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Abstract

Computer networking, particularly the Internet, has become an essential platform
for human life and many aspects of industries. Such the successful growth of the
computer networking, instead, insists upon the importance of its efficient manage-
ment such as traffic management and configuration management. On the other
hand, one of recent expectations towards efficient network management stems from
the recent fashion of statistical data analytics such as Artificial Intelligence (AI),
whereas one difficulty in applying statistical data analyses is derived from its low-
level numerical nature differing from actual domain-specific data set. An insight
is that the widespread of computer networking has been contributing to data of
inter-similar objects (e.g., a number of hosts and/or a number of multiple virtual
networks over the shared infrastructure), which can be compared each other to un-
cover knowledge (e.g., typical patterns and atypical anomalous patterns); This indi-
cates the potential usefulness of unsupervised analyses (e.g., cluster analysis), which
extract similar patterns inside data itself without established knowledge database
pre-defined by human experts. However, orthodox unsupervised approaches based
on extracting and clustering numerical values (i.e., feature vectors) face the difficulty
in interpretation of resulting outputs, which is important in management domain
in order to take appropriate actions against the outputs. In this research, we study
unsupervised approaches with structural patterns (e.g., graph structure), which is
more interpretable (e.g., by visualizations) than only using numerical features.

In Chapter 2, we present structural pattern analysis on network traffic data.
This analysis is demonstrated with the traffic data obtained in a measurement point
in the Internet. We particularly focus on end-host profiling by analyzing network
traffic, which is a major stake in traffic engineering. The use of graphlet for end-host
traffic analysis is efficient for interpreting host behaviors, which essentially consists
of a visual representation as a graph. However, graphlet analyses face the issues of
choosing between supervised and unsupervised approaches. The former can analyze
a priori defined behaviors but is blind to undefined classes, while the latter can dis-
cover new behavioral patterns at the cost of difficult a posteriori interpretation. This
work aims at bridging the gap between the two. First, to handle unknown classes,
unsupervised clustering is originally revisited by extracting a set of graphlet-inspired
attributes for each host. Second, to recover interpretability for each resulting clus-
ter, a synoptic graphlet, defined as a visual graphlet obtained by mapping from a
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cluster, is newly developed. Comparisons against supervised graphlet-based, port-
based, and payload-based classifiers with two datasets demonstrate the effectiveness
of the unsupervised clustering of graphlets and the relevance of the a posteriori in-
terpretation through synoptic graphlets. This development is further complemented
by studying evolutionary tree of synoptic graphlets, which quantifies the growth of
graphlets when increasing the number of inspected packets per host.

In Chapter 3, we present structural pattern analysis on network configuration
data. This analysis is demonstrated with the configuration data in a multi-tenant
datacenter network, where multiple customer (tenant) networks are virtualized over
a single shared physical infrastructure. The use of multi-tenancy is cost-effective but
poses significant costs on manual configuration. Such tasks would be alleviated with
configuration templates, whereas a crucial difficulty stems from creating appropriate
(i.e., reusable) ones. In this work, we propose a graph-based method of mining
configurations of existing tenants to extract their recurrent patterns that would be
used as reusable templates for upcoming tenants. The effectiveness of the proposed
method is demonstrated with actual configuration files obtained from a business
datacenter network.

In Chapter 4, we also present future perspectives for structural pattern analy-
sis for the management of actual field domain. Contrary to the previous chapters
(Chapters 2 and 3) that deal with traffic and configuration data in the computer net-
working domain, this chapter discusses the possibility of extending those analytical
approaches to the field domains (e.g., building), which have become more impor-
tant as more field devices become connected. We consider that the spirit of using
data analytics for the management of end-hosts (by traffic analysis) and virtual net-
work configurations (by configuration analysis) should have commonality to some
extent for the management of field domains such as to manage end-devices (e.g., sen-
sors and actuators) and their inter-link configurations. However, analytics on data
obtained in field domains is relatively difficult due to the differences in the charac-
teristics of those domains (e.g., open systems for field domains, rather than closed
systems in computer networking domain), particularly leading to the difficulty in
interpretation of analytical results. In addition, characteristics of data in computer
networking fields are rather aggregated view of discrete and relative information
(i.e., aggregated cardinality), which would be suitable for the discrete structural
model (e.g., graphlet), whereas field data additionally suggests the importance of
individual point-by-point time-series view with non-discrete and absolute values. We
discuss the need for trial-and-error approach of analyzing field data (e.g., per-room
temperature in a building), interpretation of which is gradually complemented by
introducing multiple types of contexts (e.g., switch states of air-conditioning appli-
ances in rooms) and even other data sources (e.g., external temperature outside the
building) that are considered as structurally related. This approach is demonstrated
with an unsupervised pattern analysis over an actual dataset about Electrical Heat
Pump (EHP) equipped in a number of rooms in a building.
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Chapter 1

Introduction

Computer networking, particularly the Internet, has become an essential platform
for human life and many aspects of industries. The Internet has been still growing,
allowing the participation and intercommunication of a variety of devices (including
end-hosts and central-hosts of different domains), and growing number of applica-
tions are deployed to process and exchange a variety of data over the Internet, having
been resulting in playing the significant role of supporting diverse human activities.
Such the successful growth of the Internet, instead, insists upon the importance
of its efficient management such as traffic management and configuration manage-
ment. On the other hand, one of recent expectations towards efficient network
management stems from the recent fashion of statistical data analytics, as recently
represented with Artificial Intelligence (AI), usefulness of which has been studied in
prior arts, whereas a difficulty in applying statistical data analyses is derived from
its low-level numerical nature differing from actual domain-specific data set. An
insight is that the widespread of the computer networking has been contributing to
similar accessible data (e.g., obtained from a number of hosts and/or multiple vir-
tual networks over the shared infrastructure), which can be compared each other to
uncover knowledge (e.g., typical patterns and atypical anomalous patterns), which
will then be used for efficient managements; This indicates the potential usefulness
of unsupervised analyses (e.g., cluster analysis), which in general extract similar
patterns inside data itself without established knowledge database pre-defined by
human experts. However, conventional unsupervised approaches of extracting and
clustering numerical values (i.e., high-dimensional feature vectors) face the difficulty
in interpretation of resulting outputs, which is important in management domain
in order to take appropriate actions against the outputs. In this research, we study
unsupervised approaches with structural patterns (e.g., graph structure), which is
more interpretable (e.g., by visualizations) than only using numerical features.
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CHAPTER 1. INTRODUCTION 2

1.1 Computer networks and their management

1.1.1 Computer networks

Computer networking, particularly the Internet, has been growing with tremendous
number of computing devices used in human daily life and many aspects of industrial
activities. Starting from connecting computers in a few universities, over the course
of several decades, the Internet has been accepting connections from computing
servers in facilities and personal computers in offices and homes; In addition to those
computing devices with fixed location and mostly wired connections, the Internet has
been still growing along with emerging computing devices with new communication
media such as mobile and smart devices with mobile wireless connections in outside
field domains (and possibly wearable devices, sensor devices, and actuator devices
for the near future).

The usage of computer networking has also been diverse. The networked domains
include the one connecting servers and terminal computers in an office (i.e., office
networks), inter-connecting different offices within a campus (i.e. campus networks),
inter-connecting multiple remote sites (i.e., wide-area networks, or carrier networks)
such as for the use of business applications, file sharing, remote conferencing. Other
examples include connecting a number of computing servers in datacenter (i.e., data-
center networks) such as for large scale data processing, and providing connectivities
to mobile computing devices to the Internet (i.e., mobile networks). In addition, up-
coming expectation with the recent fashion of Internet of Things (IoT), is to provide
Internet connectivities to fixed and/or mobile sensing/actuating devices (i.e., field
networks) associated with appliances that had not been previously networked, to
provide new opportunities to produce unmet values.

Another aspect of recent trends in computer networking is stemmed from vir-
tualization; Here, virtualization is in general a form of logically realizing multiple
separated networks over a single shared physical network. Well-known Virtual Local
Area Network (VLAN) and related virtualization technologies has been widely used
for office networks and campus networks, and Virtual Private Network (VPN) for
enterprise wide-area networks. Also, there has recently been a number of researches
for Network Function Virtualization (NFV) especially for carrier networks, and Soft-
ware Defined Networking (SDN) especially for office and datacenter networks. The
primary benefit of such the virtualization is to provide flexibility of access control-
ling and communication qualities, as well as to be cost-effective by consolidating
multiple networks in a single shared infrastructure.

1.1.2 Network management

Such the successful growth of the Internet, instead, insists upon the importance
of its efficient management, which is an activity of maintaining desired running
status of networks in charge. As mentioned above, the Internet has been broadly
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used by tremendous number of computing devices, for a variety of usages, over the
shared infrastructure (e.g., by virtualization); In such the situation, the impact of
incidents such as the ones in capacity, security, configurations would be significant,
simultaneously affecting a number of computing devices and applications. Network
engineers have been put their efforts on network managements.

Representative activities of network management are to deal with traffic and con-
figuration1; Here, traffic is an aggregated collection of data flowing over the computer
networks (i.e., the packet data generated from end-host devices participating in the
Internet), and configuration is relationship among intermediate networking devices
(e.g., switches, routers, firewalls, load balancers, security appliances), specifically
wirings and settings of those devices. Dealing with traffic is essential for under-
standing trends in network usage (e.g., applications) for capacity planning; Handing
configuration is also important for providing correct connectivities among devices
and efficient traffic engineerings (e.g., access controls).

In particular, an important task in management of traffic and configurations is to
detecting misbehaviors by profiling network activities. One of the important aspect
of traffic management is to find such the misbehaviors in end-hosts, examples of
which include the ones significantly consuming network resources (e.g., high volume
of traffic over limited link capacity), using inappropriate applications (e.g., prohib-
ited ones inside a managed domain), and performing malicious activities (e.g., port
scanning and flooding attacks), which can possibly be observed in aggregated traffic
data. On the other hand, one of the important aspect of configuration management
is to find misbehaviors in intermediate networking devices, representative example of
which is inappropriate configurations (e.g., unstandardized one and possibly miscon-
figurations – to proactively avoid this network engineers have put significant efforts
on configuration managements). The sharing and virtualization of networkings has
made network management more complicated, and efficient management of network
configurations is required.

1.2 Statistical analyses for network management

1.2.1 Expectations

Data analytics is one of the recent expectations. This expectation is often noted as
BigData as well as Artificial Intelligence (AI). This expectation is supported with
recent advancement of Machine Learning technologies, as well as the increasing
amount of data obtainable in individual domains.

1A major classification is derived from FCAPS, which represents fault management, configura-
tion one, accounting one, performance one, security one. This classification is based on individual
tasks, while our classification is based on data (e.g., traffic data and configuration one) dealt with
network engineers to conduct those tasks. For example, measuring and analyzing traffic data will
contribute to efficient management for security management by detecting malicious activities.



CHAPTER 1. INTRODUCTION 4

It has been considered that rich amount of data with appropriate statistical an-
alytics will enable machines to acquire knowledges and skills for intellectual tasks
such as image recognition, natural language processing, and possibly system man-
agements. Data analytics with automated computation are characterized with a
few advantages against the past literature (i.e., manual tasks); One is the ability to
automatically analyze data, the amount of which cannot be dealt with by humans;
Another is its statistical nature of finding knowledge from data themselves, which
enables to find unknown and new behaviors.

In addition, the use of statistical data analytics is often considered effective with
the context of network management (and especially traffic management); Statistical
approaches are capable of handing encrypted or no-payload traffic, analyses of which
have been difficult with the conventional payload inspection methods. Possible use
cases of data analytics in network management includes, for example, detecting
malicious behaviors of end-hosts and failures in networking devices by analyzing
network traffic, and extracting best-practices and inappropriate configurations by
analyzing know-hows of human network engineers.

1.2.2 Potential usefulness of unsupervised analysis

On the other hand, it is in general difficult to apply statistical analyses to actual
domains including network management. Event though network managers have
started to measure and store related data (e.g., traffic and configurations), such the
data-driven approaches often suffer from the gap between the low-level numerical
spaces of general-purpose statistical methods and the domain-specific actual data.
This gap will poses a hurdle on the first step of analysis of determining how to
analyze the data with which methods.

One insight towards this issue would be the characteristics of data that there
become more similar objects within individual domains. For instance, as computer
networks are connected from increasing number of devices, traffic data measured
over the shared network can be regarded as the activity of individual end-hosts. For
another instance, as increasing number of virtual networks are deployed over a single
shared physical infrastructure (e.g., virtualized system networks in a datacenter),
configuration data in the shared infrastructure can be regarded as the configurations
of individual virtual networks.

This characteristics of data suggests the potential usefulness of unsupervised
analysis. In a broad view, statistical data analysis can be categorized as supervised
analysis and unsupervised one. Both are common in that each objects in dataset
are abstracted as a set of numerical values (i.e., feature vector) that will represent
the characteristics of object (e.g., traffic of hosts are processed into feature vectors),
which is then discussed through statistical manipulations. The difference between
the two is: The supervised analysis relies on pre-fined dataset about the statistical
characteristics of objects (e.g., learning dataset) to classify unlabeled objects (that
are statistically similar to one of pre-defined) and/or to detect anomalies (that are
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extracted as outliers from any of the pre-defined objects); The unsupervised analysis
extracts similarity and dissimilarity among objects inside the data itself (without
pre-defined knowledges) to detect patterns (clusters of object that are statistically
similar) and anomalies (objects that are not similar to any of the others) in data. As
the supervised approach requires pre-defined dataset (and rather purpose-specific
such as classifications with known labels), the unsupervised approach should be
suitable for handling with the data of such the characteristics as it can extract
patterns and anomalies only from the data, each of which will be for instance used
for trend analysis and also misbehavior detection (including unknown or emerging
behaviors).

1.2.3 Difficulty in interpretations

However, an issue in the unsupervised approach is the difficulty in interpretation
of resulting outputs. The common type of outputs is a set of clusters of numerical
feature vectors that are considered as similar in the feature space. Interpreting the
meanings of each cluster (e.g., type of end-hosts in traffic) requires to investigate the
features. Different from image analysis and natural language processing fields, data
obtained in network management domain (e.g., traffic, or dump of network packets),
in general, is low-level and not suitable for human recognitions, as those networking
data are originally for computer processing. Special-skilled network engineers may
be able to deal with such the low-level data but those data are not the same as the
original traffic but the one abstracted as numerical feature vectors losing meanings
in the original context that the original dataset might retain.

Interpretation in the network management domain is important. Most of use
cases in network management (e.g., misbehavior detection) requires appropriate ac-
tions such as to stop illegitimate traffic and to detaching failure networking devices.
Indeed, there should be uses cases where interpretation has relatively less prior-
ity, examples of which include product recommendation (e.g., collaborative filtering
analysis) in Electric Commerce (EC) sites that would put priority on the increase in
sales rather than analytical interpretations, and include first increasing accuracy of
classification in the machine learning research domains (e.g., earlier stage of image
recognition with deep learning). We consider that those use cases are characterized
with specific purpose, or Key Performance Indicator (KPI) and/or objective func-
tions, whereas data-driven approach for network management is rather open-ended
and requires to talk with data and its analysis results.

1.3 Overview of this research

In this dissertation, we deal with the issues of the difficulty in interpretation with
unsupervised data analysis for network management. Specifically, as stated above,
primary tasks in network management include traffic management and configuration
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management (especially trend analysis and misbehavior detection), and correspond-
ingly we assume that engineers (nor necessarily network engineers) analyze traffic
data measured in network link(s) and configuration setting data obtained from net-
working devices. We assume that those engineers have domain knowledge about
computer networking (to a certain extent, and not necessarily specialists) as well as
about the use of data analytics software (e.g., R language).

Our basic approach is to use structural information obtained from individual ob-
ject in the management domain. Here, that structural information is characterized
with data model representing interrelation among feature values with networked
structure (e.g., graph representation) that are visually accessible to human having
domain knowledge. Namely, we consider that domain-specific graph representation
should be appropriate in providing the effective visualization for interpretation while
preserving analytical capability with existing methods due to its abstract mathemat-
ical model.

Specifically, as structural information, we make use of the graphlet model (widely-
recognized through Ref. [1]) in traffic analysis, and graph-based virtual network
topology representation in configuration analysis. The set of per-host traffic graphlets
are analyzed through extracting feature vectors representing its structural aspects
(e.g., average number of edges per node), performing unsupervised cluster analysis to
produce clusters of hosts that are similar in the structural sense, and then recovering
and visualizing graphlet for each cluster based on its cluster centroid that describes
the visual characteristics of cluster itself instead of individual hosts in the cluster
(named synoptic graphlet). The set of per-virtual network graph representations
are analyzed through cluster analysis on the basis of Graph Edit Distance (GED),
which represents an aspect of direct distance between a pair of structural graphs
(instead of discussing distance between extracted feature vectors), which enables
to visually discuss the similarity and dissimilarity among different virtual network
configurations.

Scope of this research is as follows. As analysis methods, we study unsupervised
one (rather than supervised one). We discuss the application of unsupervised analy-
sis to the network management domain (rather than newly developing the algorithms
of machine learning techniques). Data we deal with are derived from networkings
management domain such as traffic and configurations (rather than media data such
as images, movies, sounds, texts).

1.4 Summary and organization of this disserta-

tion

In summary, we study the use of structural unsupervised analysis for the manage-
ment of network traffic and configurations. The computer networking, particularly
the Internet, has become an essential platform for human life and many aspects of



CHAPTER 1. INTRODUCTION 7

industries, resulting in the importance of its efficient management such as traffic
management and configuration management. Such the management will be sup-
ported with the potential usefulness of unsupervised analyses (e.g., cluster analysis)
due to the recent trends in network usage (i.e., similar objects are deployed and
can be measured within a single management domain). A crucial issue in conven-
tional unsupervised approaches relying on numerical feature vectors stems from the
difficulty in interpretation of resulting outputs, which is important in management
domain in order to take actions against the outputs. In this research, we study
unsupervised approaches with structural patterns (e.g., graph structure), which is
more interpretable (e.g., by visualizations) than only using numerical features.

The reminder of this dissertation is as follows. Chapter 2 presents structural
pattern analysis on network traffic data, particularly end-host profiling by analyz-
ing network traffic with the graphlet model. Chapter 3 presents structural pattern
analysis on network configuration data, particularly finding recurrent patterns in
configurations in virtual networks to construct configuration templates. In addi-
tion Chapter 4 presents future perspectives for extending the spirit of the structural
pattern analysis to actual field domains (in addition to the computer networking
domain) by discussing the resemblance and differences in data characteristics be-
tween the two domains with actual case study through unsupervised comparative
analysis of per-room sensory data obtained in a building. Chapter 5 summarizes
this dissertation.



