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Abstract 

Septa, characteristic structures of ectocochleate cephalopods, enable ammonoids 

and nautiloids to gain buoyancy and swimming ability by restoring low-pressure gas in 

the phragmocone. The macro-morphological differences in septa between ammonoids 

and nautiloids have been intensively examined, and their functionality and 

morphogenetic mechanisms have been well discussed. However, little attention has 

been paid to their biomineralogical nature; the septa in these two groups are regarded to 

be biomineralogically homologous. Determination of biomineralogical differences is 

essential for recognizing the functional morphology and morphogenesis of the septa and 

their major evolutionary events such as extension of their habitat by buoyancy and 

swimming ability, ammonoid extinction and nautiloid survival in the K/Pg boundary, 

and biomineralization process of structures unique to cephalopods. 

This study conducted comparative crystallographic analyses on the nacreous 

structure of ectocochleate cephalopod septa. The crystallographic orientation pattern, 

(crystallographic texture) and microstructure (morphology and mode of layering of the 

constituent polycrystalline materials) of the septa were analyzed and compared with a 

focus on the effects by phylogeny and habitat environments. 

In Chapter 1, as an introduction, macro-morphological diversity of ectocochleate 

cephalopod septa and its functional morphology are reviewed. Then, the significance of 

biomineralogical properties for the elucidation of functional morphology of septa is 

mentioned. 

In the study described in Chapter 2, the septa of extant nautiloid individuals such 

as Nautilus pompilius, N. belauensis, N. macromphalus, and Allonautilus scrobiculatus 

from various geographic localities including the Philippines, Fiji, Palau, New 



Caledonia, and Indonesia in addition to those raised in an aquarium were analyzed by 

using X-ray diffraction (XRD) to determine their crystallographic textures. The {002}, 

{012}, {102}, {112} pole figures generated from the diffracted pattern reveals that, in 

general, the septa are composed of aragonitic polycrystals with their c-, a-, and b-axes 

perpendicular to the septal surface, parallel to the dorsoventral direction, and parallel to 

the left-right direction, respectively. These characteristics indicate an ordered texture. 

However, deviations from the ordered texture also exist in the a- and b-axes directions, 

showing a slightly disordered texture. The degree of deviation was measured on the 

basis of the full width half maximum (FWHM) values calculated from the {012} pole 

figures. Combining the c-axis orientation indicated by {002} pole figures, two FWHM 

values in the {012} pole figures were utilized as indices of a- and b-axes misalignment. 

As a result, variability in a- and b-axes misalignment in septal aragonitic polycrystals 

among individuals was revealed. They were constant in each septum and submature–

matured septa in each individual. Moreover, individuals from the same phylogeographic 

group shared similar FWHM values. In this study, the relationship of larger FWHM 

values with a markedly disordered crystallographic texture and a shallower-habitat 

phylogenetic group is reported for the first time. The investigation on aquarium-raised 

individuals confirmed that sea water pressure does not abiotically affect the 

crystallographic texture. These results suggest that the crystallographic texture of the 

recent nautilid septa are influenced genetically and reflect certain adaptive significance 

toward their habitat water depth. Moreover, the crystallographic texture analysis of the 

septa is relevant to the elucidation of phylogeographic relationships of recent nautilids. 

In the study described in Chapter 3, the microstructural analyses on recent nautilid 

septa were conducted qualitatively and quantitatively. The nautilid septa are known to 



be composed entirely of nacreous structures. In this study, the morphology and mode of 

layering of the tablets that construct the nacreous structure were examined and 

measured by using scanning electron microscopy and synchrotron X-ray nano computed 

tomography. As a result, the recent nautilid septal nacre is characterized by a laterally 

long, thin, and elongated hexagonal shape. These tablets are stacked in a columnar 

fashion in a broad view as reported in previous studies. However, the columns are not 

continuous throughout the septa; rather, they are often separated in two columns that in 

some cases fuse into one column. Observations of the concave septal surface revealed 

that such a mode of layering is achieved by tablets growing on the margins of the 

underlying tablets. In addition, the elongated hexagonal tablets are well aligned with 

each other, and “twinning” is often present. Along with the crystallographic texture 

investigated in Chapter 1, the a-axis of the nacreous tablet is parallel to the elongated 

direction of the tablets. The nautilus septal nacre is similar to that of pinnid and nuculid 

bivalves, which has been previously described as a row-stack nacreous structure. 

