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Abstract. The sell-organization hypothesis of the magnetopause 
Kelvin-Helmholtz (K-H) instability is tested against observations 
by two-dimensional (2-D) magnetohydrodynamic (MHD) 
simulations for two diftbrent initial seed perturbations. The linear 
relationships are obtained by the simulations between the period 
of the magnetopause oscillation caused by the K-H instability 
and the distance along the magnetopause t¾om the subsolar point. 
The comparison of the linear relationships with that obtained 
from reported observations of the magnetopause oscillations 
gives a reasonable thickness of the velocity shear layer near the 
subsolar point of 1570km-3010km and a reasonable average 
magnetosheath flow speed along the magnetopause of 
399km/sec-766km/sec. This suggests that the self-organization of 
the magnetopause K-H instability, i.e., the successive pairings of 
vortices, really occurs along the magnetopause. The present 
comparison provides a useful method to determine the thickness 
of the velocity shear layer near the subsolar point as an inverse 
problem. 

Introduction 

It has recently been demonstrated by 2-D MHD simulations 
that successive pairings of vortices occurring in the nonlinear 
stage of the K-H instability is a self-organization process [Miura, 
1998]. This suggests that small-scale vortices excited by the 
instability near the subsolar magnetopause evolve into global- 
scale vortices in the tail of the magnetosphere. 

In the temporal evolution of the K-H instability the 
wavelength of the dominant mode increases with time due to the 
pairing of vortices [Belmont and Chanteur, 1989; Miura, 1997, 
1998]. In the spatial development of the instability the 
wavelength of the magnetopause oscillation caused by the 
instability increases with the distance along the magnetopause 
[Wu, 1986; Manuel and Samson, 1993]. Chen et al. [1993] 
assumed that an observed wavelength of the magnetopause 
oscillation (-15RE) was represented by the wavelength of the 
linearly fastest growing mode of the K-H instability. Belmont 
and Chanteur [1989], however, suggested that the K-H 
instability at the magnetopause must have experienced the 
inverse cascade in order to be able to explain a long wavelength 
of the dominant mode of the instability at the magnetopause, 
which is much larger than the wavelength of the linearly fastest 
growing mode. Since the thickness of the velocity shear layer 
increases in the nonlinear evolution of the instability, a self- 
consistent nonlinear approach is necessary to explain the increase 
of the dominant wavelength of the K-H instability in the 
nonlinear stage. 
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The purpose of this paper is to quantify the pairings of 
vortices in the nonlinear stage of the K-H instability based on 
simulations and to compare the results with observations of the 
magnetopause oscillations in order to obtain the thickness of the 
velocity shear layer near the subsolar point and the average 
magnetosheath tlow speed along the magnetopause. This is a 
typical approach of an inverse problem, i.e., to obtain those two 
unknown parameters of the nonlinear partial differential 
equations t¾om the solution, i.e., the period of the magnclopause 
oscillation caused by the K-H instability. Although the thickness 
of the velocity shear layer at the magnetopause has never been 
measured, it is an important parameter to investigate the 
magnetopause structure. 

Simulation Results 

A 2-D MHD simulation of the K-H instability is performed 
tbr an initial velocity profile of v{,•(x)=(V{/2)[ 1-tanh(x/a)] and 
a convective fast mode Math number of 0.35. The initial uniform 

magnetic field is perpendicular to the simulation plane (x-y 
plane). This corresponds to the case where the magnetosheath 
magnetic field is due north and the magnetopause is most 
succeptible to the K-H instabiltiy [Miura, 1995a, 1995b]. Time t 
is normalized by 2a/V•, where 2a is the initial thickness of the 
velocity shear layer and V{• is the magnetosheath tlow speed, 
which is assumed constant. The length of the periodic simulation 
box in the y-direction is equal to 8 times as long as the 
wavelength of the linearly tastest growing mode (X•M= 15.7a). In 
Miura [1998] a coherent perturbation, which was a sum of the 
linearly fastest growing mode and its subharmonics, was given as 
an initial seed perturbation with the peak amplitude of v• equal to 
0.005V• and the temporal evolution of the instability was 
investigated. In the real spatial evolution of the instability along 
the magnetopause the initial seed perturbation should be 
considered as a seed perturbation near the subsolar point. Since 
the perturbation near the subsolar point is more likely to be 
disordered, a random seed perturbation with its peak amplitude 
of v• equal to 0.005V(• is given as an initial seed perturbation in 
the present run. 

Figures l(a) and (c) show contours of vorticity at T=60 and 
T=600, where T=tV(/(2a). At T=60 eight vortices are observed as 
predicted by the linear theory, but as a consequence of successive 
pairings of vortices, a large isolated vortex is lbrmed inside the 
simulation region at T=600. Figures l(b) and (d) show electric 
current vectors at T=60 and T=600. It is seen in these panels that 
an eddy current is associated with each vortex. The eddy current 
appears because of the compressiblity, which compresses and 
rarefies the plasma and the magnetic field in the present 2-D 
configuration, where the plasma motion occurs in a plane 
perpendicular to the magnetic field, and it is mainly due to the 
inertia current [Miura, 1997, 1998]. 

