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Abstract

In today’s urban spaces, people generate data everyday either consciously

(e.g., by participating in participatory sensing projects such as Open-

StreetMap) or inadvertently (e.g., by using metro systems or making

phone calls). The result is that I have huge collections of digital traces

telling when and where people go (this is what is considered as human

mobility data). These huge collections of data often hide interesting infor-

mation with high potential for decision making in many domains such as

urban planning. However, there exists a gap between the raw data itself

and the benefits which can be reaped from it. In other words, in order

to leverage this kind of data in urban planning or disaster management

or private businesses, I need to come up with robust tools to mine useful

insights from the data. The work in this thesis contributes to the bridging

of this gap by providing a set of techniques for mining mobility data. I

develop these techniques by studying key aspects of human mobility using

data generated from cellular transactions.

Although human mobility research has attracted huge attention, it is

still open to further investigation. This is partly due to the fact that

human behaviors are inherently fuzzy and dynamic. Also, most human

mobility studies which leverage massive datasets make conclusions which

are inevitably specific to characteristics of the datasets used in the study

and therefore cannot be easily generalized. For instance, suppose a study

uses GPS location data coupled with social network (SN) data to develop

some algorithm for location prediction. This type of algorithm cannot

be adopted wholesale in a scenario where the available location data is

sparse (such as that from cellular networks) and also with no access to SN

data. It is against this background that I tackle three problems related to

human mobility as follows: visualization of mobility, discovering residence

change and location prediction.

I first develop a web-based framework for interactive visualization of

mobility patterns in order to allow easy and quick interpretation of trends.

I then explore the use of Call Detailed Records (CDR) generated from

mobile phones to infer change of place of residence (home). Finally, I

undertake to improve performance of location prediction systems. In par-

ticular, our objective is to reduce training time of prediction models for

individual users as well enhance prediction accuracy. In the visualization

system I build, the objectives are two fold: first, I want to understand

human mobility patterns based on peoples’ calling habits; second, I want
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to identify city-wide events such as religious or sporting events based on

call traffic of cellular towers.

Next, I investigate the potential to use CDR data as surrogate resi-

dence history with a purpose to discover residence change so that I can

ultimately infer internal migration patterns. I first provide a rigorous

definition of what I call the residence change discovery problem. I then

propose a novel sequential spatio-temporal clustering technique which I

call MoveSense to solve this problem. I carry out experiments to validate

our technique. Results from the experiments show that our technique

performed well with average detection rate of 71 percent, 68 percent and

72 percent across the three categories of datasets I tested it on.

In the location prediction task, the broad research question I address

is this: can I leverage big data to enhance performance of location pre-

dictors without relying on external data sources? In order to answer this

question, I first carry out spatio-temporal analysis of user call behavior

and call activity and use the insights to propose an enhanced bayes pre-

dictor which leverages large scale data. Results from the experiments I

conducted reveal that overall, the enhancements I propose improve the

predictors’ performance by 17 percentage points. Secondly, I investigate

the potential to improve performance (accuracy and training time) of

location prediction models by again leveraging large scale data. Given

that users closer in space would exhibit similar mobility behaviors, our

idea is to create what I are calling a community model for a group of

users in a given geographic area and then use parameters from this model

to enhance performance for individual users in the same community. I

choose to experiment with logistic regression classifier. The results from

our experiments show that our idea to use community-wide learned model

parameters in individuals works very well and reduces training time for

individual models by nearly 100 percent.

In summary, in this thesis I study human mobility using cellular phone

data. The primary objective of our study is to develop techniques to mine

insights from the data useful for urban planning and other application

areas. To this end, I first proposed a simple but non trivial visualization

system to ascertain mobility pattern of users. Second, I demonstrated

a technique to automatically detect residence change which has useful

applications in profiling internal migration. Finally, I conduct extensive

study in enhancing perfomance (accuracy and training time) of location

prediction models.
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Chapter 1

Introduction

1.1 Background: Human Mobility Studies

I can define human mobility as the trajectories which humans follow as they

traverse space in their day to day activities. Characteristics of human mobility

can be put into two broad categories: spatial-temporal and social. The spatial-

temporal aspect refer to the trajectory patterns in physical space and time so

that this feature can be thought to answer the question where and when about

a person’s mobility. On the other hand, the social aspect is broad and can en-

compass many attributes such as the activities associated with each trajectory

as well as the contacts which this particular person makes. The goal of human

mobility studies is not only to shed light on the aforementioned fundamental

characteristics but also to understand how they relate to other aspects of human

life. In the following, I present some of the specific questions which human mo-

bility studies attempt to address: i) what physical laws govern human mobility

[SKWB10]? ii) how far can I predict human mobility [SQBB10]? iii) what is

the relationship between mobility and other aspects of human life (e.g.,diseases,

economy)? iv) are there any statistical regularities in a person’s mobility traces?

When I consider humans themselves as subjects, mobility can be studied

at different scales where in this case scale refer to the number of persons. For

example, one may focus on mobility of a group of people during special events

such as religious events or emergency situations (e.g., earth quake disaster).

This is a case of crowd modeling [JBH+12]. In other cases, I may be interested

only in individual mobility patterns under normal circumstances (i.e., not in

emergency situations or special circumstances such as celebrations) but just
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1.1. BACKGROUND: HUMAN MOBILITY STUDIES

as a person go about their day to day life. In this thesis I focus on this kind

individual human mobility. Further, when I consider spatial scales, I can classify

mobility into two groups: that which occur within the boundaries of a country

and that which involve crossing national borders as the case in intercontinental

migration studies [WT08]. In our case, I limit our study to the former. Finally,

I can also consider the temporal component of human mobility. In this regard,

some studies focus only on long term mobility such as migration. For example, in

the case of internal migration (which doesn’t involve crossing national borders

but rather some administrative boundaries within a country), the temporal

scales (I can define this loosely as the amount of time required to observe a

particular individual) in these kind of studies can range from months to years.

On the other hand, in short term mobility, temporal scales range from seconds

to hours, for example, in a traffic system in order to predict traffic levels, the

objective may be to predict where some users will be in the next few minutes

or in some systems predicting where a user will go next [MRJ12]. Its worth

mentioning here that although I have separated spatial and temporal component

for the sake of simplicity, in most cases these two are considered simultaneously.

Majority of the research questions I tackle in this dissertation can be categorized

under short term mobility, however, I also conducted an investigation which falls

under medium-long term mobility.

The next question I address is what are the benefits of studying human

mobility? Thorough understanding of laws that govern human movements has

useful applications in public health [CBB+07, BHG+09, EGK+04, KE05], urban

planning [DLC11, MHS95, KCRB09], disaster planning and mitigation [LBH12],

traffic engineering [WHB+12] and marketing. For example, in the work in

[EGK+04] they demonstrate how population mobility and land use data can

be used to simulate how a disease would progress within a single host and also

how it would be transmitted across people in an urban area as they go to dif-

ferent locations in course of their daily activities. Lu and colleagues[LBH12]

showed that understanding of people mobility during large scale disasters such

as the the 2010 Haiti earthquake can enable prediction in advance of how peo-

ple will move in future disasters which is useful for relief and recovery services.

Regarding marketing and retail, location based systems such as Google maps,

Yelp and Foursquare [Yel, Fou] as well as other contextual apps rely heavily

on understanding user mobility in order to provide highly personalized services

and also develop new products.

Before the advent of modern day sophisticated smartphones and wide spread
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1.1. BACKGROUND: HUMAN MOBILITY STUDIES

usage of mobile phones, large scale human mobility studies relied on static,

mostly government provided data such as that from census and surveys. Exam-

ples of such studies include those on trying to understanding relationship be-

tween diseases and mobility [SC93]. However, in smaller scale studies (e.g.,[Pro95])

where they were interested in mobility patterns during fire emergency, they could

use cameras and other special equipment to study mobility. The obvious draw-

backs were that the data was often static and therefore not up-to-date. In ad-

dition, it also means that mobility could only be studied up to some geographic

level (e.g., census tracts level) and not at individual level. One consequence

of this is that majority of the empirical studies in human mobility were actu-

ally limited to humanities and social sciences. For those few studies in other

disciplines such as computer science, their investigations were mostly based on

simulations [DS99] while other studies such as those in physics were theoreti-

cal but with useful applications in human mobility[LTH+92, FMG92]. All this

changed, thanks to the advent of smartphones, they not only serve as the key

computing and communication mobile device of choice but they also come with

a rich set of embedded sensors, for example, an accelerometer, digital compass,

gyroscope, GPS, microphone and camera. From GPS data I can extract human

mobility data at very minute scale. Even for mobile devices without GPS it

is still possible to get mobility data based on user cellular transactions though

the location obtained from this kind of data is low resolution compared to that

obtained from GPS based systems. One of the early mobility studies in com-

puter science to make use of this kind of data is presented in [SKJH06]. Since

then, there has been an explosion in human mobility studies using data gener-

ated from mobile devices. From here onwards, I will use the terms mobility and

human mobility interchangeably. For instance, instead of human mobility data,

I will often just say mobility data.

Because mobility data is central to the work in this thesis, I provide further

details here. Due to its very nature most of this data is generated through

mobile/portable devices such as cell-phones, smartphones, tablets, PDAs and

laptop computers. In all mobility datasets, there must be an element of location.

As mentioned earlier for smartphones, GPS provides the location information

and it is perhaps the most accurate source of location information available

at present for regular smartphones because it provides what can be considered

as exact geographic coordinates of the device on the earth surface. I can also

consider GPS location as high resolution because of this kind of accuracy. There

are other techniques of localization, for example, cellular positioning, Wifi and

3



1.1. BACKGROUND: HUMAN MOBILITY STUDIES

bluetooth or a combination of any of these techniques. Datasets such as those

based on cell-ID positioning has lower resolution as they only provide location

of the device with respect to cells in the cellular network. Social networks

can also provide some form of low resolution location information, for instance,

geotagged tweets or home location of Facebook users. I need to point out

two things about these kind of mobile datasets: first, due to sensitivity of the

information, it is very hard to get access to these kind of data. Also, unlike

in census or surveys where there is deliberate sampling and data is usually

representative of the target population, the same cannot be said for this kind

of data. Mobility datasets have biases from many sources such as ownership

and researchers have already revealed such biases and in some cases suggest

remedies [RZZB12, ZZZ+13]. In my case, the mobility dataset I study comes

from cellular phones. A mobile phone communicates wirelessly with a base

station, usually with the one that is physically closest to it and using a technique

known as cell-id positioning, we can assign to each cellular device in the system

location of the nearest base station during a transaction such as call. Because its

expensive to continuously track user location cellular companies only log details

of user location when they make a transaction (e.g., phone call, data usage or

text message). This kind of information can be considered as cellular traces,

however the more technical term is Call Detailed Records (CDRs).

Having provided an overview of human mobility, why I study it and how

I study it (through mobility data), I now turn our attention to introducing

the specifics of our study. In this thesis, I focus on three thematic areas of

human mobility: data exploration and visualization; residence change discovery

and location prediction. I first look at visualization and exploration of mobility

data because it is a crucial preliminary step in understanding any mobility data.

Data visualization is the process of encoding data as visual objects. Numerous

studies (e.g., [TGM83]) have shown how thoughtful visualization of data can lead

to easy discovery of insights from the data for both experts and non-experts.

More recently, due to better graphics capability and bandwidth, interactive

visualization has become popular. For interactive visualization, the user of

data is able to interact with the data objects through, for example, web based

interfaces. In our case, I tackle this challenge and come up with a simple but

non-trivial web based interactive visualization which depicts user mobility. In

addition, I also carry out exploratory analysis which feed into our more advanced

studies.

Second, I study what can be considered as medium-long term human mo-
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1.2. PROBLEM STATEMENT

bility. When I consider the temporal component of human mobility, long term

mobility is the kind where I have to observe the persons of interest for peri-

ods longer than a month in order to determine whether what I are looking for

is available or not. As mentioned earlier on, one example in this category is

migration. More specifically, the task I tackle in this category is given CDRs

for a single user automatically determine whether they changed place of resi-

dence or not. This is imperative in urban planning because given this kind of

information, I can ultimately use it to determine whether a person migrated or

not and internal migration information is crucial in city planning. In addition,

even for movement which doesn’t qualify as migration, this information could

be informative for businesses considering I are in era when intelligence such as

this is central to business operations.

Finally, most of our focus is on short term mobility studies. While there are

many areas of interest in short-term mobility, in this work, I focus on location

prediction. Our goal is to leverage large scale data to build heuristics which can

enhance performance of location predictors (i.e., enhance accuracy) as well as

improve scalability by reducing time required to train models. The key require-

ment in our work is that I want to achieve this without relying on external data

sources. I have noted that in previous studies, most schemes which suggest per-

formance enhancements usually do so by leveraging external data sources such

as use social profiles from social networks. I argue that such data is not always

available. In the developed countries this is the case due to privacy protection

policies while in low income countries, the usage rates of social networks are still

pretty low. Further in these low income regions, smart-phone adoption rates

are also low, consequently, accessing any kind of data which would augment

individual user location prediction would be hard. Therefore the methods that

I propose and develop would be very useful in these kind of scenarios I just

explained.

1.2 Problem Statement

In the previous section, I introduced the discipline of human mobility, and

discussed the challenges and opportunities it presents. I now describe three

specific challenges addressed in this dissertation.

First, in agreement with most scholars, I note that thorough exploration and

visualization of mobility data is crucial in understanding the data as well as sub-

sequent analysis. The challenge though with visualization is that off-the-shelf
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1.2. PROBLEM STATEMENT

visualization software do not always work well. There are two main reasons for

this: first, datasets are inherently different even though they could all be about

human mobility. For instance, trends and patterns which could be visually ap-

pealing in dataset X would not necessarily be in dataset Y. Also, difference

analysis objectives may call for significantly different visualization approaches.

For our analysis objective and data, I didn’t find off-the-shelf approaches which

were useful and therefore I came up with our own. Overall, development of effec-

tive visualization systems is still an open problem in human mobility and for any

particular dataset, its a must to develop such methods to aid in understanding

the data. In response to this, I developed a web based interactive visualization

of human mobility. Although I developed our solution in response to the current

data set, I believe the sample principles can be applied in a different setting.

Second, I addressed the problem of predicting whether a person has changed

place of residence or not from CDR data. Although this problem is old and has

its origins from demography where it has been sufficiently adressed. The ability

to develop methods to discover residence change from CDRs has many benefits.

For example, this means that I can gain information needed by authorities such

as internal migration, then reliance on large scale surveys or census could slowly

be reduced because these new data sources offer several attractive advantages.

