
Preface

The study of Schubert polynomials is one of the main subjects in algebraic
combinatorics. One of the possible methods for studying Schubert polynomials
is through the modules introduced by Kraśkiewicz and Pragacz. In [10], for
each permutation w they introduced a certain module Sw over the Lie algebra b
of all upper triangular matrices whose character is the corresponding Schubert
polynomial Sw. In this paper we call them Kraśkiewicz-Pragacz modules or KP
modules for short.

Schubert polynomials can be regarded as a generalization of Schur functions.
Many positivity properties are known for Schur functions. One of the most
classical examples is the Schur positivity of the product sλsµ of Schur functions,
i.e. the product of Schur functions always expands into a positive sum of Schur
functions. Another such example is the positivity of so-called plethysms of
Schur functions. Plethysm is another kind of product operation (other than the
ordinary multiplication) defined on symmetric functions, corresponding to the
composition of representations of general linear Lie algebras. It is also known
that the plethysm sλ[sµ] of Schur functions is always Schur positive.

One of the main motivations for our study of KP modules is the corre-
sponding generalizations of these positivity properties to Schubert polynomials.
The positivity of the product of Schubert polynomials is classically known: the
product SwSv of Schubert polynomials always expands into a positive sum
of Schubert polynomials. The only previously known proof for this positiv-
ity is through a geometric interpretation of Schubert polynomials, i.e. through
the interpretation of the coefficients cuwv appearing in SwSv =

∑
u c

u
wvSu as

the number of intersection points of certain subvarieties in a flag variety. It
is a long-standing problem in algebraic combinatorics to give a combinatorial
positive rule for these coefficients cuwv, like Littlewood-Richardson rule in the
Schur-function case. One of our results gives a proof for the positivity of the
coefficients and an interpretation of these coefficients from yet another point of
view, i.e. from a representation theoretic viewpoint using KP modules.

Plethysms can be also generalized to the case of Schubert polynomials: the
plethysm sλ[Sw] of a Schur function with a Schubert polynomial can be defined
in the same way as the plethysms of two Schur functions. Our results also give
a proof to the fact that this plethysm always expands into a positive sum of
Schubert polynomials, which was not known before.

In studying such Schubert positivity phenomena, it is important to consider
the class of b-modules having KP filtrations, i.e. filtrations of b-modules whose
successive quotients are isomorphic to KP modules. Since KP modules have
Schubert polynomials as their characters, if a module M has a KP filtration
then its character is Schubert positive. So for example if we show that the
tensor product Sw⊗Sv of KP modules and the Schur functor image sλ(Sw) of a
KP module have KP filtrations then it gives proofs for the Schubert positivities
of the product SwSv and the plethysm sλ[Sw] respectively.

In this paper we study the class of modules having KP filtrations using the
theory of highest weight categories ([4]). We see that certain categories of b-
modules can be equipped with structures of highest weight categories so that
the standard objects are KP modules (Theorem 2.3.1). Note that the order
relation on the set of weights is not the usual root order (see the beginning of
Section 2.2). Then using the generalities on highest weight categories we show
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that the tensor product modules Sw ⊗ Sv and Schur functor images sλ(Sw)
actually have KP filtrations (Theorem 3.1.1); this, as explained above, gives a
new proof for the positivity of products as well as a new result concerning the
plethysms of Schur functions with Schubert polynomials. Highest weight theory
for KP modules enables us to reduce the problems above on tensor products and
Schur functor images to simpler problems. For example, the problem on Schur
functor images can be easily reduced to the problem on tensor products because

sλ(Sw) is a direct summand of S⊗|λ|w and by the generalities of highest weight
categories the existence of KP filtrations inherits to direct summands. Also
the tensor product problem can be reduced to very simple cases corresponding
to Monk’s formula for Schubert polynomials using the generalities of highest
weight categories. For the details see Section 3.1.

Our works relating KP modules with the notion of highest weight categories
were strongly inspired by similar works on Demazure modules ([18], [22], [23,
§3]). Demazure modules (for gln) and KP modules seem to have many striking
similarities: they are both families of b-modules parametrized by their lowest
weights and they both well fit into the theory of highest weight categories. Also
we get a presentations of KP modules (Theorem 2.1.1) which are very similar to
the presentations of Demazure modules ([9, Theorem 3.4]) by Joseph (note that
KP modules are, despite their similarities with Demazure modules, not special
cases of Demazure modules: see Example 1.2.5).

We also show that a special case of the highest weight categories we intro-
duce, namely the one denoted by Cn in this paper, have particularly nice prop-
erties (Theorem 4.1.1, Theorem 4.2.1): its Ringel dual is equivalent to Cn itself,
and the natural autoequivalence on the subcategory C∆

n of modules having KP
filtrations preserves a certain tensor product operation on C∆

n . The correspon-
dence of the standard objects under the Ringel duality is given by Sw 7→ Sw0ww0

(w ∈ Sn), which suggests some connection with the involution on the cohomol-
ogy ring of the flag manifold H•(Fl(Cn)) ∼= Z[x1, . . . , xn]/(ei(x1, . . . , xn))1≤i≤n
given by xi 7→ −xn+1−i (see Proposition 1.1.4 and Remark 1.1.5). One of the
interesting consequences of this duality is a kind of symmetry relation on the ex-
tension groups between KP modules: we have Exti(Sw,Sv) ∼= Exti(Sw0vw0

,Sw0ww0
)

for w, v ∈ Sn where w0 ∈ Sn is the longest element.
This paper is organized as follows. In Section 1 we prepare basic definitions

and results on Schubert polynomials, KP modules and highest weight categories.
In Section 2 we relate the notion of highest weight categoires with KP modules:
we show that certain categories of b-modules admit highest weight structures
so that the standard objects are KP modules. In Section 3 we utilize the high-
est weight structure developed in the previous section to show that the tensor
product modules Sw⊗Sv and Schur functor images sλ(Sw) actually have KP fil-
trations. We also give constructions of explicit filtrations for the tensor product
modules corresponding to the Pieri and dual Pieri rules for Schubert polynomi-
als ([2], [25]). Note that the Pieri rule for KP modules actually gives another
proof for the existence of desired highest weight structure for b-modules. In
Section 4 we focus on a special case Cn of our highest weight categories where
the KP modules under consideration are the ones Sw with w ∈ Sn. We show
that the Ringel dual of Cn is equivalent to itself, and the natural autoequiva-
lence F : C∆

n → C∆
n given by the Ringel duality is in some sense compatible with

tensor product, i.e. F ((M ⊗ N)Λn) ∼= (FM ⊗ FN)Λn where LΛn denotes the
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largest quotient of L whose weights are in Λn.
The structure of the arguments for the first part is slightly modified from

the submitted version of the paper in order to separate the general theory of
highest weight categories from particular arguments on special properties of KP
modules. Also, the proof of Monk’s rule for KP modules (Proposition 3.1.2)
used in proving the existence of KP filtrations for tensor product modules is
modified to use a more general result on KP modules corresponding to the Pieri
rule (Section 3.2).
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1 Preliminaries

1.1 Permutations and Schubert polynomials

In this subsection we review definitions and basic properties of Schubert poly-
nomials. We use [14] as a main reference. For the original source of these
properties see the references in [12], [14] and [17].

Let Z>0 and Z≥0 denote the set of all positive and nonnegative integers
respectively. By a permutation w we mean a bijection from Z>0 to itself which
fixes all but finitely many points. Let S∞ denote the group of all permutations.
The graph of a permutation w is the set {(i, w(i)) : i ∈ Z>0} ⊂ Z2

>0. For

a positive integer n let Sn = {w ∈ S∞, w(i) = i (i > n)} and S
(n)
∞ = {w ∈

S∞, w(n+ 1) < w(n+ 2) < · · · }.
We sometimes write a permutation in its one-line form: i.e., we write [w(1)w(2) · · · ]

to express w ∈ S∞. If w ∈ Sn, we may write [w(1)w(2) · · · w(n)] to mean w.
For i < j, let tij denote the permutation which exchanges i and j and fixes

all other points. Let si = ti,i+1. For a permutation w, let `(w) = #{i <
j : w(i) > w(j)} and sgn(w) = (−1)`(w). For a permutation w and p < q, if
`(wtpq) = `(w) + 1 we write wtpq m w. It is well known that this condition is
equivalent to saying that w(p) < w(q) and there exists no p < r < q satisfying
w(p) < w(r) < w(q).

For w ∈ S
(n)
∞ we define code(w) = (code(w)1, . . . , code(w)n) ∈ Zn≥0 by

code(w)i = #{j : i < j, w(i) > w(j)}: this is usually called the Lehmer code
and it uniquely determines w. Note that if w ∈ Sn we have code(w) ∈ Λn :=

{(a1, . . . , an) ∈ Zn : 0 ≤ ai ≤ n− i}. For λ ∈ Zn≥0 we define perm(λ) ∈ S(n)
∞ as

the permutation satisfying code(perm(λ)) = λ.
For a permutation w we assign its inversion diagram defined by I(w) =

{(i, j) : i < j, w(i) > w(j)}. Note that if w ∈ S(n)
∞ then I(w) ⊂ {1, . . . , n}×Z>0.

For a polynomial f = f(x1, x2, . . .) and i ∈ Z>0 define ∂if = f−sif
xi−xi+1

. For a

permutation w we can assign its Schubert polynomial Sw ∈ Z[x1, x2, . . .] which
is recursively defined by

• Sw = xn−1
1 xn−2

2 · · ·xn−1 if w(1) = n,w(2) = n − 1, . . . , w(n) = 1 and
w(i) = i (i > n) for some n, and

• Swsi = ∂iSw if `(wsi) < `(w).

It is known ([14, (4.11)]) that {Sw : w ∈ S(n)
∞ } (resp. {Sw : w ∈ Sn}) constitutes

a Z-linear basis for Z[x1, . . . , xn] (resp.
⊕

λ∈Λn
Zxλ1

1 · · ·xλnn ). It is also known
([17, Proposition 2.5.3, Corollary 2.5.6]) that the latter constitutes a Z-linear
basis for the quotient ring Hn = Z[x1, . . . , xn]/In, where In ⊂ Z[x1, . . . , xn] is
the ideal generated by all symmetric polynomials in x1, . . . , xn without constant
terms.

Below we list some properties of Schubert polynomials used in this paper.
The following identity is known as Monk’s formula:

Proposition 1.1.1 ([14, (4.15′′)]). Let w ∈ S∞ and ν ∈ Z>0. Then SwSsν =∑
Swtpq where the sum is over all (p, q) such that p ≤ ν < q and wtpq m w.

Generalizations of Monk’s formula include the Pieri and dual Pieri rules for
Schubert polynomials which give expansions of products of Schubert polynomi-
als with complete symmetric functions hd(x1, . . . , xi) and elementary symmetric
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functions ed(x1, . . . , xn) respectively. We will present these rules later in this
paper.

One of the consequences of Monk’s formula is the following recursion for
Schubert polynomials known as transition:

Proposition 1.1.2 ([14, (4.16)]). Let w ∈ S∞ r {id}. Let j ∈ Z>0 be the
maximal integer such that w(j) > w(j+1) and take k > j maximal with w(j) >
w(k). Let v = wtjk. Let i1 < · · · < iA be the all integers less than j such that
vtiaj m v, and let w(a) = vtiaj. Then

Sw = xjSv +

A∑
a=1

Sw(a) .

Note that if w ∈ S(n)
∞ then v and w(1), . . . , w(A) in the proposition above are

also in S
(n)
∞ .

Schubert polynomials also satisfy the following Cauchy identity :

Proposition 1.1.3 ([14, (5.10)]).
∑
w∈Sn Sw(x)Sww0(y) =

∏
i+j≤n(xi + yj)

where w0 = [n n− 1 · · · 1] ∈ Sn.

We also need the following basic facts:

Proposition 1.1.4. Let ι : Hn → Hn be the ring automorphism given by
xi 7→ −xn+1−i where xi = xi mod In. Then for w ∈ Sn, ι(Sw) = Sw0ww0 .

Remark 1.1.5. The automorphism ι corresponds to the map between flag
varieties which takes a flag to its dual flag: see eg. [7, §10.6, Exercise 13]

Proof. First note that ι◦∂i◦ι = ∂n−i. Thus we only have to check the proposition
for w = w0.

Since the only elements in Hn =
⊕

w∈Sn ZSw with degree
(
n
2

)
are the con-

stant multiples of Sw0
, we see that ι(Sw0

) is a constant multiple of Sw0
. Let

(i1, . . . , il) be a longest word, i.e. l = `(w0) and w = si1 · · · sil . Note that
(n− i1, . . . , n− il) is also a longest word. We have ∂i1 · · · ∂ilSw0

= Sid = 1 and
∂i1 · · · ∂ilι(Sw0) = (ι∂n−i1ι) · · · (ι∂n−ilι)ι(Sw0) = ι(∂n−i1 · · · ∂n−ilSw0) = 1.
Thus ι(Sw0) = Sw0 .

Proposition 1.1.6. For w ∈ S(n)
∞ r Sn we have Sw ∈ In.

Proof. Since ∂iIn ⊂ In for any 1 ≤ i ≤ n − 1, it suffices to show that the
proposition holds in the case w(1) > · · · > w(n). Since in this case Sw =

x
w(1)−1
1 x

w(2)−1
2 · · ·xw(n)−1

n it is enough to show xn1 ∈ In. This is immediate
from the equation

∏n
i=2(1 − xiu) = 1

1−x1u
=
∑
j≥0 x1

juj in Hn[[u]] since the
LHS has no terms of degrees ≥ n in u.

1.2 Kraśkiewicz-Pragacz modules

Let K be a field of characteristic zero. Let b = bn be the Lie algebra of all n×n
upper triangular K-matrices. and let h ⊂ b and n+ ⊂ b be the subalgebra of all
diagonal matrices and the subalgebra of all strictly upper triangular matrices
respectively. For a Lie algebra g let U(g) denote its universal enveloping algebra.
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For a b-module M and λ = (λ1, . . . , λn) ∈ Zn, let Mλ = {m ∈ M : hm =
〈λ, h〉m (∀h ∈ h)} where 〈λ, h〉 =

∑
λihi. Mλ is called the λ-weight space of

M . If Mλ 6= 0 then λ is said to be a weight of M . If M =
⊕

λ∈ZnMλ and each
Mλ has finite dimension, then we call that M is a weight b-module and define
ch(M) =

∑
λ dimMλx

λ (xλ = xλ1
1 · · ·xλnn ). From here we only consider weight

b-modules, and for weight b-modules M and N , Exti(M,N) always mean the
Ext groups taken in the category of all weight b-modules (not the whole b-
modules).

For 1 ≤ i ≤ j ≤ n, let eij ∈ b be the matrix with 1 at the (i, j)-position and
all other coordinates 0. Let ρ = (n− 1, n− 2, . . . , 0) ∈ Zn and 1 = (1, . . . , 1) ∈
Zn. Also let εi = (0, 0, . . . , 1, . . . , 0, 0) ∈ Zn with 1 at the i-th position, and let
αij = εi − εj for 1 ≤ i < j ≤ n. Note that if M is a b-module and x ∈Mλ then
eijx ∈Mλ+αij .

For λ ∈ Zn, let Kλ denote the one-dimensional b-module where h ∈ h acts
by 〈λ, h〉 and n+ acts by 0. Note that every finite-dimensional weight b-modules
admits a filtration by these one-dimensional modules.

In [10] Kraśkiewicz and Pragacz defined certain b-modules which we call
here Kraśkiewicz-Pragacz modules or KP modules. Here we use the following
definition.

Let w ∈ S(n)
∞ . Let Kn =

⊕
1≤i≤nKui be the vector representation of b: i.e.

eijuk = δjkui. For each j ∈ Z>0, let lj = lj(w) = #{i : (i, j) ∈ I(w)}, {i :

(i, j) ∈ I(w)} = {i1, . . . , ilj} (i1 < · · · < ilj ), and u
(j)
w = ui1∧· · ·∧uilj ∈

∧lj Kn.

Note that u
(j)
w is actually in

∧lj Kmin{n,j−1} where Ki = Ku1⊕· · ·⊕Kui ⊂ Kn.

Let uw = u
(1)
w ⊗ u(2)

w ⊗ · · · ∈
∧l1 Kn ⊗

∧l2 Kn ⊗ · · · . Then the KP module Sw
associated to w is defined as Sw = U(b)uw ⊂

∧l1 Kn ⊗
∧l2 Kn ⊗ · · · .

Remark 1.2.1. It is also possible to define KP modules similarly using the
so-called Rothe diagram D(w) = {(i, w(j)) : i < j, w(i) > w(j)} of w instead of
I(w). Since I(w) and D(w) differ only by a rearrangement of columns it does
not matter which to use. D(w) has an advantage that it is easier to visualize
for concrete examples: if one draw rays downward and to the right from the
position (i, w(i)) (i = 1, 2, . . .), then the remaining boxes give D(w) (see the
figure below). Also, in [6] a basis for Sw is constructed using certain labellings
of the Rothe diagram.

Figure 1: the inversion diagram (left) and the Rothe diagram (right) of the same permutation

[25143].

As proved by Kraśkiewicz and Pragacz in [11], KP modules have the follow-
ing property:

Theorem 1.2.2 ([11, Remark 1.6 and Theorem 4.1]). Sw is a weight module
and ch(Sw) = Sw (so in particular, dimSw = Sw(1) := Sw(1, 1, . . . , 1)).
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Example 1.2.3. If w = si, then I(si) = {(i, i + 1)}, usi = ui and Ssi =⊕
1≤j≤iKuj = Ki. So ch(Ssi) = x1 + · · ·+ xi = Ssi .

Example 1.2.4. More generally, if w is grassmannian, i.e. there exists a k such
that w(1) < · · · < w(k) and w(k + 1) < w(k + 2) < · · · , then the inversion
diagram I(w) of w is a “French-notation” Young diagram (see figure below).
Thus in this case, uw is a lowest-weight vector in a certain irreducible represen-
tation of glk, and Sw is equal to this representation (seen as a representation of

bn through the morphism bn 3 epq 7→

{
epq (q ≤ k)

0 (q > k)
∈ glk). This reflects the

fact that the Schubert polynomial indexed by a grassmannian permutation is a
Schur polynomial.

Figure 2: the inversion diagram of a grassmannian permutation [136245] is a French-style Young

diagram of shape (3, 1).

Example 1.2.5. More generally, if w is 2143-avoiding, then it can be seen
(using the fact ([14, (1.27)]) that the rows of I(w) for 2143-avoiding w is to-
tally preordered by inclusion) that uw is an extremal vector in an irreducible
representation of gln. Thus in this case the corresponding KP module Sw is
isomorphic to a Demazure module of b: i.e. a module generated by an ex-
tremal vector of an irreducible representation of gln. Note that this corresponds
to the result first obtained by Lascoux and Schutzenberger ([13, Theorem 5],
[12, Corollary 10.5.2]) that Schubert polynomials with 2143-avoiding indices are
equal to certain key polynomials.

On the other hand, consider w = [2143]. Then I(w) = {(1, 2), (3, 4)}, uw =
u1⊗u3, Sw =

⊕
1≤i≤3K(u1⊗ui) = K1⊗K3 and ch(Sw) = x1(x1 +x2 +x3) =

Sw. Note that in this case Sw is not isomorphic to the Demazure module with
the same lowest weight: Sw is three-dimensional while the Demazure module
with the same lowest weight is two-dimensional. 1 In general, Sw is isomorphic
to the Demazure module Demaz(code(w)) with lowest weight code(w) if and
only if w is 2143-avoiding. We also note here that there always exists a surjection
from Sw to Demaz(code(w)): this can be seen using the result from the next
section and [9, Theorem 3.4].

