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Abstract

This is a summary of the author’s Ph.D thesis [M], in which we study some properties of the higher
Chow group with modulus, introduced by F. Binda and S. Saito in [BS]. The higher Chow group with
modulus is defined for a pair X = (X,D), where X is a scheme over a field and D is an effective Cartier
divisor on X. It is a common generalization of Bloch’s higher Chow group, the Chow group with modulus
and the additive higher Chow group. One of the main results in [M] is an invariance property of the higher
Chow group with modulus, which generalizes the A1-homotopy invariance of Bloch’s higher Chow group.
For this, we need to extend the definition of the higher Chow group with modulus for non-effective Cartier
divisor D. Moreover, over a field of positive characteristic p, we prove that the higher Chow group with
modulus with p inverted is A1-homotopy invariant, and is independent of the multiplicity of the modulus
divisor. We explain the historical background of the research, state the main results, and provide key
ideas of the proofs.
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1 Historical Background

1.1 Chow groups

For a scheme X ∈ Schk, the Picard group Pic(X) of X is a familiar object in algebraic geometry. It is
defined as the set of isomorphism classes of line bundles over X. The abelian group structure on Pic(X) is
given by tensor products of line bundles.

The chow group CHr(X) of cycles of codimension r ≥ 0 on X is a generalization of Pic(X), which is
defined as follows:

CHr(X) := Z { irreducible closed subsets of X of codimension r } /(rational equivalences).

Here, for any set S, we define ZS as the free abelian group generated on the set S. The elements of
Z { irreducible closed subsets of X of codimension r } are called algebraic cycles of codimension r on X.
We do not provide the precise definition of rational equivalences here (because the more general group will
be defined in the following subsections). As a typical example, for any smooth scheme X ∈ Schk, the Chow
group of cycles of codimension 1 on X is canonically isomorphic to the Picard group of X:

CH1(X) ∼= Pic(X), D 7→ L(D).

Here, L(D) is the line bundle associated to the Cartier divisor D. One of the celebrated results on Chow
groups is the following comparison isomorphism with the 0-th K-group K0(X) for any smooth k-scheme X:

K0(X)Q ∼=
⊕
r≥0

CHr(X)Q,

where the subscript Q denotes the tensor product ⊗ZQ.

1.2 Bloch’s higher Chow groups

As a generalization of Chow groups, S. Bloch introduced in his paper [B] the q-th higher Chow group
CHr(X, q) of codimension r of X for any non-negative integer q. It is defined as the q-th homology group of
a certain chain complex zr(X, ∗), which is called the cycle complex of X of codimension r. It is indeed a
generalization of Chow group because we have a canonical identification CHr(X, 0) ∼= CHr(X) for any X and
for any r. Originally, the cycle complex zr(X, ∗) is defined as the complex associated to a simplicial abelian
group, but we make use of a variant, which is called the cubical cycle complex. First, for any X and for any
non-negative integers r, q, we define a group zr(X, q) as the free abelian group generated on the following set:

{ irreducible closed subsets of X ×Aq of codimension r which satisfy the face condition } .

Here, we say that an irreducible closed subset V ⊂ X × Aq satisfies the face condition if and only if the
following condition holds:

• For any face F on Aq, the subset V intersects X × F properly on X × Aq, where a face on Aq is a
closed subset of the following form for some subset I ⊂ {1, . . . , q} and for some ϵi ∈ {0, 1}, i ∈ I:∩

i∈I

Ai−1 × {ϵi} × Aq−i.

By the face condition, we can see that for any face F ⊂ Aq of codimension 1, the restriction of algebraic
cycles along the inclusion X × F ⊂ X × Aq induces a well-defined morphism of abelian groups

zr(X, q) → zr(X, q − 1).

By taking an appropriate alternating sum of such morphisms, we obtain the differential map dq : zr(X, q) →
zr(X, q − 1) which satisfies dq+1 ◦ dq = 0. In fact, zr(X, ∗) can be equipped with a structure of cubical
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abelian group, whose degeneracy maps zr(X, q) → zr(X, q + 1) are given by the pullback of cycles along the
projections X ×Aq+1 → X ×Aq. In general, for any cubical abelian group A∗, we can associate a canonical
chain complex A∗ defined by

Aq := Aq/(degenerate part),

where the degenerate part is the sum of images of the degeneracy maps. Let zr(X, ∗) denote the chain
complex associated to the cubical abelian group zr(X, ∗).