For one thing, the effort and cost of data collection is nearly negligible when

compared to that of a census. Most importantly, since this kind data is always

available, it is possible to get on demand a picture of some population attribute

of interest such as internal migration.

The final problem I address is about location prediction. The broad prob-

lem I tackle is how to leverage large scale data to improve accuracy of location

predictors. Although this problem has been extensively studied most of the

works are context specific. A good example of such contexts is the type of data

used: resolution of location data and whether additional data ( e.g., social rela-

tionships data) is used or not. For example, NextCell [ZXYG13] is a prediction

system based on cell phone traces with the assumption that there is information

about call patterns amongst users within the data. Other studies, e.g., Find me

if you can [BSM10] use social relationships data to improve results of location

prediction. Consequently, the conclusions drawn and the techniques developed

cannot be transfered to new problems without substantial modifications. Fur-

thermore, most of the previous works used very small datasets (in the range of

thousands of users) to evaluate performance of their techniques and also study

other issues related to performance. I argue that such small datasets limit the
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ability to study comprehensively behavioral factors which affect perfomance of

location predictors. On the contrary, I use a dataset with millions of users.

1.3 Thesis Contribution and Outline

The contributions of the work in this thesis can be summarised as follows:

• Visualization of mobility data. In Chapter 2, I describe a web-based

framework for interactive visualization of mobility data.

• Residence change discovery. In Chapter 3, I explore the use of Call

Detailed Records (CDR) generated from mobile phones to infer change

of place of residence (home). I first provide a rigorous definition of what

I call the residence change discovery problem and then propose a novel

sequential spatio-temporal clustering technique which I call MoveSense to

solve this problem. Results from experiments show that our technique

performed well with average detection rate of over 68 percent.

• Enhancing Location Prediction with Big Data. In Chapter 4, I tackle the

problem of enhancing accuracy in location prediction systems. Specifically,

the research question I ask here is can we leverage big data to enhance

performance of location predictors? I choose to experiment with Bayes

based predictor. First, I carry out spatio-temporal analysis of user call be-

havior and call activity and use the insights to propose an enhanced bayes

predictor which leverages large scale data. Results from the experiments

I conducted reveal that overall, the enhancements I propose improve the

predictors’ performance by 17 percentage points.

• Using Community-wide models. In Chapter 5 which is closely related to

Chapter 4, I also study how to enhance location prediction systems. In

this case, I propose the idea of using a community-wide model learned from

data of multiple users to enhance models for individual users (reduce train-

ing time and improve accuracy). Results from the experiments I conducted

show that using parameters from community model as lower bounds in the

optimization process while training individual models drastically reduced

the training time for individual models by almost 100 percent.

The rest of this thesis is organized as follows. In Chapter 2, I present

a web based interface for visualizing mobility data. Chapter 3 tackles the

problem of residence change discovery, the key research question I solve is how

7
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to automatically predict whether a person changed their place of residence using

their call history. In Chapter 4, I introduce the problem of location prediction

where our goal is to enhance location predictors using large scale data. I continue

work in location prediction in Chapter 5. Finally, Chapter 6 gives concluding

remarks.
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Chapter 2

Visualization of Mobility

Data

2.1 Introduction

Thanks to the pervasiveness of mobile phones, it is now possible to get unprece-

dented spatio-temporal digital footprints telling when and where people are at

all times. If I can successfully mine from this data some of the information

needed by city authorities such as internal migration, then I could end reliance

on large scale surveys or census because these new data sources offer several

attractive advantages. Numerous previous studies have demonstrated that its

possible to establish the important places, in most cases home and work in peo-

ples lives from Cellular Call Detailed Records(CDR). For instance, in [IBC+11]

they used CDR data to identify home and work location while in [BCH+13]

they were able to characterize human mobility at metropolitan scale by using a

similar dataset. However, due to complexity and highly heterogeneous nature

of human behavior this area is still open to further research. In this regard,

I have implemented a space-time visualisation system which leverages ubiquity

of mobile phones to understand not only individual cellular subscriber mobility

behaviour but also traffic of cell towers.

CDRs are routinely collected by cellular network providers to help operate

their networks. Each CDR contains information such as the time a voice call

was placed or a text message was received, as well as the identity of the cell

tower with which the phone was associated at that time. This information can

serve as sparse and sporadic samples of the approximate locations of the phone’s

9



2.2. RELATED WORK

owner.

2.2 Related Work

Recently, advances in statistical computation and graphic display have provided

tools for visualization of data which was unthinkable a few decades ago. There

has been corresponding advances in human-computer interaction which have

also led to creation of completely new paradigms for exploring graphical infor-

mation in a dynamic way, with flexible user control. However, the history of

visual display of information dates back to as early as the 18th century (see the

work in [FD01] for a detailed description of the history of visualization). While

it is possible to visualize data from a wide range of topics, in this thesis my

interest is in visualizing human mobility data. Consequently, I focus my review

of previous research works in this area of visualizing movement.

Mobility data has recently received heightened attention in the visualization

community. Andrienko et al. [AA12] conducted a survey of what he called Vi-

sual Analytics of Movement and discussed various characteristics of movement

data, and summarized three visualization categories: direction depiction, sum-

marization and pattern extraction. Much of the works has focused on GPS based

trajectory data, where the complete trace of the moving entities is recorded. For

example, Ferreira et al.[FPV+13a] proposed a novel visual query model which

allows user to interactively explore and compare results obtained from millions

of taxi trips. In the work in [ZFAQ13], they proposed a novel visualization tech-

nique which can reveal interchange patterns in massive public transport trips.

In addition, there are many other off-the-shelf softwares for data visualization

such as MobiMap([mob16]) or Tableau ([tab16]).

While most of the previous works mostly used GPS trajectory data, in con-

trast, the data I consider in this thesis is sporadic with only data points when

a person makes a phone call (see Section 2.3 for details about the data I use).

Therefore, these previous methods cannot work out of the box without sig-

nificant modification. Regarding the available off-the-shelf software, the key

limitation is that they are built for generic purposes such as visualizing short

term movement. However, in my case, I wanted to also have statistics for long

term mobility. In summary, although the spirit of my work here is similar to all

the previous studies (i.e., visualize human mobility data), in this thesis, I focus

on generating mobility statistics which can allow better longer term comparison

of human mobility.

10
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Table 2.1: Background statistics of the dataset

Category Description
Starting date August 1, 2013
Ending date December 31, 2013
Data gaps October 1-October 30 2013
Number of cell towers 2101
Number of users 16,000,000
Number call events 3,5,000,000

Anonymised 
user id 

Time stamp 
dd:hh:mm:ss 

Cell 
ID 

(xi, yi) 
Lon,Lat 

Figure 2.1: Screenshot of Data

2.3 The Dataset

In this work, I use a CDR dataset from a leading cellular phone operator in

Bangladesh. It was collected in 2013 and covers the months ofAugust,September,

November and December. The data mainly include details of a call event: time

of call, cell tower id and latitude and longitude of the cell tower involved in the

call. The raw data came in CSV files with a total size of approximately 400

GB and contained over 3 billion call events. In Table 2.1, I present background

characteristics about the dataset while in Fig. 2.1

2.4 Design Requirements and SystemWork-flow

The objectives of our system are two fold: first, I want to understand human

mobility patterns based on peoples’ calling habits; second, I want to identify

city-wide events such as religious or sporting events based on call traffic of

cellular towers. The workflow of our visualization platform is illustrated in

Figure 2.2. The CDR data for all users is stored in a central database. When a
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CDR 
Database 

Generate/Update 
statistics 

Render 
results 

Data preprocessing and filtering 
Result set 

Mapping/ 
Visualization 

User query 

Figure 2.2: Workflow of the visualization platform

user sends a query, the system does a filter operation to get the required data. In

addition, the system also pre-process the data in order to retrieve only relevant

data. The results of this data is then used in computing mobility statistics

and also updating the visualization to reflect the query. Finally, the results are

rendered to the user.

2.5 The System-User Interface

The user interface of our system is presented in Fig. 2.3. The user interface

consists of two main components: the left part is the dashboard while the right

part is the map area. The dashboard is primary for the user to interact with

the system (e.g., select to see data for a new user). The dashboard has four

sub-panels: the top most part (shown in red in the screenshot) is the timer.

The timer gets activated during animation of user movement and is used to

indicate the time a user visited some place. The statistics panel, is where I

display statistics for current user. In what I call the navigation panel, the user

of the system can choose to load a new user and also whether they want to see

animation of current user movement.

The map area is built on top of Google maps. In this area, I show the

location of the cell towers which this user visited. The map area also contains

buttons for switching between individual mobility and cell tower activity. In

the map area, the system represents the places based on how often they were

visited. The map legend is shown in the dashboard at the bottom.

12



2.6. CHAPTER SUMMARY

Figure 2.3: Screenshot of the visualisation system

2.6 Chapter Summary

In this chapter, I propose a web based interface that uses CDR data to visu-

alise human mobility and cell tower activity. The objective of our system is to

understand human mobility patterns based on peoples’ calling habits and also

to detect city-wide events based on cell tower call traffic.
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Chapter 3

Residence Change

Discovery-MoveSense

3.1 Introduction

In most countries, authorities are often interested to know when a person

changes residence because such information is crucial for urban planning as

it enables them to continuously update how many persons are staying within

a particular geographic unit. Furthermore, it provides valuable insight on mo-

bility patterns of people across administrative units within a country or city

which could be useful in business intelligence. The change of residence within

a country is referred to as internal migration if it is permanent and involves

crossing some designated administrative boundaries. This kind of information

is routinely collected by governments and city authorities through structures

such as vital registration systems. However, periodically countries still need

to conduct a population census or other large scale surveys to collect internal

migration related data to complement the routine information. In fact, in most

developing countries vital registration systems and other routine administra-

tive data collection structures are almost nonexistent, consequently they rely

entirely on population census for information on internal migration. The col-

lection of migration data using these traditional methods have three important

drawbacks:

• These traditional approaches can be time consuming as they often involve

sending questionnaires to each and every household in a city or country.

Even worse, in most developing countries this usually involves face-to face
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interviews.

• As expected from above, the temporal resolution of data collected in this

way is very course. For example, in most countries censuses are conducted

once in 5 years or 10 years.

• Subject to economy of a country the exercise can be very expensive.

Thanks to the pervasiveness of mobile phones and other mobile devices, it

is now possible to get unprecedented spatio-temporal digital footprints telling

when and where people are at all times. If I can successfully mine from this

data the information needed by authorities such as internal migration, then

reliance on large scale surveys or census could slowly be reduced because these

new data sources offer several attractive advantages. For one thing, the effort

and cost of data collection is nearly negligible when compared to that of a

census. Most importantly, since this kind data is always available, it is possible

to get on demand a picture of some population attribute of interest such as

internal migration. It therefore comes as no surprise that recently there has

been an influx of research work exploiting mobility datasets with intentions

to generate various demographic characteristics of the population pertinent to

urban planning. This far, most studies have demonstrated that its possible to

establish the important places, in most cases home and work in peoples lives

from Cellular Call Detailed Records(CDR). For instance, in [IBC+11] they used

CDR data to identify home and work location while in [BCH+13] they were able

to characterize human mobility at metropolitan scale by also using a similar

dataset. I defer detailed discussion of previous work to the related work section,

but for now it suffices to say that quite a number of researchers have achieved

promising results regarding mining human behavior traits from mobile device

generated data. However, due to complexity and highly heterogeneous nature

of human behavior this area is still open to further research. Moreover, to the

best of our knowledge none of the previous works has particularly contributed

on discovering residence change from CDR data. This is the concern of this

work.

In this work, I investigate the potential to use CDR as surrogate residence

history of a person to discover residence change so that I can ultimately infer

internal migration patterns. CDRs are routinely collected by cellular network

providers to help operate their networks, for example, they can use them to

identify congested cells in need of additional bandwidth. Each CDR contains

information such as the time a voice call was placed or a text message was
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received, as well as the identity of the cell tower with which the phone was

associated at that time. This information can serve as sparse and sporadic

samples of the approximate locations of the phone’s owner.

Although many algorithms have been developed to mine semantic places, in-

cluding automatically discovering home and work location from trajectory data,

the problem of discovering residence change despite being closely related is dif-

ferent from that of just identifying home location. Even demographers[LD] have

reckoned that the task of discovering residence change is not trivial, particularly

considering that the residence history to work from is usually incomplete. In

this paper, the overall goal is to explore the use of CDRs generated by mobile

phones to infer change of place of residence (home). Specifically, I investigate

two research questions:

• Whether its possible to discover relatively permanent residence change

from CDRs?

• If it is feasible to develop an algorithm to automatically discover such

information?

In order to answer these questions, I first provide a rigorous definition of what

I call the residence change discovery problem. Next, I propose a novel sequential

spatio-temporal clustering technique which I call MoveSense based on Hartigan

Leader Clustering to solve this problem. To validate the proposed technique,

I carry out experiments using a massive spatio-temporal dataset covering four

months of call activity for 16 million users from a leading Cellular provider

in Dhaka, Bangladesh. I conducted the experiment in context of unsupervised

anomaly detection after noting a close resemblance between the residence change

discovery problem and that of unsupervised anomaly detection. Thus, users who

changed residence are analogous to anomalous elements in a dataset while those

who did not change residence are analogous to normal elements in the data.

Based on this reasoning, I applied this technique on the data to classify users in

the dataset into these two groups. Results from the experiments show that our

technique performed well with average detection rate of 71 percent, 68 percent

and 72 percent across the three categories of datasets I tested it on. The key

contributions of this work can be summarized as follows:

• I adapt the problem of residence change from a traditional population

census perspective and formally define it in the context of sparse trajectory

data.
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• I develop a novel spatio-temporal clustering technique based on Harti-

gan leader clustering requiring two parameters to automatically discover

residence change.

• I carry out experiments on a real big spatio-temporal dataset to validate

the proposed technique.

The rest of this chapter is organized as follows: in the next section I provide

some background and formal definition of the residence change discovery prob-

lem. In section 3.3, I present details of the proposed technique. In section 3.4,

I present details about the dataset as well as experimental set up and results.

In section 3.5, I review previous research work. Finally, in section 3.6 I give

concluding remarks and discuss future work.

