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1. Introduction 

The mixed state of type-II superconductors has been one of the most inten­

sively studied topics in the field of the superconductivity because of its importance 

not only in the theoretical physics but also in the applied physics. The bir th of this 

field goes back to 1957, when the pioneering work by Abrikosov [1] based on the 

Ginzburg-Landau (GL) theory appeared. This year is the same year, miraculously, 

as the year when the dawn of the theoretical superconductivity was proclaimed 

by the BCS theory. Since then much theoretical progress has been made in this 

field [2, 3, 4]. While the Abrikosov's mean field theory was being improved tak­

ing into account the knowledge obtained from the microscopic theory, (see Fetter 

and Hohenberg in [2]) the elastic fluctuations of the Abrikosov vortex lattice were 

studied by several authors [5, 6]. On the other hand, the dissipative nature of the 

dynamics of the vortices were first clarified by Bardeen and Stephen [7], and then 

analyzed in detail based on the time-dependent GL equation by several authors 

[8, 9, 10]. Their theory made a way to the wide field of the flux flow phenomena. 

The effects of disorder on the flux flow were first studied by Anderson and Kim 

[11], now known as the flux creep theory, which has been extended to the collec­

tive flux creep theory by taking into account the correlation among vortex lines 

by Larkin and Ovchinnikov [12]. 

The research field of the mixed state in type-II superconductors, thus, has 

been making steady progress, until the surprising discovery of the high-Tc cuprates 

in 1986. As well as the theories of superconducting mechanism are attacked by this 

new materials, the phenomenology of the mixed state also started to go into the 

new circumstances where the effects of the thermal fluctuations and the disorder 

are large enough to make the established understanding based on the conventional 

materials change. Especially studies on the effects of the enhanced thermal fluc­

tuations challenge the conventional understanding of the mixed state drastically. 

Theoretical investigations concluded that the H - T phase diagram should be 

modified in several aspects from the mean field one; the second order phase tran­

sition at Hc2 , present within the mean field treatment , becomes a crossover once 

the effects of thermal fluctuations are taken into account and, in place of it , a 



new phase transition appears, i.e. the vortex lattice melting transition [13, 14, 15]. 

Moreover it is proposed that the vortex liquid phase is further divided into the 

entangled and the disentangled vortex liquid phase and other new phases. Al­

though these theoretical predictions are under controversy at present, the latest 

experimental studies [16, 17, 18, 19, 20] seem to confirm the existence of the vortex 

lattice melting transition in extremely clean samples. 

Besides the above mentioned equilibrium properties , dynamical properties 

have also been studied by many authors . Es~ecially the flux flow and flux creep 

phenomena are still under intensive investigations [21] because of its importance 

especially in the experimental and applied physics, although these theories only 

consider the response of the system to the uniform electric current (zero wave 

vector) flowing perpendicular to the applied magnetic field . However there are 

now a wide variety of the experiments, in which the geometry of the samples plays 

important roles [22, 23]. In order to analyze these experiments theoretically we 

need to study the response of the system to the external field with finite wave 

vectors, which is the viewpoint completely disregarded in the treatment of flux 

flow or flux creep theories . Such an attempt has been done by Huse [24] recently 

who proposed a phenomenological description of the system with various geometry. 

In this thesis we propose a new framework to study the electromagnetic re­

sponse of the type-II superconductors taking the wave vector and the frequency 

dependence into account. All electromagnetic properties of the system, within 

the linear response theory, are contained in the superfluid density. This charac­

terizes the response of the supercurrent against the perturbing vector potential. 

Once we obtain this we can also evaluate the electric conductivity and magnetic 

susceptibility. In calculating the superfluid density we paid a special attention to 

distinguish the external vector potential and the internal one. This is important 

when we treat systems which show strong screening effec ts. Technically when we 

investigate the linear response of the systems we must treat the internal field as 

the perturbation to the system. Such situations are similar to the case of the sys­

tem of electrons interacting via the Coulomb interaction, which is closely studied 

in detail in [25]. We emphasize that this point is completely disregarded in the 

conventional treatments of flux flow and flux creep phenomena, where the internal 
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vector potential is integrated out from the beginning and is never discussed in 

this context. Because of this, we found important difference from the conventional 

results. 

Next we describe the model and method we used to formulate the theory. 

Since we are interested in the properties of the ideal type- II superconductors we 

ignored the anisotropy and inhomogeneity, though they are characteristic to the 

high-Tc superconductors. Therefore our model is for the isotropic and homoge­

neous type-II superconductors. We consider the case, H c1 « H « H c2 , which 

will cover a wide region in the phase diagram including both vortex lattice and 

vortex liquid states and, therefore, is appropriate to investigate the difference of 

the two states in their dynamical properties. In this case, we can employ the 

London theory, namely since the amplitude of the Ginzburg-Landau (GL) order 

parameter is well developed, we neglect its fluctuation. Therefore the fluctuations 

of the condensate are described only by the fluctuations of the "phase", which are 

governed by the fluctuations of the positions of the vortices. Thus the superfluid 

density, which is given by the autocorrelation function of the supercurrent in the 

equilibrium, is expressed by the autocorrelation function of the vortex density. 

This will be calculated both for vortex lattice and vortex liquid state by use of the 

different theoretical framework. 

The vortex lattice state will be examined employing the method of the elastic 

theory. Our method differs from the one employed by Brandt [6] in the following 

points. First the elastic moduli obtained from our treatment do not include the 

screening effects by the internal vector potential fluctuations . Second we use a 

new method in evaluating the reciprocal lattice summation in caluculating the 

elastic moduli. This method is developed to calculate the elastic moduli in two 

dimensional classical Wigner crystal [26] . In our case, it is valid in the limit of 

vanishing coherence length, ~•c· As a result our compression and tilt modulus 

are different from those obtained in the London limit by Brandt [6] although 

the shear modulus is same. The differences are important when we discuss the 

magnetic permeability. In introducing the equations of motion of the vortices, we 

assumed the Bardeen-Stephen theory, namely we assumed that the dissipation is 

expressed as a form of the fri ction of the vortex motion. The dynamical superfluid 
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density is calculated on these bases and the electric conductivity and the magnetic 

permeability as well as the static superfiuid density are discussed based on it. 

In the vortex liquid state we will employ the hydrodynamic treatment. We 

tried to extend the well-defined phenomenological Markoffian equation for the 

scalar density field (e.g. the particle density), which is called model B in the 

classification made by Hohenberg and Halperin [27), to the vector density field 

(the vortex line density). In introducing the dynamics we employed the Bardeen­

Stephen theory again. Our hydrodynamic equations are basically the same as 

those previously used by Marchetti and Nelson [28) except for the treatment of the 

screening effects of the internal vector potential as in the lattice state. In our theory 

the internal properties of the vortex liquid is contained in the kinetic constants 

and, particularly, the entanglement and cutting of vortices play important roles in 

. the hydrodynamic equations. This framework is applied to the calculation of the 

dynamical superfiuid density in the liquid state. 

This thesis is composed as follows. In chapter 2, we first express the free 

energy of the system in terms of the degree of freedom of the vortices. Then we 

describe the linear response theory, according to which, we see that the dynam­

ical superfiuid density is given by the autocorrelation function of supercurrent 

and that it is further expressed as the density-density correlation function (or dy­

namical form factor) of the vortices. Therefore our purpose is reduced into the 

calculation of the correlation function. In chapter 3, we use the elastic theory to 

analyze the vortex lattice state. We will discuss the superfiuid density, the electric 

conductivity and the magnetic susceptibility. We also calculate the corrections 

to these quantities due to the effects of thermal fluctuations. In chapter 4, we 

use the hydrodynamic equations to analyze the vortex liquid state. Especially we 

show how the effects of the vortex line entanglement and cutting are taken into 

account in the hydrodynamic equations. The superfluid density and the electric 

conductivity are obtained. In chapter 5, we summarize the results of this thesis 

and give discussions. Especially we clarify the relation between our treatment and 

the conventional one. The details of the calculations are given in Appendices. 
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2. Model 

2.1 Ginzburg-Landau free energy and vortices 

We assume that the condensate free energy can be written in the Ginzburg­

Landau form . Moreover, since we are now interested in the region of the magnetic 

field, H; Hci <t: H <t: Hc2, we may assume the London limit, i.e. the fluctuations 

of the condensate order parameter, 

tf;(r,t) = lt/Jol eiB(r,<l, (2.1) 

are only in the phase angle, ll(r, t), and the amplitude, I ..Po I, is assumed to be 

constant except that it drops to zero at the vortex cores. The radius of the core 

may be taken to be the superconducting coherence length, ~.c, and I ..Po 1
2 = p~ is 

the bare superfluid density. 

The Gibbs' free energy, 9c, of the condensate can be written as follows, 

(2.2) 

where K = m*p~K~, Kc = h/m* and t/>o = hc/e* with m* and e* being the effec­

tive mass and the charge of Cooper pairs, respectively. The magnetic penetration 

depth is given by A= t/> 0 /)4-rrK = Jm•c2 f4-rrp~e• 2 • The vector potential, here 

denoted as A(r, t), is the internal vector potential, namely the vector potential 

experienced by the condensate electrons locally. By denoting the constant ( apa­

tially and temporary) part of the internal magnetic field as B the vector potential 

is expressed as, 

A(r, t) = ~Bi x r + a(r, t), (2.3) 

where a(r, t) denotes the time-dependent fluctuation of the vector potential. Here 

we made an assumption that the spatial variation of the magnetic field in the 

equilibrium is negligible, which is valid in the field range of interest , Hc 1 <t: H <t: 

Hc2, since the typical scale of the magnetic fluctuation, i.e. the penetration depth, 

A, is much larger than the typical scale of the vortex system, the mean vortex 

spacing given by J B /t/>o. 
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The total transport current density in the system, j•1(r, t), is written as 

jel(r, t) = r(r, t) + j'(r, t), (2.4) 

wherejn(r, t) andj'(r, t) are the normal current and the supercurrent, respectively. 

