perfect cylinder was
proposed by Donnell (1933), as shown in Eq. (2-1).
E 2t
Cop =—\/3(1f7‘/2)d—: (2-1)
where, elastic modulus £¢,=205,000MPa, v=0.3.
Then, the elastic buckling stress of a long circular cone was studied by Seide (1956).
For the socket connections, assuming the buckle of conical shell is close to the top edge

of cylindrical shell, the equation for elastic buckling stress of cone is expressed as

E 2
0 “le cosa (2-2)

J3(1-v?) dp

The design standard for steel structures in Japan (2002) suggests that the limit

0, =0,,C080 =

diameter-to-thickness ratio of cylindrical shell for practical design work is

[ﬁj _ 23500 03
tp limit_P Oyp

Based on Egs. (2-2) and (2-3), the limit diameter-to-thickness ratio of conical shell

for practical design work can be expressed as

(dp J 23500
£ = cosax (2-4)
tC limit C O-yC

The diameter-to-thickness ratios of cylindrical and conical shells in the connections
are compared with the limit values shown in Egs. (2-3) and (2-4), respectively. The results
are listed in Table 2-6. It can be found that most of the ratios are much smaller than 1.0,
except for specimen Nos. 49 and 70. As these limit diameter-to-thickness ratios are
smaller than the theoretical values, all the shells in this study can be thought to fail in

plastic condition.
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Table 2-6 Comparison of diameter-to-thickness ratios of shells with the limit values

Cone Cylinder Cylinder | Cone | Cylinder | Cone Cyliner | Cone
Boundary Semi- | Thick-| Yield E'xtemal Thick-| Yield Diameter-to- Limit diameter-to-
condition Specimen angle ness stress || diameter ness stress thickness ratio (*) thickness ratio (**)
(cone- No. o tc a,c Dp tp o,p ratio of (*) to (**)
cylinder)
° mm mm mm mm mm dpltp dp/tc | Eq.(2-3) | Eq.(2-4)
1 3197 | 8.74 317 139.80 | 3.32 331 41.11 14.39 71.00 62.89 0.58 0.23
2 3226 | 877 | 317 139.80 | 420 | 343 3229 | 14.14 68.51 62.69 0.47 0.23
3 32.64 | 8.67 317 140.50 | 6.03 361 22.30 | 13.97 65.10 62.42 0.34 0.22
4 46.81 | 856 | 317 139.80 | 332 | 331 41.11 | 14.87 71.00 50.73 0.58 0.29
5 4591 | 853 317 140.00 | 4.30 343 31.56 14.71 68.51 51.58 0.46 0.29
6 4645 | 853 317 140.00 | 606 | 361 22.10 | 14.30 65.10 51.07 0.34 0.28
7 59.26 | 8.63 317 140.05 | 333 331 41.06 | 14.95 71.00 37.89 0.58 0.39
"Metal touch" 8 59.52 | 8.62 317 139.90 | 420 | 343 3231 | 14.75 68.51 37.60 0.47 0.39
9 59.97 | 8.64 317 140.00 | 6.03 361 22.22 14.31 65.10 37.10 0.34 0.39
10 3272 | 846 | 317 11450 | 424 | 369 [ 26.00 | 11.69 63.69 62.37 0.41 0.19
11 3274 | 851 317 165.60 | 5.58 343 28.68 | 17.31 68.51 62.36 0.42 0.28
12 4734 | 850 317 11430 | 423 369 26.02 11.77 63.69 50.23 0.41 0.23
13 4569 | 864 | 317 16550 | 5.64 | 343 2834 | 17.15 68.51 51.78 0.41 0.33
14 59.71 | 8.64 317 11440 | 425 369 2592 | 11.75 63.69 37.40 0.41 0.31
15 60.15 | 8.66 | 317 16565 | 562 | 343 28.48 | 17.33 68.51 36.90 0.42 0.47
26 4628 | 874 | 317 139.85 | 327 331 41.77 | 14.56 71.00 51.23 0.59 0.28
27 4625 | 8.77 317 139.75 | 334 331 40.84 | 14.48 71.00 51.26 0.58 0.28
28 45.03 | 8.67 317 139.90 | 328 331 41.65 | 14.67 71.00 52.39 0.59 0.28
29 46.64 | 856 | 317 139.75 | 4.13 343 32.84 | 14.67 68.51 50.90 0.48 0.29
30 4586 | 8.53 317 139.80 | 4.17 343 32.53 | 1472 63.51 51.63 0.47 0.29
31 4593 | 853 317 139.80 | 4.15 343 32,69 | 1472 68.51 51.56 0.48 0.29
ﬁﬁﬁ?h 32 |4567 | 863 | 317 | 13990 | 600 | 361 | 2232 | 1412 | 6510 | 51.80 | 034 | 027
33 4533 | 862 | 317 139.90 | 6.01 361 2228 | 14.13 65.10 52.12 0.34 0.27
34 46.08 | 8.64 317 139.85 | 5.99 361 2235 | 14.11 65.10 51.42 0.34 0.27
35 3338 | 846 | 317 139.85 | 421 343 3222 | 14.70 68.51 61.90 0.47 0.24
36 6239 | 851 317 139.90 | 4.14 343 32.79 15.00 68.51 34.36 0.48 0.44
37 49.02 | 850 | 317 11430 | 424 | 369 [ 25.96 | 11.79 63.69 48.61 0.41 0.24
38 4594 | 8.64 317 16530 | 5.64 343 28.31 17.13 68.51 51.55 0.41 0.33
43 3327 | 3.05 299 139.90 | 421 343 3223 | 42.27 68.51 65.71 0.47 0.64
44 3351 | 4.24 299 139.95 | 423 343 32.09 | 30.18 63.51 65.53 0.47 0.46
45 3310 | 578 | 299 139.85 | 423 343 32.06 | 21.89 68.51 65.84 0.47 0.33
46 46.03 | 3.05 299 139.90 | 424 343 32.00 | 42.39 68.51 54.57 0.47 0.78
47 46.68 | 427 | 299 139.85 | 421 343 32.22 | 30.09 68.51 53.93 0.47 0.56
i‘ﬁ::kl :;“gCh 43 Jlaso1 | 574 | 299 | 13095 | 410 | 343 | 3240 [ 2205 | 6851 | s258 || 047 | 042
49 61.37 | 3.05 299 139.80 | 419 | 343 32.37 | 42.61 68.51 37.66 0.47 1.13
50 60.56 | 4.25 299 139.85 | 4.20 343 32.30 | 30.44 68.51 38.63 0.47 0.79
51 59.58 | 5.64 | 299 13990 | 417 | 343 32,55 | 22.82 68.51 39.79 0.48 0.57
52 4480 | 429 299 11450 | 4.26 369 25.88 | 23.99 63.69 55.77 0.41 0.43
53 46.24 | 420 299 165.80 | 5.62 343 28.50 | 36.11 68.51 54.36 0.42 0.66
64 3047 | 320 | 299 139.90 | 431 343 31.46 | 40.16 68.51 67.74 0.46 0.59
65 29.54 | 450 299 139.90 | 434 343 31.24 | 28.29 63.51 68.38 0.46 0.41
66 3096 | 6.00 | 299 139.90 | 431 343 31.46 | 21.02 68.51 67.39 0.46 0.31
67 46.04 | 3.20 299 139.95 | 432 343 31.40 | 40.34 68.51 54.56 0.46 0.74
68 4396 | 450 | 299 13990 | 434 | 343 31.24 | 28.44 68.51 56.58 0.46 0.50
"Welding" 69 43.64 | 6.00 299 139.95 | 437 343 31.03 | 21.14 68.51 56.88 0.45 0.37
70 59.04 | 320 | 299 139.85 | 431 343 31.45 | 40.49 68.51 40.44 0.46 1.00
71 57.38 | 4.50 299 139.90 | 429 343 31.61 28.64 68.51 42.37 0.46 0.68
72 58.60 | 6.00 | 299 13990 | 434 | 343 31.24 | 21.35 68.51 40.95 0.46 0.52
73 4429 | 450 299 11450 | 427 369 25.81 | 22.83 63.69 56.26 0.41 0.41
74 46.05 | 450 | 299 16520 | 5.61 343 2845 | 33.52 68.51 54.54 0.42 0.61
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2.4 Definitions of Strength and Axial Deformation

In this thesis, the collapse strength, full plastic strength and general yield strength of
the connections are studied. The definitions of them and relevant axial deformation are
shown in Fig 2-13. For collapse strength P,, it is defined as the peak load of load-axial
deformation curves. For full plastic strength P,, several methods were proposed by many
scholars (Wardenieer 1982; Tateyama et al. 1988; Morita et al. 1989; and Kuwamura et al.
2014). However, unified way cannot be found because the type of connections has
obvious influence on the determination of full plastic strength. In this study, P, is defined
as the load where the slope of load versus axial deformation curve reduces to one sixth of
the initial stiffness Ky (Tateyama et al. 1988). For general yield strength P,, the research
on its definition has been undertaken since 1939 ( Johnston 1939a, b; Packer et al. 1980;
Kurobane et al. 1984, Zhao and Hancock 1991; et al). In this study, P, is defined as the
load where the slope of load versus axial deformation curve reduces to one third of the
initial stiffness Ky (Johnston 1939). This method is recommended in steel structure
engineering in Japan (Building Research Institute et al. 2002).

In addition, the theoretical elastic axial deformation of specimen when full plastic

strength is reached is defined as 4, The axial deformation of specimen at ultimate load is

defined as 4,,
Load P

o \ K, K3 K,/6

pl S oo
Pl |

Pl |
y ‘
O iApe 3AU

Axial deformation‘A

Fig. 2-13 Standard load-axial deformation curves of specimens and definitions of strength

and deformation
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2.5 Discussion on Failure Modes of Specimens

2.5.1 Specimens with Boundary of “Metal touch”

The behavior of connections with boundary of “Metal touch” after large
deformation is shown in Fig. 2-14. It can be found that specimens Nos.1~8 and 10~14
failed like a trumpet, at the top edge of cylinder wall in an axisymmetric type. While,
specimens No. 9 failed in conical wall with the shape of depression. In addition,
specimen No.15 failed in both conical wall and cylinder edge asymmetrically. Thus,

the specimens mainly occurred at cylinder edge.
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(b) Specimens with other failure modes

Fig. 2-14 Behavior of specimens with boundary of “Metal touch” after testing

Table 2-7 Strength of specimens with cylinder edge failure

Main parameters
Cone Cylinder Ge.nel;al Plastic Collapse
Specimen | Semi- | Thick- | External sti‘]:lgth strength | strength Ay Py kxp
No. angle ness diameter /Pp_Exp
o tp Dp P, pxp Py exp Py exp
¢ mm mm kN kN kN mm
1 32.0 3.3 139.8 43.6 48.8 58.8 2.89 1.20
2 323 4.2 139.8 94.2 116.4 120.8 2.98 1.04
3 32.6 6.0 140.5 149.5 164.0 174.9 3.72 1.07
4 46.8 3.3 139.8 80.8 102.4 112.1 2.28 1.09
5 45.9 4.3 140.0 129.2 148.2 169.7 2.85 1.15
6 46.5 6.1 140.0 222.7 275.0 336.6 6.12 1.22
7 59.3 3.3 140.1 194.1 207.5 215.1 3.40 1.04
8 59.5 4.2 139.9 264.0 280.8 285.0 2.31 1.01
10 32.7 4.2 114.5 80.0 90.8 99.4 2.67 1.09
11 32.7 5.6 165.6 125.6 137.5 160.2 5.72 1.16
12 473 4.2 114.3 140.0 160.0 176.8 2.56 1.11
13 45.7 5.6 165.5 268.2 281.8 302.8 3.54 1.07
14 59.7 4.3 114.4 234.0 242.0 246.9 3.16 1.02

The strength and deformation of specimen Nos.1~8 and 10~14 which failed at
cylinder edge are listed in Table 2-15. It can be found that as thickness 7, or semi-vertex

angle & increases, the strength of specimens will become larger. By comparing the
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strength of specimen No.7 with those of specimen Nos. 1 and 4, it is found that as the
value of « increases, the strength become larger, but the ratio of P, gypto P,_gxyp becomes

smaller. By comparing the strength of specimen No.6 with those of specimen Nos. 4 and
5, it is found that as the value of 7, increases, not only the strength but also the ratio of

P,.expto P, pxp become greater.

The ultimate behavior of specimens with cylinder edge failure is sketched in the

axisymmetric coordinate system (7, &, x), as shown in Fig. 2-15. The radial deformation
of the top edge of cylinder is defined as W, It can be obtained by

w,., =—A, tan o (2-5)

Then, the strain in hoop direction can be obtained as

—2A, tana
Egp = D— (2-6)

»—1lp
based on the assumption of uniaxial stress state. In order to investigate the failure mode of

cylinder edge, it is compared with yield strain €5, as shown in Table 2-8. It can be found
that their ratios are in the range of 7~29. The &, is larger than £, but still much less

than strain at tensile stress €,,. The top edge of cylindrical wall entered into plastic

condition when ultimate load arrived. However, the length of plastic region cannot be
obtained because the radial deformation along x direction cannot be measured. For shell
structures, out of plane deformation not only induces hoop stress, but also induces
bending stress. Whether cylinder edge failure is controlled by hoop tension or by axial

bending cannot be judged based on the experimental results.

25



Fig. 2-15 Sketch of ultimate behavior of specimen with cylinder edge failure

Undeformed

Table 2-8 Ultimate radial deformation at the top edge of cylinder for specimens with

cylinder edge failure

Main parameters

Cone Cylinder
Specimen | Semi-vertex ) External Ay Wiup E0up/
Thickness ) EQuP &P
No. angle diameter &p
o tp Dp
deg. mm mm mm mm
1 32.0 33 139.8 2.89 1.81 0.0265 | 0.0037 | 7.15
2 323 4.2 139.8 2.98 1.88 0.0278 | 0.0033 | 8.42
3 32.6 6.0 140.5 3.72 2.38 0.0354 | 0.0039 | 9.07
4 46.8 33 139.8 2.28 2.43 0.0356 | 0.0037 | 9.63
5 45.9 43 140.0 2.85 2.94 0.0433 | 0.0033 | 13.13
6 46.5 6.1 140.0 6.12 6.45 0.0964 | 0.0039 | 24.71
7 59.3 33 140.1 3.40 5.72 0.0837 | 0.0037 | 22.62
8 59.5 4.2 139.9 2.31 3.92 0.0578 | 0.0033 | 17.52
10 32.7 4.2 114.5 2.67 1.72 0.0311 | 0.0034 | 9.16
11 32.7 5.6 165.6 5.72 3.67 0.0459 | 0.0036 | 12.75
12 473 4.2 114.3 2.56 2.77 0.0504 | 0.0034 | 14.82
13 457 5.6 165.5 3.54 3.63 0.0454 | 0.0036 | 12.62
14 59.7 43 114.4 3.16 5.41 0.0983 | 0.0034 | 28.90
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2.5.2 Specimens with Boundary of “Metal touch + thin ring”

The ultimate behavior of specimens with boundary of “Metal touch + thin ring” is
shown in Fig. 2-16. It can be found that specimen Nos. 26~30, 35 and 37 failed at
cylinder edge, specimen Nos. 34 and 36 failed in conical wall with the type of depression,
specimen No. 31 failed in “elephant foot buckling” of cylindrical shell, and specimen Nos.
32, 33 and 38 failed asymmetrically. For all the specimens, the tapered ring did not drop

when ultimate load arrived.
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(b) Specimens with other failure modes

Fig. 2-16 Ultimate behavior of specimens with boundary of “Metal touch + thin ring”

“Metal touch + thin ring” failed at the top edge of cylinder

Table 2-9 Strength and deformations of specimens with boundary of

Main parameters

- - General Full
Cone Cylinder Ring . . Collapse
yield plastic
Specimen | Semi- | Thick | External | Thick- strength Ay P, gxp
strength | strength
No. angle -ness | diameter ness /Py pxp
a tp Dp IR P, exp P, exp P exp

deg. mm mm mm kN kN kN mm
26 46.3 33 139.9 6.1 160.1 165.2 182.4 2.48 1.10
27 46.3 33 139.8 9.2 260.0 287.5 342.3 3.25 1.19
28 45.0 33 139.9 12.0 293.3 333.3 420.0 4.73 1.26
29 46.6 4.1 139.8 6.0 230.4 257.0 277.0 2.80 1.08
30 45.9 4.2 139.8 9.1 356.4 417.9 509.0 3.87 1.22
35 334 4.2 139.9 9.1 405.0 463.9 530.6 10.08 1.14
37 49.0 4.2 114.3 9.1 338.0 432.0 472.7 5.21 1.09

The strength and deformation of specimens Nos.26~30, 35 and 37 which failed at the

top edge of cylindrical wall are listed in Table 2-9. By comparing the strength among

specimen Nos.26~28, it can be found that as the thickness ?; of tapered ring increases,

the strength of specimens become greater. Meanwhile, the ratio of P, to P, also increases.

28



i Undeformed
-~

>

Fig. 2-17 Sketch of ultimate behavior of specimens with boundary of “Metal touch + thin

ring” failed at the top edge of cylindrical shell

Table 2-10 Ultimate radial deformations of specimens with boundary of “Metal touch +

thin ring” failed at the top edge of cylinder

Main parameters

Cone Cylinder Ring
Specimen | Semi-vertex ) External ) Wiup EOuR/
Thickness ] Thickness EOuR &R
No. angle diameter &R
a tp Dp IR

deg. mm mm mm mm
26 46.3 33 139.9 6.1 2.59 0.0355 | 0.0017 | 20.90
27 46.3 33 139.8 9.2 341 0.0457 | 0.0029 | 15.77
28 45.0 33 139.9 12.0 4.73 0.0623 | 0.0022 | 28.30
29 46.6 4.1 139.8 6.0 2.96 0.0407 | 0.0017 | 23.93
30 45.9 4.2 139.8 9.1 3.99 0.0536 | 0.0029 | 18.48
35 334 4.2 139.9 9.1 6.64 0.0892 | 0.0029 | 30.76
37 49.0 4.2 114.3 9.1 5.99 0.0972 | 0.0029 | 33.50

The ultimate behavior of the specimens with boundary of “Metal touch +thin ring”

failed at the top edge of cylindrical shell is sketched in Fig. 2-17. In order to investigate

the failure mode of tapered ring, its average hoop strain is obtained by

gﬁuR -

w

wp _ 24, tana

dR

dR
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It is compared with yield strain € of tapered ring, as shown in Table 2-10. It is found

that their ratios are in the range of 15~34. Tapered rings entered into plastic condition as
ultimate load arrived. It can be assumed that the specimen with boundary of “Metal touch

+ thin ring” failed in tapered ring.

2.5.3 Specimens with Boundary of “Metal touch + thick ring”

The ultimate behavior of specimens with boundary of “Metal touch + thick ring” is
shown in Fig. 2-18. It can be found that specimen Nos. 43, 44, and 46~53 failed in
conical wall, as no obvious deformation was found in cylindrical wall and tapered ring
after testing. In addition, specimen No.45 failed asymmetrically. As the typical case, the
deformation of conical wall in specimen No. 47 after testing is shown in Fig. 2-19.

Obvious bending deformation in the conical wall can be found.

(a) Specimens with conical wall failure
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(b) Specimen with asymmetric failure mode
Fig. 2-18 Ultimate behavior of specimens with boundary of “Metal touch + thick ring”

Fig. 2-19 Deformation of conical wall after testing in specimen No. 47

The strength and deformation of specimen Nos. 43, 44, and 46~53 with conical wall
failure are listed in Table 2-11. Those of specimen Nos. 9, 34 and 36 which failed in
conical wall are also included. By comparing the strength of specimen No.50 with those
of specimen Nos. 44 and 47, it is found that as semi-vertex angle o increases, not only the
strength of conical wall but also the ratio of P, gxp to P, gxp become smaller. By
comparing the strength of specimen No.48 with those of specimen Nos. 46 and 47, it is
found that as thickness #¢ increases, not only the strength of conical wall but also the ratio

of P,.gxpto P,.gxp become greater.
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Table 2-11 Strength and deformation of specimens with conical wall failure

Main parameters
) - General Full
Cone Cylinder Ring i i Collapse

yield plastic
Specimen | Semi- | Thick- | Thick- | External | Thick- strength | 4, | Pgxp

strength | strength

No. angle | ness ness | diameter | ness /Pp_exp
a tc tp Dp IR Py exp Py xp P kxp
deg. mm mm mm mm kN kN kN mm
9 60.0 8.6 6.0 140.0 482.6 561.5 601.2 5.35 1.07
34 46.1 8.6 6.0 139.9 12.0 543.8 620.0 872.8 1546 | 141
36 62.4 8.6 4.1 139.9 9.1 390.9 5273 625.7 8.92 1.19
43 333 3.1 4.2 139.9 12.1 139.1 153.6 234.9 12.00 | 1.53
44 335 4.2 4.2 140.0 12.0 263.0 294.7 389.9 14.12 | 1.32
46 46.0 3.1 4.2 139.9 12.0 127.5 158.7 178.4 5.81 1.12
47 46.7 43 4.2 139.9 12.0 192.6 218.5 274.2 7.62 1.25
48 48.0 5.7 4.2 140.0 12.0 314.8 400.0 510.0 9.13 1.27
49 61.4 3.1 4.2 139.8 12.1 120.9 123.5 125.2 5.42 1.01
50 60.6 43 4.2 139.9 12.0 182.8 190.0 194.9 6.98 1.03
51 59.6 5.6 4.2 139.9 12.0 325.0 336.5 352.8 7.37 1.05
52 44.8 43 43 114.5 12.0 171.1 208.5 251.8 8.68 1.21
53 46.2 4.2 5.6 165.8 12.0 200.0 254.3 309.3 8.02 1.22
| Undeformed
\
”””””””” 1A
u
At P
u

Fig. 2-20 Sketch of ultimate behavior of specimens with conical wall failure

The ultimate behavior of the specimens failed in conical wall is sketched in Fig. 2-20.

The section in conical wall which contacts with cylinder edge at ultimate load is set to be

Sect. F. It is originally located at section “Fy”. The slip of conical wall is defined as L,
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which is equal to the distance from “Fy” to “F”. It is quite difficult to be measured in
experiments. The normal deformation of Sect. F in ¢ direction is defined as W, . It is

obtained by the following equation:

WtuC = (Au - leip Cos a) Sin o (2_8)
If neglecting Lg;,, W, will be simplified as
W, =A, sino (2-9)

Then, hoop strain of Sect. F can be obtained by

PATIS 2A sinocoso
Egucr = d—cosa = (2-10)

CF dCF

Table 2-12 Ultimate deformation of specimens with conical wall failure

Main parameters
Cone Cylinder Ring
Specimen Semi- Thick- | Thick- | External Thick- Ay Wuc couc!
No. angle ness ness diameter ness suc S &c
a tc tp Dp tr
deg. mm mm mm mm mm mm

9 60.0 8.6 6.0 140.0 535 | 4.63 | 0.0346 | 0.0036 | 10.17
34 46.1 8.6 6.0 139.9 12.0 15.46 | 11.14 | 0.1154 | 0.0036 | 33.94
36 62.4 8.6 4.1 139.9 9.1 892 | 7.91 | 0.0540 | 0.0036 | 15.87
43 333 3.1 4.2 139.9 12.1 12.00 | 6.59 | 0.0812 | 0.0034 | 23.88
44 335 4.2 4.2 140.0 12.0 14.12 | 7.79 | 0.0957 | 0.0034 | 28.16
46 46.0 3.1 4.2 139.9 12.0 5.81 4.18 | 0.0428 | 0.0034 | 12.59
47 46.7 4.3 4.2 139.9 12.0 7.62 | 5.55 | 0.0561 | 0.0034 | 16.50
48 48.0 5.7 4.2 140.0 12.0 9.13 6.79 | 0.0669 | 0.0034 | 19.68
49 61.4 3.1 4.2 139.8 12.1 542 | 476 | 0.0336 | 0.0034 9.88
50 60.6 4.3 4.2 139.9 12.0 6.98 | 6.08 | 0.0440 | 0.0034 | 12.94
51 59.6 5.6 4.2 139.9 12.0 7.37 | 6.35 | 0.0474 | 0.0034 | 13.94
52 44.8 4.3 43 114.5 12.0 8.68 | 6.11 | 0.0787 | 0.0034 | 23.15
53 46.2 4.2 5.6 165.8 12.0 8.02 | 5.78 | 0.0500 | 0.0034 | 14.70
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It is compared with yield strain €, of conical wall, as shown in Table 2-12. Their

ratios are found to be in the range of 10~34. It indicates that the contact region in conical
wall entered into plastic condition as ultimate load arrived. Just like the specimens with
cylinder edge failure, the out of plane deformation of conical wall not only induces hoop
compression but also induces meridional bending. Thus, whether the failure is controlled
by hoop compression or by meridional bending is difficult to be determined by

experimental results.