3.2 Problem Formulation

Aside from CDRs which is the focus in this study there are other large scale

spatio-temporal datasets depicting traces of human mobility. For example, GPS

enabled devices generate what can be considered as high resolution trajectories

because the sampling rate is usually high, for instance GPS on a mobile phone

can be set to record location information every second. In fact, most of the

mining of human mobility patterns has been applied on this kind of data, for

example in [ZZXM09] [PBKA08] [CCJ10]. On the other hand, CDRs though

equally large-scale can be considered as sparse, sporadic and low resolution

human mobility traces because data is only recorded when a person makes a call

or sends a text message. CDRs are collected by telecommunication providers

when cell phone users use one of their services, most commonly when they

initiate or receive a voice call or text message. Each time a user participates

in a telecommunication interaction, his or her position can be approximately

inferred by knowing the geographic coordinates of the nearby Base Transceiver

Station(BTS) tower that has processed the call.

Clearly, from the preceding explanation CDRs can be considered as surrogate

residence history for residents in a city. Thus, given this type of data the

main intention is to automatically discover residence changes. On the surface,

this is a seemingly trivial problem. However, even demographers and census

practitioners [Man70] have long before acknowledged that the task of accurately

capturing migration events can be notoriously hard. Some of the factors which

can make this problem complicated are outlined below:
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• Residence history is often incomplete. This is even more true in this case

when I are considering spatially sparse CDRs. Loosely speaking, longer

residence history would result in better estimations. For example, in a

census questionnaire, the line of questions starts from a persons’ place of

birth inorder to determine if they changed residence at some point.

• Change of residence can be repeatable. This is a known phenomenon

in demographic context. In other words, a person can change residence

multiple number of times within a given period of time depending on

motivation. As such there is a potential of missing some episodes of those

changes.

• Though rare, there are some scenarios where a person has multiple resi-

dences. For example, students who stay at a boarding school, a commuter

who stays in the city within the week and returns home over weekend.

• Behavior related to residence change can be highly heterogeneous with

heavy variations across countries, regions and cultures. As such it may be

difficult to devise an all-round approach to solve the problem.

3.2.1 Preliminary definitions

Before formally stating the residence change discovery problem, I first pro-

vide preliminary definitions and notations. I let H represent a persons’ res-

idence history and define it as a sequence of spatial-temporal points so that

H = {(s0, t0), (s1, t1), . . . , (sn−1, tn−1) | si = (xi, yi) ∈ R2} where si represents

location in Euclidean space at time ti and ti ≤ ti+1. Because I are considering

CDR data, this definition assumes irregular sampling rate in both the tempo-

ral and spatial domain. For brevity, I will use hi to represent the tuple (si, ti)

whenever need arises. I define d(si, sq) as a distance function between any two

locations si and sq in H. I define length of residence history as the number

of elements in the residence history and denote it by Hd. It is dependent on

the units of time used. This measure is mainly useful in the current case when

data can be sparse in the temporal domain and also because I are interested

in long term mobility. Given H, I can further define a time invariant set of

unique locations HL = {(s1, f1), (s2, f2), . . . , (sn, fn) | f, i, q ∈ Z, si ̸= sq} where
fi represents frequency of occurrence of si in H. Considering that our focus

is CDR data which is extremely sparse in the spatial domain this notation is

justified and practical unlike in the case of GPS based trajectory.
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I now define the notion of Place of Residence. Loosely speaking this

represents a region where the person is usually found. Ideally, this is supposed

to be a physical street address but in our case I represent this by a collection

of points(cell towers) which is a subset of H. I use a collection of cell towers

rather than one tower because I consider place of residence as a region rather

than a single place. Thus, this place of residence includes all the regular places

(including work) where the person visits. This is reasonable considering that in

the dataset I consider (see Section 3.4) majority of people usually travel short

distances. Moreover, for the purpose of detecting migration, use of a region

rather than an exact point does not degrade accuracy.

Definition 3.2.1 (Place of Residence) A place of residence

R = {h1
i , . . . , h

m
j } ⊆ H of length m is a set of temporally ordered points of H

with index 1, . . . ,m defined based on two parameters; δ and ϵ as explained below:

• temporal threshold δ ∈ (0, 1] so that if I let I = [a, b] represent the

time interval over which R is defined then Id = δ.Hd where Id is length of

the interval I over which R is defined and Hd is length of whole residence

history.

• distance/ neighborhood threshold ϵ ∈ R so that for some c ∈ R2

selected as centre {hi ∈ R, d(c, hi) ≤ ϵ}

Example 3.2.1 (Illustration of temporal parameter δ and Hd) Lets say

I have CDRs covering a 30 day period in the month of August. I decide to use

days as units of time. I have in the dataset a user X with residence history with-

out gaps from august− 1 through to august− 30 as follows: HX = {(s0, aug −
1), . . . , (s29, aug − 30)} so that HX

d = 30 where si represents location. There is

another user Y with disjointed history given by HY = {(s0, aug− 1), (s1, aug−
2), (s3, aug − 8), (s4, aug − 30)} so that HY

d = 4. If I pick δ = 0.5, then the

choice of a legitimate interval user X would be I = {aug − 1, . . . , aug − 15}
so that HX

d .δ = 15days while for user Y a legitimate interval would be I =

{aug − 1, . . . , aug − 2} so that HY
d .δ = 2. See Fig. 3.1 for illustration of both

users.

3.2.2 Problem formulation

Following the definitions above, I are now ready to provide a formal definition

of the problem. The problem at hand is to determine if there has been residence
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Figure 3.1: Illustration of setting of temporal parameter δ

change over a period defined by residence history based on parameters δ and ϵ.

Definition 3.2.2 (Residence Change Discovery) Given residence history

H = {h0, h1, . . . , hn}, lets suppose that I can find time intervals I1, I2, . . . , In

such that RI1 , RI2 , . . . , RIn are the place of residences that correspond to these

intervals, then I shall say there has been residence change if I can find at least

one pair of residences that are spatially disjoint. More formally, {(RIi , RIj ), i ̸=
j|RIi ∩RIj = ∅}

3.3 Method

In this section, before I delve into the details of the approach I first provide a

preamble on how a population census is conducted to facilitate understanding

of some key terms and concepts which I borrow from the census approach.

3.3.1 Background: motivation from census

One recommended topic in most census questionnaires is geographic character-

istics of the population [Div08]. The objective of this category is not only to

determine number of people living in a given geographic unit but also to inves-

tigate migration, both internal (within country) and international. In order to

achieve this, they ask questions about place of residence(usual residence, previ-

ous residence, duration of residence) and place of birth. Based on collected data

and a further set of rules related to duration of residence and administrative
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boundaries the census Statisticians can establish if a particular person changed

place of residence over the reference period and whether that change constitutes

migration or not . For instance, they have to decide whether change of residence

within a county should be considered migration or not. Clearly, this is the spa-

tial component of migration. The temporal component is also important, for

instance if authorities use a 6-month window, it means if a person for some rea-

son changed addresses twice within a 6-month period it will not be considered

as migration. In general, migration can be defined as a relatively permanent

change of residence which involves crossing of some designated administrative

boundaries.

The first important difference between this work and that of traditional

census case is that in this work, I focus on detecting residence change and not

necessarily migration although I are aware that residence change is the basis of

migration. Secondly, I also recognize that it is relatively easier in the census case

to solve the problem of residence change because they deal with a respondent

either face to face through a personal interview or the respondent answers the

census questionnaire by themselves, as such they have access to a more detailed

residence history. On the other hand, in our case the user is anonymous, all I

have is a dataset whose intention of collection was not even to capture residence

change. In the next two sections, I use this understanding to formulate a solution

for the residence change problem in the context of CDR data.

3.3.2 Preliminaries

Given the residence history, it is possible to generate as many intervals of this

nature I = {[a, b] | t0 ≤ a ≤ b ≤ tn ⊆ [h0, hn]} as our history can allow

so that I could have I1, I2, . . . , In. I now introduce cluster defined over any of

the intervals Iq. A cluster ck = {h1
i , . . . , h

m
j } ⊆ H is a subset of the residence

history whose members are systematically selected. I can also define a set of

unique locations for cluster Lk = {(si, fi), . . . , (sj , fj)}. In addition, a cluster

possesses three more important attributes : first, Cluster centre µk is defined

based on equation 3.1 as the weighted mean centre weighted on fi for each

unique location si in the cluster while Nk is the count of members in the cluster

ck defined in equation 3.2. Finally, I also define a weight wk based on total

counts in the cluster as shown in equation 3.3.
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µk =

Nk∑
i=1

fisi

nk∑
i=1

fi

(3.1)

Nk = ∥{si|d(µk, si) ≤ ϵ}∥
(3.2)

wk =

Nk∑
i=1

fi (3.3)

For brevity, I will denote a cluster ck = (µk, Nk, wk, Lk) to represent these

key attributes of a cluster. A cluster is generated based on some time interval

Iq as elaborated earlier and two parameters δ and ϵ which have been already

introduced in section 3.2.1.

Next, I define usual place of residence and denote it with same notation as

place of residence R. The addition of usual is to emphasize that this is a place

where the person is usually found despite episodes of temporally absence. This

can as well be considered as home. I now define R based on a cluster ck. I

further define the concept of current place of residence and previous place of

residence which are simple extensions of usual place of residence based on time

conditions.

Definition 3.3.1 (Usual place of residence) For a nonempty set of clusters

C = {c1, c2, . . . , ck} defined on some temporal interval Iq = [a, b], a usual place

of residence R is a cluster ck such that wk = max{w1, w2, . . . , wk}.

Definition 3.3.2 (Current place of residence) This is a particular case of

place of residence signifying where a person is currently staying. Given RIq , if

the endpoint of interval Iq coincides with the endpoint of the whole residence

history (hn) i.e. b = tn then I shall call R the current place of residence and

denote it by Rc
Iq
.

Definition 3.3.3 (Previous place of residence) For a current place of res-

idence Rc
Iq

defined on Iq = [a, b]. If I can define another interval Is = [u, v]

such that Is ≤ Iq, further if I can find a usual place of residence RIs over this

interval, then I shall call RIs a previous place of residence and denote it by Rp
Iq

3.3.3 MoveSense: a sequential spatio-temporal clustering

technique

I first reiterate that our primary goal is to probe a persons’ residence history

and determine if at some point over this period, they changed place of residence.

Although its generally legitimate to define as many time intervals as possible
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over which to investigate residence, I are always limited by data availability.

In fact, doing so would be advantageous because according to demographic lit-

erature e.g., see [WIL97], theoretically a person can change residence multiple

times within a given period and in censuses they begin this kind of investiga-

tion by referring to place of birth. Ironically, the demographic community also

recognizes that changing residence is a rare, so in some cases this phenomena

modeled as a Poisson process to reflect this fact. Based on these two reasons, I

design our solution assuming that our data is temporally sparse and therefore

I consider the special case of splitting the history into two time intervals. I

still want to stress that our method can be easily generalized to more than two

intervals when data is available.

This approach is based on the Hartigan Leader algorithm[Har75]. This

is a simple clustering approach which doesn’t require predefining the number

of clusters. Another advantage is that it only makes one pass through the

data which is important considering scalability as our target is dealing with

big data archives in the range of terabytes in size. Furthermore, the work in

[IBC+11] demonstrated that application of this algorithm worked well in identi-

fying important locations in peoples lives from CDR data. In one of its original

form, the Hartigan leader algorithm proceeds as below:

1. Choose a cluster threshold value

2. make the first item centroid of first cluster

3. For every new element:

4. Compute distance between the element and every cluster’s centroid

5. If the distance between the closest centroid and the new element is smaller

than the chosen threshold, then recompute the closest centroid with the

new element

6. Otherwise, make a new cluster with the new element as its centroid

The idea behind this approach to pass through the data sequentially is what

makes it suitable for our problem because our goal is to probe residence history,

essentially I would want to start probing from the beginning of history and move

sequentially to the end. Following this reasoning, I present our sequential spatio-

temporal clustering technique which I call MoveSense as shown in algorithm 1.

In the following, I present a description of the technique.

In most cases, the time element in trajectory data (including CDRs) is

a time stamp. For example, the level of precision can go up to seconds or

milliseconds. Considering that the nature of our investigation is to probe place

of residence which is established over a relatively longer period, the first step
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is to pre-process the data to generate courser residence history. In this step, I

aggregate location component (si) over the course time units. I use the function

aggregateBySecondaryT ime(H, t̂) for this purpose. The inputs of this function

are the raw residence history (H) and the preferred secondary unit of time t̂.

In this function, within a single secondary time unit, I pick location(si) with

maximum frequency of appearance. Once I get secondary history Ĥ, I use it

as input in the main procedure probeResHist(Ĥ, δ, ϵ). This procedure emu-

lates Hartigan algorithm as described earlier. I ensure that history Ĥ is sorted

based on time. The initialization stage sets first cluster (c1) to the first element

in Ĥ and corresponding attributes (µ1, Nk, wk, Lk) of the cluster are also set

accordingly. Next, I call the expandCluster(C, ϵ) procedure.
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Algorithm 1 MoveSense-Residence Change Discovery

Require: H, δ, ϵ,t̂ ▷ t̂ secondary unit of time
Ensure: R,current/current & previous place of residence
1: Ni, j ← counter for cluster members
2: µk ← cluster centre
3: wi ← counter for incrementing cluster weight
4: C ← set of clusters
5: procedure expandCluster(C, ϵ, si)
6: C = {c1, c2, . . . , ck} ▷ set of clusters
7: si ▷ location under evaluation
8: for all ci ∈ C do
9: dist← min d(si, cj), j ∈ {1, . . . , k}

10: if dist ≤ ϵ then
11: si ← cj ▷ assign to closest cluster
12: Nj ++ ▷ increment count
13: µj ← updateWeightedCentre
14: else
15: j ← k + 1 ▷ create new cluster
16: µj ← si
17: Nk+1 = 1 ▷ set count to 1
18: end if
19: end for
20: update C
21: end procedure
22: function probeResHistory(H, δ, ϵ,t̂)
23: Ĥ ← aggregateBySecondaryTime(H, t̂)
24: Ĥ ← sortedByT ime
25: t̂threshold ← δ.Ĥd ▷ index of based on δ
26: C ← ∅
27: µ1 ← s0 ▷ Initialise cluster centre
28: w1 ← 1 ▷ Initialise cluster weight
29: C ← add(c1)
30: R← ∅ ▷ Residence(s)
31: for i← t̂start+1, t̂threshold do
32: C ← expandCluster(C, ϵ)
33: if i = t̂threshold then
34: C ← findResidence(C, ϵ)
35: R← add(c)
36: end if
37: end for
38: for i← t̂threshold+1, t̂end do
39: C ← expandCluster(C, ϵ)
40: if i = t̂end then
41: C ← findResidence(C, ϵ)
42: R← add(c)
43: end if
44: end for
45: return R
46: end function
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The objective of this procedure is to evaluate distance between the cur-

rent point under examination and cluster centres of all existing clusters. If the

minimum distance to centres of clusters is within ϵ then the current point is

assigned to that cluster, otherwise a new cluster is created. This procedure is

called repeatedly until I hit upper bound of the first interval; a point in time

where Id = δ.Ĥd. At this stage, I evaluate the available clusters to determine

place of residence. I use the function findResidence(C) for this. I are defin-

ing usual place of residence based on frequency of stay, therefore this function

simply picks the cluster with maximum weight (wk) and set it as usual place

of residence .From here I drop the rest of the clusters and continue evaluating

elements in the rest of the database(interval 2) in a similar fashion as before.

