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Abstract

In this thesis, aiming to understand better how quantum gravity theory encodes space-
time structure as physical degrees of freedom or equivalently quantum information, I
have studied various aspects of quantum entanglement from the viewpoint of holographic
principle, which I believe is the most fundamental principle of quantum gravity theory.
Quantum entanglement and the role it plays in holographic principle are reviewed. My
research on this topic is divided into four parts.

In the first part, we propose [1] a new universal behaviour of quantum entanglement
with respect to a mass gap in field theories based on a study on mutual information, a
measure of quantum entanglement shared by separate regions. This proposal is checked
for some explicit examples, a free field theory and the holographic dual of a strongly
coupled field theory, for an annular region whose shape is complicated enough to construct
meaningful mutual information. This observation thus gives not only a consistency check
of the holographic principle, but also gives us a new insight into quantum entanglement
in field theories.

In the second part, with a concrete holographic setup of a thermalizing state repre-
sented by a growing black hole geometry, we demonstrate [2] that entanglement entropy
can grow linearly with time even without growth of time slice or wormhole in gravity
side, while a famous literature attributes the linear growth of a holographic entanglement
entropy of a thermalizing state to the growth of the volume of time slice or wormhole
through a black hole. This study thus improves our understanding of how the time de-
pendence of entanglement entropies is represented in gravity side of holography, especially
for thermalization processes.

In the third part, we examine [3] how we can extend the notion of renormalized
entanglement entropy from a flat space to curved spaces, where renormalized entanglement
entropy is known to be a measure of degrees of freedom in the sense that it monotonically
decreases along renormalization group flows. There are two ways to extend it according
to whether we interpret the derivative with respect to the size of the spacial region in
the definition of the renormalized entanglement entropy as enlarging the spacial region or
as scaling the space, and our example shows that the former successfully decreases along
the renormalization group flow while the latter does not. This result serves a concretized
realization of our intuition that physical degrees of freedom are encoded in quantum
entanglement of spacial regions.

In the fourth part, we show [4] that the recent proposal for the holographic formula
of Rényi entropy, which contains more detailed information about quantum entangle-
ment than entanglement entropy, expectedly satisfies inequalities that Rényi entropies
should obey, given that bulk geometries are stable. This study thus gives a nontriv-
ial consistency check of the formula and of the holographic principle itself. Moreover,
we reformulate quantities representing quantum entanglement in analogy with statistical
mechanics, which provides us a concise interpretation of the Rényi entropic inequalities
as the positivities of entropy, energy and heat capacity and makes clear a thermodynamic
structure in the derivation of the holographic formula for quantum entanglements.
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C.2 Possible extension of SSA to Rényi entropies . . . . . . . . . . . . . . . . . 115

4



Chapter 1

Introduction

A key concept in modern quantum gravity theory is holography or holographic principle
[5, 6, 7], which opened the door to a non-perturbative definition of quantum gravity as
an equivalent non-gravity quantum theory in one lower dimensions. The equivalent non-
gravity theory usually can be regarded as a theory located on the boundary of the gravity
theory at infinity, in some sense. This equivalence between a (d + 1)-dimensional gravita-
tional theory (usually called “bulk theory”) and a d-dimensional non-gravitational theory
(usually called “boundary theory”) is sometimes called holographic duality. This duality
allows us to interpret a gravitational world as a holographic image constructed from the
data on its boundary at infinity, because all the information of the world is already en-
coded somehow on its boundary. This is why this principle is named “holography”; the
world emerges from its boundary.

In quantum gravity theory, the notion of spacetime becomes vague because general
states are quantum superpositions of possible spacetime geometries, but in the classical
limit, classical on-shell spacetime geometries dominate and we can say more surely that
there is a spacetime in the world, which satisfies classical equations of motions like Einstein
equations. Since we already know classical gravity theories, this classical limit in the bulk
theory is one of the fundamental tools to study holographic duality. Typically, the classical
limit in the bulk side corresponds to the large degrees of freedom limit in the boundary
side, such as the large N limit in gauge theories [8] or the large central charge limit in
two dimensional conformal field theories [9] . This is because the coefficient of the bulk
classical gravity actions, namely, the gravitational coupling constant 1/GN , where GN

is the bulk Newton constant, is typically holographically proportional to the numbers of
degrees of freedom in the boundary side, such as the number of gluons N2 or the central
charge c. The spacetime thus emerges as a macroscopic or collective notion, similarly to
the emergence of thermodynamics or fluid dynamics in coarse-graining microscopic details.
We can also obtain a different geometry in this classical limit by taking a different quantum
state from the start; as we will see later in this thesis, a thermal state gives a black hole
geometry [10, 11, 12, 13, 14] and a time-dependent state gives a time-dependent geometry
[15, 16, 17, 18]. It follows that holography also provides a useful toolkit to study black hole
physics within unitary quantum theory, with an advantage over stringy constructions of
black holes with branes [19, 20], in the ability to describe non-perturbative processes such
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as black hole formations represented by (Anti de-Sitter) Vaidya metrics, for example.
These unitary descriptions of black hole dynamics reinforce the belief that there is no
information loss even in black holes.

The most successful example of the holography is so-called AdS/CFT correspondence
[8, 21, 22, 23, 24], which says that a quantum gravity theory on (d+1)-dimensional Anti de-
Sitter space, AdSd+1, is equivalent to a d-dimensional conformal field theory, CFTd. This
holographic duality is originally derived from considerations of D branes, which are non-
perturbative extended objects on which strings can end in string theory, a successful theory
of quantum gravity particulary suitable for perturbative calculations. In the classical limit
in the bulk, we usually take another limit as well that the string length ls is much shorter
than the typical length scale L of the geometry so that we can suppress higher derivative
corrections of gravity actions in string theory and can get Einstein gravity. For AdS d+1

spaces, the typical length scale is its AdS radius L =
√
−d(d − 1)/(2Λ), where Λ(< 0)

is its cosmological constant. This point particle limit ls ≪ L typically makes the dual
boundary theory strongly coupled. In these limits, the vacuum state gives the pure AdS
space, and thermal states give AdS Schwarzschild black holes. We can also get a different
bulk by modifying the theory itself, and so there are a variety of directions to extend
AdS/CFT correspondence, whose examples include a capped off geometry given by the
vacuum state of a gapped theory [25, 26, 27], as we will see later. Now holography is widely
studied in more general situations than AdS/CFT correspondence, no matter whether
they have stringy constructions with branes or not, such as many kinds of holographic
models of condensed matters [28, 29, 30, 31], generalizations to non-relativistic theories
[32, 33, 34] or to higher spin theories [35, 36, 37], and dS/CFT correspondence [38] or flat
space holography [39, 40].

Mainly based on the study of AdS/CFT correspondence, a considerable number of
dictionaries have been composed to translate physical quantities or concepts in one theory
to the other via the holographic duality, such as global symmetries, correlation functions,
responses to external sources, partition functions, thermodynamics, phase transitions, and
spectrum of operators. The holographic duality remains mysterious, though, especially
on how the information or structure of the bulk spacetime is encoded in the boundary
quantum theory in one lower dimensions. This mystery would be very fundamental to
holography in the sense that quantum gravity theory is a quantum theory for spacetimes.
Understanding this mystery probably also helps us to study physics inside black hole
horizons in a unitary way, particulary on how quantum information fallen into black holes
and constituting the black holes is stored and can be recovered.

There have been a huge amount of attempts to probe the bulk structure via holog-
raphy, of which one of the most important breakthroughs is the holographic formula of
entanglement entropy [41, 42] assigning a surface area in the bulk side to quantum en-
tanglement in the boundary side, at the rate of one (qu-)bit per four Planck areas. This
relation is so important because area is one of the most elemental quantities for spacetime
geometries, and in fact, the formula is a realization of the original idea of the holographic
principle [6, 5] that asserts in quantum gravity theory, the degrees of freedom live not
in volumes but in areas. This formula includes the famous Bekenstein-Hawking formula
[43, 44] for black hole entropy as a special case when we consider the entanglement of the
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whole spacial region for a thermal state. Overviews on the recent developments of the
holographic entanglement entropy are available in reviews e.g. [45, 46].

Before seeing the holographic entanglement entropy formula, let us review the defini-
tion of entanglement entropy, the most fundamental quantity to study quantum entangle-
ment. In quantum theories, entanglement entropy SA of a state subspace HA is defined
as the von Neumann entropy SvN[ρ] ≡ −Tr[ρ log ρ] of the reduced matrix ρA = TrĀ[ρtotal]
as1

SA ≡ −Tr[ρA log ρA] . (1.1)

It measures how much quantum information of the degrees of freedom in HA is entangled
with the outer degrees of freedom, namely, how much quantum information will be lost for
the subspace HA if the outer subspace is ignored. In quantum field theories, entanglement
entropy is defined for a space region A on a time slice, assuming that we can construct
a state space HA representing degrees of freedom on the region A by some appropriate
procedures. The boundary of the region Σ = ∂A is often called entangling surface. The
total state is often taken as the vacuum ρtotal = |0⟩ ⟨0| for simplicity.

For static systems holographically described by Einstein gravity in the asymptotically
AdS space, the holographic formula or so-called Ryu-Takayanagi (RT) formula [41, 42]

SA = min
∂γA=∂A

Area[γA]

4GN
, (1.2)

associates the entanglement entropy of a given region A in the boundary side with the
area of the codimension-two minimal bulk surface γA that is anchored at the entangling
surface Σ = ∂A on the boundary and is homologous to the region A (see Fig. 1.1).

d dim
. b

dr
y

γA

A (d + 1) dim. bulk

holographic direction

Figure 1.1: The configuration of the bulk minimal surface γA, whose area holographically
gives the entanglement entropy of the red region A on the boundary. The titled rectan-
gle represents the boundary on which the dual non-gravity field theory lives. The time
direction is suppressed in this picture.

1Throughout this thesis, we always normalize a density matrix as Tr[ρ] = 1.
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Taking the whole spacial region as the region A for a thermal state described by a
black hole geometry, the entanglement entropy becomes just the thermal entropy and the
homology condition says that the corresponding minimal surface γ is just the surface of
the black holes, and so this formula reduces to Bekenstein-Hawking formula,

Sblack hole =
Area[black hole surface]

4GN
. (1.3)

In this sense, this holographic formula is a generalization of Bekentein-Hawking formula
from thermal entropies to more general quantum information or entanglements, or from
black hole horizons to more general bulk surfaces, and can be a lot of help to study how
the information or structure of the bulk spacetime is encoded in the boundary quantum
theory in one lower dimensions.

In fact, to bulk spacetimes, this formula is so fundamental that we can derive linearized
Einstein equations from mathematical properties of entanglements via this formula for
ball shaped regions [47], though it is shown only for small perturbations around the CFT
vacuum, holographically dual to small perturbations around the pure AdS space. This
novel derivation of equation of motion for spacetime geometries suggests a possibility that
all the structure or dynamics of spacetimes may be governed by mathematical properties
of quantum entanglements, via this simple holographic formula.

To generalize this derivation of gravitational equations of motion to more general
states other than the CFT vacuum, dual to more general bulk spacetime geometries other
than pure AdS space, however, we have to understand better about entanglements and
holographic entanglements of such more general states and more general geometries. In
this thesis, I have then studied entanglements in two such more general cases, the vacuum
of a gapped theory dual to a capped-off geometry (chapter 3), and a time-dependent state
of CFT (chapter 4) dual to a time-dependent geometry.

As a result, while a known formula proposed for entanglement entropy in gapped theo-
ries says that entropies are additive with regions, we discovered that there are non-additive
corrections to the formula and entanglement entropy is not additive even in gapped theo-
ries. This non-additivity of entanglement entropy indicates that by taking multiple regions
instead of a single region, we obtain much more information about the spacetime geom-
etry via the holographic entanglement entropy formula, even in gapped theories. This
suggests that studies of entanglements for multiple regions may help one generalize the
limited works on deriving gravitational equations of motion from the holographic formula.
Other new insights we have obtained into entanglements or holographic entanglements
with a gap or time dependence will be helpful information in future to study any relation
between equation of motions for spacetimes and quantum entanglements, for capped-off
geometries and time-dependent geometries.

While it is not known whether we can derive full non-linear equation of motions for
spacetimes only from the mathematical properties of entanglements, if so, probably we
have to know more about entanglements or holographic entanglements. So it is natural
to study a holographic formula for (entanglement) Rényi entropy, defined as

Sn,A ≡ − 1

n − 1
log Tr[ρn

A] , (1.4)
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since it contains much more information about quantum entanglement than entanglement
entropy, in that it knows more about the whole spectrum of density matrices, sometimes
called entanglement spectrum. In condensed matter physics, for example, entanglement
spectrum is used as a more powerful tool to identify topological orders than entanglement
entropy [48], while entanglement entropy is just one value uniquely determined by the
whole entanglement spectrum and can be obtained by the n = 1 limit of the Rényi
entropy, SA = limn→1 Sn,A. In this thesis, I have studied how mathematical properties of
Rényi entropies are translated into the bulk language via its holographic formula proposed
recently, giving a nontrivial consistency check for the formula (chapter 6). Other measures
of quantum entanglements may also be of help, and I have studied one such quantity called
renormalized entanglement entropy (chapter 5), which has a characteristic mathematical
property that they monotonically decrease along renormalization group (RG) flows.
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Chapter 2

Quantum Entanglements in Field
Theories and Holographic Theories

In this chapter, we review fundamental concepts and techniques that will appear in the
following chapters on my research.

2.1 Techniques to calculate entanglements

2.1.1 Replica trick

In this subsection, we review a technique called replica trick [49, 50], which allows one to
calculate entropies in field theories as some partition functions. It would be hard to study
general density matrices in field theories, and so let us focus only on density matrices that
admit a path integral representation.

The simplest example for such a density matrix is the vacuum density matrix, 1 ρ0 ≡
|0⟩ ⟨0|. The explicit expression can be obtained by rewriting both the vacuum state |0⟩
and its conjugate ⟨0| in a path integral form. Let x denote the space directions, and let
φ(x) denote collectively the fields we consider. Since only the vacuum state survives in
an infinite Euclidean time evolution, the vacuum wave functional, Ψ0[φ(x)] ≡ ⟨φ(x)|0⟩,

1In this thesis, we assume that the vacuum does not degenerate.
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can be expressed as a past semi-infinite Euclidean time path integral,2

Ψ0[φ(x)] =
1√
Z

∫ ϕ(0,x)=φ(x)

M, tE<0

Dϕ(tE, x) e−IE [ϕ(tE ,x)], (2.4)

over the fields in all the past region tE < 0 of the Euclidean spacetime M . The pathes
ϕ(tE, x) are summed over under the boundary condition ϕ(0, x) = φ(x), namely, we
only take paths that match the argument of the wave functional, φ(x), on the boundary
tE = 0. In the same way, its conjugate state, Ψ∗

0[φ(x)] = ⟨0|φ(x)⟩, is expressed as a future
semi-infinite Euclidean time path integral,

Ψ∗
0[φ(x)] =

1√
Z

∫ ϕ(0,x)=φ(x)

M, tE>0

Dϕ(tE, x) e−IE [ϕ(tE ,x)], (2.5)

over the fields in all the future region tE > 0. Their inner product,

⟨0|0⟩ =

∫
Dφ(x) ⟨0|φ(x)⟩ ⟨φ(x)|0⟩ (2.6)

=

∫
Dφ(x) Ψ0[φ(x)]Ψ∗

0[φ(x)] , (2.7)

then gives the Euclidean path integral over the whole Euclidean time,

⟨0|0⟩ =
1

Z

∫
Dφ(x)

∫ ϕ(0,x)=φ(x)

M, tE ̸=0

Dϕ(tE, x) e−IE [ϕ(tE ,x)] (2.8)

=
1

Z

∫

M

Dϕ(tE, x) e−IE [ϕ(tE ,x)] , (2.9)

where M is the whole Euclidean spacetime. Note that the integral over φ(x) plays the
role of sewing the two path integrals at their contact surface tE = 0. We impose the
normalization Tr[ρ0] = ⟨0|0⟩ = 1, that is, the coefficient Z is set to the partition function

Z = Z[M ] =

∫

M

Dϕ(tE, x) e−IE [ϕ(tE ,x)] . (2.10)

2You can also convince yourself of this expression by a following argument. The vacuum state would
be obtained by a past infinite Euclidean time translation,

|0⟩ = lim
T→∞

e−HT |φ′(x);−T ⟩
∥ |e−HT |φ′(x);−T )⟩ ∥ , (2.1)

from any field operator eigenstate |φ′(x)⟩ that is not orthogonal to the vacuum, ⟨0|φ′(x)⟩ ̸= 0. The
vacuum wave functional, Ψ0[φ(x)] = ⟨φ(x)|0⟩, is then expressed as an Euclidean transition amplitude
from φ′(x) at tE = −T to φ(x) at tE = 0,

Ψ0[φ(x)] ∝ lim
T→∞

⟨φ(x); 0|e−HT |φ′(x);−T ⟩ (2.2)

∝ lim
T→∞

∫ ϕ(0,x)=φ(x)

ϕ(−T,x)=φ′(x)
Dϕ(tE , x) e−IE [ϕ(tE ,x)] , (2.3)

which reproduces the equation (2.4).
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Next, let us move on to rewriting the density matrix ρ0. Generally, for a pure state
|ψ⟩, matrix elements of the corresponding density matrix ρ = |ψ⟩ ⟨ψ| are just a product of
two wave functionals, ⟨φ2(x)|ρ|φ1(x)⟩ = Ψψ[φ2(x)]Ψ∗

ψ[φ1(x)], where Ψψ[φ(x)] ≡ ⟨φ(x)|ψ⟩.
And so once a wave functional admits a path integral representation like (2.4), we can also
express the corresponding density matrix ρ = |ψ⟩ ⟨ψ| in a path integral form. Especially
in the case of the vacuum density matrix,

⟨φ2(x)|ρ0|φ1(x)⟩ = Ψ0[φ2(x)]Ψ∗
0[φ1(x)] (2.11)

=
1

Z

∫ ϕ(−0,x)=φ2(x), ϕ(+0,x)=φ1(x)

M, tE ̸=0

Dϕ(tE, x) e−IE [ϕ(tE ,x)] , (2.12)

or,

ρ0 =

∫
Dφ1(x)Dφ2(x) |φ2(x)⟩ ⟨φ2(x)|ρ0|φ1(x)⟩ ⟨φ1(x)| (2.13)

=
1

Z

∫
Dφ1(x)Dφ2(x)

∫ ϕ(−0,x)=φ2(x), ϕ(+0,x)=φ1(x)

M, tE ̸=0

Dϕ(tE, x) e−IE [ϕ(tE ,x)] |φ2(x)⟩ ⟨φ1(x)| .

(2.14)

Now the boundary condition at tE = 0 differs according to the direction from which we
approach the boundary; the fields should satisfy ϕ(−0, x) = φ2(x) in approaching from
the past, and should satisfy ϕ(+0, x) = φ1(x) in approaching from the future. In other
words, the boundary condition forms a cut at tE = 0. We can sew this cut by taking the
trace, as Tr[|φ1(x)⟩ ⟨φ2(x)|] = ⟨φ2(x)|φ1(x)⟩ =

∏
x δ(φ2(x)−φ1(x)), and the resultant path

integral reproduces the expression (2.8). One can extend the above discussions to states
excited by local operators from the vacuum, |ψ⟩ = TO(t1, x1) . . . O(tn, xn) |0⟩, whose wave
functionals have a path integral representation

Ψψ[φ(x)] =
1√
Z ′

∫ ϕ(0,x)=φ(x)

M, tE<0

Dϕ(tE, x) O(t1, x1) . . . O(tn, xn) e−IE [ϕ(tE ,x)] . (2.15)

Another important density matrix that admit a path integral representation is the
thermal density matrix, ρβ ≡ e−βH/Z, which includes the vacuum density matrix as the
β = ∞ case. Since Boltzmann factor e−βH is interpreted as an Euclidean time evolutor
of time β, the matrix elements of ρβ can be naturally understood as Euclidean transition
amplitudes,

⟨φ2(x)|ρβ|φ1(x)⟩ =
1

Z

∫ ϕ(β,x)=φ2(x)

ϕ(0,x)=φ1(x)

Dϕ(tE, x) e−IE [ϕ(tE ,x)] . (2.16)

One can transform the above expression into the same form with the vacuum case (2.12),
by compactifying the Euclidean time direction of the spacetime M to a circle S1 of radius
β. The vacuum case is included as the large radius limit β → ∞. In the same way
with the vacuum case, the normalization Tr[ρβ] = 1 set the coefficient Z to the partition
function (2.10), though the Euclidean time direction of M is now compacitified.
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As expected from the above observation that trace operations, ρ → Tr[ρ], sew the cut
in its path integral representation, partial trace operations, ρ → ρA = TrĀ[ρ], sew the cut
partially only on the region Ā, leaving the cut on the region A open.3 Its matrix elements
are given by partially tracing out the fields on xĀ ∈ Ā,

⟨φ2(xA)|ρA|φ1(xA)⟩ =

∫
Dφ(xĀ) ⟨φ2(xA),φ(xĀ)|ρ|φ1(xA),φ(xĀ)⟩ . (2.17)

and this additional integral partially closes the cut of the total density matrix ρ (2.12),

⟨φ2(xA)|ρA|φ1(xA)⟩

=
1

Z

∫
Dφ(xĀ)

∫ ϕ(−0,x)={φ2(xA), φ(xĀ)}, ϕ(+0,x)={φ1(xA), φ(xĀ)}

M, tE ̸=0

Dϕ(tE, x) e−IE [ϕ(tE ,x)] (2.18)

=
1

Z

∫ ϕ(−0,xA)=φ2(xA), ϕ(+0,xA)=φ1(xA)

M, {tE , x} ̸∈ {0}×A

Dϕ(tE, x) e−IE [ϕ(tE ,x)] . (2.19)

It then becomes obvious that in the path integral representation, indices of density ma-
trices are represented by the location of cuts; the right and left indices correspond to the
upper side tE = +0 and the lower side tE = −0 of the cut, respectively.

Generally, we can multiply density matrices by sewing the upper side of one cut and
the lower side of the other cut,

⟨φ3(xA)|ρAσA|φ1(xA)⟩ =

∫
Dφ2(xA) ⟨φ3(xA)|ρA|φ2(xA)⟩ ⟨φ2(xA)|σA|φ1(xA)⟩ , (2.20)

which connects spacetimes of their path integral representations. To illustrate this mul-
tiplication, let us take reduced density matrices ρA and σA represented respectively by
path integrals (2.19) over spacetimes Mρ and Mσ, for simplicity. These spacetimes have
cuts at {0}× A, and according to (2.20), φ3(xA) is assigned to {−0}× A in Mρ, φ2(xA)
is assigned to both {+0} × A in Mρ and {−0} × A in Mσ, and φ3(xA) is assigned to
{−0} × A in Mρ. The φ2(xA) integral in (2.20) then results in identifying {+0} × A in
Mρ and {−0}× A in Mσ,

⟨φ3(xA)|ρAσA|φ1(xA)⟩

=
1

Z[Mρ]Z[Mσ]

∫
Dφ2(xA)

∫ ϕ(−0,xA)=φ3(xA), ϕ(+0,xA)=φ2(xA)

Mρ, {tE , x} ̸∈ {0}×A

Dϕ(tE, x)

∫ ϕ(−0,xA)=φ2(xA), ϕ(+0,xA)=φ1(xA)

Mσ , {tE , x} ̸∈ {0}×A

Dϕ(tE, x) e−IE [ϕ(tE ,x)] (2.21)

=
1

Z[Mρ]Z[Mσ]

∫ ϕ((−0,xA)Mρ )=φ3(xA), ϕ((+0,xA)Mσ )=φ1(xA)

Mρ+Mσ , (+0,xA)Mρ=(−0,xA)Mσ , {tE , x} ̸∈ {0}×A

Dϕ(tE, x) e−IE [ϕ(tE ,x)] . (2.22)

3Here we assume that our Hilbert space H associated with the quantum fields φ(x) decomposes into
a tensor product HA ⊗HĀ, where HA and HĀ are Hilbert spaces associated with the fields restricted to
regions A and Ā, φ(x)|A and φ(x)|Ā, respectively. This assumption is subtle in some cases, but would be
reasonable at least for field theories that admit lattice regularization.
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The resultant spacetime is a sum of Mσ and Mρ glued at the cut.
Our goal of this subsection is to represent Tr[ρn

A] as a path integral. Let us take
n copies of M with a cut in {0} × A, and call them M1, . . . ,Mn. The (n − 1) times
multiplications in the n-th power ρn

A = ρA . . . ρA connect all these spacetimes, by sewing
{+0}× A in Mi and {−0}× A in Mi+1 for i = 1, . . . , n − 1,

⟨φ2(xA)|ρn
A|φ1(xA)⟩ =

1

Z[M ]n

∫ ϕ((−0,xA)Mn )=φ2(xA), ϕ((+0,xA)M1 )=φ1(xA)

∪iMi, (+0,xA)Mi
=(−0,xA)Mi+1

, {tE , x} ̸∈ {0}×A

Dϕ(tE, x) e−IE [ϕ(tE ,x)] .

(2.23)

Its remaining cuts at {−0}×A in Mn and {+0}×A in M1 close by taking the trace, and
finally we reach a simple formula

Tr[ρn
A] =

Z[Mn,A]

Z[M ]n
, (2.24)

where Mn,A is a n-covering spacetime called replica space, a sum of M1, . . . ,Mn connected
cyclicly by identifying {+0}×A in Mi with {−0}×A in Mi+1 for i = 1, . . . , n (Mn+1 = M1).

This simple formula enables one to calculate Rényi entropies (1.4) as partition func-
tions,

Sn(A) = − log Z[Mn,A] − n log Z[M ]

n − 1
. (2.25)

Originally n is a positive integer number, but it is usually assumed that we can analytically
continue n and can take the limit n → 1, yielding a formula for entanglement entropy
(1.1)

S(A) = − lim
n→1

log Z[Mn,A] − n log Z[M ]

n − 1
(2.26)

= −(∂n − 1) log Z[Mn,A]|n=1 . (2.27)

2.1.2 Lattice discretization

If a field theory admit a lattice regularization, entropies can be calculated as the continuum
limit of calculation results on lattices at least in principle. For vacuum states of free
fields, this lattice calculation becomes simple enough that one can explicitly carry out the
calculation numerically. This lattice technique [51, 52, 53] applies to both free scalars and
free fermions, but here we take only free scalars for simplicity.

We start by constructing the vacuum density matrix on a lattice. By discretizing the
space into a lattice, a free scalar theory normally becomes a system of coupled oscillators
with a Hamiltonian of the form

H =
1

2

∑

i

π2
i +

1

2

∑

i,j

φiKijφj , (2.28)
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where i, j is the label of lattice sites and K is a real symmetric positive-definite matrix.
This system can be seen as decoupled harmonic oscillators

H =
1

2

∑

k

(
π′

k
2 + ω2

kφ
′
k

)
, (2.29)

by diagonalizing K by a real orthogonal matrix O as Kij = Okiω2
kOkj with positive

eigenvalues ω2
k, and by a non-local field redefinition φ′

k ≡ Okiφi and π′
k ≡ Okiπi. The

ground state of a simple Harmonic oscillator H = (p2 + ω2x2)/2 has a Gaussian wave
function ψ(x) = (ω/π)1/4 exp(−ωx2/2), and so the vacuum of our scalar field φ has a
multivariate Gaussian wave functional

Ψ[φ] = Ψ(φ1,φ2, . . . ) =
∏

k

[(ωk

π

)1/4

e−ωkφ′
k
2/2

]
=

(
det

W

π

)1/4

e−
1
2

∑
i,j φiWijφj , (2.30)

whose precision matrix W = K1/2 is the positive square root of K with symmetric matrix
elements Wij = OkiωkOkj. This matrix W and its inverse W−1 can be read off from the
vacuum correlators as

Xij ≡ ⟨φiφj⟩ =

∫ [ ∏

i

dφi

]
Ψ∗

0[φ]φiφjΨ0[φ] =
1

2
W−1

ij , (2.31)

Pij ≡ ⟨πiπj⟩ =

∫ [ ∏

i

dφi

]
Ψ∗

0[φ]

(
−i

d

dφi

)(
−i

d

dφj

)
Ψ0[φ] =

1

2
Wij , (2.32)

which satisfies XP = 1/4. From the expression (2.30), the vacuum density matrix is given
by the product of the wave functionals,

⟨φ′|ρ0|φ⟩ = Ψ0[φ
′]Ψ∗

0[φ] =

(
det

W

π

)1/2

e−
1
2

∑
i,j(φ2iWijφ2j+φ1iWijφ1j) . (2.33)

Note that although the above wave functional (2.30) appears to be a product state and
so be disentangled in terms of the redefined field φ′, it is really entangled in terms of
the original field φ. In general, non-local field redefinitions do not preserve the original
entanglement structure, as can be understood from the definition of entanglement entropy
(1.1) requiring a spacial region A to be specified.

Now that a region A and its complement Ā are sets made up of lattice sites, we can
perform the partial trace (2.17) over Ā just by integrating over φı̄ for all ı̄ ∈ Ā. To carry
out this integration, let us divide the precision matrix W into 2 × 2 blocks,

W =

(
W (A) W (AĀ)

W (ĀA) W (Ā)

)
, (2.34)

according to whether each matrix index is included in A or in Ā. Since the matrix
W is symmetric and positive definite, the submatrices W (A) and W (Ā), and their Schur
complements,

W(A) ≡ W (A) − W (AĀ)(W (Ā))−1W (ĀA) , (2.35)

W(Ā) ≡ W (Ā) − W (ĀA)(W (A))−1W (AĀ) , (2.36)
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are all symmetric and positive definite, where W (AĀ) = (W (ĀA))T . Restricting the indices
i and j to the sites in A, the correlators (2.31) and (2.32) can be expressed as

X(A) =
1

2
W−1

(A) , P (A) =
1

2
W (A) , (2.37)

thanks to the formula for the inverse of a block matrix,

W−1 =

(
W−1

(A) −W−1
(A)W

(AĀ)(W (Ā))−1

−W−1
(Ā)

W (ĀA)(W (A))−1 W−1
(Ā)

)
. (2.38)

They satisfy an uncertainty principle like inequality4

X(A)P (A) ≥ 1

4
, (2.39)

because a matrix 2P (A) − (2X(A))−1 = W (A) − W(A) = W (AĀ)(W (Ā))−1W (ĀA) is non-
negative definite due to the positivity of W (Ā).

