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Abstract (abridged) 
 

 Backbone modifications such as azoles, azolines and azolidines are often seen in bioactive 

peptidic natural products. Since these heterocyclic structures would provide peptides with several 

characteristics such as rigid global conformation, hydrogen bonding sites with fixed orientations, 

improved proteolytic resistance, and cell membrane permeability, they are important motifs of the 

bioactive peptides and the backbone modifications would be a general strategy for organisms to 

develop a wide variety of bioactive peptides.  

 Our laboratory has previously developed an in vitro biosynthesis system for 

azoline-containing peptides by integrating the Flexible In vitro Translation (FIT) system and a 

post-translational cyclodehydratase, PatD, which is involved in the biosynthesis of patellamides. In 

the in vitro biosynthesis system, referred to as FIT–PatD system, Cys/Ser/Thr residues involved in 

translated peptides are modified by PatD to the corresponding azoline moieties, allowing one-pot 

synthesis of azoline-containing peptides. We have revealed an unprecedented substrate tolerance of 

PatD and demonstrated that this system can be applied for diverse azoline-containing peptides.  

 In order to expand structural diversity, which is accessible by in vitro translation and 

subsequent post-translational modifications, in my doctoral studies, chemical methodologies were 

developed, which generate peptides containing a wide range of backbone modifications by the 

integration of enzymatic cyclodehydration by PatD and chemical modifications. 

 In chapter 2 and chapter 3, the development of in vitro synthetic method of 

azole-containing peptides and azole-containing peptides are described, respectively. (For the reasons 

of patent applications and future publications, details are closed in the following parts.)  

 In conclusion, in this research I have developed novel methods involving the 

post-translational enzymatic cyclodehydration by PatD and chemical modifications on ribosomally 

synthesized peptides to yield peptides with various backbone modifications. The post-translational 

modification method developed here would provide unique structural scaffolds into peptides, which 

possibly leads to the development of novel bioactive peptides. 
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Chapter 1 General introduction 
 

1.1 Non-standard peptides as drug candidates for protein–protein interactions (PPIs) and peptidic 

natural products as a source of non-standard peptides 

 Protein–protein interactions (PPIs) have emerged as challenging targets of great 

importance in chemical biology and medicinal chemistry.1-7 It has been argued that PPIs are difficult 

to be targeted by small molecules, which are mainly employed in drug discovery today8 because of 

larger interaction surface area involved in PPIs (1500–3000Å) compared to protein-small molecule 

interaction surface area (300–1000Å).9 In addition, though antibodies can actually modulate PPIs, 

they cannot target intracellular proteins of therapeutic interest because they cannot penetrate cell 

membrane. Although intensive studies have recently provided successful examples of targeting PPIs 

by small molecules,7 it is still challenging to develop small molecule PPI modulators and 

non-standard peptides have been getting much attention as candidates of drugs and bioactive 

molecules for modulation of intracellular PPIs.10, 11 

 Since detailed mechanism of PPIs can be attributed to the interactions between peptides 

embedded in proteins of interest, peptides would be the most natural approach to modulate PPIs by 

mimicking proteins.12,13 Moreover, the fact that peptidic natural products exemplified by cyclosporin 

A (Figure 1.1), which is far from the rule of thumb on bioavailability of small molecules (or 

Lipinski's rule of five14) can penetrate cell membrane15, encouraged the utilities of non-standard 

peptides as molecular scaffold for the development of novel bioactive peptides. (Note that 

“non-standard peptides” here denote the peptides containing “non-standard structures”, which is not 

found in linear peptides composed of 20 kinds of proteinogenic amino acids.) Although peptides 

generally can not permeate cell membrane, a number of non-standard structures in cyclosporin A 

such as non-proteinogenic side chains, D-amino acids, N-methylation, and macrocyclic structure 

would cooperatively contribute to the membrane permeability of cyclosporin A. 

 In addition to above-mentioned non-standard structures found in cyclosporin A, peptidic 

natural products in general exhibit huge structural diversity, which is reviewed in the following part. 

