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Abstract

We have performed the first direct mass measurements of neutron-rich calcium isotopes

beyond neutron number N = 34 at the RIKEN Radioactive Isotope Beam Factory using the

time-of-flight magnetic-rigidity (TOF–Bρ) technique. The masses of very neutron-rich nuclei in

the vicinity of 54Ca have been measured with precisions almost as high as the best previously

reached by TOF–Bρ mass spectrometry.

The mass of atomic nuclei is a fundamental quantity as it reflects the sum of all interactions

within the nucleus. Changes in the shell structure in nuclei far from stability, called “shell

evolution”, can be probed by mass measurements. Particularly, the presence of subshell gaps

at N = 32 and 34 around calcium isotopes has attracted much attention over recent years.

Mass measurements of neutron-rich nuclei in the vicinity of N = 32 and 34 provide pivotal

information for investigating the shell evolution at N = 32 and 34.

The masses of 21 nuclei including 55–57Ca, 54K, and 50–52Ar were determined for the first

time. In addition, the uncertainties of 10 masses were reduced by more than 100 keV. The de-

duced atomic mass excesses of 55–57Ca, 54K, and 50–52Ar are −18650(160) keV, −13510(250) keV,

−7370(990) keV, −5730(400) keV, −13040(120) keV, −6740(280) keV, and −1590(900) keV,

respectively. The experimental results provide strong evidence for the onset of an appreciable

N = 34 subshell gap in 54Ca comparable to that for N = 32. In contrast, for the argon iso-

topes, there is no significant increase in the subshell gap at N = 32 relative to N = 30, and a

weakening of the N = 32 gap is indicated below the calcium and potassium isotopes.
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Chapter 1

Introduction

1.1 Nuclear mass

The mass of an atomic nucleus is a fundamental quantity as it reflects the sum of all inter-

actions within this quantum many-body system comprised of two kinds of fermions, protons

and neutrons. The importance of the mass in nature is expressed in Albert Einstein’s famous

energy-mass relation [1], E = mc2, which states that energy is equivalent to mass. The mass of

an atomic nucleus is less than the sum of the individual masses of its constituent free nucleons,

and this missing mass is known as the mass defect, which was discovered by F. W. Aston by

means of his mass spectrograph [2]. The energy required to disassemble an atomic nucleus into

its constituent protons and neutrons is called as the binding energy, which is expressed by

B(Z,N) = ZmHc2 + Nmnc
2 −M(Z,N)c2, (1.1)

where mH and mn are the masses of the hydrogen and the neutron, respectively, and M(Z,N)

is the atomic mass of a nuclide with proton number Z and neutron number N . The binding

energy is responsible for the stability of the nucleus. Thus, measurements of nuclear masses

provide fundamental information on nuclear stability.

1.2 Magic number

1.2.1 Shell model

In 1933, from the ensemble of masses obtained by Aston, W. Elsasser discovered the existence of

“special numbers” of neutrons and protons at which the corresponding nuclei form particularly

stable configurations [3]. This is the early idea of what are usually called “magic numbers”.

Later, in 1948, the study of nuclear shell structure regained interest through Maria Göppert-

Mayer’s review in which she examined available experimental facts and pointed to particular

stability of shells at numbers 20, 50, 82 and 126 [4]. However, the numbers 50, 82, and 126 could

not be explained from solutions of simple potential wells. Finally, in 1949, the observed shell

gaps, or so-called nuclear “magic numbers”, were reproduced by introducing a strong spin-orbit

interaction by Mayer [5], and independently by Haxel, Suess, and Jensen [6]. The conventional
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magic numbers for nuclei are 2, 8, 20, 28, 50, 82, and 126.

The nuclear shell model is an analogue of the atomic shell model describing the arrangement

of electrons around the nucleus of an atom, in which the closure of an electron shell is marked

by the occurrence of a noble-gas atom. The basic idea of the nuclear shell (or independent-

particle) model is that individual nucleons move in a mean field with no interactions with

other nucleons. The proposed spherical mean field consists of an isotropic harmonic oscillator

potential, an orbit-orbit term, and a strongly attractive spin-orbit term. A single particle orbital

is characterized by the quantum numbers N, l, and j, which are the major quantum number,

orbital angular momentum, and total angular momentum, respectively, and is denoted by the

notation Nlj . Figure 1.1 shows single particle energies in the shell model. The energy levels

with and without a spin-orbit potential are shown in the right and left, respectively. As seen

in Fig. 1.1, the spin-orbit potential lowers the energies of the j = l + 1/2 orbits, and gives rise

to the nuclear magic numbers (2, 8, 20, 28, 50, 82, and 126).

Experimentally, several quantities are measured as a signature for a shell closure. One im-

portant observable is the energy of the first 2+ excited state [E(2+1 )] in even-even nuclei. A

high E(2+1 ) value is associated with a particularly stable configuration of the ground state.

Evidence for a shell closure is also provided by measurements of the reduced transition proba-

bility between the ground state and the 2+1 state [B(E2)] in even-even systems. A small B(E2)

value indicates a near spherical nucleus, while a large B(E2) corresponds to a deformed nu-

cleus. Thus, nuclei with a closed-shell configuration have a small B(E2) value. Besides these

observables reflecting the nuclear quadrupole collectivity, mass differences are employed as a

signature for the presence of a shell gap, as the closed-shell nuclei with enhanced stability have

more binding energies. In particular, the two-neutron separation energy

S2n(Z,N) = B(Z,N) −B(Z,N − 2), (1.2)

which is the required energy to remove two neutrons from a nucleus, is often used. Figure 1.2

shows the systematics of the two-neuron separation energies for neutron-rich isotopes from neon

(Z = 10) to nickel (Z = 28). One can see some kinks at N = 20 and 28 in Fig. 1.2. A sudden

decrease in the two-neutron separation energies indicates the existence of a shell gap.

1.2.2 Occurrence and disappearance of magic numbers

The robustness of the traditional magic numbers suggested by Mayer and Jensen (N,Z = 2,

8, 20, 28, 50, 82, and 126) has been well demonstrated for stable nuclei, which are on or near

the β-stability line in the nuclear chart. During the last three decades, the exotic nuclei far

from the valley of stability towards the limit of existence have been explored with the advent of

radioactive isotope (RI) beam facilities. Changes in the shell structure far away from stability,

often called “shell evolution”, have been intensively investigated in the fields of experimental

and theoretical nuclear physics. In exotic nuclei far from the β-stability, some of the traditional

magic numbers disappear, while other new ones arise [7, 8]. For instance, the weakening of the

conventional magic numbers was observed at N = 8 in 12Be [9–12], N = 20 in 32Mg [13], which

lies inside a region of deformed nuclei commonly referred to as the “island of inversion” [14],
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Figure 1.1: Single particle energies in the shell model. The number in a bracket denotes the
maximum occupation for a given orbital. The magic numbers are shown in bold.



4 Chapter 1 Introduction

Neutron number, N
20 25 30 35 40

 (
M

e
V

)
2

n
S

0

5

10

15

20

25

30

Z = 28 (Ni)

Z = 27 (Co)

Z = 26 (Fe)

Z = 25 (Mn)

Z = 24 (Cr)

Z = 23 (V)

Z = 22 (Ti)

Z = 21 (Sc)

Z = 20 (Ca)

 

Z = 19 (K)

Z = 18 (Ar)

Z = 17 (Cl)

Z = 16 (S)

Z = 15 (P)

Z = 14 (Si)

Z = 13 (Al)

Z = 12 (Mg)

Z = 11 (Na)

Z = 10 (Ne)

Figure 1.2: Two-neutron separation energies S2n for neutron-rich isotopes from neon (Z = 10)
to nickel (Z = 28). Dashed lines indicate the magic numbers N = 20 and 28.

and N = 28 in the well-deformed nucleus 42Si [15, 16]. In contrast, the emergence of a new

magic number N = 16 was observed in exotic oxygen isotopes [17, 18]. For the proton shells,

the breakdown of the shell closure at Z = 8 was reported in the proton-rich unbound nucleus
12O, which is the mirror nucleus of 12Be [19]. This demonstrated the persistence of mirror

symmetry in the shell quenching at the magic number 8.

The shell evolution in neutron-rich nuclei in the pf shell (1p1/2, 1p3/2, 0f5/2, and 0f7/2)

has attracted much attention over recent years. A subshell closure at N = 32 was confirmed

in 52Ca [20, 21], 54Ti [22, 23], and 56Cr [24, 25] by measurements of E(2+1 ) or B(E2). The

observations for 52Ca were complemented by high-precision Penning-trap mass measurements

on 51,52Ca using the TITAN system at TRIUMF, which revealed a flat behavior of S2n in the

Ca isotopic chain from N = 30 to N = 32 [26]. The 51K mass was also measured for the

first time in the same high-precision mass measurements, in which the similar flat behavior was

observed for the K chain. Recently, the masses of exotic isotopes 53,54Ca were measured for the

first time using the multiple-reflection time-of-flight (MR-TOF) device at ISOLTRAP at the

ISOLDE/CERN facility [27]. This high-precision mass measurement confirmed the presence

of a subshell gap at N = 32 in 52Ca. Furthermore, similar mass measurements of 52,53K at

ISOLTRAP revealed a sizable shell gap slightly lower than for 52Ca, showing that there exists

the N = 32 subshell gap below the proton magic number Z = 20 [28]. For argon isotopes, the

recent measurement of E(2+1 ) in 50Ar at RIBF/RIKEN suggested the N = 32 subshell gap in
50Ar similar in magnitude to those in 52Ca and 54Ti [29].
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Figure 1.3: Schematic illustration of changes in the shell structure at N = 32 and 34.

As well as the N = 32 subshell closure, the presence of a large subshell gap at N =

34 between the 1p1/2 and 0f5/2 neutron orbits in the neutron-rich Ti and Ca isotopes was

theoretically predicted [30, 31]. However, no N = 34 subshell closure was reported in the

measurements on 56Ti [23, 32] and 58Cr [24, 25]. Some doubts regarding the N = 34 subshell

closure in calcium were raised [33–35], and different theoretical predictions were made. Recently,

the measurement of E(2+1 ) in 54Ca at RIBF/RIKEN suggested the possible onset of a sizable

subshell closure at N = 34 [36]. For establishment of existence of the subshell gap at N = 34,

mass measurements on the exotic Ca isotopes beyond N = 34 are essential.

