
IEICE TRANS. FUNDAMENTALS, VOL.E84–A, NO.9 SEPTEMBER 2001
2311

PAPER

Fast Algorithms for k-Word Proximity Search

Kunihiko SADAKANE†a), Nonmember and Hiroshi IMAI††, Regular Member

SUMMARY When we search from a huge amount of doc-
uments, we often specify several keywords and use conjunctive
queries to narrow the result of the search. Though the searched
documents contain all keywords, positions of the keywords are
usually not considered. As a result, the search result contains
some meaningless documents. It is therefore effective to rank
documents according to proximity of keywords in the documents.
This ranking is regarded as a kind of text data mining. In this
paper, we propose two algorithms for finding documents in which
all given keywords appear in neighboring places. One is based
on plane-sweep algorithm and the other is based on divide-and-
conquer approach. Both algorithms run in O(n log n) time where
n is the number of occurrences of given keywords. We run the
algorithms on a large collection of html files and verify its effec-
tiveness.
key words: proximity search, text retrieval, plane-sweep, divide-

and-conquer

1. Introduction

Now we have many documents such as Web texts, elec-
tronic dictionaries, newspapers, etc., and we can use
full-text search engines for finding documents which in-
clude specified keywords. However, it becomes difficult
to obtain documents which contain useful information
because there are many documents in the result of a
query and we have to examine whether each document
is actually necessary or not. Search servers usually per-
form AND (conjunctive) queries or OR (disjunctive)
queries of given keywords. Then the servers arrange
the searched documents in the order of scores, which
are calculated by frequency of the keywords, structures
of the documents, etc. However, even documents hav-
ing high scores may be useless because the keywords
appear in the same document by chance and each key-
word has no relation to what we want to find.

For example, when we want to search the official
homepage of Apache, a very famous Web server, we use
search engines by giving keywords ‘apache & home &
page.’ The search engines will return pages containing
all specified keywords. However, the search result may
not contain the page we want because Web pages often
contain ‘home page’ and ‘Powered by Apache.’ It is

Manuscript received June 16, 2000.
Manuscript revised January 17, 2001.

†The author is with the Graduate School of Information
Sciences, Tohoku University, Sendai-shi, 980-8579 Japan.

††The author is with the Department of Information Sci-
ence, University of Tokyo, Tokyo, 113-0033 Japan.
a) E-mail: sada@dais.is.tohoku.ac.jp

difficult to find pages we really want from the search
result.

A solution to the problem in the example is to use a
concept of hub and authority of Web pages proposed by
Kleinberg [6]. Hub means a Web page which has many
links to other pages and authority means a Web page
which is linked from many other pages. In the above
example, the official homepage of Apache will become
authority and it can be found by searching authorities
containing the keywords.

We take another approach to the problem. We
consider that keywords which appear in the neighbor-
hood in a document are related. Therefore we use not
documents but positions of keywords in a document as
the unit of queries. By considering keyword positions
we can find a paragraph or a sentence in a document
which describes what we want to know. We define ranks
of regions in documents which contain all specified key-
words in order of their sizes. This is called proximity
search.

Most of search engines use the inverted file which
stores only document IDs for each keywords because
of its size and query time. The size and query time
are further reduced by the compressed inverted file [1].
On the other hand, for the proximity search, we have
to store keyword positions in a database. As a result,
the size of the database and query time will increase.
However, these are insignificant now. The reason is the
following. First, now the price of disks becomes cheap
and therefore we can use large disks. Second, though
query time using keyword positions is longer than using
only document IDs, query accuracy increases and total
time to find useful documents for a user will decrease.

In this paper, we propose k-word proximity search
for ranking documents. We find regions in documents
in which all k keywords appear in the neighborhood.
Such regions are assumed as summaries of documents,
that is, the proximity search can be regarded as a kind
of text data mining. Our algorithms find regions in
documents which contain all specified keywords in the
increasing order of their size. Time complexities of the
algorithms do not depend on neither the maximum dis-
tance between keywords nor the number of keywords k.
As far as the authors know, there does not exist such
algorithm for k > 2 keywords.