Now we can evaluate the partial trace (2.17) explicitly as

⟨φ(A)|ρA|φ′(A)⟩ =

∫ [ ∏

ı̄∈Ā

dϕı̄

]
⟨φ(A),ϕ|ρ|φ′(A),ϕ⟩ . (2.40)

=

(
det

W

π

)1/2 ∫ [ ∏

ı̄∈Ā

dϕı̄

]
(2.41)

× exp

⎡

⎣−1

2

∑

i,j∈A

(φiW
(A)
ij φj + φ′

iW
(A)
ij φ′

j) −
∑

i∈A, ȷ̄∈Ā

(φi + φ′
i)W

(AĀ)
iȷ̄ ϕȷ̄ −

∑

ı̄,ȷ̄∈Ā

ϕı̄W
(Ā)
ı̄ȷ̄ ϕȷ̄

⎤

⎦

(2.42)

=
1√

det(2πX(A))
exp

[
−1

4

∑

i,j∈A

(
(φi − φ′

i)(2P
(A))ij(φj − φ′

j) + (φi + φ′
i)((2X

(A))−1)ij(φj + φ′
j)

)]
,

(2.43)

where we used a formula for determinants of block matrices,

det W = det W (A) det W(Ā) = det W(A) det W (Ā) . (2.44)

From this expression of the reduced matrix, in the same way as [51], we can obtain Rényi
entropies and entanglement entropies,

Sn =
1

n − 1
Tr log[(C + 1/2)n − (C − 1/2)n] , (2.45)

SA = Tr log[(C + 1/2) log(C + 1/2) − (C − 1/2) log(C − 1/2)] , (2.46)

with C ≡
√

X(A)P (A). This result can also be derived by another method introducing
some annihilation and creation operators [53, 52].

4For matrices X and Y , an inequality X ≥ Y stands for the non-negative definiteness of their difference
X − Y .
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2.2 Entanglements in field theories

2.2.1 General forms

It is known that in d-dimensional field theories, an entanglement entropy of an region A
typically5 takes the form of

SA =
sd−2

ϵd−2
+

sd−4

ϵd−4
+

sd−6

ϵd−6
+ . . . , (2.47)

in the expansion of some UV cutoff length scale ϵ. One may wonder whether it is useful
to think about such regularization ϵ dependent quantities, but once we understand how
their ϵ dependence arises, from them we can construct quantities or combinations that
are ϵ independent or are finite in the continuum ϵ → 0 limit.

The most dominant term is in the order of O(1/ϵd−2), and is called as area law term,
since its coefficient sd−2 is known to be proportional to the (d − 2)-dimensional area of
the entangling surface Σ = ∂A,

SA = α
Area[Σ]

ϵd−2
+ O

(
1

ϵd−4

)
, (2.48)

where α is an unimportant dimensionless constant given by the UV physics.
In the sub-leading orders, the power of 1/ϵ decreases by two, and so the final term

depends on whether the spacetime dimension is even or odd. In even dimensions, the
expansion ends at a logarithmic term and a constant,

S(even)
A = α

Area[Σ]

ϵd−2
+

sd−4

ϵd−4
+ · · · + s2

ϵ2
+ C log

1

ϵ
+ s , (2.49)

while in odd dimensions, it ends at a constant term,

S(odd)
A = α

Area[Σ]

ϵd−2
+

sd−4

ϵd−4
+ · · · + s1

ϵ
− F . (2.50)

In even dimensions, the logarithmic term C log(1/ϵ) and the constant term s can be
put together into one term C log(l/ϵ) with some length scale l. As we will see, the most
important quantity in these expansions is the dimensionless quantity C in even dimensions
or F in odd dimensions, which can be interpreted to capture some degrees of freedom in
the theory. In fact, ϵ independent quantities constructed form entropies, such as entropic
c-functions, renormalized entanglement entropies or mutual information, pick out C or F
somehow by getting rid of the power law terms O(1/ϵn).

Let us see this expansion in important dimensions, two, three, and four dimensions,
which will appear in this thesis. In two dimensions, it is essentially one logarithmic term,

S(2d)
A = C log

1

ϵ
+ s . (2.51)

5This is not the case in special cases, for instance, when the entangling surface Σ = ∂A has cusps.
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Though the entangling surface Σ is zero-dimensional and just the end points of the region
A in this dimension, this logarithmic term can be also regarded as the area law term for
two dimensions, since the coefficient C of the log(1/ϵ) is additive with respect to the end
points and determined by the UV physics. In fact, C is c/6 for each one end point, where
c is the central charge of the UV CFT2; a half line has the coefficient C = c/6, an interval
has C = c/3, and the union of two disjoint intervals has C = 2c/3. In three dimensions,
it composes of the area law term and the constant term,

S(3d)
A = α

Length[Σ]

ϵ
− F . (2.52)

Now the entangling surface Σ is just a one-dimensional curve, and its area means just its
length. When the region A is a disk, there is a theorem called F -theorem stating that F
monotonically decreases with along RG flows [54, 55]. In four dimensions, it is composed
of the area law term and the logarithmic term,

S(4d)
A = α

Area[Σ]

ϵ2
+ C log

1

ϵ
+ s . (2.53)

Similar to two dimensions, the coefficient C is related to central charges or conformal
anomaly coefficients a and c of the UV CFT via Solodukhin’s formula [56, 57]:

C = −a

2
χ[Σ] − c

2π

∫

Σ

(
Raa −Rabab −

R
3

+ ka
µνk

µν
a − 1

2
(ka µ

µ )2

)
, (2.54)

where χ[Σ] is the Euler characteristic, R is the Ricci scalar, Raa = Rµνna
µn

a
ν , Rabab =

Rµνρσna
µn

b
νn

a
ρn

b
σ, and ka

µν = γρ
µγ

σ
ν∇ρna

σ is the extrinsic curvature for the normal vectors
na

µ (a = 1, 2) on Σ with the induced metric γµν = gµν − na
µn

a
ν .

2.2.2 CFT2

Here we review entanglement entropies in the most well-known example, namely, two-
dimensional CFT. We take the region A as an interval of length l, and the total state
as the vacuum state and thermal states, which correspond to a plane R2 and a cylinder
S1×R, respectively. The period β of the Euclidean time direction S1 of the cylinder gives
the inverse temperature of the thermal state ρβ = e−βH/Tr[e−βH ].

We can obtain entropies in CFT2 in many ways, say, by introducing operators called
twist operators σn(z, z̄) and σ̄n(z, z̄), by constructing modular Hamiltonian − log ρ from
the energy momentum tensor Tµν , or by looking at how the free energy log Z[Mn,A] of
the replica space changes with scaling of the region as a result of the conformal anomaly
⟨T µ

µ ⟩ = − c
24R. Here we see how to calculate entropies using twist operators. Twist

operators are local operators such that by going around them, fields obtain a phase factor,
e2πi/n for a twist operator σn and e−2πin for an anti-twist operator σ̄n, whose conformal
weights are known to be

h = h̄ =
c

24

(
n − 1

n

)
, ∆ = h + h̄ =

c

12

(
n − 1

n

)
. (2.55)
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It is also known that the partition function Z[Mn,A] of the replica space Mn,A in (2.24)
is equal to the two point function of twist operators inserted in both the endpoints, ∂A,
in the original space M . For an interval a ≤ x (= Re[z]) ≤ b of length l = b − a at
t (= Im[z]) = 0, the twist operators are inserted at (z, z̄) = (a, a) and (b, b) as

Tr[ρn
A] =

Z[Mn,A]

Z[M ]n
= ⟨σn(a, a)σ̄n(b, b)⟩M=R2 , (2.56)

=

(
ϵ

b − a

)2h (
ϵ

b − a

)2h̄

=
(ϵ

l

) c
6(n− 1

n)
. (2.57)

Here the length scale ϵ of the UV cutoff is introduced as the normalization to match
physical dimensions. This is natural since there is no other scale, and since when the
region A is as small as the UV cutoff, l ≃ ϵ, then the reduced density matrix is almost
the same as the total state, ρA ≃ ρ, and thus Tr[ρn

A] ≃ 1. Taking its logarithm, we obtain
Rényi entropy and entanglement entropy for an interval of length l in the flat space R2,

Sn = − 1

n − 1
log Tr[ρn

A] =
c

6

(
1 +

1

n

)
log

l

ϵ
, (2.58)

SA = lim
n→1

Sn =
c

3
log

l

ϵ
. (2.59)

By mapping the z plane to a z′ cylinder

z = e2πz′/β (2.60)

with the period t′ (= Im[z′]) ∼ t′ + β, we can also obtain the entropy of an interval [a′, b′]
of length l = b′ − a′ in a thermal state. By this map, the twist operator transforms as

σ(z′, z̄′) =

(
∂z

∂z′

)h (
∂z̄

∂z̄′

)h̄

σ(z, z̄) =

(
2π

β
e2πx′/β

) c
12(n− 1

n)
σ(z, z̄) , (2.61)

and thus their correlation function transforms as

Tr[ρn
A] = ⟨σn(a′, a′)σ̄n(b′, b′)⟩S1×R , (2.62)

=

(
2π

β
eπ(a′+b′)/β

) c
6(n− 1

n)
⟨σn(a, a)σ̄n(b, b)⟩R2 , (2.63)

=

(
πϵ

β sinh(πl/β)

) c
6(n− 1

n)
, (2.64)

where a = e2πa′/β and b = e2πa′/β. From this result, we can similarly read off the entropies
for interval of length l in the thermal state,

Sn =
c

6

(
1 +

1

n

)
log

(
β

πϵ
sinh

πl

β

)
, (2.65)

SA =
c

3
log

(
β

πϵ
sinh

l

β

)
. (2.66)
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In the low temperature or the small interval limit β ≫ l, the logarithm becomes simple

log

(
β

πϵ
sinh

πl

β

)
≃ log

l

ϵ
, (2.67)

and the entropies reproduces the results in the vacuum. In the high temperature limit or
the small interval limit l ≪ β, the logarithm becomes a volume term and a constant,

log

(
β

πϵ
sinh

πl

β

)
≃ πl

β
+ log

β

2πϵ
. (2.68)

In the entanglement entropy, the first volume term reproduces the thermal entropy

S =
c

3
πT l (2.69)

for the box of size l.

2.2.3 Ball shaped regions in CFTd

In CFT’s, entanglement entropies of a ball of radius R can be computed by replica trick
and by a nice conformal transformation from the Euclidean flat space Rd to a thermal
hyperbolic space, S1 × Hd−1 [58]. Since there appears the conformal anomaly in even
dimensions, here let us focus on odd dimensions d for simplicity. Let us take a radial
coordinate in the flat space Rd, and combine the radial coordinate r and Euclidean time
direction t into a complex coordinate w ≡ r + it,

ds2 = dt2 + dr2 + r2dΩ2
d−2 (2.70)

= dwdw̄ + r2dΩ2
d−2 , (2.71)

where the physical region r ≥ 0 is represented by the half plane Re[w] ≥ 0 in w plane.
The transformation from w to a new complex coordinate z is given as

ez =
R + w

R − w
, or equivalently,

w

R
= tanh

z

2
. (2.72)

Let us understand what happens in this transformation step by step. First, a transfor-
mation

z′ =
R + w

R − w
(2.73)

maps the half plane Re[w] ≥ 0 in w plane to the outer region of the unit circle |z′| ≥ 1
in z′ plane, while the entangling region, the point w = R in w plane, is mapped to the
infinity z′ = ∞ in z′ plane. Next, another transformation

z = log z′ , (2.74)

maps the z′ plane to a cylinder of z with the imaginary direction rolled up as Im[z] ∼
Im[z]+2π. By this transformation, the unit circle |z′| ≥ 1 is mapped to the half Re[z] ≥ 0
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of the cylinder, and the entangling region z′ = ∞ is still mapped to the infinity Re[z] = ∞.
Introducing real coordinates z = u + iτ/R, where τ ∼ τ + 2πR and u ≥ 0, the resultant
metric

ds2 = R2e−2σ(dzdz̄ + du2 + sinh2 udΩ2
d−2) (2.75)

= e−2σ
(
dτ 2 + R2(du2 + sinh2 udΩ2

d−2)
)

, (2.76)

is conformally equivalent to the metric of a thermal hyperbolic space S1 ×Hd−1,

ds2
S1×Hd−1 = dτ 2 + R2(du2 + sinh2 udΩ2

d−2) . (2.77)

Here the conformal factor is given by

e−σ =
1

2

∣∣∣∣1 −
(w

R

)2
∣∣∣∣ =

1

2| cosh2(z/2)|
. (2.78)

By this transformation, the entangling surface Σ at w = R is mapped to the infinity
u = ∞ of the hyperbolic space, and the direction going around the entangling surface Σ
is mapped to the thermal cycle S1. In fact, a small cycle w = R + ϵe−iθ (ϵ ≪ R) around
Σ is mapped to u = log(2R/ϵ) (≫ 1) and τ = Rθ.

Since the replica space Mn is just the n covering space going around the entangling
surface n times, this transformation still maps Mn to a thermal hyperbolic space S1×Hd−1

but with a different radius of S1, τ ∼ τ+2πnR, namely, a different temperature β = 2πnR.
So in CFT’s, the replica partition function is just the thermal partition function over the
hyperbolic space

log Z[Mn] = log Zβ=2πnR[Hd−1], (2.79)

and the entanglement entropy is just the thermal entropy S = β(E−F ) of the hyperbolic
space at the temperature β = 2πR,

Sn = − log Z2πnR[Hd−1] − n log Z2πR[Hd−1]

n − 1
, (2.80)

SA =

(
1 − β

∂

∂β

)
log Zβ[Hd−1]

∣∣∣
β=2πR

. (2.81)

We can get another useful expression for this entropy. By a further transformation,
sinh u = cos θ with 0 ≤ θ ≤ π/2, we can conformally map the thermal hyperbolic space
S1 ×Hd−1 to Euclidean de Sitter space of radius R,

ds2
dSβ=2πnR

= R2(dθ2 + cos2 θdτ 2 + sin2 θdΩ2
d−2) , (2.82)

with an irregular temperature β = 2πnR, for τ ∼ τ + 2πnR. When n = 1, The geometry
corresponds to an ordinary sphere Sd of radius R. This map allows us to regard the
replica partition function and the entanglement entropy as the thermal partition function
and the thermal entropy of de Sitter space as well. Because the sphere Sd is conformally
equivalent to the flat space Rd, its total energy ESd = −β∂β log Z[dSβ=2πnR]|n=1 vanishes,
and thus the entanglement entropy of a sphere Sd−2 is given just as the partition function
of the sphere Sd in the end,

SA = β(ESd − FSd) = −βFSd , (2.83)

= log Z[Sd] . (2.84)
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2.2.4 Gapped theories

In theories with a mass gap of order m, it is proposed that the entanglement entropy of
a region A has an expansion in powers of 1/m [59, 60]:

SA = α
ℓΣ

ϵ
+ β m ℓΣ − γΣ +

∞∑

n=0

cΣ
2n+1

m2n+1
, (2.85)

with numerical constants α,β and the topological entanglement entropy γΣ [61, 62]. Here
the constant β is a scheme-independent [63, 64], while the numerical constant α is scheme-
dependent. The constant γΣ depends on only the topology of the entangling surface
Σ = ∂A and detects long-range order. For example, a free massive scalar field has
β = −1/12 and γΣ = 0. The dimensionful coefficients cΣ

2n+1 are postulated [60] as local
integrals of functions of the extrinsic curvature and its derivatives on Σ. In other words,
entanglement contributing to cΣ

2n+1 localizes on the entangling surface in the large-m limit
due to the short correlation length of order 1/m. The coefficients cΣ

2n+1 are polynomials
of the radii of order −(2n + 1). This expansion has no proof for its validity in general,
and as will shown in chapter 3, this 1/m expansion would receive exponential corrections
of the form e−#mδ.

2.3 More on entanglements

2.3.1 UV cutoff independent measures of entanglements

Here we introduce new quantities, mutual information and renormalized entanglement
entropy, which represent quantum entanglements in a more sophisticated and numerically
more accessible manner than entanglement entropy.

The mutual information between two disjoint regions A and B is defined out of the
entanglement entropies as

I(A,B) ≡ SA + SB − SAB , (2.86)

which measures how much quantum information is shared between the two regions. In
field theories, this quantity is UV cutoff ϵ dependent because the ϵ dependence of an
entanglement entropy SA is known to be local with respect to its entangling surface
Σ = ∂A, and thus cancels out in the combination (2.86). Generally, mutual information
has an advantage in its ability to draw tiny non-local or non-additive terms in quantum
entanglement, since terms additive with respect to the entangling surface cancel in its
definition. This quantity can be seen as a special case of relative entropy,

S[ρ|σ] ≡ Tr[ρ(log ρ − log σ)] , (2.87)

originally defined for any density matrices ρ and σ, while mutual information corresponds
to the case when ρ = ρAB and σ = ρA ⊗ ρB,

I(A,B) = S[ρAB|ρA ⊗ ρB] . (2.88)
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We can eliminate the ϵ dependence in other ways. For entropies of a disk A of radius
Rdisk,

SA(Rdisk) = α
2πRdisk

ϵ
− F , (2.89)

a pragmatic regularization is proposed by Liu and Mezei [65] as the renormalized entan-
glement entropy (REE):

F(Rdisk) = (Rdisk∂Rdisk
− 1)SA(Rdisk) . (2.90)

This quantity serves as a measure of degrees of freedom in field theories, in that REE
monotonically decreases along RG flows, thanks to its characteristic mathematical prop-
erty of monotonicity F ′(R) ≤ 0, identifying the disk size with the inverse of the energy
scale of renormalization [55]. The expression (2.84) tells that the value of REE for CFT 3

is just the free energy of a three-sphere, F = − log Z[S3] [58], which gives the proof of
the F -theorem stating that FUV ≥ FIR for the free energies at the UV and IR conformal
fixed points [66, 54, 67, 68]. Such a function is called F -function and is reminiscent of the
Zamolodchikov’s c-function [69], which monotonically decreases along RG flows as well
and gives the central charge at conformal fixed points.

2.3.2 Mathematical inequalities for entanglements

Let us see some important mathematical properties of entanglement entropy (1.1). First
of all, it is not additive but sub-additive

SA + SB ≥ SAB , (2.91)

with joining regions. This sub-additivity of entanglement entropy is equivalent to the
non-negativity of mutual information (2.86),

I(A,B) ≥ 0, (2.92)

which holds since relative entropy is known to be non-negative, S[ρ|σ] ≥ 0, and mutual
information is a special case of relative entropy as explained before.

In fact, entanglement entropy satisfies a more strong inequality, called the strong sub-
additivity [70]

SAC + SBC ≥ SC + SABC , (2.93)

or equivalently,

SA + SB ≥ SA∪B + SA∩B , (2.94)

in a symmetric form, and the sub-additivity (2.91) is reproduced by taking C as ∅ in
(2.93) or taking A∩B = ∅ in (2.94). This inequality (2.93) is equivalent to the statement
that mutual information monotonically increases with joining regions,

I(A,B ∪ C) ≥ I(A,C) , (2.95)
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which follows form the fact that relative entropy decreases monotonically under partial
traces,

S[ρ|σ] ≥ S[TrBρ|TrBσ] , (2.96)

by taking ρ = ρABC and σ = ρA ⊗ ρBC in this case. Less importantly, we can regard
it as the non-negativity of a more complicated quantity called the conditional mutual
information,

I(A,B|C) ≡ SA|C + SB|C − SAB|C ,

= SAC + SBC − SABC − SC ,
(2.97)

where SX|Y ≡ SXY −SY is called the conditional entropy. In field theories, the strong sub-
additivity is utilized for proving that some quantity serves as a measure of physical degrees
of freedom in the sense that it monotonically decreases along RG flows, for quantities
such as the entropic c-function in two dimensions [71] and the F -function (2.90) in three
dimensions [55] introduced already.

2.4 Entanglements in holographic theories

2.4.1 AdS space

As AdS/CFT correspondence says, quantum gravity on AdSd+1 is equivalent to a CFTd

on its boundary, that is, their partition functions Z = Z[J ] are just the same [21, 22],

ZQuantum Gravity on AdSd+1
= ZCFTd

. (2.98)

And as explained in chapter 1, as a first step to study this holographic relation, we usually
take the classical limit in the bulk side so that we can approximate the bulk partition
function as the dominant classical contribution,

ZQuantum Gravity on AdSd+1
∼ e−Igravity , (2.99)

where Igravity is the on-shell classical gravity action. These fundamental holographic rela-
tions will play an important role in deriving the holographic formula for entropies.

Here we review the AdSd+1 space, which is the maximally symmetric solution of Ein-
stein equation

Rµν −
1

2
gµνR + Λgµν = 0 , (2.100)

in the vacuum, namely, without any energy momentum tensor of matters, with a negative
cosmological constant Λ < 0. In the vacuum, the Ricci tensor Rµν and thus Ricci scalar
R are determined by the cosmological constant as

Rµν =
2

d − 1
Λgµν , R =

2(d + 1)

d − 1
Λ . (2.101)
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In the maximally symmetric case, where the Riemann tensor Rµναβ (or equivalently the
curvature 2-form Ωµ

ν ≡ 1
2R

µ
ναβdxα ∧ dxβ) takes the form of

Rµναβ = 2kgµαgνβ (Ωµ
ν = kdxµ ∧ dxν) , (2.102)

with some constant k, its trace R = kD(D− 1) determines the whole Riemann tensor via

k =
R

d(d + 1)
=

2Λ

d(d − 1)
. (2.103)

The metric is given as

ds2 = −(1 − kr2)dt2 +
dr2

1 − kr2
+ r2dΩ2

d−1 , (2.104)

= −
(

1 +
r2

L2

)
dt2 +

dr2

1 + r2/L2
+ r2dΩ2

d−1 , (2.105)

where we introduced AdS radius L ≡
√
−1/k, the typical length scale of the geometry.

This coordinate is called static coordinate. When the cosmological constant is positive
Λ > 0, this metric gives de Sitter space with Hubble constant H ≡

√
k, and has a Hubble

horizon at r = 1/H where the coefficient of dt2 vanishes.
To obtain other useful coordinates of AdSd+1 space, let us see how the space can also

be realized as an embedding in (d + 2)-dimensions. In fact, AdSd+1 can be given as a
time-like vector

−L2 = −X2
−1 − X2

0 + X2
1 + · · · + X2

d (2.106)

in the flat space R2,d with an additional time direction,

ds2 = −dX2
−1 − dX2

0 + dX2
1 + · · · + dX2

d . (2.107)

From this representation, we can easily see that AdSd+1 space has the isometry SO(d, 2),
which is identified with the conformal symmetry of the dual CFTd. By taking polar
coordinates for both the two-dimensional time and d-dimensional space,

X−1 = L cosh
ρ

L
cos

t

L
, (2.108)

X0 = L cosh
ρ

L
sin

t

L
, (2.109)

Xi = L sinh
ρ

L
Ωi, (2.110)

where ρ ≥ 0 is the radial direction and Ωi are angular coordinates of Sd−1 with
∑d

i=1 Ω2
i =

1, we arrive at a coordinate called global coordinate,

ds2 = dρ2 − cosh2 ρ

L
dt2 + L2 sinh2 ρ

L
dΩ2

d−1. (2.111)

The time direction t is originally periodic, but we take the universal covering of the
space by extending the cycle S1 to a line R, to avoid closed time-like curves. This global
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coordinate and the static coordinate are equivalent and related by the redefinition of the
radial coordinate, r/L = sinh ρ/L. Another redefinition r/L = tan θ compactifing the
radial direction into 0 ≤ θ ≤ π/2, gives another coordinate called conformal coordinate,

ds2 =
−dt2 + dθ2 + sin2 θdΩ2

d−1

cos2 θ
, (2.112)

whose t-θ plane is conformal to the flat metric −dt2 +dθ2. We can see that the spacetime
is a cylinder, sometimes called AdS cylinder, whose boundary R × Sd−1 at θ = π/2 is
sometimes called AdS boundary. The dual CFT is interpreted to be located at this
boundary, where the angular coordinates Ωi are identified with the coordinates of the
CFT.

While the dual CFT lives on a cylinder R×Sd−1 in the above coordinates, we can also
study the dual CFT located on a flat space R1,d−1 by taking a patch called Poincaré patch.
Poincaré patch covers only half the spacetime U+ > 0 (or U+ < 0), where U± ≡ X−1±Xd

is the light-cone coordinate in the embedded space R2,d−1. Deleting the other light-cone
coordinate U− by the constraint (2.106) and rescaling the remaining X coordinates as

(x0, . . . , xd−1) ≡ L

U+
(X0, . . . , Xd−1), (2.113)

the metric (2.107) becomes

ds2 =
L2

U2
+

dU 2
+ +

U2
+

L2
dx2

R1,d−1 = L2dx2
R1,d−1 + dz2

z2
, (2.114)

where dx2
R1,d−1 = −(dx0)2 + (dx1)2 + · · · + (dxd−1)2 is the flat metric and z ≡ L2/U+. We

usually take z > 0 patch corresponding to U+ > 0 patch, while z < 0 patch corresponds to
U+ < 0 patch. The AdS boundary is now located at z = 0, and whose shape is now a flat
space R1,d−1. The flat coordinates x’s are identified with the coordinates of CFT, and the
additional holographic z direction is naturally interpreted as the length scale in dual field
theories. In fact, the scaling symmetry included in SO(d, 2) acts on both z and x directions
as (x, z) → (eσx, eσz), while the Poincaré symmetry SO(d − 1, 1) ! Rd−1,1(⊂ SO(d, 2))
does not act on z and acts only on x directions as (xµ, z) → (Λµ

νxν +aµ, z). Generally, the
additional holographic direction in the bulk side is interpreted to represent the length scale
in the boundary side; the bulk geometry can be interpreted as a geometrical representation
of the RG flow of the dual field theory. Its UV physics is encoded near the AdS boundary
in the bulk, while its IR physics is encoded deeply inside the bulk.

Let us take the Euclidean version of AdSd+1 space, which is now realized as a time-like
vector

−L2 = −X2
−1 + X2

0 + X2
1 + · · · + X2

d (2.115)

in the flat space R1,d+1. We can then also study the dual CFT located on a thermal hy-
perbolic space S1×Hd−1, by taking a coordinate called hyperbolic coordinate or topological
black hole coordinate,

ds2 =

(
L

R

)2 (
R2

r2 − R2
dr2 +

r2 − R2

R2
dτ 2 + r2(du2 + sinh2 udΩ2

d−2)

)
, (2.116)
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which follows from the introduction of the coordinates

X−1 = L
r

R
cosh u , Xi = L

r

R
sinh u Ωi−1 (i = 2, . . . , d) , (2.117)

X0 = L
√

(r/R)2 − 1 sin(τ/R) , X1 = L
√

(r/R)2 − 1 cos(τ/R) . (2.118)

This metric has a black hole horizon at r = R, whose temperature β = 2πR is the period
of the τ cycle.

2.4.2 Holographic formulae for entanglements

As explained already in chapter 1, for static systems holographically dual to asymptoti-
cally AdS spaces with Einstein gravity, the entanglement entropy of a region A is holo-
graphically related to the area of the codimension-two bulk minimal surface γA anchored
at the entangling surface Σ = ∂A on the boundary, via the holographic entanglement
entropy formula or Ryu-Takayanagi (RT) formula (1.2) [41, 42],

SA = min
∂γA=∂A

Area[γA]

4GN
. (2.119)

It is proved that this formula fulfils the strong sub-additivity (2.93) expectedly [72,
73, 74], and its proof relies only on geometric discussions utilizing the minimality of the
surfaces, providing a geometrical interpretation to the quantum mechanical constraint.
The proof then suggests a profound way of the emergence of the spacetime geometry from
the quantum mechanical degrees of freedom. More inequalities that the formula satisfies
were studied to characterize the quantum theories which have a gravity dual [75, 76].

Many checks and studies have been performed for the holographic formula after its
proposal, while it took a while for the formula to be derived by [77]. The derivation
employs so-called Lewkowycz-Maldacena prescription, applying the replica trick explained
at (2.1.1) to holographic systems, and was extended to more general holographic formulae,
such as the formula for time-dependent systems [78, 79], for Rényi entropies [80], and for
higher derivative theories [81]. Let us review the former two extensions.

In the formula (1.2), the surface γA has the minimum area within the bulk time slice
whose normal vector is the timelike Killing vector of the static bulk geometry. It would be
meaningless to minimize the area of a surface in the whole bulk spacetime, since we can
reduce the area to any negative value by bending the surface into the timelike direction.
And so this formula originally applies only to static situations, but was generalized to a
covariantized formula called the covariant holographic entanglement entropy formula or
Hubeny-Rangamani-Takayanagi (HRT) formula [78],

SA = ext
∂γA=∂A

Area[γA]

4GN
, (2.120)

where the codimension-two bulk surface γA is now just the extremal surface instead of
the minimal surface. While RT formula takes the surface (called RT surface) with the
minimum area within the bulk time slice, HRT formula takes the surface (called HRT
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surface) with the extremal area in the whole bulk spacetime,6 and now applies to time-
dependent cases as well. If there are multiple extremal surfaces, we should choose the one
with the minimum area among them.

The holographic formula (1.2) is also generalized to Rényi entropies [80]. In fact, it
gives not Rényi entropy Sn,A (1.4) itself but some related quantity,

S̃n,A ≡ n2∂n

(
n − 1

n
Sn,A

)
, (2.121)

= (1 − n∂n) log Tr[ρn
A] , (2.122)

= ∂1/n

(
1

n
log Tr[ρn

A]

)
, (2.123)

which is recently named as modular entropy in [79]. Its holographic formula resembles
to the one for entanglement entropy, but is more intricate as the entropy is given by the
area of a cosmic brane with a tension depending on the parameter n, which is extremized
in the backreacted geometry. Similarly to the holographic entanglement entropy formula,
the modular entropy S̃n of a region A is given by the area of some codimension-two surface
C(n)

A in the dual gravity theory as

S̃n =
Area[C(n)

A ]

4GN

∣∣∣∣
δI=0, ∂C

(n)
A =∂A

, (2.124)

where the surface C(n)
A is anchored on ∂A on the asymptotic boundary of the bulk space-

time as well. Unlike the formula for entanglement entropies, however, the surface C(n)
A is

to be fixed by minimizing an n-dependent Euclidean action I = Ibulk + Ibrane. Here Ibulk

is the original bulk action in the dual gravity theory consisting of the Einstein-Hilbert
action, the cosmological constant term and matter terms

Ibulk[Gµν(X),ψ(X)] = IEH[Gµν(X)] + IΛ[Gµν(X)] + Imatters[Gµν(X),ψ(X)] , (2.125)

where Gµν(X) the bulk metric, ψ(X) matter fields, and Xµ (µ = 0, . . . , d) is the bulk
coordinate. If we extremize the codimension-two surface with this bulk action, we end up
with the RT surface γA for the holographic entanglement entropy. A new ingredient of
the prescription for the Rényi entropy is a cosmic brane action Ibrane of C(n)

A ,

Ibrane[Gµν(X), Xµ(y)] = Tn A[Gµν(X), Xµ(y)] , (2.126)

which is just the product of a brane tension Tn given by

Tn =
1

4GN

n − 1

n
, (2.127)

6There are many equivalent constructions of this surface γA, which look different. The extremal
surface explained above (called W in the original paper [78]), the surface with vanishing traces of extrinsic
curvatures (Yext), and a surface constructed by using light-sheets (Ymin

At
), are eventually all equivalent.

