
 

学位論文（要約） 

 

High-Tc superconductivity studied by 

diagrammatic extensions of the  

dynamical mean field theory 

（動的平均場理論のダイアグラマティックな 

拡張による高温超伝導の研究） 

 

平成 28年１２月博士（理学）申請 

 

 

 

 

東京大学大学院理学系研究科 

物理学専攻 

北谷 基治 



 

 

 

 

 

 

 



Ph.D Thesis

High-Tc superconductivity studied by
diagrammatic extensions of the
dynamical mean field theory

Motoharu Kitatani

Department of Physics
Graduate School of Science

University of Tokyo

December 2016



Abstract

While it is over 30 years since the high-Tc superconductor was discovered, the
cuprates have attracted great interests in many scientific fields. Understanding
high-Tc is one of the most challenging issues in the condensed matter theory. The
mechanism of the superconductivity in these materials is still not fully understood,
and continues to be discussed intensely. Specifically, the two-dimensional repulsive
Hubbard model, which is a representative model for the cuprates, still has many
questions, and many analytical and numerical methods have been proposed for
studying the superconductivity, magnetism and other instabilities.

In the present thesis, we propose to combine the non-perturbative dynam-
ical mean field theory (DMFT) with the perturbative diagrammatic expansion
techniques to treat the local correlation effects (“Mott physics”) and momentum
dependent pairing interaction (that produces the d-wave pairing superconduc-
tivity) to explore the superconductivity and various instabilities in the Hubbard
model.

First, we formulate the combination of the fluctuation exchange (FLEX) ap-
proximation and DMFT in a self-consistent manner in terms of the Luttinger-
Ward functional for superconducting phases. The resultant phase diagram ex-
hibits a clear Tc dome structure against the band filling as observed experimen-
tally, while in the ordinary FLEX, Tc almost monotonically increases toward the
half-filling. We trace the origin of the Tc-dome back to a combined effect of the
filling dependence of the local vertex correction and the filling dependence of the
pairing interaction.

As another effect inherent in the strongly correlated systems, we study a phase
transition for the Pomeranchuk instability, where the four-fold rotational symme-
try in the electronic structure on the tetragonal lattice is spontaneously broken
into two-fold due to an interaction effect. We find that the Pomeranchuk insta-
bility is remarkably more sensitive to the Fermi surface warping than the super-
conducting Tc dome. An interesting question is the effect of the distorted Fermi
surface due to the Pomeranchuk instability on the superconductivity, and we have
revealed that the gap function is slightly changed from ordinary d-wave pairing to
(d+s)-wave. Furthermore, we find that the Fermi surface distortion can enhance
the superconducting Tc in frustrated systems.
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Finally, we consider the extension of the DMFT vertex to study the vertex
correction effect on nonlocal self-energy and the pairing interaction. For this
purpose, we employ the DΓA (dynamical vertex approximation) formalism, which
is extended here to accommodate superconducting phases. For the Hubbard model
we obtain the Tc-dome due to a combined effect as in the FLEX+DMFT case,
but the transition temperature is reduced by the vertex correction. We also find
that the pairing interaction is strongly screened by the vertex correction effect.
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Chapter 1

Introduction

In condensed matter physics, we intend to clarify and create many interesting
materials and phenomena. Various properties of materials are studied in this
field, and in many cases electron correlation plays an important role. Then one of
the most important questions in this field is “how to treat the correlated many-
electron systems?”. Electron correlation is a very difficult problem, and various
approximations have been introduced so far.

One of the simplest ways is treating the system as a free particle system.
The band theory is based on this picture, and this simple scheme succeeds to
describe the difference between metals, semiconductors and insulators. Despite
its simplicity, this is often powerful even for correlated electron systems when
we introduce the idea of quasi-particles. Based on the Fermi liquid theory [1],
correlated electron systems can be thought of as a set of particles (quasi-particles)
with a renormalized mass, which represents some nature of correlated electron
systems. However, there are important cases, where the Fermi liquid theory does
not work.

One example is the case where the correlation is very strong. In the band
theory, insulators must have an even number of electrons per unit cell. On the
other hand, some materials are in insulating states even when they have odd
numbers of electrons per unit cell [2]. Mott pointed out that this insulating state
is due to the effect of the Coulomb repulsion [3]. If two electrons are on the
same site, the electrons feel a strong Coulomb repulsion. Therefore, for a strong
enough Coulomb repulsion, the system can be insulating even for an odd number
of electrons per unit cell. Such an insulator is known as the Mott insulator.

Another example is the case of attractive interactions. While electrons in-
teract repulsively via the Coulomb interaction, Cooper pointed out that if there
is an effective attractive interaction between electrons, the Fermi sea becomes
unstable and a two-electron bound state (the Cooper pair) appears. The Fermi
surface instability is known as the superconductivity. The superconductivity is
experimentally discovered by Kamerlingh-Onnes in 1911 [4]. Since then, the su-
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perconductivity is one of the hottest topics in condensed matter physics. The
superconductivity accompanies the Meissner-Ochsenfeld effect (perfect diamag-
netism) [5] and zero resistivity as effects of spontaneously broken U(1) gauge.
Bardeen, Cooper, and Schrieffer explained the superconductivity theoretically,
known as the BCS theory [6]. In the BCS theory, the effective attraction comes
from the exchange of phonons, and the gap function, which characterizes the su-
perconducting state, is usually isotropic in momentum space (s-wave pairing).
The BCS theory succeeds to explain many properties of the conventional super-
conductors. In the BCS theory, Tc is estimated to be Tc ≈ ℏωDe

− 1
V D , where V

and D are the effective attraction and the density of states at the Fermi energy,
respectively, while ωD is the Debye frequency of phonons. Before the high-Tc

superconductivity was discovered in the cuprates, it was considered that the su-
perconducting transition temperature Tc could not exceed few tens of K in the
BCS theory.

The cuprate superconductors, the main target of the present thesis, are con-
sidered to have both of two difficulties explained above (i.e., the existence of (i)
strong correlation and (ii) the effective attraction in a repulsively interacting sys-
tem), and there still remain many puzzles even though it is more than 30 years
since the cuprates were discovered in 1986. These materials attract not only the-
oretical interests, but also experimentally great attentions because they have the
highest superconducting transition temperature at ambient pressure.

In this chapter, we introduce cuprate superconductors and explain a represen-
tative model for cuprates. We then explain the outline of this thesis.
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1.1 Cuprate superconductors

Crystal structures

In 1986, Bednorz and Müller discovered a copper oxide superconductor, which is
La2−xBaxCuO4(LBCO), where x is the carrier doping level [7]. After that, many
high-Tc superconductors were discovered [8, 9, 10]. These superconductors have
attracted extensive attention of researchers due to the high superconducting tran-
sition temperature Tc as well as many kinds of unusual behaviors in the electronic
properties. The typical lattice structure is shown in Fig. 1.1.

Figure 1.1: The lattice structure of the high-Tc cuprate (left: typical electron-
doped cuprate RCCO, where R is a rare-earth ion, right: typical hole-doped
cuprate LSCO)(from Ref. [11]).

The high-Tc cuprates are all based on layered perovskite structures, and they
have copper-oxide square planes separated by charge reservoir blocks. The struc-
ture is basically tetragonal crystal systems, which has four-fold rotational symme-
try. The parent materials of the cuprates are antiferromagnetic insulators and the
superconductivity occurs by carrier doping. There are hole-doped and electron-
doped cuprates. For example, in the LSCO (the right panel in Fig. 1.1), holes
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are introduced into the CuO2 planes by substitution of Sr with La. In the RCCO
(the left panel in Fig. 1.1), electrons are introduced into the CuO2 planes by sub-
stitution of Ce with R, where R is one of rare-earth ions such as Nd, Pr, Sm, and
Eu.

Phase diagram

The doping-dependence of the transition temperature is one of the most impor-
tant features of the cuprates. A typical phase diagram is shown in Fig. 1.2. The

Figure 1.2: A typical phase diagram of the cuprates (LSCO and RCCO) (from
Ref. [11]). The vertical axis is the temperature while the horizontal axis is the
doping level.

parent (undoped) cuprate is an antiferromagnetic insulator, and the antiferro-
magnetic insulator phase disappears and a superconducting phase appears as we
introduce the carrier. The transition temperature is peaked at a finite doping level
(called the optimal doping), and Tc decreases for further carrier doping (overdoped
region). This structure is called the Tc-dome. Recently, an experiment reported
that there are electron doped copper-oxide materials that show superconductivity
near zero-doping if apical oxygens are carefully removed [12].
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The symmetry of the pairing and the gap function are important factors char-
acterizing cuprate superconductors. The momentum dependence of the gap func-
tion is determined to be an anisotropic d-wave from phase sensitive measurements
[13]. The high transition temperature and the anisotropic gap function are not
explained by the BCS theory, and the mechanism of superconductivity in high-Tc

cuprates is one of the most challenging issues in condensed matter physics.

Charge orders

(a) (b)

インターネット公表に
関する許可が得られて
いないため非公開

Figure 1.3: (a) A neutron scattering result for the spin-excitations spectrum at
7 meV in a-b plane around QAF = (0.5, 0.5) in reciprocal lattice units (from
Ref. [20]). (b) A tunneling result for Z(r, ω = ∆(r)) ≡ g(r, ω)/g(r,−ω), where g
is the differential tunneling conductance (dI/dV ) and ∆ measures a the pseudogap
magnitude (from Ref. [21]).

There are many experimental results indicating a charge ordered state in
cuprate superconductors [14, 15, 16, 17, 18]. Recently many phase boundaries
regarding the charge order are considered to exist in the cuprate phase diagram
[19]. There are experiments suggesting the existence of electronic nematic states,
where the four-fold symmetry of the electronic state is spontaneously broken
[20, 21, 22]. In Fig. 1.3(a), we show a result of a neutron scattering measure-
ment for YBa2Cu3O6.45 [20], which indicates an in-plane anisotropy in magnetic
excitations. We can also see a breakdown of the four-fold symmetry in the elec-
tronic state in Fig. 1.3(b), which is the result of a tunneling measurement.
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Pairing interaction

Mechanism of the superconductivity in high-Tc cuprates is different from those in
the conventional superconductors and it cannot be explained by the BCS theory.
The electron correlation induced by the Coulomb repulsion is thought to play an
important role in the cuprates.

The BCS gap equation is

∆(k) = −
∑
k′

V (k,k′)
∆(k′)

2E(k′)
tanh

(
1

2
βE(k′)

)
, (1.1)

where ∆ is the gap function, k is the momentum, V is the pairing interaction,
and E is defined as

E(k) =
√
ϵ(k)2 +∆(k)2, (1.2)

where ϵ(k) is the band dispersion. In the BCS theory, we assume that the interac-
tion V does not depend on the momentum, and hence the gap function is isotropic
and the interaction V must be negative (attractive) to obtain a non-zero ∆. On
the other hand, if the effective interaction is momentum-dependent, a repulsive
interaction V can give rise to a non-zero ∆ by sign change of the gap function
as described in Fig. 1.4. Thus the origin of this momentum-dependent effective
interaction is one of the most fundamental questions for cuprates.
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ky

kx

Figure 1.4: A typical Fermi surface in cuprates (solid curves) (from Ref. [23]). The
superconducting gap function has opposite signs between the shaded and white
regions. The strongest pair-scattering process is shown by the dashed lines. The
encircled regions are around the antinodal region.
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1.2 Hubbard model on the square lattice

For studying the origin of the momentum dependent effective pairing interaction,
there are many studies for the tight-binding models which consider the electron
hopping and an on-site repulsive Coulomb interaction. All the cuprates have
copper-oxide planes and the superconductivity is thought to occur on these planes.
Therefore, the tight-binding model of this plane, the d-p model and a simpler
model, the Hubbard model, are used [24]. While the d-p model is a more accurate
model for the CuO2 plane, we often consider a maximally localized Wannier basis
(Zhang-Rice singlet [25] in the hole-doped case) and use the single-orbital Hubbard
model on a square lattice as the simplest low-energy effective model of the cuprate.

In this thesis, we focus on the two-dimensional repulsive Hubbard model,
whose Hamiltonian is

H =
∑
k,σ

ϵ(k)c†k,σck,σ + U
∑
i

ni,↑ni,↓, (1.3)

where c†k,σ and ck,σ are respectively creation and annihilation operators of an
electron with the wave-vector k = (kx, ky) and the spin σ, U is the repulsive
interaction strength, and n is the number operator defined as

ni,σ = c†i,σci,σ. (1.4)

The two-dimensional dispersion ϵ(k) is given as

ϵ(k) = −2t(coskx + cosky)− 4t′coskxcosky − 2t′′(cos2kx + cos2ky)− µ, (1.5)

where t, t′, and t′′ represent the nearest-neighbor, second-neighbor, and third-
neighbor hopping parameters, respectively. A schematic diagram is shown in
Fig 1.5. Here µ is the chemical potential. In practice, this value is determined so
as to fit the density of electrons ρ as

ρ =
1

βNk

∑
k

eiωn0+

iωn − ϵ(k)− Σ(k)
, (1.6)

where β is the inverse temperature, Nk is the total number of k-points, ωn is the
ferimonic Matsubara frequency, k = (ωn,k) and Σ(k) is the self-energy which is
explained in chapter 2 in detail.

This model is the most popular model for investigating correlated electron
systems. The first term in the Hamiltonian represents the kinetic energy, while the
second term the correlation of electrons. This model is the simplest model which
includes itinerancy of the band electrons and the short-range (on-site) interaction.

If we consider the weak-coupling limit U/t → 0, where the kinetic term of
the Hamiltonian dominates, then the Hamiltonian Hkin =

∑
k,σ ϵ(k)c

†
k,σck,σ is
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t’’

U

t’

t

Figure 1.5: Two-dimensional square lattice model. The lines with t, t′, and t′′

represent the nearest-neighbor, second-neighbor, and third-neighbor hopping pa-
rameters, while U is the on-site Hubbard repulsion.

diagonalized in momentum space. On the other hand, if we consider the strong-
coupling limit t/U → 0, where the interaction term dominates, then the Hamilto-
nian Hint = U

∑
i ni,↑ni,↓ is diagonalized in real space, and the density of states is

separated into two with a separation ∼ U . The density of states in the two limits
are schematically displayed in Fig. 1.6. From these limiting behaviors, we can see
that this simple model contains the Mott physics. Once both terms coexist, it is
too difficult to solve this model exactly. The difficulty of this model comes from
combination of these two natures, in other words, it is difficult to describe a Mott
insulator in momentum space.