A region in a document is specified by positions
of its left and right boundaries. Therefore we call it

2312
IEICE TRANS. FUNDAMENTALS, VOL.E84–A, NO.9 SEPTEMBER 2001

interval. We introduce the concept of minimality of
intervals. An interval is called minimal if it does not
contain other intervals which have all keywords. By
ignoring non-minimal intervals we can reduce the num-
ber of answers of a query to less than n, the number
of occurrences of the specified keywords in the docu-
ments. It is enough to consider only minimal intervals
because non-minimal intervals are in the neighborhood
of minimal intervals. We propose two algorithms for
finding minimal intervals containing all given keywords
in the increasing order of their size. One is based on the
plane-sweep algorithm [9] and the other is based on a
divide-and-conquer approach. Both algorithms run in
O(n logn) time. The divide-and-conquer algorithm be-
comes fast if the number of occurrences of one keyword
is small.

We consider proximity search on documents, that
is, it is a one-dimensional query. On the other hand, if
we consider queries on collections of documents which
are linked each other [12], proximity search will be per-
formed in higher dimensions. In such cases, the plane-
sweep algorithm cannot be used. However, an extension
of the divide-and-conquer algorithm may be used.

The rest of this paper is organized as follows. In
Sect. 2 we describe previous works and define our k-
word proximity search. In Sect. 3 we present two al-
gorithms for k-word proximity search, one is based on
the plane-sweep method, and the other on the divide-
and-conquer principle. In Sect. 4 we show experimental
results of the k-word proximity search for real-world
large html files. We also show a preliminarily result
of comparison with a conventional search system called
Namazu. Section 5 describes concluding remarks.

2. k-Word Proximity Search

2.1 Previous Works

Finding parts containing a specified collection of key-
words is called proximity search.

Gonnet, Baeza-Yates and Snider [4] proposed an
algorithm for finding pairs of two keywords P1 and
P2 whose distance is less than a given constant d in
O((m1 + m2) logm1) time, where m1 < m2 are the
numbers of occurrences of the keywords. This algo-
rithm first sorts positions of a keyword P1 which ap-
pears m1 times. Then, for each occurrence of P2, it
finds all occurrences of P1 whose distance to P2 is less
than d.

Baeza-Yates and Cunto [3] defined abstract data
type proximity and proposed a general approach for text
proximity search and proximity for general sets. In text
proximity case, the algorithm first creates a data struc-
ture used to find positions of a given keyword which
are close to an occurrence of the other keyword. By us-
ing the data structure, occurrences of a keyword which
are apart distance at most d from an occurrence of the

other keyword can be found in O(logn) time. However,
they consider only pairs of two objects and it is neces-
sary to make the data structure for each pair of two
keywords. Moreover, the construction algorithm takes
O(n2) time when d is variable.

Manber and Baeza-Yates [7] has proposed an algo-
rithm for finding the number of pairs of two specified
keywords whose distance are less than d in O(logn)
time for n occurrences of keywords. However, this al-
gorithm uses O(dn) space. It is not practical for large
d, and moreover it cannot be used for unspecified values
of d.

Though Aref, Barbara, Johnson and Mehrotra [2]
proposed an algorithm for finding tuples of k keywords
in which all keywords are within d, it requires O(n2)
time. Their algorithm first enumerates all tuples which
contain first and second keywords and whose size is less
than d. Then it converts the tuples to contain third key-
words. This continues until k-keyword tuples are found.
They suggested an algorithm using the plane-sweep al-
gorithm of Preparata and Shamos [10] in computational
geometry at the end of their paper, but any detail was
not given.

Above four algorithms assume that the maximum
distance d of keywords is a fixed constant and they do
not consider minimality of answers defined in the next
subsection.

As a related problem to the proximity search, Ka-
sai, Arimura, Fujino and Arikawa [5] proposed algo-
rithms for finding a pattern of k keywords which appear
in a fixed order and distance between each pair of the
keywords is within d and which maximizes accuracy of
text classification.

2.2 Definition of the Problem

Here we define k-word proximity search for ranking doc-
uments.

• T = T [1..N]: a text of length N
• P1, . . . , Pk: given keywords
• pij : the position of the j-th occurrence of a key-
word Pi in the text T
(T [pij ..pij + |Pi| − 1] = Pi)

Problem 1 (naive k-word proximity search): When
k keywords P1, . . . , Pk and their positions pij in a text
T = T [1..N] are given, proximity search is to find inter-
vals [l, r] in [1, N] which contain positions of all k key-
words in the increasing order of size of intervals r − l,
where order of the keywords in a interval is arbitrary.