Definition 1.1. For any X ∈ Schk and for any non-negative integers r, q, we define the q-th higher Chow
group of X of codimension r by

CHr(X, q) := Hq(z
r(X, ∗)).

It is known that this definition coincides with the one which uses simplicial abelian groups. A remarkable
result of Bloch is the following comparison isomorphism for any smooth scheme X and for any non-negative
integer q:

Kq(X)Q ∼=
⊕
r≥0

CHr(X, q)Q,

where the left hand side denotes Quillen’s q-th higher algebraic K-group.

1.3 Higher Chow groups with modulus

In algebraic K-theory, there is an important object called the relative K-theroy. It is defined for “pairs of
spaces.” Precisely speaking, for any scheme X and for any closed subscheme Z ⊂ X, we can define the relative
K-group K∗(X,Z) of the pair (X,Z). The relative K-groups measure the difference between the K-groups
of X and of Z. As we have seen in the previous subsections, the higher Chow group is closely related to
the higher K-theory of schemes. So, it is natural to expect that there exists a kind of “relative” theory of
higher Chow groups. The notion of higher Chow groups with modulus, which was introduced by F.
Binda and S. Saito in their paper [BS], realizes such an expectation in some sense. By technical reasons, the
higher Chow groups with modulus are defined for pairs of the form X = (X,D), where X ∈ Schk and D is
an effective Cartier divisor on X. Similarly to the case of Bloch’s higher Chow groups, the q-th higher Chow
group with modulus CHr(X , q) of X of codimension r is defined as the q-th homology group of a certain
chain complex zr(X , ∗), called the cycle complex with modulus. The cycle complex with modulus is defined
as the subcomplex of the cycle complex zr(X ◦, ∗) of the scheme X ◦ := X \ |D| generated by the irreducible
closed subsets which satisfy the modulus condition. Here, we say that an irreducible closed subset V of
the scheme X ◦ × Aq satisfies the modulus condition if and only if it satisfies the following condition (M)q:

(M)q: Regard Aq = (A1)q as an open subset of the product (P1)q in the natural way. Let V be the closure

of V in the scheme X × (P1)q and let V
N → V be the normalization morphism. Then, we have the

following inequality of Cartier divisors on V
N
:

D × (P1)q|
V

N ≤ X × Fq|V N .

Here, Fq denotes the effective Cartier divisor
∑q

i=1(P1)i−1 × {∞} × (P1)q−i on (P1)q, and the symbol

|
V

N means the restriction of Cartier divisors to the normal scheme V
N
.

We can check that if an irreducible closed subset V ⊂ X ◦ × Aq satisfies the modulus condition (M)q, then
any irreducible component of the pullback of V along any codimension 1 face X ◦×Aq−1 ↪→ X ◦×Aq satisfies
the modulus condition (M)q−1. Thus, the differential maps zr(X ◦, q) → zr(X ◦, q− 1) of the cycle complex
of the scheme X ◦ induce differential maps zr(X , q) → zr(X , q − 1) on the subgroups. Thus, we obtain a
subcomplex zr(X , ∗) of zr(X ◦, ∗).

Definition 1.2. For any effective modulus pair X = (X,D) and for any non-negative integers r, q, we define
the q-th higher Chow group with modulus of X of codimension r by

CHr(X , q) := Hq(z
r(X , ∗)).
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The higher Chow group with modulus is a common generalization of the following classical objects:

(i) Bloch’s higher Chow group: CHr((X, ∅), q) ∼= CHr(X, q),

(ii) additive higher Chow group: CHr((X × A1,m · {0}, q)) ∼= TCHr+1(X, q;m), m ≥ 1, and

(iii) Chow group with modulus: CHr(X , 0) ∼= CHr(X|D).

