
博士論文

Techniques for Enabling Highly Efficient Message Passing on

Many-Core Architectures

(メニーコア型大規模並列計算機向けの高性能メッセージパッ

シング型通信技術)

思　敏

ABSTRACT

Since multicore processors have become the most common processor architectures

today, the next grade promotion for high end processors is expected to be achieved by

improving both thread- and instruction-level parallelism. There are two kinds of archi-

tectures dominating the high performance market today, the GPU accelerators and the

General Purpose (GP) many-core architectures. In this dissertation, we focuses on the

latter. Many-core architecture, such as Intel Xeon Phi and IBM Blue Gene/Q, provides

us a massively parallel environment containing dozens of cores and hundreds of hardware

threads with powerful wide SIMD units. More and more scientific application developers

have begun investigating ways to utilize such architecture for scaling application perfor-

mance. However, the performance may be restricted in various ways. Unlike traditional

CPUs, the performance capability of many-core architectures comes from massive low-

frequency cores for better performance-to-energy ratio; thus sequential execution on such

hardware could result in performance degradation. Furthermore, the other on-chip re-

sources (e.g., memory) are not growing at the same rate as number of cores, potentially

resulting in scalability issue.

Not only hardware architectures, the scientific applications are also moving toward

complex hybrid and irregular models. In traditional regular applications (e.g.,Fast Fourier

transform), more and more applications start focusing on hybrid programming models

comprising a mixture of processes and threads, that allow resources on a node to be

shared between the different threads of a process, especially benefiting the execution

on many-core architectures. The most prominent of the hybrid models used in scien-

tific computing today is MPI+OpenMP, where multiple OpenMP threads parallelize the

computation, while one or more threads utilize MPI for their data communication. On

the other hand, despite the well studied regular applications, a number of applications

are becoming extremely dynamic and irregular especially in chemistry and bioinformatics

domains. MPI-2 and MPI-3 introduced one-sided communication mode, which is more

suitable for supporting the data movements in such irregular model rather than the MPI

two-sided or group communication modes.

With growing complexity in both computing hardware and scientific applications, var-

ious critical communication issues raise up and resulting in severe degradation in appli-

cation performance. This dissertation focuses on exploiting the capabilities of advanced

many-core architectures on widely used message passing model, in order to address the

communication problems existing in the popular hybrid programming model and the ir-

regular one-sided mode and consequently contribute efficient communication approaches

for various kinds of applications.

Firstly, in hybrid MPI+threads applications, a common mode of operation for such

applications involves using multiple threads to parallelize the computation, while one

of the threads issues MPI operations. Although such mode extremely improves float-

ing point performance for computation of applications by massive parallelism, it also

means that most of the threads are idle during MPI calls, which translate to underuti-

lized hardware cores. Furthermore, since only single low-frequency core is contributing

to communication, it may result in even performance degradation. To address the core

idleness issue and improve the performance of communication, we propose an internally

multithreaded MPI as the first contribution of this dissertation, that transparently coor-

dinates with the threading runtime system to share idle threads with the application in

order to fully utilize the computing resources as well as parallelizing MPI internal pro-

cessing such as derived datatype communication, shared-memory communication, and

network I/O operations for better performance.

Secondly, with regard to the irregular one-sided communication, however, the MPI

standard does not guarantee that such communication is truly asynchronous. Most MPI

implementations still require the remote target to make MPI calls to ensure progress

on such operations, consequently the operation cannot complete at the target without

explicit processing in software and thus may cause arbitrarily long delays if the target

process is busy computing outside the MPI stack. Traditional implementations to ensure

asynchronous completion of operations have relied on thread-based or interrupt-based

models. Each of these models has several drawbacks, however, such as the inefficient core

deployment in the thread model and the expensive overheads caused by multithreading

safety in the thread model and by frequent per-message interrupts in the interrupt model.

To address these drawbacks, we propose Casper, a process-based asynchronous progress

model for MPI one-sided communication on multicore and many-core architectures as

the second contribution of this dissertation. The central idea of Casper is to keep aside a

small, user-specified number of cores on a multicore or many-core environment as “ghost

processes,” which are dedicated to help asynchronous progress for user processes through

appropriate memory mapping from those user processes. Whenever user application

issues an RMA operation to a user process Casper then transparently redirects such

operation to the ghost process thus ensuring asynchronous completion. This approach

has successfully resolved the communication bottleneck in the widely used NWChem

quantum chemistry application by achieving up to 30 % performance improvement in

the “gold standard” CCSD(T) simulation.

Although Casper provides simple but efficient asynchronous progress for irregular

one-sided communication, the performance might not be optimal in a number of appli-

cations that always consist of multiple phases with varying proportion of communication

and computation. Inefficient usage of asynchronous progress may even result in perfor-

mance degradation. That is, the computation-intensive phase heavily relies on asyn-

chronous progress, however, the communication-intensive phase does not have strong

needs of asynchronous progress but more focuses on the load balance for large amount of

RMA operations, which might not hold in Casper since the operations are consistently

redirected to a few ghost processes. As the third contribution of this dissertation, we

propose a dynamic adaptation mechanism embedded in Casper that transparently adapt

the configuration of asynchronous progress for multi-phases applications.

Finally, apart from the lack of asynchronous progress, many irregular applications

also suffer from loss of performance in a number of ways. For example, it is usual in

imbalanced communication that an MPI process takes long time to wait for a message

to arrive, the core on which it is scheduled is idle and underutilized. To comprehensively

address these issues, we plan to investigate the concept of user-level processes, a way

to provide multiple co-scheduled “OS processes” on a single core as the MPI processes,

with exploiting the potential optimization in MPI communication runtime, such as better

load balancing and light-weight checkpoint migration, as the future work of this doctoral

research.

論文要旨

近年、マルチコアプロセッサが広く普及しているが、消費電力と発熱問題などの理由に

より、従来通りの動作周波数向上によるプロセッサ処理性能向上は困難になっており、コ

ア数及び SIMD命令の並列化により性能を向上する傾向になる。インテル社の Xeon Phi

や、IBM社の Blue Gene/Qなどのメニーコアアーキテクチャーは数十コア・数百ハード

ウェアスレッド・ワイド SIMD搭載のような大規模並列環境を提供している。しかしなが

ら、このようなアーキテクチャーは従来のプログラミングモデルに適していない。普通の

CPUプロセサーと違って、メニーコアチップの性能は、省エネルギーのために、大量な低

動作周波数のプロセッサコアにより大規模並列計算の形で提供する。それで、アプロケー

ション全体を大規模並列化しないと逆に性能が悪化することを注意しなければならない。

また、コア数が増加する割に、メモリ容量などの他のシステム資源があまり増加していな

いため、コアごとの資源が少なくなっていることもアプリケーションのスケーラビリティ

を制限する可能性がある。

一方、ハードウエアの進化とともに、科学計算アプリケーションのほうも複雑なハイブ

リッド及び非規則計算・通信モデルになる傾向がある。従来の規則系アプリケーション（例

えば、高速フーリエ変換）では、メモリやその他のシステム資源に比べて大量のコアが提

供されてきている理由から、プロセスとスレッドを混在させるハイブリッドプログラミン

グモデルに移行している例がある。このようなモデルでは、同一プロセスに所属する複数

スレッドがノード内資源を共有することが可能となる。スレッドモデルの代表的処理系で

あるOpenMPと分散メモリシステム上で通信機能を担当するMPIライブラリの組み合わ

せがこのモデルの主流である。また、非規則系の計算・通信モデルのアプリケーションも

化学・バイオインフォマティクス領域で出現する。MPI-2及びMPI-3規格から定義された

片方向通信、いわゆる「Remote Memory Access、RMA」は通信の相手の状態に無関係に

他のプロセスのデータにアクセスできる通信モデルであり、この非規則系通信モデルに適

している。

ハードウエア構造の変化とソフトウエアモデルの複雑化に従い、それぞれのプログラミ

ングモデルにいくつかの通信問題が出現し、アプリケーション全体の性能を極めて制限す

る。アプリケーションの構成の違いにより、計算・通信プログラミングモデルの最適手法

がそれぞれあるが、メニーコア上でそれらのモデルを効率的に実行する処理系は未成熟で

ある。本論文は、科学計算に広く用いられるメッセージパッシング通信モデルを対象とし

てメニーコアの特徴を活用して通信性能を最大限に発揮し、あらゆるプログラミングモデ

ルの既存課題を解決して全体性能の向上に貢献する。

まず、ハイブリッドMPI+スレッド型アプリケーションでは、複数の OpenMP スレッ

ドが計算を並列化してその中の 1つがMPI通信を行うという実行モデルが主流である。こ

のような実行パターンでは、浮動小数点計算を大規模並列化することにより計算部分の性

能向上が達成されるが、通信部分では殆どのスレッドがアイドルになり、計算資源が無駄

になる。また、1つのコアだけが通信処理を担当することにより通信性能の劣化原因とも

なる。本論文の第一の貢献は、この問題に対してアイドル状態になったユーザアプリケー

ションが作成したスレッドを再利用して、ユーザ定義データ型通信、共有メモリ通信とネッ

トワーク I/O作業などのMPI内部通信作業を並列化する手法を提案する。本手法により、

計算部分だけでなく、通信を含めてアプリケーション全体がメニーコア資源を利用でき、

全体性能が向上することを示す。

次に、非同期可能な通信処理がたくさんあっても、MPI規格ではこのような通信が必ず

非同期処理されるとは限らない問題点について取り組む。片方向通信であっても、RMA

通信を完了するためにリモート側プロセスがMPIを呼び出さないと処理が進まないMPI

実装が殆どである。リモート側がMPIを呼び出すまで、通信処理がローカル側で完了でき

ず、更にリモート側が計算中のためローカルプロセスが長時間待ちになる恐れもある。既

存研究では、バックグラインドスレッドの手法とシステム割込みに基づく手法が殆どであ

るが、非効率的な計算コアの配置、マルチスレッドレベルや頻繁的なシステム割込めが生

成した重いオーバーヘッドなどの欠点が挙げられる。本論文の第 2の貢献として、本課題

に対してメニーコアの特徴を活用し、プロセスレベルでMPI非同期通信専用コアを実装

し、最適な非同期通信処理手法を提案する。本手法では、ユーザが任意的に計算プロセス

に使うコア数と非同期通信を担当するゴーストプロセスに使うコア数を指定でき、従来の

アプローチよりマルチスレッドレベルやシステム割込みのオーバーヘットを軽減するとと

もに、コア配置に対して優れた柔軟性も達成する。更に、PMPIリダイレクト機能を利用

したMPI外部実装方式を採用することにより、あらゆるMPI実装にも容易にサポートで

きる利点もある。この非同期手法を利用して、汎用量子化学計算パッケージ NWChemの

性能を大幅に向上でき、特に重要な CCSD(T)シミュレーションに対して 30％ほどの性能

向上も達成する。

ところが、大規模計算プログラムにいつもマルチ計算段階が含まれ、通信・計算の比率

が変わりつつある理由で、この静的非同期通信の設計は最適とは言えない。例えば、計算

が重い段階におけて非同期通信が必要であるが、通信が重くなると、少数の非同期プロセ

スを使うことより多めの計算プロセスを使って通信負荷分散という手法のほうが効率であ

る。本論文の第３の貢献として、NWChemを実例として各段階の計算・通信性能特徴を深

く解析し、マルチ計算段階に対して動的に非同期通信を自動適応できる機能を提案する。

最後に、非同期通信の他に、MPIプロセスだけで記述されたアプリケーションに性能を

大幅に影響する課題がまだいくつかある。例えば、1MPIプロセスがメッセージを待つ時、

メッセージが到着するまでその計算コアはアイドルになり、コア性能を発揮できなくなる。

次の研究計画としては、1コア上で OSプロセスを複数スケジュールできるユーザレベル

プロセスのアプローチに基づき、大量のMPI プロセスを 1コア上で実行して負荷分散や

チェックポイントの軽量化などの面から改良手法を着手する予定である。

Acknowledgements

I would like to express my deepest gratitude to Prof. Yutaka Ishikawa, for

guiding me to the inspiring high performance computing domain, and for his

invaluable and continuous support and encouragement for my life, study and

research career over the past five years.

I express my sincere gratitude to Dr. Pavan Balaji and Dr. Antonio J. Peña

for the greatest guidance and mentoring leading me into the challenging MPI

communication world during my study at Argonne National Laboratory.

My sincere thanks goes to Prof. Reiji Suda, for his considerate and patient

guidance in the past year. It is impossible for me to finish the doctoral research

remotely without Prof. Suda’s help and support.

I thank Dr. Atsushi Hori, Dr. Jeff Hammond, Dr. Masamichi Takagi and

Akio Shimada for their support in the collaborative works.

I also thank all the members in Ishikawa lab and in the PMRS group at

Argonne for their friendly encouragement and help during my study.

Finally my warmest thanks goes to my dear husband and parents. Without

their endless support and encouragement, I would not be able to concentrate on

the research and finish this dissertation.

The work in this dissertation has financially supported by (1) the CREST

project of the Japan Science and Technology Agency (JST) and the National

Project of MEXT called Feasibility Study on Advanced and Efficient Latency

Core Architecture and (2) the U.S. Department of Energy, Office of Science,

Advanced Scientific Computing Research, under Contract DE-AC02-06CH11357.

The experimental resources for this paper were provided by the Texas Ad-

vanced Supercomputing Center (TACC) on the Stampede supercomputer, by the

National Energy Research Scientific Computing Center (NERSC) on the Edison

Cray XC30 supercomputer and by the Laboratory Computing Resource Center

on the Fusion cluster at Argonne National Laboratory.

Contents

1 Introduction 1

1.1 Problem Statement . 3

1.2 Contributions . 4

1.3 Outline . 5

2 Background 7

2.1 Many-Core Architectures . 7

2.2 Hybrid MPI+Threads Programming 9

2.2.1 Programming Model . 9

2.2.2 Typical Applications . 11

2.3 MPI One-sided Communication . 12

2.3.1 Programming and Semantics 13

2.3.2 Irregular Applications . 16

3 Multithreaded MPI 19

3.1 Problem Statement . 20

3.2 Solution . 20

3.3 Design and Implementation . 21

3.3.1 OpenMP Runtime . 21

3.3.2 MPI Internal Parallelism 26

3.4 Evaluation and Analysis . 34

3.4.1 Derived Datatype Processing 35

3.4.2 Shared-Memory Communication 39

3.4.3 InfiniBand Communication Operations 40

4 Process-based Asynchronous Progress 42

4.1 Problem Statement . 43

4.2 Traditional Approaches . 43

4.3 Solution . 44

4.4 Casper Design Overview . 46

4.4.1 Deployment of Ghost Processes 46

4.4.2 RMA Memory Allocation and Setup 47

4.4.3 RMA Operation Redirection 48

4.5 Ensuring Correctness and Performance 48

4.5.1 Lock Permission Management for Shared Ghost Processes . 49

4.5.2 Self Lock Consistency . 50

4.5.3 Managing Multiple Ghost Processes 51

4.5.4 Dealing with Multiple Simultaneous Epochs 55

v

4.5.5 Memory Ordering Consistency 57

4.6 Experimental Environment . 59

4.7 Microbenchmarks Evaluation . 60

4.7.1 Overhead Analysis . 60

4.7.2 Asynchronous Progress . 61

4.7.3 Performance Optimization 64

4.8 NWChem Quantum Chemistry Application 68

5 Dynamic Adaptable Asynchronous Progress 73

5.1 Limitation in Static Casper . 74

5.2 Solution . 76

5.3 Dynamic Adaptable Asynchronous Progress 76

5.3.1 User-Guided Adaptation . 77

5.3.2 Transparent Profiling based Adaptation 78

5.4 Experimental Environment . 82

5.5 Microbenchmarks . 83

5.5.1 Overhead Analysis . 83

5.5.2 Self-Profiling based Prediction 84

5.5.3 Limitation of Static Casper 87

5.5.4 Adaptation Improvement 88

5.6 NWChem Quantum Chemistry Application 92

5.6.1 Overview of Multiple Internal Phases 92

5.6.2 Static Asynchronous Progress 93

5.6.3 Dynamic Adaptation . 98

6 Related Work 104

6.1 MPI with Multithreading Environment 104

6.2 MPI One-sided Communication and Asynchronous Progress 105

7 Conclusion and Future Work 106

7.1 Summary . 106

7.2 Future Work . 107

7.2.1 Process Oversubscription and Dynamic Communication . . 107

7.2.2 Improvement in Asynchronous Progress 108

List of FiguresList of Tables

vi

Chapter 1

Introduction

Over the past few decades, high performance computing (HPC) has dramatically

revolutionized the process of scientific advancement. The power of supercomput-

ers has been heavily used in various scientific fields including climate forecasting,

nuclear development, material innovation and so forth. HPC has been consid-

ered as the lever that accelerates scientific discovery and shortens the time for

technology to benefit real-world.

Thanks to Moore’s Law, the speed of HPC performance was growing at ex-

ponential rate in the previous decade by improving the density of transistors

on single core, which marked the increase of computing power from Terascale

(ASCI Red supercomputer, installed at Sandia National Laboratories in 1996 [3])

to Petascale (Roadrunner supercomputer, deployed at Los Alamos in 2008 [4]).

This approach could provide most applications immediate benefits without signif-

icant change in software since it directly accelerated the speed of single threads.

However, such performance improvement has also brought in similar trend in the

power consumption [66]. And indeed, the arrival of petaflop supercomputers co-

incided with processors hitting the power wall whereby any additional increase in

the power usage of a processor would result in the processor’s components melting

or becoming extremely unreliable. Besides, such approach also suffers from phys-

ical and economical limitations [7, 54]. Consequently, instead of instruction-level

parallelism, processor architects started to move to a higher level (i.e. threads)

for continuous performance advancement.

Accordingly, multi-core architectures have become the norm for high-end com-

puting systems now a days [2]. Even personal mobile devices started to use two

or more cores to get better performance (e.g., Quad-core Samsung Galaxy Note5,

Dual-core iPhone 6). The traditional multi-core processors, however, get hard to

increase more cores on chip due to the high risk of contention in shared resources

among cores such as bus, cache and memory. In fact, many researches have al-

ready looked into this problem on multiple-core systems and had to change their

software design for better performance [22, 74].

Parallel with the advancements of multi-core processors, manufacturers started

to explore microprocessor design in another direction where hundreds and thou-

sands simple cores are embedded into single chip to form a massive parallel com-

putational environment, called many-core. A broad vision of this kind of archi-

tectures can cover any designs that follow the form of massive simple core units,

including General-Purpose Graphics Processing Units (GPGPUs) [50] which con-

1

tribute to highly data parallelizable floating-point computing, the Tilera proces-

sors [40] that more focus on commercial networking server farms which rely on

high throughput, and the Intel Many Integrated Core (MIC) architectures as the

intermediate path between traditional general purpose CPU and the floating-

computing concentrated GPU architectures. This dissertation focuses on the

Intel MIC architectures.

Table 1.1: Node Configuration in Multi-Core and Many-Core Supercomputers [2].

Year Name Cores/Threads Clock Speed Memory

2009 Jaguar (Cray XT5) 6/6 2.3GHz 16GB

2011 K (Fujitsu SPARC64) 8/8 2GHz 16GB

2012 Mira (IBM BG/Q) 16/64 1.6GHz 16GB

2012 Stampede (Intel KNC) 61/244 1.1GHz 8GB

2013 Tianhe-2 (Intel KNC) 57/228 1.1GHz 8GB

2016 Cori (Intel KNL) 60+/240+ - 16GB

The many-cores architectures (i.e., Intel Xeon Phi) have entered the HPC

market in 2012 [1, 6], providing users a higher degree of massive parallelism with

dozens of cores and hundreds of hardware threads with relatively easy-to-start

programming environment since all the applications written for traditional CPU

systems can be easily executed on this new platform without significant modifi-

cation in code. Unlike traditional multi-core processors, the on-chip bus inter-

connection and cache coherency are carefully designed for better sharing among

large amount of cores, thus minimizing the contention issues existing in multi-

core systems. However, such architecture does not do magic. The many-core

parallel environment does not bring us equal improvement in performance and

scalability as the increase of cores if we just run our applications as the ways on

traditional processors. Application developers have to investigate the appropri-

ate way to fully utilize such hardware in HPC programming. By comparing the

hardware configuration in the top-ranked multi-/many-core supercomputers from

2009, Table 1.1 clearly indicates two special trends in the renovation of high-end

processors that need to be taken into account.

• Each single core is designed to be simple and low frequency for a better

performance-to-watt ratio; thus, execution on a single core could result in

extreme performance degradation comparing to that on traditional CPU.

• The number of computing cores is growing at a much faster rate than

the other on-chip resources (e.g., memory), thus potentially resulting in

scalability limitation.

Not only the restrictions in hardware architectures, the increasing variety of

applications also aggravates the complexity in parallel programming. The mes-

sage passing programming model defines a mechanism that coordinates multiple

processes for resolving large computational problems by passing messages be-

tween each other. The Message Passing Interface (MPI) [48] standardizes this

2

model, MPI-1 standard introduced the classical two-sided message passing (e.g.,

MPI Send/MPI Recv) and the collective communication (e.g., MPI Bcast), MPI-2

and MPI-3 introduced the one-sided communication, as known as the Remote

Memory Access (RMA) model. MPI has been the “de facto” industry standard

for parallel programming on distributed memory clusters and supercomputers for

more than two decades.

The solution of many mathematical problems in scientific applications can

always be decomposed into regular meshes and parallelized across all processes

(e.g., Fast Fourier transform, LU decomposition). The classical MPI-1 commu-

nication functions have perfectly supported the regular data movement in those

parallel algorithms for years. Within advanced computing systems, researchers

are eagerly looking into larger scale and more complex scientific problems, many

of them requiring larger and larger memory capacity [41]. However, as we have

compared in Table 1.1, this does not match the trend we have seen in hardwares.

To ease the memory crisis among large amount of cores on the many-core sys-

tems, application developers are increasingly looking at the hybrid “MPI+X”

programming model, comprising a mixture of processes and threads, that allows

resources on a node to be shared between the different threads of an MPI pro-

cess. Such a model, however, also increases the complexity in MPI and results in

inefficient communication due to limitations in software and hardware especially

on the many-core systems.

Besides these traditional regular applications, a number of applications start

to drive more dynamic and irregular data movements, especially in chemistry and

bioinformatics domains [17, 47, 76]. Most of these applications always involve ex-

treme big data with enormous irregular communication (e.g, using MPI one-sided

operations). However, current HPC systems are not yet ready to efficiently han-

dle these computations, severe performance degradation has been observed in

many of those applications. One example is in the quantum chemistry applica-

tion NWChem [76], the communication overhead can even dominate the entire

execution cost by more than 50%. Such communication challenge cannot be re-

solved by only improving the speed of network interconnection, more importantly,

it is limited by the traditional hardware design of network devices. That is, the

network devices are connected as PCI-e device, which does not have the control of

CPUs for handling incoming message on chip, resulting in arbitrary delay if CPU

cores are being used by user applications or other system tasks. Unfortunately,

there will be still years to completely bring up the asynchronous capability in

network hardware.

This dissertation aims to exploit the capabilities of many-core architectures

on widely used message passing model, in order to address these issues existing

in different programming models and consequently contribute efficient communi-

cation approaches for various kinds of applications.

1.1 Problem Statement

To better utilize the hardware resources on modern multi- and many-core archi-

tectures, application developers have studied several approaches for regular and

irregular scientific applications in order to achieve better parallelism and resource

3

sharing. Many of those approaches, however, still face communication problems

that result in performance degradation. Here we summarize two critical issues

existing in the most popular programming models used in modern applications.

Inefficient communication and core idleness in hybrid MPI+threads

model. The hybrid “MPI+threads” programming model has become popular

in a rang of applications in recent years. Unlike traditional MPI programming

model, it allows resources to be shared between different cores on the node which

is especially suitable for parallel programming on many-core environment since

the memory capacity per single core is reducing. A common mode of operation

in such hybrid models involves using multiple threads to parallelize computa-

tion within the node, but using only one thread to issue MPI communication.

Although such a mode achieves significant improvement in floating-point comput-

ing by massive parallelism without involving heavy thread overhead or complex

semantics in MPI, it also means that most of the threads are idle during MPI

calls, a situation that can be translated to underutilized hardware cores. Further-

more, since MPI communication performs only on a single low frequency core,

this mode may even result in performance degradation.

Lack of asynchronous progress in MPI one-sided communication. An

increasing number of applications are looking at the MPI one-sided communi-

cation model which provides natural dynamic and irregular semantics of data

movements. It is especially important for many-core programming, because many

large memory applications rely on a global shared address model that supports the

ability to share memory resource across nodes by employing the MPI one-sided

model for internal data movements [24]. The MPI-2 and MPI-3 standards [5]

introduced the one-sided communication, which allows one process to specify all

communication parameters for both sender and receiver. Thus a process can

access the memory regions on other processes without the remote process explic-

itly needing to receive or process the message. Although such communication

semantics is able to asynchronously handle communication progress and hence

hide communication cost from computation, it is not truly asynchronous in most

MPI implementations. For example, although contiguous PUT/GET operations

can be implemented in hardware on RDMA-supported networks(e.g., InfiniBand,

Fujitsu Tofu, Cray Aries) thus allowing the hardware to asynchronously handle

its progress semantics, complex RMA communication such as the heavily used

non-contiguous accumulate operation (e.g, an accumulate on a three-dimension

double subarray) must still be done in software within the MPI implementation.

Consequently, the operation cannot complete at the remote process without ex-

plicitly making MPI progress and thus may cause arbitrarily long delays if the

remote process is busy computing outside MPI.

1.2 Contributions

This dissertation focuses on the communication optimization in various program-

ming models executed on many-core architectures. We propose efficient solutions

to resolve the two critical challenges we have listed in the above section. The

contributions of this dissertation can be summarized as follows.

4

Multithreaded MPI communication. To resolve the problems in the MPI

communication of hybrid “MPI+Threads” model, we present MT-MPI [59], an

internally multithreaded MPI that transparently coordinates with the threading

runtime system to share idle threads with the user application in order to par-

allelize MPI internal processing such as derived datatype communication, data

transfer in shared-memory communication, and network I/O operations.

Process-based asynchronous progress model. To resolve the problem of

asynchronous progress in irregular applications, we propose Casper [61], a process-

based asynchronous progress model for MPI one-sided communication on multi-

core and many-core architectures, that dedicates a small user-specified number

of cores as background “ghost processes” to help asynchronous progress. The

philosophy of Casper is centered on the notion that since the number of available

cores in modern many-core systems is increasing rapidly, some of the cores might

not always be busy with user computation and can be dedicated to helping with

asynchronous progress.

Dynamic adaptable asynchronous progress. Many of complex scientific

problems always require integration of multiple fundamental solvers and algo-

rithms into application execution, each of the phases always performs very dif-

ferent characteristics of communication and computation. Thus it is hard to

statically determine whether the asynchronous progress is needed or not in these

applications. To achieve the optimal performance for the multi-phases applica-

tions, we propose a dynamic adaptation mechanism integrated in the Casper li-

brary, providing the capability to dynamically predict the needs of asynchronous

progress for different execution phases and transparently adapt asynchronous

progress.

1.3 Outline

The rest of this dissertation is organized as follows.

In Chapter 2, we first give an overview of the many-core architecture and

introduce the semantics of the popular hybrid programming model and the irreg-

ular RMA model with several real applications as the background of this doctoral

research.

In the following three main chapters, we then discuss each contribution of

this dissertation with detailed description around the motivation, the design chal-

lenges and the implementation, and the evaluation from micro- and macro-kernels

to real applications. Specifically, Chapter 3 discusses the inefficient communica-

tion and the core idleness issue in the hybrid MPI+threads programming model,

and presents the multithreaded MPI approah that aims to transparently share

user idle threads inside MPI communication. Chapter 4 focuses on the asyn-

chronous progress issue existing in irregular MPI one-sided communication model,

and presents the process-based asynchronous progress model, named “Casper”.

Then Chapter 5 looks into the usability of Casper in complex multi-phases ap-

plications, and we present a dynamic adaptation technique that automatically

adjust the asynchronous progress for multiple phases of application which in-

volve varying communication characteristics.

5

Chapter 6 summarizes related works focusing on the hybrid programming

models, the MPI one-sided communication or the asynchronous progress models.

Finally, we conclude this dissertation in Chapter 7 with discussion for the fu-

ture works we plan to address for the communication optimization on many-core

architectures.

6

Chapter 2

Background

2.1 Many-Core Architectures

Till the beginning of this century, rapid growing rate of CPU frequency has suc-

cessfully pushed forward the high performance computing into petascale. How-

ever, such improvement is not free, we had to pay for increasing cost of per core

power consumption that even raised up the power wall ceasing any frequency

growth. Consequently, single processors can no longer become faster, the only

way to improve performance for high-end processors is to add more cores and

hardware threads.

Many-core architectures provides applications such massively parallel environ-

ment and have already being successfully used in several most powerful super-

computers in the world. For example, both the world’s No.1 system, Tianhe-2

developed by China’s National University of Defense Technology [6], and the

No.10 system, Stampede located at Texas Advanced Computing Center [1] use

the Intel Xeon Phi coprocessors to accelerate their computation; Mira at Argonne

National Laboratory, an IBM BlueGene/Q supercomputer ranked at No.5 in the

world, also forms as many-core embedded platform [9]. In this section, we intro-

duce the basic structure and programming environment of a typical many-core

product, the Intel Many Integrated Core (MIC) architecture.

The Intel MIC architecture features a large amount of CPU cores inside sin-

gle chip with Linux-based operating system. It provides applications a similar

programming and execution environment as the normal CPU systems, with sup-

porting massive parallelism and vector capability to achieve high floating-point

performance. Different from the GPU accelerators, the many-core chip can be

run as both floating-point accelerator, and a standalone system.

Intel published the first commercial release of MIC architecture, codenamed

Knights Corner (KNC) in 2012 [19, 35]. It provides a minimum of 60 light-weight

cores and separate GDDR5 memory embedded on single chip, with each core ca-

pable of supporting four hardware threads and a 512-bit SIMD vector processing

unit (VPU). As shown in Figure 2.1, all of the cores have fully private and coher-

ent cache: 32 KB instruction + 32 KB data L1, and 512 KB L2 (unified), with

high bandwidth bidirectional ring interconnection. Eight dual-channel GDDR5

memory controllers (MC) are symmetrically distributed on the ring to provide

high bandwidth access to the 8 GB or more GDDR5 memory from any cores.

The KNC coprocessors is usually connected with host CPU cores and inter-

node communication device (e.g., InfiniBand) via PCI-express on each computing

7

GDDR	MC GDDR	MC

GDDR	M
C

GDDR	M
C

PCIe		
Client	Logic

Core

L1	I

L2

L1	D
VPU

Core

L1	I

L2

L1	D
VPU

Core

L1	I

L2

L1	D
VPU

Core

L1	I

L2

L1	D
VPU

Core

L1	I

L2

L1	D
VPU

Core

L1	I

L2

L1	D
VPU

Core

L1	I

L2

L1	D
VPU

Core

L1	I

L2

L1	D
VPU

Figure 2.1: Knight Corner Chip Constriction.

node of Xeon Phi based supercomputers as demonstrated in Figure 2.2. For exam-

ple, the Stampede supercomputer [1] employs one KNC chip (SE10P) connected

to two Intel E5 8-core (Sandy Bridge) processors on each node; the Tianhe-2

supercomputer is constructed as three Xeon Phi chips with two Intel Ive Bridge

processors per computing node [6].

The KNC provides three programming models for application development:

native, offload or symmetric. In the native mode, KNC’s own micro-Linux op-

erating system manages the on-chip resources and exposes comprehensive system

calls to support user programs running with both MPI and threads parallelism.

For some of the system calls that cannot be handled directly on the KNC card

are transparently forwarded to the host CPU and returned with the result re-

ceived from host after the execution. Thus the applications can directly run on

the KNC environment similar as that on traditional CPU systems. With regard

to the internal communication between MPI processes, processes located on the

same card communicate with each other through shared memory; processes on

the same computing node but located on two KNC cards communicate using

the PCIe peer-to-peer capabilities; for the communication outside the node, the

capability of direct data transfer without host intervention has been provided on

some networks such as InfiniBand. On the other hand, the offload mode offers

the possibility of running as an accelerator like GPUs, and the symmetric mode

can be used in MPI applications where processes are distributed on both KNC

and host CPUs. We only focus on the native mode in this thesis.