The supercurrent, j'(r, t), is given by 

(2.5) 

We also assign H •• ' (r, t) and n ••'( r , t) to the externally applied magnetic 

and electric field, respectively. These external electromagnetic fields consist of 

two parts, the constant magnetic field, H ", and the electromagnetic perturbation 

probing the superconducting properties of the mixed state, which can be wri tten 

in terms of the vector potential as a"'(r, t). Therefore H••' (r , t) and n ••'( r , t) 

are expressed as 

H ez t(r, t) = H"z + \7 x a"'(r, t), 

D ezt( ) - -~ oa••'(r,t) 
r, t - c Ot ' (2.6) 

where we put H" = H"z with z the unit vector in z-direction. 

Above mentioned quantities must be related to each other by the following 

relations. First B is determined so as to minimize the total free energy under 

the applied field, H", therefore B can be expressed as B (H" ). Second a(r , t) , 

aez'(r, t), and j'(r, t) are related by the Maxwell equation as, 

-\72 { a(r, t)- aez'(r, t)} = 4
,. j'(r, t). 
c 

(2.7) 

In this thesis we limit ourselves to the trnaverse response only and, therefore, we 

impose the condition \7 · a(r, t ) = 0, and \7 · a••'(r, t ) = 0 which is consistent with 

the gauge condition, \7 · A(r, t) = 0. The scalar potential is taken to be zero. 

Here we emphasize that aez'(r, t) and a (r , t ) should be strictly distinguished 

[25]; aez'(r , t) is the externally applied field and a (r , t) is so called the "local field", 

which is determined by treating the effect of screening selfconsistently. Therefore , 
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in general, a"'(r, t) =I a(r, t). In this thesis we do not integrate out a(r , t) but 

keep them as the dynamical variable in the equations of motion. The superfluid 

density and the electric conductivity are calculated as a response function to a(r , t). 

Within our knowledge this point has been completely ignored in the preceding 

theories treating the vortex dynamics. 

Here let us rewrite the free energy in terms of the degrees of freedom of the 

vortex configurations. The phase of the order parameter can be separated into two 

parts, the multi-valued part due to the vortices and the single-valued smoothly­

varying part due to "spin-wave". In this thesis, we consider the vortices with 

winding number ±1 only, i.e. the phase changes ±27r by going around them once. 

The vortices with higher winding numbers are neglected since they require higher 

energy to be created. Accordingly V'O(r, t) can be decomposed into two parts as 

follows, 

V'O(r, t) = V'O'(r, t) + 21rV' x j d3r'G(r .:.. r') n(r', t). (2.8) 

The single-valued part of O(r, t) is denoted as 11'(r, t) , which is neglected from now 

on since it does not couple to the vortices and the transverse vector potential. 

This is because \711'(r, t) gives rise to the longitudinal current while the vortices 

and vector potential are related to the transverse current. The vortex line density, 

n (r , t), is defined by 

_ ""J Orv(lv, t) (J) n(r , t)- D d lv Ol 0 (r- rv(/v , t)), 
y y 

(2.9) 

where lv is the parameter along the v-th vortex line and rv(lv, t) is the position of 

the v-th vortex line element. In Eq. (2.8) G(r) is defined as 

G( ) J d3k 1 -ik·r 
r = (27r)3 Pe . (2.10) 

Since the vortices are almost aligned with the external magnetic field both in the 

lattice state and liquid state, we take as lv the z-coordinate of the vortex line 

elements. Therefore rv(/v,t) is written as rv (z,t) = (xv(z,t),Yv(z , t),z). Note 

that, from the continui ty condi tion of vortex lines, which is required since each 

vortex line does not have ends except at the boundary of the sample, n ( r , t) satisfies 

the relation, 

\7 · n(r , t) = 0. (2.11) 
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Substituting Eq. (2.8) into Eq. (2.2) and Eq. (2.5) and neglecting B•(r, t) we 

obtain the free energy of the vortex system as follows, 

Yc =9v + Yv-em, 

Yv =~ j d3 r j d3 r'Gv(r- r') Sn(r, t) · Sn(r', t), 

Yv-em =~! d3 r jP(r, t): a(r, t) + K 2 j d3 r { a(r, t)} 2
, 

c 2t/>o 
(2.12) 

where 

Sn(r, t) = n(r, t)- nai, (2.13) 

where we defined the average vortex density as na = B/t/>0 . The current, jP(r, t), 

given by 

j'(r, t) = jP(r, t) + j d(r, t), 

jP(r, t) = cK j d3 r'Gv(r- r') \7' x Sn(r', t), 
tf>o . 

j d(r, t) =- c~ a(r, t). 
tf>o 

(2.14) 

jP(r, t) is the paramagnetic current caused by the vortices and j d(r, t) is the dia­

magnetic screening current associated with a(r, t). The vortex Green function, 

Gv(r), should be cut off at short distance of the order of the superconducting 

coherence length, ~.c, corresponding to the destruction of the GL order parameter 

amplitude at the vortex cores and we put 

(2.15) 

Here we comment on the gauge invariance of our theory. The gauge trans­

formation changes o•(r, t) and the longitudinal part of vector potential (we do 

not consider the singular gauge transformation). Therefore the gauge invariance 

is undertaken by these degrees of freedom, which are neglected since we are not 

interested in them in this thesis. Therefore the free energy, given in Eq. (2.12) , is 

written by gauge invariant quantities. Especially, we should note that the vortex 

position is a gauge invariant quantitiy. 
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2.2 Dynamical superfiuid density: linear response theory 

The superconducting properties are best described by the superfiuid density 

tensor, p•(k,w), defined by 

.2 

j~(k,w) = __ e_p~.(k,w)a/i(k,w) , 
m•c "" 

(2.16) 

where a, /3 = {x, y, z }, and a(k,w) andj•(k,w) are Fourier transforms of a(r, t) and 

j•(r, t) , respectively. Without vortices, p~/i(k,w) reduces to the "bare" superfiuid 

density, p~Cafi, since in that case jp(r,t) = 0 in Eq. (2.14). Here we note that 

H b "tt • (< k.k.) . . . PoOafl can e wn en as Po Oaf! - --r;r , smce we are mterested m the transverse 

vector potential satisfying k · a(k, w) = 0. 

The linear response theory tells us that the superfiuid density can be expressed 

in terms of the equilibrium autocorrelation function of the supercurrent caused by 

vortices (paramagnetic supercurrent) as 

• (k ) _ • (s _ kak/i) m• _1_1"" dw' w' Qaf!(k,w') 
Pap ,w -Po afl k2 + e•2 kaT -oo ' 21r w'- w- if 

(2.17) 

where 

Qaf!(k,w) = 1: dt j d3r { (i~(r, t)j~(O, 0)) - (i~(r, t)) (i~(O, O))} e;k·r-;wt. 

(2.18) 

Here (- · ·) means the average in the equilibrium and f is an infinitesimally small 

positive constant introduced to satisfy the Kramers-Kronig relation. The first 

term of Eq. (2.17) is originated from the diamagnetic current, denoted as jd(r, t) 

in Eq. (2.14). 

By taking into account the symmetry of the mixed state (the system has 

uniaxial anisotropy in z-direction), it is convenient to go to the following new 

coordinate system. We define the unit vectors, k, k:Un), and k(out) , which are 

orthogonal each other, by 

(2.19) 
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where k.L = (k., ky, 0) . The configurations of k, k(in) and k(out) are shown in Fig. 

1. Here we also introduce the following spherical coordinate, 

k = (k.,ky,kz) = (kcosilcoscp,kcosilsincp,ksinil). (2.20) 

Since \1 · a(r , t) = 0 there are only two independent components in a(r, t), i.e . 

a(r, t) can be written as 

a(k,w) = a(in)(k , w) ik(in) + a(out)(k,w) k(out). (2.21) 

The imaginery, i, in the first term of r.h.s. is inserted in order to satisfy the 

condition, a(in)•(k,w) = a(in)(-k,-w). 

In this thesis we disregarded the Magnus force. This is a good approximation 

for such superconductors with strong dissipation as the high-Tc cuprates. There­

fore, in the vortex density autocorreltaion function and superfluid density, the 

terms corresponding to the Hall effect which behave like k~n)k~out) do not appear. 

For this reason, the autocorreltaion function of the supercurrent and the superfluid 

density can be decomposed as 

where 

P• (k ) -p• (in)(k ) p(in) + p' (out)(k w) p(out) 
a{J 'W - 'W a{J , crfJ , 

Qap(k,w) =Q(in)(k,w) p~~) + Q(out)(k,w) p~~ut) ' 

p(in) = /c(in)fc(in) 
a/l " p 

P (out) _ k-(out)k"(o ut) 
a/l - " p . 

(2.22) 

(2.23) 

(2.24) 

The paramagnetic supercurrent is expressed in terms of the vortex density as 

(2 .25) 

where 8n(in)(k,w) and 8n(out )( k ,w) are defined by 

Therefore the autocorrelation function of paramagnetic current is expressed as 

(i~(k,w)j;( -k, -w)) = ( ~~r k\ { ( sn<•n>(k,w)Sn<•nl( - k , -w)) p~~ut) 

+ ( 5n(out)(k,w)5n(out)( - k , -w)) P~~) }· 

(2.27) 

By defining the autocorrelation function of vortex density (or the dynamical form 

factor of the vortices) by 

Sap(k,w) =I: dt j d3 r{ (5na(r, t)5np(O, 0)}- (5n 0 (r , t)} (5n p(O, 0)} } eik r-iwt, 

:: S(in)(k,w)P~~n) + s<o ut)(k,w)P~~utJ, (2.28) 

the correlation functions, Q(in)(k,w) and Q(out)(k,w), can be described as 

Q(in)(k ) = (cK) 2 
_2._5(out)(k ) 

,w ¢>o k2 , w , 

Q(out)(k,w) = ( ~~) 
2 

:2 s(in)(k,w). (2.29) 

It should be noted that the correlation functions of vortex density in Eq. (2.29) 

must not include the screening effects by the internal field fluctuation . 

A. Static superfluid density 

If we take the limit of w --> 0 in the dynamical superfluid density we obtain 

the static superfluid density, P~p(k , w _, 0), which describes the response of the 

system to the static vector potential. Therefore since this quantity is closely 

related to the properties of the thermodynamic equilibrium, we can characterize 

the superconducting order from this quantity. 