See the original paper for the detail.
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and the area of the surface C(n)
A

A ≡ Area[C(n)
A ] =

∫

C(n)
A

dd−1y
√

g(y) . (2.128)

Here Xµ(y) specify the embedding of the surface into the bulk, yi (i = 1, . . . , d − 1) the
embedding coordinate, and gij(y) the induced metric on Cn,

gij(y) = Gµν(X(y))
∂Xµ

∂yi

∂Xν

∂yj
. (2.129)

The main difference from the formula for entanglement entropies arises from the back-
reaction of the codimension-two surface to the bulk metric Gµν . Namely we extremize
the action including the cosmic brane:

0 =
δI

δGµν(X)
=

δIbulk

δGµν(X)
+ Tn

δA
δGµν(X)

, (2.130)

where the first term is the original bulk equation of motion, and the second term is
essentially the energy-momentum tensor of the cosmic brane C(n)

A . Note that C(n)
A is still

a minimal surface as the equation of motion for the embedding Xµ(y) shows:

δI

δXµ(y)
= Tn

δA
δXµ(y)

= 0 . (2.131)

This equation should be evaluated on the backreacted bulk metric Gµν . When there are
matter fields ψ, we also have to solve

δI

δψ
=

δImatters

δψ
= 0 , (2.132)

in the backreacted background Gµν . The holographic entanglement entropy formula (1.2)
is recovered from (2.124) in the limit n → 1 where the brane tension Tn vanishes and we
can neglect the backreaction of the brane.

2.4.3 Derivation of the holographic formula

Here we review the derivation of the formula (2.124) for modular entropy, which thus
includes the derivation of the formula (1.2) for entanglement entropy as the special case
when n = 1. To derive it, we employ the replica trick (2.24),

log Tr[ρn
A] = log Z[Mn,A] − n log Z[M1,A] , (2.133)

where Mn,A is the n-fold cover branched over the region A. In the classical gravity regime,
there exists a regular solution Bn of the Einstein equation holographically dual to the field
theory on the replica manifold Mn,A such that ∂Bn = Mn,A. The partition function Z is
equated to the on-shell bulk action on Bn:

Z[Mn] = Zbulk ∼ e−Ibulk[Bn] . (2.134)

29



The parameter n has been supposed to be an integer up to now, but we analytically
continue it to an arbitrary real number. Such an analytic continuation can be performed
in the bulk side by defining the “bulk per replica” manifold

B̂n = Bn/Zn, (2.135)

under the assumption that the replica symmetry Zn extends to the on-shell bulk solution
Bn [77].7 This quotient geometry B̂n has a conical singularity at a codimension-two fixed

locus C(n)
A of the Zn symmetry with a deficit angle

∆φ = 2π(1 − 1/n) . (2.136)

The fixed locus C(n)
A extends to the AdS boundary and touches on the entangling surface

∂A which is also fixed locus of the replica symmetry.
Next, let us define “bulk action per replica” I for the quotient B̂n, just by dividing

the bulk on-shell action Ibulk[Bn] by n,

I ≡ Ibulk[Bn]/n . (2.137)

This action I differs from Ibulk[B̂n] of the quotient bulk B̂n, and has an additional con-

tribution from the singularity at C(n)
A .8 Bearing in mind that B̂n is locally the same as

the original bulk Bn away from the conical singularity C(n)
A , the Ricci scalar R(X) of B̂n

takes the following form [83]

√
G(X)R(X)|B̂n

=
√

G(X)R(X)|Bn + 2∆φ

∫

C
(n)
A

dd−1y
√

g δd+1(X − X(y)) . (2.138)

Thus in the Einstein gravity IEH = − 1
16πGN

∫
dd+1X

√
G(X)R(X),

Ibulk[B̂n] = Ibulk[Bn]/n − ∆φ

8πGN

∫

C
(n)
A

dd−1y
√

g ,

= I − 1 − 1/n

4GN
A ,

(2.139)

which means that the action I includes the area term

I = Ibulk[B̂n] + Tn A , (2.140)

with the correct brane tension (2.127)

Tn =
∆φ

8πGN
=

1 − 1/n

4GN
, (2.141)

7See [82] for the discussion on the replica symmetry Zn breaking.
8Here our notation of Ibulk[B̂n] is different from that in other literatures such as [80]. Our Ibulk[B̂n]

includes the contribution from the conical singularity C(n)
A , while their Ibulk[B̂n] means Ibulk[B̂n\C(n)

A ] =
Ibulk[Bn]/n = I without the contribution from C(n)

A .
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and the area A (2.128) as desired.
A point of caution is that not Ibulk[B̂n] itself, but the combination I = Ibulk[B̂n]+Tn A

is on-shell with respect to the bulk fields Gµν(X) and ψ(X). This is clear from the relation
(2.137) and Bn being the regular solution for the action Ibulk[Bn].

The replica symmetry would constrain the embedding Xµ(y) to be the minimal sur-
face, δA/δXµ(y) = 0.9 We promote the embedding Xµ(y) to a dynamical variable and
minimize the action I with respect to Xµ(y) in order to analytically continue n to a real
number.

Combining the replica trick (2.133) and the holographic relation (2.134) together with
the definition of the action I (2.137), we have the expression

log Tr[ρn
A] = −(Ibulk[Bn] − n Ibulk[B1]) ,

= −n(I − I|n=1) ,
(2.142)

where the second term −I|n=1 ensures the normalization log Tr[ρA] = 0. Then the expres-
sion (2.123) gives This succinct form is convenient to derive the entropy S̃n

S̃n = −∂1/nI (2.143)

= −∂1/n

(
Ibulk[B̂n] +

(
1 − 1

n

)
A

4GN

)
(2.144)

= −δI[φ]

δφ

δφ

δ(1/n)
+

A
4GN

, (2.145)

where the first and second terms come from the variation of all the bulk fields φ =
{Gµν(X),ψ(X), Xµ(y)} and the tension Tn = (1− 1/n)/4GN , respectively. Imposing the
equations of motion, the first term vanishes δI/δφ = 0, and we reach the holographic
Rényi entropy formula (2.124)

S̃n =
A

4GN
. (2.146)

The derivation explains why one has to take into account the backreaction of the cosmic
brane to the geometry while extremizing the area.

2.4.4 Area law in holographic theories

Holographically, the area law term (2.48) of the entanglement entropy arises from the
infiniteness of AdS spaces. We can see it in any coordinate, but let us take Poincaré
patch (2.114) for simplicity. The spacetime volume of AdS space diverges in approaching

9We could justify this statement somewhat by a following rough argument. Consider how the area A
would change in the leading order of a perturbation ϵµ(y) of the embedding Xµ(y), in the bulk B̂n. In
the original bulk Bn, where n copies of B̂n are glued at the surface, let us call the vector ϵµ(y) toward
the i-th copy of B̂n as ϵµ

i (y). Since the original surface Xµ(y) is invariant under the replica Zn symmetry
shifting ϵµ

i (y) to ϵµ
i+1(y), the variation of the area δA

δXµ ϵµ
i does not depend on the label i and in fact

δA
δXµ ϵµ

i = δA
δXµ ϵµ. On the other hand, the sum of these vectors vanishes

∑n
i=1 ϵµ

i = 0 because of the
symmetry. Then 0 = δA

δXµ

∑n
i=1 ϵµ

i = n δA
δXµ ϵµ means that the area is minimal δA

δXµ = 0 .
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z → 0, and thus it is convenient to introduce a small IR cutoff z = ϵ to regulate its volume.
Since z direction corresponds to the length scale in field theory side, this IR cutoff in the
bulk corresponds to the length scale of UV cutoff in the dual field theory. The area of the
surface γA in the holographic entanglement entropy formula also diverges in z → 0 and is
regulated by this IR cutoff z = ϵ. Let us see how the holographic entanglement entropy
behaves in the limit ϵ → 0. The main contribution of its area comes from the region near
the boundary z ∼ ϵ,

Area[γA] ∼ Ld−1Area[Σ]

∫

ϵ

dz

zd−1
∼ Area[Σ]

Ld−1

ϵd−2
, (2.147)

and thus the holographic entanglement entropy behaves as

SA ∼ Ld−1

GN

Area[Σ]

ϵd−2
, (2.148)

which reproduces the area law term (2.48).

2.4.5 AdS3/CFT2

Let us see the simplest example, the holographic entanglement entropy of an interval
A = [−R,R] of length l = 2R at t = 0 in CFT2. This interval is located at z = 0 of the
dual AdS3,

ds2 = L2−dt2 + dx2 + dz2

z2
. (2.149)

The corresponding minimal surface γA is the geodesic connecting two points x = ±R at
t = 0 and z = 0, and is just a semi-circle

z2 + x2 = R2 , (2.150)

on which the induced metric is given as

ds2 = L2 R2dz2

z2(R2 − z2)
. (2.151)

From this expression, the length of the geodesic is explicitly calculated as

SA =
1

4GN

∫

γA

ds =
L

2GN

∫ l/2

ϵ

Rdz

z
√

R2 − z2
=

L

2GN
log

l

ϵ
. (2.152)

This entropy exactly reproduces the CFT2 result (2.59), thanks to Brown-Henneaux for-
mula [84]

c =
3L

2GN
, (2.153)

known for AdS3/CFT2 correspondence.
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2.4.6 Ball shaped regions in AdSd+1/CFTd

Let us see the next simplest example, the holographic entanglement entropy of an ball
r < R of radius R at t = 0 in CFTd. This ball is located at z = 0 of the dual AdSd,

ds2 = L2−dt2 + dr2 + r2dΩ2
d−2 + dz2

z2
. (2.154)

The corresponding minimal surface γA is just a semi-sphere

r2 + z2 = R2 , (2.155)

on which the induced metric is given as

ds2 = L2

(
R2dz2

z2(R2 − z2)
+

R2 − z2

z2
dΩ2

d−2

)
. (2.156)

From this expression, the length of the geodesic is explicitly calculated as

SA =
1

4GN

∫

γA

dA =
Vol(Sd−2)Ld−1

4GN

∫ 1

ϵ/R

(1 − y2)
d−3
2 dy

yd−1
(2.157)

=
Vol(Sd−2)Ld−1

4GN

(
1

d − 2

(
R

ϵ

)d−2

+
d − 1

2(d − 2)

(
R

ϵ

)d−4

+ . . .

)
(2.158)

where y ≡ z/R. This entropy expectedly has the area law term and sub-leading terms
whose power of R/ϵ decreases by two. This entropy has the constant term

(−)
d−1
2

Vol(Sd−2)Ld−1

4GN

B(d−1
2 , 1

2)

2
, (2.159)

in odd dimensions, and has the logarithmic term

(−)
d−2
2

Vol(Sd−2)Ld−1

4GN

B(d−1
2 , 1

2)√
2π

log
R

ϵ
, (2.160)

in even dimensions.
There is another method to calculate these ball entropies, by using the topological

black hole coordinate (2.116) [58]. The minimal surface is now given by the horizon
r = R of the black hole, and thus the holographic entanglement entropy is given by the
horizon area,

SA =
Vol(Hd−1)Ld−1

4GN
, (2.161)

namely, just the black hole entropy as Bekenstein-Hawking formula tells. The volume
integral of the hyperbolic space,

Vol(Hd−1) = Vol(Sd−2)

∫ log(2R/ϵ)

0

du sinhd−2 u , (2.162)

exactly reproduces the y integral (2.157) via a change of the variable, y = 1/ cosh u. This
story is exactly the gravity dual of the CFT calculation (2.81) using a conformal map to
a thermal hyperbolic space S1×Hd−1, which is located at the boundary of the topological
black hole coordinate.
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Chapter 3

A New Universality of Entanglement
in Gapped Theories and Holography

In gapped theories with a mass gap m, the 1/m expansion formula of entanglement
entropy (2.85) is proposed and numerically checked up to the order of 1/m3 for a disk
region in free massive theories [85, 86]. However, this 1/m expansion seems peculiar since
it implies that entropies in gapped theories are totally additive with respect to entangling
surfaces, while entropies are generally just sub-additive as (2.91). We checked how this
1/m expansion is valid by studying mutual information in gapped theories, because mutual
information can pick up non-additive terms and is easy to obtain numerically thanks to its
independence from the UV cutoff ϵ. If the 1/m expansion formula is exactly correct, the
mutual information would vanish. We take one of the simplest setup to realize meaningful
mutual information, namely, the mutual information I(B,C) between the inner disk B
and the compliment C of the outer disk of an annulus A, in three dimensions (see Fig. 3.1).

We numerically calculate the mutual information in a free field theory and a strongly
coupled theory holographically dual to a capped-off geometry, consulting literatures on
annular entropies in conformal field theories. In both cases, it is nonzero and decays
exponentially with the mass gap m as

I(B,C) ∼ e−#mδ , (3.1)

where δ is the width of the annulus. We speculate that this exponential behaviour is
universal for mutual informations in any gapped theory. Since mutual information is
composed of entanglement entropies, this speculation means that the 1/m expansion of
entanglement entropy should have exponential corrections,

SA = α
ℓΣ

ϵ
+ β m ℓΣ − γΣ +

∞∑

n=0

cΣ
2n+1

m2n+1
+ O(exp[−mδ]) , (3.2)

where δ would be proportional to the shortest distance between disjoint entangling surfaces
and δ ∝ R2 − R1 for the annulus. This term has not been noticed so far because of
its smallness, and is somewhat non-local in that it is not additive with respect to the
entangling surfaces.

This chapter is based on the author’s work [1] with T.Nishioka.
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3.1 Mutual information across an annulus

In this section, we review general properties of the mutual information I across an annulus
A in gapped systems and CFT’s, explaining how it is obtained from the entanglement
entropy of the annulus.

We take B and C to be two regions outside A, namely, a disk of radius R1 and the
complement of a disk of radius R2, respectively (see Fig. 3.1). We can interpret this mutual
information as how much quantum information is shared by B and C across the annulus
A. Since the entanglement entropy of a given region is equal to that of the complement
in pure states, SC and SB∪C equal the entropies of a disk of radius R2 and an annulus
of inner and outer radii R1 and R2, respectively. The mutual information I across the
annulus A then reduces to

I(R1, R2) ≡ I(B,C) = Sdisk(R1) + Sdisk(R2) − SA(R1, R2) . (3.3)

In this setup, the monotonicity of mutual information (2.95) translates into the mono-
tonicity with respect to the radii R1, R2:

∂

∂R1
I(R1, R2) ≥ 0 ,

∂

∂R2
I(R1, R2) ≤ 0 . (3.4)

In the following, let us review these entropies in CFT’s and in gapped theories, respec-
tively.

BC

A = B ∪ C

R1

R2

Figure 3.1: The entangling regions for the mutual information. The region B is a disk of
radius R1. The region C is the complement of a disk of radius R2. The complement of
the union of the two regions B ∪ C is the annulus A in the red colored region.

3.1.1 Mutual information in CFT’s

In CFT’s, as mentioned in chapter 2, the entanglement entropy for a disk of radius R
takes a form of

Sdisk(R) = α
2πR

ϵ
− F , (3.5)
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where the second term is a constant F = − log Z[S3]. The form of the entropy for an
annulus A of the inner radius R1 and the outer radius R2 is also fixed by the conformal
symmetry as

SA(R1, R2) = α
2π(R1 + R2)

ϵ
− f(R2/R1) , (3.6)

where the first term is just the area law (2.48) and the second term f is a function of the
ratio R2/R1(> 1) of the radii. This function f should be monotonically decreasing and
convex

f ′(ρ) ≤ 0 , f ′′(ρ) ≥ 0 , (3.7)

with respect to the new variable ρ = log(R2/R1)(> 0), due to the strong subadditivity

SB + SC ≥ SB∪C + SB∩C . (3.8)

In what follows, we review the derivation of (3.7) given by [87].
Let the regions B and C be a disk of radius R2 and an annulus of radii R1 and R3

with R1 < R2 < R3 as in Fig. 3.2 (a). The strong subadditivity (3.8) together with (3.6)
and (3.5) yields the monotonicity in (3.7):

f(R3/R1) ≤ f(R2/R1) . (3.9)

The convexity in (3.7) can be derived similarly by taking both B and C as an annulus of
radii R2 and R4, and an annulus of radii R1 and R3 satisfying R1 < R2 < R3 < R4 as in
Fig. 3.2 (b). In the R4 → R3 limit, the strong subadditivity

f(R4/R2) + f(R3/R1) ≤ f(R4/R1) + f(R3/R2) , (3.10)

reduces to the monotonicity of f ′(ρ).
As a result, in CFT’s, the mutual information becomes

ICFT(R2/R1) = f(R2/R1) − 2F , (3.11)

with the constant F in the disk entropy (3.5), and the inequality I ′(R2/R1) ≤ 0 (3.4) are
equivalent to the monotonicity of f that was already derived in (2.93).

3.1.2 Mutual information in gapped theories

In gapped theories, if the 1/m expansion (2.85) is valid, the entanglement entropies of a
disk and an annulus would take the form of

Sdisk(R,m) = α
2πR

ϵ
+ 2πβ mR − γΣR +

∞∑

n=0

cΣR
2n+1

m2n+1
,

SA(R1, R2,m) = α
2π(R1 + R2)

ϵ
+ 2πβ m (R1 + R2) − γΣR1,R2

+
∞∑

n=0

c
ΣR1,R2
2n+1

m2n+1
,

(3.12)
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B

C

R1

R2

R3

(a)

B

C

R1

R2

R3

R4

(b)

Figure 3.2: The subsystems B (in light gray) and C (in dark gray) to prove the mono-
tonicity (a) and the convexity (b) of the function f in (3.6). The striped regions are the
intersections B ∩ C.

where ΣR is a circle of radius R and ΣR1,R2 = ΣR1 + ΣR2 is two concentric circles of radii
R1 and R2. Because all the terms are additive with respect to entangling surfaces Σ,
they cancel out in the combination of the mutual information, and so the 1/m expansion
predicts that the mutual information vanishes,

Igapped(mR1,mR2) = 0 . (3.13)

In the following sections, we will use these mutual informations (3.11) and (3.13) to
determine the function f in CFT and to check the validity of the large mass expansion
formula (2.85) in the case of the annulus.

3.2 Mutual information for a free massive scalar

Let us apply the general discussion on the mutual information in section 3.1 to a free
massive scalar field whose action is defined by

I =
1

2

∫
d3x

[
(∂µφ)2 + m2φ2

]
. (3.14)

In this case, the coefficients β and γ in the entropy (3.12) are known to be β = −1/12
and γ = 0.1 The coefficients cΣ

2n+1 are calculated [85, 86] up to n = 1, being local integrals

1The topological entanglement entropy vanishes because the massive scalar theory reduces to an empty
theory in the IR limit.

37



of functions of the extrinsic curvature κ and κ’s derivatives on the Σ. For example,

c1 = −
n0 + 3n1/2

480

∫

Σ

dsκ2 , (3.15)

for n0 free scalar fields and n1/2 free Dirac fermions. In the present case, the entangling
surface ΣR1,R2 is two disjoint disks of radii R1, R2 whose extrinsic curvatures are κ =

1/R1, 1/R2. Thus c
ΣR1,R2
1 = − π

240(1/R1 +1/R2) for a single free scalar field. The constant
term F of the disk entropy (3.5) is analytically calculated as the free energy on a three-
sphere, Fscalar = (ln 2)/8− 3ζ(3)/16π2 ≃ 0.0638 [54]. The mutual informations (3.11) and
(3.13) are

Imassless = f(R2/R1) − 2Fscalar , (3.16)

Imassive = 0 . (3.17)

3.2.1 Numerical results for the mutual information

We perform the numerical calculation by putting a free scalar field on the radial lattice
following [51, 59], whose details can be found in Appendix A.1. The main results are
presented in Fig. 3.3 and 3.4.

m2 = 0
Numerical
h = 1ê4

0.0 0.5 1.0 1.5 2.0 2.5 3.0 log R2êR10.0

0.5

1.0

1.5

2.0
I

m2 = 0
Numerical
h = 1ê4
h = 1ê3

-2 -1 1 2 3 logHR2êR1-1L

-5

-4

-3

-2

-1

1
log I

(a) (b)

Figure 3.3: The mutual informations I across the annulus of radii R1 and R2 for the
free massless scalar field. (a) The mutual information I (the orange line) has the desired
monotonicity and convexity, and is well fitted by h/(R2/R1 − 1) (the black dotted line).
(b) However, this coefficient h is not a constant and increases with R2/R1 from h ≃ 1/4
(the black dotted line) to h ≃ 1/3 (the blue dotted line).

Fig. 3.3 shows the mutual information I (3.16) for the free massless scalar field. The
function f satisfies the desired monotonicity and convexity (2.93) with respect to ρ =
log(R2/R1) as is clear in Fig. 3.3 (a). The mutual information I asymptotically vanishes
for large R2/R1, which means that the function f has a finite constant term 2Fscalar.
This suggests that the finite constant term is topological and additive for each connected
component of the entangling surfaces, namely, proportional to the 0-th Betti number b0[Σ]
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of Σ. The numerical function I = I(R2/R1) is well approximated by h/(R2/R1 − 1) with
h ≃ 1/4 for small width, but h monotonically increases to h ≃ 1/3 for large R2/R1 (see
Fig. 3.3 (b)). We therefore propose that f is given by

f(R2/R1) =
h(R2/R1)

R2/R1 − 1
+ 2Fscalar , (3.18)

where h(R2/R1) is a mild monotonically increasing function of R2/R1 such that h ≃ 1/4
for R2/R1 ∼ 1 and h ≃ 1/3 for R2/R1 ≫ 1. These asymptotic values are consistent with
previous works [88, 89] as will be explained in the next subsections.

The mutual information (3.16) for the free massive scalar field is displayed in Fig. 3.4.
It is monotonically decreasing with the mass (i.e., decreasing with mR2 or mR1 while
R2/R1 being fixed), and almost vanishes for large mass (Fig. 3.4 (a)) as is consistent with
(3.17). In fact, Fig. 3.4 (b) demonstrates that the mutual information decays exponentially
with a “dimensionless width” m(R2 − R1),

Imassive ∝ m(R2 + aR1) exp[−bm(R2 − R1)] , (3.19)

with constants a and b. This exponential behaviour satisfies the expected monotonicity
(3.4). We will find similar decay even in the holographic model in section 3.3 and discuss
their possible universality in a gapped phase in section 3.4.
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Figure 3.4: The mutual informations I across the annulus of radii R1 and R2 for
scalar fields with different masses m. (a) I monotonically decreases with the mass m
(orange→blue→green→red). (b) In fact, it exponentially decreases with the dimension-
less width m(R2−R1). For m(R2−R1) ! 1, it shows I ∝ m(R2+aR1) exp[−bm(R2−R1)]
with a ≃ 2 ∼ 5 (a = 3 in the figure) and b ≃ 2.5.

3.2.2 Small and large width limits in CFT

The annulus with small width (R2/R1 ≈ 1) can be approximated by a thin strip of width
R2 − R1 extending along a circle of radius 2πR1 as in Fig. 3.5.2 The mutual information

2We thank T.Takayanagi for drawing our attention to this point.
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for the thin strip of width δ is shown to obey [88, 53]

I ≃ κ
A
δ

, (3.20)

where A is the area of the plane bounding the strip. This behavior was derived by
dimensionally reducing the thin strip to an interval in (1 + 1) dimensions for free fields
and summing the mutual informations over the Kaluza-Klein modes.

The coefficient κ is calculated for a free massless scalar field [88] to be κ = 0.0397.
Applying (3.20) to our case, we find

I ≃ 0.0397
2πR1

R2 − R1
=

0.249

R2/R1 − 1
, (3.21)

which fits our numerical result in the small width limit (h ≃ 1/4 in (3.18)) very well. One
may wonder if the small width limit of the mutual information (3.20) is universal and the
coefficient κ counts the number of degrees of freedom in any QFT. We will come back to
this point in section 3.4 where we calculate κ in a holographic model.

R1

R2

(a)

R1

R2 − R1

(b)

Figure 3.5: A thin annulus (a) can be approximated by a thin strip (b) with compactified
direction.

Next, consider the opposite limit where the width is large. Let wi, zi (i = 1, 2) be the
two-dimensional Cartesian coordinates related by an inversion transformation

(z − z0)i = R2
T

(w − w0)i

|w − w0|2
, (3.22)

where w0 is the inversion point. The inverse map is obtained by exchanging the role of w
and z in the transformation with the inversion point at z = z0. RT is a constant which
we can tune arbitrarily.
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Consider an annulus in the w-coordinates whose center is at the origin with radii
R1 < R2. Let the points at w2 = 0 on the outer circle be p1, p2 and on the inner circle be
q1, q2. We choose the inversion points w0 and z0 on the real axes at (w1, w2) = (R0, 0) and
(z1, z2) = (R′

0, 0), respectively. We assume w0 is inside the annulus, R1 < R0 < R2. Under
the transformation (3.22), the annulus is mapped to two disjoint circles3 (see Fig. 3.6) and
the points p1, p2 and q1, q2 are at the intersections of the real axis and circles of radii R′

1

and R′
2 given by

R′
1 = R2

T

R1

R2
0 − R2

1

, R′
2 = R2

T

R2

R2
2 − R2

0

. (3.23)

The distance between the centers of the two circles is

r′ = R2
T R0

R2
2 − R2

1

(R2
2 − R2

0)(R
2
0 − R2

1)
. (3.24)

The conformal symmetry implies that the cross ratio4 x is invariant under the conformal
transformation,

x =
|p1 − p2||q1 − q2|
|p1 − q2||p2 − q1|

, (3.25)

which in our case is

x =
4R1R2

(R1 + R2)2
=

4R′
1R

′
2

r′2 − (R′
1 − R′

2)
2

. (3.26)

R1

R2

w1q1q2 p1p2

w0 z1

R′
1

R′
2

q1q2p1 p2

z0

r′

Figure 3.6: The inversion map of an annulus to two disjoint circles. The region inside the
annulus in red color is mapped to the outside of the two circles in red color.

3We thank K.Ohmori and Y.Tachikawa for the discussions on this map.
4There are two cross ratios for four points. The other one is

y =
|p1 − p2||q1 − q2|
|p1 − q1||p2 − q2|

.
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In this way, we can calculate the entanglement entropy of two disjoint circles from
that of the corresponding annulus. The former was studied in [90, 91, 89] in the widely
separated limit for a free massless scalar field. The mutual information between the two
circles is [89]

I =
1

3

R′
1R

′
2

r′2
+ O

(
(R′

1R
′
2/r

′2)2
)

. (3.27)

The inversion maps (3.23) and (3.24) convert it to the mutual information of the annulus,

I =
1

3

1

R2/R1
+ · · · , (3.28)

in the large width limit (R2/R1 ≫ 1). What we observed in the previous subsection is
nothing but this asymptotic form consistent with numerical result shown in Fig. 3.3.

3.3 Holographic mutual information

In this section, we examine the mutual information across an annulus in CFT3 and a
gapped system holographically described by Einstein gravity in the (asymptotically) AdS 4

space. The essential device to gain the holographic mutual information is the holographic
formula of entanglement entropies (1.2). If there are multiple extremal surfaces, we always
pick one of them with least area, which yields a transition between minimal surfaces as
we vary a parameter such as a gap scale. In this sense, each extremal surface can be
regarded as a phase in QFT as we will see in the following.

3.3.1 In CFT3 dual to AdS4 background

We start with CFT3 dual to the AdS4 background

ds2 = L2dz2 − dt2 + dr2 + r2dθ2

z2
, (3.29)

with the AdS radius L. The original CFT3 is interpreted to live on the boundary z = 0
(or at z = ϵ ≪ 1 if UV regularization is needed).

The extremal surface respecting the rotational symmetry of the annulus is a solution
to the equation of motion for the action

I[r(z)] =
πL2

2GN

∫
dz

r(z)
√

1 + r′(z)2

z2
, (3.30)

with the boundary conditions r(0) = Ri (i = 1, 2) on its ends. There are two possible
extremal surfaces depending on their topologies:

• Two disk phase (Fig. 3.7 (2)): γA is the superposition of disconnected two disks,
each of them being given by

r(z) =
√

R2
i − z2 , (i = 1, 2) , (3.31)

respectively. This solution always exists independent of the size of the annulus.
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• Hemi-torus phase (Fig. 3.7 (1)): γA is a connected extremal surface. The analytic
solution is obtained in the following way [92, 93, 94]. It consists of two branches in
the (r, z)-plane as

r =

{
R1 exp [−f−(z/r)] ,

R2 exp [−f+(z/r)] ,
(3.32)

where the functions f±(x) are defined using the incomplete elliptic integrals5 by

f±(x) =
1

2
log(1 + x2) ± η xm

[
F

(
ω(x)|η2

)
− Π

(
1 − η2,ω(x)|η2

)]
, (3.34)

with the range 0 ≤ x ≤ xm ≡
√

2η2−1
1−η2 and ω(x) = arcsin

[
x/xm√

1−η2(1−x/xm)

]
. The

parameter η in the range η ∈ [1/
√

2, 1] is related to the ratio R2/R1 of the inner
and outer radii of the annulus as

log(R2/R1) = 2η

√
2η2 − 1

1 − η2

[
K(η2) − Π(1 − η2|η2)

]
. (3.35)

This solution is available only for (1 ≤)R2/R1 < 2.724.

The two disk phase is realized for the large width R2/R1 > 2.724 where it is the unique
solution, while it compete with the hemi-torus phase when R2/R1 < 2.724. In order to
fix the location of the phase transition, we calculate the mutual information I across the
annulus defined by (3.3). It is clear in the holographic setup that I > 0 signifies the
hemi-torus phase because I = 0 in the two disk phase.6 We benefit from the relevant
result of [94] to get the mutual information in the hemi-torus phase7

Ihemi-torus =
πL2

GN

[
E(η2) − (1 − η2)K(η2)√

2η2 − 1 − 1
− 1

]
, (3.37)

5The definitions of the incomplete elliptic integrals used here are

F(x|m) ≡
∫ x

0
dθ

1√
1 − m sin2 θ

,

Π(n, x|m) ≡
∫ x

0
dθ

1

(1 − n sin2 θ)
√

1 − m sin2 θ
,

(3.33)

and K(m) ≡ F(π/2|m) and Π(n|m) ≡ Π(n,π/2|m).
6The mutual information can vanish only in the large-N limit and there are O(1/N) corrections [95, 96]

for finite N . More generally, the mutual information is bounded from below.
7The elliptic integral of the second kind is defined by

E(m) ≡
∫ π/2

0
dθ

√
1 − m sin2 θ . (3.36)
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Figure 3.7: Two phases for the minimal surface in the AdS4 background: connected
hemi-torus phase (1) and disconnected two disk phase (2). Here the time t direction is
suppressed.
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whose plot is displayed in orange color in Fig. 3.8. It is a two-valued function whose
lower branch is always negative and the upper branch intersects with I = 0 at R2/R1 =
(R2/R1)critical ≈ 2.4. Since the holographic formula (1.2) selects the non-negative I, the
physical mutual information is given by Ihemi-torus for R2/R1 < (R2/R1)critical and I = 0
for (R2/R1)critical < R2/R1. It has a kink at R2/R1 = (R2/R1)critical caused by the
phase transition of the extremal surface γA. Comparing with the general form (3.11) of
the mutual information in CFT, Fig. 3.8 demonstrates the monotonicity and convexity
(2.93) of the function f with respect to ρ = log(R2/R1). In other words, the holographic
entanglement entropy of an annulus satisfies the strong subadditivity as guaranteed by
the holographic proof based on the minimality of the surfaces [72].