2.5.4 Specimens with Boundary of “Welding”

The ultimate behavior of specimens with boundary of “Welding” is shown in Fig.
2-21. It can be found that specimen Nos. 64, 65, and 67~74 failed near to the joint region
between conical wall and cylinder edge. The deformation at cylinder edge is not obvious.
In addition, specimen No. 66 failed in “elephant foot buckling” mode near to the bottom
edge of cylindrical wall. It is found that the failure of specimens mainly occurred in the

welded joint region.
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(b) Specimen with elephant foot buckling of cylindrical wall
Fig. 2-21 Pictures of specimens with boundary of “Welding” at ultimate load

The strength and deformation of specimens Nos. 64, 65, and 67~74 which failed in
joint region are listed in Table 2-13. It can be found that for specimen Nos. 70, 71 and 72,
the averages of the ratios of P, to P, are similar to those of specimen Nos. 7, 8 and 14 in

cylinder edge failure and Nos.49, 50 and 51 in conical wall failure.

The perspective and profile of the specimen after testing are sketched in Fig. 2-22.
The hoop strain &,; of external point j of Sec. J and axial displacement A, of the

lowest point k of Sect. K are calculated as follows.
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Table 2-13 Strength and deformations of welded specimens with joint region failure

Main parameters
Cone Cylinder Ge.nj:lal Plastic Collapse

Specimen | Semi- | Thick- | Thick | External sti]:lgth strength | strength Ay | Pugxp

No. angle ness -ness diameter /Py_gxp
o tc tp Dp P, exp Py exp Piexp
deg. mm mm mm kN kN kN mm

64 30.5 32 4.3 139.9 365.0 390.0 409.0 1.16 1.05
65 29.5 4.5 4.3 139.9 519.0 547.7 576.7 1.47 1.05
67 46.0 32 4.3 140.0 276.9 294.4 305.0 1.06 1.04
68 44.0 4.5 4.3 139.9 418.4 450.0 460.0 1.60 1.02
69 43.6 6.0 4.4 140.0 546.2 581.5 641.4 2.67 1.10
70 59.0 32 4.3 139.9 209.7 216.1 220.7 1.53 1.02
71 57.4 4.5 4.3 139.9 291.3 316.1 322.7 1.59 1.02
72 58.6 6.0 4.3 139.9 435.9 460.8 4747 2.22 1.03
73 443 4.5 4.3 114.5 361.8 394.1 409.0 1.48 1.04
74 46.1 4.5 5.6 165.2 413.0 467.5 497.2 1.96 1.06

{3eftpre
esting
TTTTTTTTTommmmmmmees /- - After

- testing

Pé)int k

F‘(\)undation

(a) Perspective deformation (b) Longitudinal section
Fig. 2-22 Deformation of specimen No. 68 after testing

The absolute value of hoop strain of section J after testing is obtained by

2w L -L i
g |= D =TT A2 01450 200033 (211
a L, 439.5 ”
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where, Ljp—the measured circumference of cylinder at point j before testing;

L;j;—the measured circumference of cylinder at point j after testing.

Then, A, of Sect. K is obtained by
A, =H,, —H,=170.7-171.88=-1.18mm (2-12)

where, Hyo—the measured distance from point k to the bottom edge of cylindrical wall
before testing.
Hy;—the measured distance from point k to the bottom edge of cylindrical wall
after testing.
Based on Egs. (2-11) and (2-12), it can be found that the top edge of cylindrical wall
moved along — direction during testing, and entered into plastic condition after testing. In
addition, the deformation along -x direction occurred in the lowest part of conical wall

after testing.

| Undeformed

Fig. 2-23 Sketch of ultimate deformation of specimens with boundary of “Welding”

The ultimate behavior of specimens failed in joint region is sketched in Fig. 2-23.
The radial deformation of cylinder edge at ultimate load is defined to bew,,,. It is
difficult to be measured from experiments. The joint region of cone-to-cylinder is

simplified to be Sect. F. Its normal deformation W, can be calculated by
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W, =A, sina+w, ,cosa (2-13)
If neglectingw,,,, W, will be simplified as
W, =A, sino (2-14)

Then, hoop strain in Sect. F is obtained as

2w, 2A, sinacos o
=—"=-cosa =
dc Dp~t,

SWC

(2-15)

It is compared with yield strain €, of conical wall, as shown in Table 2-14. It can

be found that their ratios are in the range of 2~6. They are much smaller than those in the
specimens with conical wall failure listed in Table 2-12, but it have to be said that the

joint region of welded connection also entered into plastic as ultimate load arrived.

Table 2-14 Ultimate deformation of welded specimens with joint region failure

Main parameters
Cone Cylinder
Specimen | Semi- | Thick- | Thick- | External 4, Wac Eouc!
No. angle ness ness diameter suc &e &c
o tc tp Dp
deg. mm mm mm mm | mm
64 30.5 32 43 139.9 1.16 | 0.59 | 0.0073 | 0.0034 2.14
65 29.5 4.5 43 139.9 1.47 | 0.73 | 0.0090 | 0.0034 2.65
67 46.0 32 43 140.0 1.06 | 0.77 | 0.0076 | 0.0034 2.23
68 44.0 4.5 43 139.9 1.60 | 1.11 | 0.0114 | 0.0034 3.36
69 43.6 6.0 4.4 140.0 2.67 | 1.84 | 0.0190 | 0.0034 5.60
70 59.0 32 43 139.9 1.53 | 1.31 | 0.0096 | 0.0034 2.83
71 57.4 4.5 43 139.9 1.59 | 1.34 | 0.0104 | 0.0034 3.04
72 58.6 6.0 43 139.9 222 | 1.90 | 0.0141 | 0.0034 4.15
73 443 4.5 43 114.5 1.48 | 1.04 | 0.0130 | 0.0034 3.81
74 46.1 4.5 5.6 165.2 1.96 | 1.41 | 0.0119 | 0.0034 3.49
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Fig. 2-24 Comparison of Normalized load versus axial deformation relationships between
specimens with boundary of “Welding” and those with boundary of “Metal touch + thick

ring”
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The normalized load versus axial deformation relationships between specimens with
the boundary of “Welding” and thosed with the boundary of “Metal touch +thick ring” are
compared, as shown in Fig. 2-24. Representative specimen Nos. 65, 68 and 71 and Nos.
44, 47 and 50 are employed. It can be found that strength degradation of specimens with
the boundary of “Welding” is not rapider than that of specimens with the boundary of
“Metal touch + thick ring”. The failue modes of the two kinds of connections are difficult

to be distinguished based on the experimental results.

Undeformed Undeformed i Undeformed

} Undeformed
! Pid

(a) Cylinder edge failure (b) Tapered ring failure (c) Conical wall failure  (d) Joint region failure
Fig. 2-25 Proposed failure modes based on failure positions

2.6 Summaries

This chapter focuses on the reinvestigation of the failure modes of experimental
specimens. Based on the above analysis, the following conclusions can be obtained.

(1) For specimens with boundary of “Metal touch”, “Metal touch + thin ring” and “Metal
touch + thick ring”, failure of connections mainly occurred at cylinder edge, tapered
ring and conical wall, respectively. However, the plastic region cannot be measured
because of the limitation of the experiments. Thus, the failure mechanisms are
difficult to be clarified in detail.

(2) For specimens with boundary of “Welding”, because the top edge of cylindrical wall
moved along inward direction and the bottom edge of conical wall moved along
downward direction, joint region between conical wall and cylinder edge may have
some deformation during loading process. The ratio of collapse strength to full plastic

strength is quite small, but similar to some metal touch specimens. Moreover, their
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strength degradation is not rapider than that of metal touch specimens. Though the
post-failure was mainly observed in the upper part of conical wall, the failure mode
could not be determined to be “cone buckling failure” directly.
The failure modes of connections are summaried in Fig. 2-25, based on the failure
positions. In the following chapters, Finite Element Analysis will be employed to
investigate the stress and deformation distributions. After then, failure mechanisms will

be determined
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CHAPTER 3 STRENGTH OF METAL
TOUCH CONNECTIONS WITH
CYLINDER EDGE FAILURE

3.1 Introduction

The strength of cylinder edge failure was first studied by Kuwamura et al. (2005) by
means of experiments and theoretical analysis. A simple hoop tension failure mechanism
was assumed based on the assumption of uniaxial stress state. The formulae for full
plastic strength and ultimate strength were proposed. But the influences of axial bending
moment and axial stress resultant on the failure mechanism were not considered. His
work was extended by Ito et al. (2008), in which Finite Element Analysis (FEA) was
employed to investigate the friction property between cone and cylinder, and stress
behaviors in cylindrical walls. The plastic collapse mechanism proposed by Eason and
Shield (1955) was employed to consider the effect of axial bending moment on failure
mechanism. More precise formulae for strength were proposed. Especially for the cases
of high axial stress resultant, previous studies (Tsang and Harding 1984, Zhao and
Hancock 1993, Cao et al. 1998, et al) indicated that the interaction of hoop stress resultant
or axial bending moment with axial stress resultant has an influence on the failure
mechanism. It needs to be analyzed for the connections in this study.

In the first part of this chapter, solid axisymmetric FEA models are first created and
validated by comparing their strength and deformation with experimental results. The
friction property in the contact region between cone and cylinder is discussed. Then, FEA
is undertaken not only for the existing experimental specimens, but also for six newly
added models which have relatively larger axial stress resultants. The changing

distributions of stress resultants under increasing load are investigated, and the
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correlations among stress resultants are analyzed. The ultimate deformation of models is
also investigated. Based on the analysis results, the failure mode is determined by the
proposed criterion.

In the second part of this chapter, Mises’ yield condition in the form of stress
resultants for axisymmetrically loaded revolutional shells with perfectly-plastic material
is simplified and validated by the effective FEA results. Then, a new plastic collapse
mechanism for cylinder edge failure is proposed, in which the correlations of axial stress
resultant with axial bending moment and hoop stress resultant are considered. The limit
analysis is undertaken and the maximum strength of models with perfectly-plastic
material is derived, which corresponds to the full plastic strength of models with actual
strain hardening material. The prediction of ultimate strength and general yield strength of
models with actual material are then proposed respectively, based on the formula for full
plastic strength. The precision of the proposed formulae are examined through comparing

them with previous ones and the experimental and FEA results.

3.2 FE Modeling

Axis of symmetry

I
6 s> Load P

! Master
surface

# Contact
Slave/ region
suface

1>
s

; )
I Foundation [, =

Fig. 3-1 Details of FEA axisymmetric solid model
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3.2.1 General

The details of axisymmetric solid model in ABAQUS FE package (Hibbitt et al. 2011)
are shown in Fig.3-1. The cylindrical coordinate (7, 6, x) system is chosen. Cylindrical wall
is simply supported at the base. Static loading is controlled by displacement 4. Because
both the geometry of specimens and loading are axisymmetric, linear quadrilateral and
triangular axisymmetric solid element CAX4R and CAX3 are employed. The contact
between cone and cylinder is defined using the CONTACT PAIRS option
(surface-to-surface contact). The external surface of conical wall is set to be “Master
surface”, and the right-angled edges of contact region in cylindrical wall are set to be
“Slave surface”. The height of contact region is assumed as the thickness #p of cylindrical
wall. Finite sliding and node-to-surface discretization method are adopted. Mesh size in
contact region is set to be 1/4 of that in general region to consider the local stress
concentration phenomenon. When mesh size in general region is smaller than #p/6, ultimate
strength is found to be convergent. As the smallest thickness of cylindrical walls for all the
specimens is 3.3 mm, mesh size in general region is set to be a constant of 0.5mm.

The stress-strain curves for the mild steel used in cylindrical walls are shown in Fig.
3-2. Equivalent plastic strain e, obtained by Eqgs. (3-1)~(3-3), is used for defining the strain
hardening behavior of mild steel materials in ABAQUS FE package. The s~e, curves of
cylindrical walls with different diameter-to-thickness ratios are shown in Fig. 3-3.
Moreover, the perfectly-elastic plastic materials whose yield stress is equal to that of the

actual ones are also employed for the later analysis.

s=o(l+¢) (3-1)
e=In(l1+¢) (3-2)
e,=e —s/E, (3-3)

Herein, s is true stress, e is true strain, ¢ is engineering stress, ¢ 1S engineering strain, e, s

equivalent plastic strain, and Ey is initial Young’s modulus, set to be a constant of
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205,000MPa for all the models.
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Fig. 3-2 True stress-strain curves for material STK400 used in cylindrical shells
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Fig. 3-4 Definition of strength of FE models

3.2.2 Definitions of Strength of FE Models

As shown in Fig. 3-4(a), for FE models with actual strain hardening materials, the
definitions of strength are the same as those introduced in Chapter 2. In addition, for FE
models with perfectly-elastic plastic materials, their collapse strength is defined to be
“maximum strength Py, as shown in Fig. 3-4(b). The Py« is employed to examine the
precision of the theoretical prediction of strength based on limit analysis and the full

plastic strength P, of models with actual material.

3.2.3 Effectiveness of FE models

Thomsen et al. (1965) suggested that it is necessary to assume that x4 remains
constant during the forming operation and its use is necessary to make the theoretical
equations amenable to relatively simple analytical solutions.  Hence,
Amontons-Coulomb’s friction law with formulation of Penalty is adopted and friction
coefficient ¢ is assumed to be a constant during the whole deformation process in this
study. The variation of collapse strength in FEA along with the increase of x4 is shown in
Fig. 3-5. It can be seen that the correlation with each other is great. The collapse strength
of FE model becomes about equal to that of experimental specimen by calibrating the

value of u. As a result, the values of u for all the modes are obtained, as shown in Table
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3-1. It is found that their average is 0.18 with a Coefficient of Variation (COV) of 0.29.
The values of full plastic strength and general yield strength of FE models are then
compared with those of experimental specimens by the same value of . It is found that
the averages of ratios are 1.02 for full plastic strength and 1.04 for general yield strength,
with small COV of 0.05 and 0.09, respectively. The strength of cylinder edge failure can

be predicted well with a constant value of x for each model.

2 Specimen
Pu-FEA/Pu-EXP pN 0.5

05!

=0.18
/N

M
O 1 1 1 1 1 J
0 014 02 03 04 05
Fig. 3-5 Variation of collapse strength of models with cylinder edge failure along with the
increase of friction coefficient between conical wall and cylinder edge
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Table 3-1 Comparison of strength between FE models and experimental specimens for

models with cylinder edge failure

Experiments FEA Comparison
Full General Full General
Model Collapse plastic yield COF Collapse plastic yield
NO. strength strength | strength strength strength | strength Pugal | Ppreal | Prreal
Py exp Py exp P, pxp P rEa PyrEa Py rra Pupre | Ppexe | Prexe
(kN) (kN) (kN) 3 (kN) (kN) (kN)
1 58.8 48.8 43.6 0.09 58.2 52.0 43.5 0.99 1.07 1.00
2 120.8 116.4 94.2 0.27 119.1 108.4 98.8 0.99 0.93 1.05
3 174.9 164.0 149.5 0.15 176.3 162.9 140.3 1.01 0.99 0.94
4 112.1 102.4 80.8 0.16 112.9 102.5 91.1 1.01 1.00 1.13
5 169.7 148.2 129.2 0.18 167.8 157.0 144.4 0.99 1.06 1.12
6 336.6 275.0 222.7 0.22 3334 317.7 285.8 0.99 1.16 1.28
7 220.1 207.5 194.1 0.23 2227 214.8 190.9 1.01 1.04 0.98
8 285.0 280.8 264.0 0.19 284.9 277.3 258.4 1.00 0.99 0.98
10 99.4 90.8 80.0 0.17 98.2 88.4 80.7 0.99 0.97 1.01
11 160.2 137.5 125.6 0.13 161.0 146.2 123.3 1.01 1.06 0.98
12 176.8 160.0 140.0 0.20 173.0 167.2 152.2 0.98 1.05 1.09
13 302.8 281.8 268.2 0.21 304.2 286.8 253.6 1.00 1.02 0.95
14 246.9 242.0 234.0 0.14 247.2 240.9 223.8 1.00 1.00 0.96
Avg. 0.18 1.00 1.02 1.04
CoVv 0.29 0.01 0.05 0.09

Note: u is friction coefficient in the contact region between cone and cylinder.

Then, the maximum strength Pp.x of models with perfectly-plastic material is

compared with the full plastic strength P, of models with actual material, as shown in Fig.

3-6. The average of the ratios is 1.00, with a small standard deviation of 0.03. If Pp.yis

assumed as the ideal full plastic strength P, of models with actual material, it can be

found that the method of “K/6 slope factor” proposed by Tateyama (1988) is effective to

determine the full plastic strength from experimental load versus axial deformation

curves.

In addition, the load versus axial deformation curves and ultimate deformation of

FE models are compared with the relevant experimental results, as shown in Appendix B.
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The effectiveness of all the models is verified.
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Fig. 3-6 Comparison of maximum strength to full plastic strength for models with
cylinder edge failure

3.2.4 Discussion on Friction Coefficient for Practical Design

Friction has an obviously influence on the strength of cylinder edge failure (Ito et al.
2008). Whitehead (1950) suggested that the increase of friction coefficient x is due to the
breakdown of oxide film. Its value is difficult to be derived theoretically in this study. The
u needs to be determined in advance for practical design. The average of u calibrated in
section 3.2.3 is 0.18. But it cannot represent the actual value, because the influence of
other factors, for example residual stress, was not considered. Kuwamura and Ito (2007)
suggested that friction coefficient ¢ might be 0.21~0.36 due to the plastic flow of steel
materials based on the experimental study.

Thus, it is suggested that 4 = 0.20 for models with cylinder edge failure in practical
design. The predicted strength by FEA is compared with the experimental result. The
results are listed in Table 3-2. It is found that the averages of ratios are 1.05, 1.06 and 1.10,
for collapse strength, full plastic strength and general yield strength respectively. The

values of COV are not small, but can be acceptable.
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Table 3-2 Comparison of strength between FEA and experiment with the assumption of
1= 0.20 for models with cylinder edge failure

Experiments FEA Comparison
Full General Full General
Model Collapse plastic yield COF Collapse plastic yield
NO. strength strength | strength strength strength | strength Pugal | Ppreal | Prreal
P exp Py exp P, pxp P rEa PyrEa Py rra Pupre | Ppexe | Prexe
(kN) (kN) (kN) 3 (kN) (kN) (kN)

1 58.8 48.8 43.6 72.9 61.5 57.1 1.24 1.26 1.31
2 120.8 116.4 94.2 104.9 91.6 86.5 0.87 0.79 0.92
3 174.9 164.0 149.5 195.1 182.2 160.0 1.12 1.11 1.07
4 112.1 102.4 80.8 122.4 112.0 103.1 1.09 1.09 1.28
5 169.7 148.2 129.2 175.3 162.4 155.8 1.03 1.10 1.21
6 336.6 275.0 222.7 320.5 303.2 276.3 0.95 1.10 1.24
7 220.1 207.5 194.1 0.20 204.8 197.1 187.0 0.93 0.95 0.90
8 285.0 280.8 264.0 292.7 270.0 255.2 1.03 0.96 0.97
10 99.4 90.8 80.0 104.6 94.1 89.9 1.05 1.04 1.12
11 160.2 137.5 125.6 186.1 167.3 140.0 1.16 1.22 1.11
12 176.8 160.0 140.0 173.0 165.5 158.5 0.98 1.03 1.13
13 302.8 281.8 268.2 298.0 280.5 259.0 0.98 1.00 0.97
14 246.9 242.0 234.0 285.2 275.4 265.5 1.16 1.14 1.13

Avg. 1.05 1.06 1.10

cov 0.10 0.12 0.12

3.3 FE Analysis Results

3.3.1 Definitions of Stress Resultants

The internal forces acting on an infinitesimal body cut out from the cylindrical wall

are defined in Fig. 3-7. Hoop stress resultant V,, axial stress resultant N, , axial bending
moment M _, and shear stress resultant O, are defined as

t/2 d ) d ) M t/2 d ) d t/2 d 4
N€ _J.—t/zst9 ot Nx - /zsx Z X —.[_t/ZSXZ Z; an er _.[—z/sz Z (3' )

—t
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Herein, s is true normal stress, 7 is shear stress, ¢ is the thickness of cylindrical wall, and z is
the radially outward distance from its middle surface. It should be noted that the subscript

“p” for cylindrical shell is omitted in the equations (The same hereinafter in this chapter).

A X

Fig. 3-7 Definition of stress resultants in cylindrical wall

The following dimensionless variables are introduced for the stress resultants.

M
S A /R - N (3-5)
ot ot M, ot

Where, M =O'yt2/4. The O, is the yield stress of cylindrical wall and set to be

positive both for tension and compression.

3.3.2 Distributions of Stress Resultants

Model No.8 is taken as a typical case to investigate the changing distributions of

axial stress resultant7,, axial bending momentm, , shear stress resultantg,., and hoop

stress resultant 7, under general yield load P,, full plastic load P, and ultimate load P,,
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respectively. As shown in Fig. 3-8(a), |n,| increases as load increases. It can be assumed
as a constant along x direction at each load. As shown in Fig. 3-8(b), |m,| also increases
as load increases. Section A is defined to be the section where local concentrated
deformation in the contact region starts to disappear. The assumption that line elements
normal to the middle surface remain normal during the deformation is obeyed below Sect.
A. Section B is defined to be the section with peak value of axial bending moment. The

|my,| in Sect. B does not reach 1.0 at P,. It must be due to the effect of interaction
between 7, and m,,. As shown in Fig. 3-8(c), the value of ¢,, at each load decreases
almost in a straight line from Sects. A to B, and becomes close to 0 at Sect. B. The
changing distributions of 7,, as shown in Fig. 3-8(d), are a little difficult to assimilate.
Its maximum value does not occur in Sect. A. Moreover, its value in Sect. B at P, is

slightly smaller than that at P,. The reason might be the effect of interaction of 7, with

Ny, and my,.
0 S S ——————
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gw §—10
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=20 S 20 [ T :
c [
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-0.6 -04 -0.2 0 -1 -0.5 0 0.5 1
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Fig. 3-8 Changing distribution of stress resultants in the cylindrical wall of model No.8

under increasing load

3.3.3 Correlation of Stress Resultants at Ultimate Load

By setting the friction coefficient 4 of model Nos. 7, 8 and 14 to be 0.3 and 0.4
respectively, additional six models, which named Nos.7-u03, 7-u04, 8-103, 8-104, 14-103
and 14-u04, are designed to investigate the influence of high axial stress resultant on the
failure mechanism.