Furthermore, Intel has recently also announced the details of its next genera-

tion of the Xeon Phi product family, codenamed Knights Landing (KNL). KNL

is a fully self-hosted architecture that can offer applications the standalone ex-

ecution environment similar but more comprehensive compared to the native

mode on KNC card. Greater than 60 cores with four hardware threads and two

powerful VPUs each are embedded on single chip with more complex but high

8

Xeon	Phi	Chip

Host	
CPU

Memory

Memory

Xeon	Phi	Chip

Memory

PCI	Express

InfiniBand
Inter-connec<on

Figure 2.2: Computing Node Structure on Xeon Phi supercomputers.

bandwidth mesh interconnection. This design allows 3x single thread perfor-

mance compared to KNC and achieve more than 3 TeraFlops peak performance

per singe socket node. At least two of the upcoming supercomputers, Cori at

the National Energy Research Scientific Computing Center (NERSC) [18], and

Theta at Argonne National Laboratory [26], have decided to be constructed using

the KNL processors. More detailed information of the KNL architecture can be

found at [37].

2.2 Hybrid MPI+Threads Programming

Although the number of cores is rapidly increasing on modern multi- and many-

core architectures, the other system resources (e.g., memory, network endpoints)

are not growing at the same rate. To efficiently utilize such large amount of

threads with better resource sharing, application programmers are increasingly

looking at the hybrid MPI + Thread model, where multiple threads are used to

parallelize the computation on each computing node and MPI is used for the inter-

node data communication. The most prominent of the threading models used in

modern scientific computing is OpenMP [21], where applications add annotations

in the code with necessary information of the parallelism (e.g., the number of

threads, the parallel patterns and the property of variables), then the compiler

can translate these annotations into appropriate commands and cooperate with

the runtime system for task scheduling. In the rest of this section, we focus on

the MPI+OpenMP programming.

Since MPI processes and threads are managed by two separate runtime sys-

tems, additional rules have to be made to ensure the thread safety inside MPI

without resulting in unnecessary overhead. For example, a message may be con-

currently matched by the receive calls from two threads on the same process if

the appropriate thread safety is not provided; conversely, we should also avoid

over-definition of the thread safety since it can result in significant overhead from

heavy usage of memory barriers and lock acquiring/releasing in most MPI imple-

mentations even the program does not involve any threads [30].

2.2.1 Programming Model

In this section we introduce the different threading modes defined by MPI for

multithreaded environments. The MPI standard provides four levels of thread

safety.

9

#pragma omp parallel

{

/* user computation */

}

MPI_Function ();

(a) Outside a parallel region

#pragma omp parallel

{

/* user computation */

#pragma omp master

{

MPI_Function ();

}

}

(b) Inside omp master region

#pragma omp parallel

{

/* user computation */

#pragma omp critical

{

MPI_Function ();

}

}

(c) Inside omp critical region

#pragma omp parallel

{

/* user computation */

#pragma omp single

{

MPI_Function ();

}

}

(d) Inside omp single region

Figure 2.3: Different use cases in hybrid MPI+OpenMP.

MPI THREAD SINGLE

In this mode, only a single thread exists in every MPI process. This model is

commonly referred to as the MPI-only model, where multiple MPI processes

communicate with each other and no threads are involved.

MPI THREAD FUNNELED

In this mode, multiple threads can be created for parallelizing the compu-

tation phases on every MPI process, but only the master thread is allowed

to access MPI stack. In an OpenMP program, this can be implemented

as either making MPI calls outside the OpenMP parallel region or protect-

ing the MPI calls with OpenMP master regions. Figure 2.3(a) and 2.3(b)

demonstrate those implementation respectively.

MPI THREAD SERIALIZED

Similar as the funneled mode, multiple threads can be used to parallelize the

computation in the serialized mode. For the MPI communication phases,

however, any single thread can issue MPI calls at a time. That is, dif-

ferent threads can concurrently perform the computation, but all of them

need to be synchronized in order to serialize the MPI calls. In a typical

OpenMP program, this can be implemented by making MPI calls within

OpenMP critical regions or single regions as shown in Figure 2.3(c) and

2.3(d) respectively.

MPI THREAD MULTIPLE

10

The multiple mode is different from the above levels, multiple threads can

concurrently perform both user computation and MPI communication. The

MPI implementation is required to provide appropriate synchronization

among threads (i.e., lock protection and memory barriers) to protect ac-

cesses to shared internal data structures.

2.2.2 Typical Applications

After a brief overview of the hybrid programming model, we then introduce two

scientific applications that utilize this model.

2.2.2.1 Quantum Monte Carlo Simulation

Quantum Monte Carlo (QMC) method is one of the most accurate solution to

provide accurate and reliable approximation for quantum many-body systems. It

helps scientists study the complex electronic structure of realistic world on large-

scale computing systems. The algorithm of QMC method is mainly designed

around two data objects: enormous “walkers” to represent the dynamic status

of each particle, and a large but read-only ensemble data that shared among all

walkers. The traditional implementation of QMC method utilizes MPI to dis-

tribute the walkers among multiple processes and simply replicate the ensemble

data on each MPI process. However, such design extremely limits researchers to

study larger physical systems or achieve more accurate simulations since the en-

semble data is so large that always takes Gigabytes memory per core. Especially

on modern mulit- and many-core systems, whose memory capacity per core is

actually reducing, a more efficient design is required.

QMCPACK is an open-source QMC package implemented using hybrid MPI+

threads programming model for massively parallel computing system [41]. It

utilizes threads to parallelize the walkers inside every physical node thus the

essential memory restriction can be addressed since the large ensemble data

can be shared among threads on every node, and employs MPI for inter-node

communication as demonstrated in Figure 2.4. This design also benefits from

reduced collective communication among MPI processes that is used for global

reduction calculation among walkers, and from less number of large point-to-point

communication between paired MPI processes for exchanging walker objects in

the load balance step.

2.2.2.2 Computational Fluid Dynamics

Nek5000 is an open-source code that widely used in a broad range of applications

such as nuclear reactor cores, ocean modeling and combustion simulation [27].

It provides high order, incompressible Navier-Stokes solver based on the spectral

element method. The implementation of Nek5000 is mainly composed of conju-

gate gradient (CG) solver with efficient preconditioners, which is captured in the

Nekbone mini-application with the basic structure and user interface.

The main computational kernel of Nekbone consists of multi-grid matrix-

matrix multiplications. Several researches have looked into the optimization for

such computation pattern on advanced heterogeneous HPC architectures. For

11

MPI	Process

Replicated	Ensemble	Data

W W

W W

Thread

W W

W W

Thread

W W

W W

Thread

W W

W W

Thread

MPI	Process

Replicated	Ensemble	Data

W W

W W

Thread

W W

W W

Thread

W W

W W

Thread

W W

W W

Thread

Exchange	Walkers

MPI	Process	

Replicated	Ensemble	Data

W W

W W

Thread

W W

W W

Thread

W W

W W

Thread

W W

W W

Thread

MPI	Process

Replicated	Ensemble	Data

W W

W W

Thread

W W

W W

Thread

W W

W W

Thread

W W

W W

Thread

Exchange	Walkers

Global	Reduc>on

Figure 2.4: Hybrid Implementation of Quantum Monte Carlo Simulation.

Process	1	
(receiver)	

Process	0	
(sender)	

Send

Receive

(a) Two-Sided Mode.

Process	1	
(target)	

Process	0	
(origin)	

Put

Window
Get

Accumulate
+=

(b) One-Sided Mode.

Figure 2.5: MPI Communication Modes

example, Markidis et al. [46] presented an MPI+OpenACC version of Nek5000

code to highly parallelize the most time-consuming ax3D and gs op subroutines

on GPU-accelerated systems. Hart and Ivanov et al.’s papers [38, 32] have

also contributed the MPI+OpenMP version of the Nekbone mini-application for

accelerating the local computation on Cray supercomputers.

2.3 MPI One-sided Communication

MPI-2 and MPI-3 introduced the MPI one-sided communication model (also

known as remote memory access or RMA). Unlike the well-known two-sided

communication (e.g., MPI Send/MPI Receive), the one-sided mode allows appli-

cations to define more dynamic and data-driven communication patterns where

a process can directly access memory in another process (i.e., window) through

RMA operations such as put, get or update. Furthermore, all the operations are

only issued from the origin process, thus the program running on the remote pro-

cess does not need to call any MPI routines to match the operations. Figure 2.5

demonstrates the difference between the two-sided mode and the one-sided mode.

12

2.3.1 Programming and Semantics

Because the second contribution of this thesis is a process-based asynchronous

progress model that comprehensively supports the strict MPI one-sided commu-

nication semantics which is also the most challenging part in this work, we then

introduce the primary semantics of this communication mode in the rest of this

section. The semantics of the RMA communication can be divided into following

three primary steps: window creation, RMA synchronization and issuing RMA

operations.

2.3.1.1 Window Creation

A memory area on a process that is exposed to all other processes in a specified

group—allowing direct access to these processes—is called a window. MPI-3

provides the following four window initialization functions:

MPI Win create

This routine exposes an RMA window for the memory region which is

allocated by user application in advance. The corresponding MPI Win free

call only releases the RMA window, thus user is responsible for releasing

the memory region after window is freed.

MPI Win allocate

This routine allows MPI to internally allocate a memory region and expose

it to the other processes as a remotely accessible window. The correspond-

ing MPI Win free call releases both the window structure and the memory

buffer.

MPI Win allocate shared

This routine allows MPI to initialize a shared window among processes

located in the same shared memory system (e.g., the same NUMA node)

through external system support such as mmap or XPMEM on Cray sys-

tems [78]. This shared memory region can be accessed by CPU load/store

instructions instead of MPI RMA operations, however, additional synchro-

nization is required to ensure the correctness with other concurrent RMA

operations. The start address of a remote window region mapped on the

local process can be got from the MPI Win shared query call.

MPI Win create dynamic

This routine allows programs to expose an empty remote accessible window,

and then attach/detach one or multiple memory regions in later execution.

The above routines give user different levels of flexibility of window creation.

However, the routines with more flexibility also limit the possible internal op-

timization can be provided from MPI implementations. For instance, the most

flexible MPI Win create dynamic can rarely get any optimization.

2.3.1.2 RMA Operations

After the remote accessible window is identified, a process can issue put, get, or

accumulate operations to access this window. Figure 2.5(b) gives an image to

13

demonstrate data movement associated to those operations.

MPI Put

This operation copies the data in the origin process’s buffer to the specified

memory location in the window on the target process.

MPI Get

This operation copies data from the specified memory location of remote

window to the buffer located in the origin process’s local memory.

MPI Accumulate

This operation first transfers data from the origin process’s buffer to the

target process, and then performs a update on the target side following the

user specified operation (e.g., MPI SUM) and stores the result into the win-

dow. We note that, unlike the put/get operations, the accumulate operation

is guaranteed to be ordered and atomic per basic data element.

Beside above three basic RMA operations, there are three other operations

also defined in MPI standard: MPI Get accumulate, MPI Fetch and op and MPI-

Compare and swap. The detailed semantics of those operation can be found

in [5].

2.3.1.3 RMA Synchronization

All the RMA operations are non-blocking MPI calls, which means the completion

of those data movement is not guaranteed at return. In addition, since processes

may concurrently access the same RMA window, we also need synchronization

among the involved processes in order to avoid any conflicts. MPI defines two

kinds of synchronization modes to handle those responsibilities in RMA commu-

nication, they are the active mode and the passive mode. We introduce each

of them separately in this section.

Active Mode: This mode provides a similar synchronization as that in two-

sided mode, both the origin process and the target process need to explicitly call

the synchronization. Two sets of synchronization calls are defined in MPI: fence

and post-start-complete-wait.

• In fence synchronization, all the processes in the window must collectively

call MPI Win Fence routine to synchronize with each other (Figure 2.6(a))

similar as barrier in the two-sided communication mode. The return from

the fence call guarantees: (1) all the processes have arrived at the fence call;

(2) all the outstanding RMA operations and local load/store instructions

issued on this window have been completed.

• The post-start-complete-wait synchronization can be considered as a

subset of fence (Figure 2.6(b)). At the beginning of the RMA commu-

nication, the target process (P1) calls MPI Win post to expose its win-

dow to one or several processes and the origin process (P0 or P2) per-

forms MPI Win start to match the post call and then starts the remote

access; at the end of the communication, the origin process needs to call

14

P1	P0	

Fence	(win)

Fence	(win)

Fence	(win)

Fence	(win)

P2	

PUT PUT
PUT

(a) Fence.

P1	P0	

Start	(P1,win)

Complete		
(P1,win)

Start	(P1,win)

Complete		
(P1,	win)

P2	

PUT PUT

Post	(P0&P2,win)

Wait	(win)

(b) Post-Start-Complete-Wait.

P1	P0	

Lockall	(win)

Unlock	(win)

P2	

PUT

PUT

(c) Lock all-Unlock all.

P1	P0	

Lock	(P1,win)

Unlock		
(P1,win)

P2	

PUT
Lock	(P1,win)

Unlock	
(P1,win)

PUT

(d) Lock-Unlock.

Figure 2.6: RMA Synchronization Modes

MPI Win complete to complete its operations and the target process needs

to call MPI Win wait to ensure all the operations issued on its window have

been finished.

Passive Mode: Apart from the semi-dynamic active mode, MPI also offers the

passive mode which performs completely dynamic pattern. That is, only the pro-

cess issuing operations (origin process) is required to explicitly call the synchro-

nization. Two sets of synchronization calls are defined: lock all-unlock all

and lock-unlock.

• The lock all serial provides global synchronization similar as the fence,

however, only the origin process (e.g., P0 in Figure 2.6(c)) issues the MPI Win-

lock all and MPI Win unlock all calls. The return from lock all en-

sures the origin process have acquired the shared lock on all the other

processes, and the return from unlock all ensures: (1) the locks have

been released, and (2) all the operations issued from this process have been

completed remotely.

• The lock serial can be also considered as a subset of lock all which pro-

vides per-target exclusive/shared lock (MPI LOCK EXCLUSIVE or MPI LOCK SH-

ARED lock type). We note that two origin processes can concurrently acquire

a shared lock on the same target window, however, any other lock requests

must be serialized with the exclusive lock. Figure 2.6(d) shows an exam-

ple. Simultaneous lock all and lock follow the same rule.

• Besides the lock calls, the passive mode also offers two flush synchroniza-

tion routines that only complete the outstanding RMA operations, and a

sync routine (MPI Win sync) that synchronizes the data of its local window

15

updated by remote RMA operations and the one updated by load/store in-

structions. MPI Win flush completes the operations issued from the origin

process to a single target process, and MPI Win flush all completes oper-

ations issued from the origin process to any target processes in the window.

2.3.2 Irregular Applications

In this section, we introduce three scientific applications in chemistry, bioinfor-

matics and nuclear physics fields, all of them involve extremely dynamic and

irregular computation and data movement, which can benefit from the one-side

communication model.

2.3.2.1 NWChem Quantum Chemistry Application

NWChem is a widely used quantum chemistry application suite that provides

a large set of simulation capabilities [76]. Due to the large memory needs in

NWChem that often require memory sharing across multiple nodes, it is devel-

oped based on the Global Arrays toolkit [51] which provides users with distributed

dense arrays that can be accessed through one-sided operations. Figure 2.7(b)

demonstrates the typical get-compute-update pattern used in NWChem.

Current NWChem has been looking at small-to-medium molecules (e.g., (H2O)21
as shown in Figure 2.7(a)) consisting of 20-100 atoms. Since the coulomb interac-

tion among such small amount of atoms is reasonably large, the computation and

communication can be successful scaled on modern supercomputers. However,

scientists aim to study more complex molecules that are composed of thousands

atoms or even larger thus not only the short-range interactions but also the long-

range interactions have to be covered. This means, the diversity of the amount

of computation per process can be considerably increased, thus resulting in ex-

tremely irregular computation with data movement.

(a) Interaction in (H2O)21 molecule.

GET GET UPDATE

Compute	in	Local	memory

Global	Array	A Global	Array	B Global	Array	C

(b) Get-Compute-Update pattern.

Figure 2.7: Communication in NWChem Application.

2.3.2.2 SWAP-Assembly Bionformatics Application

In bioinformatics, since it is still hard to read the whole genomes in modern

DNA sequencing technology, researchers often break down long DNA samples

16

AGT

TTC

GTT TCC

CCG
GAG

(a) Graph Reduction.

Process	0

ACGCGA	

Process	1

CGATTC	

CGAATT	 Process	2

Process	3

Step	4.	R
eturn	merged	

sequenc
e

Step	1.	S
end	loca

l	read

CATGAT	

GTCGAT	 ACGCGA	
CGCGAT	

ACGCGAT	

Step	2.	Hash	search
Step	3.	Merge

CGCGAT	

(b) Communication Pattern.

Figure 2.8: Irregular Communication in SWAP-Assembly.

into large amount of small fragments, called “reads”, and then read those reads

into digital data as the first step. The next step is called assembly, which merges

overlapping reads back to one or several contiguous DNA sequences. The se-

quence assembly technology helps biology scientists analyze DNA sequence, and

is especially important for understanding complex environments containing many

different microbiomes (e.g., soil and seawater).

The SWAP-Assembler software provides highly scalable assembler that pro-

cesses the sequence assembly on thousands of cores in parallel [47]. The initial

reads are represented as a distributed De Bruijn graph (e.g., Figure 2.8(a)), and

final contiguous DNA chains are assembled by executing multiple rounds of graph

reduction and error removal over MPI communication. The communication pat-

tern follows the send-merge-return mode as shown in Figure 2.8(b). Every

process issues each of its local DNA read to a remote process to find the overlap-

ping reads. On the remote process, it first searches the overlapping read for every

received message, then merges the reads and finally returns the merged result. If

there is no matching read on the remote side, the sending process will try another

remote process following the same patter. This processing always involves enor-

mous irregular data movement over Petabytes of data and requires several days

or even months of computation. For instance, the largest simulation done to date

was at the University of Chicago, where a 2.3-Terabyte sample was assembled on

a supercomputer with 18,000 coresthis simulation took 4 days to complete and

spent 99.9% of its time idling, because of imbalance between processing units.

2.3.2.3 Greens Function Monte Carlo

Greens Function Monte Carlo (GFMC) is an application in theoretical nuclear

physics that provides ab initio calculations for few-nucleon systems [17]. It de-

scribes the nuclear structures and reactions by solving the Schrödinger equation

and is recognized as the most reliable method for nuclei with 12 or fewer nucle-

ons. The implementation of GFMC utilizes OpenMP to parallelize heavy sparse

matrix-vector multiplications and uses MPI to communicate among distributed

computing nodes.

The Asynchronous Dynamic Load Balancing (ADLB) library [45] is essentially

designed for addressing the load balancing among MPI processes in GFMC on

large scale systems that contain more than one hundred thousand computing

cores. It provides a general-purpose worker-server model with one-sided Put/Get

17

operations that helps application codes dynamical share work tasks with assorted

work types and priorities. A few server processes are initialized to maintain a

distributed shared work queue. Application processes can then submit arbitrary

work tasks to the queue with necessary data, and retrieve the results after any

task is finished.

18

Chapter 3

Multithreaded MPI

Publication

This chapter includes the contents that have been published in conference pa-

per [59]. Full article can be found at http://dl.acm.org/citation.cfm?doid=

2597652.2597658.

The hybrid MPI+Threads programming model has become one of the most

popular programming model on many-core systems. The common mode of this

hybrid model often uses multiple threads to parallelize the computation on every

computing node, and utilizes one of the threads to transfer data across nodes

by using MPI. This mode is defined as MPI FUNNELED or SERIALIZED thread-

safety mode as introduced in Section 2.2.1. The most prominent of the threading

models used in scientific computing today is OpenMP [21]. In the MPI+OpenMP

programming, the application developer can simply add parallel annotations (i.e.,

pragma) on the computation that need to be parallelized by the compiler and the

thread runtime system. The compiler, in turn, translates these annotations into

semantic information that the runtime system can use to divide and schedule the

computing tasks on multiple threads. The MPI communication does not need

any code modification, developer can just put it outside the OpenMP parallel

region or protects it by using master, critical or singe sections as demonstrated

in Figure 2.3.

This mode allows applications to benefit from massive parallelism without

large modification in code, it also helps applications scale to larger problem since

it allows memory to be shared among large amount of cores on every node. How-

ever, the MPI communication in this mode still faces several critical challenges

that degrade the performance. This chapter focuses on these challenges and pro-

pose efficient solution. In Section 3.1 we first describe the communication issues

in the hybrid model. Then in Section 3.2 we present the concept of our solution—

an internally multithreaded MPI—, and then list the practical challenges we have

to address in implementation. In Section 3.3 we introduce the detailed design

and implementation in both OpenMP and MPI libraries, and Section 3.4 provides

evaluation results by using several micro and macro-benchmarks.

19

http://dl.acm.org/citation.cfm?doid=2597652.2597658
http://dl.acm.org/citation.cfm?doid=2597652.2597658

3.1 Problem Statement

In the common MPI+OpenMP mode, hundreds threads are created in the parallel

region for user computation, however, only single thread is used to issue the MPI

communication. Such a mode also means that most OpenMP threads are idle

during MPI calls, resulting in wasted computational resources. Moreover, since

the clock rate of single core on the many-core architecture is always much lower

than traditional CPUs, such single thread execution can also result in severe

performance degradation in communication.

3.2 Solution

Parallelism is the essential key to reach high performance on many-core systems,

MPI communication is no exception. We present MT-MPI, an internally mul-

tithreaded MPI implementation that transparently coordinates with the thread-

ing runtime system to share idle threads with the application. In this disser-

tation, we designed MT-MPI in the context of OpenMP, which serves as the

most widely used threading runtime system for the applications. MT-MPI trans-

parently employs application idle threads to accelerate MPI communication and

data-processing, also achieving better resource utilization. We use the “native

mode” of Intel KNC as the architectural testbed where applications are executed

directly on the coprocessor. This approach should also be suitable for the next

generation of Xeon Phi product (KNL) since it will be built as self-hosting chips

in upcoming supercomputers [11, 18].

To demonstrate the performance benefits of the proposed approach, we mod-

ified the Intel OpenMP runtime library [34] and the MPICH implementation of

MPI [10]. Specifically, we modified the MPI implementation to parallelize its

internal processing using OpenMP parallel regions. Figure 3.2 shows the pseudo

code of an example following this approach, where MPI routine is called outside

the user parallel regions as the MPI FUNNELED mode. We also studied new algo-

rithms for various internal processing steps within MPI that are more “parallelism

friendly” for OpenMP to use.

#pragma omp parallel

{ /* user computation */ }

MPI_Function ()

{

#pragma omp parallel

{ /* internal processing */ }

}

#pragma omp parallel

{ /* user computation */ }

Figure 3.1: Pseudo Code of MPI+OpenMP in MT-MPI

20

In theory, this model would allow both the application and the MPI implemen-

tation to expose their parallelism requirements to the OpenMP runtime, which

in turn can schedule them on the available computational resources. In practice,

however, several challenges exist:

• Parallel algorithms with insufficient threads.

We modify the algorithms used in MPI internal processing for better par-

allelism (e.g., remove data dependency in for loop). While the modified

algorithms are efficient for OpenMP parallelism, they may not as efficient

if the number of available OpenMP threads is not sufficient. Consequently,

the parallel version can improve performance only when sufficient OpenMP

threads is available, we need appropriate trade off according to the num-

ber of available threads However, the actual number of available threads at

runtime is unknown. Depending on the application’s code structure, this

can vary from zero to all threads being available for MPI processing. Thus,

if not designed carefully, the algorithms can perform even worse than the

traditional sequential implementation of MPI.

• Core oversubscription risk in nested parallel region.

The current implementation of the Intel OpenMP runtime does not sched-

ule work units from nested OpenMP parallel regions efficiently. It simply

creates new pthreads for each nested parallel region and offload the threads

scheduling to the operating system. This can results in core oversubscrip-

tion since more threads can be created than the available cores, and conse-

quently degrading performance.

To work around these challenges, we modified the Intel OpenMP runtime to

understand the status change of threads at runtime and expose the information

about the idle threads to the MPI implementation. The MPI implementation

then can use this information to choose appropriate algorithms that trade off

between parallelism and sequential execution in order to achieve optimal perfor-

mance, Such information also allows MPI to schedule its internal parallelization

only when enough idle threads are available.

3.3 Design and Implementation

In this section we describe the design of MT-MPI, including modifications to the

OpenMP runtime system and the MPI implementation. We use MPICH library

(v3.0.4) and the Intel OpenMP runtime (version 20130412) as the base code of

our implementation.

3.3.1 OpenMP Runtime

understand the status change of threads at runtime and expose the information

about the idle threads to the MPI implementation

As described in Section 3.2, we need modify the OpenMP runtime system to

expose the number of idle threads to the MPI implementation in order to address

the challenges for MPI internal parallelism. To understand how many threads

21

are idle at current time, the idea is to track how many threads are being used by

the application vs. how many threads are idle (e.g., because they are waiting in

an OpenMP barrier). Then, the OpenMP runtime can expose this information

through a new runtime function. Then the MPI implementation could query

for the number of idle threads by calling this runtime function, and use this

information to (1) choose the most efficient internal parallelization algorithms

and (2) use only as many threads in the nested OpenMP region as there are

idle cores, by explicitly guiding the number of threads in OpenMP (using the

num threads clause in OpenMP).

We note that the second challenge described above (additional pthreads cre-

ated in nested OpenMP regions) is an issue only with the current implementation

of the Intel OpenMP runtime. An alternative OpenMP runtime implementation

(e.g., internally uses user-level threads [52]) may not have this problem. However,

since most OpenMP implementations today use pthreads internally, we consider

this to be a real issue that needs to be addressed in this research.

3.3.1.1 Threads Idleness

Since we need to track the status change for every internal threads in the OpenMP

runtime, we need to first understand the status of threads in the following cases.

• MPI call made outside the OpenMP parallel regions.

As shown in Figure 2.3(a), all threads except the main thread are idle (often

equal to OMP NUM THREADS). Thus, we expect MPI to be able to utilize

OMP NUM THREADS threads in this case.

• MPI call made in an OpenMP single region.

Figure 2.3(d) shows an example for this case. We know that OpenMP single

regions provide an implicit barrier on exit. Thus, we can expect that

all threads waiting in the barrier can be idle if the current thread in the

single section queries the information, since all the other threads have to

synchronize with the current thread at the implicit barrier. In practice,

however, it should be careful that not all threads might have arrived the

barrier, for example, some threads might still be working in the previous

user computation. Consequently, the number of idle threads in this case

can vary between zero and the maximum number of threads. We modified

the OpenMP runtime to track the status for each thread in order to get

the actual number of idle threads when it is queried. In this case, the

amount of parallelism available to MPI is not a fixed number. However, for

most OpenMP parallel regions where the workload distribution is mostly

balanced among threads, we expect the number of idle threads is close to

the maximum number of threads (typically equal to OMP NUM THREADS).

• MPI call made in an OpenMP master region or single region with

a nowait clause.

Figure 2.3(b) shows an example for this case. It is similar to the previous

single region, the only difference is that there is no implied barrier at the

end of such regions. In other words, there is no natural synchronization

22

for the threads during these regions. Nevertheless, depending on how the

application is written, it is possible that to user can define an external

synchronization point (e.g., OpenMP barrier) that would cause idle threads

to be available. Consequently, we follows the strategy we used for the

previous case, tracking the number of idle threads. However, we do not

expect too many idle threads in this case in practice.

• MPI call made in an OpenMP critical region.

Figure 2.3(c) shows an example of this case. We know that OpenMP critical

section involves synchronization among threads in order to ensure only one

thread can enter the critical region at a time. While this is not quite an

implicit barrier at the entry of critical section, its impact on the availability

of threads can be considered as similar to that of the OpenMP single region.

To be specific, when the first thread enters the OpenMP critical region, all

the remaining threads can be expected to be idle once they have arrived

at the entry of critical region; when the second thread enters the critical

region, the first thread is no longer available for our use because it has

already finished its execution in the critical region and left this section,

thus we do not know whether it could be idle or not; when the last thread

enters the critical region, none of the remaining threads are expected to be

idle because all of them have already left the critical section. Following the

same strategy as in the previous cases, we track the number of idle threads

inside the OpenMP runtime. We expect that the number of idle threads

would be close to maximal number of threads for the first few threads

entering the critical section and gradually becomes lower and eventually

zero for the last few threads.

As we have discussed in each case, it can be risky to utilize the idle threads in

some situations because the status of those threads can change at any time. For

example, as shown in Figure 3.2, if we consider the current querying thread is

active in the single nowait section (thread 4), threads 2 and 3 can be considered

as available threads since they are waiting at the entry of the next critical section,

however, their status can change once the thread 1 finished its execution in the

critical section. Such status change is unrelated to the current single section, thus

it is unknown when those threads become active, and consequently degrading

performance if we use them for our parallelism in the single section (suppose the

MPI function is called in the single section). Therefore, we distinguish two kinds

of thread idleness as follows:

• Guaranteed idle threads.

Any threads that are guaranteed idle until the current thread exist from

MPI call. Specifically speaking, if a threads is at one of the following status,

we consider it is guaranteed idle: (1) waiting at the barrier for other threads

in the team to arrive (i.e., explicit OpenMP barrier or the implicit barrier

at the end of single section); (2) waiting to enter a critical section.

• Temporarily idle threads.

Any threads who are currently idle but their status change is not controlled

23

#pragma omp parallel
{

 …
#pragma omp single nowait
{
}
#pragma omp critical
{
}

 …
}

0 1 2 3 4 5

ac#ve	in	cri#cal	sec#on

wait	to	enter	cri#cal	sec#on

ac#ve	in	single	sec#on

Figure 3.2: An Example of Temporary Idle Threads.

#pragma omp parallel

{

#pragma omp single

{

num_idle_threads = omp_get_num_idle_threads ();

i f (num_idle_threads < N){

/* sequential algorithm */

} e l se {

#pragma omp parallel num_threads(num_idle_threads)

{ /* parallel algorithm */ }

}

}

}

Figure 3.3: Thread Scheduling in OpenMP barrier Routine.

by the current thread in the MPI call. For example, for the threads waiting

in an critical section that is unrelated to the current thread (e.g., thread 2

and 3 in Figure 3.2), we call them temporarily idle threads.

To avoid the risky of performance degradation, we only expose the number

of guaranteed idle threads to MPI implementation. We define an OpenMP

runtime extension omp get num idle threads to return the number of guaran-

teed idle threads at the querying time. Thus the user thread in an MPI call

can easily query such information during through this routine, and safely use the

returned value to do trade off between algorithms and also provide guidance for

the internal nested parallel region. Figure 3.3 shows an example. We note that

our implementation treats a thread as idle only when it is not engaged in any

OpenMP activity, including both OpenMP parallel loops and OpenMP tasks.

We also note that in our implementation the performance overhead associated

with tracking whether a thread is actively being used by the OpenMP runtime

is too small to be observed and thus we do not discuss it in this paper.

24

while(time < KMP_BLOCKTIME)

{

i f (done)

break;

/* spin loop */

}

sched_yield ();

pthread_cond_wait (...);

(a) Wait Progress in OpenMP barrier.

#pragma omp parallel

{

#pragma omp single

{

set_fast_yield (1);

#pragma omp parallel

{ ... }

}

}

(b) Fast Yield.

Figure 3.4: Thread Scheduling in OpenMP barrier Routine.