This structural diversity must be advantageous for the development of novel bioactive peptides, 
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however, alternative approaches than “natural product-based drug development” would be desired 

for the development of peptides against some targets of therapeutic interest. Except for antimicrobial 

agents, the activities of peptidic natural products would have nothing to do with human diseases and 

the production of such molecules would not be the selective pressure in the process of evolution. The 

immunosuppressant activity of cyclosporin A would be just a product of chance. Thus, for the 

development of novel bioactive peptides with non-standard structures, peptides, which possess 

natural product-like structures, but as a whole, structurally different from original natural products 

would be required. 

 

 

 

Figrue 1.1 Examples of peptidic natural products biosynthesized by non-ribosomal peptide 
synthetases (NRPS). 
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1.2 The development of bioactive peptides by rational design and high-throughput screening 

 In general, mainly two approaches can be employed for de novo development of bioactive 

peptides. First, PPI modulator can be rationally designed based on proteins of interests.12 For 

example, based on co-crystallization structures, mimicry of peptide strands in either of proteins 

involved in targeted PPIs can be synthesized.7 The designed peptides can interact with the targeted 

proteins and thus competitively inhibit the targeted PPIs. By the aid of computational analysis, which 

predict regions of proteins, which are critical for PPIs, constrained peptides can be also designed.16 

However, the potential problems of these approaches are; (i) crystal structures are required for the 

structure-based design, (ii) it would be generally difficult to obtain stronger affinity against a target 

protein than that of the native counterpart protein, (iii) it is difficult to design peptides, which bind to 

unexpected sites or exhibit PPI modulation in allosteric mechanism and (iv) it is difficult to design 

peptides based on a non-structured binding region, which is also prevalent in PPIs.17 

 The other approach is construction of peptide library and subsequent screening of active 

peptides from the library (Figure 1.2). This method has actually isolated (i) binding peptides against 

target proteins, which crystal structure was not solved,18 (ii) binding peptides with pM affinities,19 

(iii) active peptides, which bind target proteins at unexpected sites and regulate PPIs in an allosteric 

manner.20 (iv) Additionally, since this screening approach does not mimic naturally occurring 

binding peptide strands, no structured binding region is required. 

 In de novo development of bioactive peptides by high-throughput screening approach, the 

diversity of peptide libraries is highly important. Antibodies would be a good reference of such 

relationship between diversity and activity. Since antibodies can strongly bind to a specific target 

molecules, they have been widely used in biological research and clinically.21 These characteristics 

are the basis of fundamental molecular detection techniques such as ELISA22, 23 and western 

blotting24-26 in biological research, and therapeutic antibodies is growing modality for drug 

development.8 

 In general, therapeutic antibodies have low nM order of dissociation constants (KD). For 

example, KD values are 2.6–3.1 nM for nivolumab27, 28, 30–550 pM for adalimmub29-31, 21 pM–9.1 

nM for infliximab29, 30, 160 nM for rituximab32 and 2.2–16.6 nM for bevacizumab33, 34. 
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On the other hand, the diversity of antibodies has been estimated35, 36 as >1010, suggesting that highly 

diverse peptide library may provide active peptides which bind to target molecules of interest with 

strong affinity comparable to antibodies. Actually, screening approach using genetically encoded 

peptide library has been yielded a number of active peptides showing antibody-like activities.37  

 In short conclusion, construction of non-standard peptide library and a subsequent 

screening have great advantages for the development of bioactive peptides. In order to accomplish 

this approach, facile synthetic methods are required for the construction of highly diverse (1010–1011) 

non-standard peptide libraries. 

 

 

 

Figure 1.2 Schematic illustration of the screening for bioactive peptides. In this figure, mRNA 
display-mediated screening of bioactive peptides is illustrated. 
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1.3 Chemical synthesis and NRPS-mediated biosynthesis of non-standard peptides 

 Both chemical synthesis and enzymatic synthesis can be employed for the synthesis of 

non-standard peptides. By organic synthesis, various non-standard structures can be introduced, and 

structures can be controlled at atomic level. However, the diversity of peptide library is at most 108 

even with combinatorial methods.38 On the other hand, biosynthetic machinery can also be employed 

for the synthesis of non-standard peptides. A number of peptidic natural products including 

cyclosporin A are biosynthesized by non-ribosomal peptide synthetases (NRPS) (Figure 1.1). In 

general, peptidic natural products biosynthesized by NRPS exhibit huge structural diversity and 

several peptides are clinically used.39 For example, cyclosporin A contains a number of non-standard 

structures, and being an orally available immunosuppressant. Although in vitro reconstitution and 

engineering of NRPS have been investigated and made success in the synthesis of natural product 

analogs40, 41, the property of NRPS that several huge proteins are responsible for the polymerization 

of amino acids as well as modification reactions42 has limited the diversity of natural product analogs 

synthesized by engineered NRPS and thus application of NRPS in the de novo development of 

bioactive peptides. 
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1.4 Post-ribosomal peptide synthesis (PRPS) for non-standard peptide biosynthesis 