Phase
Connected
Disconnected
Realized

0.2 0.4 0.6 0.8 1.0 1.2 1.4 log R2êR10.0

0.5

1.0

1.5

2.0
I

Figure 3.8: The holographic mutual information I across the annulus of radii R1 and R2

for CFT. This mutual information I = I(R2/R1) has a phase transition at (R2/R1)critical ≃
2.4, and vanishes for R2/R1 > (R2/R1)critical because the disconnected two disk phase is
realized.

3.3.2 In a gapped system dual to the CGLP background

We move onto a gapped theory described by an asymptotically AdS geometry whose IR
region (away from the boundary) is capped off. As a concrete example, we use the CGLP
background [27] in M-theory dual to a (2 + 1)-dimensional QFT with a gap scale.

The CGLP background is a (3 + 1)-dimensional geometry times a seven-dimensional
internal manifold, which asymptotes to the AdS4 space times the Stiefel manifold V5,2. In
the Einstein frame, the metric is given by

ds2 = α(u)
[
du2 + β(u)

(
−dt2 + dr2 + r2dθ2

)]
+ gijdyidyj , (3.38)

where u is the holographic coordinate of the AdS4 ranging from the IR capped-off point
0 to the UV fixed point ∞. yi (i = 1, · · · , 7) are the coordinates of the internal manifold
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with a volume

V (u) =

∫ 7∏

i=1

dyi
√

det g , (3.39)

vanishing at u = 0. The functions in the metric are given by

α(u) =
H(u)1/3c2(u)

4
, β(u) =

4

H(u)c2(u)
,

V (u) =
317/8π4ε21/4

2
H7/6(u)(2 + cosh u)3/8 sinh3/2

(u

2

)
sinh3/2 u ,

H(u) =
L6

ε9/2
23/2311/4

∫ ∞

(2+cosh u)1/4

dt

(t4 − 1)5/2
,

c2(u) =
37/4ε3/2 cosh3(u/2)

2(2 + cosh u)3/4
,

(3.40)

with two dimensionful parameters L and ε. The parameter L is the AdS radius near
the boundary, determined by the number of M2-branes N and the Planck length ℓp as
L ≡ 3−2/32π1/3ℓpN1/6. The parameter ε, defining the size of deformation [97], has mass
dimension −4/3, letting H be dimensionless. V appears to depend on ε, but does not
indeed. By rescaling the boundary coordinates (t, r) appropriately, one can remove ε
completely from the metric if one wishes.

Let us take a look at the UV behavior of the metric (3.38) for a moment. When u is
close to the UV cutoff u → Λ ≫ 1, the function H(u) becomes

H(u) → 215/433/4 L6 e−9u/4 , (3.41)

and the other functions approach

α(u) → 9

16
L2 , β(u) → 23/23−5/2 L−6 e3u/2 ,

V (u) → 33π4L21/2 , c2(u) → 2−13/437/4e3u/4 .
(3.42)

The transformation z = 25/431/4L3e−3u/4 takes the metric to the Poincaré coordinates of
the AdS4 space near the boundary

ds2 → L2dz2 − dt2 + dr2 + r2dθ2

z2
+ · · · . (3.43)

Since the extremal surface for a small annulus localizes near the boundary, the entan-
glement entropy remains to have the previous two phases shown in Fig. 3.7 in the CGLP
background. In addition, there are new phases for a large annulus whose minimal surfaces
can reach and terminate on the IR cap-off as we describe below. These are superposi-
tions of disk- and cylinder-type solutions for a disk region [65, 85] depicted in Fig. 3.9.
They have different topologies as the names suggest, and the cylinder-type solution only
exists and dominates for a large radius. This resembles the situation for a strip region
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z
z = ϵ

r

z
z∗
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(a) disk phase

γdisk

z
z = ϵ z = z0

r

z
z0

r∗R

(b) cylinder phase

Figure 3.9: Two phases of the extremal surface in calculating holographic entanglement
entropy of disks in the CGLP background: disk phase (a) and cylinder phase (b). In the
Poincaré coordinate z = 25/431/4L3e−3u/4, the UV boundary u = Λ corresponds to z = ϵ =
25/431/4L3e−3Λ/4 and the IR capped-off point u = 0 corresponds to z = z0 = 25/431/4L3.
In the cylinder phase, the extremal surface terminates on the IR capped-off point z = z0.
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in a gapped system, which is interpreted as a confinement/deconfinement phase transi-
tion [98, 99]. In the present case, the minimal surface switches from the disk-type to the
cylinder-type at the critical radius R = Rcritical ≃ 0.72/m, where m = ε−3/4 is the gap
scale determined by the CGLP metric. Taking into account these facts, we end up with
three superposed phases; two disk phase, one disk and one cylinder (disk-cylinder) phase,
and two cylinder phase. The first one has already appeared for CFT in the previous sub-
section (see Fig. 3.7). The second and third ones are drawn in Fig. 3.10. In total, there
are the four phases for the annulus in the CGLP background:

(1) the hemi-torus phase (Fig. 3.7 (1)) for R2 − R1 " 1/m.

(2) the two disk phase (Fig. 3.7 (2)) for R1, R2 < Rcritical,

(3) the disk-cylinder phase (Fig. 3.10 (3)) for R1 < Rcritical < R2,

(4) the two cylinder phase (Fig. 3.10 (4)) for Rcritical < R1, R2,

A

γA

z
z = ϵ z = z0

r

z
z0

R2

R1

(3) Disk-cylinder phase

A

γA

z
z = ϵ z = z0

r

z
z0

R2

R1

(4) Two cylinder phase

Figure 3.10: Two new disconnected phases for the minimal surface in the CGLP back-
ground: disk-and-cylinder phase (3) and two cylinders phase (4). In the Poincaré co-
ordinate z = 25/431/4L3e−3u/4, the UV boundary u = Λ corresponds to z = ϵ =
25/431/4L3e−3Λ/4 and the IR capped-off point u = 0 corresponds to z = z0 = 25/431/4L3.

There are apparently overlaps between the first phase and the others, where the one
with the least entropy is realized. To classify the phase structure, we calculate the holo-
graphic entanglement entropy in a similar way to the previous pure AdS case. The rota-
tional symmetry lets us assume the radial coordinate r of the extremal surface γA as a
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(two-branched) function r± = r±(u) of the holographic coordinate u. The area functional
becomes

I [r(u)] =
π

2GN

∑

±

∫
du r±(u) g(u)

√
1 + β(u)(r′±(u))2 , (3.44)

with g(u) = V (u)α(u)β1/2(u). The extremal surface r = r(u) should satisfy the equation
of motion

2 g(u)
√

1 + β(u)(r′(u))2 = ∂u

[
r(u)g(u)β(u)r′(u)√

1 + β(u)(r′(u))2

]
, (3.45)

with the boundary conditions r+(∞) = R2 and r−(∞) = R1. In contrast to the CFT case,
the analytic solution remains to be known. Instead, we employ the numerical calculation
by the “shooting method”.

• In the hemi-torus phase, we solve the equation of motion (3.45) from the tip (r, u) =
(r∗, u∗) where the two branches meet and have an expansion

r±(u) = r∗ ± 2

√
g(u∗)

g(u∗)β′(u∗) + 2g′(u∗)β(u∗)

√
u − u∗ + O((u − u∗)

3/2) . (3.46)

The radii of the annulus (R2, R1) = (r+(u = ∞), r−(u = ∞)) are functions of
(r∗, u∗), respectively.

• In the three disconnected phases, the extremal surfaces γA for the annulus are
obtained just by summing the two extremal surfaces γdisk(R1) and γdisk(R2) for two
disks of radii R1 and R2. The extremal surface γdisk(R) for a disk in the CGLP metric
was obtained [85] as follows. The disk-type solution can be constructed by solving
the equation of motion (3.45) from the tip of the disk (r, u) = (0, u∗), where the
extremal surface shrinks as

r(u) = 2

√
2g(u∗)

2β(u∗)g′(u∗) + g(u∗)β(u∗)

√
u − u∗ + O((u − u∗)

3/2) . (3.47)

On the other hand, the cylinder-type solution extends to the IR capped-off point
u = 0 and we solve the equation of motion (3.45) from (r, u) = (r∗, 0) where the
extremal surface terminates and behaves as

r(u) = r∗ +
1

8r∗β(0)
u2 + O(u3) . (3.48)

The disk radius R = r(∞) is given as a function of u∗ or r∗, respectively.

After solving the equation of motion numerically, we compare the holographic en-
tanglement entropies (3.44) between the four phases. The resulting phase diagram is
presented in Fig. 3.11. It shows that the hemi-torus phase is realized when the width of
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Figure 3.11: The phase diagram of the entanglement entropy for an annulus of radii R1

and R2. The hemi-torus phase is favored when the width of the annulus is small compared
to the gap scale.

the annulus is small against the gap scale. Note that there is no phase for R2/R1 < 1
since R2 is the outer radius of the annulus.

The mutual information (3.3) across the annulus vanishes in all the disconnected
phases, and I > 0 only in the hemi-torus phase. Fig. 3.12 shows I as a function of
log(R2/R1) with mR2 fixed. It is positive and decreases as R2/R1 becomes large, but
vanishes at some point due to the phase transition from the hemi-torus phase to a discon-
nected phase. It is also monotonically decreasing with the mass for a fixed R2/R1, and
as shown in Fig. 3.13, it exhibits the same exponential decay (3.19) as in the massive free
scalar with different constants a, b.

3.4 Universal behaviors of quantum entanglements

In the last two sections, we have dealt with the mutual informations I(R1, R2) across
the annulus or the annulus entropies SA(R1, R2) for the free massive scalar theory and
the holographic model. In this section, we will compare these two cases, and attempt to
identify universal behaviors of quantum entanglement.

First we consider the small width limit of the mutual information in CFT. From the
field theory result, we anticipate (3.20) holds even in the holographic model. Since the
hemi-torus phase is always favored in the small width limit, we can make use of the
relations (3.35) and (3.37). A short calculation yields the small width behavior (3.20)
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mR2 exp[−b′ m(R2 − R1)] with b′ ≃ 10. For m(R2 − R1) ! 0.3, this exponential be-
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with the coefficient κhol given by8

κhol ≡
L2Γ[3/4]4

2πGN
. (3.49)

It is plausible that κ in (3.20) counts the effective degrees of freedom in a given QFT
because it is proportional to the number of fields in free field theories which characterize
the UV fixed point detected by the small width limit of the mutual information. Indeed,
the κhol in the holographic model decreases under any RG flow thanks to the holographic
c-theorem [101, 102, 67, 68] that provides the constraint LUV ≥ LIR for the AdS radii in
the UV and IR fixed points. Similar story may hold for the mutual information through
two concentric (d − 2)-sphere separated by a short distance δ which behaves as I ≃
κ Area(Sd−2)/δd−2 in d ≥ 4 dimensions [88, 53]. We do not explore this possibility in this
thesis, but hope to investigate it in the future.

In gapped systems, we observed the exponential decay of the mutual information
(3.19), both for the free massive scalar field and the strongly coupled theory described by
CGLP background, in spite of their difference in the coupling strength. These observations
indicates that this exponential behaviour would be universal for mutual informations in
gapped theories. It implies the existence of an exponentially suppressed correction to the
proposal (2.85),

SA = α
ℓΣ

ϵ
+ β m ℓΣ − γΣ +

∞∑

n=0

cΣ
2n+1

m2n+1
+ O(exp[−mδ]) , (3.50)

where δ is the typical length scale of the region A and would be proportional to the shortest
distance between disjoint entangling surfaces. We conjecture that this is a universal
property of entanglement entropy in any gapped system. This resembles the universal
thermal corrections in entanglement entropy [103, 104, 105, 106, 107] and it would be
intriguing to find a relationship between them.

8See [100] as a recent related work.
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Chapter 4

Time-dependent Entanglement and
Holography

The holographic formula (1.2) applies only to static situations, and was generalized to
the covariantized formula (2.120), which now applies to time-dependent cases as well.
Some studied black hole dynamics holographically with this formula, by some clever but
mysterious tricks to obtain time-dependent situations in static black hole geometries, AdS-
Schwarzschild black holes and BTZ black holes [108]. The resultant quantum states are
interpreted as thermalizing states, and they found that a certain type of entanglement
entropies grow linearly with time as expected from field theories calculations of global
quench processes [109], and they attributed the linear growth to the growth of the volume
of time slice or wormhole through a black hole in the bulk side. On the other hand,
our study takes a concrete time-dependent growing black hole geometry from the first,
namely, the three-dimensional time-dependent Janus black hole geometry [15, 16, 110] 1,
which is one parameter generalization of BTZ black hole and whose dual thermalizing
CFT state was proposed already. With this setup, we demonstrate that entanglement
entropies can grow linearly with time even without growth of time slice or wormhole in
the bulk side, and speculate that what is truly needed for entropies to grow linearly is the
invasion of the corresponding bulk surface into the event horizon of black holes.

This chapter is based on the author’s work [2] with N.Ogawa and T.Ugajin.

4.1 The time-dependent Janus black hole

Here we review the properties of the three dimensional time-dependent Janus black hole
with emphasis on its causal structure and dual CFT interpretation.

1There is also a static type of Janus deformation of BTZ black hole [110].
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4.1.1 The metric

The Janus black hole has the metric

ds2 = L2 dµ2 − dτ 2 + r2
0 cos2 τdθ2

g(µ)2
, (4.1)

where we take its horizon radius as Lr0 so that the only dimensionful quantity is the AdS
radius L. The conformal factor

g(µ) =
cn(κ+µ, k2)

κ+ dn(κ+µ, k2)
(4.2)

depends on Janus deformation parameter γ via subsidiary constants

κ± ≡

√
1 ±

√
1 − 2γ2

2
, k ≡ κ−

κ+
. (4.3)

The parameter takes a value within 0 ≤ γ ≤ 1/
√

2, and controls the strength of the time
dependence of the geometry. This geometry of non-zero γ is time-dependent in that it
has no timelike Killing vector, and it becomes static only when γ = 0 with g(µ) = cos µ,
reducing to just BTZ black hole with an inverse temperature

β =
2π

r0
, (4.4)

in the unit of the AdS radius L. And so the Janus black hole is a one-parameter gen-
eralization of BTZ black hole. Its Penrose diagram drawn in the conformally flat (µ, τ )
directions is shown in Figure 4.1. The conformal boundaries g(µ) = 0 are still two-sided
and located at µ = ±µ0, where µ0 ≡ K(k2)/κ+ and K(k2) is the complete elliptic in-

tegral of the 1st kind, K(k2) ≡
∫ π/2

0 dθ/
√

1 − k2 sin2 θ. As a consequence of the time
dependence, its apparent horizons,

tan τ = − d

dµ
log g(µ) , (4.5)

which are defined in each constant time τ slice, differs from its event horizon, τ − π/2 =
µ − µ0. Since the width 2µ0 between the two conformal boundaries in the µ coordinate
increases with γ, the diagram becomes wider than that of BTZ black hole.

In the result, the Janus black hole with non-zero γ > 0 has a finite region causally
disconnected from the conformal boundaries µ = ±µ0. It is an interesting question how
the boundary theory encodes information on such a bulk region causally inaccessible from
the boundary, which is called causal shadow region [111, 112]. It is known that HRT
surface can invade the event horizon while RT surface cannot, and so HRT surface can
probe causal shadow region. This indicates that we can draw some information on causal
shadow holographically from time-dependent entanglement entropies.

This metric is a solution of the three-dimensional Einstein gravity with a scalar φ,

S =
1

16πG

∫
d3x

√
g

(
R − gab∂aφ∂bφ +

2

L2

)
, (4.6)
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Figure 4.1: Penrose diagram of the three-dimensional time-dependent Janus black hole.
The two conformal boundaries are located at µ = ±µ0 (thick lines), and the diagram
is a wide rectangle because µ0 ≥ π/2. The blue and red lines represent, respectively,
the future and past event horizons which intersect with the right hand side boundary.
The yellow shaded region corresponds to the “causal shadow” region, which is causally
disconnected from the both boundaries. The apparent horizons (green line) in time slices
τ = const. are located inside the future event horizon.

where the scalar field has a configuration monotonically changing in the holographic di-
rection,

φ = φ0 +
√

2
(
tanh−1(k sn(κ+µ, k2)) + log

√
1 − k2

)

= φ0 +
√

2
(
tanh−1(k tanh y) + log

√
1 − k2

)
. (4.7)

The scalar field values φ± ≡ φ(y = ±∞) on the right and left boundaries then differ by
a γ dependent value

φ+ − φ− = 2
√

2 tanh−1 k =
√

2 tanh−1
√

2γ . (4.8)

This three-dimensional system can be embedded in type IIB supergravity in ten dimen-
sions with an appropriate ansatz [15]. Then in the same way as the standard D1-D5 black
hole [19, 20, 8], the boundary CFTs are given as the IR fixed points of the two-dimensional
N = (4, 4) supersymmetric SU(N1) × SU(N5) quiver field theories, which turn out to be
σ-models on the instanton moduli space M = MN1N5

4 /SN1N5 . The bulk scalar field φ
is identified with the dilaton field, and hence the boundary values φ± are related to the
coupling constants g± of those boundary quiver theories [15]. In terms of the IR σ-models,
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this difference in the boundary values leads to the difference in the overall coefficients of
the actions on the two boundaries.

4.1.2 The CFT interpretation

In applying AdS/CFT techniques, another time coordinate t related to τ as

tanh r0t ≡ sin τ (4.9)

is useful, because the flat metric −dt2 + dθ2 of the dual CFT becomes manifest in its
metric,

ds2 = L2

[
dy2 +

r2
0

g̃(y)2 cosh2 r0t
(−dt2 + dθ2)

]
. (4.10)

Here we have also introduced another radial coordinate y related to µ as

tanh y ≡ sn(κ+µ, k2) , (4.11)

which measures the proper length, dy = dµ/g(µ), and we have rewritten the factor g(µ)
in terms of this new coordinate y as

g̃(y) ≡ g(µ(y)) =
1

κ+

√
(1 − k2) cosh2 y + k2

=

√
2

1 +
√

1 − 2γ2 cosh 2y
. (4.12)

The conformal boundaries µ = ±µ0 are mapped to the infinities, y → ±∞, while the
origin µ = 0 corresponds to the origin y = 0. Moving on to the conformal boundaries
y → ±∞, the metric (4.10) approaches to Poincaré patch of the pure AdS space,

ds2 = L2dz2 − dt2 + dθ2 + O(z)

z2
, (4.13)

with an identification

z ≡ 2
4
√

1 − 2γ2 r0

e−|y| cosh r0t . (4.14)

Hence the UV cutoff ϵCFT of the CFT is given as

ϵCFT =
2

4
√

1 − 2γ2 r0

e−y∞ cosh r0t∞ , (4.15)

where y∞(≫ 1) is the corresponding bulk volume regulator and t∞ represents the time
coordinate t for the CFT located at y = ±y∞.

Next, let us review the quantum state dual to the Janus black hole. In the case when
γ = 0, it reduces to just BTZ black hole, which is known to be dual to the thermofield
double state of the inverse temperature β (4.4) [12, 113],

|Ψ⟩ =
1√
Z

∑

n

e−
β
2 En |En⟩|En⟩ . (4.16)
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As explained in the previous subsection, if we turn on the parameter γ, the Hamiltonians
H± on the right and left boundaries become different, and so it is conjectured [16] that
the Janus black hole is dual to a state that is a natural extension of the thermofield double
state,

|Ψ⟩ =
1√
Z

∑

m,n

e−
β
4 (E−

n +E+
m)⟨E+

m|E−
n ⟩|E+

m⟩|E−
n ⟩ , (4.17)

where E±
n ’s are eigenvalues of H±. This state can also be constructed by Euclidean path

integral in the same way as the themofield double state. This conjecture has passed some
nontrivial checks. For example, the one point function of the Lagrangian density was
computed in both the bulk and boundary sides, which agrees up to the second order in γ
[15, 16].

4.2 The holographic EE of an interval

In this section, we compute the entanglement entropy of an interval A holographically in
the Janus black hole via the covariant holographic entanglement entropy formula (2.120),
and study its time dependence. The interval A is taken as −θ∞ ≤ θ ≤ θ∞ in the right
CFT, at a fixed time t = t∞ (see Figure 4.2). The extremal surface γA can be obtained
by solving Euler-Lagrange equations for the area functional,

A[t(y), θ(y)] ≡ L

∫ y∞

y∗

dy

√

1 +
r2
0

g̃(y)2 cosh2 r0t
(−ṫ2 + θ̇2) (4.18)

with dynamical variables t(y) and θ(y) as for the “time” parameter y, where the dot (˙)
denotes the “time” derivative, d/dy. As shown in Fig. 4.2, the surface is just a geodesic
in the right region y > 0 and thus its one-dimensional area or length A is given as a y
integral from the boundary y = y∞ to the returning point y = y∗, at which the derivative
θ̇ of the surface (t, θ) = (t(y), θ(y)) diverges. Now the bulk volume regulator y∞ also
regulates the area functional. The location (y∗, t∗) of the returning point is determined by
the boundary coordinates (t∞, θ∞), and so we can represent the area A as a function of the
boundary coordinates as A = A(t∞, θ∞), by substituting the expression y∗ = y∗(t∞, θ∞)
into the integral (4.18).

We will see that this extremal surface can invade the event horizon, and its area
depends on the boundary time t∞.

4.2.1 Area of the extremal surface

Surprisingly, we can solve the Euler-Lagrange equations for t(y) and θ(y) in the following
way. The action (4.18) has a conserved charge J associated to its θ translation symmetry,

J ≡ δA/L

δθ̇
=

1

g̃(y) cosh r0t

r2
0 θ̇√

g̃(y)2 cosh2 r0t + r2
0(−ṫ2 + θ̇2)

, (4.19)
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Figure 4.2: The subsystem A (the red line) is taken as one interval of the length ∆θ = 2θ∞
in the right boundary (the right black square). The extremal surface γA (the blue curve)
is located totally in the right side y > 0.

which can also be expressed by the location (y∗, t∗) of the returning point as

J =
r0

g̃(y∗) cosh r0t∗
, (4.20)

since θ̇ in (4.19) diverges at the returning point. Utilizing this constant J , we can rewrite
the equation of motion for t(y) into an equation for t(θ) as

d

dy

δA

δṫ
− δA

δt
= 0 ⇔ d

dy

(
J

ṫ

θ̇

)
= Jr0

−ṫ2 + θ̇2

θ̇
tanh r0t (4.21)

⇔ d2t

dθ2
= r0

[
1 −

(
dt

dθ

)2
]

tanh r0t , (4.22)

without any appearance of the “time” y. Its general solution is given by sinh r0t =
sinh A cosh r0(θ + B) with some constants A and B, which are determined by geometrical
conditions θ|y=y∗ = 0 and dt/dθ|y=y∗ = 0 as

sinh r0t = sinh r0t∗ cosh r0θ . (4.23)

This relation allows us to erase the dynamical variable θ, and the equation for the con-
servation of J (4.19) gives a first order differential equation for the remaining variable
t,

ṫ =
cosh r0t

r0g̃(y∗) cosh r0t∗

√
cosh2 r0t − cosh2 r0t∗

1 − (g̃(y)/g̃(y∗))2
, (4.24)

which has a unique solution
√

1 − sinh2 r0t∗
sinh2 r0t

(= tanh θ) = cosh r0t∗ tanh

[∫ y

y∗

dy
g̃(y)2

√
g̃(y∗)2 − g̃(y)2

]
, (4.25)

58



under the initial condition t(y∗) = t∗. This expression gives the solution (t(y), θ(y)) in
terms of the location (y∗, t∗) of the returning point, which is determined by the boundary
value (t∞, θ∞) via the boundary condition t(y∞) = t∞, θ(y∞) = ±θ∞ and equations
(4.23), (4.25) as

sinh r0t∗ =
sinh r0t∞
cosh r0θ∞

, (4.26)

sinh

[∫ y∞

y∗

dy
g̃(y)2

√
g̃(y∗)2 − g̃(y)2

]
=

sinh r0θ∞
cosh r0t∞

. (4.27)

Note that there are bulk points which cannot be returning points for any boundary value
(t∞, θ∞), and so there exists a region which cannot be reached by the extremal surfaces
(see Fig. 4.3). It would be interesting if generally HRT surface can invade the event
horizon but cannot invade the apparent horizon.

g2 = 0.3
surface can reach
event horizon
apparent horizon

0.0 0.5 1.0 1.5 m0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

t

Figure 4.3: How deeply the extremal surfaces can go inside the Janus black hole (with
γ2 = 0.3 in the figure). The shaded orange region represents where the extremal surfaces
can pass through. The extremal surfaces can go beyond the event horizon (blue line), but
cannot go beyond the apparent horizon (green line).

Now we can represent the area (4.18) of the solution as a function of the boundary
value (t∞, θ∞),

A(t∞, θ∞)/L = 2

∫ y∞

y∗

dy
g̃(y∗)√

g̃(y∗)2 − g̃(y)2
, (4.28)

by plugging (4.23) and (4.24) into its definition, where y∗ is implicitly determined by
(t∞, θ∞) via the relation (4.27). This area has a UV divergence −2 log ϵCFT, because
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approaching to each boundary, g̃(y) → 0 and so

A/L → 2

∫ y∞

dy ∼ 4y∞ = 2 log
2 cosh r0t∞

4
√

1 − 2γ2 r0ϵCFT

. (4.29)

This UV divergence can be regularized as

A(reg)/L ≡ A/L + 2 log ϵCFT

= A/L − 1

2
log(1 − 2γ2) + 2 log

2 cosh r0t∞
r0

− 2y∞ . (4.30)

4.2.2 Some special limits

It is generally difficult to obtain the explicit expression of the surface area A in terms of
the boundary value (t∞, θ∞), but there are some limits in which it is explicitly obtainable:

• A large interval (θ∞ ≫ r−1
0 ) in the early time (t∞ ≪ θ∞)

• A large interval (θ∞ ≫ r−1
0 ) in the late time (t∞ ≫ θ∞)

• A small Janus deformation (γ ≪ 1)

A large interval in the early time

In this parameter region, the returning point (y∗, t∗) is very close to the origin (0, 0), as
can be seen in a following way. The t∗ is determined by (4.26) as

r0t∗ ≃ 2e−r0θ∞ sinh r0t∞ (≪ 1) , (4.31)

where we used cosh r0θ∞ ≃ er0θ∞/2 and sinh r0t∗ ≃ r0t∗. The y∗ is determined by (4.27)
as

r0θ∞ − log cosh r0t∞ ≃
∫ y∞

y∗

dy
g̃(y)2

√
g̃(y∗)2 − g̃(y)2

(≫ 1) . (4.32)

This situation means y∗ ≪ 1, because the left hand side of (4.32) is very large while the
integral of the right hand side increases monotonically with decreasing y∗ and diverges in
the limit y∗ → 0. In fact, in the limit y∗ → 0, the integral of the right hand side can be
evaluated as

r0θ∞ − log cosh r0t∞ ≃ − 1√
κ2

+ − κ2
−

log

[
κ+ +

√
κ2

+ − κ2
−

4
y∗

]
, (4.33)
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by changing the integration variable from y to z ≡ tanh y. This expression gives y∗
explicitly in terms of (t∞, θ∞), and allows us to delete y∗ in the area integral and express
the regularized area as a function of (t∞, θ∞),

A(reg)(t∞, θ∞)/L ≃ 2κ+r0θ∞ + 2(1 − κ+) log cosh r0t∞ − 2 log

[
κ+ +

√
κ2

+ − κ2
−

2
r0

]
,

(4.34)

where we used a relation
∫ y∞

y∗

dy
g̃(y∗)√

g̃(y∗)2 − g̃(y)2

≃ − κ+√
κ2

+ − κ2
−

log

[
κ+ +

√
κ2

+ − κ2
−

4
y∗

]
− log

[
κ+ +

√
κ2

+ − κ2
−√

κ2
+ − κ2

−

]
+ y∞ (4.35)

which holds in the limit y∗ → 0. Note that the area linearly grows with both t∞ and θ∞,
in this parameter region, though their coefficients are different.

A large interval in the late time

In this parameter region, (4.26) and (4.27) lead to

2e−r0t∗ ≃
∫ y∞

y∗

g̃(y)2dy√
g̃(y∗)2 − g̃(y)2

≃ er0(θ∞−t∞) (≪ 1) , (4.36)

where we used sinh x ≃ cosh x ≃ ex/2 for x ≫ 1 and sinh x ≃ x for x ≪ 1. This expression
in turn implies y∗ ≫ 1, therefore the integrals in (4.36) and (4.28) can be respectively
approximated as

∫ y∞

y∗

g̃(y)2dy√
g̃(y∗)2 − g̃(y)2

≃ 2
4
√

1 − 2γ2
e−y∗ , (4.37)

∫ y∞

y∗

g̃(y∗)dy√
g̃(y∗)2 − g̃(y)2

≃ y∞ − y∗ + log 2 , (4.38)

where we also used y∞ − y∗ ≫ 1. By substituting (4.38) into (4.28), and by erasing y∞
and y∗ with the aid of (4.15), (4.36) and (4.37), we can evaluate the regularized area A(reg)

(4.30) as

A(reg)(t∞, θ∞)/L ≃ 2(r0θ∞ − log r0) , (4.39)

which does not depend on either of γ or t∞. Then in particular, it coincides with the
result for BTZ black hole (γ2 = 0).
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Expansion with the deformation γ2

So far, we have seen the early time t∞ ≪ θ∞ and the late time θ∞ ≪ t∞ behavior of the
extremal surface area for general γ, but the surface phase transition discussed in the next
section typically occurs at the intermediate time region t∞ ∼ θ∞. To obtain an analytic
expression applicable to the whole time region, let us evaluate the surface area up to the
lowest order of the deformation γ2. By expanding the relation (4.27) and the area integral
(4.28) up to the order of γ2, we get

A(reg)/L = 2 log

(
2

r0
sinh r0θ

)
− 1

2

(
3F 2 + 2

2
√

1 + F 2
coth−1

(√
1 + F 2

)
− 3

2

)
γ2 + O(γ4) ,

(4.40)

where

F (t, θ) =
cosh r0t∞
sinh r0θ∞

. (4.41)

The detail of this calculation is explained in Appendix B.1. Note that when γ = 0, it
reduces to the usual thermal result for BTZ black hole. In the early (F ≪ 1) and late
(F ≫ 1) time limits, it respectively reproduces the results (4.34) and (4.39) for large
intervals.

4.2.3 Time dependence

Let us summarize the typical time dependence of our holographic entanglement entropy
of one interval. Take a large interval θ∞ ≫ r−1

0 for simplicity. As seen in the previous
subsection, its entropy starts at nonzero value 2κ+r0θ∞ with the corresponding extremal
surface reaching at the origin (0, 0). The surface starts to depart from the origin toward
the right boundary, and the entropy grows linearly with the time t∞ with the speed of
2(1−κ+)r0. About after the surface escapes from the event horizon, the geometry around
the surface is almost just the pure AdS space and so the entropy becomes saturated at
the value of BTZ, 2r0θ∞.