There are many studies for single and multi-band Hubbard models to describe
the superconductivity in the cuprates. Scalapino et al. have proposed a spin-
fluctuation mediated d-wave pairing mechanism and studied superconductivity
diagrammatically by using the random phase approximation (RPA) [26] and the
fluctuation exchange (FLEX) approximation [27]. Quantum Monte Carlo (QMC)
simulations also show that the d-wave pairing correlation function is dominant in
the two-dimensional square lattice Hubbard model [28, 29, 30, 31].

1.3 Motivation and organization of the thesis

Despite a lot of theoretical studies, the mechanism of the high-Tc cuprate is not
fully clarified yet. While QMC is exact within numerical errors, we can treat
limited system sizes. RPA and FLEX cannot describe the Mott physics and the
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Energy Energy

DOS DOS

U increased

Figure 1.6: A schematic picture of the Mott-Hubbard transition. U is the interac-
tion strength. Left panel shows the weak-coupling regime, where the band theory
works well, while right panel shows the strong-coupling regime, where the density
of states (DOS) splits into the upper and lower Hubbard bands.

Tc-dome, and these approaches are considered to be more appropriate for the over-
doped region. On the other hand, the dynamical mean field theory [32, 33, 34],
which is the typical non-perturbative method and can describe the Mott transi-
tion, ignores the momentum dependence of the self-energy and cannot describe
anisotropic pairing. To include the momentum dependence of the self-energy ef-
fect, cluster extensions of the dynamical mean field theory have been proposed
[35, 36, 37]. These schemes map the bulk into a small-size cluster impurity prob-
lem, instead of considering a single site impurity problem in DMFT, and recently
succeeded to describe the Tc-dome [38] and the pseudogap is suggested to come
from the momentum-dependent Mott gap in this formalism [39, 40]. However,
these schemes ignore long-range fluctuations (such as antiferromagnetic ones),
and long-range fluctuation effects in these calculations are open questions. More
recently, diagrammatic extensions of the dynamical mean field theory have been
proposed [41, 42, 43, 44, 45] to take into account the long-range fluctuation ef-
fects, which are ignored in small-size cluster methods. Within these schemes, the
importance of long-range fluctuation effect is recently realized [46, 47].

Given these situations, we study the phase diagram, charge instability, and
pairing interaction of the Hubbard model by employing diagrammatic extensions
of the dynamical mean field theory. First, we consider the combination of DMFT
and FLEX, which is a typical diagrammatic method to treat the superconduc-
tivity. We formulate this in terms of the Luttinger-Ward functional, and apply
this method to study the superconducting phase [48] and the Pomeranchuk in-
stability [49], which is a kind of charge instability. Finally, to study the vertex
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correction effect on nonlocal self-energy and the pairing interaction, we employ
the DΓA [41, 50] (dynamical vertex approximation) formalism, and extend it to
accommodate superconducting phases.

This thesis is organized as follows. In chapter 2, we introduce the basis of
the diagrammatic methods and explain some typical diagrammatic methods for
studying superconductivity in tight-binding models. In chapter 3, we explain
the dynamical mean field theory, which is a typical non-perturbative method to
treat strongly correlated systems. In chapter 4, we introduce the FLEX+DMFT
formalism, and apply it to study the superconducting phase diagram for the two-
dimensional Hubbard model. In chapter 5, we study the Pomeranchuk instability
by employing FLEX+DMFT. In chapter 6, we introduce the DΓA, and study
vertex correction effects on the pairing interaction of the two-dimensional Hubbard
model.
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Chapter 2

Diagrammatic approaches

The Hubbard model described in the previous chapter is difficult to solve exactly
and some approximations are needed. Before considering the approximations, we
should make clear what quantity we want to obtain, because the full information
(e.g. wave functions or density matrix) is too much and we do not need it in many
cases.

One of the most basic and important quantities in a correlated electron system
is the spectral function A(k, ω) defined as

A(k, ω) =
1

Z

∑
n,m

⟨n | c†k | m⟩⟨m | ck | n⟩(e
−βEm + e−βEn)δ(ω − En − Em), (2.1)

where c†k creates an electron with wave vector k, ω is the energy, β is the inverse
temperature, | m⟩ is an eigenstate of the Hamiltonian H with eigenvalue Em, and
Z ≡

∑
m e−βEm is the partition function. The spectral function represents occu-

pied and unoccupied single-particle states in the energy and momentum spaces.
The density of states ρ is obtained as ρ(ω) =

∑
k A(k, ω). This quantity has much

information beyond the band theory, including the lifetime of the quasi-particle
and the incoherent part of the spectral weight. Once we obtain a spectral weight,
we can distinguish metals and insulators properly in systems that include Mott
insulators. Also, this quantity is directly observed by the angle-resolved photoe-
mission spectroscopy (ARPES) measurement. Therefore obtaining the spectral
weight of the target model is one of the main targets in condensed matter physics.

Further important quantities are the susceptibilities, which represent the re-
sponse against external fields. This cannot be obtained from the one-particle
quantity (spectral function), and we need the information in the two-particle
level.

In this chapter, we introduce the formalism based on the Green’s function,
which has the same information as the spectral function A(k, ω). First, we intro-
duce the Green’s function and the self-energy, and then we show the relationship
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between the self-energy and the two-particle vertex function according to the
equation of motion. Then we review some approximations based on the Feynman
diagram for studying superconductivity.

2.1 One-particle quantities

The Green’s function is defined as

G(k, τ) ≡ −
⟨
Tτck(τ)c

†
k(0)

⟩
, (2.2)

where Tτ is the time-ordering operator and ck(τ) = eHτcke
−Hτ . With a Fourier

transformation, we obtain

G(k) =

∫ β

0

dτG(k, τ)e−iωnτ , (2.3)

where ωn is the fermionic Matsubara frequency, and k = (ωn,k). This quantity is
related to the spectral function A(k, ωn) as

G(k) =

∫
A(k, ω)

iωn − ω
dω, (2.4)

which is called the Lehmann representation.
If we ignore the electron correlations the spectral weight is reduced to the

non-interacting band dispersion ϵ(k) as

A(k, ω) = δ(ω − ϵ(k)). (2.5)

Then the non-interacting Green’s function G0(k) is

G0(k) =
1

iωn − ϵ(k)
. (2.6)

Also, the sum-rule for the spectral weight,
∫
A(k, ω)dω = 1, gives an asymptotic

behavior of the Green’s function,

G(k)→ 1

iωn

(ωn →∞). (2.7)

The self-energy is defined as G(k) = G0(k)[1− Σ(k)G0(k)]
−1, or

Σ(k) ≡ G−1
0 (k)−G(k)−1, (2.8)

13



which vanishes in the absence of the interaction. In this sense, the self-energy is a
measure of the correlation strength. In interacting systems, the spectral function
is

A(k, ω) = − 1

π

ImΣ(k, ω)

[ω − ϵ(k)− ReΣ(k, ω)]2 + [ImΣ(k, ω)]2
. (2.9)

Thus, roughly speaking, the real part of the self-energy shifts the peak of the
spectrum while the imaginary part of the self-energy gives the width of the peak
(lifetime of the quasi-particle).

2.2 Two-particle quantities and equation of

motion

In this section, we explain how to calculate the self-energy. For simplicity, we
consider single-orbital Hubbard model described as

H = tij
∑
ij,σ

(c†iσcjσ + h.c.) + U
∑
i

ni↑ni↓ − µ
∑
i

(ni↑ + ni↓), (2.10)

where c†iσ and ciσ are the creation and annihilation operators with spin σ, respec-
tively, tij is the hopping amplitude, and niσ = c†iσciσ. The site-represented Green’s
function is

G(τ : i, j) ≡ −
⟨
Tτci,σ(τ)c

†
j,σ(0)

⟩
. (2.11)

Then we consider the imaginary time evolution, which is described by the equation
of motion as

∂ciσ(τ)

∂τ
= [H, ciσ(τ)] = eHτ [H, ciσ] e−Hτ . (2.12)

Calculating the commutation relations, we obtain

∂ciσ(τ)

∂τ
= −

∑
l ̸=i

tilclσ(τ)− Uciσ(τ)c
†
iσ̄(τ)ciσ̄(τ) + µciσ(τ), (2.13)

where σ̄ represent the opposite spin to σ. Then the time evolution of the Green’s
function is given by

∂G(τ ; i, j)

∂τ
=− ∂

∂τ

[
θ(τ)

⟨
ciσ(τ)c

†
jσ(0)

⟩
− θ(−τ)

⟨
c†jσ(0)ciσ(τ)

⟩]
=− δ(τ)

⟨
{ciσ(τ), c†jσ(0)}

⟩
−
⟨
Tτ

∂ciσ(τ)

∂τ
c†jσ(0)

⟩
=− δ(τ)δij +

∑
l ̸=i

tilG(τ ; l, j)− µG(τ ; i, j)

+ U
⟨
Tτciσ(τ)c

†
iσ̄(τ)ciσ̄(τ)c

†
jσ(0)

⟩
. (2.14)
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With a Fourier transform, we obtain

(iωn − µ)G(ωn; i, j)+
∑
l ̸=i

tilG(ωn; l, j)

= δij − U

∫ β

0

dτ
⟨
Tτciσ(τ)c

†
iσ̄(τ)ciσ̄(τ)c

†
jσ(0)

⟩
eiωnτ . (2.15)

If we define G−1 as ∑
j

G(ωn; i, j)G
−1(ωn; j, k) = δik, (2.16)

then

(iωn − µ)δik+
∑
l ̸=i

tilδlk = G−1(ωn; i, k)

− U
∑
j

∫ β

0

dτ
⟨
Tτciσ(τ)c

†
iσ̄(τ)ciσ̄(τ)c

†
jσ(0)

⟩
G−1(ωn; j, k)e

iωnτ .

(2.17)

From the definition of G0, we have

(iωn − µ)δik +
∑
l ̸=i

tilδlk = G−1
0 (ωn; i, k). (2.18)

Then, the self energy is obtained as

Σ(ωn; i, k) =− U
∑
j

∫ β

0

dτ
⟨
Tτciσ(τ)c

†
iσ̄(τ)ciσ̄(τ)c

†
jσ(0)

⟩
eiωnτG−1(ωn; j, k).

(2.19)

Now, the problem is how to calculate this quantity. If we consider the mean-field-
like decoupling as⟨

Tτciσ(τ)c
†
iσ̄(τ)ciσ̄(τ)c

†
jσ(0)

⟩
≈
⟨
Tτciσ(τ)c

†
jσ(0)

⟩⟨
Tτc

†
iσ̄(τ)ciσ̄(τ)

⟩
= −G(τ ; i, j)n, (2.20)

where n is the density (half of the band filling nf) , the self-energy becomes

Σ ≈ Uniδi,k. (2.21)

This is the Hartree term.
To consider the self-energy effect beyond the mean-field level, we introduce

the two-particle Green’s function,

G2,σσ′(τ1, τ2, τ3; i, j, k, l) =
⟨
Tτc

†
iσ(τ1)cjσ(τ2)c

†
kσ′(τ3)clσ′(0)

⟩
, (2.22)

15



and the fully reducible two-particle vertex F , which satisfies

G(k)G(k + q)Fσσ′(k, k′, q)G(k′)G(k′ + q)

=−G2,σσ′(k, k′, q)− βNkδk,k′δσ,σ′G(k)G(k + q) + βNkδq,0G(k)G(k′), (2.23)

where the Fourier transformed G2,σσ′(k, k′, q) is defined as

G2,σσ′(k, k′, q) =
1

Nk

∫ β

0

dτ1dτ2dτ3
∑
i,j,k,l

G2,σσ′(τ1, τ2, τ3; i, j, k, l)

× e−i[ωnτ1−k(xi−xl)]ei[(ωn+ωm)τ2−(k+q)(xj−xl)]e−i[(ω′
n+ωm)τ3−(k′+q)(xk−xl)].

(2.24)

Then the self-energy is represented as

Σ(k) = ΣH −
U

(βNk)2

∑
k′,q

F↑↓(k, k
′, q)G(k′)G(k′ + q)G(k + q). (2.25)

This is the relation between the self-energy and the vertex function F which
comes from the equation of motion. Meanwhile, we stress that all the quantities
and relations are introduced non-perturbatively, so that the above argument still
holds even in a strongly correlated regime. One advantage of using the Green’s
function is that we can use the Feynman diagram. Diagrammatically, Eq. (2.25)
is represented as Fig. 2.1.

FΣ
Figure 2.1: Diagrammatic representation of the equation of motion. Σ is the self-
energy, while F is the vertex function. The arrow is the Green’s function and the
dotted line is the interaction. We ignore the Hartree term of the self-energy in
this figure.

2.3 Anomalous quantities

For considering superconducting instability, we introduce the anomalous Green’s
function as

F (k, τ) = −⟨Tτck↑(τ)c−k↓(0)⟩ , (2.26)
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which takes a finite value in a superconducting phase. We also introduce the
Dyson-Gor’kov equation, which is a Dyson equation extended to include super-
conducting phases. The equation is described as

G(k) = G0(k) +G0(k)Σ(k)G(k) +G0(k)∆(k)F †(k), (2.27)

F (k) = G0(k)Σ(k)F (k) +G0(k)∆(k)G(−k), (2.28)

F †(k) = G0(−k)Σ(−k)F †(k) +G0(−k)∆∗(k)G(k), (2.29)

where ∆ is the anomalous self-energy which is the gap function up to the renor-
malization factor.

A diagrammatic representation for the set of equations is displayed in Fig. 2.2.

Figure 2.2: Dyson-Gor’kov equation. The thin (bold) arrow represents the non-
interacting Green’s function (the renormalized Green’s function), the right-left
arrow and the left-right arrow represent the anomalous Green’s functions F and
F †, respectively.
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In this thesis, we consider a temperature infinitesimally below Tc to discuss the
superconducting phase transition. Therefore we can assume that the anomalous
Green’s function F (k) and the anomalous self-energy ∆(k) are much smaller than
the normal ones. If we take the lowest order in the anomalous contributions, the
Dyson-Gor’kov equation becomes

G(k) = G0(k) +G0(k)Σ(k)G(k), (2.30)

F (k) = G(k)∆(k)G(−k), (2.31)

F †(k) = G(−k)∆∗(k)G(k). (2.32)

2.4 Diagrammatic approximations

2.4.1 Random phase approximation (RPA)

In this section, we review diagrammatic approaches to explore the superconduc-
tivity in the repulsive Hubbard model. Scalapino et al. have proposed a spin-
fluctuation mediated pairing mechanism for the superconductivity in the Hubbard
model by using random phase approximation (RPA) [26]. They showed that, if we
consider ladder and bubble diagrams for the pairing interaction (Fig. 2.3), then the
d-wave superconducting instability is enhanced toward low temperatures. After
this work, there are many attempts to take into account the electron self-energy
effect [27, 51, 52]. In the next section, we explain one typical method in these
attempts.