3.3.1.2 Thread Scheduling in Nested Parallelism

As we have discussed about the thread idleness, the threads waiting in an explicit/

implicit barrier should be idle and are available for reuse in MPI. However, this

is not exactly as we expected in the OpenMP implementation because of special

optimization strategies. We have noticed that, the Intel OpenMP runtime does

not put the threads directly into the passive wait status (i.e., being yield or

sleep) in the internal wait progress for barriers. Instead, the threads are actively

waiting in a spin loop for other threads to arrive for a configurable amount of

time KMP BLOCKTIME. Figure 3.4(a) demonstrates this implementation. This is

because, for most well-balanced OpenMP parallel loops, thread synchronizations

such as barriers are often short-lived since threads tend to arrive at the barrier

at approximately the same time. Thus, when a thread arrives at a barrier, if it

is immediately go into sleep status while waiting for the other threads to arrive,

and is woken up in a short amount of time, performance can be degraded because

of the overhead of waking up threads from a sleep state.

Unfortunately, such optimization strategy might not be suitable within the

environment of MT-MPI. Especially when a large value is set for KMP BLOCKTIME,

it would mean that threads do not become “truly idle” for a long time. While

this is not a concern for regular OpenMP parallel loops, it can break our theory of

thread idleness in MT-MPI, and thus resulting in degrade performance for nested

OpenMP parallel regions since more threads would be active than our estimation

and consequently cause core oversubscription for the KMP BLOCKTIME amount of

time.

When MPI calls are outside the application OpenMP parallel region (such as

in Figure 2.3(d)), this is not a concern since MPI would use the same threads as

the application in its parallel region. When MPI calls are inside the application

parallel region, however, this would require MPI to use a nested OpenMP par-

allel region. And since the threads that arrived at the barrier would not yield

the available cores immediately, this would either require MPI to utilize lesser

parallelism by only using the idle cores or cause thread thrashing on the available

cores for KMP BLOCKTIME amount of time. Neither solution is ideal.

In MT-MPI, to be able to employ these resources as soon as possible, we

25

investigated two possible solutions in the OpenMP runtime: fast-sleep and

fast-yield.

• Fast-Sleep.

We expose a new function set fast sleep to the MPI implementation,

thus MPI could notify OpenMP runtime to force all the threads in the cur-

rent team to skip the active wait process during the barrier routine and

immediately go into sleep status (e.g., call pthread cond wait function).

These sleeping threads can be automatically awaken by receiving a sig-

nal through the synchronization from current active thread similar as the

original implementation.

• Fast-Yield.

The second approach is to focus the waiting threads immediately yield

the core (e.g., through sched yield system call) instead of spin loop, and

then go into sleep after waiting KMP BLOCKTIME amount of time. Similarly,

we expose a new function set fast yield to allow MPI to enable this

optimization. Figure 3.4(b) shows an example of its usage.

We note that both the fast-sleep and the fast-yield approaches follow

three rules: (1) they change the thread scheduling in the wait progress only for

those threads who are guaranteed to be idle (e.g., threads waiting in an OpenMP

barrier); (2) the set fast sleep and set fast yield setting is performed inter-

nally inside the MPI call and such change is automatically reset once the internal

parallelism in MPI is complete, so future OpenMP explicit/implicit barriers are

not affected by it; and (3) the proposed thread scheduling optimization is en-

abled only when MPI uses nested OpenMP parallelism (e.g., for single or critical

section) and is not used in the case that the MPI function is called outside the

OpenMP parallel region.

Both approaches allow us to eliminate the core oversubscription risk in the

waiting progress, however, the overhead of such approaches show difference. Fig-

ure 3.5(a) and 3.5(b) compare the overhead of each approach in a single section

similar as the code shown in Figure 3.4(b). Obviously, fast-yield allows us to

manage the cores with a consistent low overhead that only takes 30 µs even with

240 threads, while the fast-sleep approach takes much more overhead with in-

creasing number of threads, resulting in more than 200 µs cost at 240 threads.

Therefore, we utilize the fast-yield approach in MT-MPI.

3.3.2 MPI Internal Parallelism

After we expose the information about the idle threads through our extended

OpenMP runtime system, the MPI implementation can then efficiently schedule

its internal parallelism to achieve performance improvements. In this section, we

look into the MPI internal processing, and demonstrate the benefit of parallelism

in various aspects of the MPI processing. We note that we only utilize the idle

threads that are guaranteed to be available (guaranteed idle threads) in our

implementation. When all threads are available (e.g., when the MPI routine

is called outside the OpenMP parallel region), we do not explicitly specify the

26

-50

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300

O
ve

rh
ea

d
(u

s)
	

KMP_BLOCKTIME	

1 Thread 4 Threads 16 Threads
64 Threads 240 Threads

(a) Fast-Sleep.

-50

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300

O
ve

rh
ea

d
(u

s)
	

KMP_BLOCKTIME	

1 Thread 4 Threads 16 Threads
64 Threads 240 Threads

(b) Fast-Yield.

Figure 3.5: Overhead of thread scheduling optimization in OpenMP Wait

Progress.

number of threads to be utilized by our internal OpenMP parallel regions but

simply let OpenMP manage it; if fewer than the maximum number of threads is

idle (e.g., MPI is called in single region), we specify the amount of threads used

in the internal parallel regions by using the num threads OpenMP clause.

In the rest of this section, we describe the parallelism we achieved in three

aspects of MPI internal processing as the showcase. They are derived datatype

communication, shared-memory communication, and network I/O operations.

3.3.2.1 Derived Datatype Processing

MPI defines several kinds of derived datatype, such as vector, indexed and

struct, to help applications describe noncontiguous regions of memory. Derived

datatypes are used to describe complex noncontiguous data layouts and can be

directly used in the packing/unpacking processing (i.e., MPI Pack, MPI Unpack

functions) to pack data from noncontiguous memory locations to contiguous

buffer, or unpack data from a contiguous buffer to noncontiguous memory lo-

cations. Usually the packing/unpacking processing is not directly used in user

code, but embedded in MPI data transfer. For example, the well-known halo

exchange [77] algorithm can be implemented by using derived datatypes with the

MPI send/receive communication. The internal processing of such communica-

tion can be divided into three steps: (1) packing noncontiguous user data elements

into a internal buffer on the sender side; (2) transfer the packed contiguous data

to receive side; (3) unpack the received contiguous data to the noncontiguous

memory locations on the receiver side. Figure 3.6 demonstrates such processing

for transferring the right edge of a two-dimension matrix which can be defined

as the vector datatype.

The pack and unpack internal processing consists of a set of local memory

copies. A typical implementation often traverses the derived datatype tree and

copies each noncontiguous data chunk separately. A well-know optimization that

has been utilized in some MPI implementations is representing the datatype tree

as a stack structure so that it can be iteratively traversed rather than using

27

0 5 10 15 20
0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24 0 5 10 15 20

User	Send	Buffer User	Receive	Buffer
Packing

Unpacking

MPI	internal	processing

Data	Transfer

Figure 3.6: Internal Processing for Data Transfer with Derived Datatype.

a recursive traversal [55]. Since each noncontiguous data chunk is copied to a

different location and no dependencies exist among the different data elements,

such copy processing is a good candidate for OpenMP parallelization. Moreover,

thanks to the relatively large private L1/L2 caches per core on the Xeon Phi

chips, we expect efficient performance can be obtained in our approach, where

different threads concurrently access to separate memory locations. Therefore,

we modified the MPI implementation to parallelize internal loop of data copy in

the datatype processing using OpenMP. We note that for nested datatypes (e.g.,

a vector of vectors) only the lowest level is parallelized in our implementation.

for (i=0; i<count; i++){

*dest++ = *src;

src += stride;

}

(a) Sequential implementation.

#pragma omp parallel for

for (i=0; i<count; i++){

dest[i] = src[i*stride];

}

(b) Parallel implementation.

Figure 3.7: Sequential and parallel data packing.

The concept of this optimization is straightforward, however, we observed

unexpected performance degradation in this parallelism because of an unin-

tended consequence of the compiler vectorization. Figure 3.7(a) shows the origi-

nal datatype copy code used in MPICH. While this code works correctly in the

sequential copy, it cannot be parallelized by using OpenMP because of data de-

pendency on variable dest and src that makes compiler cannot understand the

constant stride of accesses used through all iterations. Thus we modified the code

as shown in Figure 3.7(b). While this new implementation eliminates data depen-

dency and thus the compiler can understand the computation and parallelize it,

the implementation also enables the vectorization provided by compiler. This

automatic optimization itself is not a concern. However, we have observed more

than performance degradation in the vectorized loops when the stride value is

large and the amount of data copied in each loop is small. Specifically, the com-

piler also automatically enables prefetching in the vectorized version, however,

it also causes additional cache misses in such strided loops. Consequently, our

modification might perform worse than the sequential version when the benefit

from parallelism is small (e.g., when very few threads are available). To work

28

around this issue, we choose the parallel approach only when sufficiently large

amount of threads are available while still keep the vectorization since it is still

beneficial in some cases (e.g., small stride or large copy data).

concern. However, the Intel compiler is inefficient in vectorizing strided loops

with large stride values when the amount of data copied in each loop is small.

Specifically, the compiler does incorrect prefetching in this case, causing addi-

tional cache misses and thus losing performance. Consequently, our modification

to the code is not always beneficial and can perform worse than the sequential

implementation when very few threads are available. To work around this issue,

we could either disable vectorization in the parallel implementation or explicitly

choose only the parallel approach when a sufficiently large number of threads are

available. We chose the latter approach because vectorization is still beneficial in

some cases (e.g., when the stride is small or the copy size is large). [add graph.]

3.3.2.2 Shared-Memory Communication

The second MPI internal processing we parallelized in MT-MPI is the data trans-

fer in shared memory communication. When multiple MPI processes are located

on the same node, the data transfer between these processes can be implemented

based on special shared memory region among processes by utilizing some exter-

nal techniques such as mmap. Since each process has a different virtual address

space, most MPI implementations use a pipelined double-copy algorithm for intra-

node communication [15]. This algorithm relies on a shared-memory ring buffer

allocated between the sender and the receiver processes, and is implemented as

the classical producer-consumer problem. As shown in Figure 3.8(a), the ring

buffer is divided into multiple cells, then the sender process tries to get an empty

cell and copies part of data from the send buffer into that cell, while the receiver

process tries to find a full cell and then copies data from that cell to its receive

buffer. The copies on the sender and the receiver processes are pipelined.

Shared buffers	

Buffer[0]!

Buffer[1]	

Buffer[2]	

Buffer[3]	

User
Buffer	

User
Buffer	

Sender	 Receiver	

(a) Sequential pipelining.

Shared buffers	Sender	 Receiver	

Buffer[0]!

Buffer[1]	

Buffer[2]	

Buffer[3]	

User
Buffer	

User
Buffer	

(b) Parallel pipelining.

Figure 3.8: Data movement of parallelization and pipelining.

In MT-MPI, we parallelize this copies on both the sender and the receiver

processing using the available idle threads. However, the original algorithm al-

ways copies data per cell size (32 KB in the MPICH implementation) which is too

small for OpenMP parallelism compared to the overhead of threads synchroniza-

29

Time	
5T	
4T	
3T	
2T	
1T	
0T	

Receiving process	

Sending process	

(a) Sequential pipelining.

Receiving process	

Sending process	

Time	
5T	
4T	
3T	
2T	
1T	
0T	

(b) Poor parallelism.

Time	
5T	
4T	
3T	
2T	
1T	
0T	

Sending process	

(c) Strong parallelism.

Figure 3.9: Sequential pipelining vs. parallel data copy.

tion. Thus we extended the pipelined double-copy algorithm to ensure sufficient

data to be parallelized in every single copy. As shown in Figure 3.8(b), we reserve

multiple contiguous available cells as a “large cell”, and concurrently copy data

from the user buffer to that large cell on the sender side and from the cell to the

user buffer on the receiver side. For messages that are larger than the size of

the large cell, additional pipelining is still used similar to the sequential version.

Consequently, every single copy can have enough work to be parallelized by mul-

tiple threads. Compared with the sequential pipelining algorithm, however, this

modification may suffer from worse performance in the following cases.

Small messages. As the motivation for our algorithm change, there is not suffi-

cient work can be parallelized by OpenMP in small message transfer. Moreover,

the overhead caused by thread management and synchronization with OpenMP

can be more expensive than the sequential copy. Thus, we do not expect any

performance benefit from parallelization in this case.

Large messages but few available threads. In our parallel algorithm, we

reserve as many available shared-memory cells as possible as a large cell and

parallelize the copy on that large cell using all of the available idle threads.

Although this approach can increase the work for parallelism, it also potentially

increases the pipeline unit to a much larger size. That is, if we have enough

threads to parallelize each pipeline unit we could obtain very low cost for each

unit and thus achieve good performance; conversely, if we only have a few threads

available, the cost of every pipeline unit obviously becomes more expensive than

the small unit in the sequential version, thus resulting in performance degradation

due to reduced pipelining. This trend is illustrated in Figure 3.9. Specifically,

compared with the sequential pipelining (Figure 3.9(a)), when the number of

threads available to MPI is small, the parallel copy does not improve performance

much but delays the receiver process from getting started with its copy due to

30

increased cost for every single pipeline unit (Figure 3.9(b)). On the other hand,

when sufficiently large number of threads are available to MPI, the parallel copy

of each unit is much more efficient, thus balancing the loss of performance in

pipelining (Figure 3.9(c)). We note that the issue can not be simply worked

around by reducing the size of each shared-memory cell or the number of reserved

cells in every single copy, because that would also reduce the amount of work

distributed to each thread, thus causing similar issue as in the case of small

messages.

Few shared-memory cells. Not only small messages but also insufficient

shared-memory cells can result in too few work in parallelism. In other words,

if the total size of the shared ring buffer is not large enough, it can happen that

most cells are still being used for transferring previous message or previous part

of the same message (e.g., being copied on the receiver side) and thus cause the

work unit of the next copy (e.g., the next chunk copied on the sender side) to be

so small that can not show benefit from parallelism compared to the overhead in

threads management.

In summary, the parallel approach can improve performance only when (1)

the message size is not too small (≥ 64 Kbytes); (2) the number of threads

is not too few (≥ 8); and (3) the total size of free cells is not too small (≥
64 Kbytes). In our implementation, we choose the parallel algorithm for shared-

memory communication only when all three conditions are met; otherwise we fall

back to the original sequential pipelining. We note that the above thresholds

mentioned for each condition are empirically evaluated on our test platform and

must be tuned for different platforms.

3.3.2.3 Optimizations for the InfiniBand Network

Several MPI implementations are optimized for a variety of networks through a

layered software architecture where one of the layers provides network-specific

functionality [10, 71]. In MPICH, the code construction is defined as in Fig-

ure 3.10(a), the network-specific layer is called netmod. There are several netmod

implementations existing for MPI over InfiniBand network (IB), with more-or-

less similar functionality and performance. In this dissertation, we utilize the

implementation described in [67].

To implement the IB communication, we need to create and manage a number

of IB objects, including contexts, protection domains (PDs), queue pairs (QPs),

and completion queues (CQs). As shown in Figure 3.10(b), a process can create

one or more IB contexts, each of which contains one ore more PDs to define the

protection semantics of memory and associated connections. Within a PD, the

process can also create one or multiple QPs, each QP consists of a send queue

and a receive queue, and is used to communicate between a pair of processes. A

PD can also have one or more CQs, each CQ is used to check the completion of

data transferring operations on one or more QPs. IB also provides shared queues

for better memory management, but for simplicity we do not describe them here.

In the typical MPI IB netmod implementations, every MPI process often ini-

tializes one IB context and one PD shared for the connections on all the other

processes. Multiple QPs are created on every process, each of which is corre-

31

TCP	 IB	SCIF	

ADI3

CH3

Nemesis

SHM	 Netmod

(a) Code Construction in MPICH.

QP	QP	CQ	PD	

HCA

IB	Context	

(b) Components in IB Communication.

Figure 3.10: InfiniBand Netmod in MPICH implementation.

sponding to the connection to a single remote process. A single CQ is created on

each process and shared by all the QPs.

3.3.2.3.1 Parallelism in IB Stack The IB software stack is thread-safe [53].

Specifically, when multiple threads access the same QP or CQ object, it inter-

nally uses mutexes to maintain state consistency between threads. Such state

consistency is expensive and result in performance degradation. Therefore, to

efficiently parallelize the data transfer through IB network, we always use differ-

ent threads to handle the operations issued on different QPs in order to avoid

any thread contention. Even with this approach, however, some shared data

structures still need to be protected inside IB stack. Before we parallelize the

MPI netmod, we first want to see how much performance improvement we can

gain by parallelizing the operation posting processing. We first studied several

parallel approaches in IB programs and compared the multithreaded point-to-

point IB RDMA write bandwidth by using the ib write bw benchmark from the

OpenFabrics Enterprise Distribution (OFED) package [53] with modification for

OpenMP parallelism. Specifically, we compare the following three parallelism

levels:

• IB contexts.

Each process has 64 IB contexts, and each context has one QP and one CQ.

Each thread handles operations on a different context, CQ and QP.

• QPs and CQs.

Each process has a single IB context with 64 QPs and 64 CQs. Each CQ

is dedicated to a different QP. Each thread handles operations on different

QPs and CQs, but they all share the same context.

• QPs only.

Each process has a single IB context with 64 QPs and one shared CQ. Each

thread handles operations on different QPs, but they all share the same

context and CQ.

Figure 3.11 shows the IB RDMA write bandwidth with small messages (64 Bytes)

between two Intel Xeon phi coprocessors on different nodes with comparison be-

32

1.0

2.0

2.7 2.9
3.3

3.6 3.6

1.0

1.6

2.2
2.7

3.1 3.3 3.1

1

2

4

1 2 4 8 16 32 64

B
W

 Im
pr

ov
em

en
t	

Number of Threads	

IB contexts QPs and CQs QPs only

Figure 3.11: Small (64-byte) IB RDMA write bandwidth.

tween above parallelism levels. We conclude two primary observations from the

figure.

1. The performance improvement with increasing threads is higher when the

number of shared resources is less. For example, when each thread has

a separate IB context (IB contexts level), with increasing threads, the

parallel performance is 3.6-fold higher than the sequential performance. But

when the context and the CQ are shared by all threads (QPs only), the

parallel performance is only 3.1-fold higher than the sequential performance.

This is because more sharing usually translates more critical sections and

hence resulting in more serialization.

2. The maximum parallelism that the IB-stack can provide is 3.6-fold when all

resources are distributed to different threads, and 3.1-fold when the IB con-

text and CQ are shared between all the threads but only QPs are separately

accessed by different threads. Most MPI implementations are increasingly

utilizing more shared resources (i.e., similar to QPs only level) in order to

manage the per-process resource usage. Thus, in our MPI implementation,

3.1-fold improvement is the maximum benefit from parallelism that we can

expect as the ideal case.

3.3.2.3.2 Parallelism in MPI Netmod After studied the maximal benefit

we can get from parallelism in IB communication, then we look into the par-

allelism strategies in MPI netmod. In our MPI implementation, the internal

progress on every MPI process can be divided into two parts: one for sending

and other for receiving. In the sending progress, small messages are always firstly

copied in to an internal preregister sending buffer to avoid heavy overhead

for IB memory registration; then an RDMA operation is posted into the corre-

sponding QP to transfer user data from the preregister buffer to a remote pro-

cess. In the receiving progress, the process firstly polls its internal preregister

receiving buffer and then copies data from a cell in the receiving buffer to

33

the corresponding user buffer. Both the copy and the operation posing in the

sending progress, the polling and the copy in the receiving progress are separate

per connection, thus make them possible be parallelized by OpenMP. Following

this notion, we designed our strategies as follows:

• Posting Operations in Parallel. As we have mentioned, most netmod

implements the IB communication using multiple per-connection QPs and

a global shared CQ. To minimize the mutexes required in the IB stack, we

only assign each QP to a single thread. That is, multiple QPs might be

managed by a single thread, however, a single QP is never managed by

multiple threads. We are also carefully ensure that the number of threads

used for parallelism is never more than the number of QPs (i.e., by setting

num threads clause in OpenMP parallel region), in order to avoid necessary

thread synchronization overheads.

• Copies from/to Preregistered buffer in Parallel. In small-message

communication, user data always needs to be copied into the internal send-

ing buffer on the sender side, and received into the internal receiving buffer

and copied out to user receiving buffer on the receiver side. Since each

connection uses a separate QP and preregistered buffers, so the data copies

on the send and receive side are also part of the parallelism and can be

executed concurrently by multiple threads.

Although several places of the IB communication are suitable for parallelism,

there are still some factors exist in MPI and limit the parallelism achievable in

practice. One factor is that, the number of operations that can be issued to a

QP or to the shared CQ is often limited. While the QP or CQ can be configured

to allow for a large number of operations, such configuration causes performance

degradation due to the internal bookkeeping associated with the data structures

required in IB stack (e.g., the send queue in QP). Consequently, the MPICH IB

netmod configures this limit to 1,024 for QPs and 32,768 for CQs, thus limiting

the maximum number of network operations each thread can post to 1,024, and

the maximum number of network operations posted across all threads to 32,768,

before thread synchronization is needed. A similar parallelism-limiting factor is

the number of preregistered buffers available at the sender and receiver side.

Except the MPI internal design, the application characteristics also constrain

the possibility of parallelism. Specifically, since MT-MPI exploits OpenMP par-

allelism at the granularity of QPs, each of which is corresponding to a different

remote process, for ideal parallelism we need the same amount of communica-

tion per peer process. In practice, however, this assumption can rarely hold. In

most applications the amount of communication can vary dramatically between

different processes, thus limiting the available parallelism.

3.4 Evaluation and Analysis

In this section, we evaluate the various techniques designed within MT-MPI.

All our experiments are executed on the Stampede supercomputer at the Texas

Advanced Computing Center [1]. Stampede consists of 6400 Dell Zeus C8220z

34

compute nodes, each with two Xeon E5-2680 processors and 32 GB RAM, and

an Intel Xeon Phi SE10P coprocessor with 8 GB of on-board RAM connected

by an x16 PCIe 2.0 interconnect. The nodes are interconnected by a Mellanox

FDR InfiniBand network. All our experiments are executed on the Xeon Phi

coprocessor, with every MPI process running on a separate coprocessor following

the native mode.

3.4.1 Derived Datatype Processing

In this section, we describe three types of experiments that stress derived datatype

processing to various degrees: (1) derived datatype packing performance, (2) halo

data exchange with derived datatypes, and (3) the NAS multigrid benchmark.

It is noted that we use a similar for loop for the sequential and parallel version

in our comparison. It allows us to have a fair comparison where both modes are

vectorizable, and both modes have the same issue with prefetching as described in

Section 3.3.2.1. Thus, the improvement shown will be solely due to parallelization.

3.4.1.1 Derived Datatype Packing

In our experiments with derived datatype packing (using MPI PACK), we utilized

a 3D matrix of doubles, with the X dimension as the leading dimension. The

matrix volume was fixed at 1 GB, so increasing one dimension would reduce

another. Our experiments involved packing different 2D planes of the 3D matrix.

Figure 3.12(b) shows the performance improvement while packing the top

surface (X-Z plane). A vector datatype is utilized in this case, with a block

length equal to the length of the X dimension and stride equal to the area of the

X-Y plane; the Z dimension indicates the vector count. In our experiment, the Y

dimension was fixed to 2 doubles, and the Z dimension varied as indicated on the

graph legend (X dimension was varied to maintain the matrix volume). As can

be seen in the figure, MT-MPI gets a reasonably good speedup with increasing

number of threads, achieving a 96-fold improvement compared with the original

sequential version when all 240 threads are used. A larger Z dimension provides

better speedup because that leads to a larger iteration count for the contiguous

copies and hence more parallelism that can be exploited by MT-MPI.

Figure 3.12(c) shows the performance improvement while packing the left sur-

face (Y-Z plane). A two-level datatype comprising a vector of vectors is utilized

in this experiment. The X dimension was fixed to 2 doubles, and the Y dimension

varied as indicated on the graph legend (the Z dimension was varied to maintain

the matrix volume). As shown in the figure, MT-MPI still achieves a relatively

good speedup compared with the sequential version (42-fold), although less than

what it achieved while packing the top surface. This reduction in performance is

because the lowest-level vector datatype always has a block length of one double

and a count equal to the Y dimension. This restricts the amount of work that

is done within each iteration of the contiguous data copy operation and con-

sequently limits the work done by each thread, especially when the number of

iterations (i.e., the Y dimension) is small.

35

Z	

Y	

X	

(a) Derived Datatypes in Three-dimension Ma-

trix.

1

2

4

8

16

32

64

128

256

1 2 4 8 16 32 64 128 240

S
pe

ed
up
	

Number of Threads	

256 1K 4K 16K
64K 256K Ideal

(b) Top surface with varying Z dimension.

0.125
0.25

0.5
1
2
4
8

16
32
64

128
256

1 2 4 8 16 32 64 128 240

S
pe

ed
up

Number of Threads

256 1K 4K 16K
64K 256K Ideal

(c) Left surface with varying Y dimension.

1

2

4

8

16

32

64

128

256

1 2 4 8 16 32 64 128 240

S
pe

ed
up

	

Number of Threads	

256 1K 4K 16K
64K 256K ideal

(d) Front surface with varying Y dimension.

Figure 3.12: Performance of parallel 3D packing.

3.4.1.2 Halo Exchange of Data

In our second set of experiments, we measured the performance of 3D halo ex-

changes of data as used in stencil computations. Both the data and the processes

are partitioned into a 3D space. Each process communicates with its neighbor-

ing processes with which it shares a plane. For our experiments we define the

following four dimension shapes for the local data on each process: (1) Cube,

with dimensions 512 × 512 × 512 (doubles); (2) Large X, with dimensions 16K

× 128 × 64; (3) Large Y, with dimensions 64 × 16K × 128; and (4) Large Z,

with dimensions 64 × 128 × 16K. The MPI processes are evenly distributed in

all dimensions.

Figure 3.13 shows the performance improvement achieved by MT-MPI com-

pared with the sequential version when using 64 MPI processes. Large Y per-

forms much better than the others, delivering a 23-fold speedup with 240 threads.

To understand this behavior, we profiled the communication time for the different

dimensions. The halo benchmark sends data in all dimensions simultaneously, so

it is hard to profile how much time each dimension takes. Therefore, for profiling

purposes, we modified it to serialize communication in one dimension at a time,

36

0.5

1

2

4

8

16

32

1 2 4 8 16 32 64 128 240

S
pe

ed
up

	

Number of Threads	

Cube Large X Large Y Large Z

Figure 3.13: 3D internode halo exchange using 64 MPI processes.

0

1

2

3

4

5

6

1 2 4 8 16 32 64 128 240

S
pe

ed
up

Number of Threads

Communication Time Speedup Execution Time Speedup

Figure 3.14: Hybrid MPI+OpenMP NAS MG Class E using 64 MPI processes.

and we observed that communication along the Y-Z dimension takes 85% of the

time. While this is obviously not entirely indicative of the true halo benchmark

that sends data in all dimensions simultaneously, it does give us some idea of the

communication cost.

As demonstrated in Figure 3.12(c), a large Y dimension helps improve the

performance of packing in the Y-Z dimension by providing better parallelism.

This results in a large Y impacting the performance of the halo benchmark to

the largest extent. With Cube, the Y-dimension is reduced to 512 doubles, thus

reducing the speedup to around 5.8-fold as well. With Large X and Large Z, the

Y-dimension further reduces to 128 doubles, which in turn reduces the overall

speedup to around 1.6-fold and 1.8-fold, respectively.

37

0.125

0.25

0.5

1

2

4

8

16

1 2 4 8 16 32 64 120

S
pe

ed
up

	

Number of Threads	

64K 256K 1M 4MB 16MB

(a) Latency.

0.125

0.25

0.5

1

2

4

8

16

1 2 4 8 16 32 64 120

S
pe

ed
up

	

Number of Threads	

64K 256K 1M 4MB 16MB

(b) Bandwidth.

0.125

0.25

0.5

1

2

4

8

16

1 2 4 8 16 32 64 120

S
pe

ed
up

	

Number of Threads	

64K 256K 1M 4MB 16MB

(c) Message rate.

1

2

4

8

16

32

64

128

1 2 4 8 16 32 64 120

La
te

nc
y

(m
s)

Number of Threads

512KB 1MB 2MB

(d) Varying shared buffer size (16MB mes-

sage).

Figure 3.15: Shared-memory communication performance with varying message

size between 2 MPI processes

3.4.1.3 NAS Multigrid Benchmark

We also evaluated a hybrid MPI+OpenMP version of the NAS Multigrid (MG)

kernel [12] . The original MG kernel distributed as a part of the NAS parallel

benchmarks does not contain a hybrid MPI+OpenMP version, so we modified

the MPI version to (1) parallelize the local computation using OpenMP and (2)

employ derived datatype communication instead of manual packing. The MG

kernel implements a V-cycle multigrid algorithm to solve a 3D discrete Poisson

equation. In every iteration of the V-cycle routine, halo exchanges are performed

with various dimension sizes (count of double), from 2 to 514 in class E with 64

MPI processes, and so forth. The communication in all dimensions except the

X-Y plane is noncontiguous.

Figure 3.14 presents the speedup achieved by MT-MPI compared with the

original MPICH in class E (X, Y, Z dimension sizes are each 2K) when employing

64 processes. As shown in the figure, MT-MPI helps improve the communication

of MG by 4.7-fold, and the overall execution time by 2.2-fold. The speedup in the

communication time is still slightly lower than that of the 3D halo exchanges with

the Cube shape shown in Figure 3.13. The reason is that the MG also contains

38

some halo exchanges with very small dimension size whose packing process cannot

be parallelized efficiently.

3.4.2 Shared-Memory Communication

To measure the impact of MT-MPI on intranode shared-memory communication,

we evaluated the point-to-point communication benchmarks in the OSU MPI

microbenchmark suite version 4.1 (http://mvapich.cse.ohio-state.edu/benchm-

arks/). In particular, we used the latency, bandwidth, and message rate bench-

marks. Both the original MPICH and MT-MPI use an internal shared-memory

region of 2 MB, with each cell containing 32 KB.

Figure 3.15 illustrates the performance of all three benchmarks; the legends

in the graph represent different message sizes. We notice that the performance

trends of all three benchmarks are similar, with MT-MPI delivering up to a 5-fold

performance benefit for message sizes ≥ 1 MB, given enough parallelism. When

the number of idle threads is ≤ 4, however, MT-MPI’s performance is worse than

that of the original MPICH. As discussed in Section 3.3.2.2, the reason is that

MT-MPI loses some of the pipelining capabilities in the original MPICH code in

return for thread parallelism. But with a small number of threads, this tradeoff

is not beneficial.

Another observation we make in Figure 3.15 is that the speedup of MT-MPI

for message sizes 64 KB and 256 KB is much better than that of other message

sizes. This, however, is not because of MT-MPI’s superior architecture. Rather,

it is because the communication protocol thresholds (i.e., eager vs. rendezvous

communication thresholds) in MPICH are tuned for regular Xeon systems, by

default, and are too large for the Xeon Phi architecture. We did not change the

default configuration of MPICH in order to avoid introducing yet another dimen-

sion of variance in the paper. Thus, for 64 KB and 256 KB message sizes, the

original MPICH ends up using a suboptimal communication protocol, resulting in

MT-MPI’s performance falsely appearing to be significantly better as compared

to other message sizes.

We next study the behavior of our parallel implementation when employing

different shared buffer sizes. Our results for the latency benchmark when trans-

ferring 16 MB messages are shown in Figure 3.15(d). Other benchmarks expose

similar behaviors, whereas this message size ensures we are showing the sustained

performance of the pipeline, as several pipeline units are involved. As can be seen

in the figure, when only a few of threads are available, smaller shared buffers pro-

vide slightly lower latency. We already discussed this issue in Section 3.3.2.2,

this is because the parallel implementation reserves many available cells as a

large contiguous cell, thus such a larger cell could result in a larger pipelining

unit, but such less threads cannot copy them out more efficiently comparing with

smaller pipelining units. We avoid this inefficiency by checking the number of

idle threads to adjust the maximum combinable buffer size. On the other hand, a

large enough number of threads benefits from larger pipeline units, which reduces

the proportion of thread synchronization overhead.

