Preface

The study of Schubert polynomials is one of the main subjects in algebraic
combinatorics. One of the possible methods for studying Schubert polynomials
is through the modules introduced by Kraskiewicz and Pragacz. In [10], for
each permutation w they introduced a certain module S, over the Lie algebra b
of all upper triangular matrices whose character is the corresponding Schubert
polynomial &,,. In this paper we call them Kraskiewicz-Pragacz modules or KP
modules for short.

Schubert polynomials can be regarded as a generalization of Schur functions.
Many positivity properties are known for Schur functions. One of the most
classical examples is the Schur positivity of the product sys,, of Schur functions,
i.e. the product of Schur functions always expands into a positive sum of Schur
functions. Another such example is the positivity of so-called plethysms of
Schur functions. Plethysm is another kind of product operation (other than the
ordinary multiplication) defined on symmetric functions, corresponding to the
composition of representations of general linear Lie algebras. It is also known
that the plethysm sy[s,] of Schur functions is always Schur positive.

One of the main motivations for our study of KP modules is the corre-
sponding generalizations of these positivity properties to Schubert polynomials.
The positivity of the product of Schubert polynomials is classically known: the
product 6,6, of Schubert polynomials always expands into a positive sum
of Schubert polynomials. The only previously known proof for this positiv-
ity is through a geometric interpretation of Schubert polynomials, i.e. through

the interpretation of the coefficients ¢, appearing in 6,6, = > ¢ &, as
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the number of intersection points of certain subvarieties in a flag variety. It
is a long-standing problem in algebraic combinatorics to give a combinatorial
positive rule for these coefficients cf,,, like Littlewood-Richardson rule in the
Schur-function case. One of our results gives a proof for the positivity of the
coeflicients and an interpretation of these coefficients from yet another point of
view, i.e. from a representation theoretic viewpoint using KP modules.

Plethysms can be also generalized to the case of Schubert polynomials: the
plethysm s)[&,,] of a Schur function with a Schubert polynomial can be defined
in the same way as the plethysms of two Schur functions. Our results also give
a proof to the fact that this plethysm always expands into a positive sum of
Schubert polynomials, which was not known before.

In studying such Schubert positivity phenomena, it is important to consider
the class of b-modules having KP filtrations, i.e. filtrations of b-modules whose
successive quotients are isomorphic to KP modules. Since KP modules have
Schubert polynomials as their characters, if a module M has a KP filtration
then its character is Schubert positive. So for example if we show that the
tensor product S, ® S,, of KP modules and the Schur functor image s)(S,,) of a
KP module have KP filtrations then it gives proofs for the Schubert positivities
of the product 6,,6, and the plethysm s,[&,,] respectively.

In this paper we study the class of modules having KP filtrations using the
theory of highest weight categories ([4]). We see that certain categories of b-
modules can be equipped with structures of highest weight categories so that
the standard objects are KP modules (Theorem 2.3.1). Note that the order
relation on the set of weights is not the usual root order (see the beginning of
Section 2.2). Then using the generalities on highest weight categories we show



that the tensor product modules S, ® S, and Schur functor images sx(Sy)
actually have KP filtrations (Theorem 3.1.1); this, as explained above, gives a
new proof for the positivity of products as well as a new result concerning the
plethysms of Schur functions with Schubert polynomials. Highest weight theory
for KP modules enables us to reduce the problems above on tensor products and
Schur functor images to simpler problems. For example, the problem on Schur
functor images can be easily reduced to the problem on tensor products because
52(Sy) is a direct summand of Sg M and by the generalities of highest weight
categories the existence of KP filtrations inherits to direct summands. Also
the tensor product problem can be reduced to very simple cases corresponding
to Monk’s formula for Schubert polynomials using the generalities of highest
weight categories. For the details see Section 3.1.

Our works relating KP modules with the notion of highest weight categories
were strongly inspired by similar works on Demazure modules ([18], [22], [23,
§3]). Demazure modules (for gl,) and KP modules seem to have many striking
similarities: they are both families of b-modules parametrized by their lowest
weights and they both well fit into the theory of highest weight categories. Also
we get a presentations of KP modules (Theorem 2.1.1) which are very similar to
the presentations of Demazure modules ([9, Theorem 3.4]) by Joseph (note that
KP modules are, despite their similarities with Demazure modules, not special
cases of Demazure modules: see Example 1.2.5).

We also show that a special case of the highest weight categories we intro-
duce, namely the one denoted by C,, in this paper, have particularly nice prop-
erties (Theorem 4.1.1, Theorem 4.2.1): its Ringel dual is equivalent to C,, itself,
and the natural autoequivalence on the subcategory C2 of modules having KP
filtrations preserves a certain tensor product operation on Cﬁ. The correspon-
dence of the standard objects under the Ringel duality is given by Su — Swoww,
(w € S,,), which suggests some connection with the involution on the cohomol-
ogy ring of the flag manifold H*(FI(C")) & Z[x1,...,zn]/(€i(z1,. .., Tn))1<i<n
given by z; — —x,41—,; (see Proposition 1.1.4 and Remark 1.1.5). One of the
interesting consequences of this duality is a kind of symmetry relation on the ex-
tension groups between KP modules: we have Exti(Sw, Sy) = Exti(Swmij7 Swowws)
for w,v € S,, where wqy € S, is the longest element.

This paper is organized as follows. In Section 1 we prepare basic definitions
and results on Schubert polynomials, KP modules and highest weight categories.
In Section 2 we relate the notion of highest weight categoires with KP modules:
we show that certain categories of b-modules admit highest weight structures
so that the standard objects are KP modules. In Section 3 we utilize the high-
est weight structure developed in the previous section to show that the tensor
product modules S,, ®S,, and Schur functor images s, (S,,) actually have KP fil-
trations. We also give constructions of explicit filtrations for the tensor product
modules corresponding to the Pieri and dual Pieri rules for Schubert polynomi-
als ([2], [25]). Note that the Pieri rule for KP modules actually gives another
proof for the existence of desired highest weight structure for b-modules. In
Section 4 we focus on a special case C, of our highest weight categories where
the KP modules under consideration are the ones S,, with w € S,,. We show
that the Ringel dual of C, is equivalent to itself, and the natural autoequiva-
lence F : C5& — C2 given by the Ringel duality is in some sense compatible with
tensor product, i.e. F((M ® N)A+) =2 (FM ® FN)*» where L~ denotes the



largest quotient of L whose weights are in A,,.

The structure of the arguments for the first part is slightly modified from
the submitted version of the paper in order to separate the general theory of
highest weight categories from particular arguments on special properties of KP
modules. Also, the proof of Monk’s rule for KP modules (Proposition 3.1.2)
used in proving the existence of KP filtrations for tensor product modules is
modified to use a more general result on KP modules corresponding to the Pieri
rule (Section 3.2).
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1 Preliminaries

1.1 Permutations and Schubert polynomials

In this subsection we review definitions and basic properties of Schubert poly-
nomials. We use [14] as a main reference. For the original source of these
properties see the references in [12], [14] and [17].

Let Z~o and Z>o denote the set of all positive and nonnegative integers
respectively. By a permutation w we mean a bijection from Z~q to itself which
fixes all but finitely many points. Let S, denote the group of all permutations.
The graph of a permutation w is the set {(i,w(i)) : i € Zso} C Z2,. For
a positive integer n let S,, = {w € S, w(i) =1 (i >n)} and Sk = {w €
Socsw(n+1) <w(n+2)<---}.

We sometimes write a permutation in its one-line form: i.e., we write [w(1) w(2) - --

to express w € So. If w € S,,, we may write [w(1)w(2) --- w(n)] to mean w.

For ¢ < j, let t;; denote the permutation which exchanges ¢ and j and fixes
all other points. Let s; = ¢;;41. For a permutation w, let £(w) = #{i <
§:w(i) > w(j)} and sgn(w) = (—1)*™). For a permutation w and p < g, if
U wtpq) = L(w) + 1 we write witp, > w. It is well known that this condition is
equivalent to saying that w(p) < w(q) and there exists no p < r < ¢ satisfying
w(p) <w(r) <w(q).

For w € S we define code(w) = (code(w),...,code(w),) € ZZ%, by
code(w); = #{j : i < j,w(i) > w(j)}: this is usually called the Lehmer code
and it uniquely determines w. Note that if w € S,, we have code(w) € A,, :=
{(a1,...,an) €Z" : 0 < a; <n—i}. For A € Z%, we define perm(\) € 5 as
the permutation satisfying code(perm(\)) = .

For a permutation w we assign its inversion diagram defined by I(w) =
{(¢,7) - i < j,w(i) > w(j)}. Note that if w € S5 then I(w) c {1,...,n} xZxo.

For a polynomial f = f(x1,%2,...) and i € Zsq define 8, f = L=5L For a

Ti—Ti41
permutation w we can assign its Schubert polynomial &, € Z[x1,x2,...] which
is recursively defined by

e G, =2y %,y if wl) = n,w?2) =n—1,...,w(n) =1 and

w(i) =14 (i > n) for some n, and
. Gwsi = 0,6, if é(wsi) < E(w)

It is known ([14, (4.11)]) that {&,, : w € Ség)} (resp. {6, : w € S, }) constitutes
a Z-linear basis for Z[z1,...,x,] (resp. Dyep ., Zay'---x)). Tt is also known
([17, Proposition 2.5.3, Corollary 2.5.6]) that the latter constitutes a Z-linear
basis for the quotient ring H,, = Z[z1,...,x,]/I,, where I,, C Z[x1,...,x,] is
the ideal generated by all symmetric polynomials in 1, . .., z, without constant
terms.

Below we list some properties of Schubert polynomials used in this paper.

The following identity is known as Monk’s formula:

Proposition 1.1.1 ([14, (4.15")]). Let w € Soo and v € Zsg. Then 6,6, =
> Guwi,, where the sum is over all (p,q) such that p < v < q and wtyq > w.

Generalizations of Monk’s formula include the Pieri and dual Pieri rules for
Schubert polynomials which give expansions of products of Schubert polynomi-
als with complete symmetric functions hg(z1, ..., z;) and elementary symmetric



functions eq(x1,...,x,) respectively. We will present these rules later in this
paper.

One of the consequences of Monk’s formula is the following recursion for
Schubert polynomials known as transition:

Proposition 1.1.2 ([14, (4.16)]). Let w € Soo ~ {id}. Let j € Zso be the
mazimal integer such that w(j) > w(j+1) and take k > j maximal with w(j) >
w(k). Let v =wtj. Let iy < --- <ia be the all integers less than j such that
vt;,; >0, and let w® = vt; . Then

A
Gy = IjGU + ZGW(Q).

a=1

Note that if w € Ség) then v and w®, ..., w™) in the proposition above are
also in Sg).
Schubert polynomials also satisfy the following Cauchy identity:

Proposition 1.1.3 ([14, (5.10)]). > ,cs, Gw(®)Gwu,(y) = [L;yj<n(@i +y;)
where wg =[nn—1--- 1] € S,.

We also need the following basic facts:

Proposition 1.1.4. Let + : H, — H, be the ring automorphism given by
T; = —Tnt1—; where T; = x; mod I,. Then for w € Sy, t(Sy) = Swgwwe -

Remark 1.1.5. The automorphism ¢ corresponds to the map between flag
varieties which takes a flag to its dual flag: see eg. [7, §10.6, Exercise 13|

Proof. First note that tod;or = 9,,_;. Thus we only have to check the proposition
for w = wy.

Since the only elements in H, = ,,cg, Z6, with degree (g) are the con-
stant multiples of &,,,, we see that ¢(&,,) is a constant multiple of &,,,. Let

(i1,...,4;) be a longest word, i.e. I = l(wy) and w = s;, ---8;,. Note that
(n—iy,...,n—1i;) is also a longest word. We have 9;, - - - 9;,6,, = ;g = 1 and
Diy =+ 03y l(Guwy) = (t0n—iyt) (10—, )t(Guy) = t(On—iy +++ On—i,Guy) = 1.
Thus ¢(Sy,) = Gy, - O

Proposition 1.1.6. For w € Sc(x?) N S, we have &, € I,,.

Proof. Since 0;1,, C I, for any 1 < i < n — 1, it suffices to show that the

proposition holds in the case w(1) > --- > w(n). Since in this case &,, =

xqf(l)_lm;ﬁ@)_l 2™ it is enough to show 27 € I,. This is immediate

from the equation []! ,(1 — T7u) = 17%u =2 i>0 Zr/w! in H,[[u]] since the

LHS has no terms of degrees > n in wu. O

1.2 Kraskiewicz-Pragacz modules

Let K be a field of characteristic zero. Let b = b,, be the Lie algebra of all n x n
upper triangular K-matrices. and let  C b and n™ C b be the subalgebra of all
diagonal matrices and the subalgebra of all strictly upper triangular matrices
respectively. For a Lie algebra g let ¢(g) denote its universal enveloping algebra.



For a b-module M and A = (A1,...,A,) € Z", let My = {m € M : hm =
(A, hym (VYh € h)} where (A, h) = > A\h;. M), is called the A-weight space of
M. If My # 0 then X is said to be a weight of M. If M = @, ;. M) and each
M) has finite dimension, then we call that M is a weight b-module and define
ch(M) =3, dim Mya? (2 = 23t - 2)). From here we only consider weight
b-modules, and for weight b-modules M and N, Ext'(M, N) always mean the
Ext groups taken in the category of all weight b-modules (not the whole b-
modules).

For 1 <i < j <n, let e;; € b be the matrix with 1 at the (¢, j)-position and
all other coordinates 0. Let p=(n—1,n—2,...,0) €Z" and 1 =(1,...,1) €
Z™. Also let ¢; = (0,0,...,1,...,0,0) € Z" with 1 at the i-th position, and let
aj; = €; —¢; for 1 <4 < j <n. Note that if M is a b-module and x € M) then
€ijT € M}\+aij.

For A € Z™, let K denote the one-dimensional b-module where h € § acts
by (), h) and n" acts by 0. Note that every finite-dimensional weight b-modules
admits a filtration by these one-dimensional modules.

In [10] Kraskiewicz and Pragacz defined certain b-modules which we call
here Kraskiewicz-Pragacz modules or KP modules. Here we use the following
definition.

Let w e S, Let K™ = @D, <<, Ku; be the vector representation of b: i.e.
eijur, = dpu;. For each j € Zso, let I = lj(w) = #{i : (4,7) € I(w)}, {i :
(i,5) € T(w)} = {in, i, } (i <+ <iig,), and uld) = wi, A Aug, € VK™
Note that . is actually in /\lj Kmin{nj=1} where K = Ku; &---®Ku; C K™
Let up = uly) @ uP @ € A" K" @ A? K" ®---. Then the KP module S,
associated to w is defined as Sy, = U(b)uy C A" K" O A K" @ - - .

Remark 1.2.1. It is also possible to define KP modules similarly using the
so-called Rothe diagram D(w) = {(i,w(j)) : ¢ < j,w(i) > w(j)} of w instead of
I(w). Since I(w) and D(w) differ only by a rearrangement of columns it does
not matter which to use. D(w) has an advantage that it is easier to visualize
for concrete examples: if one draw rays downward and to the right from the
position (i, w(7)) (i = 1,2,...), then the remaining boxes give D(w) (see the
figure below). Also, in [6] a basis for S, is constructed using certain labellings
of the Rothe diagram.

|:| .
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O

Figure 1: the inversion diagram (left) and the Rothe diagram (right) of the same permutation

[25143].
As proved by Kraskiewicz and Pragacz in [11], KP modules have the follow-
ing property:

Theorem 1.2.2 ([11, Remark 1.6 and Theorem 4.1]). S, is a weight module
and ch(Sy,) = 6, (so in particular, dim S, = G,,(1) := &,,(1,1,...,1)).



Example 1.2.3. If w = s;, then I(s;) = {(3,4 + 1)}, us, = u; and Ss, =
Di<j<i Kuj = K' Soch(Ss,) =z1+ - +x; = &,,.

Example 1.2.4. More generally, if w is grassmannian, i.e. there exists a k such
that w(l) < -+ < w(k) and w(k +1) < w(k 4+ 2) < ---, then the inversion
diagram I(w) of w is a “French-notation” Young diagram (see figure below).
Thus in this case, u,, is a lowest-weight vector in a certain irreducible represen-
tation of gl;, and S,, is equal to this representation (seen as a representation of

epg (¢ < k)
0 (¢ > k)
fact that the Schubert polynomial indexed by a grassmannian permutation is a
Schur polynomial.

b,, through the morphism b, > e,, — € gl,). This reflects the

o
[

Figure 2: the inversion diagram of a grassmannian permutation [136245] is a French-style Young

diagram of shape (3,1).

Example 1.2.5. More generally, if w is 2143-avoiding, then it can be seen
(using the fact ([14, (1.27)]) that the rows of I(w) for 2143-avoiding w is to-
tally preordered by inclusion) that u,, is an extremal vector in an irreducible
representation of gl,,. Thus in this case the corresponding KP module S,, is
isomorphic to a Demazure module of b: i.e. a module generated by an ex-
tremal vector of an irreducible representation of gl,,. Note that this corresponds
to the result first obtained by Lascoux and Schutzenberger ([13, Theorem 5],
[12, Corollary 10.5.2]) that Schubert polynomials with 2143-avoiding indices are
equal to certain key polynomials.