When I hit upper bound of the second interval I again call findResidence(C) to

evaluate the clusters and determine place of residence in this interval. Finally, I

evaluate these two based on definition 3.2.2 to determine if they are equal and

consequently decide if there is change of place of residence.

3.4 Experiments

In this section I present details of the experiment I conducted to evaluate our

technique. The experiment is based on a CDR dataset from a leading mobile

cellular operator in Bangladesh. The primary task in the experiment was to

classify users in the dataset as having changed place of residence or not. In

the rest of the section, I present details of the dataset, experimental set up and

results of the experiment.

3.4.1 Description of the dataset

The data is from a leading cellular phone operator in Bangladesh. It was col-

lected in 2013 and covers the months of August,September, November and De-

cember. The data mainly include details of a call event: time of call, cell tower

id and latitude and longitude of the cell tower involved in the call. The map in

Fig. 3.2 shows location of cell towers.

The administrative structure of Bangladesh consists of seven(7) divisions at

the top of the hierarchy. Below each division there are districts, currently there

is a total of sixty four(64) districts which function as county. Then, there are

there 488 Upazilas below the districts. There exists other structures below the

Upazilas but I do not mention them here because they are outside the scope of
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our study. As shown in Fig. 3.2 the available data mainly covers two divisions;

Dhaka and Rangpur.

The dataset has more than 3.5 billion call events. There are about 16

million unique users with varying levels of number of events over the four

months period. I computed length of residence history for each user using the

aggregateBySecondaryT ime function with days as secondary units of time. I

then plotted the empirical cumulative density of the number of days in history (

see Fig. 3.3). I also characterized typical distances covered by a user in a single

day. For this, I used a measure called mean radius of gyration. I computed it

by getting maximum distance covered in a single day and then averaging over

the whole history ( see Fig. 3.4).

I present residence history of what I consider to be three representative

groups of user categories based on geometric structure and complexity of their

trajectories as shown in figures 3.5, 3.6 and 3.7. The first and second category

consists of users whose trajectories show some kind of regular geometric pattern

while the third category represents users whose trajectories has an irregular

pattern. Figure 3.5 seem to suggest that the user may not have changed place

of residence at all as most of the cell tower locations in their history are almost

perfectly stacked around a small geographic region. Note that in scenario 1

(Fig. 3.5a) of this category, the user seem to have two concurrent locations with

relatively same number of call events suggesting this user may be a commuter,

however this does not suggest change of residence as the separate regions seem

to be contacted concurrently. In the second category (see Fig. 3.6) both Fig.

3.6a and Fig. 3.6b clearly shows that there is a simultaneous temporal and

spatial offset, which seem to indicate that the user may have moved permanently

because there is almost no temporal overlap of the cell locations in history. The

third group ( see Fig. 3.7 ) on the other hand shows a very irregular pattern

so that its visually impossible to discern whether this user may have changed

place of residence or not. Incidentally, I use this understanding to generate a

validation dataset for evaluation of our technique.

3.4.2 Unsupervised classification of users

In this experiment I apply our technique to the dataset described in the previous

section. The main task is to classify all users into two classes; those who changed

residence and those who did not. I carry out this experiment in the context of

anomaly detection as I will show in the following section that the residence
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Figure 3.2: Location of Cell Towers in Bangladesh
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Figure 3.3: Cumulative frequency distribution of number of days
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Figure 3.4: Cumulative frequency distribution of radius of gyration
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Figure 3.5: Regular mobility pattern: suggestive of no residence change
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Figure 3.6: Regular mobility pattern: suggestive of residence change
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Figure 3.7: Irregular mobility pattern: non-suggestive
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change discovery problem has characteristics that resemble that of anomaly

detection. In the following sections I present details about the approach, results

and how I evaluate performance of our classification.

Approach and rationale

I noted that the residence discovery problem closely resembles that of unsuper-

vised anomaly detection. In the unsupervised anomaly detection problem, the

input is usually a large unlabeled dataset where most of the elements are nor-

mal and there are some anomalous elements buried within the dataset [Por00]

and the task is to detect these anomalous instances. This is equally true in the

present problem: while the probability to migrate or change place of residence

varies greatly among individuals and societies, it is fair to say that this is a rare

event. In this regard, it is plausible to invoke the same assumptions which are

made in anomaly detection algorithms. Most unsupervised anomaly detection

algorithms make two assumptions about the available data. The first assump-

tion is that normal elements in the data hugely outnumber the anomalous ones.

Secondly, they also assume that the anomalous elements are inherently(based

on some qualitative characteristics) different from the normal ones. As a result

of these two assumptions the idea is that since anomalous elements are rare

and different they will appear as outliers of some form in the dataset, so that

they can be flagged. This brief description of unsupervised anomaly detection

is adapted from [EAP+02].

In regard of the above, in this proposed technique, users who changed place

of residence are analogous to anomalous elements in a dataset while those who

did not change residence are analogous to normal instances of a dataset. In a

two-class classification, the anomalous instances are usually labeled as positive

(y = 1) while the normal ones are labeled negative(y = 0).

Experimental set up

Our experimental set up was driven by the need to understand the effect of the

spatial parameter (ϵ) and length of residence history on the results. Due to the

fact that the available data covers only four months, which is 122 days in total,

I did not experiment with parameter δ, I just fixed it at 0.5. Since I have a

large dataset of users I repeatedly sampled subsets of the data as training set

to understand setting of parameters.

First, to understand the effect of length of residence history I had to decide
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on the minimum length of residence history to include. Based on Fig. 3.3 and

experimentation I decided to include users with at least 30 days of residence

history. This represents length of the average user in the dataset but also

its about one third of the total history. I then added two more categories so

that I had three in total which I call Case 1 representing users with residence

history between 30-59 days, Case 2 with history of 60-119 days and Case 3 with

complete history (120 days +).

Second, I set the spatial parameter ϵ as follows. First, this parameter is

essentially a spatial a threshold, it is crucial in our technique because how

large or small it is set has a direct effect on how many data instances will be

classified as positive. The first task was how to fix the minimum value of ϵ.

I decided to set the minimum value based on geographic extents of the lowest

administrative region in Bangladesh. I computed spatial bounds of the upazila

level administrative region and found the minimum to be 14 km. Therefore

I set minimum at ϵ = 14 and then incremented arbitrarily to get a list of

ϵ = 14, 20, 25, 30 in order to understand the effect of increasing the threshold.

Validation and discussion of results

As mentioned earlier on the dataset originally does not have any labels related

to users home location, let alone information indicating whether they changed

home. Due to this plus other logistical challenges, I could not get authentic

ground truth data which ideally would be home location of some user over the

whole four month period.

However, as illustrated in Fig. 3.5, 3.6 and 3.7 it is possible to make a

judgment based on geometry of the trajectory as to whether a person changed

residence or not though with less certainty. I used exploratory techniques to

visualize the data and I were able to generate what I call a quasi-ground truth

data to test performance of our data. I created three test datasets corresponding

to three categories I introduced in the preceding paragraph. For each category,

there were 80 users in the test dataset.

To evaluate our technique, I used two primary indicators of performance:

the detection rate and the false positive rate. The detection rate is defined as

the number of positive instances detected by the system divided by the total

number of positive instances present in the test dataset. The false positive rate

is defined as the total number of normal elements that were incorrectly classified

as anomalous divided by the total number of normal elements. Overall, these

two indicators are reasonable because they measure the ability of our technique
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to detect percentage of people who moved and at the same time determine how

many incorrect classifications are made in the process.

I calculate these values over the labeled test dataset and the results are pre-

sented in Fig. 3.8, Fig. 3.9 and Table 3.1. Overall, the results indicate that

our technique performed reasonably well over the three categories of the test

dataset. As I expected, across the three categories there are strong variations de-

pendent on the spatial threshold(ϵ). The spatial threshold has the natural effect

of reducing the number of people detected as having changed residence which is

reflected in the results. Fig. 3.8 reveals that in all categories the highest detec-

tion rate is seen when the spatial threshold is at its minimum (ϵ = 14) this in

turn corresponds to higher false positive rate. This trend though contradictory

seems to be in line with experimental results from other unsupervised anomaly

detection algorithms based on clustering ( e.g see [EAP+02]) for example.

For each category, I computed average of each of the indicator( see Table

3.1) and somehow surprisingly when I consider average, detection rate seems

to be high for Case3 which has largest number of residence history. However,

overall these averaged results seem to suggest that Case3 with large history has

best results since it has highest detection rate and the false positive rate is also

low compared to Case1. This is consistent with our expectations that the more

history is available the more reliable the results would be.

Next, I discuss peoples calling patterns as it pertains to whether they call

from home, work or somewhere else as this would potentially have a bearing

on the results. This relates to the typical distances covered by individuals

during their daily mobility pattern as presented in Fig. 3.4. In [GHB08] they

indicated that radius of gyration follows a fat-tailed distribution which seems

to agree with results in the aforementioned figure. In our dataset, 75 percent

of the users have a mean gyration distance of around 3 km, which indicate that

most people’s daily movement is limited to a neighbourhood of less than 5km.

Consequently, in this current work I safely assumed that whether a person calls

from home or work would not have significant effect on results of our technique.

Nevertheless, I wish to quickly mention that the results should be interpreted

with caution as I only used quasi-ground truth data rather than actual to com-

pute the performance indicators, as such there is a possibility that some of the

errors may be propagated from our visual interpretation of the trajectories when

creating the test data.
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Table 3.1: Performance indicators averaged over ϵ values

Category Detection rate(%) False positive rate( %)
Case 1 70.8 19
Case 2 67.9 14.2
Case 3 71.7 14.6
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Figure 3.8: Performance Measures: Detection rates
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Figure 3.9: Performance Measures: False positive rates
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3.5 Related Work

The approach I have presented in this work draws heavily from the conduct

of Population and Housing Census particularly in developing countries as stip-

ulated in [Div08]. I have taken this traditional approach and redefined the

problem in the context of CDR data. As mentioned previously there are many

differences between the traditional census approach and our method which I

have proposed here. One important difference is that census uses questionnaire

as such it is impossible to directly apply such methods on mobile phone dataset.

In the context of trajectory data, this work is closely related to [DIC14].

In their work, they used uncertain GPS trajectories to extract stay regions of

animals. Their method is based on dbscan algorithm which is a widely used den-

sity clustering approach. They demonstrated the capability of their method to

successfully discover stay regions. In fact, based on my preliminary publication

[MMY+14] on this work, it seem to indicate that I started working on this sim-

ilar problem around the same time. However, despite this similarity there are

also key methodological differences. First, their work targets animal migratory

behavior which although similar to human migration is inherently different. The

most important difference being that animals migration depict more clear and

obvious patterns than humans as such its relatively easy to deduce when ani-

mals migrate. Moreover, the problem formulation and the technique I propose

in this work is based on Hartigan leader clustering algorithm and population

census approach.

There are other works with weak connection to this current work. For in-

stance, in [CDLLR11] [CDLR10] they consider origin destination patterns. In

the latter work, they estimate origin-destination flows for weekday and week-

end travel. This is related to this work but the difference is that they consider

short-term trips in which the person returns to their home while in this case

I’am interested in relatively permanent residence change. In demographic com-

munity, the work in [DLM+14] studied the use of CDR data to build dynamic

population maps which is inherently a different task from what were are tackling.

On the other hand, the work in [Blu12] is closely related to ours. In this work,

they estimated internal migration from CDR data. However, although I have

motivated this work by internal migration, in this current paper, I mainly focus

on residence change which as previously mentioned does not always encompass

internal migration. Moreover, in this work, I attempted to detect residence

change from mid term data while in [Blu12] they had two years data.
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3.6 Chapter Summary

In this work I first introduced the problem of residence change discovery in the

context of CDR data from mobile phones. I argued that though this problem

is loosely connected to that of mining significant places which has been heavily

addressed in previous research works, it is inherently different and challenging

when one consider spatially sparse CDR data which is case in the present re-

search. As regards significance, the ability to automatically and reliably discover

residence change from CDRs and mobile phone data in general would enable

quick calculation of internal migration rates especially in low income regions

where routine administrative data is nonexistent. Such information is highly

valuable for urban planning and businesses. Moreover, even in developed re-

gions residence change information could be useful in various other applications

which deals with location based services.

I then formulated the residence change discovery problem by adapting from

the census approach. I heavily borrowed from the terminology in censuses and

adapted the problem in the context of CDR data. For instance, I noted that

CDR data can be sparse both temporally and spatially. Also, in case of census

they use administrative regions to make a decision on whether a person moved

or not because their focus is strictly migration while in the current work I use

a spatial threshold to enable us detect any change in residence. Based on this

formulation I presented a sequential spatio-temporal clustering approach based

on Hartiginan Leader clustering algorithm to solve the problem.

I conduct an experiment to evaluate the proposed technique. In the exper-

iment, I carry out unsupervised classification of users to categorise them into

two groups: those who changed residence and those who did not. I implemented

this classification based on unsupervised anomaly detection approach. I used a

large unlabeled spatio-temporal dataset from a leading mobile phone operator

in Bangladesh. I experimented with a range of settings for the spatial parameter

ϵ over three user groups categorized based on length of their residence history. I

then validated the proposed technique on a quasi-ground truth dataset which I

manually generated taking advantage of geometric characteristics of trajectories

for representative users.

I used detection rate and false positive rate to measure perfomance of the

proposed technique. The results from the experiments show that this proposed

technique performed well with detection rates of 71 percent, 68 percent and 72

percent for the first,second and third group respectively. However, I are mindful
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of the fact that the labeled dataset I used to calculate these rates is not entirely

ground truth and therefore the results should be interpreted with caution.

I set out to establish the potential to discover residence change from CDRs.

I have demonstrated based on the experimental results it is possible to do so.

I also demonstrated that the technique I developed can automatically discover

users who changed residence under anomaly detection context with reasonale

detection rates. Although my focus here is CDRs, I think the technique I have

proposed is applicable with few modifications to other type of mobile phone

datasets such as those from GPS because the algorithm only requires two pa-

rameters.