39

0

5

10

15

20

25

30

35

1 2 4 8 16 32 64

E
xe

cu
tio

n
Ti

m
e

R
ed

uc
tio

n
(%

)

Number of Threads

1000 2000 4000 8000 16000

(a) Overall Speedup

0

20

40

60

80

100

1 2 4 8 16 32 64

E
xe

cu
tio

n
Ti

m
e

R
ed

uc
tio

n
(%

)

Number of Threads

1000 2000 4000 8000 16000

(b) Send Processing Speedup

Figure 3.16: One-sided communication benchmark with IB using 65 MPI pro-

cesses.

3.4.3 InfiniBand Communication Operations

In this section we evaluate the performance benefits achieved by MT-MPI with

our modifications to the MPICH IB netmod. We performed two types of experi-

ments: (1) a one-sided communication microbenchmark designed to demonstrate

the ideal parallelism that can be obtained within MT-MPI and (2) the one-sided

version of Graph500 benchmark [49].

3.4.3.1 One-Sided Microbenchmark

We designed a microbenchmark in which one MPI process issues many MPI PUT

operations to all other processes. Each MPI PUT operation is for 64 bytes. We

measured the execution time of the benchmark using 65 MPI processes; thus

each process communicates with 64 other processes and internally maintains 64

IB QPs. Figure 3.16(a) shows the speedup in execution time with MT-MPI

compared with the original MPICH. As we increase the number of operations

issued from 1,000 to 16,000, MT-MPI delivers an increasing performance benefit,

reaching a 1.44-fold speedup when using 64 threads.

This performance benefit, however, is less than the ideal speedup of 3.1-fold

that we can get by parallelizing IB communication, as discussed in Section 3.3.2.3.

To understand the reason for this less-than-ideal speedup, we measured the exe-

cution time of the netmod send-side communication processing at the root process

(SP), which consists only of the copy from the user buffer to a preregistered chunk

and the posting of the operations to the IB network. Figure 3.16(b) shows that

the execution time of SP delivers around 8-fold speedup when using 64 threads,

which is as expected—we expect around a 3.1-fold speedup due to the paralleliza-

tion in the posting of network operations, and some additional improvement due

to the parallelized memory copy. Table 3.1 shows the relationship between the

time spent in SP and the total execution time when issuing 16,000 operations.

Although SP shows the expected performance improvement with MT-MPI, the

percentage of time spent in SP is less than 10% when using more than 16 threads.

This results in a reduction in the overall performance boost that we achieve.

40

Table 3.1: Profile of the one-sided communication benchmark.

Nthreads
Execution Time Speedup

Total (s) SP (s) SP / Total (%) Total SP

1 5.8 2.2 38 1 1

4 4.7 1.3 27 1.2 1.7

16 4.0 0.4 10 1.4 5.0

64 4.0 0.3 8 1.4 6.9

3.4.3.2 Graph500 Benchmark

1.0

1.1

1.2

1.3

1.4

1.0E+06
1.1E+06
1.2E+06
1.3E+06
1.4E+06
1.5E+06
1.6E+06
1.7E+06

1 2 4 8 16 32 64

Im
pr

ov
em

en
t

H
ar

m
on

ic
 M

ea
n

TE
P

S

Number of Threads

Improvement Harmonic Mean TEPS

Figure 3.17: Performance of the Graph500 benchmark using 64 MPI processes.

The second benchmark we studied was the Graph500 benchmark [49], which

performs a breadth-first vertex-visit operation on large graphs. In particular,

we used a scale of 222 and an edge factor of 16 on 64 MPI processes running

on different Intel Xeon Phi coprocessors at different nodes. In the one-sided

version of the Graph500 benchmark, every process issues many MPI Accumulate

operations to the other processes in every breadth-first search iteration.

Figure 3.17 shows the performance improvement of MT-MPI compared with

the original MPICH. MT-MPI delivers a 1.3-fold improvement in the harmonic

mean of the traversed edges per second (TEPS) when using 64 threads. As ex-

pected, this improvement is on par with the performance improvement we see

in the one-sided communication benchmark that we discussed in Section 3.4.3.1.

The slightly smaller speedup compared with the one-sided communication bench-

mark (which achieves a 1.44-fold speedup) is because the Graph500 benchmark

does not uniformly communicate with all peer processes, thus causing some un-

evenness in MT-MPI’s parallelization.

41

Chapter 4

Process-based Asynchronous Progress

Publication

This chapter includes the contents that have been published in conference pa-

pers [61][60]. In reference to IEEE copyrighted material which is used with

permission in this thesis, the IEEE does not endorse any of the university of

Tokyo’s products or services. Internal or personal use of this material is permit-

ted. If interested in reprinting/republishing IEEE copyrighted material for ad-

vertising or promotional purposes or for creating new collective works for resale

or redistribution, please go to http://www.ieee.org/publications standards/

publications/rights/rights link.html to learn how to obtain a License from

RightsLink.

An increasing trend has been shown in scientific applications that the compu-

tation and communication are moving toward dynamic and data driven. Applica-

tion developers are investigating the ways to better implement such communica-

tion rather than using the traditional send-receive patterns, since it becomes hard

to specify matching pair of send/receive calls as in regular applications. MPI one-

sided communication, as known as RMA, has been introduced from MPI-2 [5].

Its semantics could allow programmers to specify the communication in a more

dynamic way that only the local process (origin) specifies the parameters for a

data movement, without requiring a matching “receive” on the remote process

(target). Unlike message passing, the data movement in RMA is more close to

irregular memory access pattern, in which a process can read from/write to any

location in the memory region on the other processes after acquired appropriate

permission.

Not only the communication semantics, the RMA model could also provide

asynchronous completion of data transfer (i.e., RMA operations in MPI) in order

to hide the overhead of communication with computation on the target process.

However, such asynchronous completion is not practically achieved in most MPI

implementations and consequently limiting the performance of application exe-

cution. In this chapter, we will study the critical issue existing in MPI RMA

communication. In Section 4.1 we first describe the essential problem in the im-

plementation of RMA data movement, and summarize the status of traditional

solutions in Section 4.2 with discussion around their limitations. In section 4.3,

42

http://www.ieee.org/publications_standards/publications/rights/rights_link.html
http://www.ieee.org/publications_standards/publications/rights/rights_link.html

Helper		
thread	

Process	0	
(origin)	

Process	1	
(target)	

+=	 COMP.	ACC(data)	

complete	

(a) Thread-based Approach.

Process	0	
(origin)	

Process	1	
(target)	

+=	

Helper		
thread	

COMP.	ACC(data)	

complete	

Interrupt

(b) Interrupt-based Approach.

Figure 4.1: Tradition asynchronous progress approaches.

we give an overview of our solution proposed in this dissertation, and describe

the detailed design and the practical challenges we resolved in section 4.4 and 4.5

respectively. In Section 4.7, we utilize both mirobenchmarks and a real chem-

istry application suite to evaluate our solution with comparison to the traditional

approaches.

4.1 Problem Statement

While the RMA model is useful for dynamic and irregular communication pat-

terns, the MPI standard does not guarantee that such data movement is truly

asynchronous. In reality, most MPI implementations still require the MPI process

to make MPI calls in order to ensure communication progress to complete any

RMA operations issued on it as a target. Although RDMA (remote direct mem-

ory access) supported networks such as InfiniBand, Fujitsu Tofu or Cray Aries,

could provide the capability of contiguous PUT/GET operations in hardware thus

allowing MPI to offload the corresponding operations and achieve asynchronous

communication, more complex operations (e.g., noncontiguous ACCUMULATE

operation on 3D subarray) still have to be done in software within the MPI

implementation. Consequently, arbitrarily long delay can happen in those opera-

tions if the target process is busy computing outside MPI stack and cannot make

software progress.

4.2 Traditional Approaches

Several existing researches have looked into this problem and proposed two kinds

of approaches—a thread-based mode and an interrupt-based mode —to provide

asynchronous progress in MPI thus ensure asynchronous completion of RMA

operations. However, none of them have been really used in applications due

to several limitations. In this section, we briefly introduce each approach and

discuss their limitation as follows.

• Thread-based approach. In this approach, each MPI process utilizes a

background thread in order to handle incoming messages from other pro-

cesses (Figure 4.1(a)). This model is the most widely used approach and has

been implemented in many MPI implementations, including MPICH [10],

MVAPICH [70] and Intel MPI [36]. While being a generic approach for var-

ious MPI communication models, it raises performance concerns. One is

43

that a background thread can make progress for only the MPI process that

spawned it, thus this model requires deploying at least as many background

threads as MPI processes on every computing node. On current MPI im-

plementations, where the progress engine polls repeatedly the network for

incoming messages, this approach can waste half the computing resources or

force core oversubscription. Another concern is, this model forces MPI im-

plementations to implement multithreaded safety, which can bring further

bottlenecks because of thread synchronization requirements. Figure 4.2(a)

demonstrates the cost of multithreading based on the point-to-point mes-

sage rate benchmark in OSU MPI microbenchmark suite with modification

for multithreading [69]. Even only enabling the muliththreading safety

with only one thread per process (TH-Multiple), significant overhead can

be shown compared to the default thread single safety (TH-Single); perfor-

mance is degraded even more when involving another thread to poll MPI

progress (e.g., by waiting for receiving a message from the main thread) on

each MPI process (TH-Multiple with 2 threads).

• Interrupt-based approach. In the interrupt-based model, hardware in-

terrupts are issued to awaken a thread in order to process the incoming

RMA messages. This model is used by Cray MPI [20] when RMA uses

the DMAPP conduit (not currently the default); in this case, the interrupt

wakes up a kernel thread. MPI on Blue Gene/P [28, Chapter 7] and Blue

Gene/Q [43] use special hardware to cause a context switch that cause

a special thread to wake up and drive the network when a message ar-

rives; in this case, the thread is a user thread, which allows for arbitrary

code to run, unlike a kernel thread. While interrupt-driven asynchrony

does not require dedicated resources the way polling threads do, handling

per-operation interrupts on cores that are otherwise devoted to computa-

tion causes those cores to stop computing temporarily and leads to cache

pollution. Figure 4.2(b) demonstrates such cost in the Cray DMAPP asyn-

chronous progress by using a simple RMA communication on two processes

where one process does lockall-accumulate-unlockall while the other

process does a dgemm computation. With increasing number of ACCUMU-

LATE operations, it is obvious that the overhead of the DMAPP approach

increases with the amount of system interrupts issue on the second process.

4.3 Solution

In this dissertation, we present “Casper,” a process-based asynchronous progress

solution on multi- and many-core architectures to address the inefficient com-

munication in MPI RMA. Unlike traditional approaches, the philosophy of the

Casper framework is centered on the notion that since the number of cores on

computing nodes is growing rapidly, not all of the core are always busy com-

puting during the execution, thus dedicating a few of the cores for helping with

asynchronous progress might be better than using an interrupt-based model. Fig-

ure 4.3 shows an image for such core deployment. Comparing to the thread-based

approach, the use of processes rather than threads allows Casper to control the

44

0

200

400

600

800

1000

1200

1400

1600

1 2 4 8 16

32

64

12
8

25
6

51
2

1K

2K

4K

8K

16
K

32

K

64
K

10
00

 M
es

sa
ge

s
/ S

ec
on

d

Message Size (Bytes)

TH-Single TH-Mutiple TH-Mutiple with 2 threads

(a) Overhead of Multithreading.

0

20000

40000

60000

80000

100000

0

2

4

6

8

10

1 4 16 64 256 1024

In
te

rr
up

ts

Ti
m

e
on

 R
an

k
0

(m
s)

Number of Operations

System Interrupts Original MPI DMMAP

(b) Overhead of System interrupts.

Figure 4.2: Performance issues in traditional solutions.

Compu&ng	Node	0

Memory

Socket	0

P P

P P

P P

P G

Memory

Socket	1

P P

P P

P P

P G

Compu&ng	Node	1

Memory

Socket	0

P P

P P

P P

P G

Memory

Socket	1

P P

P P

P P

P G

Figure 4.3: Casper core deployment.

amount of sharing thus eliminate the thread-safety overheads, as well as to control

the number of cores being utilized for asynchronous progress. In summary, we

believe Casper provides a more suitable solution that the traditional approaches

for the asynchronous progress on large many-core architectures.

The central idea of Casper is the ability of processes to share memory by

mapping a common memory object into their address spaces by using the MPI-

3 shared memory windows interface. Specifically, Casper keeps aside a small

user-specified number of cores on a multi- or many-core environment as “ghost

processes.” When the application process tries to allocate a remotely accessible

memory window, Casper intercepts the call and maps such memory into the ghost

processes’ address space. Casper then intercepts all RMA operations to the user

processes on this window and redirects them to the ghost processes instead.

Since the user memory regions are not migrated or copied but just mapped

into the ghost processes’ address space, RMA operations that are implemented

in hardware see no difference in the way they behave. On the other hand, RMA

operations that require remote software intervention can be executed in the ghost

processes’ MPI stack on the additional cores kept aside by Casper, without re-

quiring any intervention from the application processes.

Although the core concept of Casper is straightforward, the design and im-

plementation of such a framework must take several aspects into consideration.

Most important, the framework needs to ensure that correctness is maintained

45

as required by the MPI-3 semantics. While this task is easy to manage for sim-

ple applications, the wide variety of communication and synchronization models

provided by MPI can make the task substantially more complex for applications

that are nontrivial. This task is even more complicated for applications that use

multiple MPI-3 epoch types (e.g., passive-target and active-target) or multiple

windows of remote memory buffers because the same Casper ghost processes need

to maintain progress on all of them, thus essentially requiring that they never

indefinitely block inside an MPI operation. Furthermore, when more than one

ghost process is present, the Casper architecture must ensure that the ordering,

atomicity, and memory consistency requirements specified by the MPI-3 standard

are met in a way that is transparent to the application.

The Casper architecture hides all this complexity from the user and manages it

internally within its runtime system. In some cases, however, such complexity can

cause performance overhead. In this paper we present various techniques we used

to ensure correctness while retaining the performance of the RMA operations and

enabling low-overhead asynchronous progress. In addition to a detailed design of

the Casper architecture, we present experiments evaluating and analyzing Casper

with various microbenchmarks and a large quantum chemistry application.

4.4 Casper Design Overview

In this section, we present an overview of the design and workings of the Casper

architecture. Casper is designed as an external library through the PMPI name-

shifted profiling interface of MPI. This allows Casper to transparently link with

various MPI implementations, by overloading the necessary MPI functions.

Casper provides three primary functionalities. First, it deploys “ghost pro-

cesses” on each node that are separate from the main application processes. These

ghost processes assist in processing RMA operations targetted to that node. Sec-

ond, when the user tries to allocate remotely accessible memory, it sets up the

allocated memory such that the memory is mapped into the address space of both

the application processes as well as the ghost processes, thus allowing any of these

processes to access the data. Third, it redirects communication operations in-

tended to a user process to the corresponding ghost processes, thus allowing them

to be handled by the ghost processes instead of the application processes. These

three steps are described in more detail in the following subsections.

4.4.1 Deployment of Ghost Processes

Ghost processes in Casper are allocated in two steps. In the first step, when

the user launches the application with a number of processes, a user-defined

subset of these processes is carved aside as the ghost processes at MPI initial-

ization time. The remaining processes form their own subcommunicator called

COMM USER WORLD. The number of ghost processes is user-defined through an en-

vironment variable, allowing the user to dedicate an arbitrary number of cores

on the node for the ghost processes.

In the second step, Casper overrides all MPI operations that take a communi-

cator argument and replaces any occurrence of MPI COMM WORLD in all non-RMA

functions with COMM USER WORLD at runtime through PMPI redirection. This

46

step ensures that all non-RMA communication is redirected to the correct MPI

processes, including creation of other subcommunicators from MPI COMM WORLD.

After initialization, ghost processes simply wait to receive any commands from

user processes in an MPI RECV loop. This approach ensures that while the ghost

processes are waiting for commands, they are always inside the MPI runtime,

thus allowing the MPI implementation to make progress on any RMA operations

that are targeted to those ghost process.

One aspect to consider in Casper is the locality of application buffers relative

to the ghost processes. Specifically, since a ghost process might be depositing or

reading data from the application buffers, how far the ghost process is compared

with the buffers can have a serious impact on performance. To handle this issue,

we ensure that the ghost processes in Casper are topology-aware. Casper inter-

nally detects the location of the user processes and places its ghost processes as

close to the application process memory as possible. For example, if a node has

two NUMA domains and the user requests two ghost processes, each of the ghost

processes places itself in a different NUMA domain and binds itself to either the

process ranks or segments in that NUMA domain.

4.4.2 RMA Memory Allocation and Setup

Remote memory allocation in the Casper architecture is tricky in that the allo-

cated memory must be accessible by both the application processes and the ghost

processes. MPI provides two broad mechanisms to declare a memory region as

remotely accessible. The first is an “allocate” model (i.e., MPI Win allocate

and MPI Win allocate shared) in which MPI is responsible for creating such

memory, thus allowing the MPI implementation to optimize such allocation (e.g.,

through shared memory or globally symmetric virtual memory allocation). The

second is a “create” model (i.e., MPI Win create and MPI Win Create dynamic),

in which the user allocates memory (e.g., using malloc) and then exposes the

memory as remotely accessible.

While memory sharing between the application processes and the ghost pro-

cesses can occur in both models, doing so in the “create” model requires OS

support to expose such capability. This capability is generally present on large

supercomputers such as Cray (e.g., through XPMEM [78] or SMARTMAP [14])

and Blue Gene, but not always on traditional cluster platforms. Thus, for sim-

plicity, we currently support only the “allocate” model.

When the application creates an RMA window using MPI Win allocate,

Casper follows a three-step process:

1. It first allocates a shared-memory region between the user processes and the

ghost process on the same node using the MPI-3 MPI Win allocate shared

function, as depicted in Figure 4.4(a). As shown in the figure, the same

memory region that is used by the application is also mapped onto the

address space of the ghost process. Thus, such memory is accessible through

either process, although care must be taken to keep it consistent.

2. Once the shared memory is allocated, it creates a number of internal win-

dows using MPI Win create to expose this memory to all user and ghost

processes.

47

Ghost	
Process

P0 P1

P0	offset

P1	offset

Applica2on	
Processes

(a) Shared buffer mapping.

Process	0	
(origin)	

Process	1	
(target)	

+=	
COMP.	ACC(data)	

complete	

Ghost	
Process	

MPI_Recv

(b) Operation redirection

Figure 4.4: Casper basic design.

3. Casper creates a new window with the same memory region that contains

only the user processes; it then returns the new window handle to the

application.

We note that the Casper architecture exposes the allocated shared-memory

in multiple overlapping windows. This model provides Casper’s runtime system

with enough flexibility to manage permissions and communication aspects in a

highly sophisticated manner; but at the same time the model requires extreme

caution to ensure that memory is not corrupted and is consistent with the user’s

expectation. In Section 4.5xx, we describe how these internal windows are utilized

in Casper.

4.4.3 RMA Operation Redirection

Once the window becomes ready, Casper transparently redirects, through PMPI

redirection, all user RMA operations to the ghost processes on the target node.

Such redirection needs to translate both the target rank that the RMA operation

is addressed to and the target offset where the data needs to be written to or

read from (since the offset in the ghost process’s memory region might not be the

same as the offset in the user process’s memory region). For example, based on

Figure 4.4(a), if an origin process does an RMA operation at offset “X” of user

process P1, Casper will redirect the operation to offset “X + P1’s offset in the

ghost process address space” on the ghost process.

When multiple ghost processes are available on the target node, Casper at-

tempts to utilize all of them by spreading communication operations across them.

This approach allows the software processing required for these operations to be

divided between the different ghost processes, thus improving performance. Us-

ing such a model with multiple ghost processes, however, requires extra care

compared with using a model with a single ghost process. Moreover, it raises a

number of correctness issues, as we discuss in Section 4.5.3.

4.5 Ensuring Correctness and Performance

In this section we discuss several corner cases that we need to handle inside

Casper in order to maintain correctness as per the MPI-3 standard while achieving

high performance. Of these, some of the correctness aspects are specific to the

lock-unlock epoch type (discussed in Sections 4.5.1,and 4.5.2), while the rest are

generic to all epoch types (discussed in Sections 4.5.3, 4.5.4, and 4.5.5).

48

With respect to performance optimizations, some of the proposed optimiza-

tions are automatically detected and handled by the Casper implementation while

some others are based on user hints in the form of either info hints or assert hints,

as specified by the MPI standard. Both info and assert hints are, in essence, user

commitments to comply with different restrictions which allow the MPI imple-

mentation to potentially leverage different optimizations. info arguments are

broad-sweeping hints that apply to an entire window and all operations issued

on that window. Further, info hints are extendable so each MPI implementation

can add newer hint capabilities to improve its own performance. assert hints, on

the other hand, are more focussed in scope and typically apply to each epoch.

They are also not as easily extendable to MPI implementation-specific hints.

All assert hints used in Casper are MPI-3 standard defined hints that we

reuse with the same semantics as the standard. Thus, these hints are compatible

with other MPI implementations as well, even though some MPI implementations

might not choose to take advantage of them. The info hints used in Casper are

not defined by the MPI-3 standard and are Casper-specific extensions.

4.5.1 Lock Permission Management for Shared Ghost Processes

Consider an environment where multiple application processes reside on different

cores of the same node and thus share a ghost process. In this case, all RMA

communication to these application processes would be funneled through the

same ghost process. In such an environment if an origin wanted to issue an

exclusive lock to more than one application process on the same node, such a

step would result in multiple exclusive lock requests being sent from the origin

to the same ghost process. This is disallowed by the MPI standard—an origin

cannot nest locks to the same target. Similarly, if two origin processes issue

exclusive locks to different application processes on the same node, this would

result in multiple exclusive lock requests being sent from different origins to the

same ghost process. While this is correct according to the MPI standard, it would

result in unnecessary serialization of all exclusive locks to processes on the same

node, thus hurting performance significantly.

To overcome this issue, Casper internally maintains separate overlapping win-

dows for each user process on the node. In other words, if a ghost process is

supporting N user processes, it will create N overlapping windows. Communi-

cation to the ith user process on each node goes through the ith window. Thus,

the number of internal overlapping windows created is equal to the maximum

number of user processes on any node of the system. Such overlapping windows

allow Casper to carefully bypass the lock permission management in MPI when

accessing different processes but to still take advantage of them while accessing

the same process. Since a single RMA communication operation cannot target

multiple processes at the same time, we never run into a case where the bypassing

of permission management across processes causes an issue.

While this approach ensures correctness, it can be expensive for both resource

usage and performance. To alleviate this concern, we allow the user to use the

info hint epochs used to specify a comma-separated list of epoch types that the

user intends to use on that window. The default value for this info key is all

49

epoch types (i.e., “fence,pscw,lock,lockall”); but if the user sets this value to a

subset that does not include “lock,” Casper can use that information to create

only a single overlapping window (apart from the user-visible window) for all

its internal operations and reduce any overhead associated with lock permission

management.

4.5.2 Self Lock Consistency

In general, locks are nonblocking operations in that they do not need to wait till

the lock is actually acquired. The MPI implementation only needs to ensure that

any future RMA operations are not issued to the target memory before the lock is

actually acquired. Self locks (i.e., when a process locks itself), however, are special

in that they cannot return till the lock is actually acquired. This requirement is

because self locks allow applications to access their local memory directly using

load/store operations instead of MPI RMA communication operations. In such

cases, the accesses are outside of MPI’s control and thus the MPI implementation

needs to make sure to acquire the lock before returning from the lock call thus

forcing all load/store operations to happen after the lock is acquired.

With Casper, lock operations are redirected to the ghost processes in order

to maintain appropriate permissions in case other origins are trying to access the

window at the same time. This, however, means that the lock is no longer a self-

lock, but to a remote process. Thus, the MPI implementation might choose to

delay the lock acquisition or return from the lock call before the lock acquisition

is complete. At that point a process issuing load/store operations to itself can

cause data correctness issues.

To handle this issue, Casper performs two steps. In the first step, it issues

a lock to the ghost process. However, since the acquisition of this lock might

be delayed by the MPI implementation, Casper internally issues an additional

1-byte GET from the window and performs a flush to complete that operation.

This forced GET would, in essence, block till at least the lock is acquired since

the GET operation cannot fetch data before the lock is acquired. One issue with

this approach is that the MPI-3 standard (page 456, line 39) states that data

consistency is not guaranteed when a GET operation and an update operation

(such as a PUT or ACCUMULATE operation) occur simultaneously at the same

memory location. Thus, if the user application is updating the same location as

the one that is being fetched by the forced GET described above, data consistency

is not guaranteed. Such data inconsistency makes sense for the GET operation

but seems to be an unnecessary restriction on the update operation, i.e., the

update should still be valid in such cases. As active members of the MPI Forum

RMA working group, we believe this is an unintended oversight and should be

fixed in the upcoming MPI-3.1 or MPI-4.0 standard. However, in order to meet

the strict wording of the standard, we need an alternative approach. Therefore, in

Casper, we allocate additional “hidden bytes” at the ghost process (depicted by

the gray box in Figure 4.4(a)) that are not exposed to the user application. The

additional force GET operation is issued on these hidden bytes thus guaranteeing

that it cannot cause any potential corruption of user data.

In the second step, now that the permission issue is managed by the lock at

50

the ghost process, Casper issues a second self-lock at the origin process. This lock

does not manage any permissions (since it is guaranteed to be not competed),

but is necessary for managing memory consistency through appropriate system-

specific memory barriers that the MPI implementation might be required to do.

While the above solution maintains correctness, it clearly adds additional

lock acquisition overhead that can have performance implications. In order to

alleviate such performance impact, we use the info hint no load store to let the

user specify when she does not intend to access the local window with load/store

operations, i.e., all data movement to/from the remotely accessible memory will

be done using MPI RMA operations. With this hint, Casper would still issue

the lock operation to the ghost process, but does not have to force acquire it.

Furthermore, Casper can skip the second self-lock completely since that is only

needed for local load/store operations.

The user can also use the MPI MODE NOCHECK assert (which is already specified

in the MPI-3 standard) to help in this case. The MPI MODE NOCHECK hint tells us

that the user is guaranteeing that there will be no contention on the lock and

hence on the access permissions to the window, thus removing the necessity for

the force lock for permission management.

As a side benefit, this hint also allows us to issue local PUT/GET operations

directly instead of forwarding them to the ghost process, since we know that the

ghost process would not be receiving any conflicting epochs at the same time.

It is still possible that the ghost process will receive a PUT/GET operation to

the same location as the local PUT/GET operations, but the MPI standard

already states that doing so can result in data corruption, which covers data

conflicts within Casper as well. We note that we do not use this optimization

for accumulate-style operations since that would break the atomicity constraints

enforced by the MPI standard.

4.5.3 Managing Multiple Ghost Processes

In Casper, the user is allowed to configure a node with multiple ghost processes.

This allows better sharing of work when the number of operations requiring

such asynchronous progress is large. However, such a configuration also requires

additional processing to maintain correctness. A simple model where all com-

munication is randomly distributed across the different ghost processes has two

issues that need to be handled: (1) lock permissions in the lock-unlock epoch and

(2) ordering and atomicity constraints for accumulate operations.

When the lock-unlock epoch type is used, Casper will internally lock all ghost

processes on a node, when a lock operation for a particular application process

is issued, in the hope of spreading communication across these helper processes.

However, in practice, many MPI implementations might not acquire the lock

immediately and delay them to a future time (e.g., when an RMA communication

operation is issued to that target). Given this background, consider the sample

code demonstrated in Figure 4.5. In this example, Casper might randomly pick

a ghost process thus picking one ghost process (G1) on one origin while picking

a different ghost process (G2) on another origin. For implementations that delay

lock acquisition, this would mean that the two ghost processes would get exclusive

51

MPI_Win_lock(MPI_LOCK_EXCLUSIVE , P1 , 0, win);

MPI_Put (..., P1 , ...);

MPI_Win_unlock(P1 , win);

(a) User code

MPI_Win_lock(MPI_LOCK_EXCLUSIVE , G1 , 0, win);

MPI_Win_lock(MPI_LOCK_EXCLUSIVE , G2 , 0, win);

/* Pick a random ghost process */

G = randomly_pick_ghost ();

MPI_Put (..., G, ...);

MPI_Win_unlock(G1 , win);

MPI_Win_unlock(G2 , win);

(b) Casper translated code

Figure 4.5: Sample code demonstrating lock acquisitions issues with multiple

ghost processes.

locks from two different origins to access the same memory location. Since the

lock management within MPI is unaware of the shared memory buffers in Casper,

both exclusive locks would be granted resulting in data corruption.

The second issue is with respect to the atomicity and ordering guarantees

provided by the MPI standard for concurrent accumulate operations to the same

location (see [5], Section 11.7.1). Each basic datatype element of concurrent ac-

cumulate operations issued by the same or different origin processes to the same

location of a target process must be performed atomically. Similarly, two accu-

mulate operations from the same origin to the same target at the same memory

location are strictly ordered. In Casper, if a user process is served by a single

ghost process, such atomicity is already provided by the MPI implementation.

However, if a user process is served by multiple ghost processes, they might si-

multaneously be accessing the same memory region thus breaking both atomicity

and ordering.

To address these issue, Casper uses a two-phase solution. The first phase is

to provide a base “static binding” model where each ghost process is statically

assigned to manage only a subset of the remotely accessible memory on the node.

This model ensures correctness as per the MPI standard but can have some

performance cost. We propose two static binding approaches in this paper: rank

binding and segment binding. The second phase is to identify periods in the

application execution where the issuing of some operations to ghost processes

can be done in a more dynamic fashion. In this section, we discuss both phases.

4.5.3.1 Static Rank Binding

In this model, each user process binds to a single ghost process, and any RMA

operations issued to that user process are always directed to that ghost process.

52

P0 P1 P2 P3

P4 P5 P6 P7

G0

G1

(a) Rank binding.

WIN0 WIN1 2 3 4 5 6 7

G0 G1

(b) Segment binding.

Figure 4.6: Static binding strategies.

Therefore, different origins locking the same target would be redirected to the

same ghost process thus benefiting from MPI’s internal permission management.

Similarly, different accumulate operations targetting the same user process would

also be redirected to the same ghost process thus benefiting from MPI’s inter-

nal ordering and atomicity management. This model completely works around

the problem with multiple ghost processes since each user application process is

only associated with a single ghost process. The disadvantage of this approach,

however, is that if the amount of communication to the different user application

processes is not uniform, one ghost process might get more work than the others,

thus causing load imbalance.

4.5.3.2 Static Segment Binding

In this model, the total memory exposed by all the processes on the node is

segmented into as many chunks as the number of ghost processes and each chunk

or segment is bound to a single ghost process. Thus, given a particular byte

of memory, a single ghost process “owns” it. When the user application issues

a lock operation, Casper will still lock all ghost processes, but when the actual

RMA communication operation is issued, it is redirected to the appropriate ghost

processes that own that segment of the memory. In this model it is possible

that different origin processes may get simultaneous access to the same target

through different ghost processes. However, they cannot simultaneously update

the same memory region, thus making such shared access inconsequential and

still guaranteeing application correctness.

A second aspect that must be considered in segment binding is that the seg-

mentation needs to be at a basic-datatype-level granularity in order to maintain

MPI’s requirements for atomicity. To handle this we must ensure that the seg-

ments are divided at an alignment of the maximum size of MPI basic datatypes

(i.e., 16 bytes for MPI REAL). This alignment is in order to guarantee no basic

datatype is divided between two ghost processes. Thus, although an operation

may be divided into multiple chunks and issued to different ghost processes, each

basic datatype unit belongs to a single chunk and is directed to a single ghost

process, thus guaranteeing atomicity and ordering. This approach would work in

most cases since most compilers enable data alignment by default (i.e., a double

variable has to be allocated on an address that is a multiple of eight). Hence,

it is safe to divide an operation into different aligned segments. However, we

note that this approach is not strictly portable. Compilers are allowed to not

enforce data alignment or allow users to explicitly disable structure padding, re-

53

struct __attribute__ ((__packed__)) Foo {

char a;

double b;

};

Figure 4.7: Padding disabled structure.

sulting in unsafe segmentation (see Figure 4.7 which is a valid datatype with

the GNU compilers). Nevertheless, data alignment is always recommended for

performance, and some architectures, such as SPARC [63], even require it for

correctness.