The model Nos. 2, 5, 8, 8-103 and 8-404, with axial stress resultant n,, of -0.20,
-0.27, -0.46, -0.61, and -0.78 respectively, are taken as typical cases to analyze the
correlation among stress resultants at ultimate load. For the correlation between n,, and
ng., ng, decreases as |n| increases for each section, as shown in Fig.3-9(a). The
correlation between n,, and my, is a little different. As shown in Fig. 3-9(b), for the region
where m,, is positive, m,, increases as |n,,| increases; while for the region where m,, is
negative, |m,,| decreases as |n,,| increases. The detailed results in Sects. A and B for all the

models are plotted in Fig. 3-9. It can be found that the stress resultants have high

correlation with each other.
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Fig. 3-9 Distribution of ultimate stress resultants in the plastic region of models with
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Fig. 3-10 Correlation among stress resultants at ultimate load in Sects. A and B of all the
models with cylinder edge failure

3.3.4 Distributions of Ultimate Deformation

The ultimate behavior of the top edge of cylinder for model No.8 is illustrated in Fig.
3-11. It can be found that the out of plane deformation at ultimate load in the region from
Sect. A to Sect. B is quite small.

The ultimate radial deformations in the region AB for model Nos. 2, 5, 8, 8-1403 and
8-104 are shown in Fig. 3-12. It is found that the variation of deformation curves along

with the increasing of axial stress resultant is a little complicated. Especially for model
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No. 8-104, the radial deformation becomes much larger than other models due to the great

value of axial stress resultant.

Undeformed

6 %X g \At ultimate load
r | _1(“ ruA
O rSect. A
L
- \/\_;Sect. B

Fig. 3-11 Ultimate deformation of the top edge of cylinder for model No.8
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Fig. 3-12 Distribution of ultimate radial deformation in the plastic region of models with
actual material

The @, is defined as the ratio of radial displacement w,,, in sect. A to the length
L ofregion AB. Figure 3-13 plots the ratios @, for all the FE models. It is seen that for

the cases of lower axial stress resultant, ¢, decreases in a straight line as |n,,| increases.

But for the cases of larger axial stress resultant, such as model Nos. 7-u04, 8-104, 14-103
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and 14-404, @, increases even though |n,,| increases. Because all the values of @, are

smaller than 0.1, the small deformation theory can be employed in the later analysis.
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xu

Fig. 3-13 Ratios of w,,s in Sect. A to the length of L along with the increase of | |

3.4 Judgement of Failure Mode
3.4.1 Definition of the Criterion of Failure Mode

The ratio of average equivalent stress Eeq in a section to yield stress O, is defined

as

o sz s dz
= Sea _ Jp®e (3-6)

o, Gyl‘

Herein, equivalent stress S,, can be obtained by

[ 2
Sy = \/Sx —S.8,+8,+37T_ (3-7)
If 7 in the section where axial bending moment m, reaches the local peak, satisfies

that 7 -

e neae) 2 1.0, @ plastic hinge is assumed to form there. If the number of plastic
hinges becomes sufficient and the kinematically admissible state is reached just prior to or

at collapse load, the failure is assumed to be governed by “plastic collapse”. It should be
58



noted that

(1) Because of the strain hardening effect of materials, i =m, ) in some section where

plastic deformation is great, is possible to exceed 1.0;

(2) Some section with peak meridional bending moment does not enter into plastic range

>

"su, peak )~

at ultimate load. From the engineering point of view, 7u(n,, - 0.8 js acceptable

for the determination of plastic hinge.

3.4.2 Failure Mode of Models

Figure 3-14 shows the changing distributions of ratio » at P,, P,, and P, in the
cylindrical wall of model No.8. It is found that » increases as the load increases for each
section. Finally, »,in Sect. B becomes very close to 1.0. It indicates that a plastic hinge
form there. The region between Sect. B and Sect. A enters into plastic condition at
ultimate load. Because of the strain hardening effect of material, the nearer a section gets
to Sect. A, the larger is 7.

The r,in Sect. B for all the models are listed in Fig. 3-15. It is seen that all the values
are close to 1.0. Their average is 1.01, with a small COV of 0.02. Therefore, the failure
mode of cylinder edge can be assumed to be controlled by “plastic collapse”, as shown in

Fig. 3-16.
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Fig. 3-14 Changing distributions of average equivalent stress in the cylindrical wall of

model No.8 under increasing load
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Fig. 3-16 Proposed failure mechanism for models with cylinder edge failure
3.5 Prediction of Strength

3.5.1 Simplification of Mises’ Yield Condition for Axisymmetrically
Loaded Revolutional Shells with Perfectly-plastic Material

The high correlation among axial stress resultant, hoop stress resultant and axial

bending moment in cylindrical walls has been clarified in section 3.3.3. The interaction
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equation for stress resultants at ultimate load constitutes the yield condition of cylindrical
shells under axisymmetric loading, which has been first published by Drucker (1953). His
work was developed by Onat (1955) and Hodge (1961). The latter one is for
Perfectly-plastic material obeying Mises’ yield criterion and the associated flow rule. The
yield surface equations are expressed by stress resultants, in closed parametric form as

shown in Eq. (3-8).

2 cosp—cosq

n'cmax = i .
’ V3 sin(p-q)
1 c0S pcosq (1+sm q) (1—sin p) cos p—cosgq
nﬁmax =% + (3_8)
) sin(p - q) (1 sing) (1+sin p)  3sin(p-q)

2 cos” pcos’ 91 (1+sing) (l—sinp)_4cospcosq(sinq—sinp)
Mhmax 3 sin*(p-q)  (1-sing) (1+sin p) V3sin?(p-q)

Herein, the p and ¢ are two parameters, which satisfy either of the following

inequalities.

Three special curves on the yield surface were discovered by Hodge (1961). One is

given by
1 3,
m =0; n =—n__*.[1-—n 3-9
xXmax 6 max 2 xXmax 4 Xxmax ( )
The other two are given by
nﬁmax :O'Snxmax; mxmax :i%(l_%njmax) (3-10)

(1) Simplification of Mises’ Yield Condition Equation

The characteristic curves for 7., = 1.0, 0.8, 0.6 , ..., -0.6, -0.8, -1.0 on Mises’ yield

surface, and the three special curves in Egs. (3-9) and (3-10) are plotted in Fig. 3-17. It

can be seen that the yield surface is antisymmetric with respect to the plane

Nyax = 0.51, . The projections of these curves for 7., <0 onto the plane n,, =0
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are shown in Fig. 3-18. The shape of these curves resembles an ellipse and are symmetric

with respect to the plane m, , = 0. The vertexes of these ellipselike curves lie on the

curves of Egs. (3-9) and (3-10). The curves for 7., >0 are omitted here because of

antisymmetry.

Fig. 3-17 Characteristic curves on Mises’ yield surface of axisymmetrically loaded
revolutional shells with Perfectly-plastic material

1.5

—Characteristic curves.—---Curves in Eq. (3-9

on Mises’ yield - = -Curves in Eq. (3-10
1.0 surface Eq. (3-8) ' '

-15 -10-05 0 05 1.0 15

xmax

Fig. 3-18 Projections of characteristic curves onto the plane 7, =0
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Denoting the center as (0, c), the semi-major axis in the 7,,, direction a, and the

semi-minor axis in the m, . direction b, as indicated in Fig. 3-18, these ellipselike

curves are assumed to satisfy the form

=1 (3-11)

The c is set to be
c=0.5n (3-12a)

Xmax

Then, a and b can be obtained based on Egs. (3-9) and (3-10).

a= ‘ngmax (1 ax :())‘ —c=,]1 _%nimax (3-12b)
2 3
b= <n3mx:o.5nm>‘ NG (a —anmax) (3-12¢)

The i and j are determined by a curve-fitting approach.

i=25; j=2 (3-13)

Consequently, substitutions of Egs. (3-12) and (3-13) into Eq. (3-11) give the
simplified explicit formula for Mises’ yield surface.

+£—Zﬁmme _1 (3-14)

4-3p°

xmax

2n&max —n

NEE 3nf:1:ax

The expression of m,max can be obtained as

2.5
2n9max —n

Xmax

\/4—3nfm&lx

The characteristic curves for 7n. . =-1.0,-0.8, -0.6, ..., 0 in Eq. (3-14) are compared

2 3
m 3( 4n ) ( )

xmax \/_ xmax

with those in Eq. (3-8). Good agreement can be observed as shown in Fig. 3-19.
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Fig. 3-19 Comparison of the characteristic curves between Mises’ yield surface equation
and the simplified approximation

(2) Validation of the Simplified Formula by FEA Results

Figure 3-20 shows the comparison between the interaction of 7, with m__ .

along with the increase of |l’l,9max in FEA and the corresponding curves in Eq. (3-14). It

can be found that the data of stress resultants in the range m,,, >0 for FEA models
with different diameter-thickness ratios all approximately lie on the relevant curves in Eq.
(3-14). Whereas, whenm_, <0, they do not. The reason might be the influence of shear

stress resultant on yield condition.

Based on the above analysis, the simplified formula in Eq. (3-14) for Mises’ yield
surface is found to be close to the original one in Eq. (3-8). The proposed formula in Eq.
(3-14) is validated by comparing with the stress resultants of FEA models with

perfectly-elastic plastic material.
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Fig. 3-20 Comparison of the simplified interaction of stress resultants with the results of
the FE models with perfectly-plastic material
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3.5.2 Prediction of Full Plastic Strength

3.5.2.1 Equilibriums in the Cylindrical Wall

Limit analysis is employed to derive the maximum strength of models with

perfectly-plastic material. The external forces acted at cylinder edge are shown in Fig.

3-21. Compressive force R and frictional force MR, which are transmitted from
conical wall to cylindrical wall, are equivalent to radial force F,, axial force F, and

axial bending moment F.7¢ applied at the center of sect. A. It should be noted that they
are defined to be applied in 360 degrees in hoop direction. The 77¢ is the radially
outward eccentricity of axial force F,, in which 77 means the eccentricity ratio in sect.

A. The exact value of 77 is difficult to be derived from the point of plastic theory of solid

mechanics. In this study, it is obtained by

n="-"t— (3-16)

where, z is the radially outward distance from the middle surface of cylindrical walls.
The values of 77 are listed in Fig. 3-22. It is found that their average is -0.20 with a

COV of 0.12. In this study, 77 of all the models is assumed to be a constant -0.20.

[
f/

st

=

2i Cylinder

(<]

=i

o

=

b

o,

é : Middle surface
Lode A
>

Fig. 3-21 Equivalent external forces at maximum load in cylindrical wall
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Fig. 3-22 Distribution of eccentricity ratio 77 along with the increase of |72,
The equilibriums for external forces are given by
F =uRcosa+Rsino (3-17a)
F =Rcosa—uRsinx (3-17b)

Combining Egs. (3-17a) and (3-17b) by eliminating R, The relationship between F,

and F, isexpressed as

_1-utano
tana+ u

F.= F, (3-18)

X

Maximum strength P, can be given by

=—F (3-19)

In addition, the axial external force is equal to the axial stress resultant numerically.

F.=rd-n,,0\t (3-20)

xXmax

where, d is the center-to-center diameter of cylinder.
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3.5.2.2 Proposed Plastic Collapse Mechanism

Plastic collapse mechanism based on upper bound theory has been employed
successfully for estimating the collapse strength of cylindrical shells under radial pressure
or along with axial compression (Drucker 1954, Eason and Shield 1955, Onat 1955,
Tsang and Harding 1984, et al.). Plastic hinges are assumed to absorb the strain energy
done by axial bending moment and the straight segments between plastic hinges are
assumed to absorb the strain energy done by hoop stress resultant. Tsang and Harding
(1984) considered the influence of axial stress resultant on the failure mechanism.
Especially for plastic hinges, they assumed that bending deformation takes places under
plane strain condition. But the evidence for the interaction between axial stress resultant

and axial bending moment has not been clear.
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Fig. 3-23 Proposed plastic collapse mechanism for models with cylinder edge failure

For cylinder edge failure in this study, The plastic collapse mechanism shown Fig.

3-23 is assumed. The external forces of {F,,F,, F.nt} are applied in Sect. A. A plastic

hinge with a rotation angle ¢ is assumed to occur in Sect. B. For segment AB, the axial
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bending moment m,, . .5z 1S equal to zero because of the assumption that segment AB is

in a straight line. Substitution of m, s =0 into Eq. (3-14) gives the interaction

between axial stress resultant and hoop stress resultant in the segment AB.

nﬁmaxAB :%nxmax—f_\’l_%nfmax (3-21)

where, 7.5 1S positive, and 7, is assumed to be uniform along x direction.

For plastic hinge B, &5 =0 because of the assumption of rigid-plastic material.

Assuming ¢ < L and very long (infinite) in hoop direction, plastic hinge B is under
cylindrical bending. In this case, plane strain condition can be employed (Save, 1997). It

indicates that

1
NgmaxB = Enxmax (3_22)
and
2
mxmaxB :ﬁ(_l+znimax) (3_23)

3.5.2.3 Derivation of Virtual Work Equations

Based on the principle of virtual work, the equilibrium of external work dW and

dissipation of internal energy dU for the whole mechanism in 360 degrees in hoop
direction during a virtual change of rotation d¢ is given by

dU=dw (3-24)

where

dU =dU, +dU, +dU,
dW =dw, +dW, +dWw,
Herein, for internal energy, dU, is done by hoop stress resultant 7,,,,0,f, dU, is

done by axial stress resultant 7,,,0,f and dU, is done by axial bending moment
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1
m. .. ZO'yt2 ; For external work, dW, is done by radial force F,, dW, is done by axial
force F, and dW, is done by axial bending moment £z

The components of dU and dW are derived as follows.

X

6
O r

Axis of revolution

Fig. 3-24 Axial shortening compatible with the circumferential stretching of the segment
AB in plastic collapse mechanism

@ dv,
A small segment of length d/ is considered, as shown in Fig. 3-24. Increase in

length dA,, in hoop direction after the virtual change of rotation d¢ can be derived as
dA,, =(L-D[sin(¢p+d@)—sing]=(L—/)cospd@ (3-25)

The strain rate in hoop direction is given by

i _ (L-=ID)coso
Com = T T (L Dsing? (3-26)

This may be approximated to
_(L=ID)cosop

~———"d 3-27
O max d/2 ¢ ( )
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The dU, during the increase in length in hoop direction for the whole length of the
mechanism can be obtained as
dl — ﬂ'd nﬁmaxABo-thOS¢d¢

& max d / 2
= ﬂngmaxABO'yth cos¢dg

jOL (L -1\l

AU, = 7d [ 1y 1€ 628

@ du,
Since the deformations in the plastic failure mechanism except plastic hinge B take

place under Mises’ yield condition as shown in Eq. (3-29), a flow rule must be adopted to

determine the change in the strain rate (Save, 1997).

f = njmax + n;maxAB - nxmaxnﬁmaxAB _1 = O (3_29)
Thus,
. %)
gxmax = /1 f :1(2nxmax - nﬁmaxAB) (3'30)
anxmax
and
. 9
gemax = ﬂ’ f Zﬂ’(znﬁmaxAB - nxmax) (3-3 1)
My A

where A is a positive scalar factor.
Combining Egs. (3-30) and (3-31) gives

2n__ —n
; _ 9 AB A
gxmax — 5 Xmax max ggmax (3_32)
n9maxAB —-n

xmax

Substituting Eq. (3-27) into Eq. (3-32) and integrating &

max » the shortening in

length dAU2 in the longitudinal direction for the whole length of the mechanism, as

shown in Fig. 3-24, is given by

dAU2 — J‘OL éxmaxdl . znxmax n&maxAB COS ¢d¢ (L Z)dl
nHmaxAB n d /

Xmax

(3-33)
=]

2nxmax nﬁmaxAB Cos ¢ d¢
2n9maxAB n d

Xmax
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The dU, can be obtained by

dU, =rxdn,_ o tdA,,

= ﬂnvn::,tyLz 21, = Mo an ¢ o pdg (3-34)
( ’ 2n9maxAB 1 max
® dU,
The dU, by axial bending moment m, ., %O'yt2 is obtained by
dU, =xd-m.__, %0yt2d¢ (3-35)

Axis of revolution

Fig. 3-25 Virtual deformation due to an incremental rotation of the plastic hinge

@ dw,
After the virtual change of rotation d@, the virtual radial deformation by radial
force F, isdefined as dA,, in Fig. 3-25.
dA,,, = Lsin(¢p+d¢@)—Lsing = Lcos ¢dgp (3-36)
Thus, the work dW, is obtained by
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dW, =F Lcos¢dg (3-37)

® dm,
After the virtual change of rotation d@, the virtual axial deformation by axial force

F,, excluding the virtual strain deformation dA,,in Eq. (3-33), is defined as dA,, in
Fig. 3-25.

dA,,, = Lcos(¢+d@)—Lcos¢ =—Lsingdga (3-38)
Thus, the work dW, can be written as

dw,=F (dA,,+dA,,)

= F (~Lsingdg + I’ 2ng A_B”_”;:B C‘;S ? 49) (3-39)
©® dw,
The work dW, by external axial bending momentis given by
dw, =—Fudg (3-40)

Substituting Egs. (3-28), (3-34), (3-35), (3-37), (3-39) and (3-40) into Eq. (3-24) and

eliminating d¢ give the general equation that

F.Lcos¢—F Lsin@—nF,t=7n,, . O, cosp—rwdm

xmax B

1
Zaytz (3-41)
3.5.2.4 Proposed Formula for Full Plastic Strength

Based on the small deformation theory, sing=¢, cosp=1. Eq. (3-41) can be
simplified to be that

_ 2
F.L=7ny, s0,tL —mdm

1
xmax B Z O-yt2 + ﬂFrt + ¢F\”L (3_42)
Dividing the both sides of Eq. (3-42) by L and substituting Eq. (3-19) into it, ¥, can

be expressed as
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—dm

xmax B

t*+4nFt
O T _4p (3-43)
4L

F; = ”namaxABo-ytL +

. dF
Based on upper bound theorem, F, can be obtained by dLr =0. Thus,

F; = \/_mxmaxB + 477nxmax \/ n@maxAB ’ ﬂ-o-yt\/a - ¢Pmax (3-44)

Herein, 7] is assumed to be a constant of -0.2 as shown in Fig. 3-21, and L is given by

L:\/_mxmaxB+4nnxmax \/a (3_45)

4n9maxAB
Substituting 7. .5 in Eq. (3-21) and m, s in Eq. (3-23) into Eq. (3-45), L is

finally obtained as

2 (1=>0 )=0.8n
1 xXmax xXmax
=L B3 4 di (3-46)
24 1 \/ 3,
7n.xmax+ l_invmdx
2 4"

The length of plastic region [ varies with the increasing of axial stress resultant. Its
prediction in Eq. (3-46) is compared with the corresponding results of FE models with
perfectly plastic material, as shown in Fig. 3-26. The average of the ratios is 0.99, with a

standard deviation 0.08. Good agreement can be found with each other.
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Fig. 3-26 Comparison of the predicted length of plastic region with that of FE models
with perfectly plastic material

Substituting Egs. (3-18), (3-19), (3-20), (3-21) and (3-23) into Eq. (3-44) and
dividing the both sides of Eq. (3-44) by Zd0t, maximum axial stress resultant 7, is
obtained by the implicit expression as follow:

Nax =YV X (3-47)

where, ¥ is a factor in which the interaction of axial stress resultant with hoop stress

resultant and axial bending moment in the failure mechanism is considered.

2 3 1 3
= |—=1-2n%_)-08 4 |1=2n 3-48
l// \/\/5( 4nxmax) nxmax\/znxmax 4nxmax ( )

The 7 is areduction factor by considering the external work of axial force.

- utan o

_ tana+u
l-utana

I-ptana
tana + u

(3-49)

The X is a parameter including the dimensionless quantities of diameter-to-thickness

ratio d/t, friction coefficient #, and semi-convex angle . It is the fundamental
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parameter for calculating maximum strength.
t tana+u
= = ==T7 3-50
< \/; l-utanax ( )

The arrays of (¥,n,,..) where n. . €[0,—-0.8] are plotted in Fig. 3-27. The
variation of ¥ with 7n ., may be closely approximated by the quadratic equation as

w=-087n’_ —0.16n_ +1.07 (3-51)

Xmax

The values of ¥ for all the models are also plotted. It can be seen that the smallest one

is low to about 0.6. The relationship between 7 and ¢ for all the FE models is shown

in Fig. 3-28. It is found that as ¢ increases, 7 almost keeps being constant except for

the model Nos. 7 104, 8 104 and 14 ©04. Because high axial stress resultants make their
radial deformations a little more complicated than those of other models. The average of

7 is 0.93, with a small COV of 0.04. Thus, it can be simplified to be 0.93 in this study.

1.2
e ®TE
@/}@y"' B 10
Ko
P - 0.8
&

¥ W

----- Eq. (3-48) - 0.6

_ Quadratic approximation
in Eq. (3-51) - 04
< in FEA models
- 0.2
T T T 00

-10 -08 -06 -04 -02 00

xmax

Fig. 3-27 Plot of ¥ and the relevant values of FEA models in series I
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Fig. 3-28 Relationship between 7 and ¢ of FEA models in series I

Substituting Eq. (3-51) and ¥=0.93 into Eq. (3-47), 7. can be expressed in the

following quadratic equation.

n.. =081 +0.15n_ —1.00)y (3-52)

Xmax

The solution of 7, is

0157 +1-43.26° —037 +1

n = 3-53
e 1.62y ( )
Therefore, F,,, can be finally expressed as
0.157+14++/3.267> -03y +1
P, =—n, wdic, =——% *{ = X 722X e, (3-54)
62y ’

Comparison of F,,,_pep expressed in Eq. (3-54) with P, _pz, is shown in Fig.

3-29. The average of the ratios is 1.02 with a quite small COV of 0.02. Formula in Eq.

(3-54) can predict well the maximum strength of models with perfectly plastic material. It

means that the full plastic strength £, can be predicted by

0.157+1++3.267° —037+1
p—PRED — 1627 7Z'dt0'y (3-55)
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Comparison of Pp_pRED with PP_FEA is shown in Fig. 3-30. The average of the

ratios is 0.98 with a quite small COV of 0.04. Therefore, full plastic strength of specimens

with cylinder edge failure can be predicted well by the proposed formula.

800
600 |
Pmax-PRED
(kN) 400 |
Eq. (3-54)
200t Avg. 1.02
COVv 0.02
O ! ! !
0 200 400 600 800
Pmax-FEA (kN)

Fig. 3-29 Comparison of predicted maximum strength of models with the relevant FEA
results
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(kN) 300 ¢

2007 ™\ Avg. 0.98

COV 0.04
100 ¢

0 L L L L L
0 100 200 300 400 500 600
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Fig. 3-30 Comparison of predicted full plastic strength of specimens with the relevant
effective FEA results
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3.5.3 Prediction of Collapse Strength

Because of the strain hardening effect of mild steel material, the strength continues
to increase after full plastic strength arrives. A simple way to prediction collapse strength

is multiplying full plastic strength by an enhancement factor £ . Based on the assumption

of uniaxial stress state, it is usually assumed to be O,/0, (Morita 1988) or

(0,+0,)/(20,) (Kuwamura et al. 2015). The latter one is smaller than the former one

and gives a little safer prediction of collapse strength. But if the interaction of axial stress

resultant with hoop stress resultant and axial bending moment is considered, the stress

state in the failure mechanism will become multi-axial. Thus, the two factors of O, /0,

and (0,+0,)/(20,) are not reasonable to be employed in this study. The factor £ is

assumed to be the average of the ratios of collapse strength to full plastic strength of both

experimental specimens and FEA models, which is shown in Fig. 3-31. It is found that the

average is 1.08 with a COV of 0.05. Collapse strength P, is predicted by
B prep = PB, prep (3-56)
where, p=1.08,
The predicted collapse strength £, in Eq. (3-56) and the previous formulae
proposed by Kuwamura et al. (2005) and Ito et al. (2008) are compared with those of FEA

models. The ratios along with 7, are shown in Fig. 3-32. It can be found that the COV

of the new proposed formula in Eq. (3-56) are much smaller than those of previous ones.