B. Electric conductivity 

The electric current, jel(k , w ), can be expressed using the dynamical superfluid 

density, p~13 ( k , w ), defined in Eq. (2.16) as [29], 



where an is the electric conductivity of the normal component, which originates 

from jn(k ,w) = anE(k,w). We can obtain the macroscopic electric conductivity, 

a(w), from Eq. (2.30) taking the limit of k-+ 0 . 

C. Magnetic permeability 

Next we comment on the relation between the magnetic susceptibility and the 

superfluid density. From Eq. (2.7) and Eq. (2.16) we obtain 

k2 {a<>- a~xt(k,w)} =- , 2

1 ,P~p(k,w)ap(k,w), 
"Po 

which can be further expressed into 

a(in,out)(k,w) = {
1 
+ _1_ •(in,ou t) (k w)}-l 

aext(in,out)(k,w) _\2p0pP ' 

(2.31) 

(2.32) 

Here we consider the static limit , w -+ 0. The external magnetic field perturbation 

and the internal magnetic field fluctuation can be expressed as 

with 

oH•zt(k ,w) =i k (in)0H ezt(in)(k, w) + k(out) 0H ez t(out)(k,w) , 

OB(k ,w) =i k(in),SB(in)(k , w) + k(out),SB(out)(k , w), (2.33) 

8Hezt(in)(k ,w) = ikaezt(out)(k,w), 8Hezt(out)(k,w) = ikaezt(in)(k,w), 

8B(in)(k ,w) = ika(out)(k,w), 8B(out)(k,w) = ika(in)(k,w). 

(2.34) 

Here we define the wave vector and frequency dependent "local "magnetic perme­

abilities, Jl.(in)( k , w; H") and Jl.(out)(k , w; H" ), and "local "magnetic susceptibilities , 

x( inl(k ,w; H" ) and x(outl(k ,w; H") as follows, 

<B(in)( k ) a(ou t)(k ,w) 
(in) k w· H" - u ,w 

Jl. ( ' ' ) - oH•zt( inl(k ,w)- a•zt(ou tl(k ,w)' 
(2.35) 

.SB(outl(k ,w) a(inl( k ,w) 
,(out)( k , w; H" ) - ----,-,...:,..,.:.-.:.....,-
,- oH•x t (outJ(k,w) - a•x t (inl( k , w)' 

Jl.(in)( k ,w; H") =1 + 4rrx(in)( k ,w; H" ) 

(2.36) 
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where "local "means that these quantities represent the magnetic properties of the 

system under the applied magnetic field, H". In order to compare these with the 

conventional definitions of the permeabilities and the susceptibilities we also define 

the frequency independent total permeabilitiy, Jl.tot, and differential permeability, 

Jl.dif, and the susceptibilities corresponding to each as 

dif(H") = 8B(H") 
Jl. aH• ' 

(2.37) 

From the physical considerations, we obtain the following relations in various lim­

itimg cases, 

~~ Jl.(in)(k ,w = 0; H") =Jl.t0 \H"), 

lim Jl.(out)(k W = O· H" ) =Jl.t 0 \H") 
k-O+ €i ' 

1 1 

lim Jl.(out)(k w = O·H") =Jl.dif(H") 
k-0+6c ' ' ' 

(2.38) 

(2.39) 

(2.40) 

where k -+ 0 +ex means that the limit is taken along the x-axis. The reason 

for these are understood as follows. The first two permeabilities correspond to 

the perturbation, oH •zt, perpendicular to H" , namely the perturbations tilting 

the external field, H" , without changing the magnitude of H •zt. Therefore they 

correspond to Jl.tot(H" ). The last permeability correspond to the perturbation, 

oH •zt, parallel to H" which changes the magnitude of H •zt . Therefore it gives 

Jl.dif (H" ). In this thesis we discuss the permeability closely especially in the vortex 

lattice state. 
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3. Vortex lattice state 

3.1 Elastic free energy 

In this section we introduce the effective free energy which describes the low 

energy fluctuations of the vortex lattice state. Our calculations are based on the 

method of elastic theory [6, 15] . Since we are interested in the electromagnetic 

response of the vortex lattice in this thesis, we should be careful in treating the 

vector potential. In order to make the role of the vector potential fluctuations 

clear, we do not integrate it out in constructing the elastic free energy, but keep 

it as another independent degree of freedom in the equa tion of motions. 

We decompose the position of the vortex line element of the v-th vortex line, 

rv(z , t), into the equilibrium lattice point, r~(z ), and the displacements from them, 

sv(z, t), namely, 

rv(z, t) :=r~(z) + Sv(z, t) , 

r~(z) =(x~,y~,z), 

Sv(z, t) = (sv,z(z, t), Sv,y(z, t), 0). (3.1) 

The vortices are assumed to form a regular triangular lattice in the equilibrium 

state and x~ and y~ are the x and y component of the triangular lattice points. 

The elastic free energy is written as 

(3.2) 

(3.3) 

where {a ,;9} = {x,y}, G is the reciprocal lattice vector of the vortex lattice and 

D denotes the region where k, and ky are limited to the first Brillouin zone of the 

triangular lattice and k, is limited to -kc < k= < kc with kc ~ ~;;,1 because of the 

cutoff in the vortex-vortex interaction. 
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The internal magnetic field, B, is determined by the minimization the total 

free energy. In this thesis we neglecte the corrections to the equili bri urn free energy 

due to thermal fluctuations and determine B by minimizing the mean field free 

energy, 9o. As a result we obtain, 

H" = B H ln(Hc2/B) 
+ cl 2ln~~: ' (3.4) 

where II:= >..f~. c, H cl = (<Po/47r>..2 )ln~~:, and Hc2 = <Po/27r~~c · The elastic moduli 

are given by (see Appendix B) 

cu(k) =Kn~ (2_- _1_) = B2 _1_- BHc2 _1_ 
k2 167rnB 47r k2 )..2 47r 8~~:2 

c66 (k) = KnB = BHc2 _1_ 
167r 47r 8~~:2 

c
44

(k) =Kn~ (2_ _ ln(47rnB ~;c)) = B
2 

_1_ + B (H" _B) 
k2 81rnB 47r k2 )..2 47r ' 

(3.5) 

and 

s(k, t) = L j dz sv(z , t) ei k-r~(z , t) . 
~ 

(3.6) 

Note that the compression and tilt modulus, c11 (k) and c44 (k), diverge in the 

k -+ 0 limit since we have not integrated out the gauge field fluctuation yet and, 

hence, the vortex-vortex interaction is long range at this stage. We confirm later 

that if we integrate out the fluctuations of vector potential in terms of the equations 

of motion, the vortex interaction is screened and we obtain the elastic moduli to 

be compared with the the conventional treatment [6]. 

We decompose s(k, t) into the longitudinal (compressional) part , s1(k , t), and 

the transverse (shear) part, s'(k, t) , and rewrite the equations into, 

s(k, t) = k(l) s1(k, t) + k(in) s'(k, t) , 

n~E1(k) =c11 (k) ki + c44 (k) k;, 

n~E'(k) =cs6(k) ki + c44 (k) k~ , 

where k(l) = k1. /k1. . We can rewrite Yel as 

1 j d
3
k Yel = 2 D ( 21r)3 [E

1
(k)ls

1
(k , tW + E'(k)ls'(k , tW], 

(3.7) 

(3.8) 

Employing the free energy derived in this section, we derive the equation of motion 

of Sv( z, t) in the next section. 
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3.2 Equations of motion of vortex lattice 

In this section we describe the equations of motion of the elastic field, sv(z, t) . 

As stated in chapter 1, we concern ourselves with the case of strong dissipation 

where the Magnus force is negligible. The force on the vortices consists of two 

parts; the forces caused by the vector potential perturbation and the interaction 

with the other vortices. These two forces act in the direction opposite to each 

other. In this section, we disregard the force from the internal vector potential 

to estimate the density autocorrelation function of vortices without including the 

screening effect by internal vector potential. The mobility of the vortex per unit 

length, p., is given by the inverse of the Bardeen-Stephen viscosity, 

(3.9) 

Therefore the equations of motion for the lattice state is given by, 

8sv(z,t) __ ~ + (z t) 
8t - P. Osv(z, t) T/v ' 

(3.10) 

where Tlv(z, t) is the fluctuating Langevin force necessary to bring Sv(z, t) into 

thermodynamic equilibrium. The first term in the r .h.s. of Eq. (3.10) come from 

the Lorentz force caused by the other vortices. 

By introducing the Fourier transformation with respect to time, t, Eq. (3.10) 

can be written as, 

iws1(k,w) =- rE1(k)s 1(k,w) + R1(k,w) 

iws'(k ,w) =- rE'(k)s'(k,w) + R'(k,w). 

(3 .11) 

(3.12) 

where r = p.na , and R1(k ,w) and R 1(k,w) are the 1- and t-components of the 

Langevin force , 1Jv(z, t), respectively. In order to make the equations of motion, 

Eq. (3.11) and Eq. (3 .12), lead to the correct expectation value in the equilibrium 

state, the Langevin force must satisfy the following relations , 

(R 1(k,w)) = (R' (k,w)) = 0, 

(R1·'(k,w)R1•'(k',w')) =47Tk8 Tr (21r)4 o(Jl(k + k') o(w + w' ). 
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(3.13) 

Here we comment on the relation to the well known elastic theory [6]. The 

difference between the two treatments lies in the treatment of the internal magnetic 

fluctuations, which, in our framework, are taken to be the perturbation to the 

vortex system whereas, in [6],- they are integrated out as the modes attached to 

the vortices. This difference is crucial in treating the linear response of the vortex 

system. Since we are now interested in the elastic fluctuations in equilibrium, we 

put a«'(r, t) = 0. We can eliminate a(in)(k,w) and a(ou<l(k,w) by solving the 

Maxwell equation, Eq. (2.31), as 

(in)(k ) </>o 1 l(k ) 
a ,w =A2k2+A 2s ,w, 

(out)(k ) _ </>o 1 k, l(k ) 
a ,w -- A2 k2 + A-2 k s ,w . (3.14) 

Substituting the solution into Eq. (3.11) and Eq. (3.12) we obtain the effective 

equation of motions of the vortex lattice with the screened vortex-vortex interac­

tion. As a result the three elastic moduli of Eq. (3.5) are modified to, 

B(H•- B) 
+ 47T . 