Figure 2.3: Diagrammatic representation of the pairing interaction in RPA. The
arrows represent the non-interacting Green’s function (from Ref. [26]).
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2.4.2 FLEX

The fluctuation exchange approximation (FLEX) is a kind of many-body per-
turbation theory. FLEX is based on a conserved approximation scheme due to
Baym and Kadanoff [53, 54]. In this scheme, we first set the Luttinger-Ward
functional Φ[G] [55], which is directly related the thermodynamic potential Ω (see
also Appendix A) as

Ω[G] = Tr [ln(−G(k))−G(k)Σ(k)] + Φ[G], (2.33)

and the self-energy is determined by

Σ =
δΦ

δG
. (2.34)

Diagrammatically, the exact Luttinger-Ward functional is the sum of all ring
diagrams. In FLEX, we take an approximate form of Φ[G] shown in Fig. 2.4,
which represents spin and charge fluctuations.

Figure 2.4: Diagrammatic representation of the approximate form of the FLEX-
functional ΦFLEX. Solid lines represent the renormalized Green function and dot-
ted lines represent the interactions.

For the two-dimensional Hubbard model, the normal self-energy in FLEX is
given as

Σ(k) =
1

Nkβ

∑
k′

[Vph(k − k′)G(k′) + Vpp(k − k′)G(−k′)] , (2.35)

where Vph and Vpp are the particle-hole and particle-particle interactions in FLEX,
respectively. They are given as
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Vph(k) =
3

2
U2 χ0(k)

1− Uχ0(k)
+

1

2
U2 χ0(k)

1 + Uχ0(k)
− U2χ0(k), (2.36)

Vpp(k) =
U3χpp(k)

2

1 + Uχpp(k)
, (2.37)

where

χ0(q) = −
1

Nkβ

∑
k

G(k + q)G(k) (2.38)

is the irreducible particle-hole susceptibility, while

χpp(q) =
1

Nkβ

∑
k

G(k + q)G(−k) (2.39)

is the irreducible particle-particle susceptibility.
We consider the superconductivity mediated by spin fluctuations in the Hub-

bard model which only has the onsite interaction term. In this case, U2χ0(k)
1−Uχ0(k)

,
which represents spin fluctuations, is much larger than Vpp. Therefore we neglect
Vpp hereafter. Vph is expressed in a diagrammatic representation as in Fig. 2.5.

σ

-σ

σ

σσ

σ σ -σ -σ -σ

-σ

σ
σ

σ

Figure 2.5: Particle-hole interaction in FLEX for the onsite Hubbard model, for
which the diagrams with odd numbers of bubbles and ladders are relevant.
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Thus the normal self-energy is given as

Σ(k) =

1

Nkβ

∑
k′

[
3

2
U2 χ0(k − k′)

1− Uχ0(k − k′)
+

1

2
U2 χ0(k − k′)

1 + Uχ0(k − k′)
− U2χ0(k − k′)

]
G(k′).

(2.40)

Then we can obtain the normal Green’s function numerically by using Eq. (2.40)
and the Dyson equation (Eq. (2.8)).

Next, we focus on the anomalous part. In the FLEX, the anomalous self-energy
is given as

∆(k) = − 1

Nkβ

∑
k′

Veff(k − k′)F (k′), (2.41)

where Veff is the effective interaction for the anomalous Green’s function. A
schematic diagram for this equation is displayed in Fig. 2.6.

Figure 2.6: Anomalous self-energy in FLEX. A right-left arrow represents the
anomalous Green’s function F and a double-line represents the effective interac-
tion.
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In the FLEX, Veff is given as

Veff(k) = U +
3

2
U2 χ0(k)

1− Uχ0(k)
− 1

2
U2 χ0(k)

1 + Uχ0(k)
, (2.42)

which is expressed in diagrammatic representation as in Fig. 2.7.

σ σ

σ σ

σ σ

σ
σ

σ

-σ

-σ

-σ
-σ-σ

-σ-σ

-σ -σ

Figure 2.7: Effective interaction for the anomalous Green’s function with even
numbers of bubbles and ladders.

By using equations (2.31) and (2.41), we obtain an equation for ∆ as

∆(k) = − 1

Nkβ

∑
k′

Veff(k − k′)G(k′)G(−k′)∆(−k′), (2.43)

which is called the linearized Eliashberg equation.“Linearized” means that we
assume that the anomalous part is much smaller than the normal ones, and take
only the lowest-order contribution of the anomalous part to consider a temperature
infinitesimally below Tc.

To solve this equation numerically, we consider an eigenvalue problem as

λ∆(k) = − 1

Nkβ

∑
k′

Veff(k − k′)G(k′)G(−k′)∆(−k′). (2.44)

λ is the eigenvalue for the Eliashberg equation, where the superconducting tran-
sition corresponds to the temperature at which λ = 1.
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Chapter 3

Dynamical mean field theory
(DMFT)

As explained in chapter 1, the main difficulty in treating the Hubbard model
comes from the coexistence of the kinetic term which we can easily realize in the
momentum space and the interaction term which we can easily realize in the real
space. This suggests that both of weak and strong coupling expansions have some
trouble to treat this model properly. Recently, the dynamical mean-field theory,
a method which is exact in infinite dimensions is proposed [32, 33, 34]. This
method basically can deal with arbitrary coupling strength, and becomes exact
in the weak and strong coupling limits. Therefore it is a typical non-perturbative
method for describing the Mott transition.

In Fig. 3.1, we show the typical DMFT result for the local spectral weight
in the Hubbard model. For this calculation, iterated perturbation theory (IPT)
[33, 57] is used for the impurity solver and the Bethe lattice is assumed. We
explain details for IPT in section 3.3. We can see in Fig. 3.1 that the incoherent
part (satellite peaks) of the spectral weight increases with increasing U . In the
bottom panel of the figure for U/D = 4 with D being the half of bandwidth, we
can see that the system becomes insulating, which signifies the Mott transition.

In this chapter, we explain the framework of the DMFT, and then explain
some approaches for solving the impurity problem, which is the bottleneck of this
algorithm.
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Figure 3.1: Local spectral density, −ImG, against energy ω at temperature T = 0
for interaction strength U/D = 1, 2, 2.5, 3, 4 (from top to bottom), where D is half
the bandwidth. (from Ref. [34])
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3.1 Formalism

In this section, we explain the formalism of the DMFT. The DMFT gives the
exact electron self-energy in the limit of infinite spatial dimensions. For finite
dimensions, it gives an approximate solution that neglects spatial fluctuations.
However, the method incorporates temporal fluctuations, which are important in
describing the Mott transition.

In the path-integral scheme, the partition function Z for an electron system is
expressed as

Z =

∫ ∏
i

Dc†iDcie
−S, (3.1)

S =

∫ β

0

dτ

[∑
i

c†i (τ)∂τci(τ) +H(c†(τ), c(τ))

]
, (3.2)

where S is the action, H is the Hamiltonian of the system, and c†, c are the
Grassmann variables.

We take a mean-field approximation, and integrating out all the degrees of
freedom except for one site (called o), we obtain the effective action Seff as

1

Zeff

e−Seff(c
†
o,co) =

1

Z

∫ ∏
i̸=o

Dc†iDcie
−S, (3.3)

where Zeff is defined as

Zeff =

∫
Dc†oDcoe

−Seff . (3.4)

If we take a limit of large spatial dimension d→∞, we can derive the effective
action as

Seff = −
∫ β

0

dτ

∫ β

0

dτ ′c†o(τ)[G(τ − τ ′)]−1co(τ
′) + U

∫ β

0

dτno↑(τ)no↓(τ), (3.5)

where [G(τ − τ ′)]−1 is the Weiss function, which includes the effect from local
fluctuations [34, 56].

Then the original model (Eq. (3.2)) becomes an impurity model (Eq. (3.5)).
To obtain the self-energy of this impurity problem is much easier than the original
one. There are many methods (impurity solvers) to solve the impurity problem.
We discuss this in detail in section 3.3.

After we solve the impurity problem, we come back to the original lattice
model. We ignore the momentum dependence of the self-energy of the lattice
model and assume that the Green’s function G is given as
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G(k, ωn)
−1 = G0(k, ωn)

−1 − Σimp(ωn), (3.6)

where Σimp is the self-energy of the mapped impurity model. The local Green’s
function is given as

Gloc(ωn) =
1

Nk

∑
k

G(k, ωn), (3.7)

where Nk is the total number of k-points. Then we reproduce the Weiss function
from the local Green’s function and the local self-energy as

G(ωn)
−1 = Gloc(ωn)

−1 + Σimp(ωn). (3.8)

This equation provides a new Weiss function, which in turn provides a new impu-
rity problem. Therefore, Eq. (3.8) is a self-consistent equation, and we calculate
with a self-consistent loop (Fig. 3.2).

effective medium

original lattice model

self-consistency
loop

Figure 3.2: Schematic picture of the DMFT loop.
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3.2 Functional point of view

Similarly to the FLEX, the DMFT can also be viewed as an approximation for
the Luttinger-Ward functional. To see this, we write the action for the original
model as

S = −
∑
i,j

∫ β

0

dτ

∫ β

0

dτ ′c†i (τ)[G0(τ − τ ′ : i, j)]−1cj(τ
′)

+ U
∑
i

∫ β

0

dτni↑(τ)ni↓(τ). (3.9)

Comparing the action for the impurity model (Eq. (3.5)) and the action for the
original Hubbard model (Eq. (3.9)), we realize that the only difference is that the
former only involves local propagators, while the latter contains nonlocal propaga-
tors. This means that, if we consider a diagrammatic expansion for each system,
then the Luttinger-Ward functional Φimp for the impurity model and that for the
original model Φexact gives the same series except that Φimp is constructed from
local propagator Gii only, while Φexact is constructed from all the propagators
Gij. Therefore we can regard DMFT as an approximation for the Luttinger-Ward
functional,

ΦDMFT = Φimp = Φexact[Gii], (3.10)

with the self-energy given as

ΣDMFT =
δΦDMFT

δGij

=
δΦexact[Gii]

δGii

. (3.11)

This is consistent with the previous argument that the DMFT ignores the non-
local self-energy (spatial fluctuation) effects.

3.3 Impurity solvers

In performing the DMFT procedure, solving the mapped impurity model is the
bottleneck of the calculation. While there exist various impurity solvers, we em-
ploy the modified IPT (in chapters 4 and 5) and the exact diagonalization method
(in chapter 6) in this thesis.
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3.3.1 Modified iterative perturbation theory (mIPT)

In this subsection, we explain the iterative perturbation theory (IPT) and its
modification for systems that do not have particle-hole symmetries.

The IPT is the simplest way to solve the impurity problem in DMFT. While
we use second-order perturbation to solve the impurity problem in this scheme,
the IPT is the perturbation theory in the self-consistent loop, and this scheme is
expected to describe non-perturbative effects, and it is indeed known to describe
the Mott transition in particular. The IPT gives a good result when the system has
a particle-hole symmetry. However, we want to investigate the doping dependence
of the superconductivity, hence we have to solve the impurity problem away from
half-filling. There is an idea for modifying the iterative perturbation theory for
non-half-filled cases [58], so that we use this method to solve the impurity problem.

In the original IPT, the self-energy ΣIPT is approximated as

ΣIPT(ωn) = ΣH − U2

∫ β

0

dτeiωnτ Ĝ(τ)2Ĝ(−τ), (3.12)

where ΣH is the Hartree term, and Ĝ−1 is defined as

Ĝ−1(ωn) = G−1(ωn)−
U

2
. (3.13)

The IPT self-energy becomes exact in the atomic limit or the high-frequency
limit in addition to the weak-coupling limit if the system has a particle-hole sym-
metry. Away from half-filling, these exact limiting behaviors do not hold, and the
original IPT does not work well. There are some proposals to modify the original
IPT so as to reproduce some limiting behaviors well even if the system does not
have a particle-hole symmetry [58].

In the modified IPT, we first define Σ(2) as

Σ(2)(ωn) = −U2

∫ β

0

dτeiωnτ Ḡ(τ)2Ḡ(−τ), (3.14)

where

Ḡ−1(ωn) = G−1(ωn)−
U

2
− Uδn (3.15)

with δn being a fitting parameter. Then we approximate the self-energy as

ΣIPT(ωn) = ΣH +
AΣ(2)(ωn)

1−B/UΣ(2)(ωn)
, (3.16)

where A and B are also fitting parameters which should be determined to match
the exact self-energy in a few limiting cases (a detailed calculation is described in
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appendix B). The Green’s function in the impurity problem Gimp is obtained by
the Dyson equation for the impurity problem as

G−1
imp(ωn) = G−1(ωn)− ΣIPT(ωn). (3.17)

In the high-frequency limit, Σ(2) becomes

Σ(2)(ωn)→
U2n0(1− n0)

iωn

, (3.18)

where

n0 =
1

β

∑
n

Ḡ(iωn)e
iωn0+ , (3.19)

then ΣIPT becomes

ΣIPT(ωn)→ ΣH + A
U2n0(1− n0)

iωn

. (3.20)

On the other hand, the self-energy has an exact high-frequency asymptote,

Σexact(ωn)→ ΣH +
U2n(1− n)

iωn

, (3.21)

where

n =
1

β

∑
n

Gimp(iωn)e
iωn0+ . (3.22)

Comparing Eq. (3.20) and Eq. (3.21), we obtain A as

A =
n(1− n)

n0(1− n0)
. (3.23)

In the atomic limit t/U → 0, Σ(2) becomes

Σ(2)(ωn)→
U2n0(1− n0)

iωn − (ϵ− µ)− Uδn− U/2
, (3.24)

then ΣIPT becomes

ΣIPT(ωn)→ ΣH +
AU2n0(1− n0)

iωn − (ϵ− µ)− Uδn− U/2−BUn0(1− n0)
. (3.25)

On the other hand, the exact self-energy in the atomic limit is

Σexact(ωn)→ ΣH +
U2n(1− n)

iωn − (ϵ− µ)− U + Un
. (3.26)
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Comparing Eqs. (3.25) and (3.26), we obtain B as

B =
1/2− n− δn

n0(1− n0)
. (3.27)

The remaining fitting parameter is δn, which must vanish in the weak-coupling
limit as

δn→ n− 1

2
(U → 0). (3.28)

However, δn is not determined by Eq. (3.28) alone and there is a freedom of choice
to determine δn. A widely used condition to determine δn is to put n = n0 in
Eq. (3.15), and it works quite well compared with the exact diagonalize method
[59]. So we choose this condition.