The shell evolution has been under intensive theoretical studies on the basis of the general

properties of nuclear forces, such as tensor interactions and three-body forces. The tensor

interactions play a significant role in describing several experimental observations [37]. In the

framework of tensor-force-driven shell evolution, the appearance of the new subshell gaps at

N = 32 and 34 is accounted for as follows. Figure 1.3 shows a schematic illustration of changes

in the shell structure at N = 32 and 34. As protons are removed from π0f7/2, the strength

of the attractive nucleon-nucleon interaction between π0f7/2 and ν0f5/2 decreases, resulting

in the upward shift of ν0f5/2 in energy with respect to the ν1p1/2–ν1p3/2 spin-orbit partners.

Consequently, the drastic change in the spin-orbit splitting caused by the π–ν tensor force gives

rise to the sizable gaps at N = 32 and 34, as the number of protons in π0f7/2 is reduced to

Z = 20 (Ca). Three-body forces are also important in calculations of very neutron-rich systems

based on nuclear forces [38, 39]. Recently, calculations with the three-body forces have been

carried out for the Ca isotopes, which is the heaviest chain for such calculations (for example,

Refs. [40, 41]). The N = 28 standard magic number in 48Ca can be reproduced in microscopic

theories by introducing the three-body forces [42]. The importance of the three-body forces has

been discussed in the recent mass measurements on 51,52Ca [26] and 53,54Ca [27].



6 Chapter 1 Introduction

1.3 Overview of direct mass measurements

Since the discovery of two isotopes of neon by J. J. Thomson in 1913 with his famous positive-

ray parabola apparatus [43], mass spectroscopy has been developed up to the present. There is

a wide range of mass measurement techniques applied worldwide. In this section, an overview

of various mass measurement methods for unstable nuclei is provided.

Mass measurements consist of two types of methods: direct and indirect measurements. In

the direct methods, which include those based on Penning traps and storage rings, unknown

masses are directly determined by calibrators with well-known masses. On the other hand, in

the indirect methods, unknown masses are indirectly calculated by means of mass differences

obtained as Q values from nuclear decays or reactions.

The experimental methods of the direct mass measurements of exotic nuclei can be divided

into two groups: frequency-based mass spectrometry and time-of-flight (TOF) mass spectrom-

etry. Various techniques of the direct mass measurements and the experimental facilities in

operation are summarized as follows:

Frequency-based mass spectrometry:

• Penning trap: ISOLTRAP (ISOLDE) [44], LEBIT (NSCL) [45], JYFLTRAP

(JYFL) [46], CPT (ANL) [47], SHITRAP (GSI) [48], TITAN (TRIUMF) [49]

• Storage ring: ESR (GSI) [50]

Time-of-flight mass spectrometry:

• Single turn: SPEG (GANIL) [51], TOF (NSCL) [52]

• Multi turn:

– Storage ring: ESR (GSI) [50], CSRe (IMP) [53], Rare-RI ring (RIKEN) [54]

– MR-TOF (ISOLDE [55], GSI [56], RIKEN [57])

We give a short overview of the various direct mass measurement techniques in the following.

1.3.1 Frequency-based mass spectrometry

Penning-trap mass spectrometry

Penning-trap mass spectrometry [58] has an unmatched resolving power and precision, and is

the most widely used technique for measuring masses of unstable nuclei. Ions are inserted into

a trap at low velocities with the isotope separation on-line (ISOL) method. The Penning trap

is commonly carried out by the time-of-flight ion-cyclotron-resonance (TOF-ICR) method, in

which the ionic motion for ions with a mass-to-charge ratio m/q is excited by applying the

radio-frequency quadrupolar field at the cyclotron frequency

fc =
1

2π

q

m
B, (1.3)

where B is the magnetic field strength. The resonant frequency is converted into a mass of the

ion of interest trapped in a volume of ∼1 cm3 by comparison with the resonant frequency of an
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atom or atomic cluster with known mass. Accessible half-lives of exotic nuclei to be studied are

typically more than a few hundred milliseconds. The limit can be down to on the order of 10 ms

only for some gases and alkaline elements [59]. Typically, a relative precision of δm/m ∼ 10−7

can be achieved with more than a hundred ions [58].

Schottky mass spectrometry

The complementary devices for high-precision mass spectrometry to the Penning traps are

the storage rings. In the storage-ring mass spectrometry, the relative difference in revolution

frequencies ∆f/f is expressed as

∆f

f
= − 1

γ2T

∆(m/q)

m/q
+

(
1 − γ2

γ2T

)
∆v

v
. (1.4)

Here, ∆(m/q)/(m/q) is the relative difference between the mass-to-charge ratios of two ion

species, ∆v/v is that between the velocities, γ = 1/
√

1 − (v/c)2 is the Lorentz factor, and γ2T
is the so-called transition point given by

γ2T =
δ(p/q)/(p/q)

δC/C
, (1.5)

where p/q is the magnetic rigidity, and C is the orbit circumference. To eliminate the second

term in Eq. (1.4), which is dependent on the velocity spread, two techniques have been devel-

oped: Schottky mass spectrometry (SMS) based on frequency measurement and isochronous

mass spectrometry (IMS) based on time-of-flight measurement.

In SMS, an electron cooler is used to reduce the velocity spread (∆v/v → 0). The revolution

frequencies are measured by detecting the induced image currents of the circulating ions on a

non-destructive Schottky probe, and the masses of the nuclei of interest are determined from

Eq. (1.4) by comparing their Schottky peak positions to those of the well-known masses. Since

the electron cooling process takes a few seconds, SMS can measure only the long-lived exotic

nuclei with half-lives of T1/2 ≳ 10 s. A recent SMS experiment achieved the mass precision of

δm/m = 6 × 10−7 [60].

1.3.2 Time-of-flight mass spectrometry

TOF–Bρ mass spectrometry

TOF–Bρ mass spectrometry (TOF-MS) is the focus of this thesis. This technique requires a

precise measurement of the time-of-flight and the magnetic rigidity of the ion. The flight length

is 116 m and 59 m for the GANIL and NSCL setups, respectively. The mass-to-charge ratio

m/q of the ion is derived from the equation of motion:

m

q
=

Bρ

γL/t
, (1.6)

where Bρ is the magnetic rigidity, L is the flight length, t is the time-of-flight, and γ is the

Lorentz factor. The time-of-flight of a fragment, typically of the order of 1 µs, is measured
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by two fast-timing detectors, and its typical resolution was δt/t ∼ 2 × 10−4 in the previous

measurements at SPEG/GANIL [51]. The magnetic rigidity is measured by detecting the

position of each ion at a large dispersive focus, and the achieved momentum resolution has

been commonly δBρ/Bρ ∼ 10−4 [51].

TOF-MS offers an advantage that it can provide the masses of a large number of isotopes

in a single measurement, which allows to map a wide region of the nuclear mass surface. Thus,

TOF-MS enables us to study the systematic trends in the mass surface. Another distinct

advantage is its short measurement time, which is on the order of 1 µs. Owing to this, TOF-MS

can access the short-lived nuclei very far from the β-stability. However, a mass resolution in

TOF-MS is limited compared with other techniques such as Penning-trap and storage-ring mass

spectrometry, and the mass resolution of σm/m = 2–4×10−4 has been obtained. The final mass

uncertainty is determined by the number of detected ions, and it is typically ∼100 keV (∼1 MeV)

for thousands (tens) of events. The achievable relative mass precision is δm/m ∼ 10−5.

Isochronous mass spectrometry

In the storage-ring mass spectrometry, the other complementary technique to SMS is the

isochronous mass spectrometry (IMS). In IMS, the velocity dependent term in Eq. (1.4) is

minimized by the isochronous mode operation where the condition of γT = γ is achieved. The

different velocities of the circulating ions are compensated by the lengths of the orbits, and

all ions in a given nuclide have the same revolution frequency. The masses of the nuclides of

interest are determined by directly measuring the flight time in the ring with fast-timing time-

pickup detectors. IMS can access the short-lived fragments with a half-life as short as a few ten

microseconds because no cooling is required unlike SMS. A recent IMS experiment achieved the

mass precision of δm/m = 5 × 10−6 [61].

MR-TOF mass spectrometry

Multiple-reflection time-of-flight (MR-TOF) mass spectrometry (MR-TOF-MS) is a new ap-

proach to high-precision mass measurements of exotic nuclei, and the MR-TOF devices have

been commissioned at several facilities in the last few years [55–57]. In MR-TOF-MS, the ions

flight in a device many times by electrostatic ion mirrors, and the flight path is extended by

several orders of magnitude over the conventional TOF mass spectrometers. MR-TOF-MS has

a high resolution, which is orders of magnitude larger than the resolving power achievable in the

conventional single-pass TOF mass spectrometry, while retaining its advantages. MR-TOF-MS

can access the short-lived nuclei with half-lives of several milliseconds, and has achieved a mass

resolution of σm/m = 1.7 × 10−6 and a relative mass precision of δm/m ∼ 10−7 [56].

1.3.3 Comparison of the various techniques

The required mass precision depends on the investigated physics. Table 1.1 summarizes the

precisions and the associated physics that can be probed [62]. For the discussion of the shell

effects, which are typically of the order of a few MeV, a mass precision of 10−5 is required. To

investigate the shell openings and closures in exotic nuclei, a mass precision of 10−6 is needed.



1.3 Overview of direct mass measurements 9

Table 1.1: Relative mass uncertainties δm/m required to investigate the physical topics [62].

Relative precisions Physics investigated

10−5 astrophysics, shells
10−6 subshells, pairing
10−7 pairing, halos
10−8 weak interaction

These effects can be discussed using the TOF mass measurement technique with the almost

highest precision ever achieved.