The precision of Eq. (3-56) is verified.
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Fig. 3-31 Ratios of collapse strength to full plastic strength for both experimental and

FEA specimens
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Fig. 3-32 Comparison of collapse strength between the proposed formula and the
previous ones

3.5.4 Prediction of General Yield Strength

General yield strength of connections was first studied by Johnston. B.G. (1939b).
106 tests of differently proportioned steel pin-connected plates were undertaken and then
the empirical equation for it was proposed. After then, many studies were undertaken on

the prediction of general yield strength. However, most of them are based on empirical
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method (Kurobane et al. 1984, Kamba et al. 1998, et al.). Moreover, as local region at the
top edge of cylindrical wall has entered into plastic before general yield load arrived,
Elastic solution from bending theory of shells cannot be applied. In this study, it is

predicted based on the formulae for full plastic strength, which was derived precisely by
limit analysis. The reduction factor is set to be &. It is assumed to be the average of the

ratios of P, to P, for both experimental specimens and FEA models. The results of the
ratios are plotted in Fig. 3-33. It is found that the average is 0.90 with a small COV of

0.05. Therefore, general yield strength P, is predicted by

B _prep = gl)p—PRED (3-57)

where, £=0.90.

The predicted values of general yield strength are compared with those in FEA, as
shown in Fig. 3-34. It can be seen that the average value is 1.01 with a COV of 0.07. The

formula in Eq. (3-57) can predict well the general yield strength of models.

12 -
10 n O |_‘¢| O O <>
o g Qﬁ%@g SEXP
1 o
gQ 0.8 ¢ O FEA
Avg. 0.90
f 0.6 - COV 0.05
04 -
02 -
0.0 .

-10 -08 -06 -04 -02 00
Axial stress resultant n,,

Fig. 3-33 Ratios of P, to P, for both experimental and FEA results
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Fig. 3-34 Comparison of the predicted general yield strength of specimens with effective
FEA results

3.6 Summaries

This chapter focuses on strength of metal touch connections with cylinder edge
failure under axial compression. Based on the above analysis, the following conclusions
can be obtained.

(1) The effectiveness of axisymmetric solid model for predicting the strength of the
socket connection under axial compression is validated. The friction coefficient
between cone and cylinder is assumed to be a constant during the deformation process.
For practical design work, it can be assumed to be 0.20;

(2) The correlation among axial stress resultant, hoop stress resultant and axial bending
moment in the plastic region of cylindrical wall is found to be significant;

(3) The radial deformation at the top edge of cylindrical wall at ultimate load is found to
be very small, by comparing it with the length of plastic region;

(4) The failure of cylinder edge is controlled by “plastic collapse mechanism” based on
the proposed criterion;

(5) The simplification of Mises’ yield condition for axisymmetrically loaded revolutional
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shells with perfectly-plastic material is proposed and then validated by comparing it
with relevant FEA result; and

(6) Easy-to-use formula for predicting full plastic strength is derived by limit analysis.
The collapse and general yield strength of the experimental specimens is proposed
based on the results of full plastic strength. Their precision is proved by comparing

them with previous ones and the effective FEA results.
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CHAPTER 4 STRENGTH OF METAL
TOUCH CONNECTIONS WITH TAPERED
RING FAILURE

4.1 Introduction

Rings are often employed to strengthen cylindrical shell structures when cylindrical
walls sustain compression or tension in hoop direction (Teng et al. 1991, Chen el al.
1998). Welding is usually added between ring and cylindrical wall, in which the ring is
subjected not only to radial expansion or contraction, but also to axial bending. In this
study, it is interesting that the ring is metal-touched with cylindrical wall. A failure
mechanism was proposed by Kuwamura et al.(2005a) based on the assumption of
uniaxial stress state. Fujimoto and Kuwamura (2009) updated it by considering the
contact of the bottom edge of ring with cylindrical wall. But the ultimate behavior of ring
was not investigated clearly. Moreover, the influence of axial stress resultant on the
failure mechanism was also not considered.

In this chapter, the effectiveness of FEA models is first validated by comparing their
strength and deformation with experiments. The friction property in the contact region
between cone and cylinder is determined. The influence of friction coefficient in the
contact region between ring and cylinder on the strength of connections is analyzed. Then,
the changing distributions of stress resultants in cylindrical wall and tapered ring under
increasing load are studied. The ultimate deformation of connections is investigated. The
failure mode is judged by the proposed criteria for both cylindrical shell and tapered ring.
Finally, the full plastic strength is derived based on limit analysis. The prediction of
collapse strength and general yield strength is undertaken based on the formula for full

plastic strength. Their precision is validated by comparing them with the experimental
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and FEA results and previous equation.

4.2 FE Modeling
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Fig. 4-1 Details of FEA axisymmetric model with tapered ring failure
4.2.1 General

The details of FEA axisymmetric model are shown in Fig. 4-1. Mesh sizes in
cylindrical and conical walls are the same as those in Chapter 3. Setting the mesh size of
ring to be 0.25mm, twice that in the contact region of cylindrical wall, convergent
ultimate strength of the connection can be obtained. Figure 4-2 shows stress-strain curves
of mild steel used in tapered rings based on the results of coupon test. Tapered rings with
thicknesses of 6, 9, and 12mm were produced from the plates with thicknesses of 9, 12,
and 16mm respectively. The s~e, curves of the material are shown in Fig. 4-3.
Perfectly-elastic plastic material is also defined for the following FE analysis, in order to

verify the precision of proposed formula for full plastic strength of models.
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Fig. 4-3 s~e, curves input in ABAQUS for materials of tapered rings

4.2.2 Effectiveness of FE Models

Amontons-Coulomb’s friction law with formulation of Penalty is adopted and
friction coefficient u is assumed to be a constant during the whole deformation process.
The variation of collapse strength in FEA along with the increase of u; which is between
conical wall and cylinder edge, is shown in Fig. 4-4. It can be seen that as u, increases,
collapse strength of taper ring failure increases quickly. The collapse strength of FE
model becomes about equal to that of experimental specimen by calibrating the value of
1. As a result, the average of u; is 0.28, with a COV of 0.39, as shown in Table 4-1. It is a
little greater than that of models with cylinder edge failure shown in Table 3-1. The
reason might be the contact surface between cone and cylinder becomes a little rougher
due to the confinement effect of tapered ring. The u, in the contact region between ring
and cylinder, has no influence on the strength of connection, as shown in Fig. 4-5. But if
Uz is set to be 0.0, the iteration is difficult to become convergent before ultimate load
arrives, even if the minimum increment size is defined as 1070, Thus, u,1s set to be 0.2
for all the models. The full plastic strength and general yield strength of models are then
compared with those of experimental specimens. It is found that the averages of ratios are
1.02 for full plastic strength and 0.99 for general yield strength, with small COV of 0.11

and 0.06, respectively.
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Then, the maximum strength P, of models with perfectly-plastic material is
compared with the full plastic strength P, of models with actual material, as shown in Fig.
4-6. The average of the ratios is 0.98, with a small standard deviation of 0.05. It is found
that the method of “Ky/6 slope factor” proposed by Tateyama (1988) is effective to

determine the full plastic strength of models with tapered ring failure.

2P __IP

u-FEA"" u-EXP Specimen
No.29

; 5;11:022 u1

0 014 02 03 04 05
Fig. 4-4 Variation of collapse strength of models with tapered ring failure along with the
increase of friction coefficient between conical wall and cylinder edge
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Table 4-1 Comparison of strength between FEA and experiments for models in series I

Experiments FEA Comparison
Full General Full General
Model Collapse plastic yield COF Collapse plastic yield
NO. strength strength | strength strength strength | strength Pureal | Poreal | Prred
Py exp Ppexp P, exp P rea PyrEa P, req e e
) | an [ e [T ey | ey [y
26 182.4 165.2 160.1 0.16 189.0 170.5 160.0 1.04 1.03 1.00
27 3423 287.5 260.0 0.23 328.6 273.5 242.4 0.96 0.95 0.93
28 420.0 3333 293.3 0.26 413.8 395.0 309.3 0.99 1.19 1.05
29 277.0 257.0 2304 0.22 | 0.20 270.1 257.0 244.6 0.97 1.00 1.06
30 509.0 4179 356.4 0.35 503.3 467.3 359.7 0.99 1.12 1.01
35 530.6 484.5 428.6 0.50 432.6 400.0 388.2 0.82 0.83 0.91
37 472.7 432.0 338.0 0.27 469.0 4314 328.8 0.99 1.00 0.97
Avg. 0.28 0.97 1.02 0.99
Cov 0.39 0.07 0.11 0.06

Note: u; is the friction coefficient in the contact region between cone and cylinder.

M 1s the friction coefficient in the contact region between cylinder and ring.

400 -

4

2
Axial deformation A (mm)

Fig. 4-5 Comparison of load versus axial deformation curves for model No.27 with
different friction coefficients u, in the contact region between ring and cylinder
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Fig. 4-6 Comparison of maximum strength to full plastic strength of models with tapered

ring failure

Fig. 4-7 Ultimate behavior of tapered ring in experimental specimen No. 35

In addition, the load versus axial deformation curves and ultimate deformation of FE
models are compared with the relevant experimental results, as shown in Appendix B.
The effectiveness of FE models is validated. However, it should be mentioned that the
strength of model No.35 obtained by FEA are much smaller than those from experiment
even if u; is set to be 0.5, which is already a quite large value for general surface made of
mild steel. The ultimate behavior of tapered ring in experimental specimen No. 35 is
shown in Fig. 4-7. It can be seen that tapered ring upward rotated to contact with conical

wall finally. The confinement effect of ring simulated in FE model No. 35 might be
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smaller than that in experimental specimen.

4.2.3 Discussion on Friction Coefficient for Practical Design

As stated in section 4.2.2, the friction coefficient between cone and cylinder is

somewhat greater than that of models with cylinder edge failure. The latter is advised to

be 0.2 for practical design. In order to make the design work a little simpler and more

convenient, it is also assumed that #; = 0.20 for models with tapered ring failure.

The strength in FEA is then compared with experimental results. The ratios are listed

in Table 4-2. It is found that the averages of ratios are 0.84, 0.87 and 0.92, for collapse

strength, full plastic strength and general yield strength respectively. The values of COV

are all about 0.2, because the ratios of model No. 35 are much smaller than others. The

prediction of strength by assuming u; = 0.20 can be acceptable in practical design.

Table 4-2 Comparison of strength between FEA and experiments by assuming x; = 0.20

for models with tapered ring failure

Experiments FEA Comparison
Full General Full General
Model | S | plastic | yield cor | oMl astic | yield
NO. strength strength | strength strength strength | strength Purgal | Ppred | Prredl
Py xp Ppxp Py.exp PurEa PyrEa Py FE4 i e
@ [ oo [ ey [P e e [y
26 182.4 165.2 160.1 203.5 186.2 181.0 1.12 1.13 1.13
27 342.3 287.5 260.0 305.9 260.0 236.8 0.89 0.90 1.01
28 420.0 3333 293.3 3573 313.8 287.5 0.85 0.94 0.91
29 277.0 257.0 2304 | 0.20 | 0.20 260.0 252.6 236.5 0.94 0.98 1.03
30 509.0 417.9 356.4 369.3 319.7 300.0 0.73 0.77 0.84
35 530.6 484.5 428.6 276.9 250.0 240.7 0.52 0.52 0.56
37 472.7 432.0 338.0 407.1 381.2 307.8 0.86 0.88 0.92
Avg. 0.84 0.87 0.92
Ccov 0.18 0.19 0.18

Note: u; is the friction coefficient in the contact region between cone and cylinder.

M2 1s the friction coefficient in the contact region between cylinder and ring.
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4.3 FE Analysis Results

4.3.1 Distributions of Stress Resultants

Model No.27 is taken as a typical case to investigate the changing distributions of
stress resultants. Based on the results in Chapter 3, it has been known that for cylindrical

wall, n, can be assumed to be distributed uniformly along axial direction at each load, but
the changing distributions of 7, are a little difficult to assimilate due to the interaction
among it with other stress resultants. Thus in this chapter, changing distributions of axial
bending moment 7, and shear stress resultant ¢,. in cylindrical wall, at general yield

load Py, full plastic load P, and ultimate load P, respectively, are focused. Then, the hoop
stress distribution in tapered ring is also analyzed.
The definitions of Sects. A and B are the same as those introduced in section 3.3.2.

As shown in Fig. 4-8(a), |m,| in each section increases as load increases, especially near
Sect. B. As shown in Fig. 4-8(b), the values of ¢,, at P, and P, decreases almost in a
straight line from Sect. A to Sect. B. But its distribution at P, has a quite different type.
The value of ¢, at P, in Sect. A is much larger than those at P, and P,. It decreases

rapidly to a value which turns to be smaller than those at P, and P,. The reason is
explained as follow.

Figure 4-9 shows the changing distributions of resistance zone by ring under
increasing load. It can be found that for the cases of both P, and P,, the resistance zones
by ring are almost at the top of cylindrical wall and a little higher than Sect. A. But it
becomes a little lower than Sect. A when Pu arrives. Thus, shear stress resultant in Sect. A
at P, or P, only includes the value produced in cylindrical wall. While, when P, arrives, it
also includes the radial resistance by tapered ring. In addition, it can be seen that the
bottom edge of tapered ring does not contact with cylindrical wall when P, arrives

because the radial stress s, is very small.
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Fig. 4-8 Changing distributions of stress resultants under increasing load for model
No.27
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Fig. 4-9 Changing distributions of resistance zone by the ring under increasing load
for model No.27
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Fig. 4-10 Changing distributions of hoop stress in the ring under increasing load for
model No.27

Figure 4-10 shows the changing distributions of hoop stress in the tapered ring under
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increasing load. It is seen that at both P, and P,, the region near to bottom edge is under
hoop compression, because it rotates downward when expanding outward. However,

when P, arrives, the whole section becomes under hoop tension.

4.3.2 Distributions of Ultimate Deformation

The ultimate behavior of the top edge of cylinder and tapered ring in model No.27 is
illustrated in Fig. 4-11. It can be found that the out of plane bending deformation of
cylinder edge makes the tapered ring rotate downward.

The ultimate radial deformation in the region AB for model Nos. 26, 27 and 28 are
shown in Fig. 4-12. Model No. 4 without the confinement by ring is employed as a

comparison. It is found as the thickness of ting increases, the radial deformation will
become greater. But the ratios of w,,, in sect. A to the length L of region AB are

smaller than 0.1, the rotation of cylinder edge could be analyzed based on the assumption

of small deformation theory.

Undeformed
N

91X \At ultimate load
s r

Fig. 4-11 Ultimate deformation of cylinder edge and tapered ring in model No.27
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Fig. 4-12 Ultimate radial displacement distribution along x direction for models with
different kinds of ring

4.4 Judgement of Failure Modes

4.4.1 Definition of the Criteria of Failure Mode

The proposed criterion for plastic collapse of cylindrical wall is the same as that
introduced in section 3.4.1. For tapered ring, another way for defining the failure mode is
employed.

When the open mouth of cylinder expands like a trumpet, the ring mainly sustains

hoop tension. The ratio of its average hoop stress sqz to yield stress O, is defined as

SOr
k=— (4-1)
O-yR

If £=1.0, hoop tension failure is assumed to occur in tapered ring. It should be noted

that

(1) Because of strain hardening effect of materials, &, at ultimate load is possible to

exceed 1.0.
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(2) From the engineering point of view, k, 20.8 at ultimate load is acceptable for the

determination of hoop tension failure.

4.4.2 Failure Mode of Models

Figure 4-13 shows the changing distributions of ratio » at P,, P, and P, in the
cylindrical wall of model No.27. It is found that » increases as the load increases for each
section. The rin Sect. B at P, becomes a little larger than 1.0. It indicates that a plastic
hinge forms there.

The values of 7in Sect. B for all the models with tapered ring failure are listed in Fig.
4-14. It is seen that all the data are close to 1.0. Therefore, the failure of cylinder edge can
be assumed to be controlled by “plastic collapse mechanism”.

In addition, Fig. 4-15 shows the values of ratio k, at ultimate load defined in Eq. (4-1)
for all the models. It is seen that most of them are larger than 1.0 except for model No. 28,
which is 0.88. The hoop stress distribution in tapered ring of model No. 28 is shown in
Fig. 4-16. It is found that the region near to the bottom edge of ring is still under hoop
compression, even if P, arrives. It is the reason why k, of No. 28 is smaller than 1.0. But
as the k&, of No. 28 is greater than 0.80, it can be assumed that the failure of tapered rings
is controlled by “Hoop tension mechanism”. The proposed failure mode for models with

tapered ring failure is shown in Fig. 4-17.
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Fig. 4-17 Proposed failure mode for models with tapered ring failure
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4.5 Predictions of Strength

4.5.1 Prediction of Full Plastic Strength

4.5.1.1 Proposed Plastic Collapse Mechanism
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Fig. 4-18 External forces in plastic collapse mechanism for models
with tapered ring failure

The external forces in plastic collapse mechanism for models with tapered ring
failure is shown in Fig. 4-18. The limit analysis for models with perfectly plastic material

is undertaken to derive the maximum strength. The resistance of tapered ring is simplified
to be radial reaction force F... The external forces of {F.c, Fs, F., F.1t,} are assumed

to be applied in Sect. A. It should be noted they are defined to be acted in 360 degrees in

hoop direction. The distance between Sect. A and the resistance zone by ring is neglected.

A plastic hinge with a rotation angle ¢ is assumed to occur in Sect. B. The F,. and F,
are the radial force and axial force transmitted from conical wall respectively. The F.7¢,

is the axial bending moment because of the eccentricity of F,. The value of eccentricity
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ratio 77 is simplified to be a constant of -0.20, which is the same as that in section 3.5.2.

The equilibrium for external forces is given by

FrC:_l—ﬂtanan 4-2)
tana+ U
The F,; is obtained by
F;R — 2O-€maxRAR (4_3)
dp

Herein, d, is the center-to-center diameter of ring, A4, is the sectional area of ring, and

Oymaxr 15 assumed to be equal to O .

4.5.1.2 Proposed Formula for Full Plastic Strength

Based on the principle of virtual work, the equilibrium of external work dW and

dissipation of internal energy dU for the whole mechanism in 360 degrees in hoop
direction during a virtual change of rotation d¢ is given by

dU=dw (4-4)
where
dU =dU,+dU, +dU,
dW =dW, +dW, +dW,
Herein, for internal energy, dU, is done by hoop stress resultant 7y, s50,5fp in
segment AB, dU, is done by axial stress resultant 7,,,,0,5f, insegment AB and dU,
is done by axial bending moment m__ g iO'yPtf, at plastic hinge B; For external work,

dW, is done by radial forces F.. and F,, dW, is done by axial force F,, and dW,

is done by axial bending moment F 7y, .

The derivation process for Eq. (4-4) is the same as that introduced in section 3.5.2
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and is omitted here. Based on small deformation theory, sing=¢ and cos¢=1. The general

equation based on Eq. (4-4) can be obtained.

1
O-yPZ‘I23 (4_5)

(EC - F;R )L - F;L¢ - EcntP = ﬂ-nﬁmaxABo-yPtPLz - ﬂ-dexmaxB Z
Dividing the both sides of Eq. (4-5) by L and substituting F, =—F, . into Eq. (4-5), F,c

can be expressed as

—7d,m, . 5Oty —41F 1
Fre = 0y ap O yplp L + . meXB4ZP /L B+ Fop (4-6)

dF,
Based on upper bound theorem, F,. can be obtained by E’C =0. Thus,

f t
F;C = \/_mxmaxB - 4nnxmax \Y; nﬁmaxAB d_PO-}’PtP a ¢Pmax + F"‘R (4-7)
P

where, 771=-0.20.

The length of plastic region L is given by

- —4
L = \/ mxmaXB nnxmax \/E (4—8)

4 nﬁ max AB

The interaction of stress resultants is assumed as follow, which is the similar to that

in the failure mechanism of cylinder edge failure introduced in section 3.5.2.

For segment AB: Ny AB=%nmax + 1—%nfmax (4-9)
For plastic hinge B:  m ——i(l—in2 ) 4-10
or plastic hinge b: xmax B \/g 4 ma (4-10)

Substituting Egs. (4-2), (4-3), (4-9) and (4-10) into Eq. (4-7) and then dividing the
both sides of Eq. (4-7), 7,... can be expressed by two parts, one is induced by
cylindrical wall, and the other by tapered ring.

Memax = Mo p T e =YV X =BV X (4-11)

Herein, the parameters of ¥, 7, and A are expressed in the same equations as those in

section 3.5.2.
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2 3, 1 3,
= |[—=0-=n —-0.8n —n, . +.l—-—n 4-12
l// \/\/g( 4 xmax) xmax\/z X max 4 xmax ( )
l-utanx
_ tana+u
B 1—,utan0(+¢ (4-13)
tano+ U
t, tana+u
= [—— 4-14
x \/dp l-putanox ( )

The B is the reinforcement factor of tapered ring on the maximum strength of models.

20'yRAR

p= dp _“Omle (4-15)
dR O-yPtP\/dPtP

The ¥ is approximated in the following quadratic equation

w=-087n,, —0.16n, . +1.07 (4-16)

Xmax Xmax

In addition, the relationship between 7 and ¢ for all the models with tapered ring

failure is shown in Fig. 4-19. It can be found that 7 almost keeps being constant as @

increases. It is simplified to be the average of 0.92 in this study.

1.2

O
© 00 m

Avg. 0.92
COV 0.02

O 0.02 O.b4¢0.b6 008 0.1

Fig. 4-19 Variation of factor 7 with ¢ for models with tapered ring failure
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Substituting Eq. (4-16) and ¥=0.92 into Eq. (4-11), the variation of 7, with
the parameters of B and X is expressed in a quadratic equation.
M =(0.801],, +0.15n, . —0.98) y=0.9253- y (4-17)

xXmax

Its solution is

0157 +1-43.167° 03y +1+2.97°3

- 4-18
X max 1.61 ( )

Prediction of the maximum strength F,,, of models is finally obtained as

0.157—1++/3.164° =03y +1+2.94°f3
1.6y

P

max_PRED —

7dot,0,, (4-19)

Comparison of Pmaxf rrep €Xpressed in Eq. (4-19) with the maximum strength

P rza of models is shown in Fig. 4-20. It can be found that the average of ratios is 1.02
with a COV of 0.09. Well prediction of maximum strength is obtained. But it should be

mentioned that because the average hoop stress Oy,...x in tapered ring at maximum load

for model No. 28 is smaller than yield stress, assuming O,,..» to be equal to O, will

overestimated the strength of models. It means that the reinforcement effect of tapered
ring on the maximum strength of connections would reach the highest limit, even though
the thickness of ring in vertical direction increases. It should be noticed in practical
design work.

Full plastic strength of models can be obtained as

0.157—1+:/3.16° 03y +1+2.97°8
P p PRED — F max_PRED — 167

7d 1,0, (4-20)

Comparison of B,ﬁPRED with the full plastic strength })},jxp of experimental

specimens is shown in Fig. 4-21. It can be found that the average of ratios is 1.02 with a

COV of 0.16. Well prediction of full plastic strength for connections with tapered ring
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failure is obtained.
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Fig. 4-20 Comparison of predicted maximum strength of models with FEA results
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Fig. 4-21 Comparison of predicted full plastic strength of specimens with experimental
results
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4.5.2 Discussion on Reinforcement Effect of Tapered Ring on Strength

of models

Model Nos. 4, 26, 27 and 28 are employed to discuss the reinforcement effect of
tapered ring on the maximum strength of models. The thickness of ring is Omm, 6mm,

9mm, and 12mm, respectively.