(3.15) 

Here we comment on the similarity and the dissimilarity with the conventional 

results derived by Brandt [6] in the London limit. In the Brandt's treatment 

the second terms in c11 (k) and c44 (k) are ignored, whereas, in our theory, these 

terms have rather important meaning; first they are related to the diamagnetic 

susceptibility as shown in the next section, secondly the following sum rule holds 

for our results , 

{E
1
(k) + E'(k)} lk,=O = K, (3.16) 

which is called the Kahn 's sum rule satisfied in the two dimensional Wigner crystal 

[26] . It is interesting to see that these terms come from the lattice sum over the 

reciprocal lattice as shown in Appendix B. In the elastic moduli derived by Brandt 
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in the region near Hc2 , the similar terms appear because of the attractive inter­

actions between the vortex cores. We believe that the origin of them is different 

since our results are derived for ~.c >> kaz whereas the Brandt's results are for 

the region H":SHc2 and ~.c ~ kaz. 

We can estimate the melting temperature from these. Let us employ the 

Lindemann criterion [14, 15]; a simple way to estimate the melting temperature, 

Tm. Hence Tm is given by the relation, (s.(z, t)2
) t = CL d, where dis the lattice 

constant given (in case of the triangular lattice) by {2/( VJna)} t and CL is the 

empirical constant of the order of~ 0.1. Now (s.(z, t)2
) can be calculated as 

(3.17) 

where E 1(k) and E'(k) are obtained by replacing cu(k), c55(k) and C44(k) by 

cMk), c~6 (k) and c~4 (k) in E 1(k) and E'(k). We approximate the integration 

over the first Brillouin zone in Eq. (3.17) by integration over the circle of same area 

(the radius is ,}47rnB which is denoted as kaz). By carrying out the integration 

numerically we obtain the melting temperature as 

(3.18) 

where f is the numerical constant comes from the integration over the region D. 

Although f depends on the GL parameter"' and the density of the vortices, na, it 

is aconstantoftheorderof1: e.g. f ~ 0.2 -0.3 for ~•c = 10 (A) and B = 0.25(T). 

This result is almost same as one obtained in [15]. 

3.3 Dynamical superfiuid density in vortex lattice state 

We calculate the superfiuid density in the vortex lattice state. From Eq. (2. 17) 

and Eq. (2.29), we see that the dynamical superfiuid density is determined by 

calculating the density autocorrelation function, So!1(k, w ). Therefore we calculate 

So!1(k, w) first. 
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S(inl(k,w) and S(out)(k,w) defined Eq. (2.28) are given to the second order 

in s(k,w) as 

S(in)(k,w) =fl-1 ( 6n(in)(k,w)6n(in)( -k, -w)) 

=fl-1 k~(s'(k,w)s'(-k,-w)), 

s<out)(k,w) =fl-1 ( 6n(out)(k,w)6n(out)( -k, -w)) 

=fl-1 k2 (s 1(k,w)s 1
( -k, -w)), (3.19) 

as shown in Appendix C, where we defined fl = (21r)4 ,)(4l(O). By Eq. (3.11), Eq. 

(3.12) and Eq. (3.13) the correlations of s1(k,w) and s'(k,w) are given as 

(sl·'(k w)sl•'(k' w')) = 2rkaT(27r)
4
6(3l(k + k') 6(w + w') 

' ' w 2 + {fE1·'(k)}2 
(3.20) 

Therefore the superfiuid density, p•(in)(k,w) and pdoutl(k,w) defined by Eq. 

(2.22) is obtained as 

•(in)(kw)- ·{1 r } 
p '-Po -iw+fE1(k)' 

• { 1 } = Po 1 - .,..--:==.,.----=-~--~ 
iw/fK + 1- c1ki + c2k~ ' 

•(out)(k ) - • {1 (k,)
2 

r } 
p ,W-Po -k iw+fE'(k)' 

- . {1 (k,fk)
2 

} -Po -
iw/fK + (k,fk) 2 + c1ki + c2 k~ ' 

where 

(3.21) 

(3.22) 

(3 .23) 

(3.24) 

Here we should note that whether the system is superconducting or not in the 

thermodynamic limit is determined by taking the limit of w -t 0 first and then 

taking the limit of k -> 0. On the other hand whether the electric conductivity 

of the system is divergent or not is determined by taking the limit in the opposite 

way. Let us consider the both cases separately. 

A. Static superfiuid density 
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If we take w ---+ 0 limit first our result reduces to the static superfluid density, 

(3.25) 

(3.26) 

Whether the system is in the superconducting state or not is determined by the 

small k behavior of these static superfluid density. In general if p'(k) ---+ 0 in the 

limit of k ---+ 0 the system is nonsuperconducting and no static supercurrent can 

flow. On the other hand if p'(k) i' 0 in the limit of k---+ 0 the static supercurrent 

can flow in the system. 

Although it can easily be understood that p• (inl(k) ---+ 0 in limit k---+ 0, as 

known as the "flux flow "behavior, the behavior of p• (oul)(k) is rather complicated. 

First, if we take k ---+ 0 limit with k keeping parallel to the z-axis (i.e. k = 

(O,O,kz)), we obtain p•(oul)(k)---+ 0. This is because if k is parallel to z, k(oul) 

is perpendicular to z and a<••'l(k) is also perpendicular to z. (see Fig. 1) On 

the other hand if we take k ---+ 0 limit with k keeping perpendicular to the z-axis 

(i.e. k = (k.L,O,O) for example), p•(oull(k)---+ p~, i.e. the system behaves like a 

superconductor. In this case a<••ll(k) is parallel to z. Therefore we conclude that 

the vortex lattice state is superconducting only in the direction of the externally 

applied magnetic field. It should be noted that the existence of the shear modulus 

is essential to the result, which corresponds to the c1 k}_ term in the denominator 

of the second term of Eq. (3.26). 

B. Electric conductivity 

The electric conductivity can be obtained from the dynamical superfiuid den­

sity by applying the formula Eq. (2.30). The two formulas of superfluid density 

denoted by in and out in Eq. (3.21) and Eq. (3 .22) are combined into the one 

formula in k ---+ 0 limit and the electric conductivity is expressed as, 

e' 2 p~ 1 
u(8,w) =an+-.-. fK . 2 8' 

m zw+ sm 
(3.27) 

where 8 is the angle between k and the xy plane introduced in Eq. (2.20) and 

shown in Fig. 1. It should be noted that u(w, t'l) diverges at t9 = 0, 7r in the limit 
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of w ---+ 0, which is the characteristic form of the superconductors. Therefore we 

conclude that the vortex lattice has infinite conductivity in the direction parallel 

to the magnetic field. In the following section we examine whether this result 

holds even when the effects of the thermal fluctuation are considered. 

C. Magnetic permeability 

Now it is interesting to see how the superfiuid density is related to the dia­

magnetic permeability. Here we limit our discussions to the static case, w = 0. By 

Eq. (3.21) and Eq. (3.22), we obtain the expression of the "local "permeability, 

JL(in)(k; H") and JL(outl(k; H" ), defined in Eq. (2.35) as 

{ 
k2 }-1 { -1 

JL(in)(k; H") = 1 + ; 2 (c1 kt + c2) = 1 + ; 2 (c1 cot2 8 + c2)} , (3.28) 

JL(out)(k; H") = { 1 + .)\ ( -CJ ~~ + c2 :; ) } -I = { 1 + ; 2 ( -c1 cos2 8 + c2 sin2 8)} -I, 

(3.29) 

for small k limit. Here JL(inl(k; H") has a divergence in the denominator at 8 = 

0 corresponding to the nonvanishing superfiuid density in the direction of the 

external magnetic field, H". 

Here we consider the two special cases, i.e. H" l_b"Hext and H"// b"H•xt. 

(1) The case of H" l_,)H•xl. 

This case corresponds to Eq. (2.38) and Eq. (2.39). In this configuration 

b"Hext works so as to tilt H". From the result of the elastic theory we have the 

"local "permeability as, 

{ 
1 }-I JL(in)(8)= 1+ ,\2(c1cot28+c2) i'JLtot, (3.30) 

JL(out)J = (1+ ~)-I=!!_= tot. 
B=f ,\2 H• JL (3.31) 

We used Eq. (3.24) in the last equation. In Eq. (3.31) the relation Hext + 

b"H•xt //B + b"B is naturally satisfied but is not satisfied in Eq. (3.30) except when 

8 = 7r /2. We think that the discrepancy is attributed to the dependence of the 

magnetic susceptibility on the penetration process of the magnetic filed in vortex 

state. 
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(2) The case of H" I I 6Hert. 

This case corresponds to the Eq. (2.40). In this configuration the perturba­

tion, oH•xt, works so as to increase the magnitude of H" . Therefore the "local 

"magnetic permeability in k -> 0 limit is directly related to the differential per­

meability. From the results of the elastic theory we obtain, 

fl(out)l = (1- .:.!..)-! = (1- _</>o_)-l 
B=o >.2 16tr B>.2 

(3.32) 

Therefore we obtain the differential permeability as 

(3.33) 

where the suffix "el "is added to specify the result by the elastic theory. In contrast 

to these results, the mean field equation, Eq. (3.4), gives us, 

def H" _ 1 ~ 
( )

-! 

flm.f.( ) - - 8trB>.2 
(3.34) 

Here we recognize the serious disagreement between the two. The calculation by 

the elastic theory, Eq. (3.33), gives only a half contribution to the first term of the 

denominator of r.h.s. in contrast to the mean field result, Eq. (3.34). 

The reason of the discrepancy is discussed in the following section, where the 

effects of the thermal fluctuations are taken into account. 