Chapter 2

Structural Traffic Pattern Analysis
– Synoptic Graphlet : Bridging
the Gap between Supervised and
Unsupervised Profiling of
Host-level Network Traffic

End-host profiling by analyzing network traffic comes out as a major stake in traffic
engineering. Graphlet constitutes an efficient and common framework for interpret-
ing host behaviors, which essentially consists of a visual representation as a graph.
However, graphlet analyses face the issues of choosing between supervised and un-
supervised approaches. The former can analyze a priori defined behaviors but is
blind to undefined classes, while the latter can discover new behaviors at the cost
of difficult a posteriori interpretation. This work aims at bridging the gap between
the two. First, to handle unknown classes, unsupervised clustering is originally re-
visited by extracting a set of graphlet-inspired attributes for each host. Second,
to recover interpretability for each resulting cluster, a synoptic graphlet, defined as
a visual graphlet obtained by mapping from a cluster, is newly developed. Com-
parisons against supervised graphlet-based, port-based, and payload-based classi-
fiers with two datasets demonstrate the effectiveness of the unsupervised clustering
of graphlets and the relevance of the a posteriori interpretation through synoptic
graphlets. This development is further complemented by studying evolutionary tree
of synoptic graphlets, which quantifies the growth of graphlets when increasing the
number of inspected packets per host. 1

1Contents of this chapter have been published as the following article: (c) 2013 IEEE. Reprinted,
with permission, from [Yosuke Himura, Kensuke Fukuda, Kenjiro Cho, Pierre Borgnat, Patrice
Abry, and Hiroshi Esaki, “Synoptic Graphlet: Bridging the Gap Between Supervised and Unsuper-
vised Profiling of Host-Level Network Traffic,” IEEE/ACM Transactions on Networking, Volume

8
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2.1 Introduction

An essential task in network traffic engineering stems from host-level traffic anal-
yses, where the behavior of a host is characterized based on traffic (i.e., packet
sequence) generated from the host. Host-level traffic analyses enable to find users of
specific applications for the purpose of traffic control, to identify malicious or victim
hosts for security, and to understand the trend of network usage for network design
and management. Flow analysis, which also constitutes an important networking
stake, can be fruitfully complemented by host profiling (e.g., by breaking down host
behaviors into flow characteristics).

Numerous attempts have been made to develop statistical methods for host pro-
filing. Such methods aim at overcoming packet encryption, encapsulation, use of
dynamic ports, or dataset without payload – situations that impair the classical ap-
proaches relying on payload inspection [2, 3, 4] and port-based rules [5]. The most
recently proposed ones are based on heuristic rules [1], statistical classification pro-
cedures [6, 7, 8], Google database [9], or macroscopic graph structure [10, 11, 12, 13].

In particular, an effective yet heuristic approach to host profiling is based on
graphlets [1, 14, 15]. A graphlet is a detailed description of host communication
patterns as a graph, as illustrated in Figure 2.1. For each flow, the 5-tuple defining
it (proto, srcIP, dstIP, srcPort, dstPort) gives a set of attributes (A1, A2, . . .) and
the communication pattern of a host is the union, for all flows, of edges connecting
nodes associated to flow’s attributes. This leads to diverse visual shapes of graphlets
depending on the host’s flows. The graphlet representation facilitates the intuitive
analysis of differences and resemblances among host behaviors, whereas conventional
approaches directly handle numerical values of statistical features, which are difficult
to interpret.

However, as for any host-profiling approach, the use of graphlets faces the clas-
sical issue of choosing supervised versus unsupervised procedures. Supervised ap-
proaches rely on a priori determined classes or models of graphlets [1], pre-defined
by human experts in a necessarily limited number, and these approaches cannot
substantially classify new or unknown host behaviors. Unsupervised approaches are
adaptive insofar as the data directly define the output classes of graphlets and can
discover behaviors never observed before. These approaches, however, potentially
produce clusters composed of a large number of numerical features that cannot
receive easy meaningful or useful interpretation.

The present work aims at bridging the gap between the two types of approaches.
The main idea for this is the combination of two techniques: To avoid the limitation
of supervised approach, we use an unsupervised clustering of graphlets that is able
to capture previously unknown classes; To ease the difficulties of unsupervised ap-
proach, the resulting clusters are re-visualized into synoptic graphlets that allow us
to interpret the clusters obtained. Our approach is evaluated with two large datasets

21, Issue 4, August 2013]. (DOI: 10.1109/TNET.2012.2226603)
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of traffic collected on two different links (Sec. 2.3). The article is organized along
three contributions.

First, the classical problem of supervised classification is revisited (Sec. 2.4). This
investigation comprises two aspects: a list of graphlet-based features is proposed to
quantify in a relevant way the visual graphlet shape associated with each host; An
unsupervised clustering method is applied to these features to yield classification in
terms of graphlet shapes. Comparisons against a supervised graphlet-based classifier
(BLINC [1]), a port-based one, and a payload-based one allow us to check that
most clusters match well-known host behaviors. This result shows that our method
makes it possible to discover unknown graphlets, which avoids the problem faced by
supervised approaches.

Second, the issue of automatically providing interpretation of the output of the
unsupervised clustering is addressed (Sec. 2.5). We solve the inverse problem of
reconstructing a synoptic graphlet, defined as a graphlet inferred from each obtained
cluster, by using an original mapping of the cluster attributes (cluster centroid) into a
graphlet. Our development of synoptic graphlets shows that an interpretable mean-
ing can be associated automatically to each cluster without any a priori expertise.
The effectiveness of synoptic graphlets, which successfully provide interpretability
for unsupervised approaches as shown in this work, ends up in bridging the gap
between supervised and unsupervised methods.

Third, the nature of host behavior is further studied via synoptic graphlets
(Sec. 2.6). The use of synoptic graphlets is expanded to creating an evolution-
ary tree, which explores the visually intuitive growth of a set of synoptic graphlets
as a function of the number P of inspected packets per host. This study is use-
ful in integrating host-level traffic characteristics of different P in an interpretable
manner, and in quantifying the order of magnitude P beyond which further increase
does not lead to substantially more relevant host profiling, i.e., how many packets
P we need to profile hosts.

2.2 Preliminaries

Before turning to the method itself and the datasets used in the next sections, we
recall the definition of graphlets in the context of Internet traffic and discuss related
work. Then we propose an overview of our approach.

2.2.1 Graphlet

A graphlet is defined as a graph having the following characteristics in the context of
network communication: (1) the graph is composed of several columns (A1, A2, . . .)
of nodes, where each column represents one attribute of packets or flows, (2) a
node (vertex) in a column is a unique instance of the attribute, and (3) there is
an edge between two nodes of neighboring columns if at least one packet/flow has
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A1 A2 A3 A4 A5 A6A1 A2 A3 A4 A5 A6

Drawn from first 100 observed packetsDrawn from first 100 observed packets

(b) Peer to peer(a) Host scan for a destination port

Figure 2.1: Examples of graphlets. Traffic from a single source host is represented
as a graph connecting attributes such as proto, srcPort, dstPort, and dstIP.

the two corresponding attributes. Columns of a graphlet are usually related to
flow attributes (5-tuple): proto (protocol number), srcIP (source IP address), dstIP
(destination IP address), srcPort (source port number), and dstPort (destination
port number), which are specified in the header field of every packet.

Figure 2.1 illustrates two manually annotated examples of graphlets drawn with
P = 100 packets per source host. Figure 2.1(a) shows that the source host, which is
represented as the single node in srcIP column, sends packets to a specific destination
port of many destination hosts (almost one packet per flow); This suggests that
the source host is a malicious scanner aiming to find hosts running a vulnerable
application corresponding to the port. Figure 2.1(b) displays a host communicating
with several hosts without any specific source/destination port, and hence this host
is a peer-to-peer user (not server or client). As shown in these examples, a strong
merit of graphlets is the visual interpretability of host characteristics as compared to
examining a large number of raw packet traces or directly handling a set of numerical
statistics.

We draw a graphlet from host-level traffic. Here, host-level traffic is defined as
the sequence of packets sent from the host; Headers in those packets contain source
IP addresses equivalent to the host’s address. Note that this measurement does
not necessarily capture initiation of communication (e.g., TCP hand shake). Each
graphlet is drawn from a certain number of observed packets P sent from each host.

The graphlet we use is composed of six columns A1, . . . , A6, which represent
srcIP-proto-srcPort-dstPort-dstIP-srcPort2. The order of columns is different from
the original definition [1]. We consider that srcIP-srcPort-dstPort-dstIP should be
more comprehensive, because it clarifies the activity of computer processes inside
end-hosts (IP-Port pairs) and network-wide inter-process communication among
hosts (srcPort-dstPort pairs). We place srcPort at the right side again to cap-

2We define ‘pseudo’ source and destination ports for ICMP to be srcPort = dstPort =
icmp code in order to consistently draw graphlets.
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Figure 2.2: Overview of our approach.

ture the relation between dstIP and srcPort (inspired by [14]). Since we draw one
graphlet per source host, there is only one point in the left column (srcIP).

2.2.2 Related work and open issues

Here the standpoints of the graphlet-based works and of this work are presented in
the context of network traffic classification conducted over the course of a decade.

Many statistics-based methods for traffic analyses have been proposed to classify
flows and host characteristics by means of supervised and unsupervised methods.
These studies have made use of various supervised machine learning methods such
as nearest neighbors [16, 17, 18], Bayesian statistics-based techniques [19, 16, 20,
18], decision tree [16, 20, 18], Support Vector Machine (SVM) [16, 18], or even
natural language processing on Google search results [9]. The others have leveraged
unsupervised ones including K-means clustering [7, 21, 22], or hierarchical clustering
[7]. Both the approaches have been applied to traffic features from various aspects –
packet sizes only [21, 17], combinations of packet sizes, flow sizes, inter-arrival times,
flow durations etc. [19, 22, 20, 18], and/or entropy regarding the number of related
hosts/ports [7, 10]. Those statistics-based methods are capable of overcoming packet
encryption, encapsulation, use of dynamic ports, or dataset without payload, which
are limitations on conventional approaches relying on payload inspection [2, 3, 4]
and port-based rules [5].

Several recent studies particularly focused on large-scale host-to-host connections
[6, 8, 11, 12, 13, 23], the use of which promisingly enables to visualize how hosts com-
municate with one another and enables to find groups of hosts communicating with
each other. These works leverage existing graph-based analytical capabilities such as
feature extraction regarding complex networks [12], community mining techniques
[13], or block identification in communication (adjacency) matrix [11, 23].

Different from those previous works, the approach described here focuses on
graphlets – detailed aspects of host behaviors including the usage of protocols and
source/destination ports. The use of graphlets has been motivated by their visual
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interpretability (as shown before), and has been conducted in a few works. For
example, Karagiannis et al. perform supervised classification of flows based on
graphlet models pre-determined by human experts [1]. Other works characterize
graphlet-based host behaviors in unsupervised manners as follows: Karagiannis et al.
discuss in-degrees and out-degrees of nodes and average degrees of graphlets in [14],
and focus on manual finding of typical graphlets as well as on time transition of those
features; In [24], Dewaele et al. classify hosts, making use of various features (some
of them inspired by graphlets) applied to an unsupervised clustering technique.

To overcome the various limitations of supervised/unsupervised approaches that
were discussed previously, and in contrast to previous works, the present article
aims at bridging the gap between the two analytical approaches on graphlets by
proposing a new framework for graphlet manipulation.

2.2.3 Overview of our approach

The three contributions of this work are: (1) the automation of finding typical
graphlets via unsupervised clustering in an interpretable manner, (2) a method
to re-visualize graphlets from clustering results, and (3) an analysis on evolution
of typical graphlet shapes while increasing the number of packets per graphlet,
which is complementary to analyses on time-transition of graphlet features. Each
contribution is an important step of our method. Steps (1) and (2) are depicted in
Figure 2.2 and step (3) is represented in Figure 2.9. Our method is organized as
follows.

As a preprocessing step, aggregated traffic traces are first computed. (Fig-
ure 2.2(a)). The traffic is measured in a backbone link and composed of packets
sent from hundreds of thousands of hosts (Sec. 2.3). We identify per-host traffic
(Figure 2.2(b)) according to the source IP addresses specified in the packets, and
draw graphlets from the first P measured packets sent from each host (Figure 2.2(c)).

Step (1): An unsupervised clustering over graphlets is conducted to find typical
graphlets (Sec. 2.4). A numerical feature vector xh, which represents shape-based
characteristics of a graphlet, is extracted from the graphlet of P packets sent from
host h. The set of feature vectors x1, . . . ,xH, representing a set of H hosts, is used
for hierarchical clustering to produce clusters of hosts C1, . . . , CN (Figure 2.2(d)).
Cluster Ci consists of hosts that are similar in terms of their feature vector in the
feature space. For each cluster, we obtain the components of a representative feature
vector x which will be converted to graphlets in the next step.

Step (2): Resulting clusters are visualized to recover interpretability (Sec. 2.5).
Since unsupervised clustering handles numerical features and thus loses visual infor-
mation of graphlets, we re-visualize a representative graphlet associated with each
cluster (Figure 2.2(e)). The reproduced graphlet, called synoptic graphlet, is de-
rived from the feature vector x of the centroid of a cluster. We develop an original
method to re-visualize synoptic graphlets in a deterministic manner, since conven-
tional probabilistic ways of graph rewiring are not suitable for highly-structured
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graphlets.
Step (3): Additionally, the evolutionary nature of synoptic graphlets is studied

(Sec. 2.6). The key observation is that our knowledge of hosts may evolve as P
increases from 1 to larger numbers. To study the evolution of the associated synoptic
graphlets, we build an evolutionary tree of synoptic graphlets that evolve from the
single-line graphlet (the only existing shape for P = 1) to the diversity of synoptic
graphlets. This evolutionary tree is obtained by combining the clustering results of
increasing P (see Figure 2.9). It provides intuitive understanding of the divergences
and convergences in the growth of host characteristics as P increases.

2.3 Datasets

This section describes first the two datasets used for the validation of the proposed
method, and, second, discusses how combining three different and classical traffic
classifiers produces surrogates for real traffic ground-truth.

2.3.1 Traffic traces

We analyze traffic traces stored in the MAWI repository [25, 26] and traces mea-
sured at Keio University (used in [16] as Keio-I and Keio-II). MAWI traffic [25, 26]
is measured on a transpacific IPv4 link between the U.S. and Japan for 15 minutes
everyday. The public repository removes packet payloads, while the private reposi-
tory retains payloads, up to the first 96 bytes. Results are reported here based on 12
MAWI traces collected once a month (on the 14th) in 2008. Keio traces used here
are those presented in [16] and measured for 30 minutes, for two different days in
2006, on a bi-directional edge link in a campus of Keio University. Packet payloads
up to 96 bytes were also preserved. We first removed the packets related to protocols
other than TCP, UDP, and ICMP.

In the results reported below, we use the source hosts3 sending at least 1000
packets for MAWI trace (respectively, 100 packets for Keio trace). This choice
balances the trade-off between (a) having a lower reliability when hosts do not
exchange enough packets, and (b) not keeping enough hosts when the required
number of packet is too high. It has been checked that this arbitrary choice is
not crucial; Results (e.g., the evolution of the number of clusters) similar to those
obtained with 500 < Q < 1000 were drawn with 200 < Q < 500, or with 100 <
Q < 200 for MAWI traces, where Q denotes the number of packets sent by a host
(observed in a trace). We will quantitatively evaluate the differences of results
regarding the choice of Q in the future.

3It should also be meaningful to analyze destination hosts; With this analysis, for instance, we
will be able to capture hosts receiving lots of attack packets. As a first step, we selected to analyze
source hosts because of the easier interpretation of results; Packets sent from a host can be well
explained by the application of the host, compared to packets received by a host.



CHAPTER 2. STRUCTURAL TRAFFIC PATTERN ANALYSIS 15

Each of the 12 MAWI traces contains about 1,700 analyzed hosts, yielding ap-
proximately a number of analyzed hosts H = 20, 000 in total for the 12 traces, and
the 2 Keio traces contain about H = 10, 000 hosts in total (H is the number of
analyzed hosts). Those analyzed hosts for MAWI data account for 1.1% (19K out of
1.7M) regarding the number of hosts, 86% regarding the number of packets (207M
out of 239M), and 93% regarding the number of bytes (1.43T out of 1.52T).

2.3.2 Pseudo ground-truth generators

Traffic analysis methods generally have to be evaluated with dataset annotated from
ground-truth. A crucial issue raised in the recent literature, however, lies in design-
ing a procedure to obtain ground-truth on actual traffic traces. Most of researches
indeed have regarded ground-truth as the labels put by a single payload-based packet
classifier. However a lot of packets are labeled as unknown by payload classifiers (as
exhibited in this paper). Also, payload-based methods do not necessarily produce
correct outputs. To improve the ground-truth coverage and accuracy, we carefully
create three sets of pseudo ground-truth from different methods detailed here.

(a) Reverse BLINC. BLINC was originally proposed in [1] and extended to
Reverse BLINC in [16], which is now state-of-the-art. BLINC profiles a pair of a
source address and a port, and once the pair is matched with one of the heuristic rules
based on the graphlet models, all pairs connected to that pair are classified. We used
the default setting of Reverse BLINC as in [16]. BLINC’s classification framework
is WWW, CHAT, DNS, FTP, MAIL, P2P, SCAN, and UNKN (unknown). Since
this classifier reports classification results as flow records, we need to convert them
into a host-level database. For each source host, we collect a set of flows generated
from the host and select the category (except for UNKN) that is the most frequent
among the flows. For example, if ten flows from a host are classified into three DNS,
one WWW, and six UNKN, then the type of the host is identified as DNS.

(b) Port-based classifier. We use another classifier, which was originally
developed in [27] and also used in [28, 29]. This tool inspects a set of packets sent
from a host, considering port numbers, TCP flags, and the number of higher/lower
source/destination ports and destination addresses. The classification categories are
WWWS (web server), WWWC (web client), SCAN, FLOOD (flooding attacker),
DNS, MAIL, OTHERS, and UNKN [29]. This tool reports host-level classification
results by itself.

(c) Payload classifier. We also use the payload-based classifier developed
in [16] 4. This classifier inspects the payload string of each packet by comparing
it with its signature database. The classification categories we select are WWW,
DNS, MAIL, FTP, SSH, P2P, STREAM, CHAT, FAILED (when the packets have

4In our preliminary experiment, we examined l7-filter [3] and found that the tool generated
rather unreliable outputs because of loose payload signatures that are represented as regular ex-
pressions with a few bytes. Also, we found that OpenDPI [4] produced mostly unknown reports
because it uses strict rules.
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no payload), OTHERS (minor flows such as games, nntp, smb, and snmp), and
UNKN. Since this tool also generates outputs in the form of flow tables, we merge
them into host-level reports by the same means used to aggregate outputs from
Reverse BLINC.

The hosts annotations given by the three classifiers of different perspectives are
used to evaluate the unsupervised analysis on graphlets that is presented in the next
section.

2.4 Unsupervised graphlet analysis

We detail the first step of the method, which is an unsupervised classifier for typical
behaviors of hosts that does not rely on predefined models. However, it will still
allow us afterwards to provide visual interpretation of the behaviors found.