The reason why the order of keywords is arbitrary
is that we do not know the order in documents and in-
tervals in which keywords appear in a fixed order are
subset of the answer of the problem. When the total
number of k keywords is n, the number of intervals is
n(n − 1)/2. However, most of the intervals are use-
less and we only find minimal intervals containing all

SADAKANE and IMAI: FAST ALGORITHMS FOR k-WORD PROXIMITY SEARCH
2313

keywords.

Definition 1: An interval is minimal if it does not
contain any other interval which contains all k key-
words.

Now we introduce k-word proximity search.

Problem 2 (k-word proximity search): proximity
search is to find minimal intervals [l, r] in [1, N] which
contain positions of all k keywords in the increasing or-
der of size of intervals r−l, where order of the keywords
in a interval is arbitrary.

3. Algorithms

In this section we propose two algorithms for k-word
proximity search. One is based on the plane-sweep algo-
rithm [9] and the other is based on divide-and-conquer
approach.

3.1 A Plane-Sweep Algorithm

This algorithm scans the text from left to right and
finds intervals [li, ri] containing all k keywords in order
of their positions. The scanning is not on the text but
on lists of positions of k keywords. Therefore we sort
positions in the lists and then examine the positions
from left to right. The leftmost interval containing k
keywords is obtained by taking heads of the lists and
finding the leftmost and the rightmost positions by sort-
ing them. Note that it may be a non-minimal interval.
The next interval does not contain the leftmost key-
word in the current interval. Therefore we update the
current interval by removing the leftmost keyword and
appending the same keyword in the head of the list of
the keyword. The interval becomes a candidate of a
minimal interval. Intervals found by the algorithm are
stored in a priority queue such as a heap, which is con-
venient to store only smallest m intervals. The scanning
is done by merging lists of positions of k keywords.

Figure 1 shows an example of minimal and non-
minimal intervals. In the figure, intervals ‘CAB’ and
‘BAC’ are minimal, but interval ‘ABAC’ is not minimal
because the leftmost keyword ‘A’ appears in another
position in the interval.

The algorithm becomes as follows.

1. Sort lists of positions pij (j = 1, . . . , ni) of each
keyword Pi (i = 1, . . . , k).

Fig. 1 Minimal and non-minimal intervals.

2. Pop top elements pi1 (i = 1, . . . , k) of each list, sort
k elements by their positions, and find leftmost and
rightmost keyword and their positions l1 and r1,
which indicate an interval [l1, r1]. Let i = 1.

3. If the current list of the leftmost keyword P in the
current interval is empty, then go to 6.
Otherwise, let p be the position of the top element
of the current list of the leftmost keyword P , which
is popped. Let q be the position of the next of P
in the current interval.

4. If p > ri, then the interval [li, ri] is minimal and
stored in a heap according to its size ri − li, and
the next interval is set to [li+1 = q, ri+1 = p].
Otherwise, let li+1 = min{p, q} and ri+1 = ri, and
update the order of the positions in the interval
[li+1, ri+1].

5. Let i = i + 1, and go to 3.
6. Sort intervals in the heap and output them.

Figure 2 shows an example of the plane-sweep al-
gorithm. The upper figure shows that an interval [li, ri]
is minimal, while the lower figure shows that it is not
minimal. If the current interval is not minimal, it con-
tains another interval. Therefore the right boundary of
the next interval ri+1 is equal to ri.

Lemma 1: The above algorithm can enumerate all
minimal intervals containing all k keywords.

Proof: Each minimal interval containing all k key-
words is uniquely determined by fixing its left position.
The above algorithm enumerates all left positions of
intervals one by one from left to right, and hence they
include all minimal intervals. The leftmost interval cre-
ated in step 1 contains all k keywords. If an interval
is minimal, the leftmost keyword is removed and the
same keyword is inserted into the interval in step 5. If
an interval is not minimal, it contains the same key-
word as the leftmost one and therefore it contains all k
keywords after removing the leftmost keyword. In both
cases intervals enumerated by the algorithm necessarily
contain all k keywords. ��

Fig. 2 An example of the plane-sweep algorithm.

2314
IEICE TRANS. FUNDAMENTALS, VOL.E84–A, NO.9 SEPTEMBER 2001

Judgment whether an interval [li, ri] is minimal or
not is done by position of a keyword which is examined
in step 3 of the algorithm.

Lemma 2: The interval [li, ri] is minimal if and only
if position p of new keyword added in the interval is
greater than the right boundary ri of the interval, i.e.,
p > ri.

Proof: When position p of new keyword P is less than
ri, an interval created by removing the leftmost key-
word contains all k keywords and therefore the interval
[li, ri] is not minimal. When p is greater than ri, the
keyword P does not exist between li and p. Therefore
the interval [li, ri] is minimal.