On the other hand, consider w = [2143]. Then I(w) = {(1,2),(3,4)}, uw =
U ®u3, Sw = P <jcs K(ug @u;) = K!'® K? and ch(S,) = z1(z1 + 22+ 23) =
S.. Note that in this case S,, is not isomorphic to the Demazure module with
the same lowest weight: S, is three-dimensional while the Demazure module
with the same lowest weight is two-dimensional. * In general, S,, is isomorphic
to the Demazure module Demaz(code(w)) with lowest weight code(w) if and
only if w is 2143-avoiding. We also note here that there always exists a surjection
from S, to Demaz(code(w)): this can be seen using the result from the next
section and [9, Theorem 3.4].

In this paper we have to slightly extend the notion of Schubert polynomials
and KP modules. For A = (Ay,...,\,) € Z", we define the Schubert polynomial
and the KP module associated to X as follows. For A € Z%, let &) = &, and
Sy = S, where w = perm(\). For a general A\ € Z", take k € Z so that
A+ k1l € Z%,, and we define &) = 27" Sy 11 and Sy = K_p1 @ Saix1. Note

that this definition does not depend on the choice of k, since if w € Sg.f ) and

IThe KP module 82143 in this example is, if not seen as a U(b)-module but as a U(n™)-
module, isomorphic to a Demazure module (say Demaz(0,0,1)); thus the results such as
Theorem 2.1.1 for such kind of KP modules follow from known results on Demazure modules.
But in fact there also exist KP modules which are, even as U (nT)-modules, not isomorphic to
any Demazure modules. An example is S[13254] & K2 ® K*.



code(w) = K, then perm(k+1) =@ = [w(1)+1 -+ w(n)+1 1 w(n+1)+1 ---],
and 65 = 216, and Sz = K1 ® S, hold for them. It then follows from the
theorem above that Sy is a weight module and ch(Sy) = &, for all A € Z™.
Note that, since Sy is generated by an element of weight A, if (Sx), # 0 (i.e.
if z# appears in &, with nonzero coefficient) then p > A, where > denote the
dominance order: p Aiff p— A = 2?2—11 a;(e; — €;11) for some ay,...,a,_1 €
Z>o. We also note here that for any pu,v € Z", the number of A € Z" with
©> A v is finite.

A KP filtration of a weight b-module M is a sequence 0 = My C --- C
M, = M of weight b-modules such that each M;/M;_; is isomorphic to some
KP module S,y (A} € Z™). Note that if M has a KP filtration then ch(M) is
a positive sum of Schubert polynomials &y (A € Z").

1.3 Highest weight categories

In this subsection we prepare definitions and some basic facts about highest
weight categories. Some of them appear in references such as [4], [20] and
[5, Appendix], but we also give proofs for them to adapt to our settings and
to ensure self-containedness since the formulations of highest weight categories
and their properties vary with references.

Our proof for the criterion for the existence of standard filtrations is along the
way in [23, Theorem 3.2.7]. Our treatment of tilting objects and Ringel duality
mostly follows [5, Appendix], with some minor changes and improvements on
the arguments.

Definition 1.3.1. Let C be an abelian K-category with enough projectives and
injectives, such that every object has finite length. Let A = (A, <) be a finite
poset indexing the simple objects {L(A) : A € A} in C (called the weight poset).
Moreover, assume that a family of objects {A(X) : A € A} called standard
objects is given. Then C = (C, A, {A(N)}) is called a highest weight category if
the following axioms hold:

(1) Home(A(X), A(p)) = 0 unless A < p.
(2) Endc(A(N)) 2 K.

(3) Let P(\) denote the projective cover of L()A). Then there exists a surjec-
tion P(A) — A(A) such that its kernel admits a filtration whose successive
quotients are of the form A(v) (v > A).

In the following let C be a highest weight category, A be its weight poset,
and L(A), P(A\),Q(\) and A(X) stand for the simple, projective, injective and
standard objects respectively. Also, let V() denote the costandard objects, i.e.
V(A) is the injective hull of L(A) in C<x. We denote the head and socle of an
object M € C by hd M and soc M respectively.

For an order ideal A’ C A we denote by Cx+ the full subcategory of C consist-
ing of the objects such that its simple constituents are L(A) (A € A’). We denote
C<x ete. to mean Cyy.<ny ete. For M € C let M be the largest quotient of
M which is in Cy/, and write M=* etc. to mean M{#HSA ete.



Remark 1.3.2. Ker(M — M?"") does not have any L(\) (A € A’) as its quo-
tient: if Ker(M — MA)/N = L()) is such a quotient, then M/N would be a
quotient of M, its simple constituents are L(v) (v € A’), and it is strictly larger
than M these contradict to the definition of M*'.

For an M € C and A € A let (M : L())) denote the number of times
L(X\) appears in the simple constituents of M. It can be easily seen that
dim Hom(P(X\), M) = (M : L(\)) dimHom(P(X), L(X)).

1.3.1 Basic Facts

Lemma 1.3.3. There is a surjection A(X) — L(\) such that the simple con-
stituents of the kernel are of the form L(p) (1< A).

Proof. First we show that (A(\) : L(p)) # 0 implies p < . Assume (A(A) :
L(p)) # 0. This means Hom(P(p), A(A)) # 0. Since P(u) has a filtration by
A(v) (v > p) it follows that Hom(A(v),A(N\)) # 0 for some v > p. Thus
uw<v <A

Next we see (A(N) : L(A\)) = 1. Since Ker(P(\) — A())) has a filtra-
tion by A(v) (v > X) we see that Hom(Ker(P(A) — A(X)), A(N)) = 0. Thus
we have an exact sequence 0 — Hom(A(A),A(N)) — Hom(P(N\),A(N)) —
Hom(Ker(P(A\) — A(X)), A(A)) = 0 and thus Hom(P(\), A(A)) = End(A(N)) =
K. Therefore (A(X) : L(\)) = 1.

Finally we show that L()) is a quotient of A(X). Since (A(N) : L(A)) = 1,
there exists an N C A()\) and a surjection f : N — L(A). By the projec-
tivity of P(A), the surjection 7w : P(A) — L(\) factors as m# = fg for some
g: P(\) = N. The composition P(\) — N < A(]A) is nonzero and thus must
be a nonzero multiple of the surjection P(\) — A(\) since as we saw above
Hom(P(\),A()\)) = K. But the image of the composition map above is N, so
we get N = A(X). Thus the claim follows. O

By the lemma above A(X) € Cps for any order ideal A’ containing A. Also
from the proof we see Hom(P(\), L(\)) = K.

Lemma 1.3.4. Hom(A(MN), L(p)) = 0 for p # A and Hom(A(X), L(\))
Thus in particular hd A(X) = L(X).

1%

K.

Proof. This can be easily seen from the exact sequence 0 — Hom(A(M), L(p)) —
Hom(P(A), L(u)) since the last term is 0 for u # A and K for pu = A. O

1.3.2 Projectivities of Standard objects

Lemma 1.3.5. Ext'(A()\), L(i)) # 0 implies A < . So A(N) is projective in
Cps for any order ideal A’ which contains A as a maximal element.

Because the simple constituents of A(u) are L(v) (v < u) we get as a corol-
lary:

Corollary 1.3.6. Ext'(A()\), A(y)) # 0 implies A < p. O

Proof of the Lemma 1.3.5. Assume Ext'(A(X), L(p)) # 0. Let M = Ker(P(\) —
A())), so M has a filtration by A(v) (v > A). By the exact sequence Hom(M, L(u)) —
Ext'(A(N), L(p)) = Ext'(P(\), L(1)) = 0 we see that Hom(M, L(y)) # 0. This
implies that Hom(A(v), L(u)) # 0 for some v > A. So g = v > X by Lemma
1.3.4. O

10



Since hd A(X) =2 L(\) by Lemma 1.3.4 we get:

Proposition 1.3.7. Let A’ C A be a finite order ideal and let A € A be a
mazimal element. Then A(XN) — L(X) is a projective cover in Cpr (s0 A(N) =
PVY). O

1.3.3 Hom and Ext between Standard and Costandard Objects

Proposition 1.3.8. Ext'(A(\), V(u)) = K iff A\ = pu and i = 0, and otherwise
0.

Proof. We have an exact sequence 0 — Hom(L(X), V(X)) = Hom(A(X), V(A)) —
Hom(Ker(A(X) — L()A)), V(X)). Here the simple constituents of the kernel are
L(v) (v < A), and Hom(L(v), V(X)) = 0 for v < X since soc V(A) = L(\).
Thus the last term of the sequence above vanishes. Also, Hom(L(\), V()\)) =
End(L(\)) = Hom(P(X), L(\)) 2 K since soc V(A) = L(A) and hd P(\) = L(\).
Thus Hom(A(N),V(A)) = K.

We show the vanishings of the other extensions.

e i = 0: Hom(A(N),V(y)) # 0 implies that Hom(L(v),V(u)) # 0 for
some v < A. But since socV(u) = L(p) this means that p = v <
A. Thus Hom(A(N),V(r)) # 0 implies ¢ < A. By the same argu-
ment (using hd A(\) = L()\) instead of socV(u) = L(p)) we see that
Hom(A(X), V(1)) # 0 also implies ¢ > A. Thus Hom(A(X), V(i) # 0
implies A = p.

e i = 1. Note that Ext' = ExtéA, for any A’ since Cps is closed under
extensions. If A < u then A(\) € C<, and thus Ext'(A(N\), V() =
Exté@(A()\),V(u)) = 0 by the injectivity of V(u) € C<,. Otherwise
V(1) € Cxy and thus Ext'(A(N), V(u)) = Extéw(A(/\), V(w)) = 0 by the
projectivity of A(X) € Cxa.

e i > 2 : Follows from the exact sequence 0 = Ext"*(P()\),V(n)) —
Bxt' ! (Ker(P(A) — A(V), V(1) > Bxt'(A(\), V(1)) = Bxt'(P(\), V(1)) =
0 and the downward induction on A.

O

Since Hom(P(\), V(X)) = Hom(P(A)S*, V())) = Hom(A()), V(A)) = K we
see that (V(XA) : L(A)) = 1.

1.3.4 Standard Filtration

Definition 1.3.9. A standard (resp. costandard) filtration of an object M is
a filtration 0 = My C M; C --- C M, = M such that each of its successive
quotients M;/M;_, are isomorphic to standard (resp. costandard) objects. Let
C2 denote the full subcategory of the objects having standard filtrations.

Proposition 1.3.10. For M € C having a standard (resp. costandard) filtra-
tion, the number of times A(X) (resp. V(X)) appears in (any) standard (resp. co-
standard) filtration of M is given by dim Hom(M, V(\)) (resp. dim Hom(A(X), M) ).
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Proof. This is immediate from Proposition 1.3.8. O

For an M having a standard filtration let (M : A(\)) denote the number of
times A(X) appears in a standard filtration of M (which does not depend on a
choice of filtration by the proposition above).

Proposition 1.3.11. Let A’ C A be an order ideal and let A € A’ be a mazimal
element. Then for M € C®, Ker(M® — M2 >N s o direct sum of copies of
A(N).

Note that the proposition in particular implies that M2 and Ker(M — M)
have standard filtrations for any order ideal A" C A, or more generally, for any
order ideals A” ¢ A’ € A, Ker(M* — MA") has a standard filtration. Note
also that (Ker(M2 — M) : A(\)) = (M : A(\) for A € A~ A” and 0
otherwise.

Proof. First note that the head of Ker(MA — MA>A) s a direct sum of
copies of L(A) by Remark 1.3.2. Thus the projective cover, in Cys, of this head
is a direct sum of some copies of A()). So it suffices to show that Ker(M* —
MA M s also a projective cover of hd Ker(MA — MAS e Ker(MA —
MA >} s projective in Ca.
Let M’ = MY, M” = MM~ and N = Ker(M' — M”). We want
to show that Ext'(N, L(p)) vanish for all u € A’. We have exact sequences
Hom(N, V(u)/ (1)) — Ext'(N, L(1)) — Ext'(N, V()), Ext! (M, V(u)) —
Ext'(N,V(u)) — Ext?(M”,V(u)) and Hom(Ker(M — M'),V(p)) — Ext'(M’,V(u)) —
Ext'(M,V(u)). Here

e Ext'(M,V(u)) vanishes by Proposition 1.3.8.

e Ext?(M” V(u)) vanishes by Proposition 1.3.8, since M" has a standard
filtration by induction on |A'].

e Hom(N,V(u)/L(u)) and Hom(Ker(M — M'), V(u)) vanishes by Remark
1.3.2 since the simple constituents of V(u)/L(p) (resp. V(u)) are L(v)

(v < u (resp. v < ).
And thus Ext' (N, L(1)) = 0 as desired. O

From the proof of Proposition 1.3.11 we get the following corollary:

Corollary 1.3.12. M € C has a standard filtration if and only if Ext' (M, V()\)) =
0 for all A € A. O

By Proposition 1.3.8 and Corollary 1.3.12 we get the followings.

Corollary 1.3.13. (1) If M € C has a standard filtration then so do its direct
summands.

(2) If0 = L — M — N — 0 is an exact sequence in C and M, N € C®, then
LecCA.

Proof. (1):This is clear since if M = M'@M" then Ext* (M, V()\)) = Ext! (M’, V())&
Ext'(M”,V(\)).

(2):By Proposition 1.3.8 we have Ext'(M, V(X)) = 0 and Ext*(N,V(\)) =0
for any A € A. Thus by the exact sequence Ext' (M, V()\)) — Ext*(L, V()\)) —
Ext?(N,V()\)) we see Ext'(L,V()\)) = 0. Thus by Corollary 1.3.12 we sece
Leca. O
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1.3.5 Tilting Objects

Definition 1.3.14. An object T € C is called a tilting or a tilting object if it
has a standard filtration and Ext*(A()),T) = 0 for all X € A.

Note that if T is a tilting then so are its direct summands, because T € C is
a tilting if and only if Ext' (T, V()\)) and Ext'(A(\), T) vanish for all \.

For M € C?, define supp M C A as the order ideal of A generated by all A
such that (M : A()\)) # 0. For an X C A let X° be the set of all non-maximal
elements in X.

Lemma 1.3.15. Let M € C®». Then there is a tilting T and an injection
M < T such that suppT = supp M, T/M € C* and supp(T /M) C (supp M)°.

Proof. For an M € C*?, define def M C A, the defect of M, to be the order ideal
of A generated by {\ € A : Ext'(A(\), M) # 0}. Note that M € C2 is a tilting
if and only if def M = @.

If def M = & then we are done. Assume def M # &. We embed M into an
M € C2 with strictly smaller defect.

Take a maximal element A\ € def M. Then Ext'(A()\), M) # 0, and thus
there exists a nonsplit exact sequence 0 — M — M; — A(\) — 0. As-
sume Ext*(A(u), M;) # 0 for some p € A. Since there is an exact sequence
Ext'(A(u), M) — Ext*(A(u), M1) — Ext'(A(u), A(N)) it follows that either
Ext'(A(u), M) # 0 or Ext'(A(u), A(\)) # 0. The first one implies p € def M,
while the second one implies g < A by Corollary 1.3.6. The latter case im-
plies p € def M and thus p € def M in either case. This shows def M; C
def M. Moreover we claim that dimExt'(A()\), M;) < dimExt'(A(\), M).
In fact, we have an exact sequence Hom(A(N), M;) — Hom(A(N),A(N)) —
Ext'(A(\), M) — Ext'(A(N), M) — Ext'(A(N), A()\)) where the last term is
zero by Corollary 1.3.6. But here Hom(A(M), M1) — Hom(A(N),A(N)) is a
zero map: otherwise we would have a morphism A(A) — M; such that the
composition A(A) = M; — A()) is nonzero and thus an isomorphism (since
End(A()N)) =2 K), which contradicts to the assumption that M; — A(\) is non-
split. Thus we have an exact sequence 0 — End(A()\)) — Ext'(A(X\), M) —
Ext'(A(\), M) — 0 and this shows the claim.

Repeating the construction above we have an M € C2 and M < M such
that def M C def M ~ {\}. Repeating again we get an embedding M < T into
a tilting. It is clear from the construction that 7/M € CA.

We claim that supp(T/M) C (supp M)°. By the construction it suffices
to show that def M C (supp M)°. Assume Ext'(A()\), M) # 0 for some .
Then Ext'(A()\), A(i)) # 0 for some p € supp M. Since A\ < p by Corollary
1.3.6, this shows that A is a non-maximal element in supp M. This shows the
claim. O

By the lemma there is an embedding A(A) < T such that T is a tilting,
suppT = {u : p < A} and (T : A(N)) = 1. So there is an indecomposable
summand T'(\) of T such that (T'(A) : A(A\)) = 1. By Proposition 1.3.11 we see
that there in fact is an embedding A(\) < T(A) such that T(\)/A(X) has a
standard filtration.

