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Abst ract 

The antiferromagnetism and superconductivity of the high Tc superconductor are 
investigated based on the slave fermion representation of the t-J model. The local 
constraint is taken into account by introducing t he CP1 variable for the spin. 
Integrating out the spins on one of the sublattice, the effective action of the hole 
and spin is derived. On this effective theory, the magnetic properties are studied 
with the effects of holes included systematically. The Nee] temperature obtained 
as a function of doping is in agreement with experiments. Our treatment of the 
constraint using the CP 1 variable also makes explicit the pairing force between two 
neighboring holes . The mean field theory of the gauge invariant superconducting 
order parameter of two holes is performed on the t-J model in this treatment. 
The ground state is the superconducting flux state. The order parameter has 
s +id symmetry. The behavior of the critical temperature agrees with experiments 
qualitatively. The size of the fermi surface obtained in this scheme is, however, 
small. 
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Chapter 1 

Introduction 

The aim of this thesis is to study the behavior of the high Tc oxide superconducting 
ma.terial on a microscopic model. The novel properties of these materials are the 
high critical temperature and the appearance of the antiferromagnetic phase very 
close to the superconducting phase. These properties has been suspected to be 
due to the strong correlation among electrons. However, the strongly correlated 
system has long been an unsolved problem of the solid state physics. The difficulty 
lies in the treatment of the local constraint , that expresses the strong correlation. 
The loca l nature of the constraint is essential, and therefore, a simple mean field 
treatment is not adequate. 

In t his thesis, we take the t-J model, the simplest model of the strongly con·e­
lated system, as a microscopic starting point of the study of the high Tc material. 
We use the slave fermion scheme in this thesis. The local constraint is taken into 
account by introducing the CP 1 variable (or Schwinger boson) for the spin. Then, 
the interaction between the hole and the spin arising from the strong correlation 
is included. Before we start the analysis, we will see in Chap.2 the experimentally 
kn own propert ies of the high Tc material. The properties of the strongly corre­
lated system is intuitively discussed there. The Hamiltonian of the t-J model is 
given in that chapter and also the previous developments on the t-J model are 
briefly reviewed. After these preliminaries, the magnetic properties of the material 
is studied in Chap.3. 'vVe start from the anisotropic three-dimensional t-J model 
taking into the weak three-dimensionality of the high Tc materials. After rewrit­
ing the constraint by introd ucing the CP 1 variable, we derive an effective theory 
from the t-J model integrating out half of the spins. We calcu late t he effect of 
the hole systematically and obtain an effective CP 1 action with the coupling con­
stants renormalized by the hole. Working on this effective action, we can calculate 
various magnetic properties at small doping. For example, the Nee! temperature 
is obtained as a function of doping. In Chap.-!. the superconductivity is studied 
1 reating 1 be cons! raint in the same manner. After rewriting the constraint using 
the CP 1 variable, the paring force between two holes arising from the strong cor­
relation appears explicitly in the Hamiltonian. We thus perform the mean field 
analysis of the superconductivity with the nature of the strong correlation taken 
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into account. In Chap.5, we will discuss the remaining problems. 
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Chapter 2 

Preliminaries 

2.1 High Tc superconductor 

In 1986, superconductivity was observed in a new material , Ba La CuO system[l]. 
The critical temperature Tc was over 30K, quit.e higher than the previously known 
superconductor. What is more important in this discovery is that it opened a 
possibility of superconductivity in new type of material, Cu oxides. Within one 
year after that , the highest critical temperature exceeded the liquid nitrogen tem­
perature, and it reached now 125K for Tl oxide[2]. 

The C u oxides are originally insulating, and exhibit superconductivity, when 
some impurities a re added. The density of the extracted electrons (i.e. holes) , 8, is 
called the doping ratio. For example , one of these materials , La2Cu04 , is an insula­
tor at 8 = 0 and also has Neel (or long range antiferromagnetic(AF) ) order below 
the Nee! temperature TN (see Fig.2.1). This phase is called the antiferromagnetic 
phase. If some small fract ion 8 of La is replaced by other elements M, such as Ca, 

0 
0.1 0.2 0.3 5 

Figure 2.1: The phase diagram of the high Tc material La2 _ 6 M6Cu04 . 8 is the 
doping ratio. 

Sr, Ba, the Nee! temperature of the resulting material La2_ 6 M6Cu04 decreases 
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and finally vanishes at 8 :::: 0.05. The superconductivity starts immed iately after 
the long range antiferromagnetic order vanishes;i.e. for 8 2; 0.05. Or there may be 
another phase like spin glass between these phases. The superconduct iv ity ends 
at 8:::: 0.3. For larger doping, the material is an usual metal. 

In the conventional BCS theory, t he superconductivity is explained by the 
condensation of the electron pairs(Cooper pairs) formed because of the electron­
phonon interaction. Since this interaction is weak, the critical temperature has 
been believed to be no more than ~40K within this mechanism. It appears, 
therefore , that other mechanism than the pairing by phonon interaction is needed 
for the high Tc superconductivity. In fact , the isotope effect of the high Tc materials 
is too small to explain the oxide superconductivity by phonons only[3]. 

What , then, is responsible for the superconductivity? Let us look into the 
structure of the oxide superconductor shown in Fig.2.2. The distinct feature of the 

Figure 2.2: (a) The structure of La2Cu04 . 

dimensional network. 

0~ 
c~ 

(b) 

(b) The Cu and 0 form a two-

structure is that it is quasi two-dimensional: The lattice constant in the z-direction 
is about 2 ~ 3 times as large as that in the x- or y-direction. This difference is 
important , since this can cause a difference by a factor of exp( -4 ~ 9) in the 
overlap integrals of the electron wave function. The two-dimensional network 
made of Cu and 0 atom is common to all the high Tc materials and accordingly 
is expected to be essential to the superconductivity. 

Let us examine this network from the electronic point of view. The Cu atom 
in La2Cu04 has nine electrons in its 3d orbit. The highest band of his orbi t is 
accordingly occupied by one electron. This situation is called the half fillin g, since 
each band is fill ed up by two electrons with spin up and down. Upon doping of 
one atom of Sr, for instance, one La3+ is replaced by Sr2+ and consequent ly one 
elec tron is removed from the Cu-0 network , or in other words, a hole is created, 
and the system deviates from the half filling. 

Thus the electron model near half filling in the quasi two-dimensional lattice 
(of Cu atom) is expected to describe the high Tc material. The usual fermi liquid 
model, however, will not do, since the insulating properties outside the antiferro­
magnetic phase (i.e. T > TN) are not described well by this model. 

We will discuss in the next section what kind of model can explain the antifer­
romagnet ic phase and consequently is su itab le for the study of superconductiv ity. 
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2.2 High Tc material as strongly correlated sys­
tem 

As mentioned in the previous section, one of the most important properties of high 
Tc materials is that the superconducting phase is in touch with or very close to 
the antiferromagnetic insulator phase. What is more, very far from the antifer­
romagnetic phase(at 8 ~ 0.3), the superconductivity also breaks down (Fig.2 .1). 
This fact naturally makes us to suspect that the origin of the superconductivity is 
the antiferromagnetic spi n interaction. Therefore, one had better begin with the 
antiferromagnetic phase, before the study of the high Tc superconductivity. 

The antiferromagnetic insulator phase is understood easily from the point of 
view of strongly correlated electron system at half filling. The strong correlat ion 
between electrons is due to the short range part of the Coulomb force. The long 
range part is screened. This correlation is modeled by introducing a large repulsion 
energy U (> 0) which works when two electrons are on the same site. At half 
filling, just as in the case of undoped high Tc materials, each site is occupied by 
exactly one electron in the large U limit. The electrons cannot move, avoiding 
double occupancy, even though the hopping amplitude t is finite. The system 
is thus an insulator (called the Mott insulator). The -magnetic interaction arises 
in this situation , through the perturbation of hopping t . Actually, the energy 
of the neighborin g spins is lowered by an amount J /2 = 2t2 /U when the spins 
point in the opposite direction because of the virtual process depicted in Fig.2.3. 
Therefore, the antiferromagnetic insulating phase is very natural for the strong 

t t + 0 

Figure 2.3: The antiferromagnetic interaction J = 4t 2 /U arises through the second 
order process in the Mott insula tor. 

correlated system at half filling. 
On t he ot her hand, without the strong corre lation, the electrons in the half 

fill ed band move freely and the system becomes an usual metal outside the anti­
ferromagnetic phase. 

The experimental fact[4] t hat the Hall coeffi cient of doped high Tc materials 
is positiYe at small doping (before superconducting phase ends) also supports the 
strongly correlated nature. since it indicates that the dynamical variable in the 
system is not the electron but t he hole (and spin). 

What about the superconductivity in the strongly correlated system? To see 
t he possibility of supercond uctiv ity, let us consider classical two holes at a distance 
tn t he antiferromagnetic spin background (Fig.2.4(a)). Four of the antiferromag-
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Figure 2.4: Two ho les gain energy of J when they are neighboring as in (b) in the 
antiferromagnetic spin background . 

netic bonds couplings (in two-dimensions) are lost because of one hole , and accord­
ingly t he energy becomes higher by SJ for two holes. If two holes are neighboring 
(Fig.2 .4(b)), however, the energy loss is only 7 J. Thus the magnetic interaction 
can produce attractive force between holes. This attraction is observed numeri­
cally in t he exact diagonalization of a small system[5]. Owing to this force, the 
holes on the neighboring sites will form a pair with charge +2e · and the supercon­
ductivity wi ll occur by the phenomenological theory of Ginzburg and Landau. The 
format ion of pairs of charge 2e is confirmed in the experiments on the Josephson 
effect and flux quantization[6]. 

This scenario is , however, too naive. In fact, the antiferromagnetic interaction 
favors all the ho les gather together , resulting in the phase separation[7] (Fig.2.5). 
The remedy is through the hopping term t, since the gathered holes lose much 

0 .. l 
0 0 .. 
0 0 
00 
t + 
.. l 

l .. 
t 
+ 
t .. 

Figure 2.5: Phase separation into the hole( denoted by o)-rich and spin(T)-rich part 
occurs for large J. 

kinet ic energy clue to their immobility. In the real materials, t ~ 0.4 ~ 0.5e V 
may be said to be large enough compared to J ~ O.leV. The phase separation is 
obserYed numerically for t/ J ,S 1 ~ 2 in the one dimensional t-J model[8]. The 
hopping term is important also for the superconducting current and the i\'leissner 
effect to appear. 

From these considerations, our study in this thesis is based on the microscopic 
model of strongly cor related electrons, which we are going to spec ify in the next 

9 



Section. It is seen in later chapters that t he model explains various characteristic 
properties of high Tc materials well. 

2.3 t-J model 

Among many microscopic models of the strongly correlated electrons, we choose 
t he t-J[9] model as our starting point. One of the reasons is that it is the simplest . 
It is a single band model. It contains only two terms, namely, the nearest neighbor 
electron hopping t and the antiferromagnetic nearest neighbor spin interaction J . 

Th ere are other models of strongly correlated system which are more com­
plicated, but is more realistic. For example, it is possible to consider the next 
nearest neighbor interactions besides nearest neighbor ones. This mod el, the tt'­
J J' model, is frustrated for J, J' > 0, and is important to produce parity breaking 
ground state. This state is a starting point of the explanation of the superconduc­
tivity by anyon. This possibility of superconductivity due to anyon was discussed 
extensively[lO] because of the distinguished two-dimensionality of the material. 
The experiments are, however, against the anyon superconductivity. For instance, 
the parity breaking and existence of the strong magnetic field , which necessarily 
appears in the presence of the anyons, are denied[ll]. 

One can also include the 02p orbit in addition to the Cu3d. This model , d-p 
model, is more realistic than one band models like t-J , since the hole is observed 
to be in the 02p orbit by the photoemission experiments[12]. However, it is 
argued[ l3] that the doped hole in 02p orbit forms a singlet with a hole in Cu3d 
orbit , owi ng to the st rong antiferromagnetic interaction JK(~ 0.5 ~leV) between 
holes in t hese two orbit . This singlet in the d-p model can be regarded as the hole 
in t he t-J model, and thus the d-p model may reduce to the t-J model for large 
]g. 

We expect , in spite of the fascinat ion of these realistic models, that the essential 
feat ures of the antiferromagnetic and the superconductivity are contained in the 
simple t-J model. 

The Hubbard model is also very simple, but in numerical simulations[14], no 
tendency of superconduct ivity is observed, while th e attractive force between holes 
is seen in the case of the t-J model. The Hubbard model also reduces to the t-J 
model with J = 412 /U in the limit of large Coulomb repulsion U (i.e., J «: 1)[15], 
although this equivalence does not hold for finite U. 

'We consider the t-J model on three-dimensional square lattice with anisotropy. 
(We use t he te rm " dimension" on ly for the spatial ones.) In real materials, the 
structure is not exactly the square lattice as shown in Fig.2.2(a). However, this 
approximation by the square lat t ice is expected not to change the low energy 
beha\'iors of the model. 

Hamiltonian of t-J model The t-J model is the lattice model of electron Cxa 
with spi n IJ' =T or 1. The hopping amplitude of the electron to nearest neighbor 
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site is denoted by t and the nearest neighbor antiferromagnetic interact ion is J: 

Ht-J = -t 2::: 2:::(1- nx , -a)c~aCx+~ .a(l- nx+~ . -a) 
I ,JJ d 

(2. 1) 

where the spin Sis written using the Pauli matrix ii , 

(2.2) 

and p = ±1, ±2. The term (1/4)nxanx+~.a is added in this thesis to make the 
calculation easier. This factor does not change the results very much. The param­
eters are t ~ 0.4 ~ 0.5 eV and J ~ O.leV according to experiments. The chemical 
potential l'c is determined so as to fix the hole density to be doping 8: 

1 - 8 = 2::: < nxa > · (2.3) 

The physical space of this Hamiltonian is restricted to no doubly occupied states 
at each site: IO >,I i> , 11>, (no I Tl> ) . The factor (1-nx,-a) in the hopping term 
enforces this constraint on each hopping. Although the Hamiltonian appears to be 
simple, the constraint of no double occupancy makes the t-J model complicated. 
However , the essence of the strongly correlated nature is reflected through this 
local constraint. For example, if we simply replace the factor (1- nx,-a) by an 
average value, 8/2, we cannot produce the insulating properties(see Sec t.2 .2) . The 
most important thing, therefore, in dealing with the t-J model is to take into 
account this constraint in a local form as it is. For this purpose, the introduction 
of the auxiliary boson is useful. 

Local constraint and auxiliary boson As stated above, the treatment of the 
local constraint is essential although difficult in the t-J model. One of the way to 
take this constraint into consideration is the Guzwiller approximation[17], suitable 
for the numerical calculations[18]. In analytical approaches, the introduction of the 
auxiliary boson[l6] is convenient to respect this constraint. The elec tron operator 
is written in this method as a product of spin and hole operators. In th e slave 
boson representat ion, the spin and the hole is expressed by a fermion ! xa and a 
boson bx , respec tively: 

(2.4) 

This equat ion states t hat annihilating an elect ron in the space of no double oc­
cupancy is to annihilate a spin f= and create a hole b~. Since additional bosonic 
degrees of freedom is introduced, a constraint is needed to reproduce t he commu­
tation relation of the electron operator: 

(2.5) 
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This constraint is eq uivalent to the condition of no double occupancy. Since we 
have divided the elect ronic degrees of freedom into those of the hole and spin, 
there arises an U( 1) gauge invariance: 

fru ~ f:rueiiJ:r 

b.z----.. b:r eiiJr. 

The physical quantity must be invariant under this transformation. 