Figure 4-22 shows the values of reinforcement factor B and maximum axial stress
resultant of them. Especially, for model No. 4, S =0, which means tapered ring is not

employed. For other models, as the thickness of ring increases, [ increases rapidly.
Meanwhile, the load carrying capacity of models also becomes greater. The larger the
value of /3, the greater is ..., while the smaller is 7., ,. The latter is because of

the influence of high axial stress resultant on the failure mechanism of cylindrical wall.

Upper bound
4 - (Elephant foot buckling of - 192
. cylindrical wall)
354 1
3 ] nxmax = nxmaxR +nxmaxP
25 | m n__ - bytapered ring - -0.8
B n e by cylindrical wall
,3 2 - -0.6
Xmax
1.5 -
- -0.4
1 .
- -0.2
0 ! -0
No. 4 No. 26 No. 27 No. 28
t.=0mm t.=6mm .tR=9mm t.=12mm
Specimen

Fig. 4-22 Reinforcement effect of ring on the maximum strength of models with tapered

ring failure
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However, as stated above, it is found that not the whole section plays a role on the
reinforcement effect on strength when the thickness of ring increases to some limit value.
In addition, if axial stress resultant in cylindrical wall increases to be very great, unstable
phenomenon, for example, the “elephant foot buckling” as observed in experimental
specimen No. 31, will occur before tapered ring failure. The prediction of elephant foot

buckling of cylindrical wall needs to be studied in future.

4.5.3 Prediction of Collapse Strength

The collapse strength of models is predicted in the same way as that in Chapter 3.
The enhancement factor £ is assumed as the average of the ratios of collapse strength to

full plastic strength for both experimental specimens and FEA models. Their average is
1.13 with a small COV of 0.06, as shown in Fig. 4-23. Collapse strength P, is predicted
by

B prep = PE,_prep (4-21)

where, p=1.13.

The predicted values of collapse strength of P, in Eq. (4-21) are compared with

those by the previous formula (Fujimoto et al. 2005). The ratios of them to the
experimental results are shown in Fig. 4-24. It can be found that the average of the ratios
in the case of the proposed formula in Eq. (4-21) is 0.99 with a small COV of 0.13, much
smaller than that by the previous one. Better prediction is obtained by the proposed

method.
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Fig. 4-23 Ratios of P, to P, for both experimental specimens and FEA models with
tapered ring failure
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Fig. 4-24 Comparison of collapse strength between the proposed formula with the
previous one for models with tapered ring failure

4.5.4 Prediction of General Yield Strength

The general yield strength of models with actual material is also predicted in the
same way as that in Chapter 3. The reduction factor ¢ is assumed as the ratios of general

yield strength P, to plastic strength P, for both experimental results and FEA results. The
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ratios are listed in Fig. 4-25. It can be found that the average is 0.87 with a small COV of

0.08. The prediction of general yield strength P, is obtained by
Py-PRED = er)—PRED (4-22)

where, £=0.87.

The predicted results are compared with those in experiments, as shown in Fig. 4-26.
It can be seen that the average of the ratios is 1.00 with a small COV of 0.16. The formula

in Eq. (4-22) can predict well the general yield strength of specimens.

1.2 +

o0

o o OO SEXP
08 1 oo o FEA

L Avg. 0.87
E.} 0.4 - COV 0.08
& 0.

0.0

-1.0 -0.8 -0.6 -0.4 -0.2 0.0
Axial stress resultant n,,

Fig. 4-25 Ratios of P, to P, for both experimental and FEA results for models with
tapered ring failure

109



500
400 1
o O
Py—PRED. o
(kN) 300+
Avg. 1.00
(@) COV 0.16
200 |
100 ' ' '
100 200 300 400 500
P, e (KN)

Fig. 4-26 Comparison of predicted general yield strength of specimens with
experimental results for models with tapered ring failure

4.6 Summaries

This chapter focuses on the prediction of the strength of models with tapered ring
failure. Based on the above analysis, the following conclusions are obtained.

(1) The value of friction coefficient between cone and cylinder can be simplified to be 0.2
for practical design work, like that of models with cylinder edge failure. The friction
between cylinder and tapered ring has no effect on the strength of models.

(2) The failure of the models is not only controlled by “hoop tension” of tapered ring, but
also by “plastic collapse” of cylindrical shell.

(3) Effective and Easy-to-use formulae for predicting the full plastic strength is derived
by limit analysis. The reinforcement effect of tapered ring is found to be obvious, by
increasing its thickness. However, it is necessary to be noticed that as the axial stress
resultant of cylindrical wall increases to reach some limit value, another failure
mechanism, for example, “elephant foot buckling” of cylindrical shell will occur. It

was already observed from the experiments.
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(4) The prediction of collapse and general yield strength of experimental specimens is
proposed based on the formula for full plastic strength. Well agreement is found

between them and the experimental results.
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CHAPTER 5 STRENGTH OF METAL
TOUCH CONNECTIONS WITH CONICAL
WALL FAILURE

5.1 Introduction

For the strength of the metal touch connections with conical wall failure, Kuwamura
et al. (2005a) proposed a theoretical solution for elastic limit strength of conical wall from
bending theory of shells (Timoshenko 1940). The formula is complicated and not suitable
in practice. After then, Tomioka (2006) proposed an empirical formula for yield strength
based on the experimental results. Multiplying it by some factors, full plastic strength
and collapse strength of connections were then predicted. The results were found to be
more easy-to-use but the theoretical background is much weaker than previous ones.
Moreover, the friction coefficient between cone and cylinder was set to be 1.0, which
needs further investigation.

In this chapter, solid axisymmetric FEA models are first created and validated by
comparing their strength and deformation with experimental results. The friction property
in the contact region between cone and cylinder is discussed. Then, FEA is undertaken to
investigate the distributions of stress resultants and deformations. The failure mode is
determined by the proposed criterion. Full plastic strength of models is derived by limit
analysis. Then, collapse strength and general yield strength are obtained based on the
formula for full plastic strength. Finally, their precision is validated by comparing them

with the experimental and FEA results.

113



D/2 CyIinder\\\

‘ N

N

Axis of symmetry

Fig. 5-1 Details of axisymmetric solid FEA models with conical wall failure

5.2 FE Modeling

5.2.1 General

Figure 5-1 illustrates the details of axisymmetric solid model for specimens with
conical wall failure. Two coordinates, (7 6, x) and (z, 6, s), are employed for conical shells,
in which ¢ means normal direction and s means meridional direction. The mesh size for
conical walls is set to be 0.5mm, which is the same as that in the general region of
cylindrical walls. The convergence of analysis results is verified.

Figure 5-2 shows the stress-strain curves of mild steel used in conical wall. The
material properties of conical shells with thicknesses of 3.2 and 6mm were not measured
in coupon tests. They are assumed to be the same as those of conical shell with thickness
of 4.5mm. Figure 5-3 gives true stress s and equivalent plastic strain e, curves of conical
walls with thickness of 4.5 mm and 9.0 mm, for both actual strain-hardening materials and

perfectly-elastic plastic material which will be used in the later analysis.
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Fig. 5-2 True stress-strain curves for material SS400 of conical shells
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Fig. 5-3 s~e, curves input in ABAQUS for materials of conical walls

5.2.2 Effectiveness of FE Models

Table 5-1 gives the comparison of the strength of FE models with that of
experimental specimens. Friction coefficient u is assumed to be a constant during the
whole deformation process. The value of x is determined by the following way.

The variation of collapse strength in FEA along with the increase of friction
coefficient 4, in the contact surface between cone and cylinder is shown in Fig. 5-4. It is
found that the correlation between each other is not significant, comparing with those of

models with cylinder edge failure and tapered ring failure.
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The collapse strength of FE model becomes about equal to that of experimental
specimen by calibrating the value of u;. It should be noted that the upper bound of the
value of u; is set to be 0.50. As a result, the average of u; is 0.43, with a COV of 0.27. It is
much larger than those of models with cylinder edge failure and tapered ring failure. The
reason might be that large plastic deformation of conical wall destroyed its oxide film and
then made the contact surface rougher than those of models with cylinder edge failure and
tapered ring failure. In addition, as friction coefficient u» in the contact surface between
cylinder and ring has no effect on the strength of specimen, it is set to be 0.20 in order to
keep the iteration procedure convergent.

Full plastic strength and general yield strength of FE models are then compared with
those of experimental specimens. It is found that the averages of the ratios are 0.94 for
full plastic strength and 0.99 for general yield strength, with the COV of 0.09 and 0.14
respectively. The strength of conical wall failure can be predicted well with a constant
value of y; for each model.

In addition, the load versus axial deformation curves and ultimate deformation of FE
models are compared with the relevant experimental results, as shown in Appendix B.

The effectiveness of FE models is verified.

2P wreal Poexp Specimen
No.47
1.5+
1

u,=0.40

0 N H
O 01 02 03 04 05

Fig. 5-4 Variation of collapse strength of models with conical wall failure along with the

increase of friction coefficient between conical wall and cylinder edge
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Table 5-1 Comparison of strength of FE models with those of experimental ones

Experiments FEA Comparison
Full General Full General
Model Collapse plastic yield COF Collapse plastic yield
NO. strength strength | strength strength strength | strength Purea | Pyreal | Prred
Pexp P, exp P, pxp Pirea PyrEd Py rea P | Ppowe | Prexe
(kN) (kN) (kN) # 1 (kN) (kN) (kN)

9 601.2 561.5 482.6 0.18 614.2 525.4 481.8 1.02 0.94 1.00
34 872.8 620.0 543.8 0.50 873.6 688.9 636.4 1.00 1.11 1.17
36 625.7 527.3 390.9 0.50 581.8 500.0 451.5 0.93 0.95 1.16
43 234.9 153.6 139.1 | 0.50 206.3 141.9 127.5 0.88 0.92 0.92
44 389.9 294.7 263.0 0.50 358.1 232.6 206.5 0.92 0.79 0.79
46 178.4 158.7 127.5 0.50 161.9 140.5 118.5 0.91 0.89 0.93
47 2742 | 2185 | 1926 | 040 | 020 | 2652 | 2196 | 2002 | 097 | 1.01 | 1.04
48 510.0 400.0 314.8 | 0.50 435.7 366.1 337.5 0.85 0.92 1.07
49 125.2 123.5 120.9 0.50 122.9 112.2 95.4 0.98 0.91 0.79
50 194.9 190.0 182.8 0.21 190.6 169.6 149.2 0.98 0.89 0.82
31 352.8 336.5 325.0 0.50 337.2 307.0 272.8 0.96 0.91 0.84
52 251.8 208.5 171.1 | 0.31 246.9 190.6 179.9 0.98 0.91 1.05
53 309.3 254.3 200.0 0.50 287.3 240.4 216.4 0.93 0.95 1.08

Avg. 0.43 095 | 094 | 0.99
Cov 0.27 006 | 0.09 | 0.14

Note: u; is the friction coefficient in the contact region between cone and cylinder. Its upper limit is set
to be 0.50.

U2 1s the friction coefficient in the contact region between cylinder and ring.

The maximum strength P, of models with perfectly-plastic material is compared

with the full plastic strength P, of models with actual material, as shown in Fig. 5-5. The

average of ratios is 1.04, with a small COV of 0.06. It is found that the method of “Ky/6

slope factor” proposed by Tateyama (1988) is also effective to determine the full plastic

strength of models with conical wall failure.
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Fig. 5-5 Comparison of maximum strength to full plastic strength of FE models with
conical wall failure

5.2.3 Discussion on Friction Coefficient for Practical Design

As stated in section 5.2.2, the friction coefficient between cone and cylinder is
greater than those of models with cylinder edge failure and tapered ring failure. The latter
two have been suggested to be 0.20 for practical design. Here, it is also assumed that u; =
0.2 for models with conical wall failure.

The results of strength in FEA are then compared with experimental results, as
shown in Table 5-2. It is found that the averages of ratios are 0.88, 0.81 and 0.83, for
collapse strength, full plastic strength and general yield strength respectively. The values
of COV are all about 0.1. The strength by assuming u; = 0.20 has 10~20%

under-prediction on a safe side, and can be acceptable in practical design.
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Table 5-2 Comparison of strength of FE models with those of experimental ones

Experiments FEA Comparison
Full General Full General
Model Collapse plastic yield COF Collapse plastic yield
NO. strength strength | strength strength strength | strength Purea | Pored | Prred
Piexp P, exp P, exp PyrEd Pyrea P, req P | Poexe | Brpw
(kN) (kN) (kN) o (kN) (kN) (kN)
9 601.2 561.5 | 482.6 6142 | 5254 | 481.8 | 1.02 0.94 | 1.00
34 872.8 620.0 | 543.8 807.5 505.6 | 4734 | 093 | 0.82 | 0.87
36 625.7 5273 | 390.9 554.6 | 4745 | 4223 | 089 | 090 | 1.08
43 2349 153.6 139.1 181.4 110.2 92.4 077 | 0.72 | 0.66
44 389.9 2947 | 263.0 328.5 181.4 | 1655 | 0.84 | 062 | 0.63
46 178.4 158.7 | 1275 143.5 1149 | 102.7 | 0.80 | 0.72 | 0.81
47 274.2 218.5 192.6 | 020 | 0201 2460 190.1 168.6 | 090 | 0.87 | 0.88
48 510.0 | 4000 | 314.8 3920 | 3023 | 2659 | 0.77 | 076 | 0.84
49 125.2 123.5 120.9 110.9 97.3 84.4 0.89 | 0.79 | 0.70
30 194.9 190.0 | 182.8 190.6 169.6 | 1492 | 098 | 0.89 | 0.82
31 352.8 336.5 | 325.0 3060 | 2702 | 2348 | 0.87 | 0.80 | 0.72
52 251.8 208.5 171.1 2393 179.8 | 158.1 | 095 | 086 | 0.92
53 309.3 2543 | 200.0 257.1 2034 | 1695 | 0.83 | 0.80 | 0.85
Avg. 0.88 0.81 0.83
Cov 0.08 | 0.09 | 0.13

5.3 FE Analysis Results

5.3.1 Definition of Stress Resultants

The internal forces acting on an infinitesimal body cut out from conical wall are

defined in Fig. 5-6. Hoop stress resultant N,, meridional stress resultant NV, , meridional

bending moment M _, and shear stress resultant O, are defined as

N 12 e N 12 g M %) i q 12 p
= s,dz; N = s dz; = s zdz; an =j T dz
o J—I/Z o7 s j—t/Z sT s I—x/z ST O —1/2 St

(5-1)

Herein, s is normal stress, 7 is shear stress, ¢ is the thickness of conical wall, and z is the

radially outward distance from its middle surface. The subscript ¢ for conical shells is

119



omitted in the equations (The same hereinafter in this chapter).

The following dimensionless variables are introduced for stress resultant distributions.

M
mm e =Moo Mo g g 20 (5-2)
ot ot M, ot

Axis of revolution
-

Fig. 5-6 Definition of stress resultants in conical wall

5.3.2 Distributions of Stress Resultants

In order to investigate the failure mechanism of conical wall, the characteristics of

stress resultant distribution are discussed. Model No.47 is taken as a typical case.

Figures 5-7(a~e) show the changing distributions of stress resultants »., m , ¢,

n, and 71, under increasing load, respectively. It can be found that
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(D For n_, its absolute values in the upper part increase from top end to the contact

section. They are much larger than those in the lower part, as the confinement effect from

cylindrical wall is mainly concentrated in the upper part of conical wall.

@ For m,, its distribution type is like the letter of “ W . The |m,| increases as load

increases. The sections where m, reaches local peak value are defined as Sects. E, F
and G.
® For ¢,,, its direction has a sudden change in Sect. F at which reaction force from

cylindrical wall is applied. It decreases from Sect. F and reaches about 0 in Sects. E and G

respectively.

@ For n,, its distribution type is a little different from that of #,. Especially in the
upper part of conical wall, the largest value of |ns| does not occur in Sect. F, but close to
Sect. E. The reason might be that the vertical component of 7, in Sect. F is cancelled out
partially by ¢,,.

® For n,, its distribution is concentrated in the region from Sect. E to Sect. G, where

compressive deformation in hoop direction is much larger than that in other regions.
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(b) Meridional bending moment 7,
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(c) Shear stress resultant ¢,

(d) Meridional stress resultant 7,
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(e) Hoop stress resultant 7,

Fig. 5-7 Changing distributions of stress resultants in conical wall under increasing load
for model No. 47 with actual material

5.3.3 Distribution of Deformation

The ultimate deformation of conical wall in model No. 47 is shown in Fig. 5-8. It is
found that the conical wall seems to be symmetric with respect to #-axis. Like the upper
part, the lower part also takes an important role in failure mechanism. It is not just a free
edge of conical wall. In addition, as the normal direction of contact region at ultimate
load is close to the one before testing, the upper part does not sit on the cylindrical wall.

Figure 5-9 gives the changing distributions of normal displacement w, under
increasing load. It can be found that w, at P, is much larger than those at P, and P,, and
actually it is not distributed in a perfectly axisymmetric type. The w,in the upper part is

slightly greater than that in the lower part.
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Fig. 5-8 Ultimate behavior of model No.47

Fig. 5-9 Changing distributions of normal deformation W, in conical wall under

increasing load for model No.47

5.4 Judgement of Failure Mode

5.4.1 Definition of the Criterion of Failure Mode

The criterion of failure mode for cone wall is defined with the similar method to that
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for cylinder edge failure. The ratio of average equivalent stress Eeq in a section to yield

stress O, is defined as

_ J'I/Z dZ
S,
r:—Seq = Joz 7 o (5'3)
o ot

y

where, equivalent stress §,, in each small mesh of FE model is obtained by

q

Sy =S 8,5, 55 437, (5-4)
If » in the section where meridional bending moment m; reaches the local peak,

satisfies that 7(m =m ~1.0, a plastic hinge is assumed to form there. If the number of

S,peak)
plastic hinges becomes sufficient and the kinematically admissible state is reached just
prior to or at collapse load, the failure is assumed to be governed by “plastic collapse”. It

should be noted that

(1) Because of the strain hardening effect of materials, at ultimate load is

r
u(msu:msu,peak)
possible to exceed 1.0;

(2) From the engineering point of view, Tuwng,=m, .0 20.8 g acceptable for the

determination of plastic hinge.

5.4.2 Failure Mode of models

Figure 5-10 shows the changing distributions of ratios r at P,, P,, and P, in the
conical wall of model No.47. It is found that » increases as load increases for each section.
The 7, near to Sect. F have already exceeded 1.0 as P, is reached, which means the
contact region has entered into plastic as general yield load arrives. Finally, 7, in Sects. E,
F and G are all greater than 1.0. It indicates that three plastic hinges form there. Because
of the strain hardening effect of material, the nearer a section get to Sect. F where the
plastic deformation is the greatest, the larger is 7,,.

The r,in Sects. E, F and G for all the models with actual material are listed in Fig.
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5-10. It is seen that all the values are larger than 1.0. Especially the values in Sect. F are
much greater than those in Sects. E and G. The failure mode can be assumed to be

controlled by “plastic collapse” of conical wall.

Fig. 5-10 Changing distributions of average equivalent stress in the conical wall under
increasing load for model No.47

1.8 Sect. E mSect. F ®mSect. G

1.6
1.4
1.2

r, 1.0
0.8
0.6
0.4
0.2
0.0

O 33 34 36 43 44 46 47 48 49 50 51 52 53
Specimen No.

Fig. 5-11 Ratios of average equivalent stress to yield stress at ultimate load for Sects. E, F
and G of models with conical wall failure.
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5.5 Prediction of Strength

5.5.1 Prediction of Full Plastic Strength

5.5.1.1 Proposed Plastic Collapse Mechanism

The plastic collapse mechanism has been employed successfully for estimating the
collapse strength of conical shell fixed in two ends under axisymmetric loading (Panzeri
et al. 1999, Chryssanthopoulos et al. 2001). The proposed formula by them predicted well
the collapse strength. But it was in complicated implicit form and difficult to be applied in
practical design. In this section, a new plastic collapse mechanism is proposed and then
limit analysis is undertaken. Finally, a simple and easy-to-use formula is obtained for
prediction of full plastic strength.

In the plastic collapse mechanism shown in Fig. 5-12, R and uR are the reaction
force and frictional force acted in Sect. F respectively. They are defined to be applied in

360 degrees in hoop direction. The equilibriums for external forces are given by

|
c
O
=
= R
O
>
o :
— |
[P
o!
2}
X7
<ia/

Fig. 5-12 Proposed plastic collapse mechanism for models with conical wall failure
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Pmax:_R(ﬂcos(a+¢E)+Sin(a+¢E)) (5_5)
Like the failure mechanism of cylinder edge failure, it is assumed that stress

resultants in plastic hinges are in plane strain state and those in segments are in plane

stress state, the interactions of stress resultants are shown as follows:

For plastic hinge E,
2 3
M axe = E(l _anmaxE) (5-63)
P
n - max _
where R d,0 1t cosar (5-6b)
and d,=d,+2L. sin(a+¢) (5-6¢)
For plastic hinge F,
2 2
m =—(-14+—n -
smax F \/g ( 4 smax F (5 73)
P
h nsmax = e 5-7b
whete " rdyo,teos(a+ ;) (5-7b)

For plastic hinge G, as meridional stress resultant is zero,

2
mvmax == 5_8
e = (5-8)
In addition, d, =dp—2L.;sin(a—¢,) (5-9)

For segment FE, as 7, varies along with the location in meridional direction, hoop

stress resultant 7gm. () for an arbitrary section is assumed as

1 3
nﬁmax(lFE) = Ensmax(lFE) - I_Znszmax(lFE) (5-103)
P
Where ns max (/g = R 5-10b
(fee) zd, o tcos(a+d,) ( )
and d(lFE) =d. +2l,. sin(a+¢,) (5-10c)
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For segment FG, as meridional stress resultant ngm.pc 1S zero, hoop stress

resultant 7,.,.r; 1S assumed to be that

—— (5-11)
5.5.1.2 Derivation of Virtual Work Equations

Based on the principle of virtual work, the equilibrium of external work dW and

dissipation of internal energy dU of the whole mechanism in 360 degrees in hoop

direction during a virtual change of rotation d@; at plastic hinge E, d¢, at plastic hinge

Gand (d@; +d¢;) at plastic hinge F, is given by

dU=dw (5-12)
where

dU =dU,+dU, +dU,
dWw =dw, +dWw,
Herein, for internal energy, dU, is done by hoop stress resultant 7,0, dU, is
done by meridional stress resultant 7,0, and dU; is done by meridional bending

1 ) .
moment m ZO'ytz; For external work, dW, is done by reaction force R, and dW,

Smax

max

cosx

is done by meridional force acted in Sect. E because of the shortening of segment
FE in meridional direction. The friction energy dissipation produced by frictional force

MR is neglected.
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Fig. 5-13 Meridional shortening compatible with the circumferential stretching of the
segments in plastic collapse mechanism of conical wall failure

@© du,
A small segment of length d/ for segments FE and FG is considered respectively, as

shown in Fig. 5-13. For segment FE, the increase in length dA,,;. in hoop direction

after the virtual change of rotation d@; can be derived as

dAUWFE) =—(Ly —1p)[sin(@, +d@, ) —sin @ Jcos(axr + @)

(5-13)
=~ —(Lyy — g ) cos @.d @ cos(ar + @)
The strain rate in hoop direction is given by
) —2(L., — 1.z )cos @, cos(ax+¢,)
gﬁmax(lFE) = = = = = d¢E (5-14)

dUFE)

For segment FG, the increase in length dA;,;; in hoop direction after the virtual change

of rotation d¢; can be derived as

dAUl(/FG) =—(Ly; —I:)[sin(¢@; +dg, ) —sin g, Jcos(ax — @)

(5-15)
=—(Ly; — 1) cos@;dg, cos(ax—¢y,)

The strain rate in hoop direction is given by
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) —2(L.. —1..)cos@. cos(cr—
B = (Lig —lkg) b ( ¢G)d¢G (5-16a)

d(ll-‘(;)

where d(lm) = dF - 2ZFG Sil’l(Of - ¢G ) (5- 1 6b)

Thus, dU, during the increase in length in hoop direction for segments FE and FG can

be obtained as

(L prdg . Ly (7dg) .
dUl—J.0 J.O n O 1€, dvdl +I0 J.O Ny O 1Eq . Avdl

Omax(lgg)
(5-17)

< [ [ dydl + 70 11 d
=l ) Ny max(ip ) O vt €01 )WV AL + O Ty COS(0{—¢G)COS¢G 8

Herein, dy is differential in hoop direction. The integral of 7y, ) 1S not expressed
because of the quite complicated form.