In this paper we have to slightly extend the notion of Schubert polynomials
and KP modules. For λ = (λ1, . . . , λn) ∈ Zn, we define the Schubert polynomial
and the KP module associated to λ as follows. For λ ∈ Zn≥0, let Sλ = Sw and
Sλ = Sw where w = perm(λ). For a general λ ∈ Zn, take k ∈ Z so that
λ+ k1 ∈ Zn≥0, and we define Sλ = x−k1Sλ+k1 and Sλ = K−k1 ⊗ Sλ+k1. Note

that this definition does not depend on the choice of k, since if w ∈ S(n)
∞ and

1The KP module S[2143] in this example is, if not seen as a U(b)-module but as a U(n+)-
module, isomorphic to a Demazure module (say Demaz(0, 0, 1)); thus the results such as
Theorem 2.1.1 for such kind of KP modules follow from known results on Demazure modules.
But in fact there also exist KP modules which are, even as U(n+)-modules, not isomorphic to
any Demazure modules. An example is S[13254] ∼= K2 ⊗K4.
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code(w) = κ, then perm(κ+1) = w̃ = [w(1)+1 · · · w(n)+1 1 w(n+1)+1 · · · ],
and Sw̃ = x1Sw and Sw̃ = K1 ⊗ Sw hold for them. It then follows from the
theorem above that Sλ is a weight module and ch(Sλ) = Sλ for all λ ∈ Zn.
Note that, since Sλ is generated by an element of weight λ, if (Sλ)µ 6= 0 (i.e.
if xµ appears in Sλ with nonzero coefficient) then µ . λ, where . denote the

dominance order: µ . λ iff µ− λ =
∑n−1
i=1 ai(εi − εi+1) for some a1, . . . , an−1 ∈

Z≥0. We also note here that for any µ, ν ∈ Zn, the number of λ ∈ Zn with
µ . λ . ν is finite.

A KP filtration of a weight b-module M is a sequence 0 = M0 ⊂ · · · ⊂
Mr = M of weight b-modules such that each Mi/Mi−1 is isomorphic to some
KP module Sλ(i) (λ(i) ∈ Zn). Note that if M has a KP filtration then ch(M) is
a positive sum of Schubert polynomials Sλ (λ ∈ Zn).

1.3 Highest weight categories

In this subsection we prepare definitions and some basic facts about highest
weight categories. Some of them appear in references such as [4], [20] and
[5, Appendix], but we also give proofs for them to adapt to our settings and
to ensure self-containedness since the formulations of highest weight categories
and their properties vary with references.

Our proof for the criterion for the existence of standard filtrations is along the
way in [23, Theorem 3.2.7]. Our treatment of tilting objects and Ringel duality
mostly follows [5, Appendix], with some minor changes and improvements on
the arguments.

Definition 1.3.1. Let C be an abelian K-category with enough projectives and
injectives, such that every object has finite length. Let Λ = (Λ,≤) be a finite
poset indexing the simple objects {L(λ) : λ ∈ Λ} in C (called the weight poset).
Moreover, assume that a family of objects {∆(λ) : λ ∈ Λ} called standard
objects is given. Then C = (C,Λ, {∆(λ)}) is called a highest weight category if
the following axioms hold:

(1) HomC(∆(λ),∆(µ)) = 0 unless λ ≤ µ.

(2) EndC(∆(λ)) ∼= K.

(3) Let P (λ) denote the projective cover of L(λ). Then there exists a surjec-
tion P (λ) � ∆(λ) such that its kernel admits a filtration whose successive
quotients are of the form ∆(ν) (ν > λ).

In the following let C be a highest weight category, Λ be its weight poset,
and L(λ), P (λ), Q(λ) and ∆(λ) stand for the simple, projective, injective and
standard objects respectively. Also, let ∇(λ) denote the costandard objects, i.e.
∇(λ) is the injective hull of L(λ) in C≤λ. We denote the head and socle of an
object M ∈ C by hdM and socM respectively.

For an order ideal Λ′ ⊂ Λ we denote by CΛ′ the full subcategory of C consist-
ing of the objects such that its simple constituents are L(λ) (λ ∈ Λ′). We denote
C≤λ etc. to mean C{µ:µ≤λ} etc. For M ∈ C let MΛ′ be the largest quotient of

M which is in CΛ′ , and write M≤λ etc. to mean M{µ:µ≤λ} etc.
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Remark 1.3.2. Ker(M � MΛ′) does not have any L(λ) (λ ∈ Λ′) as its quo-
tient: if Ker(M � MΛ′)/N ∼= L(λ) is such a quotient, then M/N would be a
quotient of M , its simple constituents are L(ν) (ν ∈ Λ′), and it is strictly larger
than MΛ′ : these contradict to the definition of MΛ′ .

For an M ∈ C and λ ∈ Λ let (M : L(λ)) denote the number of times
L(λ) appears in the simple constituents of M . It can be easily seen that
dim Hom(P (λ),M) = (M : L(λ)) dim Hom(P (λ), L(λ)).

1.3.1 Basic Facts

Lemma 1.3.3. There is a surjection ∆(λ) � L(λ) such that the simple con-
stituents of the kernel are of the form L(µ) (µ < λ).

Proof. First we show that (∆(λ) : L(µ)) 6= 0 implies µ ≤ λ. Assume (∆(λ) :
L(µ)) 6= 0. This means Hom(P (µ),∆(λ)) 6= 0. Since P (µ) has a filtration by
∆(ν) (ν ≥ µ) it follows that Hom(∆(ν),∆(λ)) 6= 0 for some ν ≥ µ. Thus
µ ≤ ν ≤ λ.

Next we see (∆(λ) : L(λ)) = 1. Since Ker(P (λ) � ∆(λ)) has a filtra-
tion by ∆(ν) (ν > λ) we see that Hom(Ker(P (λ) � ∆(λ)),∆(λ)) = 0. Thus
we have an exact sequence 0 → Hom(∆(λ),∆(λ)) → Hom(P (λ),∆(λ)) →
Hom(Ker(P (λ) � ∆(λ)),∆(λ)) = 0 and thus Hom(P (λ),∆(λ)) ∼= End(∆(λ)) ∼=
K. Therefore (∆(λ) : L(λ)) = 1.

Finally we show that L(λ) is a quotient of ∆(λ). Since (∆(λ) : L(λ)) = 1,
there exists an N ⊂ ∆(λ) and a surjection f : N � L(λ). By the projec-
tivity of P (λ), the surjection π : P (λ) � L(λ) factors as π = fg for some
g : P (λ) → N . The composition P (λ) → N ↪→ ∆(λ) is nonzero and thus must
be a nonzero multiple of the surjection P (λ) � ∆(λ) since as we saw above
Hom(P (λ),∆(λ)) ∼= K. But the image of the composition map above is N , so
we get N = ∆(λ). Thus the claim follows.

By the lemma above ∆(λ) ∈ CΛ′ for any order ideal Λ′ containing λ. Also
from the proof we see Hom(P (λ), L(λ)) ∼= K.

Lemma 1.3.4. Hom(∆(λ), L(µ)) = 0 for µ 6= λ and Hom(∆(λ), L(λ)) ∼= K.
Thus in particular hd ∆(λ) ∼= L(λ).

Proof. This can be easily seen from the exact sequence 0→ Hom(∆(λ), L(µ))→
Hom(P (λ), L(µ)) since the last term is 0 for µ 6= λ and K for µ = λ.

1.3.2 Projectivities of Standard objects

Lemma 1.3.5. Ext1(∆(λ), L(µ)) 6= 0 implies λ < µ. So ∆(λ) is projective in
CΛ′ for any order ideal Λ′ which contains λ as a maximal element.

Because the simple constituents of ∆(µ) are L(ν) (ν ≤ µ) we get as a corol-
lary:

Corollary 1.3.6. Ext1(∆(λ),∆(µ)) 6= 0 implies λ < µ. �

Proof of the Lemma 1.3.5. Assume Ext1(∆(λ), L(µ)) 6= 0. LetM = Ker(P (λ) �
∆(λ)), soM has a filtration by ∆(ν) (ν > λ). By the exact sequence Hom(M,L(µ))→
Ext1(∆(λ), L(µ))→ Ext1(P (λ), L(µ)) = 0 we see that Hom(M,L(µ)) 6= 0. This
implies that Hom(∆(ν), L(µ)) 6= 0 for some ν > λ. So µ = ν > λ by Lemma
1.3.4.
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Since hd ∆(λ) ∼= L(λ) by Lemma 1.3.4 we get:

Proposition 1.3.7. Let Λ′ ⊂ Λ be a finite order ideal and let λ ∈ Λ′ be a
maximal element. Then ∆(λ) � L(λ) is a projective cover in CΛ′ (so ∆(λ) ∼=
P (λ)Λ′). �

1.3.3 Hom and Ext between Standard and Costandard Objects

Proposition 1.3.8. Exti(∆(λ),∇(µ)) ∼= K iff λ = µ and i = 0, and otherwise
0.

Proof. We have an exact sequence 0→ Hom(L(λ),∇(λ))→ Hom(∆(λ),∇(λ))→
Hom(Ker(∆(λ) � L(λ)),∇(λ)). Here the simple constituents of the kernel are
L(ν) (ν < λ), and Hom(L(ν),∇(λ)) = 0 for ν < λ since soc∇(λ) ∼= L(λ).
Thus the last term of the sequence above vanishes. Also, Hom(L(λ),∇(λ)) ∼=
End(L(λ)) ∼= Hom(P (λ), L(λ)) ∼= K since soc∇(λ) ∼= L(λ) and hdP (λ) ∼= L(λ).
Thus Hom(∆(λ),∇(λ)) ∼= K.

We show the vanishings of the other extensions.

• i = 0: Hom(∆(λ),∇(µ)) 6= 0 implies that Hom(L(ν),∇(µ)) 6= 0 for
some ν ≤ λ. But since soc∇(µ) ∼= L(µ) this means that µ = ν ≤
λ. Thus Hom(∆(λ),∇(µ)) 6= 0 implies µ ≤ λ. By the same argu-
ment (using hd ∆(λ) ∼= L(λ) instead of soc∇(µ) ∼= L(µ)) we see that
Hom(∆(λ),∇(µ)) 6= 0 also implies µ ≥ λ. Thus Hom(∆(λ),∇(µ)) 6= 0
implies λ = µ.

• i = 1: Note that Ext1 = Ext1
CΛ′ for any Λ′ since CΛ′ is closed under

extensions. If λ ≤ µ then ∆(λ) ∈ C≤µ and thus Ext1(∆(λ),∇(µ)) =
Ext1

C≤µ(∆(λ),∇(µ)) = 0 by the injectivity of ∇(µ) ∈ C≤µ. Otherwise

∇(µ) ∈ C6>λ and thus Ext1(∆(λ),∇(µ)) = Ext1
C6>λ(∆(λ),∇(µ)) = 0 by the

projectivity of ∆(λ) ∈ C6>λ.

• i ≥ 2 : Follows from the exact sequence 0 = Exti−1(P (λ),∇(µ)) →
Exti−1(Ker(P (λ) � ∆(λ)),∇(µ))→ Exti(∆(λ),∇(µ))→ Exti(P (λ),∇(µ)) =
0 and the downward induction on λ.

Since Hom(P (λ),∇(λ)) = Hom(P (λ)≤λ,∇(λ)) = Hom(∆(λ),∇(λ)) ∼= K we
see that (∇(λ) : L(λ)) = 1.

1.3.4 Standard Filtration

Definition 1.3.9. A standard (resp. costandard) filtration of an object M is
a filtration 0 = M0 ⊂ M1 ⊂ · · · ⊂ Mr = M such that each of its successive
quotients Mi/Mi−1 are isomorphic to standard (resp. costandard) objects. Let
C∆ denote the full subcategory of the objects having standard filtrations.

Proposition 1.3.10. For M ∈ C having a standard (resp. costandard) filtra-
tion, the number of times ∆(λ) (resp. ∇(λ)) appears in (any) standard (resp. co-
standard) filtration of M is given by dim Hom(M,∇(λ)) (resp. dim Hom(∆(λ),M)).
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Proof. This is immediate from Proposition 1.3.8.

For an M having a standard filtration let (M : ∆(λ)) denote the number of
times ∆(λ) appears in a standard filtration of M (which does not depend on a
choice of filtration by the proposition above).

Proposition 1.3.11. Let Λ′ ⊂ Λ be an order ideal and let λ ∈ Λ′ be a maximal
element. Then for M ∈ C∆, Ker(MΛ′ �MΛ′r{λ}) is a direct sum of copies of
∆(λ).

Note that the proposition in particular implies thatMΛ′ and Ker(M �MΛ′)
have standard filtrations for any order ideal Λ′ ⊂ Λ, or more generally, for any
order ideals Λ′′ ⊂ Λ′ ⊂ Λ, Ker(MΛ′ � MΛ′′) has a standard filtration. Note
also that (Ker(MΛ′ � MΛ′′) : ∆(λ)) = (M : ∆(λ)) for λ ∈ Λ′ r Λ′′ and 0
otherwise.

Proof. First note that the head of Ker(MΛ′ � MΛ′r{λ}) is a direct sum of
copies of L(λ) by Remark 1.3.2. Thus the projective cover, in CΛ′ , of this head
is a direct sum of some copies of ∆(λ). So it suffices to show that Ker(MΛ′ �
MΛ′r{λ}) is also a projective cover of hd Ker(MΛ′ �MΛ′r{λ}), i.e. Ker(MΛ′ �
MΛ′r{λ}) is projective in CΛ′ .

Let M ′ = MΛ′ , M ′′ = MΛ′r{λ} and N = Ker(M ′ � M ′′). We want
to show that Ext1(N,L(µ)) vanish for all µ ∈ Λ′. We have exact sequences
Hom(N,∇(µ)/L(µ)) → Ext1(N,L(µ)) → Ext1(N,∇(µ)), Ext1(M ′,∇(µ)) →
Ext1(N,∇(µ))→ Ext2(M ′′,∇(µ)) and Hom(Ker(M �M ′),∇(µ))→ Ext1(M ′,∇(µ))→
Ext1(M,∇(µ)). Here

• Ext1(M,∇(µ)) vanishes by Proposition 1.3.8.

• Ext2(M ′′,∇(µ)) vanishes by Proposition 1.3.8, since M ′′ has a standard
filtration by induction on |Λ′|.

• Hom(N,∇(µ)/L(µ)) and Hom(Ker(M �M ′),∇(µ)) vanishes by Remark
1.3.2 since the simple constituents of ∇(µ)/L(µ) (resp. ∇(µ)) are L(ν)
(ν < µ (resp. ν ≤ µ)).

And thus Ext1(N,L(µ)) = 0 as desired.

From the proof of Proposition 1.3.11 we get the following corollary:

Corollary 1.3.12. M ∈ C has a standard filtration if and only if Ext1(M,∇(λ)) =
0 for all λ ∈ Λ. �

By Proposition 1.3.8 and Corollary 1.3.12 we get the followings.

Corollary 1.3.13. (1) If M ∈ C has a standard filtration then so do its direct
summands.

(2) If 0→ L→M → N → 0 is an exact sequence in C and M,N ∈ C∆, then
L ∈ C∆.

Proof. (1):This is clear since ifM = M ′⊕M ′′ then Ext1(M,∇(λ)) ∼= Ext1(M ′,∇(λ))⊕
Ext1(M ′′,∇(λ)).

(2):By Proposition 1.3.8 we have Ext1(M,∇(λ)) = 0 and Ext2(N,∇(λ)) = 0
for any λ ∈ Λ. Thus by the exact sequence Ext1(M,∇(λ))→ Ext1(L,∇(λ))→
Ext2(N,∇(λ)) we see Ext1(L,∇(λ)) = 0. Thus by Corollary 1.3.12 we see
L ∈ C∆.
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1.3.5 Tilting Objects

Definition 1.3.14. An object T ∈ C is called a tilting or a tilting object if it
has a standard filtration and Ext1(∆(λ), T ) = 0 for all λ ∈ Λ.

Note that if T is a tilting then so are its direct summands, because T ∈ C is
a tilting if and only if Ext1(T,∇(λ)) and Ext1(∆(λ), T ) vanish for all λ.

For M ∈ C∆, define suppM ⊂ Λ as the order ideal of Λ generated by all λ
such that (M : ∆(λ)) 6= 0. For an X ⊂ Λ let X◦ be the set of all non-maximal
elements in X.

Lemma 1.3.15. Let M ∈ C∆. Then there is a tilting T and an injection
M ↪→ T such that suppT = suppM , T/M ∈ C∆ and supp(T/M) ⊂ (suppM)◦.

Proof. For an M ∈ C∆, define def M ⊂ Λ, the defect of M , to be the order ideal
of Λ generated by {λ ∈ Λ : Ext1(∆(λ),M) 6= 0}. Note that M ∈ C∆ is a tilting
if and only if def M = ∅.

If def M = ∅ then we are done. Assume def M 6= ∅. We embed M into an
M̃ ∈ C∆ with strictly smaller defect.

Take a maximal element λ ∈ def M . Then Ext1(∆(λ),M) 6= 0, and thus
there exists a nonsplit exact sequence 0 → M → M1 → ∆(λ) → 0. As-
sume Ext1(∆(µ),M1) 6= 0 for some µ ∈ Λ. Since there is an exact sequence
Ext1(∆(µ),M) → Ext1(∆(µ),M1) → Ext1(∆(µ),∆(λ)) it follows that either
Ext1(∆(µ),M) 6= 0 or Ext1(∆(µ),∆(λ)) 6= 0. The first one implies µ ∈ def M ,
while the second one implies µ < λ by Corollary 1.3.6. The latter case im-
plies µ ∈ def M and thus µ ∈ def M in either case. This shows def M1 ⊂
def M . Moreover we claim that dim Ext1(∆(λ),M1) < dim Ext1(∆(λ),M).
In fact, we have an exact sequence Hom(∆(λ),M1) → Hom(∆(λ),∆(λ)) →
Ext1(∆(λ),M) → Ext1(∆(λ),M1) → Ext1(∆(λ),∆(λ)) where the last term is
zero by Corollary 1.3.6. But here Hom(∆(λ),M1) → Hom(∆(λ),∆(λ)) is a
zero map: otherwise we would have a morphism ∆(λ) → M1 such that the
composition ∆(λ) → M1 � ∆(λ) is nonzero and thus an isomorphism (since
End(∆(λ)) ∼= K), which contradicts to the assumption that M1 � ∆(λ) is non-
split. Thus we have an exact sequence 0 → End(∆(λ)) → Ext1(∆(λ),M) →
Ext1(∆(λ),M1)→ 0 and this shows the claim.

Repeating the construction above we have an M̃ ∈ C∆ and M ↪→ M̃ such
that def M̃ ⊂ def M r {λ}. Repeating again we get an embedding M ↪→ T into
a tilting. It is clear from the construction that T/M ∈ C∆.

We claim that supp(T/M) ⊂ (suppM)◦. By the construction it suffices
to show that def M ⊂ (suppM)◦. Assume Ext1(∆(λ),M) 6= 0 for some λ.
Then Ext1(∆(λ),∆(µ)) 6= 0 for some µ ∈ suppM . Since λ < µ by Corollary
1.3.6, this shows that λ is a non-maximal element in suppM . This shows the
claim.

By the lemma there is an embedding ∆(λ) ↪→ T such that T is a tilting,
suppT = {µ : µ ≤ λ} and (T : ∆(λ)) = 1. So there is an indecomposable
summand T (λ) of T such that (T (λ) : ∆(λ)) = 1. By Proposition 1.3.11 we see
that there in fact is an embedding ∆(λ) ↪→ T (λ) such that T (λ)/∆(λ) has a
standard filtration.

Note that λ can be recovered from T (λ) as the unique maximal element in
suppT (λ): in particular T (λ) 6∼= T (µ) if λ 6= µ.
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Lemma 1.3.16. Every tilting is a direct sum of the objects T (λ).

Proof. Let T 6= 0 be a tilting. Take a maximal element λ ∈ suppT . We show
that there is a split surjection T � T (λ): this inductively shows the claim.

By the maximality of λ we see (T : ∆(λ)) 6= 0. This implies, by Proposition
1.3.11 and the maximality of λ, that there is an injection ∆(λ) ↪→ T with
cokernel T/∆(λ) having a standard filtration. We name the morphisms ∆(λ) ↪→
T (λ) and ∆(λ) ↪→ T as f and g respectively.

We have exact sequences Hom(T, T (λ))→ Hom(∆(λ), T (λ))→ Ext1(T/∆(λ), T (λ)) =
0 and Hom(T (λ), T )→ Hom(∆(λ), T )→ Ext1(T (λ)/∆(λ), T ) = 0. Thus there
are morphisms h : T → T (λ) and k : T (λ) → T such that f = hg and g = kf .
Then f = (hk)nf for any n ≥ 0, and thus hk ∈ End(T (λ)) is not nilpotent.
Then by Fitting’s lemma hk is an isomorphism. Thus h is a split surjection, as
desired.