2.4.1 Methodology for unsupervised graphlet analysis

2.4.1.1 Extracting shape-based features from graphlets

We first extract numerical feature values from graphlets, because visual graphlets
cannot be used directly as input to conventional statistical methods (except for
image processing). We choose afterwards several types of features related to shapes.
We note xh the feature vector for the graphlet of host h.

Notations on graphlets. We denote the six attributes (srcIP-. . .-srcPort) as
column A1, . . . , A6. In column Ai, the total number of nodes is ni, and nodes are
v1,i, . . . , vni,i. We define i : j as the direction from Ai to Aj, which is used to define
the in-degree and out-degree of nodes in column Ai (j = i + 1 or i − 1). The
in-degree of node vk,i is defined on direction i : i − 1 as dk,i:i−1, namely, dk,i:i−1 is
the number of nodes in Ai−1 that are connected to node vk,i in Ai. The out-degree
is similarly defined on direction i : i + 1 as dk,i:i+1. As a consequence, node vk,i is
characterized by the pair of the in-degree and out-degree (dk,i:i−1, dk,i:i+1). We define
the array of in/out degrees for direction i : j as Di:j = (d1,i:j, . . . , dni,i:j) where ni is
the number of nodes in column Ai. Di:j gives the empirical distribution measured
from an observed graphlet. Table 2.1 summarizes these notations.

Feature extraction. The proposed features are based on five types of shape-
related information, described formally as follows and visually in Figure 2.3 (the
relevance of the features is discussed later).

(1) ni is the number of nodes in column Ai. Note that it is equal to the size of
arrays Di:i+1 and Di:i−1. (6 columns)

(2) oi:j =
∑

dk,i:j∈Di:j
I(dk,i:j = 1), where I(·) is the indicator function, is the

number of nodes that have degree 1 in direction i : j (with j = i ± 1). (10
directions)
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Table 2.1: Notations for graphlet description. An attribute has two different degree
distributions based on direction (e.g., A2 is separated into 2 : 1 and 2 : 3). See
Sec. 2.2.1 for details.

Ai i-th column (or attribute) of graphlets (from left to right)
vk,i Node (vertex) in Ai

i : j Direction from Ai to Aj (j = i± 1)
dk,i:j In/out-degree of node vk,i: in-degree for i : i − 1 (left half

of vk,i) and out-degree for i : i+ 1 (right half of vk,i)
Di:j Empirical distribution of in/out-degrees in Ai

Table 2.2: Notations for graphlet clustering.
xh Host h’s graphlet feature vector, composed of the five

degree-based features (Figure 2.3)
Dim Dimension of xh (44-dimensional for 6 columns)
H Number of hosts analyzed
P Number of packets per graphlet
Ci Cluster of label i obtained
N Total number of clusters obtained
θ Distance-based threshold for clustering

(3) µi:j =
1
ni

∑
dk,i:j∈Di:j

dk,i:j is the average degree of direction i : j. (10 directions)

(4) αi:j = maxdk,i:j∈Di:j
{dk,i:j} is the maximum degree of direction i : j. (10 direc-

tions)

(5) βi:i+1 = dk,i:i−1, where k = argmaxl{dl,i:i+1} is, for the node having maximum
degree in i : i+1 (i.e., Feature 4), its degree in the backward direction i : i−1.
If more than one node has the maximum degree for Feature 4, the pair with
the highest degree is selected from among the candidates. A similar definition
holds for the reverse direction βi:i−1. (8 directions, since the edge columns
have degree for only one direction)

As a result, from the graphlet for host h, we obtain a feature vector xh = (xh,1, . . . , xh,44)
= (n1, . . . , n6, o1:2, . . . , o6:5, µ1:2, . . . , µ6:5, α1:2, . . . , α6:5, β2:1, . . . , β5:6) of dimension
of Dim = 44 (= 6+10+10+10+8). We examine packet traces or flow lists (input)
to compute these features (output). The index i : j is omitted when not needed.

Examples. Figure 2.3 shows an example of features. For direction 2 : 3, there
are four nodes (n2 = 4) and three nodes of one-degree (o2:3 = 3), and the average
degree is 1.5 (µ2:3 = 1.5). The second bottom node has the highest degree of three
(α2:3 = 3) and the degree of the node for the other direction is one (β2:3 = 1).
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x

Direction 2:3

Direction 2:3 Direction 2:3

A2

Figure 2.3: Shape-based features for a graphlet (i.e., behavior of a host).

Practical meanings. Even though these features are selected from the view-
point of graphlet re-visualization (Sec. 2.5), a few of them can also be interpreted
as traffic characteristics in a practical sense. ni is the number of unique instances
of the flow attribute (e.g., the number of destination addresses). µi:j and αi:j are
respectively the average and maximum number of unique flows of an instance of the
attribute among all the instances.

Relevance of features. The selection of the five types of features is empirically
motivated by two objectives: (i) the expected ability to obtain relevant clustering
results because a few of the features are already well-known and well-studied [24]
and (ii) the ability to re-visualize graphlets from the resulting clusters as explained
in Sec. 2.5. Also, the relative importance of the five types of features is evaluated by
a feature selection method in Sec. 2.4.2.4. Macroscopic degree-related features such
as betweenness, the assortativity coefficient, or eigenvalues, are not used because
graphlets are microscopic and highly structured. We only use graph-based features
to evaluate the interpretability of graphlet clustering results, although there are
many other well-studied features such as TCP flag, packet size, and flow size. Such
features and ours are not exclusive but complementary; Using both types would
enhance host profiling schemes.
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Figure 2.4: Clustering threshold θ characterized by the dependency on the number
of analyzed hosts H and the number of resulting clusters N .

2.4.1.2 Applying graphlet features to unsupervised clustering

Here, we establish a method to find typical host behaviors in terms of graphlet
shapes. At a high-level view, a set of hosts x1, . . . ,xH are grouped into clusters
C1, . . . , CN (clusters are disjoint sets of the hosts). Table 2.2 lists the notations used
for the graphlet clustering.

Feature normalization. Each feature value xh,i from feature vector xh is
mapped onto a log space as log10(xh,i + 1). For the features related to the ID of
the transport protocol, the possible ranges of the values are adjusted to the other
features (i.e., addresses and ports) as follows: log10(P

xh,i

min(3,P )
+ 1), where P is the

number of analyzed packets to be drawn as a graphlet, and the value 3 stems from
the number of analyzed protocols (TCP, UDP, and ICMP). Hence, this type of
feature is distributed into [0, log10(P + 1)] as well as the other features for any P .
This normalization onto the log space is motivated by our empirical observation
that graphlet shapes can be logarithmically well characterized; For example, by
inspecting graphlet shapes with changing P, we observed that difference in graphlet
shapes between P = 10 and P = 20 was intuitively similarly significant to P = 100
and P =200 (rather than P =100 and P =110).

Unsupervised clustering. Unsupervised clustering finds groups of hosts that
are similar in terms of feature values by analyzing the H hosts x1, . . . ,xH. The
hierarchical clustering [7] with Ward’s method is used, as it is known to outperform
other methods (e.g., single-linkage method). The similarity between a pair of clusters
(Ci, Cj) is defined as a merging cost: Γ(Ci, Cj) = E(Ci ∪Cj)−E(Ci)−E(Cj), with
E(Ci) =

∑
h∈Ci

(γ(xh, ci))
2 the intra cluster variance in Cluster Ci, the Euclidean

distance γ(x,y) between vectors x and y, and the average feature vector ci of all
hosts in Ci. The distance-based threshold θ is used to separate clusters in this feature
space. The clustering produces a set of N clusters C1, . . . , CN , depending only on
θ (each host is included in a single cluster only). The selection of θ is discussed in
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Sec. 2.4.2.
Motivation for distance-based threshold instead of number-based one.

The distance-based threshold θ is preferable compared to cluster-number-based
thresholds (such as the one for the K-means technique). This is because a con-
sistent value of θ can be used for any P , which mitigates the burden of parameter
tuning in analyses with several P s as performed in Sec. 2.6. Number-based thresh-
olds would have to be appropriately tuned through trial-and-error independently
for each P , as the number of typical clusters for each P cannot be known. The
consistent use of a single threshold over different P s is empirically enabled by the
normalization of the feature spaces as [0, log10 P ], because distance between two
clusters of typical behaviors will remain mostly the same for different P s. Instead,
conventional normalization into [0, 1] would induce clusters with different behaviors
at larger P to be located closer, requiring θ to be decreased.

Computational load. We used hcluster methods in the amap R-library. Ap-
proximately 1.5 GB memory was required for about H = 20, 000 instances of
Dim(x) = 44 dimensional vectors. It took around 2.4 minutes with a 2.8 GHz Intel
Core 2 Duo CPU with 4GB memory. By performing the clustering with changing
H, we empirically confirmed that time and space complexities were both O(H2).
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2.4.2 Results: finding typical patterns of host behaviors

2.4.2.1 Threshold selection

The distance-based threshold θ eventually determines the number of extracted clus-
ters N according to a conventional trade-off: a too high θ misses a number of typical
host behaviors, while a too low θ produces redundant clusters (i.e., different clus-
ters having similar compositions). By changing the value of θ, we inspected the
list of synoptic graphlets (representative graphlets for resulting clusters – details are
defined in Sec. 2.5) to identify whether there are redundant clusters (having same
shape of synoptic graphlets) and new types of clusters (which cannot be found by
large θ). We experimentally found that thresholds that balance this trade-off well
are θ = 500 with the MAWI traces (about H = 20, 000 hosts) for P = 1000, pro-
ducing approximately N = 20 clusters, and θ = 250 with the Keio traces (about
H = 10, 000 hosts) for P = 100, resulting in N = 16 clusters. This trade-off has
been manually inspected, because it is quite difficult to computationally identify
redundancy of clusters in terms of the shapes of graphlets, which are one of our
major focus and are enumerated in Sec. 2.5.

Figure 2.4 addresses the characteristics of θ by showing its relationship to the
number of analyzed hosts H and the number of clusters N obtained from (a) MAWI
(for P = 1000) and (b) Keio (for P = 100). Each set of analyzed hosts was selected
from a random sample of the total number of original hosts by changing the sampling
rate. This figure suggests referential values of θ for each dataset to obtain a certain
number of clusters that balances the trade-off well for any H.

We note that this value of θ can be consistently used for other P , and this is
the reason why we do not directly use the number-based threshold. Since θ is based
on the distance in the feature space, we can compare the clustering outputs from
various P with a single consistent criteria. For example, smaller P might lead to
fewer numbers of clustering with regard to the feature space. We confirmed that
the value of θ is consistently appropriate for other P as shown in Sec. 2.6.

2.4.2.2 Typical patterns of host behaviors

Table 2.3 shows the clustering result, with H = 20, 000 hosts at P = 1000 of
MAWI data, obtained from a comparison between the graphlet clustering and the
three classifiers, i.e., Reverse BLINC (R-BLINC), port-based classifier (Port), and
payload-based classifier (Payload). This table displays the total number of hosts in
each category and each cell shows the number of hosts in the intersection between
two classes of two classifiers. The first row of the column headings is auto-generated
labels. The second row shows graphlets re-visualized from clusters (Sec. 2.5), and
the bottom row is discussed in Sec. 2.6.

The sparseness of Table 2.3 indicates that each cluster mostly corresponds to
a type of host behavior. For instance, C6 (containing 1427 hosts) is characterized
by one typical category because most of the hosts are labeled as a category of each
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Table 2.4: Graphlet features evaluated by FCBF.
MAWI Keio

feature SUi,c feature SUi,c

oi:j of srcPort → dstPort 0.51 oi:j of srcPort → dstPort 0.57
oi:j of dstPort → srcPort 0.48 oi:j of dstPort → srcPort 0.50
oi:j of dstIP → dstPort 0.39 oi:j of dstIP → srcPort 0.41
oi:j of dstIP → srcPort 0.39 oi:j of dstIP → dstPort 0.40
µi:j of dstIP → srcPort 0.36 ni of proto 0.06
βi:j of dstIP → srcPort 0.34
µi:j of dstPort → dstIP 0.31
ni of proto 0.10

classifier: 1361 hosts as WEB by R-BLINC, 1351 hosts as WWWC by Port, and
1316 hosts as WEB by Payload. In addition, the overall similarity among the results
from the three classifiers cross-validates their effectiveness.

Clusters can show the typical host behaviors hidden in a single category. WEB
of R-BLINC, for example, is separated into a few clusters, reflecting the different
behaviors of web hosts such as server (C2, C3, C4, C13, C17), client (C5, C6, C7,
C16), and P2P user (C14) as suggested by WWWS, WWWC, and P2P of Port,
respectively. Moreover, the WWWC (web client) category of Port is clustered into
a few groups, and a plausible reason for this is that there are a few typical behaviors
of web clients based on the usage of web such as large-file transfer, web browsing,
and ajax-based activity. Also, the MAIL category of Port shows the behaviors of
only server (C18), only client (C5, C6, C7, C9) or both server and client (C14). This
observation can also be validated by the other categories in the same cluster (e.g.,
P2P of Port in C14).

In particular, the ability to cluster unknown data is an advantage of the un-
supervised approaches. Our clustering method provides key information to profile
hosts that R-BLINC classifies as UNKN5 by separating these hosts into different
categories. For example, C3 separates 577 UNKNs of R-BLINC from the totally
5268 UNKNs of the classifier, and we can speculate that most of the 577 UNKNs
are web servers as most hosts in the cluster are classified as web servers (e.g., C3

mainly consists of 348 WEB hosts labeled by R-BLINC other than the 577 UNKN
hosts). The same is true for other UNKNs of the three classifiers. Thus, the results
of the classifiers and of our approach complement each other.

5We provide an example of UNKN hosts labeled by R-BLINC by examining Cluster C4, which
consists of 1283 hosts. This cluster consists of mainly WEB hosts as suggested by the three
classifiers and the shape of synoptic graphlet. As mentioned above, this synoptic graphlet can be
mapped with BLINC’s original WEB graphlet, but this cluster contains 242 UNKN hosts classified
by R-BLINC. A plausible reason of the UNKN hosts is as follows. As one of the classification
rules, R-BLINC considers WEB hosts to follow “#dstPort - #dstIP > a”, where a is one of the
28 thresholds and its value with our default setting is a = 4. The average and standard deviation
of “#dstPort - #dstIP” are 8.12 ± 4.82 for WEB hosts of R-BLINC inside C4 (991 hosts), and
are 3.61 ± 2.39 for UNKN hosts of R-BLINC inside C4 (242 hosts), which does not follow the
above-mentioned R-BLINC’s classification rule for WEB.
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The effectiveness of a connection pattern-based approach can also be comple-
mentarily improved by port- and payload-based approaches. One notable example
is C1, which contains the most of UNKN hosts from R-BLINC. The port and pay-
load classifiers both indicate that this cluster is mainly related to web server and
client hosts. Actually, for the 2348 UNKN hosts in C1, our additional inspection
found that 1150 hosts are classified as web server or client by both the port- and
payload-based classifiers; This suggests that such cross-validation would reduce the
UNKN classification. Another example is that 1404 hosts out of the 1612 WEB
hosts for R-BLINC in C1 are identified as web server or client as well by both the
port- and payload-based classifiers, which indicates those hosts can be considered
as web-related ones with high ‘plausibility.’

2.4.2.3 Inter-cluster distance

We examined the distribution of clusters in the feature space by using the inter-
cluster distance metric: dist(Ci, Cj) defined as 1

Dim
||ci−cj||, where ci is the centroid

vector for Ci. We definemindist(Ci) = minj dist(Ci, Cj). The average and standard
deviation ofmindist(Ci) is 6.63±4.50, with minimummindist(C1) = dist(C1, C3) =
0.56 and maximum mindist(C10) = dist(C10, C11) = 26.7 in the log space. This
means that the clusters are not uniformly distributed. Our observation was that
graphlets with low number of flows (e.g., C1, C3, C5, C4) have low dist between each
other, i.e., they are densely distributed yet clustered due to the high number of
hosts; Whereas, high dist derives from graphlets with high number of flows (e.g.,
dist(C6, C7), dist(C10, C11)) having similar shape but different typical number of
flows.

2.4.2.4 Dominant features

Here we extend the discussion by evaluating which out of the Dim = 44 features
significantly contributed to the N = 20 obtained clusters (Table 2.3). For this
evaluation, we use Fast Correlation-Based Filter (FCBF) [30, 19, 16], a feature
ranking and selection method. We note that FCBF is used only for evaluating the
relative contribution of the features to the clustering results and is not used for other
parts of this work.

FCBF selects the most effective and smallest set of features with respect to sym-
metric uncertainty (SU) ∈ [0, 1], which measures a form of correlation between two

random variables: SUX,Y = 2H(X)−H(X|Y )
H(X)+H(Y )

, where H(·) is the information-theoretical

entropy and H(·|·) is the conditional entropy. SUi,c is the correlation between fea-
ture i and clusters (SU against clusters), and SUi,j is that between features i and j
(SU against features). A higher SUi,c means that feature i contributes to detecting
one or more clusters, whereas a higher SUi,j indicates that joint use of features i
and j is redundant. The method first removes irrelevant features (having low SUi,c)
and then excludes redundant features (having higher SUi,j than SUi,c).
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Table 2.4 lists the selected features showing their SU against clusters for MAWI
and Keio data: N = 20 clusters for MAWI with P = 1, 000, and N = 16 clusters for
Keio with P = 100. The features selected by FCBF are mainly oi:j (the number of
one-degree nodes), and this result suggests that this type of feature is more relevant
and less redundant than the other features. Our interpretation is that oi:j represents
well a part of the graphlet (i.e., the area between i : j and j : i) in term of its shape
(e.g., a square (parallel line(s) between columns), or a triangle (a knot on a column))
and of its number of lines (i.e., visual complexity) (e.g., one line, a few lines, or many
lines). These are basic characteristics of the behavior of hosts, and the features oi:j
represent such characteristics better than the other features used here. Figure 2.1
shows examples for oi:j. Square shapes such as the area between A5 and A6 in
Figure 2.1(b) occur when both the values of oi:i+1 and oi+1:i are high. On the other
hand, triangle shapes such as the area between A4 and A5 in the figure appear when
one of oi:i+1 and oi+1:i is quite low (e.g., zero or one). In particular, oi:j between
srcPort and dstPort contributes significantly to the clustering (1st and 2nd ranks
in Table 2.4). The relation between the ports represents the detailed behavior of
inter-process communication, which is an important aspect of networking.

Even though other features also have discriminative power, such features are
not part of the best set of features. For example, we observe that n for srcPort
has SUi,c = 0.43, and αi:j of srcPort to dstPort has SUi,c = 0.41 for MAWI data,
indicating that these features are also useful. These features, however, were removed
because of their high correlation with corresponding oi:j (e.g., a higher oi:j will be
provided by a higher ni). It means that they have similar but weaker effect on
the clustering compared to oi:j. In other words, oi:j is a good approximation of
the shapes of graphlets. Even so, the other features are also necessary for inferring
synoptic graphlets (see next section), and this is why we keep all the features.