When p is greater than ri, the keyword P does not
exist between li and p. Therefore the interval [li, ri] is
minimal. ��

Though the number of intervals is n(n− 1)/2, the
number of minimal intervals is smaller than it.

Lemma 3: The number of minimal intervals is less
than n.

Proof: Minimal intervals are not contained by other
intervals and therefore positions of right boundary of
the intervals are different, which are positions of key-
word. ��

Theorem 1: When n positions of k keywords are
given, the k-word proximity search (Problem 2) can
be done in O(n logn) time.

Proof: The validity of this algorithm is easily shown
from Lemma 1 and Lemma 2. We here evaluate its time
complexity.

In step 1, sorting positions of keywords takes
O(n logn) time. In step 2, sorting k keywords takes
O(k log k) time. Because all minimal intervals are enu-
merated by the algorithm from Lemma 1, and the num-
ber of minimal intervals is less than n from Lemma 3,
steps 3 to 5 are executed at most n times. In step 5, up-
dating an interval and order of keywords takes O(log k)
time. Therefore finding all minimal intervals in steps 3
to 5 takes O(n log k) time. In step 6, inserting minimal
intervals into a heap takes O(n logn) time.

Summarizing these arguments together with a fact
that k < n, we see that the total time is bounded by
O(n logn). ��

If we find the m smallest minimal intervals, a heap
of size m is used. The root of the heap has the largest
interval. When we insert an interval into the heap,
if the interval is larger than the root element, we do
nothing. If the interval is smaller than the root element,
we delete the root element and reconstruct the heap by
inserting this new interval.

If the lists of keyword positions are already sorted,
the time complexity becomes as follows.

Corollary 1: If the positions of keywords are given
in a sorted order, the problem of finding m smallest
intervals containing all k keywords can be solved in
O(n log k + m logm) time.

We can also accelerate practical speed of this al-
gorithm by specifying an upper-bound d of the size of
interval and inserting intervals whose size is less than d
into the heap.

The algorithm of Baeza-Yates et al. [4] finds inter-
vals containing two keywords P1 and P2 whose distance
is less than d in O((n1 + n2) logn1) time (n1 < n2).
Though it can be extended to finding only minimal in-
tervals, it cannot be directly extended to more than
two keywords cases. On the other hand, our algorithm
runs in O(n1 log n1 +n2 logn2) time in a two keywords
case. Though it is slower than Baeza-Yates et al., our
algorithm can be applied to more than two keywords
cases.

3.2 A Divide-and-Conquer Approach

The algorithm based on the plane-sweep uses sorting
of all the positions of keywords. However, if the num-
ber of occurrences of one keyword is small, some of
positions of other keywords can be discarded without
sorting. This observation leads to the following divide-
and-conquer algorithm which does not employ sorting
and becomes efficient when one keyword appears rela-
tively less.

We find minimal intervals without sorting posi-
tions. We divide each list of positions into two lists
L and R into halves, and find minimal intervals which
is in L and in R recursively, and find intervals which
lie on both L and R. Because we find only minimal
intervals, it is enough to keep the rightmost positions
of each keyword in the L and the leftmost positions in
the R to find minimal intervals which lie on L and R,
and this is done when we divide the lists into L and R.

Figure 3 shows an example of the divide-and-
conquer algorithm. To find intervals containing three
keywords ‘A,’ ‘B’ and ‘C,’ first positions of the key-
words are divided into two parts: L and R. Because
the L part does not contain ‘C,’ we omit occurrences of
keywords in the L part except the rightmost positions
of the keywords in L. Next intervals which lie on both
the L and the R part. Then the R part is recursively
divided because it contains all given keywords.

1. Find the median v of n positions of keywords.

Fig. 3 An example of the divide-and-conquer algorithm.

SADAKANE and IMAI: FAST ALGORITHMS FOR k-WORD PROXIMITY SEARCH
2315

2. Scan lists of positions and divide them into two
lists L and R, where L contains positions smaller
than v and R larger than v. In the process, the
largest positions of each keyword in L and the
smallest positions of each keyword in R are kept.

3. Find minimal intervals which lie on both L and R
by using the plane-sweep algorithm. These inter-
vals are represented by positions kept in the last
step.