(2 .6) 

The reinterpretation of the electron system in the language of hole and spin is 
very natural in the present situation. Actually, at small doping, almost all sites 
are occupied by an electron. If an electron at x is to hop to nearest neighbor 
site, x + ~'-• the site x + 11- must be vacant(i.e., occupied by a hole), because of 
the factor (1- nz-a) in the hopping term(See Fig.2.6). The hole hopping, on the 

Figure 2.6: Strongly correlated elec tron can hop only if the neares t neighbor site 
is vacant, while th e hole hops without much restriction at small doping. 

ot her hand , is not rest ricted by the strong correlation very much. This is because, 
although holes are also forbidden to be doubly occupied( due to eq.(2.5)), they are 
very rare to come across each other at small hole density. Thus from the form of 
the hopping term the hole degree of freedom is a better variable than the electron 
operator itself in the high Tc material. This is consistent with the experiment that 
shows that the charge carrier of the material has positive sign[4]. 

It is also possible to write hole and spin by fermion tPz and boson aza , respec­
tively. 

(2.7) 

This scheme is called the slave fermion rep resentation. The constraint is 

(2 .8) 

The gauge invariance arises in the similar way as eq.(2.6). Both representation. 
sla,·e-boson and -fermion, must give the same result as the original/-] model (2 .1 ), 
if the constraints are fai th fully respected. 

In the next section, we review briefly the previous developments in the study 
of the t-J model. 
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2.4 Previous approaches to t-J model 

Mean Field theories The common technique in solving the t-J model is the 
mean fi eld (or Equivalently the large N) treatment. There have been so many 
mean field theories of two-dimensional t-J model using different order parameters. 
Before starting the mean field analysis on the superconductivity in Sect.4 , we 
need to examine what kind of mean field theory have been already done and what 
has not . In table 2.1, some of the mean field theories are listed almost in the 
historical order. The early mean field theories (I) studied the condensation of the 

order parameter ref. 
(I) electron RVB CzJCyl CzlCyJ electron [19] [20] 
(II) spin RVB fzrfyt - f zd.r slave boson (21] 

spin hopping !l!. 
(III) spin RVB azfayl az!ayl slave fermion (22] 

hole&spin hopping t/111/Jy, ala-ayu spiral state 
(I') electron hopping L.:; ci,acya large N (23] 

.Table 2.1: mean field theories of t-J model. The operators are, Cu:electron, spin 
fermion in the slave boson representation:fza , spin boson in the slave fermion :aza 
and the hole fermion:tf>z · 

nearest neighbor electron singlet operator. This operator is called the resonating 
valence bond (RVB) operator, and is originally introduced by Anderson to describe 
the antife rromagnetic spin system with large fluctuation (e.g. , antiferromagnet ic 
Heisenberg model on one- or two-dimensional triangular- latt ice) . In the RVB state 
at low temperature, this operator has nonvanishing expectation value. A~cordt~g 

to refs.(9,19], the superconductivity occurs when these condensed RVB patrs begm 
to flow at finite doping. The magnetic phase was not discussed in the mean fi eld 
theory[19]. In addition , the ground state (T = 0) of two dimensional Heisenberg 
model , equivalent to the t-J model at /j = 0, was found numerically to be the Nee! 
ordered state[24]. That is, the short range (nearest netghbor) RVB operator ts not 
a. good order parameter of magnetic order at small doping. 

Later, the order parameter of spin hopping besides RVB operator was included 
(IT) using the slave boson representation, so as to study possibly other phase th an 
the magnetic one. In fact , the superconductivity was discussed in this approach by 
t.he simu lt aneous condensat ion of the RVB operator and the hole boson, namely, 
by < fzrfz+~.l - f zdz+".l >< b~b!,+~ ># 0. The slave boson is essent ial in this 
scenario, since nonvanishing < b~b~+" > was given by the bose conden5ation of 
holes < b; ># 0. It appears, however, necessary to introduce the order parameter 
of the superconductiv ity itself (not as a product of two order parameters) Ill ord er 
to disc uss the superconductivity. 

In these mean field analyses, the non uniform (non S wave) configurat ions of 
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the fl-dependent ord er parameter t.x~) are favored in some cases to the S wave 
~ne (t.x.~ = constant). For the RVB order parameter of the fermionic spin , d-wa\'e 
,olu twn t.i = -t.i was shown to be stable[21]. T he systematic study(!') of the 
non uniform solutiOn Withm the periodicity of '2a (w1'th Jatt' t t ) d · [') J V L Ice cons an a was 
one .In . -3: Th~ order parameter is in the electron hopping channel. This mean 

fi eld IS JUstified m the large N (where <J' = 1 ~ N N = 2 for S - 1/') ) 1· ·t 
d h h' . ' - - In11 ' 

an as not tng to do wtth the. superconductivity. Assuming this per iod icity, 
four of the order para~eters t.;(• = 1 ~ 4) are independent (Fig.4 .2). The non 
Utllform ground state wtth flux,. (that is t. t. t. A -1 AI< '') · r d r 

. ' 1 2 3u4 - u e IS toun 10r sorne 
parameter regton, and this state was named the " flu x state" 

Concern in g the difference of the slave-boson and slave-fer~ion scheme, the slave 
fermton one IS found to gtve lower ground state energy in the mean field theory tha 
the slave boson one[25]. The resulting energy, however, becomes much lower tha~ 
the exact value. !t has been diffi.cult to study the superconductivity in the slave 
ferm iOn theory, smce the .attractiOn of hole fermion appears explicit ly only after 
the local const raint (2.8) IS solved. As a result, the mean field theories thereafter 
are mamly concerned with the spin configuration in the presence of dynamical hole 
(JH) . 

In (III) , the order parameter in the hole hopping channel is included besides 
the two In (II). In these slave fermion mean field theories so called the (1 1)- · 1 
t t [·J G] · 1 · · • , sptra 

~ a e - IS o )lamed as the ground sta te. The characteristic feature of this state 
IS the followmg behaviOr of the correlation funct ion. 

(2.9) 

where ko = ko( 1, 1). Within the slave ferm ion mean field theories, this state has a 
long range order (t.e., the two point fun ct ion (2.9) does not decay at long distance) 
at .zero temperature, owi~g to the Bose condensation of the spin boson axu · At 
ze ta dopu~ g , ko = 71'/2, whtch IS the usual Nee! order. As holes are doped the Nee! 
order !s dtst urbed more and more with the growth of the hole hopping ~mplitude 
< .Pl.Px +~ >(X 8. As a result , the o~ ientation of spins rotate spatially (see Fig.4.1). 
In the mean fi eld solut wn, thts sptral configuration is expressed by the deviation 
of k0 from ,. /2, 

11' 

ko = 2- Q(8), (2.10) 

and the pitch Q of rotat ion is proportional to doping in mean field theory 

Q = (0.2 ~ 1.2) X -J.s. (2.11) 

Jbe sh o:_t range spi ral (o r incommensulate) configuration of the spin is obser\'ed 
at = 0.0 t ill the neutron scattering experiment[2T] although no kin' d - 1 

· · d · ' ot ong 
rang e magnetic or er IS observed outside the anti ferromagnetic phase. ( Rece tl 
It 15 also reported[:?SJ. that the con figuration reali zed in t he real La-supercond u:t:: 
IS t.he short. range sp tral state with the pitch k0 x (1 ,0) , not (1,1)) . 

14 

The spiral state allows the band mot ion of t he hole, and thus is a good back­
ground spin configuration for t he superconductivity (see Sec t.4 ). 

Let us stress that in all the mean field t heories above, the const ra in t is taken 
in to account only globally. That is , the const raint is included by a Lagrange 
multiplier Ax, but only the constant solu t ion is looked for: A7 =>.(constant) . In 
this treatment of the constraint, the state wi t h many bosons at one site is not 
excluded, and thus the dynamics is changed very much. The local nature of the 
constraint is included gradually if the fluctuation around the mean field so lu tion is 
treated dynamically in a systematic (1/N) manner. The fluctuat ion behaves as a 
gauge fi eld of U(1) gauge transformation (2.6). The mean fi eld treatment becomes 
exact in the large N analysis (I'). 

CP 1 approach at zero doping As mentioned in Sect.2.1 , the antiferromagnetic 
phase is very important in understanding the high Tc superconductor. Hence, it 
is very useful to investigate the magnetic properties of the high Tc material. 

At zero doping , the hopping vanishes, and the t-J model reduces to the an­
tiferromagnetic Heisenberg model. This model has been studied a lot , and its 
contimtum limit after half of the spins integrated out is the CP 1 

<J' model[29]. The 
const raint reduces at zero doping to the requirement on the length of the spin. In 
the continuum theory, the renormalizat ion group analysis is easy. Ref.(30] showed 
by this· technique that the two dimensional CP 1 model well describes the experi­
mental results on undoped Li~-:!CuO,. The constraint was imposed globally. Since 
it deals with the two dimensional model, the quantities very sensitive to the weak 
three-dimensionality can not be reproduced. For example, the Nee! temperature 
T N vanishes owing to the infrared divergence in two-dimensions, in accordance 
with the theorem of Mermin and Wagner[31]. Also, the holes are not included, 
and an important question of how the Nee! temperature lowers as doping increases 
could not be answered. 

Other approaches In the numerical studies of the two dimensional t-J model, 
the attractive force between two holes is observed by the exact diagonalization of 
a small cluster[5] , However, the system size available is very small , for instance, 
4 x 4 sites , and accordingly the results are not necessary reliable. 

The one dimensional t-J model is exact ly solvable at t = J using the Bethe 
ansatz[32], and its study may help us to understand the two dimensiona l one. 
The exact so lution indicates that the spin a nd the charge degrees of freedom 
are decoupled and each behaves like a free fermion. This is called the charge­
sp in separation. In the ground state solu tion, the momentum distribution of the 
elec tron is smooth at th e fermi momentum kF. This behavior is different from 
that of t he normal fermi liquid , which has a finjte discontinuity there. The system 
with this property is called the Lurtinger liquid [33]. It might be expected that 
the two dimensional t-J model has a similar non fermj liquid behavior, and that 
this might explain the anomalous properties of the normal state of t he high Tc 
ma.terials. 
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2.5 Our formalism 

As already noted, the essence of the strong correlation is in the local constraint 
in the t-J model. In the previous analytical approaches, however, this constraint 
has not been included locally. In this thesis, we will study the t-J model taking 
into account to some extent the local nature of the constraint. 

The interaction arising from the local const raint is included if the const raint is 
rewritten using the new spin variable[34] . This new variable, the Schwinger boson , 
Zra is defined by 

(2.12) 

The project ion facto r (1 - ¥>! 1/>r) 112 represents the local contract ion of the spin due 
to the presence of holes. This projection is well defined since the particle number of 
fermions is 0 or 1. It also guarantees that the field Zra becomes meaningless when 
the site is occupied by a hole .Pr· In terms of Zra• the constraint (2 .8) becomes 

(2.13) 

This is the CP 1 constraint. The fermion 1/>r is now free of constraint. Therefore, the 
interaction between the hole and the spin arising from the strong correlation-in 
particular, the attractive force between nearest neighbor holes-can be explicit ly 
seen after this transformation (see (4.3)). If an approximation (like mean field) 
is made after this transformation , the essential part of the hole-spin inte ract ion 
arising from t he local constraint is expected to be taken into account. 

Let us note that this transformation is not possible in the slave boson scheme. 
This is because the < 1- blbr > can be negative for bosonic field br, and accord­
ingly the projec tion (1- blbr) 112 is not well defined. 

In the following chap ters, we use this transformation for studying the properties 
of the high Tc material, and will see that they are reproduced well. In this th es is, 
t he constrai nt (2.13) , which no longer contains the explicit interact ion between 
spin and hole, is treated by a mean fi eld. This constraint would become important 
in discuss ing the fermi surface of the system in the slave fermion scheme (see 
Chap.5). 
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Chapter 3 

Magnetic properties 

In this chapter, we study the magnetic properties of the high Tc material. These 
properties are important for the study of the superconductivity. This chapter is 
based on Ref.[35]. 

We extend the analysis on the CP1 model[30] to the doped region and also to 
the (weakly) three-dimensional case to produce the finite Nee! temperature. The 
inclusion of the hole is done by deriving an effective theory from the t-J model 
by solving the constraint by eq.(2.12) and then integrating ou t half of the spins. 
We assume in this derivation the short range antiferromagnetic ord er and small 
eloping. The resulting effective theory is the anisotropic three dimensional C P1 

model coupled with hole fermions. On this effective theory, we can study the 
effec ts of doping systematically. At small doping, the effective theory reduces to 
the CP 1 model with coupling constants renormalized by holes. Once the effec tive 
theory is derived, the CP 1 constraint is treated by mean field , since this constraint 
does not produce the interact ion between the spin and hole anymore. Various 
physical quantities are calculated in the mean field approximation. Our interes t is 
mainly in the effects of weak three-d imensionality and of hole doping. The decrease 
of the Nee! t emperature clue to the hole is estimated quantitively. We will a lso 
study the spiral state outside the antiferromagnetic region on our effect ive model. 

3.1 D erivation of the effective theory 

As mentioned in Sect.2.1, the distan ce between the nearest Cu-0 planes in real 
high Tc materials is about twice as large as the distance between the nearest two 
Cu atoms in the Cu-0 plane. Because of this, elect rons at Cu atoms in different 
planes have smaller overlap integral , and the elect ron hopping amplitude and the 
magnetic interaction is ve ry small in the direction perpendicular to the Cu-0 
planes (we call it the third direct ion). 

\Ve therefore start from the following three-dimensional t-J model with anisotropy 
in the slaYe- fermion representat ion, 

Ht-J = L t ~.P!a~±~ar~r±~ 
r,±.£! 
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+ "'J. [(·t-·) (·t-·) ("t") (·t·) l ~- a ua :r a ua :r+~ - a a :r a a x +JJ 

z," 4 

-J.LcL (iitii)z (3.1) 

The slave fermion representation of the t-J model is convenient, since the bosonic 
spin variable can later be naturally interpreted as the CP 1 variable. The weakness 
of the couplings in the third direction is represented by a factor of a(::; 1): 

t.(J.L = 1, 2, 3) = 1(1 , 1, ~) 
J" = J(1, 1,a). (3.2) 

Here, the anisotropy oft" is chosen to be ,jQ in accordance with the t-J model 
derived from the Hubbard model. The results, however, do not change very much 
by the choice of the a-dependence of t3 ft , if this ratio is small. The anisotropic 
parameter a will be est imated to be of order 10-5 in the later invest igation . 

The lattice spacing of the Cu-0 plane (we call it X- Y plane) is a and that 
of the third direction is a3 , and a3 = .xta with .xt ~ 2 (the actual values of a and 
a 3 wil.l be given in Sect.3.5). 

As stated already, the above t-J Hamiltonian is defined on the Hilbert space 
without doubly occupied states, which fact is expressed by the local constraint 

(3.3) 

The const raint (3.3) contains both bosons and fermions. It is convenient, as men­
tioned in Sec t.2.3 , to introduce the bosonic CP1 operator iz,a and the projection 
operator Pz to make the fermion free of constraint , 

PxZx ,a 

(1- ~!~z) 1 f 2 ix,a, (3.4) 

where 
·2 - "t. Pz = 1- lfzlfz (3.5) 

In terms of the =-fie ld , the constra int (3.3) becomes that of CP 1, 

(3.6) 

and t he Ham iltonian takes the form 

(3.7) 
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\Ve use the path-integral formulation of finite-temperature quantum many-body 
system. In the present case, the partition function is given by 

Z = j [DzD,P]8( ;;Zz,aZz,a- 1)Jg! 