There are several directions for future work. First, in the introduction I

mentioned that one important application of determining residence change from

CDR data is the ability to obtain estimates of internal migration in a region,

therefore as a case study I plan to use this approach to estimate internal migra-

tion rates from the CDR data from Dhaka, Bangladesh and compare results with

official estimates from the Statistics Bureau. Secondly, I only measured perfor-

mance of the proposed technique based on a quasi-ground truth data which I

hand-generated. The drawback with this evaluation is that I did not test this

algorithm on the more complicated cases, as such I would like to apply this al-

gorithm on other mobility datasets such as that from Foursquare or other GPS

based trajectories where it is relatively easy to obtain authentic ground truth

data.
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Chapter 4

Location Prediction

4.1 Introduction

During the past decade, Location-based services(LBS) have matured and be-

come mainstay in most applications. Consequently, information about location

of users has become a necessity. Thanks to the advent of cheap sensors, many

mobile devices nowadays come with the capability to provide fine grained loca-

tion trace of a user. However, beyond current location some LBS services can

benefit from anticipating the location a user will visit in the near future. This

is where location prediction comes in. For example, predicting a user’s next

location would be useful for urban planning in anticipating traffic levels. In

addition and perhaps more importanly, location prediction can help to provide

approximate current user location in cases where user device cannot provide

exact current location because their device is incapable (device does not have

GPS/Wifi capabilites) or due to GPS signal problems.

The problem of location prediction has been extensively studied[ZXYG13,

PWJX14, SKJH06, DGP12, BSM10, CML11, KH06, NSLM12, KWSB04, SMM+11,

WP12, EKK+13, Bur11, DDMGP14]. However, most of the works are context

specific. A good example of such contexts is the type of data used: resolution

of location data and whether additional data ( e.g., social relationships data is

used or not). For example, NextCell [ZXYG13] is a prediction system based

on cell phone traces with the assumption that there is information about call

patterns amongst users within the data. Other studies, e.g., Find me if you can

[BSM10] use social relationships data to improve results of location prediction.

Consequently, the conclusions drawn and the techniques developed cannot be
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transfered to new problems without substantial modifications. Furthermore,

most of the previous works used very small datasets (in the range of thousands

of users) to evaluate performance of their techniques and also study other issues

related to performance. I argue that such small datasets limit the ability to

study comprehensively behavioral factors which affect perfomance of location

predictors. On the contrary, I use a dataset with millions of users.

In this study, I examine a unique CDR dataset. I believe the dataset is

unique due to the following reasons: first, unlike majority of previous datasets

studied in location prediction which come from developed countries, our data

comes from Bangladesh which is a developing country. Secondly, it is very

sparse in feature space (essentially, the data contains only three details about a

call-event: caller/user identification, time of call and geographic location of base

station station routing the call). Finally, it is a very large data with more than 16

million unique users. Given that smartphone penetration rate in Bangladesh is 6

percent [Luc14], clearly LBS services cannot thrive as most mobile devices do not

have GPS. I envisage that location prediction techniques could be very useful

in providing approximate user locations to various LBS applications thereby

improving quality of life. However, the challenge with the present scenario is

that in low income regions getting additional data (such as that from social

networks) to improve location prediction is notoriously hard. It is against this

background that I decided to explore ways to enhance performance of location

predictors without requiring additional data.

The research question I tackle is how I can leverage big data to enhance

performance of location predictors? I choose to experiment with Bayes based

predictor because of ease of implementation and flexibility to add many beliefs

without incurring huge computational expenses. In order to address this re-

search question, I first carry out spatio-temporal analysis of user call behavior

and call activity. I use insights from this analysis to propose an enhanced bayes

predictor which leverages the large scale data. In summary, our work makes the

following contributions.

• Spatio-temporal analysis. I conduct preliminary analysis to show lack of

strong spatial autocorrelation of call activity. This result forms an impor-

tant input into our approach.

• Enhanced Bayes predictor. I propose an enhancement to the naive bayes

predictor under the context of visit-revisit modeling using a distance thresh-

old and user regular location by levereging big data. This modelling ap-
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proach builds on the open-world modellling introduced in [KH06] but in

our case I do not require any external data and I also introduce other pa-

rameters. Results from the experiments I conducted reveal that although

the results vary greatly across users, overall, the enhancements I propose

improve the predictors’ performance by 14 percentage points.

• Large-scale evaluation of prediction perfomance. This is the first time

that such a big dataset has been studied in location prediction. I conduct

extensive experiments to investigate performance of the predictor over

a massive dataset with more than 3.5 billion calls and document how

performance varies with various user characteristics.

The rest of this chapter is organized as follows. Section 4.2 provides a re-

view of relevant literature. Section 4.3 reports on the results of spatio-temporal

analysis and also characteristics of the dataset. Section 4.4 provides formal for-

mulation of the prediction task. Section 4.5 presents details of the enhancement

I propose. Section 4.6 reports on the experiments conducted and discussion of

results . Section 4.7 concludes the work.

4.2 Related work

The increasing availability of human mobility datasets has led to an explosive

growth of research work in location prediction. I have identified three core

aspects of the single user location prediction research: data, prediction task,

and prediction approaches. In this section, I review previous works on location

prediction along these categories.

There are three important aspects which I consider as regards data-resolution

of location data, additional data and dataset diversity. I can infer resolution of

location data based on how the data was generated. Majority of the previous

works[WP12, EKK+13, KH06, DGP12, SMM+11, MPTG09] conducted their

experiments with location data generated from GPS/Wi-fi which I consider to

be high resolution with only two works [KWSB04, ZXYG13] where they used

CDRs which can be considered as low resolution. Regarding additional data, the

inclusion of social relationships data like that from social networks has spurred a

lot of interest with research works [PWJX14, BSM10, NSLM12] demonstrating

that inclusion of such information enhances prediction results. I use log2N

to measure dataset diversity based on the number of unique users (N) in the

dataset. In Fig. 4.1, I show that most of the previously studied datasets have
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far lower diversity compared to the data I study in this work.

The generic task is often to predict location of a user some time in the future.

However, the subtle details such as what information I are starting with (current

context), lead time or whether I are interested in temporal aspects (e.g., arrival

time, stay duration) do matter. Most of the earlier works focused on the task

of predicting the next place/destination a single user will visit. For example,

in [NSLM12] they predict the next foursquare venue a user will visit while in

[KH06] [MPTG09] they tackle the same task but the target user is a vehicle

driver. Some of the studies e.g.,[DDMGP14] are specific on the lead time of

prediction. In their study, they experiment with different lead times.

Several methods have been proposed for location prediction in different con-

texts (location data and prediction task). In an early analysis with GPS traces

[AS03], Ashbrook et al. used Markov models to predict the next place that a

user will visit. Song et al. [SKJH06] took a similar approach and evaluated

domain independent predictors (including order-k Markov predictors) on sym-

bolic location traces collected with Wifi. They concluded that order-2 Markov

predictors gave the best results. Since then, Markov models and its variants

(Mixed markov chain model, hidden Markov Model) have emerged as a popular

choice for many research works[GKdPC12] [TCMA12] due to ease of implemen-

tation. Other probabilistic based techniques have also been used. In [KH06],

they proposed a Bayesian based approach for predicting next destination based

on predestinations. Similarly, in [DDMGP14] they use naive bayes and kernel

based approach to predict user location on a smart-phone. The techniques in

[KH06][DDMGP14] are similar to this work in that they are all grounded on

Bayesian inference. However, the heuristics used to estimate prior probabilities

do differ.

Clearly, the techniques developed and conclusions drawn from most of the

works I have reviewed rely heavily on the nature of data studied (e.g., resolution

of location data) and the prediction task. With respect to data and prediction

task, our work is loosely connected to that in [ZXYG13]. However, there is a

important difference regarding the data in that the CDR data they use contains

call pattern between users which they use to generate social relationships be-

tween users which forms the basis of their method. As previously mentioned, I

do not have such attributes in the dataset I study.

42



4.3. THE DATASET

5e+03 1e+06 3e+06 6e+06

0

5

10

15

20

25

Number of unique users in dataset (N) 

D
at

as
et

 d
iv

er
si

ty

●

●

●

●
●●

●

●

Previous study
This study

●

●

●
●
●

0 1000 2000 3000 4000 5000 6000

4
6

8
10

12

Figure 4.1: Comparison of dataset diversity in location prediction studies

4.3 The dataset

4.3.1 A primer on cell-ID positioning and Call Detailed

Records(CDR)

In a cellular network, a cell is a geographical area covered by a base station

-a piece of equipment that facilitates wireless communication between user de-

vice (UD) and a network. The cell covered by a base station can be from one

mile to twenty miles in diameter, depending on terrain, population density and

transmission power. A UD is always receiving message broadcasts by these

base stations; thus, I can approximate its actual location using the geographical

coordinates of the corresponding base station. Hence, the UD is assumed to

be located at the base station coordinates independently of its actual position

within the cell [TV04]. In this work, cell location refer to base station coordi-

nates. CDRs constitute a sequence of places, related to a single user, where a

call (or text message) was made thus describing the user’s hop movements as

they make calls. Due to personal nature of this data, the richness of available
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Table 4.1: Background statistics of the dataset

Category Description
Starting date August 1, 2013
Ending date December 31, 2013
Data gaps October 1-October 30 2013
Number of cell towers 2101
Number of users 16,000,000
Number call events 3,5,000,000

attributes in a CDR dataset vary. For instance, the MIT Reality Mining dataset

[ZXYG13] is a publicly available CDR dataset with rich information about call

events ( including caller and recipient of calls). On the other hand, in this work,

I have access to what I consider to be a very sparse CDR dataset. In our case

I define sparsity in feature space in terms of features (not considering those

which can be derived ) in a dataset available for prediction. Each call event

has the following attributes: anonymised user ID, time stamp and BTS tower

coordinates.

4.3.2 Background characteristics

The data is from a leading cellular phone operator in Bangladesh. It was col-

lected in 2013 and covering the months of August, September, November and

December. For some logistical reasons, I do not have data for October. As

pointed out earlier on, I consider this data to be a case of sparse CDRs. For

example, for a call event, I do not have attributes indicating where the call is

directed to. In Table 4.1, I present background characteristics of the data. In

Fig. 4.2 and Fig. 4.3, I present calling pattern of two random users in order to

emphasize diversity of users in the dataset (user shown in Fig. 4.2 seems to be

a more frequent user while the one depicted in Fig. 4.3 makes very few calls).

Although the total number of unique users is very large, usage patterns and

length of history varies greatly with the mean history being 35 days. For this

study, I select 6,141,508 users whose history length is greater than 35 days to

ensure that I have consistent users.

4.3.3 Spatio-temporal analysis of call activity

I carried out exploratory analysis to understand how call activity (number of

calls made at a base station per unit of time) varies in both space and time.

Strictly speaking, in this current work, I study the spatial and temporal compo-
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Figure 4.2: Call pattern of sample user: Frequent user (The intensity of the
color ramp represents count of calls)
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Figure 4.4: ECDF of number of distinct cells visited by a single user

nents separately although the spatial analysis do have a temporal component.

In order to understand variations in space, I measure spatial autocorrelation of

call activity. Spatial autocorrelation measures how a variable is correlated to

itself in space. I choose to use Moran’s I because it is one of the most com-

monly used indices for this purpose based on our literature search. I consider

call activity at two levels of temporal resolution: hour and day. For this work

I did not do an exhaustive analysis but rather as a proof of concept, I picked

arbitrarily a single day August 1,2013. I computed total calls made on this day

disaggregatd by base station. For hour, I picked 12 noon and computed call

counts in a similar fashion. The choice of 12 noon is because it is one of the

peak hours. I then just computed Moran’s I on these two datasets and present

the results in Fig Fig. 4.5 and Fig. 4.6. Due to the clear spatial separation

between the greater Dhaka region (shown in green) and rural northern regions

(shown in red) which would influence the results of Moran’s I, I computed this

measure separately for each of them.

For the northern region, for both hourly (see Fig. 4.5) and daily (see Fig.

4.6) results, the p-value is very large ( when considered at 95 percent significance

level) which which suggests lack of spatial autocorrelation. On the other hand,

for Dhaka region, in both cases the p-value is very low and therefore suggests

positive ( due to positive value of Moran’s I) spatial autocorrelation. However,
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Figure 4.5: Total calls made at 12 noon of August 1 2013

I note that the values 0.013 and 0.074 for hourly and daily respectively indicate

that the strength of spatial autocorrelation is very weak. Due to this lack of

strong spatial autocorrelation, I think it is reasonable to think of base station as

points of interest (POI) which attract people differently at different times. This

is the insight I incorporate into our scheme for enhancing Bayes based predictor.

In the temporal dimension, I use hour as the unit of time. The question I

ask is how much does call activity vary across the hours of the day. I computed

for the whole dataset, total count of calls made at each hour disaggregated by

day of the week. The choice to disaggregate by day of the week was simply to

understand variations across days as well. I utilise an image plot shown in Fig.

4.7 to understand this question. As expected, peak call times seem to coincide

with regular working hours. I observe that calling peaks from late morning

around 11 to 17 hours. Across the days, Monday and Tuesday seem to have

more calls than the rest of the days.
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Figure 4.6: Total calls made on August 1
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Figure 4.7: Hourly variation of calls across the week

4.4 Prediction task formulation

I assume there is a cellular network with many subscribers and I have access

to their call history in the form of CDRs. Our interest is to know which cell

a single user will visit next given their history of visits. Therefore the spatial

resolution of user location is cell level. In this current work, I do not concern

ourselves with the lead time of prediction, rather I just want to predict the next

location regardless of when they may appear there. This is because I are dealing

with CDRs which are sparse and sporadic.

4.4.1 Preliminary definitions

A cell c represents a discrete geographic region where a user can visit. I denote

a set of all cells in the cellular network as C. For convenience, I label them as

c1, c2, . . . , cK . Strictly speaking, it is difficult to establish the exact geographic

extents of a cell but it is helpful to think of cells as voronoi cells generated from

all base station coordinates. Thus, I can associate each cell with geographic

coordinates of a base station, I denote the geographic coordinates of cell ck as

csk ∈ R2 because in our case I have only horizontal coordinates (latitude and

longitude). Secondly, I characterize each cell by call count ( number of calls made

per unit of time). For example, if I set unit of time for call count as hour then the
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4.4. PREDICTION TASK FORMULATION

notation dck means call count per hour for cell ck. I denote the set of users in the

network as U so that {ui ∈ U|i = 1, 2, . . . , N}. A CDR represent location history

for a given user. I denote it as Hui = {(tj , ck)|ck ∈ C, tj ∈ R, j = 1, 2, . . . , n}
where tj is a time stamp so that this is user history up to time tn. I characterize

each user by a set of features (e.g how often they make calls, the distances they

travel every day) in order to learn about their mobility patterns. I represent

these attributes as an N × p dimension matrix of features Xui where p is the

number of features as shown in (4.1).