2.5 Synoptic graphlet

According to the unsupervised procedure described in Sec. 2.4, graphlets associ-
ated with hosts are clustered with respect to their feature vectors. Now, as an
inverse problem aiming at associating each cluster with a representative graphlet, as
sketched in Figure 2.5, we propose a method to construct a synoptic graphlet from
the feature vector representing a cluster.

2.5.1 Synoptic graphlet: construction

An original mapping from a feature vector into a set of bipartite graphs that con-
stitute a graphlet is detailed here and illustrated in Figure 2.5. This mapping is
applied to the feature vector of the cluster centroid. We will address the motivation
to use synoptic graphlets instead of centroid-nearest graphlets at the end of this
subsection.
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Cluster Ci Centroid feature
vector

Re-visualized
synoptic graphlet

Ci

Figure 2.5: Synoptic graphlet. Graphlets obtained from hosts are clustered. In turn,
each cluster is associated with a representative a posteriori synoptic graphlet. The
second row of Table 2.3 displays the synoptic graphlets re-visualized from the actual
clusters of hosts.

Median centroid. Recalling that the feature vector of host h was defined as
xh = (xh,1, . . . , xh,Dim), let us define ck = (ck,1, . . . , ck,Dim) as the centroid features

of Cluster Ck, where the
|Ck|
2
-th largest value of xh,i among h ∈ Ck is selected as the

median feature ck,i
67.

(1) Considering a graphlet as a set of bipartite graphs. To infer a
graphlet from the centroid features of a cluster, we construct a graphlet as a set
of bipartite graphs. A1 and A2 are a disjoint set of a bipartite graph, A2 and A3

are another, and so on. In other words, we break down the graphlet reproduction
problem into (a) reproducing the degree distributions of each bipartite graph, (b)
rewiring each bipartite graph based on the degree distributions, and (c) merging
neighboring bipartite graphs.

(2) Reproducing degree distributions. From a feature vector, we build
the degree distribution of direction i : j (j = i + 1 or i − 1), denoted as D̂i:j =
(d1, . . . , dn) where n is the total number of nodes as defined in Sec. 2.4.1.1 (“i : j”
is omitted from dk,ni:j

and ni:j for brevity). We first consider the one-degree nodes
as follows: dn = dn−1 = dn−o+1 = 1. If all the nodes have degree of one (i.e.,
n = o), this procedure ends; Otherwise we rebuild the remaining part of the degree
distribution. We define the number of remaining nodes ζ and the remaining degrees
ξ as ζ = n − o and ξ = µ × n − 1 × o. The degrees are estimated as follows:
d1 = α, d2 = α−∆, . . . , dζ = α− (ζ−1)×∆, where ∆ = 2

ζ−1
(α− ξ

ζ
), which satisfies

ξ = d1 + . . .+ dζ . This process to distribute the remaining degrees to the remaining
nodes is based on the usual appearances of graphlets (e.g., some ‘knot’ nodes, only

6As an example, for n2, if a cluster contains 100 hosts, the 50th largest value in n2 is chosen as
the median (xi and xj (i ̸= j) do not necessarily derive from the same host).

7We note that statistics other than the median could be chosen as a representative. We also
tried to use average as representative, but average is not robust to outlier features, and more
critically taking the averages lead to decimal values, which are difficult to deal with for graph
rewiring. The Dim-dimensional median features are converted from a log scale into a linear scale
by inverting the normalization function defined in Sec. 2.4.1.2.
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Figure 2.6: Procedure of re-visualizing synoptic graphlets. A synoptic graphlet of
a cluster is reproduced from the graphlet features of the cluster centroid. Graphlet
features are defined in Sec. 2.4.1.1 and Figure 2.3.

one, etc.).
(3) Rewiring bipartite graphs. A bipartite graph is generated from D̂i:i+1

and D̂i+1:i computed above. Nodes of higher degrees of Ai are connected with those
of lower degrees of Ai+1, which reflects an emprical traffic characteristics (one-to-
many connection rather than two-to-many). An example of this characteristics is
server-client behavior, where (a) a source port is connected with several destination
hosts and also (b) a destination host is associated with a set of several destination
ports, which are not related to other hosts. By defining i : i + 1 as r (right) and
i + 1 : i as l (left), we connect v1,r with vnl,l, . . . , v(nl−d1,r−1),l, and then connect
v2,r with vk,l, . . . , v(k−d2,r−1),l, where k is the largest label of nodes that have degree
remaining after the previous connections. We iterate this connection procedure until
vnr,r is dealt with and consequently obtain a bipartite graph.

(4) Merging bipartite graphs into a synoptic graphlet. A synoptic
graphlet is then drawn by combining each pair of neighboring bipartite graphs.
We additionally define the direction: i : i+1 as f (forward) and i : i− 1 as b (back-
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ward). The two directions have different degree distributions with the same number
of nodes: D̂f and D̂b, and a pair (dk,f , dl,b) is merged into a node vm,i, where k, l,
and m are determined as follows. We first compute the degree correlation between
D̂f and D̂b, which we define as γ = (αf − αb) × (βf − βb), with αi:j and βi:j of the
centroid features. If the correlation is positive (γ ≥ 0), we combine the nodes in the
same order of degree value: v1,i = (d1,f , d1,b), . . . , vn,i = (dn,f , dn,b). Conversely, for
γ < 0, the combination order is reversed: v1,i = (d1,f , dn,b), . . . , vn,i = (dn,f , d1,b).

Synoptic versus centroid graphlets. Instead of synoptic graphlets, centroids
may have been selected as cluster representative. For clusters with very large number
of flows, both choices likely yield close representatives, however, centroids suffer from
a number of disadvantages: (i) Centroid graphlets may show a very large variability
(hence lacking robustness) for clusters with small number of flows, while synoptic
graphlets are less dependent on the actual number of flow per host, because it is
regenerated from all the representative features of a cluster; (ii) Centroid graphlets
not necessarily result into the typical representative of the cluster. The centroid
may occasionally correspond to a specific behavior, even when many of its Dim
features are close to the median, to the contrary of synoptic graphlets that somehow
make the visualization/interpretation step independent from the classification phase
(in a semi-supervised spirit) 8; Therefore synoptic graphlets should be more effective
tools to represent what actually happens in the feature space and thus to profile and
interpret host behaviors. More detailed comparisons between centroid and synoptic
graphlets are beyond the scope of the present contribution and will be discussed
elsewhere.

2.5.2 Synoptic graphlet: interpretation

The second row of the column headings in Table 2.3 shows the synoptic graphlets,
re-visualized from the N = 20 clusters presented in Sec. 2.4.2 (larger versions are
displayed in Figure 2.9).

Effectiveness of synoptic graphlets. One of the advantages of synoptic
graphlets is the ability to construct an intuitive understanding of clustering results.
The “complexity” of the shapes of synoptic graphlets meaningfully represents the
intensity of flows. For example, a graphlet of many lines is derived from the use

8We briefly compared the synoptic graphlet and centroid-nearest graphlet for each cluster. Ap-
proximately 80% of clusters produced intuitively similar shapes of the two kinds of graphlets;
This is plausibly due to the well-tuned threshold θ and enough number of hosts inside a cluster.
Such correspondence between the two kinds implicitly validates the overall procedure of rewiring
graphlets. We also found the differences in shapes of the two kinds. For example, in Cluster
C2, there were differences in the #nodes in the dstIP column between the corresponding synoptic
graphlet and centroid-derived graphlet; Indeed, the collapse in the shape of the synoptic graphlet
(Table 2.3) indicates that this graphlet does not represent per-host behavior well but rather rep-
resents an aggregated view. We manually inspected the composition of C2 and found that this
cluster contained two types of typical host behaviors. This graphlet suggests that it would be
meaningful to further separate C2 into different clusters.
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of many flows, indicating that the corresponding host uses an application for many
peers and/or many ports (e.g., DNS and MAIL are the categories of the many-
lines graphlets such as C15). In addition, the number of nodes for each column Ai

is also meaningful. For instance, if A3 (srcPort) has only a few nodes, then the
corresponding host can be speculated to be a server (e.g., C3 is mainly labeled as
WWWS by Port).

BLINC models validity. Most of the synoptic graphlets in Table 2.3 corre-
spond to most of the BLINC graphlets9 (listed in [1]), and thus our result validates
the intuitions behind the BLINC series. An exception, though, is pointed out by
C11; Most hosts are identified as UNKN by R-BLINC, whereas they are mainly
identified as FLOOD by Port (probably because of a large amount of SYN packets
and few targeted hosts). On the other hand, some clusters having similar shape of
synoptic graphlets consist of similar breakdown such as C17 and C18. As implied by
the different number of lines in the shapes of synoptic graphlets for the two clusters
(Table 2.3), this result indicates two typical number of flows of graphlets, which
might not easily be found by applying untuned heuristic rules.

One-flow graphlets. C1 represents synoptic graphlets composed of one flow
(4594 in total – about 25% among the analyzed hosts), and the three classifiers
unfortunately identify many of them as UNKN. This kind of isolated communication
has been observed in prior studies [31, 12, 11] as well. Although one-flow graphlets
are classified into various application categories as the three classifiers point out, the
one-line shape itself reveals the important information that P = 1000 packets from
a single host constitute only one flow. In other words, a one-flow graphlet possibly
implies large file transfer, because we do not observe any control flows or the other
flows. This plausible interpretation is supported by the finding that many of these
hosts identified by the three classifiers are web or P2P users, which are occasionally
used for host-to-host large-file transfer in some cases.

In summary, synoptic graphlets are effective for an intuitive and visual under-
standing of the clustering output, and the comparison result indicates the relevance
of the overall idea of BLINC, while alleviating the difficulty of manually setting
appropriate rules and parameters.

9For example, the synoptic graphlet of C4 can be mapped with WEB graphlet (shown in Figure
5(d) of the original paper), because the two graphlets commonly represent one srcPort, and several
dstPort, and a few dstIP nodes. The relevance of this mapping is supported by the fact that
R-BLINC classifies most of the hosts in C4 as related to WEB. For another example, the synoptic
graphlet of C8 can be related to DNS graphlet (shown in Figure 5(g) of the original), because the
two graphlets commonly represent many srcPort, and one dstPort, and a few dstIP nodes. The
original graphlet represents both client-side and server-side behavior in a single figure, yet the
graphlet of C8 can be mapped with client-side one. The relevance of this mapping is supported by
the fact that R-BLINC classifies most of the hosts in C8 as related to DNS.
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Figure 2.7: Creation of evolutionary tree.

2.6 Evolutionary nature of host-level traffic

Let us further discuss the effectiveness of the new method by introducing evolution-
ary tree of synoptic graphlets, which provides a way to understand the evolution of
information about host behaviors when the number P of analyzed packets increases.
To achieve this, we analyze the same set of H = 20, 000 hosts by changing the value
of P . This tree can also answer the question “how many packets P do we need to
find all typical patterns?” and “how accurately hosts can be profiled with a given
P?.”

2.6.1 Evolutionary tree: creation

Snapshot. The next key question in the assessment of synoptic graphlets is raised
by the choice of the number P of packets that need to be involved in graphlet
construction to find all typical patterns and thus permit accurate host profiling.
This is addressed via the concept of synoptic graphlet evolutionary tree that char-
acterizes host behavior profiling evolution when P increases. For example, a sin-
gle packet (thus a single flow) produces a single-line graphlet, whereas two pack-
ets may result either in a single line if they belong to the same flow or in two
lines sharing nodes and edges if they share common attributes. Any graphlet may
hence evolve from an identical single-line shape towards a complex pattern as P
increases. An evolutionary tree is thus obtained from combining different snap-
shots s, i.e., graphlets obtained from different values of Ps

10. For MAWI data,

10It should also be interesting to analyze this by increasing the number of flows per host (instead
of increasing the number of packets P ). However, we have to elaborate on the appropriate way to
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Figure 2.8: Characteristics of the threshold for evolutionary tree ϕ.

P = 1, 2, 5, 10, 20, 50, 100, 200, 500, 1000 for snapshots s = 1, . . . , 10; for Keio data,
P = 1, 2, 5, 10, 20, 50, 100 for s = 1, . . . , 7.

Tree creation. Let Cs,Ns denote the set of Ns clusters obtained at snapshot
s (i.e., from Ps packets). For each s, Cs,Ns is obtained with a value of the sole
threshold θ that remains constant and does not depend on Ps. Thus, θ serves as
distance basis in the feature space, and hence does not determine a priori the number
of clusters, which permits to compare clustering outputs obtained with different P .
The evolutionary tree is created from a single criteria, relying on a threshold ϕ: if
the number of hosts in Cs,i ∩Cs+1,j is larger than ϕ×H (H being the total number
of analyzed hosts), the two clusters Cs,i and Cs+1,j are connected by an edge, which
materializes that the typical behavior Cs,i at snapshot s tends to evolve into Cs+1,j at
s+ 1. Finally, an evolutionary tree provides an intuitive overview of the behavioral
growth of hosts (cf. e.g., Figure 2.9).

Threshold. Setting the threshold ϕ, which determines whether neighboring
clusters are connected or not, results from the following trade-off: Too high ϕ may
yield ‘isolated’ clusters, not connected to any other clusters on any neighboring
snapshot; Too low ϕ may yield many ‘impossible’ evolutions in graphlet shapes. For
example, for some synoptic graphlets, α might be reduced from s to s + 1 because
of the changes in the set of hosts within a cluster, despite the fact that this never
occurs in the evolution of the graphlet of a single host. Therefore, the connection
between Cluster i at snapshot s and Cluster j at s+1 is declared impossible, if either
of parameters n, µ, and α is reduced. Figure 2.8 illustrates the trade-off, plotting
the number of isolated clusters and that of impossible evolutions as a function of
ϕ. Empirically, the threshold is set to ϕ = 0.0077 (i.e., about 150 hosts) for MAWI
data, and to ϕ = 0.0070 (i.e., about 70 hosts) for Keio data, which maintain no
isolated cluster and a low number of impossible evolutions.

deal with hosts with low number of flows (e.g., 25% of hosts have only one flow).
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Figure 2.9: Evolutionary tree of synoptic graphlets as a function of P (or s).

2.6.2 Evolutionary tree: interpretation

2.6.2.1 Intuition from evolutionary tree – visual analysis

Global view. Figure 2.9 depicts the resulting evolutionary tree for MAWI data
(H = 20, 000, θ = 500, cf. Sec. 2.4.2.1, ϕ = 0.77%, cf. Sec. 2.6.1). Synoptic graphlets
at snapshot s are shown in the s-th column, and related synoptic graphlets (from
successive snapshots) are linked with arrows. The synoptic graphlets at s = 10
correspond to the evaluations presented in Secs. 2.4.2 and 2.5.

Figure 2.9 thus provides an intuitive and comprehensive overview of the evolution
of typical host behaviors, from P = 1 (origin of graphlets) to large P , permitting
interpretation of graphlet changes with P . Interestingly, clusters do not only sepa-
rate but also merge as P increases. This suggests that there exist different evolution
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footprints, even when hosts are clustered into a same group at a given snapshot.
Evolutionary trees thus enhance the profiling by providing richer information.

Early stages. For P = 1, by nature, there is only one-flow graphlets. For
P = 2, although there are theoretically 24 = 16 possible graphlets (combination of
four attributes: proto, srcPort, dstPort, and dstIP), only 7 are actually observed.
Although some graphlets are actually different from the seven synoptic graphlets
and have different transitions, these are not typical, and hence do not appear in the
figure. Such minor graphlets could be found by finer-grained clustering, with lower
θ.

Late stages. The final forms of graphlets become apparent in the late stages.
For example, one-flow graphlet A is destined to mostly remain one-flow, after
P = 20, as indicated by the abrupt increase in predictability discussed in Sec. 2.6.2.2.
Other examples are provided by synoptic graphlets B and C, prominent at P = 20
and 50, respectively. They are mainly related to scanning activities, which thus
indicates that P = 20 is large enough to permit separation of scanners from other
activities. As a whole, the total number of clusters at P = 1000 remains quasi-
unchanged compared to that at P = 100. Thus, P = 100 can be considered as the
reference number of packets required for accurately discovering typical host behav-
iors. Also, this result implies that P = 100 provides some longitudinal stationarity
of aggregated view of host behaviors. The bottom row in Table 2.3 lists each stage at
which each Cluster CS,i stops its evolution along the tree (i.e., becomes predictable).

Keio data case. Similar results were obtained for Keio data, but for the fact
that one-flow graphlets continue to evolve at P = 50. We interpret that the stagna-
tion of one-flow graphlets for MAWI could stem from the partial view of the traffic,
measured at the backbone link, whereas Keio traffic is measured at an edge router.

2.6.2.2 Predictability in evolution – quantitative analysis

To complement the understanding of synoptic graphlet evolution, the evolution pre-
dictability of a given host in the tree is quantified. Let us define P (Cs2,j|Cs1,i) =
|Cs2,j

∩Cs1,i
|

|Cs1,i
| , which measures the probability that hosts in Cluster i at snapshot s1

(Cs1,i) evolves into Cluster j at s2 (Cs2,j). We define the predictability of Cluster

Cs,i as Pred(Cs,i) = 1+ 1
log10 NS

∑NS

j=1 P (CS,j|Cs,i)× log10 P (CS,j|Cs,i), where S is the

final snapshot and NS the corresponding number of clusters. Pred(Cs,i) is hence
a normalized entropy that characterizes the dispersion of transition probabilities.
Thus, if Cs,i grows only to CS,1 then Pred(Cs,i) = 1, whereas if Cs,i can evolve
into any future shapes with equal probability then Pred(Cs,i) = 0. Note that this
predictability is computed considering all possible evolutions (i.e., ϕ = 0).

Figure 2.10 displays the predictabilities of all clusters Pred(Cs,i) as a function
of P (or s) for MAWI and Keio. Each dot stands for a synoptic graphlet (i.e.,
a cluster), for a given snapshot. The dashed line represents the transition in the
average predictability and shows that the predictability is approximately linear with
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Figure 2.10: Predictability of evolution as a function of P .

logP (Pearson’s correlation coefficient is 0.95). The predictability at P = 1 is almost
0, which suggests that the corresponding origin of a graphlet can evolve into any final
graphlet. Conversely, this predictability becomes higher with higher P . In addition,
predictabilities for some Cs,i abruptly become higher than for others, which indicates
the end of the evolution for that synoptic graphlet, as shown by Points A and B
at P = 20 and C at P = 50, (that correspond to synoptic graphlets A, B, and C
in Figure 2.9). The high predictability value for these synoptic graphlets at low
snapshots confirms the observation made from the evolutionary tree that the future
of these graphlets is early set and hence that can be easily distinguished with fewer
packets than other types of graphlets.