The identification (i) is by definition of cycle complexes with modulus. The identification (ii) is also by
definition, where the right hand side is called the additive higher Chow group of a scheme X, which was
first introduced by Bloch and H. Esnault in their paper [BE] to capture the information of “additive” objects
via algebro-cycle-theoretic methods, and was generalized later by K. Rülling and by J. Park. A remarkable
result by Rülling, proven in his Ph.D thesis [Ru, Theorem 4.19], is the following comparison theorem with
the big de Rham-Witt group of L. Hesselhold and I. Madsen (with the assumption that the characteristic of
the base field is away from 2):

TCHr(Spec(k), r;m) ∼= WmΩr−1
k .

As a partial generalization, A. Krishna and Park proved in their paper [KP15, Theorem 7.12] the following
functorial isomorphism:

TCH1(Spec(R), 1;m) ∼= Wm(R), · · · (∗)

where R is an integral k-domain which is a UFD. Finally, the identification (iii) is a non-trivial fact proven
in [BS, Theorem 3.3]. The right hand side of (iii) is called the Chow group with modulus, which was
introduced as a (partial) generalization of the relative Picard group Pic(X,D). It is used in the paper [KeS]
by M. Kerz and Saito, in which they construct the higher dimensional class field theory of schemes over a
finite field (which can treat wild ramifications).

Recently, R. Iwasa and W. Kai announced that there exists a canonical map from the relative higher K-
group to the (hypercohomology version of) higher Chow group with modulus under some relevant conditions.
It is expected that the map gives a comparison isomorphism, at least after it is tensored by Q.

2 Statements of Main Results

Motivation of research

The starting point of the author’s research is the following fundamental result, which is called “A1-homotopy
invariance,” proven by Bloch in [B, Theorem 2.1]:

Theorem 2.1. For any scheme X ∈ Schk and for any non-negative integers r, q, the pullback of algebraic
cycles along the first projection X × A1 → X induces an isomorphism of groups

CHr(X, q) ∼= CHr(X × A1, q).

As we have seen in the previous section, the higher Chow group is generalized to higher Chow group
with modulus by Binda and Saito. However, by the isomorphism (∗) in the previous section, we can see that
the higher Chow group with modulus does not satisfy A1-homotopy invariance. So, it is natural to ask the
following question:

(1) How far is the higher Chow group with modulus from A1-homotopy invariance?

(2) Is there an appropriate invariance property for the higher Chow group with modulus which generalizes
A1-homotopy invariance?

In the following, we state the main results of the paper.
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2.1 Preliminaries

For later use, we introduce a generalized notion of modulus pairs:

Definition 2.2. We call a pair X = (X,D) a modulus pair if X is a k-scheme in Schk and if D is a
Cartier divisor on X. We say that X = (X,D) is effective if and only if D is an effective Cartier divisor.
For any modulus pair X , we write X ◦ := X \ |D|, where |D| denotes the support of D.

Note that the effectivity of the Cartier divisors D is not used essentially in the definition of the cycle
complex with modulus zr(X , ∗). So, it is natural to expect that we can define higher Chow groups with
modulus for any (not necessarily effective) modulus pair.

Proposition 2.3. For any modulus pair X and for any non-negative integer r, we can define the cycle
complex zr(X , ∗) by using completely the same procedure in the case of effective modulus pairs. We define
the q-th higher Chow group with modulus CHr(X , q) of X of codimension r as the q-th homology group

CHr(X , q) := Hq(z
r(X , ∗)).

We introduce the notion of products of modulus pairs as follows:

Definition 2.4. For modulus pairs X = (X,D),Y = (Y,E), we define the product modulus pair of X
and Y by

X × Y := (X × Y,D × Y +X × E).

We can check the following fact:

Proposition 2.5. For any modulus pairs X ,Y , the product X ×Y is a modulus pair. Moreover, we have

(X × Y )◦ = X ◦ × Y ◦.