Also, repeated use of Lemma 1.3.15 shows the following:

Lemma 1.3.17. Any M ∈ C∆ has a finite resolution 0 → M → T0 → · · · →
Tr → 0 by tiltings. �

1.3.6 Ringel Duality

Let us fix a tilting object T such that every indecomposable tilting occurs at
least once as its direct summand (such an object is called a full tilting). Let
C∨ be the category of all finite-dimensional left End(T )-modules. Let F =
Hom(−, T ) : C → (C∨)op.

Note that, since Ext1(N,T ) = 0 for N ∈ C∆, the functor F is exact on C∆,
that is, it maps an exact sequence 0 → L → M → N → 0 with L,M,N ∈ C∆

to an exact sequence 0 → FN → FM → FL → 0. This observation implies
a more general consequence: suppose that there is an exact sequence · · · →
M1 → M0 → 0 in C∆ bounded from right. Then Corollary 1.3.13 implies that
Ker(M1 →M0) ∈ C∆ and thus we can work inductively to see that 0→ FM0 →
FM1 → · · · is exact.

Lemma 1.3.18. For any M ∈ C and any tilting T ′, the map HomC(M,T ′) →
HomC∨(FT ′, FM) induced from F is an isomorphism.

Proof. For T ′ = T it is clear. For a general case, it can be seen from the fact
that T ′ appears as a direct summand of some T⊕m (m� 0).

Lemma 1.3.19. The indecomposable projectives in C∨ are given by FT (λ) (λ ∈
Λ).

Proof. Since End(T ) is, as a left End(T )-module, a direct sum of the modules
of the form FT (λ) (λ ∈ Λ), it suffices to show that they are indeed indecom-
posable. By the previous lemma End(FT (λ)) ∼= End(T (λ)), and since T (λ) is
indecomposable End(T (λ)) contains no idempotents. Thus FT (λ) is indecom-
posable.

Proposition 1.3.20. For M,N ∈ C∆ and any i ≥ 0, Exti(M,N) ∼= Exti(FN,FM).
For i = 0 this isomorphism is equal to the map induced from F , and for i = 1
this isomorphism is equal to the map [0→ N → X → M → 0] 7→ [0→ FM →
FX → FN → 0] where these exact sequences are seen as elements in certain
Ext1 groups.
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Proof. Take a finite tilting resolution 0 → N → T0 → · · · → Tr → 0 of N
which exists by Lemma 1.3.17. Then 0 → FTr → · · · → FT0 → FN → 0 is
a projective resolution since F is exact on C∆ and FTi are projective. By the
same argument as in [24, Theorem 2.7.6] we see (since Hom(−, Ti) are exact on
C∆) that Exti(M,N) is the i-th cohomology of the complex Hom(M,T•). On
the other hand, Exti(FN,FM) is the i-th cohomology of Hom(FT•, FM). By
Lemma 1.3.18 the map induced from F gives an isomorphism between these
two complexes and thus the first claim follows. The latter claim for i = 0 also
follows from this argument.

Recall the correspondence from extensions to Ext group ([1, §A.5]): for a
projective resolution · · · → P1 → P0 → M → 0, there always exist f : P1 → N
and g : P0 → X such that

P1 −−−−→ P0 −−−−→ M −−−−→ 0yf yg ∥∥∥
0 −−−−→ N −−−−→ X −−−−→ M −−−−→ 0

commutes, and then the element [0 → N → X → M → 0] ∈ Ext1(M,N)
is given by taking the class of f ∈ Hom(P1, N). Chasing the double-complex
argument above we see that the correspondence can also be obtained by taking
h : X → T0 and k : M → T1 such that

0 −−−−→ N −−−−→ X −−−−→ M −−−−→ 0∥∥∥ yh yk
0 −−−−→ N −−−−→ T0 −−−−→ T1

commute and taking the class of k ∈ Hom(M,T1). Applying F to the diagram
above we get

0 ←−−−− FN ←−−−− FX ←−−−− FM ←−−−− 0∥∥∥ xFh xFk
0 ←−−−− FN ←−−−− FT0 ←−−−− FT1

with rows exact and FT0, FT1 projective. Thus [0 → FM → FX → FN →
0] ∈ Ext1(FN,FM) is equal to the class of Fk ∈ Hom(FT1, FM) and this
shows the claim.

Proposition 1.3.21. C∨ is a highest weight category with weight poset Λop, the
opposite poset of Λ, and standard objects {F∆(λ)}.

Proof. Since Hom(F∆(λ), F∆(µ)) ∼= Hom(∆(µ),∆(λ)) the first two axioms are
clear.

We have an exact sequence 0→ ∆(λ)→ T (λ)→M → 0 such that M has a
filtration by ∆(µ) (µ < λ). Applying F we get an exact sequence 0 → FM →
FT (λ) → F∆(λ) → 0 with FM having a filtration by F∆(µ) (µ < λ). This
checks the last axiom.

Proposition 1.3.22. F restricts to a contravariant equivalence between C∆ and
(C∨)∆.
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Proof. We saw that F |C∆ is fully faithful and thus it suffices to show the
essential-surjectivity: i.e. we want to show that for any N ∈ (C∨)∆ there exists
an M ∈ C∆ such that FM ∼= N . This follows by the induction on the length of
N ∈ (C∨)∆: if 0 → N ′ → N → N ′′ → 0 is an exact sequence with N ′ ∼= FM ′

and N ′′ ∼= FM ′′ (M ′,M ′′ ∈ C∆), then since Ext1(N ′′, N ′) ∼= Ext1(M ′,M ′′)
there is an exact sequence 0 → M ′′ → M → M ′ → 0 mapped to the above
sequence under F , and in particular N ∼= FM .
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2 Kraśkiewicz-Pragacz modules and highest weight
categories

In this section, we define a struture of highest weight category on the category
of b-modules so that the standard objects are KP modules. This enables us to
derive a criterion for a b-module to have KP filtrations in terms of Ext groups
with costandard objects in this category, which turn out to be the linear duals of
KP modules shifted by some weight. From this it also follows that the category
of modules having KP filtrations is closed under taking direct sum components
as well as the kernels of surjections.

2.1 Presentation of KP modules by generators and rela-
tions

For w ∈ S(n)
∞ and 1 ≤ i < j ≤ n, let Cij(w) = {k : (i, k) 6∈ I(w), (j, k) ∈ I(w)} =

{k : k > j,w(i) < w(k) < w(j)} and let mij(w) = |Cij(w)| = #{k > j : w(i) <

w(k) < w(j)} (in particular, mij(w) = 0 if w(i) > w(j)). Since e2
iju

(k)
w = 0 for

k ∈ Cij(w) and eiju
(k)
w = 0 for k 6∈ Cij(w), we see that e

mij(w)+1
ij annihilates

uw = u
(1)
w ⊗ u

(2)
w ⊗ · · · . Let Iw denote the left ideal of U(b) generated by

h− 〈code(w), h〉 (h ∈ h) and e
mij(w)+1
ij (i < j). Then, by the observation above

and the fact that uw has weight code(w), there is a unique surjective morphism
of U(b)-modules from U(b)/Iw to Sw sending 1 mod Iw to uw. The main result
in this subsection is the following:

Theorem 2.1.1. The surjection U(b)/Iw � Sw above is an isomorphism.

Remark 2.1.2. It is also possible to define uD and SD for a general finite
subset D ⊂ {1, . . . , n} × Z>0 as in the same way we defined KP modules (SD
is often called the flagged Schur module associated to D, see eg. [16, §7]; the
equivalence of the definition there and our definition can be checked by the same
argument as in [11, Remark 1.6]). Again in this setting, if we let mij(D) = #{k :

(i, k) 6∈ D, (j, k) ∈ D} and λi = #{k : (i, k) ∈ D}, then e
mij(D)+1
ij (i < j) and

h − 〈λ, h〉 (h ∈ h) annihilate uD, and therefore we have a surjective morphism
U(b)/ID � SD where ID is the left ideal generated by these elements. But
this is not an isomorphism for general D: for example, if D = {(2, 1), (3, 2)},
then ch(U(b)/ID) = x2x3 + x1x3 + x2

2 + 2x1x2 + x2
1 + x1x

2
2x
−1
3 while ch(SD) =

x2x3 + x1x3 + x2
2 + 2x1x2 + x2

1.

The theorem can be reduced to the following lemma, which will be proved
below:

Lemma 2.1.3. Let w ∈ S(n)
∞ r {id} and take j, i1, . . . , iA and v, w(1), . . . , w(A)

as in Proposition 1.1.2. Let xa = e
miaj(v)+1
iaj

for a = 1, . . . , A. Let I(0) = Iw

and I(a) = I(a−1) + U(b)xa for a = 1, . . . , A. Also let I ′v be the left ideal of

U(b) generated by h−〈code(w), h〉 = h−〈code(v) + εj , h〉 (h ∈ h) and e
mij(v)+1
ij

(i < j), so U(b)/I ′v
∼= U(b)/Iv ⊗Kεj . Then I ′v ⊂ I(A) and Iw(a)xa ⊂ I(a−1) for

a = 1, . . . , A.

Here first we prove Theorem 2.1.1 assuming Lemma 2.1.3. Let dw = dimU(b)/Iw.
The conclusion of Lemma 2.1.3 claims that there exist surjective morphisms
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U(b)/Iv ⊗ Kεj
∼= U(b)/I ′v � U(b)/I(A) : (x mod I ′v) 7→ (x mod I(A)) and

U(b)/Iw(a) � I(a)/I(a−1) : (x mod Iw(a)) 7→ (xxa mod I(a−1)) (note that xxa ∈
I(a) since xa ∈ I(a)). Thus U(b)/Iw = U(b)/I(0) has a quotient filtration
U(b)/I(0) � U(b)/I(1) � · · · � U(b)/I(A) � 0 with each subquotient being a
quotient of U(b)/Iw(1) , · · · ,U(b)/Iw(A) and U(b)/Iv ⊗Kεj respectively. There-
fore dw ≤ dw(1) + · · · + dw(A) + dv. So, by Proposition 1.1.2 and induction on
the lexicographic ordering of (`(w),Sw(1)), we see that dw ≤ Sw(1) hold for
any w. But on the other hand, we have a surjection U(b)/Iw � Sw and thus
dw ≥ dimSw = Sw(1). Thus dw = Sw(1) and the surjection above must be an
isomorphism. This completes the proof of Theorem 2.1.1.

The rest of this subsection is dedicated to the proof of Lemma 2.1.3.

Proof of Lemma 2.1.3. Throughout this proof, let w ∈ S
(n)
∞ r {id} and take

j, i1, . . . , iA, v, w(1), . . . , w(A) as in Proposition 1.1.2. Take x1, . . . , xA and I(0), . . . , I(A)

as in Lemma 2.1.3. Let mpq = mpq(v) for 1 ≤ p < q ≤ n. For x, y, . . . , z ∈ U(b),
let 〈x, y, . . . , z〉 denote the left ideal of U(b) generated by x, y, . . . , z.

To make the calculations simple, we use the following basic fact from the
representation theory of semisimple Lie algebras:

Proposition 2.1.4. Let n+
3 = Ke12 ⊕ Ke13 ⊕ Ke23 be the Lie algebra of all

3× 3 strictly upper triangular matrices which acts on K3 = Ku1 ⊕Ku2 ⊕Ku3

and
∧2

K3 = K(u1 ∧u2)⊕K(u1 ∧u3)⊕K(u2 ∧u3) in the usual way. Then for

a, b ≥ 0, the U(n+
3 )-module generated by (u2 ∧ u3)a⊗ ub3 ∈ Sa(

∧2
K3)⊗Sb(K3)

(S• denotes the symmetric product) is isomorphic to U(n+
3 )/Ia,b where Ia,b is

the left ideal of U(n+
3 ) generated by ea+1

12 and eb+1
23 .

Proof. First note that (u2 ∧ u3)a ⊗ ub3 is a lowest weight vector of an irre-
ducible representation of sl3: i.e. U(n+

3 )((u2 ∧ u3)a ⊗ ub3) is an irreducible rep-
resentation of sl3. Thus the claim is merely a well-known fact that a finite-
dimensional irreducible representation V (λ), with lowest weight λ, of a finite-
dimensional semisimple Lie algebra g with simple root system ∆ and upper-

triangular part n+ is isomorphic to U(n+)/〈e〈λ,hα〉+1
α 〉α∈∆ as U(n+)-modules

([8, Theorem 21.4]).

From this proposition, we have the following:

Lemma 2.1.5. Let f(x, y, z) be a polynomial (in non-commutative variables)
and let a, b ≥ 0. If f(e12, e13, e23)((u2 ∧ u3)a ⊗ ub3) = 0, then for 1 ≤ p < q <
r ≤ n, f(epq, epr, eqr) ∈ 〈ea+1

pq , eb+1
qr 〉.

Proof. From Proposition 2.1.4 we have f(e12, e13, e23) ∈ U(n+
3 )ea+1

12 +U(n+
3 )eb+1

23 ,
i.e. f(e12, e13, e23) = g(e12, e13, e23)ea+1

12 + h(e12, e13, e23)eb+1
23 for some g and h.

Then f(epq, epr, eqr) = g(epq, epr, eqr)e
a+1
pq + h(epq, epr, eqr)e

b+1
qr ∈ 〈ea+1

pq , eb+1
qr 〉.

With this lemma in hand, it is easy to prove the following:

Lemma 2.1.6. For 1 ≤ p < q < r ≤ n and N,M,N ′,M ′ ≥ 0,

(1) eNpre
M
qr ≡ 0 (mod 〈eN ′+1

pq , eM
′+1

qr 〉) if N +M > N ′ +M ′.

(2) eNpqe
M
pr ≡ 0 (mod 〈eN ′+1

pq , eM
′+1

qr 〉) if N +M > N ′ +M ′.
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(3) eNpr ≡
(−1)N

N ! eNqre
N
pq (mod 〈eM+1

pq , eqr〉) (and in fact mod 〈eqr〉, although we
do not need it here).

(4) eNpr ≡ 1
N !e

N
pqe

N
qr (mod 〈epq, eM+1

qr 〉) (and mod 〈epq〉: we do not need it
here).

(5) eN+M+1
pq eMqr ≡ 0 (mod 〈eN+1

pq , eM+1
qr 〉).

(6) eNpqe
M
qr ≡ 0 (mod 〈epq, eNpr, eM+1

qr 〉).

Proof. (1)-(5) follows from straightforward calculations checking the condition
of Lemma 2.1.5. (6) also follows from Lemma 2.1.5, since eN12e

M
23u

M
3 = (const.) ·

uN1 u
M−N
2 = (const.) · eM−N23 eN13u

M
3 so eNpqe

M
qr − (const.) · eM−Nqr eNpr ∈ 〈epq, eM+1

qr 〉.

Let us move on to the proof of Lemma 2.1.3. First we prove I ′v ⊂ I(A).

Since h − 〈code(w), h〉 ∈ Iw ⊂ I(A), it suffices to show e
mpq+1
pq ∈ I(A) for all

1 ≤ p < q ≤ n. If q 6= j, we have mpq = mpq(w) so e
mpq+1
pq ∈ Iw ⊂ I(A). If

q = j and v(p) > v(j), then mpq = 0 = mpq(w) (note that, by the choice of
k, there does not exist r > j such that w(k) < w(r) < w(j)), and thus again

e
mpq+1
pq ∈ Iw ⊂ I(A). If q = j and p = ia, we have e

miaj+1
iaj

= xa ∈ I(a) ⊂ I(A).
Otherwise (i.e. if q = j, v(p) < v(j) and p 6= i1, . . . , iA), the conclusion follows
from the following lemma:

Lemma 2.1.7. Let p < j, v(p) < v(j) and p 6= i1, . . . , iA. Then

(1) There exists some a ∈ {1, . . . , A} such that v(ia) > v(p).

(2) Let a ∈ {1, . . . , A} be the maximal index such that v(ia) > v(p). Then

e
mpj+1
pj ∈ I(a).

Proof. (1): By the assumptions we have `(vtpj) > `(v)+1, and thus there exists
an i such that p < i < j and v(p) < v(i) < v(j). Take i to be maximal among
such. Then there does not exist i′ such that i < i′ < j and v(i) < v(i′) < v(j),
and thus `(vtij) = `(v) + 1. Therefore i is in {i1, . . . , iA}. This shows (1) since
v(i) > v(p).

(2): Let i = ia. Note that i > p by the argument in (1). First we claim that
there exists no r such that i < r < j and v(p) < v(r) < v(i). Suppose such r
exists. Take r to be maximal among such. Then by the same argument as in
(1) we see that r is in {i1, . . . , iA}, and since r > i we have r = ib for some
b > a. This contradicts to the choice of a.

From the claim we see mpi = #{r > i : v(p) < v(r) < v(i)} = #{r >
j : v(p) < v(r) < v(i)} = mpj − mij . So by Lemma 2.1.6(1), e

mpj+1
pj ∈

〈empi+1
pi , e

mij+1
ij 〉. Since e

mpi+1
pi ∈ Iw ⊂ I(a) and e

mij+1
ij = xa ∈ I(a) we are

done.

Let us now prove Iw(a)xa ⊂ I(a−1) (a = 1, . . . , A). Fix a ∈ {1, . . . , A} and
let i = ia. We want to prove (h− 〈code(w(a)), h〉)xa ∈ I(a−1) for all h ∈ h and

e
mpq(w

(a))+1
pq xa ∈ I(a−1) for all p < q. We first check (h − 〈code(w(a)), h〉)xa ∈
I(a−1), i.e., the element xa mod I(a−1) ∈ U(b)/I(a−1) has weight code(w(a)). It
is easy to see that code(w(a)) = code(v) + (mij + 1)εi − mijεj = code(w) +
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(mij + 1)(εi − εj). On the other hand, xa mod I(a−1) = e
mij+1
ij mod I(a−1) has

weight code(w) + (mij + 1)(εi − εj) since 1 mod I(a−1) has weight code(w) and
eij shifts the weight by εi − εj . This shows the claim.

We now check e
mpq(w

(a))+1
pq xa = e

mpq(w
(a))+1

pq e
mij+1
ij ∈ I(a−1) for all 1 ≤ p <

q ≤ n, case by case. First note that, by Lemma 2.1.7 and the consideration
before that lemma, e

mpq+1
pq ∈ I(a−1) unless q = j and v(p) ≤ v(i), and in such

case we see e
mpq+2
pq = e

mpq(w)+1
pq ∈ Iw ⊂ I(a−1). Also note that there does not

exist an r such that i < r < j and v(i) < v(r) < v(j), since vtij m v.

• q > j : In this case we have mpq(w
(a)) = 0 = mpq(w), since both w

and w(a) are increasing from (j + 1)-th position and thus there are no

r > q with w(r) < w(q) or w(a)(r) < w(a)(q). If p 6= j, epqe
mij+1
ij =

e
mij+1
ij epq ∈ I(a−1) since epq ∈ I(a−1). If p = j, ejqe

mij+1
ij = e

mij+1
ij ejq −

(mij + 1)e
mij
ij eiq ∈ I(a−1) since ejq, eiq ∈ I(a−1).

• p = i and q = j : Trivial from mij(w
(a)) = 0 and e

mij(w
(a))+1

ij e
mij+1
ij =

e
mij+2
ij ∈ I(a−1).

Hereafter we assume p < q ≤ j and (p, q) 6= (i, j).

• {p, q} ∩ {i, j} = ∅ : If mpq(w
(a)) = mpq the proof is trivial since in this

case e
mpq(w

(a))+1
pq ∈ I(a−1) and e

mpq(w
(a))+1

pq e
mij+1
ij = e

mij+1
ij e

mpq(w
(a))+1

pq .

Consider the case mpq(w
(a)) 6= mpq. Then:

– v(p) < v(q) must hold since otherwise mpq(w
(a)) = 0 = mpq,

– q must be larger than i, since otherwise {w(a)(r) : r > q,w(a)(p) <
w(a)(r) < w(a)(q)} = {v(r) : r > q, v(p) < v(r) < v(q)} because w(a)

and v only differ at i-th and j-th positions, and

– exactly one of v(i) and v(j) must lie between v(p) and v(q) since
otherwise {r > q : w(a)(p) < w(a)(r) < w(a)(q)} = {r > q : v(p) <
v(r) < v(q)}.