2.7 Discussion

Revisiting BLINC. The results presented in Secs. 2.4.2 and 2.5 validate the con-
cepts at work in BLINC, as most of the auto-generated synoptic graphlets can be
related to empirically defined BLINC graphlet models [1]. However, such heuristic
model-based approaches face the potential difficulties in (a) designing appropriate
rules as indicated by the observed unknown clusters and in (b) determining the rel-
evant values of thresholds for accurate classification as partially implied by a prior
work [16], which conducted a number of trials to determine appropriate parameters.
Instead, unsupervised approaches can potentially uncover new types of applications
with the tuning of only a very limited number of threshold levels. In addition, an
advantage of our approach should be to avoid the assumption that the traffic of one
host should be mostly explained by a single application11.

11To show the non-negligible amount of application mixture of a host, we quantify the degree

of this for a host h as pmax(h) = maxa
#flow(h,a)
#flow(h) , where a is an application (except for UNKN),
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Traffic characteristic evolution when increasing the number of ana-
lyzed packets. Sec. 2.6 showed that the method requires around 100 packets to
classify hosts. This is larger than the findings of a few previous works. For in-
stance, the work reported in [21] showed that major TCP flows can be identified on
bi-directional links from their size and direction, by examining only the first four
or five packets (after the handshake) in a connection. Other works [20, 17, 18] also
claimed such an ability. The present work, however, deals with more general as-
sumptions about traffic: uni-directional links, legitimate as well as anomalous and
unknown traffic, a few protocols besides TCP, not certainty of observing the first
packets of flows. In this context, the need to collect a larger amount of information
to predict traffic characteristics does not come as a surprise. Moreover, our work is
to profile hosts, not only identifying the application in a TCP connection.

Limitations. (a) The degree-based features used here do not include relations
among non-neighboring columns such as A1 and A3. (b) In addition, real graphlets
are not as clean as rewired ones, because they include packets unrelated to the main
behaviors of the hosts. Features could be weighted to remove such noise, e.g., the
width of edges and the radius of nodes could be set based on the number of packets.
(c) In some cases, host behaviors may result from two dominant kinds of applications,
e.g., a host serving both mail and DNS, or a NAT gateway with a web client and a
P2P user. Such a host cannot easily be profiled. (d) In general, synoptic graphlets
only provide shape information; Although such information provides meaningful
insight into host behaviors as shown throughout this work, it is still difficult to
identify the exact application names used by hosts. If we want to identify them, it
would be helpful to put port numbers in the graphlet figure or to cross-compare with
classifiers based on port numbers, payloads, IP addresses [9], packet sizes [21, 17],
and so on.

Application to supervised approaches. A potential application is to create a
reliable dataset of known flows, that then an approach like that of Iliofotou et al. [13]
could use. This is because our experiment found graphlets corresponding to a single
application (say C13 in table 2.3); Such graphlets could be known signatures for any
supervised methods. This approach is better than just using a signature generator
(say a payload-based classifier), as any classifier will have some misclassification;
The clustering scheme presented here can group highly inter-related flows that can
be characterized as learning data of enhanced reliability.

Application to unsupervised approaches. Another use case of our method
is to help researchers (or network administrators) to interpret the results of unsu-
pervised clustering over graphlets. In general, interpretation of resulting clusters

#flow(h) is the total number of h’s flows identified as a certain application (except for UNKN)
by the payload classifier, #flow(h, a) is the number of h’s flows identified as application a by the
classifier. In other words, pmax(h) is the fraction of most dominant application in terms of #flows.
For the result for H = 20, 000 hosts in the 12 MAWI traces, we found that bottom 10% of hosts
have pmax(h) < 75%, bottom 20% have pmax(h) < 95%, and bottom 25% have pmax(h) < 99%
(i.e., remaining 75% of hosts are mostly characterized by a single application).
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should require to examine a lot of numerical features (xh), as a prior work [24]
does, which becomes significantly difficult as the dimension increases. On the other
hand, the use of synoptic graphlet supports such interpretation by converting those
features in a single intuitive figure. For example, if a synoptic graphlet for Cluster
C contains only a single node in the column for srcPort and the node has several
edges, one can easily interpret that C is mostly composed of server hosts (similarly,
that for dstPort implies that C is related to client hosts). With such assistance
in interpretation, operators will efficiently notice and understand the emergence of
new types of application usages (e.g., malicious hosts, P2P software users, or rapid
increase in web clients) appearing as new clusters in the monitored link.

2.8 Concluding remarks

The main issue of the present work was the trade-off in choosing between supervised
and unsupervised approaches to end-host profiling. The former is comprehensive but
is blind to undefined classes, while the latter can uncover unknown pattens of behav-
ior at the sacrifice of interpretability. We aimed to bridge the gap between the two
in the present work. The proposed method was designed to perform unsupervised
clustering for finding undefined classes and to re-visualize the resulting clusters as
synoptic graphlets for providing interpretability. We compared the method against a
graphlet-based state-of-the-art classifier (BLINC) as well as against a classical port-
based inspector and a payload-based one, by applying these methods to two sets of
actual traffic traces measured at different locations. The proposed method sponta-
neously generated synoptic graphlets that are typical in their shape, which validates
the graphlet models heuristically pre-defined in earlier works. Also, for methodolog-
ical study of the improvements brought to host profiling, this work demonstrated
how to extend beyond a simple classification to the production of an evolutionary
tree by increasing the number of observed packets per host. The entire procedure
requires only a few threshold to be tuned while the state-of-the-art method needs
many. The new achievements in this contribution are as follows: (a) an unsuper-
vised clustering applied to graphlet shape-based characteristics, which is further
significantly extended to (b) a visualization-oriented auto-enumeration of typical
host behaviors generated from actual data, successfully resulting in validating the
relevance of past works, and (c) an analysis on evolutionary characteristics of the
growth of host behaviors both in visual and quantitative manners, which is useful
in understanding the evolutionary nature of host behaviors.



Chapter 3

Structural Configuration Pattern
Analysis – Discovering
Configuration Templates of
Virtualized Tenant Networks in
Multi-tenancy Datacenters via
Graph-mining

Multi-tenant datacenter networking, with which multiple customer (tenant) net-
works are virtualized over a single shared physical infrastructure, is cost-effective
but poses significant costs on manual configuration. Such tasks would be allevi-
ated with configuration templates, whereas a crucial difficulty stems from creating
appropriate (i.e., reusable) ones. In this work, we propose a graph-based method
of mining configurations of existing tenants to extract their recurrent patterns that
would be used as reusable templates for upcoming tenants. The effectiveness of the
proposed method is demonstrated with actual configuration files obtained from a
business datacenter network. 1

3.1 Introduction

There has been a significant rise in the utilization of multi-tenancy in enterprise
datacenter networking. Multi-tenancy is a form of deploying customer (tenant) net-
works, with which multiple customer networks are virtualized and consolidated in

1Contents of this chapter have been published as the following article: Yosuke Himura, and
Yoshiko Yasuda, “Discovering Configuration Templates of Virtualized Tenant Networks in Multi-
tenancy Datacenters via Graph-mining”, ACM SIGCOMM Computer Communication Review,
Volume 42, Issue 3, pp.13-20, July 2012. (DOI: 10.1145/2317307.2317310)
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a single shared physical network and yet logically-independent each other [32, 33].
Leveraging multi-tenancy is hence cost-effective, being enabled by recent technolo-
gies of network virtualization; In addition to the conventional L2-level separation
with virtual LAN (VLAN), L3-level separation is allowed by the use of virtual in-
terface (VIF) and virtual router (VR). According to the recent increase in the pro-
cessing performance of network devices, tens or even hundreds of tenants can be
deployed in a single datacenter.

One of the essential tasks in multi-tenant datacenters is to create network con-
figuration settings for deploying tenants, which are diversely composed according to
various enterprise requirements (e.g., multi-tier architecture). Tenant construction
in such datacenters still mostly relies on manual configuration because of the lack
of tools that generally meet those various requirements. Manual configuration is
substantially time-consuming and error-prone in general as claimed over at least a
decade [34, 35, 36, 37, 38], and the use of multi-tenancy in datacenter context has
unfortunately required more careful and sophisticated management processes than
ever due to the increase in risks of misconfigurations in such shared environments.

A conventional approach for mitigating the burden of manual configuration is to
leverage configuration templates. A configuration template is defined as a predefined
composition of setting commands without specific assigned parameters (e.g., VLAN
ID), which are automatically or manually assigned at the time of deployment. The
use of templates is effective when similar form of configurations are repetitively
created (i.e., templates are reusable). According to successful cases in other areas
(e.g., ISP [35, 37, 38]), we expect that templates would also be effective in multi-
tenancy datacenter networks.

A crucial problem in the use of templates, however, stems from the difficulty in
creating appropriate (i.e., reusable) ones. Indeed, there is no generally-applicable
templates, because the composition of tenant configurations varies depending on
the form of physical networks (e.g., device types) and on specific domain-knowledge
of network engineers. In addition, finding appropriate templates is uneasy as the
frequent patterns are a priori unknown.

In this work, we aim to automatically generate appropriate configuration tem-
plates for deploying tenants in multi-tenant datacenters. The main idea towards
this goal is derived from mining configurations of existing (i.e., already-deployed)
tenants to find typical patterns of them, which would be represented as reusable
templates for upcoming tenants. We propose a method based on (a) an abstraction
of tenant configuration as attributed graphs, which enables to measure similarity
among them, and on (b) an unsupervised clustering over those attributed graphs,
which produces groups of similar (i.e., recurrent form of) tenants. The proposed
method is evaluated with actual configuration files obtained from a multi-tenant
production datacenter. This evaluation demonstrates that the proposed method
correctly finds typical patterns of tenant configurations that can be effectively used
as configuration templates for upcoming tenants. Originalities of the present work
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Figure 3.1: Schematic representation of a conventional physical network of datacen-
ter deploying a virtual network for a tenant.

include (1) the method of automatically finding typical patterns of tenant config-
urations for creating appropriate templates, and (2) the case-study with an actual
production datacenter.

3.2 Background and motivation

We first present the basic construction of the physical network in a datacenter
(Sec. 3.2.1) and how network devices are configured in order to deploy virtualized
networks for tenants over the datacenter (Sec. 3.2.2). Then, we explain the problem
of difficulty in creating configurations (Sec. 3.2.3).

3.2.1 Multi-tenancy datacenter network

Figure 3.1 illustrates a conventional datacenter network. Typical datacenters com-
prise following devices.

• Access switches (AccSw) connect multiple servers basically with L2 function-
alities.

• Aggregation switches (AggrSw) aggregate access switches and connect middle-
boxes, providing L3 connectivity.

• Middle-boxes (MidBox) provide network services such as firewall filtering, load
balancing, NAT, VPN termination, or SSL acceleration.

• Core switches (CoreSw) further merge traffic from aggregation switches if nec-
essary and connect to external networks (e.g., enterprise networks, or the In-
ternet).
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Figure 3.2: Configuration commands of a firewall MidBox (left) and an AggrSw
(right) for the tenant network depicted in Figure 3.1.

We note that datacenter is usually constructed as redundancy structure to achieve
high availability, although we omitted this from the figure for readability.

This single infrastructure consolidates separated virtual networks for multiple
customers, which we define as tenant networks. Figure 3.1 also illustrates a tenant
network deployed over the above-mentioned physical devices. Engineers use fol-
lowing virtualization technologies to achieve logical independence among different
tenant networks.

• Virtual Router (VR) generates logical instances for routing functionality inside
a device. A representative of VR used in many networking fields is known as
Virtual Routing and Forwarding (VRF).

• Virtual Interface (VIF) creates logical instances of network interface. Well-
known realizations of VIF are VLAN interface and sub-interface.

• Virtual LAN (VLAN) (mainly IEEE 802.1Q) is a common technology for L2
separation, which virtually separates a physical link into logically independent
links.

These virtualization technologies create logical instances of network components
such as routers, interfaces, or links – we name them virtual resources, and hence a
tenant network can be interpreted as a collection of virtual resources.

3.2.2 Tenant configuration

Configuration settings in the networking literature are generally stored as configu-
ration files, each of which is a list of commands of networking functions. Figure 3.2
represents two examples of configuration files used to construct a tenant network.
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Here, Figure 3.2(a) and (b) correspond to a list of configuration commands for a
firewall as MidBox role and a switch as AggrSw role, respectively. Those configu-
ration files are related to the tenant network depicted in Figure 3.1. We note that
these configuration files are partially modified for brevity and not exactly same as
those of existing products. These configuration files can be broken down in terms
of virtual resources as follows.

• Allocating VR instances and specifying static routes (lines 1-4, 11-13): The
virtual router named vrA is allocated in the firewall and that tagged as v1 is
allocated in the switch.

• Creating VIF instances and attaching them to a VR instance (lines 5-10,
18-25): For instance, the firewall creates two VIFs named eth0/1.10 and
eth0/2.20, and connect these interfaces with the virtual router vrA via the
definition of zones, each of which is a logical grouping of interfaces. These
lines include the assignment of IP address on the interfaces; IP addresses on
VIFs are essential for routing among multiple VLANs.

• Defining VLAN instances and relating them to VIFs (lines 7, 9, 14-17, 18, 22):
Some lines can be interpreted as creating VLAN instances from the viewpoint
of virtual resources, although they are not explicitly declared. For example,
lines 7 and 9 can be interpreted as creating VLANs 10 and 20 and attaching
them to the physical interfaces eth0/1.10 and eth0/2.20.

Our empirical observation on real enterprise datacenters was that tens or even a
hundred of tenants are contemporarily consolidated in a single shared infrastructure,
resulting in thousands (or even tens of thousands) of lines of commands.

3.2.3 Problem in deploying tenants

Usual procedure of deploying a tenant has mostly been conducted in a manual
fashion due to the lack of tools suitable for the variety of requirements for enterprise
networks (e.g., multi-vendor infrastructure, multi-tier tenant topology). Manual
configuration is notoriously time-consuming and error-prone as claimed over at least
a decade.

The use of template would alleviate the burden of manual configuration in gen-
eral. Templates are effective as long as there are recurrent patterns of provisioned
networks because of their reusability. We empirically observed such recurrent pat-
terns in multi-tenancy environments, and hence we consider that this general ap-
proach would be applicable as well.

A crucial problem in the use of templates, however, is the difficulty in creat-
ing appropriate set of configuration templates. We regard the appropriateness of
templates as their reusability, and thus such templates should reflect the frequent
patterns of tenant configuration; However, such frequent patterns are generally a
priori unknown.
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Figure 3.3: Overview of the proposed method.

3.3 Methodology

3.3.1 Overview

We aim to automatically generate appropriate (i.e., reusable) configuration tem-
plates for tenant deployment in multi-tenant datacenters. In the present work, we
focus on the topologies of tenants as the first step toward this goal, because most of
networking functions such as routing, filtering, and/or quality-assuring are realized
after constructing network topology. The main idea for auto-finding topology tem-
plates is based on mining existing tenant network configurations to discover recurrent
patterns of their topologies that can be repeatedly used as templates for upcoming
tenants. We develop an automated method, which is represented as Figure 3.3,
consisting of two major steps: (a) the identification of per-tenant networks by ana-
lyzing configuration files and abstraction of them as attributed graphs (Sec. 3.3.2),
and (b) the discovery of recurrent patterns of tenant networks based on a graph
mining technique performed over the abstracted tenant networks (Sec. 3.3.3).

3.3.2 Identifying tenant networks

The first task is to identify per-tenant network topology as there is no direct mapping
between a tenant network and a device configuration. We first present the model of
tenant network (Sec. 3.3.2.1) and the method of acquiring them from configuration
files (Sec. 3.3.2.2).

3.3.2.1 Tenant network model

Since a tenant network consists of a set of virtual resources and connections between
pairs of them as described in Sec. 3.2.2, any tenant network can be abstracted as
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an undirected graph; A node (vertex) represents an instance of virtual resource
(i.e., VR, VIF, VLAN), whereas a single edge stands for the referential relationship
between a pair of virtual resources. This device-neutral abstraction allows us to
leverage a variety of analytical capabilities for graphs.

We formally define a tenant topology as an attributed graph G = (V,E,Σ),
where V = (v1, . . . , vN) is a set of nodes, E = (e1, . . . , eM) is a set of edges (also
noted as ei = (vj, vk)), and Σ : V → L is a labeling function that maps a node to a
label. A label l ∈ L is composed of 4 attributes l = (t, p, d, r), where t is the type
of virtual resource (e.g., VLAN, VR), p is the parameter of virtual resource (e.g.,
10, eth0/2.20, vrA), d is the ID of device, and r is the role of device (e.g., coreSw,
aggrSw). For example, a virtual router vr3 in core switch CS1 is abstracted as a node
vi with the corresponding label L(vi) = (t, p, d, r) = (V R, vr3, CS1, coreSw). The
first 3 attributes (t, p, d) are required for uniquely identifying the virtual resource
among others in the network, whereas we use 4th one (r) for the configuration mining
as shown in Sec. 3.3.3.

We note that the device id (d) and the device roll (r) of VLAN node should
exceptionally be constant across all the devices (e.g., d = null), because we regard a
VLAN node as an instance of an aggregated L2 network connecting multiple virtual
interfaces across devices. This abstraction of an L2 network as a node hides the
need for inputting physical topology to obtain correct topology, which can be con-
ducted when networks are correctly configured; This would be true in the in-service
datacenter, where deployed tenants are actually and correctly providing services.

We also note that the definition of the graph G does not contain virtual hosts
(VMs) as nodes, but contain only virtual networking resources (e.g., VLAN, VR).
The main motivation for this is that the number of VMs can easily be various
according to the computational requirement from tenants, compared to that of net-
working nodes. Even if a pair of graphs have the identical network configuration,
those graphs would produce high dissimilarity if they contained different number of
VMs as nodes, impairing the discovery of typical networking configurations.

3.3.2.2 Acquiring tenants from configuration files

We select to reverse-engineer configuration files to obtain tenant networks. This
choice is motivated by the fact that those files (a) are commonly available for engaged
network operators, (b) store correct running status of networks, and (c) can be
automatically analyzed thanks to their pre-defined syntaxes. Identification of tenant
topologies is, however, not obvious due to the inexistence of direct mapping between
a configuration file and a tenant; A single tenant network is composed of several
virtual resources allocated by several devices, whereas a single device allocates lots
of virtual resources for multiple tenant networks.

Identification of tenant topologies from configuration files can be achieved ac-
cording to the following two steps. (1) According to the tenant network model
(Sec. 3.3.2.1), we first generate the nodes from all the configuration files, and then



CHAPTER 3. STRUCTURAL CONFIGURATION PATTERN ANALYSIS 44

produce the edges connecting these nodes by re-scanning those files. (2) We use
a conventional graph traversal method to obtain per-tenant networks appearing as
‘connected components’ inside the entire network reproduced by the above step (Fig-
ure 3.3(a)). This second step is plausible because any pair of tenant networks must
not be inter-connected due to the principle of multi-tenant networking.