X exp { r~ dr[- I:(I:az ,aaz,a + ~z~z)- Ht-J]} Jo :r a 
(3.8) 

In eq.(3.8) , Zz ,a( r), Zz ,a( r), are complex variables, while 1/>z ( r) , ~z( r) are Grass-
mann variables. The bars indicate conjugate quantities . The imaginary time T 

runs from 0 to {3. The substitution az,a(r) = Pz(r)zz,a(r), (pz = (1- ~z.lfzr/2 ) is 
understood. H1_ 1 is obtained from H1_ 1 by replacing operators Ua , i~ , ,P, .pt)z by 
(za, za, ,P, ~)z(r). The constraint (3 .3) is guaranteed by the 8-function in eq.(3.8). 
The factor Jg1 reflects the Jacobian associated with the gauge fixing into _the 
smooth configurations of zz( r)'s. Explicitly it reads Jgf = nzE•ublattice nT exp( - ·.Pz( r) .Pz( r)) 
(see Appendix A of ref.[34] ). It is necessary to obtain a reasonable continuum 
field theory as a low-energy effective theory. The system has (at least) short range 

Figure 3.1: In the short range antiferromagnetic configuration, the spins on the 
same sublat.tice are in the smooth configurat ion. Hence the continuum limit exists 
after integrating out one of the sublatt ices marked by Q. 

ant iferromagnet ic order, because of the J-term. Actually, it is read from eq.(3.7) 
that in the language of CP 1 variables, the favored configuration at small doping( i.e. 
p; :::: 1) is that with short range antiferromagnet ic order, 

(3.9) 

This indicates t hat, if we divide the lattice into two sublattices (even(e) and 
odd(o)), the spins on , say, even lattice (we call it e-spin) are in the smooth con­
figuration (see Fig.3.1). The short range antiferromagnetic order is observed to 
exist for the length of 200A even at room temperature in the neut ron scattering 
experiment[36]. Integrating out the o-spins, therefore, we can derive the effect ive 
theory of e-spin and holes on both e- and o-sites, and also be ab le to take the con­
tinuum limit of the theory. Parametrization of the o-spin needed for in tegration 
is carried out as follows. 
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t ~ 
f 0 

(a) (b) 

Figure 3.2: (a) : Each odd site o has 6 even-site neighbors. They are numbered from 
1 to 6. The spins and holes on those even sites are named z0 ; and !/10 , (i = 1 ~ 6) . 
(b) :We pair up each odd-site spin Z0 at o = (z 1, z 2 , z 3 ) with a nearest neighbor 
even-sit e spin z, sitting at the left h and side e = o- i = (z1 - 1, z 2 , z 3 ). Two 
spins in a pair tend to point to the opposite direction due to the antiferromagnetic 
coupling. 

For each s ite in e-sublattice, there are 6 nearest neighbor o-sites. We number 
them from 1 to 6 as shown in Fig.3.2(a) , and denote the spins and holes on these 
sites as Z 0 , and !/10 ; (o =' some specific odd si te, i = 1, · · ·, 6 denotes si..x nearest 
neighbor even sites) , respectively. As the correlation in the X-Y plane is much 
stronger than the in terplane correlation , we pair up each odd site spin with a 
nearest ne ighbo r even s ite spin in the X - Y plane. Let us focus on some speci fi c 
odd spin : 0 at o = (z 1, z2 , z 3 ) , and denote the even site spin of its partner s itt ing 
on the left hand side o- i = (z 1 - 1, z 2 , z 3 ) as z, (e = o - i. See Fig.3.2(b) ). 

Sin ce the space of the CP 1 var iab le (:z = 1) is expanded by z and :, where z 
is the reve rsed spin variab le (i.e . iiii = - ziiz) 

(3.10) 

the odd spin : 0 is pa.rametrized by even spin partner z, and z, on the left hand 
s ide using two complex numbers Po and q0 with uni t length (IPol 2 + lqol2 = 1) as 

(3.11) 

Complex num ber Po represent the flu ctuation from the sho rt range antiferromag­
neti o rder ( Fig. 3.2(b)) . Substituting eq.(3 .11) into the path-integral representa­
tion of th e partition fun ction, we integrate over the complex variables Po and q0 

under the constraint IPol2 + lqol2 = 1. 
The integral. according to eq. (3. G), is dominated by the configuration of small 

IPol· We can thus expand the integrand in powers of Po and p
0

, take up to the 
q uad ra tic te rms. and do the Gauss ian int egr al over Po and p

0
. Careful es t imalion[3.f] 

sho""s that the neglec ted terms are the higher order of (/31)-l 
It is important to no tice that the assumption of the short rang e antiferromag­

ne tic ord e r is different from th e long rang e antiferromagnetic (Nee!) orde r. Our 
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effective theory is therefore applicable to the study of states without long range 
antiferromagnetic order, for example, of spiral state and superconducting state( see 

Sects.3.7 , 4 .4). 
Here we give the final result of t hat integration over all z0 's on odd sites. 

De ta iled de rivat ion is given in ref. [34]. 
The s lave boson-fermion formalism has an invariance under t he following local 

phase (gauge) transformation, 

(3.12) 

From eq.(3. 11 ), Po and q0 t ransform nont riv ially under eq.(3.12) , and especially 

for q0 , 

qo = J1 -IPol2 Uoe 
Ua. ...... U0 ,exp(i(B(o) + B(e)) (3 .13) 

After integration over p
0

, we find that U0 , in the effective action disappears when 
one introduce the following fermion field on odd sites , 

(3.14) 

t his 'lo transforms like z, under (3 .12). The even site fermions a re written simply 
as 1/J . Using t hese notations, the partition fun ct ion reads (dropping the subsc ript 

e of the spin) 

Z = j[D zD!/lD!J] 8(zz -1) exp(-A) , 

where the e ffect ive act ion A is 

and 

Ao 

\\"ith 

t dr~ [-~ p~(i· i)(z · E) -~ ~p~ 1;p~;(zoi · z)(z· Z 0 , ) 

- p~ L: 1/ 1 p2 
(' . z)(z. zo,)(zo, . z)(i . z"' )] , 2Q I ,) I 0 1 } OJ ""' Ot 

L: lfoi(Or - Z · Z + J.lc)tPoo + !jo(Or- Z · Z- J.lcl1Jo 

(3.15) 

(3.16) 

(3.17) 

(:3.1 8) 

Here, 1, (i = 1, · · ·, 6) takes 11.2,3,4 = 1 and 15 ,6 = 1, = a1. Similarly, 
t 1,"1 ,J,< = t a nd 15,6 = t, = (a) 112t. Summation Lo runs over all the odd s ites . 
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Afte r integration over : 0 , : , interact wi th even sites Z
0

, (i = 1 ~ 6) nearest 
neighbor to the integrated site o, (See Fig.3.3.) The hopping term Thop is 

Thop =- j dr L 2:t, (B;( o)-;J"' 1Jo + C; (o)TJ0 !/;0 ;) , (3.1 9) 
0 ' 

where B,(o) a nd C,(o) rep resent the effect ive hoppin g amplitude of hole in the 
shor t range ant iferromagnet ic background: 

B;(o) 

C;(o) 

(for a~ 1). 

-(z · z.,; ) + _!_(z · z )(z · Z0 ;) 

2J 
1 "' -+ 41 ~ Jj(Z · Zoj)(Z01 • z)(z· z0 ;) 

J 

1 . 
-(z.,; . z ) + 2J(z· z)(z.,;. z ) 

1 
+ 41 2:: J;(zo, · z)(-z . zo,J(zo; . zJ , 

J 

(3.20) 

It is read from these expressions that the hole hopping from the site o to e is 
possible when t he expecta tion value < iz0 ; > is non vanishing, namely, when the 
ant iferromagnetic order of the spin is locally destroyed. 

Figure 3.3: Aft er integra ting out the odd site spin Z
0

, its partner z. interacts with 
t he even spins Z 0 , neighborin g to z

0
. 

The term T~r is a four fermi term : 

(3 .21) 

T his, toget her wi th the oth er four fermi terms in A0 , play an important role in 
t he superconduct in g state. Higher ord er fermion interact ions a re neglected. since 
we consider small eloping region. 

The act ion (3.16) is complicated and at a glance appears to lack rotat ional 
im·ar iance. However, ca refu l in vest igat ion shows that eq.(3.16) is isot ropic. In 
fa ct , we see later t hat the continuu m limit of A at small dopin g is relat ivistically 
rn va n a nt C P 1 action(see eq.(3.36)). 
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3.2 Effective CP 1 action 

For the study of the small doping region , we need fur t her to pick up relevant 
terms in A. Let us first read from the action (3.16) the free spin part . This pa rt 
is ob tained by t he tree level replacement (or Hartree approximat ion), {i..p , i)17 -+ 8 
in A0 , that is , 

A~'(Z , z , 8) := A0(p-+ (1- 8)t) 

r ~ [ 1 - . (1 - 8) 2 = lo dr L - (2 + )J (i · i )(z · i)- - 2- L J;(z 0 ; • z )(z · z0 ;) 
0 oEodd Q i 

(1-8)2 
] - ('J ) L J;J, (zo,. z)(z. zo,) (zo,. z)(z . Zo; ) . 

4- +a J .,, (3.22) 

The free part of fermion is given by [(0 + A0 with spins replaced by the expec­
tation values at antiferromagnetic order(i.e., setting ZZ0 ; ~ 1, i.i ~ 0 etc.) . The 
fermion mass /1- c is shifted by this decoupling to be 

m = !1-c + (2 + a)J. (3. 23) 

The free part of the fermion is thus 

(3.24) 

We next examine the interaction terms between the hole and the spin. One of 
our main a im in this chapter is to study how the holes destroy the an t iferromag­
netic order, and consequently, lower the Nee! temperature. For this purpose, the 
most important interaction term is expec ted to be the hopping term Thop· Naively 
speaking, hole hopping dest roys the ant.iferromagnetic order as shown in Fig.3.4. 

Figure :3 .4: The a nt iferromagnetic order is dest royed along the tra il of hole hop­
ping. 

This fact is also read from t he expression of B, and C, in eq.( 3.20 ). Since the 
amplitude of hopping is small in the presence of short range antiferromagnet ic 
order, we can treat the term Thop by a perturbat ion. 

There are ot her terms: T~r and fou r- and higher-fermi interactions arising from 
r\ 0 t hrough p. They work as an at t ract ive forces between neighboring holes. These 
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forces are essential in formation of superconducting hole pairs(see Chap.4), but 
would ha'.·e little effect on antiferromagnetic spin configuration, in particular at 
small dopmg. 

. For these reasons , we study in this chapter the system of spin A~' and hole /( 
Int eracting weakly through hopping nop: 

A --> A~'(z, 6) +I\( 1/J, 17) + Thop(z, 1/J, 17). (3.25) 

Before estimating the loop (or bubble) correction by Thop, we have to calculate 
the Green functiOn of the hole fermion. They are evaluated as 

where, 

< 1/Jz(r):;j,,(r') > 
< 11z! r )li,, ( r') > 

6""'G+( r, r') 

6""·G-(r,r') := -6""'G+(r' , r), (3.26) 

G+(r, r') = 1 + ~-~m (e-m(T-T' )8(r- r')- e-m(~+T-T')8(r'- r)). (3.27) 

From eqs.(3.26)(3.27), we obtain a relation between 6 and the hole mass m. valid 
at 6 ~ 0 as follows, 

(3.28) 

Since the fermion mass (or chemical potential) m. is chosen to satisfy the relation 
(3.23), the mass at fixed doping becomes smaller at lower temperature: 

1 
m. ~ -:e In .5. (3.29) 

The loop correct ion is now calculated as follows. 

Z ~ j[D::zD fi; ·r/JD'l'l]exp(-A~'(z)- K(1/J17)- Thop) 

j[D::zD fi;,P D~11] (1 + ~(nop ) 2 + O(nop) 4
) exp(-A~'(z)- K(.,P17)) 

~ j[D :=z] exp(-A~')exp [~J dr j dr'2..:2..:t;t
1 

oo 1 a; 

(B,(or)C1 (o'r') < {loi (r)ii0 (r)1/0 •(r') 1/J0 •1 (r') > +(oir ~ o'jr')) 

+0(Thopl
4
], (3.30) 

wh ere we ha'.·e used 

< ,T. r; >=< '7'" >= 0 t (3 31) ~ ., .,- e c. . .: 

We have taken only the one loop correction (Fig.3 .5(a)) . In the coordinate space, 
t h1s IS to Include one s1te hoppings of holes ( Fig.3.5(b )) . The higher order hopping 
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(a) (b) 

Figure 3.5: (a):One loop correction to the spin variable by the hole. (b):The same 
contribution in the coordinate space. 

process are of 0( .52 ) and neglected. 
The expectation values are estimated using eq.(3.26) as 

< :;j0 ;( r)1i0 ( r)17o•( r') l/Jo•; ( r') > - < :;j0 i( r),P~j( r') >< 17o•( r')IJ) r) > 
~ 6 X 600•6ij· (3.32) 

This quantity is 0(6), and does not depend on r- r', since 1/J and 17 propagate in 
the opposite directions in time. (see eq.(3.26)) Thus the one loop renormalization 
to A~' is obtained as 

~Ao = -6 L I>? [fl dr f dr' B;(or)C;(or') 
0 i lo a 

Our effective theory is from these considerations given by 

Aeff =A~'+ ~Ao. 

(3.33) 

(3.34) 

The term (3.33) is non local in the time direct ion . The non local interaction 
arises sin ce the quantum fluctuation of the hole grows at low temperature, where 
t.he hole mass becomes small according to eq.(3.29). At sufficiently high tempera­
ture the range of integration [0, !3] is small and the expression may be replaced by 
a local form 

~Ao ~ -6)3 L L tf f drB;(or)C;(or). 
0 • 0 

(3.35) 

This localization is valid for small )31 , and so the resulting form diverges as )3 ~ oo. 
At. very low temperature, therefore, the non locality of the loop correction must 
be taken into account seriously. There is a. small factor 6 in (3 .35) , and ow ing 
to this, t he violent behavior at low temperature is somewhat suppressed . In the 
numerical calculation in Sect.3.5 , the approximation (3.3.5) is seen to be valid at 
T;::: lOOK. 

Let us now take the continuum limit of the effective action obtained above by 
assuming smoothness of the field. The continuum limit of A~', up to O(D2 ) is the 
following anisotropic CP1 <7-model , 
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(3.36) 

with the constrain t z · z = 1. In eq.(3.36), the covariant derivatives are, D, z = 
(8,- ~ · :)=, D"z = (8"- z · 8"z)z. In the above action, all the parameters in the 
low energy effect ive fi eld theory are determined by microscopic parameters a , a

3
, J 

and a. 

Th e one loop correct ion L'l.A0 also red uces to the similar form L'l.A , in the 
continuum limit. CP 

(3.37) 

In all , we have the following action up to order 6 as an effect ive field theory of 
the magnetic part of the t-J model ,_ 

AcP' =: A~P' + L'l.AcP' 

J,ff jd j 3 [(1 + 26 + 2<'/6(2 +a))_ 
=- r dx D D 

2a3 (2+a)J2a2 ,z· ,z 

(3.38) 

wh ere 

J u = J (1- 26- 2t2(36 2 +a) . .. J 2 . (3.39) 

This effec :ive ant iferromagnet ic coupling J,ff diminishes as doping in creases. In 
t he following sect ions, we will invest iga te the phase diagram of this CP' model. 
We will find t hat the re are, as expected , two phases; one is the ordered phase with 
long range ant iferromagn etic order, and the other is the disordered ph ase with t he 
mass gap in t he sp in excitation. 