Because the nautilus septal nacre is regarded as a having a columnar nacreous structure, 

which is also observed in gastropod nacre, this finding is important in comparative 

studies of molluscan nacreous structures. The measurements of nacreous tablets 

revealed no distinct variation in the septal nacre of recent nautilus belonging to different 

phylogeographic groups.  

In Chapter 4, fossil ectocochleate cephalopod septa were compared with those of 

recent nautilids examined in the previous chapters. Co-occurring species of ammonoids 

and nautiloids with similar habitat depth were utilized to exclude the influence of 

habitat environment on the septal biomineralogical properties. The examined specimens 

include the Upper Cretaceous nautiloid Eutrephoceras, scaphitid ammonoid 



Hoploscaphites nodosus, and H. brevis from the western interior province of North 

America in addition to the Lower Cretaceous nautiloid Cymatoceras sp. and 

douvilleiceratid Douvilleiceras sp. from Madagascar. The fossil nautiloids show 

crystallographic textures and microstructures similar to those in recent samples, i.e., a-

axis parallel to the vertical direction and b-axis parallel to the left-right direction, 

although the degree of misalignment was greater in the fossils. The sizes of the tablets 

in the fossil nautiloids are within the same range as those of the recent specimens. 

However, the tablet stacks clearly show a columnar fashion. The examined fossil 

species are considered to have had shallower habitats. Considering the fossil record of 

nautiloids, it is suggested from a biomineralogical perspective that the septa and their 

formation process have been conservative since the early Mesozoic; however, the 

crystallographic misalignment and mode of layering of the nacreous tablets might 

reflect their variable habitat depth. In contrast, the ammonoid septal nacre shows 

polygonal tablets with thicknesses similar to those of the nautiloids. Moreover, although 

their crystallographic texture shows a c-axis perpendicular to the septal surface, as in the 

nautiloids, it is completely disordered in a- and b-axes, which are represented by ring-

like pole figures in the {012}, {102}, and {112} planes. This result suggests that the 

crystallographic properties of ectocochleate septa, including their crystallographic 

orientation and nacreous structure, are conservative at the subclass level. However, they 

might vary considerably between the Ammonoidea and the Nautiloidea, which 

developed different septal morphologies.  

In Chapter 5, these new insights are discussed for understanding the evolution of 

ectocochleate septa, particularly from aspects of morphogenesis and functional 

morphology. The similarity of the crystallographic properties of nautiloid septa to the 



bivalves suggests a terrace-like formation of nacre. The alignment of tablet elongation 

and crystallographic ordering in bivalves are explained by geometric selection based on 

the faster growth along in the b-axis of aragonite than that along in the a-axis. Such 

crystal growth due to the geometric selection might occur in nautiloid septal nacre, 

because their nacreous tablets are also elongated. However, the elongation direction and 

crystallographic orientation is inconsistent with those of bivalves. The mechanisms for 

the vertical stacking of the nautiloid septal nacreous tablet through the interlamellar 

membranes would be similar to those of bivalves because the similar mode of tablet 

layering indicates the existence of mineral bridges produced by rupture owing to 

permeability pressure. 

Contrary to the bivalve-like nautiloid nacre, the ammonoid columnar nacreous 

structure, which is similar to the “stack of coins” structure in gastropods, can be 

considered to have formed by mineral bridges located in the central area of the tablets. 

The completely disordered crystallographic orientation pattern of the ammonoid septal 

nacre is consistent with such a gastropod-like nacre growth mechanism, suggesting that 

weak or no competition/interaction with lateral adjacent tablets/columns. These 

differences in formation mechanisms for nautiloid and ammonoid septa indicate that 

different morphogenetic constraints might exist in their septal formations, which affect 

the macro-morphological difference of septa, based on the different properties and 

dynamics of the septal mantle and the septal mantle epithelium.  