Indeed, there might be a case where tenant networks are exceptionally inter-
connected at a gateway router; We need to remove the corresponding node before
performing the graph traversal in this case. Removal of the shared nodes can be
both manual and automatic; Those nodes can manually be indicated by operators,
or can automatically be identified based on heuristics (e.g., such shared node will
have many edges than the others). In our case, we manually indicated the shared
nodes beforehand, as they were a priori known.

3.3.3 Finding typical tenants

The second step after identifying tenant networks is to extract similar patterns of
them. We breakdown this issue into defining similarity between a pair of topologies
with graph edit distance customized for this specific issue (Sec. 3.3.3.1), and finding
clusters of similar topologies with an unsupervised clustering (Sec. 3.3.3.2).

3.3.3.1 Computing tenant similarities

Discovering typical patterns can generally be achieved by unsupervised clustering,
which groups similar objects on the basis of a quantified similarity measure. Con-
ventional similarity is Euclidean distance between two vectors, but unfortunately
this measure cannot be directly applied to structured graphs.

In contrast to the conventional approach, we leverage graph edit distanceD(G1, G2)
to quantify the similarity between a pair of graphs G1 and G2. The graph edit dis-
tance is the minimum number of operations needed for transforming G1 into an
isomorphic of G2 [39]. The transformational operations are addition/deletion of a
single node/edge. Here, G1 = (V1, E1,Σ1) and G2 = (V2, E2,Σ2) are isomorphic if
there is a bijective function f : V1 → V2 satisfying both (a) Σ1(v) = Σ2(f(v)) for
∀v ∈ V1, and (b) (f(vi), f(vj)) ∈ E2 for ∀(vi, vj) ∈ E1. The isomorphism between
a pair of graphs means that the two graphs have the same set of labeled nodes
representing the identical structure. Higher D(G1, G2) indicates higher degree of
structural difference between G1 and G2.

In the context of discovering similar patterns of tenant networks, we decided
that two nodes can be mapped via f if their node types t and device roles r are
same. In other words, this similarity does not consider the parameter of virtual
resource p and the ID of physical device d. The basic structure of tenant networks
can be represented with t and r, and thus assigned parameters p and actual used
devices d should be determined at the moment of using a template (not the moment
of creating templates). Hence instead of the labeling function Σ (Sec. 3.3.2.1), we
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define an alternate labeling function Σ′ : V → L′, where l′ ∈ L′ consists of the 2
attributes l′ = (t, r). With this similarity measure, we compute the N×N similarity
matrix A = (ai,j) for N graphs G1, . . . , GN , where ai,j = D(Gi, Gj).

The main motivation to use the graph edit distance is that this metric directly
reflects the engineering workload to create a tenant configuration settings. For
example, adding a node to a graph is similar to the attaching a virtual resource
(e.g., VR) with a tenant network. This engineering nature would not easily be
represented by isomorphism or by statistical metrics such as eigenvalues, degree
distributions, centrality measures (e.g., betweenness), and so on.

3.3.3.2 Clustering tenant networks

Unsupervised clustering produces clusters of graphs based on similarities between
graphs. A collection of N graphs G1, . . . , GN is converted into a set of M clusters
C1, . . . , CM (Figure 3.3(b)). A cluster Ci is a collection of graphs that are close in
the distance space, i.e., similar in terms of topological shape.

We use an aggromerative hierarchical clustering [40]. This technique starts with
N clusters, each of which contains a single graph, then a pair of most similar clusters
are merged as one. The operation of merging clusters is iterated until any pair
of clusters does not yield distance higher than a threshold θ. Here, the distance
of two clusters D(Ci, Cj) is defined as D(Ci, Cj) = E(Ci ∪ Cj) − E(Ci) − E(Cj),
where E(Ci) is the Euclidean intra-cluster distance within Ci. The inter-cluster
distance D(Ci, Cj) can be computed from the similarity matrix A, following the
Lance-Williams similarity update formula. Refer to Ref. [40] for details. Clusters
obtained with θ = 0 include only exactly identical structure of graphs, whereas those
with θ > 0 result from fuzzy matching among graphs.

3.3.3.3 Computational load

The computation of the graph edit distance is most expensive as it requires expo-
nential time- and space-complexity. Computational costs we measured were less
than 10 sec. with a 3.3GHz CPU and 1GB memory space for conventional graphs
(around 10 through 30 nodes – most of the graphs examined in this work); Those
for large graphs (around 100 nodes) were unfortunately intractable due to the large
search space, but this is insignificant because such graphs are generally atypical in
practice so that template finding does not require the exact computation of simi-
larity regarding such highly-different graphs. One option for this issue is to use the
isomorphism as an alternative similarity measure (e.g., 0 for isomorphic and 1 for
non-isomorphic) instead of the graph edit distance for low computational cost at the
sacrifice of fuzzy clustering. More specifically, the use of isomorphism corresponds to
the θ = 0 case of the use of graph edit distance, and hence can only obtain clusters
with θ = 0 as well as cannot provide interpretation of the degree of dissimilarity
among different clusters.
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Figure 3.4: Clustering result represented as a hierarchical view with manually clas-
sified labels, showing the characteristics of the threshold θ.

On the other hand, the clustering method requires O(N2) with N objects for
both time- and space-complexity, and we observed that 1,000 objects are clustered
within a few minutes with that CPU, requiring 10 MB memory space.

Overall, the total processing time we measured with the dataset described later
was less than 3 hours (computation of intractable cases were not completed but ter-
minated during the processing when reaching to the limitation of memory). Hence,
in practice, this processing can daily be performed to follow the longitudinal changes
in typical pattern of tenant networks.

3.4 Validation

3.4.1 Dataset

The feasibility of the proposed method is demonstrated with a set of configuration
files obtained from switches and firewalls in an actual business datacenter. This
datacenter offers a hosting service that consolidates virtualized systems of various
customers in a multi-tenancy fashion. More than 1,000 instances of virtual resources
are combined to form a number of virtualized tenant networks. Those configuration
files compose tens of thousands of lines in total.

In order to well interpret the results produced from the method, we create a
referential information of tenant topologies by inspecting operational documents
maintained by engineers dedicated to that datacenter. These documents consists of
the drawing of topological structure of virtual resources allocated for each tenant.
As a preliminary setup, we put effort on manually classifying around 50 tenants by
examining their visual figures. This procedure identified 5 typical patterns based
on their service usage. We annotate these typical patterns as P1 through P5 and
atypical patterns as O (i.e., Other).
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3.4.2 Relevance of method

Figure 3.4 displays the clustering result of tenant topologies. The horizontal line rep-
resents a series of the tenants (labeled by hand), whereas the vertical line measures
the similarity between tenants (e.g., zero similarity means identical topology). We
found that there were intractable similarity values for large graphs as discussed in
Sec. 3.3.3.3. We decided to set the similarity 100 in that case as it is unimportant for
template finding to exact computation of similarity regarding such highly-different
graphs. Such topologies are located at the left area in the figure. Labeled clusters
C1 though C5 are obtained with θ = 0, whereas C6 through C10 are produced with
θ > 0.

This figure leads to the following findings.

• The resulting clusters having the same form of tenants imply that the use of
template would be effective (i.e., reusable) in the examined environment. For
example, with respect to the threshold θ = 0, there are 8 same topologies
labeled as P2 in Cluster C3, and 6 ones labeled as P3 in Cluster C4. Approxi-
mately 50% of tenants are clustered into C1 through C5 in total. Regarding the
remaining half of tenants, some are clustered with θ > 0, but others (mainly
labeled O – about 35%) are not clustered, as shown below.

• Also, this method successfully captured minor clusters containing small amount
of tenants (e.g., C1, C5). Indeed, it should be easy to manually enumerate ma-
jor clusters containing high number of tenants (e.g., C3, C4 – each of which
contains over 10% of total tenants), because human can easily perceive fre-
quently repetitive patterns from the entire set of tenants. On the other hand,
however, manual enumeration will tend to overlook less frequent patterns; This
difficulty will become polynomially significant according to the increase in the
total number of tenants N , as finding typical tenants requires to compare each
pair of two tenants, resulting in N × (N − 1)/2 comparisons.

• Regarding the fuzzy clustering with θ > 0, we discovered several tenants that
are similar yet not exactly identical (e.g., Clusters C6 through C10). We man-
ually inspected their topologies and found that their difference mostly came
from the number of network segments (VLANs) in a tenant. Such tenants
would be constructed with small modification of configuration commands gen-
erated via templates, as the graph edit distance directly reflects the number of
modification steps. For example, C10 tenants can be created with small modifi-
cation from C4 configuration commands since C4 ⊂ C10. Also, we consider that
the slight differences among the tenants within a fuzzy cluster can possibly be
further parameterized, and such parameterization can be further effective in
creating configurations; However, automatic extraction of parameterization is
a difficult problem, which should be explored in the future work.
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Figure 3.5: Examples of typical patterns found.

• On the other hand, there are a non-negligible amount of atypical tenants (la-
beled as O), which are not similar to any of typical ones; Such tenants account
for about 35% of total tenants as shown in Figure 3.4. Manual inspection
on the composition of those tenants revealed that some of them consisted of
tens of even around a hundred of virtual resources; Those tenants cannot be
effectively represented as templates and should be manually customized as
value-added services.

Figure 3.5 exhibits two of the typical patterns found by the proposed method.

• Figure 3.5(a) shows the most frequent pattern of tenant topology (Cluster C3),
which is composed of a single VR and a few VLANs. Consulting the operators’
documents, we found that one of the VLANs is attached to a VPN device,
which is used in establishing private connections between this datacenter and
customer sites via external networks.

• On the other hand, Figure 3.5(b) displays another recurring pattern (Cluster
C2), which consists of two types of areas, i.e., public areas and private ones;
The public areas are connected to the external network via a virtual router in a
firewall, and to the private networks through another virtual router of firewall
as well. This is a common construction of multi-tier network architecture with
different security levels across tiers.

To summarize, we found that the proposed method fruitfully captured common
usages of virtualized networks in a multi-tenant datacenter.

3.4.3 Operational practicability

The automated discovery of typical tenant configuration allowed us to implement
a prototype of multi-tenancy-aware networking management tool, which automati-
cally generates a set of configuration files for a tenant based on the 5 configuration
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Table 3.1: Operational cost with and without templates based on auto-discovered
patterns.

Operation w/o template w/ template

1 Topology design 20 min 20 min

2 Configuration creation 120 min ∼ 0 min

3 Self-validation 60 min 60 min

4 Cross-validation 60 min ∼ 0 min

Total 240 min 80 min

templates corresponding to the discovered patterns C1 through C5 (can be obtained
with θ = 0). The parameters of various types of resources (e.g., VLAN ID, VRF ID)
are automatically assigned by the tool so as not to cause misconnection to any of
the existing tenants. The users of this tool only have to select an appropriate tem-
plate if it matches with the requirement from the upcoming customer. As shown
in Sec. 3.4.2, about 50% of tenant networks can be represented as one of the 5
templates, although this service still accepts customized tenant networks.

An engineer actually used this tool. Usual procedure to deploy a tenant was as
follows (Table 3.1): (1) designing the topological structure of a tenant and drawing a
document regarding that topology; (2) creating configuration commands for deploy-
ing that tenant; (3) validating the correctness of the commands (before inputting
into devices); (4) cross-validating those commands (performed by another engineer
to avoid human-errors).

The use of the tool mitigated the burden of this operational procedure as follows.

• The tool achieved in reducing the operational time of the per-tenant network
construction/validation from 240 min. to 80 min. The breakdown of the opera-
tional costs is displayed in Table 3.1. Configuration creation is fully automated
by the template tool, whereas topology design still requires operational cost
because of the need for manually creating documents including the drawings of
their topologies. On the other hand, despite auto-generated configurations are
correct and not needed to be validated in essence, configuration files generated
by the tool are still cross-validated by the engineer to assure the correctness
of the prototype.

• In addition to the above achievement, the tool contributed to reducing the
number of dedicated engineers from 2 to 1. The cross-validation requires
another engineer in addition to the one in charge of creating configuration
commands for the tolerance to human-error, needing at least 2 engineers in
total. Since the template tool plays the role of configuration creator, there
needs only 1 engineer for validation.

• The automation of deploying typical tenants enables engineers to concentrate
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their effort on the atypical (value-added) deals. This means that atypical cases
could indirectly be accelerated by the template tool by mitigating the total
operational cost on engineers.

In summary, the templates based on the discovered configuration patterns con-
tributed to reducing operational time, human costs, and the possibility of human-
error although not perfect yet.

3.5 Related work

Configuration templates. A few works have developed configuration templates
in different networking fields (e.g., ISP [35, 37, 38]), and the present work shares the
spirit of the use of templates. In contrast to those work, an originality of this work
is the focus on the fundamental and crucial difficulty in creating appropriate tem-
plates. Indeed, Refs. [41, 42] automatically find frequent device-level configuration
patterns by means of a device-to-device copy-and-paste detection tool. However,
this kind of tool cannot be directly applied to finding typical patterns of tenant-
level network-wide configuration, because tenant networks are structured and not
constructed over a single network device. We instead select the approach of find-
ing typical network-wide configuration by customizing a graph-mining technique
according to the context of this problem. To the best of our knowledge, this is the
first detailed statement on appropriately finding and using configuration templates
in multi-tenant datacenter networks.

Network configuration analysis. There have been various efforts on ana-
lyzing network configuration files. Configuration files have been used mostly in
understanding network characteristics such as routing design [43], Class-of-Service
[44], Route Redistribution [45], complexity of enterprise network [41], access control
lists [46], co-occurrence of device updates [47], operational history [48], and longi-
tudinal trends in ISP services [42] and campus networks [49]. Ref. [36] argues the
possibility of the use of graph-mining on configuration files, but unfortunately does
not provide details. This work newly develops the graph-mining-based method of
analyzing configuration files.

Management in multi-tenant datacenters. In the context of device settings
in multi-tenant datacenters, there are a few works on future datacenter architectures
addressing management aspect as one of primary issues [50, 51]. On the other hand,
we focus on current situation where engineers use existing products of hardware and
software commercially available today, which new architectures of future paradigm
cannot be directly applied. Existing tools (mostly commercial) provide intuitive
user-friendly GUI interface for ease of settings, but such settings seem have to be
made per instance of logical resource (e.g., VLAN, VRF), different from per-tenant
deployment that we aim to achieve.
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3.6 Discussion

Generality. We consider that the proposed method would be applicable to a great
deal of other multi-tenant datacenter networks, only if tenant networks are logi-
cally independent at the level of virtual resources2. Device-specific languages are
abstracted as device-neutral graph components (nodes/edges) for generality, and
virtual resources defined in this work (VLAN, VIF, VR) are essential building-block
of computer communications in principle. Configuration compositions of tenant net-
works are not necessarily specific to the analyzed datacenter, because a few design
guides recommend similar (although not exactly same) patterns [32, 33]. The ef-
fectiveness of the method would be impaired when all tenant networks are totally
different, but this should be unrealistic in actual environments.

Limitation. The present work mainly focused on topological aspects of tenant
networks, and did not capture access control functions such as routing, filtering
(ACL), quality assurance (QoS). The identification of typical topologies should be
the first step to discuss the capability and effectiveness of finding template regarding
those access control functions, because they are performed over deployed topologies.
Although the use of ACL has become less significant in multi-tenant datacenters
(because the inter-tenant isolation is achieved by the logical independence of virtual
resources), those remaining tasks would be interesting future works.

3.7 Concluding remarks

We developed a configuration analysis method to automatically find appropriate
(i.e., reusable) configuration templates in deploying tenant networks for virtualized
multi-tenant datacenter networks. The main idea was based on mining existing
tenant configurations to discover typical patterns that can be converted as reusable
templates for upcoming tenants. The evaluation with actual configuration files ob-
tained from a production datacenter network demonstrated the effectiveness of the
proposed method. Future works include discovering domain-knowledge from con-
figuration information in a systematic manner as well as quantifying the scalability
characteristics of the method. Also, another interesting future work is to investigate
the applicability of this method to multiple datacenters.

2The proposed method cannot be directly applied to the case where separation among tenants
are realized at application-level; In this case, the graph model has to additionally include the
application-level information of separation, and the mining method will need to be extended to
handle them, although the fundamental idea of this paper (i.e., mining per-tenant information)
would be applied.



Chapter 4

Discussion and Future
Perspectives Towards Efficient
Analysis for Management of Field
Domains

Contrary to the previous chapters (Chapters 2 and 3) that dealt with traffic and
configuration data in the computer networking domain, this chapter discusses the
possibility of extending those analytical approaches to the management of field do-
mains (e.g., building), which have become more important as more field devices be-
come connected. We consider that the spirit of data analytics for the management of
end-hosts (by traffic analysis) and virtual network configurations (by configuration
analysis) should have commonality to some extent for the of filed domains such as
to manage end-devices (e.g., sensors and actuators) and their inter-link configura-
tions. However, analytics on data obtained in field domains is relatively difficult
due to the differences in the characteristics of those domains (e.g., open systems for
field domains, rather than closed systems in computer networking domain), partic-
ularly leading to the difficulty in interpretation of analytical results. In addition,
characteristics of data in computing fields are rather aggregated view of discrete
and relative information (i.e., aggregated cardinality), which would be suitable for
the discrete structural model (e.g., graphlet), whereas field data additionally sug-
gests the importance of individual point-by-point time-series view with non-discrete
and absolute values. We discuss the need for trial-and-error approach of analyz-
ing field data (e.g., per-room temperature in a building), interpretation of which
is gradually complemented by introducing multiple types of contexts (e.g., switch
states of air-conditioning appliances in rooms) and even other data sources (e.g., ex-
ternal temperature outside the building) that are considered as structurally related.
This approach is demonstrated with an unsupervised analysis over an actual dataset
about Electrical Heat Pump (EHP) equipped in a number of rooms in a building.

52
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4.1 Introduction

There has been increasing expectations about digitalization in field domains, which
is often termed as Internet of Things (IoT) in the recent literature. A representative
example of such the digitalization includes building automation or smart building
that deploys sensors and actuators inter-linked with computer networkings inside a
building in order to measure digitally-processable information about the usage of
resources (e.g., electrical power consumption) and the state of buildings (e.g., per-
room light and air-conditioning settings, and temperature); Those data are used for
holistic visualization, finding knowledge based on analytics (e.g., detecting unneces-
sary consumption of electrical power), and further controlling equipped appliances
to the desired state at the fine-grained views. Such the expectation is supported
with the recent technological advances in sensing, sensor networking, communication
protocol and data format for field domains (e.g., IEEE 1888), and data analytics
(e.g., Artificial Intelligence (AI) including Machine Learning (ML)).

The deployment of digitalizations will also suggest the importance of the man-
agement in field domains. Digitally-connected sensors/actuators deployed in fields
will enable additional use cases about field management such as to detect and reduce
unnecessary power consumption in building and/or to detecting faults of appliances
at earlier stages; Also, such the digitalization with sensors and actuators instead
requires additional management of those devices, which may become important be-
cause those devices can be essential components of field controlling (e.g., building
automations); Errors and faults in those devices can possibly affect the entire be-
haviors of the controlled field domains.

