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Chapter 1 

Introduction 

§1. Scope of t he Thesis 

The most characteristic feature of the surface of materials comes fr om the fact that 

only the surface can interact directly with the outside system. Recently technology of 

microscopical processing of materials has been developed rapidly. This trend empha­

sized the crucial importance of understanding microscopic features of the surfaces. 

When we meet a new surface, first we must determine the structure of the surface, 

since fresh surfaces of materials have many reconstructing structures, and since their 

properties are governed by the structure in atomic level. But there were no per­

fect methods to observe directly the surface in atomic scale, and it obstructed the 

development of surface science and technology. 

The scanning tunneling microscopy (STM) was developed by Binnig and Rohrer 

[1] in such a circumstance. This method is based on a simple principle, though very 

high technique is required. In STM, the tunneling current between the tip and the 

sample surface is measured, scanning the tip position with keeping the tunneling 

current constant . Then the contour of the tip reflects the surface corrugation. 

Binnig and Rohrer observed the atomistic STM image of graphite surface [3-7], 

and revealed the feature of the electronic states of graphite. The observation of Si(111) 

(7x7) surface opened the way discovering the DAS model [8-13]. After that, many 

surface superstructures have been analyzed, and plenty of new information has been 

reported; it includes microscopic structures of defects and steps on the surface [1, 

14-22], structures of organic or biological molecules adsorbed on the surface [23-25, 

26-28] . 

In the development of STM, scanning tunneling spectroscopy (STS) was proposed 

[29]. In ST S, the tunneling conductance between the tip and t he surface is measured 
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Figure 1.1: Principle of operation of STM (after Binnig et a/. [1]) 
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varying the tip bias. The differential conductance curve reflects the local density 

of states (LDOS) at the specific point of the surface . This technique is useful to 

characterize the local electronic structure of the surface providing extremely rich 

information of solid surfaces [30]. 

The most valuable feature of STM is its real space imaging, and that of the STS is 

its locality. Recently these methods have been developed toward many directions; for 

example, the atomic force microscopy (AFM) [31] succeeded to observe surfaces of in­

sulating materials in atomic scale by the forces between the tip and the surface: STM 

is also used in the atomic scale processing of the surface [32]. The Coulomb blockade 

[33] and negative differential conductance (NDR) [34] reported in STS measurement 

would lead to atomic scale devices. STM/STS have attracted much attention in many 

fields. 

Today, STM is generally used for observing the surface corrugation. But it would 

be possible to use STM in conjunction with STS so as to discuss the defect structure 

or the identification of the observed atom. These discussions, however, would be 

only possible under the help of theoretical works. Plenty of quantitative information 

is still behind STM/STS data with no means of analyzing it. In order to extract 

rich information from the experimental data, we must know the real microscopic 

mechanism determining the tunneling current between the tip and the surface. But 

we do not have enough information about it. 

For example , the distance between the tip and the surface is unknown quanti­

tatively. The effect of the tip structure is not completely understood. In order to 

discuss STM/STS more quantitatively in atomic scale, it is needed to develop a the­

oretical method describing the tunneling current quantitatively. For that purpose , it 

is crucial to describe accurately the tail region of the surface wave function. 

The purpose of this study is to develop a new theoretical method describing the 

tunneling current of STM/STS more quantitatively and to simulate STM/STS when 

the tip is far from the surface. Tsukada et a/. [35] have developed a method of first­

principle theoretical simulation of STM/STS with the use of LCAO representation of 

the wave function. The LCAO wave function, however, cannot be valid for the very 

tail part extending into the vacuum. So we try a new method in this thesis to describe 

the far tail regions effectively, which can be combined with realistic calculations of 

the surface and the tip electronic states. As a case study, we will discuss the Si(001) 

reconstructed surfaces, for which the STM/STS data introduced much information 

but also brought up several controversial problems. 
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§2. Existing Theories of STM/STS 

For the electron tunneling in STM, simple semi-classical theories will be appropriate 

as a first step for qualitative discussions. Traditional t heories of the tunneling take 

the planer metal-insulator-metal (M-1-M) junction model [36,37). The z-a.xis is per­

pendicular to the planer electrodes. The levels are treated as those of free electrons 

both in the tip and in the surface. Then the total current density, iT, from the tip to 

the surface is written as 

iT= (2~;2 h j dE, j j ~ku[f(E)- f(E + ev)]T(E., ku) , (1.1) 

where 

l 
E = E, + E(k11 ) , 

E(k11 ) = ;>fi, (1.2) 

E: = ::k~. 
Here, J(E) represents Fermi dist ribution function, T(E:o I<jl) the transfer coefficient 

of the tunnel barrier, and v being the surface bias. The bottom of the valence band 

of the tip is taken as the origin of the energy. (ku ,k,) is the wave vector of the free 

electron, parallel and perpendicular to the surface, respectively. 

Within the 1D WKB approximation, the transfer coefficient is written as 

T(E., k 11 ) = exp [ -2 j dz 
2n~ (U(z)- E, ) , (1.3) 

where U(z) is the tunnel barrier. If we approximate the barrier by a rectangular 

potential, 

and assume that the work function is much larger than the bias potential, ¢o » ev, 

then the current density is approximately given by 

(1.4) 

where 

K= P~!0 , (1.5) 

and d is the distance between the tip and the surface . Therefore, when the tip 

moves keeping the current constant , the tip approximately traces the contour of the 

surface defined by constant Kd [1). With work function , ¢0 , of 5eV, a change of 

the tip position, od, by 1A leads to the change of the tunneling current up to one 
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order of magnitude. Moreover, with tunneling current of 1nA, surface bias of 1mV, 

and tip posi t ion lOA, the radius of effective region where the current flows is about 

sA, according to eq.( l.4 ). Th.us , qualitatively speaking, it would be able enough to 

measure the surface in atomic scale. 

To proceed more accurately, there have been used two kinds of theoretical ap­

proaches. One is the semi-classical approach, which is based on the above formulation, 

eq.(l.l) [38-48). 

Bono and Good used this approach [41) . They considered a system constructed 

by a planer surface and a semi-spherical tip attached to a parallel plane electrode, 

and calculated rigorously the image potential in such a configuration. The tunneling 

current was calculated at the tip top in terms of 1D WKB method . (Fig.l.2) 

Lucas et a/. [48) also used free electron approximation, but treated the transfer 

problem as a scattering problem more accurately by the Lippmann-Schwinger equa­

tion. They modeled the system by two parallel plane surfaces and a semi-spherical 

tip on one of the surfaces, and included the effect of the image potential. According 

to the use of cylindrical coordinates, the calculated current was quantized by the an­

gular momentum quantity, m, and separated into two kinds of elements, j';' and J';. 
They showed that only the element, j';'=O, is dominant , and the contributions from 

the other elements are less than 10%. They "also showed that the tunneling current 

flows in the region of the radius of semi-spherical tip, and it was confirmed that the 

current flows only on the very narrow strip in the 3D space. 

The advantage of this kind of approach is that the simplicity of the model enables 

us to treat the absolute value of the tunneling current analytically and numerically. 

In addition, it is also possible to treat the effect of the image potential and the electric 

field in the tunnel barrier. It is difficult, however, to include the real atomistic 

structure of the STM system constructed by a tip and a surface. Therefore it is 

difficult to discuss atomic scale images, and it remains a problem whether the semi­

classical approximation is suitable or not for the real STM system. 

The other kind of theoretical approach relies on Bardeen's equation. This equation 

is derived from the perturbation method in quantum mechanics [49). We consider 

the system constructed by t~o electrodes, and the total electronic potential , V.o,, is 

divided into the left and the right part with its border surface, S. The left part of 

the potential , V\ , is zero in the right part , and the right part, V, is zero in the left 

part (Fig.l.3). Then the Hamiltonian is wri tten as 
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Figure 1.2: Calculation of the tunnel current by the 1D semi-classical ~ethod. (after 
Bono et al. (41]) The calculated curves for different sample work functiOns (umt eV) 
are presented simultaneously. 
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T+ Vj + v;, 

{ 
H1 = T + Vj (r E left part), 
H, = T + v; (r E right part). (1.6) 

Here we consider each eigenstate of H1 and H" '1/J,.(r) and '1/Jv(r) respectively, with 

their energy, E,. and E". Then, when the bias, v, is applied to the left part, the tran­

sition rate from the left to the right part, ~-.. can be calculated by the perturbation 
method as 

where 

t/ 
- f dA· ('1/J;(r)V'I/J"(r)- '1/Jv( r)V 'I/J;(r)], 2m ls 
j d3r'f/J;(r)V,(r)'I/Jv(r), 

j b'f/J;(r)Vj(r)'I/Jv(r). 

(1.7) 

(1.8) 

The transition rate from the right to the left part is obtained in the same way. The 

total current from the right to the left part, I, is thus given by, 

I= 
2~e L IM,."j26(E,.- E" + ev)(J(E,.)- f(Ev)). 

"" 
(1.9) 

This equation is called Bardeen's equation. From the requirement of no current flow 

at zero bias, the Fermi energies of both parts must be coincident. 

Tersoff and Hamann used this equation for STM system as early as 1984 (50,51] . 

They showed that if the probe wave function is spherical, the tunneling current is 

proportional to the LDOS of the surface at the center, R, of the spherical tip model. 

I ex vp,(R; EF). (1.10) 

In this case, the LDOS of the surface at the probe center around the Fermi energy is 

measured for a small bias region in the STM observation. By the same approach, it 

was speculated by many authors that the differential conductance is almost propor­
tional to the LDOS of the surface, 

di 
dv ex o-,(EF)p,(R; EF + ev), (1.11) 

where o-, depends only on the tip character. This is used as the principle of STS (29]. 
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Figure 1.3: Schematic view of the approximation in deriving Bardeen's formula. 
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Applying these simple formulae eqs.(l.lO) and (1.11), not only atomic images but 

also CDW images can be explained [52]. Tersoff indicated that the high resolution 

of the STM image of layer materials comes from the Fermi surface localized at the 

edges of Brillouin zone [53, 54]. The simple formulae such as eqs.(l.lO) and (1.11) 

have been most convenient for providing a simple interpretation for STM images and 

STS spectra based on the microscopic electronic structure of the surface. 

Using more exact formula eq.( l.9) , Lang [55-59] showed how the difference of the 

chemisorbed atom on the surface is reflected on the corrugation of the STM image . 

When the tip atom is N a, the chemisorbed atom N a can be observed like a hill but the 

atom He is observed as a cave site. Furthermore, Chen [60] showed that the d orbitals 

of the tip cannot be neglected and the resolut ion of the image would be significantly 

improved by them. These studies clearly demonstrated the importance of the effect 

of the microscopic electronic states of the tip. 

The systematic application of Bardeen's formula to the realistic STM system 

is studied by Tsukada and Shima [61]. They revealed the condition for obtaining 

atomistic image by the moment expansion method. Consider that the left part is the 

surface and the right is the tip. We introduce Green's function of the surface, 

G,(R, R';E) = I; 1/J;(R) ,P,.(R')6(E - E,.). 

" 
Then the eq.( 1.9) is rewritten as 

21re j · I = h dE(f(E)- j(E + ev)) 

X z; J J d3 pcf p'1/Jv( P)1fl:( p')V.(p)V.(p') 

xG,(R + p,R + p'; E)8(E- Ev + ev ). 

(1.12) 

(1.13) 

The surface wave functions decay at the tip position, so we can factor out the decay 

factor , "!(P" E) = exp( -pz)2miEI/h2
), from Green's function with the smooth part , 

Q,(R, R' ; E)= G,(R, R' ; E)h(Z, E)h(Z', E). (1.14) 

Then the contribution to the integral mainly comes from the tip top region, and we 

expand the smooth part of Green's function around a fi..xed point of the tip, R . The 

result is , 

I 21re j h dE(f(E)- j(E + ev)) 

X [z; If d3 p7J;v( p)V.(p)"!(Z- p" E)l2 

8(E- Ev + ev)] 
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x9,(R, R;E) 

21re f +h dE(f(E)-f(E+ev)) 

x [~If d3 
p"if;.(p)V,(p)p-y(Z- p, E)r o(E- Ev + ev)] 

xVV9,(R, R;E) 

+···. (1.15) 

In the above, the tip top center, R, is determined by the condition so that the 

first order term of the moment expansion, which is proportional to V9,(R, R; E) , 

vanishes. If 1/;.(p)V,(p)"Y(Z- p, E) is localized or spherical, the expansion can be 

approximated only by the first term. The approximation taking only the zeroth 

order term is equivalent to the Tersoff and Hamann's formula. Therefore, the Tersoff 

and Hamann's result is only accurate when the higher order terms in eq.(1.15) are 
negligible. 