3.3 Saddle point approximation of the CP 1 model 

As disc ussed in the previous sect ion, the effec tive action appropriate to describe 
sli«ht ly doped high Tc materials is an anisotropic CP 1 G' model in (3+1)-dimensions. 
By restoring h. Its ac tion eq.(3.3S) is explicit ly written as 
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with a· stand for the weakness of the antiferromagnetic coupling in the = 
direction, and >. is the an isotropy parameter of the lattice: 

a = J) J 

). = (-~:~y 
a 

(3.41) 

The effects of holes are contained in the doping dependence of the coupling con­
stant g(6 ) and the spin velocity c(6): 

g(6) 

hc(6) = 

2a3 [ < 21
2

/36 2 +a] - 1+2u+----
J J 2 

;-::--- [ 21
2 
(36 2 +a] V'L + aJa 1-6- -J---

2
- . (3.42) 

Rescaling the imaginary time r by h.c, we get the usual form of CP1 model 

(3.43) 

where f(6) = g(6)hc(6) is an effective G'-model coupling constant . 
'o t.e that there is no ultra violet divergence, since the space integral has cutoff 

at lattice spacing a and a3 . In the momentum space, this leads to the following 
integration range with ultra violet cutoffs: 

where 

0 ;S k1, k2 ;S A 

0 ;S k3 ;S .1\3, 

-/'h 
.1\=:­

a 
71' 

l\3 = -. 
a3 

(3.44) 

(3.45) 

The cutoff A is so chosen as to preserve the area of half the Brillioun zone in the 
X- Y plane. Remember that the fi eld z here represents the spins on the even s ite 
of th e original lattice. 

The dimensionless coupling constant j is defined as 

j(6 ) - ! (6).1\ 2 

4.;nh + af>..{l + 6). (H6) 

The one loop contribution cancels out in j. 
We ca n check that this j at 6 = 0 is surely in the weak coupling region. 

Explicitly, the critical coupling of the CP 1 model wi t h weak t hree-dimensionality 
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is giYe by i e(CP
1
l = .JJ2.\rr3. If j is above this value, quantum fluctuations of spins 

are large enough to destroy the antiferromagnetic order even at zero temperature. 
Our j(o = 0, a :::: 0) is smaller than ie by a factor .Jif-1 = 0.56. This fact 
show that the t-J model is a good starting point to study real high Te materials 
(since they do have antiferromagnetic ordered phase). The action eq.(3.40) has an 
al tern at ive representation , i.e., 0(3) nonlinear rr model. The 0(3) variable is the 
three component real vector <ji = cp;(i = 1 ~ 3): 

tf'i(x) = LzrulT:a'Z:ru', (3.47) 
••' 

with rr' = Pauli matrices. Because of the CP 1 constraint (3.6), the field <ji is of 
unit length: 

tP'(x) = 1. (3.48) 

In terms of this 0(3) variable, the action (3.40) is written as 

(3.49) 

We used th e relation JD,zJ 2 = (a,<jif /4 etc. Correspondingly, the measure is tran­
scribed as d=d~o(Zz- 1) = d<jio(tP'- 1). For calculations of magnetization and 
susceptibility this 0(3) representation is more convenient than the CP1 represen­
tation. This is because, if we adopt the latter, we have to deal with t he composite 
operato rs of CP 1 variables in such calculations. 

We expec t that our field-theory model gives a good description of the long-range 
behavior of the spin dynamics of doped high Te materials. Here the parameters 
are the antiferromagnetic Heisenberg exchange coupling J and the anisotropic 
parameter a. They shall be determined in Sect.3.5 by the comparison of theoretical 
results with the experiments on La2Cu04 . For the lattice spacin gs a, a3 (hence a lso 
for.\= (a3/af), definite values will be used there throughout the analysis. 

In the following, being based on the above anisotropic 0(3) model (3 .49), 
we will perform the field theoretical calculation of the effect ive potential for the 
antiferromagnetic order parameter (the third component of the spin variable <ji) 
and the auxiliary fi eld(]" (spin mass gap) introd uced to keep the constraint r = 1, 
and derive its saddle point equations[37,38]. This procedure is equivalent to the 
derivation of the mean field equations for these order parameters. The sadd le 
point (or mean fi eld) approximat ion makes sense here, since we are working on 
t.he (wea kly) three-d imensional case. 

We write the partition function of this system as a Euclidean path-integral 

Z(J) j D.,::1D',', Dcp3Drr exp ( -* .-i. o<3l) , 

~the dr j d3x [ _L (81<ji) 2 + a.\(a,<ji)' + rr(,P-
2
1 

)] ,(:3.50) 
J-I,y ,T f 
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where the replacement <ji ~ J'[J<ji has been made. Integrat ing out ','1 and 'f'2 we 
obtain an effective action of <p3 and rr fields 

Z({3) = j Dcp3 Drr exp [-~the dr j d3 x L~~}a1 cp3)2 + a.\(8,cp3j2 

+rr(cp~ -f)}-Trln(_L aJ+a.\O;+rr)] . (3.51) 
J J-z,y,r 

This Tr ln term is calculated by Fourier transform: 

Tr ln CEr aJ + a.\a; + (]") 

_ 3+1 _ --ln 1+ 1 
00 

;"·"' d
3

k ( (]" ) - J d x {3 hc t"foo (2rr)3 kr + k~ + a.\k5 + w; ' (3.52) 

with w1 = 2rrt/ {3hc (t:integer). 
Thus, up to the constant , we get an effective potential Veff (defined through 

Seff = J d3+ 1xVeff) for cp3, (the antiferromagnetic order parameter) and rre (the 
spin mass gap) where the subscript c means the constant configuration, 

From this, saddle point conditions for rre and 'f'3, follow easily 

0 = 8Veff 
Orre 

(3.53) 

+ ~ (3 .54) 1 ( ? 1 ) 1 
00 J d3

k 1 
2 'f':i,- 2/ {3 hc 1~00 (2rr)3 w; + kr + k~ + a.\k5 + rre' 

OVeff (3.55) 
0 = O<p

3
, = (J"e'f'3,· 

Using the method of the complex integral , the second term on the right hand side 
of (3.54) (:I) ca.n be rewritten as 

J d
3
k 1 ({3hcw) 

I = (·)-)3 -;;:- coth - -)- , 
- •1 ... :..~ .. 

(3 . .56) 

where w2 = ki + q + a.\k~ + rre. In Sect.3.5 , evaluating this integral numerically, 
we invest igate in detail the solutions of saddle point equations (3.54) and (3.55) 
which desc ribe the various magnetic properties of high Te materials. 
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Let us explain how physical quantities a re obtained from the sadd le point 
conditions. The eq uation (3.55) implies t hat there may be two phases, namely, 
rr, = 0 and cp3, = 0. The quantity rr, is the mass of the cp-field so t hat the 
correlat ion lengt h ~ of the spins are given as ~ = Fc-1

. Thus, in the phase 
rr, = 0, the spins are Nee! ordered(~ = oo). As shown in [39], where the CP 1 sigma 
model is considered, the ordered phase exists at sufficiently low temperature, and 
in this phase, cp3, calculated from eq.(3 .54) with rr, = 0 is non-vanishing. cp3, is 
related to the staggered magnet ization M(x) = 2(-)' < S,(x) >as M = .j2fcp3,, 

since the cp-fie ld is normalized as <jP = 1/(2/) in eq .(3.54). M is normalized to be 
unity when the system is saturated to the complete antiferromagnetic order. The 
staggered magnetization decreases as the temperature increases, and vanishes at 
some temperature. This temperature, the Nee! temperature TN, is determined by 
eq.(3.54) with both rr, and cp3, set to zero. The region T > TN is the disordered 
phase, where cp3, = 0 and rr, f. 0. In this phase, the inverse correlation length Fc 
is obtained from eq.(3.54) by setting cp3, = 0. 

Before that , in the next section, we will see the asymptotic (a-> 0) behavior 
of the solutions. 

3.4 a -. 0 limit of the solution at zero doping 

In the following three sect ions, we study the behaviors of the physical quantities 
such as Nee! temperature TN and the spin correlation length € as the solutions of 
the sadd le point equations (3.54) and (3.55). First , we consider in this sect ion only 
their asy mptotic (a~ 0 or h--+ 0) behaviors. For general value of a, the equa­
tions ca nnot be solved analytically and numerical calculations are necessary( see 
Sect.3.5). 

The study of this asymptotic behavior itself is of academic interest. At a = 0, 
the system is exac tly two-dimensionaL There may appear crossover phenomena 
from three-dimensions to two-dimensions at some value of a, ac.o .• or at some char­
acteristic length with fixed a. For example, for the classical XY model , the critical 
temperature is obtained as a function of a(<< 1) by the scaling argument[40], 

a 
T,(a)=TKT+(Ina )2 , (3.57) 

where TKT is the 1\osterli tz-Thouless transition temperature and a is some con­
stant. The crossover phenomena are also studied by Monte Carlo simulations[41]. 

Now we ana lyze equations. The integral I in eq.(3.56) is written after perfo rm­
ing th e k1, kTintegra.l as 

.\ 2u !o' ( . )1 + ~ox2 + (j . J~ax2 +iT) I = - . dx In smh - ln smh ..:._c'-;;---
2/, o 2u 2u · 

(3 .. 58 ) 

where 
1 

u=--
{J hcA ' 

(3 .59) 
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j , is the two-d imensional critical coupling (see e.g., eq.(3.62)) 1
. 

The saddle point condition (3.54) then becomes 

0 1 2u lol ( . J1 + ~ax2 +iT . J~ax2 
+iT) 

2<fij = -, - -,-- dx In smh - In smh 
2 

, 
f J, o 2u u 

(3.60) 

where .,03 = cp3J A is t he dimensionless antiferromagnet ic order parameter. From 
eq.(3.60) we see that , in the disordered phase (.,03 = 0) , if iT~ a, i.e. , in temper­
ature suffic iently higher than TN, the coupling in the third direction(represented 
by a) can be neglected and the system shows two-dimensional(a = 0) behavior. 
On the other hand , very close to the Nee! temperature(i.e. iT< a), the behavior 
of iT will differ from the two-dimensional one. Below we assume a< 1 and study 
the above two cases separately. 

Let us first see the iT ~ a case. Expanding the integral I in terms of a, the 
saddle point condition (3 .60) with .,03 = 0 is shown to be 

1 j, . Jl + iT . ..;u 
0 = ---, -lnsmh--- + lnsmh-

2u f 2u 2u 

-- ----~ + a . ;ra (coth •;." coth f.;) O( 2 ) 

24u J1 +iT ..fU 
(3.61) 

The terms containing a on the right hand side represent the difference between the 
three- and two-dimensional systems. This difference becomes smaller as iT grows. 
Wh en (a <)iT< 1, eq.(3.61) is reduced to a simple form: 

I kaT ( hcA j , ) V rr,:::::: hc exp -
2
k

8
T( f- 1) . (3.62) 

This is the same as those obtained in [30,39,42] 
The three-dimensional effect becomes important when iT < a . Expanding I 

by a and iT/a , we get 

I=~~: (ln (2usinh L)- ~In ia + 1-~ + O(a, ~)). (3.63) 

Since we are considering the asymptotic limit a < 1, we can use the fact that u 
is small: u < 1. This inequality holds because a < 1 means TN ::::: 0 and we are 
interes ted in the region T:::::: TN. The realist ic value of hcA for La2CuO, (wi th 
a= :3.8.4) is hcA:::::: 50001\, so that T less than the room temperature is sufficient 
to satis fy u < 1. Then the saddle point eq uation (3.60) can be approximated as 

(1 1) u ( ;r ~) 2.,3~ :::::: ~ - ~ - ~ - ln 2a + 2ln u + 2 - ~ ---;;--- . 
f ~ ~ a 

(3.6-1) 

1The critical coupling j , (C PI ) for the CP ! model {appeared below eq.{3.46) ) is four times that 

fo r the 0 {3) model j" owing to the identity IDe zl2 = (iJe<P)2 
/4 . 

31 



We can obtain TN from this equat ion by setting ljl3 = iT = 0. When n is small 
enough to satisfy the condition n/u2 <t: 1, picking only the -Inn term in the 
second bracket on the right hand side of eq.(3.64), we get an asymptotic express ion 
for TN : 

hcA(k -1) 
kaTN :::= I . 

-Inn (3.65) 

This expression can be obtained also in the one loop renormalization group analysis[35]. 
The Neel

2
temperature_goes to

0 

zero slowly as _n-> 0: Since the ratio n/TJr is 
O(n(ln n) ), t he condttwn nju- <t: 1 holds tf n IS suffi cient ly small and if T:::::: T . 
More explicitly, not ing that eq.(3.65) is obtained by neglect ing 0(2ln !In n l/ In nl­
terms we find eq.(3.65) to be approximately valid within , for example, about 10 
percent error, if 

(3 .66 ) 

F igure 3.6: T he schemat ic behavior of inverse correlation length near the critical 
point wh en n <t: 1 

The staggered magneti zation rp3, and the inverse correlation length Fc a re 
obt.amed as functwn: of (T- ~N) by taking the difference between eq.(3.64) with 
T = TN and that wtth an arbitrary T. Up to the lowest order in (T- TN) t he 
equat ion thus obtain ed is ' 

2ic<P5 == (u- "N) (tn ;n- 2 lnuN - 2) + u~ 2:iT, 
where uN = kaTN/hci\. 

Under the same condition as eq .(3.66), we obtain from eq.(3.67) 

i ka (-In o)-,--(Tv- T) 
f c he.\ · ' 

.U :::= 

k==~ ~(- ln n?-TN 71"V2(l" TN 
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(3.67) 

(3.68) 

(:369) 

near the critical temperature. As seen from eq.(3.6S) we find the critical exponent 
of the staggered magnet ization is 1/2 in mean field theory. The inverse corre lation 
length rises lin early starting at t he Nee! temperature. The cr itical exponent - 1 is 
that of the classical( i.e. T = oo) three-dimensional(isotropic) 0(3)<1 model at the 
one- loop order[43] Therefore, at least at one-loop level, the quasi-two-dimensional 
spin system has a t hree-dimensional behavior in t he region very close to the critical 
point even though the coupling in the third direction is very weak. This is qui te 
natural. Since the correlation length is very large near the critical point, the 
spins feel the effects of the third direct ion no matter how weak the coupling is. 
The three-dimensional effects become negligible when iT exceeds n, as seen from 
eq.(3 .60) . Using eq.(3.69), the region of three-d imensional behavior (iT ;5 n) is 

shown to be (T-TN) ;5 O(lnn)-2
• (See Fig.3 .6.) This region is too narrow to be 

seen clearly by experiments, and this explains why the two-dimensional analysis(30] 
can reproduce the experimental results on correlation length globally. 

3.5 Numerical solutions at zero doping 

In the previous section, the asymptotic(n-> 0) behaviors of the solutions of the 
saddle point conditions(3.54) and (3.55) were investigated. In this section, we will 
study the solutions for re~listic values of n(:::::: 10-5 ) with the help of numerical 
calculations, and investigate the magnet ic properties of L~Cu04 in detail. 

As explained in Sect.3 .3 , from the saddle point conditions we can calcu late t he 
magnetic quantities such as the Nee! temperature, the correlation lengt h and the 
staggered magnet ization of pure and doped La2 Cu0 4 . The correlation length was 
previously calculated in [30] by using a different approach in the framework of the 
two-dimensional <T-model, and we will show that our results are cons istent with 
theirs. 

In this paper we will take a= 3.8A, the shortest Cu-Cu distance in the Cu-0 
planes and a3 = 6.6A, the distance between the planes, hence .X = 3.0. We have 
ve rifi ed that the physical quantities like TN , E/a and M are not sensitive to the 
cutoff parameter , the lattice spacings. The three parameters in our model; j 2 

, J(which is related to he by eq. (3 .42)) and n are determined by comparing 
our numerical results with the experimental data on pure La2Cu04 • The neutron 
scattering exper iment has been done on La2 Cu0, by [36] Their best sample has 
the ant iferromagnet ic long-range order up to TN = 195K. The spin correlation 
lengt h and the staggered magnetization were also observed for this samp le. 