The advantage of the static segment binding model compared to the static

rank binding model is that the load on a given ghost process is determined by

the memory bytes it has access to, rather than the process it is bound to. In

some cases, such a model can provide better load balancing than the previous

model. However, this model has several disadvantages. Most importantly, this

solution relies on analyzing the specific bytes on the target process that are being

accessed for each RMA operation. For operations using contiguous datatypes

that completely fall within one data segment, this model can be straightforward

as the operation is simply forwarded to the appropriate ghost process. However,

if the data overlaps two or more segments, Casper would need to internally divide

the operation into multiple operations issued to different ghost processes. This

solution becomes even more complex when the data being transmitted is noncon-

tiguous, in which case the datatype needs to be expanded and parsed before the

segments it touches can be determined.

4.5.3.3 Dynamic Binding

In applications that have balanced communication patterns, each target process

on a compute node tends to receive approximately equal number of RMA op-

erations. The best performance can be achieved for such patterns by equally

distributing the number of processes handled by each ghost process. In such

cases, a static binding approach might be a good enough solution for load bal-

ancing. However, for applications with more dynamic communication patterns, a

more dynamic selection of ghost processes is needed, as long as such an approach

does not violate the correctness requirements described above.

In Casper, to help with dynamic binding, we define “static-binding-free” in-

tervals of time. For example, suppose the user application issues a lock operation

to a target—this would translate to a lock operation to the corresponding ghost

process to which the process is bound. After issuing some RMA communication

operations if the user application flushes the target, at this time the MPI imple-

mentation is required to wait for the lock to be acquired and cannot postpone

this process any further. The period after the flush operation has completed and

before the lock is released is considered a “static-binding-free” period. That is,

in this period we know that the lock has already been acquired. In such periods,

the Casper implementation no longer has to do lock permission management and

is free to load balancing PUT/GET operations to any of the ghost processes with

54

the same lock type as that specified by the user application process. We note

that this optimization is not valid for accumulate-style operations in order to

maintain the atomicity and ordering guarantees specified by the MPI standard.

We utilize three dynamic load balancing approaches within Casper. The first

is a “random” algorithm that randomly chooses a ghost process from the available

ghost processes for each RMA operation. The second is an “operation-counting”

or “round-robin” algorithm that chooses the ghost process that the origin issued

the least number of operations to. The third is a “byte-counting” algorithm that

chooses the ghost process that the origin issued the least number of bytes to.

4.5.4 Dealing with Multiple Simultaneous Epochs

The MPI standard does not allow a process to simultaneously participate in

multiple overlapping epoch types on a given window. However, for disjoint sets

of processes or for the same set of processes with different windows, no such

restrictions exist. Thus, one could imagine an application in which a few of the

processes are participating in a lock-unlock epoch on one window, while another

disjoint set of processes is participating in a fence epoch on another window. If

more than one of these processes are on the same node, the ghost processes have

to manage multiple simultaneous epochs. The primary difficulty with handling

multiple simultaneous epochs, especially active target epochs such as fence and

PSCW, is that the epoch opening and closing calls in these epochs are collective

over either all or a subset of processes in the window and these calls are blocking

with no nonblocking variants. Thus, if a ghost process participates in one epoch

opening or closing call, it is stuck in a blocking call and hence loses its ability to

help with other epochs for other user processes. Figure 4.8 illustrates such issue

in simultaneous fence calls on two disjoint sets of processes which are sharing the

same ghost processes (i.e., group [P0, P2] and [P1, P3] share ghost process G0

and G1 on two nodes).

P1	P0	 P2	 P3	

Fence(win0)

Fence(win0)
Fence(win1)

Fence(win1)

(a) Original MPI.

P1	P0	 P2	 P3	

Fence(win0)

Fence(win1)

G0	 G1	
Blocked	

Blocked	

(b) With ghost process

Figure 4.8: Simultaneous Fence.

55

To work around this issue, Casper converts all active-target epochs into passive-

target epochs on a separate window. Further, it manages permission conflicts

between lockall and lock by converting lockall to a collection of lock operations

in some cases. The following paragraphs describe these changes in more detail.

4.5.4.1 Fence

The fence call supports a simple synchronization pattern that allows a process

to access data at all processes in the window. Specifically, a fence call completes

an epoch if it was preceded by another fence and starts an epoch if it is followed

by another fence.

In Casper, we translate fence to a lockall-unlockall epoch. Specifically, we use

a separate window for fence; and when the window is allocated, we immediately

issue a lockall operation. When the user application calls fence, we internally

translate it to flushall-barrier, where the flushall call ensures the remote com-

pletion of all operations issued by that origin and the barrier call synchronizes

processes, thus ensuring the remote completion of all operations by all origins.

This model ensures that the ghost processes do not need to explicitly participate

in any active target synchronization calls, thus avoiding the blocking call issues

discussed above.

While correct, this model has a few performance issues. First, a fence call does

not guarantee remote completion of operations. The return of the fence call at a

process guarantees only the local completion of operations issued by that process

(as an origin) and the remote completion of operations issued to that process (as

a target). This is a weaker guarantee than what Casper provides, which is remote

completion of all operations issued by all processes. Casper’s stricter guarantees,

while correct, do cost performance, however. Therefore, such remote completion

through flushall can be skipped if the user provides the MPI MODE NOPRECEDE

assert indicating that no operations were issued before the fence call that need

to be flushed.

Second, an MPI implementation can choose to implement fence in multiple

different ways. For example, one possible implementation of the fence epoch is to

delay all RMA communication operations to the end of the epoch and issue them

only at that time. Thus, if the MPI implementation knows that a fence call does

not complete any RMA communication operations (e.g., if it is the first fence),

it can take advantage of this information to avoid synchronizing the processes.

Casper does not have this MPI implementation internal knowledge, however.

Thus, it always has to assume that the MPI implementation might issue the

RMA communication operations immediately, and consequently it always has

to synchronize processes. Again, doing so costs performance. However, if the

user specifies the MPI MODE NOSTORE, MPI MODE NOPUT, and MPI MODE NOPRECEDE

asserts, Casper can skip such synchronization since there are no store operations

before the fence and no PUT operations after the fence that might impact the

correctness of the data.

Third, when fence is managed by the MPI implementation, it internally en-

forces memory consistency through appropriate memory barriers. In Casper,

since the fence call is translated to passive-target synchronization calls, such

56

memory consistency has to be explicitly managed. Thus, during each fence call,

we add an additional call to MPI Win sync to allow such memory ordering con-

sistency, costing more performance.

4.5.4.2 PSCW

The PSCW epoch allows small groups of processes to communicate with RMA

operations. It explicitly decouples calls in order to expose memory for other

processes to access (exposure epoch) and calls to access memory from other pro-

cesses (access epoch). The MPI Win post and MPI Win wait calls start and end

an exposure epoch, while the MPI Win start and MPI Win complete start and

end an access epoch.

As with fence, we translate the PSCW epoch to passive-target synchroniza-

tion calls on the same window (since fence and PSCW cannot simultaneously

occur on the same window). Also as with fence, we add additional process syn-

chronization for PSCW in Casper. Instead of using barrier, however, we use

send-recv because the processes involved might not be the entire group of pro-

cesses on the window. Consequently, PSCW encounters the same set of draw-

backs as fence with respect to performance. To help with performance, we allow

the user to provide the MPI MODE NOCHECK assert specifying that the necessary

synchronization is being performed before post and start calls. When this assert

is provided, Casper can drop additional synchronization.

4.5.4.3 Lockall

The lockall epoch is a passive-target epoch and thus does not require participa-

tion from the ghost processes. However, we need to be careful that we do not

bypass lock permission requirements when the user uses both lockall and lock

simultaneously from different origin processes. In this case, as discussed in Sec-

tion 4.5.1, since the lock calls are redirected to internal overlapping windows by

Casper, one process of the application might end up acquiring a lockall epoch

while another process of the same application acquires an exclusive-mode lock

epoch on the same window (we note that the lockall epoch is shared-mode only

and does not have an exclusive-mode equivalent). This situation is obviously

incorrect and can cause data corruption.

To avoid this, Casper internally converts the lockall epoch to a series of locks

to all ghost processes. Doing so ensures that any accesses are correctly protected

by the MPI implementation. Arguably, this solution can add some performance

overhead since it serializes lock acquisition. However, most MPI implementations

delay lock acquisition until an actual operation is issued to that target, so this

might not be much of a concern in practice.

4.5.5 Memory Ordering Consistency

Since Casper allows multiple processes (including the user application process

and potentially multiple ghost processes) to access the same memory region,

there may be a potential for memory ordering consistency issues. Specifically,

without appropriate memory ordering consistency calls, a compiler or processor

57

P0: P1: G handler:

lock(EXCLUSIVE , P1);

/* redirected to G */

put(x, P1);

unlock(P1); update x;

lock(EXCLUSIVE , P1);

load x

...

Figure 4.9: Concurrent data access between a user and ghost processes.

hardware can freely reorder instructions that do not have data dependencies to

improve performance. Of these, compiler reordering is less of an issue since most

compilers are conservative, even at high optimization levels, and do not reorder

instructions across function calls. Since all MPI RMA operations are function

calls, compiler instruction reordering is not a direct concern for us. Hardware ar-

chitecture reordering, on the other hand, is a concern. Almost every architecture

available today permits some level of instruction reordering. Some architectures,

such as x86, provide total store ordering (TSO) making such reordering less

likely and restricted to fewer instruction patterns, while some architectures, such

as Alpha, permit almost all possible reorderings. Thus, for portability, we need

to assume that any reordering is possible by the hardware.

Luckily, the instruction reordering concerns of Casper are almost identical to

the instruction reordering concerns of MPI RMA, in general, and would anyway

need to be addressed by the MPI implementation. For instance, consider the two

examples shown in Figures 4.9 and 4.10. In the example shown in Figure 4.9, the

load instruction of P1 could be reordered to occur before the lock call since they

are independent of each other, resulting in a wrong result of the load because the

update on process ‘G’ may happen later. However, this problem is no different

from the traditional RMA model when P0 accesses P1’s memory directly (e.g.,

through shared memory), and the MPI implementation would need to do a mem-

ory barrier anyway. Note that this behavior would still be true even if the RMA

operation is performed through two-sided communication (over shared memory

or over a network) since any form of communication would eventually need to

perform a memory barrier to ensure that the data is correctly received.

In the second example shown in Figure 4.10, the update instruction on G0

may also be reordered, hence resulting in a wrong result of the read operation on

G1. Again, an MPI implementation would anyway need to do a memory barrier

within a flush call to guarantee that the operation is finished on the target process,

which means it should have already been reflected in memory.

58

P0: G0 handler: G1 handler:

lock(EXCLUSIVE , P2);

/* redirected to G0 */

put(x, P2);

flush(P2); update x;

/* redirected to G1 */

get(x, P2);

unlock(P2); read x;

Figure 4.10: Concurrent data access between two ghost processes.

Table 4.1: MPI RMA implementations.

MPI Implementation HW-supported OP Asynchronous Progress

Cray MPI (regular) NONE Thread

Cray MPI (DMMAP) Contiguous PUT/GET Interrupt

Mvapich (IB netmod) Contiguous PUT/GET Thread

MPICH-SHM all NONE

4.6 Experimental Environment

We evaluate Casper on two platforms: the NERSC Edison Cray XC30 super-

computer 1 and the Argonne Fusion cluster 2. We used these two platforms to

demonstrate the impact of varying levels of hardware support for RMA opera-

tions as listed in Table 4.1. Specifically, Cray MPI (version 6.3.1) can be executed

in two modes: regular or DMAPP-based. The regular version executes all RMA

operations in software with asynchronous progress possible through a background

thread. The DMAPP version executes contiguous PUTs and GETs in hardware,

but ACCUMULATEs and noncontiguous operations are executed in software

with asynchronous progress through interrupts. On the Fusion platform, we used

MVAPICH. MVAPICH (version 2.0rc13) implements contiguous PUT/GET op-

erations in hardware, while using software active messages for ACCUMULATEs

and noncontiguous operations with asynchronous progress through a background

thread.

We expect Casper to improve asynchronous progress in the cases where RMA

operations are implemented as software active messages and to perform as well

as the original MPI implementation when hardware direct RMA is used.

1https://www.nersc.gov/users/computational-systems/edison/configuration/
2http://www.lcrc.anl.gov/about/fusion
3We had to fix a bug in MVAPICH to allow for true hardware-based RMA for PUT and

GET.

59

4.7 Microbenchmarks Evaluation

In this section, we evaluate Casper by using several microbenchmarks focus-

ing on following three major aspects: (1) analysis of the overheads caused by

Casper complex design for guaranteeing correctness; (2) the improvement of asyn-

chronous progress with comparison to other asynchronous progress approaches

(an interrupt-based asynchronous progress called DMAPP and MPICH asyn-

chronous thread on Cray X30; and MPICH asynchronous thread on InfiniBand

cluster); (3) discussion of load balancing performance optimization.

4.7.1 Overhead Analysis

In this section, we measure two overheads caused by Casper: (1) window alloca-

tion and (2) Fence and PSCW.

4.7.1.1 Window allocation.

As discussed in Section 4.4.2, Casper internally creates additional overlapping

windows in order to manage lock permissions when a ghost process supports

multiple user processes. These can cause performance overhead. However, the

amount of overhead can be controlled by setting the info argument epoch type

to tell Casper which epoch types are used by the application. Accordingly Casper

can decide which internal windows it needs to create. Figure 4.11(a) shows the

overhead of MPI Win allocate on a user process with varying total numbers of

processes on a single node of Cray XC30. When no info hints are passed (de-

fault epoch type is “fence,pscw,lockall,lock”), Casper can experience substantial

performance cost in window creation time. When epoch type is set to “lock,”

Casper does not have to create the additional window for active target and lockall

communication, thus improving performance a little; but the cost is still consid-

erable because Casper has to create one window for every user process on that

node. When epoch type is set to “lockall” or “fence” (or any other value that

does not include “lock”), Casper has to create just one additional internal win-

dow, thus reducing the cost substantially, although the cost is still more than

twice that of original MPI.

4.7.1.2 Fence and PSCW.

The second major overhead occurs because of the conversion of fence and PSCW

to passive-target epochs and the additional synchronization and memory consis-

tency associated with it. We measure these overheads by using two interconnected

processes on Cray XC30. The fence experiment performs fence--accumulate--fence

on the first process and fence--fence on the other, with the first passing the

MPI MODE NOPRECEDE assert and the second fence passing the MPI MODE NOSUCCEED

assert. The PSCW experiment performs start--accumulate--complete and

post--wait on the two processes. Figure 4.11(b) shows the execution time of

our experiments on the first process. While the overhead is large (100–200%) for

a small number of operations, as the number of operations issued increases, this

cost gets amortized and disappears.

60

4.7.1.3 Self Lock.

As we have described in Section 4.5.2, Casper issues a get-flush and a sec-

ond self-lock for guaranteeing the lock permission correctness and memory con-

sistency, resulting in additional overhead. Two user hints could reduce above

overhead: MPI MODE NOCHECK assert eliminates the first step but still requires the

second one for memory consistency of local load/store; no local load store info

(Casper(NO LS)) eliminates both steps because neither lock permission nor local

memory consistency need to be maintained in this case. Figure 4.11(d) compares

the overhead of self lock on both Cray XC30 and on a shared node of Fusion clus-

ter using MPICH-SHM. We measure a simple lock(self)-put(self)-unlock(s-

elf) microbenchmark with one application process. As shown in this figure,

the default self lock always produces the heaviest overhead, 1 µs on Fusion and

1.4 µs on Cray respectively. On Fusion node, the lock with no local load store

performs the smallest overhead; the NOCHECK does not increase overhead much

because the additional get-flush does not have much overhead on a shared

memory node in which RMA operations are performed as direct RMA but the

overhead of memory barrier becomes dominant. However, we get different trend

on Cray, because Cray MPI still performs RMA operations as remote AM in

shared memory node if the window is created by MPI Win create which degrades

local RMA performance and we translate these RMA operations to the process

itself if lock is acquired (as in default lock and NOCHECK) as a workaround. This

is the reason why NOCHECK assert delivers the most performance improvement.

4.7.1.4 RMA operation segmentation

The third overhead of Casper comes from the RMA operation segmentation. As

we have discussed in Section 4.5.3, when multiple ghost processes exist in the

system, we need static binding for lock permission correctness. Static Segment

Binding is one of the solutions to overcome the permission issue, but with addi-

tional overhead. We demonstrate such overhead using a simple microbenchmark

with two interconnected processes. Every process first allocates a large window

which will be divided to several segments and bound to different local ghosts;

then when rank 0 issues a large ACCUMULATE to rank 1, such operation will

be divided to multiple operations if the data contains multiple segments. We

specify the window size is 1024 count of double, thus it will be divided to two

512 count of double segments with 2 ghost processes, four 256 count of double

segments with 4 ghost processes, and eight 128 count of double segments with 8

ghost processes. As shown in Figure 4.11(c), when ACCUMULATE size is 128,

which is always smaller than the segment size, there is not much overhead with

increasing of ghosts. However, for a 256 and 512 count of double ACCUMU-

LATE, significant overhead occurs with increasing of ghosts processes because

more operations have to be produced internally.

4.7.2 Asynchronous Progress

In the section, we demonstrate the asynchronous progress improvements achieved

in various scenarios.

61

0

100

200

300

400

500

600

700

800

2 4 6 8 10 12 14 16 18 20 22

W
in

_a
llo

ca
te

 T
im

e
(u

s)

Number of Local Processes

Original MPI Casper (default) Casper (lock)
Casper (lockall) Casper (fence)

(a) Window allocation overhead.

0

50

100

150

200

250

300

0

200

400

600

800

1000

1200

1 2 4 8 16

32

64

12
8

25
6

51
2

10
24

O

ve
rh

ea
d

P
er

ce
nt

ag
e

(%
)

Ti
m

e
on

 R
an

k
0

(u
s)

Number of Operations

Fence overhead PSCW overhead Original Fence
Original PSCW Casper Fence Casper PSCW

(b) Fence and PSCW overhead

0

1

2

3

4

5

6

7

0
1
2
3
4
5
6
7
8
9

10

1 2 4 8

O
ve

rh
ea

d
(u

s)

E
xe

cu
tio

n
Ti

m
e

(u
s)

Number of Ghost Processes

Overhead (128) Overhead (256) Overhead (512)
Time (128) Time (256) Time (512)

(c) RMA operation segmentation

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Original
MPI

Casper Casper
(NO_LS)

Casper
(NOCHECK)

E
xe

cu
tio

n
Ti

m
e

(u
s)

CrayMPI on Cray XC30 MPICH-SHM on Fusion

(d) Local lock

Figure 4.11: Overhead analysis.

4.7.2.1 Different Synchronization Modes

Our first experiment demonstrates the improvement of computation and commu-

nication overlap in passive and active-target modes using Casper. Two intercon-

nected processes are used in each mode. In the passive-target mode, one process

issues lockall-accumulate-unlockall to another process while that process is

blocking in computation. Figure 4.13(a) shows the results on the Cray XC30. As

expected, with the original MPI the execution time on the origin increases with

wait time on the target, which means that the origin is blocked by the computa-

tion on the target. All asynchronous progress approaches relieve this issue. We

note, however, that both the DMAPP and thread approaches have more overhead

than Casper does.

The overhead with using the MPICH asynchronous thread comes from the ex-

pensive thread-multiple safety and lock contention. DMAPP-based asynchronous

progress, however, does not involve thread-multiple safety and also wakes up back-

ground threads only when a message arrives. Therefore, to analyze the reason for

this overhead, we performed a test in which one process does lockall-accumulate-

unlockall and the other process does a dgemm computation.

In the active-target mode, since both fence and PSCW require internal syn-

chronization in Casper, the origin has to wait for the completion of the epoch

62

MPI_Win_lock_all(win);

i f (rank == 0){

MPI_Accumulate (...);

MPI_Win_flush (1, win);

} e l se {

while(MPI_Wtime () - start < WAIT_TIME);

MPI_Test (...);

}

MPI_Win_unlock_all(win);

Figure 4.12: Overlap improvement microbenchmark.

0

20

40

60

80

100

120

140

1 2 4 8 16 32 64 128

Ti
m

e
on

 R
an

k
0

(u
s)

Wait Time (us)

Original MPI Thread DMAPP Casper

(a) Passive-target RMA

0

7

14

21

28

35

42

49

0

1

2

3

4

5

6

7

1 2 4 8 16

32

64

12
8

25
6

51
2

10
24

Im
pr

ov
em

en
t (

%
)

Ti
m

e
on

 R
an

k
0

(m
s)

Number of Operations

Casper Improve Original MPI Thread
DMAPP Casper

(b) Fence RMA

Figure 4.13: Overlap improvement using two interconnected processes on Cray

XC30.

on the target. Thus, in an experiment similar to that for the passive mode,

we measured the time for fence-accumulate-fence on one process while an-

other process performs fence-100 µs busy waiting-fence as shown in Fig-

ure4.13(b). We notice that when a small number of operations are issued during

fence, asynchronous progress is beneficial. But when the communication takes

more time than the delay on the target, which is the maximum time Casper can

overlap (larger than 128 in the figure), the percentage improvement decreases,

as expected. PSCW follows a similar trend. Both DMAPP and thread asyn-

chronous progress show significant overhead compared with that of the original

MPI execution.

4.7.2.2 Different RMA implementations

The second experiment focuses on the scalability of asynchronous progress with

different RMA implementations. In this experiment every process communicates

with all the other processes in a communication-computation-communication

pattern. We use one RMA operation (size of a double) in the first communication,

100 µs of computation, and ten RMA operations (each size double) in the second

communication.

On Cray XC30, we use one process per node and scale the number of nodes

63

0

10

20

30

40

50

60

2 4 8 16 32 64 128 256

Av
er

ag
e

Ti
m

e
(m

s)

Number of Application Processes (ppn=1)

Original MPI Thread DMAPP Casper

(a) Accumulate on Cray XC30.

0

4

8

12

16

20

2 4 8 16 32 64 128 256

Av
er

ag
e

Ti
m

e
(m

s)

Number of Application Processes (ppn=1)

Original MPI Thread DMAPP Casper

(b) Put on Cray XC30.

0

0.5

1

1.5

2

2.5

2 4 8 16 32 64 128 256

Av
er

ag
e

E
xe

cu
tio

n
Ti

m
e

(s
)

Number of Processes (ppn=1)

Original MPI Thread Casper

(c) Accumulate on Fusion using MVAPICH.

0

0.4

0.8

1.2

1.6

2 4 8 16 32 64 128 256

Av
er

ag
e

E
xe

cu
tio

n
Ti

m
e

(s
)

Number of Processes (ppn=1)

Original MPI Thread Casper

(d) Put on Fusion using MVAPICH.

Figure 4.14: Asynchronous progress on different platforms.

for both ACCUMULATE and PUT, as shown in Figures 4.14(a) and 4.14(b).

We note that DMAPP enables direct RMA for PUT/GET with basic datatypes

in Cray MPI, but it involves interrupts for ACCUMULATE operations. Con-

sequently, Casper outperforms the other approaches for ACCUMULATE, while

achieving the same performance as that of DMAPP for PUT/GET. The thread

asynchronous progress is always expensive and even worse than that of the orig-

inal MPI when a large number of processes are communicating.

On the Fusion cluster, we compared Casper with MVAPICH by also using one

process per node. Figure 4.14(c) indicates that Casper improves asynchronous

progress for ACCUMULATE, which is still implemented with software active

messages in MVAPICH. The thread asynchronous progress again shows signif-

icant overhead. We also measured the performance of PUT/GET operations;

as expected, the performance of Casper was identical to that of original MPI

since these operations are implemented directly in hardware. The performance

numbers are not shown here because of space limitations.

4.7.3 Performance Optimization

Our third set of microbenchmarks focuses on the different load-balancing opti-

mizations discussed in Section 4.5.3.

64

4.7.3.1 Static Rank Binding

Figure 4.15 shows our measurements with static rank binding on Cray X30. In the

first experiment (Figure 4.15(a)) we show the static rank binding with increasing

number of processes when each process sends one accumulate message (size of

double) to every other process in the system. We use 16 processes per node and

evaluate Casper with up to 8 ghost processes on each node. Our results indicate

that two ghost processes are sufficient when up to 32 processes communicate;

when more processes communicate, however, configurations with larger numbers

of ghost processes tend to perform better. The reason is that the number of

incoming RMA operations increases with more processes, thus requiring more

ghost processes computing to keep up.

Figure 4.15(b) shows a similar experiment but increases the number of accu-

mulate operations while keeping the user process count constant at 32 (2 nodes

with 16 processes each). The results show a trend similar to that of the previous

experiment, with more ghost processes benefiting when the number of operations

per process is larger than 8.

4.7.3.2 Static Segment Binding

In this experiment we evaluate the performance of the static segment binding

approach. Such an approach is expected to be especially beneficial when the

application allocates uneven-sized windows and receives a large number of oper-

ations that need to be processed in software. Figure 4.15(c) demonstrates this

pattern. We used 16 nodes with 16 processes and up to 8 ghost processes per

node. The first process of every node allocates a 4-kilobyte window (512 count

of double), while the others only allocate 16 bytes. Then each process performs

a lockall-accumulate-unlockall pattern on all the other processes. We in-

crease the number of ACCUMULATEs to each process whose local rank is 0

while issuing a single operation to other processes. As shown in the figure, per-

formance improves with increasing numbers of ghosts, because the large window

is divided into more segments and the communication issued to different segments

is handled by different ghosts.

4.7.3.3 Dynamic Binding

To test our dynamic binding approaches, we designed three microbenchmarks, all

of which are executed on 16 nodes with 20 user processes and 4 ghost processes

per node.

Figure 4.16(a) shows the results of an experiment in which all processes per-

form a lockall-put-unlockall pattern to all the other processes, but only the

first rank of each node receives an increasing number of PUT operations (varied

on the x-axis of the graph), while the others receive only one PUT operation. Our

random load balancing simply chooses the ghost processes in the order of its local

rank for each target process. Thus, all the PUT operations are always equally

distributed to the ghosts on each node achieving much better performance that

with static binding.

Figure 4.16(b) uses a variant of the previous experiment in which each process

performs an uneven lockall-accumulate-put-unlockall pattern to all other

65

0

1

2

3

4

5

0

10

20

30

40

50

16 32 64 128 256 512 1024 2048 4096

S
pe

ed
up

Av
er

ag
e

Ti
m

e
(m

s)

Numer of Processes (16 processes per node)

 Casper(2) Speedup Casper(4) Speedup
 Casper(8) Speedup Original MPI
 Casper(2) Casper(4)
 Casper(8)

(a) Static Rank Binding: Increasing Processes.

0

1

2

3

4

5

6

0

10

20

30

40

50

60

1 2 4 8 16 32 64 128 256 512

S
pe

ed
up

Av
er

ag
e

Ti
m

e
(m

s)

Number of Operations

 Casper(2) Speedup Casper(4) Speedup
 Casper(8) Speedup Original MPI
 Casper(2) Casper(4)
 Casper(8)

(b) Static Rank Binding: Increasing operations.

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

1 2 4 8 16 32 64 128 256 512

S
pe

ed
up

Av
er

ag
e

Ti
m

e
(m

s)

Number of Operations

 Casper(2) Speedup Casper(4) Speedup
 Casper(8) Speedup Original MPI
 Casper(2) Casper(4)
 Casper(8)

(c) Static Segment Binding: Uneven Window Size

Figure 4.15: Load balancing in static binding on Cray XC30.

processes. In this case, random load balancing arbitrarily picks the ghost process

for each PUT operation but sends all ACCUMULATE operations to the same

ghost process (in order to maintain ordering and atomicity guarantees). Thus,

the ghost process that is handling both ACCUMULATE and PUT operations

would end up having to handle more operations than would the other ghost

processes. Our “operation-counting” approach, on the other hand, keeps track

of which ghost process has been issued how many operations and balances the

operations appropriately, thus allowing it to achieve better performance than the

66

0

1

2

3

4

5

0

40

80

120

160

200

1 2 4 8 16 32 64 128 256 512 1024

S
pe

ed
up

Av
er

ag
e

Ti
m

e
(m

s)

Number of PUT issued to every local rank 0

Static Speedup Random Speedup Original MPI
Static Random

(a) Random: Uneven Number of Put.

0

1

2

3

4

5

6

0

60

120

180

240

300

360

1 2 4 8 16 32 64 128 256 512 1024

S
pp

ed
up

Av
er

ag
e

Ti
m

e
(m

s)

Number of PUT / ACC issued to every local rank 0

Static Speedup Random Speedup
OP Speedup Original MPI
Static Random
OP

(b) OP-counting: Uneven Number of Put/ACC.

0

1

2

3

4

5

0

160

320

480

640

800

1 2 4 8 16 32 64 128 256 512 1024 2048 4096

S
pe

ed
up

Av
er

ag
e

Ti
m

e
(m

s)

Size of PUT and ACC issued to every local rank 0

Static Speedup Random Speedup
Byte Speedup Original MPI
Static Random
Byte

(c) Byte-counting: Uneven Size of Put/ACC.

Figure 4.16: Dynamic load balancing on Cray XC30.

random approach does.

Our third experiment, uses yet another variant of the previous experiments

by varying the size of the operations while keeping the number of operations con-

stant. Each process performs a lockall-accumulate-put-unlockall pattern,

but only the processes whose local rank is 0 receive increasing sizes of PUTs and

ACCUMULATEs (varied on the x-axis), while the others receive only one double

PUT and accumulate. Figure 4.16(c) shows the results. As expected, neither

random nor operation-counting algorithms can handle this case well, although

67

our “byte-counting” approach outperforms both of them.

4.7.3.4 Memory Locality Comparison

The last microbenchmark measures the overhead when ghost process is located

in a different NUMA domain with the application process. We simply use two

interconnected processes each with a ghost process on its node, one process issues

lock-100 accumulate-unlock to the second process while the second one waits

in MPI barrier. Figure 4.17 shows that significant overhead occurs on Cray XC30

when the ghost process is located in a different NUMA domain and accesses the

memory of application process across domain. The overhead even increases with

increasing size of operations, 120% overhead is produced when issuing 512 could

of double(4097 Bytes) operation .

0

30

60

90

120

150

0

100

200

300

400

500

1 2 4 8 16 32 64 128 256 512

O
ve

rh
ea

d
P

er
ce

nt
ag

e
(%

)

E
xe

cu
tio

n
Ti

m
e

(u
s)

Size of Opertation (Count of Double)

Overhead Same domain Different domain

Figure 4.17: Comparison of two cases with different ghost process location.

4.8 NWChem Quantum Chemistry Application

NWChem [16] is a computational chemistry application suite offering many sim-

ulation capabilities, with providing extensive functionality [33] and excellent per-

formance [8]. NWChem is developed on top of the Global Arrays [51] toolkit,

which provides an abstraction of global shared array that hides the complexity

of domain distribution across physical nodes. It is implemented on a number of

platforms natively and as a portable implementation over MPI RMA [24].

The coupled cluster (CC) theory is one of the most popular approaches in

quantum chemistry for solving electron correlation in atoms and molecules with

arbitrary accuracy requirements. NWChem provides highly efficient parallel im-

plementations for a variety of complicated CC methods through the Tensor Con-

traction Engine (TCE). The “gold standard” coupled cluster with singles and

doubles and perturbative triples method, known as CCSD(T), is one of the most

accurate CC methods applicable to large molecules to date. It is particularly

useful for calculating accurate noncovalent interaction energies.

The get-compute-update mode is the generic code structure used in all the

internal phases of NWChem, which performs large three-dimensional matrix–

68

Global Arrays : A, B, C

Local Buffers : a, b, c

for {each sub block in A, B} {

GET a from A;

GET b from B;

COMPUTE c = a * b + c;

UPDATE c to C;

NXTASK;

}

Figure 4.18: Generic get-compute-update mode in NWChem.