From eq.(l.I5) , the differential tunnel conductance is written as 

d! 
dv 

2~e
2 

[~If d3 
p"if;.(p)V,(p)"Y(Z- Pz , Ep- ev)r o(Ep- E.)] 

x9,(R, R; Ep- ev) 

21re
2 f +-li- dE(J(E)- f(E+ ev)) 

X 8~' [~If d3 
p"if;.(p)V,(p)"Y(Z- Pz. E)r o(E'- E.+ ev)] L=E 

x9,(R,R;E) 

+ 
2~e

2 

[~If d3
p"if;.(p)V,(p)p-y(Z- Pz , Ep- ev)l

2 

o(Ep- E.)] 

x V V9,(R, R;EF- ev) 

+· ··. (1.16) 

When the bias is small or the tip electronic states do not change significantly with the 

level energy, the first term of eq.(l.l6) is dominant and the differential conductance 

is almost proportional to the LDOS of the surface, p,(R; E + ev) . This is used as the 

principle of the STS, but we cannot always neglect the remaining terms of eq.(l.l6) 

since the tip electronic states might have a significant energy dependence. In fact, 

the observations of the NDR shows the importance of the remaining terms. So, we 

must take care of this fact in analyzing the STS data [35]. 

First systematic calculations including realistic atomic models of the tip was ini­

tiated by Tsukada et a/. [35). Isshiki et a/. [62) studied in detail the effect of the tip 
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in the STM images, and showed that the tip structure is sensitively reflected on the 

STM images of graphite. Kobayashi and Tsukada [63] studied the tip effect on STS 

spectra of graphite. They also studied the tip effect on STS spectra of the Si(lll)/B 

with defect surface, and they showed that the NDR can be caused by the special 

tunnel active orbital on the tip [64]. 

Thus the approach based on Bardeen's formula can be used to elucidate the elec­

tronic structure of the sample surfaces from the information of STM/STS data. But , 

in the real numerical calculations, it is difficult to discuss the absolute value of the 

tunneling current far from the surface. The vacuum tails of the surface wave functions 

are needed to calculate the integral in eq.(1.8), since the potential Vi(r) in eq.(l.8), 

which is zero in the surface, corresponds to the potential of the tip located 5 ~ lOA 

far from the surface. The band calculation methods, however , represent well the sur­

face wave functions only in the bulk or very close to the surface, but not well in the 

far distant region from the surface. 

For example, Selloni et a/. [65] calculated LDOS of graphite 2 ~ 4A far from 

the surface by repeated slab band calculation in terms of the plane wave expansion 

with empirical local pseudopotential. But to describe the exponential decay of the 

tail, they must use huge number of plane waves. With 4-layers graphite and 4-layers 

vacuum, they used 705 plane waves (cut-off 13Ry) so as to describe the exponential 

decay of the (x,y) averaged charge density in accuracy of over five orders of magnitude . 

It would be difficult to apply this cut-off value to any sophisticated band calculations 

to obtain accurate LDOS in more distant region. 

For the LCAO band calculation, the situation is the same. The vacuum tail of 

LCAO wave function is determined by an arbitrary chosen atomic basis set. Therefore, 

though the actual decay of the wave function is determined by its own energy, the 

decay of the LCAO wave function is characterized by the energy of the atomic orbital 

base. Thus, the vacuum tails are also poorly described in the LCAO method . 

T herefore, in order to discuss STM/STS more quantitatively in atomic scale, it is 

needed to develop some new theoretical techniques along with Bardeen's formula so 

as to represent the vacuum tails of the wave functions accurately. 

§3. Si(OOl) R econstructed Surface 

On the Si(OOl) reconstructed surface , STM/STS observation have played an impor­

tant role to analyze the structure of the reconstruction. In this surface , many kinds of 

reconstructions have been proposed; (2xl) [66-69), p(2x2) , c(4x2) [70-76), c(4x4) 



12 CHAPTER 1. INTRODUCTION 

[77], and also (2xn) (6~n~10) [78-79]. Appearance of these reconstructions depend 

on the way of preparation of the sample as well as the temperature. And also many 

kinds of the structural models have been proposed, which are grouped as dimer mod­

els [80-88], conjugated chain models [89-91], and vacancy models (66, 73, 74, 92]. 

Our understanding of this surface was incomplete before the observation of the STM 

image. Hamers eta/. [88] first clearly observed the Si(001) surface by STM (Fig.l.S). 

They observed at room temperature the dimer structures on the Si(001) (2x 1) sur­

face as well as randomly distributed vacancies. They observed p(2 x 2) domains as 

well as c(4x2) domains around a defect region , but mostly (2x1) symmetric dimer 

arrays in defect-free regions. The real imaging of this surface revealed a variety of 

the reconstructions. 

(2x 1) non-buckled dimer observed in defect-free regions, however, contradicts 

with other experimental results such as low energy electron diffraction (LEED), ion­

scattering, and helium diffraction studies, which supported buckled dimer structure. 

Moreover the photoernission studies [94-98] have shown that the surface band has 

a semiconducting feature, but according to theoretical studies, the symmetric dimer 

model has the metallic feature and the buckling of the dimer leads to the semicon­

ducting one. The reason why the STM images show symmetric dimer structure is 

puzzling. There are two possibilities, either the non-buckled image of STM actually 

corresponds to the symmetric dimer, or not. If the latter is true, the following mech­

anisms could be proposed for this as; (a) the STM tip moves the dimer atom when 

the tip comes above the atom. (b) the STM image of the asymmetric dimer structure 

looks like symmetric dimer and the two structure cannot be distinguished from the 

image. (c) the buckled dimer oscillates thermally like a seesaw and the time-averaged 

structure of the oscillating dimer is observed in STM. The answer with any conclusive 

evidence has not been given, yet. 

Figs.l.6, 1.7, and 1.8 show recent improved data of STM/STS in the Si(001) 

(2x 1) region [99]. A characteristic feature is that we can recognize each atom in the 

STM image for the positive surface bias. For the image at the negative surface bias, 

dimer is observed as a bean-like image again as if the dimer bridge is highlighted. 

The ma.ximum corrugation is about 0.8A along the bridge, and there is surely a 

deeper node at the middle of the dimer bridge for the positive surface bias. From the 

STS data, we can recognize four major structures in the spectrum originated from 

the surface bands. One large structure is found in V = -0.9V, and broader three 

structures are found in V = +0.3V, +0 .7V and +1.4V. These data were interpreted 
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(a) 

(b) 

Figure 1.4: VariationofdimerstructureofSi(001) . (a) (2x1), (b) p(2x2), (c) c(4x2) 
(broken line represents the unit cell used in Chapter 3) . (after Zhu et a/. (93]) 
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(a) (b) 

-1nm 
-1nm 

Figure 1.5: STM image on Si(001) (after Hamers eta/. (88]) (a) (2x 1) structure, (b) 
p(2x2) and c(4x2) structures . 
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Figure 1.6: STM images of (2x1) are taken at (a) surface bias -2V, (b) +1.2V. (after 
Hamers et a/. [99]) 

o.oo ~ ---'----'-
4 
---'-6 ---l.8---l.10 _ __J12 _ __j14L.__J16 

DISTANCE ALONG (110). Ji. 

Figure 1.7: Tip motions of (2x 1) region are drawn. (A) surface bias -2V, (B) +1.2V, 
(C) NH3-dosed -2V. (after Hamers et a/. [99]) 
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Figure 1.8: STS spectrum averaged in the (2x 1) region. (A) clean Si(OOl) (B) NH 3 

dosed. (after Hamers et a!. [99)) 
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simply by using eqs.(l.10) and (1.11), but have not been analyzed quantitatively by 

any theoretical simulations, yet. Ohnishi and Tsukada [100) studied this surface by 

the use of the cluster model both for the tip and for the surface, but their cluster 

model used for the surface is not appropriate enough to discuss the STM images 

and the STS spectra, because the surface states construct surface bands which have 

dispersion relation. Therefore, it would be interesting to apply our new method to 

this surface and analyze the experimental data of STM/STS. 
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Chapter 2 

Method for the Theoretical 
Simulation of STM/STS 

§1. Method of the Simulation 

In this chapter, we describe our method of the simulation of STM/STS. The theo­

retical simulations of STM/STS have been studied by several authors as mentioned 

in Chapter 1 since the experimental element was developed by Binnig and Rohrer. 

In order to simulate the local microscopic tunneling current of STM/STS, the most 

convenient approach is to use Bardeen's equation of tunneling current [49], 

(2.1) 

This equation is derived by dividing the total system into two systems, the left-hand 

electrode and the right-hand electrode. If the two systems are enough separated by 

the vacuum potential barrier, the perturbational treatment is valid and leads to this 

equation. Here, EP represents the energy of the J.L-th eigenstate of the left-hand-side 

system, and E. represents that of the v-th eigenstate of the right-hand-side. f(E) 
is the Fermi distribution function, and v is the bias of the right-hand-side referred 

to the left-hand-side. The positive sign of the current, I(R), corresponds to the flow 

from right to left. The tunneling matrix element, MP.(R), is defined as 

(2.2) 

where 1/;p(r) is the wave function of the J.L-th eigenstate of the left-hand-side system, 

1/;.(r) that of the v-th eigenstate of the right-hand-side system, and V!(r) is the one 

body electronic potential of left-hand-side system, which is zero in the right-hand-side. 

R denotes the position of the right-hand-side system relative to the left-hand-side 
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system. Eq.(2.1) contains information of the local electronic states of both systems. 

This character is convenient for simulating STM/STS. 

We assume that the left-hand-side system corresponds to the surface and the right­

hand-side system to the tip. In order to evaluate the equation, eq.(2.1), we need the 

wave functions of both systems and the potential of the tip system. Kobayashi et 

a/. [63] calculated the wave functions of the surface system by DV-Xa-LCAO-band 

method, and the wave functions and the potential of the tip system by DV-Xa­

LCAO-cluster method. These results were approximately used in order to evaluate 

eq.(2.1). The atomic orbital basis and the atomic potentials were fitted by the lin­

ear combination of Gaussian type orbitals (GTO's), and the integral in the transfer 

matrix element was evaluated analytically. In this way, they could evaluate eq.(2.1) 

straightforwardly with the effect of a realistic tip electronic structure being included. 

However, we must notice that the STM tip position is believed to be 5 ~ lOA 

far from the surface. The potential V,(r) is the tip potential, thus the region around 

the tip most contributes to the integral in eq.(2.2). In such a long distance, the 

surface wave functions decay so much that the LCAO descriP.tion for the tails of the 

surface wave functions may not be so good . This is because the tail of the LCAO wave 

function is determined by the arbitrarily chosen atomic basis set, which describes well 

the closer regions to the core but not necessarily good for the region far apart from 

the core. For example, we assume one level consists of 2s and 2pz atomic orbitals. Far 

from the core, the vacuum tail of the level is characterized by 2pz orbital because of 

the difference of orbital's energies. But it does not represent the real situation. The 

vacuum tail must be characterized not by the energy of the atomic orbital base but by 

its own eigenenergy. In addition, when the tip position is moved far from the surface, 

the number of the AO's which must be taken into account in the tunneling matrix 

element increase enormously. From these constraints of the method, Kobayashi et. 

a/. put the tip at the distance closer than 5au ( ~ 2.6A) from the surface for most of 

the cases . 

To avoid the above restrictions , we must break through the constraints of the 

LCAO approximation. One possibility is to use the plane wave expansion. In the 

region outside the surface, the potential decays to zero, so the plane wave approxi­

mation for the parallel direction to the surface will be effective in this region. But, in 

this approximation, we need too many basis to represent the exponentially damping 

behavior of wave function toward the vacuum region [65]. In addition, the width of 

vacuum layer is also limited. Thus, this approach would not be effective either. 
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The virtue of the plane wave basis outside the surface is broken only in the per­

pendicular direction to the surface. In the 2D space parallel to the surface, they 

are effective enough. Thus, it looks appropriate to represent the wave functions in 

the direction parallel to the surface by the plane waves with some decaying factor 

in the perpendicular direction to the surface. But, this breaks the 3D symmetry in 

the formalism and leads to tedious procedure for the band calculation. So, we take 

this method only in the region outside the surface, and we take the ordinary band 

calculation method, say, DV-Xa-LCAO-band method inside the surface. In the self­

consistent field (SCF) band calculation, it is not necessary to take into account far 

outside region of the surface, because their contribution to the self consistent potential 

is small enough compared with that inside the surface. The basic idea for calculating 

the vacuum tail of the surface wave functions is the same as that proposed by Tersoff 

[101], but our method is more practical in numerical calculations. 