2.2 A1-homotopy invariance in positive characteristics

In the following, we give an answer to the question (1) over any field of positive characteristic. Throughout
this subsection, we assume that the characteristic of the base field k is positive, and denote it by p. As
an evidence of the fact that the higher Chow group with modulus is not A1-homotopy invariant, we have
recalled the comparison isomorphism with the big de Rham-Witt group WmΩr, which is a typical example
of non-homotopy invariant object. Here, note that this object is annihilated by pd for sufficiently large d.
By this observation, it is possible to expect that the non-homotopy invariant part of the higher Chow group
with modulus is annihilated by a sufficiently large power of the characteristic p. Now, we have the first main
result:

Theorem 2.6. For any modulus pair X = (X,D) over k and for any non-negative integers r, q, the pullback
of algebraic cycles along the first projection X ◦ × A1 → X ◦ induces an isomorphism of abelian groups

CHr(X , q)⊗Z Z[1/p] ∼= CHr(X × A1, q)⊗Z Z[1/p].

Here, A1 on the right hand side of the isomorphism is naturally identified with the modulus pair (A1, ∅),
where ∅ is the trivial Cartier divisor on A1. In other words, X × A1 = (X × A1, D × A1).

This theorem states that the higher Chow group with modulus is A1-homotopy invariant if we invert the
characteristic of the base field, as expected. Then, it is natural to ask the following question:

• Is CHr(X , q)⊗Z Z[1/p] isomorphic to Bloch’s higher Chow group of the scheme X ◦ = X \ |D|?

In fact, the answer to the question is NO, even if the Cartier divisor D is effective. So, it is an important
task to provide a precise description of CHr(X , q)⊗Z Z[1/p]. For this, we introduce the following variant of
the higher Chow group with modulus:
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Definition 2.7. For any modulus pair X = (X,D) and for any non-negative integers r, q, we define the
subgroup zr(X , q)′ of zr(X ◦, q) as the one generated by irreducible closed subsets V of X ◦ × Aq which
satisfy the following näıve modulus condition (M)′q:

(M)′q Let V be the closure of V in X ×Aq and let V
N → V be the normalization morphism. Then, we have

the following inequality of Cartier divisors on the normal scheme V
N
:

D × Aq|
V

N ≤ 0.

Then, the differential maps of the cycle complex zr(X ◦, ∗) induce maps zr(X , q)′ → zr(X , q − 1)′. Thus,
we obtain a subcomplex zr(X , ∗)′ of zr(X ◦, ∗). We define the q-th näıve higher Chow group with
modulus of X of codimension r by

CHr(X , q)′ := Hq(z
r(X , ∗)′).

Now, we are ready to give a description of CHr(X , q)⊗Z Z[1/p]:
Theorem 2.8. For any modulus pair X over k and for any non-negative integers r, q, the identity map on
X ◦ induces an isomorphism of abelian groups

CHr(X , q)⊗Z Z[1/p] ∼= CHr(X , q)′ ⊗Z Z[1/p].

If we consider effective modulus pairs, we have the following corollary, which states that the higher Chow
group with modulus with p inverted is independent of the multiplicity of the effective Cartier divisors:

Corollary 2.9. For any effective modulus pairs X = (X,D),X ′ = (X,D′) with |D| = |D′| and for any
non-negative integers r, q, the identity map on X ◦ induces an isomorphism of abelian groups

CHr(X , q)⊗Z Z[1/p] ∼= CHr(X ′, q)⊗Z Z[1/p].

Proof. This follows immediately from Theorem 2.8, noting that the näıve modulus condition (M)′q is equiv-

alent to the condition that the closure V does not intersect with the support of D if D is effective.

In the case that r = dimX, q = 0 and X is a proper normal integral scheme over k, Corollary 2.9 is
already known in [BCKS, Corollary 2.22 (2)].

We give a further comment on Theorem 2.6, 2.8, Corollary 2.9: in general, for any Z-module A, we can
define the “higher Chow group with modulus with coefficients in A.” All the results in this subsection can
be generalized for higher Chow groups with modulus with coefficients in any Z[1/p]-module A. If we take
A = Z[1/p], then we recover the results in this subsection.

2.3 General invariance property: the cube invariance

In the following, we consider an arbitrary base field k, which is not necessarily of positive characteristic. We
provide an answer to the question (2). In other words, we formulate an invariance property of the higher
Chow groups with modulus and prove it. For this, we consider the following non-effective modulus pair:

□(−1)
:= (P1,−{∞}).