3.4 Corrections due to thermal fluctuations to superfluid 

density 

A. Helical deformation of vortices 

In this section we examine whether the nonvanishing superfluid density in 

the direction of the magnetic field is stable or not when the effects of the thermal 

fluctuation is taken into account. This is nothig but a consideration of the correc­

tions of the higher order term in s(k,w) to the dynamical form factor, especially 

to S(in)(k, w ). We denote the thermal correction terms to the dynamical structure 
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f t s(in)(k ) (out) ac or as th. , w and Sth. (k, w ). For the purpose of this section we have only 

to consider the effects of s;~~)(k,w). From Appendix C we have 

s(in)(k ) = 2_ j d
3
qd

3
q' /_

00 

dqodqh [ -(k. + 2q,)2 
th. P fl D {(2tr)3nB} 2 -oo (211')2 4 

x ( kUnJ . s ( k; + qp) kUn) . s ( _ k; _ qp)) 
X ( k (l) · s ( k; -qp) k(l) . s ( _ k; + qp)) 

- k~ ~ 4q~ ( kUn) . s ( ~ + qp) k(/) . s (- k; ~ qp)) 
x ( kUn) · s ( k; -qp) k (l) · s (- k; + qp))] (3.35) 

where ko = w, kp = (k , ko) and n = (211')4 6(4 )(0). 

The dominant contribution to the superfluid density, which we denote as 

p:~.out)(k, w ), is calculated from 

•(out)(k w) = '--- w w th. ,w K 1 /_00 d 1 'SUn)(k ) 
Pth. ' Po kBT P -oo 2tr w'- w- ie · (3.36) 

We assume k.lz or equivalently k, = 0 since this is the configuration we are 

interested in. We also assume the static limit w -> 0. After integrating over w' we 

obtain 

(3.37) 

Estimating the integral over q numerically we obtain 

(3.38) 

By comparing with the estimate of the melting temperature, Tm, (see Eq. (3.18)) 

we conclude that the second term in the parenthesis is not larger than 0.03 even 

at the melting temperature, which implies that the vortex lattice state is super­

conducting in the direction of the external magnetic field even when the effects 

of the thermal fluctuation are taken into account. The effects considered in this 

section are actually same as the one known as the effects of the helical deformation 
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of vortices in the Lorentz force free configuration. [30] Our results qualitatively 

agree with the results obtained by Brandt. 

B. Correction to magnetic permeability 

In the section 3.3 we mentioned about the discrepancy between the results of 

the susceptibility of the calculations based on the elastic theory, Eq. (3.33), and 

the mean field theory, Eq. (3.34) . In order to investigate its reason we calculate the 

contributions of the thermal fluctuations to the susceptibili ty. We can study this 

by considering the corrections of the higher order terms in s(k, w) to the dynamical 

form factor just as we carried out in the last section. This time we must consider 

the corrections to s<out)(k,w), denoted as s~Z~')(k,w). From Appendix c we have 

s<in)(k ) =2.], d
3
qd

3
q' j "" dwdw' [ ~ k2 e 

th. I' f! D {(27r)3nB}2 -oo (27r)2 2 .l. 

X ( k(l) . s ( k; + q,.) k(l). s ( - ~ - q,.)) 
X ( k(l) · s C; -q,.,w) k(l) · s ( - k; + q,.))]. (3.39) 

The dominant contribution to the superfluid density, p• (in)(k, w ), in the static 

limit, w _, 0, of s;z~')(k,w) can be expressed as 

r r •(in)(k )~ .kBTKki], d
3
q q~ 

k:~o w~ Pth. ,w =Po ----;:;r-2 D (211")3 { ( ¥- _ qx)2 + ql} { ( ¥- + qx)2 + ql} 

1 1 
X 

E'(Et-qx.qyqz) E'(¥-+qx.qyqz) 

.3kBT.Jik21 k (3 ) ~-Po 2 K..jii.B .J..n .1., .40 

where we put k = ( k.1., 0, 0) in the calculations which is general because of the rota­

tional symmetry in xy-plane in the small k limit. We neglected the contributions of 

the less divergent compressional mode, E 1(k). Here we obtain a remarkably large 

contribution in the coefficient of ki term, i.e. the In k.1. divergence. Although 

this divergence, if the electric conductivity is considered, is negligible because it 

vanishes in the k -> 0 limit, it has large contribution to the susceptibility because 

in this case the coefficients of k2 terms come into question. Actually we have 

J.l.(out)l ~ {1 + 2_(-ci + 3 kaT.Ji lnk.J..)}-1' 
k.,w=O- ,\2 2K..jii.B 

(3 .41) 
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and the log correction appears as the correction to the constant, c1, in comparison 

with Eq. (3.29). We consider that this log-divergence is deeply related to the 

discrepancy of the susceptibility calculated by the mean field theory and the elastic 

theory, which we pointed out in the section 3.3. 

The reason of the discrepancy and the log-divergence can be considered as 

follows: There are two ways to increase the density of the lattice. One is to 

compress the lattice isotropically. This compression corresponds to the calculation 

of the mean field theory, in which the triangular lattice structure is always kept 

in increasing the field. (see Fig. 2(a)) The other way is to compress the lattice 

only in the one direction. In this case the triangular lattice structure is not kept in 

increasing the field. (see Fig. 2(b )) This compression corresponds to the calculation 

of the elastic theory. Actually we can confirm this by calculating the change of 

the condensate free energy, which is the first term of g0 in Eq. (3.2) corresponding 

to the two, Fig. 2; in the case of (a) we have 

K 1 (8r/>B
0

)

2

, 89o/V =----X 
2 87rnB 

(3.42) 

whereas we have 

K 1 (8B) 2 

89o/V =----X -
2 167rna r/>o ' (3.43) 

in case of (b). The magnetic susceptibility calculated from Eq. (3.42) and Eq. 

(3.43) give the result of the mean field theory and the elastic theory, respectively 

as shown in Appendix D. 

The origin of the log-divergence can be understood as follows. When per­

turbed by the magnetic field, the lattice is compressed in some regions and de­

compressed in other regions. If the wave vector of the perturbation is sufficiently 

small, the lattice is more stable if the structure is reconstructed region by region 

into the regular triangular lattice with different lattice constants. This reconstruc­

tion destroys the lattice in the regions inbetween the regular lattice structures. 

Physically, this regions may become unstable to the formation of the dislocations. 

Reflecting on our results, the log-divergence comes from a higher order term 

in s (k , w ), which is originated from the shear fluctuations in the lattice distorted 

by the magnetic perturbation. We consider that this is consistent with the above­

mentioned physical picture. 
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We also note that the log-divergence stated in this section have nothing to do 

with the superconductivity, since k}_log k.L -+ 0 in the k1_ -+ 0 limit. 
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4. Vortex liquid state 

4.1 Effective free energy of vortex liquid 

The low energy and long wave length properties of the fluctuations in the 

vortex liquid state can be well described by the hydrodynamic equations (28], 

according to which the free energy is expressed by the "coarse grained "vortex 

density, a slowly varing variable both in time and space. Here we illustrate the 

basic properties of the expected free energy. The effective free energy is expected 

to be given by 

where c5n(r, t) = n(r, t) - n 8 z. Note that n(r, t) is the coarse grained variable, 

which should be distinguished from its "microscopic"definition, Eq. (2.9). The 

effective vortex-vortex interaction in the liquid state, G~~(r) , is given by 

c'iq ( ) _ J d3
k { Oap J (k)} -i k·r 

a{J r - (27r)3 """f2 + a{J e . (4.2) 

The leading term of this free energy is the isotropic long range force or the l/k2 

singularity in small k limit. There are also the contributions from the effects of 

vortex line correlations in fap(k), which is exp~cted to be anisotropic in general 

because of the uniaxial anisotropy of applied field. 

In this thesis we consider only the leading term, i.e ., 

(4.3) 

where 

Gliq( ) =! d
3
k .2_ -ik·r 

r ( 27r )3 k2 e , (4.4) 

and neglect the rather complicated fap(k) term here. Therefore the discussions in 

the rest of this thesis should be limited to the contributions of the leading term. 

Because of this limitation, we cannot discuss the magnetic susceptibility in the 

liquid state but the other quantities, i. e. the static superfluid density and the 

electric conductivity, can be discussed as in the lattice state. 
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4.2 Hydrodynamic description of vortex liquid 

The basic equations which describe the vortex motion in the vortex liquid 

state can be obtained as follows. First we describe the conservation of vortex 

density, n(r, t). The vortex current is defined by 

J ( t) _ ~ J d/ Brv,a(lv, f) Brv,p(lv, f) {j(J)( _ (I t)) 
afJ r, - L._, v at azv r rv "' , 

v 

(4.5) 

where the dummy indices a, f3 take x, y , z. The vortex current is a tensor since 

it has two suffices corresponding to the direction of vortex line element and the 

direction of motion. The right hand side corresponds to the current density of 

the vortices oriented in the {3-direction moving in the a-direction. This expression 

satisfies the conservation equation for the vortex density, 

Bna(r, t) a { ( ) . ( )} --at--+ fJ lap r,t -Jpa r ,t =0, (4.6) 

which can ea,;;ily be confirmed by substituting Eq. (2.9) and Eq. (4.5). Note that 

the diagonal components, laa(r, t), are unphysical, since they represent the motion 

of the vortex lines parallel to themselves. Therefore the anti-symmetrized form of 

lap(r, t) in Eq. ( 4.6) is quite natural. 

The most convincing way to construct the equations of motion of vortex liquid 

is to extend the Markoffian equations of motion for the conserved scalar field, which 

is called "model B"according to the notation used by Hohenberg and Halperin [27], 

to the three-dimensional conserved vector field (the vortex density in our problem). 

First we describe how this is worked out. 

