IEICE TRANSACTIONS, VOL. E 74, NO. 4 APRIL 1991

681

LETTER Special Issue on Discrete Mathematics and Its Applications

Finding a Maximum Weight Independent Set

of a Circle Graph

SUMMARY We present an algorithm for finding a maxi-
mum weight independent set of a circle graph. For a circle graph
of a set of n chords with N endpoints, the algorithm finds a
maximum weight independent set in O(nN) time and O(n)
space.

1. Introduction

The problem of decomposing a polygon into
simpler components is of fundamental importance in
computational geometry and often arises in VLSI
layouts. Closely related to this problem is the problem
of finding a maximum set of independent chords in a
circle (i.e., the problem of finding a maximum in-
dependent set of a circle graph). In fact, algorithms for
finding a maximum set of independent chords in a
circle are used in decomposing a simple polygon into
a minimum number of trapezoids™) and into a mini-
mum number of uniformly monotone polygons‘®.

Gavril first obtained an O(»®) time algorithm for
finding a maximum set of independent chords for a set
of n chords with N endpoints on a circle. Later, Read
et al.”, Buckingham®, and Asano et al.* proposed
O(n?) time algorithms. Recently, Liu and Ntafos
proposed an O(N?) time and O(N?) space algorithm®.
Note that n=0(N?) (and #»*=0(N*)) in the worst
case.

In this paper, we present another efficient algo-
rithm which is a slight modification of the algorithm
in Ref. (1). The proposed algorithm runs in O(nN)
time and O(n) space. Thus, it may be considered to be
an improvement of O(n?) time algorithms as well as
Liu and Ntafos’s algorithm.

2. Preliminaries

For a set of chords each of which connects two
points on a circle C, a subset of chords is independent
if no two of them have a point in common. Here, we
consider each chord is a closed set, i.e., both of its
endpoints on C belong to it (the argument below can

Manuscript received September 14, 1990.
T The authors are with the Faculty of Science and
Technology, Sophia University, Tokyo, 102 Japan.
T1 The author is with the Faculty of Engineering, The
University of Tokyo, Tokyo, 113 Japan.

Takao ASANOT, Hiroshi IMAITT, Members
and Akira MUKAIYAMAT, Nonmember

be easily modified in case each chord is an open set).
Then the problem we consider is to find a maximum
set of independent chords in C. This can be restated as
a problem on special graphs known as circle graphs,
intersection graphs of chords in circles. That is, in a
circle graph, each vertex represents a chord in a circle
C and two vertices are connected by an edge iff the
corresponding chords intersect (i.e., have a point in
common). Thus, finding a maximum set of indepen-
dent chords is equivalent to finding a maximum in-
dependent set of a circle graph (an independent set of
a graph is a subset of vertices no two of which are
connected by an edge). When each vertex has a weight,
the weight of an independent set is defined to be the
sum of the weights of vertices in the set.

A circle graph is closely related to an overlap
graph defined below. Let S be a set of » intervals on
a line with N endpoints. For intervals I=[x", x*] and
J=[y~, y*], we say I is completely contained in J if
y~<x~ and x*<y*. Two intervals are said to overlap
if they intersect without one being completely
contained in the other. An overlap graph G(S) of S is
obtained by identifying each interval with a vertex and
connecting two vertices by an edge iff the correspond-
ing intervals overlap. An interval graph, an intersec-
tion graph of intervals, is obtained by identifying each
interval with a vertex and connecting two vertices by
an edge iff the corresponding intervals intersect. There
is a slight difference between an overlap graph and an
interval graph. Since the class of circle graphs coin-
cides with the class of overlap graphs®, we will con-
centrate on finding a maximum weight independent set
of an overlap graph.