This time-dependent behavior is very similar to the one in [108], which constructed a
time-dependent situation by applying some tricks to BTZ black hole. Both entropies grow
linearly at first, where the extremal surface is invading the event horizon, and become
saturated at the value of the thermal entropy at a time proportional to the region size,
where the extremal surface is almost the same as the one in pure AdS space. However,
our setup has significant differences from that old work:

• The surface invades the right horizon but does not go through the left horizon to
the other asymptotic region; it does not connect the two asymptotic regions. Then
the linear growth of its entropy is not related to any nice time slice or wormhole
connecting the two asymptotic regions, which the old work attributes the reason of
the linear growth to.

• The speed 2(1 − κ+)r0 at which the entropy grows is slower than one 2r0 of the
old work. The growing speed increases with γ, as is expected from the property of
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the geometry that the strength of its time dependence is controlled by the Janus
deformation γ.

• There is an initial entropy 2κ+r0θ∞, which decreases with γ. The entropy grows from
2κ+r0θ∞ to 2r0θ∞ at the speed of 2(1−κ+)r0, and so the time for the entropy to be
saturated can be estimated as the size of the interval θ∞. This time is independent
of γ, and is the same as that old work.

• Based on many numerical calculations, we found that the transition from the linearly
growing period to the saturated period is smoothed and not so sharp as in the old
work.

From the comparison between our work and the old work, we speculate that the origin
of the linear growth of the holographic entanglement entropies is not the growth of any
nice time slice or wormhole but is the invasion of the surface into the horizon.

4.3 HEE of two intervals and the phase transition

As explained before, one can also construct a holographic model displaying linear growing
entropies from just static BTZ black hole, by a clever and mysterious trick, namely, by
taking two intervals located separately in each CFT and by taking the time direction of one
CFT opposite [108]. With our time-dependent Janus black hole, here we also investigate
the one parameter γ generalization of that work, by taking two intervals separated in each
CFT and by taking the time direction opposite, in the same way. This entanglement can
be interpreted as some entanglement between the left and right CFT’s.

4.3.1 Two phases

We take our region A to be two disjoint same intervals −θ∞ ≤ θ ≤ θ∞ in each of the
left and right CFT’s at a fixed time t = t∞, that is, A = {(±y∞, t∞, θ);−θ∞ ≤ θ ≤ θ∞}
(see Figure 4.4). In the same way as the BTZ black hole, its corresponding extremal
surface still can take two types of topologies (see Figure 4.4), “connected phase” and
“disconnected phase”, even in the Janus black hole geometry (4.10).

The disconnected type consists of two disjoint geodesics which start from and end at
the same boundary (see Figure 4.4 (a)); starting from (±y∞, t∞,−θ∞), turning around
at (±y∗, t∗, 0) and ending at (±y∞, t∞, θ∞). This surface is just the two copies of the
surface we have studied already for one interval, where the new copy is a mirror image
of the original copy constructed by parity transformation y → −y; one copy is located
in the right region y > 0 and the other is in the left region y < 0. Consequently, in the
disconnected phase, the area of the corresponding extremal surface is just the two times
the area we studied already for one interval:

Adc = 2A . (4.42)

The connected type is a new ingredient, consisting of two geodesics which connect the
two boundaries (see Figure 4.4 (b)); starting from (y∞, t∞,±θ∞) and ending at (−y∞, t∞,±θ∞).
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Figure 4.4: The subsystem A (two red lines) is taken as two disjoint intervals of the same
length ∆θ = 2θ∞ in the right and left boundary (two black squares). The extremal surface
γA (blue lines) has two phases: disconnected phase (a) and connected phase (b).

Let us study the area functional of this type of surface. The area functional is extremized
when θ = const. (= ±θ∞), and then the area functional (4.18) becomes

A[t(y)]/L =

∫ y∞

−y∞

dy

√

1 − r2
0 ṫ2

g̃(y)2 cosh2 r0t
, (4.43)

for each of the two pieces of the surface (θ = ±θ∞). This functional has a conserved
charge E associated to its t-translation symmetry,

E ≡ δA/L

δṫ
=

−r2
0 ṫ

g̃(y) cosh r0t
√

g̃(y)2 cosh2 r0t − r2
0 ṫ2

⇔ ṫ =
−E g̃(y)2 cosh2 r0t√

r2
0 + E2 g̃(y)2 cosh2 r0t

. (4.44)

This charge E vanishes, however, because ṫ cannot change its sign and we have the
boundary condition

∫ y∞
−y∞

ṫ dy = t∞−t∞ = 0. In the result, the total area of the connected
extremal surface can be explicitly calculated as

Ac(t∞, θ∞)/L = 2 × 2y∞

= 4 log
2 cosh r0t∞

r0ϵCFT
− log(1 − 2γ2) , (4.45)

where we used the relation between the regulator y∞ and the CFT cutoff ϵCFT (4.15). We
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can regulate the UV divergence similarly as

A(reg)
c /L ≡ Ac(t∞, θ∞)/L + 4 log ϵCFT

= 4 log
2 cosh r0t∞

r0
− log(1 − 2γ2) . (4.46)

Note that the Janus deformation γ only appears in the constant term, and does not affect
the growing speed of the entropy, 4r0, in the connected phase. One interesting point is
that the constant term becomes arbitrarily large in γ2 → 1

2 limit. This illuminates the
fact that the length of the wormhole behind the Janus black hole becomes infinitely long
in this limit.

4.3.2 Phase transition

Here we discuss the whole time-dependent behavior of the holographic entanglement en-
tropy of the two intervals. Since there are two extremal surfaces in the bulk geometry, the
holographic entanglement entropy SA is given by the area of the surface with the smaller
area,

SA =
1

4GN
min {Ac, Adc} , (4.47)

where Ac and Adc are given by (4.45) and (4.28) respectively. We saw that both the
surface can invade the event horizon, and their areas depend on the boundary time t∞.
The surface to be realized then depends on the time, and a phase transition can occur at
some time between these two phases. As we will see below, the time dependent behavior
of the entropy SA varies according to the deformation parameter γ.

γ = 0 When γ = 0, the spacetime reduces to the BTZ black hole, and does not contain
any causal shadow region. The connected and disconnected surface areas are respectively
given by

Ac(t∞, θ∞)/L = 4 log

(
2 cosh r0t∞

r0ϵCFT

)
, Adc(t∞, θ∞)/L = 4 log

(
2 sinh r0θ∞

r0ϵCFT

)
.

(4.48)

Let us take a sufficiently large subsystem r0θ∞ ≫ 1. The entropy initially grows linearly
with time because the connected surface is chosen in accordance with Ac < Adc, and stops
growing at a critical time t∞ = tc ≃ θ∞. After the critical time, it ends up with a constant
value, double the value of the thermal entropy, because the disconnected surface becomes
chosen in accordance with Adc < Ac.

This time-dependent behavior such as the sharp phase transition can be also observed
on the CFT side, since the time-scale of the transition is given by β [108] and now r0θ ≫ 1
implies tc ≫ β. Furthermore, the initial entanglement entropy at t∞ = 0 can be identified
with the contribution from the boundary of A (4 points). In CFT side, the time-dependent
behavior can be intuitively understood in the so-called quasi-particle picture [109]. In this

65



picture, we assume that a pair creation of entangled quasi-particles occurs at every spatial
point at the initial time, and that they propagate in opposite directions at the speed of
light. A pair contributes to the entanglement entropy when one of the pair is inside the
region and the other of the pair is outside the region. This picture correctly reproduces
the linear growth and saturation of the entanglement entropy.

0 < γ2 ≪ 1
2

When 0 < γ2 ≪ 1
2 , the story is quite similar to the BTZ case, γ = 0.

The entanglement entropy grows up until a critical time t∞ = tc ≃ θ∞, and at the critical
time, the areas of the two surfaces become equal and a phase transition takes place. In
this case, the growth rate of the entanglement entropy suddenly decreases discontinuously,
but does not immediately become zero, unlike the BTZ case. The entanglement entropy
continues to grow very slowly and converges to a constant independent of γ. Hence the
final value is identical with that of the BTZ case, γ = 0, in particular.

Another important difference from the BTZ black hole case is that the initial entan-
glement entropy includes an additional positive constant term (− L

4GN
log(1− 2γ2)). This

term can be regarded as a kind of boundary entropy, which is the contribution of defects
in the system [114] (see also [115] for the holographic realization). Note that in our system
the defect is localized along the Euclidean time direction.

g2= 0.3
Adc HNumericalL
Early approx. Ht<<qL
Late approx. Hq<<tL
OHg2L
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Figure 4.5: The time t dependence of the extremal surface area A for a subsystem θ = 5,
in the disconnected phase (black dotted line, numerically obtained) and in the connected
phase (gray line). The phase transition from the connected phase to the disconnected
phase occurs at their intersection point t = tc. The disconnected phase surface area Adc

is initially well approximated by the early time limit approximation (4.34) (orange line),
and finally well approximated by the late time limit approximation (4.39) (green line).
The whole time-dependence of Adc is qualitatively reproduced by the calculation (4.40)
up to O(γ2) (blue line).
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It is difficult to determine the critical time tc analytically for arbitrary γ and θ∞,
because one need to evaluate the disconnected surface area (4.28) around the time region
t∞ ∼ θ∞ for which it is difficult to evaluate the areas explicitly. Here we evaluate it
perturbatively around γ = 0 up to the second order. The detail of the calculation is given
in Appendix B.1. By equating (4.45) and (4.40), we obtain

tc ≃ θ∞ − 2.058γ2 + O(γ4) . (4.49)

Note that the coefficient of γ2 does not depend on the size of the subsystem θ∞ or r0.

We can also solve the equations of motion for the disconnected extremal surface nu-
merically, to obtain the accurate time-dependence of Adc. The result is plotted in Fig. 4.5,
together with the results of the γ2-perturbation, the early time and late time approxima-
tions discussed in the last section. The figure shows that the γ2-perturbation gives quite
a good approximation around t∞ ∼ tc.

γ2 → 1
2

When γ2 is very close to 1
2 , the time evolution of the entanglement entropy

does not exhibit a phase transition for a large range of θ∞. The minimal value θc of the
subsystem size θ∞ necessary for the phase transition to happen is determined by solving

Adc(t∞ = 0, θ∞ = θc, γ
2) = Ac(t∞ = 0, γ2) . (4.50)

By using the early-time expression (4.34) for the left hand side, we can solve this equation
as2

θc ≃
1

2
√

2r0

(
− log

(
1 − 2γ2

)
− 2 log 2

)
. (4.51)

When θ ≤ θc, the disconnected surface is realized from the initial time t∞ = 0. Further-
more, the initial entanglement entropy is proportional to the size of the subsystem (∝ θ),
which can be also seen by using the early-time approximation. This is one of the very
peculiar point in the γ2 → 1

2 limit.
Let us summarize the time dependence of the entropies when introducing Janus de-

formation. In BTZ black hole geometry, the connected surface is initially realized, then
after the critical time tc which is proportional to the size of the subsystem, the discon-
nected surface becomes realized. Although the behavior in the Janus black hole geometry
shares many similarities to the BTZ case, there are two notable differences. First of all,
we showed that the critical time is shorter than that in the BTZ case. Intuitively, this
is because the Janus black hole has a longer wormhole region, therefore the length of the
connected surface becomes longer than that of the BTZ black hole. We computed this
critical time up to the second order of the deformation parameter γ. Secondly, we found
that the disconnected surface is always realized when γ2 gets sufficiently close to 1/2 with
the size of the region fixed, namely, when the wormhole region is sufficiently long.

In Fig. 4.3, we numerically plotted the bulk region where the disconnected surface can
arrive, and found that outside the apparent horizon, there exists a barrier which any

2We dropped subleading terms for 1− 2γ2, because in (4.34) we already used the r0θ ≫ 1 approxima-
tion, which in turn implies 1 − 2γ2 ≪ 1 here.
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Figure 4.6: The γ2 dependence of the transition time tc of a subsystem θ = 3. The green
dots are obtained by calculating the disconnected phase surface area Adc numerically. The
approx line (orange line) is obtained by substituting the disconnected phase surface area
Adc (4.40) calculated up to O(γ2). The transition time tc decreases with − log(1/2 − γ2)
almost linearly, and the connected phase disappears with sufficiently large γ2.

disconnected surface cannot invade. As a result, after the phase transition, the black hole
interior region that the extremal surfaces can probe is rather limited. This limitation is
especially strong in the above case when γ2 is close to 1/2.

It would be also interesting to see the time evolution of the mutual information between
intervals −θ∞ < θ < θ∞ in the right and left CFTs. The mutual information eventually
vanishes in the disconnected phase, t∞ ≥ tc. For BTZ black holes, this critical time is
given by half the size of the subsystem t(BTZ)

c = θ∞ in the high temperature limit. In
[116], they considered the perturbation of BTZ black holes by a shock wave sent from
one boundary, and found that the critical time becomes shorter by so called scrambling
time. Here we see that our γ-deformation also leads to earlier critical times. The main
difference from our results is that the deviation of the critical time from the BTZ value
tc − t(BTZ)

c is proportional to the inverse temperature β in their case, while it is not in our
case.

4.4 Discussions

In [111], it was shown that if we take the region A to be the total space of the left CFT, the
extremal surface which computes the holographic entanglement entropy has to be located
in the causal shadow. This property is necessary for the holographic entanglement entropy
formula to respect the causality of the dual boundary theory. We can easily check this
condition in the Janus black hole, because in the large θ∞ limit the corresponding extremal
surface localizes at the origin (y, t) = (0, 0) (or (µ, τ ) = (0, 0) in the coordinate (4.1)).

There are several outlooks for this work. It would be interesting to calculate the
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entanglement entropy on the dual CFT side. One candidate CFT is a free fermion system
[117], for which the explicit form of the twist operator is known [118]. Fig. 4.3 seems to
show that it is not possible for the disconnected surface to penetrate the apparent horizon
of the Janus black hole, and it would be interesting to prove this directly like [119].
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Chapter 5

Renormalized Entanglement Entropy
on a Curved Space

Renormalized entanglement entropy (REE) has an advantage in its ability to capture
physical degrees of freedom directly, in the sense that it monotonically decreases along
renormalization group (RG) flows [55]. To figure out how quantum entanglement encodes
physical degrees of freedom as REEs, and to clarify what is the essence in its definition
to capture physical degrees of freedom, we extended its definition from the flat space to
the simplest curved space, a sphere S2. There are naively two possible ways to extend
its definition, and so we tried both definitions in an example. As a consequence, we
found that the one in the more natural definition monotonically decreases along RG flow
expectedly at least in our example, while the other one does not.

This chapter is based on the author’s work [3] with S.Banerjee and T.Nishioka.

5.1 Renormalized entanglement entropy

5.1.1 Two REE’s on cylinder

Entanglement entropy is always accompanied by UV divergences in QFT. The leading
part is well-known as the area law term (2.48) diverging as 1/ϵd−2 in d dimensions for the
UV cutoff ϵ ≪ 1. For this reason, the bare entropy is scheme-dependent and needs to be
renormalized so as to be free from the UV divergences. One possible regularization is to
renormalize the divergences to parameters in the background gravity theory such as the
Newton and cosmological constants as is usually done in QFTs on curved spaces [120].

A simpler regularization was proposed by Liu and Mezei [65] for a spherical or any
scalable entangling region on a flat space-time. They define the renormalized entangle-
ment entropy (REE) by acting a differential operator of the radius of the sphere on the
EE. In three dimensions, the REE of a disk of radius Rdisk becomes (2.90) which sub-
tracts the UV divergence of the EE, as explained in chapter 2. Moreover it has been
shown that the REE defined in this way is monotonically decreasing along any RG flow
in three dimensions [55], known as the F -theorem [66, 54].

In this chapter, we will consider a theory on a cylinder R×Sd−1 with the metric given
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by

ds2 = −dt2 + R2
(
dθ2 + sin2 θ dΩ2

d−2

)
, (5.1)

and divide the Sd−1 by a codimension-two hypersurface Σ at t = 0 and θ = θ0 to a
subsystem A within 0 ≤ θ ≤ θ0 and its compliment Ā within θ0 ≤ θ ≤ π. The angle θ0

can be restricted to be 0 ≤ θ0 ≤ π/2 for the entropy is symmetric with respect to the
exchange of A and Ā when we concentrate only on the vacuum state of the theory.

In our case we can define two types of REEs on the cylinder. First we note that
the finite part of the EE of the cap-like region A on S2 equals to that of a disk on R2,
F = − log Z[S3], if the theory is conformal. Thus the entropy SA(θ0) for CFT3 on the
cylinder takes the form:

SA(θ0)|CFT = α
2πR sin θ0

ϵ
− F , (5.2)

with a non-universal coefficient α. The first term, fixed by requiring the area law, is
proportional to the circumference R sin θ0 of the entangling surface.

A straightforward generalization of (2.90) is to define the REE on the cylinder as

FLM(R, θ0) = (R∂R − 1)SA(R)|θ0 , (5.3)

where the derivative with respect to R is taken at fixed angle θ0. It is finite and becomes
FLM = F at any RG fixed point thanks to the relation (5.2). We will see in section 3.2
that for a massive scalar field of mass m, the REE FLM(mR) is monotonically decreasing
in the small and large mR regions as mR increases at fixed θ0. At mR = 0 it takes the
value Fscalar for a scalar field in three dimensions and decreases to 0 as mR → ∞, while it
is not stationary1 as a function of (mR)2 at the UV fixed point as will be shown in the next
section. However, numerical calculations show that it does not decrease monotonically in
the intermediate regime 1 ≪ mR ≪ ∞ of the RG flow at least for the massive scalar field
theory.

The second way to renormalize the UV divergence of the entropy is to define the REE
on the cylinder as

FC(R, θ0) ≡ (tan θ0 ∂θ0 − 1) SA(θ0)|R , (5.4)

where the derivative with respect to θ0 is taken at fixed R. As the definition implies, FC

is always finite for the differential operator kills the area law divergence. Also it coincides
with the finite part of the S3 free energy F at a conformal fixed point. We will see in the
next section for a free massive scalar field of mass m that FC decreases monotonically as
a function of (mR)2 at fixed θ0 and it is also stationary as a function of (mR)2 at the UV
fixed point. Then the REE FC, obtained from EE on the cylinder, serves as an F -function
in three dimensions. It decreases monotonically from the UV to the IR and is stationary

1The REE for a relevant perturbation of CFT is called stationary if the first derivative with respect
to the coupling constant vanishes at a conformal fixed point. The REE of a disk (2.90) is known to be
non-stationary [121, 122] for a massive free scalar theory.
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at the UV fixed point for a massive scalar field. This is analogous to the Zamolodchikov’s
c-function in two dimensions, at least for a massive scalar field.

Before closing this section, we comment on the flat space limit of the cylinder EE.
The cylinder metric (5.6) reduces to the flat space in the R → ∞ and θ → 0 limits with
r ≡ R θ held fixed, and the cap-like entangling region A turns into the disk of radius
Rdisk ≡ R θ0. It follows from their definitions that the two REEs (5.3) and (5.4) lead to
the REE of a disk (2.90) in this limit.

5.2 Free massive scalar field

We will calculate the EE of the cap-like region A on the cylinder for a free massive scalar
field. We assume that the scalar field is conformally coupled to the background geometry
in the massless limit, whose action takes the form of

I =
1

2

∫
d3x

√
g

[
gµν∂µφ∂νφ +

R
8

φ2 + m2φ2

]
, (5.5)

where R is the Ricci scalar. Applying a conformal transformation mapping the replica
space to a non-singular space and regarding the theory as a relevant perturbation of a free
massless scalar theory by the mass term, the entropy will be expanded in the small mass
limit and the leading term of order m2 will be evaluated. On the other hand, the large
mass expansion will be carried out following [85] and the order 1/m term of the entropy
will be fixed for a general entangling surface. Finally the results in the two limits will be
confirmed by the numerical calculation that shows the REE, FC(θ0,mR), monotonically
decreases as mR becomes large, while the other REE, FLM, does not.

5.2.1 Conformal transformation to a non-singular space

Employing the replica trick, one can obtain the EE by calculating the partition function
on the n-fold cover of the Euclidean space of

ds2 = dt2E + R2
(
dθ2 + sin2 θ dΩ2

d−2

)
, (5.6)

that has a surplus angle 2π(n−1) around Σ. To make it transparent, we use the coordinate
transformation

tanh(tE/R) =
sin θ0 sin τ

cosh u + cos θ0 cos τ
,

tan θ =
sin θ0 sinh u

cos θ0 cosh u + cos τ
,

(5.7)

with 0 ≤ u < ∞ and 0 ≤ τ ≤ 2π for n = 1. The resulting metric becomes [58]

e2σds2 = R2
[
dτ 2 + du2 + sinh2 u dΩ2

d−2

]
,

e−2σ ≡ sin2 θ0

(cos τ + cos θ0 cosh u)2 + sin2 θ0 sinh2 u
.

(5.8)
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The n-fold cover Mn is given by the metric (5.8) with the period τ ∼ τ + 2πn, which is
conformally equivalent to S1 ×Hd−1. We will denote the conformally equivalent manifold
as S1

n × Hd−1. The entangling surface Σ located at tE = 0 and θ = θ0 in the original
coordinates (5.6) is mapped to u = ∞ in the new coordinates (5.8) where the conformal
factor e2σ blows up. Note that the S1 factor along τ is non-contractible in the resulting
geometry. This S1 is the image of the contractible circle in the plane transverse to the
entangling surface at tE = 0 and θ = θ0, which is used to perform the replica trick.

For conformal field theories, the free energies Fn ≡ − log Z[Mn] on the replica space
and the conformally transformed space are the same, modulo the conformal anomaly
that exists when the space-time dimension is even. The conformal anomaly part can be
computed by standard methods. For general non-conformal field theories, however, the
free energies on the two spaces are not equal, but they can be related if we introduce a
background dilaton field, which we denote by τ(x). Let us denote the metric of the replica
space by gµν(x). If Z[gµν(x), τ (x)] is the partition function of the Euclidean theory in the
presence of the background metric gµν(x) and dilaton field τ(x), then it satisfies the
following transformation rule [123, 124, 125, 126]

Z[e2σ(x)gµν(x), τ (x) + σ(x)] = C Z[gµν(x), τ (x)] , (5.9)

where C is completely determined by the conformal anomaly of the ultraviolet (UV) CFT
and does not depend on the mass parameters of the theory. In particular C = 1 in odd
dimensions due to the absence of conformal anomaly. Then the free energy defined as
F = − ln Z satisfies the relation:

F [e2σ(x)gµν , τ (x) + σ(x)] = F [gµν , τ (x)] , (5.10)

where we have neglected ln C, because we are only interested in the part of the EE gen-
erated by the massive deformation. In odd dimensions this factor is identically zero and
this equality is exact. In even dimensions this anomaly part gives rise to local terms in
the dilaton effective action some of which are uniquely determined by the trace anomaly
matching. These local terms in the dilaton effective action give the logarithmically di-
vergent universal terms in the entanglement entropy which were computed by using this
technique in [127, 128].

Now the equality (5.10) holds for any functional form of the dilaton field τ(x) and we
can also write

F [e2σ(x)gµν ,σ(x)] = F [gµν , τ (x) = 0] . (5.11)

The right hand side represents the free energy on the replica space in the absence of the
dilaton field, which is precisely what we want to compute, and the left hand side represents
the free energy on the conformally related non-singular space but in the presence of a
background dilaton field which is equal to the conformal factor σ(x). We will use this
relation to compute the EE by conformally mapping the problem to a non-singular space.

5.2.2 Small mass expansion of cap entropies

The EE is expected to have a series expansion with respect to the scalar mass in the small
mass region. In order to fix the leading term of the expansion we are to calculate the
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derivative of the free energy Fn on the n-fold cover Mn of R× S2

∂

∂m2
Fn =

1

2

∫

Mn

d3x
√

g Gn(x, x) , (5.12)

where Gn(x, x) is the coincident point Green’s function on Mn.
Using the conformal transformation (5.8) and the relation between the free energies

(5.11), it is equivalent to that on S1
n ×H2,

∂

∂m2
Fn =

1

2

∫

S1n×H2

d3x̃
√

g̃ e−2σ(x̃)G̃n(x̃, x̃) , (5.13)

with the dilaton field

e−2σ(x̃) =
sin2 θ0

(cos τ + cos θ0 cosh u)2 + sin2 θ0 sinh2 u
. (5.14)

There appears the coincident point Green’s function G̃n(x̃, x̃) in (5.13) which is indepen-
dent of the position x̃ due to the homogeneity of S1

n ×H2. This comes out of the integral
and we are left with the integral of the conformal factor. There is a UV divergence in the
coincident point Green’s function which is canceled in the combination Fn − nF1:

∂

∂m2
(Fn − nF1) =

Vn

2

[
G̃n(x̃, x̃)|m2=0 − n G̃1(x̃, x̃)|m2=0

]
+ O(m2) , (5.15)

where Vn is the integral of the conformal factor on S1
n ×H2,2

Vn =

∫

S1n×H2

d3x̃
√

g̃ e−2σ(x̃) = 2nπ3 sin θ0 R3 . (5.16)

There remains the coincident point Green’s function which can be obtained by con-
structing the eigenfunctions of the scalar field on S1

n ×H2 (see e.g. [129]). Inspecting the
results in [129, 121] we find

lim
n→1

∂n

[
G̃n(x̃, x̃)|m2=0 − n G̃1(x̃, x̃)|m2=0

]
= − 1

32R
. (5.17)

Finally, the replica trick yields the leading behavior of the EE of the cap-like region in
the small mass limit:

SA(θ0,mR) = α
2πR sin θ0

ϵ
− Fscalar −

π3

32
sin θ0 (mR)2 + O

(
(mR)4

)
, (5.18)

with Fscalar = −(ln 2)/8 + 3ζ(3)/(16π2) ≈ 0.0638 [54].
It is easy to see from the above expression that the REE FLM(R, θ0), as defined in

(5.3), is not stationary at the UV-fixed point mR = 0 for any value of θ0.

2The detail of the integral (5.16) can be found in appendix C.1.
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5.2.3 Large mass expansion of cap entropies

Although the analytic calculation of entanglement entropy is intractable even for free
field theories if not conformal, one can expect to find a systematic expansion (2.85) of the
entropy for theories with a large mass gap m in powers of 1/m. For a free field theory,
one can systematically determine cΣ

2n+1 by the coefficient of the logarithmically divergent
term of the entanglement entropy in the (2n + 4)-dimensional massless free field theory
compactified on T2n+1 [59, 85]. The compactification yields an infinite tower of massive
fields in (2 + 1) dimensions, and the entanglement entropy across the entangling surface
Σ2n+2 = Σ × T2n+1 should equal to the sum of the entropies for the massive fields across
Σ. One finds that the sum of the entropy of the order 1/m2n+1 terms over the Kaluza-
Klein modes gives rise to a logarithmic UV divergence, which should be equated with the
logarithmic UV divergent term S(2n+4)

Σ2n+2

∣∣
log

= s(2n+4)
Σ2n+2

log ϵ in the higher-dimensional theory.

Inspections of these coefficients lead to the following relation [85]

cΣ
2n+1 = −π(2π)n(2n − 1)!!

Vol(T2n+1)
s(2n+4)
Σ2n+2

, (5.19)

which can be used to determine the coefficients cΣ
2n+1 from the logarithmic UV divergent

term in (2n + 4) dimensions.
To work it out explicitly for cΣ

1 (i.e., n = 0), we start with a four-dimensional theory
with an action

I(3+1) =
1

2

∫

M×S1
d4x

√
g

[
(∂φ)2 + ξ3R(3+1)φ2

]
(5.20)

wrapped on S1, where M = R×S2 is the original three-dimensional cylindrical spacetime,
and consider an entangling surface Σ2 = Σ×S1 wrapped on the S1. Note that this action
is not conformally invariant, since the coupling ξ3 = 1/8 to the curvature R(3+1) is the
conformal coupling in three dimensions and is different from the one ξ4 = 1/6 in four
dimensions [130]. The curvature is a constant R(3+1) = R(2+1) = R(S2) = 2/R2 in our
setup, and so we can formally regard this theory as a conformally coupled massive scalar
field theory with a mass µ2 = (ξ3 − ξ4)R(3+1) = −1/(12R2) .

The entanglement entropy has a logarithmic divergence S(4)
Σ2

∣∣
log

= s(3+1)
Σ2

log ϵ whose
coefficient is composed of two terms,

s(3+1)
Σ2

= sSolodukhin
Σ2

+ δsΣ2 . (5.21)

The first term is the conformal anomaly term known as Solodukhin’s formula (2.54):

s(3+1)
Σ2

=
a

2
χ[Σ2] +

c

2π

∫

Σ2

(
Raa −Rabab −

R
3

+ ka
µνk

µν
a − 1

2
(ka µ

µ )2

)
, (5.22)

In the present case where Σ is topologically a circle, the entangling surface Σ 2 is topo-
logically a torus with χ[Σ2] = 0, and only the second term remains. For a circular Σ
parametrized by θ = Θ(φ), the timelike and spacelike unit normal vectors to Σ2 are

n1
µ = (1, 0, 0, 0) , n2

µ =
R sin θ√

sin2 θ + (Θ′(φ))2
(0, 1,−Θ′(φ), 0) , (5.23)
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where the fourth components are in the S1 direction on which Σ2 is wrapped. The extrinsic
curvature for the timelike normal vector n1 vanishes due to the time translation invariance.
A short calculation shows that R = 2/R2, Raa = 1/R2, Rabab = 0, and

κ2 ≡ k2
µνk

µν
2 − 1

2
(k2 µ

µ )2 =
(2 cos Θ Θ′2 + sin Θ(sin Θ cos Θ − Θ′′))2

2R2
(
sin2 Θ + Θ′2

)3 . (5.24)

The second term

δsΣ2 =
(ξ3 − ξ4)AΣ2R(3+1)

24π
= − AΣ2

288πR2
, (5.25)

comes from the difference of the conformal coupling ξ between three and four dimensions,
where AΣ2 =

∫
Σ2

1 = Vol(S1)
∫

Σ 1 is the area of the entangling surface Σ2 = Σ × S1. The
origin of this term is explained in two ways in [130], where its relations to other studies
are also discussed. One way to explain this term is the result of the mass µ2 perturbation
from the CFT’s result s(µ2 = 0) = s|CFT = sSolodukhin,

s(µ2) = s(µ2 = 0) + δs + O(µ4), (5.26)

where the first order term denoted as δs are calculable by replica trick as

δs =
AΣ2

24π
µ2 . (5.27)

Combining with (5.19), (5.21) and (2.54), we find

cΣ
1 =

∫

Σ

[
− c

2

(
1

3R2
+ κ2

)
+

1

288R2

]
. (5.28)

A few comments are in order:

• Our result (5.28) for the coefficient cΣ
1 reproduces that of [85] in the R → ∞ and

Θ → 0 limit with R sin Θ kept fixed, under which the entangling surface becomes a
curve on R2.

• We assumed that Σ is a single curve on a sphere so far, but this result (5.28) holds
for any entangling surface which is a disjoint union of curves because the uplifted
entangling surface Σ2 in (3 + 1) dimensions is a disjoint union of tori whose Euler
characteristics vanish and the integral (5.28) over Σ is just the sum of the integrals
over all disjoint curves.