We call it the minus-cube. Note that, for any modulus pair X = (X,D), we have

X ×□(−1)
= (X × P1, D × P1 −X × {∞}), (X ×□(−1)

)◦ = X ◦ × A1.

Now, we have the following result:

Theorem 2.10. For any modulus pair X = (X,D) over k and for any non-negative integers r, q, the pullback
of algebraic cycles along the first projection X ◦ × A1 → X ◦ induces an isomorphism of abelian groups:

CHr(X , q) ∼= CHr(X ×□(−1)
, q).

If the Cartier divisor D is trivial, then this isomorphism coincides with the A1-homotopy invariance of Bloch’s
higher Chow groups.
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3 Sketch of Proofs

In this section, we sketch the proofs of Theorem 2.6, 2.8 and 2.10. First, we reduce 2.6 to another invariance
property Theorem 3.1 below, which is similar to 2.10. Next, we explain the strategy of proving 2.10 and 3.1.
Finally, we explain that 2.6 implies 2.8.

3.1 Reducing Theorem 2.6 to another invariance property

We reduce Theorem 2.6 to the following theorem:

Theorem 3.1. Let k be a field of positive characteristic p. Then, for any modulus pair X = (X,D) over
k, for any non-negative integers r, q and for any positive integer n, the pullback of algebraic cycles along the
first projection X ◦ × A1 → X ◦ induces an isomorphism of abelian groups:

CHr(X , q)⊗Z Z[1/p] ∼= CHr(X ×□(−n)
, q)⊗Z Z[1/p],

where □(−n)
:= (P1,−n · {∞}).

Proposition 3.2. Theorem 3.1 implies Theorem 2.6.

This proposition is an immediate consequence of the following lemma:

Lemma 3.3. For any modulus pair X over k and for any non-negative integers r, q, the natural inclusions

of complexes zr(X ×□(−n)
, ∗) ↪→ zr(X × A1, ∗) induce an isomorphism of abelian groups:

lim−→
n≥1

CHr(X ×□(−n)
, q) ∼= CHr(X × A1, q).

Proof. To prove the lemma, it suffices to prove the isomorphism∪
n≥1

zr(X ×□(−n)
, q) ∼= zr(X × A1, q).

Let V be an irreducible closed subset of X ◦ ×A1 ×Aq. Let V be the closure of V in X ×A1 × (P1)q and let

V
N → V be the normalization morphism. Assume that we have the following inequality of Cartier divisors

on the normal scheme V
N
:

D × A1 × (P1)q|
V

N ≤ X × A1 × Fq|V N .

Now, let V be the closure of V in the larger scheme X × P1 × (P1)q, and let V
N

→ V be the normalization
morphism. Then, there exists a positive integer n0 such that for any n ≥ n0, we have the following inequality

of Cartier divisors on the normal scheme V
N
:

D × P1 × (P1)q|
V

N ≤ X × P1 × Fq|
V

N + n ·X × {∞} × (P1)q|
V

N ,

or equivalently,
D × P1 × (P1)q|

V
N − n ·X × {∞} × (P1)q|

V
N ≤ X × P1 × Fq|

V
N .

Noting that X ×□(−n)
= (X × P1, D × P1 − n ·X × {∞}), this inequality concludes the proof.
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3.2 Sketch of Proofs of Theorem 2.10 and 3.1

Befor starting the proof, we introduce the following definition:

Definition 3.4. Let X = (X,D) be a modulus pair over a field k, and let w be a finite set of closed subsets
of the scheme X ◦. For any non-negative integers r, q, we define an abelian subgroup zrw(X , q) of zr(X , q)
as the one generated by irreducible closed subsets V of X ◦ × Aq which belong zr(X , q) and satisfy the
following additional condition:

• For any W ∈ w and for any face F of Aq, the subset V intersects W × F properly in X ◦ × Aq.

Then, we can check that the differentials of the complex zr(X , ∗) restrict to maps zrw(X , q) → zrw(X , q−1).
Thus, we obtain a subcomplex zrw(X , ∗) of zr(X , ∗).

