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Abstract 

Landslides are naturally occurring complex geological phenomena that cause 

significant damage in mountainous regions. Landslide susceptibility (LS) mapping 

is a requisite for safety against such sediment disasters caused by landslides, and 

considerable efforts have been exerted in this discipline. However, some key issues 

concerning the availability of thematic data, scaling of landslide causative factors, 

and the representation of landslide events still impose challenges. This research 

aimed to identify viable solutions to these issues. 

Different parameters are generally used in LS studies (e.g., geology, soil depth, soil 

type, and land use) but limitations of data availability and resolution often restrict 

the replicability of such studies. Among the data required for LS studies, digital 

elevation models (DEMs) are currently the only dataset available globally at fine 

scales suitable for LS studies. This study examined the usefulness of a DEM-based 

LS analysis. One of the major challenges with this type of analysis is selecting an 

appropriate scale for LS studies due to the size heterogeneity and distribution of 

landslides, which requires identification of an optimal scale for landslide causative 

parameters. This study proposed a method to identify the optimum scale for each 

parameter and use multiple optimal parameter-scale combinations for LS mapping. 

Furthermore, the issue of topographic representation in a grid-based analysis arises 

because no raster cells within a landslide are equally responsible for landslide 

occurrence. Representation determines the sampling way of causative factors and 

thus affects further analysis. This study compared five different representation 

techniques: seed cells, center-cells, cells within the landslide boundary, cells within 

the depletion zone, and the dominant cells within the depletion zone (DCD), to 
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identify the best representation technique. DCD is a new method of representation 

proposed in this study. 

This study utilized Random Forest, a relatively new machine learning technique in 

the field of landslide research, together with 16 geomorphological parameters 

extracted from 10, 30, 60, 90, 120, 150, and 300 m DEMs and an inventory of 

historical landslides. The geomorphological parameters employed are those 

frequently used in existing landslide research. Two equal-sized (625 km2) areas in 

Niigata and Ehime, Japan, with different geological and environmental settings and 

landslide density, were selected as study areas. The methodology was developed 

using high-resolution data available for Japan, and was successfully applied in a 

study area in Nepal where the quality of data is relatively low. 

The usefulness of a DEM-based LS analysis was examined using two sets of models 

- with and without geological information. The results suggest that the addition of 

geological information leads only to a small increase in the prediction accuracy of 

the LS model in an area of high seismicity, and that the geological parameters are 

consistently ranked lower in importance than most other topographic parameters. 

Such an observation seems to reflect the coarser scale of the geological information 

used, and that the topography represented by a detailed DEM may include the 

effects of local geology. Accordingly, a DEM-based LS study is useful even if other 

high-quality datasets are unavailable, at least for rapidly eroding mountainous areas 

like those in Japan and Nepal. 

A multi-resolution LS analysis technique was proposed to address the scaling issues. 

The method first determines the optimum scales for all parameters to best represent 

the conditions of slope failure. The parameters at different optimum scales are then 

brought together for the final LS mapping. The analysis of the scale and importance 
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of the DEM-derived parameters revealed that while some parameters show similar 

importance and scale dependency for different regions, environmental differences 

result in variability between the study regions. The performance of LS models also 

suggests that the finest scale of analysis is not always the best. The proposed multi-

resolution LS analysis permits higher accuracy LS mapping than any single-scale 

analysis. 

The multi-resolution LS modeling was used together with five different 

representation techniques to evaluate the appropriateness of the techniques. The 

results indicate that the newly proposed DCD method always leads to higher 

performance in corresponding susceptibility models. This is logical because the 

dominant cell within the depletion zone probably represents the dominant process 

governing landslide initiation. The use of the proposed multi-scale approach 

together with the proposed DCD led to high prediction accuracies: 81.2% in Niigata 

and 83.27% in Ehime. 

In summary, this dissertation work has suggested the usefulness of a DEM-based 

LS study with two newly developed methodologies for landslide modeling. The 

broad applicability of these findings should be examined in future research. 

 Keywords: multi-resolution, landslide susceptibility, DEM, Random Forest. 
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Chapter 1. Introduction 

 Background 

Landslides are naturally occurring complex geological phenomena marked by a 

downslope movement of slope-forming materials under the action of gravity. They 

are caused by a range of external triggers such as rainfall, rapid snowmelt, water 

level change, storm waves, rapid stream erosion, and earthquakes (Guzzetti et al., 

2002; Keefer, 1984; Malamud et al., 2004a, 2004b) under the influence of numerous 

other factors such as topography, lithology, geological structure, soil moisture 

content, and anthropogenic activities (Crozier, 1999; Glade et al., 2000). The most 

important trigger, however, is intense rainfall (Glade et al., 2000; Guzzetti et al., 

2008) followed by earthquakes (Chigira and Yagi, 2006; Kargel et al., 2016; Yin et 

al., 2009). Irrespective of the causes, landslides are serious geological hazards for 

human activities throughout the world, causing catastrophic loss of life and property, 

and worryingly an increasing trend has been observed for these disasters (Petley, 

2011). This may be linked with the persistent environmental degradation as a 

consequence of urbanization, economic development and deforestation, which may 

be further exasperated by projected changes in the climate especially global 

warming (Brardinoni et al., 2003; Guthrie, 2002; Huggel et al., 2012; Van Asch et 

al., 1999). Landslide mitigation and risk reduction require mapping of susceptible 

areas and estimating the likelihood of landslide occurrences (Guzzetti et al., 1999). 

Landslide susceptibility (LS) mapping is therefore a requisite, and considerable 

effort has been exerted in this discipline. 
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 Review of practices for landslide susceptibility assessment 

Landslides are spatially discrete and temporally dynamic events controlled by a 

number of stochastic geo-environmental factors, represented by surface and 

subsurface variables. On the basis of such local terrain conditions, LS deals with 

the likelihood of landslide occurrence in an area (Brabb, 1984). Most LS studies 

follow a simple principle: the past and the present are the keys to the future. The 

conditions leading to the past and present failures will help in estimating the style, 

frequency, extent, and consequences of failures in the future (Varnes, 1984). Over 

the years, the number of studies concerning methods and progress in LS has grown 

rapidly. They involve either qualitative or quantitative modeling (Hussin et al., 

2015). Many pioneer works in this field concern qualitative studies where the 

judgment established by experts, based on the data investigated, was used to 

produce susceptibility maps (Atkinson and Massari, 1998; Brabb et al., 1972). The 

subjectivity of these methods was addressed by the adoption of quantitative 

assessment methods such as bivariate or multivariate statistical analysis (Nandi and 

Shakoor, 2010; Yalcin et al., 2011), logistic regression (Ayalew and Yamagishi, 

2005; Guzzetti et al., 1999), likelihood ratio (Akgun, 2011; Kanungo et al., 2011), 

weight-of-evidence (Lee and Choi, 2004; Regmi et al., 2010), discriminant analysis 

(Guzzetti et al., 2006), frequency ratio (Choi et al., 2012), and analytical hierarchy 

processing (Yalcin et al., 2011; Yoshimatsu and Abe, 2006). 

Recently, various machine learning (ML) techniques have been used for statistical 

modeling in landslide research, more often because of their robustness in handling 

large and complex data associated with regional environmental conditions. ML 

techniques learn from the available data in order to perform processing tasks such 

as classification, prediction, and clustering. These approaches include Artificial 
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Neutral Networks (ANN; Conforti et al., 2014; Zare et al., 2012), Support Vector 

Machine (SVM; Tien Bui et al., 2012), Decision Trees (Saito et al., 2009; Yeon et 

al., 2010), and Random Forest (RF) (Catani et al., 2013; Cutler et al., 2007; Paudel 

et al., 2016). 

The large array of modeling methods makes it challenging to choose one for a 

particular application. The simplest approach to select an optimal model for 

prediction is to compare their prediction accuracies (Goetz et al., 2015). Numerous 

comparisons of LS modeling methods have been conducted; yet no single best 

method has been concluded (Akgun, 2011; Brenning, 2005; Goetz et al., 2015; Lee 

and Talib, 2005; Pradhan, 2013; Yalcin et al., 2011; Yesilnacar and Topal, 2005; 

Yilmaz, 2009, 2010a). 

RF is a relatively new ML technique (Breiman, 2001) that utilizes an ensemble 

learning approach for classification, regression, and other functions; its use in 

landslide research is still limited to a few examples (Brenning, 2005; Catani et al., 

2013; Goetz et al., 2015; Paudel et al., 2016; Trigila et al., 2015; Vorpahl et al., 

2012). However, it is widely used in various other fields of data mining and has 

been demonstrated to have excellent performance in comparison to similar ML 

algorithms and traditional statistical models (Breiman, 2001; Lee et al., 2005; 

Meyer et al., 2003; Svetnik et al., 2003; Wu et al., 2003). Fernández-Delgado et al. 

(2014) compared most relevant classifiers available today (179 classifiers) using 

121 data sets and found that RF was the best followed by SVM. Another 

comparative LS study involving several ML and statistical techniques reported RF 

to have the best predictive performance (Goetz et al., 2015). RF is utilized in this 

study based on its superiority as suggested by several similar empirical studies, and 
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to utilize numerous model outputs unique to RF that provide valuable insight into 

LS. 

 Existing problems 

 Availability of thematic information 

The dynamics and interactions of the different factors affecting landslide 

occurrence are important for an effective LS assessment (Kawabata and Bandibas, 

2009). As a result, different intrinsic and extrinsic parameters are used to analyze 

LS. However, many parameters such as geology, soil depth, soil type, and land use 

usually have limitations of availability and relevant scale (Coe et al., 2011; 

Hasegawa et al., 2009). Such limitations make LS assessments feasible only when 

adopting a qualitative evaluation technique (Günther et al., 2013), thereby 

restricting the replicability of many quantitative LS methodologies in areas where 

high-quality data sets are absent (Cascini et al., 2010). 

Therefore, LS evaluation solely based on a digital elevation model (DEM) has been 

conducted in this study, assuming that topography reflects other factors such as 

geology, land use, and moisture content (Beven, 1997; Birkeland, 1984; Coblentz 

et al., 2014; Moore et al., 1993; Prima and Yoshida, 2010). Studies on terrain 

characterization suggest that DEMs can be utilized for geologic assessment 

(Coblentz et al., 2014; Iwahashi et al., 2001; Iwahashi and Pike, 2007). Differences 

in mechanical and chemical properties of subsurface lithologies as well as surface 

conditions such as land use/cover lead to variable weathering/erosion resulting in 

the variations in surface landforms (Germanoski, 2001; Moore et al., 1993; Prima 

and Yoshida, 2010; Wade, 1935). Studies have also shown the importance of 

topographic indices in characterizing terrain conditions. For example: soil moisture 
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content, an important consideration in LS, can be estimated by the topographic 

wetness index (Beven, 1997). 

A DEM-based methodology is also relevant because, DEMs are the only data source 

available globally at finer spatial scales significant for quantitative LS assessment 

(e.g., SRTM and ASTER GDEM). Increased availability of high-resolution global 

DEMs (e.g., SRTM 1 Arc-Second Global, ASTER GDEM, ALOS world 3D – 30 

m) and recent advances in DEM acquisition techniques facilitate this approach. 

 Scaling of topographic parameters 

Most land-surface parameters and objects vary with spatial scale, a function of cell 

size or grid resolution (Wilson and Gallant, 2000). However, in absence of scale 

optimization techniques (Zhilin, 2008), many analysis are conducted at arbitrary 

scales often depending on data availability without much concern for scale effects 

in the analysis (Drăguţ and Eisank, 2011). 

The heterogeneity in size and distribution of landslides requires the selection of an 

appropriate DEM scale to achieve high precision in LS research. However, the 

finest available DEM resolution is often utilized without this consideration. At 

coarser scales, terrain presentation may be too smoothed. Therefore, Keijsers et al. 

(2011) suggest the use of fine resolution DEMs for LS which provide better 

representation of slope morphology and hydrological patterns. However, Tarolli 

and Tarboton (2006) found that LS prediction performance decreases at finer 

resolutions because too localized topography does not represent the processes 

governing landslide initiation. Catani et al. (2013) found that the importance of 

landside predicting parameters changed with spatial scale, and concluded that for 

some parameters, scale representing not local values but their trends should be 
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evaluated. However, they did not conduct a concrete study to incorporate the 

variability of parameter importance at different scales for landslide susceptibility 

mapping (LSM). 

This DEM-based study proposes a novel approach to identify the optimal resolution 

of each topographic parameter and use those parameters at multiple-optima for an 

LS study using an RF model. The output of variable importance, unique to RF 

models, was utilized for sensitivity analysis. 

 Topographic representation of landslides 

Numerous studies have used different mathematical techniques in LSM with 

excellent results; however, only few of those studies have considered the way 

modeling datasets are prepared. Generally, LS models involve a sampling strategy 

to construct training and validation datasets as it is not possible to include all the 

data in an LS model (Atkinson and Massari, 2011; Kawabata and Bandibas, 2009). 

In other words, the topographic representation of landslide determines how the 

causative factor information for individual landslide is extracted in the dataset used 

for susceptibility modeling (Hussin et al., 2015) and it greatly affects the outcome 

(Wang et al., 2013) 

Landslides are commonly mapped as vectors and demarcated either by points, 

polygons, or lines (Bai et al., 2010; Brenning, 2005; Galli et al., 2008; Malamud et 

al., 2004a; Xu et al., 2013, 2014). For landslides mapped as points, the 

representative attributes correspond to the cell value underneath the point. However, 

for landslides mapped as polygons, literature suggests the use of several 

representation strategies. Use of center-cell is the most common method for 

landslide representation in regional studies (Atkinson and Massari, 1998, 2011; Bai 
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et al., 2009; Dong et al., 2009; Mathew et al., 2007; Von Ruette et al., 2011; Yilmaz, 

2010b). This method uses the cell value underlying the centroid of the polygon in 

GIS environment or the field verified center of a landslide (Dai and Lee, 2002). 

However, Simon et al. (2013) suggest that a point based measure is unrepresentative 

of the landslide body and is likely to mislead the results of subsequent analysis, and 

therefore recommend an area-based approach. The popularity of center-cell is 

followed by the use of cells within the landslide boundary (Ayalew and Yamagishi, 

2005; Pradhan and Lee, 2010). The latest among the representation strategies is the 

use of seed cells (Süzen and Doyuran, 2004), which considers an area around the 

crown and flanks of the landslide as the best undisturbed morphological zone 

representing conditions before landslide occurrence. There have been several 

modifications to the original idea concerning the landslide crown and lateral planks. 

Bai et al. (2010) and Yesilnacar and Topal (2005) used a buffer around landslide 

boundaries; Che et al. (2012) used a buffer around the landslide center; and Wang 

et al. (2013) used buffers around the crown of landslides. In the use of landslide 

bodies as well as seed cells, some studies use all cells within the domain (Guzzetti 

et al., 2006; Trigila et al., 2015; Yilmaz, 2009), while others sample cells at random 

(Kawabata and Bandibas, 2009; Nefeslioglu et al., 2008a, 2008b; Yesilnacar and 

Topal, 2005). Van Den Eeckhaut et al. (2006) recommends the use of a single cell 

approach for representation to avoid spatial autocorrelation between sampled cells. 

Abovementioned strategies use either the center-cell, a randomly sampled cell or 

all cells within the landslide boundary for LS analysis. However, there remains a 

possibility that these methods may not be representative of landslide initiation 

conditions as they could erroneously include cells from the accumulation zone 

(Clerici et al., 2006). 
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The proportional area-based approach of selecting the dominant representative cell 

value of a parameter within an area provides better representation of landslides 

(Simon et al., 2013). Though such a technique is new in LS research, a similar 

approach to representation were considered by Oguchi (1997) and Saito et al. (2009) 

for geological data. Oguchi (1997) defined the geology of each cell with the bedrock 

type occupying the largest area and similarly Saito et al. (2009) used the dominant 

geology in each watershed as the representative. However, for landslides with 

initiation zones generally located at the top and traveling downslope under the 

influence of gravity (Cruden, 1991; Pavel et al., 2011; Varnes, 1978) it is only 

relevant to select cells from the depletion zone (Atkinson and Massari, 1998). 

Depletion zone (or detachment zone, or rupture zone) is genetically and 

morphologically distinct zone on the upper part of a landslide where failure is 

effectively generated (Clerici et al., 2006).  
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 Research objectives 

Mountainous areas are susceptible to slope failures, which may be disastrous. 

Studies to mitigate landslides involve identification of susceptible areas, and as 

noted in the previous sections, we have amassed a vast understanding in this field. 

However, some issues still exist; three such issues investigated during this 

dissertation work constitute the research objectives. 

– Landslide research commonly use various thematic information associated with 

slope conditions such as geology, soil depth, soil type, and landuse. However, 

such information generally have limitations of availability and scale that restrict 

their replicability in data-limiting areas. Therefore, the first objective of this 

dissertation is to develop a DEM-based LS model. 

– The selection of an appropriate DEM scale is necessary to achieve high 

precision in LS research. However, single scale of topographic parameters, used 

in contemporary studies, might be restraining because the scaling of parameters 

is not uniform. Therefore, the second objective of this dissertation is to analyze 

how regional differences affect the scaling of topographic parameters and 

develop a methodology to incorporate such variations in LS mapping. 

– The third issue relates to the topographic representation of landslides in LS 

modeling. Currently, different sampling and representation techniques are 

utilized in LS research. In order to identify the most suitable, the final objective 

of this dissertation is to analyze and propose the best method for the 

representation of landslides. 
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 Outline of the thesis 

This research is carried out to improve the contemporary practices in LS analysis 

and is essentially concentrated on the three issues mentioned in the previous section. 

The chapters are organized in the best possible manner to present an integrated idea. 

Chapter 1 presents a general introduction to landslides. It includes literature 

reviews on causes of landslides, their impact to the society, methods of mitigation, 

current practices, and existing research problems. Subsequently, the research 

objectives and questions are introduced. 

Chapter 2 introduces the study areas selected for this research and details their geo-

environmental conditions. 

Chapter 3 describes the data and the topographic parameters used in this research.  

Chapter 4 details the methods adopted in this study, including newly proposed ones. 

Chapter 5 includes the results obtained in the three study areas using the methods 

described in Chapter 4. 

Chapter 6 discusses the results in order to associate the observations with their 

causes. It also discusses the results in comparison to previous studies. 

Chapter 7 concludes the study and suggests directions for future research. 
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Chapter 2. Study area 

The analysis was first carried out for two equal-sized areas in Japan that differ in 

geological and environmental settings and landslide density (Figure 2-1 and Figure 

2-2). The study area in Niigata Prefecture, Honshu, was selected as a representative 

of an area with frequent landslides. It has an area of 625 km2 (25 × 25 km), and the 

location has the highest landslide density in the region. An equal-sized area in 

Ehime Prefecture, Shikoku, was selected as a representative of an area with fewer 

landslides. These areas with different geo-environmental settings and landslide 

density allow us to examine how regional differences affect the scale and 

importance of each parameter. 

Melamchi valley in Nepal was selected as a study area outside of Japan to assess 

the applicability of the research (Figure 2-3). The area experiences numerous 

landslides each year and more importantly, the landslides and devastations caused 

by the Gorkha-earthquake in 2015 were outstanding. 