Since i < q < j and `(vtij) = `(v) + 1, the case v(p) < v(i) < v(q) < v(j)
cannot occur. So v(i) < v(p) < v(j) < v(q). Then we have p < i by the
same reason. So we have p < i < q < j and v(i) < v(p) < v(j) < v(q).

Here mpq(w
(a)) = mpq − 1. Using the fact that there exists no i < r < j

with v(i) < v(r) < v(j), we obtain miq −mij = #{r > q : v(j) ≤ v(r) <
v(q)} = mpq −mpj .

We have e
mpq
pq e

mij+1
ij ≡ (−1)mij+1

(mij+1)! e
mpq
pq e

mij+1
qj e

mij+1
iq (mod I(a−1)) by Lemma

2.1.6(3) since eqj , e
miq+1
iq ∈ I(a−1). Using [epq, eqj ] = epj and [epq, epj ] =

[eqj , epj ] = 0 we see that the RHS is a linear combination of e
mij+1−ν
qj e

mpq−ν
pq eνpje

mij+1
iq

(ν ≥ 0). Thus it suffices to show that these elements are in I(a−1) for each

ν. If ν > mpj it is clear since [epj , eiq] = 0 and e
mpj+1
pj ∈ I(a−1). Other-

wise, it suffices to show e
mpq−ν
pq e

mij+1
iq ∈ I(a−1) since [epq, epj ] = 0. This
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follows from e
mpq−mpj
pq e

mij+1
iq = e

miq−mij
pq e

mij+1
iq ∈ I(a−1), which can be

deduced from epi, e
miq+1
iq ∈ I(a−1) using Lemma 2.1.6(1).

• p = i : Since i < q < j, the case v(i) < v(q) < v(j) cannot occur. If
v(q) < v(i), we have w(a)(q) < w(a)(i) and thus miq(w

(a)) = 0. Therefore

e
miq(w

(a))+1
iq e

mij+1
ij = eiqe

mij+1
ij = e

mij+1
ij eiq ∈ I(a−1) since eiq ∈ I(a−1).

If v(q) > v(j), then miq(w
(a)) = miq −mij − 1 since {r > q : w(a)(i) <

w(a)(r) < w(a)(q)} = {r > q : v(i) < v(r) < v(q)} r ({r > q : v(i) <
v(r) < v(j)} ∪ {j}) = {r > q : v(i) < v(r) < v(q)} r ({r > j : v(i) <

v(r) < v(j)} ∪ {j}), and so we want to show e
miq−mij
iq e

mij+1
ij ∈ I(a−1).

This follows from Lemma 2.1.6(2) since e
miq+1
iq , eqj ∈ I(a−1).

• q = i : Here we have three cases to consider. If v(p) < v(i), we have
mpi(w

(a)) = mpi + mij + 1 since {r > i : w(a)(p) < w(a)(r) < w(a)(i)} =
{r > i : v(p) < v(r) < v(i)} ∪ {r > i : v(i) < v(r) < v(j)} ∪ {j} =
{r > i : v(p) < v(r) < v(i)} ∪ {r > j : v(i) < v(r) < v(j)} ∪ {j}, and so

we want to show e
mpi+mij+2
pi e

mij+1
ij ∈ I(a−1). This follows from Lemma

2.1.6(5) since e
mpi+1
pi , e

mij+2
ij ∈ I(a−1). If v(i) < v(p) < v(j), we have

mpi(w
(a)) = mpj since {r > i : w(a)(p) < w(a)(r) < w(a)(i)} = {r > i :

v(p) < v(r) < v(j)} = {r > j : v(p) < v(r) < v(j)} and so we want

to show e
mpj+1
pi e

mij+1
ij ∈ I(a−1). This follows from Lemma 2.1.6(6) since

epi, e
mij+2
ij , e

mpj+1
pj ∈ I(a−1). Finally if v(p) > v(j), we have w(a)(p) >

w(a)(i), mpi(w
(a)) = 0 and so we want to show epie

mij+1
ij ∈ I(a−1). This

follows from epie
mij+1
ij = e

mij+1
ij epi+(mij+1)e

mij
ij epj and epi, epj ∈ I(a−1).

• q = j : This case consists of four subcases (note that the case p > i and
v(i) < v(p) < v(j) does not occur):

– p < i and v(p) < v(i) : Here mpj(w
(a)) = mpj −mij since {r > j :

w(a)(p) < w(a)(r) < w(a)(j)} = {r > j : v(p) < v(r) < v(j)} r {r >
j : v(i) < v(r) < v(j)}. So we want to show e

mpj−mij+1
pj e

mij+1
ij ∈

I(a−1). If there is no r such that i < r < j and v(p) < v(r) < v(i),

then mpi = mpj−mij , and thus e
mpj−mij+1
pj e

mij+1
ij = e

mpi+1
pj e

mij+1
ij ∈

I(a−1) by Lemma 2.1.6(1) since e
mpi+1
pi , e

mij+2
ij ∈ I(a−1). If there

exists such r, take r to be the largest among such ones. Then mpr =
mpj −mrj , since there exists no s such that r < s < j and v(p) <

v(s) < v(r). By eir, e
mrj+2
rj ∈ I(a−1) and Lemma 2.1.6(4), we have

e
mpj−mij+1
pj e

mij+1
ij ≡ 1

(mij+1)!e
mpj−mij+1
pj e

mij+1
ir e

mij+1
rj (mod I(a−1)).

Since the elements e
mpr+1
pr = e

mpj−mrj+1
pr and e

mrj+2
rj are in I(a−1)

we see from Lemma 2.1.6(1) that e
mpj−mij+1
pj e

mij+1
rj ∈ I(a−1). Thus

e
mpj−mij+1
pj e

mij+1
ij e

mij+1
rj = e

mij+1
ij e

mpj−mij+1
pj e

mij+1
rj ∈ I(a−1) and

this shows the claim.

– p < i and v(p) > v(i) : Here mpj(w
(a)) = 0 since w(a)(p) > w(a)(j).

Thus e
mpj(w

(a))+1
pj e

mij+1
ij = epje

mij+1
ij ∈ I(a−1) by epi, e

mij+2
ij ∈ I(a−1)

and Lemma 2.1.6(1).
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– p > i and v(p) < v(i) : Here mpj(w
(a)) = mpj − mij since {r >

j : w(a)(p) < w(a)(r) < w(a)(j)} = {r > j : v(p) < v(r) <

v(j)} r {r > j : v(i) < v(r) < v(j)}. Thus e
mpj(w

(a))+1
pj e

mij+1
ij =

e
mpj−mij+1
pj e

mij+1
ij ∈ I(a−1) by eip, e

mpj+2
pj ∈ I(a−1) and Lemma 2.1.6(1).

– p > i and v(p) > v(j) : Here mpj(w
(a)) = 0 since w(a)(p) > w(a)(j).

Thus e
mpj(w

(a))+1
pj e

mij+1
ij = epje

mij+1
ij ∈ I(a−1) since epje

mij+1
ij =

e
mij+1
ij epj and epj ∈ I(a−1).

Thus we checked e
mpq(w

(a))+1
pq xa ∈ I(a−1) for all p < q. This finishes the

proof of Lemma 2.1.3.

Remark 2.1.8. It is clear from the definition that mpr(w) ≤ mpq(w) +mqr(w)
for any p < q < r. If mpr(w) = mpq(w) +mqr(w), then by Lemma 2.1.6(1) we

have e
mpr(w)+1
pr ∈ 〈empq(w)+1

pq , e
mqr(w)+1
qr 〉. Thus in fact the generators e

mpr(w)+1
pr

such that there exists some q ∈ {p+1, . . . , r−1} withmpr(w) = mpq(w)+mqr(w)
are superfluous.

2.2 Projectivity of KP modules

In this subsection, using the presentations of KP modules obtained in the pre-
vious subsection, we show a certain projectivity property for KP modules which
will be essential in showing the highest weight structure for KP modules.

Let C be the category of all weight b-modules. For Λ ⊂ Zn, let CΛ be the
full subcategory of C consisting of all weight b-modules whose weights are in Λ.
Note that if |Λ| <∞ and Λ′ = {ρ− λ : λ ∈ Λ} (ρ = (n− 1, n− 2, . . . , 0)), then
CΛ′ ∼= Cop

Λ by M 7→ M∗ ⊗Kρ (it is also true for infinite Λ if we take M∗ to be
the graded dual

⊕
(Mλ)∗ of M).

Lemma 2.2.1 (cf. [23, Lemma 3.1.1]). For any finite Λ ⊂ Zn, CΛ has enough
projective objects and enough injective objects.

Proof. By the duality remarked before the lemma it is sufficient to show the
enough-projectivity.

For λ ∈ Λ, let Pλ = U(b)/〈h − 〈h, λ〉〉h∈h (which is isomorphic to U(n+) as
a U(n+)-module, by PBW theorem) and let PΛ

λ be the largest quotient of Pλ
which is in CΛ, i.e. PΛ

λ is the quotient of Pλ by the submodule generated by all
weight spaces (Pλ)µ (µ 6∈ Λ). Then PΛ

λ is projective in CΛ since for N ∈ CΛ,
Hom(PΛ

λ , N) = Hom(Pλ, N) = Nλ.
For a general M ∈ CΛ, PM =

⊕
λ(PΛ

λ )⊕ dimMλ is a projective object in CΛ
and there is a surjection PM �M . This shows the lemma.

Note that, if λ ∈ Λ, PΛ
λ has a unique maximum proper submodule

⊕
µ6=λ(PΛ

λ )µ;

therefore the head of PΛ
λ is Kλ, and thus PΛ

λ is the projective cover of Kλ in
CΛ.

We introduce some order relations (other than dominance order) on Zn as
follows. For two permutations w, v ∈ S∞, we write w ≤

lex
v if w = v or there

exists an i ≥ 1 such that w(j) = v(j) for all j < i and w(i) < v(i). Likewise, we
write w ≤

rlex
v if w = v or there exists an i ≥ 1 such that w(j) = v(j) for all j > i
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and w(i) < v(i). For λ = (λ1, . . . , λn) ∈ Zn, define |λ| =
∑
λi. If λ, µ ∈ Zn≥0

and w = perm(λ), v = perm(µ), we write λ ≥ µ if |λ| = |µ| and w−1 ≤
lex
v−1. For

general λ and µ in Zn, take k so that λ+k1 and µ+k1 are in Zn≥0, and define λ ≥
µ ⇐⇒ λ+k1 ≥ µ+k1. Note that this definition does not depend on the choice
of k since perm(λ)−1 ≤

lex
perm(µ)−1 ⇐⇒ perm(λ + 1)−1 ≤

lex
perm(µ + 1)−1 for

λ, µ ∈ Zn≥0. We define the other ordering ≥′ in the same way, except that we use

≤
rlex

instead of ≤
lex

: i.e. λ ≥′ µ if and only if perm(λ+k1)−1 ≤
rlex

perm(µ+k1)−1

for k � 0.
We write λ � µ for λ, µ ∈ Zn if both λ ≤ µ and λ ≤′ µ hold.

Lemma 2.2.2. For λ, µ ∈ Zn, λ ≥ µ if and only if ρ− λ ≥′ ρ− µ.

Proof. We may assume |λ| = |µ|. We only need to prove the “only if” direction
since the other implication follows by exchanging λ and µ. Take integers L and
M so that λ+ L1, µ+ L1, ρ− λ+M1, ρ− µ+M1 ∈ Zn≥0. Let w = perm(λ+
L1), v = perm(µ+L1), w′ = perm(ρ−λ+M1) and v′ = perm(ρ−µ+M1). Then

w, v, w′, v′ ∈ S(n)
∞ ∩SN where N = n+L+M , and these permutations are related

by w′(i) = N + 1 − w(i), v′(i) = N + 1 − v(i) for i = 1, . . . , n. More precisely,

we have w′−1(p) =

{
w−1(N + 1− p) (w−1(N + 1− p) ≤ n)

n+N + 1− w−1(N + 1− p) (w−1(N + 1− p) > n)
and

v′−1(p) =

{
v−1(N + 1− p) (v−1(N + 1− p) ≤ n)

n+N + 1− v−1(N + 1− p) (v−1(N + 1− p) > n)
.

Now assume w−1 ≤
lex
v−1. if w = v we have nothing to prove so we as-

sume that there is an i such that w−1(1) = v−1(1), . . . , w−1(i − 1) = v−1(i −
1), w−1(i) < v−1(i). By the above description of w′ and v′ it is clear that
w′−1(j) = v′−1(j) for j > N+1− i. We show w′−1(N+1− i) < v′−1(N+1− i).
If w−1(i) < v−1(i) ≤ n we have w′−1(N + 1 − i) = w−1(i) < v−1(i) =
v′−1(N + 1 − i). If w−1(1) ≤ n < v−1(i) we have w′−1(N + 1 − i) ≤ n <
v′−1(N + 1− i). The case n < w−1(i) < v−1(i) cannot occur, since in such case
w−1(i) = n+1+#{j < i : w−1(j) > n}, v−1(i) = n+1+#{j < i : v−1(j) > n}
and {j < i : w−1(j) > n} = {j < i : v−1(j) > n}. Thus we have checked
w′−1(N + 1 − i) < v′−1(N + 1 − i) and thus w′−1 ≤

rlex
v′−1. This shows the

lemma.

Lemma 2.2.3. For λ, µ ∈ Zn, if min1≤i≤n λi > min1≤i≤n µi then λ < µ.

Proof. We may assume that λ, µ ∈ Zn≥0. Let m = min1≤i≤n µi. Then w =

perm(λ) and v = perm(µ) satisfy w−1(1) = v−1(1) = n + 1, . . . , w−1(m) =
v−1(m) = n+m and w−1(m+ 1) > n ≥ v−1(m+ 1). Thus w−1 >

lex
v−1.

By Lemma 2.2.3 we see that Zn≥0 is an order ideal in (Zn, <), and by Lemma
2.2.3 and Lemma 2.2.2 we see that ρ−Zn≥0 = {ρ−λ : λ ∈ Zn≥0} is an order ideal
in (Zn, <′). So in particular we see that Λn = {(a1, . . . , an) : 0 ≤ ai ≤ n− i} =
Zn≥0 ∩ (ρ− Zn≥0) is an order ideal in (Zn,≺)

The main result of this subsection is the following proposition:

Proposition 2.2.4. Let Λ ⊂ (Zn,≺) be a finite order ideal containing λ ∈ Zn
as one of its maximal elements. Then the module Sλ is in CΛ and gives a
projective cover of Kλ in CΛ.
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It is easy to see that the head of Sλ is Kλ. Therefore, to prove Proposition
2.2.4 we have to prove the following four facts: for every λ, µ ∈ Zn,

(1) (Sλ)µ 6= 0 implies λ ≥ µ,

(2) (Sλ)µ 6= 0 implies λ ≥′ µ,

(3) Ext1(Sλ,Kµ) 6= 0 implies λ < µ (here Ext1 is taken in either C or C≤λ,
which does not matter since C≤λ is closed under extension), and

(4) Ext1(Sλ,Kµ) 6= 0 implies λ <′ µ.

Before starting the proof, first let us make an observation on the weights

of Sw (w ∈ S
(n)
∞ ). For j ≥ 1, let lj(w) = #{i : i < j, w(i) > w(j)} as in

the definition of KP modules. Since Sw is a submodule of
⊗

j≥1

∧lj(w)
Kj−1,

any weight of Sw is a weight of
⊗

j≥1

∧lj(w)
Kj−1. The weights of the latter

space can be understood as follows. A w-pattern (terminology only for here)
is a sequence of sets (I1, I2, . . .) such that Ij ⊂ {1, . . . , j − 1} and |Ij | = lj(w).
Define the weight (µ1, µ2, . . .) of a w-pattern (I1, I2, . . .) by µi = #{j : i ∈ Ij}.
Then it is easy to see that µ is a weight of

⊗
j≥1

∧lj(w)
Kj−1 if and only if it is

the weight of some w-pattern.
Let us now prove (1) and (2) above.

(1): We may assume that λ and µ are in Zn≥0, since (Sλ)µ 6= 0 ⇐⇒
(Sλ+k1)µ+k1 6= 0 for any λ, µ ∈ Zn and any k ∈ Z. Let w = perm(λ) and
v = perm(µ). We prove a stronger statement: if µ is the weight of some w-
pattern (I1, I2, . . .) then λ ≥ µ.

We first show w−1(1) ≤ v−1(1). Let i = w−1(1). Since w(1), . . . , w(i− 1) >
w(i) we have li(w) = i− 1, and thus Ii = {1, . . . , i− 1}. Thus µ1, . . . , µi−1 ≥ 1.
Since v−1(1) = min{j : µj = 0}, this shows w−1(1) ≤ v−1(1).

Now consider the case w−1(1) = v−1(1). In this case we have µi = 0,
i.e. none of the sets Ij contains i. Define σi : Z>0 r {i} → Z>0 by σi(i

′) ={
i′ (i′ < i)

i′ − 1 (i′ > i)
, and consider a new sequence of sets I ′ = (σi(I1), . . . , σi(Ii−1), σi(Ii+1), σi(Ii+2), . . .).

It is easy to check that I ′ is a w′-pattern with weight code(v′), where w′ =
[w(1) − 1 · · · w(i − 1) − 1 w(i + 1) − 1 w(i + 2) − 1 · · · ] and v′ = [v(1) −
1 · · · v(i − 1) − 1 v(i + 1) − 1 v(i + 2) − 1 · · · ]. An inductive argument shows
that w′−1 ≤

lex
v′−1. This shows w−1 ≤

lex
v−1. �

(2): We may assume λ, µ ∈ Zn≥0 as before. Let w = perm(λ) and v =
perm(µ). We prove a stronger statement: if µ is the weight of some w-pattern
(I1, I2, . . .) then λ ≥′ µ. Take N so that w, v ∈ SN . Note that IN+1 = IN+2 =
· · · = ∅ since lw(N + 1) = lw(N + 2) = · · · = 0.

We first show w−1(N) ≤ v−1(N). Let i = w−1(N). Then we have li(w) = 0
and thus Ii = ∅. Thus for j < i, we have j 6∈ I1, . . . , Ij , Ii, and thus µj ≤
N − j − 1. Since v−1(N) = min{i : µi = N − i} this shows v−1(N) ≥ w−1(N).

Now consider the case w−1(N) = v−1(N). Then µi = N − i. Since
i 6∈ I1, . . . , Ii we must have i ∈ Ii+1, . . . IN . It is easy to see that I ′ =
(σi(I1), . . . , σi(Ii−1), σi(Ii+1 r {i}), . . . , σi(IN r {i}),∅,∅, . . .) is a w′-pattern
with weight code(v′) where w′ = [w(1) · · · w(i− 1)w(i+ 1) · · · w(N)] and v′ =
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[v(1) · · · v(i−1) v(i+ 1) · · · v(N)]. An inductive argument shows w′−1 ≤
rlex

v′−1.

This shows w−1 ≤
rlex

v−1. �

For (3) and (4), we need the following observation. By Theorem 2.1.1, for

any w ∈ S(n)
∞ there is a projective resolution of Sw in C of the form · · · → P1 →

P0 → Sw → 0 with P0 = Pcode(w) and P1 =
⊕

p<q Pcode(w)+(mpq(w)+1)(εp−εq).
Here by Remark 2.1.8, we can in fact replace P1 by a smaller module: sum over
all p < q such that

(∗) : there does not exist p < r < q with mpq(w) = mpr(w) +mrq(w).

In particular, Ext1(Sw,Kµ) = 0 unless µ = code(w) + (mpq(w) + 1)(εp − εq) for
some p < q satisfying the property (∗) above.

(3): We may assume that λ, µ ∈ Zn≥0, since λ < µ ⇐⇒ λ + k1 < µ + k1

and Ext1(Sλ,Kµ) 6= 0 ⇐⇒ Ext1(Sλ+k1,Kµ+k1) 6= 0 for any λ, µ ∈ Zn and any
k ∈ Z.

Let w = perm(λ) and v = perm(µ). By the remark above, we have µ =
λ+ (mpq(w) + 1)(εp − εq) for some p < q (and therefore w 6= v). We first show
w−1(1) ≥ v−1(1). Let i = w−1(1). If i < v−1(1), then µi > 0 while λi = 0,
and so p = i. But then mpq(w) = #{r > q : w(i) < w(r) < w(q)} = #{r > q :
w(r) < w(q)} = code(w)q = λq and so we have µq = −1, which contradicts to
µ ∈ Zn≥0. Therefore i ≥ v−1(1).