We mention that if the system has the particle-hole symmetry, n = n0 = 1/2
and δn = 0, so that A = 1 and B = 0, and the scheme is reduced to the original
IPT. We use this method in chapters 4 and 5.

3.3.2 Exact diagonalization method (ED)

In DMFT calculation with an exact diagonalization impurity solver [60, 61], we
diagonalize the effective Anderson impurity Hamiltonian matrix exactly, and cal-
culate the (one- and two-particle) Green’s functions from the Lehmann (spectral)
representation. For this diagonalization procedure, we need to reduce the number
of the bath sites to a finite number in the impurity model. We note that this does
not mean that we deal with a finite size for the original lattice. We consider the
Anderson impurity model with finite bath sites,

Himp =
ns∑

σ,l=1

ϵla
†
lσalσ −

∑
σ

µc†σcσ +
ns∑

σ,l=1

Vl(a
†
lσcσ + c†σalσ) + Un↑n↓, (3.29)

where c†σ (cσ) is the creation (annihilation) operator at the impurity site, while
a†lσ (alσ) is the creation (annihilation) operator at a bath site, Vl is the transition
matrix element between the impurity site and the bath sites. For a finite number
ns of the bath sites, the Weiss function is given as

Gns
0 (iωn)

−1 = iωn + µ−
ns∑
l=1

V 2
l

iωn − ϵl
, (3.30)

and the impurity problem can be solved exactly. The parameters of the Anderson
model are determined in such a way that the “distance” defined as

d ≡ 1

nmax + 1

nmax∑
n=0

|ωn|−
1
2 |G0(iωn)

−1 − Gns
0 (iωn)

−1|2, (3.31)
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is minimized. The Green’s function is computed as

G(iωn) =
1

Z

∑
i,j

⟨i | c | j⟩⟨j | c† | i⟩
Ei − Ej − iωn

(e−βEi + e−βEj), (3.32)

where | i⟩ is the eigenvector of the impurity Hamiltonian Himp with an eigenvalue
Ei, and Z is the partition function. Then the self-energy is derived from the
Dyson equation for the impurity model (Eq. (3.17)), and the Green’s function of
the lattice model is obtained through Eq. (3.6).

In chapter 6, we also need to calculate the generalized susceptibility within
the DMFT defined as

χloc,σσ′(ωn, ωn′ , ωm) ≡
1

β2

∫ β

0

dτ1dτ2dτ3e
−iτ1ωneiτ2(ωn+ωm)e−iτ3(ωn′+ωm)

×
[⟨

Tτc
†
iσ(τ1)ciσ(τ2)c

†
iσ′(τ3)ciσ′(0)

⟩
−

⟨
Tτc

†
iσ(τ1)ciσ(τ2)

⟩⟨
Tτc

†
iσ′(τ3)ciσ′(0)

⟩]
. (3.33)

This term is calculated with a rather complicated form because we need the
Lehmann representation of two-particle quantities, which are shown in Appendix
C.
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Chapter 4

FLEX+DMFT for
superconducting phases

DMFT gives us a new perspective which is exact in the infinite spatial dimen-
sions, where we can ignore the momentum-dependence of the self-energy. This
approximation is applicable to arbitrary coupling strength in contrast to weak or
strong coupling expansions, which is the main feature of this scheme. The DMFT
can describe the Mott insulator as a local correlation effect, but real systems
have finite dimensions, and in many cases the momentum-dependence of the self-
energy plays important roles. There are many approaches to extend the DMFT
for incorporating the momentum-dependence of the self-energy. One of the most
successful approaches is the cluster extension of the DMFT. In this approach, the
original lattice model is mapped to a few-site cluster model, instead of the one-site
impurity problem in the DMFT. This approach is suggested to explain pseudo-
gap phenomena in cuprates as a momentum-dependent Mott transition [39][40].
However, this scheme ignores long-range fluctuations, and we can only take a
small-site cluster because numerical effort exponentially grows with the cluster
size. It is known to be difficult to obtain converged results against the cluster
size at low temperatures [62]. Superconductivity in the two-dimensional Hubbard
model appears near the SDW transition points and it is questionable whether we
can ignore long-range fluctuations in a situation where spin-fluctuation mediated
pairing occurs.

While diagrammatic methods can take account of long-range fluctuation ef-
fects, typical diagrammatic methods introduced in section 2.4 are insufficient for
reproducing the Tc-dome.

Here, we propose the FLEX+DMFT method as a new approach to overcome
this point. The motivation is that local correlation effects, which cause the Mott
gap to appear for example, are taken into account by DMFT while the momentum-
dependence of effective electron-electron interaction, which is essential for uncon-
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ventional superconductivity, is taken into account by FLEX. To put it simply,
we combine in this scheme the FLEX self-energy and the DMFT self-energy, and
calculate them self-consistently (with a schematic picture displayed in figure 4.1).
More precisely, the theory is constructed in terms of the Luttinger-Ward func-
tional.

Self-energy

Green’s function

combine

DMFT part FLEX part

local correlation effect

(such as Mott gap)

spatial fluctuation effect

(such as d-wave pairing)

Figure 4.1: Schematic FLEX+DMFT formalism.

In this chapter, we introduce the formulation for the FLEX+DMFT. While
this kind of scheme has been considered in Refs. [63, 64], there is ambiguity for
the double-counting term, and the calculation is only performed for the normal
state. We formulate the present scheme based on the Luttinger-Ward functional
so that the double-counting term can be uniquely determined if we impose the
conserving nature of the combined method. We then apply this method to discuss
the superconductivity in the square-lattice repulsive Hubbard model.
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4.1 Formalism

We achieve combining the perturbative FLEX and non-perturbative DMFT through
the Luttinger-Ward functional Φ[G]. As mentioned in chapters 2 and 3, we can
regard each of the DMFT and the FLEX as an approximation for the Luttinger-
Ward functional, Φimp and ΦFLEX, respectively. Then we can propose an approx-
imate Luttinger-Ward functional in the FLEX+DMFT formalism, in which we
have

ΦFLEX+DMFT = Φimp[Gloc] + Φnonloc
FLEX [G], (4.1)

Φnonloc
FLEX [G] = ΦFLEX[G]− Φloc

FLEX[Gloc]. (4.2)

Here Φloc
FLEX[Gloc] is the part of the ΦFLEX[G] diagrams that only contains the local

Green’s functions Gloc. Since both Φimp and ΦFLEX are expressed as functionals
of the dressed Green’s functions, the double counting between the two is uniquely
determined as a set of diagrams in ΦFLEX[G] that only contain the local dressed
Green’s functions, which is Φlocal

FLEX[Gloc].
Then we obtain the non-local and local self-energies as functional derivatives

of the Luttinger-Ward functional as

Σij =
δΦnonloc

FLEX [G]

δGij

(i ̸= j), (4.3)

Σii =
δΦimp[G]

δGii

+
δΦnonloc

FLEX [G]

δGii

, (4.4)

where i and j are site indices.
We note that Φnonloc

FLEX [G] affects not only the nonlocal self-energy Σij but also
the local self-energy Σii, because the local self-energy Σii is constructed not from
the local Green’s function alone as depicted in Fig. 4.2.

j i

j i

i

i

Figure 4.2: An example of the local self-energy diagrams that are obtained from
Φnonloc

FLEX .
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From the Dyson equation (Eq. (2.8)), the Green’s function G and the local
Green’s function Gloc are expressed as

G(k) =
1

G0(k)−1 − Σimp(ωn)− Σnonloc
FLEX (k)

, (4.5)

Gloc(ωn) =
1

Nk

∑
k

G(k), (4.6)

where k = (ωn,k), and Σimp and Σnonloc
FLEX are defined respectively as

Σimp =
δΦimp[Gloc]

δGloc

, (4.7)

Σnonloc
FLEX =

δΦnonloc
FLEX [G]

δG
. (4.8)

Now, we have to construct self-consistent loops in the FLEX+DMFT ap-
proach. In other words, we have to obtain Σimp and Σnonloc

FLEX from G and Gloc,
which are obtained from Eq. (4.7) and Eq. (4.8). Then G and Gloc are obtained
recursively from Eq. (4.5) and Eq. (4.6).

Σnonloc
FLEX is obtained by the FLEX loop which is represented by the right panel

in figure 4.1. We can calculate ΣFLEX and Σloc
FLEX from G and Gloc, respectively,

in the ordinary way (e.g. Eq. (2.40) for the single-band Hubbard model). Then
Σnonloc

FLEX is obtained as the difference between ΣFLEX and Σloc
FLEX,

Σnonloc
FLEX = ΣFLEX − Σloc

FLEX. (4.9)

This equation is obtained from the functional derivative in Eq. (4.2).
On the other hand, Σimp is obtained from the DMFT loop, which is represented

by the left panel in figure 4.1. In the DMFT, we map the original lattice model
to an impurity problem as in Eq. (3.5). According to section 3.3, if the impurity
problem in Eq. (3.5) is solved exactly, the resultant Green’s function (Goutput) and
the self-energy of the impurity problem (Σoutput) satisfy the relations,

Σoutput =
δΦimp[Goutput]

δGoutput

, (4.10)

G−1
output = G−1 − Σoutput, (4.11)

where G is the Weiss function which characterises the mapped impurity model.
We want to connect these quantities in the impurity problem to the self-energy of
the original lattice model defined as a functional derivative of ΦFLEX+DMFT. From
Eq. (4.10), if the Green’s function Goutput in the impurity problem coincides with
the local Green’s function Gloc of the original lattice model, then the self-energy
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Impurity 

solver

input output

(original lattice model)

mapped impurity model

effective medium

Figure 4.3: Self-consistent loop for the DMFT part.

Σoutput in the impurity problem should be the same as Σimp, which is defined in
Eq. (4.7).

Therefore, we construct the self-consistent loop for the DMFT part as in figure
4.3. Namely, we first set an input for the lattice problem as

Ginput = Gloc, (4.12)

Σinput = Σoutput (the result of the previous loop), (4.13)

and define the lattice problem (which means defining G) as

G−1 = G−1
input + Σinput, (4.14)
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and we solve the impurity problem. After solving the impurity problem, we set
the Green’s function of the original lattice model as

G =
1

G−1
0 − Σoutput − Σnonloc

FLEX

. (4.15)

From this equation, we obtain the local Green’s function Gloc from Eq. (4.6), and
we then move on to the next iteration.

If the loop in the DMFT part converges, which means G (the impurity problem)
remains the same after further iterations, the resultant self-energy in the impurity
problem must remains the same, so that we obtain

Σinput = Σoutput. (4.16)

Then, using Eqs. (4.11) and (4.14), we obtain

Goutput = Gloc. (4.17)

Therefore, Σoutput should be the same as Σimp, and Eq. (4.15) is reduced to
Eq. (4.5).

We can then combine the FLEX loop and the DMFT loop to obtain the self-
consistent FLEX+DMFT loop as depicted in figure 4.4. This is the double loop
which contains the FLEX part and DMFT part.

If the whole loops converge, the result should satisfy Eqs. (4.5), (4.7) and (4.9).
We define ΣFLEX+DMFT from the functional derivative of Eq. (4.1),

ΣFLEX+DMFT = Σimp + Σnonloc
FLEX . (4.18)

Then Eqs. (4.5), (4.7) and (4.9) reduce to two equations,

ΣFLEX+DMFT =
δΦFLEX+DMFT

δG
, (4.19)

G−1 = G−1
0 − ΣFLEX+DMFT. (4.20)

Therefore, the resultant Green’s function in the FLEX+DMFT is the stationary
point of the thermodynamic potential, whose Luttinger-Ward functional Φ is ap-
proximated as ΦFLEX+DMFT. Thus, the DMFT+FLEX method is seen to be a
kind of conserving approximations.
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FLEX

combine

DMFT

Impurity solver

Figure 4.4: Self-consistent double loop in the FLEX+DMFT formalism. In actual
calculations, we perform the DMFT loop and the FLEX loop in turns (indicated
by the red arrow).
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After obtaining the Green’s function, we calculate the superconducting Tc.
We consider anisotropic pairing on the repulsive model, then superconducting Tc

is calculated in the same way as the ordinary FLEX scheme, Eq. (2.44). Here,
we comment on the relation between the approximation for the Luttinger-Ward
functional and usage of the linearized Eliashberg equation, Eq. (2.44). Similarly
to the normal self-energy (Eq. (4.18)), the anomalous self-energy ∆ has a DMFT
(local) correction term as

∆FLEX+DMFT = ∆FLEX +∆loc. (4.21)

Since we focus on the anisotropic gap function in the repulsive Hubbard model,
the isotropic (DMFT) part of the anomalous self-energy ∆loc can be ignored. If
we linearize the anomalous part, the remaining term,

∆FLEX = δΦFLEX[G,F †, F ]/δF †, (4.22)

gives the linearized Eliashberg equation (2.43) [65]. In this sense, this formalism
treats the normal and anomalous parts on an equal footing in terms of functional
derivatives of the same approximate functional. Incidentally, in chapter 5, we
consider mixture of the ordinary d-wave and a small extended s-wave pairing.
The effect of the DMFT vertex in such a situation is discussed there.

4.2 Superconducting phase diagram

In this section, we apply the FLEX+DMFT to the two-dimensional repulsive
Hubbard model and calculate the superconducting Tc. Then, comparing with the
FLEX results, we discuss the local correlation effect on d-wave superconductivity.

4.2.1 Phase diagram

In the right panels of Fig. 4.5(a) and(b), we show the superconducting transition
temperature of the two-dimensional repulsive Hubbard model in the FLEX+DMFT.
The parameters are t′/t = t′′/t = 0 in Fig. 4.5(a) while t′/t = −0.20 and
t′′/t = 0.16 in Fig. 4.5(b). The latter parameters are determined to fit the band
calculation of the Hg-based hole-doped cuprate, HgBa2CuO4+δ [66, 67]. In the
left panels, we show the ordinary FLEX result for comparison. We can see that
Tc dome appears in the FLEX+DMFT, both in the absence (panel(a)) and in
the presence (panel(b)) of the second and third-neighbor hoppings. In the FLEX,
on the other hand, superconducting Tc monotonically increases toward half-filling
with some rounding-off [23]. This rounding-off is considered to be due to the
fact that the van Hove filling shifts toward a finite doping level as finite (t′, t′′)
are introduced, while the rounding-off disappears if we go to stronger coupling or
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Figure 4.5: Phase diagram against the band filling nf and the temperature T/t in
the FLEX+DMFT (right panels) as compared with FLEX (left). Here we take
U/t = 4.0, 5.0 and (a) t′/t = t′′/t = 0, or (b) t′/t = −0.20, t′′/t = 0.16. We
also plot the AF phase boundaries (dotted lines) in the normal region, while color
shading highlights the superconducting region with Tc > TAF at each filling.
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less frustrated regime (smaller t′, t′′), so that the FLEX is indeed insufficient for
describing the Tc-dome structure which is the general nature in cuprates.