To compare the performance of the various mass measurement techniques, we employ the

two-dimensional plot of the experimental mass uncertainty and the isobaric distance from sta-

bility [62]. The isobaric distance from stability represents the distance between the measured

nuclide with Z protons and (A− Z) neutrons and the nuclide in the β-stability with the same

mass number. Thus, it is a measure of difficulty to access the nucleus. The isobaric distance

from stability is defined by Z0 − Z, where Z0, the proton number of the most stable isotope in

the isobaric chain with mass number A, is given by

Z0 =
A

1.98 + 0.0155A2/3
. (1.7)

Figure 1.4 shows the plot of the relative mass uncertainty and the isobaric distance from stability

for the mass measurements of Z < 28 nuclei. One can see that TOF mass measurements (SPEG,

NSCL, and TOFI) can access more neutron-rich region with moderate uncertainties relative to

other mass measurements with traps. For the most exotic nuclides, the TOF approach is the

only direct method to progress towards the drip line and investigate the more exotic shell effects.
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Figure 1.4: Relative mass uncertainty versus isobaric distance from stability (Z0 − Z) for
different nuclear mass measurement facilities. Only the mass measurements of the nuclei of
Z < 28 are plotted. Experimental facilities that are not mentioned in the text are included in
this figure: TOFI, which was in operation from 1987 to 1998, is a single-pass TOF method at
Los Alamos National Laboratory [63]. MISTRAL, which is one of the frequency-based facilities,
is the radio-frequency (RF) transmission spectrometer at ISOLDE [64].
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Figure 1.5: Nuclear chart in the vicinity of neutron-rich Ca isotopes. Filled colors show the
mass uncertainties in the literature. Stars represent the nuclei whose masses are measured
in the present experiment. Filled red stars indicate the nuclei with unknown masses. Mass
uncertainties are taken from the AME2012 database [65] except for 64Cr [66], 56,57Sc [67],
53,54Ca [27], 52,53K [28], 48Ar [68], and 47Cl [69].

1.4 Thesis objectives

In this thesis, we present the first direct mass measurements of neutron-rich isotopes in the

vicinity of calcium, including 55–57Ca, 55K, and 50–52Ar, by the TOF–Bρ technique. Figure 1.5

shows the nuclear chart near the neutron-rich Ca isotopes. Stars represent the nuclei observed

in the present experiment, and filled red stars indicate the nuclei whose masses are measured

for the first time. Mass measurements of neutron-rich nuclei in the region near N = 32 and

34 provide direct and pivotal information for discussing the shell evolution at N = 32 and 34.

The purpose of the present work is to investigate the presence of the subshell gaps at N = 34

in the Ca and K isotopes, and at N = 32 in the Ar isotopes, through mass measurements with

uncertainties of a few hundred keV.

Mass measurements of the nuclei far from stability are challenging due to the low production

yields and the short half-lives. In the present work, we have developed the TOF–Bρ mass

measurement technique at the RIKEN Radioactive Ion Beam Factory (RIBF) to measure the

masses of exotic nuclei at once. The masses of the nuclei of interest in the present work can be

measured only by the TOF–Bρ mass technique as they are very short-lived: For instance, the

half-lives of 55–57Ca, 55K, and 50–52Ar are 22 ms, 11 ms, >620 ns, >360 ns, 85 ms, >200 ns, and

>620 ns, respectively, which are taken from the NNDC database [70]. The mass measurements

were performed at RIBF using the high-resolution spectrometer SHARAQ. The TOF of ions

was measured by the newly developed diamond detectors with outstanding time resolutions.

The dispersion-matched operation of SHARAQ allowed the high-precision measurements of the

beam momenta.
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The author joined entire preparation and experiment, and was responsible for the analysis of

the data. In particular, the author played a central role in preparing and operating the diamond

detector, which is one of the most important detectors for the present mass measurements. The

author also made a large contribution to preparing other beam-line detectors, such as the low-

pressure multi-wire drift chambers and the silicon strip detectors.

The thesis is organized as follows: In Chapter 2, the details on the experimental setup

are described. In Chapter 3, the procedure of the data analysis is explained in detail. In

Chapter 4, the experimental results, including the deduced mass values, are provided. In

Chapter 5, discussions from the obtained results are given. Finally, the conclusion of the thesis

is presented in Chapter 6.
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Chapter 2

Experiment

The experiment was performed at the Radioactive Isotope Beam Factory (RIBF) at RIKEN [71],

which is operated by RIKEN Nishina Center and Center for Nuclear Study, University of Tokyo.

This is the first in-flight mass measurement using the TOF–Bρ technique in RIBF. Owing to

the high yields of unstable isotopes available at RIBF, masses of very exotic nuclei far from

stability can be studied.

This chapter describes the setup in the present experiment in detail. First, Sec. 2.1 presents

an overview of the present TOF mass measurements. Sec. 2.2 describes the experimental facil-

ities. Sec. 2.3 explains the ion optics in the experiment. Sec. 2.4 gives the detailed descriptions

of the detectors used in the experiment. Sec. 2.5 explains the data acquisition system in the

present experiment. Finally, Sec. 2.6 summarizes the experimental conditions.

2.1 Experimental overview

In this section, an overview of the present TOF mass measurements is described. First, a

brief overview of the experimental setup is given. Details of the setup are explained in the

following sections. Subsequently, the expected mass resolution and uncertainty in the present

mass measurements are discussed.

2.1.1 Overview of the experimental setup

Masses were measured directly by the TOF–Bρ technique, which was introduced in Sec. 1.3.2.

Neutron-rich isotopes including the nuclei of interest in the vicinity of 54Ca were produced

by fragmentation of a 70Zn primary beam at 345 MeV/u. The fragments were transported

in the BigRIPS separator (Sec. 2.2.2) and the High-Resolution Beam Line to the SHARAQ

spectrometer (Sec. 2.2.3). Figure 2.1 shows a schematic view of the beam line to SHARAQ in

RIBF.

The TOF was measured using a pair of newly developed diamond detectors placed at an

achromatic focus of BigRIPS (F3) and the final focal plane of SHARAQ (S2). The flight

path length between the two diamond detectors is ∼105 m along the central trajectory, which

corresponds to the TOF of ∼540 ns. The magnetic rigidity Bρ was measured by a parallel-plate
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Figure 2.1: Schematic view of the BigRIPS separator, the High-Resolution Beam Line, and
the SHARAQ spectrometer.

avalanche counter (PPAC) located at S0, which is the dispersive focus at the target location of

SHARAQ.

To correct the flight path lengths with the tracking information on an event-by-event basis,

two low-pressure multi-wire drift chambers (LP-MWDCs) were installed at both F3 and S2 in

addition to the diamond detectors. At the final focal plane of SHARAQ (S2), two silicon strip

detectors were placed as energy loss detectors, which allowed unambiguous particle identification

of exotic nuclides with similar mass-to-charge ratios. Details of these beam-line detectors are

described in Sec. 2.4.1.

2.1.2 Expected mass uncertainty

The mass resolution is deduced from Eq. (1.6):

σm
m

=

√(
σBρ

Bρ

)2

+ γ4
[(σL

L

)2
+
(σt
t

)2]
. (2.1)

In the present experiment, the Lorentz factor is γ ∼ 1.3. The momentum resolution of 1/14700

(FWHM) can be achieved in the dispersion-matching mode of the beam line and SHARAQ [72].
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As mentioned above, the flight length of an ion is corrected by the LP-MWDCs, which have

typical position resolutions of 300 µm [73]. The predictive power of the flight path length was

evaluated from the beam position and angle at F3 by the transport calculation with the expected

detector resolutions in which up to the fifth-order aberrations were taken into consideration.

The estimated precision of the flight length is σL/L = 5.8 × 10−5. Diamond detectors are

known to have quite high time resolutions. The newly developed diamond detector used in the

present experiment had a time resolution of 30 ps in the previous measurement [74]. Thus, the

TOF precision of σt/t = 8.0× 10−5 is expected to be achieved. Based on these evaluations, the

expected mass resolution is σm/m = 1.4 × 10−4.

The mass uncertainty δm is dependent on the number of events of the ion, N . The statistical

uncertainty is determined by δstat = σm/
√
N . The systematic uncertainty is typically δsyst/m ∼

2× 10−6 in the previous TOF mass measurements [52]. Assuming that the mass uncertainty is

determined by the statistical and systematic ones, the relative mass uncertainty is evaluated as(
δm

m

)2

=

(
δstat
m

)2

+

(
δsyst
m

)2

. (2.2)

The evaluated mass uncertainties for different numbers of events are summarized in Table 2.1.

Based on the evaluation, more than 1000 events are required to achieve the mass uncertainty

of δm < 300 keV (δm/m = 4.8 × 10−6) for the nuclei in the vicinity of 55Ca.

Table 2.1: Expected mass uncertainties for different numbers of events. The δm values in the
bottom row are calculated for 55Ca.

N 10000 5000 1000 500 100 50

δm/m 2.4 × 10−6 2.8 × 10−6 4.8 × 10−6 6.5 × 10−6 1.4 × 10−5 2.0 × 10−5

δm 140 keV 160 keV 300 keV 400 keV 880 keV 1200 keV
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Figure 2.2: Overview of the RIBF facility.

2.2 Experimental facilities

In this section, the experimental facilities consisting of the accelerators, the BigRIPS fragment

separator, the High-Resolution Beam Line, and the SHARAQ spectrometer are described. The

layout of the RIBF facility is shown in Fig. 2.2.

2.2.1 Accelerators

In the present experiment, the RILAC injector equipped with an 18-GHz electron cyclotron res-

onance (ECR) ion source was used. A primary 70Zn beam was accelerated up to 345 MeV/u by

the three booster cyclotrons, RIKEN Ring Cyclotron (RRC, K = 540 MeV), Intermediate-

stage Ring Cyclotron (IRC, K = 980 MeV), and Superconducting Ring Cyclotron (SRC,

K = 2600 MeV). The maximum intensity of the primary 70Zn beam was 130 pnA during

the experiment.

2.2.2 BigRIPS fragment separator

The BigRIPS separator is the superconducting in-flight RI beam separator at RIKEN [75]. A

schematic view of BigRIPS is shown in Fig. 2.1. A wedge-shaped aluminum degrader with a

thickness of 1 mm was inserted at the momentum-dispersive focus F1, and a collimator was

placed at F2 to decrease background light particles. The secondary beams emitted from the pro-

duction target installed at the starting point of the BigRIPS separator (F0) were achromatically

focused at F3.

In the present experiment, the 70Zn primary beam at an energy of 345 MeV/u bombarded

a 9Be production target at F0, yielding the secondary beam containing neutron-rich isotopes

by projectile fragmentation. Thicknesses of the production target were 8 mm and 12 mm

to produce the cocktail beam in the vicinity of 52Ca and 55Ca, respectively. Hereafter, the

experimental setting producing the beam in the vicinity of 55Ca (52Ca) is referred to as the
55Ca (52Ca) setting. Physics runs in the present experiment were taken predominantly in the
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55Ca setting. The secondary beam was separated in BigRIPS and transported through BigRIPS

and the High-Resolution Beam Line to the SHARAQ spectrometer.