 In addition to NRPS-mediated biosynthesis, many peptidic natural products are 

biosynthesized via ribosomal pathway. Such peptidic natural products with ribosomal origin are 

called “ribosomally synthesized and post-translationally modified peptides (RiPPs)” and examples 

are shown in Figure 1.3. The biosynthetic pathways of RiPPs are called “post-ribosomal peptide 

synthesis (PRPS)”,43 and PRPS are found in all the three domains of life, comprising universal 

biosynthetic pathway of peptidic natural products.43 

 Biosynthesis of RiPPs by PRPS literally initiates with ribosomal expression, or translation 

of a longer precursor peptide (Figure 1.4). Precursor peptides typically composed of 20–110 amino 

acid residues, and a region, which is processed to yield final natural product is named “core peptide” 

In some cases, multiple core peptide regions are encoded in a single precursor peptide (e.g. 

patellamides). In most precursor peptides of RiPPs, the core peptide is flanked by a N-terminal 

“leader peptide”, which is usually important for the post-translational modifications and export.44 In 

the case of biosynthetic pathway of bottromycins, the leader peptide is not at N-terminus but at 

C-terminus and thus called “follower peptide”. In addition, the core peptide is followed by a 

C-terminal “recognition sequence” in some cases, which is recognized by a protease of macrocyclase 

(e.g. patellamides). In the presence of the leader peptide and several other regions, core peptides are 

extensively modified by a series of post-translational modifications, which is the basis of the 

structural diversity of RiPPs. 
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Figure 1.3 Examples of ribosomally synthesized and post-translationally modified peptides (RiPPs). 
Azolines, azoles and other non-standard structures are shown in blue, red and orange, respectively. In 
the structure of polytheonamide, amino acid residues with D-configuration are labeled with asterisk 
(*). 
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Figure 1.4 Schematic irustration of post-ribosomal peptide synthesis (PRPS): Biosynthetic pathway 
of ribosomally synthesized and post-translationally modified peptides (RiPPs). 
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1.5 Structural diversity in ribosomally synthesized and post-translationally modified peptides 

(RiPPs) 

 

1.5.1 Modifications at side chain of precursor peptides 

 Structures found in ribosomally synthesized and post-translationally modified peptides 

(RiPPs) are diverse,45 and they can be divided into modification of (i) side chains, (ii) main chains, 

and (iii) side chains and main chains. In the following text, structural diversity of post-translational 

modifications is reviewed. 

 

Dehydration 

 One prevalent modification found in RiPPs is dehydration of Ser and Thr residues 

resulting in dehydroalanine (Dha) and dehydrobutyrine (Dhb), respectively. Incorporation of Dha 

and Dhb can contribute to structural rigidity and protease resistance of peptides.46 In addition, Dha 

and Dhb endow peptides with reactivity against sulfhydryl and amine groups. For example, natural 

product nisin47 (Figure 1.3), which exhibit antibacterial activity has Dha and Dhb residues, 

suggested to be michael acceptor reactive to membrane sulfhydryl groups of bacteria.48 

 Dha residues can also react with intramolecular sulfhydryl groups. Micahel addition 

between Dha residues and cysteine residues form lanthionine, which is defined as two alanine 

residues bridged by thioether bond. (In the case of Dhb, intramolecular micahel addition provide 

methyl lanthionine. Both of the thioether bridge can be seen in the structure on nisin shown in 

Figure 1.3) Another derivatization of dehydro amino acids is formal [4 + 2] cycloaddition, which is 

involved in biosynthesis of pyridine ring formation of thiopeptides. For example, that type of 

cycloaddition was biochemically demonstrated with TclM49. Additionally, michael addition of 

dehydro amino acid residues and oxidatively decarboxylated C-terminal cysteine residues forms 

similar thioether bridge with aminovinyl cysteine. Examples can be seen in epidermin50 and 

cypemycin51, 52. Another variation is lysinoalanine, which is derived from dehydro amino acid 

residues and lysine residues exemplified by duramycin53. 