As we will see later, the Nee! temperature and the correlation lengt h at 6 = 0 
are sufficient to fi.x the three parameters. We can then use these parameters to 
predict the staggered magnetization. The Twf! phase diagram is also calculated 
with the additional input parameter t. Furthermore, the parameters determined 

2 In our derivation in Sect.3.1, j at 6 = 0 is dete rmined. Howeve r, in the derivation, we have 
neglected finite renormalization due to higher derivative terms, and it may be better to treat j as 
a free parameter and fix its value from the comparison with experiments. 
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will be shown to be in good agreement wit h previous estimates obtained by other 
methods. 

~n t he fo l]o,~ing calculat ions, we will fi rst set the <r model coupling constant j to 
be f = 0.69/ cUc is the two-d imensional cri t ical coupling and is given by eq.(3 .59)) . 
Th is value is t he same as t hat claimed to give good fits to the experiments[36] in 
two-dimensiona l <r model analysis[30] . Also in our calcul ation, other choices of j 
cannot reprod uce t he experimental results of TN and ~ (see below) . 

Let us show the numerical result s. 

N eel t emp erature We first observe how the Nee! temperature depends on two 
parameters J (which is related to he by eq.(3.42)) and a . The dependence of TN on 
a with J being fi xed is shown in Fig. 3.7. When a is ze ro, the Nee! temperature is 
zero, as expected from t he Mermin-Wagner t heorem[31]. As a increases, the effect 
of the t hi rd dimension becomes larger and TN increases. As eas ily seen in these 
fi gu res , a must be very small(::::: 10-7 ~ 10-5 ) in order to obtain TN ::: 195 K, which 
is smaller by factor::::: 5 compared wi th J of about 0.1 eV(~ 1000K). Note that 
t he approximation used in Sect .3.4 is valid only for much smaller a . On the other 

F igure 3.7: (a) :Twa diag ram with fixed J. Solid lines are numerical results for 
J = 850K and J = 1300K. The dotted line is the result with J = 8501< of an 
approximate equat ion valid for not small a . j is 0.69}c (b):The small a region. 

hand, TN increases together wi th J (o r he) for fi xed a, because the temperature 
and lie appear in equat ion (3.54) in a form of (J he. 

Spin correla tion len g th Fig.3.8 shows ou r fi ts to the resul ts of experiments 
[36] on La2 Cu0 4 . T he Nee! temperatu re of this sample is 1951< . T he best fi t 
(solid line) is obtained for Ct = 1. 7 X 10-5 and he = 0.39eV A. T his value of he is 
essen I ially the same as that obtained in [30] using the one- loop renormalizat ion­
group approach. Smaller and larger he cannot reproduce t he experimental result. 
For example. he = 0.60eVA (a is 2.0 x w-• for TN = 195E ) gives much smaller 
C 1(dot tecl line). The above value of he corresponds to J = 0.073eV, as seen 
from eq.(3 .-12)). T his value is of the same order(::: 103 K) as obtained in Raman 
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Figure 3.8: The inve rse correlation length C 1 versus tempera ture. Using j = 
0.69}c with TN fixed at 195K , the best fi t ( solid line) is obtained for he = 0. 39eV A 
and a = 1.7 x 10-5 . The result with he = 0.60eV A is shown by a dotted line. 
Dashed line is the result with a= 0 (he = 0.39eV A) using the same j. Dotted­
clashed line is the best fit using j = 0.89}c wi th TN fixed at 1951< (he is 0.75eV A). 
The experimental data are taken from [36]. 

scattering experiment [44]. The value of a we found is also in good agreement with 
the result of the previous analysis[45] . 

Let us check that our calculation contains the results of two-dimensional anal­
ysis in [30] by setting a = 0. Chakravarty et al. obtained the correlation length 
by the renormalization group approach, and we direct ly calculated t he mass of 
the c,o-fielcl which is dynamically generated. These two results are essent ially the 
same. The correlation length with a = 0 (clashed line) differs from the result wit h 
a= 1.7 x 10-5 only forT smaller th an 3001<. For the range of temperature larger 
than 300K , these two almost coincide, as mentioned in Sect .3.4. 

It should also be pointed out that smalln ess of a means very short correlat ion 
lengt h in the third direct ion, as seen in the followin g way. The spin-spin correla tion 

fun ction is 

< <,O(i) <,O(O) > 

(3.70) 

where k
3 

= vc;5..k 3 . From this expression , it is seen that for i lying in t he X -Y 

plane, 
< <,O(i)<,O(O ) >- exp( - fu":lxl), 

as Ii i - oc , while for i point ing in the th ird direc tion, 

< <,O( i )<,O(O) >- exp( - ~-iii) 
va.X 
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That is, the int erlayer correlat ion length ~3 is smaller than the correlat ion 
length in the GuO-plane by the factor of~::::: 0.7 x 10-2 Actually, t he experi­
ment shows that 6 is about 2A while~::::: 200A at room temperature[36] . 

3.6 Solutions at finite doping 

N ee1 t emperature Now we consider the doped case. As explained in Sect .3.1 , 
the presence of holes disturbs t he magnetic order, and TN decreases as 8 increases. 
If we ignore the hole hopping, i. e. at the tree (Hartree) level of the hole dyna mics , 
the coupling constant and the spin-wave velocity are renormalized as 1/ f- (1-
8)2 / f and he- ../2 + a(1- 8)Ja, respect ively (removing the one loop correction 
(ex /38) from eqs. (3.42) and (3.46)) . By substituting the above to the saddle 
point equat ions (3.54) and (3.55), we calculate TN at the tree level as a function 
of 8. This tree level result of the Tw8 phase diagram is shown in Fig.3.9 with 
the dashed line. The Nee! temperature TN decreases proportionally to the hole 
density, and vanishes a t 8 ::::: 0.32. That is , there is no long range Nee! order for 
8 > 0.32. However, in the experiments, the Nee! order disappears at about 0.03. 
This fact shows that the hole hopping gives quite important effects to the spin 
dynamics. In order to est imate these effects. W P h~.VP r~.lrnbt. P<l th, rnntribution 

200 
{ 

T 
(K) 

i' 
f ', 
: ' 100 ' 

' ' 

0.2 

' ' \ 

·I 

\ 

0.4 

200 

T 
(K) 

100 

0.01 

ca. l c. 6 > 
O.Q2 

Figure 3.9: (a):Tw8 phase diagram. j = 0.69i c, he= 0.39eV A, Cl' = 1.7 X 10- 5 , t = 
0.13eV . T he lower region is the Nee! ordered region. Dashed and solid line is 
the resu lt at the tree and one- loop level of the hole dynamics , respectively. The 
importance of th e hole hopp ing in decreasing TN is clearly seen. Below the dotted 
line, the short rnnge sp iral state is realized, and the band motion of the hole starts. 
(b):The same in small 8 region. 

from Thop at the one- loop (quantum) level in Sect.3.1 , and the resul t is nonlocal 
in the time direction (without any damping factor) eq.(3 .33). This nonlocality 
can be negligible at high temperature since the interval of <-integration shrinks 
and eq.(3.35) was obtained. It may be a reasonable simplification down to the 
moderate ;alue of temperature as discussed below. Then the one- loop effect, 
together w1th t he tree- level renormalization, resul ts in t he renormalizations of j 
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and he as shown in eqs.(:J.-12) and (3.-16). Using a typical value oft~ 0.13eV (which 
corresponds to the typical magnitude of Coulomb repulsion energy of U ~ l eV, 
since we have estim ated J = 4t 2 fU = 0.073eV from the study of corre lation 
length.), we obtain the Tw8 line (although this value oft is small compared to 
that obtained experimentally::::: 0.4 ~ 0.5eV). As a result , the Nee! temperature 
decreases much more rapidly than the increase of the hole density (so lid lines 
in Fig.3.9). Compared wit h the tree-level resu lt , the value of 8 at fixed TN is 
now reduced by factor ::::: 30. However, this calculation becomes not reliable in 
low-temperature region. In fact , below lOOK , the solution of th e saddle point 
equation gives rise to a Tw8 curve which bends into smaller 8 side for lower 
temperatures, even though the renormalizat ion factor 21 2 /38/ J is still small at 
that point (2t 2f38/ J)rN=!OOK ~ 0.3. From the behavior above lOOT< , it may be said 
that TN vanishes at 8 ~ 0.02. But we conclude here only that stat ic holes cannot 
destroy the order at 8 ~ 0.03, and the hole hopping is essential to disorder the 
system. 

As a test , we have also investigated the two-loop renormalization effect, and 
found that it has an opposite sign to the one-loop renormalization, and it slightly 
improves TN- 8 line. Anyway, the re-entrant behavior of TN- 8 line is due to the 
localization of the non local term (3.33). Hence, in order to get a TN - 8 line which 
may give a better fit with the experiments, it is necessary to treat this nonlocal 
term more properly. This problem is under study. 

3. 7 Short range spiral state 

Next, let us discuss the (short range) spiral state[26] in our approach based on the 
effect ive action on lattice (3 .34) in two dimensions. The one- loop correct ion by t he 
hole is taken into account in the high temperat ure approximation (eq.(3 .35)). The 
four fermi terms are neglected here. As 8 increases further outside the TN- 8 line, 
the renormalized ant iferromagnetic coupling J becomes even smaller and changes 
its sign at 8i•Pl := Jf2(J + f3t 2 )(see eq.(3.38)). Beyond this 8i•Pl, the system is no 
longer described by the renormalized CP 1 model. A new configuration of z(x), 
the (short range) spiral state, is favo red (see Fig.4.1 ). This can be understood 
within the mean fi e ld theory in the following way. Let us assume that in the 
x-y plane, the sp in is rotated by an angle 2Qr(2Q.) as its coord inate increases 
by a in the positive x( y)-d irect ion. The angle Q~ is 0(8) and the nonvanis~ing 
Q 's indic<ttes the spira l order. The above configuration is paramet ri zed by V1 = 
o,"v2 = sin (Q" - Q.), V3 = sin(2Qr), if.= sin(Qx + Q.), where V, := i,zo• · The 
(1 ,1)-sp ira l state [22] corresponds to Qx = Q.(= Q). We expand the action in 
terms of Q up to O(Q'). The ,·ariables =•=m ·s are 1 + O(Q2

) for small Q in the 
<tbm·e parametrization. For this choice. the lattice effect ive act ion for the spin 
,·ariable including the one-loop correction (eq.(3.35)) is written as 
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l6J ( t2(38) +-3- l- 28- 2J Q' + O(Q6 )j. (3.73) 

From this expression, it is seen that, the mean field value of Q is zero for 8 < 5<••l 
while Q becomes non vanishing for 8 > 8~•Pl: namely, the (short range) spiral stat~ 
1s real! zed (F1g.3.10). This state is the result of the ferromagnetic interaction 

Figure 3.10: The effective action S'" as a function of the pitch Q. For 8 > 5<••l 
Q has nonvanishing value and accordingly the short range spiral state is reaitzed 
leacl!ng to the band motion of the hole. 

which appeared because of the hole hopping. In Fig.3 .9 the critical line for the 
short range spira l state determined by the condition of the vanishing coefficient of 
0( Q2

) term in eq.(3.73) is plotted by a dotted line. The short range spiral state 
appears at lower temperature, since it is a kind of order. In the (short range) 
SJma l state, the coherent hole hopping (i.e., band motion) is present and so the 
phase is metallic. ' 

We used the term "short range spiral" s ince the spiral state here does not 
n ecess~1l·i ly lead to the long range magnetic order. In fact, this state is defined 
by < :,=o• >-:-- Q and < i,zo; >~ l. Decoupling the t-J Hamilton ian using these 
two expectatiOn values, the correlation functions of the spin S = ziiz/2 such as 
< 5' ( :r )51 

( 0) > can be calcu lated by a mean fi e ld approximation and seen to decay 
exponent ially 1f the sp1ns are not Bose condensed . Th e Bose condensation of za 
may be prevented if the CP 1 constraint is taken into account locally, since this 
const ra1nt would make the spin Zra behave more like a fermion than a boson. 

In the neutron scatter ing experiment[27), the spin configuration with the short 
range mcommensurate(spiral) o rder is observed as a double peak in the intensity 
1n th e rec1procal space. As temperature increases, this peak is seen to change into 
a Single peak ,_ namely, the spiral configuration is destroyed at high temperature in 
accordance w1th our resu lt. For instance, the sample of La-oxide with 8 ~ 0 07 
the double peak becomes very faint at T = 200!\. . ' 

3.8 Conclusion 

We ha.,·e deri,·ecl an effect ive theory of the t-J model with weak three dimension­
al!ty at sma ll doping assuming short range a.ntiferromagnetic order. 
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At zero doping, its continuum limit is the CP1 model as known previously. 
Because of very weak three-dimensionality, the Nee! temperature TN is much lower 
than the antiferromagnetic coupling constant J(:::: lOOO)K. For very small value of 
the anisotropy parameter a, TN::::: J /(-In a). We have also solved numerically the 
saddle point equa.tions , and compared our results, such as the Nee! temperature 
and the spin correlation length , to the experimental ones. The values of the 
parameters, J and a, that give the best fit to the data are in good agreement with 
the previous estimates. 

Based on this effective model , the dynamics of the hole are calculated system­
atically. Up to one loop correction and at not very low temperature, the effect 
of the hole is only to decrease the effective antiferromagnetic coupling J of spins. 
In this case, the continuum theory is again the CP1 model, but with parameters 
renonnalized by the hole. Using the expression of the parameters, the Nee! tem­
perature TN is calculated as a function of doping. With the hopping effect of the 
hole included , the Nee! temperature decreases sufficiently fast as doping increases, 
consistent with experiments. The hopping effect is essential in the destruction of 
long range antiferromagnetic order, although only the short range hopping (shown 
in Fig.3.5(b)) is enough, since hopping is highly suppressed in the short range an­
tiferromagnetic state. At very low temperature, non local interaction in the time 
direction can not be neglected, and as a result, the system is no longer described 
by the CP1 model. The value of 8 where TN vanishes is estimated to be 8 ~ 0.02. 

For larger doping, four and higher fermi interactions can not be neglected, and 
the theory is not the CP1 again. 

The ad vantage of our approach is that the effects of holes are taken into account 
rigorously, and on the resulting effective theory, the mean field approximation is 
done. The results on the magnetic properties are more clearly seen than the direct 
mean field theory on the t-J model, for instance, the effect of hole hopping on TN 
can be taken into account rigorously. 

We have also studied the region outside the phase with the long range antifer­
romagnetic order. As doping increases further after long range antiferromagnetic 
order is destroyed, the effective antiferromagnetic coupling J,ff finally changes sign 
at 8 = 8?. For 8 > 8?, effective ferromagnetic component of the spin interaction 
arises because of the hole, and accordingly, the short range spiral state is realized. 
The band motion of the hole appears in the (short range) spiral state. This state 
is used in the next section as a background spin configuration, and is show n to 
give rise to the superconductivity. 

In our analysis, the CP1 constraint was treated by a mean field. For the 
calculation of the magnetic properties, this global treatment appears good, since 
our results agree with experimental ones well. The local nature of this constraint 
will become important when the quantities like fermi surface are discussed. This 
point shall be mentioned in Chap.5 . 
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Chapter 4 

Superconductiv ity 

In this chapter the superconductivity of the high Tc materials is studied on the 
t-J model. This chapter is based on Ref.[46] 

In the previous chapter, we derived an effective lattice action eq.(3.16) in the 
short range antiferromagnetic spin configuration. The action contains many four 
and higher order fermi interactions. They were neglected at very small doping 
and the action was simplified to be the CP 1 action with renormalization by hole 
hopping. These fermi interactions, however, play the principal role in the super­
conductivity, and must be taken into account seriously. ·we can of course use this 
effect ive model also for the study of the superconductivity. However , this action 
contains many interaction terms arising from the integration over half of the spins. 
This integration in deriving the effective theory was needed to write the spin part 
in the form of CP 1 model, and is not necessary in the study of superconductivity. 
Since the essence of the superconductivity is already involved in the original t-J 
model, we would here rather start from the t-J model rather than the effective 
action derived in Chap.3. We will discuss in Sect.4.4 how the result would be 
modified if we perform the mean field theory of the effective action. 