 Niigata, Japan 

Niigata Prefecture in Japan is located on the island of Honshu along the coast of the 

Sea of Japan. The study area in Niigata lies between 138° 22' E and 138° 39' E and 

between 36° 58' and 37° 12.5' N. This area has very high density of landslides and 

landslides cover about 29% of the study area. The landslides in Niigata reflect 

specific geotectonic and climatic settings (Yamagishi et al., 2004; Yoshimatsu and 

Abe, 2006). The area lies in a large graben called North Fossa Magna (Figure 2-2) 

(Geological Survey of Japan, 1995) with active neotectonics (Inoue et al., 2012; 

Takeda et al., 2004; Takeuchi, 2008). According to a 10 m DEM (see Section 3.2 

for details), elevations in the area range from 5 to 1,284 m, with a mean of 369 m. 
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The mean slope is 17.4°. The mountains in the area mainly consist of Tertiary to 

Quaternary sedimentary rocks, including so-called “Green Tuff”, and Quaternary 

volcanic rocks and their deeply weathered materials (Has et al., 2012; Matsuda et 

al., 1967; Takeuchi, 2004). The study area and its surroundings are characterized 

by heavy snowfall, whose meltwater contributes to rich groundwater and frequent 

landslides (Nakazato et al., 2013). The closest meteorological station (Tsunan, 

Japan Meteorological Agency) receives an average annual precipitation of about 

1900 mm (1981–2010) with an average annual snowfall of about 1.35 m (1989–

2010). 

 Ehime, Japan 

The study area in Ehime is located in central Shikoku between 133° 11.7' E and 

133° 29.7' E and between 33° 39' N and 33° 52.9' N. Its elevation ranges from 4 to 

1895 m with a mean of 825 m. Mean slope is 31.7°, much larger than in Niigata. 

Located south of the Median Tectonic Line (Figure 2-2), most of the area is 

underlain by crystalline schist of the Jurassic complex from the Sanbagawa belt. 

Low-grade metamorphic greenstones from the Chichibu belt, a Jurassic 

accretionary complex zone, also dominate the southern section of the study area 

(Banno and Sakai, 1989; Suzuki and Ishizuka, 1998). A meteorological station in 

the southern part of the study area (Hongawa, Japan Meteorological Agency) and 

one in the northern part (Niihama, Japan Meteorological Agency) receive average 

annual precipitation of 3077 and 1305 mm (1981–2010), respectively. The study 

area is steep and affected by major tectonic lines (Hong et al., 2005), favoring 

landslides, but their density is lower than that in Niigata. Landslides in Ehime cover 

about 16% of the study area.
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Figure 2-1. Map showing 

density of landslides in (a) 

Japan, (b) Niigata, and (c) 

Ehime, prepared using the 

landslides data from the 

NIED (National Research 

Institute for Earth Science 

and Disaster Prevention, 

Japan). 

Study areas in Niigata (b) 

and Ehime (c) are indicated 

by square boxes. The color 

ramp corresponds to 

landslide density. 
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Figure 2-2. Map showing the location of the Median Tectonic Line and Fossa 

Magna. 

(after Qrsk075, CC by SA 3.0) 
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 Melamchi, Nepal 

The study area in Nepal is the Melamchi valley and its surrounding areas located in 

Sindhupalchok district in the Bagmati zone of central Nepal (Figure 2-3). It has an 

area of 1023 km2 and envelops the Melamchi valley with an area of 325 km2. The 

valley is a typical narrow and steep Himalayan river-valley, 41 km in length with 

steep, rocky, and V-shaped lower and upper valley slopes. The mid-valley slopes 

are dissected to form alluvial terraces and are exploited for mountain agriculture 

and settlement (ADB, 2000). The lower part of the Melamchi valley has a sub-

tropical climate, while the upper part has a cool temperate climate. Rainfall varies 

in the region depending on the elevation; higher elevation areas receive more 

rainfall than the lower areas. The annual average rainfall in the area is about 2800 

mm, which is concentrated mostly during four months of the monsoon from June 

to September. Geologically, metamorphic quartzite rocks with soils of colluvial 

nature dominate the area. The combination of geological and environmental factors 

under the increasing anthropogenic pressures such as intense agriculture, grazing, 

deforestation and unplanned construction of rural roads accentuate the processes of 

mass wasting in the region (Tarolli and Sofia, 2016). 

Mass movements can affect sediment discharge in rivers and hence water resources 

(Claessens et al., 2007; Hovius et al., 1997). The Melamchi watershed is the source 

water zone for the Melamchi water supply project under construction by the 

government of Nepal to bring drinking water to the Kathmandu valley (Figure 2-

3) with the objective of diverting 170 MLD (million liters daily) of water from the 

Melamchi river through a 25.83 km long tunnel. A study of LS, therefore, provides 

information on the probable areas contributing to the sediment discharge so that 
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mitigation measures of slope protection could be targeted to those highly 

susceptible areas. 

 

 

Figure 2-3. The Melamchi watershed and the study area in Nepal.  
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Figure 2-4. The Melamchi water supply project map (ADB, 2000). 
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On 25 April 2015, the Gorkha-earthquake [moment magnitude (Mw) 7.8] struck 

approximately 80 km to the northwest of the Nepalese capital of Kathmandu. It was 

followed by five aftershocks of ≥M 6.0 until 10 June 2015. The biggest aftershock 

on May 12, 2015 (Mw 7.3) occurred 80 km to the east-northeast of the Kathmandu. 

The earthquakes killed ~9000 people and severely damaged a 550 × 200 km region 

in Nepal and neighboring countries. Some mountain villages were completely 

destroyed, and the remote locations, blocked roads, and landslide-dammed rivers 

prevented ground access to many areas (Kargel et al., 2016) 

Seismicity in the Himalaya dominantly results from the continental collision of the 

India and Eurasia plates, which are converging at a relative rate of 40–50 mm/yr – 

a fraction of which (~18 mm/yr) is driving the uplift of the Himalayan mountain 

range (USGS) (Figure 2-4). Northward underthrusting of India beneath Eurasia 

generates numerous earthquakes and consequently makes this area one of the most 

seismically hazardous regions on Earth. Gorkha-earthquake and subsequent 

aftershocks were also a consequence of this thrust faulting and were located on or 

near the main thrust interface. 

The Gorkha-earthquake took a tremendous, tragic toll on human lives and culture. 

However, fortunately no damaging earthquake-caused glacier lake out- burst floods 

occurred. The total number of landslides was far fewer than those generated by 

comparable earthquakes elsewhere, probably because of a lack of surface ruptures, 

the concentration of deformation along the subsurface thrust fault at 10 to 15 km 

depth, and the regional dominance of competent high-grade metamorphic and 

intrusive igneous rock types. However, because immediate slow failures were less, 
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future rainfall events can result trigger greater number of landslides, including 

slopes in the Melamchi valley. 

 

 

Figure 2-5. 2015 Nepal Earthquake and aftershocks (USGS). 
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Chapter 3.  Data 

 Landslide inventory 

The landslide inventory for Japan was obtained from the NIED (National Research 

Institute for Earth Science and Disaster Prevention, Japan; available online at 

http://lsweb1.ess.bosai. go.jp/gis-data/index.html). The inventory covers the whole 

of Japan and was prepared by interpreting 1:40,000 aerial photographs. While the 

inventory includes many historical landslides identified from topographical 

discontinuities, small slope disturbances were not included. The use of historical 

(geomorphological) landslide inventories, which summarize past multiple landslide 

events (Malamud et al., 2004a), may enable a robust LSM because it reflects various 

environmental conditions, and the number of available data tends to be large. 

Landslides in Niigata cover about 29% of the study area while in Ehime they occupy 

about 16%. However, because of the uncertainties associated with the identification 

of large failures as unique (single) events (Guzzetti et al., 2002), and lack of 

differentiation among landslide types (inclusion of slow-moving earth flows and 

large fast-moving landslides), it seems better to remove exceptionally large 

landslides. The landslide data for the two study areas were hence extracted. The 

frequency distribution of the landslide area (Figure 3-1) shows that landslides 

greater than the 95th percentile in terms of the landslide area are out of the general 

trend. Therefore, these landslides larger than 95th percentile were not used in this 

study (Figure 3-2). The remaining 10662 landslides in Niigata and 2543 landslides 

in Ehime were investigated (Table 3-1). 
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Table 3-1. Statistical properties of the landslide inventory used in the study for 

Japan. 

Properties 
Area m2 

Niigata Ehime 

Min 212.0 1630.5 

Max 47916.0 129713.9 

Mean 9023.6 24196.3 

Standard Deviation 8328.5 23824.4 

Number 10662 2543 

 

 

 

Figure 3-1. Percentile distribution of landslide area (Japan). 
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Figure 3-2. Landslide distribution in the Niigata and Ehime study areas. 
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Figure 3-3 and Figure 3-4 show the frequency distribution of their areas. Medium 

to large landslides in both the areas show that the distribution can be described by 

a power-law with good fit over three order of area magnitude. Similar to previous 

observations for historical landslides in mountainous areas (Van Den Eeckhaut et 

al., 2007), the frequency distribution, exhibits negative power-law for larger 

landslides together with a significant rollover for smaller landslides. Rollover 

location for Niigata was around 5 × 10
3
 m

2 while the same for Ehime was around 

10 × 10
3
 m

2
. The slope of the area–frequency relationship (𝛾) in both the areas 

(Niigata 𝛾 = -2.132 and Ehime 𝛾 = -2.037) suggest the dominance of larger 

landslides (Malamud and Turcotte, 1999; Ohmori and Sugai, 1995).  

A comparison of exponents of the power-law for all landslides in the area with the 

landslides that were included in this study (below 95th percentile) hints a low 

probability of occurrence of extremely large landslides in both the study areas 

(Figure 3-3 and Figure 3-4). This observation in addition to the uncertainties 

associated with extremely large events explained earlier suggests that inclusion of 

such events might negatively influence the usability of LSM. 
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Figure 3-3. Landslide characteristics (Niigata). (a) Histogram showing the 

distribution of landslide areas. (b) Probability distribution of landslide areas 
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Figure 3-4. Landslide characteristics (Ehime). (a) Histogram showing the 

distribution of landslide areas. (b) Probability distribution of landslide areas. 
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Following the Gorkha-earthquake, a large group of scientists and organizations, 

motivated by humanitarian needs, focused on satellite-based mapping of 

earthquake-induced landslides. The British Geological Society and partners at the 

Durham University prepared the coseismic and postseismic landslide inventory 

used in this study (British Geological Survey, 2015; Durham University, 2015). 

About 5500 landslides in the disaster-hit areas were identified by the interpretation 

of various types of satellite data (obtained via the International Charter Space and 

Major Disasters and directly from data suppliers) including WorldView, UK-

DMC2, SPOT, Pleiades, and RADARSAT-2. Landslides in the inventory (Figure 

3-5) are represented as polylines that extend from the head scarp to the toe and it 

includes 576 landslides within the study area. Their length ranges from 19 to 1350 

m with a mean of 232 m. Figure 3-6 presents their length-frequency distribution. 
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Figure 3-5. Landslides in Nepal after the 2015 Gorkha-earthquake. 

 

 

Figure 3-6. Length-frequency histogram of landslides in the study area. 
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 Topographic and geological data 

A 10-m DEM obtained from the GSI (Geospatial Information Authority of Japan) 

was used for topographic analysis in Japan. The minimum elevation for both study 

areas is about 5 m, whereas the mean and maximum elevations are, respectively, 

369 and 1284 m for Niigata and 825 and 1895 m for Ehime. 

A 30-m topographic data collected by the Shuttle Radar Topography Mission 

(SRTM) was used for the LS study in Nepal. The freely downloadable SRTM 1 

Arc-Second Global elevation data (http://earthexplorer.usgs.gov/) offer worldwide 

coverage at a resolution of 1 arc-second (ca. 30 m). This global dataset was recently 

made public (starting 8th October 2014) and is the most reliable data source of global 

elevation in terms of spatial accuracy and coverage (Mondal et al., 2016). The 

elevation in the study area ranges from 769 to 5899 m with a mean of 2815 m. 

The geological information of the study areas in Japan (Figure 3-7) is based on the 

seamless digital geological maps (scale: 1:200,000) provided by the Geological 

Survey of Japan (GSJ; Takeuchi and Yanagisawa, 2004). The data consisted of 

lithological information and location of known fault lines. The study area in Niigata 

consists of two major geological groups: sedimentary rocks and volcanic rocks 

further divided into 19 substrata according to the major lithological types and 

geological age (Table 3-2). Similarly, the study area in Ehime comprises of four 

major geological groups: sedimentary rocks, accretionary complex, metamorphic 

rocks, and plutonic rocks further divided into 18 substrata (Table 3-2). Figure 3-8 

shows the lithological composition of the study areas. Non-marine sediments form 

the dominant lithological type in Niigata and peltic schist followed by mafic schist 

dominate in Ehime. 
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Figure 3-7. Geological maps of the study areas in Japan. 
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Table 3-2. Classification of geological substrata for the study areas in Japan. 

 Code 

Geological 

divisions Lithological types Age % Area 
N

ii
g

a
ta

 

1 sedimentary rock reclaimed land Holocene 0.0001 

3 sedimentary rock fan deposits 

Late Pleistocene to 

Holocene 0.0048 

10 sedimentary rock 

marine and non-marine 

sediments 

Late Pleistocene to 

Holocene 0.0160 

20 sedimentary rock 

marine and non-marine 

sediments Late Pleistocene 0.0189 

22 sedimentary rock lower terrace Late Pleistocene 0.0224 

23 sedimentary rock middle terrace Late Pleistocene 0.0171 

24 sedimentary rock higher terrace Middle Pleistocene 0.0014 

30 sedimentary rock 

marine and non-marine 

sediments Middle Pleistocene 0.0054 

40 sedimentary rock 

marine and non-marine 

sediments Early Pleistocene 0.0629 

50 sedimentary rock non-marine sediments 

Late Miocene to 

Pliocene 0.3927 

60 sedimentary rock non-marine sediments 

Middle to Late 

Miocene 0.0867 

70 sedimentary rock 

marine sedimentary 

rocks 

Middle Miocene to 

Pliocene 0.1935 

711 volcanic rock volcanic debris Holocene 0.0213 

804 volcanic rock 

non-alkaline felsic 

volcanic intrusive rocks 

Late Miocene to 

Pliocene 0.0044 

826 volcanic rock 

non-alkaline felsic 

volcanic rocks 

Middle to Late 

Miocene 0.0305 

1010 volcanic rock 

non-alkaline mafic 

volcanic rocks Middle Pleistocene 0.0016 

1020 volcanic rock 

non-alkaline mafic 

volcanic rocks Early Pleistocene 0.1151 

1030 volcanic rock 

non-alkaline mafic 

volcanic rocks 

Late Miocene to 

Pliocene 0.0013 

2000 water water water 0.0040 

E
h

im
e 

1 sedimentary rock reclaimed land Holocene 0.0001 

430 

accretionary 

complex 

melange matrix of J1-3 

accretionary complex 

Early to Late 

Jurassic 0.0417 

431 

accretionary 

complex 

sandstone of  J1-3 

accretionary complex 

Early to Late 

Jurassic 0.0087 

437 

accretionary 

complex 

basalt block of  J1-3 

accretionary complex 

Carboniferous to 

Permian 0.0083 

438 

accretionary 

complex 

limestone block of  J1-3 

accretionary complex 

Carboniferous to 

Permian 0.0014 

439 

accretionary 

complex 

chert block of  J1-3 

accretionary complex 

Carboniferous to 

Middle Jurassic 0.0138 

555 

accretionary 

complex ultramafic rocks unknown age 0.0085 

1270 pultonic rock felsic plutonic rocks 

Middle to Late 

Miocene 0.0013 

1599 metamorphic rock pelitic schist Cretaceous 0.5058 

1600 metamorphic rock psammitic schist Cretaceous 0.0111 
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1620 metamorphic rock mafic schist Cretaceous 0.2323 

1631 metamorphic rock siliceous schist Cretaceous 0.0346 

1632 metamorphic rock schist Cretaceous 0.0099 

1633 metamorphic rock pelitic schist Cretaceous 0.0713 

1636 metamorphic rock mafic schist Cretaceous 0.0309 

1638 metamorphic rock siliceous schist Cretaceous 0.0128 

1640 metamorphic rock mafic schist Cretaceous 0.0020 

2000 water water water 0.0055 

 

 

Figure 3-8. Lithological composition of the study areas. 
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 Topographical parameters 

The 10 m DEM was aggregated to create DEMs with 30, 60, 90, 120, 150, and 300 

m cell sizes. The resulting seven DEM-scales were used to investigate the optimal 

DEM resolution for each landslide causative factor. 

Various primary and secondary topographic attributes have been proposed and 

analyzed to characterize geomorphological characteristics of an area. This study 

employs 16 DEM-derived topographic parameters (Table 3-3) previously used in 

landslide research (Castellanos Abella and Van Westen, 2008; Chen and Yu, 2011; 

Guzzetti et al., 1999; Nefeslioglu et al., 2008a). 

 Elevation 

Elevation (El) (Figures 3-9a, 3-10a, and 3-11a) is a measure of the height of a 

surface above mean sea level and is considered an important causative factor, which 

influence slope stability. El is usually associated with landslides by the virtue of 

secondary factors detailed below. 

 Slope 

Slope (Sl) (Figures 3-9a, 3-10a, and 3-11a) indicates the degree of inclination of 

the surface and shows the rate of elevation change. Slope gradient has a great 

influence on the susceptibility of a slope to landsliding and is frequently used in LS 

research (Yalcin, 2008). Gravity is the primary driving force for a landslide to occur. 

As slope gradient increases, the level of gravitation-induced shear stress in the 

colluviums or residual soils increases thereby reducing slope stability. Gentle slopes 

are expected to have a low frequency of landslides because of generally lower shear 

stresses associated with low gradients (Dai et al., 2001). 
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Table 3-3. Topographic parameters used for susceptibility modeling. 

S.N. Parameters 
Abbre-

viation 
Significance 

1 Slope aspect Asp 
Solar insolation, evapotranspiration, 

species distribution and abundance 

2 Total curvature Cr Total measure of surface curvature 

3 
Distance to drainage 

network 
Dtd Influence of fluvial processes 

4 Distance to ridge Dtr 

Tectonics especially amplification of 

seismic shaking, accumulation of 

flow 

5 Drainage density Dd 
Intensity of fluvial processes, stages 

of channelization 

6 Drop Dr 
Strict hydrological slope and  

geomorphological slope 

7 Elevation El Climate, vegetation, potential energy 

8 Elevation-relief ratio Er 

Stages of landscape development; 

characterization of general 

topography 

9 Internal relief Ir Characteristic of terrain roughness 

10 Profile curvature Pfc 
Flow acceleration, erosion, deposition 

rate 

11 Plan curvature Plc 
Converging/diverging flow, soil water 

content, soil characteristics 

12 Slope Sl 
Velocity of surface and subsurface 

flow, soil water content 

13 Stream power index SPI 
Measures erosive power of flowing 

water 

14 
Sediment transport 

capacity index 
STCI 

Net erosion and deposition rates; 

transportation capacity and erosion. 