Such a continuation method could be applied to the plane wave band calculation 

method for the semi-infinite surface. But, because the calculated wave functions 

have crystal momentum perpendicular to the surface, the effect of the incident wave 

belonging to one band would be reflected on some waves belonging to the other bands, 

when several bands go across the same energy. Then it would be difficult to continue 

the waves at the boundary. Besides, we are interested in checking the validity of the 

LCAO approximation in STM/STS simulation. Therefore, here we decide to use DV­

Xa-LCAO-band method. The details of our idea will be described in the following 

sections. And the difference between our method and the ordinary LCAO method 

will be also discussed later. 

§2. Method of Calculating the Tail of the Surface 
Wave Function 

In this section, we show how we calculate the tail of the wave function of the surface. 

In the LCAO approximation, the wave function is well represented around the region 

of atomic radius from the core, but not so well far from the core. In the vacuum, the 

2D plane wave basis with a damping profile will represent wave functions much better 

than LCAO basis. So we can represent the wave functions in the surface by the LCAO 

basis, and those far from the surface by the plane wave basis with a damping profile. 

Thus, we divide the region from the surface to the vacuum into three parts (Fig.2.1); 

one is the surface region, where we represent the wave functions by the LCAO basis. 
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Figure 2.1: Schematic draw of dividing the region. The number of conditions and 
parameters to determine are also described. 

Another is the vacuum region, where we represent the wave function by the 2D plane 

wave basis with damping profile. The other is the intermediate region, where we can 

represent the wave function neither by the LCAO basis nor by the plane wave basis. 

Now, the problem is how to continue the wave functions in the surface and far from 

the surface through the intermediate region. 

§2.1 Wave Function in the Surface Region 

The electronic structure is calculated self-consistently in the surface region, without 

considering the existence of the division of the space, as mentioned above. We briefly 
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describe the method of DV-Xa-LCAO-band calculation here, but the detail would 

be found in Shima's article [102] or Zunger and Freeman's one [103]. In the surface 

region, the wave function is represented by the LCAO approximation as follows. 

1/J,(ku, n; r) = ;, L L e'ku -<Ru.+RumlCa(ku , n)<i>a(ru- Ru.- Rum, z- z.). (2.3) 
Y N m,ao.Ea 

Here (Ru., z.) is the position of the a-th atom in the unit cells , and (Rum, 0) the m-th 

lattice vector. <l>a(ru, z) represents the wave function of the a-th atomic orbital. N is 

the number of unit cell. Ca(ku, n) is the LCAO coefficient of the a-th atomic orbital, 

which must be determined by the following secular equation, 

a' a' 

where 

Ha,a•(ku) 

x (<i>a(ru- Ru. , z- z.)JHI<i>a•(ru- Ru.•- Rum , z- z.•)) , (2.5) 
L e'ku ·< Rum-Ru.+Ru.•l 

(2.6) 

We evaluate the matrix elements by the DV method. The Coulomb and the exchange­

correlation potentials in the Hamiltonian are self-consistently determined by the stan­

dard iteration procedure. The exchange-correlation potential is chosen as the Xa 

potential, with the value of a equal to 0.7. We treat all electrons in the unit cell 

including the core electrons, and the minimal basis set for the Si atom is 1s~3s, 2p, 

and 3p orbital, which are self-consistently calculated numerically in each iteration 

step. The surface is replaced by the isolated slab, which has only 2D periodicity. 

§2.2 Wave Function in the Vacuum Region 

In the vacuum region, we simply assume that the electronic potential vanishes. Then 

the wave functions are free waves along the surface and must decay from the surface 

into the vacuum. The wave function which has a momentum parallel to the surface, 

kJi> is writ ten as follows. 

(2.7) 

where 

(2.8) 
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Here we take the z-axis perpendicular to the surface, and the direction into the 

vacuum is taken as that of plus z. In this region, any linear combinations of this kind 

of wave functions , which have the same energy, ·E, can be the eigenstates, and the 

coefficients of combination are determined by the boundary condition at the dividing 

surface with the intermediate region. 

§2.3 Wave Function in the Intermediate Region 

In the intermediate region, we use the 2D Fourier transformed representation· along 

the surface. The 2D Fourier transformed representation of the Schriidinger equation 

can be written as follows; 

where 

h2 h2 a2 
2m (ku + Gu)27f>m(ku, n ; Gu , z)- 2m az2 .Pm(ku , n; Gu , z) 

+ :l::V(Gu- Gf1, z)?f>m(l<jl, n; Gf1, z), (2 .9) 
Gil 

?f>m(ku, n; r) L e'(ku+Gu)·ru.pm(I<j
1
, n; G 11 , z), 

Gu 

V(r) = I:e'Gu·ruv(G 11 ,z). 
Gu 

(2.10) 

(2.11) 

This is a coupled differential equation. Each element of 2D Fourier transformation of 

the wave function, ?f>m(ku, n; Gu, z), is correlated with each other and varies with the 

distance from the surface. The 2D Fourier components of the potential, V(Gu, z), 
outside the surface may decay into the vacuum. The components with larger Gu's may 

decay more quickly, and only the G11 = (0, 0) component survives far into the vacuum. 

So, in the region far enough into the vacuum, the coupled equation is decoupled and 

the wave functions take the free wave form. 

In order to solve eq.(2.9), the boundary condition must be determined. On the 

boundary with the vacuum region, z = zv, the each element, ?f>m(k11 , n; G 11 , z), contin­

ues to the corresponding damping wave. The boundary condition is, 

-K.(E, k 11 + G 11 ), 

?f>v(ku, n; Gu, zv)· 

(2.12) 

(2.13) 

On the boundary with the surface region, z = zc, each element, ?f>m(ku , n; Gu, z), 

continues to the corresponding element of the surface wave function represented by 
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the LCAO. The total number of boundary conditions is three times the number of the 

2D Fourier elements, that is 3N, and we already took 2N of them for the boundary 

conditions on the vacuum side. Thus we can take N boundary conditions on the 

surface side, and the conditions are conveniently taken as follows. 

(2.14) 

Now, the tail of the wave functions in the vacuum region is written as 

?f>v(ku, n; r) = L e'(ku+Gu)·rnD(k11 , n; Gu)e-•(E(ku,n),ku+Gu l=. "(2.15) 
Gu 

There remains the conditions of the continuation of the differentials of the wave 

function perpendicular to the boundary, but we have already taken enough conditions, 

so these conditions are neglected here. Such a situation occurs because the wave 

functions and energies of the levels on the surface are already determined by the 

isolated slab calculation. Generally speaking, the jump of the derivative of the wave 

function changes the energy of the connected total wave function. The change of 

energy, liE, is approximately represented as 

[
h

2
/. 2 • a a ] liE= 1R - d r 11 .P,(-a .Pm- -a ,P,) . 

m z=zc z z 
(2.16) 

The method proposed above would lead to a reasonable result with careful calculation, 

if only liE is small enough compared with the band width. It is necessary to check 

the value of liE in the calculation. 

In the actual calculation, the reciplocal elements of the wave function are taken 

into account if the absolute value of the reciplocal lattice vector is smaller than 

the cut-off, Gc1. In addition, we introduce one more cut-off value for the reciplocal 

lattice elements, because of the numerical problem in the integration of the coupled 

differential equations, eq.(2.9) . We decouple the reciplocal elements from the coupled 

equation, the absolute value of whose reciplocal vector is larger than the cut-off, Gc2, 

eq.(2 .9). Moreover we consider only the G11 = {0, 0) reciplocal element of the potential 

in solving those reciplocal elements of the wave function. The elements are treated 

accurately along eq.(2 .9), the absolute value of whose reciplocal vector is smaller than 

the cut-off, Gc2· 

§2.4 Potential in the Intermediate Region 

In the intermediate region, eq.(2.9) must be solved with the boundary conditions, 

eqs.(2.12) , (2.13) and (2 .14) . To solve this equation, we must determine the potential, 
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V(r). The potential far from the surface is usually divided into two parts; the statistic 

Coulomb part and the image potential part [104]. To determine the potential outside 

the surface, we must obtain these two parts numerically with good accuracy, but this 

is not easy to do. 

The static Coulomb part comes from the microscopic dipole layer around the 

surface, and extends both into bulk and vacuum. Especially the tail of the dipole 

layer is important to determine the Coulomb part, and a small change of the charge 

density at the tail of the dipole layer induces a relatively large change in the Coi.J.lomb 

part. Thus determination of this part requires very sophisticated treatment, and it is 

very difficult to carry it out numerically. In addition, LCAO approximation does not 

have enough freedoms to describe the dipole layer because of the localized character 

of the AO basis. 

The image potential part is also difficult to determine. The correlation potential 

in the region far from the surface is nothing more than the image potential. In 

this region, the correlation potential becomes long range and non-local, so the local 

density approximation (LDA) for the exchange-correlation potential is not suitable 

there. Essentially many body problem treatment is necessary for the· determination 

of this image potential. Therefore, the potential outside the surface is difficult to 

determine within enough accuracy. So we treat the potential of the intermediate 

region by a model. 

In this paper, we simply take the potential calculated by the DV-Xa-LCAO-band 

method to solve the eq.(2.9) as the real potential in the surface region (Fig.2.1). In 

the DV-Xa-LCAO-band method, the calculated work function, i.e. minus of the 

Fermi energy relative to the vacuum energy, is generally small compared with the 

experimental one. We introduce a step-function-like jump of the potential at the 

surface-intermediate boundary, so that the Fermi energy position relative to the vac­

uum is equal to the experimental work function . So, in the intermediate region, 

the potential is assumed to be same as that calculated by the DV-Xa-LCAO-band 

method except for a shift of the origin of energy. We put the potential as zero in the 

vacuum region. 

To describe the potential outside the surface realistically, it would be better to use 

some empirical potential, which smoothly decays and have the form as -e/e2(z- z0 ) 

far from the surface. It is possible for us to take such a potential barrier, but our 

adopted model potential would be good enough as a first approximation. The differ­

ence of the potentials is included only in the G11 = (0, 0) element, so the calculated 
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image would not be influenced by this approximation. The absolute value of the 

calculated tunneling current, however, would be influenced, and the obtained current 

would be underestimated because of the rapid decay of the barrier potential. 

The 2D Fourier transform of the potential, V( Gu , z ), used in eq.(2.9) is calculated 

from the potential, V(r), as follows. 

V(Gu, z) = ! f d2r 11 e-;G u ruv(r 11 , z), 
HQ lno 

where 110 is the area of the surface unit cell. 

(2.17) 

§2.5 Determination of the Positions of Boundaries of the 
Intermediate Region 

The division of the space into the three parts is artificial, and there are no clear 

boundaries in the real system. In choosing the boundaries, we must consider the 

meaning of the approximations in each region. 

In the vacuum region, the potential variation can be neglected, and it is possible 

that we regard the region as a free space. So, if the depth of the potential is very small 

there compared with that of the work function, then such a region can be chosen as 

the vacuum region. The boundary between the vacuum and the intermediate region 

can be determined anywhere, if only this condition is satisfied. But to avoid huge 

computational time, the boundary should not be taken at so distant region from the 

surface. The criterions would be as follows; (1) the 2D Fourier elements of potential 

except for the G11 = (0, 0) element are negligibly small compared with the G11 = (0, 0) 

element, (2) the G11 = (0, 0) element is small enough compared with the work function, 

(3) the classical turning point for the Fermi level is sufficiently inside the boundary 

so that the wave functions almost decay. 

The boundary between the surface and the intermediate region has two meanings. 

One is that the potential jumps up there in order to reproduce the height of the 

potential barrier. Its choice is equivalent to the choice of the model of the tunneling 

barrier potential. The real potential smoothly decay from the surface to the vacuum, 

and its vacuum tail has the form, -efe2(z- z0 ). It would be better to determine the 

boundary position with considering the real behavior of the barrier potential. 