The nacreous structure is known to be mechanically excellent among molluscan 

shell microstructures. Therefore, the development of the nacreous structure in septa 

would be reasonable to resist high pressure in the ambient surrounding water because 

low-pressure gas fills the phragmocone. However, whether or not the nacreous structure 



is mechanically optimized and performs best depends on the constituent tablet size and 

its mode of layering. In this respect, the mechanical performances and optimization of 

both nacreous tablets, particularly the lateral and overlap length, were compared by 

using a multi-objective optimization model. The results indicate that the tablet and 

overlap aspect ratios of the nautiloids are close to the optimal values to perform high 

tensile strength, stiffness, and toughness. On the contrary, the septal nacreous tablets of 

the ammonoids are short in lateral and overlap lengths toward the thickness, suggesting 

that they are not optimized in these mechanical properties. This thesis revealed not only 

the difference in the mechanical properties of septa, but also the anisotropic 

characteristics of septa, especially in nautiloids. Such anisotropy of the septa 

necessitates reconsideration of its functional macro-morphology, because previous 

numerical analyses on the septal macro-morphology have been assumed the isotropy of 

the septal material. This study demonstrates for the first time, that the biominelogical 

studies on ectocochleate cephalopod septa is important not only for biomineral research 

itself, but also important to understand the evolution and ecology of macro-morphology 

of septa. 

This thesis suggests that the gastropod- and bivalve-type nacre formation 

mechanisms themselves are not different because the both types are present in the 

ectocochleate cephalopod septa. The septa are flexible and continuous according to their 

habitat environments, although the genetic and evolutionary origin might not be 

homologous among mollusks. Moreover, it is suggested that extremely subtle 

differences in the crystallographic structure in genus, species, and individual levels 

should be considered. 
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Chapter 1: General introduction 

The appearance of marine organisms has radiated in various environments 

including differences in water depth, temperature, and bottom sediments through the 

Phanerozoic (e.g., Bush and Bambach, 2011). Such diversification and evolutionary 

trends are importants topic in evolutionary paleobiology. Hard tissues of organisms, 

such as molluskan shells, are clues to elucidate the trends from past to present. 

Mollusks in oceans have greatly diversified since the Paleozoic. Most are benthic 

and have adapted to various sea bottom conditions. However, the cephalopod has a 

developed swimming ability, and their presence has radiated horizontally and vertically 

in oceans. Among them, externally shelled (ectocochleate) and internally shelled 

(endocochleate) cephalopods acquired chambered shells as a hydrostatic apparatus. 

Inside the shells of ectocochleate cephalopods, the septa separate the body chamber and 

the phragmocone, which is a space filled with low-pressure gas. Studies have revealed 

that modern chambered cephalopods Nautilus, Sepia, and Spirula maintain neutral 

buoyancy with the aid of low-pressure gas within the phragmocone (Denton and Gilpin-

Brown, 1966, 1973; Gilpin-Brown, 1972).  

On the basis of essential similarity in overall shell shape, ammonoids, an extinct 

group of ectocochleate cephalopods, are considered to have maintained neutral 

buoyancy in the same manner as that of the modern Nautilus (Trueman, 1940; Denton 

and Gilpin-Brown, 1966; Gilpin-Brown, 1972; but see Shigeta (1993) for the negative 

buoyancy hypothesis). However, the morphology of the septa differs significantly 

between nautiloids and ammonoids. In general, nautiloids have synclastically 

corrugated septa showing an adapically convexed bowl-like shape, whereas ammonoids 

have anticlastically corrugated septa that are frequently folded to form complex suture 
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lines at their connection to the inner surface of the shell wall (e.g., Klug et al., 2015; 

Inoue and Kondo, 2016). During the evolution of ammonoid phylogeny from the Early 

Devonian to the end of the Cretaceous, the complicated septal morphology evolved 

repeatedly (Klug et al., 2015, and references therein).  