If i = v−1(1), then λi = µi = 0, and so p, q 6= i. Therefore λ′ = (λ1 −
1, . . . , λi−1 − 1, λi+1, λi+2, . . .) and µ′ = (µ1 − 1, . . . , µi−1 − 1, µi+1, µi+2, . . .)
satisfy µ′ = λ′ + (mpq(w) + 1)(εp′ − εq′) for p′ = σi(p), q

′ = σi(q). Moreover,
mpq(w) = mp′q′(w

′), where w′ = [w(1)− 1 · · · w(i− 1)− 1 w(i+ 1)− 1 w(i+
2)− 1 · · · ]. Thus an inductive argument shows w′−1 ≥

lex
v′−1 where v′ = [v(1)−

1 · · · v(i−1)−1 v(i+1)−1 v(i+2)−1 · · · ] = perm(µ′). This shows w−1 ≥
lex
v−1.

�

(4): We may assume that λ, µ ∈ Zn≥0 as before. Let w = perm(λ), v =
perm(µ). Take N so that w, v ∈ SN . We have µ = λ + (mpq(w) + 1)(εp − εq)
for some p < q as before, with the property (∗) above. We first show w−1(N) ≥
v−1(N).

Assume w−1(N) < v−1(N). Then λw−1(N) = N −w−1(N) while µw−1(N) <
N − w−1(N) and so q = w−1(N).

We first claim that there does not exist r such that p < r < q and w(p) <
w(r). Suppose such r exists. Take r to be the largest among such. By the
property (∗) we have mpq(w) < mpr(w) + mrq(w). This means that there is
a column index 1 ≤ j ≤ N such that (p, j), (q, j) ∈ I(w), (r, j) 6∈ I(w) or
(p, j), (q, j) 6∈ I(w), (r, j) ∈ I(w), since other types of columns contribute to
LHS and RHS by the same value. We see that neither of these cases can occur
as follows.

• Assume the former case. Then (p, j) ∈ I(w) implies w(j) < w(p) <
w(r) and (q, j) ∈ I(w) implies j > q > r. These shows (r, j) ∈ I(w).
Contradiction.

• Assume the latter case. w(q) = N > w(j) and (q, j) 6∈ I(w) implies j < q.
Also, (r, j) ∈ I(w) implies j > r > p, and this together with (p, j) 6∈ I(w)
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shows w(p) < w(j). Thus j satisfies p < j < q, w(p) < w(j) and j > r.
This contradicts to the choice of r.

Since there does not exist r such that p < r < q and w(p) < w(r), we see
that mpq(w) = #{r > q : w(p) < w(r) < w(q)} = #{r > q : w(p) < w(r)} =
N−w(p)−1−#{r < q : w(p) < w(r)} = N−w(p)−1−#{r < p : w(p) < w(r)}.
From this and λp = code(w)p = #{r > p : w(r) < w(p)} = w(p) − 1 −#{r <
p : w(r) < w(p)}, we see µp = λp +mpq(w) + 1 = N − p. This means v−1(N) =
min{p′ : µp′ = N − p′} ≤ p < q = w−1(N). This contradicts to the assumption
and thus we see w−1(N) ≥ v−1(N).

If w−1(N) = v−1(N), then p 6= w−1(N) 6= q as before, and we can induc-
tively argue in the same way as in (3). �

Remark 2.2.5. It is easy to see that the projective cover of Kλ in CΛ (λ ∈ Λ ⊂
Zn) is given by the largest quotient (Pλ)Λ of Pλ whose weights are in Λ. Thus
from the theorem above we see that Sλ ∼= (Pλ)Λ for any order ideal Λ ⊂ (Zn,≺)
containing λ as one of its maximal elements.

Let Λ ⊂ (Zn,≺) be an order ideal and λ ∈ Λ be one of its maximal elements
as above. If a weight b-module M is generated by an element of weight λ then
M is a quotient of Pλ. So if in addition M ∈ CΛ then it follows that M is in
fact a quotient of Sλ.

2.3 Highest weight structure

The main result in this subsection is the following:

Theorem 2.3.1. Let Λ ⊂ Zn be a finite order ideal with respect to the ordering
≺. Then CΛ is a highest weight category with the weight poset (Λ,≺) and the
standard objects {Sλ : λ ∈ Λ} (for the definitions of CΛ and the order relation
≺ see the beginning of Section 2.2).

Proof. We have already verified the first two axioms in the previous subsection.
Below we verify that the last axiom holds.

Let µ ∈ Λ. The projective cover of Kµ in CΛ is PΛ
µ , the largest quotient

of Pµ (see the proof of Lemma 2.2.1) whose weights are all in Λ. We want to
show that there exists a surjection PΛ

µ � Sµ whose kernel admits a filtration
by modules Sν (ν � µ).

Index the elements of Λ as λ1, . . . , λl so that λi ≺ λj implies i < j. Let
Λi = {λ1, . . . , λi}. Note that Λi and ρ − Λi = {ρ − λ1, . . . , ρ − λi} are order
ideals in Λ with respect to the ordering ≺, and λi and ρ− λi are their maximal

elements respectively. If µ = λk, then PΛk

µ
∼= Sµ since both PΛk

µ and Sµ
give projective covers of Kµ in the category CΛk . We show that the kernel of

PΛi

µ � PΛi−1

µ is a direct sum of some copies of Sλi for any i: this shows the

claim since 0 ⊂ Ker(PΛ
µ � PΛl−1

µ ) ⊂ Ker(PΛ
µ � PΛl−2

µ ) ⊂ · · · ⊂ Ker(PΛ
µ �

PΛk

µ ) = Ker(PΛ
µ � Sµ) gives a desired filtration.

Let 1 ≤ i ≤ l. We have a b-homomorphism (PΛi

µ )λi ⊗ PΛi

λi → PΛi

µ (where

on the left-hand side tensor product b acts only on PΛi

λi ) defined by xuµ ⊗
yuλi 7→ yxuµ for x ∈ U(n+)λi−µ and y ∈ U(n+) where uµ is the image of

1 ⊗ 1 ∈ U(n+) ⊗ Kµ
∼= Pµ � PΛi

µ (this definition does not depend on the

choice of y since the submodule of PΛi

µ generated by xuµ is a quotient of PΛi

λi
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by definition). The image of the morphism above is Ker(PΛi

µ � PΛi−1

µ ), so it

induces a surjection (PΛi

µ )λi ⊗ PΛi

λi � Ker(PΛi

µ � PΛi−1

µ ). Since the left-hand

side is a direct sum of copies of PΛi

λi
∼= Sλi , it is enough to show that this

surjection is in fact an isomorphism for any i and any µ.
We want to show that the surjection (PΛi

µ )λi ⊗ (PΛi

λi )ν � Ker((PΛi

µ )ν �

(PΛi−1

µ )ν), obtained by restricting the surjection above to ν-weight spaces, is
an isomorphism for any i and any µ, ν. Since the claim does not contain any
information on Λ we may take Λ to be sufficiently large: to be precise, we assume
that Λ ⊃ {κ : µ / κ / ν}. This in particular implies that (PΛ

µ )ν ∼= U(n+)ν−µ as
vector spaces.

We have a quotient filtration (PΛl

µ )ν � (PΛl−1

µ )ν � · · · � 0 of vector
spaces, and by the argument above its successive quotients are quotients of
(PΛi

µ )λi⊗(PΛi

λi )ν . Thus we have dim(PΛ
µ )ν ≤

∑l
i=1 dim((PΛi

µ )λi⊗(PΛi

λi )ν). If we

show that the equality holds then the desired isomorphism (PΛi

µ )λi ⊗ (PΛi

λi )ν ∼=
Ker((PΛi

µ )ν � (PΛi−1

µ )ν) follows for all i.

We know (PΛi

λi )ν ∼= (Sλi)ν by Proposition 2.2.4. Now consider (PΛi

µ )λi . Since

PΛi

µ is the quotient of Pµ by the submodule generated by all weight spaces (Pµ)σ
(σ 6∈ Λi), we have a vector space isomorphism

(PΛi

µ )λi ∼= U(n+)λi−µ/SpanK{xy : x ∈ U(n+)λi−σ, y ∈ U(n+)σ−µ for some σ 6∈ Λi}.

The algebra antiautomorphism on U(n+) given by X 7→ −X (X ∈ n+) induces
an isomorphism between this space and

U(n+)λi−µ/SpanK{yx : x ∈ U(n+)λi−σ, y ∈ U(n+)σ−µ for some σ 6∈ Λi}
= U(n+)λi−µ/SpanK{yx : x ∈ U(n+)λi−σ, y ∈ U(n+)σ−µ for some σ s.t. ρ− σ 6∈ ρ− Λi}

where ρ − Λi = {ρ − σ : σ ∈ Λi}. By the same argument as above we see that

this is isomorphic to (P ρ−Λi

ρ−λi )ρ−µ. By Proposition 2.2.4 we see (P ρ−Λi

ρ−λi )ρ−µ ∼=
(Sρ−λi)ρ−µ. Thus, after all, we see that (PΛi

µ )λi ∼= (Sρ−λi)ρ−µ.

Since (PΛi

µ )λi ∼= (Sρ−λi)ρ−µ and (PΛi

λi )ν ∼= (Sλi)ν as we have seen above,

we see that dim((PΛi

µ )λi ⊗ (PΛi

λi )ν) is equal to the coefficient of xρ−µyν in

Sρ−λi(x)Sλi(y). So
∑l
i=1 dim((PΛi

µ )λi ⊗ (PΛi

λi )ν) is equal to the coefficient

of xρ−µyν in
∑l
i=1 Sρ−λi(x)Sλi(y) =

∑
λ∈Λ Sρ−λ(x)Sλ(y). Since we have

assumed Λ ⊃ {κ : µ / κ / ν} this is equal to the coefficient of xρ−µyν in∑
λ∈Zn Sρ−λ(x)Sλ(y). On the other hand as we have remarked above (PΛ

µ )ν ∼=
U(n+)ν−µ. Thus the proof of the theorem is now reduced to the following ele-
mentary lemma:

Lemma 2.3.2. For µ, ν ∈ Zn, dimU(n+)ν−µ is equal to the coefficient of
xρ−µyν in

∑
κ∈Zn Sρ−κ(x)Sκ(y).

Let us prove this lemma. We use the following result from [19]:

Lemma 2.3.3 ([19, Lemma 6.2 and Corollary 9.2, reformulated]). For a positive
integer N , define a bilinear form 〈·, ·〉 on Z[x±1

1 , . . . , x±1
N ] by 〈xα, xβ〉 = δαβ.

Then for w, v ∈ SN , 〈Sw,Sw0v(x
−1
1 , . . . , x−1

N )
∏

1≤i<j≤N (xi−xj)〉 = δwv, where
w0 = [N N − 1 · · · 1] ∈ SN .
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We slightly modify this lemma into a form which is more suitable for our
use:

Lemma 2.3.4. If we define a bilinear form 〈·, ·〉 on Z[x±1
1 , . . . , x±1

n ] by 〈xα, xβ〉 =
δαβ, then for λ, µ ∈ Zn, 〈Sλ,Sρ−µ(x−1

1 , . . . , x−1
n )

∏
1≤i<j≤n(xi − xj)〉 = δλµ.

Proof. We may assume that λ, µ ∈ Zn≥0. Let w = perm(λ), v = perm(µ). Take
N so that w, v ∈ SN . Then by the previous lemma, we have

〈Sw,Sw0v(x
−1
1 , . . . , x−1

N )
∏

1≤i<j≤N

(xi − xj)〉 = δwv = δλµ · · · (∗)

where w0 = [N N − 1 · · · 1] ∈ SN .
Since

∏
1≤i<j≤N (xi−xj) =

∏
i≤n<j(xi−xj) ·

∏
i<j≤n(xi−xj) ·

∏
n<i<j(xi−

xj), we see that∏
1≤i<j≤N

(xi − xj) ≡ (x1 · · ·xn)N−n ·
∏

i<j≤n

(xi − xj) ·
∏

n<i<j

(xi − xj)

= (x1 · · ·xn)N−n ·
∏

i<j≤n

(xi − xj) · (xN−n−1
n+1 xN−n−2

n+2 · · ·xN−1 +R)

modulo terms whose degree with respect to the variables xn+1, . . . , xN is strictly
greater than T =

(
N−n

2

)
, whereR is some homogeneous polynomial in xn+1, . . . , xN

of degree T and without monomial xN−n−1
n+1 xN−n−2

n+2 · · ·xN−1.
Let f be the sum of all terms in Sw0v whose degree in xn+1, . . . , xN is equal

to T . Note that, since Sw0v is a linear combination of monomials xa1
1 · · ·xann (0 ≤

ai ≤ N−i), the degree of its terms with respect to variables xn+1, . . . , xN are al-
ways at most T : that is, Sw0v = f+(terms with degree < T in variables xn+1, . . . , xN ).
Also note f ∈ xN−n−1

n+1 · · ·xN−1Z[x1, . . . , xn] by the same reason. We claim

f = (x1 · · ·xn)N−nxN−n−1
n+1 · · ·xN−1Sρ−µ.

Let wn,N = [1 · · · n N N − 1 · · · n+ 1] ∈ SN . Note that wn,Nw0v ∈ S(n)
∞ ,

code(wn,Nw0v) = ρ− µ+ (N − n)1 and thus Swn,Nw0v = (x1 · · ·xn)N−nSρ−µ.
We have Swn,Nw0v = ∂wn,NSw0v, where ∂wn,N = (∂n+1∂n+2 · · · ∂N−1)·(∂n+2 · · · ∂N−1)·
· · ··∂N−1. Since the operators ∂i (n+1 ≤ i ≤ N−1) lower the degree in variables
xn+1, . . . , xN by one, ∂wn,N annihilates Sw0v − f . Thus Swn,Nw0v = ∂wn,N f .

Since f ∈ xN−n−1
n+1 · · ·xN−1Z[x1, . . . , xn] and ∂wn,Nx

N−n−1
n+1 · · ·xN−1 = 1 we see

that ∂wn,N f = f/(xN−n−1
n+1 · · ·xN−1). Thus f = xN−n−1

n+1 · · ·xN−1Swn,Nw0v =

(x1 · · ·xn)N−nxN−n−1
n+1 · · ·xN−1Sρ−µ. This shows the claim above.

We have seen that∏
1≤i<j≤N

(xi−xj) ≡ (x1 · · ·xn)N−n·
∏

1≤i<j≤n

(xi−xj)·(xN−n−1
n+1 xN−n−2

n+2 · · ·xN−1+R)

and

Sw0v(x
−1
1 , . . . , x−1

N ) ≡ (x1 · · ·xn)−N+nx−N+n+1
n+1 · · ·x−1

N−1 ·Sρ−µ(x−1
1 , · · · , x−1

n )

modulo terms having degrees > T and > −T in variables xn+1, . . . , xN respec-
tively. Thus Sw0v(x

−1
1 , . . . , x−1

N )
∏

1≤i<j≤N (xi − xj) is equal to

Sρ−µ(x−1
1 , · · · , x−1

n ) ·
∏

1≤i<j≤n

(xi − xj) · (1 + x−N+n+1
n+1 · · ·x−1

N−1R)
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modulo terms with degree > 0 in variables xn+1, . . . , xN . Since the variables
xn+1, . . . , xN do not appear in Sw and x−N+n+1

N−1 · · ·x−1
N−1R does not have a

constant term, this shows

〈Sw,Sw0v(x
−1
1 , . . . , x−1

N )
∏

1≤i<j≤N

(xi−xj)〉 = 〈Sw,Sρ−µ(x−1
1 , . . . , x−1

n )
∏

1≤i<j≤n

(xi−xj)〉.

This, together with (∗), finishes the proof of Lemma 2.3.4.

Let us come back to the proof of Lemma 2.3.2. Essentially this is a “Cauchy
formula” for the dual bases {Sλ} and {Sρ−µ(x−1

1 , . . . , x−1
n )

∏
(xi − xj)} ap-

peared in Lemma 2.3.4, but since we are dealing with an infinite-dimensional
space a careful justification is needed. Let cαβ be the coefficient of xαyβ in∑
κ∈Zn Sρ−κ(x)Sκ(y). We observe that if cρ−µ,ν 6= 0, then there exists some κ

such that ρ− µ . ρ− κ and ν . κ, and so ν . κ . µ. Thus cρ−µ,ν = 0 for ν 6 . µ.
Using this as the base case, if we show

∑
g∈Sn sgn(g)cρ−µ,ν−ρ+gρ = δµν , then we

can show cρ−µ,ν = dimU(n+)ν−µ by induction on ν since
∑
κ dimU(n+)κx

κ =∏
i<j(1 − xix

−1
j )−1 and

∏
i<j(1 − xix

−1
j ) =

∑
g∈Sn sgn(g)xρ−gρ. We show the

equivalent claim
∑
g∈Sn sgn(g)cα,β+gρ = δα,−β .

Since cα,β+gρ = cα+k1,β+gρ−k1, we may assume that −β ∈ Zn≥0. We may
further assume, by replacing α and β by α+k1 and β−k1 for a sufficiently large
k, that if κ ∈ Zn satisfies α . κ . −β+ρ−gρ for some g ∈ Sn then κ ∈ Zn≥0 (this
is possible by the remark at the end of Section 1.2). We only have to consider the
case |α| = −|β|. Let d = |α|. Let V be the space of all (ordinary) polynomials
in x1, . . . , xn which are homogeneous of degree d. Equip V with a bilinear form
〈xσ, xτ 〉 = δστ . Then by Lemma 2.3.4 the bases {Sκ : κ ∈ Zn≥0, |κ| = d} and

{[Sρ−κ(x−1
1 , . . . , x−1

n )
∏

1≤i<j≤n(xi − xj)] : κ ∈ Zn≥0, |κ| = d} of V are dual to

each other; here for f ∈ Z[x±1
1 , . . . , x±1

n ], [f ] is the sum of all terms in f which
do not contain any negative powers of x1, . . . , xn. Thus we have∑
γ∈Zn≥0

|γ|=d

xγyγ ≡
∑
κ∈Zn≥0

|κ|=d

Sκ(x1, . . . , xn)Sρ−κ(y−1
1 , . . . , y−1

n )
∏

1≤i<j≤n

(yi − yj)

=

 ∑
κ∈Zn≥0

|κ|=d

Sκ(x1, . . . , xn)Sρ−κ(y−1
1 , . . . , y−1

n )


∑
g∈Sn

sgn(g)ygρ

 · · · (∗)

modulo terms containing some negative powers of some yi (we used the fact that
for any finite-dimensional vector space V , the sum

∑
ϕi ⊗ ϕ∗i ∈ V ⊗ V ∗ does

not depend on the choice of dual bases {ϕi} ⊂ V, {ϕ∗i } ⊂ V ∗). Since −β ∈ Zn≥0,

the coefficients of xαy−β are equal for both sides. The coefficient for the LHS
is δα,−β . Moreover, if κ ∈ Zn and Sκ(x1, . . . , xn)Sρ−κ(y−1

1 , . . . , y−1
n ) contains

some monomial of the form xαy−β−gρ (g ∈ Sn) with a nonzero coefficient,
then such κ must satisfy α . κ and β + gρ . ρ − κ and so κ ∈ Zn≥0. Thus

the coefficient of xαy−β in the RHS is the same as the coefficient of xαy−β

in

(∑
κ∈Zn
|κ|=d

Sκ(x1, . . . , xn)Sρ−κ(y−1
1 , . . . , y−1

n )

)(∑
g∈Sn sgn(g)ygρ

)
. Since this

coefficient is
∑
g∈Sn sgn(g)cα,β+gρ we are done.
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Note that, by Proposition 2.2.4 and Lemma 2.2.2, the costandard objects in
CΛ are given by S∗ρ−λ ⊗Kρ (λ ∈ Λ).

From general theory of highest weight categories we obtain the following
corollaries:

Corollary 2.3.5. A finite dimensional weight b-module M has a KP filtration
if and only if Ext1(M,S∗ρ−λ⊗Kρ) = 0 for all λ ∈ Zn. In such case, the number
of times the KP module Sλ (λ ∈ Zn) appears in (any) standard filtration of M
is given by dim Hom(M,S∗ρ−λ ⊗Kρ).

Proof. This follows from Proposition 1.3.10 and Corollary 1.3.12 (note that the
order ideal generated by the weights of M is finite by Lemma 2.2.3).