15 

Terrain 

characterization 

index 

TCI 
Descriptor of terrain shapes and 

spatial variability of soil depths 

16 
Topographic wetness 

index 
TWI 

Soil moisture conditions and 

variability of soil types 
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Figure 3-9. Maps of topographic factors for Niigata. 

(a) El, (b) Sl, (c) Dr, (d) Asp, (e) Pfc, (f) Plc, (g) Cr, (h) Dd, (i) Dtd, (j) Dtr, (k) Ir, 

(l) Er, (m) STCI, (n) SPI, (o) TCI, and (p) TWI. 
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Figure 3-9. Continued. 
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Figure 3-9. Continued. 
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Figure 3-9. Continued. 
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Figure 3-9. Continued. 
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Figure 3-9. Continued. 
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Figure 3-9. Continued. 
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Figure 3-9. Continued. 

. 
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Figure 3-10. Maps of topographic factors for Ehime. 

(a) El, (b) Sl, (c) Dr, (d) Asp, (e) Pfc, (f) Plc, (g) Cr, (h) Dd, (i) Dtd, (j) Dtr, (k) Ir, 

(l) Er, (m) STCI, (n) SPI, (o) TCI, and (p) TWI. 
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Figure 3-10. Continued. 
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Figure 3-10. Continued. 
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Figure 3-10. Continued. 
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Figure 3-10. Continued. 
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Figure 3-10. Continued. 
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Figure 3-10. Continued. 
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Figure 3-10. Continued.  
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Figure 3-11. Maps of topographic factors for Melamchi, Nepal. 

(a) El, (b) Sl, (c) Dr, (d) Asp, (e) Pfc, (f) Plc, (g) Cr, (h) Dd, (i) Dtd, (j) Dtr, (k) Ir, 

(l) Er, (m) STCI, (n) SPI, (o) TCI, and (p) TWI.  
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Figure 3-11. Continued. 
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Figure 3-11. Continued. 
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Figure 3-11. Continued. 
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 Drop 

Drop (Dr) (Figures 3-9a, 3-10a, and 3-11a), equivalent to the hydrologic slope 

(Claessens et al., 2005; Tarboton, 1997), shows the ratio of the maximum change 

in elevation along the direction of flow between cell-centers. It provides an exact 

measure of surface inclination in relation to flow (Prisley, 2011). 

 Slope aspect 

Slope aspect (Asp) (Figures 3-9a, 3-10a, and 3-11a) represents the direction of the 

maximum slope. It can influence landslide initiation as it controls moisture retention 

and vegetation, which in turn may affect soil strength and susceptibility to 

landslides (Wieczorek et al., 1997). In many mountain ranges, Asp reflects the 

disproportionate distribution of precipitation due to the pronounced directional 

influence of prevailing winds creating distinct windward and leeward sides. A 

variation in the degree of weathering and basal erosion due to slope aspect was also 

reported by Ayalew and Yamagishi (2002) and Rech et al. (2001). 

 Profile curvature 

Profile curvature (Pfc) (Figures 3-9a, 3-10a, and 3-11a) is the surface curvature in 

the downslope direction (aspect) along a line formed by the intersection of an 

imaginary vertical plane with the ground surface. It directly controls the velocity of 

water flow, and therefore erosion (Duman et al., 2006). 

 Plan curvature 

Plan curvature (Plc) (Figures 3-9a, 3-10a, and 3-11a) is surface curvature 

perpendicular to slope direction or the curvature of the contours on a topographic 
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map (Ohlmacher, 2007). The influence of plan curvature on land degradation 

processes is the convergence or divergence of eroded material and water during 

downhill flow (Nefeslioglu et al., 2008b; Ohlmacher, 2007). In addition, this 

parameter constitutes one of the main factors controlling the geometry of the terrain 

surface where landslides occur (Evans et al., 1998). 

 Total curvature 

Total curvature (Cr) (Figures 3-9a, 3-10a, and 3-11a) reflects both the plan and 

profile curvatures and represents the overall surface curvature. The Cr value 

intrinsically reflects two characteristics of surface morphology: magnitude of slope 

gradient and curvature of three-dimensional surface forms. 

All curvature measures (Pfc, Plc, and Cr) take negative, zero, and positive values. 

The positive curvature value indicates a predominantly convex slope, and the 

convexity increases when the value becomes greater. On the other hand, the 

negative values indicate a predominantly concave slope. Where surface relief is 

minimal or in the straight sloping area, curvature value will tend to approach zero 

(Park et al., 2001). For most slopes, the convex part of the landscape may have been 

experiencing continuous denudational processes by surface erosion, soil creep, and 

other geomorphological and biological processes (Arnett and Conacher, 2007). In 

contrast, the concave parts of the slope receive materials from upslope areas and, 

consequently, surface aggradation occurs. 

 Drainage density 

Ridges and channels are fundamental features of terrain morphology, and therefore 

are used in various terrain analyses (Band, 1986). In this study, drainage density 

(Dd) (Figures 3-9a, 3-10a, and 3-11a), the total length per unit area, was computed 
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using a circular moving window of radius equaling the length of 10 cells. This unit 

area changing with DEM resolution allowed the mapping of drainage texture 

ranging from purely local to the regional average drainage density (Tucker et al., 

2001). 

 Distance to drainage network 

The under-cutting action of a river and terrain modifications caused by gully erosion 

may trigger instability of slopes (Lee and Talib, 2005; Xu et al., 2012). Distance to 

drainages is therefore considered a controlling factor in LS. The shortest Euclidean 

distance to a drainage line (Dtd) (Figures 3-9a, 3-10a, and 3-11a) was estimated as 

a parameter in this study. Cells with flow accumulation higher than a threshold 

value were identified as drainage networks. 

 Distance to a ridge 

In areas of high seismicity, the shortest distance to a ridge line (Dtr) (Figures 3-9a, 

3-10a, and 3-11a) is a significant LS parameter reflecting the amplified motion 

observed at mountain tops (Chang et al., 2007). Dtr was calculated from the DEM 

as Euclidean distance form ridges defined as lines of cells with zero flow 

accumulation. 

 Internal relief 

Relative relief or internal relief (Ir) (Figures 3-9a, 3-10a, and 3-11a) is the 

maximum elevation difference in a unit area (Castellanos Abella and Van Westen, 

2008). Ir values were calculated locally for every cell using a moving window of 

10 × 10 cells such that the unit of measurement represents the features relative to 
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the scale of analysis, e.g., fine-scale features with the 10 m DEM and coarser-scale 

form of hillslope with the coarser DEMs (Staley and Waskelwicz, 2013). 

 Elevation-relief ratio 

Elevation-relief ratio (Er) (Figures 3-9a, 3-10a, and 3-11a) describes the area 

distribution at different elevations. Introduced by Wood and Snell (1960), Er is a 

substitute for the hypsometric integral designed to abstract the salient geometric 

characteristics of the topography at any scale (Pike and Wilson, 1971; Strahler, 

1952). It reflects the stage of geomorphic development and lithological differences 

(Pérez-Peña et al., 2009; Schumm, 1956). It is defined as: 

 Er = (mean elevation – min elevation) / (max elevation – min elevation)      

(3-1) 

Er values were also calculated locally for every cell using a moving window of 10 

× 10 cells 

 Sediment transport capacity index 

The sediment transport capacity index (STCI) (Figures 3-9a, 3-10a, and 3-11a) is 

equivalent to the length–slope factor of the Revised Universal Soil Loss Equation 

(Chen and Yu, 2011). Therefore, it accounts for the effects of topography on both 

sediment transport and erosion (Moore et al., 1991). STCI is calculated as: 

STCI = (m + 1) (A / 22.13) m (sinβ / 0.0896)n                 (3-2) 

where A is the upslope contributing area (m2), β is the local slope gradient (degrees), 

and m and n are constants. Because the sensitivity of erosion predictions is not 

strongly affected by the values of the constants (Kitahara et al., 2000), the values m 
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= 0.4 and n = 1.3 suggested by Chen and Yu (2011) for Taiwan, an area with 

landslide activity comparable to the study areas in this research, were used. 

 Stream power index 

The stream power index (SPI) (Figures 3-9a, 3-10a, and 3-11a) is a measure of the 

erosive power of water flow based on the assumption that discharge is proportional 

to the specific catchment area. Higher SPI values lead to an increased risk of slope 

erosion (Moore et al., 1991). It is defined as: 

SPI = ln (As × tanβ)                 (3-3) 

where As is the specific catchment area (upslope contributing area per unit contour 

length). 

 Terrain characterization index 

The terrain characterization index (TCI) (Figures 3-9a, 3-10a, and 3-11a) is related 

to the spatial variability of soil depth and sediment transportation capacity (Catani 

et al., 2010; Park et al., 2001) which is defined as: 

TCI = Cr × ln As                  (3-4) 

TCI is expected to characterize the spatial distribution of soil properties at the 

continuous functions of terrain attributes (Park et al., 2001). The higher positive or 

negative TCI values may reflect the higher aggradation or degradation potential of 

soil materials, while smaller values more likely indicate either stability of material 

movement over the landscape. 
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 Topographic wetness index 

The topographic wetness index (TWI) (Figures 3-9a, 3-10a, and 3-11a) has been 

used to describe soil moisture distribution and found useful for LS studies (Beven, 

1997; Moore et al., 1993); higher TWI values often occur in landslide bodies (Chen 

and Yu, 2011). Water infiltration to slope material increases pore water pressure 

and decreases the soil strength. High TWI values indicate zones that saturate first, 

and the slopes that are more likely to fail. TWI is defined as: 

 TWI = ln (As / tanβ)                (3-5) 

 Random integer 

In addition to the 16 topographic parameters, the random integer rand was also used 

as a model parameter to assess the performance of other parameters according to 

the parameter ranking provided by the RF model (Catani et al., 2013). 

Although the DEM-derived parameters represent distinct terrain properties and 

processes (Table 3-3), their interrelationship (Figure 3-12) may lead to 

multicollinearity. However, for LSM, Harrell (2001) suggests that multicollinearity 

does not influence the predictions from training and testing datasets if both have the 

same type of collinearities. This applies to this study because all parameters used 

with the training and testing datasets are mathematical derivatives of the same 10 

m DEM. 
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Figure 3-12. Interrelationship of the topographic parameters. 
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Chapter 4. Methodology 

RF was used to construct LS models using the topographic parameters and the 

landslide inventories. It was implemented in JMP Pro 11.2 (SAS Institute Inc. Cary, 

NC), and GIS-based calculations were performed using ArcGIS 10.3 (ESRI, 

Redlands, CA) and Python 2.7. 

 Random Forest 

 Concept 

RF is an ensemble learning method of classification using regression trees which 

combines the idea of bagging with random feature selection (Breiman, 1996, 2001; 

Cutler et al., 2012; Ho, 1998). RF utilizes bootstrap and random techniques to select 

the subsample of data and predictor parameters while growing an ensemble of trees 

(hence called “forest”). In addition to constructing each tree using a different 

bootstrap sample of the data, RF changes how the classification or regression trees 

are constructed. In classical decision trees, each node is split using the best split 

among all parameters. In RF, by contrast, each node is split using the best among a 

subset of predictors randomly chosen at that node. This strategy leads to higher 

performance than many other classifiers such as discriminant analysis, SVM, and 

ANN; it also makes RF robust against overfitting (Breiman, 2001; Liaw and Wiener, 

2002). RF has several other advantages: 1) it does not require assumptions on the 

distribution of explanatory parameters; 2) it allows for the mixed use of categorical 

and numerical parameters without using dummy parameters; and 3) it can account 

for interactions and nonlinearities between parameters (Catani et al., 2013). 

Archer and Kimes (2008) simplify the RF algorithm as follows: 
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Each tree is grown using a bootstrapped sample from the original learning 

sample L. However, at each node of the tree, m of the p independent 

variables are randomly selected, the best split on these m is used to split the 

node. This random selection of features at each node decreases the 

correlation between the trees in the forest thus decreasing the forest error 

rate. 

For b = 1,…, B, sample n observations with replacement from L. This is 

referred to as the bootstrap sample, Lb. Use Lb to build a classification tree, 

with the following modifications: 

1. At node t, randomly sample m of the p independent variables. 

2. For each of the k = 1,…, m sampled variables, find the best split (sk) 

among all possible splits for the k-th variable. 

3. Choose the best split s* from among the k = 1,…, m best splits sk on 

which to split the node t. This j-th variable at its identified cut point 

cs* is used to split node t. 

4. Split the data at this node by sending the i = 1,…, n observations 

with xij < cs* to the left descendant node and all observations with xij 

⩾ cs* to the right descendant. 

5. Repeat steps 1– 4 on all descendant nodes to grow a maximally sized 

tree, Tb. 

The Gini criterion, how often a randomly chosen element from the set would 

be incorrectly labeled if it were randomly labeled according to the 

distribution of labels in the subset, is used to select the split with the lowest 

impurity at each node. For each tree in the forest, the predicted class for each 



63 

 

observation is obtained. The class with the maximum number of votes 

among the B trees in the forest is the predicted class of an observation. 

RF produces multiple outputs to aid the interpretation of results, including out-of-

bag (OOB) accuracy estimates and parameter importance measures (Bricher et al., 

2013). OOB errors from RF classifications provide an alternative to cross-validation. 

For each tree in the forest, a random third of all observations are held out from the 

training set, and are referred to as OOB. The OOB error is, thus, the proportion of 

misclassified observations. The other crucial output is the measure of parameter 

importance, i.e., the statistical weight of each predictor variable. This study employs 

this measure to analyze the influence of scale on landslide causative parameters. 

OOB accuracy estimates provide the predictive efficacy of RF models. The change 

in generalized R-square (R2), a measure of variance in the dependent variable 

explained by the independent variables, was analyzed to identify the required 

number of trees (T#). T# at which R2 stops increasing and starts oscillating around 

a stabilized value indicates the optimal complexity required for the model. 

 Implementation 

RF can be implemented in a variety of analytical environments. It is available in R 

(http://www.R-project.org) as ‘randomForest’, in Python (http://www.python.org) 

as ‘RandomForestClassifier’, in Matlab (Mathworks, U.S.A.) as ‘Treebagger’, and 

in JMP (SAS Institute Inc., Cary, NC) as ‘Bootstrap Forest’. This study utilized 

JMP Pro 11.2 for the implementation of RF. The JMP-statistical discovery provides 

an intuitive interface to the RF modeling and several other statistical requirements.  
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Training and testing datasets 

Classification data used in an RF model for LSM should contain information about 

both landslides and no-landslide areas. No-landslide points, whose number is equal 

to the number of landslides, were randomly created in no-landslide areas. Values of 

parameters for the landslide and no-landslide points were extracted. The data (50% 

landslide and 50% no-landslide) for Niigata and Ehime consist of 21,324 and 5,086 

entries, respectively. The data were randomly divided into training (50%) and 

testing (50%) datasets. 

Model evaluation 

In statistical classification models, a receiver operating characteristic (ROC), or an 

ROC curve is used to evaluate their effectiveness and overall fit (Gorsevski et al., 

2006). The curve is created by plotting the true positive rate (sensitivity) against the 

false positive rate (1-specificity). The area under the ROC curve (AUC) 

characterizes the quality of a prediction model (Yesilnacar and Topal, 2005). AUC 

varies from 0.5 (diagonal line) to 1, with higher values indicating a better predictive 

capability of the model. AUC values less than 0.7 correspond to poor predictive 

ability, between 0.7 and 0.8 to moderate, between 0.8 and 0.9 to good and >0.90 to 

excellent (Swets, 1988; Trigila et al., 2015) (Figure 4-1). RF models in this study 

were evaluated using their predictive accuracy and AUC. 
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Figure 4-1. The ROC space. 

(after Kai Walz, CC by SA 3.0) 
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Figure 4-2. Section of a decision tree from a ‘Random Forest’ showing probabilities of landslide occurrence.
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 Influence of geology and lithology 

It is expected that the properties of the slope-forming materials, such as strength 

and permeability that are involved in the failure, are related to lithology, which 

therefore should affect the likelihood of failure. (Dai and Lee, 2002). To analyze 

the degree of influence of lithological variations on the classification of landslides, 

a comparison was performed for LS models with and without the use of lithological 

information together with the topographic parameters discussed in previous section 

(Section 3.3). The geological parameters used are geological types, distance to 

geological boundary, and density of geological boundaries. 

 Geological types 

Underlying geology governs the relative stability of hillslopes. Geological and 

structural settings of slopes are therefore studied as main predisposing factors 

controlling the development of mass movements (Grelle et al., 2011; Varnes, 1978). 

The geological substrata from the study areas were utilized to examine the influence 

of geology (geo_code; codes of geological substrata in Table 3-2). 

 Density of geological boundaries 

The density of geological boundaries (geo_den; km/km−2) was also calculated from 

the geological boundaries using the Spatial Analyst (Figure 4-3), setting the radius 

parameter at 1000 m which corresponds to the distance to geological boundary that 

includes most of the landslides (Figure 4-4) (Kawabata and Bandibas, 2009). Areas 

with higher density of geological boundaries are expected to be more susceptible to 

landslides. 
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Figure 4-3. Map showing the density of geological boundaries for Niigata (top) and 

Ehime (bottom). 
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Figure 4-4. Landslide occurrence and distance to geological boundary. 

 

 

 Distance to geological boundary 

Lithological boundaries as well as known fault lines were considered in this study 

as geological boundaries. These areas indicate lithological discontinuities and are 

known to be areas of weakness prone to slope failures (Kawabata and Bandibas, 

2009). The shortest distance to the geologic boundary (geo_dis; m) was calculated 

from polyline data of geological boundaries using the Spatial Analyst extension of 

ArcGIS (Figure 4-5). 
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Figure 4-5. Map showing the distance to the geological boundary for Niigata (top) 

and Ehime (bottom). 
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 Multi-resolution landslide susceptibility analysis 

The seven DEM-scales (10 to 300 m) were applied to construct RF models 

classifying landslide presence and absence to identify the optimal resolution for 

each parameter. Figure 4-6a outlines the process. First, the values of the 16 

parameters are computed for all the scales, and the values are used in an RF model 

to classify the landslide data. The scale of each parameter with the highest 

importance in the classification, determined as an average of 10 iterations, is 

considered optimal. This process is repeated for all the parameters, and finally, a 

combination of all parameters at their optimal scales are used to create a multi-

resolution LS model and an LS map. The finest grid size among the parameters at 

their optimal scales is selected as the mapping unit. Figure 4-6b outlines the 

determination of parameter importance in a multi-resolution LS model. In the 

hypothetical example shown in Figure 4-6, Sl at 30 m contributes most to the 

classification, and therefore is the most important parameter for the LS study. 
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Figure 4-6. Outline of multi-resolution technique for: (a) selection of optimal 

parameter-scale and (b) determination of parameter importance (Paudel et al., 2016). 
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 Topographic representation of landslides 

 Applied methods 

Topographic representation of landslides in a grid-based analysis deals with which 

cells of landslides mapped as polygons are used subsequently in LS modeling. The 

methods of topographic representation were applicable only to landslides mapped 

as polygons and therefore limited to the study areas in Japan. Topographic 

representation techniques based on single cell approach suggested by Van Den 

Eeckhaut et al. (2006) was analyzed for five different strategies: center-cell, cells 

within landslide boundary, seed cells, cells within the depletion zone, and dominant 

within the depletion zone (DCD) (Section 1.3.3, Figure 4-7). This section improves 

the methodology proposed in Section 4.3 and therefore deals with topographic 

parameters at their optimal scales. 