0%

20%

40%

60%

80%

100%

W5 W10 W14 W16 W18 W20 W21

Ti
m

e

4-index CCSD iteration (T) portion Others

Figure 4.19: Analysis of CCSD(T) internal steps in varying Wn with pVDZ.

matrix multiplications. As demonstrated in Figure 4.18, in the get-compute-

update mode, each processes first gets sub-domain a and b from global arrays

that are located in the memory spaces of remote processes, then performs a

local DGEMM and next it updates the result c back to the global memory,

accumulating the values. The nxtask module is called after every sub-domain

computation to decide the computing process for the next computation.

The CCSD(T) method performs a complex set of multidimensional array com-

putations organized in three internal steps: four-index transformation, CCSD

iteration, and the noniterative (T) portion. To understand the performance

characteristics of CCSD(T), we compared the time consumed by each step on

our experimental platform (see Section 4.6) for three water molecule (H2O)n
problems (n = 5, 16, 21, denoted as Wn) with double-zeta basis sets (pVDZ). As

shown in Figure 4.19, the (T) portion consistently dominates the entire cost of

CCSD(T) by close to 80%, and the CCSD iteration takes the other 20%; the

four-index transformation and other internal steps represent less than 3% of the

execution time.

To evaluate the capability of Casper, we use both Casper and the thread-

based approaches to optimize the most time-consuming step: (T), a computation-

intensive stage that follows the typical get-compute-update approach contain-

69

Table 4.2: Core deployment in NWChem evaluation on Cray XC30.

Computing Cores Async Cores

Original MPI 24 0

Casper 23 1

Thread (O) 24 24

Thread (D) 12 12

ing large matrix-matrix multiplication operations (compute) with numerous one-

sided operations (get) and a reduce operations (update) at the end of computa-

tion.

Two molecules are considered in this experiment: a very large water cluster

(H2O)21(denoted W21 for short), and C20 which is obtained from the NWChem

QA test suite (QA/tests/tce c20 triplet). For the water cluster, we used

double-zeta basis sets (cc-pVDZ from the NWChem basis set library), which are

reasonable for this class of problems. We compared Casper with both the orig-

inal MPI and two thread-based approaches. The first approach employs over-

subscribed cores (Thread (O)), where every thread and its MPI process execute

on the same core; the second approach uses dedicated cores (Thread (D)), where

threads and MPI processes are on separate cores. We used the same total number

of cores in all approaches, some of which are dedicated to asynchronous ghost

processes/threads as listed in Table 4.2.

We first focus on the strong-scaling performance in large W21 (with pVDZ)

problems by using a varying number of cores. Figures 4.20(a) show the execution

time. Relative to the original version, Casper is almost twice as fast than the

original MPI, whereas the thread-based approaches cannot improve performance

and perform even slight worse than the original implementation. Similar trend

has been shown in Figure 4.20(b), the CCSD(T) simulation in C20 (with pVDZ)

problem. Casper with one ghost process consistently improves the performance of

(T) portion by 2-folds, but the thread approaches cannot benefit much, showing

similar execution time as the original version.

To determine the reason for these results, we measured separately the time

consumed by the internal computing operations and that by the RMA communi-

cation (get) on 1704 cores and on 6144 cores. As shown in Figure 4.21, although

both Casper and the thread-based approaches eliminate the delay in RMA com-

munication with asynchronous progress on, the performance of the computation

is negatively impacted. Since Casper spends only one core as a ghost process

on each node, this degradation is minimized. With the thread-based approaches,

however, performance becomes twice as bad because of appropriation of half of

the computing cores in the dedicated approach (Thread(D)) and the inefficient

core oversubscription in Thread(O) approach.

As the last observation, we also measured the weak scaling of (T) portion

with varying water problems (Wn-pVDZ, where n = 5, 10, 14, 16, 18, 20, 21)

and cores. As shown in Figure 4.22, similar to the trend we obtained in the

strong scaling experiment, Casper consistently doubles the performance in all

70

0
2
4
6
8

10
12
14
16
18

1704 3072 6144 12288

(T
) P

or
tio

n
Ti

m
e

(h
r)

Number of Cores

Original MPI Casper Thread(O) Thread(D)

(a) (T) portion for W21 with pVTZ.

0

20

40

60

80

1440 1920 2400 2800

(T
) P

or
tio

n
Ti

m
e

(m
in

)

Number of Cores

Original MPI Casper Thread(O) Thread(D)

(b) (T) portion for C20 with pVTZ

Figure 4.20: NWChem CCSD(T) Simulation on Cray XC30.

problem sizes, while the thread-based approaches impose a performance penalty

with respect to the original MPI for all problem sizes because of inefficient core

usage or oversubscription.

71

0
2
4
6
8

10
12
14
16
18

Original
MPI
1704

Casper
1704

Thread(O)
1704

Thread
1704

Original
MPI
6144

Casper
6144

Thread(O)
6144

Thread
6144

(T
) p

or
tio

n
Ti

m
e

(h
r)

COMP RMA Sort

Figure 4.21: (T) portion profiling for W21 with pVDZ.

0
2
4
6
8

10
12
14
16
18

W5
24

W10
120

W14
384

W16
600

W18
936

W20dode
1416

W21
1704

T
P

or
tio

n
Ti

m
e

(h
r)

Original MPI Casper Thread(O) Thread(D)

Figure 4.22: (T) portion in NWChem CCSD(T) for varying Wn with pVDZ.

72

Chapter 5

Dynamic Adaptable Asynchronous Progress

Advances in high end computing systems provide scientists the capability to solve

more complex and large-scale problems. Many of those complex scientific prob-

lems always require integration of multiple fundamental solvers and algorithms

into application execution. To provide highly optimized performance for various

scientific applications, researchers have studied and categorized the performance

characteristics for large sets of typical applications that are always designed as

rigid communication and computation pattern, and proposed corresponding op-

timization for each kind of applications. However, such static method can rarely

benefit those complex applications that require a collection of multiple algorithms,

since each of these implementations can performs very different characteristics of

communication and computation. Thus it is challenging to find a generic opti-

mization for such kind of applications.

Chapter 4 presented a process-based asynchronous progress approach for sup-

porting one-sided data movements on multi- and many-core architectures by keep-

ing aside a few cores as “ghost process” and dedicating them to help asynchronous

progress for user processes through memory mapping and operation redirection

techniques. The straightforward design, however, may not deliver optimal per-

formance in multi-phases application and even raise up the concern of load im-

balanced communication. In this Chapter, we study this issue by deeply analyze

the internal construction of multiple phases in NWChem application as the case

study, and propose dynamic adaptation strategies that help Casper better sup-

port the challenging multi-phases applications.

The rest of the chapter is organized as follows: Section 5.1 first discuss the lim-

itation of static Casper in general multi-phases applications. Then Section 5.2

present our solution—two dynamic adaptation approaches—for addressing the

issue, and Section 5.3 gives the detailed design for each approach. After Sec-

tion 5.5 evaluates the adaptation approaches using several microbenchmarks, we

demonstrate the performance improvement in large quantum chemistry applica-

tion NWChem in Section 5.6, with deep analysis of the performance characteris-

tics for NWChem’s multiple internal phases, and performance comparison with

traditional static solution.

73

-60

-40

-20

0

20

0

20

40

60

80

100

120

Original
MPI

Casper
(1)

Casper
(2)

Casper
(4)

Casper
(6)

Casper
(8)

Im
pr

ov
em

en
t (

%
)

Ti
m

e
(m

in
)

Task Improvement (T) portion CCSD iteration 4-index

Figure 5.1: Trade-off in NWChem CCSD(T) task for Tet-pVDZ on 240 cores

5.1 Limitation in Static Casper

In Chapter 4, we has proposed “Casper,” a process-based asynchronous progress

solution for MPI one-sided applications [61]. Although networks such as Infini-

Band has provided hardware-handled PUT/GET operations on contiguous data,

the other operations, such ACCUMULATION on non-contiguous 3D subarray,

still require the MPI software to make progress on the target side to ensure the

completion of operations. Such limitation, obviously, can result in arbitrary long

delay if heavy computation is involved on the target process. The central idea

of Casper is to dedicate a small user-specified number of cores on a multi- or

many-core environment as background “ghost processes.” Casper transparently

intercepts all RMA operations to the user processes through PMPI and redirects

them to the ghost processes by utilizing an internal shared window, which is

internally initialized at every user window allocation call.

The static operation redirection allows Casper to provide efficient asynchronous

progress for software-handled RMA operations without effect the performance

of any hardware-handled operations (e.g., contiguous PUT/GET operations on

RDMA supported network). However, such static redirection may not be suffi-

cient for some large applications that always compose of multiple internal phases

with different proportion of communication. That is, in communication-sparse

phases, the ability of asynchronous progress is important because arbitrary long

delay can happen when the target processes are so busy in computing that can-

not make MPI progress; in communication-intensive phases, however, the asyn-

chronous progress may not be necessary because the target processes can fre-

quently make MPI calls and thus handle the operations issued to them as targets

by themselves. Furthermore, when the amount of RMA operations becomes large,

redirecting operations to a few of ghost processes may even result in performance

degradation in communication, since those operations were originally distributed

to many user target processes (the number of user process is always much larger

than the amount of ghost processes). Figure 5.1 demonstrates the performance

we have observed in NWChem CCSD(T) simulation for the Tetracene (C18H12)

74

molecular. None of the asynchronous progress approaches can benefit all internal

phases, the computation-intensive (T) portion gets the largest improvement when

using 2 ghost processes (Casper(2)), however, the other phases shows degradation

since they are dominated by communication. Trade off has to be done to for the

whole execution. In Section 5.6 we will analysis the detail of such inefficiency in

the NWChem application.

To better understand the trade off between the asynchronous progress and

the load balance of communication, we break down the MPI implementation in

a simple RMA communication running on two nodes with two user processes

and one ghost process on each node. Each user process on the first node (O1

and O2) communicates with one of the processes on the second node (T1 and

T2) following the pattern lock-ACCUMUALTE-flush-computation-unlock, while

T1 and T2 are just performing computation and waiting for the completion of

operations from O1 and O2 respectively. The internal communication processing

for the ACCUMULATE operations can be separated as three steps in most MPI

implementation: issuing operation on the origin side, handling operation on the

target side, and local completing after the internal acknowledgment (i.e., PUT,

ACC) or data back (i.e., GET) on the origin side.

O1	

T1	

O2	

T2	

O1	

O2	

G	

O1	

O2	

T1	

T2	

O1	

O2	

G	

Computa.on

Handling	OP	(target) Issuing	OP
Comple.ng	OP	(origin)

(1)	Small	OP	without	ASYNC

(2)	Small	OP	with	ASYNC

(3)	Large	OP	without	ASYNC

(4)	Large	OP	with	ASYNC

Figure 5.2: Asynchronous Progress and Load Balance.

Figure 5.2 compares the cost of each step with and without asynchronous

progress for both small and large operations. As shown in case (1), for small

operations, since the operations handling cost is very smaller thus the delay

of the operation is almost caused by the computation on the target processes;

when asynchronous progress is provided, as shown in case (2), the operations are

quickly handled by the ghost process (G) instead of the target processes without

any delay caused by the computation, however, the ghost process has to handle

all the operations issued to the processes on its node (T1 and T2). Nevertheless,

75

it is still more efficient than (1) since the the total cost of the handling processing

on G is much smaller than the delay caused by the computation on T1 and

T2. When the operation size or the number of operations becomes large on

every user process, the overhead of the operation handling on the target side is

also significantly increased. Thus it can happen that, the waiting time for an

operation is longer within Casper on some processes (i.e., O2) if the overhead of

the operation handling on the ghost process G is more expensive than the delay

caused by user computation. Case (3) and (4) demonstrate such cases.

To distinguish with the adaptable version we propose from the next section,

we use static Casper to indicate the basic version with static configuration of

asynchronous progress in the remainder of this paper.

5.2 Solution

In this chapter, we propose two dynamic adaptation approaches for Casper asyn-

chronous progress in multi-phases applications: a user-guided approach and a

transparent self-profiling based approach, with providing strict correctness per

MPI semantics. The adaptation approaches allow application to dynamically

redirect all RMA communication to the ghost processes for computation-intensive

phase that requiring efficient asynchronous progress, with avoiding inefficient redi-

rection for communication-intensive phase.

5.3 Dynamic Adaptable Asynchronous Progress

A dynamic adaptation mechanism is necessary in order to avoid the inefficient

asynchronous progress as described in the above section. In this section, we

introduce the design and implementation of Casper’s dynamic adaptation.

The notion of asynchronous progress adaptation is to dynamically change the

internal target of RMA operations. The operations are sent to ghost process as

the target when asynchronous progress is enabled, and to the original user target

process when asynchronous progress is disabled. The notion is straightforward,

however, a simple implementation can break the ordering and atomicity guarantee

for ACCUMULATE-like operations on a single window which is provided in MPI.

For example, for two concurrent ACCUMULATE operations, if one is issued to

the ghost process but the other is issued to the user target process, then both

operations can be concurrently performed on two processes, and consequently

resulting in undefined result.

In this section, we introduce two adaptation approaches we have carefully

designed for ensuring the correctness per MPI semantics. The first approach re-

lies on the guidance from user. It allows user to enable or disable asynchronous

progress for each particular internal phase during application execution by passing

user hint at the beginning of the target phase. This approach is straightforward

and accurate, however, it requires the users have sufficient understanding of the

characteristics and code construction of the application. The second approach

we have studied is based on the idea of self-profiling. We insert profiling

code in every MPI call through PMPI to automatically track the change of com-

munication frequency during execution, thus allowing transparent adaptation of

76

Applica'on

P0 P1 P2 P3

WIN-1

WIN-2

WIN-3

WIN-2

SYNC
SYNC

PHASE-1

PHASE-2

Figure 5.3: Three levels of granularity in RMA application

asynchronous progress. In the following parts of this section, we describe the

design of both approaches separately.

5.3.1 User-Guided Adaptation

To ensure any concurrent operations on a given window are always issued to

the same internal target, every user process must collectively update the asyn-

chronous progress inside Casper. That is, the change of asynchronous progress

configuration must be done either at window allocation time, or at any collec-

tive synchronization that guarantees the completion of all outstanding operations

on all processes involved in the window (i.e., MPI Win fence). Thus we define

three levels of adaptation granularity in the user-guided approach as shown in

Figure 5.3: (1) the global configuration for the entire execution, (2) per-window

configuration for the communication performed on a particular window from win-

dow allocation to window free, and (3) the per synchronization configuration for

controlling a particular phase during two synchronization calls. We describe the

detailed design for each level as follows.

Global Configuration: Before execution, user can specify the value of environ-

ment variable CSP ASYNC CONFIG to ON or OFF (ON by default) to enable or disable

the asynchronous progress for the entire execution. This value can be overwritten

by setting through finer granularity configuration. We note that, the cores ded-

icated to ghost processes are always kept aside from the user application, even

when the asynchronous progress is disabled.

Per Window Configuration: Whenever user processes allocate a window, user

can pass the info hint async config (ON or OFF) to overwrite the configuration

of asynchronous progress for this window.

Per Collective Synchronization Configuration: During the communica-

tion of a given window, MPI provides several synchronization calls (i.e., fence,

lock-unlock, post-start-complete-wait) to ensure the completion of outstanding

RMA operations and synchronization between processes. Due to the limitation

of ordering and atomicity semantics as we have already discussed, only the fence

synchronization allows the internal change of target redirection in Casper, since

it is collectively called by all processes in the window and the return from a fence

77

call guarantees the completion of all outstanding operations on all processes. The

window allocation call can be considered as a special collective synchronization.

However, in passive-target mode, there is no synchronization call provides

such functionality. We propose a new info hint symmetric with value true or

false that can be passed to an active window via the MPI Win set info call.

This hint is required to be the same value on all processes of the window. The

symmetric=true info means all processes have locally finished all the outstanding

operations on the window and arrived at this call. As an example of its usage,

this hint can be passed after a flush all-barrier synchronization performed

on all processes. This information allows Casper to provide the chance for safe

adaptation similar as that in fence.

5.3.2 Transparent Profiling based Adaptation

Although the user-guided approach provides simple and accurate adaptation, it

only benefits a few application experts who have sufficient knowledge in both

application implementation and MPI programming. To provide comprehensive

support for any application users, a transparent solution becomes necessary. Thus

we also studied a self-profiling based approach, which consists of a prediction step

determining the needs of asynchronous progress comparing to the load balance

of communication for every single user process, and a synchronization step that

exchanges the predicting results among all involved processes.

The prediction step replies on the local profiling technique that tracks the

proportion of communication and computation in the recent execution phase.

Specifically, we estimate the asynchronous progress is more important for the

coming execution on a process if the profiling result shows its computation has

become so intensive that can significantly degrade the performance of communica-

tion from other processes due to lack of asynchronous progress, and hence enable

its asynchronous progress. Conversely, we estimate the asynchronous progress

is unnecessary on a process if profiling result indicates intensive communication

that can increase the progress made by the process itself and additionally result

in higher risk of load imbalance, and consequently we disable the asynchronous

progress.

The second synchronization step exchanges the predicted results among all

user processes, thus allowing every process to gather the configuration of asyn-

chronous progress on every target process for its future communication. This step

can be set in every window collective synchronization call to hide the requirement

of extra collective synchronization. It also guarantees the ordering and atomic-

ity for ACCUMULATE-like operations since all the processes concurrently and

consistently change their local information for any target process. However, such

design may result in failure of adaptation if the timing of synchronization in ap-

plication does not fit the change of communication characteristics. For example,

the computation can become heavy after window created and there may not have

any window synchronization that allows us to perform the second synchroniza-

tion step. This issue does not exist in the user-guided approach since the user

can appropriately set the hint before the change. Thus we also investigated a

more flexible approach for the synchronization step that can address this issue

78

for PUT/GET operations which do not require strict ordering and atomicity, by

offloading to the background ghost processes.

In the rest of this section, we introduce the detailed design of the self-profiling

based adaptation by decoupling into following three aspects: the self-profiling

base prediction, the user synchronization for all RMA operations, and the ghost-

offloaded synchronization for PUT/GET operations.

5.3.2.1 Self-Profiling based Prediction

To predict the needs of asynchronous progress and the communication workload

in the next period of execution, we automatically determine the communication

frequency for every process in the last recent execution and assume the next

period follows the same trend. A high frequency means that the process is fre-

quently making MPI call thus is able to handle the receiving operations by itself;

a low frequency means the process rarely performs MPI communication thus does

not have chance to handle the incoming operations, consequently requiring ghost

process to provide asynchronous progress.

We insert timer in every MPI function through PMPI to automatically mea-

sure the communication time for any given period of execution from time Tn−1

to Tn, and use Equation 5.1 to evaluate its communication frequency Freq(Tn)

at time Tn:

Freq(Tn) =
TcommTn

Tn − Tn−1
(5.1)

in which the TcommTn
is the total execution time of MPI calls performed on that

process during the period from time Tn−1 till Tn.

After every process evaluated the communication frequency, it updates the

local asynchronous status to indicate its needs of asynchronous progress. As

shown in Figure 5.4(a), we define a two-level threshold, HIGH FREQ and LOW FREQ,

to ensure a relatively stable status change. The asynchronous status of every user

process is ON by default; if the observed frequency is higher than the HIGH FREQ,

then we set the status to OFF; conversely, if the observed frequency becomes lower

than the LOW FREQ, then we set the status back to ON.

Although the prediction cost is so small that can be ignored in real applica-

tions, we still use a threshold PREDICT INT to control the interval between twice

local prediction instead of performing it in every MPI call. That is, the local pre-

diction based on Freq(Tn) is only performed when interval (Tn−1 − Tn) becomes

larger than PREDICT INT.

We note that the time inside MPI calls can be taken in two ways: (1) block

waiting before message arrive, and (2) MPI internal instructions (i.e., issuing

operation and completing operation on the origin side, and handling incoming

operations on the target side as shown in Figure5.2), however, the user process

can get chance to make MPI progress only in the block waiting time. In addition,

we have also discussed that the severe load imbalance issue on ghost processes is

due to heavy overhead of the operation handing step. Unfortunately, we cannot

distinguish the overhead of each internal communication step of MPI implementa-

tions through PMPI, thus we have to predict based on the entire communication

time which can reduce the accuracy of prediction.

79

	me.stat	

ON

OFF

freq	>	HIGE_FREQ

freq	<	LOW_FREQ

(a) Status prediction

P0 P1 P2 P3

Computation

Window	collec+ve	synchroniza+on

OFF

MPI	communica+on

ON

me.stat	=	ON OFF OFF ON

OFF

O F F O

ON

(b) Prediction and Synchronization.

Figure 5.4: Self-profiling based Adaptation

5.3.2.2 User-handled Synchronization

In the user-handled synchronization mode, every user process holds an array for

each window to maintain the status of asynchronous progress on all of its target

processes. Casper can internally redirect an RMA operation to either the ghost

process or the user process according to the target’s status. If the status of a

target is ON, then all the operations issued to that target are redirected to the

corresponding ghost process, otherwise they are directly issued to the original

user target process.

Figure 5.4(b) demonstrates the adaptation work-flow composing of local pre-

diction step and the user-handled synchronization step. The prediction step

simply updates the local status on every single process; then in every window-

wide collective synchronization call (i.e., window allocation, fence or symmetric

window info setting), processes collectively exchange the latest status with each

other and update the local target array, thus ensuring any two operations issued

to the same target on the same window must be both sent to the ghost process,

or both sent to the user target process. Consequently, the semantics correctness

of any RMA communication is guaranteed similar as the user-guided approach.

5.3.2.3 Ghost-offloaded Synchronization for PUT/GET

A more dynamic synchronization is designed for the PUT/GET operations which

do not require strict ordering and atomicity. This mode offloads the global infor-

mation synchronization to the background ghost processes through a two-level

cache mechanism as demonstrated in Figure 5.5. Thus the adaptation can hap-

pen without relying on any collective synchronization call in user application.

This design can be decoupled into following five pieces:

Two-Level Caches: Every user process allocates the level-1 cache from its

local memory for fast query in frequent PUT/GET operations; a shared window

is allocated among user processes and the first ghost process on every node as

the level-2 cache at MPI initialization time for serving the global synchronization.

Both the level-1 and level-2 cache is an array that stores the status of all the user

processes. The offset of the status for a given user process is consistent on all

80

P0 P1 G0 P2

P3 P4 G1 P5

Global	SYNC	Refresh

Refresh

LV-1	Cache	

LV-2	Cache	

Local	status	

Figure 5.5: Ghost-offloaded synchronization.

processes. Figure 5.5 shows an example of this design with six user processes

on two nodes. Thus every cache array contains six integer elements, in which

the elements from offset 0 to 5 are responsible for the status from P0 to P5

respectively.

User Local Update: Every user process updates its local status in the pre-

diction step as described in Section 5.3.2.1. It is immediately updated to the

corresponding element in the level-1 and level-2 caches if the value is different

from the previous status (e.g., changed from ON to OFF). When updating to the

level-2 cache, MPI Accumulate operation is used instead of direct write in order

to ensure per-element atomicity when accessing the shared window.

Ghost-offloaded Global Synchronization: Regardless of the execution on

user processes, the global status synchronization is performed by the first ghost

process on every node at an interval that can be set through the environment

variable GSYNC INT. Every ghost process sends out the status of its local user

processes (shown as blue blocks in the level-2 cache in Figure 5.5) and receives

from others. This operation can be simply implemented by using MPI Allgather.

After the completion of a global synchronization, the ghost process needs to notify

all the user processes on its node that the level-2 cache has become DIRTY, thus

the user processes can update its local level-1 cache by reading newer data from

the level-2 cache (called “refresh”). The dirty notification can be implemented

using MPI Ibcast and the refresh operation must utilize MPI Get accumulate

operation for per basic element atomicity.

Target Local Query: In every PUT/GET operation, the user process first

queries the asynchronous progress status of the user target process by directly

reading from the local level-1 cache. Similar as that in the user-handled synchro-

nization, if the target’s status is ON then the user process redirects the operation

to the corresponding ghost process for the target, otherwise directly sends to the

original user target. The frequent query operation does not involve any heavy

overhead since it is just a load of integer from the local memory.

Performance Consideration: Obviously, the ghost-offloaded approach can

generate additional overhead, since extra synchronization has been involved. It

81

is important to avoid unnecessary synchronization. For example, after a user-

handled synchronization (e.g., in user window allocation call), the status has al-

ready been synchronized, thus the upcoming global synchronization on the ghost

processes can be skipped.

We note that the ghost-offloaded approach can only provide user processes

a mostly recent status on other processes. It guarantees neither the consistency

between a local status and its cached version on remote processes, nor the consis-

tency among any remotely cached status for the same process. This is because,

user processes may or may not refresh the level-1 cache concurrently; moreover,

a user process can perform the next prediction right after the ghost-offloaded

synchronization. Thus we should only apply this adaptation to the PUT/GET

operations, ACCUMULATE-like operations can only be adapted by using the

user-handled synchronization.

5.3.2.4 Impact on Hardware-handled Operations

The self-profiling based adaptation is relying on the assumption that all RMA

operations are handled in the MPI stack that requiring the target process to

make progress, thus the asynchronous progress needs to be enabled if we predict

low communication frequency on the target process. However, such notion is not

held for the hardware handled operations (i.e., contiguous PUT/GET in Cray

MPI DMAPP mode) that do not require any software progress on the target

process. Nevertheless, we do not distinguish the hardware handled operations in

the adaptation, since it does not impact on the performance. That is, in the case

with low communication frequency, all the hardware handled operations are also

redirected to the ghost process but should delivering the same performance as

distributed to multiple user processes on the same node; similarly, it the case with

high communication frequency that the asynchronous progress will be disabled,

the performance of hardware handled operations should still show no performance

difference since they do not rely on the asynchronous progress in software.

5.4 Experimental Environment

All the experiments in this paper are executed on the NERSC Edison Cray

XC30 supercomputer the same as the experiments for static Casper (see Sec-

tion 4.6). For the software environment, a newer version is for all the exper-

iments: the Intel compiler Composer XE 2015.1.133 and the Cray MPI 7.2.1.

For NWChem evaluation, we use NWChem version 6.3 with MKL 11.2.1 as the

external math library. We note that the Cray MPI contains a regular mode

and a DMAPP mode. The regular mode executes all RMA operations in soft-

ware with asynchronous progress possible through background threads (by set-

ting the MPICH ASYNC PROGRESS environment variable); the DMAPP mode executes

contiguous PUT and GET operations in hardware and provides interrupt-based

asynchronous progress for other operations (i.e., accumulate, noncontiguous op-

erations). Since in the previous chapter, we have observed significant overhead

of frequent interrupts in the DMAPP mode that can be difficult to benefit real ap-

plications, we only compare the adaptation approaches with the regular mode.

82

5.5 Microbenchmarks

In this section, we analyze the performance of the adaptation approaches by

utilizing several microbenchmarks from the aspects of overhead, self-profiling

based prediction, the limitation in static Casper, and the adaptation improvement

respectively.

5.5.1 Overhead Analysis

We first evaluate the overhead of the user-guided approach and the self-profiling

based approaches for each window collective synchronization call on a single node

with one ghost process and increasing number of local processes. For user-guided

approaches that only insert hint at window allocation, the names are abbrevi-

ated to CSP(U, {ON, OFF}) in which ON or OFF is the hint passed through

window info; similarly, CSP(U-coll, {ON, OFF}) is denoted for the user-guided

modes that also insert hint in fence or the MPI WIN SET INFO; for self-profiling

based approaches, CSP(P) is denoted for the mode that only allows user-handled

synchronization, and CSP(GP) is for the mode that also allows ghost-offloaded

synchronization for PUT/GET operations.

Figure 5.6(a) shows the overhead of MPI WIN ALLOCATE. When the asynchronous

progress is enabled, Casper always experience substantial cost in the window al-

location time, since we have to create internal windows and exchange internal

information globally. This can be shown as the gap between CSP(U, ON) and the

original MPI; the performance of CSP(U, OFF) is very close to that of the original

MPI, because we do not perform additional processing and return immediately

when the asynchronous progress in the window is disabled; the CSP(U-coll, ON)

and CSP(P) approaches perform the same processing as that for CSP(U, ON)

thus deliver the same performance. We note that the CSP(GP) mode always

updates the local ghost cache, however, it is not significant since the overhead

of GET ACCUMUALTE on shared memory is too small. We omit CSP(U-coll,

OFF) in this graph, because it performs the same processing that in CSP(U-coll,

ON).

Figure 5.6(b) compares the overhead of each approach at fence call. For

CSP(U, ON), it does not perform adaptation in fence, the additional cost com-

paring to original MPI is because of the passive-mode translation in our Casper

implementation as already discussed in our previous work; the CSP(U-coll, ON)

approach only updates local window since the user hint is consistent on all pro-

cesses, thus showing similar cost as that of CSP(U, ON); the CSP(P) approach,

however, need to perform the user synchronization that exchanges the status of

local asynchronous progress among processes; the CSP(GP) approach needs to

also update the data in every local ghost cache after user synchronization, thus

consistently showing close to 1µs overhead comparing to CSP(P).

Figure 5.6(c) compares the overhead of each approach at window info setting

with symmetric hint. Similar as the fence call, both CSP(U, ON) and CSP(U-coll,

ON) do not involve any additional communication; the self-profiling based ap-

proaches have to always perform additional all-to-all communication, thus show-

ing increasing overhead with increase of processes. The additional 1µs overhead

of CSP(GP) comparing to CSP(P) is the same as we have explained in fence.

83

0

1

2

3

4

5

6

4 6 8 10 12 14 16 18 20 22

W
IN

_S
E

T_
IN

FO
 T

im
e

(u
s)

Numer of Local Processes

Original MPI CSP(U,ON) CSP(U-coll,ON)
CSP(P) CSP(GP)

(a) Window allocation

0

2

4

6

8

10

12

4 6 8 10 12 14 16 18 20 22

W
IN

_F
E

N
C

E
 T

im
e

(u
s)

Numer of Local Processes

Original MPI CSP(U,ON) CSP(U-coll,ON)
CSP(P) CSP(GP)

(b) Fence

0
50

100
150
200
250
300
350
400

4 6 8 10 12 14 16 18 20 22

W
IN

_A
LL

O
C

AT
E

 T
im

e
(u

s)

Number of Local Processes

Original MPI CSP(U,ON) CSP(U,OFF)
CSP(U-coll,ON) CSP(P) CSP(GP)

(c) Window info setting with symmetric

Figure 5.6: Adaptation Overhead at Window Collective Synchronization.

5.5.2 Self-Profiling based Prediction

As we have discussed in Section 5.1, the communication load imbalance issue hap-

pens when the overhead of operation handling on the ghost processes becomes

more expensive than the delay on user processes caused by user computation.

The overhead of operation handling is related to three factors: the number of

operations, the number of user processes that bound to a single ghost process,

and the data size of every operation. In this section, we measure the performance

84

speedup delivered by Casper with asynchronous progress (shown as ON) compar-

ing to the result with disabling the asynchronous progress (shown as OFF), with

increasing proportion of communication in the above ways, and try to quantify

the communication frequency on our experiment platform.

5.5.2.1 Increasing Number of Operations

We first measures the experiment of an all-to-all RMA communication with in-

creasing number of operations on 2 nodes with 22 user processes and 2 ghost pro-

cesses per node. Every user process performs lockall-N[RMA-flush]-computati-

on-1[RMA-flush]-unlockall pattern to all the other processes, in which N in-

dicates the number of operations and the computation is demonstrated as 5000µ

busy waiting. Every RMA operation involves a contiguous buffer with 8 double el-

ements on the origin side, and using subarray datatype to abstract a 2×2×2 three-

dimension double submatrix within 8×8×8 window region as the target datatype.

Figure 5.7(a) shows the measurements for GET and ACCUMULATE operations

separately. Within asynchronous progress, the GET and ACCUMUALTE opera-

tions get up to 4.85x and 3.9x speedup when the number of operations is smaller

than 16. With increasing operations, the speedup of asynchronous progress grad-

ually reduces and becomes negative when more than 32 operations have been

issued, since the ghost process handles too many operations that even heavier

than the delay due to computation. This graph also shows the the proportion of

communication comparing to the task execution time with reducing speedup. We

notice that when the asynchronous progress is disabled (GET-COMM(OFF) and

ACC-COMM(OFF)), the value of proportion is much larger than that with asyn-

chronous progress (GET-COMM(ON) and ACC-COMM(ON)) when the number

of operations is small, this is because the communication overhead is significantly

higher in the disabled case due to lack of asynchronous progress.