 



 

 14 

Epimerization 

 Another example of side chain modification is epimerization. For example, epimerization 

takes place in the biosynthesis of polytheonamides (Figure 1.3).54, 55 Although epimerization itself 

does not provide peptides with new functional group, stereochemical conversion can contribute to 

protease resistance of peptides.56 (Polytheonamides contain D-amino acids with non-proteinogenic 

side chains as well as D-Ala.) 

 

O-Prenylation 

 Trunkamide (Figure 1.3) is a macrocyclic peptidic natural product isolated from 

Lissoclinum patella57, 58 and later, production by symbiotic Prochloron spp. was revealed59. Along 

with macrocyclic structure and a backbone thiazoline, O-prenylation of Ser and Thr residues can be 

found as non-standard structures. Also, O-prenylation on Tyr residue can be seen in 

prenylagaramides60 and a number of prenylation are reported in small cyclic peptides produced by 

cyanobacteria, or cyanobactins.61 These O-prenylation is catalyzed by prenylases, exemplified by 

LynF enzyme.62 LynF prenylate Ser/Thr/Tyr residues in macrocyclic peptides, unlike typical 

post-translational modification enzymes requiring N-terminal leader peptides. 

 Although C-prenylation on Tyr residue was also reported as seen in aestuaramides,63 

C-prenylation was attributed to spontaneous Claisen rearrangement.62 Another example of 

C-prenylation is found on Trp residue, which is discussed in the main-chain modification part. 

 

Disulfide formation 

 In general, disulfide formation between intramolecular cysteine residues can 

spontaneously proceed. Actually, for biosynthetic gene cluster of ulithiacyclamide59, 64 (Figure 1.3), 

which is a macrocyclic peptidic natural product with disulfide bond linkage as well as backbone 

heterocycles, no oxidase has been reported to be involved in the disulfide formation. However, in 

some cases, enzymatic oxidation would be involved in biosynthesis of disulfide linkage. For 

example, some conotoxins are very difficult to synthesize chemically,65 which suggests assistance by 

some mechanisms exist to correctly and efficiently fold the precursor peptide into the mature product 
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in vivo. This assumption is consistent with the report that in the case of thermophilin 9, the disruption 

of disulfide oxidase altered inhibitory spectrum of the producing strain66 and that protein disulfide 

isomerases (PDIs) was major soluble proteins in Conus venom duct extracts67. This enzymatic 

assistance would be, at least in some cases, necessary for the biosynthesis of conotoxins. It would be 

worth noting, however, that for bioactivities of conotoxins, constrained structures rather than 

disulfide bonds themselves would be important based on the report that the replacement of disulfide 

forming cysteines by allyl glycines retained the bioactivity of leucocin, which is attributable to 

hydrophobic intermolecular interactions of the diallyl side chains.68 

 

1.5.2 Modifications at main chain of precursor peptides 

 Probably, most prevalent main-chain modification is cleavage of leader peptide since 

almost all precursor peptides of RiPPs have leader peptides. It would be necessary for RiPPs 

producers to append leader peptides to precursor peptides in order to protect peptides/proteins from 

unnecessary modifications. And also in some cases, leader peptides would provide the producers 

with immunity since some RiPPs are inactive before the cleavage of the N-terminal leader 

peptides.44 N to C macrocyclization is also common main-chain modification in RiPPs biosynthesis. 

A number of bioactive peptides have macrocyclic structures.43 

 

C-prenylation 

 C-prenylation of tryptophan residue is also example of main chain modification. 