Note that A can be recovered from T'(\) as the unique maximal element in
supp T'(\): in particular T(A) 2 T(u) if X # p.
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Lemma 1.3.16. FEvery tilting is a direct sum of the objects T'(X).

Proof. Let T' # 0 be a tilting. Take a maximal element A € suppT. We show
that there is a split surjection T'— T'(A): this inductively shows the claim.

By the maximality of A we see (T': A()\)) # 0. This implies, by Proposition
1.3.11 and the maximality of A, that there is an injection A(\) — T with
cokernel T/A()) having a standard filtration. We name the morphisms A(\) —
T(M\) and A(X) < T as f and g respectively.

We have exact sequences Hom(T, T(\)) — Hom(A()\), T(\)) — Ext’(T/AN), T(\)) =
0 and Hom(T'(\), T) — Hom(A(N), T) — Ext*(T(\)/A(N), T) = 0. Thus there
are morphisms h : T — T(X\) and k : T(\) — T such that f = hg and g = kf.
Then f = (hk)"f for any n > 0, and thus hk € End(7T(\)) is not nilpotent.
Then by Fitting’s lemma hk is an isomorphism. Thus h is a split surjection, as
desired. O

Also, repeated use of Lemma 1.3.15 shows the following;:

Lemma 1.3.17. Any M € C» has a finite resolution 0 — M — Ty — -+ —
T, — 0 by tiltings. O

1.3.6 Ringel Duality

Let us fix a tilting object T such that every indecomposable tilting occurs at
least once as its direct summand (such an object is called a full tilting). Let
CY be the category of all finite-dimensional left End(T)-modules. Let F =
Hom(—,T) : C — (CY)°P.

Note that, since Ext'(N,T) = 0 for N € C?, the functor F is exact on C2,
that is, it maps an exact sequence 0 — L — M — N — 0 with L, M, N € C»
to an exact sequence 0 — FFN — FFM — FL — 0. This observation implies
a more general consequence: suppose that there is an exact sequence --- —
M; — My — 0 in C* bounded from right. Then Corollary 1.3.13 implies that
Ker(M; — My) € C* and thus we can work inductively to see that 0 — F M —
FM; — --- is exact.

Lemma 1.3.18. For any M € C and any tilting T, the map Home (M, T') —
Homev (FT', FM) induced from F is an isomorphism.

Proof. For T' = T it is clear. For a general case, it can be seen from the fact
that 7" appears as a direct summand of some T%™ (m > 0). O

Lemma 1.3.19. The indecomposable projectives in C¥ are given by FT()\) (A €
A).

Proof. Since End(T) is, as a left End(T)-module, a direct sum of the modules
of the form FT'(X) (A € A), it suffices to show that they are indeed indecom-
posable. By the previous lemma End(FT(\)) = End(T()\)), and since T'(\) is
indecomposable End(7'(A)) contains no idempotents. Thus FT'(A) is indecom-
posable. O]

Proposition 1.3.20. For M, N € C* and anyi > 0, Ext'(M, N) = Ext"(FN, FM).
For i = 0 this isomorphism is equal to the map induced from F', and for i =1
this isomorphism is equal to the map [0 > N - X - M -0/ — [0 - FM —
FX — FN — 0] where these exact sequences are seen as elements in certain
Ext! groups.
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Proof. Take a finite tilting resolution 0 - N — Ty — - - T, = 0 of N
which exists by Lemma 1.3.17. Then 0 — FT,. — --- — FTy - FN — 0 is
a projective resolution since F' is exact on C® and F'T} are projective. By the
same argument as in [24, Theorem 2.7.6] we see (since Hom(—, T;) are exact on
C?) that Ext’(M, N) is the i-th cohomology of the complex Hom(M,T,). On
the other hand, Ext’(FN, FM) is the i-th cohomology of Hom(FT,, FM). By
Lemma 1.3.18 the map induced from F gives an isomorphism between these
two complexes and thus the first claim follows. The latter claim for i = 0 also
follows from this argument.

Recall the correspondence from extensions to Ext group ([1, §A.5]): for a
projective resolution --- — P} — Py — M — 0, there always exist f: P, - N
and g : Py — X such that

Py Py M 0
ool
0 N X M 0

commutes, and then the element [0 - N — X — M — 0] € Ext'(M,N)
is given by taking the class of f € Hom(P;, N). Chasing the double-complex
argument above we see that the correspondence can also be obtained by taking
h:X — Ty and k : M — T; such that

0 N X M 0
I
0 N To T

commute and taking the class of k € Hom(M,Ty). Applying F to the diagram
above we get

0 FN FX FM +— 0
L
0 FN FT, FT,

with rows exact and FTy, FT) projective. Thus [0 = FM — FX — FN —
0] € Ext'(FN,FM) is equal to the class of Fk € Hom(FT;, FM) and this
shows the claim. O

Proposition 1.3.21. CV is a highest weight category with weight poset A°P, the
opposite poset of A, and standard objects { FA(N)}.

Proof. Since Hom(FA(X), FA(u)) = Hom(A(r), A(N)) the first two axioms are
clear.

We have an exact sequence 0 — A(N\) = T(\) = M — 0 such that M has a
filtration by A(u) (u < A). Applying F' we get an exact sequence 0 — FM —
FT(X) - FA(X) — 0 with FM having a filtration by FA(y) (¢ < A). This
checks the last axiom. O

Proposition 1.3.22. F restricts to a contravariant equivalence between C> and
(GO
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Proof. We saw that F|ca is fully faithful and thus it suffices to show the
essential-surjectivity: i.e. we want to show that for any N € (CV)® there exists
an M € C» such that FM = N. This follows by the induction on the length of
N e (CV)»: if0 - N’ = N — N” — 0 is an exact sequence with N’ = FM’
and N = FM" (M',M" € C?), then since Ext'(N" N') = Ext!(M’, M")
there is an exact sequence 0 - M"” — M — M’ — 0 mapped to the above
sequence under F', and in particular N = F'M. O
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2 Kraskiewicz-Pragacz modules and highest weight
categories

In this section, we define a struture of highest weight category on the category
of b-modules so that the standard objects are KP modules. This enables us to
derive a criterion for a b-module to have KP filtrations in terms of Ext groups
with costandard objects in this category, which turn out to be the linear duals of
KP modules shifted by some weight. From this it also follows that the category
of modules having KP filtrations is closed under taking direct sum components
as well as the kernels of surjections.

2.1 Presentation of KP modules by generators and rela-
tions

Forw e S and 1 < i < j < n, let Cyj(w) = {k: (i,k) & I(w), (j, k) € I(w)} =
{k:k>jw() <wk) <w(j)} and let my;(w) = |C;(w)| = #{k > j : w(i) <
w(k) < w(j)} (in particular, m;;(w) = 0 if w(i) > w(j)). Since e?jugff) =0 for

k € Cij(w) and eijw(f) =0 for k ¢ C;;j(w), we see that e;?”(w)ﬂ annihilates

Uy = ug) ® ug) ® ---. Let I, denote the left ideal of U(b) generated by

h — {code(w), h) (h € b) and eZL"’j(w)H (i < j). Then, by the observation above
and the fact that u,, has weight code(w), there is a unique surjective morphism
of U(b)-modules from U(b)/I,, to S,, sending 1 mod I, to u,,. The main result

in this subsection is the following:
Theorem 2.1.1. The surjection U(b)/I, — Sy above is an isomorphism.

Remark 2.1.2. It is also possible to define up and Sp for a general finite
subset D C {1,...,n} X Z~¢ as in the same way we defined KP modules (Sp
is often called the flagged Schur module associated to D, see eg. [16, §7]; the
equivalence of the definition there and our definition can be checked by the same
argument as in [11, Remark 1.6]). Again in this setting, if we let m;;(D) = #{k :
(i,k) & D,(j,k) € D} and \; = #{k : (i,k) € D}, then ¢[/""”*" (i < j) and
h— (A h) (h € b) annihilate up, and therefore we have a surjective morphism
Ub)/Ip — Sp where Ip is the left ideal generated by these elements. But
this is not an isomorphism for general D: for example, if D = {(2,1),(3,2)},
then ch(U(b)/Ip) = xoxs + x123 + 23 + 22129 + 27 + 212325 * while ch(Sp) =
Tox3 + Tr1T3 + x% + 22129 + x%

The theorem can be reduced to the following lemma, which will be proved
below:

Lemma 2.1.3. Let w € S5 {id} and take j,iy,...,ia and v,w™, ... wA)
as wn Proposition 1.1.2. Let x, = eZ}“’(U)H fora=1,...,A. Let I® =T,
and I¥) = 1D L Y(b)xy for a = 1,...,A. Also let I' be the left ideal of
U(b) generated by h — (code(w), h) = h — (code(v) +€;,h) (h € bh) and e?;”(v)ﬂ
(i <j), soU(b)/I, 2Ub)/I, ® K,. Then I, C I'Y and I, z, C I~V for
a=1,... A

Here first we prove Theorem 2.1.1 assuming Lemma 2.1.3. Let d,, = dim#/(b)/I,,.
The conclusion of Lemma 2.1.3 claims that there exist surjective morphisms
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Ub)/I, ® K, = Ub)/I, - U®B)/IW : (zmod I}) — (zmod W) and
UB) /Ty — I /1D 2 (z mod Tw) = (22, mod 1@V (note that xx, €
I@ since x, € I®). Thus U(b)/I, = U(b)/I® has a quotient filtration
UL/ IO — Y (B)/ TV — - — U(b) /T — 0 with each subquotient being a
quotient of U(b)/I,q),--- ,U(b)/I,a and U(b)/I, ® K, respectively. There-
fore dy, < d,a) + -+ + da) + dy. So, by Proposition 1.1.2 and induction on
the lexicographic ordering of ({(w), S, (1)), we see that d, < &,(1) hold for
any w. But on the other hand, we have a surjection U(b)/I,, - S, and thus
dy > dimS,, = 6,,(1). Thus d,, = &,,(1) and the surjection above must be an
isomorphism. This completes the proof of Theorem 2.1.1.
The rest of this subsection is dedicated to the proof of Lemma 2.1.3.

Proof of Lemma 2.1.3. Throughout this proof, let w € S ~ {id} and take

Grity oo yia, v,w®, L w(A) asin Proposition 1.1.2. Take xq,..., x4 and 10 .

as in Lemma 2.1.3. Let mpq = mpq(v) for 1 <p < ¢ < n. For z,y,...,z € U(b),
let (z,y,...,z) denote the left ideal of U(b) generated by z,y,...,z.

To make the calculations simple, we use the following basic fact from the
representation theory of semisimple Lie algebras:

Proposition 2.1.4. Let ngr = Keis @ Keyz ® Keaos be the Lie algebra of all
3 x 3 strictly upper triangular matrices which acts on K* = Kuy ® Kuy © Kus
and N> K3 = K (uy Aug) @ K (uy Aus) ® K (ug Aus) in the usual way. Then for
a,b >0, the U(nd)-module generated by (us Aus)® @ul € S*(A\* K3) @ SP(K?)
(S* denotes the symmetric product) is isomorphic to U(n3)/I., where I,y is
the left ideal of U(ng) generated by ¢S5 and e5i?.

Proof. First note that (us A u3)® ® uf is a lowest weight vector of an irre-
ducible representation of sl3: i.e. U(ng)((ua A uz)® ® uf) is an irreducible rep-
resentation of sl3. Thus the claim is merely a well-known fact that a finite-
dimensional irreducible representation V(A), with lowest weight A, of a finite-
dimensional semisimple Lie algebra g with simple root system A and upper-
triangular part n* is isomorphic to U(n¥)/(eS™ ™ aea as U(nt)-modules
([8, Theorem 21.4]). O

From this proposition, we have the following:

Lemma 2.1.5. Let f(z,y,2) be a polynomial (in non-commutative variables)

and let a,b > 0. If f(e12,e13,€23)((ua A us)* ® ug) =0, then for 1 <p < qg<

7 < n, f(epgs Cpr€qr) € (eld?, elf).

Proof. From Proposition 2.1.4 we have f(e1a, €13, e23) € U(ng ey +U(nd)ebs?,

ie. f(eia,e13,e23) = g(eiz, e1s, 623)6%;1 + h(eiz,e1s, egg)egl for some g and h.

Then f(epq, €prs €qr) = (€pgs €prs €qr)€%a + h(epg, €pr, €qr )€™ € (e, elf).
[

With this lemma in hand, it is easy to prove the following:
Lemma 2.1.6. For 1 <p<qg<r<nand N,M,N' M’ >0,
(1) eell =0 (mod <e%+1,efl\;{/“>) ifN+M>N+ M.

(2) eNeM =0 (mod (eN'*+1 M +1)) if N+ M > N’ + M.

pqpr pq ’oqr
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(3) el ) ened (mod (el eq,)) (and in fact mod (eq,), although we

do not need it here).
(4) e = Nie]\;efl\i (mod (epq, ept*1)) (and mod (epq): we do not need it
here).

(5) 6N+M+1 M =0 (mod < N+1,eé\£+1>)'

(6) epq qr - (IIlOd <€an szﬂeé\;«[+1>)-

Proof. (1)-(5) follows from straightforward calculations checking the condition

of Lemma 2.1.5. (6) also follows from Lemma 2.1.5, since ef,ellud? = (const.) -
N, M—N M-N N, M N M M-N_N M1
uy Uy = (comst.) - ey37 " eg3uz’ S0 ey eqn — (const.) - egi TV ey, € (epg,egn ).

Let us move on to the proof of Lemma 2.1.3. First we prove I/ C I,
Since h — (code(w),h) € I, C I, it suffices to show epr*™" € I for all
1<p<gq<n. If ¢g#j, wehave my, = my,(w) so epri ™t e I, I, If
g = j and v(p) > v(j), then my,; = 0 = mpe(w) (note that, by the choice of
k, there does not exist r > j such that w(k) < w(r) < w(j)), and thus again

ezzpﬁl €I, CcIW. If g=j and p = i4, we have em;‘“+ =1, € 1@ c 1A,
Otherwise (i.e. if ¢ = j, v(p) < v(j) and p # i1,...,%4), the conclusion follows

from the following lemma:
Lemma 2.1.7. Let p < j, v(p) <v(j) and p #i1,...,ia. Then
(1) There exists some a € {1,..., A} such that v(is) > v(p).

(2) Let a € {1,...,A} be the mazimal index such that v(is) > v(p). Then

mpj+1 (a)
€pj IS A

Proof. (1): By the assumptions we have £(vt,;) > £(v)+1, and thus there exists
an ¢ such that p < i < j and v(p ) < (i) < v(j). Take i to be maximal among
such. Then there does not exist ¢’ such that ¢ <’ < j and v(i) < v(i") < v(j),
and thus ¢(vt;;) = ¢(v) + 1. Therefore 7 is in {41,...,74}. This shows (1) since
v(i) > v(p).

(2): Let @ = 4,. Note that ¢ > p by the argument in (1). First we claim that
there exists no r such that ¢ < r < j and v(p) < v(r) < v(i). Suppose such r
exists. Take r to be maximal among such. Then by the same argument as in
(1) we see that r is in {i1,...,i4}, and since r > ¢ we have r = 4, for some
b > a. This contradicts to the choice of a.

From the claim we see my,; = #{r > i : v(p) < v(r) < v(9)} = #{r >
Jj () < v(r) < v(@)} = my; — my;. So by Lemma 2.1.6(1), eZ}”H €

i+l ma+l . +1 1
<e;'zp * 7e;Z”+ ). Since e;r;‘”+ € I, c I and eg’ﬁ =1z, € I we are

done. O

Let us now prove Iz, C 1Y (a =1,...,A). Fixa € {1,...,A} and

let i = i,. We want to prove (h — (code(w®)), h))z, € I(*=V for all h € b and
@)

e;ff‘I(w( e € T@D) for all p < q. We first check (h — (code(w(®)), h))z, €

I@=Y je. the element z, mod I®~Y € ¢(b)/I®~Y) has weight code(w(®). Tt

is easy to see that code(w(®) = code(v) + (m;; + 1)&; — myje; = code(w) +
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(mij +1)(e; — €;). On the other hand, z, mod I(¢=1) = e;;.”ﬁl mod 7@~ 1 has
weight code(w) + (m;; + 1)(e; — ¢;) since 1 mod I®~1) has weight code(w) and
e;; shifts the weight by ¢; — €;. This shows the claim.