The other is that the wave functions of the intermediate region and the surface 

region are connected there. To avoid insufficient description of the tail of the LCAO 

wave function, it is better to choose the position of the boundary nearest to the 

outermost atoms of the surface. Formally speaking, solving eq.(2.9) is equivalent to 

- ....-.....__~~- -~- -

-
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solving the secular equation, eq.(2.5) , and we can take the boundary anywhere in the 

surface. But , from the viewpoint of numerical calculation, we cannot include so many 

reciplocallattice vectors, G 11 • The"refore the boundary plane should not be chosen at 

very close position to the surface, where description of the wave function requires a 

large number of Gu 's. 

These two factors must be considered when the position of the surface-intermediate 

boundary is determined. 

§3. Wave Functions of the Tip 

The microscopic nature of the tip has an important effect on STM/STS. The NDR 

is one peculiar example demonstrating it. In the case of Si(111) J3 x J3/B system, 

STS experiments show the NDR on the defect site, where a boron atom is replaced 

by a silicon atom (34]. This could not be explained without the specific feature of the 

tip electronic state (63]. If we ignore the energy dependence of the DOS of the tip , 

the NDR should not be caused, since the differential conductance is proportional to 

the surface LDOS at the probe point of the tip in this approximation. To perform a 

realistic theoretical simulation, it is most crucial to include the microscopic nature of 

the tip. 

Here we describe the method to include the effect of the tip. We model the tip as 

a cluster, and calculate the electronic structure of the tip by DV-Xa-LCAO-cluster 

method (105]. The Coulomb potential and the exchange-correlation potential are 

calculated by the standard self-consistent field procedure, which is almost the same 

as the calculation of the electronic structure of the surface. a is chosen as 0.7 and 

all electrons in the cluster are considered. The minimal basis set for the W is 1s~6s, 

2p~5p, 3d~5d, and 4f orbital, which are self-consistently calculated for each iteration 

step. 

We fit the numerical atomic orbital basis and the atomic potential by linear com­

binations of GTO's; 

rV"(r) 

(2 .18) 

(2.19) 

where R~1 (r) is the radial part of then, l type atomic orbital on the a-th atom, and 

V"(r) is the spherical averaged atomic potential of the a-th atom. In case of fitting 

the atomic orbitals, we check their· norms to be equal to one. 
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When the tip position is deep inside the vacuum region, we can calculate the 

transfer matrix elements with fitted Gaussian parameters. 

M(ku,n),Y(R) = l:::D(ku,n;Gu) L L c~L:A~ ,; L:At,;.J(ku , n , GII> v, a, a, i ,a', i') , 
G 11 a oEa i o.',i' 

(2.20) 

where 

J(k11 , n, G 11 , v, a, a, i, a', i') j d2rue•<ku+Gu)·ru-•(E(k11 ,n),k11 +G 11 )z 

xYtm (r R. R) lr- R.- Rl1 

a denotes (n, I, m) and v denotes the index of the tip level. The 3D integration in 

eq.(2.21) can be reduced to 1D integration as shown in Appendix. 

Now we can calculate the tunneling current from eq.(2.1). But the levels of the 

tip are discrete, not continuum, because we model the tip by a finite cluster. Because 

the real tip is one part of macroscopic system with a continuum spectrum, we must 

use some method which reproduces continuum spectrum. We replace the 8 function 

DOS, o(E- E.), of each level by the lorenzian function, (t:;.j1r)j[(E- E.)2 + !:;.2). 

This procedure is justified by Green's function method, though we have not practiced 

any accurate calculations based on it , yet. The value of the width would be evaluated 

from the bulk band calculation or other ways. Then the tunneling current has the 

form, 

I(R,v) 

and the differential conductance is represented as 

di 
d)R,v) 

(2.22) 

(2.23) 
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where EF is the Fermi energy of the surface. Here we shift the energy level of the tip 

so that the Fermi energy of the tip coincides with that of the surface. This is required 

by the zero current condition at zero bias. The theoretical simulation of STM/STS 

hereafter will be performed with eqs.(2.22) and (2.23). According to Kobayashi et 

a/. and Isshiki et al., the simulated STM image does not depend on the value of the 

width , b. , but the STS spectrum does . 

Usually, STM observation is the constant current image (corrugation image), 

though the constant height image (current image) is easier to calculate theoretically. 

So we use simple approximation to obtain the constant current image. If the tip 

height moves by a small value, b.z, then the change of the current, b.I, is related to 

b.z as 
8! 

b.I(RII, z0 ) + Bz (R11 , z0 )b.z = 0. 

This relation can be rewritten as 
I(RII,zo) 

b.z = -b.Uog I(R11, z0 )] x ~:::!!2.:.::.!.,-
~(RII,zo). 

(2.24) 

(2.25) 

With this relation, the change of the current can be converted to the change of the 

tip height. We can accurately calculate the change of the current, but use an ap­

proximation for the proportional coefficient, I/~ - The current is represented by 

su=ation of (k11 , G 11 ) elements, and each element decays exponentially with in­

crease of the tip height into the vacuum, because the surface wave function decays 

exponentially. In the region far enough from the surface, the main contribution to 

the current comes from the element of (kll = O,GII = 0) because this element decays 

most slowly. Therefore the dependence of the tunneling current on the tip position 

is approximately exponential and the proportional coefficient in eq.(2.25) is approxi­

mately given by the decay constant of the element of (kll = O,GII = 0). Then eq.(2.25) 

can be rewritten as 

b.z = ~b.Uogl(RII , zo)]. 
2y2m¢0/h2 

(2.26) 

Thus logarithm of the current distribution at the same tip height would correspond 

to the approximate corrugation image with constant current . In this article, all 

STM/STS mapping images are calculated from this approximation. The maps of the 

LDOS distribution in this article also follow this approximation. 

As for the STS spectrum, the ordinary experimental spectrum is calculated from 

(dlfdv)/(I/v) so as to be normalized to 1 at v = 0 to avoid complication by the 

difference of absolute value of the tunneling current. We use often this 'normalized' 

STS spectrum also in this article. 

Chapter 3 

Case Study of Si(OOl) 
Reconstructed Surfaces 

§1. Simulation of Si(OOl) Reconstructed Surfaces 

In this chapter, we show the results of the theoretical simulation of STM/STS by our 

method which is applied to Si(001) reconstructed surface as a case study. Hereafter, 

we refer our method as "connected vacuum tails (CVT) method", and the method 

directly calculating the tails from LCAO wave functions without connecting the wave 

functions as "ordinary LCAO method". For this surface, the STM/STS observation 

plays an important role to analyze the structure of the reconstruction as mentioned 

before. Thus the theoretical simulation of STM/STS will also contribute to our 

understanding on the Si(001) surface. At the same time, we will be able to examine 

the validity of CVT method, and perform the comparison between the present CVT 

method and the ordinary LCAO method. 

In this surface, many types of reconstructions have been reported, but here we 

discuss only the (2x1) symmetric dimer structure, and the c(4x2) asy=etric dimer 

structure. First we will show the result of the cluster calculation of the W10 (111) tip 

by the DV-Xa-LCAO-cluster method and give some comments on the character of 

the electronic states. Next we show the results of simulation for the (2 x 1) symmetric 

dimer structure, and the c(4x2) structure. And, we also discuss the validity of our 
method. 

§2. Character of the Model Tip 

31 
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Figure 3.1: The structure of the model tip cluster W10 . The tip is cut from the bulk 
crystal and the direction of the a..xis is (111]. 

We model the tip as a W 10 cluster cut from bulk crystal, whose axis is directed 

toward [111]. As seen in the tip structure shown in Fig.3.1, there is a C3 symmetry 

axis parallel to [111] direction. And we introduce the width, 6.. = l.OeV to each level. 

This width is evaluated according to the width of the d-band peak of bulk tungsten 

[106]. This model of the tip was used by Isshiki et a/. (62]. 

The electronic structure was calculated with the DV-Xa-LCAO cluster method, 

as was done in the work by Isshiki et a/. The levels near the Fermi energy are made 

from 6s and 5d orbitals. Table 3.1 shows the LCAO coefficients of the tip top AO's 

around the HOMO level. The levels around the HOMO are made not only from 6s 

or 5dz' AO's but also 5dx'-y' > or 5dxy 1 5dx., 5dyz · 

Fig.3.2 shows the DOS of this tip with the width l.OeV. The summation of the 

levels is cut at EF ± 4.0eV in this DOS calculation. The figure shows an almost 

flat DOS spectrum around the Fermi energy. If the tunneling current is equally 

contributed by all the tip levels, the STS spectrum would reflect the surface LDOS, 

though we cannot neglect the contribution from the second term of the right hand 

side of eq.(1.16). 

But as a result of decay of the surface wave functions, the tip top orbitals would 

mostly contribute to the tunneling current. Isshiki et a/. reported that the STM 

tunneling current flows mainly through the tip top AO 's, and the contribution from 

other AO 's is only several %. The calculation of the transfer matrix elements needs 

a large computational time, because there are a large number of combinations of 

- -----------======--===---- -----
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Table 3.1: The LCAO coefficients of the tip top atom's AO's are presented. The 
levels around the HOMO are chosen. 

I Energy (eVJI 6s 5d' ' % ~ 
5d xy 5d %Z 5d yz 5d zz 

-3.98 0.0 -0.073 0.042 -0.232 -0.134 0.000 
-3.98 0.0 0.042 0.073 0.134 -0.232 0.000 
-3.87 0.0 0.077 -0.044 0.026 0.015 -0.000 
-3.87 0.0 -0.044 -0.077 -0.015 0.026 0.000 
-3.64 -0.025 -0.000 0.0 0.0 0.0 -0.073 
-3.58 0.0 0.0 0.0 0.0 0.0 0.0 
-3.45 -0.114 0.000 0.0 -0.000 0.0 -0.051 
-3.09 0.0 0.245 -0.141 -0.103 -0.060 -0.000 
-3.09 0.0 -0.141 -0.245 0.060 -0.103 -0.000 
-3.00 0.0 -0.171 0.099 -0.254 -0.147 0.000 
-3.00 0.0 0.099 0.171 0.147 -0.254 0.000 
-2.72 0.008 0.000 0.0 0.0 0.0 -0.165 
-2.69 0.0 0.0 0.0 0.0 0.0 0.0 
-2.51 0.0 0.085 -0.049 0.143 0.083 0.000 
-2.51 0.0 -0.049 -0.085 -0.083 0.143 -0.000 
-2.43 0.017 0.0 0.0 0.0 0.0 0.093 
-2.38 0.0 -0.173 0.100 -0.061 -0.035 0.000 HOMO 
-2.38 0.0 0.1 00 0.173 0.035 -0.061 0.000 HOMO 
-2.35 0.0 0.0 0.0 0.0 0.0 0.0 LUMO 
-2.32 0.0 -0.131 0.076 -0.046 -0.027 0.000 
-2.32 0.0 0.076 0.131 0.027 -0.046 0.000 
-2.30 0.0 0.230 -0.133 0.112 0.065 0.0 
-2.30 0.0 -0.133 -0.230 -0.065 0.112 -0.000 
-2.27 -0.011 -0.000 0.0 0.0 0.0 0.064 
-2.19 0.0 -0.105 0.061 -0.121 -0.070 0.0 
-2.19 0.0 0.061 0.105 0.070 -0.121 0.000 
-1.99 -0.068 0.0 0.0 0.000 -0.000 -0.313 
-1.90 0.0 -0.226 0.130 0.327 0.189 -0.000 
-1.90 0.0 0.130 0.226 -0.189 0.327 -0.000 
-1.47 0.011 0.000 0.0 -0.000 -0.000 -0.420 
-1.41 0.0 0.0 0.0 0.0 0.0 0.0 
-1.12 0.0 -0.153 0.089 -0.201 -0.116 0.000 
-1.12 0.0 0.089 0.1 53 0.116 -0.201 0.000 
-1.00 0.0 -0.105 0.061 0.425 0.245 -0.000 
-1.00 0.0 0.061 0.105 -0.245 0.425 -0.000 
-0.98 -0.177 0.0 0.0 0.000 0.0 0.619 
-0.65 0.0 -0.094 0.054 0.140 0.081 0.000 
-0.65 0.0 0.054 0.094 -0.081 0.140 -0.000 
-0.45 0.016 0.0 0.0 -0.000 0.000 0.265 
-0.39 0.0 0.297 -0.171 -0.246 -0.142 0.000 
-0.39 0.0 -0.171 -0.297 0.142 -0.246 -0.000 
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Figure 3.2: The DOS spectrum nea.r Fermi surface of the tip cluster. All the width 
of levels, 6. , are l.OeV. 
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Figure 3.3: The partial DOS spectrum at the tip top atom is presented. The partial 
DOS is calculated by Mulliken charge analysis. 
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the AO's, the atom potentials and the plane waves. In the following calculation, 

therefore, the tunneling matrix elements are calculated taking into account only the 

tip top AO 's and the tip top atomic potential, and the effects of other AO's and 

atomic potentials are neglected. 