4.4.2 Problem definition

I now formally define the prediction task. Given a single user location history

up to time tn as follows: (t1, c1), (t2, c2), . . . , (tn, ck) I would like to make a

prediction of the next cell the user will visit at tn+1. In this work, I do not

specify the look ahead time (∆t = tn+1 − tn) of prediction. However, I assume

that I are dealing with a regular user (who on average makes a phone call at

least once in 2 days). I cast this problem in a probabilistic fashion as follows:

P (C = ck|X)-estimate probability of user visiting cell ck given their observed

location history. For brevity, I drop the user subscript, so that when have this

kind of construction I are always referring to a single user. I then invoke Bayes

theorem, and decompose probability of a location ck conditional on the observed

history which can be represented by the feature vector X as shown in (4.1).

X =


x11 x12 , . . . , x1p

x21 x22 , . . . , x2p

.. .. .. ..

xN1 xN2 , . . . , xNp


(4.1)

P (C = ck|X) =
P (X|C = ck)P (C = ck)

P (X)
(4.2)

In (4.2) above, the term to be estimated P (C = ck|X) represents posterior

probability distribution over the set of cells C while P (C = ck) represents the

prior probability that cell ck will be visited, finally P (X|C = ck) is the like-

lihood of cell ck given that I observed features vector X. The likelihood can

be estimated by using any of the available methods such as maximum likeli-

hood. The challenge though is to put together a good scheme for estimating

prior probabilities which translates into reasonable and accurate posterior prob-

ability distribution. In this formulation, the output of the prediction task is a
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set of cells with corresponding probabilities. In the next section, I provide de-

tails of our proposed scheme for computing reasonable prior probabilities and

eventually inferring the posterior distribution P (C = ck|X).

4.5 Enhanced bayes predictor

In the previous section, I presented a probabilistic formulation of the prediction

task at hand. Here, I first present a set of further variables and corresponding

notation I use in our approach, I then provide conceptual background and mo-

tivation for our technique. Also, I describe the set up of a prediction system

based on our proposed technique.

4.5.1 Preliminaries

From each event in the user location history, I can generate features which are

informative of his/her mobility patterns. The quantity and richness of features

which can extracted obviously depend on the nature of the available data. In

our approach, I assume that the only data I have is the location history itself.

In Table 4.2, I present a full list of these features and other variables I use

in our technique. I believe most of them are self explanatory, so, I elaborate

on those I deem require further clarification: a) Time of the day-td: I strat-

ify the day into three blocks based on time as follows: day(0800hr-1700hr) dy,

evening(1800hr-1900hr) ev and night (2000hr-0700hr) ng. b) Gyration g: In

this work, I actually use mean gyration which is the average of the maximum

daily distance covered by a user. I include this variable because previous re-

search [SQBB10] revealed significance of this variable to predictability of human

mobility. I model most of the features as discrete random variables. However,

geographic coordinates of a cell csk, cell call count dck , gyration g and regular

location rs are modeled as continuous random variables.

I cast our approach in the context of supervised classification, so that the ob-

served location history up to time tn is for training the model. For convenience,

I maintain an n dimension column vector HL =
[
l1, l2, . . . , ln

]T
where li ∈ C

which stores cell visited in observation i corresponding to feature matrix X so

that (xij , li) represents value of jth feature in observation i. I also maintain

a set of distinct cells visited by the user L generated from HL. I also main-

tain a matrix of cell traffic data D (I don’t show the matrix here due to space

limitations). For call count, I choose unit of time to be hour because in CDR
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Name Notation Type Domain Description
cell ck discrete C a cell in network
cell location csk continuous R2 geographic coordinates of cell
call count dck continous N cell call count per unit time
location li discrete C user location from history
unique cells L discrete L ⊆ C unique locations visited by user
dw dw discrete {sun, . . . , sat} day of the week
dc dc discrete {week − end, holiday, week − day} day category
tod tod discrete {day, evening, night} time of the day
h h discrete {0, 1, . . . , 23} hour of call
gyration g continous R average maximum daily distance
regular location rs continuous R2 most visited location

Table 4.2: Description of features

data user location history is not updated frequently so I believe this resolution

is suitable. Therefore, the dimensions of D will be K × 24.

4.5.2 Naive Bayes predictor

There two possibilities to consider when I think about which cell a user will

visit next: the user can either revisit the cells they have been to before, or

they can visit a cell they have never visited before. For now, I ignore the latter

possibility and assume that users will only revisit places they have been to

before. Although clearly unrealistic, this is a reasonable assumption considering

that people usually visit a few set of places. Moreover, in some situations where

data isn’t available, this may be the only feasible model. I call this approach

the revisit model.

With the above assumption and an additional assumption of independence

of features in matrix X, I can easily estimate the posterior distribution over the

set of cells in L. I can estimate the prior probability for a cell to be revisited-

Previsit(C = ck) based on frequency of visits in the location history. I write

(4.2) to reflect this new terminology as shown in (4.3). I use maximum likeli-

hood to estimate the class densities P (X = xj |C = ck) can be estimated from

frequencies. As expected, the output from (4.3) is a probability distribution

over the visited cells L. In order to get a single best estimate, I use maximum

a posteriori probability-MAP).

P (C = ck|X = xj) =
P (X = xj |C = ck)Previsit(C = ck)

||L||∑
q=1

P (X = xj |C = cq)Previsit(C = cq)

where ck ∈ L

(4.3)
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4.5.3 Enhanced Bayes predictor

I arleady pointed out that the revisit model presented in the previous section is

naive because contrary to its assumption, people always visit new places. I now

take into account the possibility that a user can visit new places and call this the

visit-revisit model. Clearly, the simple naive bayes predictor presented in (4.3)

cannot work here because it will fail to return a prediction for those cells which

are not in L because they will have zero prior probability. In the rest of this

section, I describe a scheme which solves this problem by incorporating a set

of unvisited cells which satify a predetermined distance threshold and thereby

potentially allowing us to be able to predict a location which a user has never

visited before.

First, I would like to have an estimate of prior probability for each cell

regardless of whether a user has visited it or not. I denote this as Pvisit(C = ck)

to indicate prior probability of a user visiting a cell. In this work, I assume I

have access to data of all users in a cellular network, which in turn means I have

access to comprehensive and exhaustive data on call activity for all cells in the

network. Recall that I maintain this data in D. I can use this data to estimate

prior probability for each cell based on call count. In Section ?? I demonstrated

that cells can be thought of as P.O.I’s so that the more calls a cell routes, the

popular it is and the higher the prior probability it gets.

Does this mean for each user, when I want to make a prediction, I should

consider all cells-C? I can think of three options: a) Consider all cells: I

can use this naive approach and compute prior probabilities and every time I

want to make a prediction, I loop through all cells C. The obvious disadvantage
is unnecessary computational costs without actually enhancing results so much

because some cells are far away and irrelevant to the user. b) Consider all

cells but use a weighting function: This will have similar computational

costs as in the previous scenario but it will take into some weighting. c) Select

unvisited cells within a distance δ of some designated location a: In

the current work, I adopt this approach because it reduces the computational

costs. There are two components to the inclusion criteria: a distance threshold

δ ∈ R and most regular place rs. This is not a cell, I rather compute this

as a geographically weighted mean center based on visited cells (I weight by

frequency of visit to each cell). I introduce V as a set which holds cells which

have not been visited but are within δ km of rs. More formally, I define {ck ∈
V |ck /∈ L, d(csk, rs) ≤ δ} where d(.) is a distance function.
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The next problem is how to blend the prior probabilities. For instance,

consider a cell ck ∈ L, I have to consider both the prior based on history of

visits Previst(C = ck) as well as the base prior probability from call count which

I denote by Pbase(C = ck). I use a simple convex combination of probabilities

to combine these two to obtain an overall prior probability to visit cell ck as

shown in (4.4).

Pvisit(C = ck) =

Pbase(C = ck) ck ∈ V

α1Previsit(C = ck) + α2Pbase(C = ck) ck ∈ L, α1 + α2 = 1

(4.4)

Therefore, I can rewrite the posterior distribution from (4.3) to incorporate

this blended prior probability as shown in (4.5). The rest of the terms can be

estimated exactly in the same way as in the revisit model and I also employ

MAP technique to obtain a single prediction. Next, I have to decide how to

choose the values of the parameters α1, α2. In the current work, I do not use

any optimisation procedure but rather learn these parameters from data.

P (C = ck|X = xj) =
P (X = xj |C = ck)Pvisit(C = ck)

||L∪V ||∑
q=1

P (X = xj |C = cq)Pvisit(C = cq)

(4.5)

4.6 Evaluation

In this section I present details of a series of experiments I conducted to evaluate

the proposed technique. In particular, I investigate the following three key

aspects;

• Overall performance of the predictor. Here, I ask how do accuracy of the

enhanced bayes predictor compare with the naive bayes version?

• Influence of parameters. They are three important parameters in the

proposed technique: δ, α1, α2. In the current work, I only experiment

with δ and fix the values for α1, α2 as explained in Section 4.6.1.

• Performance across users. Different users have varying location histories

and mobility patterns in terms of length, number of distinct places visited.

Therefore, I investigate how accuracy varies across these factors.
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4.6.1 Experimental Design

In Fig. 4.8, I illustrate the two key components of the prediction system I

set up: the preprocessing and feature extraction unit and the location predictor.

The feature extraction unit receives input in the form of raw CDR data which

comes on demand from cellular network. In this unit I transform the raw data

into cell traffic data D and the feature vector X. This set up imitates on-line

processing so that I use the available data to train the model and keep updating

the matrices D and X and retraining the model as more data comes. I choose to

update the matrix D every hour as opposed to updating it for every single call

event because I noticed that the probabilities computed from the counts do not

change significantly within one hour. Also, this updating this matrix for every

call would result in heavy computation costs. As mentioned earlier, I do not

optimize values of the parameters α1, α2 in ( 4.5) but rather provide fixed values

based on the reasoning that people are more likely to revisit previously visited

places rather than visit new places. Therefore, I tried a couple of combination

of values and ended up setting α1 = 0.7 and α1 = 0.3.

For a quick evaluation, I extract a subset of 6,141,508 users with at least 35

days long location history. For each new location in the history, the predictor

updates the matrices X and D and then makes a prediction about the next

location. Our experimental framework tracks the accuracy of the predictor for

each user. I define the accuracy of a predictor for a particular user to be the

fraction of times the predictor correctly identified the next cell. This is the

evaluation metric for our technique.

4.6.2 Results

Overall performance

I use median as the overall measure of prediction accuracy across all users.

Overall, I found that the median accuracy for enhanced bayes is 54 percent

while that for naive bayes predictor is 37 percent which is an improvement of

17 percentage points. In Fig. 4.9, I present empirical cumulative distribution of

the experimental results comparing the accuracy of these two schemes.

In Fig. 4.10, I investigate how accuracy vary as recording time increase

progresses. Naturally, I expect that perfomance should improve as I get more

data about the user. I choose three random users out of the pool of users

to enable easy visualization of the results and show how accuracy for these

users change with increase in history length. I also show how median and
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Figure 4.8: Illustration of set up of the enhanced Bayes prediction system
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mean accuracy for all the users change over time. The results indicate that for

individuals users, accuracy of the predictors clearly improve with time. However,

mean and median accuracy do not show strong rise over the recording days.

Influence of parameters

The distance threshold δ is one of the most important parameters in this tech-

nique. I first analyzed the distribution of gyration. Recall that I defined this

as maximum distance a user covers every day. I computed mean gyration and

found that across all users, then mean gyration is 3 km. Such a small value

may look surprising but considering that the data is from Bangladesh which is

a low income country with rudimentary transport infrastructure, as such people

do not travel long distances on a daily basis. I therefore chose to experiment

with four values: 2,4,6 and the user mean gyration g. I updated user gyration

everyday when new data is added. In Fig. 4.11, the results clearly show that

setting δ to user gyration provide best results.

Accuracy Vs. user attributes

I have shown in the previous sections how the performance of the predictor

varies greatly across users. I therefore investigated this further. I generated the

following user characteristics: length of history (total number of calls), average

calls per day, average call interval, total number of distinct cells visited and

entropy. I compute the entropy of a given user based on the distinct number

of cells visited using the following formula: H(L) = −
||L||∑
i=1

P (li)log2P (li). In

Table 4.3 I present Pearson correlation coefficient between these characteristics

and accuracy based on the whole dataset. Although most of these variables

representing user characteristics have very weak correlation with accuracy, I

note that the direction of association agree with our intuitive reasoning. For

example, it is reasonable to say that a person who makes more calls is also more

likely to make calls in different places which loosely speaking would mean their

location is more hard to predict. This is reflected in the negative correlations

for length of history and average of calls. On the other hand, for average call

interval, the story is different, I suppose that a user with wider call intervals

makes few calls and therefore is more likely to stay at fewer places thereby

making it easy to predict their location. This again is reflected in the positive

correlation of call interval with accuracy. The largest correlation is observed for

the entropy variable. Entropy calculated based on cells measures predictability
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Figure 4.9: Accuracy-the enhanced predictor and naive bayes predictor
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of user. The interpretation of entropy of a variable ( and in this case) is that

higher values correspond to higher uncertainity which agrees with our results

presented in Table 4.3 and also shown in Fig. 4.12.

Table 4.3: Correlation between user attribute and accuracy

User Attribute R2

Length of history -0.21
Average calls per day -0.23
Average call interval 0.22
Number of distinct cells -0.54
Entropy -0.72

4.7 Chapter Summary

The ability to predict future location of a cellular network users is crucially

important with numerous applications. For instance, given a low income region

with extremely low smartphone penetration rate, I envisage (though clearly

ironical) that location prediction techniques have a potential to provide ap-

proximate current user location which would be useful in LBS services in these

regions. In this work, I experiment with a Bayes based predictor in order to

find ways to enhance their performance by leveraging big data. To this end,

I study a large CDR dataset. I first explore the dataset and find that I can

use call activity to generate prior probabilities for use in Bayes predictor. With

this reasoning, I develop an enhanced Bayes predictor which uses a distance

threshold and the users’ regular location to improve generation of prior prob-

abilities. Experimental results show that the enhancements I propose increase

accuracy of the Bayes based predictor by 17 percentage points. I also find a

novel result that accuracy is highest when the distance threshold is set to the

users gyration. In conclusion, I demonstrated that it is feasible to leverage big

cellular data to enhance location predictors without relying on external data

which is encouraging for low income regions. There are several directions for fu-

ture work. First, I would like to carry out a more comprehensive and exhaustive

analysis of spatio-temporal variation of call activity. Second, I intend to explore

more sophisticated prediction models albeit with less demanding computation

requirements and see if similar enhancement can be done. Further, I intend to

optimize parameters α1, α2 and δ.
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Chapter 5

Location

Prediction-Communal

Models

5.1 Introduction

Thanks to the advent of cheap sensors, many mobile devices nowadays come

with the capability to provide fine grained location traces of a user. However,

beyond current location some applications can benefit from anticipating the

location a user will visit in the near future. This is where location prediction

comes in. For example, predicting a user’s next location would be useful for

urban planning in anticipating traffic levels.