3. Finding a Maximum Weight Independent Set of
an Overlap Graph

Consider a set S of n intervals with N endpoints.
Each interval I of S has a nonnegative weight w([/). In
this section we will describe an algorithm for finding a
maximum weight independent set of the overlap graph
G(S) of S. We assume that N endpoints are sorted and
labeled from 1 to N. This can be done in O(N logN)
time and O(N) space (if the set of endpoints is consid-
ered to be a multiset, this sorting can be done in O(n
logn) time and O(n) space). We ignore this complexity

682

because it does not dominate the complexity of our
algorithm (note that N=0(y/n)). For convenience
sake, we introduce a new interval L=[0, N +1] with
weight w(h)=0. All intervals of S are of course com-
pletely contained in kL.

For an interval I of S, let S(I) be the set of
intervals of S completely contained in I. Define W (I)
to be the weight of a maximum weight independent set
of the overlap graph of S(I)U{I} (that always con-
tains 7 if w(I) is positive). Thus, it is easily observed
that W(I) satisfies the following®»“-® .

W (I)=w(I)+[the weight of a maximum weight
independent set of the interval graph of
S(I) where the weight of each interval J
of S(I) is W(J)].

Thus, W (L) becomes the weight of a maximum weight
independent set of the overlap graph G(S) of S (and
G(SU{k})).

Gavril proposed an O(n®) time algorithm based
on the above observation™®. In fact, he has iteratively
solved the problem of finding a maximum weight
independent set of an interval graph for a subset of
those intervals to compute W (I)’s. Note that, to com-
pute W(I), we have only to compute W (J) in advance
for each J of S completely contained in I. Thus, there
are many possibilities about the order to compute
W(I)’s. In this paper we adopt a method of computing
W(I)s in decreasing order of the left endpoints of the
intervals. Note also that, for intervals I’s having their
left endpoint in common, we can compute W(I)’s
simultaneously.

Let L, (k=0, 1, -, N—1) be the set of intervals
of SU{k} having k as their left endpoint. Let I, be the
interval in L, with the largest right endpoint. S(I,) is
the set of intervals of S completely contained in I.. Let
{x1, ***, Xax)} be the set of endpoints of the intervals in
LU S(I.). We assume x;< -+ < X4z Then our algo-
rithm for computing W(I)’s (IEL,) can be described
as follows (we assume that, for each J in S(I.), W(J)
is already computed).

Procedure COMP _ W(L,, I, S(I,));
begin
1 sort a(k) numbers xi, -
order ;
{comment : we assume x; < v < Xg(ry. X1 1s the
left-most endpoint of the intervals in L.}
2 U:=0;
3 for i:=2to a(k) do
begin
4 for each interval J in S(I.) with x; as
its left endpoint do
{comment: U is the weight of a
maximum weight independent set of
the interval graph of intervals in
S(I,) whose right endpoints are

‘, Xar) iN increasing

IEICE TRANSACTIONS, VOL. E 74, NO. 4 APRIL 1991

less than x;}

5 UWJ):=U+W({J);

6 if x; is the right endpoint of an
interval I in L, then

7 W(I):=U+w(I);

8 UMAX :=0;

9 for each interval J in S(I,) with x; as
its right endpoint do

10 if UMAX< U(J) then

11 UMAX :=U(J);
{comment : UMAX=max[U(J)]}

12 if UMAX> U then

13 U .=UMAX;

end ;
end ;

The validity of the algorithm can be easily shown
by an argument similar to the one in Ref. (1) (since,
at each x;, U is the weight of a maximum weight
independent set of the interval graph of those intervals
in S(I,) whose right endpoints are less than x;). Thus,
the whole algorithm for computing W (L), -the weight
of a maximum independent set of the overlap graph
G(S) of S, as well as all other W(I)’s, can be written
as follows:

Procedure COMP _WEIGHT ;
begin
for kK :=N—1 downto 0 do
if k is the left endpoint of an interval of S
then
begin
find L, I, and S(I,.);
COMP _ W(Ly, I, S(I.)) ;
end ;
end ;