Fig.3.3 shows the partial DOS of the tip top atom obtained from the Mulliken 

charge analysis. The levels which have much contribution to the tip top partial DOS 

are located at -1.0 ~ -0.4eV and< -4.8eV. Therefore the spectrum of the partial 

DOS is not flat and has some structure. From this figure we could conjecture the 

intensity distribution of the STS spectrum. This tip has the partial DOS minimum of 

the tip top atom just below the Fermi energy, and the maximum about leV above the 

Fermi energy. In the case of the negative surface bias, the surface levels just below 

the Fermi energy is emphasized in STS spectrum, and the current increases quickly 

as the bias increases. In the case of the positive surface bias, the tunneling current is 

somewhat reduced because of the dip of the tip partial DOS. 

For a more accurate estimation of the integral in the transfer matrix elements, 

we fit the AO's and the atomic potentials by linear combination of the GTO 's. The 

radial parts of the AO's are fitted by the equation, 

(3.1) 

The atomic potentials used in the DV-Xa-LCAO-cluster calculation are also fitted as 

(3.2) 

The fitting parameters, A;, B;, Ai, and B[, are shown in Tables 3.2 and 3.3. 

§3. Simulation ofSi(OOl) (2xl) Symmetric Dimer 
Surface 

§3.1 Results of Band Calculation 

We calculate the electronic structure of the surface, Si(001) (2x 1) symmetric dimer 

surface, by the DV-Xa-LCAO band method with the isolated slab model. The used 

geometry is Levine's model [107], in which only the first layer atoms of the surface 

are reconstructed and form symmetric dimers with the same bond length as in the 

bulk. The slab has eight layers of silicon and one layer of hydrogen, which terminates 

the dangling bonds of Si at the opposite side of the slab. The unit cell has si:"Cteen Si 
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Table 3.2: The radial part of the numerical basis, i.e. atomic orbitals, on the tip top 
atom are fitted by Gaussian's. Unit is [au]. 

i I A . B . 
6s 1 9.81624603 2007.80029 

2 -5.89828777 101.131317 
3 4.96218491 22.0662994 
4 -2.89008808 4.29772568 
5 1.32351303 0.742234886 
6 7.56019402 0.0993523002 
7 -13.5240002 0.0907154679 
8 5.64599991 0.0830867290 

5d 1 811.041992 225.878479 
2 272.134277 62.0221405 
3 -19.1830139 10.5890551 
4 - 6.86813641 5.66381359 
5 1.09816837 1.14854240 
6 0.299157023 0.438152909 
7 0.0347734541 0.142964005 

Table 3.3: The spherical averaged atomic potential of the tip top atom are fitted by 
Gaussian's . Unit is [au]. 

. . 
1 -4.70308018 11577.5703 
2 -11.6188002 573.668457 
3 -20 .3193054 57.7987823 
4 -23 .9593658 7.51026917 
5 -10.9979982 0.994826972 
6 -2.08028412 0.0550469682 
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Figure 3.4: The shape of the first Brillouin zone of the {2x 1) Structure. 

atoms and eight H atoms. Fig.1.4 is a reference for the shape of the unit cell. The 

Brillouin zone is shown in Fig.3.4. 

The calculated band dispersion relation is shown in Fig.3.5. In the bulk band 

gap, there are two surface bands, and they both have a significant dispersion in the 

y direction but only a weak dispersion in the x direction, i.e. they are 1D like bands 

along the dimer row. This surface is metallic, and the Fermi surface goes across these 

two bands. Their band widths are about 0.8eV, and they have small peaks along 

J-K line, and J'-r line. These characters are essentially the same as those which have 

been reported up to now. 

Fig.3.6 is the DOS spectrum near the surface band. One peak is found in lower 

edge, two peaks are in upper edge, and two peaks are in the center. Roughly speak­

ing, the DOS looks like a sum of two lD-Iike cosine band DOS, consistent with the 

dispersion relation. 

In our calculation, the bulk band gap is too wide, ~ 3eV. This is due to the 

band method used for the calculation. The isolated slab model reduces the bulk band 

width, and enhances the width of the bulk band gap. In addition, the minus of Fermi 

energy of our calculation, 2.32eV, is too small compared with the work function, 4.8eV 

of Si. The small value of the work function is partly due to the LCAO approximation 
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!igure 3.5: The calculated band dispersion relation of Si(OOl) (2 x 1) symmetric dimer 
1s presented. The two bands near the Fermi energy are surface bands. 
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Figure 3.6: The calculated DOS spectrum of the Si(001) (2x1) symmetric dimer 
structure around the band gap. 
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Figure 3.7: STM image of Si(001) (2x 1) symmetric dimer surface at the tip height, 
10.0au (5.3A), calculated by CVT method. (a) surface bias -l.OV [converted interval, 
0.03A] (b) + l.OV [converted interval, 0.04A] 

for the construction of the wave function. The representation of the wave function by 

LCAO does not have enough freedom to describe the surface dipole layer, especially 

poor in the description of the charge distribution extended to the vacuum. 

§3.2 Simulated Results of STM 

Fig.3 .7 shows the simulated STM images at the tip height 10.0au (5.3A). The octa­

hedrons represent the outer two layer atoms of the surface. Tlus tip position is the 

boundary between the intermediate and the vacuum region described in Chapter 2. 

Because the wave functions in the intermediate region behave as almost free waves in 

the neighbor of this position, our method would be valid here. 

We choose the experimental work function as the tunneling barrier height, 4.8eV, 

and the positions of the surface-intermediate boundary and the vacuum-intermediate 

boundary as 2.0au (1.1A) and 10.0au (5.3A) respectively from the outermost surface 

atom. The reciprocal vector cut-off's used in the calculation are taken as IGcd2 = 
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SYMMETRIC D!MER 
VOLTAGE 1. 00 V 

(a) (b) 

Figure 3.8: STM image of Si(001) (2x 1) symmetric dimer surface at the tip height, 
20.0au (10.6A), calculated by CVT method. (a) surface bias -l.OV [converted inter­
val, o.o1A] (b) +LOV [converted interval, o.osA] 

9.0Ry and 1Gd2 = 2.25Ry. In this article, we use these values for parameters of the 

calculation except for the cases specially indicated. Comments on the choice of these 

values will be described in other section. 

Though the shape of the current contour map for the surface bias +l.OV (Fig.3.7(b)) 

has a little trace of the nodal structure across the dimer bridges, both images of 

Fig.3.7(a) and (b) have almost the same bean-like shape . The simulated STM im­

age for the negative surface bias represents fairly well the experimental observation. 

However, the simulated image for the positive surface bias does not reproduce the 

observed nodal structure running through the middle of each dimer row. Moreover, 

when the tip height is 20au (10 .6A), the calculated STM images have the peaks not 

above the bridge but among the bridge. (see Fig.3.8) 

To investigate the reason for the disappearance of the nodal structure, first we 

calculate the logarithm maps of the surface LDOS distribution at this height. The 

results for E = -2.63eV (E = EF- 0.31eV) and -2.01eV (E = EF + 0.31eV) are 
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Figure 3.9: Logarithmic distribution maps of LDOS of the Si(001) (2x 1) symmetric 
dimer surface at the tip height of lO.Oau (5.3A) calculated by the CVT method. 
(a) lower surface band (-2.63eV) [converted interval, 0.07A] (b) upper surface band 
( -2.01eV) [converted interval, 0.08A] 
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shown in Fig.3.9 (a) and (b) respectively. In the lower surface band, as seen in Fig.3.9 

(a), the LDOS is concentrated on the bridge region of the dimer. This reflects the 

fact that the lower surface band is the bonding state of the dimer dangling bonds. 

In the upper surface band, as seen in Fig.3.9 (b), the LDOS has a node across the 

dimer bridge. This reflects the feature of the upper surface band, which is the anti­

bonding state of the dangling bonds. These figures reproduce some feature of the 

experimental STM images; the occupied state shows bean-like shape, while the valley 

across the bridge is deeper than that between the dimer rows for the unoccupied 

state. Moreover, the ma.ximum corrugation estimated by eq.(2.26) for the calculated 

LDOS map of Fig.3.9(a) is about 0.6A, which shows a good agreement with the 

experimental value, ~ 0.8A. In the case Fig.3.9(b), the nodal structure of the STM 

image would be moderated by the tip states, so we cannot use the LDOS value to 

compare the corrugation with experimental data. However, the nodal feature of the 

LDOS map agrees well with the experimental results . Anyhow we have confirmed 

here the discrepancy between the LDOS map and the simulated STM images of the 

symmetric dimer. 

Figs.3.10 and 3.11 shows the contour map of the respective current contribution 

from each of the atomic orbitals at the tip top. The contributions from the 6s and 

Sdz' orbitals are similar to that of the LDOS, and they almost reproduce experimental 

STM image. The stronger corrugation for the Sd=' orbital than for the 6s orbital 

confirms the discussion by Chen (60]. But the contour map of the contributions from 

the other orbitals are far different from the LDOS contour map. The reason is ascribed 

to the shape of each atomic orbital. The 6s and Sd., orbitals have s character for the 

rotation around the z-axis of the tip . Thus the character of the LDOS contour map is 

reflected on the simulated images. The Sd%= and Sdyz orbitals have p character, and 

the Sd%'-y' and 5d%Y orbitals have d character around the z-ax:is of the tip. Thus, 

the peaks and the nodes are moved from original positions in images by these atomic 

orbitals. Especially, the Sd%= orbital and 5d%y orbital move away the original node . 

Our model tip has many levels , constructed by the Sd%=, 5dy., Sd%'-•', and 5d%y 

orbitals, around the Fermi energy. All contributions from those levels except 6s and 

Sd=' reduce the corrugation of the image obtained from the 6s and Sd=' orbitals. It 

seems that this is one of the reason why our simulated images do not correspond to 

the LDOS images. 

For the negative surface bias, as seen in Fig.3.10, the corrugation in the simulated 

image is about 0.2A and that obtained only with the 6s or Sd., orbitals is about 0.3A 
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Figure 3.10: The contribution from the tip top AO's to the STM image of Si(OOl) 
(2x 1) symmetric dimer surface at the tip height, lO.Oau (5.3A), calculated by CVT 
method. The surface bias is -l.OeV and converted interval is 0.06A. (a) total, (b) 
from 6s orbital, (c) from sd ... 
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Figure 3.11: The contribution from the tip top AO 's to the STM image of Si(OOl) 
(2x 1) symmetric dimer surface at the tip height, 10.0au (5.3A), calculated by CVT 
method. The surface bias is l.OeV and converted interval is 0.09A. (a) total, (b) from 
6s orbital, (c) from Sd,,. 
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whereas the experimental corrugation and that estimated by the LDOS are about O.SA 

and 0.6A, respectively. The smallness of the corrugation for the simulated image can 

be explained by the electronic structure of the symmetric dimer model as follows . 

This surface is metallic for the symmetric dimer model and the two surface bands 

cross the Fermi energy as mentioned before. For both cases of surface bias of+ 1 V and 

-1 V, tunneling current is significantly contributed from the peak of LDOS originated 

in the lower surface band as well as that originated in the upper band . Therefore, for 

the symmetric dimer model, the STM image is contributed both from the bonding 

and the antibonding surface states, resulting in the reduction of corrugation in the 

simulated STM images, in particular the nodal structure of the antibonding surface 

states. Therefore, the simulated STM image corresponds to neit her t he experimental 

image nor the LDOS image at this tip height. 

In the contour map of LDOS , the node of the upper surface band does not change 

when the tip moves higher. In addition, we find that the corrugation parallel to the 

dimer bridge becomes weaker and that perpendicular to the bridge becomes stronger 

with higher position of the tip. In the upper surface band the peaks move outward 

as if they repel each other, while in the lower surface band the peaks move inward 

as if they attract each other. When the tip moves still higher, the peaks move to 

the intermediate site of bridges for both surface bands. Thus, at tip height much 

larger than lOau , the LDOS does not reproduce the experimental image. These 

aspects of the LDOS far from the surface are reflected on the calculated STM image 

as exemplified in the case of Fig.3.8. At this tip height, the image is contributed 

dominantly from d,, orbital, which does not deform the LDOS contour . Therefore 

the simulated STM image cannot reproduce the experimental one, even if the tip 

height is moved. 