In order to investigate the evolution of each Fourier harmonic, 
the kinetic energy integrated along the x-direction was Fourier 
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Figure 1. (a) Contours of the vorticity at T=60. (b) Electric current vectors at T=60. (c) Contours of the vorticity at T=600. (d) Electric 
current vectors at T=600. 

analyzed. Figure 2 shows the temporal evolution of the square 
amplitudes of the 5 Fourier subharmonics with the wavenumbers 
in the y-direction k/kFGM=l/8, 1/4, 3/8, 1/2, 1, where kFGM 
=2rrJ •'FC•. All square amplitudes are normalized by 2ap<), where 
Po is the initial uniform pressure. The fastest growing mode with 
k= kFG• grows fastest in the initial stage, but it quickly saturates 
with a small amplitude. At the final stage the longest wavelength 
mode with k= kFG• /8 dominates. 

Figure 3 shows the plot of the wavelength X of each 
subharmonic normalized by XFG• as a function of time t, when 
the subharmonic has the peak amplitude. For the fastest growing 
mode, however, the time t, when the fastest growing mode has an 
initial peak amplitude and when it dominates the other modes, is 
used tbr plotting. It is seen that an almost linear relationship 
holds between X and t. A best fit (linear regression line) to the 
data is represented by the solid line in this figure, which is 
expressed as 

)t/)•FGM=AIV•/(2a)+B (1) 

where A=0.0384 and B=-1.5 !. 

Figure 4 shows a X vs. t relation for the simulation run, in 
which the initial seed perturbation was coherent [Miura, 1998]. 
The linear relationship (1) also holds in this case with A=0.02 
and B=0.737 

A Method of Determining the Thickness of the 
Velocity Shear Layer near the Subsolar Point and 
the Average Flow Speed in the Magnetosheath 

Since the time t, when the amplitude of the linearly fastest 
growing mode is peaked, depends on the amplitude and the phase 

of the initial seed perturbation, let us assume for simplicity that 
t=0 is the time when the fastest growing mode takes an initial 
peak value. Then the linear equation (1) is transformed to 

)•/3•FGM=AtV{/(2a)+ 1 (2) 

Since the present simulation is performed for a homogeneous 
velocity shear layer, the phase velocity of the unstable wave in 
the magnetospheric inertial Irame is given by V•/2 [Miura and 
Pritchett, 1982; Miura, 1997]. Since the vortex moves with the 
phase velocity of the unstable wave in this Irame, the distance L s 
from the subsolar point to the location of the vortex traveling 
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Figure 2. Temporal evolution of the square amplitudes of the 
Fourier harmonics of the integrated kinetic energy with the 
wavenumbers in the y-direction •kFo•=l/8, 1/4, 3/8, 1/2, 1, 
where kFo • =2•o •, for the simulation run with a random 
initial seed perturbation. 
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Figure 3. The wavelength of each subharmonic normalized by 
•'FCM as a function of time t, when the subharmonic has the peak 
amplitude, for the simulation run with a random initial seed 
perturbation. The solid line is a regression line. 

along the magnetopause is given by Viit/2. The period •: of the 
magnetopause oscillation induced by the passage of the vortex is 
given by •: =X/(Vi/2). By using Ls=V•,t/2 and •: =2 X, /V•, the 
Ibrmulae (2) can be transformed to 

'I:=2)•Fc•ALs/(aV{i)+ZkFo•/V{• (3) 

This gives a formula based on the simulation results, which gives 
•: as a function of the distance L s from the subsolar point along 
the magnetopause. On the other hand, it is known that the 
observed period of the magnetopause oscillation increases with 
the distance from the subsolar point. Let us assume that a linear 
relationship holds between the observed period •: of the 
magnetopause oscillation at the distance L s from the subsolar 
point along the magnetopause and L s. We can express this linear 
relationship based on the obgervation by 

•:=CLs/RE+D (4) 

where RE=6370km is the earth's radius. By equating equation (3) 
with equation (4) we obtain the thickness 2a of the velocity shear 
layer near the subsolar point and the average speed Vi, of the 
magnetosheath flow along the magnetopause as follows 

2a=2ADRE/C (5) 

V{•=2•,Fc•M/D= 15.7X 2a/D (6) 