We now check empq(w( ))Hxa = e%pqwm)ﬂ n;”“ eI~V forall 1 <p<
q < n, case by case. First note that, by Lemma 2.1.7 and the consideration
before that lemma, epq”"+1 € I(®=1 unless ¢ = j and v(p) < v(i), and in such

case we see €pq mp+2 = m“(w)+1 € I, C I(e=1. Also note that there does not
exist an r such that i < r < jand v(i) < v(r) < v(j), since vt;; > v.

e ¢ > j : In this case we have mp,(w(®) = 0 = my,(w), since both w
and w(® are increasing from (j 4+ 1)-th position and thus there are no

r > g with w(r) < w(g) or () < W(g). 1 p £ . et =
eZ”H € I(“ D since e,y € IV, If p = j, ejqu“JH - Zf’]“ejq _

(Mg —l—l) Feiq € 117D since e, €4 € 10071,
e p=iandq=j: Trivial from m;j(w®) =0 and e ”( )+1€z]”+1 =
e t? ¢ la-1),

1j

Hereafter we assume p < ¢ < j and (p, q) # (4, ).

o {p,g}N{i,j} = @ : If my,(w'®) = m,, the proof is trivial since in this

mpq( (a>)+1 c I(a—l) and empq(w( ))+1emu+1 emij+1empq(w(a))+1
pq .

case €p ij ij

Consider the case m,,(w'®) # m,,. Then:

— v(p) < v(g) must hold since otherwise m,,(w(®) = 0 = m,,,

— ¢ must be larger than i, since otherwise {w(® (r) : r > ¢, w(® (p) <
w@(r) < w®(q)} = {v( )1 > q,v(p) < v(r) < v(q)} because w(®
and v only differ at i-th and j-th positions, and

— exactly one of v(i) and v(j) must lie between v(p) and v(q) since
otherwise {r > ¢ : w(®(p) < w@(r) < w@(q)} = {r > ¢ : v(p) <

o(r) <w(g)}-

Since i < g < j and ¢(vt;;) = £(v) + 1, the case v(p) < v(i) < v(g) < v(j)
cannot occur. So v(i) < v(p) < v(j) < v(g). Then we have p < i by the
same reason. So we have p < i < ¢ < j and v(i) < v(p) < v(j) < v(q).

Here my,(w'®) = m,, — 1. Using the fact that there exists no i < r < j
with v() < v(r) < v(j), we obtain m;y —m;; = #{r > q: v(j) < v(r) <
v(q)} = mpg — my;.
myi+1
We have e e?”“ %e%pq eZ;”H Z;”H (mod I*~V)) by Lemma
igtl .
2.1.6(3) since e, €, " € I@=1 . Using [epg, €qj] = €p; and [epg, €pi] =

m”+1 vV Mpg—V m”-&-l
g5, epj] = 0 we see that the RHS is a linear combination of e, €pq iCiq

(v > 0). Thus it suffices to show that these elements are in I (a1 for each
v. If v > my; it is clear since [e,;, ;4] = 0 and e;:;-"ﬁl € I(e=1). Other-

—v m;;i+1 _ . .
wise, it suffices to show epg e € 1o~V since [epq, €p;] = 0. This
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—m mgi+1 Mig—MyG; Mii+1
follows from epg?” """’ g = epg’ ey € 1@

deduced from e, em“ZJr1 € I(e~1) using Lemma 2.1.6(1).

, which can be

e p=7i: Since i < g < j, the case v(i) < v(q) < v(j) cannot occur. If
v(q) < (i), we have w(®)(q) < w(® (i) and thus m;,(w(®) = 0. Therefore

- (@) g
e:‘ZW(w )+1eZL”+1 = ey :;w‘i‘l o efglz]‘f‘l iq c I(a 1) since eiq c I(a 1)'
If v(g) > v ) then m,(w®) = m;, —my; — 1 since {r > ¢ : w¥ (i) <

>
w@(r) < w®(q)} = {r>q:v(i) <o) <v@r~({r>q:v( <
o(r) < v(@IU{i}) ={r >q:v@) <o) <o(@}~{r>7j: o0 <

v(r) < v(y)} U{j}), and so we want to show ezirm”e?;ijﬂ € 11,

This follows from Lemma 2.1.6(2) since em“’+ ,eqj € T1071),

q = i : Here we have three cases to consider. If v(p) < v(i), we have
My (WD) = my; +my; + 1 since {r > i : w@(p) < w@(r) < w@ (i)} =
{r>i:w(p) <o) <o@}Ufr>i: o) <o) <o@)}U{j} =

{r>i:o(p) <o) <v@}U{r >j:v(i) <v(r) < v(j)}U{s} and so

we want to show em"‘+m‘1 e?;” € I®=1. This follows from Lemma
pr‘rl m;;+2 a—1 . .

2.1.6(5) since e,;""" " e € I@=D TIf v(i) < v(p) < v(j), we have

My (W) = my; since {r > i: w@(p) < W (r) < W@} ={r>i:

v(p) < v(r) <o)} ={r>j:vp) <vir) <o)} and so we want

to show e;'zpﬁ eZ”jL I@=1) This follows from Lemma 2.1.6(6) since

epz,e?;”ﬁ,e;;"ﬁl € I(e=1, Finally if v(p) > v(j), we have w(®(p) >

w @ (3), my;(w@) = 0 and so we want to show Cpici misth ¢ 7a=1) This

mii+1 mqi+1 1
! T epit (mij+1)e): ey epj and epi, €y € [(a=1),

follows from ep;e;; =€

g = j : This case consists of four subcases (note that the case p > i and
v(i) < v(p) < v(j) does not occur):
wle

— p <iand v(p) < v(i) : Here my,;(w®) = m,; —m;; since {r > j :
)

w(@(p) < ()<w(“(')}*{7’>j'v(p)<v()<’U()} {r>
pj —Mij Mij c

Jj () <o(r) <ov(j)}. So we want to show em ij
I@@=1_ If there is no r such that i < r < j and v(p) < v(r) < v(4),

then my,; = my; —m;;, and thus eg”’_mi’+16$ij+l = e?j”ﬁlezu €
112~ by Lemma 2.1.6(1) since e, meitl eZ“H € 1@ If there
exists such r, take r to be the largest among such ones. Then m,,, =

Mmyp; — Myj, since there exists no s such that r < s < j and v(p) <

v(s) < v(r). By e, e :;”H € I®=1 and Lemma 2.1.6(4), we have

Mpj—mij+1 m;;+1 — 1 mm mij+1 mi;+1 mg;+1 (a—l)

€ € = Gn 71760 €;r v (mod I )
Mopr+1 Mopi —Mpi+1 Myi+2 . _

Since the elements ep#’ = ep”’ 7 and € iT% are in [(e—1)

pi—mii+1 mii+1 _

we see from Lemma 2.1.6(1) that e, » ™" it e ith e rla=) Thys

mpj mij+1 mij+1 mi;+1  mii+1 mpi—my;+1 mg;+1 (a—1)

€ i rg = €, € € el and

thls shows the claim.
— p<iand v( ) > v(i) : Here my,;(w(®) = 0 since w(® (p) > w(¥ ().

@) )
Thus e;;p’(w Hle?”“ = emeZL”Jrl € I Vbye,, eZ-L”H e [(e=1)
and Lemma 2.1.6(1).



—p > i and v(p) < v(i) + Here my;(w!®) = my; —my; since {r

jw®(p) < @) < wG)) = {r > j ) < o)
moyi (w(® mais

(i)}~ {r > v(i) < o) < v(j)}. Thus e —

eZ}prm”He;’;”H c I Dby ey, e;njpﬁz € I®1 and Lemma 2.1.6(1).

>
<

— p>iand v(p) > v(j) : Here my;(w'®) = 0 since w(® (p) > w(®(j).
mi;j+1

Thus empj(w<“>)+1 mij+1 mij+1 o _

Dj ij = €pjt;;
mij+1

e ey and ey € 171,

e I@=1) gince €pjé

m (@) . .
Thus we checked epqp“(w )+1xa € Ie=D for all p < ¢. This finishes the
proof of Lemma 2.1.3. O

Remark 2.1.8. It is clear from the definition that m,, (w) < my,(w) +mg.-(w)
for any p < g < r. If my,(w) = mpq(w) + mgr(w), then by Lemma 2.1.6(1) we

have eﬁpT(“’)+1 c <€Z¢LZM(w)+1, €$QT(TU)+1>, Thus in fact the generators eg;‘pr(w)_i_l
such that there exists some ¢ € {p+1,...,r—1} with my,, (w) = mpe(w)+mg, (w)

are superfluous.

2.2 Projectivity of KP modules

In this subsection, using the presentations of KP modules obtained in the pre-
vious subsection, we show a certain projectivity property for KP modules which
will be essential in showing the highest weight structure for KP modules.

Let C be the category of all weight b-modules. For A C Z", let Cy be the
full subcategory of C consisting of all weight b-modules whose weights are in A.
Note that if [A] <occand A" ={p—-A: A€ A} (p=(n—-1,n—-2,...,0)), then
Ch 2 CP by M — M* ® K, (it is also true for infinite A if we take M* to be
the graded dual @(M))* of M).

Lemma 2.2.1 (cf. [23, Lemma 3.1.1]). For any finite A C Z", Cp has enough
projective objects and enough injective objects.

Proof. By the duality remarked before the lemma it is sufficient to show the
enough-projectivity.

For A € A, let P\ =U(b)/{h — (h,A\))nhep (Which is isomorphic to U(n™) as
a U(n*)-module, by PBW theorem) and let P be the largest quotient of Py
which is in Cy, i.e. Pj\\ is the quotient of Py by the submodule generated by all
weight spaces (Py), (1 & A). Then P} is projective in Cy since for N € Cy,
Hom(P{, N) = Hom(Py, N) = N,.

For a general M € Cy, Py = @, (P)®4m My is a projective object in Cy
and there is a surjection Pp; — M. This shows the lemma. O

Note that, if \ € A, P{ has a unique maximum proper submodule LA (PY),.;
therefore the head of Pf\\ is K, and thus P){\ is the projective cover of K in
Ca.

We introduce some order relations (other than dominance order) on Z" as

follows. For two permutations w,v € Sy, we write w < v if w = v or there
lex

exists an ¢ > 1 such that w(j) = v(j) for all j < ¢ and w(i) < v(i). Likewise, we

write w < v if w = v or there exists an ¢ > 1 such that w(j) = v(j) for all j > i
rlex
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and w(i) < v(i). For A = (A1,...,A,) € Z", define [A| = > N, If A\ p 6 Z%,
and w = perm(\), v = perm(u), we write A > p if |A\| = |p| and w=? < v~ ! For

general A and p in Z", take k so that A+k1 and p+k1 are in Z2, and deﬁne A >

w <= A+k1> /H—kl. Note that this definition does not depend on the choice

of k since perm(\)~! < perm(p)~! <= perm(A+1)7! < perm(u + 1)~ for
lex

A, € Z% ;. We define the other ordering > >’ in the same Way7 except that we use
< instead of <:i.e. A >’ p if and only if perm(A + k1)~ < perm(pu+k1)~!

rlex lex rlex

for k> 0.
We write A < p for A\, u € Z™ if both A < g and A <’ p hold.

Lemma 2.2.2. For \,u € Z™, X > p if and only if p— X >’ p — p.

Proof. We may assume |\| = |u|. We only need to prove the “only if” direction
since the other implication follows by exchanging A and u. Take integers L and
M sothat \+ L1, p+L1,p— X+ M1,p—p+ M1 € Z%,. Let w = perm(\ +
L1),v = perm(p+L1),w’ = perm(p—A+M1) and v' = perm(p—pu+M1). Then
w,v,w v € S(n NSy where N = n+ L+ M, and these permutations are related
by w’() N+1—w(@),v(i)=N+1-v() for i =1,...,n. More precisely,

1y (N+1-p) (w ' (N +1-p)<n)
we have w (p)_{n—i—N—l—l—w_l(N—i—l—p) (w_l(N+1—p)>n)and
Ulil(p): U_I(N-i-l—p) (v_l(N+1_p) Sn)
n+N+1—v ' (N+1-p) (v Y(N+1-p)>n)

Now assume w™! <v~™!. if w = v we have nothing to prove so we as-
lex

sume that there is an i such that w=(1) = v=}(1),...,w= (i —1) = v~ 1(i —
1),w= (i) < v~1(i). By the above description of w’ and v’ it is clear that
w'=L(j) = v'71(j) for j > N+1—i. We show w1 (N+1—i) <v'"H(N+1—1).
If w(i) < v71(i) < n we have w’*l(N +1—14) = wl@) < vi{) =
VYN 41 —4). fw (1) <n <o () we have w'"}(N +1—14) < n <
'Y (N +1—1i). The case n < w™1(i) < v~ ( ) cannot occur, since in such case
w @) =n+1+#{j <i:w'(j) >n}, v (')—n—|—1+#{j<2. L(j) > n}
and {j < i: w7 l(j) > n} {j <i:v7Y(j) > n}. Thus we have checked
wTH (N +1—14) < v YN +1-14) and thus w'~! < o'71. This shows the

rlex
lemma. O

Lemma 2.2.3. For A\, € Z", if minj<;<p Aj > minj<i<yp i then A < p.

Proof. We may assume that A\, p € Z%,. Let m = minij<i<, p;. Then w =
perm(\) and v = perm(u) satisfy w=i(1) = v (1) = n+1,...,w (m) =
v im)=n+mand w i (m+1)>n>v Y (m+1). Thus w! > vl O

By Lemma 2.2.3 we see that Z%, is an order ideal in (Z", <), and by Lemma
2 2.3 and Lemma 2.2.2 we see that p—Z2%, = {p— X : X € Z2,} is an order ideal

n (Z",<’). So in particular we see that A,, = {(a1,...,a,):0<a; <n—i} =
Z’;O (p—Z%) is an order ideal in (Z", <)

The main result of this subsection is the following proposition:

Proposition 2.2.4. Let A C (Z™, <) be a finite order ideal containing \ € Z™
as one of its mazimal elements. Then the module Sy is in Cp and gives a
projective cover of Ky in Cy.
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It is easy to see that the head of Sy is K. Therefore, to prove Proposition
2.2.4 we have to prove the following four facts: for every A\, u € Z",

(1) (Sx)u # 0 implies A > p,
(2) (Sa)p # 0 implies A > p,

(3) Ext'(Sy, K,) # 0 implies A\ < p (here Ext' is taken in either C or C<y,
which does not matter since C< is closed under extension), and

(4) Ext'(Sy, K,) # 0 implies X <’ p.

Before starting the proof, first let us make an observation on the weights
of Sy (w e SI). For j > 1, let j(w) = #{i : i < j,w(i) > w(j)} as in
the definition of KP modules. Since S, is a submodule of @), A5 =1,

any weight of Sy, is a weight of &, /\lj(w) KJ=1. The weights of the latter
space can be understood as follows. A w-pattern (terminology only for here)
is a sequence of sets (I1, Iz, ...) such that I; C {1,...,7 — 1} and |I;| = [;(w).
Define the weight (p1, po, . ..) of a w-pattern (I1,Is,...) by p; = #{j : i € I;}.
Then it is easy to see that p is a weight of ®j>1 /\lj(w) K7=1 if and only if it is
the weight of some w-pattern.

Let us now prove (1) and (2) above.

(1): We may assume that A and p are in ZZ,, since (S)), # 0 <=
(Sxik1)ptrk1 # 0 for any A\, pu € Z" and any k € Z. Let w = perm()\) and
v = perm(u). We prove a stronger statement: if p is the weight of some w-
pattern (I1,Io,...) then A > p.

We first show w=1(1) < v~1(1). Let i = w~1(1). Since w(1),...,w(i —1) >
w(i) we have [;(w) =14 —1, and thus I; = {1,...,4—1}. Thus py,...,ui—1 > 1.
Since v~ 1(1) = min{j : p; = 0}, this shows w=(1) <v71(1).

Now consider the case w=1(1) = v=!(1). In this case we have u; = 0,
i.e. none of the sets I; contains i. Define o; : Zso \ {i} = Zs¢ by o0;(/') =

., g
<
{Z (i Z) , and consider a new sequence of sets I' = (0;(11),...,0;(li—1),0:(Lix1),0:(Lit2),- - .)-

i —1 (i >1)
It is easy to check that I’ is a w’-pattern with weight code(v’), where w’ =
[w1) =1 -+ wi—1)—-1wiE+1)—1wiE+2)—1---] and v = [v(1) —

1-vw@i—-1)—1ov(+1)—1wv({E+2)—1---]. An inductive argument shows
that w'~! < /71, This shows w™! < v~ L O
lex lex

(2): We may assume A, pu € ZZ, as before. Let w = perm()) and v =
perm(u). We prove a stronger statement: if 1 is the weight of some w-pattern
(I, I, ...) then A >’ u. Take N so that w,v € Sy. Note that Iy, = Iyy2 =
- =@ since L,(N+1)=1,(N+2)=---=0.

We first show w1 (N) < v=}(N). Let i = w=(NN). Then we have [;(w) = 0
and thus I; = @. Thus for j < i, we have j € I1,...,1;,I;, and thus pu; <
N —j — 1. Since v~ 1(N) = min{i : g; = N — i} this shows v~ }(N) > w™1(N).