Corollary 2.3.6. (1) If M = M1⊕ · · · ⊕Mr and M has a KP filtration then
so does each Mi.

(2) If 0 → L → M → N → 0 is an exact sequence and M and N have KP
filtrations then so does L.

Proof. This follows from Corollary 1.3.13.
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3 Tensor product of Kraśkiewicz-Pragacz mod-
ules

3.1 Existence of KP filtrations for tensor products

In this subsection we use the highest weight theory for KP modules developed
in the previous section to show the following:

Theorem 3.1.1. For any λ, µ ∈ Zn, the tensor product module Sλ ⊗ Sµ has a
KP filtration.

In order to prove Theorem 3.1.1, first we need the special cases where one of
the KP modules is Ssi , corresponding to Monk’s rule for Schubert polynomials.

Proposition 3.1.2. Let w ∈ S(n)
∞ and let 1 ≤ ν ≤ n− 1. Then Sw ⊗Ssν has a

KP filtration.

Proof. This is a special case of the Pieri rule for KP modules (Theorem 3.2.4)
which we will prove in Section 3.2. Note that the proof given there does not use
the result in this subsection. See also Remark 3.2.9.

Using Proposition 3.1.2 and the highest weight theory for KP modules we
have developed above, we can now proceed to a proof for a more general result:

Theorem 3.1.3. For any w ∈ Sn and v ∈ S(n)
∞ , Sw ⊗ Sv has a KP filtration.

If we let n → ∞, we see that for any w, v ∈ S∞, the module (over the Lie
algebra b∞ =

⋃
n bn of upper triangular matrices of infinite size with finitely

many nonzero entries) Sw ⊗ Sv has a filtration by KP modules, if we regard

bn-modules Sw (w ∈ S
(n)
∞ ) as b∞-modules through the morphism b∞ � bn

annihilating all eij with j > n. In particular, we see that the theorem in fact

holds for any w, v ∈ S(n)
∞ , and since the general KP modules Sλ (λ ∈ Zn) are

just the KP modules Sw (w ∈ S
(n)
∞ ) shifted by some weight k1 (k ∈ Z) this

implies Theorem 3.1.1.
In order to prove Theorem 3.1.3, we begin with some observations. For a

w ∈ Sn, we define a b-module Tw =
⊗

2≤i≤n
(∧li(w)

Ki−1
)
, where li(w) =

#{j < i : w(j) > w(i)} as in the definition of KP modules. Since Tw is a direct

sum component of
⊗

2≤i≤n
⊗li(w)

Ki−1 =
⊗

2≤i≤n
⊗li(w) Ssi−1

, Tw has a KP
filtration by Proposition 3.1.2 and Corollary 2.3.6(1). We show the following
lemma:

Lemma 3.1.4. Let w ∈ Sn. Then there exists an exact sequence 0 → Sw →
Tw → N → 0 such that N has a filtration whose each subquotient is isomorphic
to some Su (u ∈ Sn, u−1 >

lex
w−1).

We see first that the theorem easily follows from this lemma by a descending
induction on the lexicographic order of w−1. From the lemma we get an exact
sequence 0 → Sw ⊗ Sv → Tw ⊗ Sv → N ⊗ Sv → 0. Here Tw ⊗ Sv have a
KP filtration by Proposition 3.1.2 and Corollary 2.3.6(1), since it is a direct

summand of
(⊗

2≤i≤n
⊗li(w) Ssi−1

)
⊗Sv. Moreover N⊗Sv have a KP filration

by the induction hypothesis. Hence the claim follows from Corollary 2.3.6(2).
Let us now prove Lemma 3.1.4. As we have seen in Proposition 2.2.4, for

y, z ∈ S(n)
∞ :
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• if (Sy)code(z) 6= 0 (i.e. the coefficient of xcode(z) in Sy is nonzero) then
z−1 ≥

lex
y−1, and

• if Ext1(Sy,Kcode(z)) 6= 0 then z−1 <
lex
y−1.

In particular, if w, u ∈ S(n)
∞ and Ext1(Sw,Su) 6= 0, then there exists a z ∈ S(n)

∞
such that (Su)code(z) 6= 0 and Ext1(Sw,Kcode(z)) 6= 0, and thus u−1 ≤

lex
z−1 <

lex
w−1.

Proof of Lemma 3.1.4. Let li = li(w) and let the integers nwu ∈ Z be defined by∏
2≤i≤n eli(x1, . . . , xi−1) =

∑
u∈Sn nwuSu where ek denotes the k-th elementary

symmetric polynomial. Since the left-hand side is the character of Tw, the
number nwu is the number of times Su appears as a subquotient in (any) KP
filtration of Tw.

By Proposition 1.1.3 we have
∑
u∈Sn Su(x)Suw0(y) =

∏
i+j≤n(xi + yj) =∑

0≤ai≤n−i
(∏

1≤i≤n−1 x
n−i−ai
i ·

∏
1≤i≤n−1 eai(y1, . . . , yn−i)

)
. Thus there ex-

ists a bilinear form 〈, 〉 : Hn × Hn → Z such that 〈Su,Su′w0
〉 = δuu′ and

〈xρ−α,
∏

1≤i≤n−1 eβi(x1, . . . , xn−i)〉 = δα,β . Then

nwu = 〈Suw0
,
∏

2≤i≤n

eli(x1, . . . , xi−1)〉

= (coefficient of xn−1−ln
1 x

n−2−ln−1

2 · · · in Suw0).

Here, n−k− ln+1−k = n−k−#{j < n+ 1−k : w(j) > w(n+ 1−k)} = #{j <
n+1−k : w(j) < w(n+1−k)} = #{j > k : ww0(j) < ww0(k)} = code(ww0)k,
and thus the number nwu is equal to the coefficient of xcode(ww0) in Suw0 . Thus
nwu is nonzero only if (ww0)−1 ≥

lex
(uw0)−1, which is equivalent to w−1 ≤

lex
u−1.

Moreover, if u = w then we see that nww = 1. Thus the subquotients of (any)
KP filtration of Tw are the modules Su (u−1 >

lex
w−1), together with Sw which

occurs only once. Since Ext1(Sw,Su) = 0 for u−1 >
lex
w−1, we can take the

filtration to satisfy the additional condition that Sw occurs as a submodule of
Tw. This completes the proof of Lemma 3.1.4.

Theorem 3.1.1 gives a proof to the classical fact that the product SλSµ of
Schubert polynomials is always a positive sum of Schubert polynomials, whose
only previously known proof is through the geometric interpretation of Schubert
polynomials. Also we get some corollaries from Theorem 3.1.1:

Corollary 3.1.5. For any partition λ and an element µ ∈ Zn, the Schur functor
image sλ(Sµ) of a KP module Sµ has a KP filtration. Thus in particular, if we
write Sµ = xα +xβ + · · · as a sum of monoimals then sλ[Sµ] := sλ(xα, xβ , . . .)
(here sλ stands for a Schur function) is always a positive sum of Schubert poly-
nomials Sν (ν ∈ Zn).

Proof. From Theorem 3.1.1 we see that (Sµ)⊗m has a KP filtration for any
m ∈ Z≥0. Thus the first claim follows from Corollary 2.3.6(1) since (Sµ)⊗m ∼=⊕

λ`m sλ(Sµ)⊕f
λ

for certain integers fλ ≥ 1. The second claim follows since
the character of sλ(Sµ) is sλ[Sµ].
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Corollary 3.1.6. In the expansion SλSµ =
∑
ν c

ν
λµSν (cνλµ ∈ Z), the coeffi-

cient cνλµ is equal to the dimension of Homb(Sλ⊗Sµ,S∗ρ−ν ⊗Kρ) ∼= Homb(Sλ⊗
Sµ ⊗ Sρ−ν ,Kρ). Similarly, the coefficient dνλµ ∈ Z appearing in the expansion
sλ[Sµ] =

∑
ν d

ν
λµSν is equal to the dimension of Homb(sλ(Sµ),S∗ρ−ν ⊗Kρ) ∼=

Homb(sλ(Sµ)⊗ Sρ−ν ,Kρ).

Proof. This is clear from Corollary 2.3.5.

3.2 Explicit filtration for the cases of the Pieri and dual
Pieri rules

In this subsection we give explicit forms for KP filtrations of tensor product
modules Sw ⊗ Sd(Ki) and Sw ⊗

∧d
(Ki) (d ≥ 1, 1 ≤ i ≤ n). The construction

here does not use the results developed in the previous subsection, so it actually
gives a proof for Proposition 3.1.2.

First we present Pieri and dual Pieri rules for Schubert polynomials which
give expansions of Sw ·hd(x1, . . . , xi) and Sw · ed(x1, . . . , xi) into sums of Schu-
bert polynomials.

Definition 3.2.1. For w ∈ S∞, i ≥ 1 and d ≥ 0, let

Xi,d(w) = {tp1q1tp2q2 · · · tpdqd : pj ≤ i, qj > i,w1lw2l· · · , w1(p1) < w2(p2) < · · · }

and

Yi,d(w) = {tp1q1tp2q2 · · · tpdqd : pj ≤ i, qj > i,w1lw2l· · · , w1(q1) > w2(q2) > · · · }

where w1 = w,w2 = wtp1q1 , w3 = wtp1q1tp2q2 · · · .

i

i + 1

i

i + 1

Figure 3: a typical situation for the graphs of w and wζ (ζ ∈ Xi,d(w)). Dotted rectangles mean

that there are no points of the graphs inside the rectangles. The points of the graphs not shown in

the figure are on the same positions.

Figure 4: a typical non-situation for w and wζ (ζ ∈ Xi,d(w)).

Note that the condition for Xi,d(w) (resp. Yi,d(w)) implies that q1, . . . , qd
(resp. p1, . . . , pd) are all different.

Proposition 3.2.2 (conjectured in [2] and proved in [25]). We have

Sw · hd(x1, . . . , xi) =
∑

ζ∈Xi,d(w)

Swζ
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and
Sw · ed(x1, . . . , xi) =

∑
ζ∈Yi,d(w)

Swζ .

where hd and ed denote the complete and elementary symmetric functions re-
spectively. 2 �

Note here that a permutation ζ ∈ Xi,d(w) (or Yi,d(w)) in fact uniquely
determines its decomposition into transpositions satisfying the conditions in
Definition 3.2.1. So we can write, without ambiguity, for example “for ζ =
tp1q1 · · · tpdqd ∈ Xi,d(w) define (something) as (some formula involving pj and
qj)”. Hereafter if we write such we will always assume the conditions in Defini-
tion 3.2.1.

Now we are going to give explicit forms for KP filtrations of modules Sw ⊗
Sd(Ki) and Sw⊗

∧d
(Ki) (w ∈ S(n)

∞ , d ≥ 0, 1 ≤ i ≤ n). Hereafter in this subsec-

tion we identify Sw (w ∈ S(n)
∞ ) with a submodule of T =

∧•
(
⊕

1≤i≤n,j≥1Kuij)
on which b acts by epquij = δqiepj , by identifying the generator uw of Sw with∧

(i,j)∈I(w) uij (recall that w ∈ S(n)
∞ implies I(w) ⊂ {1, . . . , n}×Z>0). It is easy

to see from the definition of KP modules that the submodule of T generated by
this element is indeed isomorphic to Sw.

For 1 ≤ p ≤ q we define an operator e′qp acting on T as e′qp(ua1b1 ∧ ua2b2 ∧
· · · ) =

∑
k(· · · ∧ δpbkuakq ∧ · · · ). Let these operators act on T ⊗ Sd(Ki) and

T ⊗
∧d

(Ki) by applying them on the left-hand side tensor component. Also

for j ≥ 1 define an operator µj : T ⊗
⊗a

(Ki) → T ⊗
⊗a−1

(Ki) (a ≥ 1)
by u ⊗ (v1 ⊗ v2 ⊗ · · · ) 7→ (ιj(v1) ∧ u) ⊗ (v2 ⊗ v3 ⊗ · · · ) where ιj(up) = upj
(1 ≤ p ≤ i). We denote the restrictions of µj to T ⊗ Sa(Ki) and T ⊗

∧a
(Ki)

(seen as submodules of T ⊗
⊗a

(Ki)) by the same symbol. Note that e′rs and
µj give b-endomorphisms on T ⊗ S•(Ki) and T ⊗

∧•
(Ki).

For a permutation z and p < q let mpq(z) = #{r > q : z(p) < z(r) < z(q)}
as before, and also define m′qp(z) = #{r < p : z(p) < z(r) < z(q)}. For
ζ = tp1q1 · · · tpdqd ∈ Xi,d(w) (resp. Yi,d(w)) define

vζ = (
∏
j

e
mpjqj (wj)
pjqj uw)⊗

∏
j

upj

= (
∏
j

e
mpjqj (wj)
pjqj uw)⊗

(∑
σ∈Sd

upσ(1)
⊗ · · · ⊗ upσ(d)

)
∈ Sw ⊗ Sd(Ki)

(resp.

vζ = (
∏
j

e
mpjqj (wj)
pjqj uw)⊗

∧
j

upj

= (
∏
j

e
mpjqj (wj)
pjqj uw)⊗

(∑
σ∈Sd

sgn(σ) · upσ(1)
⊗ · · · ⊗ upσ(d)

)
∈ Sw ⊗

d∧
(Ki)

)
where wj = wtp1q1 · · · tpj−1qj−1

as in Definition 3.2.1. Note that these are also

2The formulation of dual Pieri rule here is slightly different from the one in [2], but they
can be easily seen to be equivalent.
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well-defined even if some qj are greater than n, since in such a case mpjqj (wj) =
0. Note also that the products of the operators epjqj above are well-defined
since the operators epjqj commute with each others. Also, for such ζ, define a

b-homomorphism ϕζ : T ⊗
⊗d

(Ki)→ T by

ϕζ = µqd · · ·µq1 ·
∏
j

(e′qjpj )
m′qjpj

(wj).

Note that the order in the product symbol does not matter since the operators
e′qjpj commute.

Proposition 3.2.3. For ζ, ζ ′ ∈ Xi,d(w) (resp. Yi,d(w)),

• ϕζ(vζ) is a nonzero multiple of uwζ ∈ T , and

• ϕζ′(vζ) = 0 if (wζ)−1 <
lex

(wζ ′)−1 (resp. (wζ)−1 <
rlex

(wζ ′)−1).

Let us first see that the constructions for the desired filtrations follow from
Proposition 3.2.3.

For a b-module M and elements x, y, . . . , z ∈ M let 〈x, y, . . . , z〉 denote the
submodule generated by these elements. Consider the sequence of submodules

0 ⊂ 〈vζ1〉 ⊂ 〈vζ1 , vζ2〉 ⊂ · · · ⊂ 〈vζ : ζ ∈ Xi,d(w) (resp. Yi,d(w))〉

inside Sw ⊗ Sd(Ki) (resp. Sw ⊗
∧d

(Ki)), where ζ1, ζ2, . . . ∈ Xi,d(w) (resp.
Yi,d(w)) are all the elements ordered increasingly by the lexicographic (resp.
reverse lexicographic) ordering of (wζ)−1. From the proposition we see that
there are surjections 〈vζ1 , · · · , vζj 〉/〈vζ1 , · · · , vζj−1〉 � Swζj induced from ϕζj .
Thus we have

dim(Sw⊗Sd(Ki)) ≥ dim〈vζ : ζ ∈ Xi,d(w)〉 ≥
∑

ζ∈Xi,d(w)

dimSwζ = dim(Sw⊗Sd(Ki))

and

dim(Sw⊗
d∧

(Ki)) ≥ dim〈vζ : ζ ∈ Yi,d(w)〉 ≥
∑

ζ∈Yi,d(w)

dimSwζ = dim(Sw⊗
d∧

(Ki))

respectively, where the last equalities are by Proposition 3.2.2. So the equality
must hold everywhere. Thus 〈vζ : ζ ∈ Xi,d(w) (resp. Yi,d(w))〉 = Sw ⊗ Sd(Ki)

(resp. Sw ⊗
∧d

(Ki)) and the surjections above are in fact isomorphisms. So we
get:

Theorem 3.2.4.

0 ⊂ 〈vζ1〉 ⊂ 〈vζ1 , vζ2〉 ⊂ · · · ⊂ 〈vζ : ζ ∈ Xi,d(w) (resp. Yi,d(w))〉

gives a KP filtration of Sw⊗Sd(Ki) (resp. Sw⊗
∧d

(Ki)). Explicit isomorphisms
〈vζ1 , · · · , vζj 〉/〈vζ1 , · · · , vζj−1

〉 ∼= Swζj are given by ϕζj defined above. �
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Remark 3.2.5. It can be shown that the projective cover of the one dimen-
sional b-module Kλ (λ = (λ1, . . . , λn) ∈ Zn≥0) in the category CZn≥0

is given

by Sλ1(K1) ⊗ · · · ⊗ Sλn(Kn). Thus the construction above for a filtration of
Sw⊗Sd(Ki) in fact gives a proof to the fact that the projective modules in CZn≥0

have KP filtrations, which leads to a different proof from the one in Section 2.3
for the third axiom of highest weight categories (we do not need the results
about highest weight structure for b-modules in the proof of Proposition 3.2.3).

To give a proof for Proposition 3.2.3 we need some lemmas.

For w ∈ S(n)
∞ , mpq(w) = #{r > q : w(p) < w(r) < w(q)} is precisely the

number of r ≥ 1 such that (q, r) ∈ I(w) and (p, r) 6∈ I(w). So in particular, if

(q, r) in I(w) then e
mpq(w)
pq uw = (const.) · (upr∧· · · ) (it does not matter whether

(p, r) ∈ I(w) or not) and thus upr ∧ e
mpq(w)
pq uw = 0. Similarly, if (r, p) ∈ I(w)

then urq ∧ (e′qp)
m′qp(w)uw = 0.

Lemma 3.2.6. Let w ∈ S(n)
∞ and i ≥ 1. For p, p′ ≤ i and q, q′ > i such that

`(wtpq) = `(wtp′q′) = `(w)+1 (i.e. tpq, tp′q′ ∈ Xi,1(w)), if upq′∧e
mpq(w)
pq (e′q′p′)

m′
q′p′ (w)uw 6=

0 then w(p′) ≥ w(p) and w(q′) ≥ w(q), and if (p, q) = (p′, q′) it is a nonzero
multiple of uwtpq . �

Proof. First note that the operations epq, e
′
q′p′ and upq′ ∧ − on T all commute

with all the others. We have the following observations:

(1) If p < p′ and w(p) > w(p′) then (p, p′) ∈ I(w). Thus in this case upq′ ∧
e
mpq(w)
pq (e′q′p′)

m′
q′p′ (w)uw = 0 since upq′ ∧ (e′q′p′)

m′
q′p′ (w)uw = 0.

(2) If q < q′ and w(q) > w(q′) then (q, q′) ∈ I(w). Thus in this case upq′ ∧
e
mpq(w)
pq (e′q′p′)

m′
q′p′ (w)uw = 0 since upq′ ∧ e

mpq(w)
pq uw = 0.

(3) If p < q′ and w(p) > w(q′) then (p, q′) ∈ I(w). Thus in this case upq′ ∧
e
mpq(w)
pq (e′q′p′)

m′
q′p′ (w)uw = 0 since upq′ ∧ uw = 0.

Assume upq′ ∧ e
mpq(w)
pq (e′q′p′)

m′
q′p′ (w)uw 6= 0. First we see that w(p) < w(q′) by

(3) above. If w(p′) < w(p) < w(q′) then by `(wtp′q′) = `(w) + 1 we have p < p′,
but then it contradicts to (1) above. Thus w(p) ≤ w(p′). By a similar argument
(using (2) instead of (1)) we see w(q) ≤ w(q′). This shows the first claim.

It can be seen that I(w) has the form I(w) = ({q} × X) t (Y × {p}) t I ′
for certain I ′ where X = {r : q < r,w(p) < w(r) < w(q)} and Y = {r : r <
p,w(p) < w(r) < w(q)} and that I(wtpq) = ({p}×X)t (Y ×{q})t{(p, q)}t I ′.
This shows the second claim.