To derive the equations of motion of vortex density, fin(r, t), (hereafter we 

use fi n(r , t) in place of n(r , t)) it is simple to modify the Fick's law to the tensor 

current and to introduce the thermally fluctuating random currents, which we 

denote as (ap( r , t). Employing the free energy defined in Eq. ( 4.3) we obtain, 

lza(r, t) =- raa {j [fi:~:, t)] + (za( r , t) 

=- raa j d3 r 'G1iq(r- r')fin,(r' , t) + (:a(r,t ), (4.7) 

( ) 
fi9v 

laz r , t =- raz {j [fina(r, t)] + (az(r, t) 
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=- raz j d3 r'G1;q(r- r')fina(r' , t) + (az(r, t) , 

. lap(r, t) =- r,afJ {j [fi:~("r, t)] + (ap(r, t) 

=- r,aiJ j d3r'G1;q(r- r')fina(r', t) + (ap(r, t), 

( 4.8) 

(4.9) 

where a and f3 takes only X andy, r = Jl.ne, r, = Jl.tnt with J1. being same as Eq. 

(3.10) and Jl.t being the mobility of the vortices oriented in x-direction and moving 

in y-direction, whose "microscopic"estimation is given later. Here we neglected 

the contributions of the viscosity (the internal friction) of the vortex liquid, since 

they are irrelevant in the long wave behavior considered in this thesis. 

We introduce the following notations, 

fin(k, I)= i j{(inlfin(in)(k, t) + j{(out)fin(out)(k, t). (4.10) 

The continuity condition of vortex lines, Eq. (2.11), is naturally satisfied by Eq. 

(4.10) because k· fi n (k, t) = k k·fin(k, t) = 0. After some manipulations, we obtain 

the following equations of motion of the vortex density, 

iwfin(in)(k,w) =- (r,k}. + rk~)Gliq(k)fin(in)(k,w) + ((inl(k,w) ( 4.11) 

iwon<out)(k,w) =- rk2G1;q(k)on<out)(k,w) + ((outl(k,w). (4.12) 

where ((inl(k,w) and ((outl(k,w) are the random forces, the correlations of which 

are given by, 

( ((inl(k,w)) = ( ((out)(k,w)) = 0, (4.13) 

( ((inl(k,w)((inl(k' ,w')) =2k8 T(r,k}. + n;)(27r)4 fi(Jl(k + k' ) fi(w + ~4),1.4) 

( ((out)(k,w)((out)(k' ,w' )) =2keTrk2 (27r)4 {j(3)(k + k') fi(w + w'). (4.15) 

The correlations of the higher order products of ((in) and ((out) are neglected here. 

4.3 Entanglement and cutting of vortices 

In this section, we estimate the kinetic constant r, of vortex liquid state, 

which has been introduced in Eq. (4.9). It is determined by n 1 and J.l.t, which are 
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the free vortex density and the mobility of the vortices oriented in the direction 

perpendicular to the applied magnetic field, H•, and moving in the direction 

perpendicular to the orientation and H•. 

Before estimating r 1 we classify the vortex liquid. So far at least three ther­

modynamic phases has been proposed for the vortex liquid states, which are: 

(a) entangled vortex liquid state 

(b) disentangled vortex liquid state 

(c) topological glass state. 

The entangled vortex liquid state is the most common one [14, 31] where the 

vortices are entangled and the vortex cutting is induced by the thermal fluctua-

tions. 

The disentangled vortex liquid state is also proposed by several authors [14, 32] 

in which the vortices are almost straight and entanglements are absent but the 

configuration of such straight vortices are not in the triangular lattice and the 

system has no shear rigidity. This state is usually assumed to appear between the 

entangled vortex liquid state and the vortex lattice state. 

The topological glass state is proposed by Obukhov and Rubinstein [33] , in 

which the energy barrier is too large for the vortex cutting to be thermally induced. 

Although this proposal has been debated by several authors [34], based on the fact 

that the cutting barrier is always finite in the type-II superconductors, we consider 

that this glass state may provide us a qualitative view of the case where cutting 

barrier is larger than the energy scale of thermal fluctuations. 

We in this section investigate how r 1 changes in these three states. 

The free vortices in xy-direction may consist of the xy-component of the field 

induced vortices. In estimating their density we employ the discussion of Nelson 

et al. [13, 14, 31]. Especially the estimation of the "diffusion constant"of vortices 

(the diffusion constant of the vortex positions, z, considered as the fictitious "time 

"coordinate) made by Marchetti [31] will be a good starting point. 

The "diffusion constant", D , of one tagged vortex in the entangled vortex 

liquid, introduced by Nelson and Seung [14] , is defined by 

J(ir(z)- r (O)j 2 ) = )2Dizl, (4.16) 
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where r(z) is the position of the tagged vortex. The "diffusion constant"without 

other vortex lines is given by 

( 4.17) 

with e1 being the line tension given by (¢0 /47r ).. 2 ) 2 1n K. Marchetti [31] pointed out 

that the correlation effects in the vortex liquid enhances the line tension <: 1 to the 

renormalized one, e~. According to his estimate, we may put e~ ~ 10 X I':J. 

With this effective line tension of the vortices we can estimate the character­

istic spacing between the entanglements along z-axis, (., as 

( 4.18) 

which is the distance in z-direction necessary for a vortex to wander one mean 

vortex spacing. Since one vortex segment oriented in x or y direction is expected 

per area 2~,d where d ~ 1/ foB, the vortex density, n~, in case of (a) will be given 

by 

1 kBT 3/2 
nt = -- = --n B . 

2~,d 1':~ 
(4.19) 

If ~z exceeds the length of the sample, there are effectively no entanglement. 

In this case we may put n 1 = 0 and this corresponds to the disentangled vortex 

liquid: the case (b). 

Next we estimate jjt, namely the mobility of the vortex segment oriented in 

the direction perpendicular to H" and moving in the direction perpendicular to 

the orientation and H•. In the usual entangled vortex liquid, the vortex cutting 

is expected. Since the vortex cutting barrier, Uc, depends on the actual cutting 

processes [34], the estimation may be complicated in the realistic entangled vortex 

liquid. In Fig. 3 (a)~(c), the diffusion processes of the above mentioned vortex 

segment about one mean vortex spacing are schematically shown. We put the 

characteristic length of the vortex segment which diffuses collectively as d, and 

consider an approximate equation of motion of the segment . In this case Uc should 

also depend on d, since Uc is determined from the collective cutting process as 

shown in Fig. 3 (d) for example. 

Here we give a simple estimation. We assume that the equation of motion of 
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the vortex segment oriented in xy-direction is given by, 

t/>o d' 1rUc { 27r } d, TJ ±v(t) = --c-Jr + d sin dxv(t) + L(t), (4.20) 

where xv is the position of the segment, and L is the fluctuating random force, 

satisfying the relation (L(t)L(O)) = 2ryd,kBTS(t). The vortex cutting barrier is 

approximated by the periodic potential for simplicity. Eq. (4.20) has been studied 

by Ambegaokar and Halperin [35] in the context of the Josephson junction. From 

their analysis we expect that, if the barrier Uc satisfies UcK-kBT, the mobility of 

the segment, Jl.t. is given by 

(4.21) 

It is clear that if Uc :::~> kBT the mobility of the vortices is reduced extremely as 

compared to the mobility of the free diffusion, p. = 1/TJ. This result holds for the 

case (a). 

The case (c) corresponds to the situation, Uc :::1> kBT, in case (b). 

Therefore we obtain the following results for r,. 

(a) entangled vortex liquid state (from Eq. ( 4.19) and Eq. ( 4.21)) 

(b) disentangled vortex liquid state ( n 1 = .0) 

r, = o. 

(c) topological glass state (Uc :::1> kBT) 

r, = o. 

( 4.22) 

( 4.23) 

(4.24) 

The similar picture has proposed by Feigelman et.al. [32] which is derived 

based on the analogy between the statics of three dimensional vortex liquid and 

the dynamics of two dimensional bose system. 

4.4 Dynamical superfluid density in vortex liquid state 
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By Eq. (4.11) and Eq. (4.12) with Eq. (4.13)-Eq. (4.15) we obtain the dynam­

ical form factor of vortices as follows, 

S(in)(k,w) = 2kBT(r,kJ.. + rk;) 
w2 + {(r,kJ.. +rk;)Giiq(k)} 2 (4.25) 

s<out)(k,w) 2kBTrk
2 

w2 + {rk2G1iq(k)} 2 . 
(4.26) 

Then employing the linear response theory we obtain the superfluid density as 

•(inl(k ) • { rK } 
P ,w =Po 1- iw + rPGiiq(k) 

=p3{ 1 - iw/(r~)+1} (4.27) 

• (out)(k ) _ • { _ 1 (rk; + r,ki)K } 
P ,w -Po 

1 k2 iw + (rk; + r,kJ..)Giiq(k) 

=p3 1- lW + 1 . { { . }-1} 
(rsin2 B + r, cos2 B)K 

(4.28) 

A. Static superfluid density 

In the static limit, w -+ 0, the superfluid density becomes 

( 4.29) 

The result does not depend on the way of taking limits, k -+ 0, w -+ 0. From 

this expression, we conclude that the vortex liquid is not superconducting in any 

direction in the thermodynamic sense. This conclusion is in striking contrast with 

the lattice state which is confirmed to be superconducting in the direction parallel 

to the applied magnetic field according to Eq. (3.21) and Eq. (3.22) As seen from 

Eqs. (3.25,3.26) and Eqs. ( 4.27,4.28), the origin of this difference in the static limit 

lies in the existence or absence of shear rigidity. This result holds for all cases, 

(a)-( c), described in the preceding section, since the static results do not depend 

on the kinetic constant r t. 

B. Electric conductivity 

The frequency dependent electric conductiv;ty is given by. 

e• 2 pg 1 
a(19,w) = <7n + -- 2 · 

m• iw+K(r,cos2 19+rsin 19 ) 
(4.30) 

33 



In case of the entangled vortex liquid state (the case (a)), this form has no diver­

gence even if we put 0 = 0, 1r but has a finite value given by Un + e* 2 p0jm• Kr,, 
since r, =f 0 in contrast with the vortex lattice state, Eq. (3.27). In the cases of 

the disentangled vortex liquid state (b) and topological glass state (c), the electric 

conductivity given by Eq. ( 4.30) diverges in the direction of the applied field as in 

the case of vortex lattice state. 

As is mentioned before we can not discuss the magnetic susceptibility here. 