Now consider the case w™1(N) = v~ }(N). Then p; = N —i. Since
i & I,...,I; we must have i € I y1,...In. It is easy to see that I’ =
(0’1'([1), ey Oi(Ii—1)7Ui(Ii+l AN {Z}), . 70i(IN AN {Z}), g, D, .. ) is a w’—pattern
with weight code(v’) where v’ = [w(1) -+ w(t = 1) w(i+1) -+ w(N)] and v/ =
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[v(1) -+~ v(i—1)v(i+1) --- v(N)]. An inductive argument shows w'~1 < o'~
rlex

This shows w=! < v~ 1. O

rlex

For (3) and (4), we need the following observation. By Theorem 2.1.1, for
any w € Ség) there is a projective resolution of S,, in C of the form --- — P; —
Py — Sy — 0 with Py = Pcode(w) and P, = ®p<q Pcode(w)Jr(mpq(w)+1)(epfeq)'
Here by Remark 2.1.8, we can in fact replace P, by a smaller module: sum over
all p < g such that

(%) : there does not exist p < r < ¢ with mpq(w) = my, (W) + Mg (w).

In particular, Ext' (S, K,,) = 0 unless y = code(w) + (mpq(w) + 1)(e, — ¢,) for
some p < ¢ satisfying the property (x) above.

(3): We may assume that A\, u € Z2;, since A < p <= A+ k1l < p+kl
and Ext!(S,, K,)#0 < Ext (Sxir1, K, t11) # 0 for any A\, p € Z" and any
ke Z.

Let w = perm(A) and v = perm(u). By the remark above, we have yu =
A+ (mpg(w) + 1)(ep — €4) for some p < ¢ (and therefore w # v). We first show
w™ (1) > v71(1). Let i = w™i(1). If i < v=1(1), then p; > 0 while \; = 0,
and so p = 4. But then mp,(w) = #{r > ¢ : w(i) < w(r) <w(q)} =#{r > ¢:
w(r) < w(g)} = code(w), = A and so we have p, = —1, which contradicts to
w € Z%,. Therefore i > v’l(l).

If i = v~ (1), then \; = p; = 0, and so p,q # i. Therefore N = (\; —
Loy hicn = LAipn, Ay o) and g = (o — 1,000 i — 1, iy, pigas - )
satisfy ' = AN + (mpq(w) + 1)(epr — €4) for p’ = 04(p), ¢ = 0:(q). Moreover,
Mypg(w) = my g (W), where w’ = [w(l) =1 -+ w(i—1) —1w(+1) — 1w+

2) —1 ---]. Thus an inductive argument shows w'~! > v/~! where v’ = [v(1) —
lex
1 wvi—-1)—=1v(+1)—1v(i+2)—1 ---] = perm(y’). This shows w=! > v~!
lex
(I

(4): We may assume that A\, u € ZZ, as before. Let w = perm()), v
perm(u). Take N so that w,v € Sy. We have u = X + (myp,(w) + 1)(e, — €4
for some p < g as before, with the property (x) above. We first show w‘l(N) >
v=H(N).

Assume w™ ' (N) < v (N). Then A\y-1(yy) = N —w ™ (N) while p1,,-1(n) <
N —w~Y(N) and so ¢ = w™H(N).

We first claim that there does not exist r such that p < r < ¢ and w(p) <
w(r). Suppose such r exists. Take r to be the largest among such. By the
property (%) we have mpq(w) < my,(w) + Mmyq(w). This means that there is
a column index 1 < j < N such that (p,5),(¢,7) € I(w),(r,j) ¢ I(w) or
(p,9),(q,7) & I(w),(r,j) € I(w), since other types of columns contribute to
LHS and RHS by the same value. We see that neither of these cases can occur
as follows.

e Assume the former case. Then (p,j) € I(w) implies w(j
w(r) and (¢,j) € I(w) implies j > g > r. These shows (
Contradiction.

) < w(p) <
rj) € I(w).

o Assume the latter case. w(q) = N > w(j) and (g, j) € I(w) implies j < q.
Also, (r,7) € I(w) implies j > r > p, and this together with (p, j) & I(w)
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shows w(p) < w(j). Thus j satisfies p < j < ¢, w(p) < w(j) and j > 7.
This contradicts to the choice of r.

Since there does not exist r such that p < r < ¢ and w(p) < w(r), we see
that mpq(w) = #{r > q : wp) < w(r) < w(@)} = #{r > q¢: wp) <w(r)} =
N—w(p)—1-#{r <q:w(p) <w(r)} = N—wp)—1-#{r <p:w(p) <w(r)}.
From this and A\, = code(w), = #{r > p: w(r) < w(p)} =w(p) -1 —#{r <
p:w(r) <w(p)}, we see i, = A\p +mypg(w) +1 = N —p. This means v~ (N) =
min{p’ : py = N —p'} <p < ¢=w ! (N). This contradicts to the assumption
and thus we see w=1(N) > v~ 1(N).

If w™}(N) = v=}(N), then p # w™(N) # q as before, and we can induc-
tively argue in the same way as in (3). |

Remark 2.2.5. Tt is easy to see that the projective cover of K in Cp (A € A C
7Z") is given by the largest quotient (Py)”* of Py whose weights are in A. Thus
from the theorem above we see that Sy = (Py)* for any order ideal A C (Z", <)
containing A as one of its maximal elements.

Let A C (Z™, <) be an order ideal and A € A be one of its maximal elements
as above. If a weight b-module M is generated by an element of weight A then
M is a quotient of Py. So if in addition M € Cp then it follows that M is in
fact a quotient of Sy.

2.3 Highest weight structure

The main result in this subsection is the following:

Theorem 2.3.1. Let A C Z™ be a finite order ideal with respect to the ordering
<. Then Cy is a highest weight category with the weight poset (A, <) and the
standard objects {Sx : A € A} (for the definitions of Cn and the order relation
=< see the beginning of Section 2.2).

Proof. We have already verified the first two axioms in the previous subsection.
Below we verify that the last axiom holds.

Let 4 € A. The projective cover of K, in Cy is P[}7 the largest quotient
of P, (see the proof of Lemma 2.2.1) whose weights are all in A. We want to
show that there exists a surjection P,f — §,, whose kernel admits a filtration
by modules S, (v > ).

Index the elements of A as A',..., A\l so that A\’ < M implies i < j. Let
AP = {\', ... X}, Note that A* and p — A* = {p — AL,... p — A} are order
ideals in A with respect to the ordering <, and A’ and p — A\? are their maximal
elements respectively. If g = AF, then Pf}k = §,, since both Pl{‘k and S,
give projective covers of K, in the category Cyx. We show that the kernel of

Plj\i —» P,f‘ifl is a direct sum of some copies of Syi for any i: this shows the
claim since 0 C Ker(P} — PM') € Ker(P} — P} ") € -+- C Ker(P} —
P{L\k) = Ker(P,i\ — S,,) gives a desired filtration.

Let 1 < i <. We have a b-homomorphism (Pé\)A ® Py — PI/LV (where
on the left-hand side tensor product b acts only on P){\Z) defined by zu, ®
yuyi — yau, for x € UnT)yi_, and y € U(nT) where u, is the image of
11l e UnT)® K, 2 P, — P,i\i (this definition does not depend on the

choice of y since the submodule of Plﬁ\i generated by zu, is a quotient of Pf
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by definition). The image of the morphism above is Ker(Pl{‘i — Pl{‘i_l)7 so it
induces a surjection (Plfi) ri ®PA - Ker(Plfl — P,flil). Since the left-hand
side is a direct sum of copies of Pj} =~ S,i, it is enough to show that this
surjection is in fact an isomorphism for any ¢ and any p. _

Welz want to show that the surjection (Pl‘}i)xa ® (PN, — Ker((P’j\l),, —
(P[‘V )v), obtained by restricting the surjection above to v-weight spaces, is
an isomorphism for any ¢ and any p,r. Since the claim does not contain any
information on A we may take A to be sufficiently large: to be precise, we assume
that A D {k : p <k <v}. This in particular implies that (P,f)u ~UWt),_, as
vector spaces.

. . ! 1—

We have a quotient filtration (P’f Yo —» (Plf 1)l, — --- = 0 of vector

spaces, and by the argument above its successive quotients are quotients of

(PA)5i®(PY),. Thus we have dim(P2), < 31_, dim((PY) @ (PY),). If we

show that the equality holds then the desired isomorphism (P/f) N ® (PA), =
i i—1
Ker((Pl/) )y — (P/L\ )) follows for all i.
We know (PA"), = (Syi)w by Proposition 2.2.4. Now consider (P/f[)m-. Since
P[Lv is the quotient of P, by the submodule generated by all weight spaces (P,),
(o0 € AY), we have a vector space isomorphism
(P;})/\ ~UYnt) i, /Spang{zy :x € UM )\, y €UMT),_, for some o & A'}.

The algebra antiautomorphism on U (n*) given by X — —X (X € n™) induces
an isomorphism between this space and

UM i, /Spang{yz iz e U(nT)yi_,, y €U(nT),_,, for some o ¢ A’}
=Un")ni_,/Spang{yz :z € UM )yi_,, y €UNT),_, for some o s.t. p—o & p— A"}

where p— A= {p—0:0 € A?}. By the same argument as above we see that

this is isomorphic to (Pf:)/\y)p_u. By Propgsition 2.2.4 we see (Pp":ﬁii)p_u =
(Sp—xi)p—p- Thus, after all, we see that (P/ﬁv)x 2 (Sp—ni)p—p-

Since (Pé\))\ = (Sp_Ai)p,M and (PY), = (Sxi)y as we have seen above,
we see that dim((RAl)/\i ® (PA),) is equal to the coefficient of zP~Fy” in
S, i (x)6yi(y). So 2221 dim((PIj\l)/\i ® (P),) is equal to the coefficient
of xP~Hy” in 22:1 S, i (2)6xi(y) = Y orer Gp-a(2)8a(y). Since we have
assumed A D {rk : p <K <v} this is equal to the coefficient of z°#y” in
Y rezn ©p-a(2)8x(y). On the other hand as we have remarked above (Pli\)y =
U(nT),_,. Thus the proof of the theorem is now reduced to the following ele-
mentary lemma:

Lemma 2.3.2. For p,v € Z", dimU(n"),_, is equal to the coefficient of
xPHyY in EKGZ” prn(x)em(y)'

Let us prove this lemma. We use the following result from [19]:
Lemma 2.3.3 ([19, Lemma 6.2 and Corollary 9.2, reformulated]). For a positive
integer N, define a bilinear form (-,-) on Zlzt',... 2= by (x®,27) = Gap.
Then for w,v € Sy, (Guw, Gupo(z7 ..., 2N") [licicjen(xi—2;)) = wo, where
’LU():[NN—l---l]ESN. -
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We slightly modify this lemma into a form which is more suitable for our
use:

Lemma 2.3.4. If we define a bilinear form (-,-) on Z[zE, ... ] by (x®, 25) =
Sug, then for A, € Z, (65,6, u(xr ", 20 ) [icicjcn (@i — 5)) = Orp-

Proof. We may assume that A\, € Z%,,. Let w = perm(\),v = perm(u). Take
N so that w,v € Sy. Then by the previous lemma, we have

<6w76w0'y(x;1,...7x&1) H (xi—l'j)>:(5w1,:5)\# (*)

1<i<j<N

where wog =[N N -1 --- 1] € Sy.

Since H1§i<j§N(‘ri ;) = Hi§n<j(37i _wj)'Hi<j§n(xi _xj)'Hn<z‘<j(mi -
xj), we see that

[l @-z)=@-2)"" ] @-=z) [] @-2)

1<i<j<N i<j<n n<i<j

= (@) [ @i —ay) - @ e e

i<j<n

modulo terms whose degree with respect to the variables 1, ...,z is strictly
greater than T = (V"
of degree T' and without monomial =} "'z )" an_1.

Let f be the sum of all terms in &,,,, whose degree in z,1,...,zN is equal
to T. Note that, since &,,, is a linear combination of monomials z7* - - - z&" (0 <
a; < N —1), the degree of its terms with respect to variables x,,11,...,xy are al-
ways at most T: that is, &, = f+(terms with degree < T' in variables x, 11, ...

Also note f € xﬁf_’fl"*l <-xy_1Z[x1,...,2,] by the same reason. We claim

f = (xl e mn)ananglnil e I'Nflef,u,'
Let wpyy =[1 ---nNN-—1--- n+1] € Sy. Note that w, ywov € S§2),
code(wn, Nwov) = p — 1+ (N —n)1 and thus Sy, yuwew = (21 20)N "G,

R)

), where R is some homogeneous polynomial in 2,41, ...,2x5

We have Gu,, ywov = Ow,. xy Owows Where 0w, y = (Ong 1042+ ON-1)(Opy2---On_1)-

-+ --On—1. Since the operators 9; (n+1 < i < N—1) lower the degree in variables

Tp41,...,TN Dy one, Oy, , annihilates Gyp — f. Thus Sy, ywee = Ow, v f-
Since f € xi\g__l"_l corxy_1Z[ry,. .., 2,) and 8wnnyf:f_~__1"_1 coexn—1 = 1 we see
N—n-1 N—n-—1
that 0w, o f = f/(x, """ ---2n_1). Thus f =2, """ - 2N 16w, ywov =

(21 2y)N 2N " an_16,_,,. This shows the claim above.

‘We have seen that

[[ @ap)=@e)¥" [] (a3 e)n 2 a1 +R)

1<i<j<N 1<i<j<n
and

-1 —1y _ ~Nin,—N+n+1 -1 -1 1
Cuov(x] .y ) = (T1---20) i R SNSRI < P (R
modulo terms having degrees > T and > —T in variables x,,41,...,2 N respec-
. -1 1 .
tively. Thus Suwou(z1 ..., 2n ) [[1<jcj<n (T — 25) is equal to

Gpplrrt o ay) s [ @i—ay) (42, oyl R)
1<i<j<n
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modulo terms with degree > 0 in variables x,,41,...,2x. Since the variables
Tp41,--.,TN do not appear in &,, and x;/jf”“ - -m&{lR does not have a

constant term, this shows

(Gu, Gugular s ay) [T (wim2)) = (8w, Spular o yayh) I (@imay)).

1<i<j<N 1<i<j<n
This, together with (x), finishes the proof of Lemma 2.3.4. O

Let us come back to the proof of Lemma 2.3.2. Essentially this is a “Cauchy
formula” for the dual bases {&,} and {&,_,(z7",..., ;) [[(z; — z;)} ap-
peared in Lemma 2.3.4, but since we are dealing with an infinite-dimensional
space a careful justification is needed. Let cop be the coefficient of z%y® in
Y owezn ©pn(2)8(y). We observe that if ¢, , # 0, then there exists some x
such that p—p>p—kxand v >k, and so v > k> p. Thus c,— ), =0 for v g p.
Using this as the base case, if we show deSn $gN(9)Cp—pv—ptgp = Opw, then we
can show ¢,_,,, = dimU(n*),_, by induction on v since ), dimU(n't), 2" =
[Li;(1— xia:j_l)fl and [, (1 - xﬂ:]_l) =Y ,es, sen(g)z~9. We show the
equivalent claim g sgn(g)ca,pt+gp = da,—p-

Since Ca,B+gp = Catkl,B+gp—kl, WE may assume that —3 € Z%,. We may
further assume, by replacing o and 3 by a+k1 and 5 — k1 for a sufficiently large
k, that if k € Z™ satisfies a > k > — B+ p—gp for some g € S, then k € ZZ, (this
is possible by the remark at the end of Section 1.2). We only have to consider the
case |a] = —|B|. Let d = |a|. Let V be the space of all (ordinary) polynomials
in x1,...,x, which are homogeneous of degree d. Equip V with a bilinear form
(x7,27) = 0yr. Then by Lemma 2.3.4 the bases {S,, : k € ZZ, || = d} and

{Sp—n(@rts ) Tcicjan (@i — 25)] 0 K € 22, |k = d} of V are dual to

each other; here for f € Z[z+!, ..., 2", [f] is the sum of all terms in f which
do not contain any negative powers of x1,...,z,. Thus we have
Yooay= > Sulwn o m)So ki oy ) [T i —w)
YELL, KEZLY, 1<i<j<n
|v|=d |r]=d
= Z 6/-;(‘7:1’ . 7xn>6pfn(y1 ) 7y'r:1) Z Sgn(.g)ygp U (*)
KEZZ, geESn
|k|=d

modulo terms containing some negative powers of some y; (we used the fact that
for any finite-dimensional vector space V, the sum > ¢; ® pf € V ® V* does
not depend on the choice of dual bases {¢;} C V,{¢F} C V*). Since —j € Z%,
the coefficients of 2%y~? are equal for both sides. The coefficient for the LHS
is d,—p. Moreover, if k € Z" and &, (21,...,2,)8,_x(y; ', ..., ys") contains
some monomial of the form xz%y=#=9 (g € S,) with a nonzero coefficient,
then such x must satisfy a>x and 4+ gp>p — Kk and so & € Z%,. Thus
the coefficient of %y ~# in the RHS is the same as the coefficient of 2%y—#
i (Spern ©ulon )0t ) ) (S, snla)ye?). Since s
=

coefficient is > sgN(g)ca,p+gp We are done. O

gESn
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Note that, by Proposition 2.2.4 and Lemma 2.2.2, the costandard objects in
Ca are given by S5\ @ K, (A € A).