@ dU,

Since the deformations in segment FE take place under Mises’ yield condition as

shown in Eq. (5-18), a flow rule must be adopted to determine the change in the strain

rate (Save, 1997).

f = nszmax(lFE) + n;max(lFE) - nsmax(lFE)nHmax(lFE) -1=0 (5_ 1 8)
Thus,
: F  _
gsmax(lFE) =1 an ) _ﬂ’(znsmax(lﬂ;) - n9max(lFE)) (5-19)
. of
and gﬂmax(lFE) = Z’Tu):ﬂ(zngmaxuﬁ) - nsmax(lFE)) (5-20)

where A is a positive scalar factor.
Combining Egs. (5-19) and (5-20) gives

& _ 2nsmax(lFE) _nﬁmax(lFE) &
smax(lgg) 2 Omax (g ) (5'21)

Omax(lyg) g max (/g )

Substituting Eq. (5-14) into Eq. (5-21) and integrating ésmax( ), the shortening in length

IFE
dA,, in the meridional direction, as shown in Fig. 5-13, is given by
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smax (/g )

LFE .
dA, :dAUz(/FE) - .[0 €
(5-22)

~ _ILFE 2nsmax(lFE) B ngmax([FE) 2(LFE _IFE)COS(a-i_ ¢E)COS¢E d¢EdZ
o 2n d

Omax(lgg) nsmax(lFE) (re)

Thus, dU, can be obtained by

du, = [ dA
2=, N maxrE O, 1AA
2n

. smax(lpg) ~ Momax(t) 2(Lpg — i ) cOS( + @ ) cos @ dg.dl
n

_ Lyg d
- _IO 4 (IFE)nSmaX(/FE)O-yt -n
O max (lgg ) smax (lgg ) (lgg)

(5-23)

® du,
The dU, by meridional bending moment in plastic hinges E, F, and G is obtained

as:

dU3 = (ﬂ:dEmsmaxEd% _ﬂ'dFmsmaxF(d¢E + d¢G) +7Z'dGmsmade¢G )%O-yt2 (5_24)

X
6
o—f---——-—-————-
i
3 v
=
=i
Qi
D |
| — p
S : L , “Conical wall
D A
A s
~ 7
4

Fig. 5-14 Virtual deformations due to an incremental rotation of plastic hinges
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@ dw,
After the virtual change of rotation d¢, the virtual deformation by reaction force
R acted in Sect. F is defined as dA,,, in Fig. 5-14.
dA,, =L, sing, — L sin(@, +dg,) = —L,, cosg,dg, (5-25)
The work dW, is obtained by
dW, = -rd.RL.; cos@;dg, (5-26)
® dn,
For segment FE, after the virtual change of rotation d@;, the virtual meridional
deformation by meridional force jﬁ, excluding the virtual strain deformation dA,,in
Eq. (5-25), is defined as dA,,, in Fig. 5-14.

dA,,, = Ly cos(@, +d@,) — Ly cos @y = —Ly sin gy dgy, (5-27)

The work dW, can be obtained as

~P P P .
AW, =—mxdA,, +—2 dA = [ sing dg, +dU, (5-28)
cosax coso coso

herein, dU, is expressed in Eq. (5-23).

Substituting Eqgs. (5-17), (5-23), (5-24), (5-26), and (5-28) into Eq. (5-12), the

following general equation can be obtained.

P )
—RL. cos@,d@, +—"2- L sing,dg, =
cosa
Lpg prde, .
J-O IO ( )ngmax(lm)aytsgum)dyd] +7z0'ytL§G cos(a— ¢ ) cos@,dg, + (5-29)

1
(ﬂ-dEmsmaxEd¢E - ﬂ-dFmsmaxF (d¢E + d¢G ) + ”dGmsmade¢G )Zo-yt2

5.5.1.3 Proposed Formula for Full Plastic Strength

The general equation (5-29) is difficult to be solved by hand calculation, because the
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results of integral of 7y, 1s quite complicated. Moreover, the dU, in Eq. (5-24) is

also difficult to be derived because of the different diameters at the three plastic hinges. In

order to obtain simple solution for practical design, Eq. (5-29) is simplified as follow.

First, based on small deformation theory, cos@;=cos¢, =1.0  sing; =4, and
sing, =@ . Because @, @; <, a+@ =0—¢; =0,
Then, 7ppuq,) in Eq. (3-24) is simplified. For segment FE, because

n& max E

n n
Omax(lpg ) ..
Nomaxt = Momax(iyy) < Momaxe » 1S - < fmxk - The variation of upper bound

nb? max F nG max F nH max F
along with 7, . for all the FEA models is listed in Fig. 5-15. The maximum value is
1.18 and the minimum one is 1.00. The average is assumed to be (1.18+1.00)/2=1.09.

Based on Eq. (5-10a), 7, 1s simplified to be

nemaX(IFE):nHmaXFE = 7 nHmaxF =1.05

_ 1+1.09 | 3,
EnsmaXF_ 1_ZnsmaxF (5_30)

1.4

Max: 1.18

1.2} (éb

@000
Min: 1.00

6maxE ~°

nGmaxF 0.61
0.4¢
0.2f

92 1 Z08 06 -04 02

smaxF

nﬂmaXE

Fig. 5-15 Variation of ratio along with axial stress resultant 7, .. for FE

Omax F

models with conical wall failure
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Next, dU, in Eq. (5-24) simplified. It is defined to be dU,"* and approximated
to be that

» 1
dUSapproxtma ¢ = [_stmade¢E+(msmaxG T M axF )d¢G :Iﬂ.dF Zo-ytz (5-31)

. do. = d d¢E _ LFG .. . LFG
By assuming that L. .d@. = L.;dg;, dg =7 The variation of ratios 1 along
G FE FE

with 7, .. for all the FE models is listed in Fig. 5-16. It is seen that the average is 1.27,

d ;
with a COV of 0.09. By setting ﬁ =127 the dU,""™ " in Eq. (5-31) is compared
G

with the dU," in Eq. (5-24). Variation of their ratios along with 7., for all the
models is listed in Fig.5-17. The average of the ratios is assumed to be

(1.20+1.01)/2=1.11, as the trend is almost in a straight line. Thus, dU, is assumed that

d U3exact :1 ) 1 1 d U3 approximated ( 5 _3 2)
1.6
1.4 °© 45 9
OOO
12 % ° o
L T Avg. 1.27
[ 08! COV 0.09
FE ~°
0.6
04
0.2
0 L L L L
-12 -1 -08 -06 -04 -0.2
n
smaxF
Lig

Fig. 5-16 Variation of along with 7, for FE models

LFE
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Fig. 5-17 Distribution of along with 7n . for FE models

Finally, by substituting Egs. (5-30) ~ (5-32) into Eq. (5-29), the general equation is

simplified to be that

P 1 3
R= _ﬁ% +1.057r(5nsmaxp — I—anmaxF }O'ytLFE cosa — 710, 1L, cos &

+11 1( 2msmaxF + msmaxF _msmaxG ]ﬂ'dl; lo.ytZ
FE LFG 4
(5-33)
_ ) oR
Based on upper bound theory, the true value of R is obtained by BL_ZO , and
FE
oR
—— =0 Thus,
oL,
— 1 2.1 ! =3 2 L rd ot
R__ 05 T msmaxF EnsmaXF_ _ZnsmaxF + ﬁ_msmaxF d_Fﬂ- Fo-yt cosx
P
+ max ¢E
coso
(5-34)

The lengths of segments FE and FG are obtained as
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0.53m

— smax F d t
" 1 3, ' (5-35)
7nsmaxF_ 1_7nsmaXF cosx
2 4
L - \/O.31—0.26mmaxF v (5-36)
coso

respectively.

Substituting Egs. (5-5), (5-7a) and (5-11) into Eq. (5-34), and Dividing both sides of Eq.

(5-34) by 70,td;, the following equation for 7. can be obtained.

nsmaxF = _I/IZ 7 (5-37)

4.2 3 1 3 4 3
v = 1-05[\/$[1 +anmaij{5”smaxp - I_ZnszmaxF J + \/ﬁ_gnszmaxF } (5-38)

\/dT\/ cosax
- % (5-39)

4= cosx

Hcosa+sina

cosax

_ Mcosa+sina
and V= coscl (5-40)

Ucosa+sin

The variation of ¥ along with 7, is listed in Fig. 5-18. It can be approximated in a

quadratic equation as follow

w=-1.76n_.—0.68n_ . +322 (5-41)

smax F

The values of 7 for all the FE models are shown in Fig. 5-19. It can be found that the

average is 0.92, with a small COV of 0.01. Thus, 7 is simplified to be 0.92.

138



_ Quadratic approximation
in Eq. (5-41)
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Fig. 5-18 Variation of factor ¥ along with axial stress resultant 7, for models with

n

smaxF

conical wall failure

3.5
3.0
2.5

20y

- 1.5

1.0
0.5
0.0

1.2

0.8

706 |

04

0.2

0

oo o8s&oo 00

Avg. 0.92

COV 0.01

0.02

Fig. 5-19 Variation of factor 7 along with rotational angle @ for FE models with

0.04 0.06

)

E

conical wall failure

139

0.08



Substituting Eq. (5-41) and ¥=0.92 into Eq. (5-37), 7%, can be expressed as

M = 0.92(1.7607

smax F smaxF

+0.68n, ... —3.22) ¥ (5-42)

The solution is

 —0.637+1-/19.58 > ~1.26 y +1

n = 5-43
s maxF 3 24Z ( )
Prediction of the maximum strength of models can be finally obtained as
0.63y—1+4/19.58 " —1.26 y +1
Boax—prep = £ \/ £ 4 md to, cosa (5-44)
324y 7

The comparison of P, _prep in Eq. (5-44) with the maximum strength B,z is

undertaken, as shown in Fig. 5-20. The average of ratios is 0.91 with a small COV of 0.08.
The predicted values of model Nos. 9, 34 and 36 are found to be a little smaller than the
FEA results. Their diameter-to-thickness ratios at Sect. F are only about 15.5, and the
height-to-thickness ratios of the upper part of conical walls are only about 5.6. Thus, the
influence of the confinement effect of boundary on the strength of models will be great.
The maximum strength will be under-predicted based on the proposed plastic collapse
mechanism.

Full plastic collapse of models can be predicted by

b L 0.637—1+,/19.587° ~1.26 ¢ +1

P max—PRED — 3 24Z

p—PRED —

mdito,cosa  (5-45)

The comparison of P, ppzp with the full plastic strength P,z of experimental

specimens is undertaken, as shown in Fig. 5-21. The average of ratios is found to be 0.89
with a small COV of 0.08. Well prediction on full plastic strength of specimens with

conical wall failure is obtained.
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Fig. 5-20 Comparison of predicted maximum strength with FEA results for models with

conical wall failure
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Fig. 5-21 Mises stress distribution in conical and cylindrical walls at ultimate load for
model No.9
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Fig. 5-22 Comparison of predicted full plastic strength with experimental results for
specimens with conical wall failure

5.5.2 Prediction of Collapse Strength

The enhancement factor £ is assumed as the average of the ratios of collapse

strength to full plastic strength for both experimental specimens and FEA models. Their
average is 1.23 with a COV of 0.11, as shown in Fig. 5-23. Collapse strength £, is
predicted by

B e = P By _prep =1.23P, gy (5-46)

Comparing the predicted collapse strength of P, in Eq. (5-46) with the F,_y, of

all the models, the ratios are shown in Fig. 5-24. The average is 0.92, with a COV of 0.13.
It can be found that the prediction by the proposed formula in Eq. (5-46) can predict well

the collapse strength of experimental specimens.
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Fig. 5-23 Ratios of collapse strength to full plastic strength for both experimental and
FEA results of models with conical wall failure
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Fig. 5-24 Comparison of predicted collapse strength with experimental results for
specimens with conical wall failure

5.5.3 Prediction of General Yield Strength

The ratios of general yield strength P, to plastic strength P, for both
experimental and FEA results are listed in Fig. 5-25. It can be found that their average is

0.88 with a small COV of 0.06. The prediction of general yield strength P, is obtained by
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P, prep = ‘fPI;_pRED =0.88P, ppep (5-47)

The predicted results are compared with those of the experimental specimens, as
shown in Fig. 5-26. It is found that the average value is 0.92 with a coefficient of
variation of 0.11. The formula in Eq. (5-47) can predict well the general yield strength of

experimental specimens.
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Fig. 5-25 Ratios of general yield strength to full plastic strength for both experimental and
FEA results of models with conical wall failure
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Fig. 5-26 Comparison of predicted general yield strength with experimental results for
specimens with conical wall failure
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5.6 Summaries

This chapter focuses on prediction of the strength of metal touch connections with
conical wall failure. Based on the above analysis, the following conclusions are obtained.
(1) The axisymmetric solid models are effective to simulate conical wall failure of the

socket connections. The friction coefficient between cone and cylinder is found to be
greater than that of models with cylinder edge failure and tapered ring failure. But in
practical design work, setting it to be 0.20 is also acceptable.

(2) The failure of the conical walls is assumed to be controlled by “plastic collapse” based

on the proposed criterion.

(3) Easy-to-use formulae for predicting the full plastic strength is derived by limit
analysis. Some satisfactory simplification is employed. The predicted values agree
well with the effective FEA results, especially for the models with relatively large
diameter to thickness ratios. While, for the models Nos. 9, 34 and 36, with quite small
diameter-to-thickness ratios and height-to-thickness ratios, under-prediction is
obtained.

(4) The collapse strength and general yield strength of experimental specimens are
proposed based on the formula for full plastic strength. Their precision is proved by

comparing them with the experimental results.
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CHAPTER 6 STRENGTH OF WELDED
CONNECTIONS WITH JOINT REGION
FAILURE

6.1 Introduction

Relatively thick conical shells of low values of the diameter-to-thickness ratio are
usually used as structural components in engineering applications, such as pipelines,
offshore platforms and transition elements between cylinders of different diameters. If a
conical shell is fixed at both ends and then compressed axially, “plastic buckling of cone”
is probable to occur (Chryssanthopoulos and Poggi 2001, Blachut et al. 2010, Ifayefunmi
2015). While, it may be not typical in the case of a cone-to-cylinder intersection, because
that the slope discontinuity in shell meridian, leading to local high bending and
circumferential stresses, makes the joint region become a structural weakness (Teng and
Rotter 1991). “Plastic collapse of joint region” is possible to control the failure of
intersection.

However, “Plastic collapse” and “plastic buckling”, as two main failure modes for
relatively thick shells or intersections under compressive loading, or along with radial
pressure, is rather blurred to be distinguished (Kuwamura and Ito 2009). This is partly
due to the fact that the onset of buckling in the shell walls is difficult to pinpoint
experimentally (Wilbert, et al. 2011). Collapse load is usually defined as the peak load of
load-deformation curves. But how to determine eigenvalue plastic buckling (bifurcation)
load is difficult even by finite element analysis (FEA) because of the limitation of some
commercial software, such as ABAQUS FE package (Hibbitt et al. 2011), in which the
inelastic material properties are ignored during eigenvalue buckling analysis. Riks

method algorithm (Riks 1979) based on a Lagrangean formulation for moderately large
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deflections is implemented in ABAQUS to simulate nonlinear post-buckling and collapse
behaviors. But it cannot obtain bifurcation load directly and rigorously.

For the welded cone-to-cylinder socket connections in this study, it was observed
that the failure occurred close to the joint region between cone and cylinder. Kuwamura et
al. (2005) proposed a formula for plastic buckling strength of conical wall based on the
assumptions that cylindrical wall is rigid and conical wall is in membrane stress condition.
Tomioka (2006) found that it overestimated the collapse strength of experimental
specimens. The reason might be the actual boundary and stress conditions at ultimate load
are different from the assumption. Plastic collapse of the intersection may be another
possibility. For example, Teng and Rotter (1991) proposed a plastic collapse mechanism
for steel silo transition junctions under internal pressure and frictional downward drag on
the hopper and predicted the strength effectively. Therefore, the failure mechanism and
strength of the welded connections are necessary to be discussed in further.

In the first half of this chapter, FEA models are created and their effectiveness is
validated. Distributions of deformation and stress resultants in conical and cylindrical
walls are analyzed. The failure mode is judged based on the proposed criteria. It should be
noted that no further discussion is given on plastic buckling of cone in this chapter;
instead the effort is concentrated on the plastic collapse mechanism of welded
connections.

In the second half of this chapter, the strength of connections is predicted by limit
analysis. And then, the precision of the proposed formulae is validated by comparing

them with the experimental results.

6.2 FE Modeling

6.2.1 General

Figure 6-1 shows the details of FEA models in ABAQUS (Hibbitt et al. 2011). Two

coordinates, (7, 6, x) and (¢, 6, s), are employed, in which # means normal direction and s
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means meridional direction. The location of origin “O” in x direction is defined to
coincide with the middle point of Sect. F, which is at the top edge of weld. The weld is
simulated by the quadrilateral and triangular axisymmetric solid element CAX4R and
CAX3. For all the parts in the model, mesh size is set to be 0.5mm, which is about equal
to 1/6 of the smallest thickness of conical wall. The convergence of analysis results is

verified.

hy E.
|X {C ///// \%\
6> 4
O 7 ~Sect. F
| N
as\ s
>, 7Cone [, - Weld
2! A N
£ | N AN
£ Cylinder ™.
n | N
45 |
» |
5\
} dP/Zf

Fig. 6-1 Details of welded FE models

6.2.2 Influence of Weld Length on Collapse Strength of Connections

The material of weld is assumed to be the same as that of cylindrical wall. The
softening of heat-affected zone and residual stress due to welding are not considered in
this study. In this section, the influence of weld length on collapse strength of connections

is investigated by FEA. Model No. 68 is taken as a typical case. The variation of collapse
strength along with the ratio of weld length 7, to the thickness of cylindrical wall 7, is
shown in Fig. 6-2. It is found that positive linear correlation occurs between them. As
weld length 7, increases from ?, to 2f,, collapse strength P,_,., increases by about

20%. The influence of weld length on collapse strength is obvious. But for the weld

149



connections in this study, the weld length is difficult to be measured exactly. Moreover, it

is usually just a little greater than base metal. In this study, weld length 7, in
cone-to-cylinder joint is assumed to be V3 t, for all the connections. As the thickness
t, of cylindrical wall is about 4.3mm, weld length 7, is 7.4mm and about 3mm longer

than 7, , which is satisfactory in this study.

tW
P u-FEA 4//?:
1.2 /n/ s
1.06

_Pu-EXP 4/{
1.0 - /
0.97
0.8 1 0.88
0.6 -
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0.2 -
w
O I I I 1 tP
0 0.5 1 1.5 2

Fig. 6-2 Variation of collapse strength of connections along with the increase of weld
length in cone-to-cylinder joint (Model No.68 is taken as a typical case)

6.2.3 Effectiveness of FE Models

Table 6-1 gives the comparisons of collapse strength P,, full plastic strength P, and
general yield strength P, obtained by FEA with those from experiments. Their definitions
are the same as those shown in Chapter 3. It can be found that the averages of ratios are
1.01 for P,, 0.95 for P, and 0.94 for P, respectively. The coefficients of variation (COV)
for them are all very small.

In addition, the load versus axial deformation curves and ultimate deformation of FE
models are compared with the relevant experimental results, as shown in Appendix B.

Figure 6-2 shows the comparison of load versus axial deformation curves between FEA
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and experiment for the typical model No. 68. It can be seen strength agrees well with each

other. While, the degradation of load-axial deformation curve after collapse of FE model

seems a little slower than that of experimental result. The reason might be that the

residual stress, weld size, and the actual boundary condition in the welding region are not

simulated precisely. But the FE models are effective for this study.

Maximum strength Ppax of models with perfectly-plastic material is compared with

Full plastic strength P, of models with actual material, as shown in Fig. 6-4. The average

of the ratios is 1.00, with a small COV of 0.02. It is found that the method of “K¢/6 slope

factor” proposed by Tateyama (1988) is also effective to determine the full plastic

strength of welded models with joint region failure.

Table 6-1 Comparison of strength between FEA and experiments for the welded
connections with joint region failure

Experiments FEA Comparison
Full General Full General
Model Collapse plastic yield Collapse plastic yield
NO. strength strength | strength strength strength | strength Purgal | Ppred | Prreal
P exp P, exp P, exp P rE4 Pyrea P, rE4 i I
(kN) (kN) (kN) (kN) (kN) (kN)
64 409.0 390.0 365.0 403.1 369.2 344.7 0.99 0.95 0.94
65 576.7 547.7 519.0 581.4 514.1 481.8 1.01 0.94 0.93
67 305.0 294.4 276.9 307.0 286.0 256.2 1.01 0.97 0.93
68 460.0 450.0 418.4 463.1 419.1 388.1 1.01 0.93 0.93
69 641.4 581.5 546.2 639.8 563.1 5243 1.00 0.97 0.96
70 220.7 216.1 209.7 216.5 201.4 187.5 0.98 0.93 0.89
71 322.7 316.1 291.3 335.4 305.8 290.1 1.04 0.97 1.00
72 474.7 460.8 4359 462.5 4221 385.7 0.97 0.92 0.88
73 409.0 394.1 361.8 414.0 375.2 340.2 1.01 0.95 0.94
74 497.2 467.5 413.0 520.5 466.3 411.6 1.05 1.00 1.00
Avg. 1.01 0.95 0.94
Ccov 0.02 0.03 0.04
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Fig. 6-3 Comparison of load versus axial deformation curves of model No. 68 between
FEA and experiment
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Fig. 6-4 Comparison of maximum strength to full plastic strength for welded models with
joint region failure

6.3 FE Analysis Results

6.3.1 Distribution of Stress Resultants

In order to make clear the failure mechanism of models, the stress resultant
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distributions are analyzed. It is noted that the definitions of stress resultants in conical and
cylindrical walls are omitted here because they are the same as those in Chapters 3 and 5.

Model No.68 with actual material is taken as a typical case.

Figure 6-5 shows the changing distributions of shear stress resultant 7, in conical

st

wall and 7,, in cylindrical wall under increasing load. It can be found that 7, at Sect. F

decreases rapidly from the upper part of conical wall. The 7, at cylinder edge is the

greatest in cylindrical wall.