On the other hand, we can evaluate the tip height realized in the experiments from 

the absolute value of the tunneling current. The absolute values of the calculated 

tunneling current for the surface bias voltage of ±IV are plotted in Fig.3.12. This 

figure reveals that the tunneling current changes about one order of magnitude, when 

the tip moves about 2.5au (1.3A). The decay constant of the current is about 0.9au, 

and this value approximately equals zJ'f!F-Ew , where Ew is the work function , now 

assumed to be 4.8eV. This is a natural result of our method, and the same as the 

simple lD WKB tunneling theory. In the experiment of STM, the typical value 

of the current is lnA for the bias , lV. Then , based on Fig.3.12, the tip position is 

estimated to be located at about 22au (12A) from the outermost atom. If we take into 
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Figure 3.12: The relation between tunneling current and tip position in case of Si(OOl) 
(2x 1) symmetric d.imer surface, calculated by CVT method. 
0- maximum current at surface bias -l.OV. 
0- minimum current at -l.OV. 
6- maximum current at +l.OV. 
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Figure 3.13: Normalized STS spectrum of Si(001) (2x 1) symmetric dimer at the tip 
height, 10.0au (5.3A), calculated by CVT method. (a) above one of the d.imer atoms 
(b) above middle of the d.imer bridge. 

account the image potential which reduces the barrier effect, tltis tip height should 

be estimated still larger. 

This value of the tip height is somewhat larger than that inferred by Bono and 

Good [41] , which is about SA, though the situation is different between theirs and ours. 

They treated the STM tunneling as M-1-M junction, and calculated the tunneling 

current by 1D WKB tunneling theory considering the effect of the image potential. 

It seems possible to calculate the absolute value of the STM tunneling current with 

reasonable accuracy using our method. 

§3. 3 Simulated Results of STS 

2 
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Fig.3.13 shows the normalized STS spectra at the tip height, lO.Oau (5.3A). The STS 

spectra are taken above one of the dimer atoms (Fig.3.13(a)) and above the middle of 

the dimer bridge (Fig.3.13(b)). The width of the STS spectrum is equal to the width 

of the two surface bands. There is one peak in the lower edge and two peaks in the 

middle. These characters are the same as the DOS spectrum, but the two peaks at 

the upper edge, which were seen in DOS spectrum (see Fig.3.6), are made obscured 

in the STS spectrum. This comes from the fact that the STS spectrum is, roughly 

speaking, the convolution of LDOS of both the surface and the tip, and the tip top 

partial DOS has a minimum below the Ferrni energy. STS spectrum for the positive 

surface bias tends to reflect more the electronic structure of the tip than in the case 

of the negative surface bias, and a larger deviation from the LDOS of the surface is 

involved in the tunneling current. Therefore, in the STS spectrum for the positive 

bias, the height of the structures are weakened. 

Comparing this result with the experimental STS data on the non-buckled dimer 

region, the strong two peaks around zero bias in the calculated STS spectrum cannot 

be found in the experimental data. Thus, judging from the STS spectrum, the non­

buckled dimer region in the STM image would not correspond to the symmetric dimer 

structure. In our calculation, we cannot reproduce the bulk bands contribution to the 

STS spectrum because the bulk band gap is calculated to be too large by the LCAO 

method for the isolated slab model. 

Returning to the calculated STS spectra, the STS spectra do not change so much 

for both sites above one of the dimer atom and above middle of the bridge. If the 

STS reflects directly the surface LDOS, the unnormalized STS spectrum above the 

middle of the bridge should be terminated in the positive surface bias, but this is not 

the case in the calculated results. This is due to the character of the tip allowing 

the tunneling current contribution from the 5dz'-y'• 5dxy, 5dz:, and 5dyz orbitals . 

Because of the non-a.x.ial symmetry of these orbitals, the STS cannot be determined 

by the purely local information of the surface electronic states at the tip top position, 

but affected by the electronic states at nearby regions. This feature arises from the 

terms with higher order terms of the differential of Green's function as in eq.(l.16) , 

and also verified by a similar argument as the one by Chen [60]. 

§4. Simulation of Si(OOl) c(4x2) Surface 

§4.1 Results of Band Calculation 
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Table 3.4: Two kinds of structures of the Si(OOl) c( 4 x 2) surface used in this article 
are presented. The atomic displacements (unit of A) are shown. The structures are 
(a) the modified Yin and Cohen's structure [83, 93] , (b) the structure based on LEED 
by Holland, Duke, and Paton [108] 

Atoms (a) modified YC's (b) HDP 
layer (k,l,m) !:>x !:>y !:>z !:>x !:>y !:>z 
1 (0, 0, 0) 0.578 0.000 -0.149 0.593 0.000 0.170 

(2,0,0) -1.048 0.000 -0.498 -0.954 0.000 -0.460 
(6,0,0) -0.578 0.000 -0.149 -0.593 0.000 0.170 
(4,0,0) 1.048 0.000 -0.498 0.954 0:000 -0.460 

2 (0, 1, -1) 0.115 0.000 -0.010 0.092 -0.113 0.071 
(2, 1, -1) -0.115 0.000 -0.010 -0.092 0.113 0.071 
(4, 1, -1) 0.115 0.000 -0.010 0.092 0.113 0.071 
(6, 1, -1) -0.115 0.000 - 0.010 -0.092 -0.113 0.071 

3 (1, 1, -2) 0.000 0.000 -0.225 0.000 0.000 -0.057 
(3, 1, -2) 0.000 0.000 0.124 0.000 0.004 0.166 
(5, 1, -2) 0.000 0.000 -0.225 0.000 0.000 -0.057 
(7, 1, -2) 0.000 0.000 0.124 0.000 -0.004 0.166 

4 (1, 2, -3) 0.000 0.000 -0.180 -0.033 0.000 -0.029 
(3,2,-3) 0.000 0.000 0.085 0.000 0.000 0.127 
(5,2,-3) 0.000 o.odo -0.180 0.033 0.000 -0.029 
(7,2,-3) 0.000 0.000 0.085 0.000 0.000 0.137 
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Figure 3.14: The shape of the first Brillouin zone of the c(4x2) structure (broken 
line) and the folded Brillouin zone for the surface unit cell used in our calculation 
(solid line). 

In this section, we show the calculated results of the electronic structure of Si(001) 

c( 4 x 2) surface. The used geometry is obtained by a slight modification of Yin and 

Cohen's structure [83, 93], in which the unit cell of (2x 1) asymmetric dimers are 

arranged to make c(4x2) structure (Table 3.4 (a)). The surface primitive cell of 

the c( 4x 2) structure is rhombic, but in order to use the same program as for the 

symmetric dimer, we use the rectangular surface unit cell, which is two times larger 

than the primitive cell and has a similar shape as that of (2x 1) unit cell . (see Fig.l.4 

(c)) The slab has four layers of silicon and one layer of hydrogen, which terminates 

the dangling bonds of silicon at the opposite side of the slab. The unit cell includes 

32 Si atoms and 16 H atoms. The Brillouin zone for the c(4x2) structure is shown 

in Fig.3.14. 

The calculated band dispersion relation is shown in Fig.3.15. In the bulk band 

gap, there are eight surface bands. This surface is semiconducting, and the surface 

band gap is indirect, the gap energy being 0.45eV. The lower four surface bands are 

occupied and the upper four surface bands are unoccupied. The Fermi energy is 

chosen to be at the middle of the surface band gap. The character of the surface 

bands are essentially the same as that of the calculated result by Zhu et a/. [93], but 

the gap is larger than their value, 0.01eV. In tlJ..is calculation, the bulk band gap is 

again too wide, ~ 3.4eV. The feature of giving wider energy gap has been generally 

observed in the DV-Xa-LCAO-band calculations. 
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Figure 3.15: The calculated band dispersion relation of Si(001) c(4x2) is presented. 
The eight bands around the Fermi energy are surface bands. 
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Figure 3.16: The calculated DOS spectrum of the Si(OOI) c( 4x 2) structure around 
the band gap. 
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Fig.3.16 shows the DOS spectrum in the energy region of the surface bands. The 

structures in -3.2 ~ -0.8eV come from the surface bands. The lower four surface 

bands seem to make up one ID cosine like band, and the same is the case for the 

upper four surface bands . Two peaks are found both in the lower edge and in the 

upper edge of the lower surface bands, one peak both in the lower edge and in the 

upper edge of the upper surface band, and two peaks in the middle of the upper 

surface bands. The two surface bands of (2x I) symmetric dimer structure repel each 

other and are separated up and down. 

Before the discussion of the STM image, we discuss the LDOS distribution map 

of c(4x2) structure far from the surface by the CVT method. The LDOS map is 

shown on the plane located at IOau (5.3A) far from the outermost surface atom. The 

calculated contour maps of the LDOS in logarithmic scale at that height is illustrated 

in Fig.3.17. Used parameters are the same as in the symmetric dimer case, except 

that the two types of the reciprocal vector cut-off's considered in solving the wave 

functions of the intermediate region are taken as JGc1l2 = 4.0Ry and JGd2 = l.ORy, 

respectively . 

In the lower surface bands, the LDOS is concentrate on the upper dimer atoms as 

shown in Fig.3.17(a). The LDOS map has bean-like shapes connecting the neighbor­

ing upper dimer atoms, and as a whole shows a honeycomb-like shape. In the upper 

surface bands, the LDOS is concentrate ~n the lower dimer atoms (Fig.3.17(b)). It 

has a zig-zag chain shape or a honeycomb-like shape. 

It is remarkable that the feature of the LDOS map shown in Fig.3.17 does not 

change so much with increase of the tip height in contrast with the symmetric dimer 

case. Qualitatively speaking, the figures of the LDOS contour map at the tip height 

lO.Oau (5.3A) reproduce the zig-zag pattern often observed around the surface defect 

or the step. At this tip height , the obtained maximum corrugations of the constant 

LDOS surface are about (a) I.9A and (b) 2.2A, while at the tip height of 20 .0au 

(10.6A), the corrugations are about (a) 0.8A and (b) O.SA . 

§4.2 Simulated R esults of STM 

Fig.3.18 shows the calculated STM image of Si(OOl) c(4x2) surface at the tip height 

lO.Oau (5.3A) . Our tip reduces the corrugation of the image compared with that 

of the LDOS map as in the case of the symmetric dimer structure(Fig.3.17). But 

the calculated image for the negative surface bias case reproduces the experimental 

feature of the observed zig-zag part. In the negative surface bias case, only the upper 
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(a) (b) 

Figure 3.17: Logarithmic distribution ma f LDOS f l '( 
the tip height of 10.0au (5.3A) calculated bs ~l CVT o t teSt 001) c(4x2) surface at 
( -2.66eV) (converted interval 0 3A] (b) y te f method. (a) lower surface band 
interval, 0.3A] ' · upper sur ace band ( -1.66e V) (converted 
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(a) ( b ) 

Figure 3.18: STM image of Si(001) c(4x2) symmetric dimer surface at the tip height, 
10.0Aau (5.3A), calculated by CVT method. (a) surface bias -l.OV [converted interval 
0.06 ] (b) +l.OV (converted interval, 0.09A] ' 
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dimer atom is highlighted, and the image takes a honeycomb-like shape. On the other 

hand , in the positive surface bias case, the lower dimer atom is highlighted but the 

upper atom is also highlighted weakly. The maximum corrugations are 0. 7 A in both 

bias. 

Even if the tip height increases to larger values (~20au), the calculated image for 

the negative surface bias has quite the same honeycomb like image. On the other 

hand, the calculated STM image for positive surface bias becomes somewhat broader 

and cannot remind us of the original surface structure. This sit uation is somewhat 

different from the distance dependence of the LDOS map, which remains the same. 

The corrugation also is still about 0.3A at the tip height 20.0au (10.6A) in both 

polarity. 

These results are quite different from the symmetric dimer case, where the STM 

image does not reproduce surface structure for larger tip distance. The different 

feature of the STM image for larger distances between the symmetric (2x 1) and 

asymmetric c(4x2) structure comes from the splitting of the surface bands and the 

smaller number density of the outermost atom in the latter structure. For the case 

of the c( 4x 2) st ructure, the images reflect the pure character of the upper or lower 

surface band , because of the splitting and the small number density. Especially it 

would reflect on the visibility of the upper dimer atom image at the negative surface 

bias. Anyhow, the buckled dimer is surely observed as a buckled d.imer in STM. 