Now we consider the time complexity. Line | in
COMP W (Lx, I, S(I.)) can be done in O(N) time
since the endpoints are labeled from 1 to N. Lines 3-
13 can be done in O(|L./+|S(I)|) time. Thus,
COMP _ W(Ly, I, S(I;)) requires only O(n) time.
Since L, I, and S(I) can be found in O(n) time,
COMP _ WEIGHT requires only O(»nN) time. Similar-
ly, it can be shown that the required space is O(n). It
is also easy to modify the above algorithm in such a
way that it actually finds a maximum weight indepen-
dent set. Thus by summarizing we have :

[Theorem] A maximum weight independent set of
an overlap graph of » intervals with N endpoints (or,
of a circle graph of n chords with N endpoints on a
circle) can be found in O(nN) time and O(n) space.

4. Remarks

In Ref.(5) an O(n log n+ m. loglog n) time algo-
rithm for finding a maximum weight independent set

LETTER

of an overlap graph of # intervals is described, where
m. is the number of the pairs of intervals one of which
is completely contained in the other. Employing the
technique described there, we can similarly refine the
complexity analysis of our algorithm by using the
persistent search tree proposed by Sarnak and Tarjan®
(the hive graph proposed by Chazelle® can also be
used). The persistent search tree is one of the most
powerful data structures in computational geometry. It
can be used to efficiently solve the following (static)
interval search problem : Given a set S of n intervals
on a line and a query interval, find the set of intervals
in S which are completely contained in the query
interval. In fact, by using the persistent search tree, the
set of intervals in S which are completely contained in
the query interval can be enumerated in O(¢+log n)
time in such a way that all the endpoints of the enumer-
ated ¢ intervals are sorted in nondecreasing order. We
can construct the persistent search tree in O(n log n)
time and O(n) space.

Thus, by choosing I, as a query interval, we can
find S(Z,) in COMP _WEIGHT in O(|S(1.)|+log n)
time. L, and I, can also be obtained in O(|L,|) time.
Thus, the time complexity of COMP _W(Ly, I, S(I.))
(i.e., computing W(I)’s for all I’'s in L,) becomes
O(log n+|Lx|+|S(1.)|) since sorting in Line 1 can be
done by merging the two sorted lists of endpoints of
S(I.) and L,. From the above discussion, we see that
a maximum weight independent set of the overlap

N
graph G(S) can be found in O<n log n—i—kgo(log n+|L

683

k|+lS(Ik)])>=0(n log n-+m) time and O(n) space,

N
where m=l§0|S(Ik)|. Clearly, m<m, and m=<nN.

It should be noted that the algorithm in this paper
can be easiy modified even if we consider each interval
(chord) is an open set, i.e., it contains none of its
endpoints.

References

(1) Asano T., Asano T. and Imai H.: “Partitioning a
polygonal region into trapezoids”, J. of ACM, 33, pp. 290
-312 (1986).

(2) Buckingham M.: “Circle Graphs”, Ph. D. Dissertation,
Courant Institute, Repi. NSO 21 (Oct. 1980).

(3) Chazelle B.: “Filtering search: A new approach to
query-answering”, SIAM J. Computing, 15, pp. 703-724
(1986).

(4) Gavril F.: “Algorithms for a maximum clique and a
maximum independent set of a circle graph”, Networks, 3,
pp. 261-273 (1973).

(5) Imai H. and Asano T.: “Applications of the priority
search tree to circle graph problems”, IECEJ Technical
Reports, CAS86-112 (1986).

(6) LiuR. and Ntafos S.: “On decomposing polygons into
uniformly monotone parts”, Inform. Process. Lett., 27, pp.
85-88 (1988).

(7) Read R.C., Rotem D. and Urrutia J.: “Orientations of
circle graphs”, J. Graph Theory, 6, pp. 325-341 (1982).

(8) Sarnak N. and Tarjan R.E.: “Planar point location
using persistent search trees”, C. of ACM, 29, pp. 669-679
(1986).