In particular, a cap-like entangling region with opening angle θ0 is defined by Θ(φ) =
θ0, and the coefficient (5.28) takes the simple form:

ccap
1 = −c π

R
sin θ0

[
1

3
+

cot2 θ0

2

]
+

π sin θ0

144R
. (5.29)

Combined with the expansion (2.85) we find

SA(θ0,mR) = α
2πR sin θ0

ϵ
− π

6
mR sin θ0 +

π

120 mR sin θ0

(
−1

2
+ sin2 θ0

)
+ O

(
(mR)−3

)
,

(5.30)

in the large mR limit.
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5.2.4 The two REE’s and numerical results

We numerically calculated the EE of the cap-like region A on the cylinder R × S2 by
putting a free massive scalar field on the lattice. We closely follow the method of [51, 59]
whose details are found in appendix A.2.

Firstly, we check if the expansion (5.18) derived by using the conformal decompacti-
fication is valid in the small mass limit. We calculate the derivative of SA(mR, θ0 = π/2)
with respect to (mR)2 to avoid the UV divergence which contaminates our numerical
precision. Fig. 5.1 shows that the entropy has a linear slope

∂

∂(mR)2
SA(mR, θ0 = π/2) = −0.968 + O

(
(mR)2

)
, (5.31)

in the small mass region mR ≪ 1. Integrating it by (mR)2 leads that the entropy takes
the form of

SA(mR, θ0 = π/2) = SA(0, θ0 = π/2) − 0.968 (mR)2 + O
(
(mR)4

)
. (5.32)

Reassuringly, this is consistent with the analytic expression (5.18) for θ0 = π/2 with
−π3/32 ≈ −0.969.

0.002 0.004 0.006 0.008 0.010 (mR)2
-0.965

-0.960

-0.955

-0.950

-0.945

-0.940

-0.935

∂
∂ (mR)2

SA(θ 0=π /2)

Figure 5.1: The (mR)2 derivative of the bare entanglement entropy SA(θ0 = π/2) of the
hemisphere A, in the small mass region mR ≪ 1. In taking the (mR)2 derivative, we
calculate bare entropies SA(θ0 = π/2) increasing (mR)2, and fit it as a function of (mR)2.
The lattice size is taken as N = 1001.

REE FC

Next we examine the REE FC(mR, θ0) defined by (5.4) to inspect the dependences of the
entropy on mR and θ0 in the broader ranges. A detailed plot in the small mass region
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is shown in Fig. 5.2 (a). The REE starts decreasing from 0.0638 ≈ Fscalar at the UV
fixed point mR = 0 for any θ0. Furthermore, it is stationary in the sense that the first
derivative with respect to (mR)2 vanishes at the UV fixed point:

FC(mR, θ0) = Fscalar + O
(
(mR)4

)
, (5.33)

as predicted by the small mass expansion (5.18). This is in contrast to the REE F of
a disk [65] which is not stationary at the UV fixed point of a free massive scalar theory
[121, 122] though our FC is supposed to reduce to F in the flat space limit. This difference
may stem from the existence of the IR divergence on the flat space, which is regularized
by the size of the sphere in the present setup.

In the other extreme limit of the large mR region, we find FC decays to zero mono-
tonically as shown in Fig. 5.2 (b). Comparing with the expansion (5.30) which yields the
large mass behavior of the REE

FC(mR, θ0) =
π

120 mR sin θ0
+ O

(
(mR)−3

)
, (5.34)

our numerical data are well-fitted by the curves given by (5.34) as mR becomes large.
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Figure 5.2: The mR dependence of the REE FC(mR, θ0) in the small mass region mR ≪ 1
(a) and the large mass region mR ≫ 1 (b), with different cap angles θ0 = π/4 (blue dots),
π/3 (yellow dots) and π/2 (green dots). The lattice size is taken as N = 501. (a) The FC

starts from a value FC(mR = 0) ≃ 0.06385 (gray dotted line) at mR = 0 with vanishing
slope with respect to (mR)2. This result reproduces the expected small mass expansion
(5.33) FC = Fscalar + O ((mR)4) in the small mass region mR ≪ 1, which means that
FC starts from the UV CFT value Fscalar ≃ 0.06381 at mR = 0 without any first order
term of (mR)2. (b) It asymptotes to the leading term π/(120mR sin θ0) (solid lines) of
the expected large mass expansion (5.34) FC = π/(120mR sin θ0) + O (1/(mR)3) in the
large mass region mR ≫ 1.

The whole shapes of the REEs are depicted in Fig. 5.3. Clearly, the REEs are finite
and monotonically decreasing to zero as mR is increased for any θ0. Also it is a monotonic
function of θ0 for fixed mR, implying that increasing θ0 from 0 to π/2 can be regarded as
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an RG flow. The behavior of FC(mR, θ0) is reminiscent of the REE of a disk on the flat
space [65, 121, 122] and the proof of monotonicity might proceed along the same lines as
the proof of the F -theorem in [55].
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Figure 5.3: The mR dependence of the REE FC(mR, θ0) with different cap angles θ0 = π/4
(blue dots), π/3 (yellow dots) and π/2 (green dots). It is monotonically decreasing for
the all mR. In taking the θ0 derivative, we calculate bare entropies SA(θ0) increasing θ0,
and fit it as a function of θ0. The lattice size is taken as N = 501.

REE FLM

The small mass expansion (5.18) of the EE of a free massive scalar field of mass m leads
to the small mass behavior of the Liu-Mezei type REE

FLM(mR, θ0) = Fscalar −
π3

32
sin θ0(mR)2 + O

(
(mR)4

)
, (5.35)

which decreases linearly in (mR)2 around the UV fixed point. It is not stationary in the
Zamolodchikov’s sense as the REE on the flat space is not [65, 121, 122] while (5.35)
is not a sensible expansion on the flat space because the O(m2) term diverges in the
limit R → ∞ and θ0 → 0 with R θ0 fixed. It clearly shows that the breakdown of
the perturbation theory emanates from the IR divergence, the volume of the flat space
[104, 122]. The REE on the cylinder, on the other hand, regularizes both the UV and IR
divergences and is suited to the perturbative expansions.

In the numerical calculation of FLM, one can no longer use the same algorithm as
for FC due to two obstacles. One is that the definition (5.3) includes the derivative ∂R

that requires the variation of the sphere radius R as opposed to the previous case. The
other is that the discretization of the angle θ by δθ = π/N causes the linear growth of
the lattice spacing ϵ = Rδθ = πR/N in R, and one cannot remove by the differential
operator (R∂R − 1) the ϵ dependence of the entanglement entropy because the area law
term α(2πR sin θ0)/ϵ = α(2N sin θ0) becomes independent of R. To circumvent these
obstacles, we employ a different regularization method; we calculate entropies by increas-
ing both mR and N = πR/ϵ simultaneously, that is, fixing their ratio mR/N = mϵ/π,
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and apply the differential operator mR ∂(mR) − 1 = N∂N − 1 on the fitted results. This
prescription removes the dominant order O(N) area law term successfully. We checked
that FLM(mR, θ0, N) becomes independent of N , namely, the REE FLM takes the same
value for a different ratio mR/N = mϵ/π as long as mR is the same. In this way, the ϵ
dependence of the entropy is removed in the numerical calculation.

The resultant FLM correctly reproduces the expected small mass expansion (5.35) in
the small mass region mR ≪ 1, as shown in Fig. 5.4. The REE FLM starts from the value
FLM|(mR)2=0 = Fscalar ≃ 0.0638 of the UV CFT (a free massless scalar field) like the REE
FC, but in a non-stationary way ∂(mR)2FLM|(mR)2=0 ̸= 0.

● θ0 = π /6 (30° )
● θ0 = π /4 (45° )
● θ0 = π /2 (90° )

● 0.0638 - (π 3/32 ) sinθ0 (mR)2
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ℱLM (θ 0, (mR)2)

Figure 5.4: The (mR)2 dependence of the REE FLM(mR, θ0) with different cap angles θ0 =
π/6 (light blue curve), π/4 (blue curve) and π/2 (black curve). They correctly reproduce
the small mass expansion (dotted magenta line) in the small mass region mR ≪ 1. In
taking the R derivative, we calculate bare entropies SA(mR,N) increasing both mR and
N proportionally, and fit it as a function of R.

Similarly using (5.30), the leading term in the large mass expansion is given by

FLM(mR, θ0) =
π

120 mR sin θ0

(
1 − 2 sin2 θ0

)
+ O

(
(mR)−3

)
, (5.36)

that equals to (5.34) up to the θ0 dependent constant. Thus for θ0 > π/4, it does
not decrease monotonically as increasing mR for fixed θ0. It monotonically decreases
as increasing θ0 for fixed mR, but becomes negative at θ0 = π/4. Both (5.34) and
(5.36) precisely reduce to the flat space result in [121] as expected. This analytic result
demonstrates that the Liu-Mezei type REE FLM is not a candidate of F -function.

This large mass expansion is also correctly reproduced by our numerical results. The
whole mR dependence of FLM is drawn in Fig. 5.5. In the large mass region mR ≫ 1,
The plot shows FLM asymptotes to the trivial IR CFT value FLM = 0, but it does not
monotonically decrease with mR and is well-fitted by the curves given by (5.34) as mR
becomes large.

To recapitulate, all of the numerical results correctly reproduce both the small and
large mass expansions in the previous two subsections, and shows that the REE FC (5.4)
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● θ0 = π /6 (30° )
● θ0 = π /4 (45° )
● θ0 = π /2 (90° )
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Figure 5.5: The mR dependence of the REE FLM(mR, θ0) with different cap angles θ0 =
π/6 (light blue curve), π/4 (blue curve) and π/2 (black curve). They obey a large mass
expansion FLM(mR, θ0) = π(1 − 2 sin2 θ0)/(120 mR sin θ0) + O((mR)−3) (orange dotted
curve) of (5.36).

always decreases monotonically with both the scale mR and the cap size θ0 increased.
These numerical calculations give non-trivial checks for the calculation introducing dila-
ton field and the Solodukhin’s formula (2.54) on a curved space because our numerical
algorithm does not rely on any replica trick.

81



Chapter 6

Rényi Entropic Inequalities and
Holography

Rényi entropy is more informative about quantum entanglement than entanglement en-
tropy, and so the recent proposal [80]1 for its holographic formula is attracting much in-
terest, since it may know more about how the spacetime structure is encoded as quantum
information via holography. The formula is a generalization of the formula for entangle-
ment entropy (1.2), and now the minimal surface γA has its own tension or mass and
bends the spacetime geometry according to Einstein equation, while in the formula for
entanglement entropy, the minimal surface γA is tensionless or massless and does not af-
fect the background geometry. To give a consistency check of this holographic formula, we
showed that the formula expectedly fulfills mathematical inequalities of Rényi entropies,
under an assumption that bulk geometries are stable. By presenting a new way to inter-
pret Rényi entropies and its inequalities in analogy to statistical mechanics, we found out
a thermodynamic structure in the derivation of the formula as a byproduct.

This chapter is based on the author’s work [4] with T.Nishioka.

6.1 Rényi entropic inequalities

Since many mathematical properties of entanglement entropy such as the strong-subadditivity
has been holographically understood via its holographic formula, it is natural to think
about how mathematical properties of the Rényi entropy are transcribed to the bulk side
in a geometric language. Although it is known that the Rényi entropy is not strongly

1Earlier works on the holographic Rényi entropies include [131, 132, 133].

82



sub-additive, it satisfies inequalities involving the derivative with respect to n [134, 135]2

∂nSn ≤ 0 , (6.1)

∂n

(
n − 1

n
Sn

)
≥ 0 , (6.2)

∂n ((n − 1)Sn) ≥ 0 , (6.3)

∂2
n ((n − 1)Sn) ≤ 0 . (6.4)

These inequalities are originally proved for the classical Rényi entropy Sn[pi] ≡ − 1
n−1

∑
i p

n
i

of a probability distribution pi, but are still true for the quantum Rényi entropy (1.4).
The proof for a quantum case immediately follows by diagonalizing the density matrix ρ
as UρU † = diag(p1, p2, . . . ) with a unitary matrix U . The first inequality (6.1) implies
the positivity of the Rényi entropy Sn ≥ 0 as S∞ = mini(− log pi) ≥ 0.

The aim of this chapter is to prove these inequalities by the holographic formula of
the Rényi entropy. Before proceeding to the proof, we rewrite the inequalities in more
concise forms that manifest their meanings as the positivities of energy, entropy and heat
capacity in analogy to statistical mechanics. It also clarifies that not all of (6.1)-(6.4) are
independent, but the two inequalities (6.2) and (6.4) are essential. (6.2) turns out to be
simple to prove as it stands for the positivity of the area of a codimension-two surface
in the bulk, while the proof of (6.4) is more intricate. In view of statistical mechanics,
(6.4) implies the positivity of the heat capacity and encodes the unitarity of quantum
mechanical system. Our proof of (6.4) in the bulk is differential geometric in its nature
and turns out to relate it to the stability of the spacetime on which the holographic
formula is supposed to be applied. Therefore, our proof serves as a nontrivial consistency
check for the holographic formula, and moreover reveals a direct connection between the
unitarity and the stability in the boundary and bulk theories, respectively. In due course
of the proof, we also obtain a holographic formula for calculating the quantum fluctuation
of the modular Hamiltonian.

Our proof is heavily based on the stability of the bulk geometry. We admit that
the bulk stability is a nontrivial assumption whose justification is even challenging. For
instance, Euclidean gravity actions are known to be indefinite against metric perturbations
[136, 137]. We are not aware of any compelling argument to support the assumption, but
in view of holographic duality we believe that stable quantum states should have stable
bulk duals. We will not touch on this subject anymore in this paper until section 6.5.

6.2 Analogy to statistical mechanics

As explained in chapter 2, the calculation of Rényi entropy of a ball in CFTd can be
recasted as a calculation of a thermal entropy, since the replica manifold Mn is conformally
equivalent to a thermal hyperbolic space S1 ×Hd−1 with an inverse temperature β = 2πn
[133, 58]. In that situation, the inequalities (6.2) and (6.4) reduce to the non-negativity

2The finite version of these inequalities, such as Sn ≥ Sm and n−1
n Sn ≥ m−1

m Sm for n ≤ m, are true,
even if the n derivatives are ill-defined because of some discontinuity.
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of the thermal entropy and the heat capacity, and the others immediately follow from
these two. A formal similarity between the Rényi entropy and a thermal entropy is also
pointed out in [80].

In this section, inspired by these observations, we will formulate the complete analogy
between the Rényi entropy and statistical mechanics valid for any quantum system. More-
over, the following discussions apply not only to reduced density matrices ρA = TrĀ[ρtot],
but also to a general density matrix ρ.

6.2.1 Partition function Z and the escort density matrix ρn

In the calculation of the Rényi entropy Sn = − 1
n−1 log Tr[ρn] (1.4), we can regard the

trace Z(n) ≡ Tr[ρn] as a thermal partition function

Z(β) = Tr[e−βH ] , (6.5)

with3 the inverse temperature β and the Hamiltonian H

β = n , (6.8)

H = − log ρ . (6.9)

The latter is called the entanglement Hamiltonian or modular Hamiltonian. Its eigenval-
ues ϵi are called the entanglement spectrum, and are non-negative ϵi ≥ 0 as the eigenvalues
pi = e−ϵi of ρ satisfies 0 ≤ pi ≤ 1. In calculating the partition function Z, we can regard
the state as a density matrix given by the normalized n-th power of ρ

ρn ≡ ρn

Tr[ρn]
. (6.10)

In the area of chaotic systems, the probability distribution of the classical version P (n)
i ≡

pn
i /

∑
i p

n
i is called the escort distribution [135], and we will accordingly call ρn the escort

density matrix.
Let us push forward this analogy to statistical mechanics. The free energy F = F (n)

and the total energy E = E(n) related to the density matrix ρ are defined as

F ≡ − 1

n
log Tr[ρn] , (6.11)

E ≡ − ∂

∂n
log Tr[ρn] = ⟨H⟩n , (6.12)

where ⟨·⟩n stands for the expectation values with respect to the escort density matrix ρn,

⟨X⟩n ≡ Tr[ρnX] =
Tr[ρnX]

Tr[ρn]
. (6.13)

In what follows, we will make use of this notation when available.

3If you feel uneasy about the mismatch of their physical dimensions, you may define them instead as

βE0 = n , (6.6)
H/E0 = − log ρ , (6.7)

with any constant E0 of the dimension of energy. In the following discussions we take a unit E0 = 1.
Another choice E0 = 1/2π is also common in literatures.
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6.2.2 Modular entropy S̃n

What quantity should correspond to the thermal entropy in this analogy to statistical
mechanics? The answer is not the Rényi entropy Sn[ρ], but the modular entropy S̃n[ρ].
In fact, the equation (2.122) or (2.123) leads to the formulae of the entropy together with
(6.11) and (6.12),

S̃ = n(E − F ) ,

= −∂F

∂T
,

(6.14)

where T ≡ 1/n and we omit the subscript of S̃n to stress the correspondence to statistical
mechanics. One can also show that the modular entropy is nothing but the von Neumann
entropy of the escort density matrix ρn, that is,

S̃n[ρ] = SvN[ρn/Tr[ρn]] . (6.15)

The modular entropy S̃n is another generalization of the von Neumann entropy SvN as it
also reduces to the entanglement entropy S̃1[ρ] = SvN[ρ] in the limit n → 1.

An equivalent relation to (2.121)

(n − 1)2∂nSn = S̃n − E , (6.16)

yields a useful formula for calculating ∂nSn in terms of F

∂nSn = T 2F (1) − F (T ) − (1 − T )∂T F

(1 − T )2
, (6.17)

where we used the relations E = F + T S̃, S̃ = −∂T F and F (1) = 0.

6.2.3 Capacity of entanglement C(n)

Now that we have defined thermodynamic state functions consisting of the first deriva-
tive of the free energy such as the total energy E = ∂n(nF ) and the thermal entropy
S̃ = −∂T F , we proceed to implement the heat capacity C = C(n) including the second
derivative,

C ≡ ∂E

∂T
= T

∂S̃

∂T
= −T

∂2F

∂T 2
. (6.18)

It was originally introduced to characterize topologically ordered states by [138] and
named capacity of entanglement. The capacity of entanglement has not attracted much
attention so far despite its importance and simplicity as we will see below.

One can show the non-negativity C ≥ 0 as in the same way as statistical mechanics,

C(n) = n2 ∂2

∂n2
log Z(n) = n2(⟨H2⟩n − ⟨H⟩2n) ,

= n2 ⟨(H − ⟨H⟩n)2⟩n .
(6.19)

It follows that the capacity measures the quantum fluctuation of the modular Hamiltonian
H = − log ρ, and in particular C(1) = ⟨H2⟩ − ⟨H⟩2 gives the quantum fluctuation with
respect to the original state ρ.
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6.2.4 Rényi entropic inequalities from the viewpoint of the anal-
ogy

Having established the analogy to statistical mechanics, we rewrite the Rényi entropic
inequalities in the thermodynamic representation. The second (6.2), third (6.3) and forth
(6.4) inequalities turn out to be the non-negativity of the modular entropy S̃ (2.121), the
total energy E (6.12) and the entanglement heat capacity C, respectively

S̃ ≥ 0 , (6.20)

E ≥ 0 , (6.21)

C ≥ 0 . (6.22)

The non-negativity of S̃ and E = ⟨H⟩n immediately follows from the relations S̃n[ρ] =
⟨− log ρn⟩n = SvN[ρn] and the definition H = − log ρ of the modular hamiltonian. The
last inequality C ≥ 0 has already been proved by (6.19). Note that the condition C ≥ 0
is equivalent to

∂nS̃n ≤ 0 , (6.23)

because of C = T∂T S̃ = −n∂nS̃.
The first inequality ∂nSn ≤ 0 (6.1) can be derived from the forth inequality (6.4) as

shown in [133]. Indeed, the forth inequality C = −T∂2
T F ≥ 0 is equivalent to the concavity

of the free energy F , and (6.17) is clearly non-positive as f(x) ≤ f(a)+(x−a)f ′(a) for any
concave function f(x). An alternative way to show this inequality uses the non-negativity
of the relative entropy S[ρ|σ] ≡ Tr[ρ(log ρ − log σ)] ≥ 0 for (6.16)

(n − 1)2∂nSn = S̃n − E ,

= −⟨log ρn − log ρ⟩n ,

= −S[ρn|ρ] ≤ 0 .

(6.24)

6.2.5 Holographic formula from the view point of the analogy

This analogy also gives us a thermodynamic interpretation for the derivation of the holo-
graphic formula explained in chapter 2. The free energy F (T ) is holographically given as
the difference of the actions between n and n = 1

F = − 1

n
log Tr[ρn] = I − I|n=1 . (6.25)

The second term −I|n=1 ensures the normalization F (1) = − log Tr[ρ] = 0. The free en-
ergy results from the minimization with respect to the fields φ = {Gµν(X),ψ(X), Xµ(y)}

F (T ) = min
φ

(I[φ]) − I|n=1 , (6.26)

as the action I is on-shell. Here we introduce a temperature T = 1/n and rewrite the
action as

I = Ibulk[B̂n] + (1 − T )
A

4GN
. (6.27)
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This succinct form is convenient to derive the entropy S̃n

S̃n = −∂F

∂T
= −δI[φ]

δφ

δφ

δT
+

A
4GN

=
A

4GN
, (6.28)

where we used the equation of motion, δI/δφ = 0. Finally we derive the total energy E
by the Legendre transformation

E = F + T S̃n ,

= Ibulk[B̂n] − Ibulk[B1] +
A

4GN
.

(6.29)

And so this derivation of the formula is exactly the same as the one in thermodynamics;
δE − T δS vanishes because of the minimization in the Legendre transformation F (T ) ≡
minS(E(S) − TS), yielding δF = δ(E − TS) = (δE − T δS) − SδT = −SδT . In our
derivation of the holographic formula, the minimization of the free energy leads to a
first-law like relation 0 = δφI = δφE − T δφS̃. The only difference is the meaning of the
variation; δφ is taken with respect to fields φ in our case.

6.3 Proof of the Rényi entropic inequalities

Having established the necessary tools in the preceding sections, we want to examine
under what condition the holographic formula (2.124) satisfies the inequalities (6.1)-(6.4)
of the Rényi entropy. Instead of dealing with the original ones, we prove the concise
inequalities (6.20)-(6.22) whose physical meaning is more transparent. They imply the
stability of the system in the thermodynamic language, which is translated to the stability
of the gravity theory as we will see soon.

6.3.1 A holographic proof

Some of the Rényi entropic inequalities follow straightforwardly from the holographic
formula S̃n = A/4GN (2.124). The second inequality S̃ ≥ 0 (6.20) is trivial as the area A
is always non-negative. The non-negativity of the Rényi entropy Sn = n

n−1F ≥ 0, which

is equivalent to F < 0 for n < 1 and F > 0 for n > 1, also follows from ∂nF = S̃n/n2 ≥ 0
and F (1) = 0. The first inequality (6.1) descents from the forth inequality (6.22) as
mentioned in section 6.2.

Let us move on to the proof of the forth inequality (6.22)

C = −n
∂S̃n

∂n
= − n

4GN

δA
δn

≥ 0 . (6.30)

As the parameter n varies slightly by δn, the brane area A changes slightly by

δA[G,X ]

δn
=

∫
dd+1X

δA
δGµν(X)

δGµν(X)

δn
+

∫
dd−1y

δA
δXµ(y)

δXµ(y)

δn
,

=

∫
dd+1X

δA
δGµν(X)

δGµν(X)

δn
,

(6.31)
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where we used the minimality condition δA/δXµ = 0 for the embedding in the second
equality. Plugging this result into (6.30), we have

C = − n

4GN

∫
dd+1X

δA
δGµν(X)

δGµν(X)

δn
. (6.32)

The derivatives δA/δGµν and δGµν(X)/δn are not independent due to the equation of
motion of the bulk metric Gµν . The variation with respect to n gives

δIbulk

δGµν(X)
[G + δG,ψ + δψ] + (Tn + δTn)

δA
δGµν(X)

[G + δG,X + δX] = 0 (6.33)

or

δI

δGµν(X)
[G + δG,X + δX,ψ + δψ] +

δn

4GNn2

δA
δGµν(X)

[G,ψ, X ] = 0 , (6.34)

where we used δTn = δn/(4GNn2). In the leading order of δn, the difference from the
original equation motion is

∫
dd+1X ′

[
δ2I

δGµν(X)δGαβ(X ′)
δGαβ(X ′) +

δ2I

δGµν(X)δψ(X ′)
δψ(X ′)

]

+

∫
dd−1y

δ2I

δGµν(X)δXα(y)
δXα(y) +

δn

4GNn2

δA
δGµν

= 0 . (6.35)

This gives the following relation

δA
δGµν(X)

= −4GNn2

∫
dd+1X ′ δ2I

δGµν(X)δGαβ(X ′)

δGαβ(X ′)

δn
, (6.36)

where we used the equations of motion δI/δψ = 0 and δI/δXµ = 0. Plugging this δA/δG
into (6.32), finally we obtain a symmetric formula for the capacity of entanglement 4

C = n3

∫
dd+1Xdd+1X ′ δGµν(X)

δn

δ2I

δGµν(X)δGαβ(X ′)

δGαβ(X ′)

δn
. (6.38)

To prove the non-negativity of C, it is sufficient to show that the Hessian matrix δ2I
δGµν(X)δGαβ(X′)

is non-negative definite on the on-shell bulk Gµν . This condition means that the bulk ge-
ometry is stable against any perturbation, which is the main assumption in this paper as
mentioned in Introduction. We will have a few comments on this assumption in section
6.5.

4If we extend the domain of the integral from B̂n to Bn and use the action Ibulk[Bn] = nI, then the
coefficient n3 can be absorbed as

C =
∫

Bn

dd+1Xdd+1X ′ δGµν(X)
δn

δ2Ibulk[Bn]
δGµν(X)δGαβ(X ′)

δGαβ(X ′)
δn

. (6.37)

This formula maybe applies to cases when the replica symmetry Zn is spontaneously broken in the on-shell
bulk Bn.
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This proof also provides a holographic formula for calculating the capacity of entan-
glement C. Especially, the quantum fluctuation of the modular Hamiltonian with respect
to the original state is given by

C(1) = ⟨H2⟩ − ⟨H⟩2 ,

=

∫
dd+1Xdd+1X ′ δGµν(X)

δn

δ2I

δGµν(X)δGαβ(X ′)

δGαβ(X ′)

δn

∣∣∣∣∣
n=1

.
(6.39)

To prove the third inequality E ≥ 0 (6.21), we employ the expression (6.29) and it
is enough to show Ibulk[B̂n] ≥ Ibulk[B1] as B̂n and B1 obey the same boundary condition
∂B̂n = ∂B1 = M1. It is so since the functional Ibulk is supposed to have a minimum on
the on-shell solution B1, not the off-shell bulk B̂n, under the assumption that the bulk is
stable so that the Euclidean gravity action Ibulk is non-negative definite. Instead, we can
derive the third inequality E ≥ 0 also from the second one S̃n ≥ 0 and the fourth one
C ≥ 0, in the same way as [133]. When n ≥ 1, the free energy F is non-negative because
∂nF = S̃n/n2 ≥ 0 and F (1) = 0, and so the energy E = F + T S̃ is also non-negative.
The non-negativity of the capacity dE/dT = C ≥ 0 means that the energy E does not
decrease with T = 1/n and is still non-negative even when n ≤ 1.

6.3.2 Legendre transformed expression for capacity of entangle-
ment

We derive another expression of the entanglement heat capacity (6.38) using the gravi-
ton propagator, following [139] which calculates holographic entanglement entropies with
probe branes inserted in the bulk.

We rewrite δGµν/δn appearing in (6.32), instead of δA/δGµν . By increasing the pa-
rameter n slightly by δn, the energy-momentum tensor of the brane

T̄µν ≡ δI

δGµν
=

√
G

2
Tµν = Tn

δA
δGµν

, (6.40)

changes slightly as

δT̄µν =
1

4GN

δn

n2

δA
δGµν

. (6.41)

Correspondingly the bulk metric Gµν shifts by

δGµν(X) = 8πGN

∫
dd+1X ′ Gµναβ(X,X ′) 2δT̄αβ(X ′) ,

= −4π
δn

n2

∫
dd+1X ′ Gµναβ(X,X ′)

δA
δGαβ(X ′)

.
(6.42)

Here Gµναβ is the Green’s function of the linearized Einstein equation on the fixed back-
ground Gµν . Plugging it into (6.32), we obtain another expression of the entanglement
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heat capacity

C =
π

nGN

∫
dd+1Xdd+1X ′ δA

δGµν(X)
Gµναβ(X,X ′)

δA

δGαβ(X ′)
,

=
1

16nG2
N

∫
dd+1Xdd+1X ′ δA

δGµν(X)

δ2 log Z[T̄ ]

δT̄µν(X)T̄αβ(X ′)

∣∣∣∣
T̄=0

δA

δGαβ(X ′)
,

(6.43)

where Z[T̄ ] is the partition function with a source T̄µν inserted.5 In this form, the non-
negativity of C is equivalent to the concavity of − log Z[T̄ ′], which holds for − log Z[T̄ ] is
a Legendre transformation of the bulk action − log Z[Gµν(X)] ≃ I[Gµν(X)] as

− log Z[T̄ ] = min
Gµν

(
I[Gµν ] −

∫
dd+1X Gµν(X)T̄ µν(X)

)
, (6.46)

and in general the Legendre transformation F(J) ≡ minM [F (M)− JM ] interchanges the
convexity and the concavity, F ′′ = −1/F ′′.

The explicit expression

δA
δGµν(X)

= −1

2

∫
dd−1y

√
g gij ∂Xµ

∂yi

∂Xν

∂yj
δd+1(X − X(y)) , (6.47)

allows us to rewrite the formula with integrals on the brane

C =
π

4GNn

∫
dd−1y dd−1y′

√
g(y)

√
g(y′)

∂Xµ

∂yi

∂Xν

∂yi
Gµναβ(X(y), X(y′))

∂Xα

∂y′j
∂Xβ

∂y′
j

. (6.48)

This representation is a consequence of the Legendre transformation between the re-
sponse Gµν and the source T̄ µν . In fact, for a free energy F (Mi) with general responses
Mi such as magnetization or chemical potential, the dual free energy F(J i)

F(J i) = min
Mi

[F (Mi) − J iMi] , (6.49)

with J i the dual sources such as magnetic field or charge, satisfies

δMi
∂2F

∂Mi∂Mj
δMj = δJ iδMi = −δJ i ∂2F

∂J i∂J j
δJ j , (6.50)

as δF = J iδMi and δF = −MiδJ i. The Legendre transformation interchanges the con-
vexity and the concavity.