To study this quantity we have to construct a theory which can treat the vortices 

at more "microscopic "level, i.e., we have to treat the individual vortices. This 

problem is left to future studies. 
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5. Summary and discussion 

5.1 Resistivity in vortex state 

Let us, first, summarize the characteristic features of the resistivity in the 

mixed state. (Although we calculated the conductivity so far we discuss in the 

form of the resistivity here.) The behavior of the resistivity in all configurations of 

the perturbations in the lattice and the liquid states of the vortices can be given 

by the expression of the electric conductivity in Eq. (3.27) and Eq. ( 4.30), but first 

we will discuss two specific cases, i.e., the case of the electric field parallel (RII) 

and perpendicular ( Rl.) to the applied magnetic field, H•. As is schematically 

shown in Fig. 4, the behavior of Rl. does not differ between the lattice and the 

liquid states and shows the well known "flux flow "behavior in both cases. On 

the other hand, Rl I, which corresponds to the "Lorentz force free configuration", 

differs in behavior between two states. There are several possibilities. 

1) The system without disentangled vortex liquid state. 

There are two thermodynamic states, the vortex lattice state and the entan­

gled vortex liquid state. In this case Rl I has the discontinuity at the vortex lattice 

melting transition temperature, Tm, since in general Rll = 0 in the lattice state 

and Rl I =f 0 in the entangled liquid state. Rl I may show an activation type 

behavior (<X e-UdksT) in the low temperature region of the vortex liquid state. 

2) The system with the disentangled vortex liquid state. 

There are three thermodynamic phase, the vortex lattice state, the disentan­

gled and the entangled vortex liquid states. In this case the discontinuity of Rl I 

occurs at the entangled-disentangled phase transition (or crossover) temperature, 

Te-d· 

3) The system with the topological glass state. 

The topological glass phase transition, if possible, is only a crossover. (We 

write the crossover temperature as T,g. The system transforms from lattice state 

to topological glass state and, then, shows crossover to entangled vortex liquid 

state as the temperature increases. In this case the vortex cutting barrier is so 
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large just above the melting temperature and, therefore, Rl I ~ 0. Therefore the 

discontinuity of Rl I may not be visible. The onset of Rl I occurs at T19 • 

The possible temperature dependence of R.l. and Rl I are schematically shown 

in Fig. 4. 

Next we comment on the realistic superconductors, especially on the effects 

of disorder. As is the case in high-Tc materials, every superconductor has inhomo­

geneities (or pinning centers) more or less, which causes a drastic change in the 

thermodynamic and transport properties of the mixed state. For this reason it is 

actually hard to extract the intrinsic behavior of the ideal superconductors from 

actual experiments. It is however, encouraging to observe that the clean samples 

have been realized recently where the melting transition is identified from the vor­

tex glass transition [18] and we may expect the above mentioned behavior in the 

resistivity in the "Lorentz force free configuration". 

It is interesting to note that the obtained temperature dependence of R.l. in 

the vortex liquid region has a similarity to the resistivity of the low temperature 

region of the one-dimensional (1D) GL model [36, 37]; both have the activation type 

temperature dependence and the activation energy is the vortex cutting barrier 

and the phase slip energy for the vortex liquid and the lD GL model , respectively, 

i.e. the phase slip in lD GL model corresponds to the vortex cutting in 3D vortex 

liquid. This similarity seems to support the concept of the dimensional reduction 

in the fluctuation regime [38, 39, 40]. Therefore we consider that the obtained 

activation type behavior in the low temperature regio~ of the vortex liquid state 

may be smoothly connected to the behavior of the fluctuation regime as in the 

case of lD GL model. 

5.2 Magnetic properties 

It is known that if the superfluid density is not zero in all directions the electric 

conductivity diverges in all direction and the Meissner effect occurs . Then what 

happen if the superfluid density is not zero in only one direction just as in the 

vortex lattice state. This problem is closely related to the magnetization process 

in the mixed state, which has been studied by several authors [5, 41]. 
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We assume that the external magnetic field is changed from H • to H " +6H"'. 

The sample of the finite length scale is considered here and, hence, the sample has 

edges in all directions. If 6H" ' is parallel to H" the screening current due to 

6H"' flows near the sample edges in the direction perpendicular to H". In this 

case the screening current is perpendicular to the vortices and the flux penetrates 

into the sample by the usual flux flow processes, i.e. the new vortices flow into 

or flow out of the sample from the edges. As a result the internal magnetic field 

changes from B to B + 6B corresponding to 6Hezt. 

If 6Hezt is in the direction perpendicular to H", the screening currents, j~Cr. 

and j;;,r.• flow as shown in Fig. 5 (a) . In this case the process of the penetration 

of flux lines is different between in the entangled vortex liquid state and in the 

vortex lattice state because of the following reason. Since the vortex lattice state 

is stable to the current parallel to H", the penetration occurs only from the upper 

and lower edges, where the currents are perpendicular to the vortices as shown 

in Fig. 5 (b). In contrast to this the penetration occurs also from the side of the 

sample in the entangled vortex liquid state, as shown in Fig. 5 (c), because the 

vortex liquid state is no longer stable to those currents. From our theory we can 

estimate the ratio of the two penetration process as r : r t. 
Therefore we conclude that the nonvanishing superfluid density of vortex lat­

tice state in the "Lorentz force free configuration "do not imply the Meissner effect 

in the case of the sample with finite dimensions. If we imagine the sample with 

infinite dimension, e.g. in the direction of H", the situations change in case of 

the vortex lattice state because there are no edges from which the flux can pene­

trate into the sample. However this is an unphysical situation, so we consider our 

conclusion above is true in all physical situations. We consider that the origin of 

the discrepancy found in Eq. (3.30) also lies in the same fact and is resolved by 

considering the samples with finite dimensions. 

5.3 Relation to previous treatments and future extensions 

In this thesis we emphasized that the distinction between the internal and the 

external vector potential is completely disregarded in the conventional treatments 

of the flux flow or flux creep phenomena. Here we discuss when the conventional 
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treatments are justified. The conventional treatments are valid only when the 

difference of the internal and the external vector potential is small. By Eq. (2.35) 

the ratio of the two is expressed by the magnetic permeability. Therefore we should 

examine the magnetic permeability corresponding to the flux flow or flux creep 

phenomena. In Fig. 6 we showed a schematic graph of the typical B-H" curve in 

the mixed state. The ratio of the internal and the external vector potential in the 

the flux flow or flux creep state is given by the magnetic permeability J.Ldif, which 

is given by the gradient of the curve at a fixed H" . From Fig. 6 it is clear that 

J.Ldif ~ 1 almost everywhere in the mixed state. The only exception is the region 

near He!· Therefore if we limit ourselves to the flux flow or flux creep phenomena 

the conventional treatments apply. That is the validity and at the same time the 

limitation of the conventional treatments. The conventional treatment fail in other 

configurations where the screening effect is strong, for example the conductivity 

parallel to the applied field. 

It has been known that the resistivity of the mixed state of high-Tc cuprates 

strongly depends on the angle between the electric field and the applied magnetic 

field [42] . At this stage our theory can not be compared with the quantitative 

explanation of the experimental results unfortunately, since, in our model, the large 

anisotropy of the high-Tc cuprates, which is expected to be playing important roles, 

is not taken into account. In order to apply our treatment to such system, we need 

to extend the present approach in the following points. First the anisotropy should 

be taken into the form of the free energy, for example as the anisotropy of the mass 

of Cooper pairs. Second the Bardeen-Stephen viscosity should also be extended to 

anisotropic case. In addition, the layer structure, especially the intrinsic pinning by 

the layers, may be affecting the behavior of high-Tc cuprates, which should also be 

considered. These effects are expected to change the magnitude of the resistivity 

largely and, therefore, even the qualitative properties can be different from the 

isotropic superconductors, evaluated in our theory. We leave these extensions for 

the future studies. 
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Appendix A Vortex density fluctuations in lattice state 

We will derive the expression of the vortex density fluctuations, on(r , t ), in 

terms of the elastic field, which can be carried out by expanding on(r, t) in terms 

of s.( z, t) as, 

on(r, t) = L J d z1 
{ Z + OS•~;: ' t)} O(J)(r- r~ (z 1 )- s.(z1

, t))- nB Z 

" 
= :Ljd zl{z +os.(z~,t) }j d3k e-ik· (r-r:( z')) 

" Oz1 (211")3 

x { 1- ik · s. (z 1 ,t) - ~(k · s.(z1 ,t))
2

- ~ (k · s.(z1,t))
3

} 

- nB + o(s~) z. (A1) 

Then going to the Fourier space, we have, 

on(O)(k, G , t) =nB z 8(3)(k) (1 - oa,o), (A2) 

on (ll(k, G , t) =ikzs(k, t) - iz (k +G)· s(k , t), (A3) 

onC 2l(k,G,t) =- ~ { ( d)
3

3q z (k + G ) . s(q , t) (k +G)· s(k- q ,t) 
2}0 271" nB 

r d3q I 

-} 
0 

( 21r)3 n
8 

kzs( q, t ) (k +G)· s(k- q , t) , (A4) 

(3) - i r d3q r d3ql - I on (k,G, t)-- 6 lv (21r)3n
8 

lv (21r)3n
8 

z (k +G) · s(q ,t) (k +G). s(q ,t) 

X (k +G) · s(k- q - q 1
, t) 

n Bi r d3q r d3ql I 

+2 Jv (27r)3 Jv (27r)3 qzs(q,t)(k+G)·s(q,t) 

x (k +G)· s(k - q- q 1
, t) , (A5) 

where 

on(k , G , t) = 6n (0 l(k , G , t) + on (ll(k , G , t) + 6n (2l(k , G , t) + 6n(3l(k , G , t) + o(s4
), 

(A6) 

and 

r ( ) _ "1 d
3
k r (kG t ) -i (k+G )· r un r , t - L ( )3 un , , e . 

G D 2rr 

with G being the reciprocal lattice vector of the triangular vortex lattice. 
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Appendix B Derivation of elastic free energy 

The elastic moduli, which do not include the screening effects due to the 

vector potential fluctuation, are obtained in the following way. 