Near the half-filling, it is difficult to obtain converged result due to the strong
antiferromagnetic (AF) fluctuations for the unfrustrated system (t′/t = t′′/t = 0).
Due to the strong AF fluctuation, it becomes difficult to attain well converged
results for large values of U . As a measure of the AF, we plot the antiferromag-
netic TAF

c with dashed lines in Fig. 4.5, where TAF
c is estimated as a temperature

at which maxk[Uχ0(k)] becomes close to unity (= 0.99 here). This estimation is
often used in FLEX-type schemes for quasi-two-dimensional systems (e.g., layered
systems), while FLEX-type schemes are known to satisfy the Mermin-Wagner the-
orem which prohibits (antiferromagnetic) phase transitions at finite temperatures
in purely two-dimensional systems [68]. This (quasi-two-dimensional) antiferro-
magnetic TAF

c is higher than the superconducting Tc around half-filling as shown
in Fig. 4.5.

We also comment on the finite superconducting Tc for the two-dimensional
system. While it is well-known that the Mermin-Wagner theorem can be extended
to the superconducting phase transitions [69, 70], we regard the present results as
the transition temperatures in the quasi-two-dimensional system where the layers
are stacked and weakly interacted each other via the Josephson coupling. There,
we expect that the transition temperatures in the quasi-two-dimensional systems
are mainly determined by the inplane parameters, while the magnitude of a weak
interlayer coupling has only a secondary effect, which is observed with FLEX for
the superconductivity [71] and the QMC calculations for the antiferromagnetic
transition temperatures of the Heisenberg model [72].

The color shaded regions represent superconducting states with Tc > TAF
c (i.e.,

superconductivity dominating antiferromagnetism). We can see a part of each Tc

dome is covered by AF phase both in Fig. (4.5)(a), right (t′/t = t′′/t = 0) and
Fig. (4.5)(b), right (t′/t = −0.20, t′′/t = 0.16, U/t = 5). This occurs well away
from the Tc peak in the latter case.

A similar dome structure in the superconducting order parameter has been
obtained with DCA (16-site) for U/t = 4, T = 0.02t [40], but the DCA result
strongly depends on the cluster size, where e.g. the superconductivity is absent
for the same parameters in the 8-site calculations. The dual-fermion approach
also reported the superconductivity around Tc ≈ 0.05t for U/t = 8 [44], but it
is difficult to discuss the Tc dome due to the difficulty in the calculation near
the half-filling. A dome structure, at zero temperature, in the order parameter
is obtained with the density matrix embedding theory (DMET) for U/t = 4 [73]
and a variational Monte Carlo (VMC) for U/t = 10 [74], while in the latter they
reported the phase separation dominates the superconductivity in a wide doping
region for this coupling.

Next, we consider physical reason for the emergence of the Tc dome in the
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Figure 4.6: (a) Comparison between the FLEX local self-energy ImΣloc
FLEX (red plus

signs) and the DMFT self-energy ImΣimp (green crosses) against the Matsubara
frequency for the filling nf = 0.70 (underdoped; left panel), 0.88 (optimally doped;
center), and 1.0 (half-filled; right). (b) The difference, ImΣloc

FLEX−ImΣimp, for
nf = 0.70 (red crosses), 0.88 (green circles), 1.0 (blue squares). Here we take
U/t = 4.0, βt = 20, t′/t = −0.20 and t′′/t = 0.16.
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FLEX+DMFT scheme. From Eqs. (4.18) and (4.9), the FLEX+DMFT self-energy
is computed as

ΣFLEX+DMFT = ΣFLEX − (Σloc
FLEX − Σimp), (4.23)

which means that the difference between ΣFLEX and ΣFLEX+DMFT amounts to re-
placing the local FLEX self-energy with the DMFT self-energy (Σloc

FLEX − Σimp).
In Fig. 4.6, we show the respective imaginary parts of Σloc

FLEX and Σimp against the
Matsubara frequency, for fillings nf = 0.7 (underdoped), 0.88 (optimally doped),
and 1.0 (half-filled). The parameters are taken to be U/t = 4.0, βt = 20, t′/t =
−0.20, t′′/t = 0.16, which is the same as in the right panel of Fig. 4.5(b). First,
we can see the DMFT self-energy, Σimp, is smaller than that of FLEX, Σloc

FLEX,
which implies that the overestimation of the self-energy generally known to exist
in FLEX is remedied in FLEX+DMFT by the DMFT (local) vertex corrections.
Furthermore, the difference, ImΣloc

FLEX−ImΣimp [Fig. 4.6(b)], significantly depends
on the band filling and increases with doping, which indicates that the magnitude
of the self-energy reduction in FLEX+DMFT due to the DMFT correction de-
creases toward the half-filling (see Eq. (4.23)). Thus Tc tends to be more enhanced
when we go away from half-filling because of the filling-dependent local (DMFT)
vertex correction effect in FLEX+DMFT. On the other hand, the effective pairing
interaction mediated by spin fluctuations is stronger near half-filling because of the
better band nesting as reflected in the FLEX result [Fig. 4.5, left panels] with Tc

almost monotonically increasing toward half-filling. Therefore, in FLEX+DMFT,
there are two opposite factors that affect the filling dependence of the transition
temperature Tc (i.e., the self-energy reduction effect which enhances Tc away from
half-filling vs. the strength of the pairing interaction which becomes stronger to-
ward half-filling), and we can conclude that the appearance of the Tc dome in
FLEX+DMFT is due to the combined effect of these two factors.

In the present calculation, we do not consider the d-wave pairing fluctuation
effect for the self-energy, which is another factor for reducing Tc near the half-
filling [75]. If we take account of this effect, we can expect the Tc is more reduced
near half-filling, which is closer to the experimental phase diagram of the cuprates.

We also have to note that in the FLEX+DMFT scheme, the overestimated
self-energy is remedied only in the local part, while the non-local self-energy
is considered to be still overestimated, especially for ladder diagrams [64]. For
considering this effect, we compare the FLEX+DMFT with GW+DMFT, where
only the bubble diagrams are taken for an approximate Luttinger-Ward func-
tional (while both bubbles and ladders are taken in FLEX+DMFT). We show the
phase diagram in GW+DMFT in the right panel of Fig. 4.7 for t′/t = −0.20 and
t′′/t = 0.16, where the GW result is displayed on the left for comparison. We can
see that a Tc dome also appears in GW+DMFT, but Tc is much reduced from
the Tc in FLEX+DMFT. On the other hand, the AF transition temperature in
GW+DMFT is higher than that in FLEX+DMFT. This makes the color shaded
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Figure 4.7: (a) Phase diagram against temperature T/t and band filling nf in
GW+DMFT approximation (right) as compared with that in GW approximation
(left) for U/t = 4.0 (green squares) or U/t = 5.0 (red circles). (b) Comparison
between the GW local self-energy ImΣloc

GW (red plus signs) and the DMFT self-
energy ImΣimp (green crosses) for the filling nf = 0.70 (left panel), 0.88 (center),
and 1.0 (right) with U/t = 4.0 and βt = 50. Here we take t′/t = −0.20, t′′/t =
0.16. We also plot antiferromagnetic (AF) phase boundaries (dotted lines) in the
normal region, while color shading highlights the dome in the region where Tc is
above the AF boundary.
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region (for Tc > TAF
c ) very narrow in GW+DMFT. Actually, for unfrustrated

system (t′ = t′′ = 0), the AF fluctuation is so strong that we cannot even obtain
superconducting phase boundaries.

Similarly to the FLEX+DMFT case, let us compare the GW local self-energy
ImΣloc

GW and the DMFT self-energy ImΣimp for the filling nf = 0.70, 0.88, 1.0 with
U/t = 4.0 and βt = 50 in Fig. 4.7(b). The difference in the two self-energies
is seen to decrease toward half-filling, which is the same trend with those in
the FLEX+DMFT. Therefore, we can conclude that the appearance of Tc dome
is not an artifact in FLEX+DMFT, but is robust in both FLEX+DMFT and
GW+DMFT arising due to the same local self-energy correction effect. The over-
estimation of non-local self-energy thus does not affect the existence of the Tc dome
itself. The fact that Tc is much lower in GW+DMFT than in FLEX+DMFT comes
from ignoring the ladder diagrams in GW+DMFT. In this sense, GW+DMFT is
closer to the mean-field theory than FLEX+DMFT, which is also reflected in
the higher AF transition temperature in GW+DMFT. Concomitantly, the pair-
ing interaction mediated by spin fluctuations is reduced, which acts to reduce the
superconducting Tc in GW+DMFT than in FLEX+DMFT.

4.2.2 Double occupancy

As another important quantity in correlated electron systems, we measure the
double occupancy. From Eq. (2.19), the double occupancy ⟨d⟩ ≡ ⟨ni↑ni↓⟩ can be
calculated as

⟨d⟩ = 1

βU

∑
ωn

eiωn0+
∑
j

Σ(ωn; i, j)G(ωn; , j, i)

=
1

U
Tr(ΣG). (4.24)

If we only consider the Hartree term Σ = Un for the self-energy, the double
occupancy takes ⟨d⟩ = n2, which is the value in the weak-coupling limit (i.e.,
independent up-spin and down-spin electrons). As we increase the Hubbard in-
teraction from the weak-coupling limit, the double occupancy decreases in general,
hence the double occupancy measures the strength of the correlation effect. In
Fig. 4.8, we can see the double occupancy within the FLEX takes negative values
in the overdoped region, which is unphysical. In FLEX+DMFT, on the other
hand, this unphysical behavior disappears. We can regard this improvement as
another effect of the local self-energy reduction (i.e., the correlation effect, over-
estimated in the FLEX is improved by combining it with the DMFT). There is a
similar behavior between the double occupancy in GW and that in GW+DMFT,
but the difference is smaller. This is consistent with the results in the previous
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section that the self-energy reduction effect is smaller for GW and GW+DMFT
[see Fig. 4.6(a) and Fig. 4.7(b)].
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Figure 4.8: Double occupancy against band filling nf in the FLEX+DMFT (red
circles), DMFT (green crosses), FLEX (blue squares), GW+DMFT (light blue
diamonds) and GW (purple triangles). Here we take U/t = 4.0, βt = 20, t′/t =
−0.20 and t′′/t = 0.16.

4.2.3 Spectral weight

Next, we turn to discuss the spectral weight, which is computed via Padé ap-
proximation as a numerical analytical continuation (explained in appendix D). In
Fig. 4.9, we show the spectral function in FLEX+DMFT, FLEX, GW+DMFT,
GW and DMFT at three different fillings (nf = 0.70, 0.88, 1.0). The filling de-
pendence is similar among FLEX, GW and DMFT (right panels in Fig. 4.9) in
that we have a single peak that slightly shifts and broadens toward the half-filling
in each case. On the other hand, the shape of the spectral function strongly de-
pends on the band filling in FLEX+DMFT and GW+DMFT, and a double peak
structure appears at the half-filling. Similar double-peaks have been reported in
the dual-fermion method [77], where the emergence of this structure is consistent
with the lattice QMC result. We can see that both of the local and non-local
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long-range correlation effects are important to describe the double-peak struc-
ture, which is considered to be a precursor of the Hubbard bands with two peaks
separated by about U , while the system is metallic. We mention that due to the
strong fluctuation, it is difficult to perform calculation for the insulating region.
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Figure 4.9: Spectral functions at filling nf = 0.70 (underdoped; blue lines), 0.88
(optimally doped; green), 1.0 (half-filling; red) in the FLEX+DMFT (top left)
or GW+DMFT (bottom left) are compared with those in DMFT (top right),
FLEX (middle right) and GW (bottom right). Here we take U/t = 4.0, βt = 20,
t′/t = −0.20 and t′′/t = 0.16.

If we look closely at the momentum-resolved spectral function A(k, ω) (not
shown), we observe a region of slightly negative spectral weight away from the
Fermi surface. Since the magnitude of the negative part is negligibly small (< 1%)
in the present calculation, this does not affect the phase diagram and the density
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of states [Figs. 4.5 and 4.9]. We mention that many diagrammatic extensions of
DMFT do not guarantee positive-definite spectral weights [50, 76, 78].

48



Chapter 5

Pomeranchuk instability

As mentioned in chapter 1, there is growing realization that charge instabilities
also exist in cuprate superconductors. There are various kinds of charge insta-
bilities, for which some experimental results suggest electron nematic states in
cuprates, and theoretically, the effect of nematicity on the quasiparticle excita-
tion for the d-wave superconductivity is studied phenomenologically [79, 80].
There are some explanations for the nematicity, e.g. in the context of fluctuat-
ing stripe orders [81]. The Pomeranchuk instability, spontaneous breaking of the
four-fold symmetry of the Fermi surface without lattice distortion, is evoked as
another possible candidate for the nematicity in cuprate superconductors [82].

Theoretically, the existence of the Pomeranchuk instability in two-dimensional
lattice systems has been proposed in Refs. [83, 84], where the forward scattering
was found to induce this instability. After that, the Pomeranchuk instability has
been studied mainly in mean-field models (called “f-model”), where the forward
scattering is only considered for the interaction [85, 86]. For the two-dimensional
square lattice Hubbard model, the existence of this instability is yet to be fully
clarified. Functional renormalization group (fRG) calculations suggest that the su-
perconducting fluctuation is stronger than the Pomeranchuk instability [87], while
other numerical renormalization-group approaches suggest the Pomeranchuk in-
stability to be stronger around van Hove fillings [88]. The Gutzwiller wave func-
tions combined with an efficient diagrammatic expansion technique (DE-GWF)
produces a ground state where the superconductivity coexists with this nematicity
[89]. Also, the dynamical cluster approximation (DCA) and cellular dynamical-
mean-field theory (CDMFT) showed large response against small distortions of
the lattice [90, 91], from which a possibility of spontaneous symmetry breaking is
suggested to occur at lower temperatures or for larger cluster sizes. While these re-
sults suggest that the two-dimensional square-lattice Hubbard model has a strong
tendency toward the Pomeranchuk instability, whether this instability is stronger
than the superconductivity (i.e., TPI

c > T SC
c ) has to be examined. Furthermore,

whether they are cooperative or competing is an intriguing question. While the
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study for the mean-field model suggests that they are competing with each other
with T SC

c suppressed in the coexistence region [92], the relation should be studied
beyond mean-field levels.