4. If L (R) contains all k keywords, then recursively
find minimal intervals in L (R).

Theorem 2: The k-word proximity search algorithm
based on the divide-and-conquer paradigm can be per-
formed in O(n logn) time. Furthermore, if the number
of occurrences of the fewest keyword is l, finding m
minimal intervals can be done in O(n log l + lk log k +
m logm) time.

Proof: The number of lists divided by the algorithm
and which contain all keywords is less than n/k. There-
fore the divide part of the algorithm takes O(n log n

k)
time. Finding minimal intervals which lie on two lists
takes O(k log k) time. The number of such pairs of
lists is at most n/k. Therefore the conquer part takes
O(k log k · n/k) = O(n log k) time. Inserting n small-
est minimal intervals into heap takes O(n logn) time.
Therefore the total is O(n log n

k + n log k + n logn) =
O(n logn) time.

This analysis can be further refined as follows. If
a keyword appears l times, the number of minimal
intervals is at most l. Then the divide part takes
O(n log l) time and the conquer part takes O(k log k ·
l) = O(lk log k) time. Inserting m minimal intervals
into a heap takes O(m logm) time. Note that m ≤ l.
In the worst case, lk = O(n) and the total time is
bounded by O(n logn). ��

In case l is constant, the time complexity becomes
linear in n.

4. Experimental Results

We implemented the proposed algorithms and experi-
mented on html files. The number of files is 51783 and
the size of them is 185Mbytes. We use the inverted file
and the suffix array for finding positions of keywords.
We store not document ID containing keywords but ex-
act positions of keywords. We use a SUN Ultra60 work-
station (CPU UltraSPARC-II 360MHz) with 2048MB
memory and 18GB disk. The maximum number of in-
tervals is not limited and the maximum size of intervals
is limited to 30000.

4.1 Using the Inverted File

We experimented on time for k-word proximity searches
using the inverted file. In Table 1, the first, the second

Table 1 Time for k-word proximity searches.

#occ. #ans time keywords (#occurrences)
14488 1453 0.36 linux:7872 faq:6616
19096 865 0.38 linux:7872 homepage:11224
20431 172 0.33 linux:7872 official:1335

homepage:11224
875418 20530 0.64 font:406406 size:147806

and:128631 the:192575
603778 25547 0.59 align:176172 width:128916

name:103777 center:194913
949208 146546 0.68 img:237245 src:225778

http:278074 www:208111
2163854 153763 0.85 a:1453262 td:710592
2557682 690939 1.34 a:1453262 href:618235

http:278074 www:208111
2071497 1229687 1.36 a:1453262 href:618235
14488 100 0.43 linux faq
19096 100 0.43 linux homepage
20431 100 0.44 linux official homepage
603778 100 0.58 align width name center
875418 100 0.64 font size and the
949208 100 0.66 img src http www
2071497 100 1.00 a href
2163854 100 0.88 a td
2557682 100 1.07 a href http www
5624337 100 1.99 a td href p br

html font li h b

and the third columns show the total numbers of occur-
rences of all given keywords, the numbers of minimal
intervals, and search time in seconds, respectively. The
inverted file is a data structure for finding positions of
keywords in a text and it stores a list of positions of all
occurrences for each keyword. We first read all posi-
tions of specified keywords from disk into memory and
perform the plane-sweep algorithm on memory. Be-
cause the positions of each keyword are sorted, we can
omit the initial sorting step of the plane-sweep algo-
rithm. Upper half of the table shows time for finding all
intervals whose size is less than 30000 and lower half for
finding smallest 100 intervals. The first column shows
the number of occurrences of specified keywords, the
second column shows the number of minimal intervals
whose size are less than 30000, the third column shows
the time for the search, and the last column shows spec-
ified keywords and the numbers of their occurrences.
Query time depends on the number of answers since
we have to sort the intervals in the increasing order of
their size. By limiting the number of intervals to 100,
query time is slightly reduced. In both cases, we found
that the query time is enough for usual queries.

Figure 4 shows relation between the number of oc-
currences of keywords and time for finding 100 smallest
intervals. The time is roughly proportional to the num-
ber of occurrences of the keywords. When we find all
minimal intervals, it is better to use an array of size n
instead of a heap. We insert minimal intervals to the
array and then sort them by using radix sort. On the
other hand, if we want to find only the smallest m in-
tervals where m is a small constant, we should use a

2316
IEICE TRANS. FUNDAMENTALS, VOL.E84–A, NO.9 SEPTEMBER 2001

Fig. 4 Searching and sorting time.