 

 

Figure 4-7. Illustration of the methods analyzed for the topographic representation 

of landslides. (a) Center-cell, (b) cells within landslide boundary, (c) seed cells, (d) 

cells within the depletion zone, and (e) dominant within the depletion zone. 
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The center-cell (Figure 4-7a) represents the cell underneath the centroid of the 

landslide polygon. For cells within the landslide boundary (Figure 4-7b), a 

representative cell was randomly selected for each landslide from cells within its 

boundary. For seed cells, the commonly used size of the buffer zone is 100 to 150 

m (Süzen and Doyuran, 2004), but the buffer zone size may be different depending 

on experts' judgments. In this study, a 50 m buffer zone (Figure 4-7c) was selected 

as seed cells around the depletion zone, following the strategy of Wang et al. (2013). 

The representative cell was randomly selected from the seed cells of each landslide. 

Similarly, a cell was randomly selected from the depletion zone (Figure 4-7d) for 

the evaluation of method concerning the cells within the depletion zone. Figure 4-

7e represents the “dominant within the depletion zone” (DCD) technique of 

representation newly proposed in this study. It is an assimilation of existing ideas 

of representative area-based approach (Simon et al., 2013) and established 

importance of depletion zone for the representation of landslide initiation conditions 

(Clerici et al., 2006; Trigila et al., 2015; Van Den Eeckhaut et al., 2006). 

To identify the representative cell using the DCD, the dominant cell value within 

the depletion zone was estimated using the Zonal Statistics function of the Spatial 

Analyst extension of ArcGIS 10.3. The process requires categorical values. The 

continuous data sets were therefore classified into categories based on percentile 

divisions of cells within the depletion zone following the data driven strategy 

proposed by Süzen and Doyuran (2004). 

 Separation of depletion and deposition zones 

A landslide consists two morphologically distinct zones: 1) the depletion zone 

(detachment zone or rupture zone), i.e. the upper part of a landslide where the failure 
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is effectively generated, and the accumulation zone, i.e. the lower part which is 

affected by the arrival of the depleted material (Clerici et al., 2006). Demarcation 

between these two zones is generally difficult and usually most landslide inventory 

maps show the depletion and accumulation zones of failures together as a single 

landslide (Dagdelenler et al., 2015). The landslide inventory for Japan also includes 

landslides as single polygons (Section 3.1) without differentiating depletion and 

deposition zones. 

Landslides are elongated features with distinct heads and toes. This study 

hypothesizes that a transect passing through its center and perpendicular to the mean 

(angular) aspect (Guarneri, 2013) of the landslide body divides a landslide into two 

distinct depletion and accumulation zones (Figure 4-8). This was accomplished in 

a GIS toolset originally developed in Python 2.7. Figure 4-9 represents the 

schematics of the GIS tool. 

 

 

Figure 4-8. Outline for the separation of depletion and accumulation zones. 
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Figure 4-9. Flowchart for the separation of depletion and accumulation zones.  
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Chapter 5. Results 

To identify the minimum T# required for a stable RF, T# was gradually increased 

to 5000. Figure 5-1 shows that R2 plateaued with T# greater than 100. This study 

however uses T# = 500 to accommodate unseen inconsistencies, following the 

strategy of Díaz-Uriarte and Alvarez de Andrés (2006). All model results show 

values averaged over 10 iterations. 

 

 

 

Figure 5-1. Generalized R-squared and the number of trees in an RF model. 

 

At first, the LS analyses were conducted with landslide representation using the 

commonly employed center-cell method. Then different topographic representation 

methods were compared. The results presented in Sections 5.1, 5.2, and 5.3; 

therefore utilize the center-cell method. Section 5.4 includes a comparison of 

different topographic representation methods. Section 5.5 includes results from LS 

models with different combination of representation methods and parameter scales. 

Center-cell method was again utilized in Section 5.6 due to the type of landslide 

inventory. 



78 

 

 Influence of geology and lithology 

In comparison between the RF models with and without the use of geological 

information, it was observed that the inclusion of geological information resulted 

in very little improvement in the testing (prediction) accuracy of the LS models 

(Figure 5-2). Moreover, the influence of geology in both the study areas (Niigata 

and Ehime) was not uniform. In Niigata, addition of geological information was 

followed by an overall improvement of testing accuracy (about 2 %) of the LS 

model while in Ehime the same resulted in very little improvement in the predictive 

performance. This was well correlated with the rank of parameters for the two areas 

(Table 5-1). While two of the geological parameters (geo_code and geo_den) in 

Niigata contributed significantly to the classification, none for Ehime contributed 

significantly. In fact, geo_code ranked below rand in Ehime. 

 

 

Figure 5-2. Influence of geological information on the accuracy of LS models. 
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Table 5-1. Importance of geological parameters in Niigata and Ehime. 

Parameters 

Rank of parameters 

Niigata Ehime 

Geological types (geo_code) 3/20 20/20 

Distance from geological boundary (geo_dis) 16/20 17/20 

Density of geological boundary (geo_den) 8/20 16/20 

 

 Scale-sensitivity of topographical parameters 

All 16 parameters used in this study were individually examined for scale-

sensitivity. RF models for scale-sensitivity were trained at 50% and tested with the 

remaining 50% of the dataset. Table 5-2 and Table 5-3 show portion of 

classification contributed by each scale of parameters in Niigata and Ehime 

respectively. The scale corresponding to the highest portion was selected optimal. 

The results show that optimal scales differ among parameters. 

For Niigata, the finest resolution (10 m) is optimal for parameters Dtd, Er, Ir, and 

Sl, while most of the other parameters exhibit optima at higher resolutions, 

preferably at 30, 60, and 300 m. Two parameters, Asp and Dd, contribute the most 

at 300 m, the coarsest resolution. The results from Ehime tend to be similar. For 

Ehime, parameters Asp, Dtd, Dtr, El, Er, Ir, and Sl are optimal at the finest scale, 

whereas the other parameters exhibit optima at coarser scales. Similar to Niigata, 

Dd in Ehime was found to be optimum at the coarsest scale. Figure 5-3 compares 

the optimal parameter-scale between the two study areas. The optimal scales for 

most parameters show similarity in both areas except Asp, for which the coarsest 

resolution in Niigata and the finest resolution in Ehime are optimal. 
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Table 5-4 and Table 5-5 include correlation between parameter scales. The results 

suggest that for most parameters there is a decline in correlation away from the scale. 

El was however found to be almost perfectly correlated in both the study areas 

across all the scales. After the evaluation of optimal scale for each parameter, the 

correlation between them was assessed. Results in Table 5-6 and Table 5-7 show 

that some parameter pairs; Ir and Dr, Plc and Cr, Dtr and SPI, and Ir and Sl in 

Niigata and Ir and Sl in Ehime; show high correlation between them. Simple 

statistical summary of parameters at their finest, coarsest, and optimal scales is 

included in Table 5-8 and Table 5-9.  

 

 

Figure 5-3. Optimal scales of parameters for Niigata and Ehime. 
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Table 5-2. Scale-sensitivity of parameters in Niigata. Values indicate the portion 

contributed by each parameter-scale in the classification. Highest contributor is 

selected as the optimal scale for the parameter.  

Parameters 
Scales 

Optimal 10 30 60 90 120 150 300 

Asp 300 0.113 0.108 0.112 0.131 0.152 0.146 0.238 

Cr 60 0.085 0.171 0.28 0.192 0.121 0.099 0.052 

Dtd 10 0.347 0.226 0.126 0.093 0.075 0.072 0.061 

Dtr 60 0.151 0.256 0.265 0.139 0.074 0.048 0.067 

Dd 300 0.168 0.166 0.128 0.113 0.125 0.115 0.185 

Dr 60 0.153 0.178 0.217 0.164 0.123 0.102 0.061 

El 30 0.176 0.189 0.152 0.124 0.111 0.107 0.141 

Er 10 0.198 0.17 0.116 0.144 0.114 0.117 0.14 

Ir 10 0.356 0.211 0.112 0.071 0.057 0.08 0.112 

Pfc 60 0.084 0.152 0.286 0.206 0.126 0.094 0.053 

Plc 60 0.129 0.198 0.237 0.156 0.117 0.09 0.074 

Sl 10 0.232 0.214 0.21 0.123 0.087 0.062 0.072 

SPI 60 0.101 0.214 0.259 0.153 0.104 0.081 0.088 

STCI 60 0.089 0.232 0.258 0.158 0.113 0.077 0.073 

TCI 60 0.045 0.139 0.282 0.187 0.137 0.108 0.102 

TWI 30 0.12 0.224 0.221 0.155 0.105 0.079 0.095 

Table 5-3. Scale-sensitivity of parameters in Ehime. Values indicate the portion 

contributed by each parameter-scale in the classification. Highest contributor is 

selected as the optimal scale for the parameter. 

Parameters 
Scales 

Optimal 10 30 60 90 120 150 300 

Asp 10 0.192 0.172 0.153 0.128 0.124 0.11 0.121 

Cr 90 0.141 0.153 0.162 0.169 0.132 0.141 0.103 

Dtd 10 0.338 0.209 0.125 0.116 0.08 0.079 0.052 

Dtr 10 0.205 0.191 0.157 0.122 0.088 0.147 0.089 

Dd 300 0.14 0.141 0.136 0.15 0.128 0.151 0.154 

Dr 150 0.127 0.139 0.157 0.164 0.138 0.18 0.095 

El 10 0.156 0.155 0.138 0.125 0.138 0.134 0.155 

Er 10 0.161 0.147 0.134 0.139 0.129 0.138 0.152 

Ir 10 0.264 0.165 0.119 0.112 0.107 0.106 0.127 

Pfc 90 0.128 0.129 0.15 0.176 0.138 0.159 0.12 

Plc 30 0.168 0.176 0.165 0.163 0.114 0.113 0.101 

Sl 10 0.21 0.175 0.162 0.137 0.116 0.105 0.094 

SPI 60 0.142 0.141 0.181 0.14 0.113 0.161 0.122 

STCI 60 0.11 0.131 0.194 0.158 0.124 0.164 0.119 

TCI 60 0.122 0.153 0.198 0.155 0.117 0.143 0.111 

TWI 30 0.16 0.169 0.169 0.144 0.113 0.141 0.105 
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Table 5-4. Correlation between parameter scales (Niigata). 

Parameters Optimal 
Scales 

10 30 60 90 120 150 300 

Asp 300 0.28 0.31 0.36 0.41 0.47 0.54 1.00 

Cr 60 0.37 0.68 1.00 0.67 0.61 0.45 0.21 

Dtd 10 1.00 0.98 0.93 0.88 0.83 0.77 0.56 

Dtr 60 0.29 0.53 1.00 0.55 0.46 0.34 0.16 

Dd 300 0.70 0.70 0.70 0.70 0.70 0.73 1.00 

Dr 60 0.65 0.84 1.00 0.85 0.80 0.70 0.51 

El 30 1.00 1.00 1.00 1.00 1.00 1.00 0.99 

Er 10 1.00 0.52 0.33 0.26 0.22 0.19 0.12 

Ir 10 1.00 0.81 0.63 0.52 0.44 0.38 0.20 

Pfc 60 0.29 0.64 1.00 0.66 0.60 0.47 0.27 

Plc 60 0.35 0.61 1.00 0.60 0.50 0.34 0.09 

Sl 10 1.00 0.89 0.72 0.60 0.52 0.46 0.29 

SPI 60 0.34 0.54 1.00 0.54 0.48 0.36 0.18 

STCI 60 0.28 0.43 1.00 0.43 0.43 0.35 0.20 

TCI 60 0.14 0.38 1.00 0.42 0.30 0.22 0.13 

TWI 30 0.55 1.00 0.54 0.39 0.30 0.24 0.12 

Table 5-5. Correlation between parameter scales (Ehime). 

Parameters Optimal 
Scales 

10 30 60 90 120 150 300 

Asp 10 1.00 0.83 0.69 0.62 0.54 0.49 0.33 

Cr 90 0.26 0.49 0.67 1.00 0.63 0.56 0.27 

Dtd 10 1.00 0.98 0.94 0.89 0.83 0.79 0.59 

Dtr 10 1.00 0.63 0.35 0.20 0.12 0.09 0.04 

Dd 300 0.71 0.71 0.72 0.71 0.71 0.75 1.00 

Dr 150 0.30 0.43 0.62 0.72 0.79 1.00 0.66 

El 10 1.00 1.00 1.00 1.00 1.00 1.00 0.99 

Er 10 1.00 0.48 0.27 0.20 0.18 0.15 0.11 

Ir 10 1.00 0.72 0.50 0.41 0.35 0.32 0.24 

Pfc 90 0.19 0.44 0.67 1.00 0.64 0.57 0.35 

Plc 30 0.69 1.00 0.65 0.41 0.25 0.16 0.02 

Sl 10 1.00 0.84 0.63 0.48 0.38 0.33 0.21 

SPI 60 0.37 0.54 1.00 0.52 0.44 0.34 0.17 

STCI 60 0.28 0.38 1.00 0.49 0.43 0.34 0.18 

TCI 60 0.24 0.46 1.00 0.37 0.21 0.10 0.02 

TWI 30 0.54 1.00 0.54 0.36 0.26 0.21 0.10 
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Table 5-6. Correlation between the parameters at optimal scale (Niigata). 

Parameters Asp_300 Cr_60 Dtd_10 Dtr_60 Dd_300 Dr_60 El_30 Er_10 Ir_10 Pfc_60 Plc_60 Sl_10 SPI_60 STCI_60 TCI_60 TWI_30 

Asp_300 1.00                 

Cr_60 0.00 1.00                

Dtd_10 0.00 0.23 1.00               

Dtr_60 -0.02 -0.56 -0.24 1.00              

Dd_300 0.00 -0.08 -0.53 0.12 1.00             

Dr_60 0.01 0.51 0.31 -0.32 -0.25 1.00            

El_30 -0.04 0.12 0.17 -0.11 -0.17 0.28 1.00           

Er_10 0.00 0.46 0.30 -0.32 -0.21 0.44 0.22 1.00          

Ir_10 0.02 0.03 0.13 -0.08 -0.18 0.77 0.21 0.12 1.00         

Pfc_60 0.00 -0.85 -0.31 0.47 0.17 -0.55 -0.16 -0.57 -0.03 1.00        

Plc_60 0.00 0.87 0.09 -0.50 0.02 0.34 0.05 0.23 0.03 -0.48 1.00       

Sl_10 0.01 0.03 0.08 -0.08 -0.14 0.64 0.16 0.11 0.82 -0.02 0.02 1.00      

SPI_60 -0.01 -0.68 -0.26 0.86 0.13 -0.30 -0.10 -0.37 0.00 0.55 -0.61 0.00 1.00     

STCI_60 0.00 -0.50 -0.23 0.47 0.11 -0.10 -0.01 -0.26 0.18 0.43 -0.43 0.14 0.66 1.00    

TCI_60 -0.02 0.01 -0.11 0.60 0.11 -0.08 -0.07 -0.08 -0.19 -0.03 -0.01 -0.17 0.59 0.16 1.00   

TWI_30 -0.01 -0.54 -0.18 0.48 0.09 -0.33 -0.11 -0.32 -0.13 0.42 -0.51 -0.13 0.54 0.33 0.24 1.00 
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Table 5-7. Correlation between the parameters at optimal scale (Ehime). 

Parameters Asp_10 Cr_90 Dtd_10 Dtr_10 Dd_300 Dr_150 El_10 Er_10 Ir_10 Pfc_90 Plc_30 Sl_10 SPI_60 STCI_60 TCI_60 TWI_30 

Asp_10 1.00                 

Cr_90 0.02 1.00                

Dtd_10 0.02 0.38 1.00               

Dtr_10 0.03 -0.25 -0.04 1.00              

Dd_300 -0.01 -0.16 -0.54 0.05 1.00             

Dr_150 0.04 0.34 0.50 -0.04 -0.43 1.00            

El_10 0.00 0.18 0.38 -0.06 -0.38 0.36 1.00           

Er_10 0.03 0.39 0.28 -0.14 -0.20 0.33 0.18 1.00          

Ir_10 0.06 0.03 0.06 0.04 -0.05 0.40 0.11 0.08 1.00         

Pfc_90 -0.01 -0.82 -0.42 0.20 0.28 -0.45 -0.27 -0.47 -0.04 1.00        

Plc_30 -0.03 0.39 0.07 -0.37 0.00 0.05 0.06 0.10 -0.03 -0.24 1.00       

Sl_10 0.06 0.02 0.02 0.06 -0.02 0.28 0.08 0.07 0.75 -0.02 -0.04 1.00     

SPI_60 0.00 -0.55 -0.27 0.34 0.13 -0.17 -0.14 -0.32 0.01 0.44 -0.42 0.02 1.00    

STCI_60 0.01 -0.42 -0.26 0.19 0.15 -0.13 -0.13 -0.29 0.04 0.33 -0.31 0.03 0.68 1.00   

TCI_60 -0.02 0.10 0.05 0.09 -0.01 0.08 0.01 0.10 -0.04 -0.09 0.17 -0.04 0.33 -0.03 1.00  

TWI_30 0.03 -0.42 -0.17 0.47 0.08 -0.12 -0.11 -0.25 -0.02 0.32 -0.63 -0.01 0.54 0.37 0.05 1.00 
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Table 5-8. Statistical details of parameters for Niigata at 10 m, 300 m, and the optimal scale. 