Given this situation, here we apply FLEX+DMFT for studying the interplay
of the Pomeranchuk instability and superconductivity in the two-dimensional re-
pulsive Hubbard model. Compared with the conventional methods which have
been used for studying the Pomeranchuk instability, the present method has,
first, no finite-size effects in contrast to DCA and CDMFT, which should be im-
portant for capturing small Fermi surface deformations, and second, we can treat
finite-temperature regions in contrast to DE-GWF to capture the effect of this
nematicity on the superconducting T SC

c . This also enables us to systematically
examine the relation between superconductivity and the Pomeranchuk instability
for various hopping parameters. In this framework, we can discuss supercon-
ductivity for finite distortions, because we deal with finite Pomeranchuk order
parameters, while we linearize anomalous quantities.

5.1 Pomeranchuk order parameter

The order parameter of the Pomeranchuk instability, for tetragonal systems such
as the square lattice, is defined as

η =
∑
k

(cos ky − cos kx)
⟨
c†kck

⟩
. (5.1)

We show the FLEX+DMFT result for the temperature and filling dependences of
η in Fig. 5.1. To allow the Pomeranchuk instability to occur, we introduce a seed
to deform the Fermi surface in the initial input for the Green’s function as

Ginput(k) =
1

iωn − ϵ(k) + δ(cos kx − cos ky)
, (5.2)

where δ is the magnitude of the initial small distortion. We set δ = 0.05t in
the present study. In Fig. 5.1(a), we can see that the order parameter starts to
grow continuously with decreasing temperature, which indicates a second-order
phase transition. To check the validity of mIPT solver employed here, we have con-
firmed that the continuous-time quantumMonte Carlo (CT-QMC) impurity solver
[93, 94] gives basically similar results to mIPT even away from half-filling in the
intermediate-coupling regime [see Fig. 5.1(a)], by using the ALPS library [95, 96].
If we turn to the filling dependence, we observe the order parameter abruptly
growing around the edges of the Pomeranchuk phase [see Fig. 5.1(b),(c),(d)], in-
dicative of transferring to the first-order phase transition consistently with the
previous work [85]. Hereafter, we focus on the filling region around the peak of
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Figure 5.1: (a) Temperature dependence (for nf = 0.66), and (b) filling de-
pendence (for T = 0.025t) of the Pomeranchuk order parameter η for U/t =
4.0, (t′, t′′) = (−0.20, 0.16). In (a), the circles and squares correspond to the
results of FLEX+DMFT using the modified IPT and CT-QMC as a DMFT im-
purity solver, respectively. (c),(d) T -dependence of η for 0.60 < nf < 0.66(c) or
0.68 < nf < 0.74 (d).
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Figure 5.2: Fermi surface [as represented by the color-coded spectral weight
A(k, ω = 0)] with nf = 0.66, U/t = 4.0, (t′, t′′) = (−0.20, 0.16), for T = 0.0333t >
TPI
c (βt = 30; left) and T = 0.0286t < TPI

c (βt = 35; right).

TPI
c , where the transition is of second order. The peak sits around nf = 0.66 for

the value of the parameter considered (U/t = 4.0, (t′, t′′) = (−0.20, 0.16)). If we
look at the Fermi surface in Fig. 5.2, we can see that the Fermi surface, identified
as the ridges in the spectral function A(k, ω = 0), indeed becomes distorted at
lower temperatures, T < TPI

c .

5.2 Phase diagram

We show the obtained phase diagram in Fig. 5.3(a). We can see that the Pomer-
anchuk phase transition temperature is peaked around nf = 0.66 for (t′, t′′) =
(−0.20, 0.16). An yellow arrow indicates the van Hove filling in the interacting
system where the density of states is peaked at the Fermi energy. In Fig. 5.3(b),
we show the density of states obtained with Padé approximation. We can see that
the peak position exists at the Fermi energy. (We also confirmed that the peak
position does not change for T > TPI

c ). In the previous works with a mean-field
model [85, 92], the Pomeranchuk instability is strong near the van Hove filling.
In the present work, the peak in the Pomeranchuk dome does not precisely coin-
cide with the van Hove filling, which may be an effect of the asymmetric density
of states [85] as in Fig. 5.3(b), or the filling dependence of the effective interac-
tion for the Pomeranchuk instability. More importantly, the superconducting T SC

c

monotonically increases toward low-doping regime around the van Hove filling.
In the previous study with a mean-field model [92] that does not take account

of the filling dependence of the effective pairing interaction, both T SC
c and TPI

c are
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Figure 5.3: (a) Phase diagram against temperature T/t and band filling nf for
U/t = 4.0, (t′, t′′) = (−0.20, 0.16). We show the superconducting T SC

c with undis-
torted Fermi surface (green circles), superconducting T SC

c with Fermi surface dis-
tortion (purple circles), and Pomeranchuk TPI

c (open squares). The dotted line
represents TPI

c when we ignore the superconductivity. The yellow arrow indicates
the van Hove filling in the interacting system. (b) Density of states at the filling
indicated by the yellow arrow in (a) for βt = 20, U/t = 4.0, (t′, t′′) = (−0.20, 0.16).
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Figure 5.4: The superconducting and Pomeranchuk phase boundaries against
filling for U/t = 4.0 (left panels), and the spectral weight A(k, ω = 0) at nf =
0.80, U/t = 4.0 (right) are shown for (t′, t′′) = (−0.20, 0.16) (a), (−0.175, 0.14) (b),
and (−0.15, 0.12) (c) with βt = 20. The symbols are the same as in Fig. 5.3(a),
while yellow arrows indicate respective van Hove fillings in the interacting system.
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peaked near the van Hove filling. Therefore the present result indicates that the
filling dependence of the effective interaction has an important effect of rendering
the peak in the Pomeranchuk TPI

c dome distinct from the peak in the supercon-
ducting T SC

c dome against filling. To check this argument, we show in Fig. 5.4
the result when we systematically vary the second and further hoppings (t′, t′′),
which change the Fermi surface warping as well as the van Hove filling. We can
see that, for a fixed nf = 0.80, the change in the parameters shifts the distance
of the filling from the van Hove filling as represented. Figure 5.4 plots three typ-
ical cases with different Fermi surface warping. Then we notice the position of
the Pomeranchuk TPI

c dome changes along with the van Hove filling (indicated
by yellow arrows), while the superconducting T SC

c is much less sensitive. Right
panels in Fig. 5.4 plot the spectral weight at nf = 0.80. We can see that we are
approaching to the van Hove filling as we go from (a) to (c) from the blurring
of the spectral function around (0, π), (π, 0). We can thus conclude that, despite
both of superconductivity and the Pomeranchuk instabilities being Fermi surface
instabilities that should be affected by the spectral weight at the Fermi energy,
the Pomeranchuk instability is much more sensitive to the Fermi surface shape
(distance from the van Hove filling) than T SC

c . Hence the present result suggests
that we can separate the dominant regions for the two instabilities by changing
the position against the van Hove filling (dominated by t′, t′′).

5.3 Superconductivity under Fermi surface dis-

tortions

Next, an important question is how superconductivity behaves in the presence
of the Pomeranchuk Fermi surface distortion. Figure 5.5(a) shows the supercon-
ducting order parameter under the Pomeranchuk distortion, where the pairing
symmetry is seen to be distorted from the ordinary d-wave to d+(extended)s-
wave. There, an interesting observation is that the superconducting T SC

c can be
enhanced by the Pomeranchuk distortion as shown in Fig. 5.3, where we have also
plotted the superconducting T SC

c when the four-fold Fermi surface is artificially
imposed below Pomeranchuk TPI

c (green dots). We can see that T SC
c with the

distorted Fermi surface (purple dots) is higher. To consider the origin of this en-
hancement, we go back to the pairing interaction to compare between the cases of
Pomeranchuk-distorted and the four-fold-imposed Fermi surfaces. In Fig. 5.5(b),
we show the difference in the pairing interaction Veff between these two cases for
U/t = 4.0, nf = 0.66 and βt = 31. The result indicates that the Pomeranchuk
instability in fact distorts the pairing interaction, with a d-wave like anisotropy.

Then we can discuss the distortion effect on the superconducting T SC
c . We con-

sider the perturbational effect for small distortions, based on a general linearized
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Figure 5.5: (a) Momentum dependence of the gap function for T = 0.0286t <
TPI
c with nf = 0.66, U/t = 4.0, (t′, t′′) = (−0.20, 0.16) (left panel), which can be
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part (right). (b) Difference in the pairing interaction with the Fermi surface
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gap equation,

λϕ(k) = − 1

Nkβ

∑
k′

K(k, k′)ϕ(k′), (5.3)

where ϕ(k) = |G(k)|∆(k), while K(k, k′) is the kernel, given as K(k, k′) =
|G(k)|Veff(k − k′)|G(k′)| in FLEX+DMFT (as seen by multiplying |G| to both
sides in Eq. (2.44)). If we consider small d-wave-like distortions for this kernel,

K(k, k′)→ K(k, k′) + δKd(k, k′), (5.4)

the first-order perturbation for the maximum eigenvalue λmax satisfies

δλ(1)
max =

∑
k,k′

ϕ∗
max(k)δK

d(k, k′)ϕmax(k
′) = 0, (5.5)

where ϕmax is the eigenvector for λmax.
Since δλ

(1)
max identically vanishes due to the d-wave nature of the δKd, the

leading term is the second-order one,

δλ(2)
max =

∑
i,k,k′

|ϕ∗
max(k)δK

d(k, k′)ϕi(k
′)|2

λmax − λi

> 0, (5.6)

where i is the index for the eigenvalue λi and eigenvector ϕi of the kernel matrixK.
Since this expression is positive-definite, we find that small d-wave deformations
of the kernel in the linearized gap equation always enhance the superconducting
T SC
c . This explains the T SC

c enhancement in Fig. 5.3(a), and can provide a new
pathway for enhancing superconducting T SC

c in terms of Fermi surface distortion.
However, it should be difficult to achieve purely d-wave like distortions for the
kernel, and the terms having some other symmetries should in general arise even
from purely d-wave distortions of the Fermi surface. We can elaborate this by
introducing a parameter gk which represents either (i) spontaneous distortion of
the electronic states (δgk = G(k)−Gundistorted(k)) or (ii) small d-wave modulation
of the Hamiltonian (δH =

∑
k,σ δgkc

†
k,σck,σ). Then we can expand the interaction

kernel in gk, which gives, up to the second order,

K(k, k′)→ K(k, k′) +
∑
p

δK

δgp
δgp +

1

2

∑
p,q

δ2K

δgpδgq
δgpδgq, (5.7)

and the effect on the eigenvalue λ reads

δλ(2)
max =

∑
i,k,k′

|ϕ∗
max(k)

∑
p

δK
δgp

δgpϕi(k
′)|2

λmax − λi

−
∑
k,k′

ϕ∗(k)
1

2

∑
p,q

δ2K

δgpδgq
δgpδgqϕ(k

′). (5.8)
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Figure 5.6: Comparison of the eigenvalue λ calculated within RPA between the
four-fold symmetric Fermi surface (ϵ = 0) and the distorted Fermi surface (ϵ =
0.01) against the filling and t′ with t′′ = −0.8t′ (which includes the parameter set
used in the Fig. 5.4). Red (black) dots representing the case of λϵ=0 < λϵ=0.01

(λϵ=0 > λϵ=0.01) for βt = 5, U/t = 2.0.

We can see that whether T SC
c can be enhanced depends on the second term on

the right-hand side of Eq. (5.8). From this we expect that the enhancement tends
to occur when the second-largest eigenvalue is close to the largest one, for which
the first term on the right-hand side of Eq. (5.8) becomes dominant.

We can actually check this argument in the weak-coupling case. To obtain
qualitative tendencies, we have performed the RPA calculation at relatively high
temperatures for various values of parameters where we make the nearest-neighbor
hopping anisotropy by hand like

tx = 1 + ϵ, ty = 1− ϵ. (5.9)

Then the two-dimensional dispersion becomes

ϵ(k) = −2txcos kx− 2tycos ky − 4t′coskxcosky − 2t′′(cos2kx + cos2ky)− µ, (5.10)

and we compare the four-fold symmetric case (ϵ = 0) and the weakly distorted
case (ϵ = 0.01). In the RPA, we ignore the self-energy effect in the Eliashberg
equation (2.44). In Fig. 5.6, we compare the eigenvalue λ of distorted (ϵ = 0.01)
and undistorted (ϵ = 0) case for U/t = 2.0, βt = 5. We can see that there is indeed
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a region (red circles) where the distortion enhances the eigenvalue (λϵ=0.01 > λϵ=0).
Thus we confirm that the small distortions can indeed enhance the superconduc-
tivity at least in the weak-coupling limit where we can ignore the self-energy
effect. This enhancement occurs away from half-filling, and for larger values of
second and third neighbor hoppings t′, t′′ (i.e., more frustrated cases). It has been
known that the gap symmetry (for the leading eigenvalue) tends to be changed for
higher doping or more frustrated cases [97]. The present result suggests that the
T SC
c enhancement arising from the distortion of the Fermi surface tends to occur

around the boundary for different gap symmetries where the leading and sub-
leading eigenvalues are close to each other. This is also consistent with the above
result for the t′ dependence in FLEX+DMFT (Fig. 5.4), where the enhancement
of T SC

c occurs for (t′, t′′) = (−0.20, 0.16).
We also notice that the structure of Eq. (5.8) is similar to the pseudo Jahn-

Teller effect, where a Jahn-Teller-like distortion occurs without degeneracies due
to a second-order effect of the distortion [98]. In this context we can also recall a
well-known property that, if the eigenvalues are degenerate (as in p-wave pairing
in a tetragonal system where px-wave and py-wave are degenerate, so that we
end up with p + ip pairing), T SC

c can be enhanced by a strain effect [99]. In this
sense, the present result may also be viewed as a possibility for this kind of T SC

c

enhancement revealed even for the (non-degenerate) d-wave dominate regime in
two-dimensional repulsive Hubbard model, where the distortion in the present
case comes from a spontaneous symmetry breaking due to a many-body effect.