From general theory of highest weight categories we obtain the following
corollaries:

Corollary 2.3.5. A finite dimensional weight b-module M has a KP filtration
if and only if Ext' (M, S, . ® K,) =0 for all \ € Z". In such case, the number
of times the KP module S\ (A € Z™) appears in (any) standard filtration of M
is given by dim Hom(M, S, ® K,,).

Proof. This follows from Proposition 1.3.10 and Corollary 1.3.12 (note that the
order ideal generated by the weights of M is finite by Lemma 2.2.3). O

Corollary 2.3.6. (1) If M = M1 ®---® M, and M has a KP filtration then
so does each M;.

(2) If0 = L - M — N — 0 is an exact sequence and M and N have KP
filtrations then so does L.

Proof. This follows from Corollary 1.3.13. O
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3 Tensor product of Kraskiewicz-Pragacz mod-
ules

3.1 Existence of KP filtrations for tensor products

In this subsection we use the highest weight theory for KP modules developed
in the previous section to show the following:

Theorem 3.1.1. For any \, u € Z", the tensor product module Sy ® S, has a
KP filtration.

In order to prove Theorem 3.1.1, first we need the special cases where one of
the KP modules is S, corresponding to Monk’s rule for Schubert polynomials.

Proposition 3.1.2. Let w € S(()Z) and let 1 <v<n-—1. Then S, ® Ss, has a
KP filtration.

Proof. This is a special case of the Pieri rule for KP modules (Theorem 3.2.4)
which we will prove in Section 3.2. Note that the proof given there does not use
the result in this subsection. See also Remark 3.2.9. O

Using Proposition 3.1.2 and the highest weight theory for KP modules we
have developed above, we can now proceed to a proof for a more general result:

Theorem 3.1.3. For any w € S, and v € Ség), Sy ® S, has a KP filtration.

If we let n — oo, we see that for any w,v € S, the module (over the Lie
algebra bo, = {J,, b, of upper triangular matrices of infinite size with finitely
many nonzero entries) S, ® S, has a filtration by KP modules, if we regard
b,-modules S,, (w € Ség)) as boo-modules through the morphism b, — b,
annihilating all e;; with j > n. In particular, we see that the theorem in fact
holds for any w,v € S(()g), and since the general KP modules Sy (A € Z™) are
just the KP modules S,, (w € Sf,g)) shifted by some weight k1 (k € Z) this
implies Theorem 3.1.1.

In order to prove Theorem 3.1.3, we begin with some observations. For a
w € S,, we define a b-module T, = Q,;c), (/\l”(w) K71, where [;(w) =
#{j <i:w(y) > w(i)} as in the definition of KP modules. Since T, is a direct
sum component of ®,<;<, @ Kl = ®,.,., "™ S,,_,, T,y has a KP
filtration by Proposition 3.1.2 and Corollary 2.3.6(1). We show the following
lemma:

Lemma 3.1.4. Let w € S,,. Then there exists an exact sequence 0 — S,, —
Tw — N — 0 such that N has a filtration whose each subquotient is isomorphic
to some S, (u € Sy, u™! > w™).

ex

We see first that the theorem easily follows from this lemma by a descending
induction on the lexicographic order of w~!. From the lemma we get an exact
sequence 0 - S, S, - T, ®S, > N®S, — 0. Here T, ® S, have a
KP filtration by Proposition 3.1.2 and Corollary 2.3.6(1), since it is a direct
summand of <®2<i<n ®l"’(w) Ss,',_l) ®S,. Moreover N ® S, have a KP filration
by the induction hypothesis. Hence the claim follows from Corollary 2.3.6(2).

Let us now prove Lemma 3.1.4. As we have seen in Proposition 2.2.4, for
Y,z € Sé? ):
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o if (Sy)code(z) # 0 (i.e. the coefficient of 2°°4¢(*) in &, is nonzero) then
271> y‘l7 and

lex

o if Extl(Sy, Keode(z)) # 0 then P 1< y~ L.
ex
In particular, if w,u € S and Ext!(S,,S,) # 0, then there exists a z € s&)
such that (Sy)code(z) 7 0 and Ext" (Su, Kcode(»)) # 0, and thusuw™! < 271 < w1,
lex lex

Proof of Lemma 3.1.4. Let I; = l;(w) and let the integers nq, € Z be defined by
[ocicnen (@i, .. azim1) = Zuesn Nwe S, where ey, denotes the k-th elementary
symmetric polynomial. Since the left-hand side is the character of T, the
number 7., is the number of times S, appears as a subquotient in (any) KP
filtration of T,.

By Proposition 1.1.3 we have >oues, Gu(@)Cuuwe(¥) = [Liyj<n(@i +y5) =
Zogaignﬂ' (ngignq x?iliai ) ngignfl ea; (Y1, - - 7yn7i))' Thus there ex-
ists a bilinear form (,) : H, X H, — Z such that (&,,&,,) = duw and
(xPe, ngign—l eg;(T1,...,Tn—i)) = 0a,3. Then

Nwu = <6uw07 H eli(xla"'vxi—l)>

2<i<n

. ST e :
= (coefficient of 27+~ z] P in Gy )-

Here,n—k—lpyi—k=n—k—#{j<n+1-k:w() >wh+1-k)} =#{j <
n+l—k:w(j) <wn+1-k)} =#{j>k:wwy(j) < wwo(k)} = code(wwo)x,
and thus the number n,,,, is equal to the coefficient of geode(wwo) iy Gyw,- Thus

Ny 18 nonzero only if (wwg) ™1 > (uwp) ™!, which is equivalent to w=! < u~!.
ex lex
Moreover, if u = w then we see that n,,, = 1. Thus the subquotients of (any)

KP filtration of T, are the modules S, (u~* 1> w~1), together with S,, which
ex

occurs only once. Since Ext!(S,,S,) = 0 for u_11> w™! we can take the
ex

filtration to satisfy the additional condition that S,, occurs as a submodule of
T,,- This completes the proof of Lemma 3.1.4. O

Theorem 3.1.1 gives a proof to the classical fact that the product &,&,, of
Schubert polynomials is always a positive sum of Schubert polynomials, whose
only previously known proof is through the geometric interpretation of Schubert
polynomials. Also we get some corollaries from Theorem 3.1.1:

Corollary 3.1.5. For any partition A and an element p € 7™, the Schur functor
image sx(S,) of a KP module S, has a KP filtration. Thus in particular, if we
write &, = z*+a” +--- as a sum of monoimals then s,[6,] := s)(z*,27,...)
(here sy stands for a Schur function) is always a positive sum of Schubert poly-
nomials &, (v € Z"™).

Proof. From Theorem 3.1.1 we see that (S,)®™ has a KP filtration for any
m € Zxq. Thus the first claim follows from Corollary 2.3.6(1) since (S,)®™ =

D, .. s)\(S#)@fA for certain integers f* > 1. The second claim follows since
the character of s)(S,,) is sx[6,]. O
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Corollary 3.1.6. In the expansion 6,6, = >, 5,6y (CKH € Z), the coeffi-
cient ¢, is equal to the dimension of Homg(S\®@S,,S,_, ® K,) = Homp(S\ ®

S, ®Sp—v, K,). Similarly, the coefficient dKM € Z appearing in the expansion

sx[6u] = 32, d5, 6, is equal to the dimension of Homp(sx(Su),S,—, ® K,) =
HOHI[,(S)\(SIL) X Sp_l,,Kp).

Proof. This is clear from Corollary 2.3.5. O

3.2 Explicit filtration for the cases of the Pieri and dual
Pieri rules

In this subsection we give explicit forms for KP filtrations of tensor product
modules S, ® S4(K?) and S, ® /\d(Ki) (d > 1,1 <i < n). The construction
here does not use the results developed in the previous subsection, so it actually
gives a proof for Proposition 3.1.2.

First we present Pieri and dual Pieri rules for Schubert polynomials which
give expansions of S, - hg(x1,...,x;) and &, - eq(x1, ..., x;) into sums of Schu-
bert polynomials.

Definition 3.2.1. For w € S, i > 1 and d > 0, let

Xia(w) ={tpiqitpags - tpage 1 7 < 0, q5 > G, wi<wa<--- ,wi(p1) < wa(p2) < -}
and

Yia(w) = {tpqitpage - tpaga : Pj < 1,5 > 1, w1 <wa<--- ,wi(q1) > walga) > -}

where w1 = w, w2 = Wiy, q,, W3 = Wp, g1 tpags

Figure 3: a typical situation for the graphs of w and w¢ (¢ € X; q¢(w)). Dotted rectangles mean
that there are no points of the graphs inside the rectangles. The points of the graphs not shown in

the figure are on the same positions.

Figure 4: a typical non-situation for w and w¢ (¢ € X; q(w)).

Note that the condition for X; 4(w) (resp. Y; 4(w)) implies that ¢1,...,qq
(resp. p1,-..,pq) are all different.

Proposition 3.2.2 (conjectured in [2] and proved in [25]). We have

Sy 'hd(xl,...,xi) = Z 6711(
CEX,a(w)
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and
6w'ed($17--~73§i) == Z GU)C'
CEYi a(w)
where hy and eq denote the complete and elementary symmetric functions re-
spectively. 2 [

Note here that a permutation ( € X; 4(w) (or Y;4(w)) in fact uniquely
determines its decomposition into transpositions satisfying the conditions in
Definition 3.2.1. So we can write, without ambiguity, for example “for { =
tprgr - tpaga € Xia(w) define (something) as (some formula involving p,; and
q;)". Hereafter if we write such we will always assume the conditions in Defini-
tion 3.2.1.

Now we are going to give explicit forms for KP filtrations of modules S,, ®
59K and S, @ NN(K?) (w € S od>01<i< n). Hereafter in this subsec-
tion we identify S, (w € ng)) with a submodule of T' = /\'(EBlSiSnJ21 Ku;j)
on which b acts by epqu;; = dgi€pj, by identifying the generator u, of S, with
Nijyerqw) wij (recall that w € S implies I(w) C{1,...,n} X Zsg). It is easy
to see from the definition of KP modules that the submodule of T" generated by
this element is indeed isomorphic to S,,.

For 1 < p < g we define an operator e;p acting on 1" as 6;p(ua1b1 A Ugyby N
o) =30 A pbtiang A e+ ). Let these operators act on T @ S%(K*) and
T® /\d(K ) by applying them on the left-hand side tensor component. Also
for j > 1 define an operator p; : T @ @*(K') = T © " (K') (a > 1)
by u® (11 QU2 ® --+) = (tj(n1) Au) ® (v2 @ vz ® ---) where ¢j(up) = up;
(1 < p <i). We denote the restrictions of u; to T ® S*(K") and T ® \*(K?)
(seen as submodules of T'® ®“(K*)) by the same symbol. Note that €., and
pj give b-endomorphisms on 7 ® S*(K*) and T @ A\*(K?).

For a permutation z and p < g let mpq(2) = #{r > ¢ : 2(p) < z(r) < z(¢)}
as before, and also define m) (z) = #{r < p : z(p) < 2(r) < z(¢)}. For

ap
C=tpq tpaqy € Xia(w) (resp. Y; 4(w)) define

My . q: (W5)
ve=(]]ep,q" Tuw)® H Up,
J J

= ([T epi™ 1)) ® <Z Up, ) @ ® upa(d)> €8, ®SUKY)

J o€Sq

(resp.

V¢ = (H Epsiy 0 ) @ /\um
J

J

d
- (H epyiy ) @ ( § sgn(0) - Up, ) ® - ®“Po(d>> €Su® /\(K )

J o€ESy

)

where w; = wip,q, -+ +tp,_,q,_, as in Definition 3.2.1. Note that these are also

2The formulation of dual Pieri rule here is slightly different from the one in [2], but they
can be easily seen to be equivalent.
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well-defined even if some ¢; are greater than n, since in such a case my, 4, (w;) =
0. Note also that the products of the operators e, above are well-defined
since the operators e, ;. commute with each others. Also, for such ¢, define a

b-homomorphism ¢¢ : T @ @*(K*) — T by
a;p; (W3)
P = Hga " Har - H(eéjpj)mquﬂ Wi
J
Note that the order in the product symbol does not matter since the operators

!
€q;p; commute.

Proposition 3.2.3. For (,(’ € X; q(w) (resp. Y; 4(w)),

e ¢c(ve) is a nonzero multiple of uye € T, and

o pcr(vg) =0 if (wC)_11< (w¢)™* (resp. (w¢)™ < (w¢)7H).

-1
ex rlex

Let us first see that the constructions for the desired filtrations follow from
Proposition 3.2.3.

For a b-module M and elements x,y,...,z € M let (z,y,...,z) denote the
submodule generated by these elements. Consider the sequence of submodules

0 C {ve) C (vgrs0¢,) C -+ C (v = € € Xia(w) (vesp. Y a(w)))

inside S, ® S4UK) (resp. Sp @ AN (K?), where (1,(a,... € Xi a(w) (resp.
Y; a(w)) are all the elements ordered increasingly by the lexicographic (resp.
reverse lexicographic) ordering of (w(¢)~!. From the proposition we see that
there are surjections (v¢,,---,v¢;)/(ve,, -+ ,v¢; ) = Swe; induced from ;.
Thus we have

dim(S,®S4(K")) > dim(ve : ¢ € Xig(w)) > > dimSy¢ = dim(S, @54 (K?))

¢eXi,a(w)

and

dim(S,® \(K")) > dim(ve : ( € Yig(w)) > Y dimSye = dim(S,® \ (K7))
CEYi a(w)

respectively, where the last equalities are by Proposition 3.2.2. So the equality
must hold everywhere. Thus (v¢ : ¢ € X; 4(w) (resp. Vi a(w))) = Sy ® SUK?)
(resp. S, ® A%(K")) and the surjections above are in fact isomorphisms. So we
get:

Theorem 3.2.4.
0 C (v¢,) C (vgy,0¢,) C - C{ve : € € Xya(w) (resp. Yia(w)))

gives a KP filtration of S, ® SY(K?) (resp. Swu@N\(K?)). Explicit isomorphisms
(Veys - 7UCj>/<UC1 o ,U<J_1> = Sy, are given by ¢, defined above. O
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Remark 3.2.5. It can be shown that the projective cover of the one dimen-
sional b-module Kx (A = (A1,...,A\y) € Z%) in the category Czz  is given
by S*(K') ® --- ® S (K™). Thus the construction above for a filtration of
Sw®S4(K') in fact gives a proof to the fact that the projective modules in Czn .
have KP filtrations, which leads to a different proof from the one in Section 2.3
for the third axiom of highest weight categories (we do not need the results
about highest weight structure for b-modules in the proof of Proposition 3.2.3).

To give a proof for Proposition 3.2.3 we need some lemmas.

For w € S, mpg(w) = #{r > ¢ : w(p) < w(r) < w(q)} is precisely the
number of r > 1 such that (¢,7) € I(w) and (p,r) € I(w). So in particular, if
(¢,7) in I(w) then epr* ™ u,, = (const.)- (upy A---) (it does not matter whether
(p,r) € I(w) or not) and thus wuy, A egﬁf’q(”)uw = 0. Similarly, if (r,p) € I(w)
then wu,q A (e;p)mép(“’)uw =0.

Lemma 3.2.6. Let w € S& and i > 1. For p,p <4 and q,q > i such that

Uwtpg) = Uwty ) = Lw)+1 (e tpg, tyy € Xin(w)), ifupq’/\ez?lpq{m(e;’p’)m“/”/(w)uw #

0 then w(p') > w(p) and w(q") > w(q), and if (p,q) = (p',q’) it is a nonzero
multiple of Uy, - (I

Proof. First note that the operations epq, e;,p/ and uper A — on T' all commute

with all the others. We have the following observations:

(1) If p < p’ and w(p) > w(p') then (p,p’) € I(w). Thus in this case upy A

Mpq (W) s m’, ,(w) : / m’, ,(w)
€pq (eqrp )™ P Uy = 0 since upgr A (€g,,) " a'? 1y = 0.

(2) If ¢ < ¢’ and w(q) > w(q’) then (¢,¢') € I(w). Thus in this case upy A

Mg (W) ¢ s My (W) — i Mg (W) —
epgd " (g )P Uy = 0 since upgr A epg’ Uy = 0.

(3) If p < ¢’ and w(p) > w(q¢’) then (p,q’) € I(w). Thus in this case upy A

Mpq (w)(

7
m’, ,(w)
€pq

! — M —
)" Uy, = 0 since upgr Aty = 0.

Assume upqr A e;'ff"(w)(e;,p,)m;’p’(w)uw # 0. First we see that w(p) < w(q’) by
(3) above. If w(p') < w(p) < w(q") then by l(wtyq ) = £(w)+ 1 we have p < p/,
but then it contradicts to (1) above. Thus w(p) < w(p’). By a similar argument
(using (2) instead of (1)) we see w(q) < w(q"). This shows the first claim.