First, we prove Theorem 2.10. Let k be a field of any characteristic, and let X = (X,D) be a modulus pair
over k. By imitating the proof of A1-homotopy invariance of Bloch’s higher Chow group as in [B, Theorem
2.1], we are reduced to prove the following two lemmas:

Lemma 3.5. Set w := { X ◦ × {0, 1} }. Then, for each ϵ ∈ {0, 1}, the pullback of algebraic cycles along the
inclusion morphism X ◦ ∼= X ◦ × {ϵ} ↪→ X ◦ × A1 induces a map of complexes

i∗ϵ : zrw(X ×□(−1)
, ∗) → zr(X , ∗),

and the maps i∗0, i
∗
1 are homotopic.

Proof. The proof of this lemma is easy and formal, noting the fact that there is a canonical identification

zrw(X ×□(−1)
, q) = zr(X , q + 1)

by definition for any non-negative integer q, which implies that for any V ∈ zrw(X × □(−1)
, q), the cycle V

itself gives the homotopy between i∗0V and i∗1V . This finishes the proof.

Lemma 3.6. Set w := { X ◦ × {0, 1} }. Then, the natural inclusion map of complexes

ι : zrw(X ×□(−1)
, ∗) ↪→ zr(X ×□(−1)

, ∗)

is a quasi-isomorphism.

Sketch of Proof. The proof of this lemma is technical and complicated, so we give only a sketch. Fix a non-

negative integer q, and take any irreducible closed subset V of X ◦×A1×Aq which belongs to zr(X ×□(−1)
, q).

We would like to find a homotopy cycle H on X ◦ × A1 × Aq × A1 which belongs to zr(X × □(−1)
, q + 1),

where the last affine line A1 is the “time axis of moving” whose parameter is denoted by t, such that the

fiber H0 over t = 0 is equal to V and the fiber Hτ over t = τ ̸= 0 belongs to the subgroup zrw(X ×□(−1)
, q).

Bloch’s proof of A1-homotopy invariance allows us to find a cycle H which satisfies all the conditions as above

except that H belongs to zr(X ×□(−1)
, q+1). Precisely speaking, the homotopy cycle H is constructed over

a purely transcendental field extension K/k, but we do not care about the point because it is not essential
in this sketch. The problem is that we do not know whether the closure of H in X ×P1 × (P1)q ×P1 satisfies
the modulus condition around the infinity point of the last projective line. The key idea to overcome this
problem is to pushforward the cycle H by the finite endomorphism

idX ◦×A1×Aq × ρd : X ◦ × A1 × Aq × A1 → X ◦ × A1 × Aq × A1,

where d is a positive integer and ρd : A1 → A1 is the finite morphism which sends the parameter t to td. Note
that ρd is naturally extended to a finite endomorphism ρd : P1 → P1, which satisfies that (ρd)∗{∞} = d ·{∞}.
Hence, using [KP, Lemma 2.2], we can prove that if d is sufficiently large, then the cycle H(d) obtained as the
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pushforward of H by the morphism idX ◦×A1×Aq × ρd satisfies the modulus condition and hence belongs to

zr(X ×□(−1)
, q+1). Noting the map idX ◦×A1×Aq ×ρd is a finite map, we can easily check that H(d) satisfies

the condition that the fiber H(d)
1 over t = 1 belongs to zrw(X ×□(−1)

, q). However, since (ρd)∗({0}) = d · {0},
the fiberH(d)

0 is equal to d·V . So, to obtain a right homotopy cycle, we should take the differenceH(d+1)−H(d).
This finishes the proof.

Thus, we finished the sketch of the proof of Theorem 2.10.

Next, we sketch the proof of Theorem 3.1. Let k be a field of positive characteristic p. Similarly to the
case of Theorem 2.10, we are reduced to prove the following two lemmas:

Lemma 3.7. Set w := { X ◦ × {0, 1} }. Then, for each ϵ ∈ {0, 1} and for any positive integer n, the pullback
of algebraic cycles along the inclusion morphism X ◦ ∼= X ◦ × {ϵ} ↪→ X ◦ × A1 induces a map of complexes

i∗ϵ : zrw(X ×□(−n)
, ∗)⊗Z Z[1/p] → zr(X , ∗)⊗Z Z[1/p],

and the maps i∗0, i
∗
1 are homotopic.