Parameters 
Optimal 

scale 

Minimum Maximum Mean Std. Dev 

10 m 300 m Optimal 10 m 300 m Optimal 10 m 300 m Optimal 10 m 300 m Optimal 

Asp 300 -1.00 0.02 0.02 360.00 359.94 359.94 180.38 186.92 186.92 105.80 111.13 111.13 

Cr 60 -39.01 -0.32 -3.48 33.47 0.37 3.06 0.00 0.00 0.00 2.11 0.09 0.60 

Dtd 10 0.00 0.00 0.00 600.17 848.53 600.17 154.19 223.64 154.19 108.80 184.40 108.80 

Dtr 60 0.00 0.00 0.00 272.03 670.82 305.94 18.96 164.89 45.73 14.54 167.24 40.26 

Dd 300 0.00 0.00 0.00 9.23 6.96 6.96 2.09 1.53 1.53 1.66 1.46 1.46 

Dr 60 0.03 0.02 0.03 465.00 42.50 166.67 32.47 15.07 27.79 23.41 9.21 17.26 

El 30 15.00 15.13 15.00 1283.81 1223.81 1283.26 385.58 386.65 385.69 237.18 236.33 237.19 

Er 10 0.01 0.18 0.01 0.96 0.70 0.96 0.49 0.45 0.49 0.11 0.07 0.11 

Ir 10 0.00 97.14 0.00 168.05 755.66 168.05 36.61 323.67 36.61 18.58 128.47 18.58 

Pfc 60 -26.59 -0.23 -2.50 31.02 0.20 2.40 0.03 0.00 0.02 1.48 0.05 0.34 

Plc 60 -26.66 -0.24 -2.31 18.10 0.22 2.49 0.03 0.00 0.02 1.05 0.05 0.36 

Sl 10 0.00 0.09 0.00 75.71 22.84 75.71 18.26 7.47 18.26 10.84 3.87 10.84 

SPI 60 -3.95 -3.75 -3.92 17.82 16.92 17.84 4.34 4.81 4.78 2.83 6.72 4.99 

STCI 60 0.05 0.07 0.05 6746.10 1728.15 4331.62 30.68 87.60 63.11 41.40 127.45 101.25 

TCI 60 -355.11 0.08 -35.02 230.62 19.02 38.58 3.16 6.37 4.15 12.41 6.25 4.65 

TWI 30 -0.96 0.95 -0.52 19.09 19.08 19.09 5.81 7.79 6.39 2.41 5.80 3.64 



86 

 

Table 5-9. Statistical details of parameters for Ehime at 10 m, 300 m, and the optimal scale. 

Parameters 
Optimal 

scale 

Minimum Maximum Mean Std. Dev 

10 m 300 m Optimal 10 m 300 m Optimal 10 m 300 m Optimal 10 m 300 m Optimal 

Asp 10 -1.00 0.03 -1.00 360.00 359.97 360.00 176.90 177.46 176.90 105.70 102.46 105.70 

Cr 90 -83.81 -0.51 -2.64 48.02 0.52 2.49 0.00 0.00 0.00 2.72 0.17 0.61 

Dtd 10 0.00 0.00 0.00 728.35 848.53 728.35 168.20 236.11 168.20 118.94 194.17 118.94 

Dtr 10 0.00 0.00 0.00 194.16 670.82 194.16 22.56 172.35 22.56 17.53 169.24 17.53 

Dd 300 0.00 0.00 0.00 10.45 7.64 7.64 1.93 1.51 1.51 1.68 1.52 1.52 

Dr 150 0.01 0.11 0.02 675.00 42.50 85.00 61.66 28.50 42.92 26.44 11.70 17.50 

El 10 89.56 147.75 89.56 1895.25 1802.10 1895.25 891.49 892.03 891.49 291.62 287.57 291.62 

Er 10 0.01 0.26 0.01 0.99 0.70 0.99 0.50 0.47 0.50 0.08 0.07 0.08 

Ir 10 0.00 284.58 0.00 227.45 1234.76 227.45 69.43 706.74 69.43 21.39 174.00 21.39 

Pfc 90 -40.81 -0.42 -1.71 52.78 0.39 1.91 0.02 0.00 0.01 1.76 0.09 0.30 

Plc 30 -57.09 -0.37 -10.09 28.95 0.35 7.07 0.02 0.00 0.02 1.56 0.10 1.01 

Sl 10 0.00 0.23 0.00 80.40 38.41 80.40 31.68 16.80 31.68 10.13 6.85 10.13 

SPI 60 -3.95 -3.43 -3.95 18.71 18.06 18.49 5.29 5.72 5.75 2.67 6.59 4.88 

STCI 60 0.05 0.10 0.05 10329.02 3726.50 6334.71 62.28 206.43 136.34 72.82 278.56 187.04 

TCI 60 -647.93 0.07 -48.75 257.42 17.97 34.07 2.17 6.08 3.16 17.12 5.71 5.79 

TWI 30 -1.19 0.34 -0.74 19.40 19.41 19.40 5.88 7.51 6.38 2.47 6.02 3.77 
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 Relative importance of landslide causative parameters 

The relative importance of each optimal parameter is shown in Figure 5-4. 

Parameters Dr, Sl, El, Ir, STCI, and TWI for Niigata and Dr, TCI, Plc, Cr, Sl, and 

TWI for Ehime constitute the top six parameters explaining the distribution of 

landslides in each area. Parameters with higher relative importance (≥8; Figure 5-

4) in both areas are Cr, Dtd, Dr, Ir, Sl, TCI, and TWI. Some parameters were found 

to be of greater importance in one area but not in the other. The parameters with 

large differences in relative importance between the two areas (≥5; Figure 5-4) are 

Asp, El, Ir Plc, SPI, STCI, and TCI; Parameters El, Ir, SPI, and STCI have higher 

importance in Niigata while Asp, Plc, and TCI have higher importance in Ehime. 

The random variable “rand” was correctly identified as the least important 

parameter in the analysis (Table 5-10). 

 

 

Figure 5-4. Relative importance of parameters for Niigata and Ehime. 
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Table 5-10. Rank of importance for parameters at their optimal scale (Niigata and 

Shikoku). 

Rank 

Niigata Ehime 

Parameter 
Portion 

contributed 

Likelihood 

ratio chi-

square (G2 ) 

Parameter 
Portion 

contributed 

Likelihood 

ratio chi-

square (G2 ) 

1 Dr_60 0.1711 392429 Dr_150 0.1067 88023 

2 Sl_10 0.1101 252625 TCI_60 0.0945 77974 

3 El_30 0.1100 252218 Plc_30 0.0911 75154 

4 Ir_10 0.1081 247949 Cr_90 0.0803 66303 

5 STCI_60 0.1022 234473 Sl_10 0.0745 61485 

6 TWI_30 0.0809 185533 TWI_30 0.0641 52909 

7 Cr_60 0.0570 130701 Dtd_10 0.0638 52672 

8 Dtd_10 0.0495 113647 Asp_10 0.0612 50470 

9 TCI_60 0.0474 108675 Ir_10 0.0541 44660 

10 SPI_60 0.0336 76989 El_10 0.0514 42406 

11 Plc_60 0.0316 72377 Dtr_10 0.0477 39328 

12 Pfc_60 0.0240 55074 Er_10 0.0436 35965 

13 Er_10 0.0224 51487 Dd_300 0.0428 35335 

14 Dd_300 0.0212 48609 Pfc_90 0.0388 31994 

15 Asp_300 0.0202 46257 SPI_60 0.0357 29456 

16 Dtr_60 0.0108 24680 STCI_60 0.0262 21628 

 

 Comparison of topographic representation techniques 

The results of comparative analysis of topographic representation techniques in 

Figure 5-5 and Table 5-11 indicate that representation methods perform the best 

with parameters at optimal scale. Additionally, the newly proposed DCD, with a 

testing accuracy of 81.11% in Niigata and 83.28% in Ehime, outperforms other 

methods. It is followed by the center-cell approach, while the seed cells approach 

of representation lagged behind. 
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Figure 5-5. Accuracy assessment of the representation techniques at various scales. 

(a) center-cell, (b) cells within landslide polygon, (c) seed cells, (d) cells within the 

depletion zone, and (e) dominant within the depletion zone (DCD). 
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Figure 5-5. Continued. 
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Table 5-11. Accuracy assessment of the representation techniques at various scales. 

Symbols Representation Scale Testing accuracy 

Niigata Ehime 

(a) Center-cell 10 77.80 76.32 

(b) Cells within landslide polygon 10 76.69 72.86 

(c) Seed cells 10 74.28 67.30 

(d) Cells within the depletion zone 10 77.94 76.28 

(e) DCD 10 80.37 82.55 

(a) Center-cell 30 78.85 77.22 

(b) Cells within landslide polygon 30 76.84 73.90 

(c) Seed cells 30 75.28 67.97 

(d) Cells within the depletion zone 30 79.24 76.57 

(e) DCD 30 80.07 82.04 

(a) Center-cell 60 78.47 75.23 

(b) Cells within landslide polygon 60 77.83 70.87 

(c) Seed cells 60 75.64 67.27 

(d) Cells within the depletion zone 60 78.03 72.51 

(e) DCD 60 79.47 77.16 

(a) Center-cell 90 77.32 73.11 

(b) Cells within landslide polygon 90 76.54 69.60 

(c) Seed cells 90 74.71 66.24 

(d) Cells within the depletion zone 90 75.85 69.45 

(e) DCD 90 76.20 71.44 

(a) Center-cell 120 75.82 70.88 

(b) Cells within landslide polygon 120 75.30 67.43 

(c) Seed cells 120 74.13 65.61 

(d) Cells within the depletion zone 120 74.89 66.82 

(e) DCD 120 74.67 68.91 

(a) Center-cell 150 74.89 69.26 

(b) Cells within landslide polygon 150 74.74 66.14 

(c) Seed cells 150 73.94 64.67 

(d) Cells within the depletion zone 150 74.27 65.63 

(e) DCD 150 74.03 66.90 

(a) Center-cell 300 75.21 65.74 

(b) Cells within landslide polygon 300 74.41 64.14 

(c) Seed cells 300 73.13 63.08 

(d) Cells within the depletion zone 300 73.38 63.37 

(e) DCD 300 71.92 63.90 

(a) Center-cell Optimum 79.70 78.62 

(b) Cells within landslide polygon Optimum 78.63 75.51 

(c) Seed cells Optimum 76.20 70.27 

(d) Cells within the depletion zone Optimum 79.28 78.45 

(e) DCD Optimum 81.11 83.28 
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 Landslide susceptibility models 

Figure 5-6 presents the testing and training accuracies (averaged over 10 iterations) 

of the RF models constructed with parameters at various scales using center-cell 

method. In both areas, the training accuracies (85.08% for Niigata and 95.44% for 

Ehime) and testing accuracies (79.70% and 78.62%, respectively) were found to be 

highest for the models with parameters at the optimal scales. Among the model 

iterations, the models closest to the mean testing accuracy were used to produce LS 

maps. Figure 5-7 shows 25 km2 parts of the LS maps for the combined optimal 

scale and the 10, 30, 90, and 150 m scales. 

The effectiveness of the model with parameters at the optimal scales was evaluated 

using AUC (Section 4.1). Figure 5-8 illustrates AUC values on test data for RF 

models at different scales. The model with the parameters at optimal scales shows 

an AUC value of 0.877 for Niigata and 0.870 for Ehime. The highest AUC values 

show that multi-resolution LS modeling outperforms the conventional single-scale 

modeling. 
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Figure 5-6. Training and testing accuracies of LS models for different parameter 

scales for Niigata and Ehime. 

(Nii-train = training samples at Niigata; Nii-test = testing samples at Niigata; Ehi-

train = training samples at Ehime; and Ehi-test = training samples at Ehime) 
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Figure 5-7. Landslide distribution map (gray) and part of LS maps (25 km2 and 

probability >= 0.5) from RF models with different parameter scales for Niigata 

(upper) and Ehime (lower). 
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Figure 5-8. Results of ROC analysis. (a) AUC values of ROC on test data for the 

models at various scales. (b) ROC curves for the multi-resolution LS model with 

parameters at optimal scale. 

 

Table 5-12 presents a summary of the testing accuracies and AUC estimates for the 

LS models with various representation techniques with parameters at optimal scale. 

LS models with testing accuracy of 81.11% in Niigata and 83.28% in Ehime were 

obtained with a combined use of the multi-resolution method (Section 4.3) and 

DCD technique (Section 4.4). The AUC values of 0.89 for Niigata and 0.92 for 

Ehime support their excellent predictive capacity (Figure 5-9). Figure 5-10 shows 

LS maps prepared using the same LS models. 
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Table 5-12. Testing accuracies and AUC values for representation techniques with 

parameters at optimal scale. 

Representation technique 

Niigata Ehime 

Testing 

accuracy %  
AUC 

Testing 

accuracy % 
AUC 

Center-cell 79.70 0.88 78.62 0.87 

Cells within landslide polygon 78.63 0.87 75.51 0.84 

Seed cells 76.20 0.84 70.27 0.77 

Cells within the depletion 

zone 
79.28 0.87 78.45 0.86 

DCD 81.11 0.89 83.28 0.92 

 

 

 

Figure 5-9. ROC plots for DCD with parameters at optimal scale. 



97 

 

 

Figure 5-10. Landslide distribution map (gray) and parts of LS maps (25 km2) for 

Niigata (a and b) and Ehime (c and d) with a combined use of optimal parameter-

scale and DCD.   
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 Landslide susceptibility mapping in Melamchi 

The developed methodologies were applied to evaluate LS in Melamchi, Nepal. 

Only the multi-resolution LS analysis could be implemented because the landslides 

there were mapped as polylines without areal extent. Five DEM-scales (30 to 150 

m) were used to identify the optimal scales of topographic parameters, which were 

then used to construct a multi-resolution LS model (Section 4.3). Table 5-12 

presents the optimal parameter-scale, their rank, and their contribution to the 

classification of the testing. El, Er, Ir, and Sl were four most influential parameters 

associated with landslide occurrences in the region. Topographic parameters, Plc, 

Dtr, and TCI were ranked below rand suggesting that they provided no information 

to the classification. Figure 5-11 includes the training accuracies as well as testing 

accuracies of LS models with parameters at multiple scales. As in the Japanese 

study areas, the LS model with the optimal parameter-scale (testing accuracy = 

84.5% and AUC = 0.92) was found to perform better than other single parameter-

scale models. Figure 5-12 shows the ROC plot for the multi-resolution model, and 

Figure 5-13 shows the produced LS map based on the best model. 
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Table 5-13. Rank of importance for parameters at their optimal scale in Melamchi 

for LSM. 

Rank 

Optimal 

parameter-

scale 

Likelihood 

ratio chi-

square (G^2 ) 

G^2 
Portion 

contributed 

1 El 90 47300.2 +++++++++++++++++ 0.1687 

2 Er 150 33982.4 ++++++++++++      0.1212 

3 Ir 30 24719.9 ++++++++          0.0882 

4 Sl 120 23071.5 ++++++++          0.0823 

5 Dr 30 21346.3 +++++++           0.0761 

6 Dd 90 16837.4 ++++++            0.06 

7 STCI 120 15602.1 +++++             0.0556 

8 SPI 150 14142.7 +++++             0.0504 

9 Asp 150 13129.6 ++++              0.0468 

10 Dtd 30 12105.6 ++++              0.0432 

11 Pfc 90 11974.2 ++++              0.0427 

12 Cr 90 11790.9 ++++              0.042 

13 TWI 120 7580.32 ++                0.027 

14 rand  7321.59 ++                0.0261 

15 Plc 120 6784.94 ++                0.0242 

16 Dtr 120 6518.76 ++                0.0232 

17 TCI 120 6216.95 ++                0.0222 
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Figure 5-11. Testing accuracy of LS models for Melamchi at various scales. 

 

 

Figure 5-12. ROC plot for the LS model with the optimal parameter-scale in 

Melamchi. 

Optimal 30 60 90 120 150

Training 93.94 92.84 92.77 93.76 93.48 93.43

Testing 84.50 81.59 81.70 82.25 81.54 81.95
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Figure 5-13. LS map of Melamchi with the use of the multi-resolution technique. 
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Chapter 6. Discussion 

 Random Forest for evaluating landslide susceptibility 

The result for the number of trees for a robust LS modeling with RF (Figure 5-1) 

shows that RF models can achieve suitable complexity with forest structure easily 

manageable by most desktop computers (T# < 100; Catani et al., 2013). Application 

in different fields often require much larger forest densities (Bachmair and Weiler, 

2012). This enables the use of larger datasets in LS modeling (Archer and Kimes, 

2008), otherwise restricted to the use of smaller samples due to computational 

requirements of other ML methods as in Kawabata and Bandibas (2009). RF models 

can handle categorical data, unbalanced data as well as data with missing values, 

not possible in other ML techniques such as SVM (Pal, 2005), which further 

encourages its practical implementation. Another aspect of the RF model, valuable 

in LS analysis, is the measure of variable importance. It was instrumental in this 

study for the identification of the optimal scale of topographic parameters and the 

proposed multi-resolution technique (Section 4.3). 

 Significance of DEM-based landslide susceptibility analysis 

Numerous parameters from diverse themes are used in LSM. However, limitations 

in availability and scale of data may restrict the use of such studies. A DEM-based 

approach however permits quantitative, reproducible, and efficient LSM. The 

global availability of DEMs with resolutions suitable for LSM is also useful in this 

regard. This study investigated the usability of a DEM-based LSM using RF. The 

methodologies designed using high quality data in Japan were also successfully 

applied to a study area in Nepal, where high quality data lacks. 
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There is a general consensus that geological information is one of the most decisive 

parameters regarding landslide manifestation and therefore is included in most LS 

studies (Atkinson and Massari, 1998; Clerici et al., 2006; Nourani et al., 2013; 

Pourghasemi et al., 2012; Rossi et al., 2010). Picanço et al. (2014) also suggested 

the importance of geology in landslide studies due to its high correlation to 

occurrence and typology of landslides. 

However, this study has revealed that the necessity of using geological information 

in addition to topographic parameters is not always high. While there was a little 

positive improvement on the overall accuracy of the LS model in Niigata when 

geological information was added, its influence in Ehime was insignificant. This 

observation for Niigata is consistent to Kawabata and Bandibas (2009) who found 

that geological information in Niigata was crucial in LS; model accuracy halved 

with the exclusion of geological information. Such dependence might be because 

the study analyzed landslides triggered by the 2004 Mid-Niigata Prefecture 

earthquake while the current study analyzes historical landslides irrespective of 

triggering mechanism. Nevertheless, the positive influence of geology altogether, 

and higher importance of geo_code and geo_den (Table 5-1) might be linked to the 

high seismicity of the region (Wang et al., 2007) because of the high correlation 

between seismic velocity and surface geology (Bard, 1995). The higher importance 

of geo_den might therefore be due to increased concentration of tectonic activity 

along the relatively weaker geological regions prone to landslides (Chuang et al., 

2009). In Shikoku, Yamasaki and Chigira (2008) suggest that lithology exerts 

strong control on weathering and therefore the distribution of landslides. However, 

current study in Ehime found that the addition of geological information resulted in 

very little improvement of the LS model. This could be because while geology is 
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important, the scale of geological maps might not fully depict the conditions leading 

to slope failures. For example, the degree of weathering or the thickness of unstable 

regolith is usually not presented in geological maps. Dhakal et al. (2000) also 

pointed out that the spatial variation in geology relating to landslides is often not 

captured in geological maps. Instead, terrain variations at finer scales can better 

reflect terrain attributes, including soil characteristics (Iwahashi and Pike, 2007; 

Moore et al., 1993; Prima et al., 2006). Therefore, there are cases in which LSM 

based only on DEMs are meaningful enough as in the present study. 

In a DEM-based LSM, however, it should be noted that post-failure DEMs include 

terrain modifications due to landslides. This makes the use of historical landslides 

(or those occurred prior to the DEM acquisition) in LS more challenging. Some 

techniques to mitigate this issue by reconstructing the pre-failure terrain have also 

been proposed (Gorum et al., 2008; Van Den Eeckhaut et al., 2006), but are not 

commonly employed. These imperfections of the DEM are therefore a target of 

future LS studies. 