It can be seen that I(w) has the form I(w) = ({¢} x X) U (Y x {p})u I’
for certain I’ where X = {r : ¢ < r,w(p) < w(r) < w(¢)} and Y = {r : r <

p,w(p) < w(r) <w(q)} and that I(wty) = ({p} x X)L (Y x{q}) U{(p,q)} L 1".
This shows the second claim. O]

Lemma 3.2.7. Let w € S&, i > 1 and d > 0. Let ¢ = tpgr - tpygs €
Xia(w) (resp. YViq(w)) and 1 < a < d. Suppose that there exists no b < a
satisfying py = pa (Tesp. @p = qa). Then wiy, 4, > w, Mp,q, (We) = My, q, (W)
and m!,  (wg) = m w) where wg = Wy, g, tp, 1., @S 0 Definition

! (

Proof. We show the case ( € X, 4(w): the other case can be treated similarly.
First note that py,...,pqa—1 # ps by the hypothesis. Also, as we have remarked
before, q1, ..., q, are all different. Thus the proof is now reduced to the following
lemma. O
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Lemma 3.2.8. Let p < q, p' < ¢’ and suppose
o {p,a} N {p.d} =2, and

o Wiyrgrtpg > Why g > w.

/

Then mpq(wtpgr) = mpg(w), me,(Wtyg) =my,(w) and wtyg > w.

q

Walp,q,

W N\ Wa—1lp,q,

N

Wq—1 ‘L\
AN

Wy q'tpg " Watp,g,
th’tl’\ L\/thq wQ\L& Wip,q,
w w] = w

Proof. Let us begin with a simple observation: suppose there exist two rectan-
gles R; and R with edges parallel to coordinate axes. Suppose that no two
edges of these rectangles lie on the same line. Then, checking all the possibilities
we see that

#(NW and SE corners of R; lying inside Rs) — #(NE and SW corners of R; lying inside R»)
= #(NW and SE corners of Ry lying inside R;) — #(NE and SW corners of Ry lying inside R;).

First consider the case Ry = [p, ¢]x[w(p), w(q)] and Ry = [p/, ¢'|x[w(p’), w(q")]
in the observation above. wtygtpq > Wty > w implies that the first term in
the left-hand side and the second term in the right-hand side vanish (here the
coordinate system is taken so that points with smaller coordinates go NW).
Thus all the terms must vanish. In particular the first term on the right-hand
side vanishes and thus wit,q > w.

We have shown that none of the points (p,w(p)), (p,w(q)), (g, w(p)) and
(g, w(q)) liein [p/, ¢'] X [w(p'), w(q")], and thus applying the observation to Ry =
l[g, M] x [w(p), w(q)] (resp. Ry = [—-M,p] x [w(p), w(q)]) with M > 0 and Ry =
', d'1x[w(p’), w(q')] shows mypq(wty ) = mpg(w) (resp. my, (wiyqr) = Mg, (w))
since the graphs of w and wt, differ only at the vertices of R». O

Proof of Proposition 3.2.3.
Proof for X; 4(w): We assume (w¢)™* < (w¢’)~! and show that ¢ (ve) =0
lex

€
unless ¢’ = ¢ and ¢¢(vc) is a nonzero multiple of wy¢. Let ¢ = tp,q, - tpugu
and (' = lpig) = tp,q, 8S in Definition 3.2.1. We write wg = wip ¢ -+ tp, 1qua_s
and W), = Wty g oty g
141 a—14a—1

For ¢ = Hj tp,q, and (' = Hj tp;%_ in X; 4(w) we have

d d
@(/(Ug) - Z uPo(d)Qfl ARERRA uPa(1)qi A (H Ej H E; : uw) t (*)
= j=1

0c€Sq Jj=1
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where E; = e;r;,(ij (123) and E = (e;;pz_)
If w(p1) < w(py), then (wQ)~"(w(p1)) = @1 > pr = (w¢)~H(w(p1)) and
(w¢)7(j) = w™L(j) = (w¢’)1(j) for all j < w(p1), and this contradicts the as-

sumption (w¢)~! < (w¢’)~t. Thus w(p;) > w(p}). Also, by a similar argument,
lex

’ ’
nzq;p; (wj)-

if p1 = py then 1 < ¢j.
Fix 0 € S;. Let 1 < a < d be minimal such that p, = Po(1)- Note that this
in particular implies wq(ps) = w(pa). We have

Up, ayq) AREERA Up, (1yq) A (H E; HE; “Uy)

J J
_ ) r /
= Up,ayd), AREERA Upy 2y ah A H E; H Ej (upg(l)fﬁ N Eq B uy)

ita A1
— / !
= Up,(ayq, AREERA Upgyah A H E; H Ej ) (upaq{ A Eq Euy,)
it AL
_ / Mpgaq (W) 1 mes (W)
= Up,ayay N N Upy gy N H E; H E; - (upaq{ N ep.qy’ (qup;) APL Uy, )
jta A

where the last equality is by Lemma 3.2.7 (note that w| = w by definition).
First consider the case w(p1) > w(p)). We show that the summand in ()

’
: Mpgqa (W) (s mr (W) —
vanishes for all o. It suffices to show u,, o A ep/g' (e, ) 170wy, = 0.

1P}
We have w(p,) = wa(pa) = w(p1) > w(p}). Thus by Lemma 3.2.6 we see

m’, ,_(w)

Up, gt A e;,'ff}j;q”'(w)(e’ /) aPr u,, = 0 (note that wty, 4, > w by Lemma 3.2.7).

1 q1p}
Next consider the case w(p1) = w(p}) and a > 1. In this case we see
// /( ) .
Up,q; A eprrasa()( ;1p,1)mq1p1 iy = 0 since w(pa) = wa(pa) > w(pr) = w(p)).

Next consider the case w(p1) = w(p}), a = 1 and ¢1 < ¢;. Then since
Wtp, gy, Wty g > w it follows that w(q;) < w(q1). So again by Lemma 3.2.6 we
see Uy, g A epont® (w)( ;ip’l)mqﬁp,l )

So the only remaining summands in (x) are the ones with (p1,q1) = (p},q})
and a = 1, i.e. p,(1) = p1. It is easy to see that the sum of such summands is
a nonzero multiple of the sum of terms with o(1) = 1. If o(1) = 1 we have, by

the latter part of Lemma 3.2.6,

Uy = 0.

d
/
Up, a)d ARERNA Up,(1yd} A (H E; H Ej )
d d (w)
= ) /. Mpyqy (W) y m! (w)
= Upyaygy N0 AN Upy gy N H E; H Ej - (up,q, N ep'g: A

d d
= . e . .
= (nonzero const.) - Up_,qn N\ A Up, gy A (H E; H Ej -, . )-
Jj=2  j=2

So, working inductively on d (using wtp,q,s tpogs ** tpage a0 tppgy = tpr gy in
place of w, ¢ and ¢’ respectively, noting that if (p1,q1) = (p}, ¢}) then (w¢)~ < (w¢’)~!
lex

implies ((wtp, g, ) tpags * - tpd‘]d)71 = (wC)’l 1e§ (wC’)*l = ((U’tmfh)'tpéqé . 'tpfiqé)il)

we see that:

38



o up oy, N ANy, AT Ej T B - ww) vanishes if (w¢)~t 1; (w¢H ™1,
or if ¢’ = (¢ and o # id, and

e if (' = ( and ¢ = id then it is a nonzero multiple of w,..

This finishes the proof for X; 4(w).
Proof for Y; q(w): This proceeds much similarly to the previous case. Here
instead of (%) we use

d d
wer(ve) = Z sgn(o) - Up, ayay N N Upy g N (H E; H E; Uy
€8y j=1 =1

—=~
RS

E’ - uy)
1

d

= Uy o A Aty o AT E

Z Pdd,—1(a P, -1y (. 1 ’
i

g€Sy

J

! ’
_ mpjq;(wj) N LA (w})
where E; = ep,q, and E} = (eq;p;) i as before.

We assume (w¢)~! < (w¢’)~!. Fix o and take 1 < a < d minimal with
rlex

q, = q:;—l(1)' By a similar argument to the above, it suffices to show that

Mp1qy (W) My (w) : _ A AN
Upyq! N €prch (g pr ) %aPa’“uy, is zero unless a = 1 and (pf,q1) = (p1,q1),

and in a such case it is a nonzero multiple of Uyzp, g, -
Since (w¢)~! < (w¢’)~! by the hypothesis, we see that w(q1) > w(q}), and

if w(g1) = w(qq) then p; < pj.

If w(q1) > w(g)) then the claim follows from Lemma 3.2.6 since w(qy) >
w(q)) > wh(q,) = w(q,). If w(gr) = w(g)) and @ > 1 then the claim follows
from Lemma 3.2.6 since in this case w(q1) = w(q)) > w(qy) by wtp, 4y, Wty 1 >
w. If ¢ = q}, a = 1 and p; < p}| the claim follows from Lemma 3.2.6
since w(p1) > w(p}). Finally if (p1,q1) = (p},¢1) and a = 1 then u, 4 A

Mpyqy (W), m’, , (w) o Mpyqq (W) m’ (w .
€p1qa (e (’lpfl) daPa’ Uy = Upigq; N €pigy (eqlpl) 171 )uw is a constant

multiple of Uwt,, ,, Dy Lemma 3.2.6. O]

Remark 3.2.9. Although the Pieri rule for KP modules we have shown above
(Theorem 3.2.4) implies Monk’s rule for KP modules (Proposition 3.1.2), we
actually need a slightly more precise result in the next section. Here we give it
as a remark.

For ( =tpq € X 1(w) =Y, 1(w) (p <i < q) we have ve = vpq = e%”"(“))uw@
up € Sp @K' and p¢ = ppg = pg - (egp)mép(w). In this case we see directly from
Lemma 3.2.6 that ¢,q (vpg) = 0 unless both w(p) < w(p’) and w(q) < w(q’)
hold.

Let (p1,q1)s---,(Pr,gr) be all the elements in X;1(w) = Y;1(w), indexed
so that there exist no a < b such that w(p,) < w(py) and w(q.) < w(g)
hold simultaneously. Then by the same argument as before in this subsection,
0 C (v1) C (v1,v2) C -+ C (v1,...,0) (v = Vp,q,) gives a KP filtration of
Sw ® Kl with <1}1, ey Uj>/<1)1, ce ’Uj_1> = Swtquj .
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4 Kraskiewicz-Pragacz modules and Ringel du-
ality

In this section we study a special case C,, = Cy,, of our highest weight categories.
We prove that the Ringel dual of C,, is equivalent to itself, and that the anti-
autoequivalence Cf — Cﬁ given by this duality preserves a certain natural
tensor product operation on Cﬁ.

4.1 Ringel dual of the highest weight category C,

Let C,, = Cp,, (recall that A, = {(a1,...,a,): 0 <a; <n—i}is an order ideal
in Z™). Since A, = {code(w) : w € S, } we see that the standard objects in C,
are Sy, (w € Sy). In this subsection we show that the highest weight category
C,, is self Ringel-dual. Precisely, we show the following:

Theorem 4.1.1. The Ringel dual of the highest weight category C,, is equivalent
to C,, itself. The functor F' in Section 1.3.6 acts on the standard modules by
F(Sy) = Swoww, (W € Sp).

From the theorem in particular we obtain the following symmetry relation
for the Hom and Ext groups between KP modules:

Corollary 4.1.2. Extén (Sw,Sy) = Extén (Swovwg s Swowws ) Jor any w,v € S,
and any © > 0. O

Let us move to the proof of Theorem 4.1.1. First we prepare some definitions
and results. For A\ = code(w) € A, define A = code(wowwy). Note that
by definition, for \,u € A,, X < p iff X >’ i For each A € A, define
T = Qi<jcn /\/\j K.

As we showed in the proof of Lemma 3.1.4, T()\) has a filtration whose
subquotients are standard modules S, (1 € Ay, < A). Since p—A =p — X
we have T'(A\) =2 T'(p — A\)* ® K, and thus T'(\) also has a filtration whose
subquotients are costandard modules S;_, ® K, (v € A,,v =< A). Thus by
Proposition 1.3.8 we see that Ext'(S,, T()\)) = 0 for all u € A,,. Thus T()) is
a tilting in C,,.

Since the weights of S,, are all <y, the weights of T'(\) are all < A and the
weight space T'(A), is one-dimensional. By these properties we see that T())
contains the indecomposable tilting module corresponding to A (in fact, we will
see that T'()) is an indecomposable tilting). So if we define T' = P, T(A) =
A(K" P K" 2@..-@ K?'), then T is a full tilting (beware that the definition
of T here is slightly different from the one in the previous section).

Like in Section 3.2 we make use of the operators e;; on 7. Let b =
@igj Kej; be a copy of b. Take a basis {u;; : i,j > 1,i+j < n} of K 'lg
-+ @ K so that the action of b is given by epqu;; = d4iup;. Then we define
the action of b’ on K"~ ' @ --- @® K' by e}, u;; = 0qjuip, and define the action
on T as the one induced from this action. In other words, if —' : T — T is the
involution given by u}; = u;;, then e}, = —" oe;; 0 —'. Note that, like in Section
3.2, the actions of b and b’ commute with each other.

By Proposition 1.3.11, if M has a KP filtration, then Ker(MS,)‘ —» M<')‘)
is isomorphic to a direct sum of copies of Sy, where M="* and M<'* are the
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largest quotients of M whose weights are all <’ A and <’ X respectively. In this
case it can be seen that the isomorphism can be written as Sy ® (M<?)y 3
Tuy @ v > 2v € Ker(MS? — M<?), where on the left-hand side b acts only
on S)\.

Proof of Theorem 4.1.1. Let C = C,. Throughout this proof and thereafter we
write Hom, End and Ext’ for Home, Ende and Exté respectively.

Since the actions of b and b’ commute, we have an algebra homomor-
phism U(b) = U(b') — Endp(T"), and thus an Endp(7)-module can be natu-
rally seen as a U(b)-module (note that, as we have remarked before, we will
simply write End(7T") to mean Endp(T) = Endc(T) hereafter). If M is an
End(7T)-module, then its weight-space decomposition as a U(b)-module is given
by M = @ycp, Max = Dycp, ™M, where 7y € End(T) is the projection
T=@D,cn, T(n) —» T()\); in particular the weights of M are all in A,,. So we
have a functor C¥ = End(T)-mod — C. We want to show that this functor is

an equivalence and the composition C F:Ho—m(>_’T) CV 5 C sends Sy, t0 Sugwwo-

First we show the second claim. By definition, S,, is isomorphic to the b-
submodule of T" generated by A;_; .,(i)>w(j) Win+1—;; hereafter we identify w.,
with this element. Note that u), = Fuwgww,. We have an injective homo-
morphism Sygww, — Hom(Sy,T) given by zuwgww, — (v — z'v) (x € U(D)):
it is well-defined since Tuyoww, = 0 implies 'yuy = £Y(TUwoww,) = 0 for
any y € U(b), and it is injective because v — 'v Maps wy, = FU 4y, O
+(ZUwgww, ) - Since T has a costandard filtration, by Proposition 1.3.10 the di-
mension of Hom(S,,,T') is equal to the number of times the costandard module
Siow @ K, appears in (any) costandard filtration of 7. Since ' = T* @ K,
this number is equal to the number of times Sy, appears in (any) standard
filtration of 7. From Cauchy identity we see that ch(T) = [[(z; + 1)"~* =
> ves, Gu()Gpu, (1), and thus we see that dim Hom(Sy,T) = Guguuw, (1) =
dim Syyww,- S0 the injection above is in fact an isomorphism and this shows
the second claim.

Now let us show that the functor C¥ — C given above is an equivalence.
First we note the following thing. Define an algebra A = U(b)/I, where I is
the two-sided ideal generated by all elements in U(h) = S(h) = K[h*] which
vanish on A,, (here A,, C Z" is identified with a subset of h* via the pairing
(A, h)y = >, A\ih; introduced before). Then the objects in C, i.e. weight b-
modules with weights in A, are just the finite dimensional A-modules (note
that A-modules automatically have weight decompositions since any element
px € K[b*] such that py(p) = dxu (Vo € Ay) acts as a projection onto the
A-weight space). Thus it suffices to show that the map

@ : A>3 aw (b'-action of a on T) € End(T)

is an isomorphism. We note here that A has an algebra anti-automorphism ¢
defined by ¢(h) = (p,h) —h (h € h) and t(e;5) = —e;; (1 <i < j < n). For each
X € A, take py € A as above. Note that ¢(px) = pp—x.

Let 0 <d < (Z) It suffices to show that ¢ induces an isomorphism between
Ad =3 5 1yn, =g APrA and End(T')q := End(A“K" 16 - & K')), since as
algebras A = P, Aq (this follows easily from hpy = prh and e;;px = pr—a,, €ij)
and End(T) = @,End(T)q. So let us fix such d hereafter in this proof. Let
the elements of {A € A, : S_A; = d} be A > X2 > ... > A\ Note
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A < /\(714 oo <" X, Define I;i 2o usam AppA. Also define Ji =
Hom(T<**",T) c End(T) where T<"*"* is the largest quotient of 7" whose

weights are all <’ A\(*). In other words, J; consists of all morphisms in End(7")

which vanishes on the weight spaces T}, (1 £’ A(*)). Define Iy = 0 and Jy = 0.
Note that Iy C --- C I, = Ag and Jy C --- C J, = End(T)4. It suffices to show
that ¢(I)) C Ji and that ¢ induces an isomorphism It /I—1 — Ji/Jix—1 for all
1<k<r.