We again use the slave fermion representation in this chapter. In this represen­
t at ion, the local constraint can be treated to some extent locally by introducing 
the Schwinger boson (Sect.2.5). The hole fermion thereby becomes free of con­
straint. The essent ial part of the interaction between hole and spin arising from 
the strong correlation is therefore expected to be taken into account by this trans­
formation. In fact , there appears in the Hamiltonian a four fermi interaction with 
minus sign, sho\\'ing the attraction between neighboring holes. If the hole pairs are 
formed owing to this attraction , the superconductiv ity starts. To so lve this four 
fermi theory and see this really happens, the most powerful and simple method 
is the mean fie ld theory. The order parameter of the superconductivity is gauge 
inYariant(i.e. physical) and it consists of two holes and RVB operator of spin. The 
calculation is carried out on the two dimensional t.-J model. The applicability of 
the mean field theory in two-dimensions is discussed in Sect.-1.4. 

In our mean fi eld theory, the spins are not treated self-consistent ly. We assume 
some configurat ion of spin and the spin variables are replaced by the expectation 
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values. As the background spin configuration, the (short range) spiral state[26] 
is assumed. The spiral state is obtained as a mean field solution of the slave 
fermion representation of the t-J model at zero temperature outside the long range 
antiferroma,.netic phase[22] . The antiferromagnetic order of the spin is slight ly 
broken in the short range spiral state so that the coherent hole hopping (i.e., band 
motion) is present . This finite hopping leads naturally to the super current once 

the pair is formed . 
Since the order parameter on the link may exhibit non uniform pattern[23], 

the solution of mean field theory is searched for within the periodicity of -/2a. 

4. 1 M ean fi eld free energy 

Let us again write the t-J Hamiltonian Hu of spins and holes in the slave fermion 

representation: 

t L(I/J!+"a~ax+"I/Jx + h.c.)- Pc L(a1a)x 
X 

(4.1) 

where .p~ is the fermionic hole operator, while a1,. is the bosonic spin operator. 
11'(= 1,2) is the spin index. The spin and hole operators are constramed as 

(4.2) 

for each x. (We write a1ax = L:,. a~,. ax,. etc .) The chemical potential Pc is in tro­
d uced to fix the hole concentration 6. 

We rewrite Hu using the Schwinger boson zx,. defined in eq.(3.4), to see explic­
itly the hole-hole attraction relevant to the superconductivity. This replacement 
leads to the hami ltonian (3.7) , which is also written as 

Hu = tl:::(.P!+"Xx".Px +hc)+pc~(,P1 ,P -1)x 
X," 

where we have used 

Here Vx" is the spin singlet (RVB) operator on the link (x , x + p) 

and Xx" measures the relative orientation of the spin pair at (x, x + p) 

xx" = z!zx+w 
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(4.3) 

(4.4) 

(-15) 

(4.6) 



The last term in the second line of eq.( 4.:3) is written as 

(4.7) 

The minus sign here shows the attractive force between two neighboring holes aris­
ing from the antiferromagnetic in teraction, as expected from the naive discussion 
in Sect.2.2, and as observed in the exact diagonalization(14] . 

We introduce accordingly an auxiliary field t..%~ of two holes at neighboring 
sites wearing the cloud of singlet spin v%": 

(4.8) 

This quantity is invariant under the U(1) gauge transformation (3.12), and thus 
a physical order parameter of the superconductivity carrying two units of charge. 
By definition it satisfies 

(4.9) 

This ord er parameter represent the pair of the holes on neighboring sites. Using 
this auxiliary fi eld, the four fermi term ( 4.7) is written by a Hubbard-Stratonovich 
transformation as 

(4 .10) 

In our mean field theory, the spin variables X and V are simply replaced by 
some expectation values. These values are chosen as follows. In the Nee! (or long 
range antiferromagnetically) ordered state, the expectation value of X%" = z;z%+~ is 
zero, namely, the hole cannot move classically. But in the actual superconducting 
phase of the high Tc materials, the long range antiferromagnetic order is destroyed 
and on ly short range antiferromagnetic order remains[36]. As shown in Fig.4.1 , 

20 40 

7 
I 

-20 
X 

Figure .J.l: The configuration of the spiral state. The orientation of nearly anti­
ferromagnetically ordered spins rotate by an angle of 2Q as x or y increase by one 
unit. 

the de,·iation from the antiferromagnetic order is denoted by the small angle Q. 
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Choosing a suitable coordinate a.xis and gauge, the spin variables : at site x and 
x + i' are written in the form 

In this incommensu rate (spiral) configurat ion, the expectation values of the spin 
variables appear in eq.(4.3) are evaluated as 

X%,±" - < XI,±~ >:::: ±Q 

v%,±" _ < v%,±" >:::: 1 (J.l = 1,2). (4.12) 

As explained in Sect.3.7, this parametrization of the spin variable does not lead to 
long ranue magnetic order if the spins are not Bose condensed. The gauge we have 
chosen i~ eq.(4 .11) is consistent with real fluxless X%" (i.e., f1 pt•queue x.%"/lx%!'1 = 1) . 
The fluxless configuration of x%~ is energetically preferred as menttoned m some 
mean field theory's of spins[47]. . 

One may, as a first assumption, take the pitch Q to be a small constant mde­
pendent of 8. 

(a) Q = O.Ql and 0.03. (4.13) 

This assumption is however, too simplified. The difference from the antiferromag­
netic order must grow as doping increases. In fact , the result of the ~ean field 
analysis[22] is given by Q:::: (0.2 ~ 1.2) x (t/J)8 (eq.(2.11)). As a reahsttc ansatz, 
therefore, we take two values for the pitch of the spiral state. 

t t 
(b) Q = 0.17]8, and 0.33]8. (4.14) 

In Sect .3. 7, we have studied the spiral configuration at finite temperature in the 
mean field theory on the effective CP 1 model. Our result, however, is not applicable 
to low temperature region. We therefore use the results at zero temperature[22] 
(eq. (4.14)), assuming that this configuration persists at low temperature where 
the superconductivity occurs (for example, forT ;S 60K). 

The state with pitch proportional to 8 (eq.(4.14)) is the spiral state in the 
original sense (Exactly, it is called (1,1)-spiral, but in thissection, we w!ll constd er 
only this type, and drop (1,1)- unless necessary). We w!ll never t heless calcu late 
also for the simplified ansatz ( 4.13), to show clearly the importance of the 8-
dependent pitch (or 8-del?en<;Jent dest ruction of antiferromagnettc order). The 
pure spin term -J/2 2::%~ V}~ V%~ in eq.(4.3) is suppressed , smce tt ts a constant ~n 
this treatment of spins. Also the CP 1 constraint (3.6) is not taken tnto account tn 
this chapter. . 

Strictly speaking, we need to confirm self-consistently that the assumed spm 
states (·Ll3) (-1.14) are still good spin states in the presence of the non vanishtng 
superconducting order parameter t..%~( The mean field theory of the spiral state[22] 
was done there without the superconducting order parameter). Stnce thts has not 
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yet done, it is important to look into first how the superconduct ivity is affected 
by the back ground spin configu rat ions. 

From the above considerations, our mean field Hamiltonian is given by 

HMF = mL:(I/J~ I/J,-1)+tL:(x,~I/J~+~ !f;, +h.c . ) 
:r :r, p. 

(4.15) 

The expectation values x and V are defined in eq.(4.12) : The hole mass m(= 
Jl c + 2J) includes the renormalization by the second and the third term in the 
second line of eq.(4.3). In this Hamiltonian , the gauge invariance under eq.(3.12) 
is lost. This is unfortunately inevitable in mean field theory, where one assumes 
some periodicity. However, it can be shown , for instance, t hat another gauge 
choice x,,±~ = Q, V, ,±~ = ±1 reduces by the shift in the momentum space k--+ 
k + (7r/2,7r/2) to the present choice (4.12), and thus gives the same answer. 

In calculati ng the free energy from this Hamiltonian , we assume .Jia periodic­
ity for 6.,/s. Within th is periodicity, independent order parameters are the four 
6.~ 's (JL = ±1 , ±2) . We divide t he lattice into two sublattices (even and odd), and 
defin e the four 6., (i = 1 ~ 4) as shown in Fig.4.2. The spin expectation Values 

·d.

88
d. d:, d .. 
d, d, 

62 .6~ 62 

d, d, 

Figure 4.2: Th e parametrization of the four complex tJ., 's for the case of the 
period icity .Jia. T hey emerge from each odd site( marked by • ) as the arrows 
indicate. Wh en the period icity is 2a , half of the odd sites have tJ.;(i = 5, 6, 7, 8) 
instead of i = 1, 2, 3, 4. Spin variab les xis and V.'s are defined in t he same way. 

x," and V,~ in eq.(4 .12) also have th is periodicity. The four independent xis and 
V.'s (i = l ~ 4) are defined similarly as tJ. ,'s, resulting in 

x. 
v. 

Q(1 , 1, -1 , -1 ) 

( 1' 1, 1, 1). 

The Fourier transformation of the odd si te hole is defined as 

(4.16) 

(-1 .17) 

and similarly for t he e,·en site hole 1/J •. The momentum integration fo ~k is over 
the inner half of the Brillouin zone. 
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Using this, the partition function under the .Jia ansatz is (in the path integral 

representation) 

z j Dt.D!f;exp (- j dr ( 2~2 i ~k ~hMkwk 
+ ,Ed (~~ltJ.;\2 - 2JLc)]] , (4.18) 

where 
Wk = (1/Jo(k) ,I/J.(k) ,t/Jo(-k) ,t/J.(-k)f' (4.19) 

a.nd 

[ 0, +m txk 0 1~, l t;t. aT +m -~6.-k ~t~-k . Mk = O -~iLk aT-m 
~Lik 0 -tx-• aT -ffi 

(4.20) 

The Fourier transformations of the parameters are defined as 

t,.k = V
1
t,.

1 
exp( -ik,) + V26.2 exp( -iky) + V3 6.3 exp(ik,) + V.6., exp(iky), 

X• = x
1

exp( -ik,) + x2 exp(-ik.)+x3 exp(ik,)+x,exp(ik.) . (4.21) 

We obtain the free energy per one site F(6.;) from the eigenvalues wi±) of M • . 

It reads , 

F(t. ;) 

where 

wi±) (m2 + 1tnl2 + ~2 
(lt.•l

2 
+ 16.-kn ± JR]

112

' 

R 1tx.l2 (4m2 + ~
2 

(l t. •l
2 

+ ltJ.-•1
2)1 + ~: (l t. •l

2 
-16. -k\

2
/ 

t2 J2 -
+-4- (xk t.-kx - kt.k + c.c.). (4.23) 

4.2 Phase diagrams 

\\'e searched for the configuration of mean field 6., that gives the absolute min­
imum of F(tJ.,) by a simulated annealing method[48]. The resu l t1~g stati~ n­
ally cond itions are the self-consistency (gap) equations for four 6., s assunng 

6. ,~ =< ¢,+~ V}~ 1/1, >. 

45 



0 0.1 0,2. 

(~ (~ 

Figure 4.3 : Phase structure of the ground state(T = 0) for four ansatz for the 
pitch Q. (a):Q = 0.01 , 0, 03 and (b):the spiral state: Q = 0.17(tfJ)8 ,0.33(tfJ)8. 

. Let us first summarize the results at zero temperature. The phase structure 
m 8- tjJ plane at T = 0 for the constant pitch eq.(4.13) is shown in Fig.4.3(a). 
For t = 0, the ground state is realized in a dimer state in which only one of the 
four ~,'sis nonzero (See Fig.4.4(a)). This dimer state describes the RVB state of 
the antiferromagnetic interactions, although there is no "resonance" since there is 
no hopping. The hopping term shuffles ~;'s and so favors uniform I~;J's. Thus 
the three ~; 's that are zero at t = 0 begin to grow at t 'f 0 (we call it dimer-like 
state. See Fig.4.4(b)). The uniformity observed in the dimer and dimerlike state 
may develop into the phase separation[7], if the restriction on the periodicity is 
removed . 

For suffi ciently large t , the flux state supercedes the dimer-like state. This flux 
state is characterized by c01~stant_ amplitudes 1~.1 = ~ and the product around 
each pl~que tte given by ~ 1 ~2~3~4 = -~', which states that the flux per pla­
qu ette IS ±1r. The term flux here is defined as follows. The term Lizp V}. ..Px+p ..Pz 

(Q.) 

• • • • 0 - - ----

() 

0 
() 

IG 
() 

0 

() 0 
0 () 

() 10 

Figure ~.4: The three states, (a)dimer, (b)dimerlike and (c)flux that appear in the 
ph ase d1agram F1g.4 .3. 

in eq.( -1.1 .5) can be ~egarded as a fermion hopping term if we replace wz - '7! 
for :r = odd s1te (as 111 eq.(3.1-1 )). While t his fermion hops around a pl aquette, 
t h1~ term suppltes t he hopping amplitu de (we have se t \'; = 1) ~2.& 3 D.,Li 1 as­
soctated \nth the product < '7! Wx+2 ..P~ + 2 '7x+l+2 '7l+ 1 +2 ..Pz + lw;+l'lz >(see Fig.4.5 ). 
Th1s amplttud e IS used for the definition of our flux . The flux state, with ±7r flux , 
preserves the pnnty and t1me-reversal sy mmetry. For larger pit ch Q = 0.03 , that 

-1 6 

Figure 4.5: The fermion ( .,P, 17) get a factor of ~2.& 3~4 .& 1 while it hops around the 
plaquette (x, x + 1, x + 1 + 2, x + 2)(x Eodd). 

is , larger effective hopping, the flux state becomes more stable than for Q = 0.01 
It is interesting to observe that every flux state we got is realized with the definite 
phases 

(4.24) 

that is , the hole pairs condensate coherently. In this flux state,~. of eq.(4.21) is 
written as~. =~(cos kx + i cos k.), and so it has the so called s + id symmetry 
[20,21] . The flux state survives for any large value oft at zero temperature. In 
contrast , in the Iarge-N analysis[23] in the electron hopping channel, the uniform 
state (corresponding to four ~;'s being equal) is the ground state at large tfJ . We 
note that, in the ground states obtained above, the dimer-like state and the flux 
state are superconducting states exhibiting the Meissner effect, while the dimer 
state at t = 0 is not (See Sect.4.4). 

)\O~h\0.( 
~~----

IOO ~ leo .,.~...,, 
.... .... 

TCI\J T(~) 

$0 so 

0 0,1 O.l. 0 0.1 
6 

0.2. 

<il ciiJ 

Figure 4.6: Phase diagram in 8 - T plane for two pitches: (i):Q = 0.01 and 
(ii): Q = 0.03. For large pitch Q, the critical temperature T, lowers , but the flux 
state is favored to the dimerlike state. In (i) , the dashed line represents th e critical 
temperature for the dimer state determined by Ginzburg-Landau expansion, which 
is lower than the T, for the flux state. 