Fig. 6-5 Changing distributions of shear stress resultant in both conical and
cylindrical walls under increasing load for model No.68
Figure 6-6 shows the changing distributions of meridional bending moment #7 in
conical wall and axial bending moment 7, in cylindrical wall under increasing load. It

can be found that for 7, in conical wall, its distribution type is the letter of “ W ”, which

m

N

is similar to that of models with conical wall failure in Chapter 5. The increases as
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load increases. The sections where 7, reaches local peak value are defined as Sects. E,
F and G. It is found that m, reaches peak value in negative direction in Sect. F, which is

located at the top edge of welding. For 7, in cylindrical wall, it reaches local peak
value at Sect. H. The nearer a section get to the top end of cylinder wall, the smaller is

m, . Finally, it becomes close to zero at the top end.

Fig. 6-6 Changing distributions of bending moment in both conical and cylindrical
walls under increasing load for model No.68

Figure 6-7 shows the changing distributions of hoop stress resultant 7, in conical

and cylindrical walls under increasing load. Their distribution is concentrated in two
regions. One is from Sect. E to Sect. G in conical wall; the other is from the top end of
cylinder wall to Sect. H. Thus, the joint region will be weak because local high bending

moment and hoop stress occur there.
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Fig. 6-7 Changing distributions of hoop stress resultant in conical and cylindrical
walls under increasing load for model No.68

6.3.2 Distribution of Deformation

Model No.68 with actual material is taken as a representative case to introduce the
deformation characteristics of models. Its behavior with the increase of loading is shown
in Fig. 6-8, where the deformation scale factor is set to be 10. It can be found that the
deformation is concentrated in the joint region. Not only in the upper part of conical shell,
but also in the lower part of it and in the top edge of cylindrical shell, bending behavior is

obvious.
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Undeformed

Fig. 6-8 Changing distributions of deformation in conical and cylindrical walls under
increasing load for model No.68

(Deformation scale factor is set to be 10)

6.4 Judgement of Failure Mode

6.4.1 Definition of the Criteria of Failure Mode

The criterion of “plastic collapse” is defined as follow. The ratio of average equivalent

stress S, in a section to yield stress O, is defined as

_ J‘Z/Z dZ

N

p=Ser _ (6-1)
o, O'yl‘

where, equivalent stress S, in each small mesh is obtained by

|2 2
Sey = \/ss —8.8,+5,+3T,

herein, s is true normal stress, 7 is true shear stress, and o is engineering normal stress.

If 7 in a section with peak meridional bending moment m; satisfies that 7tn=n_,,..0)
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~1.0, a plastic hinge is assumed to form there. If the number of plastic hinges becomes
sufficient and the kinematically admissible state is reached just prior to or at collapse load,

the failure is assumed to be governed by “plastic collapse”. It should be noted that

(1) Because of the strain hardening effect of materials, ’n=m, ) in some section

where plastic deformation is great, is possible to exceed 1.0;

(2) Some section with peak meridional bending moment does not enter into plastic range

at ultimate load. From the engineering point of view, 7um, - 208 s acceptable for

Mu, peak )

the determination of plastic hinge.

6.4.2 Failure mode of Models

Figure 6-9 shows the changing distributions of » in conical and cylindrical walls
under increasing load for model No.68. It is found that the region near to Sect. F enters
into plastic when general yield load arrives. The 7, in Sects. E, F, G and H are all greater
than 1.0 when collapse load arrives. It indicates that four plastic hinges will form there.

The r,in Sects. E, F, G and H for all the welded models with joint region failure are
listed in Fig. 6-10. It is found that all the values of r, are close to or larger than 1.0.
Therefore, the failure mode can be assumed to be controlled by “plastic collapse of joint
intersection”.

Based on the above analysis, it is known that for each model, the number of plastic
hinges is sufficient and the kinematically admissible state is reached at ultimate load.
Therefore, the failure of welded cone-to-cylinder connections in this study is assumed to

be controlled by “plastic collapse of joint region”.
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Fig. 6-9 Changing distributions of average equivalent stress in both conical and
cylindrical walls under increasing load for model No.68
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Fig. 6-10 Ratio r, of average equivalent stress to yield stress in Sects. E, F, G and H
for welded models with joint region failure
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6.5 Prediction of Strength

6.5.1 Prediction of Full Plastic Strength

A plastic collapse mechanism shown in Fig. 6-11 is proposed. The dissipation of
internal energy is absorbed by plastic hinges E, F;, F,, G and H, and segments EF;, F»,G,
and Fs;H. It totally includes two parts: one is absorbed by conical wall and the other by
cylindrical wall. It should be noted that the distance among Sects. F,, F, and F; is defined
to be zero. The location of Sects F;, F, and F; is the same as Sect. F in the model. The
welding region is neglected in the failure mechanism and the top edge of cylinder wall is

assumed to coincide with Sect. F

At

i /Undeformed Ilé)l’gglate

Fig. 6-11 Proposed plastic collapse mechanism for welded models with joint region
failure mode
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Fig. 6-12 External forces applied in conical and cylindrical walls

For conical wall, reaction forces R, and R, from cylindrical wall are assumed to
be applied in Sect. Fy, as shown in Fig. 6-12(a). For cylindrical wall, external forces F,,,

and F, from conical wall are assumed to be applied in Sect. F3, as shown in Fig. 6-12(b).

It is noted that all the external forces are defined to be acted in the whole model in 360

degrees in hoop direction. Their equilibriums are given by
—R sin(o+¢, )—R cos(a+g, ) =P, (6-2a)
—R, cos(a+@, )+ R sin(a+¢,)=F. (6-2b)
Combining Egs. (6-2a) and (6-2b) by eliminating R, the relationship among £, , R,
and F, isexpressed as

— —R, + i
™ sin(ot+g, ) tan(o+g,) (6-3)

It indicates that ultimate strength includes two parts: the former one induced by

conical shell, and the latter one by cylindrical shell. They are assumed to be independent
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with each other.
For the one induced by conical wall, R, can be derived based on the principle of

virtual work as introduced in section 5.5.1. From Eq. (5-34), it can be obtained. The

derivation procedure is omitted here.

1 3 2 { t ——
Rt = _1'05[\/_2'1msmaxFl (Ensmaxﬁ _\/1_Znszmaxﬁ ] +\/$_msmax]:z J d_Flﬂ.dFlo-yt cosax

P
+ max ¢E
cosax
(6-4a)
Herein, the stress resultants are assumed as follow:
2 3,
m =m =—(-1+=n -
smax K smaxF, \/5( 4 smaxFl) (6 4b)

For the other induced in cylindrical wall, £, can be derived based on virtual work

principle as introduced in section 3.5.2. It should be mentioned that the top edge of

cylindrical shell is under hoop compression, and no axial bending moment is acted in Sect.
F;. These are two key points different from models with cylinder edge failure. The £,
can be obtained from Eq. (3-44). The derivation procedure is also omitted here.

Because the direction of F, is opposite to that in Eq. (3-44),

E~ = _\/_mxmax Hnﬁmax EH \/dPtP O-yPtPﬂ- + Pmax¢H (6'53)

Herein, the stress resultants are assumed as follow.

1 3
n@maxEH = Enxmaxl-‘}H - l_znimaxF3H (6_5b)
2 3,
m =—(l-=n -
xmaxH \/g( 4 xmax H (6 SC)

Substituting Egs. (6-4) and (6-5) into Eq. (6-3), assuming that &+¢; =& based on the

small deformation theory, and then dividing the both sides of Eq. (6-3) by
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o yctcdcﬁﬂ' cos &, the follow equation for meridional stress resultant 7, cr 1s obtained.

amaxcrr =~ (Wt W B) 7 X (6-62)

n

Herein,

42( 3 1 3 4 B
=1.05| [-—=|1-=n? —n. - 1-=n? + = =X 2
l//C {\/ \/5 ( 4 smax CF J{z smax CF, 4 smax CF, J \/\/5 2 smax CF, ]

3 1 3
= \/T(_ imaxH )(E nxmaxH - 1_anmaxH ] (6'60)

N
= ZuleNTe \/7 \/ cos o (6-6d)

O,cle
\eosar
(6-6¢)
cosasino
y= cosasina
cosa(sina+¢, cosa)+ ¢, (6-61)
A quadratic approximation of ¥, is obtained as
y.=-1. 76nsmaxcF 0.687, ¢, +3.22 (6-7)

The variation of ¥, in Eq. (6-6¢) along with axial stress resultant 7, ., is shown in

Fig. 6-13. A quadratic approximation is obtained as

v, =—0. 92nxmale -042n ., +1.06 (6-8a)
Herein
nxmaxl-l =K nsmaxCF1 (6_8b)
o .t
where K=—"Scosx (6-8¢c)
O-yPtP

Then the variation of factor 7 in Eq. (6-6¢) along with the rotational angle ¢ in
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Sect. E is shown in Fig. 6-14. It can be seen the average is 0.92, with a small COV of

0.01.Thus, the 7 is assumed to be a constant of 0.92 for all the models.

1 1.2

0.8

Ve
0.6

1 04

—— Quadratic approximation
in Eq. (6-8)

1 0.2

0

-12 10 -08 -06 -04 -0.2 0.0

xmaxH

Fig. 6-13 Plot of ¥, along with 7 . and the quadratic approximation

1.2
1 L
087
Avg. 0.92
Y COV 0.01
0.6
047
0.2

O L L L
0.02 0.025 0.03 0.035 0.04
()

E

Fig. 6-14 Variation of factor 7 along with rotational angle @ for all the welded models

with joint region failure

163



Substituting Egs. (6-6), (6-7) and ¥ =0.92 into Eq. (6-5a), the simplified equation
for 7, 1s obtained as

(1.627+0.85K By ) 1l cr. +(0.63 7 +0.39x8y —1)n ~2.967—-0.988y =0

smax CF

(6-9)

The solution of 7, 1S

0.637+0.39xk8y — 1+ \/19.58;/ — 1267 +1+(10.06x+6.35% +3.48x8y +0.49 y — 0.78)kBy
K

n =—

smaxCF, 324y +1.70" By
(6-10)

The prediction of maximum strength F,,, of models can be finally obtained as

P

max—PRED — 1} ﬂ-dCFl 10, COS (6-11)

smax CF

The predicted values of P, in Eq. (6-11) are compared with those of FEA results.
The results are shown in Fig. 6-15. The average of ratios is 0.92 with a COV of 0.06. A
good agreement with each other can be found. Thus, full plastic strength £, of models is
predicted by

F)p—PRED = _nsmaxCFlﬂ.dCFltCO-yC coso (6-12)

herein, 7, is obtained by Eq. (6-10).
The predicted values of P, are compared with those of experimental results. The

results are shown in Fig. 6-16. The average of ratios is 0.88 with a COV of 0.06. The full
plastic strength of connections with joint region failure can be predicted well by the

proposed mechanism.

164



600

O
500 Avg. 0.92
COV 0.06 o
P vax.prep 400 | o
kN ©
(kN) ’
300 |
(o) O
200 | 5
100 ' ' ' '
100 200 300 400 500 600
Pmax—FEA (kN)

Fig. 6-15 Comparison of predicted maximum strength with FEA results for welded
models with joint region failure
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Fig. 6-16 Comparison of predicted full plastic strength with experimental results for
welded models with joint region failure

6.5.2 Prediction of Collapse Strength

The enhancement factor £ is assumed as the average of the ratios of collapse

strength to full plastic strength for both experimental specimens and FEA models. Their
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average along with axial stress resultant 72, is 1.07 with a COV of 0.04, as shown in
Fig. 6-17. Collapse strength F, is predicted by
P, prep = pRo—PRED = 1'07Pp—PRED (6-13)

The predicted values of collapse strength P, by formula in Eq. (6-13) are compared

with those by the plastic buckling equation of cone in Kuwamura et al. (2005b). The
ratios of them to the experimental results are shown in Fig. 6-18. It is seen that the
average in the case of the proposed formula in this study is 0.88. While, that in the case of
plastic buckling equation is 1.28. It indicates that the proposed plastic collapse
mechanism in the joint region can predict the collapse strength of welded models better

than the plastic buckling mode of conical wall.

1.2 -
10 - QE' <>E<§%<£ QI):'OD
OEXP
0.8 - o FEA
Q
o6 | Avg. 1.07
Q2o COV 0.04
n04 -
Q
0.2 -
0.0 . .

-10 -08 -06 -04 -0.2 0.0
Axiall stress resultant n,

Fig. 6-17 Ratios of collapse strength to full plastic strength of both experiments and
FEA for welded models with joint region failure
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Fig. 6-18 Comparison of proposed formula and previous one for collapse strength
with experimental results for welded models with joint region failure

6.5.3 Prediction of General Yield Strength

The ratios & of general yield strength P, to plastic strength P, for both

experimental and FEA results are listed in Fig. 6-19. It can be found that their average is
0.93 with a small COV of 0.02. The prediction of general yield strength P, is obtained by

P, prep = gPp—PRED =0.93P, (6-14)

The predicted results are compared with those of experimental specimens, as shown
in Fig. 6-20. It is found that the average value is 0.87 with a COV of 0.08. The proposed
formula in Eq. (6-14) can predict well the general yield strength of experimental

speicmens.
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Fig. 6-19 Ratios & of general yield strength to full plastic strength of both

experiments and FEA for welded models with joint region failure
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Fig. 6-20 Comparison of predicted general yield strength with experimental results
for welded models with joint region failure

6.6 Summaries

This chapter focuses on prediction of the strength of welded cone-to-cylinder socket

connections with joint region failure. Based on the above analysis, the following
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conclusions are obtained.

(1) The distributions of deformation and stress resultant in conical and cylindrical walls
are made clear. The intersection of cone and cylinder is weak because meridional
bending moment, hoop stress resultant and radial deformation are all greater than
those in other regions.

(2) The failure of the specimens is assumed to be governed by “plastic collapse of joint
region” based on the proposed criteria, because the number of plastic hinges is
sufficient and the kinematically admissible state is reached at ultimate load.

(3) The proposed plastic collapse mechanism can predict well the full plastic strength of
experimental specimens. In addition, the prediction of collapse strength and general
yield strength of models is also proposed and validated by the experimental specimens.
The proposed formula can predict the collapse strength of models better than the
previous plastic buckling equation for conical shells.

(4) The rigorous eigenvalue plastic buckling analysis needs to be undertaken in future to
study the plastic buckling behavior of conical and cylindrical shells under axial

compression.
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CHAPTER 7 CONCLUSIONS AND
FUTURE RESEARCH

7.1 Main Conclusions

For metal touch connections, the characteristics of frictional contact between conical
and cylindrical walls are investigated. A satisfactory value of friction coefficient for
practical design work is proposed. For both metal touch and welded connections, stress
and deformation behaviors during the whole loading process are clarified. Their failure
modes are determined based on the proposed criterion. The Mises’ yield condition
expressed by stress resultants for axisymmetrically loaded revolutional shells with
perfectly-plastic material is simplified and validated by effective finite element (FE)
analysis. Full plastic strength is effectively predicted by limit analysis, in which the
influence of the correlation of stress resultants on failure mechanisms is considered.
Collapse strength and general yield strength are also well predicted based on the formula

for full plastic strength. The detailed findings are given in the following.

7.1.1 Metal Touch Connections

Based on the experimental, numerical and theoretical studies on metal touch
connections with cylinder edge failure, tapered ring failure, and conical wall failure, the
following main conclusions can be drawn.

(1) Failure mechanisms of connections with different kinds of boundary condition

between conical wall and cylinder edge are determined by the proposed criterion.
For the connections with cylinder edge failure, failure mode is controlled by
plastic collapse of cylindrical shell; For the connections with tapered ring failure,

failure mode is not only controlled by hoop tension of ring but also by plastic
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collapse of cylindrical shell; and For the connections with conical wall failure,
failure mode is controlled by plastic collapse of conical shell.

The simplification of Mises’ yield condition for axisymmetrically loaded
revolutional shells with perfectly-plastic material, as shown in Eq. (7-1), can be

employed as the basis of plastic analysis of shell structures.

2.5 2
2n0max ~ Mmax 4 L’/nszmax =1 (7-1)
\/4_3n52max 4_3nsmax

where, Mg, Moma » Mima  are the normalization of hoop stress resultant,

meridional stress resultant and meridional bending moment in shell walls.

The full plastic strength of connections is predicted well by plastic collapse
mechanism, in which the correlation of stress resultants is considered. The
prediction of collapse strength and general yield strength of connections, based
on the formula for full plastic strength, are also in good agreement with
experimental and FE analysis results.

In practical design, conical shell, employed as pile head, is desirable to fail
before the edge of cylindrical pile in order to protect the pile from damage.
When conical shell bends inward, friction coefficient u between conical wall and

cylinder edge will be greater than 0.20 due to the breakdown of oxide film.
Therefore, setting #=0.20 can be acceptable because it gives an obvious

under-prediction for the strength of pile.

In order to make sure that conical shell fails before the edge of cylindrical pile,
it is necessary to know the collapse strength of connections with all the failure
modes. The predicted collapse strength by the proposed formula for each mode
is listed in Table 7-1. The failure mode with minimum collapse strength is
assumed to occur. It is found that predicted mode coincides well with actual one.
Taking specimen Nos. 34 and 36 for example, the expected failure mode before

experiments is tapered ring failure. But actually they failed in conical wall
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failure, which is the same as the prediction. It should be noted that the actual

mode of specimen No.9 is conical wall failure, while prediction is cylinder edge

failure. The reason is that the collapse strength of cylinder edge failure is

underestimated when friction coefficient u is set to be 0.20.

Table 7-1 Comparison of predicted failure mode with actual one for metal touch
connections with different kinds of boundary condition

Predicted collapse strength

Cone Cylinder Tapered ring (4=0.20)
Boundary Semi- | Thick-| Yield | External | Thick- | Yield | Thick- | Yield
condition || Specimen || angle | ness |stress|diameter | ness |stress| ness |stress Pur Pu: Pus P Predicted [ Actual [ Coincide
(cone- No. Cylinder | Tapered | Conical MR mode mode | ornot
cylinder) a te )¢ Dp tp oyp tr O edge ring wall
failure | failure | failure
° mm | mm mm mm | mm | mm mm kN kN kN
1 3197 | 874 | 317 139.80 3.32 331 - - 75.0 - 640.8 P, cylinder | cylinder yes
2 3226 | 877 317 139.80 420 343 - - 111.1 - 640.0 P, cylinder | cylinder yes
3 32.64 | 8.67 317 140.50 6.03 361 - - 202.0 - 623.0 P, cylinder | cylinder yes
4 46.81 | 8.56 | 317 139.80 3.32 331 - - 125.9 - 644.4 P, cylinder | cylinder yes
5 4591 | 853 317 140.00 4.30 343 - - 184.1 - 637.8 P, cylinder | cylinder yes
6 4645 | 853 317 140.00 6.06 361 - - 322.8 - 624.8 P, cylinder | cylinder yes
"Metal 7 5926 | 8.63 | 317 | 140.05 | 3.33 331 - - 209.2 - 5759 || P,; | cylinder | cylinder yes
touch" 8 5952 | 862 | 317 | 139.90 | 420 | 343 - - | 3020 - 566.6 | P,; | cylinder | cylinder |  yes
9 59.97 | 8.64 | 317 140.00 6.03 361 - - 526.5 - 552.5 P, cy linder cone no
10 3272 | 846 | 317 | 11450 | 424 | 369 - - 110.8 - 5324 || P,; | cylinder [ cylinder yes
11 32.74 | 851 317 165.60 5.58 343 - - 187.7 - 681.9 P, cylinder | cylinder yes
12 47.34 | 850 | 317 114.30 423 369 - - 181.5 - 542.0 P, cylinder | cylinder yes
13 4569 | 864 | 317 | 16550 | 5.64 | 343 - - 296.5 - 7229 || P,; | cylinder [ cylinder yes
14 59.71 | 8.64 | 317 114.40 4.25 369 - - 292.1 - 481.4 P, cylinder | cylinder yes
26 46.28 | 8.74 | 317 139.85 3.27 331 6.11 319 - 227.5 664.2 P, ring ring yes
27 46.25 | 8.77 317 139.75 334 331 9.16 321 - 3475 666.4 P, ring ring yes
28 45.03 | 8.67 317 139.90 3.28 331 | 11.99 | 322 - 462.9 659.9 P, ring ring yes
"Metal 29 |[4664 | 856 | 317 | 13975 | 413 | 343 | 601 | 319 - 2823 | 6393 | P, | ring ring yes
i(:]eci 30 4586 | 8.53 317 139.80 4.17 343 9.05 321 - 390.2 638.1 P, ring ring yes
ring" 34 46.08 | 8.64 | 317 139.85 5.99 361 | 12.00 | 322 - 663.8 636.2 P cone cone yes
35 3338 | 846 | 317 | 139.85 | 421 | 343 [ 9.07 | 321 - 264.8 | 6149 || P, ring ring yes
36 62.39 | 851 317 139.90 4.14 343 9.06 321 - 673.1 528.8 P cone cone yes
37 49.02 | 850 | 317 114.30 4.24 369 | 9.07 321 - 416.0 536.4 P, ring ring yes
43 3327 | 3.05 299 139.90 421 343 | 12.07 | 322 - 366.7 136.2 P cone cone yes
44 3351 | 424 | 299 139.95 423 343 [ 11.99 | 322 - 367.2 220.1 P,; cone cone yes
46 46.03 | 3.05 | 299 | 13990 | 424 | 343 | 1198 | 322 - 5356 | 1455 || P,; cone cone yes
"Metal 47 46.68 | 427 | 299 139.85 421 343 | 12.01 | 322 - 545.6 2342 P cone cone yes
touch 48 48.01 | 5.74 | 299 139.95 4.19 343 | 12.02 | 322 - 567.0 3514 P cone cone yes
*S_trong 49 61.37 | 3.05 | 299 | 139.80 | 4.19 | 343 | 12.05 | 322 - 8474 | 1306 || P, cone cone yes
ring" 50 [ 6056 | 425 [ 299 | 13985 | 420 | 343 | 1198 | 322 - 8233 | 2081 || P,; | cone [ cone yes
51 59.58 | 5.64 | 299 139.90 4.17 343 [ 11.96 | 322 - 795.4 308.5 P cone cone yes
52 4480 | 429 | 299 114.50 4.26 369 | 12.01 | 322 - 4933 207.2 P cone cone yes
53 4624 | 420 | 299 165.80 5.62 343 | 12.04 | 322 - 674.1 252.0 P; cone cone yes

Note: specimen Nos.

15, 32, 33, 38, and 45 failed in asymmetric modes, and specimen No. 31 failed in

cylindrical wall with elephant foot buckling mode. Their failure modes are outside the scope of this

study and not included in this table.
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(6) The reinforcement effect of tapered ring on the strength of connections is found
to be obvious and can be predicted well by the proposed formulae. However,
tapered ring failure does not always occur along with the increase of the
thickness of ring. The failure mode would be turned into plastic collapse of
conical wall or elephant foot buckling of cylindrical wall. The lateral one is

necessary to be studied in future.

7.1.2 Welded Connections

(1) The strength of intersection of conical wall and cylinder edge is weak because
the meridional bending moment, hoop stress resultant and radial deformation are
all much greater than those in other regions.

(2) The failure mechanism of welded connections in this study is assumed to be
governed by “plastic collapse of joint region” based on the proposed criteria,
because the number of plastic hinges is sufficient and the kinematically
admissible state is reached at ultimate load.

(3) The proposed plastic collapse mechanism can predict the full plastic strength of
models more precisely than the previously proposed plastic buckling equation
for conical shell.

(4) Plastic buckling strength of conical and cylindrical shells needs to be studied in

order to make clear the bound of plastic collapse mechanism of joint region.

7.2 Future work

In future, the following items require further study on the steel cone-to-cylinder
socket connections.

(1) The elastic stiffness of connections under compression needs to be studied.

(2) Plastic bifurcation buckling analysis needs to be undertaken to judge plastic

buckling failure mode of shell structures. Some computer codes (eg. Bushnell,
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1976; Teng and Rotter, 1989), which have been employed successfully in shell
structures (Blachut, et al. 2010; Teng 1994a, b) will be studied.