Table 2 One-keyword query.

keyword #occurrences time(s)

http 283719 0.698
www 214524 0.505
jp 319914 0.778
h 3747125 2.333
t 7304053 4.721
p 2610014 1.820
e 6939739 4.410
n 4371063 2.752

heap.

4.2 Using the Suffix Array

Next we executed experiments on the running time for
proximity searches The suffix array [8] is an array of
pointers of all suffixes of a text. The pointers are sorted
in lexicographic order of suffixes. Therefore all posi-
tions of any substring of the text can be found by a
binary search. If we use the suffix array to make lists
of occurrences of keywords, we can find any substring
of a string. However, for proximity searches using the
plane-sweep algorithm, it is necessary to sort positions
of keywords, which may become a bottleneck of the
algorithm. Therefore we examine time for sorting po-
sitions and finding minimal intervals.

Table 2 shows the time for finding all the occur-
rences of a keyword and sorting their positions by the
plane-sweep algorithm. The time does not include time
for displaying results. Because sorting time for key-
words which do not appear frequently is negligible, we
show sorting time for only frequent keywords such as
‘http,’ ‘www,’ ‘jp’ and frequently used letters in html
files. The time is proportional to the number of occur-
rences because the radix sort is used. If the number
of occurrences of a keyword is less than one million,
its sorting time is small enough. Even if the number
of occurrences is large, its sorting time is yet within a
reasonable time.

Next we performed experiments on the running
time for k-word proximity searches by the plane-sweep
algorithm (Table 3). Searching time is the summation

Table 3 Search time by plane-sweep algorithm.

keywords #ans total (s) finding intervals (s)

http www jp 377405 2.414 0.443
h t p 3180532 16.351 7.487
e t h n 4400220 26.811 12.595

Table 4 Search time by plane-sweep and divide-and-conquer
algorithms.

keywords #ans PS time (s) DC time (s)

http www jp 377405 2.414 2.584
http www jp zzzz 22 2.024 0.419
h t p 3180532 16.351 41.496
h t p zzzz 29 12.807 6.729
e t h n 4400220 26.811 69.304
e t h n zzzz 33 21.604 11.026

of time for searching keywords, time for sorting posi-
tions, and time for finding minimal intervals. The third
column of the table shows searching time and the fourth
column shows time for only finding minimal intervals.
Time for finding intervals is about a half of the total
time. Though searching for keywords ‘e,’ ‘t,’ ‘h,’ and
‘n’ takes much time, as is seen from this table, it is no
problem because such extreme queries are rarely per-
formed. Or, in other words, even in such a bad case,
the proximity search problem can be solved rather effi-
ciently.

We also examined the running time of the divide-
and-conquer algorithm using the suffix array. Table 4
shows the comparison between the plane-sweep algo-
rithm and the divide-and-conquer algorithm. The sec-
ond column shows the numbers of minimal intervals.
The third and the fourth columns show search time by
the plane-sweep and the divide-and-conquer algorithms
respectively. The plane-sweep algorithm is faster than
the divide-and-conquer algorithm if all given keywords
appear many times. The reason is the use of radix
sort in the plane-sweep algorithm. However the divide-
and-conquer algorithm becomes quick if the number of
occurrences of a keyword is small. The word ‘zzzz’ ap-
pears only 129 times in the text. Therefore we can
terminate the recursion of the algorithm in earlier iter-
ations.

Note that the divide-and-conquer algorithm uses
as much memory as the plane-sweep algorithm. We can
perform the divide-and-conquer in an in-place fashion
like quick sort. Therefore the divide-and-conquer algo-
rithm is practical when the number of occurrences of
a given keyword is relatively smaller than that of oth-
ers. In such cases we can switch the algorithm to the
divide-and-conquer one.

4.3 Comparison with a Traditional Search System

We compared our proximity search algorithm with a
widely used search system called Namazu [13] using
the same document set. It is based on the inverted

SADAKANE and IMAI: FAST ALGORITHMS FOR k-WORD PROXIMITY SEARCH
2317

file and the unit of word indices is a document, while
our proximity search uses positions of words in docu-
ments. Data set used is the above-mentioned collec-
tion of html files of the ODIN. Namazu uses the tf*idf
ranking method, where tf means term frequency and
idf means inverse document frequency [11]. A score of
a document is calculated from tf*idf values of given
keywords. The term frequency is the number of occur-
rences of a keyword in the document and the inverse
document frequency is defined by

log
N

n
,

where N is the number of documents in a database
and n is the number of documents which contain a
given keyword. The score of a document defined by
the keyword becomes the product of the term frequency
and the inverse document frequency, and ranks of docu-
ments are defined in decreasing order of the score. The
inverse document frequency is used to decrease weight
of keywords which appear in many documents because
such keywords are not important.