We start from Eq. (2.12) and expand it to the second order in the elastic field , 

s(k, t). In this Appendix we omit the time coordinate, t. Since 9v is expressed as 

r d3k 
Yv = L} D ( 211')3 G.(k +G) 8n(k, G)· 8n( -k, -G), 

G 

we obtain 

Yv = ~ L (~:~3 G.(k +G) [8n<0l(k, G) . 8n<0>( -k, -G) 

+ 2 8n<0l(k, G)· 8n(ll( -k, -G) 

+ 8n(ll(k, G) · 8n<1l( -k, -G)+ 28n<0l(k, G)· 8n<2l( -k, -G)]. 

(Bl) 

(B2) 

Since the vortex lattice is assumed to be in the thermodynamically stable lattice 

structure, the second line of Eq. (B2) must vanish. The other two terms give, 

(B3) 

The first term in Yv is the gain of the potential energy of vortices due to the 

lattice structure, which contributes to 90 in Eq. (3.3). The summation in Kap(k) 

and Lap(k) can be carried out by the following way. First we note the following 

replacement which are valid under the summation over the reciprocal lattice vector 

of triangular lattice: [26] 

Using these we obtain 
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+ "'{k k (- 3~,c +~;c) e-e.:c + k2 8 (~;c + h) -e .. c 
D "' 11 8G 8 .L "'11 16 16G e 
G;<o 

+ u • --- - e '" k2c ( 1 ~•c) -' G} 
' "'~ 2G2 4G ' 

. (k) - k; 8 "' k2 r _2_ -e .. c Lap - k2 aP + D ,uap G2 e . 
G¢0 

(B4) 

The summation over G can be approximated by the intergation 

(B5) 

(B6) 

(B7) 

where G = IGI, kaz = J47l'na and after integration we put ~.c --+ 0. Employing 

Eq. (B5)~Eq. (B7) we obtain, 

Kap(k) = G2 - 16:nJ ka kp + 16:na (k}.8ap- ka kp) 

- (-4 
1 

In( J47l'na~.c)- 1 + -
8 

1 
) k;8ap 

7l'na 7l'na 

Lap(k) = (k\ + 27l'~B In( J47l'nB~•c)- 1 ) k;8af3· (BS) 

Comparing Eq. (BS) with the definition of the elastic moduli in Eq. (3.3) we obtain 

cn (k) =Kn~ (_!_- - 1
-) 

k2 167l'na 
Kna 

C66(k) =--
1671' 

(k) -Y 2 ( 1 ln(47l'na ~;c)) c•• -\na 1.;2- 87l'na . (B9) 

The logarithmic term in c44 (k ) can be rewritten in the form given in Eq. (3.5) 

using the formula , Eq. (3.4). 
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Appendix C Dynamical form factor of vortices in vortex 

lattice state 

From Eq. (A2)-Eq. (A5) the vortex density in the long wavelength limit can be 

obtained by neglecting the terms of higher reciprocal lattice vector, G, as follows, 

where kl' = (k , k0 ) and ql' = (q , q0 ). Therefore the dynamical form factors (or the 

density-density correlation functions) of the vortices are estimated using Eq. (C1) 

and Eq. (C2) as follows, 

sUnl( k~') =~ k; (s'( kl')s' ( -k~')) 
1 r d3 qd3 q1 

{
00 

dqodqb [ 1 1 2 

+fi}v{(27r)3nB}2 }_oo (27r)2 4(kz+2qz)(-kz+2qz)kl. 

x ( i(Un) . s ( ~ + ql') k(l) . s ( k; _ ql') 

X j(Un) . s (- k; + q~) k(l) . s (- k; - q~)) c 

1 +3 kz(-kz+3qz)k]_ 

X ( j((in) . 5 (kl') j((in) . 5 ( _ k; + ql') 

X k(l) · S (- k; + q~) k(l) · s (-? - q~ -ql' ) ) J 
+ o(s6

), (C3) 
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sUnl(k~') =~ { ( 8n(inl(k~') 8n(inl( -k~')) - ( 8n(in)(k~')) ( 8n(inl( -k~'))} , (C5) 

s<out)(kl') =~ { ( 8n(out\kl') 8n(out)( -kl'))- ( 8n(out)(kl')) ( 8n(out)( -kl'))}. 

(C6) 

Here (- · -}c counts only contributions from the "connected diagrams ", which 

means that only the terms connecting 8nUn, out)(kl') and 8nUn, out)( -kl') should 

be taken, because of the subtraction of (8n(in , outl(kl')) (8n(in, out)(-kl')) in Eq. 

(C5) and Eq. (C6). Here we define the o(s)4 terms as ss:~~l(k~') and ss:~~'l(k~') . 

Then we obtain 

ss<in)(k ) = !_;, d
3
qd

3
q' {

00 
dqodqb [ -(kz + 2qz)Z 

th. I' f! D {(27r)3nB}2 j_oo (27r)2 4 

X ( j(Un) . 5 ( ~ + ql') j((in) . S ( _ k; _ ql')) 

X ( k(l) · s ( ~ - ql') k(l). s ( _ k; + ql')) 

k; -4q; ( k-( in) (k,, ) k (l) ( kl' ) ) - --4- . s 2 + ql' . s - 2 - ql' 

X ( j((in) · S C; -ql') k(l) · S (-~ + ql') ) (C7) 
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and 

(C8) 

Here the second term of order s(kp)4 in Eq. (C3) and Eq. (C4) are neglected 

because they have smaller contributions compared to above terms. 
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Appendix D Free energy of compressed vortex lattice 

The decrease of the mean field free energy Yo in Eq. (3.2) when the vortex 

lattice is compressed either isotropically or anisotropically is calculated as follows. 

If we change the vortex density as na -+ (1 + 8) na, we have only to deform the 

reciprocal lattice as follows, 

i) 
ii) 

G--+ V"f+6 G 
Gy --+ (1 + 8) Gy 

(isotropic compression), 
(anisotropic compression). 

We then calculate the decrease of Yo for each case. 

i) Isotropic compression 

In this case the change of Yo, which we denote as 8yh'0
·, is estimated as follows , 

8yiso. K n2 e-e" v'f+"6G K n2 e-e" a + =T(l + 8)
2 L (1 + 8) G2 - T L ~· 

G;.!O G;.!O 

K n2 1 100 e-e" a 
=--B -k2 211" GdG-G2 

2 11" BZ ksz 
{ 

1 2 2 2} 8 (1 - 2~•c G) - 8 ~•c G , 

""'- K n1 82 _1_ 
- 2 81rna · (Dl) 

In the last line we used the approximation given in Eq. (B5)~Eq. (B7). 

ii) Anisotropic compression 

In this case we define 8y0"· as the change of free energy. 

8y••· K n2 e-e" Ja;+(IH)'a; K n2 e-e" G + =T(l + 8? L G2 + (1 + 8)2Q2 - T L ~· 
G;.!O ' Y G;.!O 

Kn2 e-e"a { G2 G2 =T L ~ 8(2-~•c d -2G~) 
G;.!O 

=--8 
-- GdG dB Kn2 1 1oo 12~ 

2 11"k1z ksz o 
e-e" a 5 1 

x ~ 82 (1- 5cos2 B+ 4cos4 B- 2 ~.cGcos
2 Bsin2 B + 2 cos4 B) 

~- K n1 82 _1_ (D2) 
2 161rna 

In estimating the last line we used, 

1
2~ n . m _? (m- 1)!! (n - 1)11 

dB cos B Sin B - -11" ( )" , 
o m+n .. 

(D3) 
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which holds for even m and nand n!! represents n x (n- 2) · · · 4 x 2 for even n 

and n x (n- 2) · · · 3 x 1 for odd n. 

From these equations we obtain the change of the total free energy, 6giso. and 

69""· in each case as, 

6Qiso. =- !!._ (nB6) 2 -
1

- +if>~ (nB6- 6h)2
, 

2 81rnB 81r 

6Q""· =- !!._ (nB6) 2 -
1
- + if>~ (nB6- 6h)2

, 
2 167rnB 81r 

(D4) 

where 6h = 6H••' /¢0 is the perturbation of the external field and nB x 6, by 

definition, corresponds to the change of the internal magnetic field caused by the 

perturbation. From the present result we obtain the magnetic permeability as 

dif _ nB X 6 
J1. - 6h 

1 
( 1- 811'~)..,2) -

1 

(isotopic case) 

= ( 1-
16

;;>..
2

) -

1 

(anisotropic case) 

(D5) 

Comparing these results with Eq. (3.33) and Eq. (3.34) it is understood that the 

discrepancy in the results of the mean field theory and the elastic theory arises 

from the difference of compressional mode of the vortex lattice which are taken 

into account. 
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Figure Captions 

Fig. 1. The configuration of k(in) , k(out) and k. 

Fig. 2. The original lattice and the compressed lattice are shown. (a) original lat­

tice, (b) isotropically compressed lattice, (c) anisotropically compressed 

lattice. 

Fig. 3. A typical diffusion process of the vortex segments contributing to f 1• 

In (a) the vortices in the second raw are tilted to generate the vortex 

component perpendicular to the magnetic field. In (b) one vortex cutting 

process takes place (indicated by arrows) to shift the vortex line by about 

a half of the mean vortex spacing. In (c) one more cutting process takes 

place to complete the shifting the vortex line by one mean vortex spacing. 

In the text, the energy barrier of these collective cutting process, shown 

in (d), is expressed by Uc with the size of the segment d •. 

Fig. 4. The schematic view of the behavior of "flux flow "(R.L) and "Lorentz 

force free "(RII) resistivity. 

Fig. 5. (a) The additional magnetic field, oH" 1
, applied perpendicular to the 

original field, H" and the screening currents caused by oH•zt. (b) The 

penetration of vortices in the vortex lattice state : the penetration occurs 

only from the upper and lower edges of the sample. (c) The penetration 

of vortices in the entangled vortex liquid state: the penetration occurs 

also from the side of the sample due to the vortex cutting process. 

Fig. 6. The schematic view of the B-H• curve in the mixed state of type-II 

superconductors. 
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