2.2.3 High-Resolution Beam Line and SHARAQ spectrometer

The High-Resolution Beam Line (HRB) is the dedicated beam line for the SHARAQ spectrom-

eter [72, 76]. A schematic view of the HRB and SHARAQ is shown in Fig. 2.1. The HRB and

SHARAQ are designed to satisfy the lateral and angular dispersion-matching conditions [77]. In

the dispersion-matching transport mode, the whole system is achromatic so that the momentum

spread of the beam emitted from the starting point of the beam line (F3) is canceled out at the

final focal plane (S2), and the beam is momentum dispersed at the target position of SHARAQ

(S0). The dispersion-matched operation of SHARAQ allows high-precision measurements of

the beam momenta. Details of the ion optics are described in Sec. 2.3. Ion-optical design of

the HRB in the dispersion-matching mode is summarized in Table 2.2. The design momentum

resolution is δp/p = 1/14700 from a first-order ion-optical calculation.

The SHARAQ spectrometer consists of three quadrupole magnets (Q) and two dipole mag-

nets (D) in a configuration of Q1-Q2-D1-Q3-D2. The first two quadrupole magnets (Q1 and

Q2) are superconducting (SDQ). Specifications of the SHARAQ spectrometer are summarized

in Table 2.3.

Table 2.2: Ion-optical design of the HRB in the dispersion-matching mode.

Momentum acceptance ±0.3%
Horizontal acceptance ±10 mrad

Vertical acceptance ±30 mrad
Maximum dispersion 14.7 m (at S0)
Momentum resolution 1/14700

Table 2.3: Specifications of the SHARAQ spectrometer.

Maximum rigidity 6.8 Tm
Momentum dispersion (D) 5.86 m

Horizontal magnification (Mx) 0.40
D/Mx 14.7 m

Resolving power (for image size of 1 mm) 14700
Vertical magnification 0.0

Angular resolution < 1 mrad
Momentum acceptance ±1%

Vertical acceptance ±50 mrad
Horizontal acceptance ±17 mrad (dispersion-matching mode)

Solid angle 2.7 mstr (dispersion-matching mode)
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Figure 2.3: Dispersion-matching beam transport from F3 to S2. In the X (Y) plane, the beam
trajectories at the initial angles of aF3 (bF3) = ±10 (±30) mrad and 0 mrad, are displayed. In
the X plane, blue, green, and red lines show the beam trajectories at δp/p = +0.3%, 0%, and
−0.3%, respectively.

2.3 Ion optics

In the present experiment, SHARAQ was operated in the dispersion-matching transport mode.

Figure 2.3 shows the beam transport in the dispersion-matching mode calculated with the

code COSY INFINITY [78]. The upper figure shows the beam trajectories in the horizontal

direction with the angular deviation from the central ray of ±10 mrad. Each colored line shows

a beam trajectory at the fractional momentum deviation of δp/p = ±0.3%. The lower figure

shows those in the vertical direction with the angular deviation of ±30 mrad. In the present

experiment, the focus point at S0 is 200 mm downstream from the standard ion optics for

optimization of the transport efficiency in the SHARAQ spectrometer, and the focus at S2 is

moved 315 mm downstream to obtain the small image size at the stopper surrounded by the

γ-ray detectors placed downstream of S2, which are described in Sec. 2.4.2. Furthermore, the

vertical magnification in the SHARAQ spectrometer was set to −2.5 to achieve the small image

at S2 relative to the diamond detector, while the design value is 0.0 (see Table 2.3).

The transport from the starting point of the beam line to the focal plane of the spectrometer

is described using the transport matrices of the beam line (TB) and the spectrometer (TS) as
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follows: xfp

θfp

δfp

 = TSTB

x0

θ0

δ0

 (2.3)

=

(x|x)S (x|a)S (x|δ)S

(a|x)S (a|a)S (a|δ)S

0 0 1


(x|x)B (x|a)B (x|δ)B

(a|x)B (a|a)B (a|δ)B

0 0 1


x0

θ0

δ0

 (2.4)

≡

s11 s12 s16

s21 s22 s26

0 0 1


b11 b12 b16

b21 b22 b26

0 0 1


x0

θ0

δ0

 , (2.5)

where x0, θ0, and δ0 ≡ δp/p are the horizontal position, angle, and fractional momentum

deviation from the central trajectory at the starting point of the beam line, and xfp, θfp, and

δfp are those at the focal plane at the spectrometer. Therefore, xfp and θfp are given by

xfp = (s11b11 + s12b21)x0 + (s11b12 + s12b22)θ0 + (s11b16 + s12b26 + s16)δ0, (2.6)

θfp = (s21b11 + s22b21)x0 + (s21b12 + s22b22)θ0 + (s21b16 + s22b26 + s26)δ0. (2.7)

When the momentum dependent terms in Eqs. (2.6) and (2.7) vanish as

s11b16 + s12b26 + s16 = 0, (2.8)

s21b16 + s22b26 + s26 = 0, (2.9)

the lateral and angular dispersion-matching conditions are satisfied. The transfer matrix of the

SHARAQ spectrometer from S0 to S2 is summarized in Table 2.4. From Eqs. (2.8) and (2.9)

with the transfer matrix elements of the SHARAQ spectrometer, those of the beam line in the

dispersion-matching condition are determined:

b16 = (x|δ)B = −15.1, (2.10)

b26 = (a|δ)B = +3.18. (2.11)

The transfer matrix elements of the beam line from F3 to S0 and those of the whole system

from F3 to S2 are summarized in Tables 2.5 and 2.6, respectively.

Table 2.4: Transfer matrix of the SHARAQ spectrometer from S0 to S2.

(x|x)S −0.383 (x|a)S −0.051
(a|x)S −0.526 (a|a)S −2.683
(y|y)S −2.500 (y|b)S 0.000
(b|y)S −0.258 (b|b)S −0.400
(x|δ)S −5.625 (a|δ)S 0.573
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Table 2.5: Transfer matrix of the beam line from F3 to S0.

(x|x)B −1.060 (x|a)B 0.000
(a|x)B 0.206 (a|a)B −0.943
(y|y)B 1.227 (y|b)B 0.000
(b|y)B −0.088 (b|b)B 0.815
(x|δ)B −15.121 (a|δ)B 3.176

Table 2.6: Transfer matrix of the whole system from F3 to S2.

(x|x) 0.395 (x|a) 0.048
(a|x) 0.005 (a|a) 2.530
(y|y) −3.067 (y|b) 0.000
(b|y) −0.282 (b|b) −0.326
(x|δ) 0.000 (a|δ) 0.000

2.4 Detectors

2.4.1 Beam-line detectors

In this section, the detailed descriptions of the detectors installed in the beam line are given.

Table 2.7 shows a list of the beam-line detectors used in the present experiment. The layouts

of the beam-line detectors at the focal planes F3 and S2 are displayed in Fig. 2.4.

Table 2.7: List of the beam-line detectors used in the present experiment.

Focal plane Detector Type Name Sensitive area Used during
(X mm × Y mm) physics runs

F3 Diamond 200 µmt F3Dia 28 × 28 ✓
Plastic 0.5 mmt F3Pla 120 × 100 ✓

LP-MWDC T20-half DC31 80 × 80 ✓
LP-MWDC T21 DC32 80 × 80 ✓

FH7 Plastic 3 mmt FH7Pla 220 × 150
LP-MWDC Type A DC71 216 × 144
LP-MWDC Type A DC72 216 × 144

FH9 Plastic 3 mmt FH9Pla 220 × 150
LP-MWDC Type A DC91 216 × 144

FH10 Plastic 3 mmt FH10Pla 220 × 150
LP-MWDC Type B DCX1 216 × 144
LP-MWDC Type B DCX2 216 × 144

S0 PPAC Single S0PPAC 240 × 150 ✓
S2 Diamond 200 µmt S2Dia 28 × 28 ✓

Plastic 10 mmt S2Pla 50 × 50 ✓
LP-MWDC Type C DCS1 216 × 144 ✓
LP-MWDC Type C DCS2 216 × 144 ✓

SSD 500 µmt S2Si1 90.6 × 90.6 ✓
SSD 500 µmt S2Si2 90.6 × 90.6 ✓
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Figure 2.4: Layouts of the beam-line detectors in the F3 and S2 chambers from the top view.

Diamond detector

Diamond detectors were installed at F3 and S2 for the TOF measurement. The detectors are

based on polycrystalline diamond produced by chemical vapor deposition (CVD). Details of the

diamond detectors are found in Ref. [74].

Thanks to the outstanding properties of diamond, particle detectors using diamond show

a quite fast response and excellent radiation hardness. Properties of diamond are summarized

in Table 2.8 as well as those of silicon, which is typical semiconductor material and commonly

used in nuclear physics experiment. Diamond is semiconductor material with a band-gap of

5.5 eV. One of the noteworthy features of diamond is its high charge carrier mobility, which

leads to the fast rise time of detector signals and extremely good time resolution of the detector.

In the previous measurement, the time resolution of 27 ps (σ) was achieved for the 32-MeV α

particles, energy loss of which corresponds to that of 320-MeV/u 12N isotopes [74]. Another

distinct feature of diamond is its high displacement energy. Since a high energy is needed to

remove a carbon atom from a lattice, a diamond detector is extremely radiation hard, and can

be operated even under high-intensity heavy ion beams.

Figure 2.5 shows a picture and a schematic view of the diamond detector. The size and

thickness of the diamond crystal is 30 × 30 mm2 and 200 µm, respectively. The size of the

sensitive area is 28 × 28 mm2. The detector consists of an anode pad (Side A), and a cathode

(Side B), which is divided into four strips. The widths of the strips are 9 mm for the top and

bottom ones (Strip 1 and Strip 4), and 5 mm for the two central ones (Strip 2 and Strip 3).
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Table 2.8: Comparison of diamond and silicon properties.

Physical properties at 300 K Diamond Silicon

Band gap (eV) 5.5 1.12
Breakdown field (V/m) 107 3 × 105

Resistivity (Ωcm) > 1011 2.3 × 105

Electron mobility (cm2/V/s) 1800 1500
Hole mobility (cm2/V/s) 1200 600
Saturation velocity (km/s) 220 82
Dielectric constant 5.7 11.9
Displacement Energy (eV/atom) 43 13–20
Energy to create an e-h pair (eV) 13 3.6
Thermal conductivity (W/cm/K) 20 1.27
Lattice constant (Å) 3.57 5.43

Cathode signals are read from the readouts on both sides of each strip to correct for the position

dependence in the timing and charge measurements. An anode signal is read from one of the

readouts at the corners in the pad. In the present experiment, only two strips at the bottom

(Strip 3 and Strip 4) in the diamond detector at F3 (F3Dia) were read because of the small

beam spot size at the achromatic focus F3, while all the strips in the detector at S2 (S2Dia)

were read out. The applied voltage was −220 V in the present experiment.