Lemma 3.8. Set w := { X ◦ × {0, 1} }. Then, for any positive integer n, the natural inclusion map of
complexes

ι : zrw(X ×□(−n)
, ∗) ↪→ zr(X ×□(−n)

, ∗)

is a quasi-isomorphism.

The proof of Lemma 3.8 is completely the same as that of Lemma 3.6. So, it suffices to prove Lemma 3.7.

Proof of Lemma 3.7. Fix any positive integer n. First, noting that the multiplication by p induces an auto-
morphism on the chain complex zr(X , ∗)⊗ZZ[1/p], we are reduced to prove that there exists a non-negative
integer m such that the morphisms of complexes

pmi∗ϵ : zr(X ×□(−n)
, ∗)⊗Z Z[1/p] → zr(X , ∗)⊗Z Z[1/p], ϵ ∈ {0, 1}

are homotopic. Now, take a non-negative integer m such that n ≤ pm. Set d := pm and consider the finite
endomorphism ρd : A1 → A1, which we introduced in the sketch of the proof of Lemma 3.6. By exactly the
same reason as loc. cit., we can check that the pushforward of algebraic cycles along the finite endomorphism
idX ◦ × ρd induces a well-defined morphism of chain complexes

(idX ◦ × ρd)∗ : zr(X ×□(−n)
, ∗) → zr(X ×□(−1)

, ∗).

By Lemma 3.5, we see that the composite maps

i∗ϵ ◦ (idX ◦ × ρd)∗ : zr(X ×□(−n)
, ∗) → zr(X ×□(−1)

, ∗) → zr(X , ∗), ϵ ∈ {0, 1}

are homotopic. So, it suffices to prove for each ϵ ∈ {0, 1} the following equations:

i∗ϵ ◦ (idX ◦ × ρd)∗ = d · i∗ϵ = pm · i∗ϵ .

These equations follow easily from the facts that (ρd)∗{0} = pm · {0} and that (ρd)∗{1} = pm · {1}, where
the latter one is a consequence of the following formula which holds only in characteristic p:

tp
m

− 1 = (t− 1)p
m

.

This finishes the proof.
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3.3 Sketch of Proof of Theorem 2.8

Let k be a field of positive characteristic p. For any modulus pair X = (X,D) over k, and for any non-negative
integers a, b, define an abelian group Z(a, b) by

Z(a, b) := Z
{
irreducible closed subsets of X ◦ × Aa × Ab of codimension r which
satisfy the face condition and the modulus condition (M)a,b

}
⊗Z Z[1/p].

Here, we say that an irreducible closed subset V of X ◦×Aa×Ab satisfies the face condition if for any face
F of Aa and for any face F ′ of Ab, the closed subset V intersects X ◦ × F × F ′ properly in X ◦ × Aa × Ab.
We say that an irreducible closed subset V of X ◦ ×Aa ×Ab satisfies the modulus condition (M)a,b if the
following condition holds:

(M)a,b : Let V be the closure of V in the scheme X ◦ × (P1)a × Ab, and let V
N → V be the normalization

morphism. Then, we have the following inequality of Cartier divisors on the normal scheme V
N
:

D × (P1)a × Ab|
V

N ≤ X × Fa × Ab|
V

N .

Here, we regard Aa = (A1)a as an open subset of (P1)a. Recall that Fa =
∑a

i=1(P1)i−1×{∞}×(P1)a−i.

Then, we can define a double cubical abelian group Z(∗, ∗), where each of two cubical structures is defined in
the same way as in the case of the cycle complex with modulus and the näıve cycle complex with modulus.
After “cutting out” the degenerate part of Z(∗, ∗), we obtain a double chain complex Z(∗, ∗)0. Using Theorem
2.6, we can prove that the two types of spectral sequences (converging to the homology groups of the total
complex TotZ(∗, ∗)0 of Z(∗, ∗)0) degenerate on the first pages. By using this fact, we can prove that both
CHr(X , q) ⊗Z Z[1/p] and CHr(X , q)′ ⊗Z Z[1/p] are canonically isomorphic to the q-th homology group of
the total complex TotZ(∗, ∗)0. This finishes the proof.
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