 Factors influencing scale-sensitivity of topographic factors 

Different terrain parameters vary in different ways when the DEM resolution 

changes (Zhou and Chen, 2011). Results from Ehime and Niigata also show that the 

optimum scales for LS modeling differ according to parameters (Table 5-2 and 

Table 5-3), and tend to be common for the two study areas (Figure 5-2). Although 

it is expected that the finest DEM can describe detailed topography and is hence 

suitable for LSM, several parameters are more significant at relatively coarse scales 

(≥30 m). This suggests that the smallest-scale variabilities of these parameters do 

not well represent the physical processes of landslide triggering, as suggested by 
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some previous studies (Freer et al., 2002; Tarolli and Tarboton, 2006). For example, 

all curvature-related variables (Cr, Pfc, and Plc) and the composite topographic 

indices (SPI, STCI, TCI, and TWI) show meaningful influences on LS at scales equal 

to or larger than 30 m (Figure 5-2). This suggests that a 3 × 3 moving window for 

parameter computation properly encompasses a meaningful topographic unit, 

including both the detachment and deposition areas of a landslide, only at relatively 

coarse resolutions (Catani et al., 2013). The landslide size distribution of the two 

study areas (Figure 3-1, Table 3-1) also suggests that most landslides are larger 

than the terrain represented at 10 m resolution. Scaling of Dr with the optimal 60 or 

150 m resolution also seems to correspond to the landslide size distribution. In 

contrast, for Ir and Er, the finest resolution (10 m) is the optimal scale for both areas, 

and it is ascribable to a larger 10 × 10 moving window used for their computation, 

which can represent a relatively large area even at the finest resolution. However, 

although computed using a 3 × 3 moving window, Sl is optimal at the finest scale. 

This seems to reflect the high sensitivity of slope calculation to DEM resolution. It 

is widely known that coarser resolution DEMs result in lower Sl values for the same 

terrain (Figure 6-1) (Zhang et al., 1999). Because Sl is directly related to 

gravitational force triggering landslides, its accurate computation using fine DEMs 

is important. A similar explanation can be given for Dtd, which is also optimal at 

the finest 10 m scale. Fluvial activity such as channel erosion tends to induce 

landslides along the river course. The accurate location of rivers is better 

represented if the finest DEM is used (Wang and Yin, 1998). 
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Figure 6-1. Relationship between DEM resolution and slope angle for Niigata. 

For parameter Dtr, a coarser scale (60 m) for Niigata and the finest scale (10 m) for 

Ehime were found to be optimal. Ridges extracted at coarser scales usually 

correspond to major ridge lines, while at finer scales they include local topographic 

highs (ESRI, 2016). Dtr for Niigata at a coarser scale could therefore include the 

amplified motion observed along the major outstanding ridges during seismic 

events (Chang et al., 2007). Indeed, some landslides in Niigata were due to high 

seismicity, as was the case of the 2004 Chuestu earthquake (Wang et al., 2007). 

The optimal scales of Dd and Asp differ significantly from those of the other 

parameters; the coarsest scale (300 m) is optimum for Dd, while Asp shows the 

largest deviation between the two areas, 10 and 300 m. Dd in this study is estimated 

over a unit area dependent on the scale of analysis, thus at finer scales it might be 

related only to the local presence/absence of drainage lines. However, at coarser 

scales, it can reflect the known relationship between general relief characteristics 

and landslide occurrences (Lin and Oguchi, 2004; Oguchi, 1997; Strahler, 1952). 

For Asp, the finest resolution (10 m) is optimal for Ehime, while the coarsest 
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resolution (300 m) is optimal for Niigata. Local meteorological conditions and their 

relationship with LS may explain this variation. Both the study areas receive large 

amounts of precipitation; however, Niigata receives a significant portion of its 

precipitation as snowfall (1.35 m per year). The increased overburden due to 

accumulated snow and the increased soil moisture from snowmelt are responsible 

for landslides there (Kawagoe et al., 2009). Asp at a coarser scale indicates the 

overall direction of a hillslope and suggests that the difference in the deposition 

thickness of snow on the windward and leeward sides is crucial for LS in Niigata. 

Dip-slope and dip-aspect of the predominantly sedimentary geology in Niigata 

might also have influenced this scale dependency. In contrast, Asp at a finer scale 

could depict local variations in micro-climate, such as insolation and related 

groundwater conditions, which is related to rock weathering (Rech et al., 2001). 

The close relationship between weathering and distribution of landslides has been 

reported in Shikoku Island including Ehime (Yamasaki and Chigira, 2008), 

indicating the effect of finer scale Asp on local climate, weathering, and landslides. 

 Geo-environmental influence on the importance of landslide 

causative factors 

Among the values of relative parameter importance (Figure 5-3), higher values for 

Cr, Dtd, Dr, Ir, Sl, TCI, and TWI in both Niigata and Ehime suggest that these 

parameters are instrumental in landslide occurrences. Landslide probability 

generally increases with terrain slope because of increased shear stress, and slope 

is considered very important in LS studies (Lee and Talib, 2005; Nefeslioglu et al., 

2008b). Therefore, the higher importance of Dr and Sl is reasonable. The higher 

importance of Dr compared to Sl confirms that Dr is a more direct representation 

of local maximum slope. Claessens et al. (2005) provided a similar observation on 
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the different effects of these slope parameters. The higher importance of Ir in both 

study areas also suggests the importance of topographic steepness. 

The importance of Dtd is explained by the bidirectional relationship between fluvial 

processes and slope failures. While landslides contribute to channel initiation, 

stream incision also contributes to landslides (Gerrad and Gardner, 2000; 

Montgomery and Dietrich, 1989; Ng, 2006; Oguchi, 1997). The higher relative 

importance of TCI and TWI may reflect the significance of hydrological variations 

related to rock weathering and soil properties (Iwahashi and Pike, 2007; Moore et 

al., 1993; Prima et al., 2006). There is a general consensus regarding Cr that 

landslides are more likely to occur on concave slopes because of groundwater 

concentration (Ayalew et al., 2004). In contrast, earthquake-induced landslides may 

be more likely on convex slopes with higher ground acceleration. The importance 

of Cr in both study areas therefore hints to such mechanisms controlling LS. 

Parameters Asp, Plc, and TCI have markedly higher importance in Ehime than in 

Niigata. A combination of geological and environmental variables may explain this 

observation. As noted, the importance of Asp in Ehime may be due to local micro-

climatic differences that lead to differential weathering. By contrast, the higher 

importance of Plc in Ehime indicates the positive influence of horizontal flow 

movement in LS, as suggested by Nefeslioglu et al. (2008b) (Table 3-3). The area 

in Ehime receives a larger amount of rainfall than in Niigata; hence increased water 

concentration may contribute more to landslides. The higher importance of TCI in 

Ehime can be explained similarly because it is a parameter strongly related to terrain 

curvature. 
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 Assessment of LS models 

The performances of LS models at eight different scales for Niigata and Ehime and 

six different scales for Melamchi were compared based on their accuracy estimates 

(Figure 5-6 and Figure 5-11 ) and AUC values (Figure 5-8). The scale dependency 

of input parameters was also observed in the accuracy estimates of the LS models 

(Figure 5-6 and Figure 5-11). For the study areas in Japan, except for the training 

accuracies of LS models for Ehime and an LS model for Niigata at 300 m resolution, 

the accuracy estimates decrease with an increasing analytical scale beyond 30 m. 

The slight increase in the model accuracy for Niigata at 300 m is the effect of the 

two parameters that are optimal at that scale (Figure 5-2). The discrepancy 

observed with the training accuracies for Ehime might be due to the smaller number 

of training samples. Higher testing accuracies were obtained for models at coarser 

scales (≥30 m) than at the finest scale (10 m). Similar results were obtained in 

Melamchi where the finest scale (30 m) was found to be the least suitable scale for 

LSM. For example, while parameter-scales show large differences, the influence of 

the most important parameter in Melamchi (El) is best explained at the scale of 90 

m (Figure 5-11). The proposed multi-resolution LS technique resulted in a boost of 

testing accuracies (Figure 5-6 and Figure 5-11) in all the study areas. Obtained 

AUC values also suggest their excellent predictive abilities (Section 4.1, Figure 5-

8). 

Two examples of local LS maps at different scales for Niigata and Ehime (Figure 

5-7) indicate that the usability of an LS map depends on the mapping scale as well 

as the model used. The LS maps in Figure 5-10 and Figure 5-13 suggest the broad 

applicability of LSM using the proposed methodologies. 
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 Topographic representation of landslides 

Topographic representation is a crucial, yet not commonly discussed aspect of LS 

studies. It greatly affects the outcome of LSM because selecting one over the others 

leads to a possibility of selecting dissimilar initiation conditions for the same 

landslide. 

A comparison between the five representation techniques (Section 5.4) shows that 

the newly proposed DCD method of representation always has the highest 

performance (higher testing accuracies and AUC, Figure 5-5, Table 5-11, and 

Table 5-12). This is logical because the dominant cell within the depletion zone 

most likely represents the dominant processes governing landslide initiations 

(Clerici et al., 2006; Trigila et al., 2015). The results in Figure 5-5 and Table 5-11 

also suggest that LS models irrespective of representation methods perform better 

with parameters at optimal scale. This might be because optimal scales differ among 

parameters and LS models perform better whenever optimum scale for parameters 

is evaluated and utilized in LSM. Section 6.3 details the scale sensitivity of 

parameters and the importance of the multi-resolution LS analysis in this regard.  

The representation techniques exhibit marked distinctiveness at finer scales but not 

in coarser scales (Figure 5-5). This might be due to the terrain smoothing at coarser 

scales as well as the scale of analysis itself. At finer scales, different representation 

techniques identify distinct/dissimilar terrain conditions while at coarser scales they 

might relate to same/similar conditions producing similar results. Although this 

scaling of the representation techniques was observed in both the study areas, it was 

more pronounced in Niigata than in Ehime. Size of landslides in the two study areas 

(smaller in Niigata and larger in Ehime) (Table 3-1) could explain this observation.  
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The performance of DCD was followed by the center-cell and cells-within-the-

depletion-zone types of topographic representation. While conditions at the 

depletion zone are more closely related to the actual conditions of landslide 

initiation, all cells are not the same. Random sampling of representative cell within 

the depletion zone therefore causes a decrease in its representative efficacy, nearing 

the performance of center-cell representation technique in corresponding LS models. 

Regarding the center-cell technique, Atkinson and Massari (2011) suggested its use 

to ensure that no preference is given to large or small landslides. However, the 

results in this study suggest that such a strategy will is not always valid.  

All of the abovementioned techniques are restricted to the depletion zone. The same 

explains the lower efficiency of the cells-within-landslide-polygon technique, 

which includes cells sampled from all of the landslide body (depletion and 

accumulation). The cells in the accumulation zone are rarely representative of the 

landslide initiation conditions required in LSM. 

Seed cells are regarded as a practical representation of pre-failure conditions and 

therefore preferred in LSM (Nefeslioglu et al., 2008b; Suzen and Doyuran, 2004b; 

Yilmaz, 2010b), however in this study it was not suitable (Figure 5-5, Table 5-11, 

and Table 5-12). Suzen and Doyuran (2004b) and Che et al. (2012) suggest that the 

seed cell approach is mostly suitable for small shallow translational slides which 

does not alter slope form. The dominance of large landslides (Figure 3-3 and 

Figure 3-4) might therefore be responsible for the lowest performance of the seed 

cells. The subjectivity associated with the buffer zone length for seed-cell extraction 

(Wang et al., 2013), use of historical landslides, and terrain modifications since 

landsliding could have also lowered the efficacy of the representation technique. 
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However, for fast moving landslides covering large distances, the seed cell 

approach might be more useful than the other representation techniques because the 

distinction between depletion and deposition zones employed for other techniques 

cannot be applied to such landslides. 

Chapter 7. Conclusions 

LSM provides the relative likelihood of future landslides, conditional on local 

geomorphic and topographic characteristics (Chung and Fabbri, 2008). Results of 

this study suggest that a single parameter-scale analysis falls short in 

accommodating the heterogeneity of geomorphological characteristics of the 

landslides and their surrounding areas. This study proposes a multi-resolution LSM 

technique to incorporate such variabilities resulting in more accurate LSM than any 

single-scale analysis. The method requires an identification of optimum scales for 

all parameters to best represent the conditions of slope failure. The parameters at 

different optimum scales are then brought together for the final LSM. 

The study also demonstrated the usefulness of a DEM-based LS analysis in areas 

without other sets of high-quality thematic data. The influence of geological 

information on LSM was also analyzed. The result suggest that unless, available at 

higher scales, inclusion of geological information in LS analysis results only in a 

little increase in predictive ability of an LS model. Therefore, a DEM-based LSM 

looks promising, at least for steep areas experiencing active landsliding such as 

Japanese and Nepalese mountains. In other areas where landslides are more limited, 

landslides might concentrate in zones with particular factors including geological 

and anthropogenic ones. 
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The analysis of scale and importance of the DEM-derived parameters reveal that 

while some parameters show similar importance and scale dependency for different 

regions, environmental differences result in variability between regions. The 

performance of LS models also suggests that the finest scale of analysis is not 

always the best. The proposed multi-resolution LS analysis permits higher accuracy 

LSM than any single-scale analysis.  

The study also evaluated different topographic representation techniques that 

determine how the modeling datasets are prepared. A new area-based representation 

technique concerning the dominant cell within the depletion zone is also proposed 

in this study. The proposed method of representation was found to be better than 

other four contemporary methods: center-cell, cells within landslide boundary, cells 

within depletion zone, and seed cells. The application of the newly proposed 

representation technique on top of the multi-resolution technique resulted in a 

cumulative increase in the efficacy of the DEM-based LSM. 

Most importantly, the proposed methodologies, developed using higher resolution 

datasets in Japan, were also successfully applied to Nepal where the data quality is 

relatively low. This indicates broad applicability of the methodologies and fulfills 

the broad objective for this study. 

Further study is recommended to confirm the usefulness of the proposed 

methodologies. Especially research in areas whose environmental characteristic 

differ from those in the Japanese and Nepalese study areas is necessary. 

  



114 

 

References 

ADB, 2000: Summary environmental impact assessment of Melamchi water supply 

project. 

Akgun, A., 2011: A comparison of landslide susceptibility maps produced by 

logistic regression, multi-criteria decision, and likelihood ratio methods: a case 

study at İzmir, Turkey. Landslides 9, 93–106. 

Archer, K.J., Kimes, R. V., 2008: Empirical characterization of random forest 

variable importance measures. Comput. Stat. Data Anal. 52, 2249–2260. 

Arnett, R.R., Conacher, A.J., 2007: Drainage basin expansion and the nine unit 

landsurface model. Aust. Geogr. 12, 237–249. 

Atkinson, P.M., Massari, R., 2011: Autologistic modelling of susceptibility to 

landsliding in the Central Apennines, Italy. Geomorphology 130, 55–64. 

Atkinson, P.M., Massari, R., 1998: Mapping susceptibility to landsliding in the 

central Apennines, Italy 24, 373–385. 

Ayalew, L., Yamagishi, H., 2005: The application of GIS-based logistic regression 

for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central 

Japan. Geomorphology 65, 15–31. 

Ayalew, L., Yamagishi, H., 2002: Landslides in the Kakuda-Yahiko Mountains of 

Niigata, Their Analyses and Description Using GIS, in: National Congress of 

Engineering Geological Society of Japan. Takamatsu, Japan, pp. 131–134. 

Ayalew, L., Yamagishi, H., Ugawa, N., 2004: Landslide susceptibility mapping 

using GIS-based weighted linear combination, the case in Tsugawa area of 

Agano River, Niigata Prefecture, Japan. Landslides 1, 73–81. 

Bachmair, S., Weiler, M., 2012: Hillslope characteristics as controls of subsurface 

flow variability. Hydrol. Earth Syst. Sci. 16, 3699–3715. 

Bai, S.-B., Wang, J., Lü, G.-N., Zhou, P.-G., Hou, S.-S., Xu, S.-N., 2010: GIS-based 

logistic regression for landslide susceptibility mapping of the Zhongxian 

segment in the Three Gorges area, China. Geomorphology 115, 23–31. 

Bai, S.B., Wang, J., Pozdnoukhov, A., Kanevski, M., 2009: Validation of Logistic 

Regression Models for Landslide Susceptibility Maps, in: 2009 WRI World 

Congress on Computer Science and Information Engineering. IEEE, pp. 355–

358. 

Band, L.E., 1986: Topographic Partition of Watersheds with Digital Elevation 

Models. Water Resour. Res. 22, 15–24. 

Banno, S., Sakai, C., 1989: Geology and metamorphic evolution of the Sanbagawa 

metamorphic belt, Japan. Geol. Soc. London, Spec. Publ. 43, 519–532. 



115 

 

Bard, P., 1995: Effects of surface geology on ground motion: Recent results and 

remaining issues. Proc. 10Th Eur. Conf. Earthquaker Eng. 10, 305–323. 

Beven, K., 1997: TOPMODEL: A critique. Hydrol. Process. 11, 1069–1085. 

Birkeland, P.W., 1984: Soils and geomorphology. Oxford University Press. 

Brabb, E., 1984: Innovative approaches to landslide hazard mapping, in: 4th 

International Symposium on Landslides. Toronto, pp. 307–324. 

Brabb, E.E., Pampeyan, E.H., Bonilla, M.G., 1972: Landslide susceptibility in San 

Mateo County, California. Misc. F. Stud. Map. 

Brardinoni, F., Hassan, M.A., Slaymaker, H.O., 2003: Complex mass wasting 

response of drainage basins to forest management in coastal British Columbia. 

Geomorphology 49, 109–124. 

Breiman, L., 2001: Random forests. Mach. Learn. 45, 5–32. 

Breiman, L., 1996: Bagging predictors. Mach. Learn. 24, 123–140. 

Brenning, A., 2005: Spatial prediction models for landslide hazards: review, 

comparison and evaluation. Nat. Hazards Earth Syst. Sci. 5, 853–862. 

Bricher, P.K., Lucieer, A., Shaw, J., Terauds, A., Bergstrom, D.M., 2013: Mapping 

Sub-Antarctic Cushion Plants Using Random Forests to Combine Very High 

Resolution Satellite Imagery and Terrain Modelling. PLoS One 8, 1–15. 

British Geological Survey, 2015: Nepal earthquake response 2015 [WWW 

Document]. Earth Planet. Obs. Mapp. URL 

http://www.bgs.ac.uk/research/earthHazards/epom/NepalEarthquakeRespons

e.html (accessed 12.10.15). 

Cascini, L., Fornaro, G., Peduto, D., 2010: Advanced low- and full-resolution 

DInSAR map generation for slow-moving landslide analysis at different scales. 

Eng. Geol. 112, 29–42. 

Castellanos Abella, E. a., Van Westen, C.J., 2008: Qualitative landslide 

susceptibility assessment by multicriteria analysis: A case study from San 

Antonio del Sur, Guantánamo, Cuba. Geomorphology 94, 453–466. 

Catani, F., Lagomarsino, D., Segoni, S., Tofani, V., 2013: Landslide susceptibility 

estimation by random forests technique: Sensitivity and scaling issues. Nat. 

Hazards Earth Syst. Sci. 13, 2815–2831. 