Lemma 3.2.7. Let w ∈ S
(n)
∞ , i ≥ 1 and d ≥ 0. Let ζ = tp1q1 · · · tpdqd ∈

Xi,d(w) (resp. Yi,d(w)) and 1 ≤ a ≤ d. Suppose that there exists no b < a
satisfying pb = pa (resp. qb = qa). Then wtpaqa m w, mpaqa(wa) = mpaqa(w)
and m′qapa(wa) = m′qapa(w) where wa = wtp1q1 · · · tpa−1qa−1 as in Definition
3.2.1.

Proof. We show the case ζ ∈ Xi,d(w): the other case can be treated similarly.
First note that p1, . . . , pa−1 6= pa by the hypothesis. Also, as we have remarked
before, q1, . . . , qa are all different. Thus the proof is now reduced to the following
lemma.
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Lemma 3.2.8. Let p < q, p′ < q′ and suppose

• {p, q} ∩ {p′, q′} = ∅, and

• wtp′q′tpq m wtp′q′ m w.

Then mpq(wtp′q′) = mpq(w), m′qp(wtp′q′) = m′qp(w) and wtpq m w.

w

wtp′q′

wtp′q′tpq

wtpq

·· ·

w1 = w

wtpaqaw2

w2tpaqa

wa−1

wa−1tpaqawa

watpaqa

Proof. Let us begin with a simple observation: suppose there exist two rectan-
gles R1 and R2 with edges parallel to coordinate axes. Suppose that no two
edges of these rectangles lie on the same line. Then, checking all the possibilities
we see that

#(NW and SE corners of R1 lying inside R2)−#(NE and SW corners of R1 lying inside R2)

= #(NW and SE corners of R2 lying inside R1)−#(NE and SW corners of R2 lying inside R1).

First consider the caseR1 = [p, q]×[w(p), w(q)] andR2 = [p′, q′]×[w(p′), w(q′)]
in the observation above. wtp′q′tpq m wtp′q′ m w implies that the first term in
the left-hand side and the second term in the right-hand side vanish (here the
coordinate system is taken so that points with smaller coordinates go NW).
Thus all the terms must vanish. In particular the first term on the right-hand
side vanishes and thus wtpq m w.

We have shown that none of the points (p, w(p)), (p, w(q)), (q, w(p)) and
(q, w(q)) lie in [p′, q′]× [w(p′), w(q′)], and thus applying the observation to R1 =
[q,M ]× [w(p), w(q)] (resp. R1 = [−M,p]× [w(p), w(q)]) with M � 0 and R2 =
[p′, q′]×[w(p′), w(q′)] shows mpq(wtp′q′) = mpq(w) (resp. m′qp(wtp′q′) = m′qp(w))
since the graphs of w and wtp′q′ differ only at the vertices of R2.

Proof of Proposition 3.2.3.
Proof for Xi,d(w): We assume (wζ)−1 ≤

lex
(wζ ′)−1 and show that ϕζ′(vζ) = 0

unless ζ ′ = ζ and ϕζ(vζ) is a nonzero multiple of uwζ . Let ζ = tp1q1 · · · tpdqd
and ζ ′ = tp′1q′1 · · · tp′dq′d as in Definition 3.2.1. We write wa = wtp1q1 · · · tpa−1qa−1

and w′a = wtp′1q′1 · · · tp′a−1q
′
a−1

.

For ζ =
∏
j tpjqj and ζ ′ =

∏
j tp′jq′j in Xi,d(w) we have

ϕζ′(vζ) =
∑
σ∈Sd

upσ(d)q
′
d
∧ · · · ∧ upσ(1)q

′
1
∧ (

d∏
j=1

Ej

d∏
j=1

E′j · uw)

 · · · (∗)
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where Ej = e
mpjqj (wj)
pjqj and E′j = (e′q′jp′j

)
m′
q′
j
p′
j
(w′j)

.

If w(p1) < w(p′1), then (wζ)−1(w(p1)) = q1 > p1 = (wζ ′)−1(w(p1)) and
(wζ)−1(j) = w−1(j) = (wζ ′)−1(j) for all j < w(p1), and this contradicts the as-
sumption (wζ)−1 ≤

lex
(wζ ′)−1. Thus w(p1) ≥ w(p′1). Also, by a similar argument,

if p1 = p′1 then q1 ≤ q′1.
Fix σ ∈ Sd. Let 1 ≤ a ≤ d be minimal such that pa = pσ(1). Note that this

in particular implies wa(pa) = w(pa). We have

upσ(d)q
′
d
∧ · · · ∧ upσ(1)q

′
1
∧ (
∏
j

Ej
∏
j

E′j · uw)

= upσ(d)q
′
d
∧ · · · ∧ upσ(2)q

′
2
∧
∏
j 6=a

Ej
∏
j 6=1

E′j · (upσ(1)q
′
1
∧ EaE′1uw)

= upσ(d)q
′
d
∧ · · · ∧ upσ(2)q

′
2
∧
∏
j 6=a

Ej
∏
j 6=1

E′j · (upaq′1 ∧ EaE
′
1uw)

= upσ(d)q
′
d
∧ · · · ∧ upσ(2)q

′
2
∧
∏
j 6=a

Ej
∏
j 6=1

E′j · (upaq′1 ∧ e
mpaqa (w)
paqa (e′q′1p′1)

m′
q′1p
′
1
(w)
uw)

where the last equality is by Lemma 3.2.7 (note that w′1 = w by definition).
First consider the case w(p1) > w(p′1). We show that the summand in (∗)

vanishes for all σ. It suffices to show upaq′1 ∧ e
mpaqa (w)
paqa (e′q′1p′1

)
m′
q′1p
′
1
(w)
uw = 0.

We have w(pa) = wa(pa) ≥ w(p1) > w(p′1). Thus by Lemma 3.2.6 we see

upaq′1 ∧ e
mpaqa (w)
paqa (e′q′1p′1

)
m′
q′1p
′
1
(w)
uw = 0 (note that wtpaqa mw by Lemma 3.2.7).

Next consider the case w(p1) = w(p′1) and a > 1. In this case we see

upaq′1 ∧ e
mpaqa (w)
paqa (e′q′1p′1

)
m′
q′1p
′
1
(w)
uw = 0 since w(pa) = wa(pa) > w(p1) = w(p′1).

Next consider the case w(p1) = w(p′1), a = 1 and q1 < q′1. Then since
wtp1q1 , wtp′1q′1 m w it follows that w(q′1) < w(q1). So again by Lemma 3.2.6 we

see upaq′1 ∧ e
mpaqa (w)
paqa (e′q′1p′1

)
m′
q′1p
′
1
(w)
uw = 0.

So the only remaining summands in (∗) are the ones with (p1, q1) = (p′1, q
′
1)

and a = 1, i.e. pσ(1) = p1. It is easy to see that the sum of such summands is
a nonzero multiple of the sum of terms with σ(1) = 1. If σ(1) = 1 we have, by
the latter part of Lemma 3.2.6,

upσ(d)q
′
d
∧ · · · ∧ upσ(1)q

′
1
∧ (

d∏
j=1

Ej

d∏
j=1

E′j · uw)

= upσ(d)q
′
d
∧ · · · ∧ upσ(2)q

′
2
∧

d∏
j=2

Ej

d∏
j=2

E′j · (up1q1 ∧ e
mp1q1

(w)
p1q1 (e′q1p1

)m
′
q1p1

(w)uw)

= (nonzero const.) · upσ(d)q
′
d
∧ · · · ∧ upσ(2)q

′
2
∧ (

d∏
j=2

Ej

d∏
j=2

E′j · uwtp1q1
).

So, working inductively on d (using wtp1q1 , tp2q2 · · · tpdqd and tp′2q′2 · · · tp′dq′d in

place of w, ζ and ζ ′ respectively, noting that if (p1, q1) = (p′1, q
′
1) then (wζ)−1 ≤

lex
(wζ ′)−1

implies ((wtp1q1)·tp2q2 · · · tpdqd)−1 = (wζ)−1 ≤
lex

(wζ ′)−1 = ((wtp1q1)·tp′2q′2 · · · tp′dq′d)−1)

we see that:
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• upσ(d)q
′
d
∧ · · · ∧ upσ(1)q

′
1
∧ (
∏
j Ej

∏
j E
′
j · uw) vanishes if (wζ)−1 <

lex
(wζ ′)−1,

or if ζ ′ = ζ and σ 6= id, and

• if ζ ′ = ζ and σ = id then it is a nonzero multiple of uwζ .

This finishes the proof for Xi,d(w).
Proof for Yi,d(w): This proceeds much similarly to the previous case. Here

instead of (∗) we use

ϕζ′(vζ) =
∑
σ∈Sd

sgn(σ) · upσ(d)q
′
d
∧ · · · ∧ upσ(1)q

′
1
∧ (

d∏
j=1

Ej

d∏
j=1

E′j · uw)


=
∑
σ∈Sd

updq′
σ−1(d)

∧ · · · ∧ up1q′
σ−1(1)

∧ (

d∏
j=1

Ej

d∏
j=1

E′j · uw)


where Ej = e

mpjqj (wj)
pjqj and E′j = (e′q′jp′j

)
m′
q′
j
p′
j
(w′j)

as before.

We assume (wζ)−1 ≤
rlex

(wζ ′)−1. Fix σ and take 1 ≤ a ≤ d minimal with

q′a = q′σ−1(1). By a similar argument to the above, it suffices to show that

up1q′a
∧ emp1q1 (w)

p1q1 (e′q′ap′a)
m′
q′ap
′
a

(w)
uw is zero unless a = 1 and (p′1, q

′
1) = (p1, q1),

and in a such case it is a nonzero multiple of uwtp1q1 .
Since (wζ)−1 ≤

rlex
(wζ ′)−1 by the hypothesis, we see that w(q1) ≥ w(q′1), and

if w(q1) = w(q′1) then p1 ≤ p′1.
If w(q1) > w(q′1) then the claim follows from Lemma 3.2.6 since w(q1) >

w(q′1) ≥ w′a(q′a) = w(q′a). If w(q1) = w(q′1) and a > 1 then the claim follows
from Lemma 3.2.6 since in this case w(q1) = w(q′1) > w(q′a) by wtp1q1 , wtp′1q′1 m
w. If q1 = q′1, a = 1 and p1 < p′1 the claim follows from Lemma 3.2.6
since w(p1) > w(p′1). Finally if (p1, q1) = (p′1, q

′
1) and a = 1 then up1q′a ∧

e
mp1q1 (w)
p1q1 (e′q′ap′a)

m′
q′ap
′
a

(w)
uw = up1q1 ∧ e

mp1q1 (w)
p1q1 (e′q1p1

)m
′
q1p1

(w)uw is a constant
multiple of uwtp1q1

by Lemma 3.2.6.

Remark 3.2.9. Although the Pieri rule for KP modules we have shown above
(Theorem 3.2.4) implies Monk’s rule for KP modules (Proposition 3.1.2), we
actually need a slightly more precise result in the next section. Here we give it
as a remark.

For ζ = tpq ∈ Xi,1(w) = Yi,1(w) (p ≤ i < q) we have vζ = vpq = e
mpq(w)
pq uw⊗

up ∈ Sw ⊗Ki and ϕζ = ϕpq = µq · (e′qp)m
′
qp(w). In this case we see directly from

Lemma 3.2.6 that ϕp′q′(vpq) = 0 unless both w(p) ≤ w(p′) and w(q) ≤ w(q′)
hold.

Let (p1, q1), . . . , (pr, qr) be all the elements in Xi,1(w) = Yi,1(w), indexed
so that there exist no a < b such that w(pa) ≤ w(pb) and w(qa) ≤ w(qb)
hold simultaneously. Then by the same argument as before in this subsection,
0 ⊂ 〈v1〉 ⊂ 〈v1, v2〉 ⊂ · · · ⊂ 〈v1, . . . , vr〉 (vj = vpjqj ) gives a KP filtration of
Sw ⊗Ki with 〈v1, . . . , vj〉/〈v1, . . . vj−1〉 ∼= Swtpjqj .
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4 Kraśkiewicz-Pragacz modules and Ringel du-
ality

In this section we study a special case Cn = CΛn of our highest weight categories.
We prove that the Ringel dual of Cn is equivalent to itself, and that the anti-
autoequivalence C∆

n → C∆
n given by this duality preserves a certain natural

tensor product operation on C∆
n .

4.1 Ringel dual of the highest weight category Cn
Let Cn = CΛn (recall that Λn = {(a1, . . . , an) : 0 ≤ ai ≤ n− i} is an order ideal
in Zn). Since Λn = {code(w) : w ∈ Sn} we see that the standard objects in Cn
are Sw (w ∈ Sn). In this subsection we show that the highest weight category
Cn is self Ringel-dual. Precisely, we show the following:

Theorem 4.1.1. The Ringel dual of the highest weight category Cn is equivalent
to Cn itself. The functor F in Section 1.3.6 acts on the standard modules by
F (Sw) = Sw0ww0

(w ∈ Sn).

From the theorem in particular we obtain the following symmetry relation
for the Hom and Ext groups between KP modules:

Corollary 4.1.2. ExtiCn(Sw,Sv) ∼= ExtiCn(Sw0vw0
,Sw0ww0

) for any w, v ∈ Sn
and any i ≥ 0. �

Let us move to the proof of Theorem 4.1.1. First we prepare some definitions
and results. For λ = code(w) ∈ Λn define λ = code(w0ww0). Note that
by definition, for λ, µ ∈ Λn, λ ≤ µ iff λ ≥′ µ. For each λ ∈ Λn, define

T (λ) =
⊗

1≤j≤n−1

∧λj Kn−j .
As we showed in the proof of Lemma 3.1.4, T (λ) has a filtration whose

subquotients are standard modules Sµ (µ ∈ Λn, µ � λ). Since ρ− λ = ρ − λ
we have T (λ) ∼= T (ρ − λ)∗ ⊗ Kρ, and thus T (λ) also has a filtration whose
subquotients are costandard modules S∗ρ−ν ⊗ Kρ (ν ∈ Λn, ν � λ). Thus by

Proposition 1.3.8 we see that Ext1(Sµ, T (λ)) = 0 for all µ ∈ Λn. Thus T (λ) is
a tilting in Cn.

Since the weights of Sµ are all � µ, the weights of T (λ) are all � λ and the
weight space T (λ)λ is one-dimensional. By these properties we see that T (λ)
contains the indecomposable tilting module corresponding to λ (in fact, we will
see that T (λ) is an indecomposable tilting). So if we define T =

⊕
λ∈Λn

T (λ) ∼=∧•
(Kn−1⊕Kn−2⊕· · ·⊕K1), then T is a full tilting (beware that the definition

of T here is slightly different from the one in the previous section).
Like in Section 3.2 we make use of the operators e′ij on T . Let b′ =⊕
i≤j Ke

′
ij be a copy of b. Take a basis {uij : i, j ≥ 1, i + j ≤ n} of Kn−1 ⊕

· · · ⊕ K1 so that the action of b is given by epquij = δqiupj . Then we define
the action of b′ on Kn−1 ⊕ · · · ⊕K1 by e′pquij = δqjuip, and define the action
on T as the one induced from this action. In other words, if −′ : T → T is the
involution given by u′ij = uji, then e′ij = −′ ◦ eij ◦−′. Note that, like in Section
3.2, the actions of b and b′ commute with each other.

By Proposition 1.3.11, if M has a KP filtration, then Ker(M≤
′λ � M<′λ)

is isomorphic to a direct sum of copies of Sλ, where M≤
′λ and M<′λ are the
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largest quotients of M whose weights are all ≤′ λ and <′ λ respectively. In this
case it can be seen that the isomorphism can be written as Sλ ⊗ (M≤

′λ)λ 3
xuλ ⊗ v 7→ xv ∈ Ker(M≤

′λ � M<′λ), where on the left-hand side b acts only
on Sλ.

Proof of Theorem 4.1.1. Let C = Cn. Throughout this proof and thereafter we
write Hom, End and Exti for HomC , EndC and ExtiC respectively.

Since the actions of b and b′ commute, we have an algebra homomor-
phism U(b) ∼= U(b′) → Endb(T ), and thus an Endb(T )-module can be natu-
rally seen as a U(b)-module (note that, as we have remarked before, we will
simply write End(T ) to mean Endb(T ) = EndC(T ) hereafter). If M is an
End(T )-module, then its weight-space decomposition as a U(b)-module is given
by M =

⊕
λ∈Λn

Mλ =
⊕

λ∈Λn
πλM , where πλ ∈ End(T ) is the projection

T =
⊕

µ∈Λn
T (µ) � T (λ); in particular the weights of M are all in Λn. So we

have a functor C∨ = End(T )-mod → C. We want to show that this functor is

an equivalence and the composition C F=Hom(−,T )−→ C∨ ∼→ C sends Sw to Sw0ww0
.

First we show the second claim. By definition, Sw is isomorphic to the b-
submodule of T generated by

∧
i<j,w(i)>w(j) ui,n+1−j ; hereafter we identify uw

with this element. Note that u′w = ±uw0ww0
. We have an injective homo-

morphism Sw0ww0
→ Hom(Sw, T ) given by xuw0ww0

7→ (v 7→ x′v) (x ∈ U(b)):
it is well-defined since xuw0ww0

= 0 implies x′yuw = ±y(xuw0ww0
)′ = 0 for

any y ∈ U(b), and it is injective because v 7→ x′v maps uw = ±u′w0ww0
to

±(xuw0ww0)′. Since T has a costandard filtration, by Proposition 1.3.10 the di-
mension of Hom(Sw, T ) is equal to the number of times the costandard module
S∗w0w ⊗ Kρ appears in (any) costandard filtration of T . Since T ∼= T ∗ ⊗ Kρ,
this number is equal to the number of times Sw0w appears in (any) standard
filtration of T . From Cauchy identity we see that ch(T ) =

∏
(xi + 1)n−i =∑

v∈Sn Sv(x)Svw0(1), and thus we see that dim Hom(Sw, T ) = Sw0ww0(1) =
dimSw0ww0 . So the injection above is in fact an isomorphism and this shows
the second claim.

Now let us show that the functor C∨ → C given above is an equivalence.
First we note the following thing. Define an algebra A = U(b)/I, where I is
the two-sided ideal generated by all elements in U(h) = S(h) ∼= K[h∗] which
vanish on Λn (here Λn ⊂ Zn is identified with a subset of h∗ via the pairing
〈λ, h〉 =

∑
i λihi introduced before). Then the objects in C, i.e. weight b-

modules with weights in Λn, are just the finite dimensional A-modules (note
that A-modules automatically have weight decompositions since any element
pλ ∈ K[h∗] such that pλ(µ) = δλµ (∀µ ∈ Λn) acts as a projection onto the
λ-weight space). Thus it suffices to show that the map

ϕ : A 3 a 7→ (b′-action of a on T ) ∈ End(T )

is an isomorphism. We note here that A has an algebra anti-automorphism ι
defined by ι(h) = 〈ρ, h〉 − h (h ∈ h) and ι(eij) = −eij (1 ≤ i < j ≤ n). For each
λ ∈ Λn take pλ ∈ A as above. Note that ι(pλ) = pρ−λ.

Let 0 ≤ d ≤
(
n
2

)
. It suffices to show that ϕ induces an isomorphism between

Ad :=
∑
λ1+···+λn=dApλA and End(T )d := End(

∧d
(Kn−1⊕· · ·⊕K1)), since as

algebras A =
⊕

dAd (this follows easily from hpλ = pλh and eijpλ = pλ−αijeij)
and End(T ) =

⊕
d End(T )d. So let us fix such d hereafter in this proof. Let

the elements of {λ ∈ Λn :
∑
λi = d} be λ(1) > λ(2) > · · · > λ(r). Note
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λ(1) <′ λ(2) <′ · · · <′ λ(r). Define Ik =
∑
µ≥λ(k) ApµA. Also define Jk =

Hom(T≤
′λ(k)

, T ) ⊂ End(T ) where T≤
′λ(k)

is the largest quotient of T whose

weights are all ≤′ λ(k). In other words, Jk consists of all morphisms in End(T )

which vanishes on the weight spaces Tµ (µ 6≤′ λ(k)). Define I0 = 0 and J0 = 0.
Note that I0 ⊂ · · · ⊂ Ir = Ad and J0 ⊂ · · · ⊂ Jr = End(T )d. It suffices to show
that ϕ(Ik) ⊂ Jk and that ϕ induces an isomorphism Ik/Ik−1 → Jk/Jk−1 for all
1 ≤ k ≤ r.