5.5.2.2 Increasing Number of Processes

Figure 5.7(c) shows a similar experiment, but scales the number of local pro-

cesses while keeping the number of GET operations at 100. Similar as the trend

in the previous experiment, the speedup of asynchronous progress reduces with

increasing number of local processes, and eventually becomes negative at 14 lo-

cal processes in both GET and ACCUMULATE experiments. The reason is

similar as the first experiment, the overhead caused by too heavy workload on

the ghost processes in the asynchronous progress enabled case is increasing with

larger number of local processes, since every ghost process has to serve more user

processes.

5.5.2.3 Increasing Size of Operations

Our third experiment uses yet another variant of the first experiment by varying

the length of X-axis (x) in the x×2×2 submatrix within the (x+8)×8×8 window

region, while keeping the number of operations at 1 for GET and ACCUMULATE

operations separately. Every process issues RMA operations following the same

pattern with 5000µ busy waiting. Figure 5.7(b) shows the results. This case,

85

0

20

40

60

80

100

0

1

2

3

4

5

6

1 2 4 8 16 32 64 128 256 512

C
O

M
M

 /
Ta

sk
 (%

)

S
pe

ed
up

 (O
FF

/O
N

)

Number of Operations

GET-Speedup ACC-Speedup GET-COMM(OFF)
GET-COMM(ON) ACC-COMM(OFF) ACC-COMM(ON)

(a) Increasing number of operations

0

20

40

60

80

100

0

0.4

0.8

1.2

1.6

2

2 4 6 8 10 12 14 16 18 20 22

C
O

M
M

 /
Ta

sk
 (%

)

S
pe

ed
up

 (O
FF

/O
N

)

Number of Local Processes

GET-Speedup ACC-Speedup GET-COMM(OFF)
GET-COMM(ON) ACC-COMM(OFF) ACC-COMM(ON)

(b) Increasing number of processes

0

20

40

60

80

100

0

1

2

3

4

5

6

2 4 8 16 32 64 128 256 512 1K 2K 4K

C
O

M
M

 /
Ta

sk
 (%

)

S
pe

ed
up

 (O
FF

/O
N

)

Size of Operation (Count of Double)

GET-Speedup ACC-Speedup GET-COMM(OFF)
GET-COMM(ON) ACC-COMM(OFF) ACC-COMM(ON)

(c) Increasing operation size

Figure 5.7: Efficiency of Asynchronous Progress related to Communication Fre-

quency.

Table 5.1: Profiling Overhead(us) of Single RMA Operation on BreadBoard

OP
2× 2× 2(double) 128× 2× 2(double) 4096× 2× 2(double)

Time H-OP Time H-OP Time H-OP

ACC 8.6 2.7 48.0 33.9 1341.4 1271.6

PUT 7.7 1.8 28.0 14.4 515.5 447.1

GET 7.7 0.7 28.6 14.2 515.1 445.3

86

however, shows different trend of speedup among the different operation types.

The ACCUMULATE operation starts negative speedup of asynchronous progress

after the data size increased to 128× 2× 2 counts of double; the GET operation

also shows similar trend with increasing operation size, however, the negative

speedup starts from 1024× 2× 2.

To figure out the difference between these operation types, we measured the

overhead of the internal operation handling step on the target side (H-OP) of

MPICH on the BreadBoard cluster 1. As shown in Table 5.1, within the same

three-dimension datatype using two inter-connected processes. Only the first

process issues operations to the second. The ACCUMUALTE operation always

shows heavier overhead of the target handling step than the others because the

ACCUMULATE is handled as firstly unpacking received data to a temporary

buffer and then accumulating with the original window data following the non-

contiguous data structure. Thus its speedup related to the load imbalance is

always lower than the GET and PUT which only involve non-contiguous issuing

and unpacking received data to non-contiguous window location in the handling

step respectively. With increasing X-axis of the target datatype, this gap becomes

even larger, thus we can observe the degradation in ACCUMULATE at 128×2×2

counts of double where GET still shows 2.67-fold speedup. We do not show the

results of PUT in the above graphs for simplicity reason since it is performance

is very close to GET.

5.5.3 Limitation of Static Casper

Our third set of experiments focus on the limitation of static Casper by com-

paring two microbenchmarks that demonstrate a typical computation-intensive

phase and a communication-intensive phase respectively on 8 nodes. In each

experiment, we utilize 24 user processes on every node in the original MPI ap-

proach, and vary the number of ghost processes from 1 to 8 in static Casper, each

of which serves 23, 22, 20, 18 and 16 user processes per node respectively. Every

user process performs all-to-all communication following the pattern as shown in

Figure 5.8. In the computation-dominated phase, we use a DGEMM computa-

tion with total size 96000 × 96000 × 96000 (500 × 500 × 500 per process in the

original MPI approach) in every iteration, and issues one ACCUMULATE-flush in

each communication part (NOP = 1); in the communication-intensive phase, we

set the total size of DGEMM to 192×192×192 and issues 100 ACCUMULATE-flush

in the first communication part (NOP = 100). Every RMA operation utilizes

the same datatype as used in Section 5.5.2.1.

Figure 5.9(a) shows the result of the computation-intensive experiment. The

task execution time is reduced from 42.3 seconds to 11.8 seconds when using

static Casper with only one ghost process. This is because the communication in

the original MPI is significantly degraded due to lack of asynchronous progress.

However, with increasing number of ghost processes, the overhead of the DGEMM

computation gradually increases because more and more computing cores are

dedicated to asynchronous progress, which is necessary.

1We cannot access the source of Cray MPI thus cannot directly measure the internal over-

heads. However, the Cray MPI uses similar RMA implementation as that of MPICH, thus we

expect similar trend of the internal overheads with increasing data size.

87

MPI_Barrier ();

for (iter =0; iter <50; iter ++) {

for (dst=0; dst <nprocs; dst++) {

for (i=0; i<NOP; i++) {

MPI_Accumulate (...,dst ,...);

MPI_Win_flush(dst , win);

}

}

/* DGEMM computation */

for (dst=0; dst <nprocs; dst++) {

MPI_Accumulate (...,dst ,...);

MPI_Win_flush(dst , win);

}

}

Figure 5.8: communication/computation-intensive phase microbenchmark.

Figure 5.9(b) shows the result of the communication-intensive experiment.

Different from the computation dominated case, the performance is 4x worse

than the original MPI approach when only use one ghost process within static

Casper because of load imbalance issue as we have demonstrated in the previous

section. Within more ghost processes, this issue is gradually resolved and shows

better performance than the original case from 6 ghost processes since we still

have computation on every process.

Obviously, although the static Casper can benefit for any single phase of

application by adjusting the number of ghost processes, it cannot achieve the

optimal performance if an application contains both the computation-intensive

phase and the communication dominated phase. In the next set of experiments,

we will focus on such multi-phases case.

5.5.4 Adaptation Improvement

Our fourth set of experiments focus on the capability of dynamic adaptation

by utilizing a microbenchmark that demonstrates the multi-phase applications

on 8 nodes with 22 user processes and 2 ghost processes on each node. The

microbenchmark is constructed as two window allocation, each of which performs

a heavy-computation phase and a heavy-communication phase In each phase,

every process performs twice all-to-all communication following the the same

pattern as we used in the previous set of experiments (see Figure 5.8).

We compares the static Casper with four proposed adaptation modes: two

user-guided modes Casper(U) and Casper(U-coll), and two self-profiling based

dynamic adaptation approaches Casper(P) and Casper(GP). In the Casper(U)

approach, we only set user hint async config to ON in every window allocation;

in Casper(U-coll), we add a MPI WIN SET INFO call with user hint symmetric

88

0
5

10
15
20
25
30
35
40
45

Original MPI Casper
(1)

Casper
(2)

Casper
(4)

Casper
(6)

Casper
(8)

Ti
m

e
(s

)

DGEMM Task

(a) Computation-Intensive Phase

0

100

200

300

400

500

600

Original MPI Casper
(1)

Casper
(2)

Casper
(4)

Casper
(6)

Casper
(8)

Ti
m

e
(s

)

Task

(b) Communication-Intensive Phase

Figure 5.9: Performance Trend of Static Casper with Varying Number of Ghost

Processes.

after the barrier in each phase, and set user hint async config to ON before

the heavy-computation phase, to OFF for the heavy-communication phase. With

regard to the self-profiling based approaches, the Casper(P) mode only enables

the user synchronization, while the Casper(GP) mode also enables the ghost-

offloaded synchronization.

Figure 5.10(a) compares the execution time of each internal phase in GET

communication with 3D noncontiguous double matrix as the target datatype.

Comparing with the original MPI, the static Casper only takes 4 seconds in the

heavy-computation phase thus, but also resulting in about 66 seconds degrada-

tion in the heavy-communication phase; the user-guided adaptation per window

allocation, however, cannot address this issue, since it can only enable asyn-

chronous progress for the first heavy-computation phase, but cannot disable

it for the second one that performs heavy communication; within adding user

hint in the MPI Win set info after the barrier in each phase, the asynchronous

progress can be disabled for the heavy-communication phase with also benefit-

ing the asynchronous progress for the heavy-computation, thus delivering the

best performance, 4.4 seconds in the heavy-computation phase and 27.1 seconds

89

0

20

40

60

80

100

120

Original MPI Casper
(static)

Casper
(U)

Casper
(U-coll)

Casper
(P)

Casper
(GP)

Ti
m

e
(s

)

Phase(COMM) Phase(COMP)

(a) Get

0

20

40

60

80

100

120

140

Original MPI Casper
(static)

Casper
(U)

Casper
(U-coll)

Casper
(P)

Casper
(GP)

Ti
m

e
(s

)

Phase(COMM) Phase(COMP)

(b) Accumulate

Figure 5.10: Adaptation in multi-phase execution.

in the communication phase. On the other hand, for the self-profiling based

approaches, we set {85%,90%} for the frequency thresholds, 1 second as the pre-

diction interval, and 2 seconds as the ghost synchronization in the Casper(GP)

mode. Without ghost-offloaded adaptation, each phase shows additional over-

head comparing to Casper(U-coll) (5.1 seconds in the computation phase and

34.4 seconds in the communication phase), this is because the prediction in the

first MPI Win set info is not correct since it is based on the history execution

which always performs the opposite pattern (e.g., for the communication-intensive

phase, the first prediction is always based on a computation-intensive execution).

Within ghost-synchronization added in Casper(GP) mode, each phase can be

adapted without relying on user collective calls, thus delivering a better perfor-

mance which is very close to Casper(U-coll) with only 1.7 seconds and 6.9 seconds

overhead in the heavy-computation phase and the heavy-communication phase

respectively. This is the time waiting for the prediction and global synchroniza-

tion with sufficient profiling data on all processes.

Different from the GET communication, the ACCUMULATE communication

shows slightly different result. Figure 5.10(b) compares the performance of each

approach following the same experiment. Although the Casper(U-coll) also de-

90

0

20

40

60

80

100

0.1 1 2 3 4 5 6

Ti
m

e
(s

)

Prediction Interval (s)

P-Phase(COMM) P-Phase(COMP)

(a) Varying Prediction Interval (GET).

0

20

40

60

80

100

120

140

0.5 1 2 4 6 8 10

Ti
m

e
(s

)

Ghost Synchronization Interval (s)

Phase(COMM) Phase(COMP)

(b) Varying Ghost SYNC Interval (GET).

Figure 5.11: Threshold comparison in multi-phases adaptation.

livers the best performance with benefiting from the asynchronous progress in the

heavy-computation phase and avoiding load imbalance in the heavy-communication

phase, none of the self-profiling based approaches can achieve similar perfor-

mance, both of them show about 40 seconds additional overhead in the commu-

nication phase since the first half execution of the phase can not be correctly

adapted. Moreover, the Casper(GP) mode even results in visible overhead in the

computation phase comparing to Casper(U-coll) at 7.8 seconds, this is because

the ghost processes have to take time for global synchronization although it does

not benefit the ACCUMULATE operations at all.

Besides the evaluation of dynamic adaptation, we also use the same exper-

iment to observe the impact of different interval time. Figure 5.11(a) shows

relatively consistent time of Casper(P) in the GET experiment with increasing

prediction internal time, thus the impact of the prediction interval is minor. Fig-

ure 5.11(b) compares the execution time of Casper(GP) with increasing interval

of ghost synchronization. When the interval is set to 0.5 second, substantial

communication on the ghost processes results in twice performance degradation

in both phases. With increasing interval time the overhead becomes invisible

and the phases can benefit from adaptation, the best performance is delivered

91

at 2 seconds. However, when the interval is even increased, additional overhead

gradually appears and finally results in 4.7 seconds degradation in the computa-

tion phase and 12.4 seconds in the communication phase at 10 seconds. This is

because, the longer the interval we set, the later asynchronous progress status is

globally exchanged.

5.6 NWChem Quantum Chemistry Application

In the previous chapter, we have demonstrated significant performance improve-

ment of large chemistry application NWChem with the static Casper for the

C20 problem and a very large water molecule (H2O)21 in the CCSD(T) simu-

lation. However, we did not look into the break down of the performance in

other internal phases. To exploit the maximum performance improvement, we

will deeply study the performance characteristics of NWChem internal phases

with the static Casper and evaluate the performance with our adaptation solu-

tion. In following sections, we first give an overview of the internal phases in

the NWChem CCSD(T) task in Section 5.6.1, then in Section 5.6.2 we deeply

analyze the performance characteristics and the limitation of static asynchronous

progress in the internal phases of the CCSD(T) simulation with two different

problem types, a Water molecule ((H2O)n) series, and an Acenes series, by us-

ing the static asynchronous progress approaches including both static Casper

and the thread-based approaches. After understanding the shortcoming of static

approaches, we demonstrate the benefit of dynamic adaptation in Section 5.6.3.

5.6.1 Overview of Multiple Internal Phases

The CCSD(T) method performs a complex set of multidimensional array compu-

tations organized in three internal phases: four-index transformation (4-index),

CCSD iteration, and the noniterative (T) portion [31].

Four-index transformation: The 4-index phase requires a number of DGEMM

computation with a non-collective global transpose in the middle, containing

intensive PUT/GET/ACCUMUALTE communication following the get-compute-

update mode (see Figure 4.18).

CCSD iteration: This phase evaluates the residual for the complex set of nonlin-

ear CCSD equations. Each of the iterative steps composes of window allocation,

a number of global synchronization calls and the typical get-compute-update loop

that involves large amount of GET operations and a number of ACCUMULATE

operations with DGEMM computation.

(T) portion: In the noniterative (T) portion phase, every process only perform

one large matrix–matrix multiplication also following the typical get-compute-

updates approach, containing large COMPUTE operations with numerous GET

operations and a reduce operation (update) at the end of local multiplication.

All the above phases contain the nxtask module, in which processes issue

atomic FETCH AND OP operation on a global shared counter to schedule the

computation for the next sub-domain.

92

Table 5.2: Core deployment in NWChem evaluation on Cray XC30.

Computing Cores ASYNC Cores

Casper (1) 23 1

Casper (2) 22 2

Casper (4) 20 4

Casper (8) 16 8

5.6.2 Static Asynchronous Progress

We first analyze the performance of NWChem CCSD(T) simulation with static

asynchronous progress approaches.

5.6.2.1 Experiments Overview

We evaluated the improvement of NWChem by comparing the static Casper with

both the original MPI and two thread-based approaches. The first Thread (O)

approach employs oversubscribed cores where every thread and its associated MPI

process execute on the same core; and the second Thread (D) approach deploys

dedicated cores where threads and MPI processes are executed on separate cores

as listed in Table 4.2. For static Casper, we also compare the configuration with

different number of ghost processes, by keeping the same total number of cores

as the thread approaches. Table 5.2 lists the their detailed core deployment.

Different from the experiments in the previous chapter, we use the NTS task

scheduling module in all of our experiments in the evaluation by adding “set

tce:nts T” in the input files. The NTS module significantly reduces the overhead

of nxtask scheduling especially in the CCSD iteration.

5.6.2.2 CCSD(T) with Water Molecules

In this section, we focus on the CCSD(T) method with water molecule problems

((H2O)n)—denoted Wn for short—with double-zeta basis sets (cc-pVDZ from

the NWChem basis set library).

To have a global view of the performance effect caused by different asyn-

chronous progress approaches for the entire task execution, we first evaluated

Casper with comparison of both the original MPI and thread-based approaches

in weak scaling. Figure 5.12 indicates the task time of CCSD(T) method for vary-

ing Wn-pVDZ problems (n = 5, 10, 14, 16, 18, 21). Casper consistently improves

the performance from problem W10 to W21 by close to 30%. However, the thread-

based approaches do not show performance improvement and perform even worse

than the original MPI because of oversubscribed cores or appropriation of half of

the computing cores. We notice that Casper shows 15% performance degradation

in W5, which is executed on only single node. This is because MPI internally

allocates shared window for the processes on the same node, thus all the RMA

operations are handled in hardware through the shared memory. Casper does

not degrade the performance of communication, however, it takes 4 cores from

the user computation.

93

-20

-10

0

10

20

30

40

0

3

6

9

12

15

18

W5
24

W10
120

W14
384

W16
600

W18
936

W21
1704

Im
pr

ov
em

en
t (

%
)

Ta
sk

 T
im

e
(h

r)

Problem / Number of Cores

Original MPI Casper(4) Thread(O) Thread(D) Casper(4) Improve

Figure 5.12: CCSD(T) for varying Wn with pVDZ on Cray XC30.

To investigate the impact of asynchronous progress on each internal phase,

we next compare the time consumed by each phase for the CCSD(T) task. As

we have described in Section 5.6.1, the CCSD(T) method consists of three pri-

mary internal phases, 4-index, CCSD iteration and (T) portion. As shown in

Figure 4.19, the (T) portion consistently dominates the cost of entire task by

close to 80% for all the water problems, and the CCSD iteration takes the other

20%. Therefore, we only focus on the analysis of the CCSD iteration and the (T)

portion phases.

5.6.2.2.1 CCSD Iteration Phase : Figure 5.13(a) shows the profiling of

the communication-dominative CCSD iteration phase in the W21-pVDZ problem

with 1704 cores. The numerous GET operations dominate the execution time by

close to 80 %, while the DGEMM computation (shown as COMP) only takes less

than 10 % of the cost and the FETCH AND OP (abbreviated to FOP) almost

takes the rest 10 %.

Such intensive communication can rarely benefit from the asynchronous progress,

however, can even result in performance degradation. When only a single ghost

process is used within Casper, the overhead of GET operation becomes twice

more expensive than the original MPI, because a large amount of GET opera-

tions, which were distributed to 24 user processes on each node, are redirected

to a single ghost process, thus resulting in the bottleneck of communication load

imbalance. With utilizing more ghost processes, this imbalance issue is resolved,

however, the overhead of the DGEMM computation shows 26% increasing when

using 8 ghost processes due to loss of computing cores.

5.6.2.2.2 (T) Portion Phase : We next profile the most time-consuming

phase: non-iteration (T) portion. Figure 5.13(b) shows the time consumed in

the internal steps of (T) in W21-pVDZ problem with 1704 cores. In the result

of original MPI, the heavy computations takes 6.46 hours and the GET com-

munication dominates the other half of cost, taking 5.35 hours. The significant

overhead of GET clearly indicates the delay caused by heavy computation on the

target processes when no asynchronous progress is provided. Both Casper and

94

0

1

2

3

4

5

6

Original
MPI

Casper
(1)

Casper
(2)

Casper
(4)

Casper
(8)

Thread
(O)

Thread
(D)

Ti
m

e
(h

r)

COMP ACC PUT GET FOP Sort

(a) CCSD iteration

0

2

4

6

8

10

12

14

16

Original
MPI

Casper
(1)

Casper
(2)

Casper
(4)

Casper
(8)

Thread
(O)

Thread
(D)

Ti
m

e
(h

r)

COMP GET FOP Sort

(b) (T) portion

0

3

6

9

12

15

18

Original
MPI

Casper
(1)

Casper
(2)

Casper
(4)

Casper
(8)

Thread
(O)

Thread
(D)

Ti
m

e
(h

r)

CCSD iteration (T) portion

(c) Trade off between CCSD iteration and (T)

Figure 5.13: Profiling CCSD iteration and (T) portion for W21 problem with

1704 cores on Cray XC30.

95

the thread-based approaches asynchronously handles the completion of GET op-

erations thus the overhead of GET dramatically reduced. However, within more

number of ghost processes in Casper, the computation resources is gradually re-

ducing, thus resulting in increasing overhead of the computation part (3.18 hour

degradation at 8 ghost processes). The thread-based approaches show even twice

more expensive overhead in computation because of thread oversubscription and

half of computing cores are dedicated to communication.

5.6.2.2.3 Asynchronous Progress Trade-Off : According to above pro-

filing results, it is clear that the needs of asynchronous progress is varying for

different phases in a CCSD(T) task. Figure 5.13(c) compares the time of CCSD

iteration and (T) with the thread-based approaches and the static Casper with

different number of ghost processes. Although the (T) portion gets a great im-

provement by using only one ghost process, the performance of the CCSD itera-

tion shows 2.18 hours degradation because of load imbalance issue as explained

in Figure 5.13(a). Hence, to achieve the optimal performance for the entire task,

we need trade off among these internal phases that require different number of

asynchronous cores. For example, the optimal number of ghost processes for the

W21 problem is two on our platform.

5.6.2.3 CCSD(T) with Acenes Molecules

As shown in above section, the CCSD(T) task requires different number of ghost

processes to obtain the optimal performance in CCSD iteration and (T) potion

phases separately. Thus a static configuration of asynchronous progress can lead

to insufficient performance improvement, or even performance degradation such

as the performance loss in the CCSD iteration phase while specifying only one

ghost process. For water problems, such insufficiency does not significantly impair

the performance of the entire execution of task, since the (T) portion, whose

performance could be improved by close to 50%, dominates the cost of entire

task. However, this might not be true for other molecule problems.

In this section, we also look into another set of molecules, the acenes series

including Naphthalene (C10H8), Anthracene (C14H10), Tetracene (C18H12), Pen-

tacene (C22H14) and Hexacene (C26H16) molecules, with aug-cc-pVDZ from the

NWChem basis set library, which show a different proportion for each internal

phase in the execution of CCSD(T) task. These problems are abbreviated to

Nap, Ant, Tet, Pent and Hexa respectively for convenient description.

Figure 5.14 compares the execution time of the internal phases in this problem

series. Comparing with the results observed in water system, the proportion of

(T) portion is significantly reduced, instead, the communication-intensive 4-index

shows more overhead. For example, the (T) portion takes only 52% of the entire

cost in the Tet problem while the 4-index becomes more expensive and takes close

to 26% of the cost, and the CCSD iteration and other internal phases take the

other 19% and 3% costs respectively.

Since the proportion of communication-intensive phases is increased, the per-

formance degradation caused by static asynchronous progress in those phases

becomes more significant. We then focus on the Tet problem running on 240

96

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Nap
24

Ant
96

Pyr
96

Tet
240

Pent
456

Hexa
840

Ti
m

e

4-index CCSD iteration (T) portion Others

Figure 5.14: Internal phases in CCSD(T) task for Acenes molecules on Cray

XC30.

113.8

145.5

122.8
104.6

117.1 120.7

0

40

80

120

160

Original
MPI

Casper
(2)

Casper
(4)

Casper
(8)

Thread
(O)

Thread
(D)

Ti
m

e
(m

in
)

4-index CCSD iteration (T) portion Others Task

Figure 5.15: CCSD(T) task for Tet-pVDZ problem on 240 cores.

cores to demonstrate such inefficiency. Figure 5.15 compares the execution time

of thread-based approaches and static Casper with 2, 4 and 8 ghost processes

respectively. Unfortunately, neither Casper nor the thread-based approaches can

provide efficient solution for the Tet problem. Although Casper can reduce the

overhead of (T) portion by 40 % when using 2 ghost processes, it also causes

severe degradation of 4-index by close to 160 %, thus resulting in even worse

performance of the entire task execution. Withing increasing number of ghost

processes, the degradation of 4-index can be gradually resolved, however, (T)

portion shows increasing degradation because of loss of computing resources as

studied in Section 5.6.2.2.

To ensure the reason causing different trend in these internal phases, we also

profiled the time-consuming 4-index, CCSD, and (T) portion. Figure 5.16 com-

pares the performance of original MPI and that with Casper by using 2 ghost

processes. As expected, Casper eliminates most overhead of communication in

the computation-intensive (T) portion; however, the overhead of ACCUMULATE

97

0

20

40

60

80

100

4-index
(OrigMPI)

4-index
(Casper)

CCSD-iter
(OrigMPI)

CCSD-iter
(Casper)

(T)
(OrigMPI)

(T)
(Casper)

Ti
m

e
(m

in
)

FOP COMP ACC PUT/GET Sort

Figure 5.16: Profiling of Tet-pVDZ problem on 240 cores.

in 4-index step increases significantly, thus resulting in performance degradation

in 4-index. This is because heavy ACCUMULATE communication which was

received by 24 processes on each node, has to be handled by only 2 ghost pro-

cesses.

5.6.3 Dynamic Adaptation

After comprehensively characterized the performance of multiple phases in NWChem

and demonstrated the shortcoming of static asynchronous progress, especially in

the acenes problems, we then evaluate the same tasks with our dynamic adapta-

tion approaches.

5.6.3.1 Experiments Overview

As we have discussed in the above section, the static Casper, which only allows

fixed number of ghost processes, can rarely benefit the acenes series in CCSD(T)

task. In this section, we evaluate the Tet problem with pVDZ on 240 cores

using the adaptation extension of Casper, which allows asynchronous progress

to be changed in runtime. We compares the static Casper with four proposed

adaptation modes as listed in Section 5.5.4: two user-guided modes Casper(U)

and Casper(U-coll), and two self-profiling based dynamic adaptation approaches

Casper(P) and Casper(GP)). We use two ghost processes in the Tet with pVDZ

problem on 240 cores in all experiments.

In the user-guided approaches, we use ON as the global default value of asyn-

chronous configuration, and {OFF, OFF, ON} as the value of user info async config

passed to window collective calls for the internal phases {4-index, CCSD itera-

tion, (T) portion} respectively. We note that, MPI Win allocate is the only

window collective call used in original NWChem. In Casper(U) approach, we

only pass async config info to MPI Win allocate for each phase; in Casper(U-

coll) approach, we add MPI Win set info call with user info symmetric and

async config in every GA Sync call, since it synchronizes and guarantees the

completion of all outstanding operations on all processes.

98

113.8

145.5

104.6 110.9

89.0

121.4

95.3

0

40

80

120

160

Original
MPI

Casper
(S-2)

Casper
(S-8)

Casper
(U)

Casper
(U-coll)

Casper
(P)

Casper
(GP)

Ta
sk

 T
im

e
(m

in
)

4-index CCSD iteration (T) portion Other Task

Figure 5.17: CCSD(T) for Tet-pVDZ problem with Casper adaptation on 240

cores.

In the self-profiling based approaches, every user process automatically track

the communication time taken on itself. In the Casper(P) approach, every user

process updates its local asynchronous status according to the profiled commu-

nication frequency, and then exchange with other user processes in every win-

dow collective call. We use the same modified code as that of Casper(U-coll),

thus the local status updating and global exchange phases can happen in both

MPI Win allocate and MPI Win set info calls. In the Casper(GP) approach,

we control the frequency of adaptation using two factors: (1) every user process

updates its local asynchronous status in any communication at specified interval

(2 seconds in below experiments); (2) the background synchronization among

ghost processes exchanges the latest asynchronous status for their binding user

processes at specified interval time (compare 1, 2, 4, 6 minutes in the experi-

ments).

5.6.3.2 Performance Analysis

Figure 5.17 compares the task execution time of each adaptation approach with

the static Casper. The Casper(U) approach relieves the communication bottle-

neck in 4-index phase by disabling asynchronous progress, while also improved

the performance of (T) portion by re-enabling asynchronous progress. However,

the overhead of 4-index and CCSD iteration is still slightly higher than that in

the original MPI. Casper(U-coll) approach provides more improvement by insert-

ing more window collective calls which allow Casper to change the asynchronous

configuration more frequently and also for existing windows. On the other hand,

although Casper(P) approach is able to resolve the over-workload issue in 4-index

and CCSD iteration phases, thus delivering the same performance as that in the

Casper(U-coll) approach, the overhead of (T) portion is much larger than the

user-guided approaches and the static Casper and even slightly worse than the

original MPI. The Casper(GP) approach, however, successfully addressed this

issue and performs very similar performance as that in Casper(U-coll) approach

without any user hint insertion.

99

0

20

40

60

80

100

Original
MPI

Casper
(Basic)

Casper
(U)

Casper
(U-coll)

Casper
(P)

Casper
(GP)

Ti
m

e
in

 4
-in

de
x

(m
in

)

FOP COMP ACC PUT/GET Sort

(a) 4-Index Profiling

0

10

20

30

40

Original
MPI

Casper
(Basic)

Casper
(U)

Casper
(U-coll)

Casper
(P)

Casper
(GP)

Ti
m

e
in

 C
C

S
D

 (m
in

)

FOP COMP ACC PUT/GET Sort

(b) CCSD iteration

0

20

40

60

80

Original
MPI

Casper
(Basic)

Casper
(U)

Casper
(U-coll)

Casper
(P)

Casper
(GP)

Ti
m

e
in

 (T
) p

or
tio

n
(m

in
)

FOP COMP GET Sort

(c) (T) portion Profiling

Figure 5.18: Profiling CCSD(T) for Tet-pVDZ problem with Casper adaptation

on 240 cores.

100

We notice that the performance of Casper(GP) approach can vary when using

different interval time for the background synchronization among ghost processes.

In Figure 5.17, we only show the best performance result with 4 minutes interval,

in order to focus on the difference between approaches.

To understand the reason of above performance results, we deeply profile and

compare the communication time and computation time taken in each internal

phase of CCSD(T) task with different approaches, and with different value of

synchronization interval time in the Casper(GP) approach.

5.6.3.2.1 Adaptation Approaches : We first compares the performance of

different adaptation approaches in the 4-index and (T) portion internal phases,

in which we have observed significant performance change, as shown in Fig-

ure 5.18(a) and 5.18(c) respectively. The synchronization interval time is set

to 4 minutes in the Casper(GP) approach in these experiments.

As shown in Figure 5.18(a), the Casper(U) approach can reduce the overhead

of ACCUMULATE communication in 4-index phase since it disables the asyn-

chronous progress at window allocation time, however, the overhead is still higher

that the cost in original MPI because it does not adapt for existing windows thus

load imbalance issue still exists on those existing windows and consequently de-

grade the performance of ACCUMULATE. The Casper(U-coll), Casper(P) and

Casper(GP) approaches completely resolve such performance degradation, this

is because both approaches allow asynchronous progress to be changed at both

window allocation time for new windows, and at GA Sync time for all existing

windows.

For the (T) portion, as shown in Figure 5.18(c), both user-guided approaches

significantly reduce the overhead of GET communication as that we have provided

in static Casper, however, the Casper(P) approach cannot achieve the same per-

formance and even shows slightly performance degradation comparing with the

original MPI. This is because, different from the 4-index and CCSD iteration

phases, the (T) portion is a non-iteration phase consisting of only heavy compu-

tation and enormous GET-flush operations. The window creation only happens

at the start of this phase, and GA Sync only happens at the end. Casper(P)

still disables asynchronous progress for all processes at window creation time in

this phase, since it is predicted based on the profiling data got from the pre-

vious CCSD iteration phase, which is communication-intensive. After a short

period of execution, it gets sufficient profiling data to determine the pattern be-

comes computation intensive, however, can not get any chance to re-enable the

asynchronous progress till the end of this phase. Moreover, although Casper(P)

disables asynchronous progress, the cores dedicated to ghost processes still could

not be reused in user computation, thus it shows slightly performance degradation

even comparing with the original MPI.

The Casper(GP) approach overcomes the above issue, it reduces most over-

head of the GET communication but is still slightly worse than that in static

Casper and the user-guided approaches. This is because, each user process does

not update its local status collectively, thus it takes several rounds of background

ghost synchronization to globally enable the asynchronous progress on all user

processes.