5Here we assumed

Gµναβ(X,X ′) =
1

16πGN

δ2 log Z[T̄ ]
δT̄µν(X)δT̄αβ(X ′)

, (6.44)

which could be shown by taking the variation of ⟨Gµν(X)⟩T̄ = δ log Z[T̄ ]/δT̄µν(X) , as

δ ⟨Gµν(X)⟩T̄ =
∫

dd+1X ′ δ2 log Z[T̄ ]
δT̄µν(X)δT̄αβ(X ′)

δT̄αβ(X ′) . (6.45)

The normalization is determined by the definition of the graviton propagator (6.42) .
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6.4 Calculations of the capacity of entanglement

Our holographic proof of the inequalities for the Rényi entropy highlights a role of the
stability in the bulk as a unitarity of the dual field theory. The discussion was illuminating
for the formal proof, but less concrete so far. In this section, we switch gears and move
onto tangible examples of the capacity of entanglement in various systems.

6.4.1 Conformal field theory

As explained in chapter 2, in two-dimensional CFT with central charge c the Rényi en-
tropies for an interval of length L are [49, 50]

Sn =
c

6

(
1 +

1

n

)
log(L/ϵ) , (6.51)

with the UV cutoff ϵ. It yields the capacity of entanglement straightforwardly

C(n) =
c

3n
log(L/ϵ) . (6.52)

As it shows, the capacity is always positive in accord with the inequality (6.22) as the
length L cannot be smaller than the UV cutoff ϵ.

It is challenging to obtain the capacity C(n) for general n in higher dimensional
CFT, while one can calculate C(n) of a sphere in the limit n → 1. This is because
C(1) = −∂nS̃n|n=1 is identical to the derivative of the Rényi entropy C(1) = −2∂nSn|n=1,
whose calculations were already carried out for a sphere in CFT in [140]. In this case, the
capacity becomes

C(1) = Vol(Hd−1)
2πd/2+1(d − 1)Γ(d/2)

Γ(d + 2)
CT . (6.53)

This is proportional to the coefficient CT of the correlation function of the energy-
momentum tensor [141]

⟨Tab(x)Tcd(0)⟩ = CT
Iab,cd(x)

x2d
, (6.54)

where Iab,cd(x) is a function given by

Iab,cd(x) =
1

2
(Iac(x)Ibd(x) + Iad(x)Ibc(x)) − 1

d
δabδcd ,

Iab(x) = δab − 2
xaxb

x2
.

(6.55)

The positivity of C(1) manifests itself in the form (6.53) as the volume of the hyperbolic
space is positively divergent. In practice, it is convenient to introduce the regularized
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volume6

Vol(Hd−1) = πd/2−1Γ

(
1 − d

2

)
, (6.56)

to read off the so-called universal part of the Rényi entropies. This operation corresponds
to adding local counter terms with respect to the background metric to render the partition
function finite. It works well for any d except even integers as the poles structure of the
gamma function shows in (6.56). This signals the Weyl anomaly that cannot be removed
by local counter terms. In even d dimensions, one has to replace the formula (6.56) with
[58, 133]

Vol(Hd−1) =
2(−π)d/2−1

Γ(d/2)
log(R/ϵ) , (d : even) , (6.57)

by introducing the UV cutoff ϵ and the radius R of the hyperbolic space, as explained in
chapter 2. When applied to the entropy of an interval of width L in d = 2, the radius of
the hyperbolic space R should be identified with the width L/2 in the regularized volume
(6.57) and we are able to recover the CFT2 result (6.52) upon the relation CT = c/(2π2).

6.4.2 Free fields

The capacity of entanglement is less tractable to calculate for interacting QFTs as the
modular Hamiltonian is non-local in general. For free field theories, things are much
simpler and one is able to compute the Rényi entropies using the partition function on
S1 × Hd−1 which is conformally equivalent to the replica space of a spherical entangling
surface [142, 58, 129] (see also [143, 144, 145]).

Firstly we consider a conformally coupled real massless scalar field. With the help of
the map to S1 ×Hd−1, the partition function on the n-fold replica manifold of a spherical
entangling surface becomes [129]

log Zs(n) = −
∫ ∞

0

dλµs(λ)
[
log

(
1 − e−2πn

√
λ
)

+ πn
√

λ
]

, (6.58)

where µs(λ) is the Plancherel measure of the scalar field on Hd−1 [146, 147]

µs(λ) =
Vol(Hd−1)

2d−1π
d+1
2 Γ

(
d−1
2

) sinh(π
√

λ)

∣∣∣∣Γ
(

d

2
− 1 + i

√
λ

)∣∣∣∣
2

. (6.59)

Together with (6.19), it leads to the capacity of entanglement

Cs(n) = π2n2

∫ ∞

0

dλµs(λ) λ csch2
(
πn

√
λ
)

. (6.60)

6To derive (6.56), one can either put a cutoff near the infinity of the hyperbolic space, or use a
dimensional regularization. In the former case, one ignores the power-law divergences for the cutoff to
extract the universal part, while in the latter case one analytically continues the dimension d from the
range 1 < d < 2 to an arbitrary value.
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Turning into a massless Dirac fermion, the partition function is written as

log Zf (n) =

∫ ∞

0

dλµf (λ)
[
log

(
1 + e−2πnλ

)
+ πnλ

]
, (6.61)

where the Plancherel measure of the spinor on Hd−1 is [147]

µf (λ) =
g(d) Vol(Hd−1)

2d−2π
d+1
2 Γ

(
d−1
2

) cosh(πλ)

∣∣∣∣Γ
(

d − 1

2
+ iλ

)∣∣∣∣
2

, (6.62)

and g(d) ≡ 2[d/2] is the dimension of Dirac spinors in d dimensions. The capacity takes a
similar form to the scalar field:

Cf (n) = π2n2

∫ ∞

0

dλµf (λ) λ2 sech2 (πnλ) . (6.63)

Both (6.60) and (6.63) are manifestly positive in their forms.
In two dimensions d = 2, these capacities reproduces the CFT2 result (6.52) with

c = 1. They are also consistent with the general formula (6.53) of C(1) for CFT where
the free fields have the following values of CT [141]

(CT )scalar =
d Γ(d/2)2

4πd(d − 1)
, (CT )fermion =

g(d) d Γ(d/2)2

8πd
. (6.64)

For massive cases and for a region A other than a ball, it is hard to obtain capacities
analytically, but we can resort to lattice discretization to calculate them numerically.
The partition functions Tr[ρn

A] are expressed by correlation functions of discretized fields
located in the region A as follows [51, 52, 53]. For free scalars φi and its conjugates πi

with correlation functions Xij = ⟨φiφj⟩ and Pij = ⟨πiπj⟩, the partition function is given
by

log Tr[ρn
A] = −Tr

[
log

(
(Ds + 1/2)n − (Ds − 1/2)n

)]
= −

∑

a

(
log(enϵa − 1) − n log(eϵa − 1)

)
,

(6.65)

where we set the eigenvalues of Ds =
√

XP (≥ 1/2) as coth(ϵa/2)/2. The indices i, j run
only the ones corresponding to the sites inside the region A. This yields a manifestly
non-negative capacity

Cs(n) = n2Tr

[
(Ds + 1/2)n(Ds − 1/2)n

((Ds + 1/2)n − (Ds − 1/2)n)2

(
log

Ds + 1/2

Ds − 1/2

)2
]

=
n2

4

∑

a

ϵ2
a csch2(nϵa/2) .

(6.66)

The calculation for free fermions ψi is similar [138]. The partition function given by

log Tr[ρn
A] = Tr

[
log

(
(1 − Df )

n + Dn
f

)]
=

∑

a

(
log(enϵa + 1) − n log(eϵa + 1)

)
, (6.67)

yields a manifestly non-negative capacity

Cf (n) = n2Tr

[
Dn

f (1 − Df )n

(Dn
f + (1 − Df )n)2

(
log

Df

1 − Df

)2
]

=
n2

4

∑

a

ϵ2
a sech2(nϵa/2) , (6.68)

where the eigenvalues of the matrix (Df )ij = ⟨ψiψ
†
j⟩ are 1/(1 − eϵa).
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6.4.3 Gravity duals

The Rényi entropies of a spherical entangling surface are calculated through the hologra-
phy using the AdS topological black hole [133]. The metric for the bulk per replica B̂n is
known to be

ds2
d+1 =

dr2

fn(r)
+ fn(r)dτ 2 + r2(du2 + sinh2 u dΩ2

d−2) , (6.69)

with a function

fn(r) = r2 − 1 − rd
n − rd−2

n

rd−2
. (6.70)

The Euclidean time direction τ has the period τ ∼ τ + 2π so that this metric reduces
to the non-singular flat space dτ 2 + du2 + sinh2 u dΩ2

d−2 ∼
∑d

i=1 dx2
i at the conformal

boundary r → ∞. This geometry has a conical singularity C(n)
A at the horizon r = rn

(fn(rn) = 0), where the Euclidean time τ circle shrinks to a point. The horizon radius rn

is determined by n as

2π

n
=

f ′
n(rh)

2
2π ⇔ n =

2

f ′
n(rh)

=
2

drn − (d − 2)r−1
n

(6.71)

⇔ rn =
1 +

√
1 + n2d(d − 2)

n d
, (6.72)

such that the correct conical singularity τ ∼ τ + 2π/n is reproduced. rn is monotonically
decreasing with n and satisfies rn ≥ limn→∞ rn =

√
(d − 2)/d.

The cosmic brane is located on the horizon and the improved Rényi entropy is nothing
but the black hole entropy

S̃n = rd−1
n

Vol(Hd−1)

4GN
. (6.73)

Integration by n gives the free energy F (n)

F (n) =

∫ n

1

dn′ S̃n′

n′2 =
Vol(Hd−1)

4GN

2 − rd
n − rd−2

n

2
, (6.74)

where we used the relation (d + (d − 2)/r2
n)∂nrn = −2/n2 followed from the expression

(6.71). This means that the Rényi entropy Sn = nF/(n − 1) is

Sn =
n

n − 1

Vol(Hd−1)

4GN

2 − rd
n − rd−2

n

2
, (6.75)

which is non-negative for any n and d as rn > 1 for n < 1 and rn < 1 for n > 1. We can
also check that the first inequality (6.1) holds or equivalently S[ρn|ρ] = −(n− 1)2∂nSn =
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1+(d−1)(rd
n−rd−2

n )/2−rd−1
n ≥ 0. The total energy (6.29) and the capacity of entanglement

(6.30) given by

E =
Vol(Hd−1)

4GN

2 + (d − 1)(rd
n − rd−2

n )

2
, (6.76)

C =
Vol(Hd−1)

4GN
(d − 1) rd−1

n

d r2
n − (d − 2)

d r2
n + (d − 2)

, (6.77)

are also non-negative for any n and d as rn > 1 for n < 1 and rn ≥
√

(d − 2)/d for n > 1.
A more direct way to get C without knowing S̃n is to use the formula

C = − n

8GN

∫

C
(n)
A

dd−1y
√

g gij ∂Xµ

∂yi

∂Xν

∂yj

δGµν(X(y))

δn
, (6.78)

which is equivalent to the previous ones (6.32) and (6.48).7 When applying (6.78) to
the background (6.69), we take the embedding Xµ(y) of the surface as (Xr, Xτ , X i) =
(1, 0, yi), where yi are the coordinates of Hd−1. For Hd−1 is maximally symmetric, the
integration just gives its volume and the formula reads

C = −nVol(Hd−1)

8GN
rd−3
n

δGuu

δn

∣∣∣∣
C

(n)
A

. (6.79)

Reassuringly it agrees with (6.77) as δGuu/δn = δr2
n/δn = 2rn∂nrn.

When n = 1, the holographic capacity of entanglement takes a particularly simple
form

C(1) =
Vol(Hd−1)

4GN
. (6.80)

It takes exactly the same form as the field theory calculation (6.53) because the holo-
graphic system has [148]

CT =
1

8πGN

d + 1

d − 1

Γ(d + 1)

πd/2Γ(d/2)
. (6.81)

One more example we are going to show is the system with two balls A1 and A2 of
radii R1 and R2 separated enough (see Fig. 6.1). The Rényi entropy of the two balls for an
arbitrary n is beyond our scope, but a perturbative calculation is feasible in the leading
linear order of δn ≡ n − 1. Indeed, an analog of the mutual information I(n)(A1, A2) ≡
Sn(A1)+Sn(A2)−Sn(A1∪A2) has been evaluated holographically by [80] for n close to 1.
We will benefit from the result to get the capacity of entanglement CA1∪A2 for the union
of the two balls A1 and A2 in this parameter region.

The positions of the balls are parametrized by the cross ratio 0 ≤ x ≡ (x1−x2)(x3−x4)
(x1−x3)(x2−x4) ≤

1 . xi are the coordinates of the points where the line connecting the two centers intersects

7Even when the graviton propagator Gµναβ(X,X ′) is known, the expression (6.48) is too difficult to
evaluate in general and it suffers from a subtle contribution from the asymptotic boundary. We will
comment on this difficulty in Appendix B.2.
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R1

R2

x2x1 x3 x4
A1 A2

r

Figure 6.1: The entangling region (shown in red) consists of two balls A1 and A2 of radii R1

and R2, respectively. The four coordinates xi are defined on the line connecting the centers
of the balls. In a conformal field theory, the configuration of the balls is uniquely specified
by the cross ratio x ≡ (x1 − x2)(x3 − x4)/(x1 − x3)(x2 − x4) = 4R1R2/(r2 − (R1 − R2)2),
where r is the distance between the two centers.

the balls, x1,2 for A1 and x3,4 for A2 (Fig. 6.1). There are two phases depending on the
topology of the minimal surfaces in the bulk, and there is a critical point x = xc below
which a disconnected surface is favored, otherwise a connected one is realized [132]. The
calculation of I(n)(A1, A2) performed by [80] is in the disconnected phase (x ≤ xc) with
the balls separated enough. To convert the result into the capacity C(1), we apply a
derivative −2∂n|n=1 on Sn(A1 ∪ A2) = Sn(A1) + Sn(A2) − I(n)(A1, A2) to get

CA1∪A2(1) = CA1(1) + CA2(1) + 2∂nI(n)(A1, A2)|n=1 (6.82)

=
Vol(Hd−1)R1 + Vol(Hd−1)R2

4GN
+

24−dπd+1CT

d(d2 − 1)Γ ((d − 1)/2)2

2 − x

x
B

((
x

2 − x

)2

;
d + 1

2
;
2 − d

2

)
,

(6.83)

where Vol(Hd−1)R is the regularized volume of Hd−1 of radius R given by (6.56) and (6.57).

6.4.4 Large and small n limits

Before closing this section, we examine the large and small n behaviours of the capacity
C(n) for a spherical entangling region in the systems we have studied. In the thermo-
dynamic interpretation, we regard these as the low and high temperature limits for the
temperature T = 1/n.

In the low temperature limit n → ∞, the capacities of conformal theories go to zero
as

Cs(n) ∼ Vol(Hd−1)
Γ(d

2 − 1)2

15 · 2d−1π
d−3
2 Γ

(
d−1
2

)
1

n3
(d ̸= 2) , (6.84)

Cf (n) ∼ Vol(Hd−1)
g(d))Γ(d−1

2 )

3 · 2dπ
d−1
2

1

n
, (6.85)

CAdS(n) ∼ Vol(Hd−1)

4GN

(d − 1)(d − 2)d/2−1

dd/2

1

n
, (6.86)
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for the massless scalar, massless fermion and CFT dual to the AdS spacetime, respectively.
They are proportional to a power of the temperature T = 1/n, indicating a gapless
excitation for the modular Hamiltonian. In d = 2, the scalar capacity also becomes
proportional to 1/n as Cs(n) = (c/3n) log(L/ϵ).

On the other hand, in the high temperature limit n → 0, they obey the Stefan-
Boltzmann’s law C(T ) ∝ T d−1 for thermal massless gases

Cs(n) ∼ Vol(Hd−1)
(d − 1)Γ(d/2 + 1)ζ(d)

2d−2π
3
2d−1

1

nd−1
, (6.87)

Cf (n) ∼ Vol(Hd−1)
(d − 1)(2d−1 − 1)Γ(d/2 + 1)ζ(d)g(d)

22d−3π
3
2d−1

1

nd−1
, (6.88)

CAdS(n) ∼ Vol(Hd−1)

4GN
(d − 1)

(
2

nd

)d−1

. (6.89)

To derive these results, we used asymptotic behavior of µ(λ)

µs(λ) ∼ Vol(Hd−1)

2d−1π
d−1
2 Γ

(
d−1
2

)λ
d−3
2 , µf (λ) ∼ g(d) Vol(Hd−1)

2d−2π
d−1
2 Γ

(
d−1
2

)λd−2, (6.90)

in the limit λ → ∞ and mathematical relations
∫ ∞

0

dx xdcsch2x =
Γ(d + 1)ζ(d)

2d−1
, (6.91)

∫ ∞

0

dx xdsech2x =
(2d−1 − 1)Γ(d + 1)ζ(d)

4d−1
, (6.92)

and Γ(d + 1)/2d = Γ(d+1
2 )Γ(d

2 + 1)/
√

π.

6.5 Discussion

Our approach to the holographic Rényi entropy is advantageous for formal proofs and
provides a clear-cut relation of the roles played by the unitarity in QFT and the stability
of the gravity theory. Meanwhile, the holographic formula lacks a power of computability
in a practical problems as we saw in section 6.4. The main difficulty originates from the
procedure of finding the extremal surface of a cosmic brane in the backreacted geometry.
One would be able to calculate the Rényi entropy perturbatively either in n − 1 or in
shape, otherwise it is generically unattainable in its nature. It is still algorithmically
simple to implement in numerical calculation that would be worth more investigation.

We do not know any rigorous proof or plausible argument for the bulk stability against
any perturbation that is essential in our holographic proof of the inequalities. To answer a
question whether the bulk is stable or not requires the knowledge of quantum gravity which
remains to be developed. It is one of the fundamental problems even in the perturbative
Euclidean quantum gravity and providing the complete solution is far beyond the scope
of this paper. We comment on possible attempts instead:
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• The assumption we made for the bulk stability is a sufficient condition, but may not
be a necessary condition, to prove the Rényi entropic inequalities in the holographic
system. Namely the non-negativity of the heat capacity (6.38) could have followed
from the condition for the Hessian matrix to be non-negative definite only in the
subspace of the metric variation δGµν/δn induced by changing the replica parameter.
Unfortunately we were not able to demonstrate the non-negativity of the Hessian
in the subspace as the metric variation is only calculable in the neighbourhood of
the cosmic brane.

• The perturbative Euclidean gravity is known to suffer from the bulk instability due
to the Weyl mode.8 There are at least two directions known in literature to fix this
problem: one (ad-hoc) attempt is Gibbons-Hawking-Perry prescription which claims
to change the contour of integration for the Weyl mode, called conformal rotation, in
the path integral formulation of the perturbative Euclidean gravity [136, 137, 149].
(See also [150, 151] for further discussions.) For locally Euclidean AdS3 spaces,
this prescription gives the correct one-loop partition function of gravity expected
from the AdS3/CFT2 correspondence [152], and it might well work for more general
holographic theories at the one-loop level. The other is based on the canonical
quantization of gravity to show the Hamiltonian is bounded from below, and then
continues to Euclidean path integral with an appropriate choice of contour [153, 154].
The two approaches appear to be complimentary to each other, but a precise relation
between them has not been completely explored.

As a future direction, it would also be intriguing to include quantum corrections to the
holographic Rényi entropy [95]. Recent discussions [155, 156] argues a relation between
the boundary modular Hamiltonian Hbdy and the bulk one Hbulk

Hbdy =
Â

4GN
+ Hbulk + ŜWald-like + O(GN) . (6.93)

Here Â is an operator in the bulk which is supposed to give the area of the Ryu-Takayanagi
surface S when sandwiched by a state dual to a given state in the boundary field theory.
ŜWald-like denotes local operators localized on S in the semi-classical limit. It may as well
be applied to the calculation of the capacity (6.19) for n = 1, leading to

C(1)bdy =
1

16G2
N

(
⟨Â2⟩ − ⟨Â⟩2

)
+

1

2GN

(
⟨Â H̃bulk⟩ − ⟨Â⟩⟨H̃bulk⟩

)
+ O(1) , (6.94)

where we introduced H̃bulk ≡ Hbulk + ŜWald-like to simplify the notation. Surprisingly, the
leading term is of order 1/G2

N , which was not observed in the examples in section 6.4.
Thus we are lead to conclude that the area operator has to satisfy

α ≡ ⟨Â2⟩ − ⟨Â⟩2

8GN
= O(G0

N) . (6.95)

8We thank M.Headrick for drawing our attention to this subtlety.
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We believe this is a defining property of the area operator that holds for any state in the
semi-classical limit. A similar statement has been made in, e.g., [157] in the context of the
linearity of the area operator recently. The order 1/GN term is likely to contribute to the
capacity, and it indeed does so for the cases considered in section 6.4. We do not know
how to estimate it in practice, but the non-negativity of the capacity yields a constraint

α + ⟨Â H̃bulk⟩ − ⟨Â⟩⟨H̃bulk⟩ ≥ 0 + O(GN) . (6.96)

Testing this inequality needs more detailed information on the area operator and the local
operators on the Ryu-Takayanagi surface S, which is far beyond the scope of the present
work.

Another interesting direction is to generalize the holographic formula of the Rényi
entropy to a time dependent background [78] and higher derivative gravities [81, 158]. It
is not so obvious how a cosmic brane modifies the original proposals, but it is likely that
the entropy is still given by variants of the area formula.
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Chapter 7

Conclusions

This thesis made an attempt to have a better understanding of how quantum gravity
theory encodes spacetime structure as physical degrees of freedom or quantum informa-
tion, by investigating various aspects of quantum entanglements from the viewpoint of
the holography. These studies turn out to include or be related to many rich physical
interests as well other than quantum gravity, such as quantum information theories, the
logical structure of thermodynamics, thermalization processes, ground states of gapped
theories, useful conformal transformations, relevant deformations and c-functions, non-
trivial classical geometries derived from string theory or M theory, cosmic branes, and
black hole dynamics.

In chapter 3, we have examined entanglement entropies of an annulus or equivalently
mutual informations across the annulus in three dimensions, resorting to numerical cal-
culations. Massless and massive free scalar theories are studied by lattice discretization
method, and strongly coupled theories, namely, a CFT3 and a gapped theory holograph-
ically described by AdS4 and CGLP background respectively, are studied by shooting
method. All the resultant entropies satisfy the monotonicity and the convexity requested
by the strong subadditivity. In the limits of thin or thick annuli, these entropies can
be related to some analytic calculations in previous works, which expectedly agree with
our numerical results. While AdS4 has two phases for the minimal surface, one connected
phase and one disconnected phase, CGLP background has four phases, three disconnected
phases and one connected phase, since it is capped off somewhere in IR. In both cases,
holographic mutual information characterizes the connected phase by its nonzero value.
Many qualitative similarities between the results of free theories and holographic theories
give concrete examples of the power of the holographic entanglement entropy formula.

Interestingly, we observed that the mutual information across the annulus exponen-
tially decays with the mass gap times the annulus width, both in massive free scalar
theory and in CGLP background. This term depends on the annulus width and thus is
non-local with respect to the entangling region. From this observation, we conjectured
that this exponentially decaying nonlocal behaviour is universal for mutual information
in gapped theories, and because mutual information is composed of entanglement en-
tropies, this conjecture directly means that in gapped theories, entanglement entropies
also should have such exponentially decaying non-local terms, which have been neglected
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in expanding entropies with respect to the inverse of the mass gap.
Moreover, the dimensionless coefficient κ of the mutual information in the thin annulus

limit seems to give a measure of degrees of freedom in field theories, and more generally it
would be intriguing to study whether we can use some mutual information as a c-function
or not. This holds at least in our example, because our mutual information monotonically
decreases with RG flow, namely decreases with the dimensionless combination of the
mass, mR2 (or mR1), fixing the radius ratio R2/R1. If so, this c-function may be easy to
generalize into higher dimensions.

In chapter 4, we have investigated holographic entanglement entropies in three dimen-
sional time-dependent Janus black hole with covariant holographic entanglement entropy
formula, a covariant generalization of the original holographic entanglement entropy for-
mula. The black hole is a solution of Einstein-scalar system and one parameter γ defor-
mation of BTZ black hole, where the parameter γ controls the scalar configuration and
the strength of its time dependence. Like BTZ black hole, globally the geometry has
two asymptotically AdS regions and is holographically dual to two copies of CFT’s. One
important difference from BTZ black hole is that the coupling constants or Hamiltonians
are different between the two CFT’s, while they are the same in the case of BTZ black
holes.

First we studied entropies of one interval in one CFT. Luckily, the corresponding ex-
tremal surface is obtained analytically, and consequently we see a time dependence typical
of thermalizing states, that is, the entropies grow linearly with time at first and become
saturated at some time proportional to the interval size in the end. Some limits that
simplify the results are also studied. A famous literature also constructed a holographic
model of thermalization processes in a clever and mysterious way from static black holes
like BTZ black hole, by taking two intervals located separately in each CFT and by taking
the time direction of one CFT opposite or equivalently dividing the spacetime by Z2 sym-
metry [108]. The literature attributed the linear growth of entropies to the growth of the
time slice penetrating the black hole (or the wormhole connecting the two asymptotically
AdS spaces) which the corresponding surfaces rest on, but we succeeded in constructing
such linearly growing holographic entanglement entropies without any growing time slices
or wormholes. We speculate that the true origin of the linear growth of entropies is not
the growth of some time slice but the situation that the corresponding surfaces enter into
the event horizon of the black holes.

We also studied how the story of the literature, which constructed a time dependent
situation using static BTZ black hole, changes if we introduce the one parameter γ defor-
mation, that is, we also studied entropies of two intervals located separately in each CFT
by taking the time direction of one CFT opposite, in the time-dependent Janus black
hole as well. In the same way as BTZ black hole geometry, the surface has two phases,
one connected phase and one disconnected phase. In the connected phase, which can be
characterized by the nonzero mutual information between the two intervals, the surface
consists of two geodesics penetrating the black holes, which gets long with increased γ.
In the disconnected phase, the surface is the same as we studied before for one interval in
one CFT. As a result, we found that the time for the phase transition from the connected
phase to the disconnected phase to occur becomes early with increased γ, and the phase
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transition does not occur with a sufficiently large γ.
We also found that the deformation γ reduces the speed of the liner growth of the

entropy, and so it would be interesting to study how this slowdown occurs in dual CFT
side, by calculating entropies for the proposed dual CFT state for the time-dependent
Janus black hole. Such a calculation would serve a consistency check of both the proposal
of the dual CFT state and our holographic calculations.

In chapter 5, on a cylindrical spacetime R×S2, we have defined two types of renormal-
ized entanglement entropies (REE), FC and FLM, out of cap entropies, and saw whether
they are c-functions, that is, whether they decrease monotonically with RG flow like
usual REE defined on the flat space. Putting the region on a sphere of radius R instead
of the flat space, we can regulate possible IR divergences. In CFT’s, these two REEs
both correspond to the usual REE defined in the flat space, and for this reason, they are
already weak c-functions in the sense that F|UV CFT ≥ F|IR CFT. As a concrete setup,
we calculate cap entropies and thus REE’s by applying a mass perturbation m2φ2 to a
conformally coupled scalar φ, analytically in UV (mR ≪ 1) and IR (mR ≫ 1) regions,
and numerically in the whole region of the scale mR .

UV region is studied with the assistance of a nice conformal transformation from the
replica space to a non-singular space S1 × H2, resulting in a spacetime dependent mass
term owing to the conformal factor e2σ(x). The first order term O((mR)2) of the cap
entropy is obtained by perturbing the free energy of the non-singular space with respect
to the coupling m2. It turns out that up to the first order of (mR)2, both the REE’s
monotonically decrease with the RG flow, but FC decreases in a stationary way while
FLM decreases in a non-stationary way.

On the other hand, in IR region, O((mR)−1) term of the cap entropy is read off by
uplifting the theory onto a massive scalar theory in four dimensions, since the O((mR)−1)
term is related to the logarithmic term O(log ϵ) of entropies in four dimensions, which
is known as Solodukhin’s formula. Consequently we observe that up to the first order
of (mR)−1, the REE FC decreases with the RG flow while FLM does not. This example
confirms that FLM is not a c-function.

Numerical calculations are performed for the whole region of the scale mR, whose
results agree well with all the above analytic calculations in both UV and IR regions.
The results also show that FC monotonically decreases all the way along the RG flow in
our setup, and so we propose that FC is generally c-function in this cylindrical spacetime
R × S2. As the derivative in the definition of REE, our result favors the derivative
with respect to θ, the size of region, rather than with respect to R, the scaling of the
spacetime; this result supports our intuition that physical degrees of freedom are encoded
in entanglements of the regions. It would also be stimulating to try to prove that FC is in
fact generally c-function, or to extend the notion of REE to more general curved spaces.

In chapter 6, we show that the recent proposal for the holographic formula of Rényi
entropy or modular entropy expectedly satisfies four mathematical inequalities that Rényi
entropies or modular entropy should fulfill, under an assumption that the bulk is stable.

In showing the Rényi entropic inequalities holographically, we found that there is an
useful analogy between modular entropies and thermal entropies. Identifying the Rényi
parameter n with the inverse temperature β and the modular Hamiltonian − log ρ with the
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usual Hamiltonian H, namely, applying statistical mechanics to the escort density matrix
ρn = ρn/Tr[ρn], the modular entropy is identified with the thermal entropy, and so-called
capacity of entanglement is identified with the heat capacity. From the viewpoint of this
analogy, the three of Rényi entropic inequalities are interpreted as the non-negativity
of the entropy, the total energy, and the heat capacity, respectively. The remaining one
inequality can be derived from the concavity of the free energy, that is, the non-negativity
of the capacity. In light of this analogy, the derivation of the holographic formula of Rényi
entropy gets simplified and its underling thermodynamic structure becomes clear.

Particularly, our research has revealed that capacity of entanglement is holographically
related to the Hessian matrix of the action with respect to metric perturbations, and that
its non-negativity, the most nontrivial inequality, is holographically related to the stability
of the bulk spacetime, which is usually implicitly assumed in holographic studies. Since
the inequalities are roughly just the consequences of the unitarity of quantum theories,
this work suggests some connection between the unitarity and the bulk stability.

Capacities of entanglement C(n) are also studied in various systems: an interval in
CFT2, a ball in CFTd with n = 1, a ball for free massless scalars or fermions in d
dimensions, any region on a lattice, and a ball or two separated balls in a strong coupling
CFTd holographically described by AdSd+1, whose replica bulk geometry is explicitly given
as AdS topological black hole. Their results are consistent with each other, and with the
inequalities. We also examined the large n and small n limits of the above capacities
of a ball in CFT’s, the massless free scalars or fermions and the holographic theory. In
the large n limit, which is interpreted as the low temperature limit in the analogy, the
capacities go to zero following a power-law decay, indicating a gapless excitation of their
modular Hamiltonians. On the other hand, in the small n limit, we observed Stefan-
Boltzmann law for thermal massless classical gases, which is natural because the limit
corresponds to the high temperature limit in the analogy to statistical mechanics.
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Appendix A

Details of numerical calculations

A.1 Calculating annulus entropies

Here we summarize the numerical algorithm for calculating the entanglement entropy of
the annulus for a free massive scalar field whose action is given by (3.14).