Fix 1 ≤ k ≤ r. Let λ = λ(k). The first claim ϕ(Ik) ⊂ Jk follows since for
µ ≥ λ, pµ acts on T as the projection onto T (µ), and every weight ν of T (µ)
satisfies ν ≤′ µ ≤′ λ. Let us now show that the induced map Ik/Ik−1 → Jk/Jk−1

is an isomorphism. We show that Ik/Ik−1 and Jk/Jk−1 are both isomorphic to
Sλ⊗Sρ−λ as vector spaces and that the composition of isomorphisms Ik/Ik−1

∼=
Sλ ⊗ Sρ−λ ∼= Jk/Jk−1 coincides with the map induced from ϕ.

We first show that Ik/Ik−1
∼= Sλ ⊗ Sρ−λ. First note that A is a projective

object in C = A-mod. Since projective objects in C have standard filtrations, A
has a standard filtration.

By definition, A/Ik ∼= A<λ andA/Ik−1
∼= A≤λ, and thus Ik/Ik−1

∼= Ker(A≤λ →
A<λ). By Proposition 1.3.11 this is a direct sum of m copies of Sλ, where m
is the number of times Sλ appears in a standard filtration of A. This num-
ber m can be calculated, by Proposition 1.3.10, as dim Hom(A,S∗ρ−λ ⊗Kρ) =
dim(S∗ρ−λ ⊗Kρ) = dimSρ−λ. Thus Sλ ⊗ Sρ−λ and Ik/Ik−1 have the same di-
mensions. We claim that the map Sλ ⊗ Sρ−λ 3 xuλ ⊗ yuρ−λ 7→ xpλι(y) =
ι(yι(xpλ)) ∈ Ik/Ik−1 is well-defined. To see this, first observe that the weights
of Ik/Ik−1 (resp. ι(Ik/Ik−1) are all ≤ λ (resp. ≤′ ρ − λ). Thus the submodule
of Ik/Ik−1 (resp. ι(Ik/Ik−1)) generated by pλι(y) (resp. ι(xpλ)) is a quotient
of Sλ (resp. Sρ−λ) by Remark 2.2.5, and thus xuλ = 0 (resp. yuρ−λ = 0) im-
plies xpλι(y) = 0 (resp. yι(xpλ) = 0). This verifies the well-definedness of the
map above. It is clear that the map above is a surjection. By the equality of
dimensions this is in fact an isomorphism.

Next we show Jk/Jk−1
∼= Sλ ⊗ Sρ−λ. Since T<

′λ has a standard filtration

by Proposition 1.3.11, Ext1(T<
′λ, T ) vanishes. So Jk/Jk−1

∼= Hom(Ker(T≤
′λ �

T<
′λ), T ) via the restriction map. The right-hand side is isomorphic to Hom(Sλ⊗

(T≤
′λ)λ, T ) ∼= ((T≤

′λ)λ)∗ ⊗Hom(Sλ, T ) by the remark before the proof. As we
have seen above, Hom(Sλ, T ) ∼= Sλ. On the other hand, since T ∼= T ∗ ⊗ Kρ,

((T≤
′λ)λ)∗ ∼= (T≤µ)µ where µ = ρ − λ and T≤µ denotes the largest sub-

module of T whose weights are ≤ µ. Since Sµ ∼= (Pµ)≤µ we have (T≤µ)µ ∼=
Hom(Pµ, T≤µ) ∼= Hom(Sµ, T≤µ) ∼= Hom(Sµ, T ) ∼= Sµ = Sρ−λ.

Now we show that the composition of these isomorphisms coincides with
the map induced from ϕ, up to a sign depending only on λ. Chasing the iso-
morphisms we see that it suffices to show ϕ(xpλy)(τ) = 〈ι(y)′uρ−λ, τ〉x′uλ,
up to a sign depending only on λ, for all τ ∈ Tλ and all x, y ∈ A, where

〈−,−〉 is a natural bilinear form on T defined by T ⊗ T mult.→ T =
∧•

(Kn−1 ⊕
· · · ⊕ K1) �

∧(n2)(Kn−1 ⊕ · · · ⊕ K1) ∼= K. Note that from the definition we
see that 〈u, x′v〉 = 〈ι(x)′u, v〉 holds for any u, v ∈ T and x ∈ A. First we
have ϕ(xpλy)(τ) = x′p′λy

′τ . Here p′λy
′τ ∈ T (λ)λ so it must be a constant

multiple of uλ. Using the pairing defined above we see that this is equal to
±〈p′λy′τ, uρ−λ〉uλ with the sign depending only on λ, since uλ ∧ uρ−λ = ±uw0 .
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Since 〈p′λy′τ, uρ−λ〉 = 〈τ, ι(y)′p′ρ−λuρ−λ〉 = 〈τ, ι(y)′uρ−λ〉 we are done.

4.2 Compatibility with tensor product

In this subsection we show that the Ringel duality functor F = Hom(−, T ) and
the tensor product operation on C∆ in some sense commute with each other.
Precisely, we show the following:

Theorem 4.2.1. Let M,N ∈ Cn have standard filtrations. Then F ((M ⊗
N)Λn) ∼= (FM ⊗FN)Λn , where for a weight b-module L, LΛn ∈ Cn denotes the
largest quotient of L which is in Cn.

Let C+ be the category of all finite dimensional weight b-modules whose
weights are in Zn≥0. Note that if M,N ∈ C+ then M ⊗ N ∈ C+. Using the
terminology from highest weight categories we say that M ∈ C+ has a standard
filtration if M has a filtration whose successive quotients are of the form Sλ
(λ ∈ Zn≥0). Note that, as we showed in Section 3.1, if M,N ∈ C+ have standard
filtrations then M ⊗N also has a standard filtration.

Remark 4.2.2. If L ∈ C+ has a standard filtration, then as we show below,
ch(LΛn) = ch(L) holds in the ring Hn. So, together with Theorem 4.1.1, this
theorem can be seen as a module theoretic counterpart of Proposition 1.1.4; i.e.
the claim that Sw 7→ Sw0ww0

is a ring automorphism on Hn.

First we prepare some lemmas.

Lemma 4.2.3. Let ι : Hn → Hn be the ring automorphism in Proposition
1.1.4. If M ∈ C+ has a standard filtration, then ch(FM) = ι(ch(M)) in Hn.

Proof. Since the extensions of KP modules with T vanish, if we have an exact
sequence 0→ L→M → N → 0 with L,M,N ∈ C+ having standard filtrations,
then 0 → FN → FM → FL → 0 is exact. Thus we only have to show the

lemma for M = Sw (w ∈ S(n)
∞ ).

The case w ∈ Sn follows from Theorem 4.1.1. If w ∈ S(n)
∞ rSn then we have

FSw = Hom(Sw, T ) = 0 since Sw is generated by an element of weight code(w)
while the weight space Tcode(w) is zero. Thus the lemma follows for this case
since Sw = 0 in Hn.

Lemma 4.2.4. Let M ∈ C+ have a standard filtration. Then ch(MΛn) = ch(M)
as elements of Hn. If M ∈ Cn is a quotient of M and ch(M) = ch(M) in Hn,
then M ∼= MΛn .

Proof. By Proposition 1.3.11, Ker(M � MΛn) has a filtration whose sub-

quotients are of the form Sv (v ∈ S
(n)
∞ r Sn). Thus ch(M) = ch(MΛn) +

(a linear combination of Sv (v ∈ S(n)
∞ r Sn)), and the second term vanishes in

Hn by Proposition 1.1.6. The second claim follows from the first claim since⊕
λ∈Λn

Zxλ ∼= Hn.

Lemma 4.2.5. Let M,N ∈ C+ have standard filtrations. Suppose that the
morphism FM ⊗ FN → F (M ⊗N) given by ϕ⊗ ψ 7→ (m⊗ n 7→ ϕ(m) ∧ ψ(n))
is surjective. Then it induces an isomorphism (FM ⊗ FN)Λn ∼= F (M ⊗N) (∼=
F ((M ⊗N)Λn)).
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Proof. We have, as vector spaces, F (M⊗N) = Hom(M⊗N,T ) =
⊕

λ∈Λn
Hom(M⊗

N,T (λ)). It can be seen that Hom(M ⊗ N,T (λ)) is the λ-weight space of the
b-module F (M ⊗N). Thus F (M ⊗N) ∈ Cn. By Lemma 4.2.3 we have, in Hn,
ch(F (M ⊗N)) = ι(ch(M)ch(N)) = ι(ch(M))ι(ch(N)) = ch(FM ⊗ FN). Thus
the claim follows from the second statement in Lemma 4.2.4.

For M,N ∈ C+ having standard filtrations, let P(M,N) be the claim that
the map FM⊗FN → F (M⊗N) above is surjective (and thus (FM⊗FN)Λn ∼=
F ((M ⊗N)Λn)).

Lemma 4.2.6. Let L,M,N,X ∈ C+ have standard filtrations. Then the fol-
lowing implications hold:

(1) If L is a direct sum component of M then P(M,X) implies P(L,X).

(2) Suppose that there exists an exact sequence 0→ L→M → N → 0. Then
P(L,X) ∧ P(N,X) =⇒ P(M,X) and P(M,X) =⇒ P(L,X) hold (in
fact P(M,X) also implies P(N,X), but we do not need it here).

(3) P(L,M) and P(L⊗M,N) implies P(L,M ⊗N).

Proof. (1) is clear since F preserves direct sums.

(2) We have a commutative diagram

0 −−−−→ FN ⊗ FX −−−−→ FM ⊗ FX −−−−→ FL⊗ FX −−−−→ 0y y y
0 −−−−→ F (N ⊗X) −−−−→ F (M ⊗X) −−−−→ F (L⊗X) −−−−→ 0.

Here the rows are exact since Ext1(N,T ) and Ext1(N⊗X,T ) vanish. This
shows P(L,X) ∧ P(N,X) =⇒ P(M,X) and P(M,X) =⇒ P(L,X).

(3) This holds since

FL⊗ FM ⊗ FN −−−−→ F (L⊗M)⊗ FNy y
FL⊗ F (M ⊗N) −−−−→ F (L⊗M ⊗N)

commutes.

Lemma 4.2.7. Let M ∈ C+ have a standard filtration. Let λ ∈ Λn. Let V ⊂
Hom(M,T ) be the submodule consisting of all homomorphisms which vanish on
the µ-weight spaces for any µ > λ (it is a submodule since the action of b′ on T

preserves weights with respect to h ⊂ b). Then Hom(M,T )/V ∼= Hom(M,T )<
′λ,

the largest quotient of Hom(M,T ) whose weights are all <′ λ (recall that for
λ = code(w) ∈ Λn we defined λ = code(w0ww0)).
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Proof. It suffices to show that the characters of both sides coincide.
First note that V = Hom(M 6>λ, T ) where M 6>λ is the largest quotient of

M whose weights are all 6> λ. From Proposition 1.3.11 we see that M 6>λ has
a standard filtration and, if ch(M) =

∑
µ cµSµ, then the number of times Sµ

appears in a standard filtration of M 6>λ is cµ if µ 6> λ and 0 otherwise. Thus we
see from Theorem 4.1.1 that ch(V ) = ch(Hom(M 6>λ, T )) =

∑
µ∈Λn,µ6>λ cµSµ.

We also see from Theorem 4.1.1 that Hom(M,T ) has a a standard filtration with
Sµ appearing cµ times for each µ ∈ Λn. Thus ch(Hom(M,T )) =

∑
µ∈Λn

cµSµ.
So ch(Hom(M,T )/V ) =

∑
µ∈Λn,µ>λ

cµSµ.
On the other hand, since Hom(M,T ) has a standard filtration, by Proposi-

tion 1.3.11 we see ch(Hom(M,T )<
′λ) =

∑
µ∈Λn,µ<′λ

cµSµ =
∑
µ∈Λn,µ<′λ

cµSµ =∑
µ∈Λn,µ>λ

cµSµ = ch(Hom(M,T )/V ). This shows the claim.

Recall from the proof of Theorem 4.1.1 that T has an action of b′, a copy
of b, defined by e′ijupq = δjqupi, which commutes with the usual action of b.
Recall also that we have identified uw with

∧
(i,j)∈J(w) ui,j ∈ T where J(w) =

{(i, j) : i < j, w(i) > w(j)}.
We write w = w0ww0 (w ∈ Sn) and k = n+ 1− k (1 ≤ k ≤ n).

Lemma 4.2.8. Let w ∈ Sn and 1 ≤ i ≤ n − 1. For 1 ≤ p, p′ ≤ i and i + 1 ≤
q, q′ ≤ n such that `(wtpq) = `(wtp′q′) = `(w) + 1, if (e′

q′,p′
)
m
q′,p′ (w)

e
mpq(w)
pq uw ∧

up,q′ 6= 0 then w(p) ≤ w(p′) and w(q) ≤ w(q′). Moreover, (e′q,p)
mq,p(w)e

mpq(w)
pq uw∧

up,q is a nonzero multiple of uwtpq .

Proof. This is essentially the same as Lemma 3.2.6.

Proof of Theorem 4.2.1. First we show that P(Sw,Ssi) holds for any w ∈ Sn
and any 1 ≤ i ≤ n− 1.

Recall that the isomorphism Sw → Hom(Sw, T ) was given by xuw 7→ (v 7→
x′v). Thus we want to show that the map ϕ : Sw ⊗Kn−i → F (Sw ⊗Ki) given
by yuw ⊗ uq 7→ (xuw ⊗ up 7→ xy′uw ∧ upq) is a surjection.

Let (p1, q1), . . . , (pr, qr) be all the pairs (p, q) such that 1 ≤ p ≤ i < q ≤ n
and `(wtpq) = `(w) + 1, ordered by the lexicographic order of (w(p), w(q)).

Let wk = wtpkqk . Then code(w1) < · · · < code(wr) and code(w1) >′ · · · >′
code(wr).

For an x ∈ Sn and 1 ≤ p < q ≤ n + 1 such that `(xtpq) = `(x) + 1, let

vpq(x) = e
mpq(x)
pq ux ⊗ up ∈ Sx ⊗ Kn (note that this definition is also valid for

q = n+1 since mpq(x) = 0 in such case). Note that vpq(x) has weight code(xtpq).
Note that by Remark 3.2.9, {vpq(x) : 1 ≤ p ≤ i < q ≤ n+ 1, `(xtpq) = `(x) + 1}
generates Sx ⊗Ki as a b-module.

For 0 ≤ k ≤ r, let Uk be the submodule of Sw ⊗Ki generated by vpl,ql(w)
(l > k) together with vj,n+1(w) (1 ≤ j ≤ i, `(wtj,n+1) = `(w) + 1). Note that
U0 = Sw ⊗Ki. From Remark 3.2.9 we see that Uk−1/Uk ∼= Swk . In particular
the weights of Uk−1/Uk is all ≤ code(wk), and since code(w1) ≤ · · · ≤ code(wk)
we see that the weights of (Sw ⊗ Ki)/Uk are all ≤ code(wk). Moreover, Ur
has a filtration by modules Swtj,n+1 , and thus ch(Ur) = 0 in Hn. Therefore
(Sw ⊗Ki)/Ur ∼= (Sw ⊗Ki)Λn by Lemma 4.2.4 (note that (Sw ⊗Ki)/Ur ∈ Cn
since Sw1 , . . . ,Swr ∈ Cn).

Let Vk (k = 1, . . . , r) be the submodule of F (Sw ⊗Ki) = Hom(Sw ⊗Ki, T )
consisting of the homomorphisms which vanish on the µ-weight spaces for any
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µ > code(wk). By Lemma 4.2.7, F (Sw ⊗ Ki)/Vk ∼= F (Sw ⊗ Ki)<
′code(wk)

(1 ≤ k ≤ r). We see Vr = F (Sw ⊗Ki) since by the argument above the weights
of (Sw ⊗Ki)Λn are all ≤ code(wr). We also set V0 = 0.

Note that the constituents in a standard filtration of F (Sw⊗Ki) are Sw1 , . . . ,Swr
by Theorem 4.1.1. In particular, the only constituent Sx with code(wk−1) >′

code(x) ≥′ code(wk) is S
wk

. Thus Vk/Vk−1
∼= Ker(F (Sw ⊗Ki)<

′code(wk−1) �

F (Sw ⊗Ki)<
′code(wk)) ∼= Swk by Proposition 1.3.11. In particular any nonzero

element of weight code(wk) in Vk/Vk−1 generates Vk/Vk−1.
We show ϕ(vqk,pk(w)) ∈ Vk r Vk−1 for each k. Note that the desired surjec-

tivity of ϕ follows from this claim since it shows that ϕ(vqk,pk(w)) + Vk−1 is a
cyclic generator of Vk/Vk−1, i.e. U(b)(ϕ(vqk,pk(w)) + Vk−1) = Vk.

For 1 ≤ k, l ≤ r we have ϕ(vqk,pk(w))(vpl,ql(w)) = (e
mplql (w)
plql (e′qk,pk)mqk,pk (w)uw)∧

upl,qk . By Lemma 4.2.8, if ϕ(vqk,pk(w))(vpl,ql(w)) 6= 0 then w(pl) ≤ w(pk) and
w(ql) ≤ w(qk) and thus in particular l ≤ k. Thus ϕ(vqk,pk(w)) induces a map
(Sw ⊗ Ki)/Uk → T (note that the elements vj,n+1(w) obviously vanish under
ϕ(vqk,pk(w)) since T does not have the corresponding weights). Since the weights
of (Sw ⊗ Ki)/Uk are all ≤ code(wk), this shows ϕ(vqk,pk(w)) ∈ Vk. Moreover
ϕ(vqk,pk(w))(vpk,qk(w)) 6= 0 by Lemma 4.2.8, and since vpk,qk(w) has weight
code(wk) this shows ϕ(vqk,pk(w)) 6∈ Vk−1. Therefore we checked the claim and
thus P(Sw,Ssi) follows.

Now we can proceed to the general case. From (2) of Lemma 4.2.6 we see
that P(M,Ssi) holds for any M having a standard filtration. Since if M has a
standard filtration then M ⊗ Ssi also has a standard filtration, (3) of Lemma
4.2.6 shows that P(M,Ssi ⊗ Ssj ⊗ · · · ) holds for any i, j, . . . and any M . Then
from (1) of Lemma 4.2.6 we see that P(M,T (λ)) holds for any λ and any M ,

since T (λ) is a direct sum component of
⊗

1≤i≤n−1(Ssn−i)⊗λi . Thus again from
(2) of Lemma 4.2.6 we get P(M,Sλ), since as we showed in Lemma 3.1.4 there
is an injection Sλ ↪→ T (λ) such that its cokernel admits a standard filtration.
Thus P(M,N) for general M,N follows by (2) of Lemma 4.2.6.

Remark 4.2.9. As we saw, (M,N) 7→ (M ⊗N)Λn is a very fundamental oper-
ation in the category C∆

n ; this in fact defines a structure of symmetric monoidal
category on C∆

n . Experimental results suggest an interesting conjecture relat-
ing this “restricted tensor product” operation and our full tilting module T :

the dimension of (T⊗k)Λn seems to be (k + 1)(
n
2) for any k. Also there is a

finer form of this conjecture: the dimension of the degree-d piece (with respect
to the grading induced from the natural grading on T =

∧•
(· · · )) of (T⊗k)Λn

seems to be kd
((n2)
d

)
. Note that these conjectures can actually be rephrased to

a combinatorial conjecture on Schubert polynomials by Lemma 4.2.4.
It can be shown that the latter version of the conjecture implies that Hom(T⊗k, T )

also has a dimension (k+1)(
n
2). Note that this is true for k = 1 since ch(End(T )) =

ι(ch(T )) =
∑
v∈Sn Sv(x)Sw0v(1) and thus dim(End(T )) =

∑
v∈Sn Sv(1)Sw0v(1) =∑

v∈Sn Sv−1(x)S(w0v)−1(1) =
∑
v∈Sn Sv(1)Svw0

(1) = 2(n2) by Cauchy formula.
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[15] I. G. Macdonald. Symmetric Functions and Hall Polynomials, second edi-
tion. Oxford University Press, 1999.

[16] P. Magyar. Four new formulas for Schubert polynomials.
http://math.msu.edu/~magyar/papers/FourFormulas.pdf.

[17] L. Manivel. Symmetric functions, Schubert polynomials and degeneracy
loci. American Mathematical Society, 2001.

[18] P. Polo. Variétés de Schubert et excellentes filtrations. Astérisque, (173-
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