The gap between conical wall and cylinder edge will occur inescapably when
conical wall rotates. Appendix D gives a qualitative study on the influence of
gap on collapse strength of metal touch connections by finite element analysis.
The relevant study is necessary to be undertaken in further.

This study focuses on the strength of steel cone-to-cylinder socket connections
under axial compression. Actually, shear force and bending moment are also
transformed from upper structure due to earthquake or wind load. The socket
connection will be compressed under eccentric loading. The corresponding
strength and behavior of connections have not been clarified. Appendix E gives
a qualitative study on the influence of eccentricity ratio of compressive loading
on collapse strength of connections by finite element analysis. The relevant
study needs to be undertaken in further.

The seismic performance of structure with metal touch cone-to-cylinder socket

connections is interesting to be studied.
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APPENDIX

Appendix A Coupon Test Results of Connections

A.1 Coupon Test Results of Cylindrical Shell
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A.2 Coupon Test Results of Conical Shell
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A.3 Coupon Test Results of Lid Plate
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Appendix B Load versus Axial Deformation Curves of All the

Experimental Specimens

B.1 Connections with Boundary of “Metal touch”
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B.2 Connections with Boundary of “Metal touch +thin ring”
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B.4 Connections with Boundary of “Welding”
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Appendix C Comparison of Load versus Axial Deformation

Curves and Deformation between Experiments and FEA

C.1 Metal Touch Connections with Cylinder Edge Failure

Deformation after collapse
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C.2 Metal Touch Connections with Tapered Ring Failure

Deformation at collapse load

No. P-4 curves
EXP. FEA
250 ; " No0.26
FEA-10.16
200 IS L S,
I \ I
g0 EXP. 0\
Q
26 | 1004
®
(@]
-
50[ :
0
0 2 4
Axial deformation A (mm)
400 Exp,? No.27
300y 2 'F'EA-pr.'z’s """"
= :
S200f
27 | 3
8
SO0 [
0 . . . .
0 1 2 3 4 5
Axial deformation A (mm)
500 FEA-p0.26 'No.28
4001 T ~_
z | .
200 /. EXP. N |
Q
28 | 200 [ f i
o
-
100 Hf
0

0 2 4 6 8 10

Axial deformation A (mm)




29

30

35

37

0 5 16 15 20
Axial deformation A (mm)
600 7 " No.37
so0l FEA-40.27
’2'\400 """""""""""" \EXP o
e_c/ .
Q300 /o
el
§ 2000
100r/
0
0 8

2 4 6
Axial deformation A (mm)

EENIENEN

206



C.3 Metal Touch Connections with Conical Wall Failure

Deformation after collapse
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C.4 Welded Connections with Joint Region Failure

Deformation after collapse
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Appendix D Influence of Gap between Conical Wall and
Cylinder Edge on Collapse Strength of Metal Touch

Connections

D.1 Introduction

For metal touch cone-to-cylinder socket connections, perfect contact between
conical wall and cylinder edge is quite difficult to be realized in practice because of the
rotation of conical wall. As shown in Fig. D-1, when conical wall rotates at an angle of 6,
the contact surface of conical wall is turned into an ellipse. Gap with maximum length g
will occur between conical wall and cylinder edge. The stress in the contact region will
not be distributed uniformly any more. The corresponding behavior and strength of
connections have not been made clear. In this appendix, the variation of gap length with
the increase of rotational angle is first analyzed. And then, Finite element (FE) analysis is

employed to investigate the influence of gap on strength of connections qualitatively.

Cylinder edge
(circular)

Conical wall
(ellipse)

Fig. D-1 Gap between conical wall and cylinder edge after rotation of conical wall
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D.2 Variation of Gap Length along with Rotation of Conical Wall

The relationship between gap length and rotational angle of conical wall is derived

based on geometry theorem. The result is expressed in Eq. (D-1).

gEa—b:(l—cosﬁ\/l—(tanatanﬁ)z)-a (D-1)

where, g is the maximum length of gap, a is the radius of cylindrical wall, b is the minor
axis of ellipse, a is semi-vertex angle of conical wall, and € is rotational angle of conical
wall.

By setting radius a to be 65.72mm, semi-vertex angle a to be 30°, 45°, and 60°
respectively, and tangent of rotational angle 6 to be 0, 1/20, 1/10 and 1/5 respectively, the
variation of gap length g with increase of rotational angle 6 is plotted in Fig. D-2. It can
be found that when a increases, the increase of gap length g becomes more rapidly along
with tangent of rotational angle . In the lateral FEA, the representative models with
a=45° are employed to investigate the influence of gap length g on the strength of

connections.

,Gap g (mm)

==—qa=30°
=a=-0=45°

1 1 1
0 20 10 5

Fig. D-2 Increase of the length of gap along with rotation & of conical wall
Note: radius « is equal to 65.72mm.
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D.3 FE Analysis

D.3.1 FE Modeling

Half three-dimensional solid finite element (FE) model as illustrated in Fig. D-3 is
established using ABAQUS 6.11 based on the consideration of geometrical symmetry and
computing time. Four-node shell elements with reduced integration, S4R, are adopted for
conical and cylindrical shells. Eight-node solid element with reduced integration, C3DSR,
is adopted for tapered ring.

For the top edge of cone, all the freedoms except for the displacement freedom in x
direction are fixed. For plane z=0, the symmetric boundary condition as shown in the
figure are applied. For the bottom end of cylinder, all the displacement freedoms are
fixed.

Displacement loading histories are applied at the top edge of cone. Rotational angle
6 of conical wall is shown in Fig. D-3(b). The tangent of @ is set to be 0, 1/20, 1/10, and
1/5 respectively, as shown in Fig. D-4.

In total, 12 models are created. Their dimensions are listed in Table D-1. Friction
coefficient in the contact surface between conical wall and cylinder edge is set to be 0.20.
Cylindrical wall is tied to ring for tapered ring failure. The displacement in x and z
directions of the top edge of cylindrical wall is fixed for conical wall failure, where ring is

not employed.

Displacement loading A

v

Boundary:

(1) For top edge of cone
U=U=UR=0

(2) For plane z=0
U=UR=UR=0

(3) For bottom end of cylinder
U=U=Uj=0

Herein, U means displacement;
UR means rotation.

(a) Perspective (b) Elevation
Fig. D-3 Half three-dimensional FE models with rotation of conical wall
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‘ Weldlng .
|
: “Metal ,
‘ |
\

(a) tan6=0 (b) tan6=7g (c) tano=15 (d) tano=1

Fig. D-4 Condition of connections with different rotational angles of conical wall (0=45°)

Table D-1 Dimensions of models with different failure modes

Model Failure lc Ip IR a dp Boundary Boundar.y
No mode - between cone | between ring tan 0
) mm | mm | mm mm and cylinder and cylinder
1 0
2 Cylinder 120
edge failure 9.00
3 s 1/10
4 1/5
5 0
6 T . Frictional 1/20
APETECTINE | 900 | 421 | 9.00 | 45 | 131.38 |  contact Tie
failure
7 #=0.20 1/10
8 1/5
9 0
Topedgeof [
10 . cylinder: 1/20
Corfl;f lrwall 427 U=U=0. ————
11 ure Ring is not 1/10
employed.
12 1/5

Note: (1) ¢c means thickness of conical wall; #» means thickness of cylindrical wall; #z means thickness

of tapered ring; o means semi-convex angle of conical wall; and dp means diameter of cylindrical shell.
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D.3.2 FE Analysis Results

D.3.2.1 Metal Touch Connection with Cylinder Edge Failure

Fig. D-5 shows the load versus deformation curves of model Nos.1~4 with cylinder
edge failure. It can be found that the elastic stiffness and ultimate load keep to be constant
until tan § =1/10. When tan § =1/5, the elastic stiffness decreases obviously while the
ultimate load increases very slightly. The reason might be that the actual semi-vertex
angle o of conical wall is obviously increased due to the rotation. The increase of & makes
the ultimate strength a litter greater. But it can be neglected even if tan 6 reaches 1/5,
based on the results in Fig. D-6.

Fig. D-7 illustrates the distribution of Mises stress in cylindrical wall with the
increase of load for model No.3 with tan #=1/10. It can be found that at the beginning of
loading, Mises stress close to contact points M and N is much greater than other regions.
As load increases, Mises stress in other regions also increases. When ultimate load arrives,
the distribution of Mises stress becomes to be uniform. It indicates that because of the
deformation capacity of cylinder edge, the gap has been filled and the conical wall has

contacted with cylinder edge in 360 degrees.

160 -
140 -
120 -

< 100 -
Q.
5 80 —tan 6=0
S 60 ——tan 6=1/20
40 —tan 6=1/10
20 ——tan 6=1/5
0 2 4 6

Deformation A (mm)

Fig. D-5 Variation of load versus deformation curves along with the increase of rotational
angle for models with cylinder edge failure
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12 T Pu(tans=)(}/ Pu(tan8=0)

1.0 ® & +
0.8 -
0.6 -
04 -
0.2 -
tan 6
0.0 -+ . o
0 1/20 1/10 1/5

Fig. D-6 Variation of ultimate load along with the increase of rotational angle for models
with cylinder edge failure
(tan 8 =X means tan 6 =0, 1/20, 1/10 and 1/5, the same hereinafter in this appendix)

M.

- | I q q
(a) at33.2kN (b) at 105.2kN (c) at 143.2kN (P,)
Fig. D-7 Mises stress distribution at different load for model No. 3 with tan 6=1/10

Mises stress
(MPa)

D.3.2.2 Metal Touch Connection with Tapered Ring Failure

The results of model Nos. 5~8 with tapered ring failure are shown in Figs. D-8 and
D-9. They are similar to those of models No. 1~4 with cylinder edge failure and omitted

here.
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Z 200
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Q.
5 190 —tan 6=0
3 100 ——tan 6=1/20
—tan 6=1/10
50 - —tan 6=1/5
0 _
0 9 4 6

Deformation A (mm)

Fig. D-8 Variation of load versus deformation curves along with the increase of rotational
angle for models with tapered ring failure

Pu[tanG:X}/ Pu(tan6=0)

1.0 ¢——o—— —

1.2

0.8 -
0.6
0.4
0.2

tan 6
0.0

0 120 1/10 1/5

Fig. D-9 Variation of ultimate load along with the increase of rotational angle for models
with tapered ring failure

D.3.2.3 Metal Touch Connection with Conical Wall Failure

Fig. D-10 shows the comparison of load versus deformation curves for models with
conical wall failure. It can be found the collapse strength almost keeps to be constant until
tan 6 reaches 1/10. When tan 6=1/5, ultimate load slightly decreases. However, The
decrease of ultimate load is so small that can be not considered, based on the result in Fig.
D-11.

Fig. D-12 illustrates the distribution of Mises stress at ultimate load for models with
different values of tan 6. It can be found that the distribution of Mises stress can be

assumed to be uniform until tan 8 reaches 1/10.
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—tan 6=1/10
50
—tan 6=1/5
0 T T T T 1
0 5 10 15 20

Deformation A (mm)
Fig. D-10 Comparison on load versus deformation curves for models with conical wall
failure

1.2 "Pu(tan9=x)/ Pu(tan9=01

1.0 ® & e

0.8 -

06 -

04 -

0.2 -

0.0 | . | 1 tanle
0 1/20 110 1/5

Fig. D-11 Variation of ultimate load along with the increase of rotational angle for models
with conical wall failure
350

@ @
300

ggg (a) tan 6 =0 (b) tan 6 =1/20

150
M
N N

100
50
0
(c) tan 6.=1/10 (d) tan 6 =1/5
Fig. D-12 Distribution of Mises stress in conical wall at ultimate load for models with
conical wall failure

Mises stress
(MPa)
520

500
450
400
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D.4 Summaries

In this appendix, the relationship between gap length and rotational angle of conical
wall is derived. And then, the influence of rotational angle on collapse strength of metal
touch connections is investigated by FEA. The conclusions are shown as follows:

(1) The gap length g increases as tan @ increases. If semi-vertex angle of conical wall
is 45°, diameter of cylindrical shell is 131mm, and tan 6 is 1/5, the gap length g will reach
about 2.7mm.

(2) Because of the deformation capacity of cylinder edge, the gap can be filled as
load increases.

(3) The collapse strength of metal touch connections almost keeps to be constant
even if tan @ increases to be 1/10. From the seismic engineering point of view, tan 6 of
conical wall is similar to that of story drift angle of column, and usually less than 1/50 in
practice. Therefore, the influence of gap length or rotational angle of conical wall on

collapse strength of metal touch connections can be not considered.
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Appendix E Influence of Eccentricity of Compressive Loading

on Collapse Strength of Connections

E.1 Introduction

The body part of this thesis focuses on the strength of steel cone-to-cylinder socket
connections under axial compression. Actually, shear force and bending moment are also
transformed from upper structure due to earthquake or wind load, as shown in Fig. E-1. In
this case, the socket connection will be compressed under eccentric loading. The strength
and behavior of connections, which are different from those under axial compression,
have not been clarified. In this appendix, Finite element (FE) analysis is employed to
investigate the influence of eccentricity ratio of load on collapse strength of connections

qualitatively.

Column

Foundation
beam
Lid plate
Conical head

Ring

Pile

Fig. E-1 Conical pile head model in building structure
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E.2 FE Analysis

E.2.1 FE Modeling

Half three-dimensional solid finite element (FE) model as illustrated in Fig. E-2 is
established using ABAQUS 6.11 based on the consideration of geometrical symmetry and
computing time. Four-node shell elements with reduced integration, S4R, are adopted for
conical and cylindrical shells, and lid plate. Eight-node solid element with reduced
integration, C3D8R, is adopted for ring, which is simplified to be rectangular. It should be
noted that lid plate is defined to be elastic, with Young’s modulus £=205,000MPa and
Poisson’s ratio v=0.3; conical wall, cylindrical wall and tapered ring are defined to be
actual.

For the top edge of cone, it is tied to the bottom surface of lid plate. For plane z=0,
the symmetric boundary condition as shown in the figure are applied. For the bottom end
of cylinder, all the displacement freedoms are fixed.

Displacement loading histories are applied at the top surface of lid plate. Eccentricity
ratio of load is set to be 0, 1/8, 1/4, 3/8, and 1/2 respectively, as shown in Fig. E-3. It
should be noted that the influence of loading length % on strength of connections is not
considered and defined to be 16mm. The confinement effect of foundation beam on lid

plate is also neglected.

Eccentricity e

Displacement
loading A

(1)For top edge of cone:
tie to lid plate

(2) For plane z=0
U=UR=UR=0

(3) For bottom end of cylinder,
U=U=U=0

Herein, U means displacement;
UR means rotation.

Fig. E-2 Half three-dimensional FE models under eccentric loading
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Hh:1 6mm
Displacement

iy Il g Ll Ul

| {Velding i B i L
N S N N N/
Q- a ! a a
v i - v f
d,=131.38mm L] =N -
(a) eld.=0 (b) eld=1/8 (©) eld,=1/4 (d) e/d,=3/8 (d) eld=1/2
Fig. E-3 Eccentricity ratios of loading employed in FE model
Table E-1 Details of FE models with different modes
te tp tr 4 a dp Boundary | Boundary ..
Model Failure between between ECCSI-ltI'ICIty
. ratio of
No. mode mm | mm | mm mm ° mm cone and cylinder load
cylinder and ring
1 0
2 Cylinder 18
3 edge 9.00 1/4
failure
4 3/8
5 172
6 0
7 Tapered Frictional 178
8 ring 9.00 9.00 contact Tie 1/4
i =0.2
failure #=0.20 33
10 12
4.21 12.00 | 45 | 131.38
1 Top edge 0
L Conical cyli(t)liier' 18
13 Wall 4.27 U=U~0. 1/4
failure S
14 Ring is not 3/8
15 employed. 1
16 0
17 . 1/8
| Joint
18 region 4.27 Tie 1/4
— | failure
19 3/8
20 12

Note
tc : thickness of conical wall; 7p: thickness of cylindrical wall; zz: thickness of tapered ring;

o: semi-convex angle of conical wall; and dp: diameter of cylindrical shell.

In total, 20 models are created for the four kinds of failure modes. Their dimensions

are listed in Table E-1. Friction coefficient in the contact surface between conical wall
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and cylinder edge for metal touch models is set to be 0.20. Conical wall is tied to cylinder
edge for welded models. Cylindrical wall is tied to ring for tapered ring failure. The
displacement in x and z directions of the top edge of cylindrical wall is fixed for conical

wall failure, where ring is not employed.

E.2.2 FE Analysis Results

E.2.2.1 Metal Touch Connection with Cylinder Edge Failure

Fig. E-4 gives the comparison of load versus deformation curves among models with
different eccentricity ratios of loading. It can be found that the elastic stiffness decreases
with the increase of eccentricity ratio of load, while the collapse strength almost keeps
constant, as shown in Fig. E-5.

Comparison of Mises stress distribution at ultimate load between models with and
without eccentricity ratio of load is shown in Fig. E-6. Because the strength of cylinder
edge is much weaker than conical wall, conical wall moves downward almost in parallel
even if under eccentric loading. The compression transmitted from conical wall to
cylinder edge seems still uniform. As a result, the Mises stress distribution of cylindrical
wall in the case of e/tp=1/2 is quite similar to that in the case of e/tp=0. It might be the

reason why the collapse strength of cylinder edge keeps almost constant.

160 -
140 — _
120 - ———
=
i" 122 —e/dP=0
° ——e/dP=1/8
¢ 60 —e/dP=1/4
40 - ——e/dP=3/8
20 ——e/dP=1/2
0 . .
0 4 6 8 10

Deformation A (mm)
Fig. E-4 Comparison of load versus deformation curves among models with different

eccentricity ratios of loading for cylinder edge failure
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b

; e/d,
0 18 14 38 12 58
Fig. E-5 Variation of ultimate load along with the increase of eccentricity ratio of load for

cylinder edge failure

Displacement

: Displacement loading

Mises stress loading

(MPa)

Proximal

side side

(a) e/dp=0 (b) e/dp=1/2
Fig. E-6 Comparison of Mises stress distribution at ultimate load between models with
and without eccentricity ratio of load for cylinder edge failure

E.2.2.2 Metal Touch Connection Tapered Ring Failure

Fig. E-7 gives the comparison of load versus deformation curves among models with
different eccentricity ratios of loading. It can be found that elastic stiffness decreases as
eccentricity ratio of load increases, while collapse strength does not decrease so much.
The variation of collapse strength along with eccentricity ratio of load is shown in Fig.
E-8. It is seen that collapse strength decreases slightly until eccentricity ratio of load
reaches 1/2.

Comparison of Mises stress distribution at ultimate load between models with and
without eccentricity ratio of load is shown in Fig. E-9. Because the strength of cylinder
edge and ring are weaker than conical wall, the rotation of conical wall and lid plate is not
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obvious under eccentric loading. The Mises stress distribution of cylindrical wall in the
case of e/tp=1/2 is a little different from that in the case of e/tp=0. It might be the reason

why collapse strength of cylinder edge decreases slightly when e/tp=1/2.

300 -
250 |
S 200 -
<
Q. 150 - —a/dP=0
= ——e/dP=1/8]
S 100 - —e/dP=1/4
—e/dP=3/8]
S0 - ——e/dP=1/2
0 T T T 1
0 2 4 6

Deformation A (mm)

Fig. E-7 Comparison of load versus deformation curves among models with different
eccentricity ratios of loading for tapered ring failure

1-2I PUE/P

ud
1 &
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0.6
04-
0.2-

0 -

L 3
4

e/d

P
0O 1/8 1/4 3/8 172 5/8

Fig. E-8 Variation of ultimate load along with the increase of eccentricity ratio of load for
tapered ring failure
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Fig. E-9 Comparison of Mises stress distribution at ultimate load between models with
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and without eccentricity ratio of load for tapered ring failure

E.2.2.3 Metal Touch Connection Conical Wall Failure

Fig. E-10 shows the comparison of load versus deformation curves among models
with different eccentricity ratios of loading. It can be seen that collapse strength decreases
slightly with the increase of eccentricity ratio of load. The variation of collapse strength
along with the increase of eccentricity ratio of load is plotted in Fig. E-11. It can be found
that collapse strength decreases to be about 0.9 of that under axial compression when
eccentricity ratio of load increases to be 1/2.

Fig. E-12 shows the comparison of Mises stress distribution at ultimate load between
models with eccentricity ratio of load of 0 and 1/2 respectively. For the case of e/dp=1/2,
the distal side of conical wall uplifts and the proximal side of it descends as loading
increases. At the same time, the both sides move downward. When ultimate load arrives,
Mises stress distribution in the distal side is close to that in the proximal side. It might be

the reason why ultimate load decreases slightly, comparing with the case of e/dp=0.
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Fig. E-10 Comparison of load versus deformation curves among models with different
eccentricity ratios of loading for conical wall failure
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Fig. E-11 Variation of ultimate load along with the increase of eccentricity ratio of load
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Fig. E-12 Comparison of Mises stress distribution at ultimate load between models with
and without eccentricity ratio of load for conical wall failure

E.2.2.4 Welded Connections with Joint Region Failure

Fig. E-13 shows the comparison of load versus deformation curves among models
with different eccentricity ratios of loading. It can be seen that collapse strength decreases
obviously with the increase of eccentricity ratio of load. The variation of collapse strength
along with the increase of eccentricity ratio of load is plotted in Fig. E-14. It can be found
that collapse strength decreases to be about 0.7 of that under axial compression, when
eccentricity ratio of load increases to be 1/2.

Fig. E-15 shows the comparison of Mises stress distribution at ultimate load between
models with eccentricity ratio of load of 0 and 1/2. For the case of e/dp=1/2, the distal
side of conical wall uplifts and the proximal side of it descends as loading increases. The
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difference from metal touch model with conical wall failure is that conical wall cannot
move downward because of welding. When ultimate load arrives, the Mises stress in the
distal side is much smaller than that in the proximal side. It might be the reason why

ultimate load decreases quite greatly, comparing with the case of e/dp=0.
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Fig. E-13 Comparison of load versus deformation curves among models with different
eccentricity ratios of loading for joint region failure
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Fig. E-14 Variation of ultimate load along with the increase of eccentricity ratio of load
for joint region failure
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Fig. E-15 Comparison of Mises stress distribution at ultimate load between models with

and without eccentricity ratio of load for joint region failure

E.3 Summaries

In this appendix, the influence of eccentricity ratio of load on collapse strength of

connections is investigated by FE analysis. The conclusions are listed as follows:

(1)

)

3)

(4)

For metal touch connections with cylinder edge failure, the decrease of collapse
strength is very slightly even if the eccentricity ratio of load e/dpreaches 1/2.
The reason might be that conical wall is much stronger than cylinder edge and
then move downward almost in parallel. It makes Mises stress distribution
almost uniform in both distal and proximal sides.

For metal touch connections with tapered ring failure, the decrease of collapse
strength is a litter greater than the case of cylinder edge failure. The reason
might be that the strength of cylinder edge increases after ring is employed, and
then conical wall rotates slightly. It makes the Mises stress distribution in distal
side a little smaller than that in proximal side.

For metal touch connections with conical wall failure, the decrease of
collapse strength is greater than the cases of both cylinder edge failure and
tapered ring failure. It is because that conical wall rotates and moves downward,
making the Mises stress distribution in distal side a little smaller than that in
proximal side.

For welded connections with joint region failure, the decrease of collapse
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strength is much greater than those of metal touch connections with three failure
modes. It is because that conical wall only rotates, making the Mises stress
distribution in distal side much smaller than that in proximal side.

The length of load region is set to be relatively small in this analysis. Its
influence on the collapse strength of connections is necessary to be analyzed in

future.
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