101

With regard to the CCSD iteration phase, both the user-guided approach

(Casper(U-coll)) and the profiling-based approaches can disable asynchronous

progress appropriately, such avoid inefficient performance in this communication

dominated phase.

Ghost Synchronization Interval: As we have discussed in Figure 5.17, the

ghost-offloaded Casper(GP) approach even improves the self-profiling based adap-

tation, especially overcomes the issue in the (T) portion phase. However, this ap-

proach requires user specified interval for the background synchronization among

ghost processes, insufficient synchronization times may delay the change of asyn-

chronous progress, but too frequent synchronization may cause additional com-

munication overhead. The optimal value can vary on different platform and for

different computation problems. In this paper, we manually compare the task

execution time with 1, 2, 4 and 6 minutes as the interval of background synchro-

nization as shown in Figure 5.19. The best performance is delivered when setting

interval to 4 minutes on our platform. The 4-index phase and (T) portion phase

show different trend with increasing interval time. As shown in Figure 5.19(b),

heavy overhead has been observed in the ACCUMULATE communication with

1 and 2 minutes interval time because too frequent synchronization, such over-

head is significantly reduced after reducing the frequency of synchronization by

increasing the interval time. Figure 5.19(c) shows different trend for the (T) por-

tion phase. The GET communication benefits from smaller interval time, because

it highly replies on the asynchronous progress and frequent synchronization can

enable the asynchronous progress earlier.

102

0

20

40

60

80

100

120

140

1 2 4 6

Ta
sk

 T
im

e
(m

in
)

Ghost Synchronization Interval (min)

4-index CCSD iteration (T) portion Other

(a) Task execution time

0

20

40

60

80

1 2 4 6

Ti
m

e
in

 4
-in

de
x

(m
in

)

Ghost Synchronization Interval (min)

FOP COMP ACC PUT/GET Sort

(b) 4-index profiling

0

10

20

30

40

1 2 4 6

Ti
m

e
in

 (T
) p

or
tio

n
(m

in
)

Ghost Synchronization Interval (min)

FOP COMP GET Sort

(c) (T) portion profiling

Figure 5.19: CCSD(T) for Tet-pVDZ on 240 cores with Casper(GP) adaptation

using varying synchronization interval.

103

Chapter 6

Related Work

6.1 MPI with Multithreading Environment

The hybrid MPI+OpenMP programming model has been extensively used and

studied in the past. For instance, Lusk and Chan [44] explored the performance

of such a model on a typical Linux cluster, a large-scale system from SiCortex,

and an IBM Blue Gene/P system. The authors concluded that some applications

performed better with several MPI-only processes on the same node, while others

could benefit from the hybridization. While this situation is still true today, an

increasing number of applications are moving to hybrid MPI+OpenMP models,

not just for performance, but for per-core resource limitations (in particular,

memory). Other studies [64] have, on the other hand, reported satisfactory results

in porting the finite-difference time-domain algorithm to the hybrid paradigm to

adapt it to SMP compute nodes.

Smith and Kent [62] also found that increasing the number of threads de-

creased the efficiency of the code when implementing the quantum Monte Carlo

algorithm on mixed OpenMP/MPI code on an SGI Origin 2000 system. Al-

though this phenomenon was not attributed to the idle-threads issue we address

in this paper, it certainly contributes to the reduced efficiency per thread. [68]

performed a comprehensive evaluation of multithreaded MPI communications,

pointing to the mutually exclusive regions involved in communication as one of

the reasons for the suboptimal performance obtained.

Several researchers have also looked at optimizing the MPI implementation in

multithreaded environments. For example, the authors of [13, 25, 29] proposed

various techniques to minimize locking within the MPI implementation in or-

der to improve the performance of MPI in MPI THREAD MULTIPLE environments.

They presented various techniques to improve performance on traditional Linux

clusters as well as the IBM Blue Gene/P systems. The authors in [23] proposed

extensions to the MPI standard that would allow the MPI implementation to

minimize contention and improve performance in some cases. However, all these

optimizations are for MPI THREAD MULTIPLE applications. A large fraction of to-

day’s hybrid MPI applications, however, still use MPI THREAD FUNNELED and MPI

THREAD SERIALIZED modes, for which these optimizations are not helpful.

104

6.2 MPI One-sided Communication and Asynchronous Progress

Asynchronous progress in MPI has been previously explored by the community

for both two-sided and one-sided communication using multiple approaches. Sur

et al. [65] discussed an interrupt-based design to overlap remote direct memory

access read-based rendezvous communication with computation on InfiniBand

networks. Kumar et al. [42] improved this work by proposing a signal-based

approach to both reduce the number of interrupts and avoid using locks for

shared data.

In one-sided communication, although networks such as InfiniBand provide

contiguous PUT/GET operations in hardware, noncontiguous data transfers and

accumulate operations still require the participation of the target process to per-

form an unpacking stage from a contiguous receiving buffer into the noncontigu-

ous target location. Jiang et al. [39] proposed a thread-based design to enable

asynchronous progress in communications involving noncontiguous data types in

one-sided networks. Vaidyanathan et al. [75] improved asynchronous progress

on Intel Xeon Phi coprocessors using a similar approach but were able to mini-

mize threading overhead by implementing only a subset of the MPI standard and

discarding some requirements of the standard.

PIOMan [73], a multithreaded communication progression engine supporting

asynchronous progress, divides I/O communication and rendezvous handshakes

into multiple tasks and offloads them to background threads running on idle cores

in order to overlap communication and computation. This approach, however,

suffers from a nonnegligible overhead derived from the necessary multithreading

safety mechanisms [72]. In addition, to the best of our knowledge, the PIOMan

project does not target one-sided communications.

Other research has focused on improving communication overlap using net-

work hardware features. Santhanaraman et al. [56] optimized internode one-sided

passive-mode synchronization using InfiniBand atomic operations, thus providing

applications with improved overlap. Realizing that intranode communication is

highly processor demanding, Zounmevo and Afsahi [79] proposed to overlap intra

and internode one-sided communications by deferring the former messages falling

under a certain message size threshold to the end of the epoch. By issuing net-

work transfers to RDMA-assisted networks in first place, the processor-expensive

intranode data movements are can be overlapped when issuing them subsequently.

105

Chapter 7

Conclusion and Future Work

This chapter concludes this dissertation by summarizing the research and the

contributions in this work, with the discussion about two future directions.

7.1 Summary

Modern high end processor are aiming to improve both the thread-level and the

instruction level parallelism for achieving the next grade of performance promo-

tion. Many-core architecture is one of the dominating techniques in the high per-

formance market, hundreds hardware threads with wide vector processing units

provide applications a massive parallel environment on single chip. However,

due to the features of low frequency cores and limited per-core memory capac-

ity, traditional programming models can rarely get benefit on such architecture.

On the other hand, the applications are moving to a dynamic and data-driven

mode especially in chemistry and bioinformatics fields, such trend also focuses

the performance optimization to be restricted by the irregularity of computation/

communication.

With increasing complexity in both hardware architectures and application

softwares, application developer are increasingly looking at two programming

models: the hybrid “MPI+Threads” programming model for better utilizing the

computing power of many-core chips for regular applications, and the one-sided

programming model for scheduling the dynamic data movements in irregular ap-

plications. However, both popular modes suffer from inefficient communication

due to the restrictions in hardware and software, even resulting in severe per-

formance degradation. This dissertation investigated the characteristics of the

widely used message passing model on many-core architectures and proposed

efficient strategies to optimize the communication in these models for various

scientific applications.

Firstly, in the hybrid “MPI+Threads” programming model, the communica-

tion performance was degraded because the MPI calls are usually issued only by

single lightweight thread in most hybrid applications while massive threads are

being used in user computation. Such mode does not only limit the performance

of communication but also raise up the computing resources utilization issue since

most threads are idle during MPI communication. To address this problem, we

proposed an internally multithreaded MPI approach, that allows MPI to trans-

parently share idle threads from user application and parallelize the MPI internal

106

processing in order to fully utilize the massive parallel environment in communi-

cation. This approach is implemented by the modification in OpenMP runtime

system and the parallelism in MPI implementation. Specifically, we modified the

OpenMP runtime to expose the thread idleness information, and modified the

MPI implementation to parallelize three aspects of the internal processing—data

packing/unpacking for derived datatypes, large data transfer in shared memory

communication and operation posting in InfiniBand network—as the showcase of

this approach. Significant performance improvement has been observed through

micro- and macro-benchmarks for each aspect.

Secondly, with regard to the irregular one-sided communication, although the

semantics allows single process to specify the data movement without explicitly

synchronization on the remote process thus potentially allowing asynchronous

completion of communication with overlapping to the computation on remote

processes, most MPI implementation does not support truly asynchronous op-

erations for such mode. Although some simple operations such as contiguous

PUT/GET operations can be offloaded to RDMA-supported network hardware,

the other operations such as 3D double subarray accumulate, which is heavily

used in scientific applications, still have to be handled in MPI software (i.e., by

calling MPI routine to make progress on the remote process). Such limitation

could result in arbitrary long delay in the user communication if the remote pro-

cess is busing computing outside MPI. To resolve this critical issue, we proposed

a portable process-based asynchronous progress model, named Casper, for the

MPI one-sided communication on multi- and many-core architectures, that could

transparently link with most MPI implementations on various platforms. Within

this approach, a large quantum chemistry application has shown significant per-

formance improvement which is never achieved in other traditional asynchronous

progress approaches.

Finally, after deep study of the performance characteristics of scientific ap-

plications, we have identified the issue of static asynchronous progress approach

in multi-phases applications. That is, some internal phases of application may

perform heavy computation that requires the help of asynchronous progress in

communication, while some others may be dominated by enormous data move-

ments rather than computation thus performance can be degraded if such heavy

communication which was distributed to multiple user processes is redirected

to a few asynchronous cores. To overcome this issue and better support multi-

phases application, we presented two dynamic adaptation strategies embedded

in the Casper library, allowing the configuration of asynchronous progress to

be dynamically adapted for various internal phases with varying proportion of

communication and computation.

7.2 Future Work

7.2.1 Process Oversubscription and Dynamic Communication

Although the process-based asynchronous progress has successful improved the

communication existing in a part of irregular applications that are implemented

in one-sided mode, there are still some other factors that extremely restrict the

performance of irregular applications. For example, it is common in imbalanced

107

communication that an MPI process takes long time to wait for receiving message

from others because the other process might not arrive at the desired communica-

tion point. It is hard to optimize those issues in communication runtime system,

user has to take a lot time to optimize their application in order to minimize such

inefficiency.

As one future work of this dissertation, we plan to investigate the process

oversubscription concept on the many-core environment, by utilizing user level

processes (ULP) where a dozen of “OS processes” could be scheduled on sin-

gle core with allowing user-level scheduling [58]. Following this concept, MPI

can involve a large number of oversubscribed MPI processes and intelligently

schedule them inside communication runtime. This approach could potentially

provide several unique benefits, for example, an MPI process can switch to an-

other “ready-to-go” process (i.e., an process has received its waiting message)

while the currently active process is blocking for message arriving, thus achieving

latency hiding.

7.2.2 Improvement in Asynchronous Progress

In Chapter 4 and 5, we have investigated the process-based asynchronous progress

model for supporting irregular one-sided communication. This approach can po-

tentially also benefit the other communication modes such as MPI two-sided

and group communication. However, as the limitation of this direction, these

modes are moving data between user-defined buffers, which can not be internally

mapped to the ghost processes without special support from operating system.

The MPI Win create and MPI Win create dynamic window types in the one-

sided mode are not supported in Casper because of the same limitation.

We plan to utilize several external memory mapping techniques (e.g., XPMEM

on Cray machines [78], Partitioned Virtual Address Space [57]), to investigate the

capability of asynchronous progress with careful design to ensure the semantics

correctness for the rest communication modes in MPI.

Another limitation in Casper is that, we still have to keep aside the cores

dedicated to asynchronous progress from the application even when the operation

redirection is being disabled in the adaptation mode, hence resulting in waste of

core utilization. We plan to also investigate the ULP concept within Casper, that

allows us to decouple the view of MPI processes from the physical cores and thus

enabling fully core utilization in asynchronous progress and user computation.

108

References

[1] Texas Advanced Computing Center - Stampede supercomputer.

https://www.tacc.utexas.edu/stampede/.

[2] TOP500 supercomputing sites. http://www.top500.org.

[3] ASCI Red Supercomputer. http://www.top500.org/system/168753, 1996.

[4] Roadrunner Supercomputer. http://www.top500.org/featured/top-

systems/roadrunner-los-alamos-national-laboratory/, 2008.

[5] MPI: A Message-Passing Interface Standard. http://www.mpi-forum.org/

docs/mpi-3.0/mpi30-report.pdf, September 2012.

[6] Tianhe-2 Supercomputer. http://www.top500.org/system/177999, 2015.

[7] K. Ahmed and K. Schuegraf. Transistor Wars. Spectrum, IEEE, 48(11):50–

66, November 2011.

[8] Edoardo Aprà et al. Liquid Water: Obtaining the Right Answer for the

Right Reasons. In SC, 2009.

[9] Argonne National Laboratory. Mira Supercomputer. https://

www.alcf.anl.gov/mira, 2012.

[10] Argonne National Laboratory. MPICH — High-Performance Portable MPI.

http://www.mpich.org, 2014.

[11] Argonne National Laboratory. Aurora Supercomputer. http://

aurora.alcf.anl.gov, 2015.

[12] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, R. A.

Fatoohi, P. O. Frederickson, T. A. Lasinski, H. D. Simon, V. Venkatakrish-

nan, and S. K. Weeratunga. The NAS Parallel Benchmarks. The Interna-

tional Journal of Supercomputer Applications, 1991.

[13] Pavan Balaji, Darius T. Buntinas, David J. Goodell, William D. Gropp,

and Rajeev S. Thakur. Toward Efficient Support for Multithreaded MPI

Communication. In Euro PVM/MPI, 2008.

[14] Ron Brightwell, Kevin Pedretti, and Trammell Hudson. SMARTMAP: Op-

erating System Support for Efficient Data Sharing among Processes on a

Multi-Core Processor. In SC. IEEE, 2008.

109

http://www.top500.org
http://www.top500.org/system/168753
http://www.top500.org/featured/top-systems/roadrunner-los-alamos-national-laboratory/
http://www.top500.org/featured/top-systems/roadrunner-los-alamos-national-laboratory/
http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
http://www.top500.org/system/177999
https://www.alcf.anl.gov/mira
https://www.alcf.anl.gov/mira
http://www.mpich.org
http://aurora.alcf.anl.gov
http://aurora.alcf.anl.gov

[15] Darius Buntinas and Guillaume Mercier. Implementation and Shared-

Memory Evaluation of MPICH2 over the Nemesis Communication Subsys-

tem. In Euro PVM/MPI, 2006.

[16] E. J. Bylaska et. al. NWChem, A Computational Chemistry Package for

Parallel Computers, Version 6.3, 2013.

[17] J. Carlson. Green’s Function Monte Carlo Study of Light Nuclei. Phys. Rev.

C, 36:2026–2033, November 1987.

[18] National Energy Research Scientific Computing Center. Cori Supercom-

puter. https://www.nersc.gov/users/computational-systems/cori/,

2015.

[19] George Chrysos. Intel Xeon Phi Coprocessor - The Architecture. White

paper, Intel Corporation, September 2012.

[20] Cray Inc. Cray Message Passing Toolkit. Technical report, Cray Inc., 2004.

[21] Leonardo Dagum and Ramesh Menon. OpenMP: An Industry Standard

API for Shared-Memory Programming. IEEE Computational Science & En-

gineering, 5(1):46–55, 1998.

[22] J. Diamond, M. Burtscher, J.D. McCalpin, Byoung-Do Kim, S.W. Keckler,

and J.C. Browne. Evaluation and Optimization of Multicore Performance

Bottlenecks in Supercomputing Applications. In Performance Analysis of

Systems and Software (ISPASS), 2011 IEEE International Symposium on,

pages 32–43, April 2011.

[23] James S. Dinan, Pavan Balaji, David J. Goodell, Douglas Miller, Marc Snir,

and Rajeev S. Thakur. Enabling MPI Interoperability Through Flexible

Communication Endpoints. In Euro MPI, 2013.

[24] James S. Dinan, Pavan Balaji, Jeffrey R. Hammond, Sriram Krishnamoor-

thy, and Vinod Tipparaju. Supporting the global arrays PGAS model using

MPI one-sided communication. In IPDPS, May 2012.

[25] Gabor Dozsa, Sameer Kumar, Pavan Balaji, Darius T. Buntinas, David J.

Goodell, William D. Gropp, Joseph Ratterman, and Rajeev S. Thakur. En-

abling Concurrent Multithreaded MPI Communication on Multicore Petas-

cale Systems. In Euro MPI, 2010.

[26] Argonne Leadership Computing Facility. Theta Supercomputer. http://

aurora.alcf.anl.gov/, 2015.

[27] Paul F Fischer, James W Lottes, and Stefan G Kerkemeier. nek5000 web

page. Web page: http://nek5000. mcs. anl. gov, 2008.

[28] Megan Gilge. IBM System Blue Gene Solution: Blue Gene/P Application

Development. IBM, June 2013.

110

https://www.nersc.gov/users/computational-systems/cori/
http://aurora.alcf.anl.gov/
http://aurora.alcf.anl.gov/

[29] David J. Goodell, Pavan Balaji, Darius T. Buntinas, Gabor Dozsa,

William D. Gropp, Sameer Kumar, Bronis R. de Supinski, and Rajeev S.

Thakur. Minimizing MPI Resource Contention in Multithreaded Multicore

Environments. In IEEE Cluster, 2010.

[30] William Gropp and Rajeev Thakur. Thread-safety in an MPI Implementa-

tion: Requirements and Analysis. Parallel Comput., 33(9):595–604, Septem-

ber 2007.

[31] J. R. Hammond, S. Krishnamoorthy, S. Shende, N. A. Romero, and A. D.

Malony. Performance characterization of global address space applications:

A case study with NWChem. Concurrency and Computation: Practice and

Experience, 24(2):135–154, 2012.

[32] Alistair Hart. First Experiences Porting a Parallel Application to a Hybrid

Supercomputer with OpenMP4.0 Device Constructs. In Christian Terboven,

Bronis R. de Supinski, Pablo Reble, Barbara M. Chapman, and Matthias S.

Mller, editors, OpenMP: Heterogenous Execution and Data Movements, vol-

ume 9342 of Lecture Notes in Computer Science, pages 73–85. Springer In-

ternational Publishing, 2015.

[33] So Hirata. Tensor Contraction Engine: Abstraction and Automated Parallel

Implementation of Configuration-Interaction, Coupled-Cluster, and Many-

Body Perturbation Theories. J. Phys. Chem. A, 107:9887–9897, 2003.

[34] Intel Corporation. Intel(R) OpenMP runtime library. http://

www.openmprtl.org, 2013.

[35] Intel Corporation. Many Integrated Core (MIC) Architecture — Ad-

vanced. http://www.intel.com/content/www/us/en/architecture-and-

technology/many-integrated-core/intel-many-integrated-core-

architecture.html, 2013.

[36] Intel Corporation. Intel MPI library. http://software.intel.com/en-us/

intel-mpi-library, 2014.

[37] Intel Corporation. Intel(R) knights landing processor. https:

//software.intel.com/en-us/articles/what-disclosures-has-intel-

made-about-knights-landing, 2014.

[38] I. Ivanov, Jing Gong, D. Akhmetova, I. B. Peng, S. Markidis, E. Laure,

R. Machado, M. Rahn, V. Bartsch, A. Hart, and P. Fischer. Evaluation of

Parallel Communication Models in Nekbone, a Nek5000 Mini-Application.

In Cluster Computing (CLUSTER), 2015 IEEE International Conference

on, pages 760–767, 2015.

[39] Weihang Jiang, Jiuxing Liu, Hyun-Wook Jin, DhabaleswarK. Panda, Darius

Buntinas, Rajeev Thakur, and WilliamD. Gropp. Efficient Implementation

of MPI-2 Passive One-Sided Communication on InfiniBand Clusters. In Euro

PVM/MPI, volume 3241 of Lecture Notes in Computer Science, pages 68–76.

2004.

111

http://www.openmprtl.org
http://www.openmprtl.org
http://www.intel.com/content/www/us/en/architecture-and-technology/many-integrated-core/intel-many-integrated-core-architecture.html
http://www.intel.com/content/www/us/en/architecture-and-technology/many-integrated-core/intel-many-integrated-core-architecture.html
http://www.intel.com/content/www/us/en/architecture-and-technology/many-integrated-core/intel-many-integrated-core-architecture.html
http://software.intel.com/en-us/intel-mpi-library
http://software.intel.com/en-us/intel-mpi-library
https://software.intel.com/en-us/articles/what-disclosures-has-intel-made-about-knights-landing
https://software.intel.com/en-us/articles/what-disclosures-has-intel-made-about-knights-landing
https://software.intel.com/en-us/articles/what-disclosures-has-intel-made-about-knights-landing

[40] Ali Khajeh-Saeed, Stephen Poole, and J Blair Perot. A Comparison of

Multi-Core Processors on Scientific Computing Tasks.

[41] Jeongnim Kim, Kenneth P Esler, Jeremy McMinis, Miguel A Morales,

Bryan K Clark, Luke Shulenburger, and David M Ceperley. Hybrid Al-

gorithms in Quantum Monte Carlo. Journal of Physics: Conference Series,

402(1):012008, 2012.

[42] Rahul Kumar, Amith R. Mamidala, Matthew J. Koop, Gopal Santhanara-

man, and Dhabaleswar K. Panda. Lock-Free Asynchronous Rendezvous De-

sign for MPI Point-to-Point Communication. In Euro PVM/MPI, volume

5205 of Lecture Notes in Computer Science, pages 185–193. 2008.

[43] Sameer Kumar and Michael Blocksome. Scalable MPI-3.0 RMA on the Blue

Gene/Q supercomputer. In Euro MPI, 2014.

[44] Ewing Lusk and Anthony Chan. Early Experiments with the OpenMP/MPI

Hybrid Programming Model. In OpenMP in a New Era of Parallelism, pages

36–47. Springer, 2008.

[45] Ewing L Lusk, Steven C Pieper, Ralph M Butler, et al. More Scalability, Less

Pain: A Simple Programming Model and Its Implementation for Extreme

Computing. SciDAC Review, 17(1):30–37, 2010.

[46] Stefano Markidis, Jing Gong, Michael Schliephake, Erwin Laure, Alistair

Hart, David Henty, Katherine Heisey, and Paul Fischer. Openacc acceler-

ation of the nek5000 spectral element code. International Journal of High

Performance Computing Applications, 29(3):311–319, 2015.

[47] Jintao Meng, Bingqiang Wang, Yanjie Wei, Shengzhong Feng, and Pavan

Balaji. SWAP-Assembler: Scalable and Efficient Genome Assembly Towards

Thousands of Cores. BMC bioinformatics, 15(Suppl 9):S2, 2014.

[48] Message Passing Interface Forum. MPI: A message-passing interface stan-

dard. Technical report, Message Passing Interface Forum, September 2012.

[49] Richard C. Murphy, Kyle B. Wheeler, Brian W. Barrett, and James A. Ang.

Introducing the Graph 500. In Proceedings of the Cray User’s Group Meeting

(CUG), May 2010.

[50] B Neelima and Prakash S Raghavendra. Recent Trends in Software and

Hardware for GPGPU Computing: A Comprehensive Survey. In Industrial

and Information Systems (ICIIS), 2010 International Conference on, pages

319–324. IEEE, 2010.

[51] Jaroslaw Nieplocha, Robert J. Harrison, and Richard J. Littlefield. Global

Arrays: A Portable “Shared-Memory” Programming Model for Distributed

Memory Computers. In ACM/IEEE conference on Supercomputing, 1994.

[52] Stephen Olivier, Allan Porterfield, Kyle Wheeler, Michael Spiegel, and Jan

Prins. OpenMP Task Scheduling Strategies for Multicore NUMA Systems.

The International Journal of High Performance Computing Applications,

(26(2)):110–124, May 2012.

112

[53] OpenFabrics Alliance. OpenFabrics Alliance. http://www.openfabrics.org,

2013.

[54] Robert Colwell. The Chip Design Game at the End of Moores Law. Keynote

Speech, Hot Chips 25 Conference, Auguest 2013.

[55] Robert Ross and Neill Miller. Implementing Fast and Reusable Datatype

Processing. In In EuroPVM/MPI, pages 404–413. Springer Verlag, 2003.

[56] Gopalakrishnan Santhanaraman, Sundeep Narravula, and Dhabaleswar K.

Panda. Designing Passive Synchronization for MPI-2 One-Sided Communi-

cation to Maximize Overlap. In IPDPS, 2008.

[57] Akio Shimada, Balazs Gerofi, Atsushi Hori, and Yutaka Ishikawa. Proposing

a New Task Model Towards Many-core Architecture. In Proceedings of the

First International Workshop on Many-core Embedded Systems, MES ’13,

pages 45–48, New York, NY, USA, 2013. ACM.

[58] Akio Shimada, Atsushi Hori, Yutaka Ishikawa, and Pavan Balaji. User-Level

Process towards Exascale Systems. IPSJ SIG Technical Report, 2014.

[59] Min Si, Antonio J Peña, Pavan Balaji, Masamichi Takagi, and Yutaka

Ishikawa. MT-MPI: Multithreaded MPI for Many-Core Environments. In

Proceedings of the 28th ACM international conference on Supercomputing,

pages 125–134. ACM, 2014.

[60] Min Si, Antonio J Peña, Jeff Hammond, Pavan Balaji, and Yutaka Ishikawa.

Scaling NWChem with Efficient and Portable Asynchronous Communication

in MPI RMA. Cluster, Cloud and Grid Computing (CCGrid), 2015 15th

IEEE/ACM International Symposium, 2015.

[61] Min Si, Antonio J Peña, Jeff Hammond, Pavan Balaji, Masamichi Takagi,

and Yutaka Ishikawa. Casper: An Asynchronous Progress Model for MPI

RMA on Many-Core Architectures . In Parallel and Distributed Processing,

2015. IPDPS 2015.

[62] Lorna Smith and Paul Kent. Development and Performance of a Mixed

OpenMP/MPI Quantum Monte Carlo Code. Concurrency Practice and Ex-

perience, 12(12):1121–1129, 2000.

[63] CORPORATE SPARC International, Inc. The SPARC Architecture Manual

(Version 9). Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1994.

[64] Mehmet F Su, Ihab El-Kady, David A Bader, and S-Y Lin. A Novel FDTD

Application Featuring OpenMP-MPI Hybrid Parallelization. In Interna-

tional Conference on Parallel Processing (ICPP), pages 373–379. IEEE,

2004.

[65] Sayantan Sur, Hyun-Wook Jin, Lei Chai, and Dhabaleswar K Panda. RDMA

Read based Rendezvous Protocol for MPI over InfiniBand: Design Alterna-

tives and Benefits. In PPoPP, pages 32–39, 2006.

113

http://www.openfabrics.org

[66] Herb Sutter. The free lunch is over: A fundamental turn toward concurrency

in software. Dr. Dobb’s Journal, 30(3), March 2005.

[67] Masamichi Takagi, Yuichi Nakamura, Atsushi Hori, Balazs Gerofi, and Yu-

taka Ishikawa. Revisiting Rendezvous Protocols in the Context of RDMA-

capable Host Channel Adapters and Many-core Processors. In Euro MPI,

2013.

[68] Rajeev Thakur and William Gropp. Test Suite for Evaluating Performance

of Multithreaded MPI Communication. Parallel Computing, 35(12):608–617,

2009.

[69] The Ohio State University. OSU Micro-Benchmarks.

http://mvapich.cse.ohio-state.edu/benchmarks, 2013.

[70] The Ohio State University. MVAPICH: MPI over InfiniBand, 10GigE/

iWARP and RoCE. http://mvapich.cse.ohio-state.edu, 2014.

[71] The Open MPI Development Team. Open MPI: Open source high perfor-

mance computing. http://www.open-mpi.org, 2014.

[72] François Trahay, Élisabeth Brunet, and Alexandre Denis. An Analysis of the

Impact of Multi-Threading on Communication Performance. In 9th Work-

shop on Communication Architecture for Clusters (CAC), May 2009.

[73] François Trahay and Alexandre Denis. A Scalable and Generic Task Schedul-

ing System for Communication Libraries. In IEEE Cluster, September 2009.

[74] John R Tramm and Andrew R Siegel. Memory Bottlenecks and Memory

Contention in Multi-Core Monte Carlo Transport Codes. Annals of Nuclear

Energy, 2014.

[75] Karthikeyan Vaidyanathan, Kiran Pamnany, Dhiraj D. Kalamkar, Alexan-

der Heinecke, Mikhail Smelyanskiy, Jongsoo Park, Daehyun Kim, Aniruddha

Shet, G, Bharat Kaul, Balint Joo, and Pradeep Dubey. Improving Commu-

nication Performance and Scalability of Native Applications on Intel Xeon

Phi Coprocessor Clusters. In IPDPS, 2014.

[76] M. Valiev, E. J. Bylaska, N. Govind, K. Kowalski, T. P. Straatsma, H. J.

J. Van Dam, D. Wang, J. Nieplocha, E. Apra, T. L. Windus, and W. A.

de Jong. NWChem: A Comprehensive and Scalable Open-Source Solution

for Large Scale Molecular Simulations. Computer Physics Communications,

181(9):1477–1489, 2010.

[77] Alan J. Wallcraft and Daniel R. Moore. The NRL Layered Ocean Model.

Parallel Computing, 23(14):2227–2242, 1997. Parallel computing in regional

weather modeling.

[78] Michael Woodacre, Derek Robb, Dean Roe, and Karl Feind. The SGI Altix

3000 Global Shared-Memory Architecture. White paper, Silicon Graphics,

Inc, April 2003.

[79] Judicael A Zounmevo and Ahmad Afsahi. Intra-Epoch Message Scheduling

to Exploit Unused or Residual Overlapping Potential. In Euro MPI, 2014.

114

http://mvapich.cse.ohio-state.edu
http://www.open-mpi.org

	Introduction
	Problem Statement
	Contributions
	Outline

	Background
	Many-Core Architectures
	Hybrid MPI+Threads Programming
	Programming Model
	Typical Applications

	MPI One-sided Communication
	Programming and Semantics
	Irregular Applications

	Multithreaded MPI
	Problem Statement
	Solution
	Design and Implementation
	OpenMP Runtime
	MPI Internal Parallelism

	Evaluation and Analysis
	Derived Datatype Processing
	Shared-Memory Communication
	InfiniBand Communication Operations

	Process-based Asynchronous Progress
	Problem Statement
	Traditional Approaches
	Solution
	Casper Design Overview
	Deployment of Ghost Processes
	RMA Memory Allocation and Setup
	RMA Operation Redirection

	Ensuring Correctness and Performance
	Lock Permission Management for Shared Ghost Processes
	Self Lock Consistency
	Managing Multiple Ghost Processes
	Dealing with Multiple Simultaneous Epochs
	Memory Ordering Consistency

	Experimental Environment
	Microbenchmarks Evaluation
	Overhead Analysis
	Asynchronous Progress
	Performance Optimization

	NWChem Quantum Chemistry Application

	Dynamic Adaptable Asynchronous Progress
	Limitation in Static Casper
	Solution
	Dynamic Adaptable Asynchronous Progress
	User-Guided Adaptation
	Transparent Profiling based Adaptation

	Experimental Environment
	Microbenchmarks
	Overhead Analysis
	Self-Profiling based Prediction
	Limitation of Static Casper
	Adaptation Improvement

	NWChem Quantum Chemistry Application
	Overview of Multiple Internal Phases
	Static Asynchronous Progress
	Dynamic Adaptation

	Related Work
	MPI with Multithreading Environment
	MPI One-sided Communication and Asynchronous Progress

	Conclusion and Future Work
	Summary
	Future Work
	Process Oversubscription and Dynamic Communication
	Improvement in Asynchronous Progress