The problem of location prediction has been extensively studied[ZXYG13,

SKJH06, DGP12, KH06, SMM+11, EKK+13]. However, most of the works are

context specific. A good example of such contexts is the type of data used: res-

olution of location data and whether additional data ( e.g., social relationships

data is used or not). For example, in [BSM10] they use social relationships data

to improve results of location prediction. Thus, the conclusions drawn and the

techniques developed cannot be transfered to new situations (e.g, cases where

additional data isn’t available) without substantial modifications. The afore-

mentioned observation plus the fact that human mobility is inherently dynamic

means that the area of location prediction is still open to further explorations.

In this study, I explore the potential to improve prediction models for indi-
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viduals (reducing model training time and increasing prediction accuracy) by

leveraging community-wide data. To this end, I carry out a systematic ex-

periment with real life mobility dataset. I choose to experiment with logistic

regression classifier because although simple, it is robust. My broad experimen-

tal objectives are two fold: investigate whether use of community-wide learned

model parameters in the training process of an individual model can reduce

training time and whether systematic combination of community wide model

parameters with individual model parameters can improve accuracy of predic-

tions. I demonstrate that when I use parameters from community model as

lower bounds in the optimization process while training individual models, the

training time is drastically reduced by almost 100 percent. However, regard-

ing accuracy, current results do not show considerable improvement of accuracy

when I combine community wide model parameters and individual model pa-

rameters. The main contribution of this work can be summarized as follows:

• Experiments and evaluation. I conduct a systematic experiments with a

large scale data to understand how well community level mobility patterns

approximates individual users.

• Simple heuristic for logistic regression. I demonstrate that given a large

scale data for many users, the idea of using community models can drasti-

cally speed up the process of training models and making predictions for

individual users which is a desirable property for any system.

5.2 Related work

I have identified three core aspects of the single user location prediction re-

search: data, prediction task, and prediction approaches and I review previ-

ous work along these categories. Majority of the previous works[EKK+13,

KH06, SMM+11] conducted their experiments with location data generated

from GPS/Wi-fi which I consider to be high resolution with only two works

[KWSB04, ZXYG13] where they used CDRs which can be considered as low

resolution. In [BSM10] they demonstrated that inclusion of social network data

enhances prediction results. The generic task is often to predict location of a

user some time in the future. However, the subtle details such as what informa-

tion I are starting with (current context), lead time or whether I are interested

in temporal aspects (e.g., arrival time, stay duration) vary across studies. Most

of the earlier works focused on the task of predicting the next place/destination
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a single user will visit. Several methods have been proposed for location pre-

diction in different contexts (location data and prediction task). One of the

popular approaches is use of Markov models [SKJH06, AS03] which is natural

owing to the sequential nature of location prediction tasks. However, other non

sequential models have also proved to perform even better than Markov models

as demonstrated in [EKK+13, MRJ12].

As regards data, this study is different from most of the previous works

because I use low resolution CDR data. However, my approach and philosophy

is most similar with the work in [MRJ12] where they use collaborative filtering

to improve prediction accuracy for new users. However, the important difference

is that they try to match new users with similar old individual users while in my

case the intention is to learn from a large community which also turns out be

computationally cheaper as compared to computing similarities for individual

users. This work is different in spirit from the rest of the works reviewed because

I also interested in reducing training time while they were only focusing on

accuracy. There are many situations where accuracy can be traded for fast

results.

5.3 The dataset

In a cellular network, a cell is a geographical area covered by a base station -a

piece of equipment that facilitates wireless communication between user device

(UD) and a network. The cell covered by a base station can be from one mile to

twenty miles in diameter, depending on terrain, population density and trans-

mission power. A UD is always receiving message broadcasts by these base

stations. Thus, I can approximate its actual location using the geographical

coordinates of the corresponding base station. Hence, the UD is assumed to

be located at the base station coordinates independently of its actual position

within the cell [TV04]. In this work, cell location refer to base station coordi-

nates. CDRs constitute a sequence of places, related to a single user, where a

call (or text message) was made thus describing the user’s hop movements as

they make calls. Due to personal nature of this data, the richness of available

attributes in a CDR dataset vary. For instance, the MIT Reality Mining dataset

[ZXYG13] is a publicly available CDR dataset with rich information about call

events ( including caller and recipient of calls). On the other hand, in this work,

I have access to what I consider to be a very sparse CDR dataset. In this work, I

define sparsity in feature space in terms of features (not considering those which
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Figure 5.1: Call pattern of sample user: Frequent user

can be derived ) in a dataset available for prediction. Each call event has the

following attributes: anonymised user ID, time stamp of call event and base

station coordinates.

The data is from a leading cellular phone operator in Bangladesh. It was

collected in 2013 and covering the months of August, September, November and

December. For some logistical reasons, I do not have data for October. The data

was acquired through an agreement between the cellular company operator and

The University of Tokyo’s Shibasaki Lab. This agreement doesn’t allow public

access to the data. In Table 5.1, I present background characteristics of the

data. There are a total of 16 million unique users in the dataset. However,

majority of the users are sparse and non-consistent users as demonstrated in

Fig. 5.2 and Fig. 5.1, in which I show the calling pattern of two random users

in order to emphasize diversity of users in the dataset (user shown in Fig. 5.1

seems to be a more frequent user while the one depicted in Fig. 5.2 makes very

few calls).

5.4 Location prediction

In this work, I assume there is a cellular network with many subscribers and I

have access to their call history in the form of CDRs. My interest is to know
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Figure 5.2: Call pattern of sample user: sparse user

Table 5.1: Background details of the dataset

Category Description
Starting date August 1, 2013
Ending date December 31, 2013
Data gaps October 1-October 30 2013
Number of cell towers 2101
Number of users 16,000,000
Number call events 3,5,000,000
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Name Notation Type Domain Description
cell ck discrete C a cell in network
cell location csk continuous R2 geographic coordinates of cell
call count dck continous N cell call count per unit time
location li discrete C user location from history
unique cells L discrete L ⊆ C unique locations visited by user
dw dw discrete {sun, . . . , sat} day of the week
dc dc discrete {week − end, holiday, week − day} day category
tod tod discrete {day, evening, night} time of the day
h h discrete {0, 1, . . . , 23} hour of call
gyration g continous R average maximum daily distance
regular location rs continuous R2 most visited location

Table 5.2: Description of features

which cell a single user will visit next given their history of visits so that the

spatial resolution of user location is cell level. In this current study, I do not

concern ourselves with the lead time of prediction, rather I just want to predict

the next location regardless of when they may appear there. This is because I

are dealing with CDRs which are sparse and sporadic.

5.4.1 Features for prediction

A cell c represents a discrete geographic region which a user can visit. I denote

a set of all cells in the cellular network as C. For convenience, I label them as

c1, c2, . . . , cK . Strictly speaking, it is difficult to establish the exact geographic

extents of a cell but it is helpful to think of cells as voronoi cells generated from

all base station coordinates. Thus, I can associate each cell with geographic

coordinates of a base station, I denote the geographic coordinates of cell ck as

csk ∈ R2 because in this case I have only horizontal coordinates (latitude and

longitude).

I denote the set of users in the network as U so that {ui ∈ U|i = 1, 2, . . . , N}.
A CDR represent location history for a target single user. I denote it as Hui =

{(tj , ck)|ck ∈ C, tj ∈ R, j = 1, 2, . . . , n} where tj is a time stamp so that this is

user history up to time tn. From each call event in the user location history,

I can generate temporal features (I are limited to temporal features because

of sparsity of data in feature space) which are informative of his/her mobility

patterns (e.g., how often they make calls and when do they usually make calls).

In Table 5.2, I present a full list of these features and other variables I use in

this work. I represent these features as an N × p dimension matrix of features

Xui where p is the number of features as shown in (5.1).
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X =


x11 x12 , . . . , x1p

x21 x22 , . . . , x2p

.. .. .. ..

xN1 xN2 , . . . , xNp

 (5.1)

I cast this approach in the context of supervised classification, so that the

observed location history up to time tn is for training a prediction model. For

convenience, I maintain an n dimension column vector HL =
[
l1, l2, . . . , ln

]T
where li ∈ C which stores cell visited in observation i corresponding to feature

matrix X so that (xij , li) represents value of jth feature in observation i. I also

maintain a set of distinct cells L visited by the user generated from HL.

5.4.2 Location prediction task

I now formally define the prediction task. Given a single user location history

up to time tn as follows:

(t1, c1), (t2, c2), . . . , (tn, ck) I would like to make a prediction of the next cell

the user will visit at tn+1. I do not specify the lead time (∆t = tn+1 − tn) of

prediction. However, I assume that I are dealing with a regular user (who on

average makes a phone call at least once in 2 days). Clearly, this task can be

solved using most of the classification algorithms where the target output is cell

location.

5.4.3 Prediction with logistic regression

Background

In logistic regression, the objective is to estimate posterior probabilities of K

classes through use of linear functions in the features. Although it is probably

most popular with binary classification, this model has an efficient generalization

for the case of multi-class classification often referred to as multinomial logistic

regression. For k = 1, . . . ,K − 1 and parameter vector θTk it can be represented

as in 5.3 [FHT01]. In this case, the interpretation is that it is the probability

that a user visits cell ck given their location history.

P (C = ck|X = x) =
eθk0+θT

k x

1 +
K−1∑
j=1

eθj0+θT
j x

(5.2)
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Model training is the process of finding optimal values for the parameter vector

θTk . An error function E(θ) in the model parameters as shown in 5.2 is usually

derived using maximum likelihood.

E(θT1 , . . . , θ
T
K−1) = −

N∑
i=1

K−1∑
k=1

lik log yik (5.3)

where yik = P (C = ck|X = xi) and N is the total number of training examples.

Next, in order to determine optimal values of θTk the error function E(θ) is

minimize with respect to θ. The general form of optimization problem is shown

in 5.5.

minimize
x

f(x)

subject to fi(x) ≤ bi, i = 1, . . . ,m.
(5.4)

This error function can be minimized by a family of Newton-Raphson meth-

ods. In the quasi newton Raphson technique, the algorithm takes initial values

(θ0) and then makes updates to θ using first and second order derivatives of

E(θ) for a specified number of iterations until convergence.

Community Vs. individual models

For any target individual user, I can use their location history to create an

individual model. In addition, I also introduce the concept of community M

which I define as a set of cells selected based on geographic proximity such that

M ⊂ C. I can split a geographic region containing the cell towers into equal

size grids and create communities based on grids so that all cells which fall into

some grid j will belong to community Mj where j = 1, . . . , N . The goal is

to create a community model which captures high level patterns as opposed to

individual patterns. In order to achieve this, I first create what can be considered

as community data by simply pooling together all data from each cell in the

community and then train a model based on this data. Next, I discuss inclusion

criteria for an individual user to a community. Since users make phone calls

across different cells, it is almost impossible to find a user with only a single

cell tower in their location history. I use a simple inclusion procedure based

on proportions and parameter γ as follows: |M
∩

L|
|L| ≥ γ =⇒ ui ∈ M where

γ ∈ [0, 1]. For example, if I set γ = 0.9, then a user ui belongs to community

Mj if 90 percent of the cells in his location history belong to Mj .
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Proposed heuristics

The overall rationale of my proposals is that since a community model captures

group level mobility patterns, I believe some of the randomness in individual

level mobility can be reduced by taking into account group level patterns.

Custom initial values: Given a community model Mθ
j characterized by

its parameters θ (I omit the subscripts and superscripts for simplicity), then

for any individual user in community Mj , instead of using random guesses in

the model training, I can use Mθ
j . Theoretically, since E(θ) is convex, different

initial values still result into same solution. However, model training time could

possibly change because rate of convergence during the minimization process is

sensitive to initial values.

Constrained optimization: The minimization process as explained in

Section 5.4.3 can be subject to some constraints. In this case, I would like the

parameters in the individual models to be bounded by the parameter values in

the community model so that the minimization can take the form shown in 5.5

minimize
θ

E(θ)

subject to θ ≤ b, k = 1, . . . ,K − 1.
(5.5)

where b is coming from Mθ
j . Again, in normal cases, this would not change the

optimal values since its a convex optimization problem but it would definately

affect the rate of convergence.

Ensemble model: The approach of combining models is common in

machine learning and the resultant model is often called an ensemble. I apply

this technique here by combining parameters from community model with those

from individual model through a simple weighted averaged. Given two constants

α1, α2, α1+α2 = 1, I derive an ensemble modelH as follows: Hθ = α1M
θ
j +α2I

θ

where Iθ represents parameters from individual model belonging to community

Mj .

5.5 Experiments

5.5.1 Experimental set up

Experiment objectives

The goal of the experiment is twofold: to test whether parameters from com-

munity model can be used to reduce training time of individual models and also
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test if an ensemble model derived from community and individual model would

give better prediction accuracy. Specifically the objectives are as follows:

1. Use community-wide model parameters in training of individual model

(the target here is model training time).

• Use community-wide model parameters as initial values in the min-

imization of E(θ) for individual model. I are calling this scenario

Custom initial values model.

• Use community-wide model parameters as lower bounds in the min-

imization of E(θ) for individual model. I are calling this scenario

Constrained optimization model.

2. Ensemble model (the target here is accuracy). Create an ensemble model

from community and individual models and use it in place of individual

model. I are calling this scenario Ensemble model.

Evaluation measures

Although most of the prediction systems are online in nature, I do the experi-

ments in batch mode. I have four months of location history (August, Septem-

ber, November, December) and I use 70 percent of this data for training and the

rest for testing. I use two evaluation measures: accuracy and training time. I

define accuracy simply as the proportion of correct predictions made out of the

total number of predictions a model was tasked with. Training time of a model

is the amount of time it takes for a model to go through the training data and

find optimal model parameters. For each target individual in the experiment, I

create four models: Standard model ( normal logistic regression model), custom

initial values model, constrained optimization model and ensemble model. I

measure training time for all models except ensemble. I also record accuracy for

all the models. I group users by community and compute summary evaluation

measures : median accuracy and median training time within each community

which I report on in the results section.