Catani, F., Segoni, S., Falorni, G., 2010: An empirical geomorphology-based 

approach to the spatial prediction of soil thickness at catchment scale. Water 

Resour. Res. 46, n/a-n/a. 

Chang, K.-T., Chiang, S.-H., Hsu, M.-L., 2007: Modeling typhoon- and earthquake-

induced landslides in a mountainous watershed using logistic regression. 

Geomorphology 89, 335–347. 



116 

 

Che, V.B., Kervyn, M., Suh, C.E., Fontijn, K., Ernst, G.G.J., Del Marmol, M. a., 

Trefois, P., Jacobs, P., 2012: Landslide susceptibility assessment in Limbe 

(SW Cameroon): A field calibrated seed cell and information value method. 

Catena 92, 83–98. 

Chen, C.-Y., Yu, F.-C., 2011: Morphometric analysis of debris flows and their 

source areas using GIS. Geomorphology 129, 387–397. 

Chigira, M., Yagi, H., 2006: Geological and geomorphological characteristics of 

landslides triggered by the 2004 Mid Niigta prefecture earthquake in Japan. 

Eng. Geol. 82, 202–221. 

Choi, J., Oh, H.-J., Lee, H.-J., Lee, C., Lee, S., 2012: Combining landslide 

susceptibility maps obtained from frequency ratio, logistic regression, and 

artificial neural network models using ASTER images and GIS. Eng. Geol. 

124, 12–23. 

Chuang, S.C., Chen, H., Lin, G.W., Lin, C.W., Chang, C.P., 2009: Increase in basin 

sediment yield from landslides in storms following major seismic disturbance. 

Eng. Geol. 103, 59–65. 

Chung, C.-J., Fabbri, A.G., 2008: Predicting landslides for risk analysis — Spatial 

models tested by a cross-validation technique. Geomorphology 94, 438–452. 

Claessens, L., Heuvelink, G.B.M., Schoorl, J.M., Veldkamp, A., 2005: DEM 

resolution effects on shallow landslide hazard and soil redistribution modelling. 

Earth Surf. Process. Landforms 30, 461–477. 

Claessens, L., Knapen, A., Kitutu, M.G., Poesen, J., Deckers, J.A., 2007: Modelling 

landslide hazard, soil redistribution and sediment yield of landslides on the 

Ugandan footslopes of Mount Elgon. Geomorphology 90, 23–35. 

Clerici, A., Perego, S., Tellini, C., Vescovi, P., 2006: A GIS-based automated 

procedure for landslide susceptibility mapping by the Conditional Analysis 

method: The Baganza valley case study (Italian Northern Apennines). Environ. 

Geol. 50, 941–961. 

Coblentz, D., Pabian, F., Prasad, L., 2014: Quantitative Geomorphometrics for 

Terrain Characterization. Int. J. Geosci. 5, 247–266. 

Coe, J.A., Reid, M.E., Brien, D.L., Michael, J.A., 2011: Assessment of topographic 

and drainage network controls on debris-flow travel distance along the west 

coast of the United States, in: Genevois, R., Hamilton, D.L., Prestininzi, A. 

(Eds.), Proceedings of the 5th International Conference on Debris Flow 

Hazards Mitigation, Mechanics, Prediction and Assessmemt. Italian Journal of 

Engineering Geology and Environment and Casa Editrice Universita La 

Sapienza, Rome, Italy, Paduna, Italy, pp. 199–209. 

Conforti, M., Pascale, S., Robustelli, G., Sdao, F., 2014: Evaluation of prediction 

capability of the artificial neural networks for mapping landslide susceptibility 

in the Turbolo River catchment (northern Calabria, Italy). CATENA 113, 236–

250. 



117 

 

Crozier, M.J., 1999: Prediction of rainfall-triggered landslides: A test of the 

antecedent water status model. Earth Surf. Process. Landforms 24, 825–833. 

Cruden, D.M., 1991: A simple definition of a landslide. Bull. Int. Assoc. Eng. Geol. 

43, 27–29. 

Cutler, A., Cutler, D.R., Stevens, J.R., 2012: Random Forests, in: Ensemble 

Machine Learning. pp. 157–175. 

Cutler, D.R., Edwards, T.C., Beard, K.H., Cutler, A., Hess, K.T., Gibson, J., Lawler, 

J.J., 2007: Random Forest for classification in Ecology. Ecology 88, 2783–

2792. 

Dagdelenler, G., Nefeslioglu, H., Gokceoglu, C., 2015: Modification of seed cell 

sampling strategy for landslide susceptibility mapping: an application from the 

Eastern part of the Gallipoli Peninsula (Canakkale, Turkey). Bull. Eng. Geol. 

Environ. 

Dai, F.C., Lee, C.F., 2002: Landslide characteristics and slope instability modeling 

using GIS, Lantau Island, Hong Kong. Geomorphology 42, 213–228. 

Dai, F.C., Lee, C.F., Li, J., Xu, Z.W., 2001: Assessment of landslide susceptibility 

on the natural terrain of Lantau Island, Hong Kong. Environ. Geol. 40, 381–

391. 

Dhakal, A.S., Amada, T., Aniya, M., 2000: Landslide Hazard Mapping and its 

Evaluation Using GIS : An Investigation of Sampling Schemes for a Grid-Cell 

Based Quantitative Method. Photogramm. Eng. Remote Sens. 66, 981–989. 

Díaz-Uriarte, R., Alvarez de Andrés, S., 2006: Gene selection and classification of 

microarray data using random forest. BMC Bioinformatics 7, 3. 

Dong, J.-J., Tung, Y.-H., Chen, C.-C., Liao, J.-J., Pan, Y.-W., 2009: Discriminant 

analysis of the geomorphic characteristics and stability of landslide dams. 

Geomorphology 110, 162–171. 

Drăguţ, L., Eisank, C., 2011: Object representations at multiple scales from digital 

elevation models. Geomorphology 129, 183–189. 

Duman, T.Y., Can, T., Gokceoglu, C., Nefeslioglu, H.A., Sonmez, H., 2006: 

Application of logistic regression for landslide susceptibility zoning of 

Cekmece Area, Istanbul, Turkey. Environ. Geol. 51, 241–256. 

Durham University, 2015: Nepal earthquake landslide locations, 30 June 2015 

[WWW Document]. Humanit. DATA Exch. URL 

https://data.humdata.org/dataset/nepal-earthquake-landslide-locations-30-

june-2015 

ESRI, 2016: Flow Accumulation (Spatial Analyst) [WWW Document]. ArcGIS 

Resour. Cent. URL 

http://help.arcgis.com/En/Arcgisdesktop/10.0/Help/index.html#//009z000000

51000000.htm (accessed 1.1.16). 



118 

 

Evans, I.S., Evans, I.S., Lane, S., Lane, S., Richards, K., Richards, K., Chandler, J., 

Chandler, J., 1998: What do terrain statistics really mean?, in: Landform 

Monitoring, Modelling and Analysis. pp. 119–138. 

Fernández-Delgado, M., Cernadas, E., Barro, S., Amorim, D., Amorim Fernández-

Delgado, D., 2014: Do we Need Hundreds of Classifiers to Solve Real World 

Classification Problems? J. Mach. Learn. Res. 15, 3133–3181. 

Freer, J., McDonnell, J.J., Beven, K.J., Peters, N.E., Burns, D.A., Hooper, R.P., 

Aulenbach, B., Kendall, C., 2002: The role of bedrock topography on 

subsurface storm flow. Water Resour. Res. 38, 5-1-5–16. 

Galli, M., Ardizzone, F., Cardinali, M., Guzzetti, F., Reichenbach, P., 2008: 

Comparing landslide inventory maps. Geomorphology 94, 268–289. 

Geological Survey of Japan, 1995: Strip Map of the Itoigawa-Shizuoka Tectonic 

Line Active Fault System, 1:100,000 (in Japanese with English abstract). 

Germanoski, D., 2001: Relationships between topography, geology, and differential 

erosion in eastern Pennsylvania, in: GSA Annual Meeting. Boston. 

Gerrad, A.J., Gardner, R.A.M., 2000: The role of landsliding in shaping the 

landscape of the Middle Hills, Nepal. Zeitschrift fur Geomorphol. Suppl. 122, 

47–62. 

Glade, T., Crozier, M., Smith, P., 2000: Applying Probability Determination to 

Refine Landslide-triggering Rainfall Thresholds Using an Empirical 

“Antecedent Daily Rainfall Model.” Pure Appl. Geophys. 157, 1059–1079. 

Goetz, J.N., Brenning, A., Petschko, H., Leopold, P., 2015: Evaluating machine 

learning and statistical prediction techniques for landslide susceptibility 

modeling. Comput. Geosci. 81, 1–11. 

Gorsevski, P. V., Gessler, P.E., Foltz, R.B., Elliot, W.J., 2006: Spatial Prediction of 

Landslide Hazard Using Logistic Regression and ROC Analysis. Trans. GIS 

10, 395–415. 

Gorum, T., Gonencgil, B., Gokceoglu, C., Nefeslioglu, H.A., 2008: Implementation 

of reconstructed geomorphologic units in landslide susceptibility mapping: the 

Melen Gorge (NW Turkey). Nat. Hazards 46, 323–351. 

Grelle, G., Revellino, P., Donnarumma, A., Guadagno, F.M., 2011: Bedding control 

on landslides: A methodological approach for computer-aided mapping 

analysis. Nat. Hazards Earth Syst. Sci. 11, 1395–1409. 

Guarneri, J., 2013: From a Different Angle: Averaging Upslope Aspect [WWW 

Document]. Trust Me, I’m a Geogr. URL 

https://gisjay.wordpress.com/2013/03/04/from-a-different-angle-averaging-

upslope-aspect/ (accessed 11.17.15). 

Günther, A., Reichenbach, P., Malet, J.-P., Van Den Eeckhaut, M., Hervás, J., 

Dashwood, C., Guzzetti, F., 2013: Tier-based approaches for landslide 



119 

 

susceptibility assessment in Europe. Landslides 10, 529–546. 

Guthrie, R.H., 2002: The effects of logging on frequency and distribution of 

landslides in three watersheds on Vancouver Island, British Columbia. 

Geomorphology 43, 273–292. 

Guzzetti, F., Carrara, A., Cardinali, M., Reichenbach, P., 1999: Landslide hazard 

evaluation: a review of current techniques and their application in a multi-scale 

study, Central Italy. Geomorphology 31, 181–216. 

Guzzetti, F., Malamud, B.D., Turcotte, D.L., Reichenbach, P., 2002: Power-law 

correlations of landslide areas in central Italy. Earth Planet. Sci. Lett. 195, 169–

183. 

Guzzetti, F., Peruccacci, S., Rossi, M., Stark, C.P., 2008: The rainfall intensity-

duration control of shallow landslides and debris flows: An update. Landslides 

5, 3–17. 

Guzzetti, F., Reichenbach, P., Ardizzone, F., Cardinali, M., Galli, M., 2006: 

Estimating the quality of landslide susceptibility models. Geomorphology 81, 

166–184. 

Harrell, F.E., 2001: Multivariable Modeling Strategies, in: Regression Modeling 

Strategies, Springer Series in Statistics. Springer New York, pp. 53–85. 

Has, B., Noro, T., Maruyama, K., Nakamura, A., Ogawa, K., Onoda, S., 2012: 

Characteristics of earthquake-induced landslides in a heavy snowfall region-

landslides triggered by the northern Nagano prefecture earthquake, March 12, 

2011, Japan. Landslides 9, 539–546. 

Hasegawa, S., Dahal, R.K., Nishimura, T., Nonomura, A., Yamanaka, M., 2009: 

DEM-Based analysis of earthquake-induced shallow landslide susceptibility. 

Geotech. Geol. Eng. 27, 419–430. 

Ho, T.K., 1998: The random subspace method for constructing decision forests. 

IEEE Trans. Pattern Anal. Mach. Intell. 20, 832–844. 

Hong, Y., Hiura, H., Shino, K., Sassa, K., Suemine, A., Fukuoka, H., Wang, G., 

2005: The influence of intense rainfall on the activity of large-scale crystalline 

schist landslides in Shikoku Island, Japan. Landslides 2, 97–105. 

Hovius, N., Stark, C.P., Allen, P.A., 1997: Sediment flux from a mountain belt 

derived by landslide mapping. Geology 25, 231. 

Huggel, C., Clague, J.J., Korup, O., 2012: Is climate change responsible for 

changing landslide activity in high mountains? Earth Surf. Process. Landforms 

37, 77–91. 

Hussin, H.Y., Zumpano, V., Reichenbach, P., Sterlacchini, S., Micu, M., van 

Westen, C., Bălteanu, D., 2015: Different landslide sampling strategies in a 

grid-based bi-variate statistical susceptibility model. Geomorphology. 



120 

 

Inoue, K., Mori, T., Mizuyama, T., 2012: Three Large Historical Landslide Dams 

and Outburst Disasters in the North Fossa Magna Area , Central Japan 5, 145–

154. 

Iwahashi, J., Pike, R.J., 2007: Automated classifications of topography from DEMs 

by an unsupervised nested-means algorithm and a three-part geometric 

signature. Geomorphology 86, 409–440. 

Iwahashi, J., Watanabe, S., Furuya, T., 2001: Landform analysis of slope 

movements using DEM in Higashikubiki area, Japan. Comput. Geosci. 27, 

851–865. 

Kanungo, D.P., Sarkar, S., Sharma, S., 2011: Combining neural network with fuzzy, 

certainty factor and likelihood ratio concepts for spatial prediction of 

landslides. Nat. Hazards 59, 1491–1512. 

Kargel, J.S., Leonard, G.J., Shugar, D.H., Haritashya, U.K., Bevington, A., Fielding, 

E.J., Fujita, K., Geertsema, M., Miles, E.S., Steiner, J., Anderson, E., 

Bajracharya, S., Bawden, G.W., Breashears, D.F., Byers, A., Collins, B., 

Dhital, M.R., Donnellan, A., Evans, T.L., Geai, M.L., Glasscoe, M.T., Green, 

D., Gurung, D.R., Heijenk, R., Hilborn, A., Hudnut, K., Huyck, C., Immerzeel, 

W.W., Liming, J., Jibson, R., Kaab, A., Khanal, N.R., Kirschbaum, D., 

Kraaijenbrink, P.D.A., Lamsal, D., Shiyin, L., Mingyang, L., McKinney, D., 

Nahirnick, N.K., Zhuotong, N., Ojha, S., Olsenholler, J., Painter, T.H., 

Pleasants, M., Pratima, K.C., Yuan, Q.I., Raup, B.H., Regmi, D., Rounce, D.R., 

Sakai, A., Donghui, S., Shea, J.M., Shrestha, A.B., Shukla, A., Stumm, D., van 

der Kooij, M., Voss, K., Xin, W., Weihs, B., Wolfe, D., Lizong, W., Xiaojun, 

Y., Yoder, M.R., Young, N., 2016: Geomorphic and geologic controls of 

geohazards induced by Nepals 2015 Gorkha earthquake. Science (80-. ). 351, 

aac8353-aac8353. 

Kawabata, D., Bandibas, J., 2009: Landslide susceptibility mapping using 

geological data, a DEM from ASTER images and an Artificial Neural Network 

(ANN). Geomorphology 113, 97–109. 

Kawagoe, S., Kazama, S., Ranjan Sarukkalige, P., 2009: Assessment of snowmelt 

triggered landslide hazard and risk in Japan. Cold Reg. Sci. Technol. 58, 120–

129. 

Keefer, D.K., 1984: Landslides caused by earthquakes. Geol. Soc. Am. Bull. 

Keijsers, J.G.S., Schoorl, J.M., Chang, K.T., Chiang, S.H., Claessens, L., Veldkamp,  

a., 2011: Calibration and resolution effects on model performance for 

predicting shallow landslide locations in Taiwan. Geomorphology 133, 168–

177. 

Kitahara, H., Okura, Y., Sammori, T., Kawanami, A., 2000: Application of 

Universal Soil Loss Equation (USLE) to mountainous forests in Japan. J. For. 

Res. 5, 231–236. 

Lee, J.W., Lee, J.B., Park, M., Song, S.H., 2005: An extensive comparison of recent 



121 

 

classification tools applied to microarray data. Comput. Stat. Data Anal. 48, 

869–885. 

Lee, S., Choi, J., 2004: Landslide susceptibility mapping using GIS and the weight-

of-evidence model. Int. J. Geogr. Inf. Sci. 18, 789–814. 

Lee, S., Talib, J.A., 2005: Probabilistic landslide susceptibility and factor effect 

analysis. Environ. Geol. 47, 982–990. 

Liaw,  a, Wiener, M., 2002: Classification and Regression by randomForest. R news 

2, 18–22. 

Lin, Z., Oguchi, T., 2004: Drainage density, slope angle, and relative basin position 

in Japanese bare lands from high-resolution DEMs. Geomorphology 63, 159–

173. 

Malamud, B.D., Turcotte, D.L., 1999: Self-organized criticality applied to natural 

hazards. Nat. Hazards 20, 93–116. 

Malamud, B.D., Turcotte, D.L., Guzzetti, F., Reichenbach, P., 2004a: Landslide 

inventories and their statistical properties. Earth Surf. Process. Landforms 29, 

687–711. 

Malamud, B.D., Turcotte, D.L., Guzzetti, F., Reichenbach, P., 2004b: Landslides, 

earthquakes, and erosion. Earth Planet. Sci. Lett. 229, 45–59. 

Mathew, J., Jha, V.K., Rawat, G.S., 2007: Application of binary logistic regression 

analysis and its validation for landslide susceptibility mapping in part of 

Garhwal Himalaya, India. Int. J. Remote Sens. 28, 2257–2275. 

Matsuda, T., Nakamura, K., Sugimura, A., 1967: Late Cenozoic orogeny in Japan. 

Tectonophysics 4, 349–366. 

Meyer, D., Leisch, F., Hornik, K., 2003: The support vector machine under test. 

Neurocomputing 55, 169–186. 

Mondal, A., Khare, D., Kundu, S., 2016: Uncertainty analysis of soil erosion 

modelling using different resolution of open-source DEMs. Geocarto Int. 6049, 

1–16. 

Montgomery, D.R., Dietrich, W.E., 1989: Source areas, drainage density, and 

channel initiation. Water Resour. Res. 25, 1907–1918. 

Moore, I., Gessler, P., Nielsen, G.A., Peterson, G.A., 1993: Soil attribute prediction 

using terrain analysis. Soil Sci. Soc. Am. J. 57, 443–452. 

Moore, I.D., Grayson, R.B., Ladson, A.R., 1991: Digital terrain modelling: A 

review of hydrological, geomorphological, and biological applications. Hydrol. 

Process. 5, 3–30. 

Nakazato, H., Shoda, D., Inoue, K., Suzuki, H., 2013: A Case Study of Behavior 

Observation of Landslide Induced by Snowmelt After an Earthquake, in: Ugai, 



122 

 

K., Yagi, H., Wakai, A. (Eds.), Earthquake-Induced Landslides: Proceedings 

of the International Symposium on Earthquake-Induced Landslides, Kiryu, 

Japan, 2012. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 341–345. 