We performed two experiments. One is a query for
two keywords ‘information’ and ‘retrieval’ and the other
is for three keywords ‘Apache,’ ‘home’ and ‘page.’ In
the former query, Namazu found 5255 documents con-
taining ‘information’ and 158 documents containing ‘re-
trieval,’ and Namazu returned 96 documents contain-
ing the two keywords. Our proximity search algorithm
found 13299 occurrences of ‘information’ and 252 oc-
currences of ‘retrieval,’ and it returned 330 intervals
containing the two keywords. Because all suffixes are
indexed in a suffix array, our algorithm finds more oc-
currences than using the inverted file. Our algorithm
enumerates intervals in a document which contain the
two keywords and whose size is less than 30000. The
number of the intervals is larger than the number of oc-
currences of ‘retrieval’ because we did not restrict the
order of keywords in an interval and a occurrence of
‘retrieval’ may be contained in two intervals. That is,
we enumerated overlapped intervals.

In the search result of the proximity search, top 31
answers are regions of a phrase ‘information retrieval.’
These regions appear in 19 documents and Namazu
gave ranks to the documents as 42, 8, 5, 66, 85, 49,
43, 12, 15, 70, 69, 44, 47, 37, 9, 93, 1, 24 and 95, where
ranks are arranged in the order of ranks by the proxim-
ity search. Because the phrase may appear many times
in a document, the number of documents containing
the phrase becomes small. On the other hand, docu-
ments which are given near top ranks by Namazu are
ranked as 22, 97, 93, 76, 5, 119 and 71 by the prox-
imity search. This result shows that it is difficult to
find documents concerned with information retrieval by
using search systems which do not consider word posi-
tions such as Namazu. Note that such documents may
be found by specifying a phrase ‘information retrieval’

as a keyword even if a document-base search system
is used. However, our proximity search provides more
flexible queries; it can find intervals in which the two
keywords appear at a distance or these appear in the
different order.

In the latter query, Namazu found 441 docu-
ments containing ‘Apache,’ 17562 documents contain-
ing ‘home,’ and 16556 documents containing ‘page,’
and returned 128 documents containing the three key-
words. Our proximity search found 4956 occurrences of
‘Apache,’ 59265 occurrences of ‘home,’ and 57562 oc-
currences of ‘page’ and returned 261 intervals contain-
ing the three keywords. Our algorithm returned two
html files containing links to the Apache home page as
rank 1 and 2. These documents are ranked as 14 and
35 by Namazu. Documents ranked as 1 to 10 by Na-
mazu are ranked as 296, 288, 170, 83, 167, 350, 71, 24,
252 and 449 by the proximity search. These documents
are neither the Apache home page nor pages contain-
ing links to the page. The rank 1 page by Namazu is
an Apache FAQ page. Because it contains many occur-
rences of ‘Apache,’ term frequency of ‘Apache’ becomes
large and its score also becomes large. However, unfor-
tunately it does not contain links to the Apache home
page.

These are examples which show superiority of
our proximity search over traditional search systems.
Though the result might not show that our proximity
search is always better than conventional search meth-
ods, the result shows the potential power of the prox-
imity search, and we showed that it can be performed
within a reasonable time.

5. Concluding Remarks

In this paper we have extended the proximity search,
which is used for narrowing search results from many
documents, to a method for ranking documents. We
have introduced k-word proximity search and proposed
two algorithms for the problem. By using our al-
gorithms we can obtain only useful information from
huge amount of documents. One algorithm uses the
plane-sweep technique and the other uses a divide-and-
conquer approach. We have implemented both algo-
rithms and have experimented on large html files. We
found that the speed of the plane-sweep algorithm is
fast enough for usual queries in practice. We confirmed
that the divide-and-conquer is fast if the number of the
occurrences of a keyword is small although it is usu-
ally slower than the plane-sweep algorithm. We sug-
gest using both algorithms and choosing suitable one
according to the numbers of occurrences of given key-
words. We also compared the result of the proximity
search with a traditional search system and we found
the potential power of the proximity search.