5.4 Effect of the DMFT vertex ΓDMFT

According to the formulation in section 4.1, we should consider the local anoma-
lous self-energy ∆loc coming from the DMFT functional (see Eq. (4.21)). Then
the linearized Eliashberg equation becomes

λ∆(k) = − 1

Nkβ

∑
k′

[Veff(k − k′) + ΓDMFT(ωn, ωm)]

× |G(k′)|2∆(k′), (5.11)

where ΓDMFT = δ∆loc/δF is the functional derivative of the local anomalous self-
energy. While this term can be ignored for studying pure d-wave pairing as in
section 4.2, here we examine its effect on the d + s pairing. We consider this
effect to be small, because the additional term is an extended s-wave (off-site)
pairing rather than the ordinary s-wave, so that a cancellation should occur in
the momentum summation. To check this, we can estimate a lower bound of
the maximal eigenvalue when ΓDMFT is considered without calculating ΓDMFT

directly. From the eigenvector ∆max of Eq. (2.44), we extract the part, ∆′, of the

59



gap function that is not affected by ΓDMFT as

∆′(k) = ∆max(k)−
∑

k |G(k)|2∆max(k)∑
k |G(k)|2

. (5.12)

Then a quantity,

λ′ = −
∑

k,k′ ∆
′∗(k)|G(k)|2Veff(k − k′)|G(k′)|2∆′(k′)∑

k ∆
′∗(k)|G(k)|2∆(k)

, (5.13)

gives a lower bound for the maximal eigenvalue when ΓDMFT is considered. We
have actually confirmed that the difference between λ′ and λ (without ΓDMFT) is
very small, (λ − λ′)/λ < 0.01. Thus we conclude that the effect of the DMFT
vertex ΓDMFT does not significantly change the the result for the T SC

c enhancement.
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Chapter 6

Dynamical vertex approximation
(DΓA) for superconducting
phases

本章については、5年以内に雑誌等で刊
行予定のため、非公開。
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Chapter 7

Conclusion and discussions

7.1 Summary of the thesis

In the present thesis, we have studied the superconductivity in the square-lattice
Hubbard model, employing diagrammatic extensions of the dynamical mean-field
theory. We briefly summarize the results obtained in this thesis.

• In chapter 4, we have formulated the FLEX+DMFT in terms of the Luttinger-
Ward functional, where the self-consistent loops fix the double-counting
terms uniquely. We have then applied the formalism to superconductiv-
ity in the Hubbard model on the square lattice. We have revealed that the
method gives a superconducting Tc dome structure in the Tc-filling phase
diagram, while the ordinary FLEX fails to reproduce the dome. We have
traced back the physical origin of the Tc dome to a combined effect of the
filling dependent self-energy reduction and the filling dependent pairing in-
teraction. We have also shown a double-peak structure for a filling closer to
the Mott transition is obtained in this formalism, which is difficult to obtain
within small-size cluster algorithms.

• In chapter 5, we have studied the Pomeranchuk instability in the Hubbard
model by employing the FLEX+DMFT method developed here. We find
that the Pomeranchuk instability temperature is much more sensitive to the
frustration (second and further neighbor hoppings) and hence the van Hove
filling than the superconducting Tc. We have revealed that the supercon-
ductivity in the presence of the distortion of the Fermi surface has the gap
function changing from d-wave to (d + s)-wave. Furthermore, we find that
the Pomeranchuk Fermi-surface distortion can enhance the superconduct-
ing Tc in the overdoped regime. We have traced the physical origin from a
perturbational picture for small distortions.
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• In chapter 6, to further improve the method by incorporating nonlocal self-
energy effects, we have newly formulated a dynamical vertex approximation
for superconducting phases. The numerical result shows that we also obtain
the dome structure of the leading eigenvalue of the Eliashberg equation,
where the eigenvalue (a measure of Tc) is reduced. To examine this, we
examined the vertex-correction effect on the pairing interaction, and found
a strong screening effect around the Fermi level, which cannot be captured
in the conventional one-boson exchange pictures. The frequency-dependent
pairing interaction as revealed here may open a possibility of having an
important effect on various kinds of pairing symmetries.

7.2 Future prospect

We can think of many future problems as follows:

1. In chapter 5, we have studied a charge instability, but we have assumed the
translational invariance, i.e., we have only considered uniform instabilities.
For considering charge instabilities with a finite wavenumber q, one possible
way is to assume an important interaction and study the divergence of the
susceptibility, as in the Eliashberg equation for superconductivity.

2. As mentioned in chapter 4, our results are considered to represent the phase
diagrams for the quasi-two-dimensional systems where the layers are weakly
coupled as in real materials. On the other hand, purely two-dimensional su-
perconductors can accommodate the Berezinskii-Kosterlitz-Thouless (BKT)
transition [109] at finite temperatures, and the superconducting systems that
can be regarded as purely two-dimensional are actually realized experimen-
tally [110]. While a DCA study [111] discusses the BKT transition in the
Hubbard model, they also mention that the results may possibly contain a
very slow, logarithmic cluster-size dependence. From the present diagram-
matic perspective, we expect to deal with the pure two-dimensionality if
we can take account of the superconducting fluctuation effects, so that its
implementation will be an important future problem. In particular, the
full-parquet DΓA formalism should enable us to take account of all types of
fluctuation effects on an equal footing.

3. Throughout the thesis, we have focused on the two-dimensional repulsive,
single-orbital Hubbard model. Applying the methods developed in the
present thesis to more complicated models, such as multi-orbital systems,
offsite repulsions, etc, will also be an interesting future direction. For exam-
ining real materials, combination of these methods with the first-principle
electronic structure calculations should also be necessary.
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Appendix A

Relationship between the
thermodynamic potential and
Luttinger-Ward functional

The Luttinger-Ward functional Φ is defined as

Φ[G] ≡ 1

β

∑
k

∞∑
n=1

1

2n
G(k)Σ(n)(k; [G]), (A.1)

where Σ(n)(k; [G]) is the nth-order diagram that is constructed from the renor-
malized Green’s function G and interaction U . Then Φ[G] satisfies

δΦ[G]

δG(k)
=

∞∑
n=1

Σ(n)(k; [G]). (A.2)

The thermodynamic potential Ω is defined as

Ω ≡ − 1

β
lnTre−βH. (A.3)

Considering a perturbation expansion of the thermodynamic potential Ω, we ob-
tain

Ω− Ω0 =
∞∑
n=1

Ω(n), (A.4)

Ω(n) =
1

2n

∑
k

G0(k)Σ
(n)(k; [G0]), (A.5)

where Ω0 is the non-interacting thermodynamic potential and Σ(n)(k) is the nth-
order diagram that is constructed from the non-interacting Green’s function G0

and U .
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We note that
∞∑
n=1

Σ(n)(k; [G]) = Σ(k), (A.6)

while Σ(n)(k) contains one-particle reducible diagrams as

∞∑
n=1

Σ(n)(k) = Σ(k) + Σ(k)G0(k)Σ(k) + Σ(k)G0Σ(k)G0Σ(k) + · · ·

̸= Σ(k). (A.7)

We introduce a scaling parameter λ to consider the perturbation under the
scaled interaction Hamiltonian λHI . This means G0 → G0 and U → λU in the
diagrams. We obtain

δΩ

δλ
=

∞∑
n=1

δΩ(n)

δλ

=
1

2λ

∑
k

G0(k)

[
∞∑
n=1

Σ(n)(k)

]
=

1

2λ

∑
k

G0(k) [Σ(k) + Σ(k)G0(k)Σ(k) + Σ(k)G0Σ(k)G0Σ(k) + · · · ]

=
1

2λ

∑
k

Σ(k) [G0(k) +G0(k)Σ(k)G0(k) +G0Σ(k)G0Σ(k)G0Σ(k)G0 + · · · ]

=
1

2λ

∑
k

G(k)Σ(k). (A.8)

On the other hand,

δΦ[G]

δλ
=

1

2λ

∑
k

∞∑
n=1

G(k)Σ(n)(k; [G]) +
∑
k

δΦ[G]

δG(k)

δG(k)

δλ

=
1

2λ

∑
k

G(k)Σ(k) +
∑
k

Σ(k)
δG(k)

δλ
, (A.9)

then

δ

δλ
(Ω− Φ[G]) = −

∑
k

[G0(k)
−1 −G(k)−1]

δG(k)

δλ

= −
∑
k

[
δln(−G(k)−1)

δλ
+G0(k)

−1 δG(k)

δλ

]
. (A.10)
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Integrating Eq.(A.10) from λ = 0 to λ = 1, we obtain

[Ω−Φ[G]]λ=1
λ=0 = Ω− Φ[G]− Ω0,

= −
∑
k

{
ln[−G(k)−1]− ln[−G0(k)

−1] +G0(k)
−1[G(k)−G0(k)]

}
, (A.11)

then

Ω = Φ[G]−
∑
k

[
ln[−G(k)−1] + Σ(k)G(k)

]
,

= Tr ln(−G)− Tr(GΣ) + Φ[G]. (A.12)
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Appendix B

Atomic and high-frequency limits
of the impurity model

We take the Anderson impurity model and compare the exact self-energy and the
modified IPT self-energy in the high-frequency limit and the atomic limit. The
Anderson impurity model Hamiltonian HAIM is expressed as

HAIM =
∑
σ

(ϵd − µ)c†d,σcd,σ + Und,↑nd,↓ +
∑
k,σ

(ϵk − µ)c†k,σck,σ

+
∑
k,σ

Vkd(c
†
d,σck,σ + c†k,σcd,σ), (B.1)

where c†d,σ and cd,σ are respectively the creation and annihilation operators at the

impurity site, c†k,σ and ck,σ are respectively the creation and annihilation operators
at a bath site, U is the strength of the interaction at the impurity site, µ is the
chemical potential, and Vk,d is the hybridization between the impurity site and
bath sites.

The action for this Hamiltonian is the same as Eq. (3.5), and the Weiss field
is obtained as

G−1(ωn) = iωn − (ϵd − µ)−∆(ωn), (B.2)

where ∆ is called the hybridization function and defined as

∆(ωn) =
∑
k

V 2
kd

iωn − ϵk
. (B.3)
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B.1 High-frequency limit of the second-order per-

turbation

The second-order perturbation self-energy Σ(2) is

Σ(2)(ωn) = −U2

∫ β

0

dτeiωnτ Ḡ(τ)2Ḡ(−τ)

= −U2

[
eiωnτ

iωn

Ḡ(τ)2Ḡ(−τ)
]β
0

+O

(
1

(iωn)2

)
=
−U2

iωn

[
−Ḡ(β)2Ḡ(−β)− Ḡ(+0)2Ḡ(−0)

]
+O

(
1

(iωn)2

)
=
−U2

iωn

Ḡ(0)Ḡ(β)(Ḡ(0) + Ḡ(β)) +O

(
1

(iωn)2

)
, (B.4)

where Ḡ is defined in Eq. (3.15). Then we consider a high-frequency expansion of
Ḡ(ωn) as

Ḡ(ωn) =

∫ β

0

dτeiωnτ Ḡ(τ)

=

[
eiωnτ

iωn

Ḡ(τ)
]β
0

+O

(
1

(iωn)2

)
= −Ḡ(0) + Ḡ(β)

iωn

+O

(
1

(iωn)2

)
. (B.5)

From Eqs. (B.2) and (B.3), Ḡ(ωn) becomes

Ḡ(ωn)→
1

iωn

(|ωn| → ∞), (B.6)

in the high-frequency limit. Comparing Eqs. (B.5) and (B.6), we obtain

Ḡ(0) + Ḡ(β) = −1. (B.7)

If we define n0 as

n0 ≡
1

β

∑
ωn

Ḡ(ωn)e
−iωn0− = Ḡ(−0) = −Ḡ(β), (B.8)

then we obtain

Ḡ(0) = n0 − 1, (B.9)

Ḡ(β) = −n0. (B.10)

We thus obtain the high-frequency limit of Σ(2) as

Σ(2)(ωn)→
U2n0(1− n0)

iωn

(|ωn| → ∞). (B.11)
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B.2 Atomic limit of the second-order perturba-

tion

In the atomic limit (U >> V ), the Hamiltonian becomes

HAIM →
∑
σ

(ϵd − µ)c†d,σcd,σ + Und,↑nd,↓, (B.12)

in which the Weiss field becomes

G−1(ωn) = iωn − (ϵd − µ), (B.13)

and
Ḡ−1(ωn) = iωn − (ϵd − µ)− Uδn− U/2. (B.14)

If we define x ≡ ϵd − µ+ Uδn+ U/2, Ḡ(τ) is obtained as

Ḡ(τ) =
1

β

∑
ωn

e−iωnτ

iωn − x

= −f(−x)e−xτ , (B.15)

where f(x) is the Fermi distribution function.
Then the second-order perturbation self-energy is obtained as

Σ(2)(ωn) = U2

∫ β

0

dτ Ḡ(τ)2Ḡ(β − τ)eiωnτ

= −U2

∫ β

0

dτf 3(−x)e(iωn−x)τe−βx

= U2f 3(−x)e
−βx(e−βx + 1)

iωn − x

=
U2f(x)(1− f(x))

iωn − x
. (B.16)

From Eq. (B.15),
Ḡ(β) = −f(−x)e−xβ, (B.17)

and

f(x) = e−βxf(−x)
= −Ḡ(β)
= n0, (B.18)

then we obtain the second-order perturbation self-energy Σ(2) in the atomic limit
as

Σ(2)(ωn)→
U2n0(1− n0)

iωn − (ϵd − µ)− Uδn− U/2
. (B.19)
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B.3 High-frequency limit of the exact self-energy

of the impurity model

In the high-frequency limit, the Green’s function can be expanded as

Gimp(ωn) =

∫ β

0

dτeiωnτGimp(τ)

=

[
eiωnτ

iωn

Gimp(τ)

]β
0

−
[
eiωnτ

(iωn)2
G′

imp(τ)

]β
0

+

[
eiωnτ

(iωn)3
G′′

imp(τ)

]β
0

− · · ·

= −Gimp(+0)−Gimp(−0)
iωn

+
G′

imp(+0)−G′
imp(−0)

(iωn)2
−

G′′
imp(+0)−G′′

imp(−0)
(iωn)3

+ · · · ,

(B.20)

From the Heisenberg equation of motion, we obtain

Gimp(τ) = −
⟨
Tτcd,σ(τ)c

†
d,σ(0)

⟩
,

d

dτ
Gimp(τ) = −

⟨
Tτ [HAIM, cd,σ(τ)]c

†
d,σ(0)