Figure 2.6 shows the electronic circuit for the diamond detector. Signals from both the

anode and the cathode strips were amplified by low-noise current amplifiers (Cividec C2 Broad-

band Amplifier, 2 GHz, 40 dB) or high frequency preamplifiers (Fuji diamond Co., Ltd. Fast

Pulse Preamplifier 1107). Table 2.9 summarizes the preamplifiers used in the experiment. The

amplified signals were divided into two branches. One was processed by a high-speed leading-

edge discriminator (IWATSU UFD4), which is designed to obtain extremely fast response with

a time resolution of 10 ps using a ultra-high-speed comparator. The discriminated signal was

transfered through an optical cable with a length of ∼150 m, and delivered into a single-hit

Time-to-Digital Converter (TDC) (Agilent Technologies TC842), which has a time resolution

of 5 ps. The jitter in the transfer system was estimated to be 11.7 ps (σ) [74]. The other

signal was for the charge measurement. For the charge measurement, we employed a Charge-

to-Time Converter (QTC) module (Iwatsu CLC101EF), which integrates the input analogue

signal and provides the charge information by the time-over-threshold method as well as the

timing information. The output signal of the QTC was delivered into a multi-hit TDC (CAEN

V1190).

Plastic scintillator

In the beam line, plastic scintillators were placed at F3, FH7, FH9, FH10, and S2. The plastic

scintillators at F3 and S2 were employed throughout the experiment while those at FH7, FH9,

and FH10 were used only during the beam tuning. Figure 2.7 shows the electronic circuit for

each plastic scintillator. Light output from each scintillator was read by the photomultiplier

tubes (PMTs) on both sides of the scintillator, and sent into a TDC (CAEN V1190) through a
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Figure 2.5: Picture and schematic view of the diamond detector used in the present experi-
ment.
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Figure 2.6: Electronic circuit for the diamond detector.



24 Chapter 2 Experiment

Table 2.9: Readouts in the diamond detectors and used preamplifiers.

Focal plane Readout Preamp

F3 Strip 1 –
Strip 2 –
Strip 3 Cividec
Strip 4 Cividec

Pad Fuji diamond
S2 Strip 1 Fuji diamond

Strip 2 Cividec
Strip 3 Cividec
Strip 4 Cividec

Pad Fuji diamond
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���
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Figure 2.7: Electronic circuit for the plastic scintillator.

QTC for the timing and charge measurements. The PMTs of the plastic scintillators at F3 and

S2 were Hamamatsu H1949-51, while those of the scintillators at FH7, FH9, and FH10 were

Hamamatsu R7600.

Low-pressure multi-wire drift chamber (LP-MWDC)

Low-pressure multi-wire drift chambers (LP-MWDCs) provide the information on particle track-

ing. Details of the LP-MWDCs are found in Ref. [73]. Two LP-MWDCs were installed at the

focal planes F3, FH7, FH10, and S2, while one was installed at FH9. We refer to those at F3,

FH7, FH9, FH10, and S2 as DC31/32, DC71/72, DC91, DCX1/X2, and DCS1/S2, respectively.

Figure 2.8 shows a typical structure of the LP-MWDC, which consists of three anode planes

and four cathode planes. An anode plane is sandwiched between two cathode planes. The config-

uration of the LP-MWDC is characterized by the direction of wires in each anode plane. U-, V-,

and Y-axes are defined as those inclined by 30◦, −45◦, and 90◦ against the X-axis, respectively.

For example, the LP-MWDC shown in Fig. 2.8 has an XUY configuration. The configura-

tions of the LP-MWDCs used in the experiment are summarized in Table 2.10. DC31/32 have

XX′YY′, DC71/72 and DC91 have XUY, DCX1/X2 have XUV, and DCS1/S2 have VUU′V′

configurations. The LP-MWDCs were operated in pure isobutane (i-C4H10) gas at a pressure

of ∼10 kPa.

Figure 2.9 shows the electronic circuit for the LP-MWDC. An anode signal was amplified

and discriminated by a preamplifier (REPIC RPA-130/131). The timings of leading and trailing

edges of the signal were recorded by a TDC (CAEN V1190). Since the pulse width of the logic

signal is related to the pulse height of the anode signal, it provides the energy loss information

in the LP-MWDC.
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Figure 2.8: Schematic view of the LP-MWDC (XUY configuration) [73].
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Figure 2.9: Electronic circuit for the LP-MWDC.

Figure 2.10: Schematic view of the PPAC [79].

Parallel-plate avalanche counter (PPAC)

In the present experiment, a parallel-plate avalanche counter (PPAC) was installed at the

dispersive focal plane S0, which is the target position of SHARAQ, to measure the Bρ value.

Details of the PPACs are found in Ref. [79]. Figure 2.10 shows a schematic view of the PPAC.

An anode plate is located between two cathodes plates, of which every two neighboring strips are

connected with each other by delay lines. An active area of the PPAC used in the experiment

was 240 × 150 mm2. The PPAC was operated in isobutane (i-C4H10) gas at a pressure of

∼10 Torr (= 1.33 kPa).

Figure 2.11 shows the electronic circuit for the PPAC. Analogue signals from the anode

plates (X1, X2, Y1, and Y2) were amplified by a timing filter amplifier (TFA), and split into

two branches for the timing and charge measurements. The signals for the timing measurement

were sent to a constant fraction discriminator (CFD), and read by a TDC (CAEN V1190), while

those for the charge measurement were processed with a QTC and a TDC (CAEN V1190). The

hit position on the PPAC in the X (Y ) direction was calculated from the time difference between

X1 (Y1) and X2 (Y2).

Silicon strip detector

Two silicon strip detectors (SSDs) (Hamamatsu S10938-9340(X)) were placed at S2 for the

energy measurement to identify the proton numbers of fragments. Figure 2.12 shows a schematic
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Figure 2.11: Electronic circuit for the PPAC.
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Figure 2.12: Schematic view of the SSD used in the present experiment. Signals from two
neighboring strips shown in the same color were read together.
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Figure 2.13: Electronic circuit for the SSD.

view of the SSD. Each SSD has an active area of 90.6×90.6 mm2, which is segmented into 11.3-

mm-width strips in the vertical direction, and a thickness of 500 µm. In the present experiment,

signals from two neighboring strips were read together.

Figure 2.13 shows the electronic circuit for the SSD. The charge signal from each SSD

was firstly amplified by a charge sensitive preamplifier (Mesytec MPR16), and delivered into

a shaping amplifier (Mesytec STM16+). After the shaping, the output signal was recorded by

a peak-sensitive ADC (CAEN V785) for the energy measurement. The applied voltage was

−100 V.
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Figure 2.14: Electronic circuit for the γ-ray detector array.

2.4.2 Gamma-ray detector array

A γ-ray detector array consisting of 2 HPGe clover and 16 NaI(Tl) detectors were installed

downstream of S2 in the air in order to confirm the particle identification by identifying isomeric

states, which lead to a systematic shift towards higher masses in the mass measurements. Details

of the γ-ray detector system can be found in Ref. [80]. Figure 2.14 shows the electronic circuit

for the γ-ray detector array.

Figure 2.15 shows the experimental setup downstream of S2, which is referred to as S2+, and

Fig. 2.16 shows the setup at S2 and S2+ from the top view. A 20-mm-thick plastic was placed

as a beam stopper at the center of the detector array. An aluminum degrader was installed

upstream of the array to adjust the stopping range of the nuclei of interest. Four degraders

with thicknesses of 12 mm, 14 mm, 16 mm, and 18 mm were prepared, and the thickness was

changed during the experiment. Two veto scintillators were installed downstream of the array

to reject the events in which the nuclei penetrated the stopper.
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Figure 2.15: Experimental setup at S2+ [80].

Figure 2.16: Experimental setup at S2 and S2+ from the top view [80].
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Figure 2.17: Schematic diagram of the electronics for the S2 window trigger.

2.5 Data acquisition

2.5.1 Data acquisition system

The data acquisition (DAQ) was performed by the RIBF-DAQ system [81], which is designed to

carry out network-distributed data processing, hierarchical event building, and parallel readout.

The system is versatile and scalable so that it can satisfy the various requirements for the

experiments performed at RIBF. The DAQ system can be divided into a sub-DAQ system for

each detector segment, and each sub-DAQ can locally perform the event build in parallel.

In the present experiment, a sub-DAQ system was placed at each focal plane. For the

beam-line detectors, an event fragment in each sub-DAQ system was sent to the event building

server, and integrated into a complete event. The DAQ system for the γ-ray detectors was

separated from that for the beam-line detectors, and operated with single triggers from the

γ-ray detectors. The data in each DAQ system are labeled by a common timestamp so that

the γ-ray data can be combined with that from the beam-line detectors. Details of the DAQ

system for the γ-ray detectors are presented in Ref. [80].

2.5.2 Triggers

In the present experiment, the following trigger conditions are defined for an event:

• The F3 downscale trigger is generated when the plastic scintillator at F3 (F3Pla) is fired.

The trigger events are reduced by a factor of 1/20 (1/100) in the 55Ca (52Ca) setting.

• The FH10 trigger is generated when the plastic scintillator at FH10 (FH10Pla) is fired.

• The S2 trigger is generated when the plastic scintillator at S2 (S2Pla) is fired.

• The S2 window trigger is generated when the plastic scintillator at S2 (S2Pla) is fired,

and the energy loss in the plastic is larger than that of the Z = 10 isotopes (Ne).

The F3 and FH10 triggers were used in the calibration runs for the LP-MWDCs and the ion-

optical tuning. The S2 window trigger, which was prepared in order to reduce the trigger rate at

S2 by rejecting the events caused by light ions, was used mainly in the physics measurements.

The typical rate of the S2 window trigger was ∼150 cps while that of the S2 trigger was

∼2.5 kcps. The diagram of the S2 window trigger is shown in Fig. 2.17.
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2.6 Summary of experimental conditions

The data sets taken in the present experiment are summarized in Table 2.11. During the physics

runs, two types of data, those in the 55Ca and 52Ca settings, were taken. The data of the present

mass measurements were taken primarily in the 55Ca setting while the 52Ca setting provided

complementary data. Data for the calibration of the beam-line detectors and the tuning of the

beam transport were taken with the beams in the vicinity of 52Ca.