Fix 1 <k < 7. Let A = \®¥). The first claim p(I) C J; follows since for
> A, p, acts on T as the projection onto T'(ft), and every weight v of T'(f)
satisfies v <’ 71 <’ \. Let us now show that the induced map Iy, /I_1 — Ji/Jr_1
is an isomorphism. We show that Ij/I;_1 and J;/J,—1 are both isomorphic to
S,\®8,- as vector spaces and that the composition of isomorphisms I, /Ij,—1 =
S\ ® Sp—» = Ji/Jg—1 coincides with the map induced from ¢.

We first show that Ir/Ix—1 = Sy ® S,—x. First note that A is a projective
object in C = A-mod. Since projective objects in C have standard filtrations, A
has a standard filtration.

By definition, A/I;, 2 A< and A/I},_; = AS*, and thus I}, /I;,_; = Ker(AS?
A<M). By Proposition 1.3.11 this is a direct sum of m copies of Sy, where m
is the number of times Sy appears in a standard filtration of A. This num-
ber m can be calculated, by Proposition 1.3.10, as dim Hom(A,S;_/\ ®K,) =
dim(S;_/\ ® K,) = dimS,_. Thus §) ® S,— and I /I;_; have the same di-
mensions. We claim that the map Sy ® S,—n 2 2uy ® yu,—x — zpat(y) =
t(ye(zpy)) € Ix/Ix—1 is well-defined. To see this, first observe that the weights
of It /I—1 (vesp. t(Iy/Ix—1) are all < X (resp. <’ p— A). Thus the submodule
of I, /I;—1 (resp. t(Iy/Ir—1)) generated by pre(y) (resp. ¢(xzpy)) is a quotient
of Sy (resp. S,—x) by Remark 2.2.5, and thus zuy = 0 (resp. yu,—» = 0) im-
plies 2pxe(y) = 0 (resp. ye(zpy) = 0). This verifies the well-definedness of the
map above. It is clear that the map above is a surjection. By the equality of
dimensions this is in fact an isomorphism.

Next we show Ji/Jr—1 =2 Sy ® S,—». Since T<'* has a standard filtration
by Proposition 1.3.11, Ext!(T<*, T') vanishes. So Ji/Ji_1 = Hom(Ker(T<'* —
T<'*),T) via the restriction map. The right-hand side is isomorphic to Hom(S5®
(T<M)5,T) = (T<*)5)* @ Hom(Sx, T) by the remark before the proof. As we
have seen above, Hom(Sy,T) = Sy. On the other hand, since T' = T* ® K,
((TSI’\)X)* ~ (T<,), where u = p — X and T<,, denotes the largest sub-
module of T whose weights are < p. Since S, & (P,)S* we have (T<,), =
Hom(P,,T<,) = Hom(S,,T<,) = Hom(S,,T) = Sz = S,—x.

Now we show that the composition of these isomorphisms coincides with
the map induced from ¢, up to a sign depending only on A. Chasing the iso-
morphisms we see that it suffices to show @(zpay)(1) = (u(y)'u, 5, 7)2"ug,
up to a sign depending only on A, for all 7 € Ty and all ,y € A, where

(—,—) is a natural bilinear form on T defined by T® T ™5 T = A* (K" &

B KY) - /\(g)(K"_1 @---® K') = K. Note that from the definition we
see that (u,z'v) = (1(x)'u,v) holds for any u,v € T and = € A. First we
have @(zpyy)(t) = a/piy'T. Here p\y't € T(N\)x so it must be a constant
multiple of uy. Using the pairing defined above we see that this is equal to

+(phy'T, UP7X>UX with the sign depending only on A, since ux Au, 5 = £,
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Since (p\y'7,u, x) = (1. 1(y)'p,_\u, 5) = (7, 4(y)'u,_x) we are done. O

4.2 Compatibility with tensor product

In this subsection we show that the Ringel duality functor F = Hom(—,T') and
the tensor product operation on C® in some sense commute with each other.
Precisely, we show the following:

Theorem 4.2.1. Let M,N € C, have standard filtrations. Then F((M ®
N)A) 2 (FM @ FN)M , where for a weight b-module L, L™~ € C,, denotes the
largest quotient of L which is in C,.

Let C; be the category of all finite dimensional weight b-modules whose
weights are in Z%,. Note that if M, N € C; then M ® N € C,. Using the
terminology from highest weight categories we say that M € C, has a standard
filtration if M has a filtration whose successive quotients are of the form S
(A € Z%,)). Note that, as we showed in Section 3.1, if M, N € C; have standard
filtrations then M @ N also has a standard filtration.

Remark 4.2.2. If L € C; has a standard filtration, then as we show below,
ch(LA») = ch(L) holds in the ring H,,. So, together with Theorem 4.1.1, this
theorem can be seen as a module theoretic counterpart of Proposition 1.1.4; i.e.
the claim that G, — Syww, 1S & ring automorphism on H,,.

First we prepare some lemmas.

Lemma 4.2.3. Let + : H, — H, be the ring automorphism in Proposition
1.1.4. If M € C has a standard filtration, then ch(FM) = t(ch(M)) in H,.

Proof. Since the extensions of KP modules with T vanish, if we have an exact
sequence 0 - L — M — N — 0 with L, M, N € C, having standard filtrations,
then 0 - FN - FM — FL — 0 is exact. Thus we only have to show the
lemma for M = S, (w € Sélf)).

The case w € S, follows from Theorem 4.1.1. If w € Sc()g) .5, then we have
FS,, = Hom(S,,T) = 0 since S, is generated by an element of weight code(w)
while the weight space Toqe(w) 18 zero. Thus the lemma follows for this case
since 6, =0 in H,. O]

Lemma 4.2.4. Let M € Cy have a standard filtration. Thelch(MA") = ch(M)
as elements of Hy,. If M € C,, is a quotient of M and ch(M) = ch(M) in H,,
then M = M.

Proof. By Proposition 1.3.11, Ker(M — M*"») has a filtration whose sub-
quotients are of the form S, (v € QN S,). Thus ch(M) = ch(M*») +
(a linear combination of &, (v € S Sn)), and the second term vanishes in

H,, by Proposition 1.1.6. The second claim follows from the first claim since
Dca, Za> = H,. O

Lemma 4.2.5. Let M, N € C; have standard filtrations. Suppose that the
morphism FM @ FN — F(M @ N) given by ¢ @ ¢ — (m @ n — p(m) A(n))
is surjective. Then it induces an isomorphism (FM @ FN)A = F(M ® N) (=
F((M ® NYM)).

43



Proof. We have, as vector spaces, F(M®N) = Hom(M®N,T) = @, Hom(M®
N,T()\)). It can be seen that Hom(M ® N, T())) is the A-weight space of the
b-module F(M ® N). Thus F(M ® N) € C,,. By Lemma 4.2.3 we have, in H,,
ch(F(M ® N)) = t(ch(M)ch(N)) = ¢(ch(M))e(ch(N)) = ch(FM ® FN). Thus
the claim follows from the second statement in Lemma 4.2.4. O

For M, N € C, having standard filtrations, let P(M, N) be the claim that
the map FM®FN — F(M ® N) above is surjective (and thus (FM @ FN)A» =
F((M @ N)™)).

Lemma 4.2.6. Let L, M, N, X € Cy have standard filtrations. Then the fol-
lowing implications hold:

(1) If L is a direct sum component of M then P(M, X) implies P(L, X).

(2) Suppose that there exists an exact sequence 0 = L — M — N — 0. Then
P(L,X)ANP(N,X) = P(M,X) and P(M,X) = P(L,X) hold (in
fact P(M, X) also implies P(N, X), but we do not need it here).

(8) P(L,M) and P(L® M,N) implies P(L, M @ N).

Proof. (1) is clear since F preserves direct sums.
(2) We have a commutative diagram

0 —— FNFX —— FM®FX —— FLIFX —— 0

I ! l

0 — FIN®X) — FIM®X) —— F(L®X) —— 0.
Here the rows are exact since Ext' (N, T) and Ext' (N ® X, T') vanish. This
shows P(L, X) AP(N,X) = P(M,X) and P(M,X) = P(L,X).

(3) This holds since

FL@FM®FN —— F(L®M)® FN

l l

FLRF(M®N) — F(L®M® N)

commutes.

O

Lemma 4.2.7. Let M € C1 have a standard filtration. Let A € A,,. Let V C
Hom(M,T) be the submodule consisting of all homomorphisms which vanish on
the p-weight spaces for any p > A (it is a submodule since the action of b’ on T
preserves weights with respect toh C b). Then Hom(M,T)/V = Hom(M,T)<?*,
the largest quotient of Hom(M,T) whose weights are all <' X (recall that for
A = code(w) € A, we defined X\ = code(wowwy)).
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Proof. Tt suffices to show that the characters of both sides coincide.

First note that V = Hom(M7*,T) where M7** is the largest quotient of
M whose weights are all ¥ . From Proposition 1.3.11 we see that M”* has
a standard filtration and, if ch(M) = }°  ¢,&,, then the number of times S,
appears in a standard filtration of M 7> is cu if p # A and 0 otherwise. Thus we
see from Theorem 4.1.1 that ch(V) = ch(Hom(M7**,T)) = Do pen, i CnSm
We also see from Theorem 4.1.1 that Hom(M, T') has a a standard filtration with
Sy appearing ¢ times for each 1 € Ay,. Thus ch(Hom(M,T)) = 3° . .67
So ch(Hom(M,T)/V) =3 cn, jisr uSm-

On the other hand, since Hom(M,T') has a standard filtration, by Proposi-
tion 1.3.11 we see ch(Hom(M, T)<"*) = ety u<rs O =D en, mern CuSm =
> pen, s nSp = ch(Hom(M, T)/V). This shows the claim. O

Recall from the proof of Theorem 4.1.1 that T has an action of b’, a copy
of b, defined by egjupq = §jqUpsi, which commutes with the usual action of b.
Recall also that we have identified w, with A ;e () wi; € T where J(w) =
{(i,7) =i < j,w(i) > w(j)} B

We write W = wowwy (w € Sp)and k=n+1—k (1 <k <n).
Lemma 4.2.8. Letw € S, and1 <i<n—1. For1<p,p' <iandi+1<
¢, ¢ < n such that l(wtyy) = l(wtyy) = (w)+1, if (e’— —)mq’ P’(w)egf]”(w)uw A
u, 7 # 0 thenw(p) < w(p’) andw(q) < w(q'). Moreover, (eg ﬁ)m?ff(me%pqm)uw/\
Up,g 18 a nonzero multiple of Uy,

Proof. This is essentially the same as Lemma 3.2.6. O

Proof of Theorem 4.2.1. First we show that P(S,,Ss;) holds for any w € S,
and any 1 <i<n-—1.
Recall that the isomorphism Sz — Hom(S,,,T) was given by zug — (v —
'v). Thus we want to show that the map ¢ : Sz @ K"~* — F(S,, ® K*) given
by yum ® ug = (Tuy @ Up — TY Uy A Upg) is a surjection.

Let (p1,q1),---,(pr,q-) be all the pairs (p,q) such that 1 <p <i<qg<n
and l(wt,q) = l(w) + 1, ordered by the lexicographic order of (w(p), w(q))
Let w* = wty, 4. Then code(w!) < --+ < code(w”) and code(w!) > -+ >

code(w”).

For an z € S, and 1 < p < ¢ < n+ 1 such that {(at,,) = l(x) + 1, let
Upg(x) = eg;’“’(w)u:c ®up, € S; ® K™ (note that this definition is also valid for
g = n+1 since mpq4(x) = 0 in such case). Note that vp,(z) has weight code(xt,q).
Note that by Remark 3.2.9, {vpe(2) : 1 <p <i <qg<n+1L(zty,) =L(z)+1}
generates S, ® K* as a b-module.

For 0 < k < r, let Uy be the submodule of S,, ® K* generated by vy, 4, (w)
(I > k) together with v p,41(w) (1 < j < i, f(wt;nt1) = (w) + 1). Note that
Uy =S, ® K*. From Remark 3.2.9 we see that Up—1/Ux = S,x. In particular
the weights of Uy,_1 /Uy is all < code(w”), and since code(w!) < --- < code(w*)
we see that the weights of (S, ® K%)/Uj, are all < code(w*). Moreover, U,
has a filtration by modules Sy, ,,, and thus ch(U,) = 0 in H,. Therefore
(Sw ® K" /U, = (S, ® K*)* by Lemma 4.2.4 (note that (S, ® K*)/U, € C,
since Sy, ..., Swr € Cp).

Let Vi (k=1,...,r) be the submodule of F(S,, ® K*) = Hom(S,, ® K*,T)
consisting of the homomorphisms which vanish on the pu-weight spaces for any
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p > code(w®). By Lemma 4.2.7, F(S, ® K')/Vi = F(S, ® K*)< code(w®)
(1<k<r). WeseeV, = F(S, ® K*) since by the argument above the weights
of (S, ® K¥)An are all < code(w”). We also set Vj = 0.

Note that the constituents in a standard filtration of F/(S,,@K*) are Sy, S

w

by Theorem 4.1.1. In particular, the only constituent S, with code(w*—1) >’
code(x) >’ code(wk) is S Thus Vi /Vi—1 = Ker(F(Sy ® K")<'00de(F) —
F(S, ® Ki)<,C°de(W)) = S— by Proposition 1.3.11. In particular any nonzero
element of weight code(m) in Vi /Vi—1 generates Vi, /Vj_1.

We show ¢ (vgr 7z (W)) € Vi, \ Vi_1 for each k. Note that the desired surjec-

tivity of ¢ follows from this claim since it shows that ¢(vg 5z (W)) + Vi1 is a
cyclic generator of Vi, /Vi_1, i.e. U(b)(o(vgr 55 (W)) + Vi—1) = Vi.

(v

For 1 < k,1 < r we have ¢(vgr 55 (W)) (v, (W) = (ezgf‘”( )(efThpk)mﬁ,m(w)uw)/\

Up, - By Lemma 4.2.8, if ¢(vg; 57 (W) (vp, 4, (w)) # 0 then w(p) < w(py) and

w(q) < w(gg) and thus in particular | < k. Thus ¢(vg 5z (W)) induces a map
(Sw ® K')/U, — T (note that the elements v, ,11(w) obviously vanish under
©(vgr 5z (W)) since T does not have the corresponding weights). Since the weights
of (S, ® K%)/Uy are all < code(w"), this shows ¢(vg 5 (W0)) € Vi. Moreover
O (vgr 55 (W) (Vpy g (W) # 0 by Lemma 4.2.8, and since vy, 4, (w) has weight
code(w*) this shows p(vgr 5 (W)) € Vi—1. Therefore we checked the claim and
thus P(Sy, Ss,;) follows.

Now we can proceed to the general case. From (2) of Lemma 4.2.6 we see
that P(M,Ss,) holds for any M having a standard filtration. Since if M has a
standard filtration then M ® S;, also has a standard filtration, (3) of Lemma
4.2.6 shows that P(M,Ss, ® S;; ® - --) holds for any i, j,... and any M. Then
from (1) of Lemma 4.2.6 we see that P(M,T(\)) holds for any A and any M,
since T'()) is a direct sum component of @, ;«,,_;(Ss,_,)®**. Thus again from
(2) of Lemma 4.2.6 we get P(M, S»), since as we showed in Lemma 3.1.4 there
is an injection Sy < T'(A) such that its cokernel admits a standard filtration.
Thus P(M, N) for general M, N follows by (2) of Lemma 4.2.6. O

Remark 4.2.9. As we saw, (M, N) — (M ® N)*» is a very fundamental oper-
ation in the category C2'; this in fact defines a structure of symmetric monoidal
category on C5. Experimental results suggest an interesting conjecture relat-
ing this “restricted tensor product” operation and our full tilting module T"
the dimension of (T®*)A» seems to be (k + 1)(3) for any k. Also there is a
finer form of this conjecture: the dimension of the degree-d piece (with respect
to the grading induced from the natural grading on 7' = A°(---)) of (T®*)A»
seems to be k’d((g)). Note that these conjectures can actually be rephrased to
a combinatorial conjecture on Schubert polynomials by Lemma 4.2.4.

It can be shown that the latter version of the conjecture implies that Hom (T®*, T)
also has a dimension (k—i—l)(g) Note that this is true for £ = 1 since ch(End(T")) =
t(ch(T)) = Zvesn Sy ()G v (1) and thus dim(End(T)) = ZUESn Gy(1)By0(1) =

Socs, Sut () wyn)-1(1) = Yocs, Su(1)Suuy (1) = 2(2) by Cauchy formula.
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