⟩
,

d2

d2τ
Gimp(τ) = −

⟨
Tτ [HAIM, [HAIM, cd,σ(τ)]]c

†
d,σ(0)

⟩
. (B.21)

Then we obtain

Gimp(ωn)

=

⟨{
cd,σ, c

†
d,σ

}⟩
iωn

−

⟨{
[HAIM, cd,σ], c

†
d,σ

}⟩
(iωn)2

+

⟨{
[HAIM, [HAIM, cd,σ]], c

†
d,σ

}⟩
(iωn)3

− · · · ,

(B.22)

where { , } is an anti-commutator. We calculate the commutation relation as

[HAIM, cd,σ] = −(ϵd − µ)cd,σ − Und,−σcd,σ −
∑
k

Vkdck,σ, (B.23)

[HAIM, [HAIM, ci,σ]]

= (ϵd − µ+ Und,−σ)
2cd,σ +

∑
k

V 2
kdcd,σ +

∑
k

Vkd(ϵd − ϵk + nd,−σ)ck,σ. (B.24)

Then
{[HAIM, cd,σ], c

†
d,σ} = −(ϵd − µ)− Und,−σ, (B.25)
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{[HAIM, [HAIM, cd,σ]], c
†
d,σ}

= (ϵd − µ)2 + 2U(ϵd − µ)nd,−σ + U2nd,−σ +
∑
k

V 2
kd, (B.26)

and we obtain the high-frequency expansion of the Green’s function of the impurity
problem as

Gimp(ωn)

=
1

iωn

+
(ϵd − µ) + Un

(iωn)2
+

(ϵd − µ)2 + 2Un(ϵd − µ) + U2n+
∑

k V
2
kd

(iωn)3
+ · · · ,

(B.27)

where n is the density (n = nd,↑ = nd,↓).
The high-frequency expansion of G−1 is

G−1 = iωn − (ϵd − µ)−
∑

k V
2
kd

iωn

+O

(
1

(iωn)2

)
, (B.28)

and the high-frequency expansion of G−1
imp is

G−1
imp

= iωn

[
1 +

(ϵd − µ) + Un

iωn

+
(ϵd − µ)2 + 2Un(ϵd − µ) + U2n+

∑
k V

2
kd

(iωn)2
+ · · ·

]−1

= iωn − (ϵd − µ)− Un− U2n(1− n) +
∑

k V
2
kd

iωn

+O

(
1

(iωn)2

)
. (B.29)

Then the self-energy of the impurity problem becomes

Σimp(ωn) = G−1(ωn)−G−1
imp(ωn)

= Un+
U2n(1− n)

iωn

+O

(
1

(iωn)2

)
, (B.30)

and we obtain the high-frequency limit of the self-energy of the impurity problem
Σimp as

Σimp(ωn) = ΣH +
U2n(1− n)

iωn

+O

(
1

(iωn)2

)
. (B.31)

B.4 Atomic limit of the exact self-energy of the

impurity model

In the atomic limit, we take a one-site problem as

H =
∑
σ

(ϵd − µ)c†d,σcd,σ + Und,↑nd,↓. (B.32)
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This model is exactly solvable, for the eigenstate

| 0⟩ = | vac⟩, (B.33)

| 1, ↑⟩ = c†d,↑ | vac⟩, (B.34)

| 1, ↓⟩ = c†d,↓ | vac⟩, (B.35)

| 2⟩ = c†d,↑c
†
d,↓ | vac⟩, (B.36)

with respective eigenvalues

E0 = 0, (B.37)

E1,↑ = E1,↓ = ϵd − µ, (B.38)

E2 = 2(ϵd − µ) + U. (B.39)

We then obtain the exact Green’s function as

Gloc(τ) = −
⟨
Tτcd,σ(τ)c

†
d,σ(0)

⟩
=

1

Z

∑
m,l

−θ(τ)e−βEm⟨m | eHτcd,σe
−Hτ | l⟩⟨l | c†d,σ | m⟩

+θ(−τ)e−βEm⟨m | c†d,σ | l⟩⟨l | e
Hτcd,σe

−Hτ | m⟩

= −θ(τ)

Z

[
e−βE0e(E0−E1)τ + e−βE1e(E1−E2)τ

]
+
θ(−τ)
Z

[
e−βE1e(E0−E1)τ + e−βE2e(E1−E2)τ

]
, (B.40)

where m, l = 0, 1 ↑, 1 ↓, 2, E1 = E1,↑ = E1,↓, θ(τ) is the step function and Z is the
partition function defined as

Z = e−βE0 + 2e−βE1 + e−βE2 . (B.41)

Then we have

Gloc(ωn)

=
e−βE0 + e−βE1

Z

1

iωn + E0 − E1

+
e−βE1 + e−βE2

Z

1

iωn + E1 − E2

. (B.42)

The density n = n↑ = n↓ is

n =
e−βE1 + e−βE2

Z
. (B.43)

Then we obtain the Green’s function in the atomic limit as

Gloc(ωn) =
1− n

iωn − (ϵd − µ)
+

n

iωn − (ϵd − µ)− U

=
1

iωn − (ϵd − µ)− Un(iωn−(ϵd−µ))
iωn−(ϵd−µ)−U(1−n)

. (B.44)
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Finally, we obtain the self-energy of the atomic limit as

Σ(ωn) =
Un(iωn − (ϵd − µ))

iωn − (ϵd − µ)− U(1− n)

= ΣH +
U2n(1− n)

iωn − (ϵd − µ)− U(1− n)
. (B.45)
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Appendix C

Lehmann representation for the
two-particle quantity

From Eq. (3.33), we need the Lehmann representation of χ̄loc,σσ′ defined as

χ̄loc,σσ′(ωn, ωn′ , ωm) ≡
1

β2

∫ β

0

dτ1dτ2dτ3e
−iτ1ωneiτ2(ωn+ωm)e−iτ3(ωn′+ωm)

×
⟨
Tτc

†
iσ(τ1)ciσ(τ2)c

†
iσ′(τ3)ciσ′(0)

⟩
. (C.1)

Considering the arrangement of the time order, we can decompose χ̄ into six
different terms as

χ̄loc,σσ′(ωn, ωn′ , ωm) =
1

β2Z
(χ123

σσ′ + χ132
σσ′ + χ312

σσ′ + χ213
σσ′ + χ231

σσ′ + χ321
σσ′), (C.2)
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where χ123
σσ′ is

χ123
σσ′ ≡

∫ β

0

dτ1

∫ τ1

0

dτ2

∫ τ2

0

dτ3e
−iτ1ωneiτ2(ωn+ωm)e−iτ3(ωn′+ωm)

×
∑
i

⟨i | c†iσ(τ1)ciσ(τ2)c
†
iσ′(τ3)ciσ′(0) | i⟩e−βEi

=
∑
i,j,k,l

⟨i | c† | j⟩⟨j | c | k⟩⟨k | c† | l⟩⟨l | c | i⟩e−βEi

×
∫ β

0

dτ1e
[Ei−Ej−iωn]τ1

∫ τ1

0

dτ2e
[Ej−Ek+i(ωn+ωm)]τ2

∫ τ3

0

dτ3e
[Ek−El−i(ωn′+ωm)]τ3

=
∑
i,j,k,l

−1
i(ωn′ + ωm)− Ek + El

×
[

1

i(ωn − ωn′) + Ej − El

(
e−βEi + e−βEl

iωn′ − Ei + El

− e−βEj + e−βEi

iωn − Ei + Ej

)
− 1

i(ωn + ωm) + Ej − Ek

(
e−βEk − e−βEi

iωm + Ei − Ek

− e−βEj + e−βEi

iωn − Ei + Ej

)]
× ⟨i | c†σ | j⟩⟨j | cσ | k⟩⟨k | c

†
σ′ | l⟩⟨l | cσ′ | i⟩. (C.3)

Similarly, χ132
σσ′ , . . . are computed as follows:

χ132
σσ′ =

∑
i,j,k,l

1

i(ωn′ + ωm)− Ej + Ek

×
[

1

i(ωn + ωm) + Ek − El

(
e−βEi + e−βEl

iωn′ − Ei + El

− e−βEi − e−βEk

i(ωn + ωn′ + ωm)− Ei + Ek

)
+

1

i(ωn − ωn′) + Ej − El

(
e−βEj + e−βEi

iωn + Ej − Ei

− e−βEl + e−βEi

iωn′ − Ei + El

)]
× ⟨i | c†σ | j⟩⟨j | c

†
σ′ | k⟩⟨k | cσ | l⟩⟨l | cσ′ | i⟩, (C.4)

χ213
σσ′ =

∑
i,j,k,l

1

i(ωn′ + ωm) + Ek − Ej

×
[

1

i(ωn + ωm) + El − Ei

(
e−βEj − e−βEl

iωm + El − Ej

+
e−βEk − e−βEi

i(ωn + ωn′ + ωm)− Ei + Ek

+
e−βEj + e−βEi

iωn + Ej − Ei

− e−βEl + e−βEk

iωn′ + Ek − El

)]
× ⟨i | c†σ | j⟩⟨j | c

†
σ′ | k⟩⟨k | cσ′ | l⟩⟨l | cσ | i⟩, (C.5)
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χ231
σσ′ =

∑
i,j,k,l

−1
i(ωn′ + ωm) + Ej − Ei

×
[

1

i(ωn − ωn′)− Ej + El

(
e−βEj + e−βEk

iωn + Ek − Ej

− e−βEk + e−βEl

iωn′ − El + Ek

)
− 1

i(ωn + ωm) + El − Ei

(
e−βEk − e−βEi

i(ωn + ωn′ + ωm)− Ei + Ek

− e−βEk + e−βEl

iωn′ + Ek − El

)]
× ⟨i | c†σ′ | j⟩⟨j | c†σ | k⟩⟨k | cσ′ | l⟩⟨l | cσ | i⟩, (C.6)

χ312
σσ′ =

∑
i,j,k,l

−1
i(ωn′ + ωm) + Ej − Ei

×
[

1

i(ωn + ωm) + Ek − El

(
e−βEj − e−βEl

iωm + Ej − El

+
e−βEk + e−βEj

iωn + Ek − Ej

− e−βEi + e−βEl

iωn′ + El − Ei

+
e−βEi − e−βEk

i(ωn + ωn′ + ωm) + Ek − Ei

)]
× ⟨i | c†σ′ | j⟩⟨j | c†σ | k⟩⟨k | cσ | l⟩⟨l | cσ′ | i⟩, (C.7)

χ321
σσ′ =

∑
i,j,k,l

1

i(ωn′ + ωm) + Ej − Ei

×
[

1

i(ωn + ωm) + Ej − Ek

(
e−βEl + e−βEk

iωn + El − Ek

+
e−βEl − e−βEj

iωm + Ej − El

)
− 1

i(ωn − ωn′) + Ei − Ek

(
e−βEl + e−βEk

iωn + El − Ek

− e−βEl + e−βEi

iωn′ + El − Ei

)]
× ⟨i | c†σ′ | j⟩⟨j | cσ | k⟩⟨k | c†σ | l⟩⟨l | cσ′ | i⟩. (C.8)
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Appendix D

Padé approximation

In this appendix, we explain the formulation of the Padé approximation [112],
which is a typical method of numerical analytical continuation. In this thesis, this
method is used to obtain spectral function from the Matsubara Green’s function.
Then problem is, when the value of the Green’s function on the imaginary axis is
known as

Ginput
n = G(iωn), (D.1)

how to obtain the Green’s function on the real axis. In the Padé approximation,
we assume that the Green’s function can be expressed as

G(ω) ≈ Gpade
N (ω) =

a1

1 + a2(ω−ω1)

1+
a3(ω−ω2)

···1+
aN (ω−ωN−1)

1

, (D.2)

where {ai} are the fitting parameters. The parameters {ai} are determined such
that the approximate function Eq. (D.2) satisfy Eq. (D.1).

We first define {fN(ωn)} recursively as

f1(ωn) = Ginput
n , (D.3)

fN(ωn) =
fN−1(ωN−1)− fN−1(ωn)

(iωn − iωN−1)fN−1(ωn)
, (N > 1), (D.4)

then aN is determined through

aN = fN(ωN) (D.5)

77



in order to satisfy Eq. (D.1) as

Ginput
N = f1(ωN)

=
a1

1 + ωN−ω1

1

f2(ωN)

=
a1

1 + a2(ωN−ω1)

1+
(ωN−ω2)

1

f3(ωN)

=
a1

1 + a2(ωN−ω1)

1+
a3(ωN−ω2)

···1+
aN (ωN−ωN−1)

1

= Gpade(iωN). (D.6)

After determining the parameters {aN}, we calculate G(ω) on real axis from
Eq. (D.2). There is a useful algorithm: first we define PN and QN recursively as

P0 = 0, Q0 = 1, (D.7)

P1 = a1, Q1 = 1, (D.8)

PN+1(ω) = PN(ω) + aN+1(ω − iωN)PN−1(ω), (D.9)

QN+1(ω) = QN(ω) + aN+1(ω − iωN)QN−1(ω), (D.10)

then the Green’s function can be computed through

Gpade
N (ω) =

PN(ω)

QN(ω)
. (D.11)

In each loop, we replace P and Q as

PN+1 ←
PN+1

QN+1

, PN ←
PN

QN+1

, (D.12)

QN+1 ←
QN+1

QN+1

, QN ←
QN

QN+1

, (D.13)

in order to avoid overflow and underflow of P and Q.

D.1 Derivation of Eq. (D.11)

For N = 1, 2,

Gpade
1 = a1 =

P1(ω)

Q1(ω)
, (D.14)

Gpade
2 =

a1
1 + a2(ω − ω1)

=
P2(ω)

Q2(ω)
. (D.15)
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Also, if

Gpade
N+1(ω) =

PN+1(ω)

QN+1(ω)
=

PN(ω) + aN+1(ω − ωN)PN−1(ω)

QN(ω) + aN+1(ω − ωN)QN−1(ω)
, (D.16)

then

Gpade
N+2(ω) =

PN(ω) +
aN+1(ω−ωN )

1+aN+2(ω−ωN+1)
PN−1(ω)

QN(ω) +
aN+1(ω−ωN )

1+aN+2(ω−ωN+1)
QN−1(ω)

=
PN+1(ω) + aN+2(ω − ωN+1)PN(ω)

QN+1(ω) + aN+2(ω − ωN+1)QN(ω)

=
PN+2(ω)

QN+2(ω)
. (D.17)

Therefore Eq. (D.11) is satisfied for all N .
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