The absolu te values of the calculated tunneling current are plotted in Fig.3.19 . 

From this figure , it is found that the tunneling current changes by one order of 

magnitude when the tip moves about 1.5au (0.8A). The change of the current is more 

rapid than in the symmetric dimer case. When the tip is located near the surface, the 

current flows th rough both the upper dimer atoms and the lower dimer atoms, but 

when the tip moves higher , the current flows dominantly through the upper dimer 

atoms only. The rapid decay of the current would be explained by this effect. 

The typical experimental value of the current is lnA for the bias value, 1V. Then 

the tip position is about 19au ( lOA) from the outermost atom according to Fig.3.19. 

This value is smaller than that obtained for the symmetric d.imer case which is, 22au. 

This is d ue to t he smaller number density of the outermost layer's atom in this surface. 

§4.3 Simulated Results of STS 

The STS spectra calculated by CVT method at the tip height of lO .Oau (5.3A) are 

shown in Fig.3.20. The normalized spectrum cannot be defined in the gap region 
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Figure 3.19: The relation between the tunneling current and the tip position in the 
case of Si(001) c(4x2) surface, calculated by CVT method. 
0- maximum current at surface bias -l.OV. 
0- minimum current at - l.OV. 
/::,-maximum current at +l.OV . 
+-minimum current at +l.OV. 
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Figure 3.20: Normalized STS spectrum of Si(001) c(4x2) at the tip height, lO.Oau 
(5.3A), calculated by CVT method. (a) above lower dimer atoms, (b) above upper 
dimer atom. 
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where I = ;~ = 0. The STS spectra taken above the lower dimer atom and above 

the upper dimer atom are shown in Fig.3.20(a) and (b) , respectively. On both sites 

the shapes of the STS spectra are almost similar, as in the symmetric dimer case. 

It seems that our inclusion of the tip effect makes the structure (3) in the spectrum 

taken above the upper dimer atom stronger than that in the one taken above the 

lower dimer atom, in contrast with the LDOS distribution at this height , shown in 

Fig.3.17. Even if the tip position moves higher, the structure of the STS spectrum 

does not change significantly. These features are again the same as in the symmetric 

dimer case. As is discussed in Chapter 1, the STS spectrum does not directly reflect 

the LDOS of the surface, but, roughly speaking, is determined by a convolution of the 

surface and the tip electronic structure. The structures are seen in the STS spectrum 

at (1) V = -0.3, (2) +0 .3, (3) +0.8 and +0 .9V, corresponding to (1) the upper edge of 

the lower surface bands, (2) the lower edge of the upper surface bands, (3) the saddle 

point and the upper edge of the upper surface bands, respectively. The structure 

of the lower edge of the lower surface bands seen in DOS spectrum disappears here , 

because the strong mixing with the bulk bands weakens the character of the surface 

state in the lower edge. The peak heights in the upper part of the upper surface 

bands are weakened, and it seems that the STS spectrum again reflects the tip DOS. 

This structure of the STS of c(4x2) structure corresponds well with the exper­

iment on non-buckled image region by Hamers et a/. (see Fig.l.8). The peaks (1), 

(2) and (3) in the calculated spectrum can be assigned to the observed peaks labeled 

with the same numbers respectively. Referring to the experimental band gap in the 

STS spectrum,~ 0.7eV, our method would lead to a smaller band gap,~ 0.4eV. The 

origin of the smaller gap may be ascribed to several reasons, such as the difference 

of buckling amplitude, or the strong electron-hole interaction, which is difficult to 

reproduce by LDA. 

§4.4 Dependence on the Buckling Amplitude of D imer 

The result of the angle-resolved ultraviolet photoelectron spectroscopy (ARUPS) mea­

surement for the single domain c(4x2) surface by Kono [98] shows a good coincidence 

with the theoretical dispersion of the lower surface band calculated by Zhu et a/. [93] 

based on the modified Yin-Cohen's structure. Thus we mainly focused the discussions 

in §4.1~3 on this structure. However, to check the effect of the buckling amplitude 

on STM/STS, we also calculate the electronic structure for the c(4x2) structure ex­

perimentally proposed by Holland, Duke and Paton [108] . We will refer this structure 
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Figure 3.21: The calculated band dispersion relation of Si(OOl) c(4x2) surface, the 
HDP structure, is presented. The eight bands near the Fermi energy are surface 
bands. 

as HDP structure. The structure is shown in Table 3.4 (b). In this structure, the 

buckling of the dimer is stronger and the upper dimer atom is farther from the sec­

ond layer atoms, compared with the modified Yin-Cohen's structure. We use the two 

times larger rectangular surface unit cell, as before. One layer of hydrogens is also 

added to the opposite side of the slab, and the unit cell has the same number of atoms 

as that of modified Yin-Cohen's. 

The calculated band dispersion relation is shown in the Fig.3.21. In the bulk 

band gap, there are also eight surface bands, but the lower four surface bands pene­

trate deeply in the bulk valence bands. This surface is also semiconducting, and the 

indirect surface band gap is 0.7eV, wider than that of modified Yin-Cohen's model 

(see Fig.3.15). The dispersions of surface bands are weaker, especially the lower four 

surface bands are very narrow localized bands. This comes from the strm!g buckling, 

· and the lower surface states would be localized strongly on the upper dimer atom. 
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(a) (b) 

Figure 3.22: STM image of Si(OOl) c(4x2) HDP structure at the tip height, lO.Oau 
(5.3A), calculated by CVT method. (a) surface bias -l.OV (converted interval, 0.3A] 
(b) +l.OV (converted interval, 0.3A] 
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Calculated STM image of HDP structure is shown in Fig.3.22. The tip height is 

the same as in the case of modified Yin-Cohen's structure. The image of the negative 

surface bias does not change from that of modified Yin-Cohen's structure, except its 

corrugation is strongly enhanced to be about 3.0A. For the positive surface bias case , 

its image and its corrugation does not change significantly. These are the result of 

the stronger localization of the wave function. The larger buckling leads to stronger 

splitting of the surface bands and the stronger localization of the wave functions of 

the surface bands either on the upper or on the lower dimer atoms. Therefore, it 

seems that the STM image for the negative surface bias is sensitive to the buckling 

of the dimer. We confirm that the amplitude of buckling of the dimer is strongly 

reflected on the STM image. 

As for the STS spectra of this structure, it reflects the wider gap of this HDP 

structure, and it looks like the structures in the spectra for the modified Yin-Cohen 

structure repelling each other to give a wider gap. 

It is difficult to discuss the experimental c( 4 x 2) structure from these simulated 

results on STM/STS. We cannot talk about the corrugation of the STM image accu­

rately from the simulated results of the STM, because we do not know the actual tip 

height and the actual tip structure. We can neither talk about the position and the 

intensity of the STS spectrum accurately from the simulated results of STS, because 

the detail of the band structure for this surface depends on the method of calculation. 

In addition, the STM/STS experiments for the clean c(4x2) has never been reported 

yet . The STM/STS experiments supply much information on the surface structure, 

but they only assist our understanding of the surface. We cannot determine the 

accurate atomic position only from the STM/STS experiments. 

§5. Comparison with the Ordinary LCAO Calcu­
lation 

To examine the difference between the present CVT method and the ordinary LCAO 

method, we show the LDOS spectra at the tip height , l Oau (5.3A), calculated by 

CVT method and ordinary LCAO method in Fig.3.23 and Fig.3.24, respectively. T he 

nodal feature of the upper surface band is reflected on the LDOS spectra for both 

cases, and all the presented spectra have a strong structure around the Fermi energy, 

but those spectra show some differences. In the ordinary LCAO method , the LDOS 

almost keeps the figure of the total DOS. This is the result of the decaying factor 
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Figure 3.23: The LDOS spectrum of the Si(OOl) (2x 1) symmetric dimer at the tip 
height , lO.Oau (5.3A), by calculated the CVT method, (a) above one of the dimer 
atom (b) above the middle of t he dimer bridge. 
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Figure 3.24: The LDOS spectrum of the Si(OOI) (2x I) synunetric dimer at the tip 
height, IO.Oau (5.3A), calculated straightforwardly from the LCAO wave functions. 
(a) above one of the dimer atom (b) above the middle of the dimer atom. 
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Figure 3.25: STM image of Si(ODI) (2x 1) symmetric dimer surface at the tip height, 
5.0au (2.7A), calculated by CVT method. (a) surface bias -l.OV [converted interval, 
0.06A] (b) +l.OV [converted interval, 0.09A] 

being the same in all the surface bands, which is originated from the common base 

Si 2p orbital. On the other hand, in CVT method the LDOS is emphasized in the 

higher energy and suppressed in the lower energy. Our method reproduces the actual 

behavior of decay of the vacuum tail, but the ordinary LCAO method does not. In 

the calculation of the transfer matrix elements, the wave function of the lower surface 

state is convoluted with the wave function of the tip, which is more localized in 

the stronger region of the tip's potential. In our method, the different dependence 

of the decaying behavior on the energy is reduced by this mechanism, but in the 

ordinary LCAO method, this mechanism enhance the effect of the lower levels of the 

surface. Thus, the ordinary LCAO method overestimates the lower energy states and 

underestimates the higher energy states of the surface. These differences will affect 

the simulated results, in particular the absolute value of the tunneling current and 

the STS spectra. 

Here we compare the results of the STM simulation by the two methods. Fig.3.25 
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Figure 3.26: STM image of Si(OOl) (2x 1) symmetric 'dimer surface at the tip height, 
S.Oau (2.7A), calculated by the ordinary LCAO method. (a) surface bias -l.OV (b) 
+l.OV 
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shows the STM image of the symmetric dimer structure at the tip height S.Oau (2.7A.) 

by the CVT method. In both surface biases, the shapes of the images are bean-like 

and two peaks correspond to the dimer atoms. These figures could be compared with 

those of ordinary LCAO method by Isshiki et a/., Fig.3.26 [109]. They calculated 

the same Si(OOl) (2xl) symmetric dimer surface with the same W 10 tip . The tip 

height was chosen to be the same, S.Oau (2.7 A). The figures look almost the same as 

ours. In their calculation, all tip atoms are considered, so the STM image shows a 

modification from the three-fold symmetry of the tip . 

Rigorously speaking, our method is invalid at this tip height, because our repre­

sentation of the wave function by the free wave is valid in the region farther than 

10.0au (5 .3A.) and not for this distance. · But ·qualitative argument could be possible. 

To summarize the above discussions, the ordinary LCAO method overestimates 

the lower levels and underestimates the hl{her ones because of its poor description 

of the decay of the wave function tail. This over/underestimating feature would be 

stronger when the tip position is farther from' the .surface. However, we cannot confirm 

any significant difference between the CVT method ~nd the ordinary LCAO method 

from the comparison between Isshiki et al.'s calculation and ours. At least, when the 

tip height is about Sau, the ordinary LCAO method is as meaningful as our method. 

§6. Checking the Values of Parameters for the 
Connection of the Wave Functions 

In this section, we check the validity of the choice of parameter values on the STM/STS 

simulation. 

Firstly, we discuss the choice of the position of the intermediate-vacuum boundary. 

As mentioned before, the criteria are; (1) the 2D Fourier elements of the potential 

except for the G il = (0, 0) element are negligibly small compared with the G il = (0, 0) 

element, (2) the Gil = (0, 0) element is small enough compared with the work function , 

(3) the classical turning point for the Fermi level is enough inside the boundary so 

that the wave functions almost decay to zero near the boundary. Though the third 

rule depends on the choice of the model barrier, i.e. choice of position of the surface­

intermediate boundary, all these criteria are reasonably satisfied at the point 10au 

(5.3A.) far from the outermost layer. At this point , in the case of the symmetric 

dimer surface, G il = ( 1, 0) element of the potential is 0.04% of Gil = (0, 0) element, 

Gil = (0, 0) element is 14% of work function, and the position of the classical turning 
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point is less than 4.5au (2.4A) from the outermost layer. We take this value for the 

calculations. 