Finding minimal intervals can be performed sepa-
rately for each document. Therefore time for proximity

2318
IEICE TRANS. FUNDAMENTALS, VOL.E84–A, NO.9 SEPTEMBER 2001

search itself is reduced by partitioning a set of docu-
ments into some pieces and using an inverted file or
a suffix array for each piece. We can perform parallel
search for each index and merge the results. Time for
finding keyword positions is also reduced because the
size of each index becomes small. Therefore our ranking
method is scalable.

Acknowledgment

The authors would like to Prof. Jǐŕı Matoušek, who sug-
gested a divide-and-conquer approach, and also thank
Mr. Masanori Harada, who gave us html files of the
ODIN. The authors would like to thank the anonymous
referees for their helpful comments. Work of the au-
thors was supported in part by the Grant-in-Aid of the
Ministry of Education, Science, Sports and Culture of
Japan.

References

[1] V.N. Anh and A. Moffat, “Compressed inverted files with
reduced decoding overheads,” Proc. 21st Annual Interna-
tional ACM SIGIR Conf. on Research and Development in
Information Retrieval, pp.290–297, 1998.

[2] W.G. Aref, D. Barbara, S. Johnson, and S. Mehrotra, “Ef-
ficient processing of proximity queries for large databases,”
Proc. 11th IEEE International Conf. on Data Engineering,
pp.147–154, 1995.

[3] R. Baeza-Yates and W. Cunto, “The ADT proximity and
text proximity problems,” Proc. IEEE String Processing
and Information Retrieval Symposium (SPIRE’99), pp.24–
30, 1999.

[4] G.H. Gonnet, R. Baeza-Yates, and T. Snider, “New indices
for text: PAT trees and PAT arrays,” in Information Re-
trieval: Algorithms and Data Structures, ed. W. Frakes and
R. Baeza-Yates, chapter 5, pp.66–82, Prentice-Hall, 1992.

[5] T. Kasai, H. Arimura, R. Fujino, and S. Arikawa, “Text
data mining based on optimal pattern discovery—Towards
a scalable data mining system for large text databases,”
Proc. Summer DBWorkshop, SIGDBS-116-20, pp.151–156,
IPSJ, 1998.

[6] J.M. Kleinberg, “Authoritative sources in a hyperlinked
environment,” Proc. 9th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, pp.668–677, 1998. http://
www.cs.cornell.edu/home/kleinber/ .

[7] U. Manber and R. Baeza-Yates, “An algorithm for string
matching with a sequence of don’t cares,” Information Pro-
cessing Letters, vol.37, pp.133–136, Feb. 1991.

[8] U. Manber and G. Myers, “Suffix arrays: a new method
for on-line string searches,” SIAM Journal on Computing,
vol.22, no.5, pp.935–948, Oct. 1993.

[9] J. Nievergelt and F.P. Preparata, “Plane sweeping algo-
rithms for intersecting geometric figures,” Commun. ACM,
vol.25, pp.739–747, 1982.

[10] F. Preparata and M. Shamos, Computational Geometry:
An Introduction, Springer-Verlag, 1985.

[11] G. Salton, A. Wong, and C.S. Yang, “A vector space model
for automatic indexing,” Commun. ACM, vol.18, no.11,
pp.613–620, 1975.

[12] K. Tajima, Y. Mizuuchi, M. Kitagawa, and K. Tanaka,
“Cut as a querying unit for WWW, netnews, and e-mail,”
Proc. 9th Annual International ACM Conf. on Hypertext,
pp.235–244, 1998.

[13] S. Takabayashi, Namazu, http://openlab.ring.gr.jp

/namazu/.

Kunihiko Sadakane received B.S.,
M.S., and Ph.D. degrees from Depart-
ment of Information Science, University
of Tokyo in 1995, 1997 and 2000, respec-
tively. He is a research associate at Grad-
uate School of Information Sciences, To-
hoku University. His research interests in-
clude algorithms and data structures for
text compression and text retrieval. He is
a member of IPSJ.

Hiroshi Imai obtained B.Eng. in
Mathematical Engineering, and M.Eng.
and D.Eng. in Information Engineering,
University of Tokyo in 1981, 1983 and
1986, respectively. In 1986–1990, he was
an associate professor of Department of
Computer Science and Communication
Engineering, Kyushu University. Since
1990, he has been an associate profes-
sor at Department of Information Science,
Univers ity of Tokyo. His research inter-

ests include algorithms, computational geometry, and optimiza-
tion. He is a member of IPSJ, OR Soc. Japan, JSIAM, ACM
and IEEE.