We consider that such the management in the field domain can promisingly
be supported with the extension of unsupervised analysis for network management
described throughout this dissertation. This perspective is motivated from the sim-
ilarity in the general notion of management tasks and observable data, based on the
comparative discussion about the two domains (i.e., network management and field
management). From the viewpoint of management tasks, field management also
relies on data flow management (i.e., handling sensor-generated data flowing sensor
networks in field) and configuration management (i.e., dealing with network-wide
configuration of inter-sensor/actuator network), which is respectively comparable to
traffic and configuration management in a broad sense by analogy. In addition, with
regard to the observable data, there will be many similar end-devices deployed in a
single field domain, resulting in the practical possibility of comparative study of data
observed with those devices (i.e., unsupervised analysis) in order such as to finding
misbehaviors of end-devices (e.g., faults and misconfiguration in end-devices) and
that of intermediate networks (failures and misconfiguration in intermediate assets).

However, as stated throughout this dissertation, unsupervised analysis is in gen-
eral faced with the difficulty in interpretation of analysis outputs, and this difficulty
will become more significant in the field domain. This difficulty of interpretation
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in field domains stems from their system characteristics, and accordingly data char-
acteristics in the domain. In terms of system characteristics, different from com-
puter networking domain, which is relatively closed system of interactions among
end-hosts, field domains are rather open systems, where end-devices (i.e., sensor/ac-
tuator) are affected through external factors such as human intentions and outside
climates. Accordingly, as data characteristics, there would be limited view of the en-
tire system from the dataset observed only with the sensors of limited scope (i.e., only
temperature sensor and/or only power consumption meter). Furthermore, different
from natively-digital computer networking domain that are suitable for analysis of
discrete and relative values (i.e., graph analysis), the field domain is originally ana-
log and will not necessarily be directly suitable for that analysis, which indicates the
difficulty in direct application of graph-based structural analysis to the field domain.

In this present work, we discuss the use of unsupervised analysis in field domains,
particularly building domain. We focus on data flow management of end-devices (in-
cluding misbehavior detection) due to the current availability of data, rather than
configuration management as multi-tenant virtual sensor network is not currently
widely-deployed. Instead of graph-based analysis, we take a trial-and-error approach
that gradually introduces additional sources of information starting from simple sin-
gle type of data (i.e., measured temperature with sensor attached with an appliance)
to multiple types of data (i.e., internal setting information of the appliance) and to
macroscopic external data (i.e., external global temperature) that are considered as
structurally related; This enables to complement interpretation of analysis outputs.
We demonstrate this approach with an actual dataset about Electrical Heat Pump
(EHP) equipped in a number of rooms in a building.
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Table 4.1: Comparison between field domain and computer networking domain in
terms of management tasks and domain objects.

management tasks and domain objects

management of data flow from
end-devices (measured as time-
series data)

management of network config-
urations (measured as spatial
data)

d
o
m
a
in computer net-

working domain
managing traffic data generated
from a number of end-hosts over
shared network

managing configurations of a
number of virtual networks
over shared infrastructure (e.g.,
wide-area network, datacenter
network )

field domain managing sensory data mea-
sured from a number of sensor
devices (e.g., attached with in-
dividual appliances and spaces)
within a single domain

managing configurations of a
number of virtual sensor net-
works within a single domain
(e.g., inter-sensor/actuator net-
works for individual use)

4.2 Preliminaries

4.2.1 Possibilities: extending unsupervised analyses of com-
puter networking domain to field domains

Improving management tasks in field domains has recently been increasingly moti-
vated from the following aspects.

• Opportunity for data-driven management in field domain. Recent
increasing deployment of sensor devices (e.g., equipped with building appli-
ances) opens the possibility of enabling to collect small-grained and diverse
data that will be meaningfully analyzed for the use of improving management
in that domain, which would have conventionally been conducted in an offline
as well as manual manner based on experts experiences.

• Need for managing newly-deployed sensor devices and networks.
Also, deploying sensor/actuator devices instead requires management of those
devices (and their networks) themselves. Management of those devices will be-
come important as management in that domain relies on automated sensor/actuator-
based approach; Failures and errors can possibly impact the running state of
the entire management domains.

Those emerging possibilities are derived from the fact that increasing amount and
variety of data in field domains have been becoming available due to the recent ad-
vancement of sensor devices, that are networked especially through open standards
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of communication protocol and data format (e.g., IEEE 1888), with which those vari-
ety of data can be collected and made accessible to many developers. An expectation
is that developers (including third party) develop applications of management im-
provement by using wide variety of available data, which was conventionally stored
in closed domain due to vendor specific protocols and management systems.

Similar to the data-driven management in the computer networking domain,
one difficulty is to find out appropriate combination of data types and their analysis
methods used (from the choices on a variety of available data and analytical tools),
and we consider that there will be promising possibility of extending the notion of
unsupervised analysis (for computer networking as presented in the previous chap-
ters) to field domains. This consideration is motivated by our observation about (a)
management tasks and (b) objects deployed over domain as follows (and summarized
in Table 4.1).

(a) Management tasks. As the aspect of management tasks in field domain,
the tasks will also be classified as follows (although this may not be widely-used).

• Data flow management. As previously mentioned, one important tasks in
the computer networking domain is to manage traffic data that are generated
from end-devices (i.e., end-hosts) connected to the network. Traffic data can
be regarded as data flow in that specific domain, which we consider would
be conceptually comparable to the field domains, i.e., managing sensory data
flow generated from end-devices (i.e., sensor devices). Those data in the two
domains tend to be sequentially observed as aggregated time-series data for
individual end-devices.

• Configuration management. Also, as previously mentioned, another im-
portant task in the computer networking domain is to manage network-wide
configurations originating from the settings of individual networking devices.
Network configuration itself will be formed in sensor network that topologi-
cally connect sensor/actuator devices as well as servers (e.g., storage server
that stores sensory data). Spatial configuration management is hence at least
conceptually required also in the field domains.

(b) Domain objects. As the aspect of objects in domain, there also becomes
increasing amount of similar objects within a single domain that can be comparable
through unsupervised approach.

• End-devices. As previously-mentioned, there are a number of end-hosts shar-
ing the same network. The behaviors of those end-hosts (observed as per-hosts
traffic) can be analyzed without pre-defined knowledge by using unsupervised
approaches. Also, there are similar objects in field domain. For example, a
single building is composed of a number of rooms and appliances such as Elec-
tric Heat Pump (EHP), behaviors of which can be comparable by using an
unsupervised analysis over corresponding data that can be obtained thanks
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to environmental sensors and/or appliance sensors connected with a sensor
network.

• Virtual networks. Also, as previously-mentioned, there has been a number
of virtual networks over a single computing infrastructure (e.g., multi-tenant
datacenter networking) that can be analyzed with an unsupervised analysis
as well. Although not common in the current literature, we predict that a
number of sensor networks will also be formed within a single field domain (e.g.,
isolated networks each of which connect specific different sensors/actuators
within a building such as for flexible access controlling).

According to the above discussion, we predict that unsupervised analysis will be also
effective in field domains. We hereafter deal with data flow of end-devices because
virtual network in field domain is not widely common in the current practice.
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Table 4.2: Comparison of characteristics of system behavior and data from the
viewpoint of data analytics.

characteristics from the viewpoint of data analysis

system behavior data characteristics

d
o
m
a
in computer net-

working domain
closed system, and autonomous
within subsystem (follow-
ing standard communication
protocols) → capability of
interpretation with obtained
data itself

traffic data: discrete (or dig-
ital), relative, and aggregated
→ suitability of visualizable
graph-based representation and
analysis

field domain open system, and interaction
among subsystems → interpre-
tation requires complementary
information although analyses
can be performed over obtained
dataset (e.g., statistical misbe-
havior detection)

sensor data: continuous (or
analog), absolute values, longi-
tudinal characteristics (in ad-
dition to digital data) → dif-
ficulty in direct use of visual-
izable graph-based representa-
tion and analysis

4.2.2 Challenges: difference in characteristics of system be-
havior and data

In spite of the above-mentioned similarity in the concept of managements tasks and
increase in virtual objects deployed over the shared infrastructure, direct application
of unsupervised structural analysis to field domains is not effective due to the differ-
ences in system characteristics and correspondingly data characteristics as follows
(also summarized in Table 4.2).

As the aspect of system characteristics, there are following differences in com-
puter networking domain and field domains.

• Computer networking domain is relatively a closed system (i.e., traffic
data is mostly explained with computer communications deriving from appli-
cation programs). Also, there will be less interactions among different subsys-
tem (in other words, the systems is more autonomous).

• Field domain, on the other hand, is rather an open system. For example,
appliance states are affected through environmental factors (e.g., temperature)
and human factors (e.g., intention of use), and resultingly attached sensors can
only see the partial view of the domain. Also, field domain tends to be subject
to interaction among subsystems, leading to complicated behaviors of system
itself.

This comparison indicates that there are limited coverage of information viewable
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from sensory data measured in field domains, compared to traffic data measured in
computer networking domain, because simple set of sensory data will not enough to
explain the actual condition of real fields, which triggers the increased difficulty in
interpretation of analysis outputs with data in field domains.

As the aspect of the characteristics of data flows, there are followings differences
in computer networking domain and field domains.

• Traffic data in computer networking domain would mainly be dealt with as
(a) digital discrete values (e.g., TCP port numbers and flags) as well as (b)
relative and aggregated view (e.g., the total number of TCP ports rather than
the individual values of TCP port numbers).

• Sensor data in field domain would also put emphasis on (a) analog continuous
values (e.g., temperature) as well as absolute and individual view (e.g., time-
series behavior of absolute temperature value), although there is also digital
data in field domains (e.g., on/off switch state of appliances).

In other words, from the viewpoint of the use of structural analysis, traffic data
is suitable for the use of graph structure due to the commonality of discrete and
relative nature (represented as nodes and edges), whereas sensory data however
would not necessarily be directly suitable for that structure, which makes it difficult
to introduce graph-based support of interpretation; We need expanded approach for
the analysis of sensory data in field domains.

4.3 Approach and dataset

4.3.1 Approach

Based on the above-mentioned considerations (Table 4.2), we take a trial-and-error
approach that performs unsupervised analysis by introducing complementary in-
formation obtained from different data sources (that are considered as structurally
related) in a step-by-step manner. Starting point is the same as the analysis in the
computer networking domain; We first investigate a dataset about data flow (i.e.,
sensory data) obtained from a single kind of objects that can be analyzed in an un-
supervised inter-comparative manner. Its analysis results will provide suggestions
about hypothesis about the requirements about lacking sort of information, and
then we make an advanced analysis with additional dataset of different sort, which
complements interpretation about the outputs.

An example of building domain dealt with in this study is as follows. We first
take notice of that there are similar form of rooms in a certain kind of building
(e.g., research building that accommodates a number of research groups for dif-
ferent rooms). Among the available dataset, the room state is characterized with
sensory data measured from Electric Heat Pump (EHP), the data of which includes
room temperature as well as the state of the appliances (e.g., setting temperature,
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Table 4.3: Dataset used.
# Type Granularity Symbol Description Possible values

1 EHP Per-room Tset Target air-conditioning
temperature set to EHP

Celsius degree

2 EHP Per-room Tmeasured Temperature measured by
EHP

Celsius degree

3 EHP Per-room Sswitch Switch state ON/OFF
4 EHP Per-room Smode Air-conditioning mode COOL, HEAT,

FANONLY, AUTO
5 EHP Per-room Sfan Fan volume HIGH, MID, LOW, OFF
6 External Geographical Texternal External temperature Celsius degree

on/off switch state, and air-conditioning mode). As an introductory step of analy-
sis, we first compare the measured temperature data per rooms, and find that there
are anomalies while facing the difficulty in finding keys to their reasons. We next
introduce on/off switch state and setting temperature of EHP as supplementary in-
formation that will be a major factor to the measured temperatures, and find that
there are anomalous events where measured temperature does not converge to the
setting temperature despite the EHP is turned on. We then introduce the macro-
scopic external temperature as another major factor to the measured temperatures,
with which we to some extent can add insight about the sources of anomalous events
such as open/close states of doors/windows.

4.3.2 Field domain and dataset

In this study, we focus on the building domain. Building is a major place of pro-
ductive activities of human and in other words is a major place of the use of energy
resources (e.g., electricity) and appliances, which motivates the efficient management
of buildings. For example, it is said that tens of percent of electricity is consumed
in buildings in the U.S. case [52]. On the other hand, there has been emerging
opportunities for building management with fine-grained and various sensory data
through IT technologies; Sensor devices have been attached to a variety of appli-
ances (such as ceiling lights and Electric Heat Pump (EHP)), the data of which
include power consumption, running status, and setting information. Those data
can be efficiently transferred over networks, stored in storages, and made available
to developers through open standards of communication protocol and data format
(e.g., IEEE 1888).

Table 4.3 shows the datasets used in this study. The dataset are primarily (a)
EHP sensory data in a building and (b) external temperature as follows.

(a) EHP (#1 . . . #5): We use data obtained from a building, which measures
a variety of information about its states (e.g., power consumption of a number of
appliances, setting and running states of EHP). From the dataset, we use a dataset of
EHPs equipped with tens of individual rooms in the building. This dataset consists
of a variety of information about EHP: setting temperature for air-conditioning
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Tset, measured temperature Tmeasured, on/off state of switch Sswitch, air-conditioning
mode Smode, and fan volume Sfan, example values of each of which is shown in
Table 4.3. Measured data at time t of room R can be represented as d(R, t) =
(Tset(R, t), Tmeasured(R, t), Sswitch(R, t), Smode(R, t), Sfan(R, t)). Those types of data
are periodically measured and we analyze the data measured over the course of a
one month from the entire dataset.

(b) JMA (#6): We also use data about the external environment as a source
of complementary information. Specifically, we use the weather data published from
Japan Meteorological Agency (JMA) 1, which includes global meteorological infor-
mation such as temperature, humidity, wind, and rainfall observed with the mea-
surement granularity of ten minutes. Among the meteorological data, we use the
temperature information about the area where the building is located, as those tem-
perature data can be considered relatively related to the EHP behaviors (e.g., EHP
actively runs as cooling mode at the time of high external temperature). Measured
data at time t can be represented as Texternal(t) for time point t.

4.4 Field study in building domain

4.4.1 Step 1: single-dimensional and manual anomaly de-
tection

4.4.1.1 Data and method

As a first step of data analysis, we survey the available dataset containing diverse
types of data such as electricity consumption measured at various observation points
and temperature of rooms measured by EHPs. We notice that the dataset contains
data for a number of EHP equipped in different rooms in the building. Those
EHP data is characterized with common data types shown in Table 4.3, and can be
analyzed through directly inter-compared manner due to the common data types.

By examining the types of the EHP data through visualization (e.g., Figure 4.2),
we notice that the temperature data well represent the differences in the behaviors
of rooms. The temperature data will be the staring point of unsupervised analysis,
but that kind of data is generally continuous time-series data and we need extract
related feature values in order to inter-compare the time-series data. Being inspired
by the time-series analysis of network traffic in one of our previous studies [29], we
analogically select to use the average and standard deviation of temperature values
within a time-window; This enables to discuss the similarity and differences of room
behaviors from a holistic view.
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Figure 4.1: Basic scatter plot of per-room activities.

4.4.1.2 Result and considerations

Figure 4.1 shows the scatter plot of the behavior of individual rooms. The horizontal
and vertical axes represent the average and the standard deviation of room temper-
ature within the 1 hour time-window, respectively. One plotted data point corre-
sponds to one room. This figure suggests that most of the rooms are concentrated
on a certain area and whereas there are also outliers from this statistical viewpoint.
The outliers include (a) low average temperature compared to the majorities as well
as (b) high standard deviation of temperature compared to the majorities.

That naive scatter plot lacks the meaningful reason of the outlier behaviors.
Although we can revisit the original time-series data having the outlier values of
average and standard deviations, we can only discuss the characteristics of time-
series behavior (e.g., high standard deviation drives from frequently fluctuating or
only one large change point of baseline). We need additional information about the
actual factors affecting the time-series temperature values, and among the dataset
we introduce the other types of EHP-related data such as setting temperature values
and on/off switch state that will affect the measured temperature values.
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Figure 4.2: Basic plot of per-room EHP behavior.

4.4.2 Step 2: multi-dimensional and automated anomaly
detection

4.4.2.1 Data

As stated above, measured temperature is dependent on other factors such as run-
ning state of EHP (i.e., switch on/off) and setting values of temperature to which
the EHP controls air conditions. Based on this observation, we introduce those ad-
ditional data for improving interpretation, and also we perform automated anomaly
detection considering the difference between the setting temperature and measured
one.

Figure 4.2 displays the measured temperature Tmeasured as red lines, setting tem-
perature Tset as green lines, and on/off switch states Sswitch as gray lines (the switch
state represents ‘on’ for upper side and ‘off’ for lower side of the plot). As a whole
(although not accessible from this figure), there are similar values of temperature for
rooms where Sswitch is off, so that the measured temperature can be considered as
dependent on the external temperature. On the other hand, measured temperature
Tmeasured for rooms where Sswitch is on tends to be close to its setting values Tset,
but there are cases where the measured temperature Tmeasured does not converge to
its setting temperature Tset. An example of sources of outlier behaviors we found
through actual investigation is derived from the difference in the use of the room,
i.e., there are additional heat sources (e.g., server computers).

This case study suggests the possibility of understanding room behaviors and
detecting anomalies by comparing per-room activities. In particular, per-room EHP
data in a single building will be effectively analyzed on the use of the difference
between measured temperature Tmeasured and setting temperature Tset. There are
however still issue for improving interpretations as it requires investigations on actual
locations.

1http://www.data.jma.go.jp/
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4.4.2.2 Anomaly detection method

Based on the above survey across rooms, we further investigate the building dataset
by focusing on anomaly events to make concrete discussions. Although there are
choices in the definition of anomaly (e.g., changes in inter-data correlation [52] and
deviation from the expected time-series behavior [53]), we focus on the temperature
data as discussed above. The basic idea of our anomaly detection is simply based
on the difference in the measured temperature Tmeasured (i.e., actual temperature
state) and setting temperature Tset (i.e., intended temperature state) but we note
that this difference becomes informative when the switch state is on, which we hence
have to deal with as well. Also, we have to be careful to the noisy behaviors such
as short-term fluctuations in the switch state.

Based on the above consideration we use following algorithm of anomaly detec-
tion.

1 Extracting EHP running event. For each room R, we first extract the
periods where EHP is activated, i.e., the periods correspond to the time spans
where Sswitch = ON . We ignore short-term fluctuation of Sswitch values (con-
sidered as noisy behaviors) and we define the EHP running event as the pe-
riod where the time point of Sswitch = ON (or OFF ) continues more than
T minutes (we set T > 10 minutes in this study). We note that during the
Sswitch = ON period, we ignore Sswitch = OFF states continuing for < T
durations within the period (and we deal with the total duration as a single
Sswitch = ON event), and also during the Sswitch = OFF period, we ignore
Sswitch = ON states continuing for < T durations within the period in the
same manner. Finally, in order to remove insignificant events, we only extract
events where Sswitch = ON states continues more than τ = 30 minutes.