We next consider the case of the spiral state given by eq.(-!. 1-1). The phase 
structure in the 8- (tfJ) plane is given in Fig. ·t3(b). In this case , t he flux state 
is favored also at large value of doping, since the effective hole hopping amplitude 
(t ' ff = tQ) increases with 8. [Large tx, corresponds to the region of large tf J in 
Fig.4 .3(a).] 
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l'iext , at finite temperature, one may discuss the phase struct ure in mean field 
theory. We will take J = 0.1eV and I = 0.3eV from now on. The phase diagram 
in 8- T plane for 8 independent Q = 0.01, 0.03 (eq.(4.13)) is given in Fig.4.6. At 
high temperature is a normal(metallic) state; .6., = 0. At Tc, there is a second 
order phase transition into the flux state. For the pitch Q = 0.01 , there is a first 
order transition into the dimerlike state at lower temperatu re TFD· In this dimer­
like state, the val ues of smaller three Jt.;j 's develop as the temperature becomes 
higher, although fou r Jt.;j's are not equal at TFD· For larger pitch Q = 0.03 , the 
temperature Tc lowers and also the dimerlike state disappears because of too large 
hopping. 

Let us go on to the spiral ansatz ( 4.14). The phase diagram is shown in 
Fig.4.7. The most significant feat ure in this case is that the flux state at large 

Figure 4. 7: Phase diagram in 8- T plane for the spiral state with two pitches: 
(i):Q = 0.17(1/1)8 and (i i): Q = 0.33(1/1)8 with I= 0.3eV and J = 0.1eV. 
In cont rast to F ig.4 .6, large doping region is the normal state because of large 
hopping. 

doping (8 ,G (0.05 ~ 0.1)) gives way to the normal state. this is because the effec­
tive hopping amplitude IQ becomes so large that the pairs of bounded holes are 
dissociated at large doping. As a result , the hole can move freely, lead ing to the 
normal state. These results show the importance of the short range antiferromag­
netic order of spins (i. e., smaller pitch Q) to support the supercondu ct ivity. The 
dimerlike state does not appear anymore. In Fig.4.8, the temperature dependences 
of .6. and free energy of the flux state at 8 = 0.017 are plotted for the spiral state 
( Q = 0.33(1/ J)8) . The behavior of .6. looks similar to t hat of the conventional 
BCS theory. 

We ha,·e also stud ied the case of (1,0)-spi ral state[22]. This sta te is similar 
to the (1,1)-spiral state, but the pitch in , say, y-direction is zero:Q = (Q,O). For 
Q = 0.33{1/ J)6 , it corresponds to choosing x. = 8 x (1 , 0, -1 , 0) and V. ::::: 1. 
Because of the anisot ropic hopping, a new(line-like) configuration {.6.2 = .6.4, fl. I = 
.6.3, / ~ 2/ > /L.'l.d) is favo red over the flu x state. Bu t the total free energy [t he 
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Figure 4.8: The magnitude of the order parameter .6. and the free energy of ~he 
flux state versus temperature at 8 = 0.017. The ansatz of the spin configuratiOn 
is the spiral state with Q = 0.33(1/ J)8 with I = 0.3eV and J = 0.1eV. The free 
energy of the normal state( L.'l.; = 0) is plotted by a dashed hne for companson . 

hole part ( 4.22) plus the spin part -J /2 '£%~ VL v%~J is higher than that for the 
" (1,1)-spiral + Flux" solution (say, by a few Kelv1~ at 8 = 0.0~) . The preference 
of (1,1)-spiral state to (1 ,0)-state in the slave fermiOn scheme IS also observed In 

ref.[22] at zero temperature. . . 
In the annealing procedure, we observed that there are sever~! loc.al m1~1ma. 

The energy difference between the flux state and other local mimma IS typic~lly 
L.'l.F::::: several Kelvin. The flux state may be stable up to fluctuatiOns of tlus SIZe. 

4.3 Ginzburg-Landau expansion 

A Ginzburg- Landau expansion[49] helps us to understand why the flux state is f~ 
\'Ored near the critical temperature. We here fix the gauge Xi= Q(1, 1, 1, 1) , V.­
(1, 1, -1 , -1). This choice is convenient in Gi

4

nzburg-Landau expansion. The 
Ginzburg-Landau free energy per site up to O(p ) IS wntten d1agramat.Ically as 

F<t, = o==o + -= A. -= 

·= ~ [] l3 
(4 .25) 

+ ..J 0 c. 

·~ + ouc:--=o ·~ 0 il 
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The order parameter !l. on link is represented by a solid line. The hole fermion 
propagator is denoted by dotted line: 

0 

(4.26) 

etc. Here the momentum integration is over the (full) first Brillouin zone (since 
we have not dlVlded the lattice into sublattices), and Xk = 2Q(coskz + cosk.). 

For the spec tal case wtth the equal magnitude of four 2>;'s, 2>; = pe;.;; ( j = 1 ~ 
4), the free energy takes the form 

FcL(pe;.;;) -4 (A-~) p2
- 2Bp2 (cos(<P1 - <P3 ) + cos(<P2 - <P

4
)) 

+ Cp
2
(cos(<Pt - <P2)- cos(<P2- <PJ) + cos(<P3 - <P 4)- cos(<P 4 - <Pt)) 

+ A/(7 + 2cos(<Pt- <P2 + <P3 - <P4 )), (4.27) 

and for th e flux state 2>; = p(l, i, 1, i) , 

J 
FaL(flux) = -4(A + B- 4 )/ + 5Ap 4 • (4.28) 

The coefficients A , B, C and A are temperature dependent positive constants 
and they rep resent terms written graphically in eq .(4.25). The critical temper~ 
at ure ts determmed by the vanishing of the term of O(p2), for example, by (A+ 
B)(.Tc ) - J /'!; .= 0 for the flux state. The term proportional to J p2 /4 comes from 
(J/2) 2:: l!l.J lll eq.(4.15). The overall factor 4 of the term of O(p2 ) is the number 
of non-vamshmg 2>; 's . The coefficient A represents the term in which 2>, and 6.; 

(eV) T(I<) A B c A 
m 0.027(eV) 25 0.0241 0.0016 0.0001 0.1050 

(8 ~ 0.017) 50 0.0234 0.0017 0.0007 0 0888 
75 0.0221 0.0014 0.0012 0.0681 

m. 0.037( eV) 25 0 0180 0.0048 0 0023 0 05.56 
(8 ~ 0.033) 50 0.0173 0.0038 0 0025 0.0424 

75 0 0164 0.0030 0 0027 0.0329 

Table 4.1: The coeffi cients of Ginzburg-Landau expansion with Q = 0.33(tjJ)8 
(I= 0.3eV, J = 0. 1eV) form = 0.027 and 0.037 , corresponding to 8 ~ 0.017 and 
~ 0.0:3:3. respecti,·ely. The cri t ical temperature Tc is 55I< and 281\. respectiYely. 

lie on the same link , and is comparable to l /4, while Band Care small(see Table 
4.1). The terms B , C and A determine the relative phase of 2>; 's and accordingly 
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the value of flux per plaquette. For example, one can see from eq.(4.27) that the 
free energy of the flux state eq.(4.28) is lower than that for the uniform state 
( 2>; = p) by 4Ap4 For the dimer state, the free energy is 

FcL(dimer) =-(A-~ )p2 + ~Ap4 (4.29) 

Because of B term, which is O(t2 ) for small t, the critical temperature Tc for the 
flux state is higher than that for the dimer state (plotted by the dashed line in 
Fig.4.6(i)). Accordingly, the condensation starts in the flux state. 

4.4 Discussion 

Larger periodicity In the electron hopping channel, a new ground state other 
than that in the /2a-periodicity[23] was found when the periodicity is extended 
to 2a[50]. Therefore, in the present approach, it is also necessary to check the 
stability of our flux state against larger periodicity. We have checked within the 
framework of Ginzburg- Landau theory that it is stable against the periodicity of 
2a. [In this case, we have eight independent 2>; 's(i = 1, .. . , 8); i.e. , each odd site has 
four 2>; 's with either i = 1, 2, 3, 4 or i = 5, 6, 7, 8 (see the caption of Fig.4.2).] This 
result suggests that our flux state may survive as the true ground state of the mean 
field theory of the t-J model with all 2>z/s being treated as independent mean 
fields. Note that the /2a-periodicity is the shortest one capable of describing the 
flux state. 

Properties of gap In our flux state, the fermionic excitation energy reads as 

(4.30) 

for spiral state with Q = 0.33(tjJ)8 = 8. At 8 ;S 0.03, our solution gives m-4t8 > 
0 (see table 4.2) , owing to the large contribution from 2>. Hence wk is nonvanishing 
at any momentum, namely, the gap is 5-wave like. However, at larger doping, 

8 0.017 0.033 
m(eV) 0.027 0.037 
Tc(eV) 0.0047 0 0024 

J2>(0)(eV) 0.0060 0.0040 
gap(eV) 0.0070 0.0025 
2·gap/Tc 2.3 2.0 

Table -!.2: The parameters at two typical value of 8 at zero temperature. The 
pitch is Q = 8. The gap is the minimum value of wk. 
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the mass is large, and accordingly the normal term m- 2t8(sin kx +sin ky) can 
vanish along some fermi line kF surrounding k0 = ( rr/2, rr /2) (See Fig.4.9(a)). The 
excitation of the hole near k0 is observed also in the exact diagonalization[51J at 
small doping. Th e fermi surface is small with its area proportional to the doping 
8. The gap at fermi surface 2wk, reduces to 2J t:.k,. The symmetry of t:.k itself is 
s + id. Since /kF- k0 / == 0(8If2

), excitation energy at kF is 0(8112t:.) and can be 
rega rded almost gapless in this region of 8. Our quasi-hole excitations are thus well 
described by the s+id symmetry. The symmetry may generally depend on doping. 
This is not so pecu liar, since the nature of the strong correlation is weakened as 
doping increases. The experimental results concerning to the symmetry of the 
order parameter seem sti li controvers ial in the present situ ation. For example, the 
temperature dependence of the penetration depth[52] is very similar to that of the 
BCS superconductor, which isS-wave like. On the other hand, the absence of the 
coherence peak below Tc in the inverse nuclear relaxation time TI-I in the NMR 
measurement supports the d-wave paring[53] 

(a) (b) 

Figure 4.9 : (a):The fermi surface of the hole at 6 = 0.033, given by sin kx+sin ky == 
m/(2t6) == 1.8. The shaded region is filled with holes. (b): The large fermi surface 
of the spin that would be obtained by exact treatment of the CPI constraint. See 
Chap.5. 

The ratio 2·gap/Tc is used conventionally to determine if the system is strongly 
coupled or weakly coupled. The values from the photoemission experiments are 
o btained to be 7 ~ 8[.55]. The value of ou r solution is small compared even to that 
of the BCS theory, 3.5. Our small value, however, does not lead to the the weak 
coupling. Rather, the fact that t:. cannot be neglected compared to the normal 
term appears to indica te the system is strongly coupled. 

As we have see n, in the slave ferm ion mean fi eld theory, the fermi surface is 
small in contradiction to the photoemission study[54]. One need to go beyond 
the mean fi eld theory and impose locally th e CP1 constraint z!zx = 1 in order to 
obtain the large fermi surface. This may be performed by rewriting the hard core 
(i.e .. =;a == 0) bo ·on = by a fermion and a Chern-Simons gauge field. This will 
be discussed in the following chapter. In the slave boson approach, on th e other 
hand, the fermi su rface is large at the mean fi eld treatment. 
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Coherence length Our analysis shows that th e charge carrier of the high . Tc 
superconductor is the pair of two holes on neighbonng Sites. If the fluctuattoA 
of spins is taken into account, the coherence length would be about he/ J ~ 5. 
( ·ee next chapter). According to experiments[56], the coherence length of the ~a1r i: a few times the lattice constant. In the BCS theory, the patrs are forme 

0 

}." 

the momentum space, and accordingly the coherence length is more than 10- · 
The short coherence length in the high Tc superconductor s~pport: the strong 
attractive force and the formation of the pair of holes on neighbonng (or very 
near) sites. 

Meissner effect In the presence of the electromagnetic field , the hopping term 
in eq.(4.3) is modified to be 

I " . /, t ;eA,,./,t v ./, t'lj;::r+J.lX:r~J'f'::r ~ e 'f'r +~JA:&Jl o/::r (4.31) 

The free energy changes to F(t:.; , A), obtained by the replacement (4.~1) in F(t:.;) 
defined diagramatically in eq.(4.25). The electromagne~ic current J~ IS calc: la~e~ 
f F th h · - 'F( A . A)/8A The term proporttonal to A" can be c ec e rom roug J~ = u '""" w . . H th 

· t d · O(t:.2) For no hopping t == 0, this current ts zero. ence e to ex Is , an ts · . . I' t d t 
Meissner effect occurs for nonvanishing t:. and fimte hoppmg amp 1 u e · 

Fluctuation oft:. The mean field theory at finite temperature performed h~ re 
may seem meaningless in two-dimensions owing to the infrared dtvergence whtch 
arise when the fluctuation around mean field is taken into accounl[3 1]. However, 
this is too naive. h d 

To see this, let us include the phase fluctuation B ~( x) aro~nd t e or er pa~a~-
t th t A _ A exp(iB (x)) where t:.~ is the flux solutiOn of the mean e · e er so a w.x~ - u~ ~ ' . · ed d' · 

This mode is massless and thus possibly give nse to the mfrar tvergence In 
low dimensions. Other modes of the fluct uation are masstve and does not p~oduce 
divergence. Let us look into the Ginzburg-Landau free energy eq.(4.25) wtth the 
flu ctuation O~(x) included: 

. FcL(B) == -Bp2 L L cos [B;(x)- O;(x ± p)] 
i=1.2JL=l ,2 

+ Cp2 [sin(B1(x)- 82(x)) + sin(B2(x)- B,( x + 2)) 

+ sin(B1(x + 2)- 82(x + i)) + sin(B2(x + i)- BI(x))j 

-2>./ cos [oi(x) - 82 (x) + B,(x + 2)- 82(x + i)j . (4.32) 

Th ffi · t· (Bp2 Cp2 ·J )..p4
) represents the terms in Fig .. 4.10. The values of e coe cten ~ , , - . · hQ 6) 

t he coefficients are obtained from the table -1.1 to be, for tnstance (wit == , 

o o 4 _ { (0.15, 0.03 , 0.02) x 10-5 eV for 6 ~ 0.017 , T = 5.5K (
4

.
33

) 
(Bp· , Cp·, 2>.p)- (0.19, 0.09 , 0.00) x 10-5 eV for 6 ~ 0.033 , T == 251< . 
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Figure 4.10: The couplings of the phase fluctuation around the flux state 

The dominant term Bp2 represents the ferromagn et ic coupling between two XY 
spins B,(x) and 8,(x ±p) on the nearest neighbor links. This term does not contain 
the interaction between two spins 81{x) and 82(y). Therefore, the phase fluctuation 
around the flux state at 5 ~ 0.02 is well described by the (two sets 11 = 1, 2 of) 
ferromagnetic XY model BP(x), with the coupling constant Bp2 dependent on the 
mean field magnitude p. 

The XY model in two-dimensions has Kosterlitz-Thouless transition at TKT. 
Below this TKT, the system is superconducting although there is no long range 
order. In fact , the coupling of the XY variable B(x) to the electromagnetic field 
AP(x) is written as 

(4.34) 

This term give rise to the mass term e2~2 A; of the gauge field, and thus the Meiss­
ner effect occurs (Anderson-Higgs mechanism). This Kosterlitz-Thouless transi­
tion would change into a second order transition when weak three dimensionality 
is added. This scenMio is checked in another model; the continuum four fermi 
theory with chiral U(1) symmetry[57]. The resulting transition point T~ is the 
true cr itical temperature of the real high Tc superconductor. This temperature r: 
becomes higher as three-dimensionality increases[40], just as the Nee! temperature 
TN does (Fig.3.7). 