Nandi,  a., Shakoor,  a., 2010: A GIS-based landslide susceptibility evaluation using 

bivariate and multivariate statistical analyses. Eng. Geol. 110, 11–20. 

Nefeslioglu, H., Duman, T.Y., Durmaz, S., 2008a: Landslide susceptibility 

mapping for a part of tectonic Kelkit Valley (Eastern Black Sea region of 

Turkey). Geomorphology 94, 401–418. 

Nefeslioglu, H., Gokceoglu, C., Sonmez, H., 2008b: An assessment on the use of 

logistic regression and artificial neural networks with different sampling 

strategies for the preparation of landslide susceptibility maps. Eng. Geol. 97, 

171–191. 

Ng, K.Y., 2006: Landslide locations and drainage network development: A case 

study of Hong Kong. Geomorphology 76, 229–239. 

Nourani, V., Pradhan, B., Ghaffari, H., Sharifi, S.S., 2013: Landslide susceptibility 

mapping at Zonouz Plain, Iran using genetic programming and comparison 

with frequency ratio, logistic regression, and artificial neural network models. 

Nat. Hazards 71, 523–547. 

Oguchi, T., 1997: Drainage density and relative relief in humid steep mountains 

with frequent slope failure. Earth Surf. Process. landforms 22, 107–120. 

Ohlmacher, G.C., 2007: Plan curvature and landslide probability in regions 

dominated by earth flows and earth slides. Eng. Geol. 91, 117–134. 

Ohmori, H., Sugai, T., 1995: Toward geomorphometric models for estimating 

landslide dynamics and forecasting landslide occurrence in Japanese 

mountains. Zeitschrift für Geomorphol. 101, 149–164. 

Pal, M., 2005: Random forest classifier for remote sensing classification. Int. J. 

Remote Sens. 26, 217–222. 

Park, S., McSweeney, K., Lowery, B., 2001: Identification of the spatial distribution 

of soils using a process-based terrain characterization. Geoderma 103, 249–

272. 

Paudel, U., Oguchi, T., Hayakawa, Y., 2016: Multi-Resolution Landslide 

Susceptibility Analysis Using a DEM and Random Forest. Int. J. Geosci. 7, 

726–743. 

Pavel, M., Nelson, J.D., Jonathan Fannin, R., 2011: An analysis of landslide 

susceptibility zonation using a subjective geomorphic mapping and existing 

landslides. Comput. Geosci. 37, 554–566. 

Pérez-Peña, J. V., Azañón, J.M., Booth-Rea, G., Azor,  a., Delgado, J., 2009: 

Differentiating geology and tectonics using a spatial autocorrelation technique 

for the hypsometric integral. J. Geophys. Res. 114, F02018. 



123 

 

Petley, D., 2011: Global deaths from landslides in 2010 (updated to include a 

comparison with previous years) [WWW Document]. URL 

http://blogs.agu.org/landslideblog/2011/02/05/global-deaths-from-landslides-

in-2010/ (accessed 5.24.16). 

Picanço, J., Pinto, C.A., Mesquita, M.J., Moraes, M., Soares, L.F., Cardoso, F., 

2014: Typology of Rainfall-Triggered Landslides in the Urban Area of 

Antonina, Southern Brazil, in: Sassa, K., Canuti, P., Yin, Y. (Eds.), Landslide 

Science for a Safer Geoenvironment. Springer International Publishing, Cham, 

pp. 379–383. 

Pike, R.J., Wilson, S.E., 1971: Elevation-relief ratio, hypsometric integral, and 

geomorphic area-altitude analysis. Bull. Geol. Soc. Am. 82, 1079–1084. 

Pourghasemi, H.R., Mohammady, M., Pradhan, B., 2012: Landslide susceptibility 

mapping using index of entropy and conditional probability models in GIS: 

Safarood Basin, Iran. Catena 97, 71–84. 

Pradhan, B., 2013: A comparative study on the predictive ability of the decision 

tree, support vector machine and neuro-fuzzy models in landslide 

susceptibility mapping using GIS. Comput. Geosci. 51, 350–365. 

Pradhan, B., Lee, S., 2010: Landslide susceptibility assessment and factor effect 

analysis: backpropagation artificial neural networks and their comparison with 

frequency ratio and bivariate logistic regression modelling. Environ. Model. 

Softw. 25, 747–759. 

Prima, O.D.A., Echigo, A., Yokoyama, R., Yoshida, T., 2006: Supervised landform 

classification of Northeast Honshu from DEM-derived thematic maps. 

Geomorphology 78, 373–386. 

Prima, O.D.A., Yoshida, T., 2010: Characterization of volcanic geomorphology and 

geology by slope and topographic openness. Geomorphology 118, 22–32. 

Prisley, S., 2011: When GIS slope isn’t what you think. For. source 16, 11. 

Rech, J.A., Reeves, R.W., Hendricks, D.M., 2001: The influence of slope aspect on 

soil weathering processes in the Springerville volcanic field, Arizona. Catena 

43, 49–62. 

Regmi, N.R., Giardino, J.R., Vitek, J.D., 2010: Modeling susceptibility to 

landslides using the weight of evidence approach: Western Colorado, USA. 

Geomorphology 115, 172–187. 

Rossi, M., Guzzetti, F., Reichenbach, P., Mondini, A.C., Peruccacci, S., 2010: 

Optimal landslide susceptibility zonation based on multiple forecasts. 

Geomorphology 114, 129–142. 

Saito, H., Nakayama, D., Matsuyama, H., 2009: Comparison of landslide 

susceptibility based on a decision-tree model and actual landslide occurrence: 

The Akaishi Mountains, Japan. Geomorphology 109, 108–121. 



124 

 

Schumm, S.A., 1956: Evolution of drainage systems and slopes in Badlands at Perth 

Amboy, New Jersey. Geol. Soc. Am. Bull. 67, 597. 

Simon, N., Crozier, M., Roiste, M. de, Rafek, A., 2013: Point Based Assessment: 

Selecting the Best Way to Represent Landslide Polygon as Point Frequency in 

Landslide Investigation. Electron. J. Geotech. Eng. 18, 775–784. 

Staley, D.M., Waskelwicz, T.A., 2013: The Use of Airborne Laser Swath Mapping 

on Fans and Cones: An Example from the Colorado Front Range, in: 

Schneuwly-Bollschweiler, M., Stoffel, M., Rudolf-Miklau, F. (Eds.), Dating 

Torrential Processes on Fans and Cones, Advances in Global Change Research. 

Springer Netherlands, Dordrecht, pp. 147–164. 

Strahler, A.N., 1952: Hypsometric (area-altitude) analysis of erosional topography. 

Geol. Soc. Am. Bull. 63, 1117. 

Suzen, M., Doyuran, V., 2004a: A comparison of the GIS based landslide 

susceptibility assessment methods: multivariate versus bivariate. Environ. 

Geol. 45, 665–679. 

Suzen, M., Doyuran, V., 2004b: Data driven bivariate landslide susceptibility 

assessment using geographical information systems: a method and application 

to Asarsuyu catchment, Turkey. Eng. Geol. 71, 303–321. 

Suzuki, S., Ishizuka, H., 1998: Low-grade metamorphism of the Mikabu and 

northern Chichibu belts in central Shikoku, SW Japan: implications for the 

areal extent of the Sanbagawa low-grade metamorphism. J. Metamorph. Geol. 

16, 107–116. 

Svetnik, V., Liaw, A., Tong, C., Christopher Culberson, J., Sheridan, R.P., Feuston, 

B.P., 2003: Random Forest: A Classification and Regression Tool for 

Compound Classification and QSAR Modeling. J. Chem. Inf. Comput. Sci. 43, 

1947–1958. 

Swets, J., 1988: Measuring the accuracy of diagnostic systems. Science (80-. ). 240, 

1285–1293. 

Takeda, T., Sato, H., Iwasaki, T., Matsuta, N., Sakai, S., Iidaka, T., Kato, A., 2004: 

Crustal structure in the northern Fossa Magna region, central Japan, modeled 

from refraction/wide-angle reflection data. Earth, Planets Sp. 56, 1293–1299. 

Takeuchi, A., 2008: Duplex Stress Regime in the North Fossa Magna, Central Japan. 

Bull. Earthq. Res. Inst. 

Takeuchi, A., 2004: Basement-involved tectonics in North Fossa Magna , central 

Japan : The significance of the northern Itoigawa-Shizuoka Tectonic Line. 

Earth Planets Sp. 56, 1261–1269. 

Takeuchi, K., Yanagisawa, Y., 2004: 1:50,000 Digital Geological Map of the 

Uonuma Tegion, Niigata Prefecture (Ver. 1), GSJ Open-file Report 478, 

Geological Survey of Japan. 



125 

 

Tarboton, D., 1997: A new method for the determination of flow directions and 

upslope areas in grid digital elevation models. Water Resour. Res. 33, 309. 

Tarolli, P., Sofia, G., 2016: Human topographic signatures and derived geomorphic 

processes across landscapes. Geomorphology 255, 140–161. 

Tarolli, P., Tarboton, D., 2006: A new method for determination of most likely 

landslide initiation points and the evaluation of digital terrain model scale in 

terrain stability mapping. Hydrol. Earth Syst. Sci. 10, 663–677. 

Tien Bui, D., Pradhan, B., Lofman, O., Revhaug, I., 2012: Landslide susceptibility 

assessment in vietnam using support vector machines, decision tree, and nave 

bayes models. Math. Probl. Eng. 2012, 1–26. 

Trigila, A., Iadanza, C., Esposito, C., Scarascia-Mugnozza, G., 2015: Comparison 

of Logistic Regression and Random Forests techniques for shallow landslide 

susceptibility assessment in Giampilieri (NE Sicily, Italy). Geomorphology 

249, 119–136. 

Tucker, G.E., Catani, F., Rinaldo, A., Bras, R.L., 2001: Statistical analysis of 

drainage density from digital terrain data. Geomorphology 36, 187–202. 

Van Asch, T.W.J., Buma, J., Van Beek, L.P.H., 1999: A view on some hydrological 

triggering systems in landslides. Geomorphology 30, 25–32. 

Van Den Eeckhaut, M., Poesen, J., Govers, G., Verstraeten, G., Demoulin, A., 2007: 

Characteristics of the size distribution of recent and historical landslides in a 

populated hilly region. Earth Planet. Sci. Lett. 256, 588–603. 

Van Den Eeckhaut, M., Vanwalleghem, T., Poesen, J., Govers, G., Verstraeten, G., 

Vandekerckhove, L., 2006: Prediction of landslide susceptibility using rare 

events logistic regression: A case-study in the Flemish Ardennes (Belgium). 

Geomorphology 76, 392–410. 

Varnes, D.J., 1984: Landslide hazard zonation: a review of principles and practice, 

Natural Hazards. UNESCO, Paris. 

Varnes, D.J., 1978: Slope movement types and processes, in Schuster, R.L., and 

Krizek, R.J.,eds., Landslides—Analysis and control. Natl. Acad. Sci. Transp. 

Res. Board Spec. Rep. 176, 11–33. 

Von Ruette, J., Papritz, A., Lehmann, P., Rickli, C., Or, D., 2011: Spatial statistical 

modeling of shallow landslides—Validating predictions for different landslide 

inventories and rainfall events. Geomorphology 133, 11–22. 

Vorpahl, P., Elsenbeer, H., Märker, M., Schröder, B., 2012: How can statistical 

models help to determine driving factors of landslides? Ecol. Modell. 239, 27–

39. 

Wade, A., 1935: The Relationship between Topography and Geology. Aust. Surv. 

5, 367–371. 



126 

 

Wang, H.B., Sassa, K., Xu, W.Y., 2007: Analysis of a spatial distribution of 

landslides triggered by the 2004 Chuetsu earthquakes of Niigata Prefecture, 

Japan. Nat. Hazards 41, 43–60. 

Wang, L.-J., Sawada, K., Moriguchi, S., 2013: Landslide susceptibility analysis 

with logistic regression model based on FCM sampling strategy. Comput. 

Geosci. 57, 81–92. 

Wang, X., Yin, Z.Y., 1998: A comparison of drainage networks derived from digital 

elevation models at two scales. J. Hydrol. 210, 221–241. 

Wieczorek, G.F., Mandrone, G., DeCola, L., 1997: The Influence of Hillslope 

Shape on Debris-Flow Initiation, in: Debris-Flow Hazards Mitigation: 

Mechanics, Prediction, and Assessment. ASCE, pp. 21–31. 

Wilson, J.P., Gallant, J.C., 2000: Terrain Analysis: Principles and Applications. 

John Wiley & Sons. 

Wood, W.F., Snell, J.B., 1960: A quantitative system for classifying landforms. 

Defense Technical Information Center, Ft. Belvoir. 

Wu, B., Abbott, T., Fishman, D., McMurray, W., Mor, G., Stone, K., Ward, D., 

Williams, K., Zhao, H., 2003: Comparison of statistical methods for 

classification of ovarian cancer using mass spectrometry data. Bioinformatics 

19, 1636–1643. 

Xu, C., Xu, X., Dai, F., Saraf, A.K., 2012: Comparison of different models for 

susceptibility mapping of earthquake triggered landslides related with the 2008 

Wenchuan earthquake in China. Comput. Geosci. 46, 317–329. 

Xu, C., Xu, X., Dai, F., Wu, Z., He, H., Shi, F., Wu, X., Xu, S., 2013: Application 

of an incomplete landslide inventory, logistic regression model and its 

validation for landslide susceptibility mapping related to the May 12, 2008 

Wenchuan earthquake of China. Nat. Hazards 68, 883–900. 

Xu, C., Xu, X., Yao, X., Dai, F., 2014: Three (nearly) complete inventories of 

landslides triggered by the May 12, 2008 Wenchuan Mw 7.9 earthquake of 

China and their spatial distribution statistical analysis. Landslides 11, 441–461. 

Yalcin, A., 2008: GIS-based landslide susceptibility mapping using analytical 

hierarchy process and bivariate statistics in Ardesen (Turkey): comparisons of 

results and confirmations. Catena 72, 1–12. 

Yalcin, A., Reis, S., Aydinoglu, A.C., Yomralioglu, T., 2011: A GIS-based 

comparative study of frequency ratio, analytical hierarchy process, bivariate 

statistics and logistics regression methods for landslide susceptibility mapping 

in Trabzon, NE Turkey. CATENA 85, 274–287. 

Yamagishi, H., Ayalew, L., Horimatsu, T., Kanno, T., Hatamoto, M., 2004: Recent 

landslides in Niigata region, Japan [WWW Document]. Japan Landslide Soc. 

URL http://www.landslide-soc.org/e-

content/Recent_landslides_in_Niigata_region.pdf (accessed 7.8.14). 



127 

 

Yamasaki, S., Chigira, M., 2008: Weathering mechanism of pelitic schist and its 

relationships with landslides: analysis of undisturbed drilled cores from the 

Sambagawa Metamorphic belt in Shikoku. J. Geol. Soc. Japan 114, 109–126. 

Yeon, Y., Han, J.-G., Ryu, K.H., 2010: Landslide susceptibility mapping in Injae, 

Korea, using a decision tree. Eng. Geol. 116, 274–283. 

Yesilnacar, E., Topal, T., 2005: Landslide susceptibility mapping: A comparison of 

logistic regression and neural networks methods in a medium scale study, 

Hendek region (Turkey). Eng. Geol. 79, 251–266. 

Yilmaz, I., 2010a: Comparison of landslide susceptibility mapping methodologies 

for Koyulhisar, Turkey: conditional probability, logistic regression, artificial 

neural networks, and support vector machine. Environ. Earth Sci. 61, 821–836. 

Yilmaz, I., 2010b: The effect of the sampling strategies on the landslide 

susceptibility mapping by conditional probability and artificial neural 

networks. Environ. Earth Sci. 60, 505–519. 

Yilmaz, I., 2009: Landslide susceptibility mapping using frequency ratio, logistic 

regression, artificial neural networks and their comparison: A case study from 

Kat landslides (Tokat—Turkey). Comput. Geosci. 35, 1125–1138. 

Yin, Y., Wang, F., Sun, P., 2009: Landslide hazards triggered by the 2008 

Wenchuan earthquake, Sichuan, China. Landslides 6, 139–152. 

Yoshimatsu, H., Abe, S., 2006: A review of landslide hazards in Japan and 

assessment of their susceptibility using an analytical hierarchic process (AHP) 

method. Landslides 3, 149–158. 

Zare, M., Pourghasemi, H.R., Vafakhah, M., Pradhan, B., 2012: Landslide 

susceptibility mapping at Vaz Watershed (Iran) using an artificial neural 

network model: a comparison between multilayer perceptron (MLP) and radial 

basic function (RBF) algorithms. Arab. J. Geosci. 6, 2873–2888. 

Zhang, X., Drake, N.A., Wainwright, J., Mulligan, M., 1999: Comparison of slope 

estimates from low resolution DEMs: scaling issues and a fractal method for 

their solution. Earth Surf. Process. Landforms 24, 763–779. 

Zhilin, L., 2008: Multi-Scale Digital Terrain Modelling and Analysis, in: Advances 

in Digital Terrain Analysis. Springer Berlin Heidelberg, Berlin, Heidelberg, 

pp. 59–83. 

Zhou, Q., Chen, Y., 2011: Generalization of DEM for terrain analysis using a 

compound method. ISPRS J. Photogramm. Remote Sens. 66, 38–45. 

 

  



128 

 

Appendix 

1. Calculation of the density of geological boundaries using Spatial Analyst 

extension in ArcGIS. 

Density of geological boundaries in this study was computed using the line-density 

function of the Spatial Analyst extension in ArcGIS. The function calculates the 

density of linear features in the neighborhood of each output raster cell. Density is 

calculated in units of length per unit area. 

Conceptually, a circle is drawn around each raster cell center using the search radius. 

The length of the portion of each line that falls within the circle is summed and the 

total length is divided by the circle's area. The figure below illustrates this concept: 

 

Figure A-1. Conceptual representation of line density (ArcGIS Desktop Help; 

http://webhelp.esri.com) 

In Figure A-1, a raster cell is shown with its circular neighborhood. Lines L1 and 

L2 represent the length of the portion of each line that falls within the circle. The 

corresponding population field values are V1 and V2. Thus: (L1×V1 + L2×V2) / 

(area of circle) = Density. A search radius of 1000 m was used in this study (see 

Section 4.2.2). 
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2. Calculation of the distance to the geological boundary using the Spatial 

Analyst extension in ArcGIS. 

Distance to the geological boundary in this study was computed using the 

Euclidean-distance function of the Spatial Analyst extension in ArcGIS. The 

function produces an output raster that records for each cell the shortest distance to 

the closest source (geological boundaries in this study). 

Euclidean distance is calculated from the center of the source cell to the center of 

each of the surrounding cells. Conceptually, the Euclidean-distance algorithm 

works as follows: For each cell, the distance to each source cell is determined by 

calculating the hypotenuse with x_max and y_max as the other two legs of the 

triangle. This calculation derives the true Euclidean distance, rather than the cell 

distance. 

 

Figure A-2. Illustration of Euclidean distance (ArcGIS Desktop Help; 

http://webhelp.esri.com) 
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