(O-prenylation is mentioned above.) Kawaguchipeptins are macrocyclic peptidic natural products, 

which are isolated from Microcystis aeruginosa NIES-88.69, 70 Kawaguchipeptin A contains two 

prenylated tryptophan residues as well as a D-leucine residue69 unlike kawaguchipeptin B, which is 

composed of proteinogenic amino acid residues (Figure 1.3).70 A post-translational modification 

enzyme, KgpF catalyzes the prenylation at γ-position resulting in a tricyclic structure containing 

newly introduced pyrrolidine ring and KgpF can modify linear peptides and macrocyclic peptides71 

as well as Fmoc-Trp-OH72. C-prenylation of tryptophan residue can also be seen in ComX 

phormone.73-75 C-prenylation in ComX phormone catalyzed by ComQ and in Kawaguchipeptin A 
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catalyzed by KgpF share the same scaffold with opposite stereochemistry.72 

 

 

Backbone heterocycles such as azolines and azoles 

 Peptidic backbone heterocycles would rigidify global structure of the peptides and would 

endow peptides with protease resistance. Moreover, there are diverse interactions known between 

heterocycle-containing peptidic natural products and proteins/nucleic acids/metal ions.76 Moreover, 

patellamide C (Figure 1.3), one of the macrocyclic peptidic natural products containing backbone 

heterocycles exhibited membrane permeability even higher than cyclosporin A, which is a clinically 

used and orally available peptidic natural product, by the parallel artificial membrane permeability 

assay (PAMPA).77 PAMPA is a cell-free membrane permeability assay, which has been widely used 

for small molecules78 and peptides15 in order to evaluate passive membrane diffusion behavior of the 

compounds. The high membrane permeability should be attributed to backbone heterocycles as well 

as macrocyclic structure of patellamide C, demonstrating potential advantage of backbone 

heterocycles in the development of bioactive peptides. 

 The heterocyclic structures such as azolines and azoles are post-translationally introduced 

into peptidic backbone by cyclodehydratases and dehydrogenases, respectively. The 

cyclodehydratases introduce thiazoline, oxazoline, and methyloxazoline from Cys, Ser and Thr, 

respectively. The cyclodehydratases are YcaO domain-containing proteins and the cyclodehydration 

is dependent on ATP and magnesium ion79 with two proposed intermediates for the mechanism of 

backbone amide activation, phosphorylated hemiorthoamide80, 81. 

 The resulting azolines sometimes further derivatized by flavin mononucleotide 

(FMN)-dependent dehydrogenase to form thiazole, oxazole, and methyloxazole from thaizoline, 

oxazoline and methyloxazoline, respectively.79 In some cases these heterocycle-related 

post-tranlsational modification enzymes cooperatively catalyze the reaction exemplified by the case 

of microcin B17 biosynthesis, where three proteins, the cyclodehydratase McbB, oxidase McbC, and 

putative docking protein McbD were required for the oxidation as well as cyclodehydration.82 
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1.6 Biosynthetic pathway of patellamdies, as an example of PRPS-mediated biosynthesis 

 From the technical point of view, the major advantage of the synthesis of non-standard 

peptides in a post-translational manner would be its compatibility with high-throughput screening 

system such as mRNA display system as long as post-translational modification enzymes have 

enough wide substrate scope, or promiscuity. In this context, we focused on post-translational 

introduction of backbone heterocycles because of (i) the abovementioned properties of heterocycles, 

which would be advantageous for the development of bioactive peptides and (ii) difficulties in direct 

incorporation of backbone heterocycles into translated peptides. 

 Based on such assumption, we have previously focused on the biosynthetic pathway of 

patellamides. Patellamides were isolated from Lissoclinum patella.83 and later structures were 

revised84-87. They were revealed to be RiPPs, produced by Prochloron spp., which is cyanobacterial 

symbionts.88 As for patellamide D, anti-multi drug resistance activity was reported.89 In addition, 

patellamide C had high membrane permeability.15 

 Biosynthetic genes of patellamides are composed of patA–patG88, of which patA, patD, 

patE, and patG were denoted as essential90 (with a citation88). patE encodes precursor peptide, which 

is composed of N-terminal leader peptide (LP), core peptides (CP) flanked by upstream and 

downstream recognition sequences (uRS and dRS), aligned as LP-uRS-CP-dRS/uRS-CP-dRS, 

where the sequences of two CPs are not exactly the same, corresponding to the two different 

patellamides as final products (Figure 1.5). 