The C-tenn in eq.(4.32) grows for larger doping, and the two XY spins 81(x)'s 
a.nd 82(x)'s are no longer decoupled for , say, 5;:::; 0.03 for Q = 5. The term A in 

eq.( 4.32) is invariant under the local U(1) gauge transformation (Do not confuse 
this with the U(1) gauge transformation of hole and spin (3.12).) 

BP(x)--. BP(x) + 1J(x + i•) -ry(x) . (4.35) 

The terms B and C breaks this invariance. Therefore, if B and Care small com­
pared to A, the mode (-1.35) of the phase fluctuation are not suppressed, and ac­
cordingly, the expec tntion value of ~x" vanishes: < ~x" >o::< exp(-iBp(x)) >= 0. 
This may happen at small region of delta, since A increases and B and C decrease 
for smnller doping. If th.is really happens, the superconducti,·ity would start at 
T = 0 from finite 5 just as experimentally observed, not from 5 = 0 as in Fig . .J.. / . 

It is expected that the three-dimensional mean fi eld theory would give similar 
resu lt as that of ours in two-dimensions. This is confirmed to some extent[58]. 
Accordingly, our study may have meanings also in this sense. 
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Fluctuation of spin We have done calculation with the the background of 
classical spins. Next question is, how the result is modified by the fluctuatiOn of 

the spin? . . 
Some of the effects of spin fluctuation can be seen from the effecttv.e lattice 

action (3.16) obtained by integrating out half of the spins. In fact , tlus actiOn 
contains three terms of four fermi interaction. These terms come from t.he s~cond, 
third terms and T;r, and relevant terms are (with .Po recovered from 1J = U ..P., and 

with a= 0), 

(4.36) 

The first term is classical term, and is essentially the same as that we have ob­
tained in the original t-J model (eq.(4 .7)) , since (z.;z) ::: Vxp .== 1 in th~ short 
range antiferromagnetic order. New terms arising from the spm fluctuatiOn ~re 
the second and the third terms in ( 4.36). The second term ts the attractive 
force between two holes on next nearest neighbor site (Fig.4.11(~)). Although 
its strength::: J < iz.; >< z

0
ri > is small in the short range anttferromagnetlc 

order. The third term is written as 

0 
I 

o -"}( 

lo.) (I,) 

Ftgure 4.11· The effects of spin fluctuatiOn on superconductivity. (a):To cause 
attracttve force between next nearest neighbor holes. (b):To fix the relative phase 
of the neighboring order parameters ~xp· 

(4.37) 

and is important to determine the relative phase of neighboring ~x/s (Fig.-1..11( b)). 
It can be checked by integrating out the rest of the spms that the further 

fluctuation give rise through ]-term to the attractive force between two. holes 
at a distance. This force becomes exponentially small at large dtstance m the 
absence of long range antiferromagnetic order. Its range would be typically he/ J ~ 
0.5( eVA) /0.1 ( eV)~ .sA. As a result , pairs ~xy of holes at x and y wtth lx- Yi ;S (a 
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prevent these terms to cause the phase separation. It is, however, d iffic ul t to show 
this explicitly. 

One of the possible way to see the effect of sp in fluct uat ion on su perconductivi ty 
is to carry out the mean fie ld theory with both ~~~ and the order parameter of 
spins x~~ and Vr~ included in t he mean fie ld equations. 
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Chapter 5 

Summary and Discussions 

Summary \Ve have seen t hat the t-J model describes well t he global properties 
of high Tc mate rials in both ant iferromagnet ic and superconduct ing phase. T he 
phase diagram obtained is shown in Fig.5. 1. Explanation of t he phase d iagram 

200 
il'lsulo:tor 1 

I 
-·1 
I 

T(K) I meta. I I 
AF I 

100 I 
I 

super 

0 
0 .05 0 .1 

Figure 5.1: T he phase d iagram of the high Tc material calculated from the t-J 
model. 

based on our analysis goes as follows. 
The strong antiferromagnetic spin interaction (J :::: lOOOK) produces at small 

doping and low temperature the long range ant iferromagnetic (Nee!) order. Be­
cause of the qu~si two-d imensionality, the transition temperat ure TN is lower than 
J by a factor l in ai-l ~ 1/5. The effective anti ferromagnetic coupling Jeff dimin-
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ishes by t he hole doping, and consequently t he Nee! temperature TN decreases 
as doping in creases. T he hopping effect of the hole in particular is important 
in the destruct ion of ant iferromagnet ic order. However, only short range hop­
ping domin ates, since the hopping is highly suppressed in th e antiferromagnet ic 
phase. Outside t he ant iferromagnet ic phase, spins are st ill in t he firm short range 
an tifer romagnetic order, although the magnetization vanishes. This short range 
an t iferromagnet ic orde r develops at low temperature into t he short range spiral 
state, where t he sp ins rotate spatially with some finite pitch. In this state, the 
band mot ion of t he hole is present . The (short range)antiferromagnetic order 
prod uces an att ract ive force between neighboring holes owing to the antiferromag­
net ic in teraction J. As a result , t he hole pairs are formed at low temperature and 
t he superconduct ivity starts. The origin of t he high critical temperature is the 
large valu e of t he spin an tiferromagnet ic coupling J , being much stronger than 
t he phonon coupling in BCS theory. The coherence length is very small (~a few 
latt ices) because of the strong pairing force. The absence of long range antiferro­
magnetic order is needed in the superconduct ivity, since finite ampli t ude of hole 
hopping is necessary to produce the superconducting current. Finite hopping is 
also needed to prevent the collapse into the phase separation owing to the attrac­
tion. T he superconductivity is possible therefore at small region of o, where the 
short range ant iferromagnetic order survives suffi ciently to produce the attract ive 
force, and a t the same time, is broken slightly to allow the finit e hopping. As 
doping increases further in the superconduct ing phase, the holes begin to flow 
independently due to the too much decline of the short range antiferromagnetic 
order, and no rmal (metallic) state appears. 

In summary, we have seen that th e antiferromagnetism and superconductiv­
ity of the Cu oxide high Tc material is described by the t-J model. The essence 
lies in the local constraint expressing the strong correlation. The superconductiv­
ity, its appearance near the antiferromagnetic ph ase are explained consistently by 
including the strong correlated natu re. 

T hroughout th is thesis, we used the slave fermion scheme. This representat ion 
is good for the study of the magnetic phase at o ;:S 0.05. The CP1 constraint is in­
cluded globally, and it is enough in calculating the magnet ic quanti t ies. As for the 
superconduct ivity at larger doping region, it enables us to solve partly the local 
const ra in t and thus to identify t he physical order parameter of the su percond uc­
t ivity. However, since we have not included t he CP 1 const raint in the study of t he 
sup erconcl uct i,·ity, t he size of t he fermi surface is cont radictory to the experiments 
in the region of moderate elopin g (6 ;(: 0. 1). To remedy this poin t, t he mean fi eld 
t reatment of t he constraint would not be enough, too , and the local treatment 
of the C P1 constraint would be needed. This is one of t he important remaining 
problem in t he s!aYe fermion scheme (see below). 

P ossible improvem ent s Our ana lysis reproduced well the global prop ert ies of 
t he high Tc materia l. There a re, however, several flaws in our phase diagram. First , 
our anti ferromagnetic-normal phase boundary ends at 8 = 0 at zero temperat ure. 
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The two loop correction by holes, localized in t he same way, shifts this Two lille 
to larger o region, but ( together with higher loops) is not enough to stop t he re­
entrant behavior. This behav ior is owi ng to the high temperature expans1on of the 
correc tion by the hole hopping. To improve this point , the renormalization group 
methoc1[30 ,59] on the effect ive act ion of t he hole and spin (3. 16! may be useful. In 
fact, no pathological behavior would appear at low energy on mtegratmg out the 
fast (i.e. , high momentum) component of the fields . . 

Secondly, our superconducting phase starts at T = 0 from o = 0. Th1s would 
be improved if the Two line reaches fin ite o at T = 0, since t he superconducttv1ty 
cannot occur in the long range antiferromagnetic order because of no hoppmg. _It 
may be also possible, as discussed in Sec t.4 .4 , the flu ctuation around /::;. z~ remecl1es 
it. Anyway, in this region near the border of the antiferromagnet ic and the super­
conducting phase at low temperature, both spins Zu and holes 1/Jz play Important 
roles and thus the rigorous calculation on the effective action (3. 16) is not poss ible. 
A new approach may be needed. . . 

Thirdly, the superconductivity ends in our solution too fast m our calcu!at1on, 
at o ~ 0.1. These are expected to be due to the mean field treatment of spms. In 
fact , the spiral solu t ion Q ex o was obtained in the absence of the superconduct ing 
order param~te r. In the superconducting phase, the dechne of the short range 
antiferromagnetic order is expected not to be so rapid , i. e. , Q develops more ~ lowly 
then ex o. This is because once two holes are paired , they can move about w1 thout 
dist urbing the antiferromagnetic order of spins (Fig.5.2) , unlike the case of a single 
hole (Fig. 3.4). Taking this into account , the superconductin g state would extend 

Figure 5.2: The hole pairs can move without disturbin g the antiferromagnetic 

order of spins. 

to large 6. The fluctu ation of spins may also enhance t he superconductivity as 
ment ioned in Sect.4.4 . 

Fermi surface We have st udied the t-J model in the slave fermion represen­
tat ion. In this approach, the fermionic degree of freedom is t he hole only, and 
accorclill'' ly t he fermi surface is small with area proportional to doping (Fig.4.9( a )) 
in the m:a n fie ld approximation. T he smal l fermi surface is observed in the exact 
diagonalization[.j l ] at small doping (o = 1/ 20) . ~nd also , the doping depend ence 
of the Hall coeffi cient (ex 1/o) is understood eas t!y assurm ng t he small ferm1 sur­
face for t he charge degrees of freedom[60J . At larger el oping (6 ;(: 0.1), on the 
other hand , large fermi surface is observed in the exact d iagonalizat ion[61] . In 
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the angle-resoh·ed photoemission experiments[5.J], the existence of large fermi sur­
face of electrons IS confirmed. ?ur small fermi surface (of holes) may accordingly 
appear mcons tstent wtth expenments. However, this is not necessarily true. 

The Schwmge r boson z is constrained by Lu zluzzu = 1. This CP 1 constraint , 
after the attractive force between holes is taken away, appears unimportant. How­
ever, thts has still an Important role: to the let the spin excitations behave 
fermionic, and accordingly to produce large fermi surface. In fact owing to the 
CP' . ' constramt, the allowed states of each site are the following three: 

Jnm >= JOO > , J10 >, J01 >, (5.1) 

where 71 and mare the number of z1 and z1 particle, respectively. If this constraint 
ts treated on ly globally, on the other hand , all the states with larger particle num­
bers n , m = 0 ~ oo are included . Thus, in the mean field treatment of the 
constraint , these bosons with hard core nature (i.e. z;

1 
= z;

1 
= 0 (from (5.1))) are 

descnbed much better by fermwns than by bosons, as the severe restriction (5.1) 
mdtcates. Let us therefore replace these hard core bosons Zzu by fermions f zu to 
get the rough idea of large fermi surface. [Exactly speaking, the hard core bosons 
are mapped using the Jordan- Wigner transformation to the system pffermions and 
Chern-Stmons gauge field in two-dimensions[62] . Simple replacement Zzu-+ fzu is 
equ tval~ nt to neglect ing the Chern-Simons field . This replacement Is exact in one 
dunenston: where no Chern-Simons gauge field is needed in the transformation.] 
The resultmg Hamiltonian of the fermionic spin (dropping the contributions of the 
hoi~) is essentially that of the slave boson t-J model. mean field theories[21 ,47J 
mdtcate that the order parameter of fermionic spin singlet pair has d-wave sym­
~etry. Consequent ly, the spin fermions with density (1- 6) fill the shaded region 
Ill Ftg.4.9(b). The fermi surface of spins is large (areacx (1- 6)) , consistent with 
expenments. !\[ore precisely, only the (physical) electron can be observed in ex­
penments s_uch as the photoemission . The electron is written as a product of the 
hole and spm, Czu = v\lazu, and accordingly, if both the hole and spin truly behave 
like fenmons because of the constraint , the fermi surface of the electron would be 
the combination of those of the hole- and spin-" fermion". Therefore, the small 
fermi s urf~ce of the hole may not be inconsistent with experimentally observed 
large fermi surface, because of the dynamics of the spin. 

Is two-dimensionality essential? In our arguments based on mean fi eld the­
ory and on the_ analogy with XY model, the stronger the three-dimensionality 
becomes, the htgh er the critical temperature Tc is. This is consistent with the 
experimental result s that the Tc rises as the pressure increases[63], since the three­
d imensiOnality is expected to increase at high pressure. Also, th e experiments on 
the superlat ttce[6.J] show that the critical temperature decreases rapidly as the 
d tsta nce between CuO layers increases. 

. Then what about the fact that the high Tc materials have all quasi two­
dtmenstonal structure, and that the three-dimensional Cu oxides do not show 
superco nduct ivit.y[65j? One possibility is that , with full three-dimensionality, the 
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antiferromagnetic phase becomes so dominant that the superconducting phase can 
not appear. In fact , the Nee! temperature is very high (O(J) :::: 1000K) near the 
full three-dimensionality (see Fig.3. 7). The anti ferromagnetic phase would ac­
cordingly expa nd to the larger doping region, swallowing up the region suitable 
for would be the superconduct ivity. It may be said that the antiferromagnetic or­
der, being a direct result of the antiferromagnetic spin interaction , is stronger than 
the superconductivity, which arises from the balance among the antiferromagnetic 
spin interaction, hole density and mobility of holes. 

Gange theory approach We have solved the local constraint of the t-J model 
by introducing the Schwinger boson through eq.(2.12). This makes the attractive 
force between holes seen explicitly in the Hamiltonian. If one does not use this 
technique, and treat the constraint by global mean field, one must take into account 
the flu ct uation around the mean field of the lagrange multiplier ,\ dynamically 
in order to include the strongly correlated nature. In this case, the scenario of 
superconductivity according to Ref.[66] would go like this . The fluctuation behaves 
as the time component of the U(1) gauge field. This gauge field works as attractive 
for hole fermions on different sublattices, and consequently the neighboring holes 
would form a pair. 

Normal state We have not referred to the normal state phase. The high Tc 
material in this phase is an usual metal but its behaviors are not so normal com­
pared to convent ional metals. For instance, the resistivity at low temperature 
(but, of course, forT> Tc) is proportional to the temperature[67]. In the normal 
metal, where the resistivity is dominated by the scattering by phonons, it dimin­
ishes at low temperature much rapidly than exT. It is also observed that the Hall 
coefficient RH of the superconductor YBa2Cu30 7_ 0 depends on the temperature: 
RH ex 1/T[68], in contrast to its T-independence in the usual metal. This behavior 
of RH , however , varies from the material. For example, RH does not depend on 
T in the La-superconductor[4]. Another peculiarity is observed in the behavior of 
the nuclear relaxation time T1 of the Cu atom[69]: T1 does not satisfy the Korringa 
law T,- 1 ex T of the conventional metal. These unusual behaviors are due to the 
nature of the strong correlation. The local constraint of the t-J model plays an 
important role still in the metallic phase. In fact, because of this constraint , some 
non fermi liquid behavior may appear just as in the case of the one dimensional t-J 
model, and the above peculiarities might be explained. Actually, a phenomenolog­
ical model of a non fermi liquid (called the marginal liquid) reproduces the above 
abnormal properties of the normal state[70], although its microscopic justifi cation 
does not yet exist. In Ref.[Tl]. the abnormal behaviors are explained by including 
the spin flu ctuation (they call it the gauge field) around the mean field up to one 
loop. This supports the importance of the constraint in the normal state . 
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