Comparison of Simulation Results with 
Observations 

Figure 5 is a summary of reported observations showing the 
oscillation period 't of the magnetopause as a function of the 
distance L s from the subsolar point along the magnetopause. The 
data points in Figure 5 from the left are due to Williams [1979], 
Kokubun et al. [1994], Lepping and Burlaga [1979], Seon et al. 
[1995], and Chen et al. [1993]. Except Seon et al. [1995] 
oscillation periods used in Figure 5 were given in their papers. 
Although Seon et al. [1995] did not calculate the period of the 
magnetopause oscillation, the period used in Figure 5 was 
obtained by noting that there were 6 magnetopause crossings 
between 1400UT and 1500UT in their plate 3, which gave an 

oscillation period of 600sec. The oscillations of Chen et al. 
[1993], Kokubun et al. [1994], and Seon et al. [1995] occurred 
when the magnetosheath magnetic fields were northward or 
strongly northward and thus the magnetopause was most 
succeptible to the K-H instability [Miura, 1995a, 1995b]. The 
directions of the magnetosheath magnetic fields for oscillations 
of Williams [1979] and Lepping and Burlaga [1979] were not 
specified in their observations. However, Miura [1995a, 1995b] 
showed that the magnetopause is succeptible to the K-H 
instability even when the magnetosheath magnetic field is not 
largely northward and when the magnetic tension force plays a 
stabilizing role. ThereIbm, it is reasonable to assume that the 
oscillations found by Williams [1979] and Lepping and Burlaga 
[1979] were also caused by the K-H instability. In making Figure 
5 the distances along the magnetopause from the subsolar point 
to the location of the satellites were measured by knowing a 
satellite position in the GSM X-Y coordinate and by using a 
magnetopause model shown in Figure 11 of Spreiter et al. [1966]. 
A solid line in Figure 5 is the regression line (4), which is 
characterized by C= 10.0 and D=61.7. 

From the comparison of Figure 3 for the random initial 
perturbation with Figure 5 we obtain 2a= 3010km and 
V•=766km/sec based on (5) and (6). From the comparison of 
Figure 4 for the coherent initial perturbation with Figure 5 we 
obtain 2a=1570km and V{•=399km/sec based on (5) and (6). 

Discussion and Conclusions 

An important assumption in the present inverse problem is the 
assumption of a constant magnetosheath flow speed V• along the 
magnetopause. Actually, however, the magnetosheath flow speed 
V{• is a function of L s and changes from zero at the subsolar point 
to the free streaming solar wind speed at the tail flank. If an 
elaborate form of the flow speed such as V{•(Ls)=VsLs/(Ls+L.) , 
where V s and Li• are constants, is used in obtaining (3), the 
period •: has an extra component proportional to Ls -•. A fitting of 
the real data based on such a functional form would require more 
data points in Figure 5. Therefore, we assumed for simplicity that 
V. is a constant. 

By using the two extreme seed perturbations of the K-H 
instability, i.e., the random and the coherent seed perturbations, 
we obtained 2a=1570km-3010km and V{•=399km/sec- 
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Figure 4. The wavelength of each subharmonic normalized by 
;LF• M as a function of time t, when the subharmonic has the peak 
amplitude, lbr the simulation run with a coherent initial seed 
perturbation [Miura, 1998]. The solid line is a regression line. 
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Figure 5. Observed period of the magnetopause oscillation as a 
function of the distance from the subsolar point to the satellite 
along the magnetopause. The data points t¾om the left are due to 
Williams [1979], Kokubun et al. [1994], Lepping and Burlaga 
[1979], Seon et al. [1995], and Chen et al. [1993]. The solid line 
is a regression line. 

766km/sec from the comparison of the simulation results with 
the observations. If a different initial seed perturbation is used, 
the result of the comparison will yield a thickness and an average 
magnetosheath flow speed between the above two extreme cases. 
Although the data available are limited, the comparison gives a 
reasonable measure of the thickness of the velocity shear layer 
near the subsolar point, which has never been obtained 
previously. This thickness is a IEw times larger than the typical 
thickness of the current layer at the magnetopause (-1000km). 
This variance of the two thicknesses is due to the difference of 

the dissipation mechanisms of the magnetic field and the flow 
velocity and may be important in understanding the 
magnetopause structure. Eastman et al. [1976] observed the 
magnetopause at low latitudes from the subsolar region back to 
X=-25R E and found that the magnetosheath flow velocity near 
the magnetopause is 300km/sec-500km/sec (scc their Figure 1). 
This observed velocity is almost consistent with the proposed 
range of the average magnetosheath flow velocity obtained in the 
present inverse problem. If the linear relationship obtained from 
Figure 5 is extrapolated to a distant tail at Ls=200R E, the 
oscillation period becomes 34min and this period falls within a 
range 10min-40min of the period of the magnetopause crossings 
observed by Sibeck et al. [1987] at X=-200R E. 

Let us hope that more data, in particular, that beyond the 
distance 40R E from the subsolar point, will enable a more 
reliable test of the self-organization hypothesis and a more 
accurate determination of the thickness of the velocity shear 
layer near the subsolar point, which is so important tbr the theory 
of the magnetopause. 
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