 PatA is a protease, which cleaves amide bonds at the N-terminal side of the core peptides 

(CPs) with recognition sequences G(L/V)E(A/P)S. Protease domain of PatA was fully active similar 

to the full-length PatA and more stable than the full-length PatA.91 

 PatD is a YcaO domain-containing cyclodehydratase,79 which modify Cys, Thr and Ser 

residues into thiazoline, oxazoline and methyloxazoline respectively . The X-ray crystal structure of 

PatD itself has not been reported, but structure of TruD, a homolog of PatD was reported.81 TruD 

activates amide bond to be modified by adenylation using ATP.81 In addition, ATP binding residues 

conserved among YcaO domains were revealed on the basis of X-ray crystal structure and 

biochemical studies,92 but catalytic mechanism of the cyclodehydration is still elusive.  
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Figure 1.5 Biosynthetic pathway of patellamides. 

 

 

 PatG is composed of three domains, an N-terminal dehydrogenase domain, a central 

domain with unknown function, and a C-terminal protease (macro cyclization) domain. The 

macrocyclization reaction between N-terminal amine and C-terminal residues, which have 

downstream sequences, AYDG(E/V) was reconstituted in vitro and the synthesis of a wide variety of 

macrocyclic peptides was demonstrated.93, 94 X-ray crystal structure of the macrocyclase domain of 

PatG was solved and structural basis for the macrocyclization was proposed.95 

 PatF was predicted as a prenylase and required for the production of patellamides,90 But 

there is no prenyl group in known patellamides, and thus mysterious protein. The lack of prenyl 

group in patellamides was rationalized by mutations in catalytic residues in PatF.96 Involvement of 

PatF as well as PatB and C in patellamide biosynthesis is unclear at this point, because to the best of 

my knowledge, reconstitution or heterologous expression of total biosynthetic pathway of 

patellamides has not been clearly demonstrated. 
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 Collectively, proposed biosynthetic pathway is depicted in Figure 1.5. First, the precursor 

peptide PatE is ribosomally expressed. In the presence of N-terminal leader peptide, the 

cyclodehydratase PatD and the dehydrogenase domain of PatG install thiazole and 

(methyl)oxazoline. PatA liberate α-amino group at the N-terminal end of the core peptides, which is 

subsequently macrocyclized by the macrocyclase domain of PatG. Note that the cognate substrate of 

PatG oxidase is still elusive and oxidation of thiazolines into thiazoles after macrocyclization is also 

possible. 
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1.7 FIT–PatD system; integration of a customized cell-free translation system and a 

post-translational cyclodehydratase PatD 

*This section is based on the publication from our laboratory; “One-pot synthesis of 

azoline-containing peptides in a cell-free translation system integrated with a posttranslational 

cyclodehydratase”, Yuki Goto, Yumi Ito, Yasuharu Kato, Shotaro Tsunoda, Hiroaki Suga, Chem. 

Biol., 2014, 21, 766-774. 

 

 We have previously devised an in vitro biosynthetic system for azoline-containing 

peptides97 by integrating the post-translational cyclodehydratase PatD, which is involved in 

patellamide biosynthesis88 and a reconstituted cell-free translation system98. The in vitro biosynthetic 

system enabled one-pot synthesis of a wide variety of azoline-containing peptides in a template 

DNA dependent manner. In addition, the in vitro biosynthetic system enabled extensive mutagenesis 

studies, unveiling recognition determinants by which modification reaction is governed and 

unexpectedly high substrate tolerance of the cyclodehydratase PatD (Figure 1.6). In brief, (i) dRS 

can be truncated. (ii) uRS tolerates mutations and the length from leader peptide dictates core peptide 

region. (iii) The C-terminal region of the leader peptide (26L–37A) is necessary for the efficient 

cyclodehydration and peptides bearing that region at N-terminus can be efficiently modified by PatD. 