Next we discuss the choice of position of the surface-intermediate boundary. As 

mentioned before, this position has two meanings; (1) potential jumps up in order to 

reproduce the height of the potential barrier at this position, (2) the wave functions 

of the intermediate region and the surface region are connected at this position. (see 

Fig.2.1) 

From the former point, the Si atomic radius, 1.32A is a reference to determi·ne the 

position. Since the potential barrier is a model in our method, the choice would have 

some ambiguity. It is possible to take into account the latter point by the choice of 

the cut-off, Gc2 , in the reciprocal lattice vector expansion in the intermediate region. 

Thus, it is possible to choose the boundary to be 2au (l.lA) far from the outermost 

layer. 

As for the choice of the cut-off IGc21, it is reasonably chosen as 2.25Ry; the biggest 

but neglected element corresponding to G 11 = (5, 0) is 3% of G 11 = (0, 0) element at 

the position of 2au (l.lA), and less at more distant point, in the case of the symmetric 

dimer surface. 

We also check the jump of the derivative of the wave function at the surface­

intermediate boundary in the calculation. The change of the eigenenergy of the 

wave function caused by the jump of the derivative can be estimated by 6E de­

fined in eq.(2.16). At the surface bands in the Si(001) (2x 1) symmetric dimer case, 

lw,(Gu,z = zc)l is smaller than the order of 10-2 au, 11;-[w,- Wm](Gu,z = zc)l is 

smaller than the order of 10-3 au, and rl0 is the order of 102au. Then the value of 6E 

is estimated as about O.OleV. This value is small enough to neglect the change of the 

eigenenergy. 

Finally, we studied the change in the STM image caused by the difference of 

the surface-intermediate boundary position. We calculate the STM images of the 

symmetric dimer surface in the cases of the boundary position of 1.5au (0.8A) and 

2.5au ( 1.3A) from the outermost layer. The images are slightly different from that in 

the case of the boundary position, l.Oau, but do not change significantly. 

The situation is similar for the case of the c(4x2) surface, but the cut-off IGd 
is reasonably chosen as l.ORy, because the number of the outermost layer's atom in 

unit area is one quarter of that of the symmetric dimer surface. 

From these checks, it would be sure that the choices of the boundaries are reason­

able enough and all the calculated results have enough validity within our model. 
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§7. N on-buckled Image of STM Observation 

Based on the above simulated results of STM/STS, we discuss the non-buckled dimer 

image observed in STM experiments . We can confirm that the non-buckled dimer 

image does not correspond to the symmetric dimer structure. The reasons are as 
follows. 

According to the absolute value of the simulated tunneling current, the experi­

mental tip height is lOA from the outermost layer of the surface, and it wo11ld be 

even larger considering the effect of the image potential in the potential barrier. At 

this tip height, our simulation of the STM images of the symmetric dimer structure 

do not reproduce the experimental non-buckled images. If the tip height is smaller 

than lOA, the simulated images show the bean-like image for both polarity, while the 

experimental non-buckled images show the nodal structure for the positive surface 

bias. In addition, the simulated STS spectrum does not reproduce the experimental 

one, either. Therefore, the experimental non-buckled images do not correspond to 

the symmetric dimer structure. 

. Let us discuss what the observed non-buckled image corresponds to. There were 

three possibilities as mentioned before. The first possibility is that the tip moves the 

surface atoms, but this should be rejected, because the tip-surface distance is larger 

than lOA. But, if some insulating atoms are adsorbed on the tip, it would be possible 

that the tip position becomes smaller than lOA. Anyhow it is difficult to recognize 

this possibility as the mechanism of non-buckled image. 

The second possibility is that the asymmetric dimer can be seen as a non-buckled 

dimer, but this is also rejected. The corrugation of the STM image must reflect clearly 

the effect of the buckling of the dimer even in a large tip height. 

T he remaining possibility is that the dimers are actually buckling. This is sup­

ported by the fact that the experimental STS spectrum on the non-buckled image 

region seems to agree better with that calculated with the buckled c(4x2) structure. 

The buckling of the dimers oscillates thermally like a seesaw, and alter between the 

two structures, where one of the dimer atoms is upper or lower, in shorter time interval 

than the determination time of the tip height at each position in the STM observation. 

STM would observe the time average image of the oscillating buckled dimer. Then 

we could observe the oscillating asymmetric dimer as a symmetric dimer in STM. 

Thus it is interesting what we observe in the STM experiments of the Si(OOl) surface 

at low temperatures, where LEED experiments show clear c( 4 x 2) pattern [76] . 

However, there remains a little possibility that the symmetric dimer structure 
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corresponds to the non-buckled STM image. If the probe orbitals of the tip have only 

s character around the z-a:cis and the tip height is about lOau, then the STM images 

may have similar corrugations to Fig.3.10 (b), (c) and Fig.3.11 (b), (c). If some 

insulating atoms are adsorbed on the tip top, there might be some possibility that 

both these conditions are satisfied and the non-buckled STM image can be obtained 

from the symmetric dimer structure. 

Anyway, in order to confirm the original structure of the non-buckled dimer image 

of STM, it is necessary to simulate other dimer structures; (2 x 1) asymmetric.dimer 

and p(2 x 2) structure, or buckled weakly, etc. It is also necessary to simulate the 

dimer structures with other kind of tips, such as a dirty tip adsorbing some insulating 

atoms. 

Chapter 4 

Concluding Remarks and 
Summary 

§1. Discussions on the Method 

In our calculations presented in the previous sections, though we can well describe 

the exponential decay of the wave function tails, there remains some problems like 

the poor descriptions of the work function and the band gaps. These problems come 

solely from the usage of the LCAO-band method with isolated slab model. In order to 

avoid these problems, it would be better to use the plane wave band calculation with 

repeated slab model instead of the LCAO-band method. If we could apply our CVT 

method to the plane wave band calculation in some way, the simulation of STM/STS 

would be more realistic. This cannot be done in a parallel way with this work, but 

similar procedure may be worked out. It is very interesting to study this in the future. 

We believe that our results are enough valuable and essential, but it would be 

necessary to do more accurate calculations so as to confirm validity of our results. 

However, such a calculation is difficult to carry out. Using LDA for the exchange­

correlation potential estimates the band gaps of the energy bands smaller than the 

actual ones, while the localization of the wave functions partially cancels the effect 

of LDA in the LCAO-band method. In addition, we cannot identify the character of 

the tip actually, and it is difficult to reproduce the actual tunnel barrier potential. 

With our method, we can treat the effect of the image potential or the electric 

field, if the tunnel barrier potential is given in some way or other. It is difficult to 

take these effects into account in the calculation with the ordinary LCAO method or 

the ordinary plane wave method without connecting the wave functions. It would be 

interesting to include the effect of the image potential or the electric field in STM/STS 

73 
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simulation, even if the tunnel barrier is a model potential. 

§2 . Summary 

In this article , we develop a new theoretical method to simulate STM/STS. The 

method uses LCAO-band method with isolated slab model, but the wave functions 

are connected to 2D plane waves with damping factor outside the surface. Though 

there remain some problems of the LCAO-band method, the exponential decay of 

the wave functions of the surface are well described with this procedure. We apply 

this method to Si(OOl) reconstructed surfaces, and we find it difficult to obtain the 

experimental STM image of non-buckled (2x 1) structure from (2 x 1) symmetric dimer 

structure. In addition, we confirm that the experimental c(4x2) image of STM is 

actually obtained from the c(4x2) structure and the buckling of the dimer is strongly 

reflected on the STM image. 

The main results are as follows. 

Comparing our CVT method with the ordinary LCAO method, we confirm that 

the lower surface ones are overestimated and the higher states are underestimated in 

the STM/STS simulation by the ordinary LCAO method. This over/underestimating 

feature is stronger when the tip position is farther from the surface. Comparing 

with our simulated STM results, the STM images of Isshiki et a/., calculated by the 

ordinary LCAO method, has enough validity at least in the case of the tip height, 

Sau. 

Based on the calculated value of the tunneling current, the tip position is supposed 

to be about 10 ~ 12A from the surface, though this tip height would be an under­

estimation because our tunnel barrier model would be higher than the real potential 

barrier. 

We cannot obtain the non-buckled dimer image of the STM observation from the 

symmetric dimer structure using the CVT method at the tip height lOau. This comes 

from our probe orbital character of the tip and the metallic character of the surface 

bands. Even if the tip moves higher, our calculated image remains different from 

the experimental one, because LDOS distribution map has peaks at the intermediate 

of the dimer bridges at that tip height. The calculated STS spectrum of symmetric 

dimer structure does not reproduce the experimental STS spectrum on the non­

buckled image region. 

In the case of c(4x2) structure, even if the tip height is about lOA, the calcu­

lated STM images remind us of the structure of the surface and they have enough 
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corrugation. The calculated STS spectrum of this structure agrees well with the STS 

spectrum observed on the non- buckled dimer region. 

We show that the splitting of the two bands is larger when the buckling of the 

dimer is stronger. This fact results in the stronger localization of the wave functions 

on the upper or lower dimer atom, and in the large corrugation for the negative surface 

bias image. In the negative surface bias image, not only the lower dimer atoms but 

also the upper dimer atoms are highlighted. The STM image certainly reflects the 

buckling of the dimer and the degree of the buckling. But the situation is not simple, 

and the real buckling amplitude is far smaller than the apparent corrugation of the 

image. T hus the zig-zag pattern observed in STM on Si(OOl) certainly corresponds 

to the buckling dimers, but the change of buckling amplitude would not be so strong 

as the apparent amplitude of the STM image. 

Finally, according to our simulated results, we can discuss what STM observes 

in the non-buckled image region. Firstly, the tip position in the STM experiments 

would be larger than l OA, so it is difficult for the tip to move one atom of the surface 

locally. Secondly, STM images reflect the buckling of the dimer strongly, so the STM 

image of buckling dimer does not correspond to the non-buckled image. Thirdly, it 

is reasonable to identify the experimental STS spectrum as that calculated for the 

c(4x2) structure. From these results, we conjecture that STM observes the buckled 

dimer which is oscillating quickly compared with the determination time of the tip 

height in the STM instrument. 
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Appendix A 

Integration in Calculating 
Transfer Matrix Element 

As shown in Chapter 3, we can calculate the transfer matrix as 

M(ku,nJ,v(R) =I; D(ku, n; G u) I; I; C~ I; A~.• I; A~,,.J(ku , n, G u, v, a, a, i, a', i'), 

where 

G 11 a aEa i al,il 

J (ku , n, G 11 , v, a, a, i, a' , i') j d2ruei(ku+Gu)·ru-•(E(ku,n),ku+Gu)z 

xY,m (r- R.- R) lr- R.- R l1 

(A.l) 

-B~' .,(r-R •• - R )' 
xe-B~_.(r-R.-R)' e ·' (A.2) 

lr- R •• - RI . 

Y1m is the real type of spherical harmonic fun ction. Here we show how to estimate 

the integral in eq.(A.2). We can rewrite J(ku , n, G 11 , v, a, a, i, a' , i') as 

We must estimate t he following type of integral, U1m. 

Notice that U1m does not depend on the tip position, R . We need to estimate these 

integral for l = 0, 1, 2. 

(A] I = 0 Case 
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In the l = 0 case, U, is estimated as 

U, = {f j d3r~ exp [ik · r- ((31 + fJ2) lr- (3
1 
~ (3

2 
rei- (J;~~/~- T • r] , 

{f;: [fc\-x'dx] e -~,,~+;', (A.5) 

where 

[B]I = 1 Case 

A_ ,j((Ji re - ~T + ~k)2 
- ~ 

In the l = 1 case, Up, can be estimated from U, as 

where 

-xc, 

Q {f 2; e-p,,~. 
UP, and UP. are estimated in t he same way. 

[CJ l = 2 C ase 

In the l = 2 case, Ud,, is estimated from UP, as 

1 a 
Vs2(JI Bye up, 

VlSA%Ay [ c2 -4 + 4-X
2) U, + (2{f-~2Q) ] 

+v'i5(XeAy +YeA%) ( -~U, + ~Q + 2W,) 
+v'i5XeYcU,. 

· (A.6) 

(A.7) 

(A.8) 

(A.9) 

(A. l O) 

(A. ll) 

ud,, and ud., a re estimated in the same way. ud,,_,, is estimated from Up, and UP, 

as 
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(A.12) 

Ud,, is estimated in the same way. 

T hus, all U1m can be calculated, if only U, is calculated. U, has only 1D integral, 

whose integrand is smooth and decays rapidly. Therefore we can easily evaluate all 

these integrals numerically. 
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