The experimental conditions are summarized in Table 2.12. The settings of the magnets

along the beam line were the same in the 55Ca and 52Ca settings.

Table 2.11: List of the data sets stored in the present experiment.

Data set Trigger condition

55Ca setting S2 window ∨ F3 downscale
52Ca setting S2 window ∨ F3 downscale
Calibration runs (52Ca) F3 or FH10
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Table 2.12: Summary of the experimental conditions.

Primary beam 70Zn
Energy of the primary beam 345 MeV/u
Intensity of the primary beam 130 pnA (max)

Production target (F0) Be 12 mmt (for 55Ca setting)
Be 8 mmt (for 52Ca setting)

Bρ (F0–F1) 7.1328 Tm
Bρ (F1–F2) 7.0459 Tm
Bρ (F2–F3) 7.0377 Tm
Bρ (F3–F4) 6.9946 Tm
Bρ (F4–F5) 6.9605 Tm
Bρ (F5–F6) 6.9605 Tm
Bρ (F6–FH7) 6.9605 Tm
Bρ (FH7–FH8) 6.9726 Tm
Bρ (FH8–FH9) 6.9605 Tm
Bρ (FH9–S0) 6.9605 Tm
Bρ (SHARAQ D1) 6.9836 Tm
Bρ (SHARAQ D2) 6.9836 Tm

F1 slit L: 12.6 mm, R: 12.6 mm
F2 slit L: 10.0 mm, R: 15.0 mm (55Ca setting)

L: 120.0 mm, R: 120.0 mm (52Ca setting)
F2 collimator In
F5 slit L: 120 mm, R: 120 mm

S2+ degrader Al 12 mmt, 14 mmt, 16 mmt, or 18 mmt

Count rate at F3 ∼3 kcps (55Ca setting)
∼14 kcps (52Ca setting)

Count rate at S2 ∼2 kcps (55Ca setting)
∼3 kcps (52Ca setting)

S2 window trigger rate ∼300 cps (55Ca setting)
∼1 kcps (52Ca setting)

Gated trigger rate ∼300 cps (55Ca setting)
∼1 kcps (52Ca setting)
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Chapter 3

Data analysis

本章については、5年以内に雑誌等で刊行予定のため、非公開。
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Chapter 4

Results

本章については、5年以内に雑誌等で刊行予定のため、非公開。
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Chapter 5

Discussion

本章については、5年以内に雑誌等で刊行予定のため、非公開。
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Chapter 6

Conclusion

本章については、5年以内に雑誌等で刊行予定のため、非公開。
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Appendix A

Time resolution of the TOF

measurement system

We give details of the evaluation of the time resolution of the TOF measurement system

(δtsystem) described in Sec. 3.2.3. The jitter in a long optical-fiber signal-transfer line was

measured [74]. The resolutions of the measured jitters were 11.7 ps (σ) and 13.2 ps (σ) at

transfer lengths (L) of 312 m and 460 m, respectively. Here, the following two models are

considered:

• The jitter is proportional to the transfer length: δtsystem ∝ L.

• The jitter is proportional to the square root of the transfer length: δtsystem ∝ L1/2.

In Fig. A.1, two colored lines obtained by fitting based on the above assumptions are shown

with the measured jitter values. The green and blue lines show the functions proportional to

L and L1/2, respectively. At a length of 155 m in the present experiment, the estimated time

resolution of the system is δtsystem ∼ 10 ps (σ).
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Appendix B

Atomic and nuclear masses

In TOF mass measurements, nuclear masses are obtained directly because beams are full-

striped in most cases, whereas masses are usually tabulated as atomic rather than nuclear ones.

Therefore, one has to know the relation between nuclear and atomic masses.

The nuclear mass m(A,Z) of a nucleus with the mass number A and the proton number Z

is given by

m(A,Z) = M(A,Z) − Zme + Be(Z), (B.1)

where M(A,Z) is the atomic mass, me is the electron mass, and Be(Z) is the total electron

binding energy in the atom. The approximate value of Be(Z) can be obtained using the empirical

formula [62]:

Be(Z) = 14.4381 · Z2.39 + 1.55468 × 10−6 · Z5.35 [eV]. (B.2)

Figure B.1 shows the Be values as a function of Z. In the Z ∼ 20 region, Be(Z) ∼ 10–20 keV.

While the correction for electron binding energies is quite small relative to nuclear binding

energies, it has to be considered because it is comparable to the mass uncertainties in the

present mass measurements (≳ 100 keV).
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Figure B.1: Total electron binding energy Be as a function of proton number Z.



121

Appendix C

Derivation of the mass fitting

functions

In this chapter, we derive the mass fitting functions described in Sec. 3.3.3. After the prelimi-

naries given below, derivation of the mass fitting functions, Eqs. (3.28) and (3.29), is provided.

From the equation of motion for a charged particle through a magnetic system, the magnetic

rigidity Bρ is given by

Bρ =
γmβc

q
, (C.1)

where β = L/ct, γ = 1/
√

1 − β2, L is the flight length, and t is the time-of-flight (TOF). From

this relationship, the mass-to-charge ratio is expressed by

m

q
=

Bρ

c

√(
ct

L

)2

− 1, (C.2)

and the TOF is given by

t =
L

c

√
1 +

(
mc

qBρ

)2

. (C.3)

We denote the beam parameters at the focal plane F3 as X3 ≡ (x3, a3, y3, b3, δ3). In addition,

we define the magnetic rigidity and the flight length corresponding to the central ray in the

beam line as Bρ0 and L0, respectively. We then obtain

L = (1 + ℓ̃(X3))L0, (C.4)

Bρ = (1 + δ3)Bρ0. (C.5)

As the horizontal position at the dispersive focus S0 (x0) is related to the momentum δ3, δ3
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depends on x3 ≡ (x3, a3, y3, b3, x0) as δ3 = δ̃3(x3). Then, Eqs. (C.4) and (C.5) lead to

L = (1 + ℓ̃(x3))L0, (C.6)

Bρ = (1 + δ̃3(x3))Bρ0. (C.7)

C.1 Derivation of Eq. (3.28)

The square of the mass-to-charge ratio is given by

(
m

q

)2

=

(
Bρ0
cL0

)2
(1 + δ̃3(x3)

1 + ℓ̃(x3)

)2

(ct)2 − L2
0(1 + δ̃3(x3))

 , (C.8)

and can be expanded around δ̃3 = ℓ̃ = 0 by the Taylor series. Since δ̃3(x3) and ℓ̃(x3) are the

functions of x3 ≡ (x3, a3, y3, b3, x0), (m/q)2 can be expanded by x3, a3, y3, b3, and x0 as(
m

q

)2

≈ t2
n∑

i5+···+i4=0

C̃
(2)
(i1,...,i4)

· xi13 a
i2
3 y

i3
3 bi43 x

i5
0 +

n∑
k1+···+k4=0

C̃
(0)
(k1,...,k5)

· xk13 ak23 yk33 bk43 xk50 . (C.9)

Now, let t0 be the measured TOF value before being added to the offset toffset. By substituting

t = t0 + toffset into Eq. (C.9), we obtain(
m

q

)2

= t20

n∑
i1+···+i5=0

C
(2)
(i1,...,i4)

· xi13 a
i2
3 y

i3
3 bi43 x

i5
0 + t0

n∑
j1+···+j5=0

C
(1)
(j1,...,j4)

· xj13 aj23 yj33 bj43 xj50

+
n∑

k1+···+k5=0

C
(0)
(k1,...,k4)

· xk13 ak23 yk33 bk43 xk50 . (C.10)

C.2 Derivation of Eq. (3.29)

Next, let us consider the flight path divided into two parts. The flight length between F3 to

S2 (L) is divided into that between F3 and S0 (LF3−S0) and that between S0 and S2 (LS0−S2),

which are given by

LF3−S0 = (1 + ℓ̃1(x3))L1, LS0−S2 = (1 + ℓ̃2(x2))L2, (C.11)

where x2 is defined by x2 ≡ (x2, a2, y2, b2, x0). The magnetic rigidity for each path is

BρF3−S0 = (1 + δ̃1(x3))Bρ1, BρS0−S2 = (1 + δ̃2(x2))Bρ2. (C.12)

The TOF between F3 and S0 (t1) and between S0 and S2 (t2) are given by

t1 =
L1(1 + ℓ̃1(x3))

c

√
1 +

(
mc

qBρ1

)2( 1

1 + δ̃1(x3)

)2

, (C.13)

t2 =
L2(1 + ℓ̃2(x2))

c

√
1 +

(
mc

qBρ2

)2( 1

1 + δ̃2(x2)

)2

. (C.14)
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From the relation t0 + toffset = t = t1 + t2, Eqs. (C.13) and (C.14) lead to

t0 + toffset =
L1(1 + ℓ̃1(x3))

c

√
1 +

(
m

q

)2( c

Bρ1

)2( 1

1 + δ̃1(x3)

)2

+
L2(1 + ℓ̃2(x2))

c

√
1 +

(
m

q

)2( c

Bρ2

)2( 1

1 + δ̃2(x2)

)2

. (C.15)

To simplify Eq. (C.15), we define the following quantities:

µ ≡
(
m

q

)2

, (C.16)

A1 ≡

(
L1(1 + ℓ̃1(x3))

c

)2

, A2 ≡

(
L2(1 + ℓ̃2(x2))

c

)2

, (C.17)

B1 ≡
(

c

Bρ1(1 + δ̃1(x3))

)2

, B2 ≡
(

c

Bρ2(1 + δ̃2(x2))

)2

. (C.18)

Then, Eq. (C.15) simplifies to

t =
√
A1

√
1 + µB1 +

√
A2

√
1 + µB2. (C.19)

By raising Eq. (C.19) to the second power, we obtain a quadratic equation of µ:

(A1B1 −A2B2)
2µ2 − 2(A1B1 + A2B2)(t

2 −A1 −A2)µ +
[
(t2 −A1 −A2)

2 − 4A1A2

]
= 0.(C.20)