(iv) Precursor peptides without leader peptides were modified to some extent in the presence of a 

separate leader peptide. This “in trans modification” suggested “PatD-activation” mechanism by the 

leader peptide. In addition, (a) PatD can heterocyclize all of the Cys/Thr/Ser residues, with higher 

modification efficiency in this order. (b) PatD can accept various artificial core peptide sequences 

with (b-1) various amino acid length, (b-2) various amino acid compositions including hydrophilic 

residues and (b-3) consecutive cysteine residues to be modified, which are all rare in 

naturally-occurring core peptide sequences. Collectively, unprecedented substrate tolerance of 

post-translational cyclodehydratase PatD was demonstrated and these observations were the basis of 

the present studies, which are described in the following chapters. 
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Figure 1.6 Summary of the mutagenesis experiments in our previous study, which is related to the 
experimental design in the present thesis. 
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1.8 Technological backgrounds 

1.8.1 Translation reaction as peptide synthetic method and its molecular mechanism 

 Translation is a biosynthetic reaction of proteins, in which ribosome99 polymerize amino 

acids in a mRNA template dependent manner. Since peptide synthesis by translation reaction 

proceeds rapidly (12–22 amino acids/sec)100, 101 and precisely (error rate ~1/1000)102, translation is a 

powerful tool as peptide synthetic method. Relationship between the sequence of peptides and the 

sequence of template mRNAs (nucleotides) is governed by codons, sequences of three 

nucleotides.103 For example, the codon UUU is corresponding to phenylalanine, and thus poly U 

sequence direct the synthesis of poly phenylalanine sequence.104 In principle there are 64 kinds of 

codons (= 43), and the relationship between codons and amino acids are summarized as the genetic 

code.105 

 As above mentioned, relationship between codons and amino acids are strictly controlled. 

In molecular level, this control can be attributed to the adopter molecule, tRNA, and the relationship 

can be rationalized from two points (Figure 1.7), (i) paring between codons and tRNAs and (ii) 

paring between tRNAs and amino acids. (i) First, every tRNA has the sequence called anticodon, 

which is a complementary sequence to the corresponding codon, and thus base paring between 

codons and anticodons can link codons and tRNAs properly. (ii) Aminoacylation reactions of amino 

acids on tRNAs are catalyzed by aminoacyl tRNA synthetases (ARSs), which selectively catalyze 

the reaction using corresponding tRNAs and amino acids. For example, Trptophanyl aminoacyl 

tRNA synthetase (TrpRS) catalyze aminoacylation of tRNATrp
CCA by tryptophan selectively, and the 

substrate specificities of ARSs can link tRNAs and amino acids properly. Note that tRNATrp
CCA 

denotes that the tRNA is corresponding to tryptophan and its anticodon sequence is 5’-CCA-3’, 

which is complementary to tryptophan codon 5’-UGG-3’. 
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Figure 1.7 The genetic code and molecular mechanism of sequence dependency of translation. 

 

 

1.8.2 Ribosomal synthesis of non-standard peptides by mis-acylated tRNAs 

 The mechanism for fidelity control in translation reaction is consistent with the fact that 

ribosome must tolerate 20 kinds of proteinogenic amino acids as the building blocks for peptide 

synthesis. Although translation system, as a whole, can only synthesize canonical peptides, the 

property that ribosome does not recognize side chains of amino acids charged onto tRNAs is the 

basis of the engineering of translation system discussed in the following text. 

 Based on the background, synthetic methods of misacylated tRNA with 

non-proteinogenic amino acids have been investigated. Early examples are, albeit not 

non-proteinogenic, the replacement of cysteine by alanine upon the Raney-nickel mediated 

desulfurization on Cys-tRNACys,106 being an early indication of the successful incorporation of a 

wide variety of non-proteinogenic amino acids by the “misacylation strategy“. For the synthetic 

methods of misacylated tRNAs, semi-enzymatic synthesis, in which a chemically synthesized 

aminoacyl-dinucleotide and tRNA body are ligated by T4 RNA ligase 107, 108 and artificially evolved 

aminoacyl tRNA synthetase109 have been mainly used, but these methods limit the variety of 

non-proteinogenic amino acids, which may be tested for the ribosomal incorporation and subsequent 

biological or chemical events.  

 Promiscuity of the aminoacyl tRNA syntheases, though they were basically specific 

enzymes, can also be utilized for the introduction on non-proteinogenic amino acids.110 ARS can 
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aminoacylate tRNA with non-proteinogenic amino acids structurally-relevant to the original 

proteinogenic amino acid. Although this method require only a cell free translation system depleted 

with a specific amino acid and addition of the corresponding non-proteinogenic amino acid, the 

major limitation is the structural variety of non-proteinogenic amino acids are limited to the original 

proteinogenic amino acid-like structures. In addition, since ARS recognize tRNA species, it is hard 

to “reasign” a proteinogenic amino acid into codons different from the original codon. For example, 

assignment of cysteine at tryptophan codon (UGG), which is the key technological manipulation in 

the chapter 2, would be difficult with such approaches. 