Data preparation and the experiment process

In order to work with more consistent users, I extracted a subset of data from

City of Dhaka and then picked users with 500 or more call events. Next, I

needed a reasonable basis for optimal grid size for community demarcation. I use

gyration for this. Gyration is the maximum distance traveled by a user within
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Table 5.3: Experimental data details

Community Number of cells Number of users
com254 54 150
com363 130 124
com387 46 176

a single day, I found the mean gyration to be less than 3km. The significance of

this is that majority of the people usually don’t go beyond a radius of 3km from

their homes during their daily travels. Therefore, I set grid size to 3km× 3km

and found a total of 212 communities . However, due to processing requirements,

I decided to select only those communities with more than 15 cells within them

which reduced the target communities to only 23. Out of these, I report on

results for three communities with varying number of users (see Table ?? for

details about experiment data). The whole process flow of the experiment is

as follows: I trained a community model for all the target communities and

store their parameters. I ensured that I only trained these models with 70

percent of the data. Then for each individual user, trained four models in turn

as explained in the previous sections and recorded training time and prediction

accuracy. For the ensemble models I gave more weight to the individual model

and therefore after some experimentation set α1 = 0.3 and α2 = 0.7. I carried

out this processing using Weka machine learning library [HFH+09]. The number

of iterations was set at 200 for all the models.

5.5.2 Results and discussion

In the first investigation, I investigated the effect of using custom initial values

(as opposed to using default initial values-in most cases zeros) in the minimiza-

tion of E(θ). I also investigated the effect of constraining the minimization of

E(θ) (as opposed to the default unconstrained minimization) by providing cus-

tom lower bounds taken from community parameters. I present the results of

this investigation in Fig. 5.3. One very interesting result is that when I use

custom lower bounds in the minimization process, there is a nearly 100 per-

cent reduction in training time without significantly affecting accuracy (see Fig.

5.4). Training of a logistic model has O(n) time complexity, as such training

time increases linearly with number of training examples and number of classes

(in this case cells). Consequently, community com363 has much longer training

time as compared to the rest of the communities because it has the largest num-
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Figure 5.3: Comparison of model training time

ber of cells. For such kind of scenarios where I have many classes and training

instances, this result shows that I could significantly reduce training time by

using lower bounds from community model. On the other hand, use of custom

initial values doesn’t seem to work well as it is increasing the training time

rather than reducing it. I don’t consider training time in the case of ensemble

model because training time is same as in the standard model (I have to train a

standard model first and then use the parameters to derive ensemble model).

I also investigated accuracy of all the categories of the models I derived. In

Fig. 5.4, I compare accuracy of different variations of the models across the

target communities and also accuracy when I combine the results from all the

communities. Although I didn’t expect accuracy difference among the standard,

constrained and custom initial values when considered within each community,

the results shows slight accuracy differences. This is practically possible even

when minimizing a convex function. However, I expected differences between

standard and ensemble model because they are derived differently. The results

show that the standard classifier has better performance than the ensemble

model.
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Figure 5.4: Comparison of model accuracy

5.6 Chapter Summary

I set out to investigate how I can leverage large scale data to come up with

community-wide model parameters which I believe captures group level mobility

patterns common to all individuals within this particular community. I argue

that this kind of community model would be useful in location prediction for

individuals in two scenarios: to reduce training time of models and perhaps

even improve accuracy. I carried out experiments to test my hypothesis using a

real life dataset of human mobility. The results of the experiments support this

hypothesis that indeed if I take parameters learned from systematically selected

community-wide data and use them as lower bounds in the minimization of

the logistic regression error function for individual models, the training time

is reduced by nearly 100 percent. In any computation system, the ability to

reduce computational time without compromising on accuracy is desirable. On

the contrary, when I use community wide learned parameters as initial values

in training individual model, I find that training time actually increases. Also,

the ensemble model I created from community and individual models doesn’t

improve prediction accuracy as I expected. I believe this is due to the way I

created communities, I could have created more personalized communities by

considering individual mean gyration rather than the overall mean gyration.
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However, this kind of approach requires much more computations.

I still believe incorporation of community-wide parameters has potential

to improve accuracy in individual models. For example in cases of bayesian

logistic regression where I need to provide prior distribution of parameters, these

community wide parameters could be useful. In future work I want to consider

this approach. I also would like to try different approaches to demarcating

communities and see what effect they have on accuracy.
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Conclusion and Future

Work

In this thesis, I conducted a study of human mobility using data generated from

call detailed records. I undertook this study because thorough understanding

of laws that govern human movements has useful applications in public health,

urban planning, disaster management, traffic engineering and marketing. Nowa-

days, a study like ours is relatively easy to conduct due to the high penetration

rate of smartphones and cellular phones, which has led to generation of mas-

sive datasets in urban spaces depicting when and where people go every day.

The primary research questions I addressed in this study can be summarized as

follows:

1. How can we visualize spatio-temporal mobility data in order to easily

discern daily as well as aggregated mobility patterns for individual users?

2. Given location history of an individual user, can we detect if a user has

changed place of residence (home) or not? If so, can we develop an algo-

rithm to accomplish this task in an automated fashion?

3. How to enhance location prediction models for individual users? In the

current study, I define enhancement as reducing the training time of mod-

els as well as increasing prediction accuracy.

In response to the questions above, I first developed a simple but useful web-

based framework for interactive visualization of daily mobility patterns in order

to allow easy and quick interpretation of trends. In the system, I show summary
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statistics regarding user movement such as how far they travel everyday. I

also visualize commonly visited places and identify home region of the user. I

then explored the potential to use call detailed records generated from mobile

phones as surrogate residence history to infer change of place of residence (home)

for individual users. Finally, I undertook to improve performance of location

prediction models. In particular, my objective was to reduce training time of

prediction models for individual users as well enhance prediction accuracy.

The simple visualization framework I developed in Chapter 2 is very useful

for discerning patterns in mobility and consequently in application of these

insights in decision making. In Chapter 3, I proposed a clustering technique to

automatically identify users who change place of residence given their residence

history in the form of CDRs. Results from the experiments I conducted show

that this proposed technique performed reasonably well. In Chapters 4 and

5, I tackled the problem of enhancing location prediction models. My guiding

principle was to improve performance without relying on any form of external

data. I first experimented with a Bayes based location predictor and managed

to come up with an enhanced Bayes predictor which outperforms the regular

naive Bayes predictor without use of external data. Next, I targeted to reduce

model training time and suggested the use of parameters from a community

wide model. Here again, results from the experiments show that my idea to use

community-wide learned model parameters in individuals works very well and

reduces training time for individual models by nearly one order of magnitude.

With regard to the work in Chapter 3, although I’am confident the results

are promising and have potential to benefit urban planners in cities, this par-

ticular research was strongly limited by a number of factors which could hinder

application of this technique in other settings. First and foremost, I didnot have

access to ground truth data, in this case, the ideal ground truth data would have

been a user’s place of residence at different points in time. Consequently, I gen-

erated what I call a quasi-ground truth data to evaluate the proposed technique.

Secondly, the data used in this study spans four months, a much longer history

would have been desirable and would have definitely resulted in more reliable

evaluation. The overall consequence of these two factors is that the results need

to be interpreted with caution. There are several directions for future work.

First, in the introduction I mentioned that one important application of de-

termining residence change from CDR data is the ability to obtain estimates

of internal migration in a region, therefore as a case study I plan to use the

approach I proposed to estimate internal migration rates from the CDR data
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from Dhaka, Bangladesh and compare results with official estimates from the

Statistics Bureau.

For the work on location prediction there are certainly many aspects that

could be improved with further work. For example, I only experimented with

what can considered as none-complex and linear algorithms. I chose to do

so because algorithms such as logistic regression and Bayes based are easy to

implement and are also computationally cheap. The latter is very important

for quick evaluation and also considering I had 16 million users to evaluate.

However, it is important to note that the problem I solve in Chapter 4, which

essentially reduces to how to handle new unseen classes in the case of multi-class

classification problem is inherent to all classifiers when faced with a multi-class

problem regardless of whether they are linear or not. In some Machine Learning

literature, this problem is referred to as open set classification [SJB14]. In this

regard, the heuristics I proposed in Chapter 4 can equally work even on complex

classifiers. Nevertheless, as future work, I still would like to apply these proposed

enhancements to other family of classifiers such as neural networks or tree based

methods.

The situation is slightly different for the success I saw in reducing training

time of models in Chapter 5, in this case, the process is sensitive to whether the

optimization problem being solved is convex or not. So in future work, I intend

to apply the technique of using communal parameters in non-convex optimisa-

tion settings such as in neural networks and my belief is that this approach may

work even better in this setting because due to the none-convexity of the opti-

mization problem, choice of initial value for parameters is crucially important

and usually results in different results.
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Marta C González. Development of origin–destination matrices

using mobile phone call data. Transportation Research Part C:

Emerging Technologies, 40:63–74, 2014.

[JBH+12] Anders Johansson, Michael Batty, Konrad Hayashi, Osama Al

Bar, David Marcozzi, and Ziad A Memish. Crowd and environ-

87



BIBLIOGRAPHY

mental management during mass gatherings. The Lancet Infec-

tious Diseases, 12(2):150 – 156, 2012.

[Jor02] A Jordan. On discriminative vs. generative classifiers: A com-

parison of logistic regression and naive bayes. Advances in neural

information processing systems, 14:841, 2002.

[KCRB09] Gautier Krings, Francesco Calabrese, Carlo Ratti, and Vincent D

Blondel. Urban gravity: a model for inter-city telecommunication

flows. Journal of Statistical Mechanics: Theory and Experiment,

2009(07):L07003, 2009.

[KE05] Matt J Keeling and Ken TD Eames. Networks and epidemic mod-

els. Journal of the Royal Society Interface, 2(4):295–307, 2005.

[KH06] John Krumm and Eric Horvitz. Predestination: Inferring desti-

nations from partial trajectories. In UbiComp 2006: Ubiquitous

Computing, pages 243–260. Springer, 2006.

[KWSB04] Jong Hee Kang, William Welbourne, Benjamin Stewart, and Gae-

tano Borriello. Extracting places from traces of locations. In

Proceedings of the 2nd ACM international workshop on Wireless

mobile applications and services on WLAN hotspots, pages 110–

118. ACM, 2004.

[LBH12] Xin Lu, Linus Bengtsson, and Petter Holme. Predictability of pop-

ulation displacement after the 2010 haiti earthquake. Proceedings

of the National Academy of Sciences, 109(29):11576–11581, 2012.

[LD] WILLIAM LJXu-DOEVE. Measurement of internal and interna-

tional migration.

[LHK+09] Kyunghan Lee, Seongik Hong, Seong Joon Kim, Injong Rhee, and

Song Chong. Slaw: A new mobility model for human walks. In

INFOCOM 2009, IEEE, pages 855–863. IEEE, 2009.

[LTH+92] Hernan Larralde, Paul Trunfio, Shlomo Havlin, H Eugene Stanley,

and George H Weiss. Number of distinct sites visited by n random

walkers. Physical Review A, 45(10):7128, 1992.

[Luc14] Barbara Arese Lucin. Country overview: Bangladesh. Technical

report, GSMA Intelligence, 2014.

88



BIBLIOGRAPHY

[Man70] VI Manual. Methods of measuring internal migration. Population

Studies, (47), 1970.

[MBY+15] Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shiv-

aram Venkataraman, Davies Liu, Jeremy Freeman, DB Tsai, Man-

ish Amde, Sean Owen, et al. Mllib: Machine learning in apache

spark. arXiv preprint arXiv:1505.06807, 2015.

[MHS95] Hernán A Makse, Shlomo Havlin, and H Eugene Stanley. Mod-

elling urban growth patterns. Nature, 377(6550):608–612, 1995.

[MMY+14] Dunstan Matekenya, Ito Masaki, Tobe Yoshito, Horanont Teer-

ayut, Shibasaki Ryosuke, and Sezaki Kaoru. Event detection in

individuals using mobile phone traces. In Proceedings of the 2014

IEICE Communications Society Conference,vol. BS-6, 2014.

[mob16] August 2016.

[MPTG09] Anna Monreale, Fabio Pinelli, Roberto Trasarti, and Fosca Gi-

annotti. Wherenext: a location predictor on trajectory pattern

mining. In Proceedings of the 15th ACM SIGKDD international

conference on Knowledge discovery and data mining, pages 637–

646. ACM, 2009.

[MRJ12] James McInerney, Alex Rogers, and Nicholas R Jennings. Improv-

ing location prediction services for new users with probabilistic la-

tent semantic analysis. In Proceedings of the 2012 ACM conference

on ubiquitous computing, pages 906–910. ACM, 2012.

[Mur12] Kevin P Murphy. Machine learning: a probabilistic perspective.

MIT press, 2012.

[NSLM12] Anastasios Noulas, Salvatore Scellato, Neal Lathia, and Cecilia

Mascolo. Mining user mobility features for next place prediction

in location-based services. In Data Mining (ICDM), 2012 IEEE

12th International Conference on, pages 1038–1043. IEEE, 2012.

[PBKA08] Andrey Tietbohl Palma, Vania Bogorny, Bart Kuijpers, and

Luis Otavio Alvares. A clustering-based approach for discovering

interesting places in trajectories. In Proceedings of the 2008 ACM

symposium on Applied computing, pages 863–868. ACM, 2008.

89



BIBLIOGRAPHY

[PHDL+10] Santi Phithakkitnukoon, Teerayut Horanont, Giusy Di Lorenzo,

Ryosuke Shibasaki, and Carlo Ratti. Activity-aware map: Iden-

tifying human daily activity pattern using mobile phone data. In

Human Behavior Understanding, pages 14–25. Springer, 2010.

[Por00] Leonid Portnoy. Intrusion detection with unlabeled data using

clustering. 2000.

[Pro95] Guylene Proulx. Evacuation time and movement in apartment

buildings. Fire safety journal, 24(3):229–246, 1995.

[PWJX14] Poria Pirozmand, Guowei Wu, Behrouz Jedari, and Feng Xia. Hu-

man mobility in opportunistic networks: Characteristics, models

and prediction methods. Journal of Network and Computer Ap-

plications, 2014.

[RZZB12] Gyan Ranjan, Hui Zang, Zhi-Li Zhang, and Jean Bolot. Are

call detail records biased for sampling human mobility? ACM

SIGMOBILE Mobile Computing and Communications Review,

16(3):33–44, 2012.
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