The solutions of Eq. (C.20) are

µ =
ζη ± 2

√
A1A2

√
ζ2 + η2B1B2 − 4A1A2B1B2

ζ2 − 4A1B1A2B2
, (C.21)

where ζ and η are defined by

ζ ≡ A1B1 + A2B2, η ≡ t2 −A1 −A2. (C.22)
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We have two possible solutions of µ (+ or − signs in Eq. (C.21)). By substituting the realistic

value to each parameter, we constrain the signs in Eq. (C.21):

µ =

(
m

q

)2

≈
(

55 × 1.6 × 10−27

20 × 1.6 × 10−19

)2

= 7.6 × 10−16 [A−2M2T−2], (C.23)

t2 = (t0 + toffset)
2 ≈ (500 × 10−9)2 = 2.5 × 10−13 [T2], (C.24)

A1 =

(
L1(1 + ℓ̃1(x3))

c

)2

≈
(

80

3.0 × 108

)2

= 7.1 × 10−14 [T2], (C.25)

A2 =

(
L2(1 + ℓ̃2(x2))

c

)2

≈
(

20

3.0 × 108

)2

= 4.4 × 10−15 [T2], (C.26)

B1 =

(
c

Bρ1(1 + δ̃1(x3))

)2

≈
(

3.0 × 108

7.0

)2

= 1.8 × 1015 [A2M−2T2], (C.27)

B2 =

(
c

Bρ2(1 + δ̃2(x2))

)2

≈
(

3.0 × 108

7.0

)2

= 1.8 × 1015 [A2M−2T2], (C.28)

ζ = A1B1 + A2B2 ≈ 1.35 × 102 [A2M−2T4], (C.29)

η = t2 −A1 −A2 ≈ 1.75 × 10−13 [T2]. (C.30)

Here, the units are in the MKSA system. Then, we have

(RHS in Eq. (C.21)) ≈

2.54 × 10−15 (+)

8.84 × 10−16 (−)
. (C.31)

We adopt the minus sign in Eq. (C.21), which produces the closer value to µ ≈ 7.6 × 10−16:

µ =
ζη − 2

√
A1A2

√
ζ2 + η2B1B2 − 4A1A2B1B2

ζ2 − 4A1B1A2B2
. (C.32)

Next, we define T0 as the mean value of the TOF, and rewrite the TOF as follows:

t = t0 + toffset = T0(1 + τ). (C.33)

Then, τ (≪ 1) is given by

τ =
t0
T0

+

(
toffset
T0

− 1

)
. (C.34)

Eq. (C.32) can be expressed with τ as

µ = A(1 + τ)2 + B −
√
C(1 + τ)4 + D(1 + τ)2 + E, (C.35)

where A, B, C, D, and E are the functions of x3 and x2, but not dependent on τ . Eq. (C.35)
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can be expanded by τ as

µ = µ|τ=0 + τ
dµ

dτ

∣∣∣∣
τ=0

+
τ2

2

d2µ

dτ2

∣∣∣∣
τ=0

+
τ3

6

d3µ

dτ3

∣∣∣∣
τ=0

+ · · · (C.36)

=
[
A + B −

√
C + D + E

]
+ τ

[
2A− 2C + D√

C + D + E

]
+
τ2

2

[
2A− 6C + D

(C + D + E)1/2
+

(2C + D)2

(C + D + E)3/2

]
+
τ3

6

[
− 4C

(C + D + E)1/2
+

(2C + D)(6C + D)

(C + D + E)3/2
− (2C + D)3

(C + D + E)5/2

]
+
τ4

24

[
− 12C

(C + D + E)1/2
+

3(6C + D)2 + 48C(2C + D)

(C + D + E)3/2
− 18(2C + D)2(6C + D)

(C + D + E)5/2

+
16(2C + D)4

(C + D + E)7/2

]
+

τ5

120

[
120C(6C + D) + 60C(2C + D)

(C + D + E)3/2
− 45C(2C + D)(6C + D)2 + 180C(2C + D)2

(C + D + E)5/2

+
150(2C + D)3(6C + D)

(C + D + E)7/2
− 105(2C + D)5

(C + D + E)9/2

]
+ · · · . (C.37)

The coefficient of each term can be expanded by x3 and x2, and τ is related by the linear

combination of t0 in Eq. (C.34). Consequently, we obtain the following simple expression:

µ ≈
n∑

j0+···+j9=0

C̃(j0,...,j9)τ
j0xj13 aj23 yj33 bj43 xj50 xj62 aj72 yj82 bj92 (C.38)

≈
n∑

j0+···+j9=0

C(j0,...,j9)t
j0
0 xj13 aj23 yj33 bj43 xj50 xj62 aj72 yj82 bj92 . (C.39)
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Appendix D

Shape of the mass distribution

As mentioned in Sec. 3.3.4, a shape of the deduced mass spectrum is distorted from a Gaussian

distribution (or normal distribution). The mass value is calculated by the polynomial of the

observables expected to follow Gaussian distributions (see Eq. (3.29)). However, the distribution

of the deduced mass does not follow a Gaussian distribution. We discuss this issue in the

following.

Let p(x) be the probability density function of a normal distribution

p(x) =
1√
2πσ

exp

(
−(x− µ)2

2σ2

)
, (D.1)

where µ and σ are the mean and standard deviation of the distribution, respectively. Then, the

probability distribution of z ≡ xn (n = 0, 1, 2, . . . ) is given by

fn(z) =

∫ ∞

−∞
p(x)δ(z − xn)dx, (D.2)

where δ(x) is the Dirac delta function. In the calculation of Eq. (D.2), the following formulae

of the Dirac delta are employed:

δ(x2n − a2n) =
1

2n|a|2n−1
[δ(x− |a|) + δ(x + |a|)], (D.3)

δ(x2n+1 − a2n+1) =
1

(2n + 1)|a|2n
δ(x− |a|). (D.4)



128 Appendix D Shape of the mass distribution

Eq. (D.2) is calculated for n = 2, 3 and 4 as follows:

f2(z) =
1√
2πσ

∫ ∞

−∞

δ(x−
√
z) + δ(x +

√
z)

2
√
z

exp

(
−(x− µ)2

2σ2

)
dx (D.5)

=
1

2
√

2πσ

1√
z

[
exp

(
−(

√
z − µ)2

2σ2

)
+ exp

(
−(

√
z + µ)2

2σ2

)]
(z ≧ 0), (D.6)

f3(z) =
1√
2πσ

∫ ∞

−∞

δ(x− 3
√
z)

3
3
√
z2

exp

(
−(x− µ)2

2σ2

)
dx (D.7)

=
1

3
√

2πσ

1
3
√
z2

exp

(
−

( 3
√

|z| − µ)2

2σ2

)
, (D.8)

f4(z) =
1√
2πσ

∫ ∞

−∞

δ(x− 4
√
z) + δ(x + 4

√
z)

4
4
√
z3

exp

(
−(x− µ)2

2σ2

)
dx (D.9)

=
1

4
√

2πσ

1
4
√
z3

[
exp

(
−( 4

√
z − µ)2

2σ2

)
+ exp

(
−( 4

√
z + µ)2

2σ2

)]
(z ≧ 0). (D.10)

Distributions of f1(x), f2(x), f3(x), and f4(x) with µ = 1.0 and σ = 0.1 are shown in Fig. D.1.

The distribution of fn(x) (n ≥ 2) is not a Gaussian distribution, and has skewness and kurtosis.

For this reason, the mass spectrum, which is calculated by the several observables expected to

follow Gaussian distributions, has skewness and kurtosis.

Since the distribution of fn(x) (n ≥ 2) has skewness, the maximum value of the distribution

is not equal to the mean value. The mean of a distribution fn(x) is given by

En =

∫ ∞

−∞
xfn(x)dx. (D.11)

For n = 2, 3 and 4, we obtain

E2 = σ2 + µ2, (D.12)

E3 = 3µσ2 + µ3, (D.13)

E4 = 3σ4 + 6µ2σ2 + µ4. (D.14)

In Fig. D.1, the mean of each distribution is drawn by a dashed line.
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Figure D.1: Distributions of the probability density functions f1(x) (black), f2(x) (red), f3(x)
(green), and f4(x) (blue) with µ = 1.0 and σ = 0.1. The expected value of each distribution is
shown in the dashed line with the same color.
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Appendix E

Shift of deduced mass values

Here, we discuss the shift of the deduced masses mentioned in Sec. 3.3.4. Figure E.1 shows the

TOF shift for 45Cl. To select fragments with the similar trajectories, the TOF spectrum for
45Cl was gated by |x3 − 6.0| < 1 mm, |a3 − 3.0| < 1 mrad, and |x0 − 55.0| < 10 mm. The TOF

shift shows the similar behavior to those of the deduced masses shown in Fig. 3.25, and this

suggests that the mass shift was caused by the TOF shift. During the experiment, we measured

temperature with several thermometers in the experimental vault and the counting room, and

magnetic field values of the dipole and quadrupole magnets along the beam line. We discuss

below the effects of the changes in temperature and magnetic field on the mass shift or TOF

shift.

First, let us consider the temperature. Figure E.2 shows the shift of the temperature in

the SHARAQ counting room varying by ∼1◦C throughout the experiment. The temperature

change is similar to the shift of the deduced masses in Fig. 3.25, and the other thermometers

except for those located near the SHARAQ counting room do not show such a trend. This

implies that the shift of the masses is related to the temperature variation in the counting

area. In the counting area, there are the TDC module for the TOF measurement and optical

fiber cables in which the timing signals are transferred (see Fig. 2.6). Thus, the temperature

dependence of the apparatus for the TOF measurement located in the counting area can be

a possible source of the mass shift. However, since the shift due to the thermal extension of

an optical fiber cable is at most a few picoseconds, the temperature dependence of the optical

fiber cable is not so large to cause the TOF shift by ∼30 ps shown in Fig. E.1. The TOF shift

cannot be accounted for only by the response of the timing electronics due to the temperature

variation.

Another possible reason of the mass shift is the magnetic field variation. Figure E.3 shows

the shift of the magnetic field of SD2, the second dipole magnet of SHARAQ (see Fig. 2.1). The

magnetic field changes just before the run #364 and after #393, and the trend of its variation

agrees with the shift of the deduced masses. The other dipole and quadrupole magnets do not

show such a trend. It is therefore suggested that the magnetic field variation at SD2 caused the

change of the flight length or TOF of an ion, and the shift of its deduced mass.
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Figure E.1: Shift of the TOF values for 45Cl as a function of the run number in the experiment.
The TOF value is the mean of the TOF spectrum gated by |x3−6.0| < 1 mm, |a3−3.0| < 1 mrad,
and |x0 − 55.0| < 10 mm. The TOF values subtracted by −278.65 ns are plotted.