Although effective macro-morphological studies of ectocochleate cephalopod septa 

exist, our knowledge of their micro-scale architecture and its evolutionary significance 

is considerably insufficient, preventing the elucidation of the septal evolution from the 

aspect of morphogenesis and functional morphology. For example, several studies 

attempted to explain the formation of the complex morphology of the septa from the 

perspective of deformation and dynamics of the septal mantle (e.g., Seilacher, 1973, 

1975; García-Ruiz et al., 1990; García-Ruiz and Checa, 1993; Checa and Garcia-Ruiz, 

1996; Klug and Hoffmann, 2015; Inoue and Kondo, 2016) and morphogen diffusion 

(Hammer, 1999). However, the mechanism for carbonate crystals growth and stacking 

to form septal shell material remains unknown as are variation in crystallographic 

characteristics. Moreover, considering the main function of the septa as a hydrostatic 

organ and the presence of low-pressure gas in the phragmocone, the ammonoid septa 

must have possessed sufficient mechanical strength to withstand ambient high water 

pressure such as that demonstrated by the recent Nautilus. On the basis of this 

hypothesis, several attempts have been made to estimate the mechanical advantage of 

ammonoid septa by using numerical analysis (i.e., finite element analysis; Hewitt and 

Westermann, 1987; Hewitt et al., 1989, 1993; Daniel et al., 1997; Hassan et al., 2002; 

Lemanis et al., 2016). Although such attempts are helpful for understanding the three-

dimensional complex septal morphology, data of the physical properties of the 

examined material is necessary to conduct such analysis. Previous studies examining 
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ammonoid septal strength have assumed that the mechanical properties of the septa are 

identical to that of recent molluscan shells and they are isotoropic (Daniel et al., 1997; 

Hassan et al., 2002; Lemanis et al., 2016). However, the physical properties are highly 

variable among molluscan shells depending on the microstructural architecture (e.g., 

Currey, 1988; Vincent, 2001; Sun and Bhushan, 2012). Moreover, the prevous studies 

treating the functional macro-morphology of septa ignored the anisotropy of the shell 

material, although it might influence on their physico-mathematical analyses. Therefore, 

detailed analysis and comparison of the crystallographic properties and anisotropy of 

cephalopod septa are required to address their mechanical advantage. 

The purpose of this thesis is to discuss the diversity and evolution of the septa of 

ectocochleate cephalopods from the aspect of their crystallographic properties. 

Molluscan shells are composed mainly of calcium carbonate polycrystalline materials of 

calcite or aragonite. This thesis focuses on two biomineralogical properties, 

crystallographic texture and shell microstructure, both of which can be analyzed even in 

fossils. The former represents the three-dimensional distribution of the crystallographic 

axes. It is compared and analyzed as pole figures, which represents the distribution of 

crystals projected in two-dimensional plots in the equatorial plane (Fig. 1.1). The latter 

represents the shape, size and mode of layering of biomineralogical materials (Fig. 2.2). 

Previously, both of the biomineralogical properties have provided various insight in the 

evolution and ecology of molluscan shells including phylogenetic relationships (e.g., 

MacClintock 1967; Taylor et al., 1969; Hedegaard and Wenk, 1998; Chateigner et al., 

2000, 2010; Frýda et al., 2009, 2010; Génio et al., 2012; Sato et al., 2013; Sato and 

Sasaki, 2015), crystal growth and shell formation (e.g., Ubukata, 1994; Checa, 2000; 

Checa and Navarro, 2001, 2005; Checa et al., 2005, 2006; Nudelman et al., 2006;  
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Nudelman, 2015; Gilbert et al., 2008, 2012; Olson et al., 2013), and ecology and 

functional significance (e.g., Wada, 1972; Currey, 1988; Vincent, 1999; Nishida et al., 

2012, 2015; Olson et al., 2012; Olson and Gilbert, 2012; Rousseau and Rollion-Bard, 

2012). 