A.1.1 Radial lattice discretization

We use the polar coordinates to put the theory on the radial lattice

ds2 = −dt2 + dr2 + r2dθ2 . (A.1)

The radial coordinate r is discretized to N points with lattice spacing a. After the Fourier
decomposition along the angular coordinate θ, the lattice Hamiltonian becomes

H =
1

2

∞∑

n=−∞

[
N∑

i=1

π2
n,i +

N∑

i,j=1

φn,iK
i,j
n φn,j

]
, (A.2)

where φn,i and πn,i are the discretized scalar field with angular momentum n on the i-th
site and its conjugate, respectively. The matrices Ki,j

n depend on the angular momentum
and the mass m

K1,1
n =

3

2
+ n2 + (ma)2 , K i,i

n = 2 +
n2

i2
+ (ma)2 , K i,i+1

n = Ki+1,i
n = − i + 1/2√

i(i + 1)
.

(A.3)

These are related to the two-point functions of the scalar fields (Xn)ij = ⟨φn,iφn,j⟩ and

the momenta (Pn)ij = ⟨πn,iπn,j⟩ as Xn = 1
2K

−1/2
n and Pn = 1

2K
1/2
n .

The outer and inner radii of the annulus are chosen to be half-integers in units of the
lattice spacing, R1/a = r1 + 1/2 and R2/a = r2 + 1/2 with integers r1, r2. This choice
corresponds to the free boundary condition in the continuum limit. In our calculation, we
vary r2 from 100 to 120 and r1 from 5 to r2−5. The entanglement entropy of the annulus
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S(R1, R2) is obtained by using (r2 − r1) × (r2 − r1) submatrices (Xr1,r2
n )ij and (P r1,r2

n )ij

of the correlation functions Xn, Pn with the ranges r1 + 1 ≤ i, j ≤ r2 as

S(R1, R2) = S0 + 2
∞∑

n=1

Sn , (A.4)

where Sn is the contribution from the n-th angular mode

Sn = tr [(Cn + 1/2) log(Cn + 1/2) − (Cn − 1/2) log(Cn − 1/2)] , (A.5)

with Cn ≡
√

Xr1,r2
n P r1,r2

n . In the following, we describe how to perform this infinite
summation over n under controlled numerical errors.

A.1.2 Finite lattice size effect

To avoid the finite lattice size effect, we repeat the calculation of Sn (A.5) by changing
the lattice size N and fit the results Sn(N) with the asymptotic expansion for large N

Sn(N) = Sn(∞) +
kmax∑

k=1

ak

Nk
. (A.6)

We then read off the constant part Sn(∞) as the value of Sn in the large-N limit. Starting
from N = 200, we increase the lattice size by ∆N = 20 until the resultant Sn(∞) stops
changing up to error δ = 10−6.

We choose the fitting parameter kmax so that the maximum lattice size N is as small
as possible. Typically we find kmax = 3 ∼ 10.

The finite lattice size effect dominates only for small angular momenta n with small
masses ma. In our calculation, the maximum lattice size reaches N ∼ 1000 for n " 10 in
the massless case, but N = 200 is sufficiently large for n ! 20 or ma ! 0.1. The total
numerical error in (A.4) can be estimated to be O(20δ) " O(10−4).

A.1.3 Large angular momentum

In the large angular momentum limit n → ∞, the correlation matrices Xn and Pn ap-
proach almost diagonal matrices [85]. The products of the submatrices Xr1,r2

n P r1,r2
n almost

equal to 1/4 times unit matrix up to order 1/n8. The nontrivial entries are at the upper-
left corners

(Xr1,r2
n P r1,r2

n )r1+1,r1+1 =
1

4
+

r2
1(r1 + 1)2

16n4
− r2

1(r1 + 1)2(2r1 + 1)2(m2 + 2)

32n6
+ O(1/n8) ,

(Xr1,r2
n P r1,r2

n )r1+1,r1+2 =
r3
1(r1 + 1)3/2(r1 + 2)3/2

64n6
+ O(1/n8) ,

(Xr1,r2
n P r1,r2

n )r1+2,r1+1 =
r2
1(r1 + 2)3/2(r1 − 1)1/2(3(r1 + 1)2 − 1)

64n6
+ O(1/n8) .

(A.7)
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and at the lower-right corners

(Xr1,r2
n P r1,r2

n )r2,r2 =
1

4
+

r2
2(r2 + 1)2

16n4
− r2

2(r2 + 1)2(2r2 + 1)2(m2 + 2)

32n6
+ O(1/n8) ,

(Xr1,r2
n P r1,r2

n )r2,r2−1 =
r3/2
2 (r2 − 1)3/2(r2 + 1)3

64n6
+ O(1/n8) ,

(Xr1,r2
n P r1,r2

n )r2−1,r2 =
r1/2
2 (r2 − 1)3/2(r2 + 1)2(3r2

2 − 1)

64n6
+ O(1/n8) .

(A.8)

Here we restrict the ranges of r1, r2 to 3 ≤ r1 and r1 +3 < r2 to avoid the overlap between
the upper-left and lower-right corners, which is satisfied in our set up with 5 ≤ r1 ≤ r2−5.

The r2 − r1 − 2 eigenvalues of the matrix
√

Xr1,r2
n P r1,r2

n are 1/2 + O(1/n8) and the
other two are given by

1

2
+ c(a)

n − c(a)
n

(2ra + 1)2(m2 + 2)

2n2
, c(a)

n ≡ r2
a(ra + 1)2

16n4
, a = 1, 2 . (A.9)

Therefore, most of the eigenvalues do not contribute to the n-th entanglement entropy
(A.5) up to order 1/n8 and we obtain

Sn =
∑

a=1,2

[
c(a)
n (1 − log c(a)

n ) +
(2ra + 1)2(m2 + 2)

2n2
c(a)
n log c(a)

n

]
+ O(1/n8) . (A.10)

This asymptotic formula is much faster than the direct calculation of (A.5).
We perform the matrix trace calculation (A.5) for n less than some large angular

momentum n∗, and use this asymptotic formula (A.10) for n ≥ n∗ as long as Sn(=
O(log n/n4)) is larger than the machine precision. The other higher modes are ignored.

Our n∗ is determined as follows. Let the error of O(1/n8) in (A.10) be µ/n8 with
µ = µ(m, r1, r2). Then the total numerical error in (A.4) is estimated to be

∑∞
n∗

(µ/n8) ∼
µ/(7n7

∗). We take n∗ to be the angular momentum where the asymptotic formula (A.10)
agrees with the matrix trace calculation (A.5) up 7δ/n. Then µ/n8

∗ " 7δ/n∗ holds and
the total numerical error in (A.4) is bounded by

∑∞
n∗

(µ/n8) ∼ µ/(7n7
∗) " δ. In this way,

we can handle the numerical error within O(δ).

A.2 Calculating cap entropies on cylinder

Here we summarize the numerical algorithm for calculating the entanglement entropy of
the cap A on the cylinder R× S2 for a conformally coupled free massive scalar field.

A.2.1 Angular decomposition

The action is given by (5.5) with the Ricci scalar R = 2/R2. We can regard this theory
as a free massive scalar field theory

I = −1

2

∫

R×S2
d3x

√
−g

[
gµν∂µφ∂νφ + m2

eff φ2
]

, (A.11)
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with an effective mass m2
eff ≡ m2 + 1

4R2 . The Hamiltonian is given as

H =

∫ π

0

dθ

∫ 2π

0

dφ
sin θ

2

(
R2π2 + (∂θφ)2 +

(∂φφ)2

sin2 θ
+ m2

effφ
2

)
, (A.12)

where the conjugate momentum π = ∂tφ satisfies the canonical commutation relation

[φ(θ,φ),π(θ′,φ′)] =
i

√
g
δ(θ − θ′)δ(φ − φ′) ,

=
i

R2 sin θ
δ(θ − θ′)δ(φ − φ′) .

(A.13)

The region A = {(θ,φ); 0 < θ < θ0} has the rotational symmetry in the φ direction,
which allows us to reduce the space dimension to only the θ direction by a following
angular decomposition

φ(θ,φ) =
1√

πR sin θ

(
φ0(θ)√

2
+

∞∑

n=1

(φ−n(θ) sin nφ + φn(θ) cos nφ)

)
,

π(θ,φ) =
1√

πR3 sin θ

(
π0(θ)√

2
+

∞∑

n=1

(π−n(θ) sin nφ + πn(θ) cos nφ)

)
.

(A.14)

In this angular decomposition, the Hamiltonian (A.12)

H =
1

2R

∞∑

n=−∞

∫ π

0

dθ

[
π2

n(θ) +

(
(meffR)2 +

n2

sin2 θ

)
φ2

n(θ) +

(√
sin θ ∂θ

(
φn(θ)√
sin θ

))2
]

,

(A.15)

and the commutation relation (A.13) becomes

[φn(θ),πn′(θ′)] = iδnn′δ(θ − θ′) . (A.16)

A.2.2 Lattice discretization

We follow the discretization procedure [159]. The space coordinate θ is discretized as
θj = jπ/N (j = 1, 2, . . . , N − 1) with dynamic variables

(Φj
n, Πj

n) ≡

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(√
2π

N
φn(θj),

√
π

2N
πn(θj)

)
, (j = 1, N − 1) ,

(√
π

N
φn(θj),

√
π

N
πn(θj)

)
, (j ̸= 1, N − 1) .

(A.17)

In this discretization procedure, the Hamiltonian (A.15)

H =
1

2R

∞∑

n=−∞

(
N−1∑

j=1

(Πj
n)2 +

N−1∑

i,j=1

Φi
nK

(n)
ij Φj

n

)
, (A.18)
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and the commutation relation (A.16) becomes

[Φj
n, Π

j′

n′ ] = iδnn′δjj′ , (A.19)

where K(n)
ij is an (N − 1) × (N − 1) real symmetric tridiagonal matrix

K(n)
jj =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

N2

π2

sin θ3/2

2 sin θ1
+

1

4

(
(meffR)2 +

n2

sin2 θ1

)
, (j = 1, N − 1) ,

N2

π2
2 cos

π

2N
+

(
(meffR)2 +

n2

sin2 θj

)
, (j ̸= 1, N − 1) ,

(A.20)

K(n)
j,j+1 = K(n)

j+1,j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− N2

π2

sin θ3/2√
2 sin θ1 sin θ2

, (j = 1, N − 2) ,

− N2

π2

sin θj+1/2√
sin θj sin θj+1

, (j ̸= 1, N − 2) ,
(A.21)

K(n)
ij = 0 , ( |i − j| > 1 ) , (A.22)

with a Z2 symmetry KN−i,N−j = Kij corresponding the parity symmetry θ → π− θ. This

matrix K(n) is related to the correlation matrices X(n)
ij = ⟨Φi

nΦj
n⟩ and P (n)

ij = ⟨Πi
nΠj

n⟩ as

X(n) = 1
2(K

(n))−1/2 and P = 1
2(K

(n))1/2. The size θ0 of the subsystem A is chosen to be a
half-integer in units of the lattice spacing, θ0 = (r+1/2)/N with an integer r. This choice
corresponds to the free boundary condition in the continuum limit. In our calculation,
we take N = O(102−3), which is sufficiently large for our purpose.

The entanglement entropy of the disk S(θ0) is obtained by using r × r submatrices

X(n)
r ≡ (X(n)

ij )1≤i,j≤r and P (n)
r ≡ (P (n)

ij )1≤i,j≤r as (A.4) with (A.5), where Cn =

√
X(n)

r P (n)
r

in this case.

A.2.3 Large angular momentum

In the large angular momentum limit n → ∞, the correlation matrices X(n) = 1
2(K

(n))−1/2

and P (n) = 1
2(K

(n))1/2 approach almost diagonal matrices [85], for general symmetric
tridiagonal matrices K(n) such as

K(n)
jj = k(j)n2 + h(j) ,

K(n)
j,j+1 = K(n)

j+1,j = t(j) ,

K(n)
ij = 0 ( |i − j| > 2 ) .

(A.23)

The products of the submatrices X(n)
r P (n)

r almost equal to 1/4 times unit matrix up to
order 1/n8. The nontrivial entries are at the lower-right corners

(X(n)
r P (n)

r )rr =
1

4
+

c(r)

n4
− c(r)b(r)

n6
+ O(1/n8) ,

(X(n)
r P (n)

r )r,r−1 = O(1/n6) ,

(X(n)
r P (n)

r )r−1,r = O(1/n6) ,

(A.24)
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where

c(r) ≡ t(r)2

4
√

k(r)k(r + 1)
(√

k(r) +
√

k(r + 1)
)2 ,

=
N4

π4

sin2 θr+1/2

(1/ sin θr + 1/ sin θr+1)2
,

b(r) ≡
h(r)√
k(r)

+ h(r+1)√
k(r+1)√

k(r) +
√

k(r + 1)
+

h(r)

2k(r)
+

k(r + 1)

2k(r + 1)
,

=
1

2

(
(meffR)2 +

N2

π2
2 cos

π

2N

)
(sin θr + sin θr+1)

2 .

(A.25)

The eigenvalues of the matrix Cn =

√
X(n)

r P (n)
r are 1/2 + O(1/n8), except one eigenvalue

1

2
+

c(r)

n4
− c(r)b(r)

n6
+ O(1/n8) . (A.26)

Therefore, most of the eigenvalues do not contribute to the n-th entanglement entropy
(A.5) up to order 1/n8 and we obtain

Sn =
c(r)

n4

(
1 − log

c(r)

n4

)
+

c(r)b(r)

n6
log

c(r)

n4
+ O(1/n8) . (A.27)

And we perform the matrix trace calculation (A.5) in the same way as the annulus case.
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Appendix B

Details of holographic calculations

B.1 γ-expansion in the Janus black hole

Here we compute the area of the extremal surface for an interval region and the phase
transition time for the region of two intervals in the time-dependent Janus black hole, in
the leading order of the Janus deformation parameter γ2.

First, let us obtain the relation y∗ = y∗(t∞, θ∞) in the leading order. This can be
performed by expanding (4.27) in γ2. The integrand in the left hand side can be evaluated
as

g̃(y)2

√
g̃(y∗)2 − g̃(y)2

=
sech2 y√

sech2 y∗ − sech2 y
+

sech2 y(2 − sech2 y + sech2 y∗)

4
√

sech2 y∗ − sech2 y
γ2 + O(γ4) ,

(B.1)

and thus
∫ y∞

y∗

dy
g̃(y)2

√
g̃(y∗)2 − g̃(y)2

=

[
tanh−1

(
cosh y∗ sinh y√

cosh2 y∗ − cosh2 y

)]y∞

y∗

+

[
3 cosh2 y∗ + 1

8 cosh2 y∗
tanh−1

(
cosh y∗ sinh y√

cosh2 y∗ − cosh2 y

)
+

1

8 cosh y∗

√
cosh2 y − cosh2 y∗

sinh y

]y∞

y∗

γ2 + O(γ4)

= tanh−1(sech y∗) +

(
3 cosh2 y∗ + 1

8 cosh2 y∗
tanh−1(sech y∗) +

1

8 cosh y∗

)
γ2 + O(γ4) . (B.2)

By substituting this relation into (4.27), we obtain

sinh r0θ

cosh r0t
= sinh

[
tanh−1(sech y∗) +

(
3 cosh2 y∗ + 1

8 cosh2 y∗
tanh−1(sech y∗) +

1

8 cosh y∗

)
γ2 + O(γ4)

]

=
1

sinh y∗
+

(
3 cosh2 y∗ + 1

8 cosh y∗ sinh y∗
tanh−1(sech y∗) +

1

8 sinh y∗

)
γ2 + O(γ4) , (B.3)
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from which the desired relation y∗ = y∗(t∞, θ∞) follows,

sinh y∗ = F

[
1 +

(
3F 2 + 4

8
√

1 + F 2
coth−1

(√
1 + F 2

)
+

1

8

)
γ2

]
+ O(γ4) , (B.4)

where

F (t∞, θ∞) =
cosh r0t∞
sinh r0θ∞

. (B.5)

Then the area On the other hand, from (4.28) and (4.30), γ2-expansion gives

A(reg)/L = 2 log
2 cosh r0t

r0 sinh y∗
+

(
1 +

1

2
sech y∗ tanh−1(sech y∗)

)
γ2 + O(γ4) . (B.6)

By using (B.4) above, this results in

A(reg)/L = 2 log

(
2

r0
sinh r0θ

)
−

(
3F 2 + 2

4
√

1 + F 2
coth−1

(√
1 + F 2

)
− 3

4

)
γ2 + O(γ4) .

(B.7)

On the other hand, the phase transition time tc for a fixed value of θ can be computed
by an equation

A(reg)
dc = A(reg)

c , (B.8)

with the aid of (4.46), (B.7) and Adc = 2A. This equation is solved as t = tc, where

tc = t(0)c + t(1)c γ2 + O(γ4) , (B.9)

r0t
(0)
c = cosh−1(sinh r0θ) , (B.10)

r0t
(1)
c = −

(
1

2
+

5

2
√

2
coth−1(

√
2)

)
sinh r0θ√

sinh2 r0θ − 1

≃ −2.058 × sinh r0θ√
sinh2 r0θ − 1

. (B.11)

In the large θ limit (θ ≫ r−1
0 ) in particular, we obtain

tc ≃ θ − 2.058γ2 + O(γ4) . (B.12)

B.2 On holographic calculation of C(1) using graviton
propagator

Here we use the expression (6.48) including the graviton propagator to calculate C(1) for
a spherical entangling surface. First, we reproduce the formula

C(n) =
π

4GNn

∫
dd−1y dd−1y′

√
g(y)

√
g(y′)J(y, y′) , (B.13)
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where

J(y, y′) ≡ ∂Xµ

∂yi

∂Xν

∂yi
Gµναβ(X(y), X(y′))

∂Xα

∂y′j
∂Xβ

∂y′
j

. (B.14)

There is a difficulty related to the boundary term in this formula as commented in [139]
and pointing it out is the purpose of this appendix.

The graviton propagator Gµναβ is not known for the backreacted metric with general
n, while the metric is just AdSd+1 for n = 1 whose graviton propagator Gµνµ′ν′(X,X ′)
can be represented as [160]

Gµνµ′ν′(X,X ′) = (∂µ∂µ′D ∂ν∂ν′D + (µ ↔ ν))G(D) + Gµν(X)Gµ′ν′(X ′)H(D) + · · · .
(B.15)

The (· · · ) terms are gauge-dependent and do not matter when the bulk energy momentum
tensor Tµν vanishes at the boundary fast enough, but they would contribute in the current
setup because the energy-momentum tensor of the brane does not decay at the boundary.
The (· · · ) term is too complicated to be taken into account, and we proceed without
having them for a moment.

We are going to evaluate the G(D) and H(D) parts. ∂µ = ∂/∂Xµ and ∂µ′ = ∂/∂X ′µ′

are derivatives with respect to the bulk points X and X ′. The two functions G(D) and
H(D) are given by

G(D) = C̃d

(
2

D

)d

F (d,
d + 1

2
; d + 1;− 2

D
) , (B.16)

H(D) = −2(D + 1)2

d − 1
G(D) +

4(d − 2)(D + 1)

(d − 1)2
C̃d

(
2

D

)d−1

F (d − 1,
d + 1

2
; d + 1;− 2

D
) ,

(B.17)

with a constant

C̃d =
Γ(d+1

2 )

(4π)
d+1
2 d

=
1

2dd Vol(Sd)
. (B.18)

The function D = D(X,X ′) is the invariant distance between the two points X and X ′,

D =
1

2

[
−(X ′

−1 − X−1)
2 + (X ′

0 − X0)
2 + (X ′

1 − X1)
2 + · · · + (X ′

d − Xd)
2
]

, (B.19)

in the Euclidean AdSd+1 space realized as an embedding −X2
−1+X2

0 +X2
1 + · · ·+X2

d = −1
in R1,d+1, with the metric ds2 = −dX2

−1 + dX2
0 + dX2

1 + · · · + dX2
d . An expression of D

in the hyperbolic coordinate

ds2
d+1 =

dr2

r2 − 1
+ (r2 − 1)dτ 2 + r2(du2 + sinh2 udΩ2

d−2) , (B.20)

follows from the coordinate transformation

X−1 = r cosh u , Xi = r sinh u Ωi−1 (i = 2, . . . , d) ,

X0 =
√

r2 − 1 sin τ , X1 =
√

r2 − 1 cos τ .
(B.21)
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The minimal surface is the horizon r = 1 of the topological black hole at τ = 0, on which
the invariant distance D becomes

D(u′, Ω′
i; u, Ωi) = cosh u cosh u′ − sinh u sinh u′

d−1∑

i=1

ΩiΩ
′
i − 1 . (B.22)

The function J is calculated as1 2

J = 2
(
(D + 1)2 + d − 2

)
G(D) + (d − 1)2H(D) + · · · , (B.25)

which is just a function of the invariant distance D. The symmetry of the hyperbolic
space Hd−1 allows us to move the two points to (u′, Ω′) = (0, 0) and (u, Ω) = (u, 0), and
factor out the integrals over u′, Ω′ and Ω:

C(1) =
π

4GN

∫
du du′ dΩd−2 dΩ′

d−2 sinhd−2 u sinhd−2 u′ J(D) ,

=
Vol(Hd−1)

4GN
πVol(Sd−2)

∫
du sinhd−2 u J(D) ,

(B.26)

where D = D(u, 0; 0, 0) = cosh u − 1. The integration of G(D) and H(D) parts of J(D)
can be performed as

C(1) =
Vol(Hd−1)

4GN

(
d − 2

d
+ · · ·

)
. (B.27)

Compared with the previous result (6.80), we speculate that the gauge-dependent part
contributes 2/d. It would be desirable to include the gauge-dependent contribution in
order to confirm our conjecture, but we leave it to future investigations.

1To calculate J = J(D), it is easier to work in Poincaré coordinate ds2
d+1 = (dz2 +

∑d−1
i=0 dx2

i )/z2

related by

X−1 =
z

2
+

1 +
∑d−1

i=0 x2
i

2z
, Xi =

xi

z
(i = 0, . . . , d − 1), Xd =

z

2
+

−1 +
∑d−1

i=0 x2
i

2z
, (B.23)

because the minimal surface is mapped to just a plane x0 = x1 = 0.

2The (· · · ) term would be represented as

(· · · ) = 2
(
d(D + 1)2 − 1

)
X(D) + 2D(D + 1)(D + 2)X ′(D)

+ 2(d + 1)D(D + 1)(D + 2)Y (D) + 2D2(D + 2)2Y ′(D)

+ 2(d − 1)2(D + 1)Z(D) + 2(d − 1)D(D + 2)Z ′(D) , (B.24)

with functions X,Y,Z given implicitly in [139].
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Appendix C

Details of field theory calculations

C.1 Integration of the conformal factor

We can exactly perform the integral Vn (5.16) of the conformal factor on S1
n ×H2

Vn =

∫ 2nπ

0

dτ

∫ ∞

0

du

∫

S1
dΩ1 (R3 sinh u) e−2σ(τ,u) ,

= 2nπR3

∫ 2π

0

dτ

∫ ∞

0

du
sinh u sin2 θ0

(cos τ + cos θ0 cosh u)2 + sin2 θ0 sinh2 u
,

(C.1)

thanks to an integration formula

∫ 2π

0

dτ

(cos τ + c)2 + s2
= −iπ

s

[
1√

(c − is)2 − 1
− 1√

(c + is)2 − 1

]
, (C.2)

which we will apply with c = cos θ0 cosh u and s = sin θ0 sinh u. Because cos θ0 cosh u ±
i sin θ0 sinh u = cosh(u ± iθ0), the integration formula tells us that
∫ 2π

0

dτ

(cos τ + cos θ0 cosh u)2 + sin2 θ0 sinh2 u
= − iπ

sin θ0 sinh u

[
1

sinh(u − iθ0)
− 1

sinh(u + iθ0)

]
,

=
2π coth u

sinh2 u + sin2 θ0

.

(C.3)

Plugging this result into the original integration (C.1), we finally obtain

Vn = 4nπ2 sin θ2
0 R3

∫ ∞

0

d(sinh u)

sinh2 u + sin2 θ0

,

= 2nπ3 sin θ0 R3 .
(C.4)

C.2 Possible extension of SSA to Rényi entropies

We have given a holographic proof of the Rényi entropic inequalities, but they are not
related to the strong sub-additivity of entanglement entropy (2.93). In fact, the Rényi
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entropy Sn is nether strong sub-additive nor sub-additive (2.91). The modular entropy
S̃n (2.121) does not satisfy them too.

To achieve the sub-additivity and strong sub-additivity of the Rényi entropy, it would
be helpful to review how these inequalities for entanglement entropies are related to
information theoretic measures. As explained in chapter 2, these inequalities follow from
properties of the relative entropy (2.87) S[ρ|σ] ≡ Tr[ρ(log ρ− log σ)]. The non-negativity
of relative entropy is equivalent to the non-negativity the mutual information and thus
the sub-additivity of entanglement entropy. On the other hand, its monotonicity with
partial traces is equivalent to the monotonicity of the mutual information and thus the
strong sub-additivity of entanglement entropy.

Now one way to generalize these inequalities to the Rényi entropy is then extending the
definition of relative entropy and so mutual information to Rényi entropy. One promising
proposal of such a relative Rényi entropy is [161, 162]

Sn[ρ|σ] ≡ 1

n − 1
log Tr[(σ

1−n
2n ρσ

1−n
2n )n] , (C.5)

which reduces to the relative entropy S[ρ|σ] in the limit n → 1. This generalization of
the relative entropy keeps the non-negativity Sn[ρ|σ] ≥ 0 and monotonicity Sn[ρ|σ] ≥
Sn[TrBρ|TrBσ] under partial traces [163]. So we assert that the Rényi generalization of
the sub-additivity would be

In(A,B) ≡ Sn[ρAB|ρA ⊗ ρB] ≥ 0 , (C.6)

and the Rényi generalization of the strong sub-additivity would be

In(A,B ∪ C) ≥ In(A,C) . (C.7)

For entanglement entropy with n = 1, these inequalities admit a holographic interpreta-
tion. For the Rényi entropy for any n, however, it is not possible to express the relative
Rényi entropy Sn[ρ|σ] or Rényi mutual information In as a linear combination of the
Rényi entropies. So it is not clear how to interpret these Rényi-generalized inequalities
holographically, even though we have the holographic Rényi entropy formula. The expres-
sion of the relative Rényi entropy (C.5) suggests that it can be calculated by the replica
method [164] and it may have an interpretation and proof of these Rényi-generalized
inequalities in a holographic system.
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[135] C. Beck and F. Schögl, Thermodynamics of Chaotic Systems. Cambridge
University Press, 1993.

[136] G. W. Gibbons, S. W. Hawking, and M. J. Perry, Path Integrals and the
Indefiniteness of the Gravitational Action, Nucl. Phys. B138 (1978) 141–150.

125



[137] S. M. Christensen and M. J. Duff, Quantizing Gravity with a Cosmological
Constant, Nucl. Phys. B170 (1980) 480–506.

[138] H. Yao and X.-L. Qi, Entanglement entropy and entanglement spectrum of the
kitaev model, Phys. Rev. Lett. 105 (Aug, 2010) 080501.

[139] H.-C. Chang and A. Karch, Entanglement Entropy for Probe Branes, JHEP 01
(2014) 180, [arXiv:1307.5325].

[140] E. Perlmutter, A universal feature of CFT Rényi entropy, JHEP 03 (2014) 117,
[arXiv:1308.1083].

[141] H. Osborn and A. Petkou, Implications of Conformal Invariance in Field Theories
for General Dimensions, Annals Phys. 231 (1994) 311–362, [hep-th/9307010].

[142] H. Casini and M. Huerta, Entanglement Entropy for the N-Sphere, Phys.Lett.
B694 (2010) 167–171, [arXiv:1007.1813].

[143] J. S. Dowker, Entanglement Entropy for Even Spheres, arXiv:1009.3854.

[144] J. S. Dowker, Entanglement Entropy for Odd Spheres, arXiv:1012.1548.

[145] S. N. Solodukhin, Entanglement Entropy of Round Spheres, Phys. Lett. B693
(2010) 605–608, [arXiv:1008.4314].

[146] R. Camporesi, Harmonic Analysis and Propagators on Homogeneous Spaces,
Phys.Rept. 196 (1990) 1–134.

[147] A. A. Bytsenko, G. Cognola, L. Vanzo, and S. Zerbini, Quantum Fields and
Extended Objects in Space-Times with Constant Curvature Spatial Section, Phys.
Rept. 266 (1996) 1–126, [hep-th/9505061].

[148] A. Buchel, J. Escobedo, R. C. Myers, M. F. Paulos, A. Sinha, and M. Smolkin,
Holographic Gb Gravity in Arbitrary Dimensions, JHEP 03 (2010) 111,
[arXiv:0911.4257].

[149] S. W. Hawking, The Path Integral Approach to Quantum Gravity, in General
Relativity: An Einstein Centenary Survey, pp. 746–789. 1980.

[150] P. O. Mazur and E. Mottola, The Gravitational Measure, Solution of the
Conformal Factor Problem and Stability of the Ground State of Quantum Gravity,
Nucl. Phys. B341 (1990) 187–212.

[151] E. Mottola, Functional Integration over Geometries, J. Math. Phys. 36 (1995)
2470–2511, [hep-th/9502109].

[152] S. Giombi, A. Maloney, and X. Yin, One-Loop Partition Functions of 3D Gravity,
JHEP 08 (2008) 007, [arXiv:0804.1773].

126



[153] H. Arisue, T. Fujiwara, M. Kato, and K. Ogawa, Path Integral and Operator
Formalism in Quantum Gravity, Phys. Rev. D35 (1987) 2309.

[154] K. SCHLeich, Conformal Rotation in Perturbative Gravity, Phys. Rev. D36 (1987)
2342–2363.

[155] D. L. Jafferis and S. J. Suh, The Gravity Duals of Modular Hamiltonians,
arXiv:1412.8465.

[156] D. L. Jafferis, A. Lewkowycz, J. Maldacena, and S. J. Suh, Relative Entropy
Equals Bulk Relative Entropy, arXiv:1512.06431.

[157] A. Almheiri, X. Dong, and B. Swingle, Linearity of Holographic Entanglement
Entropy, arXiv:1606.04537.

[158] J. Camps, Generalized Entropy and Higher Derivative Gravity, JHEP 1403 (2014)
070, [arXiv:1310.6659].

[159] P. Sabella-Garnier, Mutual Information on the Fuzzy Sphere, JHEP 02 (2015) 063,
[arXiv:1409.7069].

[160] E. D’Hoker, D. Z. Freedman, S. D. Mathur, A. Matusis, and L. Rastelli, Graviton
and Gauge Boson Propagators in AdS(D+1), Nucl. Phys. B562 (1999) 330–352,
[hep-th/9902042].

[161] M. M. Wilde, A. Winter, and D. Yang, Strong Converse for the Classical Capacity
of Entanglement-Breaking and Hadamard Channels via a Sandwiched Renyi
Relative Entropy, Commun. Math. Phys. 331 (2014), no. 2 593–622.

[162] M. Müller-Lennert, F. Dupuis, O. Szehr, S. Fehr, and M. Tomamichel, On
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