Run number
340 350 360 370 380 390 400 410

C
)

°
T
e
m

p
e
ra

tu
re

 (

25.2

25.4

25.6

25.8

26

26.2

26.4

26.6

T65a (B3F SHARAQ DAQ area)

Figure E.2: Temperature change in the SHARAQ DAQ area as a function of the run number
in the experiment.



133

)
6

UTC (sec/10
1401.85 1401.9 1401.95 1402 1402.05

B
(S

D
2

) 
­ 

1
5

8
6

.5
2

 (
m

T
)

­0.02

­0.01

0

0.01

0.02

0.03

0.04

#341 #364 #375 #393 #400 #411

Stable runs

Figure E.3: Change in the magnetic field at SD2. The vertical axis shows the value subtracted
by 1586.52 mT. The horizontal axis represents the Unix time (UTC).





135

Appendix F

Uncertainties related to the fitting

Here, we describe in detail the uncertainty related to the mass fitting δfit, which was introduced

in Sec. 3.3.6.

F.1 Expression of δfit

Discussion in this section is based on Ref. [103]. We define the calibration function by

y = f(x) ≡
∑
j

ajhj(x), (F.1)

where aj is the fitting parameters. The uncertainty δfit is calculated from the error propagation

equation for f(x) as

δ2fit =
∑
j

[
σ2
aj

(
∂f(x)

∂aj

)2
]

+
∑
j ̸=k

[
σ2
ajak

∂f(x)

∂aj

∂f(x)

∂ak

]
=

∑
j

[
σ2
aj (hj(x))2

]
+
∑
j ̸=k

[
σ2
ajak

hj(x)hk(x)
]
, (F.2)

where σ2
aj and σ2

ajak
are variances and covariances of the fit parameters, respectively. The

covariance of the two parameters aj and ak, σajak , which also gives the variance for j = k, is

given by

σ2
ajak

=
∑
i

[
σ2
i

∂aj
∂yi

∂ak
∂yi

]
(F.3)

= (V −1)jk, (F.4)

where yi is the i-th data point corresponding to x = xi, σi is the uncertainty of yi, and V is

the covariance matrix defined by

Vjk ≡
∑
i

[
1

σ2
i

hj(x)hk(x)

]
. (F.5)
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Here, we briefly show the derivation of Eq. (F.4). The χ2 value is defined by

χ2 =
∑
i

 1

σi

yi −
m∑
j=1

ajhj(xi)

2

. (F.6)

Since the least-squares method requires that we minimize χ2, we obtain

∂χ2

∂al
= −2

∑
i

hl(xi)
σ2
i

yi −
m∑
j=1

ajhj(xi)

 = 0. (F.7)

To express Eq. (F.7) in matrix form, we define the row matrix β, the symmetric matrix α, and

the row matrix a as follows:

βk ≡
∑
i

[
1

σ2
i

yihk(xi)

]
, (F.8)

αlk ≡
∑
i

[
1

σ2
i

hl(xi)hk(xi)

]
, (F.9)

a ≡ (a1, . . . , am). (F.10)

The matrix α is identical to the matrix V defined in Eq. (F.5). Eq. (F.7) leads to

β = aα. (F.11)

Therefore, the parameters of the fit are expressed as

al =

m∑
j=1

[
(α−1)jl

∑
i

(
1

σ2
i

yihj(xi)

)]
, (F.12)

and the derivatives of al with respect to yi are written as

∂al
∂yi

=
m∑
j=1

[
(α−1)jl

1

σ2
i

hj(xi)

]
. (F.13)
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Figure F.1: Evaluated δfit values as a function of A/Q.

Substituting these derivatives into Eq. (F.3), we obtain Eq. (F.4) as follows:

σ2
ajak

=
∑
i

[
σ2
i

∂aj
∂yi

∂ak
∂yi

]

=
∑
i

σ2
i

m∑
p=1

(
(α−1)pj

1

σ2
i

hp(xi)

) m∑
q=1

(
(α−1)qk

1

σ2
i

hq(xi)

)
=

m∑
p=1

(α−1)pj

m∑
q=1

[
(α−1)qk

∑
i

(
1

σ2
i

hp(xi)hq(xi)

)]
=

m∑
p=1

(α−1)pj

m∑
q=1

[
(α−1)qk ·αpq

]
=

m∑
p=1

(
(α−1)pj · 1pk

)
= (α−1)kj . (F.14)

F.2 Evaluation of δfit values in the present measurements

We evaluated the δfit values for the reference nuclei in the mass calibration using Eq. (F.2).

Figure F.1 shows the evaluated δfit values as a function of A/Q.

Next, we evaluate the contribution of δfit to the total uncertainty of the deduced mass,

which consists of δstat, δsyst, δZcor, and δfit. As described in Sec. 3.3.6, δsyst = 6.1 keV/q has

the majority in the total uncertainty. On the other hand, δfit, which is less than 0.7 keV/q, is
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much smaller than δsyst. Then, the following inequality is obtained:

δ2stat + δ2syst + δ2Zcor + δ2fit
δ2stat + δ2syst + δ2Zcor

= 1 +
δ2fit

δ2stat + δ2syst + δ2Zcor

(F.15)

< 1 +
δ2fit
δ2syst

(F.16)

< 1 +
0.72

6.12
(F.17)

= 1.013. (F.18)

Therefore, the contribution of δfit to the total uncertainty is evaluated as(
δ2stat + δ2syst + δ2Zcor + δ2fit

)1/2(
δ2stat + δ2syst + δ2Zcor

)1/2 <
√

1.013 = 1.007. (F.19)

The uncertainty δfit is negligible as it accounts for at most 0.7% of the total uncertainty. Noted

that δfit is negligible even for the nuclei whose masses are determined by extrapolation.
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Appendix G

Uncertainties related to the Z

correction

In this chapter, derivation of the uncertainties originating from the Z correction is described.

As described in Sec. 3.3.5, the following function was employed in the Z correction:

f(Z) ≡
(
m

q

)
exp

−
(
m

q

)
ref

= p0(Z − p1)
2 + p2, (G.1)

where (m/q)exp is the deduced mass-to-charge ratio, (m/q)ref is the literature one, and p0, p1,

and p2 are the fitting parameters. Using the covariance matrix V of the parameters, p0, p1,

and p2, the uncertainty in the calculated value of f(Z), δf(Z), is given by

(δf(Z))2 =

(
∂f

∂p0

)2

V00 +

(
∂f

∂p1

)2

V11 +

(
∂f

∂p2

)2

V22

+2

(
∂f

∂p0

)(
∂f

∂p1

)
V01 + 2

(
∂f

∂p0

)(
∂f

∂p2

)
V02 + 2

(
∂f

∂p1

)(
∂f

∂p2

)
V12

= (Z − p1)
4V00 + 4p20(Z − p1)

2V11 + V22

−4p0(Z − p1)
3V01 + 2(Z − p1)

2V02 − 4p0(Z − p1)V12. (G.2)

Tables G.1 and G.2 summarize the uncertainty originating from the Z correction, δZcor, for

each Z in the 55Ca and 52Ca settings, respectively.
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Table G.1: Uncertainties originating from the Z correction for each Z number in the 55Ca
setting.

Z δf(Z) (keV/q) δZcor (keV)

23 13.3 305
22 9.08 200
21 5.72 120
20 3.26 65
19 1.96 37
18 1.85 33
17 1.95 33
16 1.68 27
15 1.31 20
14 2.26 32

Table G.2: Uncertainties originating from the Z correction for each Z number in the 52Ca
setting.

Z δf(Z) (keV/q) δZcor (keV)

24 7.98 191
23 5.38 124
22 4.50 99
21 4.51 95
20 4.36 87
19 3.68 70
18 2.85 51
17 3.74 63
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Appendix H

A/Q spectrum for each Z

The A/Q spectrum deduced from the present experiment for each isotopic chain is presented.

Figures H.1 and H.2 show the spectra in the 55Ca setting for the isotopes from Z = 23 (V)

to Z = 14 (Si), while Figs. H.3 and H.4 show those in the 52Ca setting for the isotopes from

Z = 24 (Cr) to Z = 17 (Cl).
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Figure H.1: A/Q spectrum deduced from the present experiment in the 55Ca setting from
Z = 20 (Ca) to Z = 23 (V) isotopes. Nuclei whose masses have not been measured previously
are indicated with red letters.
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Figure H.2: The same as Fig. H.1, but from Z = 14 (Si) to Z = 19 (K) isotopes.
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Figure H.3: A/Q spectrum deduced from the present experiment in the 52Ca setting from
Z = 20 (Ca) to Z = 23 (V) isotopes. Nuclei whose masses have not been measured previously
are indicated with red letters.
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Figure H.4: The same as Fig. H.3, but from Z = 20 (Ca) to Z = 23 (V) isotopes.
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menfeld, N. De Séréville, A. Drouart, S. Franchoo, A. Gillibert, J. Guillot, F. Hammache,
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D. E. Groh, M. Honma, F. G. Kondev, W. Królas, T. Lauritsen, S. N. Liddick, S. Lu-

nardi, N. Marginean, T. Mizusaki, D. J. Morrissey, A. C. Morton, W. F. Mueller, T.

Otsuka, T. Pawlat, D. Seweryniak, H. Schatz, A. Stolz, S. L. Tabor, C. A. Ur, G. Viesti,
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Kreim, D. Lunney, V. Manea, P. Navrátil, D. Neidherr, L. Schweikhard, V. Somà, J.
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R. H. Cyburt, A. Estradé, M. Famiano, A. Gade, C. Langer, M. Mato, W. Mittig, F.

Montes, D. J. Morrissey, J. Pereira, H. Schatz, J. Schatz, M. Scott, D. Shapira, K. Smith,

J. Stevens, W. Tan, O. Tarasov, S. Towers, K. Wimmer, J. R. Winkelbauer, J. Yurkon,

and R. G. T. Zegers, “Mass Measurements Demonstrate a Strong N = 28 Shell Gap in

Argon”, Physical Review Letters 022501, 022501 (2015).

[69] B. Jurado, H. Savajols, W. Mittig, N. A. Orr, P. Roussel-Chomaz, D. Baiborodin, W. N.

Catford, M. Chartier, C. E. Demonchy, Z. Dlouhý, A. Gillibert, L. Giot, A. Khouaja, A.
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