In this thesis, at first, the crystallographic textures of recent nautilid septa are 

examined to estimate their variation and genetic relationships in Chapter 2. In Chapter 

3, the shell microstructure of the recent nautilid septa and the polycrystalline shape are 

described to reveal the mode of layering in comparison with the variation in 

crystallographic texture. In Chapter 4, the crystallographic textures and the shell 

microstructures of fossil nautiloids and ammonoids are compared to reveal the 

differences in crystallographic properties among these two different subclasses. Finally, 

in Chapter 5, the significance of diversity regarding the crystallography and 

microstructural morphology of the septa among ectocochleate cephalopods with various 

forms of septate shells is discussed on a macroscopic scale. 

 

 

Fig. 1.1 (page 5). Examples of crystallographic textures of recent bivalve and gastropod 

nacreous structure. (A) Some crystal planes of aragonite and the stereographic 

projection of a crystal plane onto the equatorial plane ((011) in the example). (B–E) 

Pole figures based on EBSD analyses (B–D) and XRD analysis (E). For all pole figures, 

the shell surfaces are parallel to the equatorial planes and the growth directions are left 

to right. (B) Pteriid bivalve Pteria hirundo. The analysis was demonstrated on the 

nacreous structure near the outer prismatic structure. (C) Mytilid bivalve Modiolus 

barbatus. (D) Haliotid gastropod Haliotis asinina. (E) Turbinid gastropod Bolma 

rugosa. These pole figures suggest that, in these species, the c-axis of aragnitic nacreous 

polycrystals are aligned perpendicular to the shell surface, but the alignment pattern in 

a-b planes is variable among species. Modified from: (B) Checa et al. (2006, fig. 2b); 

(C) Frýda et al. (2010, fig. 6A–C); (D) Frýda et al. (2009, fig. 4D–F); (E) Checa et al. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.1 

インターネット公表に関する同意が得られなかったため非公表 
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Nudelman, 2015; Gilbert et al., 2008, 2012; Olson et al., 2013), and ecology and 

functional significance (e.g., Wada, 1972; Currey, 1988; Vincent, 1999; Nishida et al., 

2012, 2015; Olson et al., 2012; Olson and Gilbert, 2012; Rousseau and Rollion-Bard, 

2012). 

In this thesis, at first, the crystallographic textures of recent nautilid septa are 

examined to estimate their variation and genetic relationships in Chapter 2. In Chapter 

3, the shell microstructure of the recent nautilid septa and the polycrystalline shape are 

described to reveal the mode of layering in comparison with the variation in 

crystallographic texture. In Chapter 4, the crystallographic textures and the shell 

microstructures of fossil nautiloids and ammonoids are compared to reveal the 

differences in crystallographic properties among these two different subclasses. Finally, 

in Chapter 5, the significance of diversity regarding the crystallography and 

microstructural morphology of the septa among ectocochleate cephalopods with various 

forms of septate shells is discussed on a macroscopic scale. 

 

 

Fig. 1.1 (page 5). Examples of crystallographic textures of recent bivalve and gastropod 

nacreous structure. (A) Some crystal planes of aragonite and the stereographic 

projection of a crystal plane onto the equatorial plane ((011) in the example). (B–E) 

Pole figures based on EBSD analyses (B–D) and XRD analysis (E). For all pole figures, 

the shell surfaces are parallel to the equatorial planes and the growth directions are left 

to right. (B) Pteriid bivalve Pteria hirundo. The analysis was demonstrated on the 

nacreous structure near the outer prismatic structure. (C) Mytilid bivalve Modiolus 

barbatus. (D) Haliotid gastropod Haliotis asinina. (E) Turbinid gastropod Bolma 

rugosa. These pole figures suggest that, in these species, the c-axis of aragnitic nacreous 

polycrystals are aligned perpendicular to the shell surface, but the alignment pattern in 

a-b planes is variable among species. Modified from: (B) Checa et al. (2006, fig. 2b); 

(C) Frýda et al. (2010, fig. 6A–C); (D) Frýda et al. (2009, fig. 4D–F); (E) Checa et al. 