 

1.8.3 Potential of flexizymes for preparations of mis-acylated tRNAs. 

 Flexizymes, an artificially evolved ribozyme, which have previously developed in our 

laboratory111, 112, enabled facile aminoacylation of tRNAs with non-proteinogenic amino acids 

(Figure 1.8). Several flexizymes have been developed, which catalyze aminoacylation of tRNA 

bearing 3’ CCA end by aminoacyl substrates activated with leaving groups with different substrate 

selectivity for each flexizyme. The flexizyme, eFx recognize aromatic moieties in side chain of 

amino acid derivatives activated with cyanomethyl ester, whereas the flexizyme dFx recognize 

aromatic dinitrobenzyl group in the leaving group itself. Combined with other variants, virtually any 

amino acids can be acylated onto tRNAs. 

 The versatility of the flexizyme-mediated aminoacylation reaction enabled the utilization 

of a wide variety of non-proteinogenic amino acids, including ones with reactive moieties for 

post-translational chemical modification reactions. Such non-proteinogenic amino acids include 

D-amino acids113-115, β-aminoacids116, N-methyl/N-substituted amino acids117, 118 and α-hydroxy 

acids119, 120, and amino acids containing chloroacetyl group121, 122, which is reactive with 

intramolecular thiol, azido-/alkyne- containing amino acids123, and 5-hydroxy tryptophan/benzyl 

amine-containing amino acids124. 
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Figure 1.8 Aminoacylation of tRNAs by activated amino acids catalyzed by flexizymes. 

 

 

1.8.4 Orthogonal tRNA for customized cell-free translation of non-standard peptides 

 Another important aspect in the customized translation system is orthogonality of tRNAs 

against aminoacyl tRNA synthetases since undesired aminoacylation by one of the 20 aminoacyl 

tRNA synthetases of liberated tRNAs originally charged with non-proteinogenic amino acids would 

cause contamination at the specific codon to be reprogrammed. To circumvent such undesired 

aminoacylation, in vitro transcribed tRNAAsnE2, which was previously developed in our laboratory119 

was utilized for the flexizyme-mediated aminoacylation reactions in the present study. 
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Chapter 2 Development of in vitro synthetic method of 
azole-containing peptides (abridged) 
 
Parts of this chapter were published in: “Attempts at in Vitro Reconstitution of a Post-translational 

Dehydrogenase toward Synthesis of Azole-containing Peptides”, Yasuharu Kato, Yuki Goto, 

Hiroaki Suga, Peptide Science 2014, 2015, 137-138. and “Laser-induced oxidation of a 

peptide-embedded thiazoline by an assistance of adjacent thiazoline”, Yasuharu Kato, Yuki Goto, 

Hiroaki Suga, Peptide Science 2015, 2016, 27-28 

 

(For the reasons of patent applications and future publications, details are closed in the following 

parts.)  
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Chapter 3 Development of in vitro synthetic method of 
Ψ[CH2NH]-containing peptides (abridged) 
 

(For the reasons of patent applications and future publications, details are closed in the following 

parts.)  
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Chapter 4 General conclusion (abridged) 
 

 In conclusion, I have developed novel methods involving the posttranslational enzymatic 

cyclodehydration by PatD and chemical modifications such as oxidation and reduction on in vitro 

expressed peptides to synthesize backbone-modified peptides inspired by naturally-occurring 

structural diversity in peptidic natural products, which were reviewed in chapter 1. 

In chapter 2 and chapter 3, the development of in vitro synthetic method of azole-containing peptides 

and azole-containing peptides are described, respectively. (For the reasons of patent applications 

and future publications, details are closed in the following parts.)  

 In conclusion, in this research I have developed novel methods involving the 

post-translational enzymatic cyclodehydration by PatD and chemical modifications on ribosomally 

synthesized peptides to yield peptides with various backbone modifications. The post-translational 

modification method developed here would provide unique structural scaffolds into peptides, which 

possibly leads to the development of novel bioactive peptides. 
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