2 Detecting EHP anomaly event. We next identify the anomaly of the ex-
tracted EHP running events. We define the anomaly as the event where the
difference between measured temperature Tmeasured(R, t) and setting temper-
ature Tset(R, t) exceeding the threshold θ (i.e., |Tmeasured(R, t) − Tset(R, t)| >
θ) that continues more than τanomaly = 30 minutes for room R (θ = 2.5).
We also set the timeout of anomaly as τnormal = 60 minutes, during which
|Tmeasured(R, t) − Tset(R, t)| < θ continues (if we detect anomaly events after
the timeout, then we deal with as different anomaly event). Those parameters
(θ, T , τ , . . .) can be tunable and in this study empirically determined.

Expected examples of anomalies, from the data perspective, include the case where
the room temperature does not converge to the intended one within the ±θ band
within τanomaly minutes after turning on the switch (or during the period of switch on
for any time). These anomalies will be related to inappropriate settings, overcapacity
of rooms, measurement errors, and other unknown misbehaviors in the practical
context.
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Figure 4.3: Example of anomalous events (highlighted with filled yellow area).

4.4.2.3 Result and considerations

Figure 4.3 shows part of the result of the above-mentioned anomaly detection.
Anomaly events are highlighted as yellow areas in that figure, and we in total ex-
tracted more than 100 anomaly events. According to the definition of anomaly
events, the behavior of detected events is more interpretable than only viewing the
time-series plot of measured temperature (as performed in Sec. 4.4.1). On the other
hand, we still need to improve the interpretation about the sources (or causes) of
the anomaly behaviors in order to take appropriate actions. Even so, this analysis
provides considerations about the candidate sources of anomalies such as inappro-
priate settings, overcapacity of rooms (e.g., there are significant heat sources), and
inappropriate setting of rooms (e.g., doors are opens), which can be more discussed
with additional dataset as conducted in the following section.

4.4.3 Step 3: complementary interpretation with external
data

4.4.3.1 Data and method

We introduce additional perspectives (from available dataset) to interpret the anomaly
events. Table 4.4 shows the perspectives additionally introduced for the comple-
mentary interpretation of anomaly events. The introduced perspectives are four-
fold – f1: the average of difference between measured temperature and setting one
(Tmeasured−Tset) during the period of the anomaly event, f2: the average of difference
between measured temperature and external one (Tmeasured − Texternal) during the
period of the anomaly event, f3: statistical mode (i.e., most frequent value) of air-
conditioning mode Smode during the period of the anomaly event, and f4: statistical
mode (i.e., most frequent value) of fan volume settings Sfan during the period of
the anomaly event. The two perspectives f1 and f2 represent numerical values and
not directly comparable to f3 andf4 that represent categorical values. We aggregate
f1 and f2 values into categorical representation as ‘+’ (f ≥ λ),‘-’ (f ≤ −λ), ‘∼ 0’
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Table 4.4: Perspectives for classifying anomalous events.
# Perspectives Example

f1 µ(Tmeasured − Tset)
+
-

∼ 0

f2 µ(Tmeasured − Texternal)
+
-

∼ 0

f3 Mo(Smode)

COOL
HEAT

FANONLY
AUTO

f4 Mo(Sfan)

HIGH
MID
LOW
OFF

µ(·) : average, Mo(·) : mode (most frequent value)

Table 4.5: Classification of anomalous events found.
# f1 f2 f3 f4 # events label

1 - + COOL HIGH 26 C1

2 + + COOL HIGH 20 U
3 + + AUTO MID 17 ?
4 - + COOL MID 12 C1

5 + ∼ 0 COOL HIGH 11 U
6 + - COOL HIGH 11 U
7 + + COOL OFF 7 I
8 - ∼ 0 COOL HIGH 6 C3

9 - - COOL HIGH 6 C2

10 - + FANONLY LOW 6 I
11 - + COOL OFF 5 I
12 + + FANONLY HIGH 5 I
13 - - COOL LOW 3 C2

14 - + FANONLY MID 3 I
15 + + HEAT HIGH 3 H
. . . . . . . . . . . . . . . . . . . . .

(−λ < f < λ), where λ = 1.0 in this study. Introducing these four perspectives
are motivated by the expectation of complementing the lacking information from
only using EHP temperature data; For instance, lacking information (discussed in
the previous step) includes open/close states of door/windows (as Tmeasured will con-
verges to Texternal in case of open states), EHP setting errors (as will be discussed
with Smode and Sfan), and heat sources in rooms (as Tmeasured will not converge to
Tset even in the closed state)

The method of anomaly analysis is based on simple grouping with the four
perspectives; Anomaly events having the same values of f1, . . . , f4 are grouped into
the same cluster.
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4.4.3.2 Result and considerations

Table 4.5 represents the results of grouping (or clustering) the anomaly events based
on the additionally-introduced perspectives. This table shows the groups according
to the cluster sizes. We manually put labels to the clusters based on our additional
interpretation with the outputs. Considerations about clusters with the individual
labels are as follows.

• I: The EHP can be considered as not working as temperature management.
This inference is based on that the air-conditioning mode (f3) is FANONLY, or
the fan volume (f4) is OFF. Major reason for this will be inappropriate settings
of EHP, or the users of the EHP do not intend to control the temperature.

• C: The room can be considered as overcooled. This inference is based on
that the air-conditioning mode (f3) is cooling (COOL) and yet f1 < 0 (i.e.,
measured temperature is lower than setting temperature). For the case C1, we
infer that users of the room actually intended to set cooling mode as f2 > 0
(i.e., measured temperature is higher than external temperature); For the
case C2, whereas, it is uneasy to discuss because f2 < 0 but one possible
interpretation is that this events are triggered from inappropriate settings.
The case C3 results in f2 ∼ 0 (i.e., measurement temperature is similar to
external one), possibly implying that the door/windows state can be open.

• H: The room can be considered as overheated. This inference is based on
that the air-conditioning mode (f3) is heating (HEAT) and yet f1 > 0 (i.e.,
measured temperature is higher than setting temperature). There is only one
case in the table, and in this case f2 > 0 (i.e., measured temperature is higher
than external one), possibly implying that (a) simply over-heating, or (b)
inappropriately setting heating mode while intending cooling mode.

• U : The EHP can be considered as under-capacity. This inference is based on
that the air-conditioning mode (f3) is cooling (COOL) with strong fan value
(f4 = HGIH) and yet f1 > 0 (i.e., measured temperature is higher than setting
one). Possible factors of under-capacity include the large size of room and/or
the existence of other heat sources, but this is not confirmed from the current
dataset (also, another possible factors is open door state in case of f2 ∼ 0).

• ?: Difficult to discuss. This is because of the air-conditioning mode f3 is
automatically determined (AUTO), with which it is difficult to interpret the
intention of the settings (e.g., increase the room temperature, or decrease).

4.5 Discussion

Possible use cases. Although we need further investigation, this field study will
suggest that the anomaly detection of room temperatures (using data measured
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by EHP) can be applied to reducing power consumption (by detecting unnecessary
EHP usage), increasing maintenance efficiency (by proactively detecting abnormal
behavior of EHPs), and to sophisticating asset planning (by detecting overcapacity
usage of EHPs). In particular, such the use cases will be efficient for tenant-rending
buildings where building managers cannot directly control the equipment of appli-
ances (that are brought by room users) in individual rooms. Also, another possible
use case of unsupervised clustering of field data is to automatically generate if-else
rules for maintenance (e.g., by decision tree methods) that are conventionally enu-
merated by hand of special-skilled engineers. In addition, from the viewpoint of
control engineering, one possible use case of field data analysis in a broader sense
will be to estimate internal models of appliances, and to automatically determine
parameters (e.g., thresholds) from the measured data.

Handling anomaly events. Taking appropriate actions against detected anoma-
lies in practice require to understand the causes, for instance, by investigating the
actual location where the anomalies are found. Investigators will survey open/close
states of doors and windows, existence of heat sources (e.g., servers), and intentions
of use of appliances (e.g., through interviewing to the users). It is, however, not
easy to obtain those information although to some extent can be estimated from
the available dataset as shown in this study. Also, it is not realistic to deal with
all the anomaly events due to the limited human resource against the number of
anomalies, and engineers need to put priorities on the events. One of the future
works is to quantify the importance of anomalies, for instance, from the viewpoint
of the duration of event and the amount of estimated power consumptions.

Improving interpretability. As a first step of data analytics, this field study
selected to use categorical data f1 . . . f4 due to the easiness of event grouping (i.e.,
a form of clustering) and the ease of interpretations. Ideally, we should deal with
absolute values of temperature, time of day, and duration of events, each of which
can affect the characteristics of events. For the case of the dataset investigated in
this study, we can further make use of power consumption of rooms light that will
further complement the interpretations (e.g., to complement the information about
the presence of human in night). Another future work would be to further examine
the relationship between the type of additional data we complement and the type
of information we can uncover.

Improving the reliability of measured data and interpretations. We also
further discuss the trade-off between the reliability of data and interpretation and the
cost of measurement. The temperature data we used in this study are measured from
internal sensors equipped within EHP, and hence the accuracy of measured sensory
data can be affected by the surrounding environment (e.g., fan volume of EHP);
There might be difference between the measured temperature and the representative
one of the room. Also, different from meteorological data, the sensory data tend not
to be measured through a standard measurement method (e.g., standardized box
for outdoor meteorological instruments). On the other hand, introducing additional
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sensors to measure accurate representative data will cause additional device costs
and management costs. Also, interpretation of analysis results will also rely on
surrounding states such as the existence of heat sources and open/close state of
rooms, measurement of which can possibly be achieved through the per-outlet power
consumption (for the existence of heat sources) and the use of magnets (for the state
of door and windows); This requires additional instruments, and we need to discuss
the practicability of this from the viewpoint of device cost, management cost, and
practical returns.

4.6 Related work

Anomaly detection in building sensor data. Anomaly detection is one of the
important use cases in analyzing sensor data obtained in buildings. Ref. [54] pro-
poses a conventional method to detecting and filtering anomalies with pre-defined
if-else rules about chiller, boiler, and air handling unit (state of on/off switch, setting
values, measured temperature, existence of alert), which is used as a Fault Detec-
tion and Diagnostic (FDD) tool for HVAC. Ref. [53] develops modern statistical
method based on General Additive Model (GAM) applied to estimating baseline
explained with external temperature and day of the week, anomalies of which are
investigated as deviations from its Auto Regressive Moving Average (ARMA) model.
Ref. [52] studies an unsupervised method named Strip Bind Search (SBS) that ex-
tracts anomalies of sensor data as the deviations in ordinal in-concert correlations
among different sensors (e.g., correlation in power consumption of various appliances
such as light and EHP), applications of which include detecting unnecessary power
consumptions (e.g., leaving ceiling light turned on without the use of its rooms).
Ref. [55] devises an anomaly detection method based on unsupervised clustering
over feature vectors of frequency spectrum obtained from the Fourier transform on
time-series data of electrical power consumptions. Our research rather focuses on
dealing with multiple types of data types (not single type of data such as only ex-
amining power consumption data) to detecting anomalies as well as complementing
interpretation of the outputs.

Analysis of multiple types of building sensor data. The use of multiple
types of data has been studied, for instance, in above-mentioned fault detection in
appliances with if-else rules [54]. Another well-studied use case is occupancy estima-
tion, which is to estimate the number of persons within a certain area in a building.
Ref. [56] develops a system of controlling HVAC appliances thorough the estimation
of places of persons based on WiFi access points and authentication information
about smartphones. Ref. [57] develops an occupancy estimation method that de-
tects the direction of persons movement based on camera movie data and infrared
sensor data about entrance/exit of persons. Ref. [58] proposes an occupancy estima-
tion method based on the combination of door open/close events (measured by using
magnetics) and motion events (measured with infrared sensor inside room). Ref. [59]
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devises an method of estimating the number of persons in a room by analyzing CO2
density information. In addition to occupancy estimation, our research addresses
the possibility of additional use cases such as unsupervised anomaly detection in
sensor data.

4.7 Concluding remarks

In this chapter, we presented comparative discussions about extending the spirit of
structural data analytics for field domains, especially, the building domain. Contrary
to the previous chapters (Chapters 2 and 3) that dealt with traffic and configuration
data in the computer networking domain, this chapter discusses the possibility of
extending those analytical approaches to the field domains (e.g., building), which
have become more important as more field devices become connected. We consider
that the spirit of using data analytics for the management of end-hosts (by traf-
fic analysis) and virtual network configurations (by configuration analysis) should
have commonality to some extent for the management of filed domains such as to
manage end-devices (e.g., sensors and actuators) and their inter-link configurations.
However, analytics on data obtained in field domains is relatively difficult due to
the differences in the characteristics of those domains (e.g., open systems for field
domains, rather than closed systems in computer networking domain), particularly
leading to the difficulty in interpretation of analytical results. In addition, char-
acteristics of data in computing fields are rather aggregated view of discrete and
relative information (i.e., aggregated cardinality), which would be suitable for the
discrete structural model (e.g., graphlet), whereas field data additionally suggests
the importance of individual point-by-point time-series view with non-discrete and
absolute values. We discuss the need for trial-and-error approach of analyzing field
data (e.g., per-room temperature in a building), interpretation of which is gradu-
ally complemented by introducing multiple types of contexts (e.g., switch states of
air-conditioning appliances in rooms) and even other data sources (e.g., external
temperature outside the building) that are considered as structurally related. This
approach is demonstrated with an unsupervised analysis over an actual dataset
about Electrical Heat Pump (EHP) equipped in a number of rooms in a building.
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Summary

Computer networking, particularly the Internet, has become an essential platform
for human life and many aspects of industries. Such the successful growth of the
computer networking, instead, insists upon the importance of its efficient manage-
ment such as traffic management and configuration management. On the other
hand, one of recent expectations towards efficient network management stems from
the recent fashion of statistical data analytics such as Artificial Intelligence (AI),
whereas one difficulty in applying statistical data analyses is derived from its low-
level numerical nature differing from actual domain-specific data set. An insight
is that the widespread of computer networking has been contributing to data of
inter-similar objects (e.g., a number of hosts and/or a number of multiple virtual
networks over the shared infrastructure), which can be compared each other to un-
cover knowledge (e.g., typical patterns and atypical anomalous patterns); This indi-
cates the potential usefulness of unsupervised analyses (e.g., cluster analysis), which
extract similar patterns inside data itself without established knowledge database
pre-defined by human experts. However, orthodox unsupervised approaches based
on extracting and clustering numerical values (i.e., feature vectors) face the difficulty
in interpretation of resulting outputs, which is important in management domain
in order to take appropriate actions against the outputs. In this research, we study
unsupervised approaches with structural patterns (e.g., graph structure), which is
more interpretable (e.g., by visualizations) than only using numerical features.

In Chapter 2, we presented structural pattern analysis on network traffic data.
This analysis was demonstrated with the traffic data obtained in a measurement
point in the Internet. We particularly focused on end-host profiling by analyzing
network traffic, which is a major stake in traffic engineering. The use of graphlet for
end-host traffic analysis is efficient for interpreting host behaviors, which essentially
consists of a visual representation as a graph. However, graphlet analyses face the
issues of choosing between supervised and unsupervised approaches. The former
can analyze a priori defined behaviors but is blind to undefined classes, while the
latter can discover new behavioral patterns at the cost of difficult a posteriori inter-
pretation. This work aimed at bridging the gap between the two. First, to handle
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unknown classes, unsupervised clustering was originally revisited by extracting a
set of graphlet-inspired attributes for each host. Second, to recover interpretability
for each resulting cluster, a synoptic graphlet, defined as a visual graphlet obtained
by mapping from a cluster, was newly developed. Comparisons against supervised
graphlet-based, port-based, and payload-based classifiers with two datasets demon-
strated the effectiveness of the unsupervised clustering of graphlets and the relevance
of the a posteriori interpretation through synoptic graphlets. This development was
further complemented by studying evolutionary tree of synoptic graphlets, which
quantifies the growth of graphlets when increasing the number of inspected packets
per host.

In Chapter 3, we presented structural pattern analysis on network configuration
data. This analysis was demonstrated with the configuration data in a multi-tenant
datacenter network, where multiple customer (tenant) networks are virtualized over
a single shared physical infrastructure. The use of multi-tenancy is cost-effective but
poses significant costs on manual configuration. Such tasks would be alleviated with
configuration templates, whereas a crucial difficulty stems from creating appropriate
(i.e., reusable) ones. In this work, we proposed a graph-based method of mining
configurations of existing tenants to extract their recurrent patterns that would be
used as reusable templates for upcoming tenants. The effectiveness of the proposed
method was demonstrated with actual configuration files obtained from a business
datacenter network.

In Chapter 4, we also presented future perspectives for structural pattern anal-
ysis for the management of actual field domain. Contrary to the previous chapters
(Chapters 2 and 3) that dealt with traffic and configuration data in the computer
networking domain, this chapter discussed the possibility of extending those ana-
lytical approaches to the field domains (e.g., building), which have become more
important as more field devices become connected. We consider that the spirit of
using data analytics for the management of end-hosts (by traffic analysis) and vir-
tual network configurations (by configuration analysis) should have commonality to
some extent for the management of field domains such as to manage end-devices
(e.g., sensors and actuators) and their inter-link configurations. However, analyt-
ics on data obtained in field domains is relatively difficult due to the differences in
the characteristics of those domains (e.g., open systems for field domains, rather
than closed systems in computer networking domain), particularly leading to the
difficulty in interpretation of analytical results. In addition, characteristics of data
in computer networking fields are rather aggregated view of discrete and relative
information (i.e., aggregated cardinality), which would be suitable for the discrete
structural model (e.g., graphlet), whereas field data additionally suggests the im-
portance of individual point-by-point time-series view with non-discrete and abso-
lute values. We discussed the need for trial-and-error approach of analyzing field
data (e.g., per-room temperature in a building), interpretation of which is gradu-
ally complemented by introducing multiple types of contexts (e.g., switch states of



CHAPTER 5. SUMMARY 73

air-conditioning appliances in rooms) and even other data sources (e.g., external
temperature outside the building) that are considered as structurally related. This
approach was demonstrated with an unsupervised pattern analysis over an actual
dataset about Electrical Heat Pump (EHP) equipped in a number of rooms in a
building.

Future works include (a) investigating configuration management in field do-
main (e.g., building) thorugh unsupervised cluster analysis with acutual dataset,
(b) establishing an efficient process (or workflow) of data-driven analysis using re-
cent available technologies such as analysis and visualization tools, and utilimately
(c) finding a key to systematic understanding about the selection of data types and
analysis methods, and corresponding achievements.
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