(2009a, Fig. S2b). 
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Fig. 1.2. Examples of nacreous structures of recent bivalves and gastropods. (A, B) Sheet 

nacreous structure. (C) Lenticular (sheet) nacreous structure. (D) Row-stack (sheet) 

nacreous structure. (E, F) Columnar nacreous structure. (A) Apertural inner shell surface 

of pteriid bivalve Pinctada radiata. (B) Radial section of inner layer of nuculid bivalve 

Acila mirabilis. Arrow indicates the growth direction. (C) Fractured cross section of 

unionid bivalve Leptodea fragilis. (D) Depositional surface of pinnid bivalve Atrina 

rigida. (E) Apertural inner shell surface of pleurotomariid gastropod Perotrochus 

caledonicus. (F) Fractured cross section of trochid gastropod Trochus niloticus. Modified 

from: (A) Wise (1970b, Plate 1, Fig. 1); (B) Sato and Sasaki (2015, Fig. 39); (C) Frýda et 

al. (2010, Fig. 3B); (D) Carter et al. (2012, Fig. 267); (E) Checa et al. (2009, Fig. 1); (F) 

Bruet et al. (2005, Fig. 4).  

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.2 

インターネット公表に関する同意が得られなかったため非公表 
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Chapter 2: Variability in the crystallographic texture of recent ectocochleate 

cephalopod septa 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

第 2章 

本章については、5年以内に雑誌などで刊行予定のため、非公開。 
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Chapter 3: Nacreous structure of recent ectocochleate cephalopod septa and 

variability in nacreous tablet morphology 
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Chapter 4: Microstructural and crystallographic properties of fossil nautiloids and 

ammonoids: case studies from the Upper Cretaceous of U.S. Western Interior and 

the Lower Cretaceous of Madagascar 
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Chapter 5: General discussion 
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Summary 

This thesis attempted comparative crystallographic analysis on the septal nacreous 

structures of ectocochleate cephalopods including nautiloids and ammonoids, which 

were treated as structurally homologous microstructures in previous research. The 

nautiloid septal nacre is characterized by strong anisotropy, which is laterally long, thin 

tablets stacked in a row-stack manner. The crystallographic texture of this nacre shows 

also anisotropy. It has an ordered pattern, such that the a-axis is parallel to the vertical 

direction, the b-axis is parallel to the horizontal direction, and the c-axis is 

perpendicular to the septal surface. The degree of disorientation in the a- and b-axes 

reflects the phylogeographically separated genetic populations of recent species, which 

might be applicable to the fossil linages. The ammonoid septal nacre is characterized by 

laterally short tablets stacked in columns. The crystallographic texture of this nacre 

shows an unordered pattern such that the a- and b-axes are random and the c-axis is 

perpendicular to the septal surface. 

The mode of layering of the nacreous tablets, crystallographic texture, and inferred 

nacre-formation mechanisms suggest similarities in nautiloid and bivalve nacres and in 

ammonoid and gastropod nacres. The coexistence of both bivalve-type row-stack nacre 

and gastropod-type columnar nacre in ectocochleate cephalopod linages suggests 

variability and diversity in the crystallographic properties of septal nacre and in the 

morphogenetic constraints. From the functional morphological aspect of septa as a 

hydrostatic organ, the nautiloid nacreous tablets are much more mechanically optimized 

against the tensile strength than those of ammonoids.  

The anisotropic biomineralogical properties of septal nacre is not negligible for the 

material properties. Moreover, functional macro-mophological septal analysis also must 
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consider such anisotropic material of the septa. Therefore, investigation of 

biomineralogical properties of ectocochleate cephalopod septa is necessary to 

understand the ecology, evolution, and functional morphology of septa, from both 

aspects of macroscopic and microscopic views. In addition, biomoineralogical diversity 

and evolution of septal nacre revealed in this thesis also suggest the importance of 

structural comparison of nacreous structures on lower taxonomic levels for a better 

understanding of their evolution, homology, and morphogenesis. 
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5年以内に雑誌などで刊行予定のため、非公開。 
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