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Abstract 

Membrane traffic is a fundamental system responsible for correct transport and 

localization of proteins, lipids, and polysaccharides in eukaryotic organisms including 

plants. Among key machinery components of membrane trafficking, Rab GTPases and 

SNARE proteins mediate tethering and fusion between transport vesicles and target 

membranes, respectively. Although the molecular framework is well conserved in 

eukaryotic lineages, it is also known that each eukaryotic lineage has acquired lineage-

specific membrane trafficking pathways during evolution, which should be involved in 

lineage-specific biological functions. The diversification of membrane trafficking is 

considered to result from, at least partly, functional differentiation of the machinery 

components such as Rab GTPases and SNARE proteins. However, its detailed 

mechanisms remain almost unknown. In this study, I aimed to unveil how membrane 

trafficking pathways have diversified during land plant evolution using the liverwort, 

Marchantia polymorpha, which is an emerging model of basal land plants, with a 

special interest in SNARE molecules. 

I identified 34 genes for SNARE proteins in M. polymorpha based on the 

genome and transcriptome information. I then examined subcellular localization of the 

majority of these SNARE molecules by expressing fluorescently tagged proteins in M. 

polymorpha thallus tissues. The results obtained and comparison with the subcellular 

localization of orthologous products in Arabidopsis thaliana indicated that the 

membrane trafficking system has increased its complexity during land plant evolution. 

Through this analysis, I also succeeded in establishing reliable endomembranous 

organelle markers in M. polymorpha (Chapter III).  

I then carried out detailed analyses for the SYP1 group, which is remarkably 
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expanded in seed plants, in M. polymorpha. I found that one of four SYP1 members in 

M. polymorpha plays an essential role in cell plate formation during cytokinesis, while 

its close relative is specifically expressed in oil body cells and localized to the 

membrane of the oil body, an organelle unique to liverworts. Observation of various 

organelle marker proteins and a secretory cargo in dividing cells and in oil body cells 

indicated that targeting to these organelles is accomplished by transient redirection of 

the secretory pathway. Furthermore, I found that none of the known organelle markers 

are localized to the oil body membrane, although previous studies proposed several 

possible organelles as origins of this liverwort-specific compartment. These results 

indicated that functional diversification of SYP1 members accompanied with transient 

alteration of transport destinations should contribute to the acquisition of new organelles 

in the plant lineage (Chapter IV). 

For insights into molecular mechanisms of biogenesis of the oil body in M. 

polymorpha, I then conducted forward genetic screening for mutant plants with altered 

oil body morphology or distribution patterns. I have successfully isolated several 

putative mutants from 16,000 T-DNA-tagged lines, which will be useful to unravel how 

and why liverworts attained the oil body during evolution (Chapter V).  
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Chapter I: General Introduction 

 

Membrane traffic is a fundamental system responsible for precise transport and 

localization of proteins, lipids, and polysaccharides among single membrane-bounded 

organelles, the plasma membrane (PM), and the extracellular space, which is essential for 

homeostasis and precise functions of cells and organelles. The basic molecular framework 

underlying membrane trafficking is evolutionarily conserved among eukaryotes, which 

comprises four sequential processes: 1) sorting cargoes and forming transport vesicles on 

donor organelle membranes, 2) conveying transport vesicles, 3) tethering transport 

vesicles to target organelle membranes, and 4) fusing transport vesicles with target 

organelle membranes. Each of these processes is strictly controlled by evolutionarily 

conserved machinery components, which include coat protein complexes and Rab 

GTPases responsible for formation of transport vesicles at donor membranes and 

tethering of the transport vesicles to target organelle membranes, respectively (Fujimoto 

& Ueda, 2012). Soluble N-ethylmaleimide-sensitive factor attachment protein receptor 

(SNARE) is another evolutionarily-conserved component that functions at the final 

process of membrane trafficking, executing membrane fusion of organelles or transport 

vesicles with destination membranes (Sollner et al., 1993a; Sollner et al., 1993b). SNARE 

molecules are distinguished by the highly conserved helical region, referred to as the 

SNARE motif. SNARE molecules are divided into two classes, Q- and R-SNAREs 

according to the amino acid residue (Q, glutamine or R, arginine) at the distinctive 

position of the SNARE motif, referred to as the zero layer. In many cases, R-SNAREs are 

localized to transport vesicles and Q-SNAREs reside on target organelle membranes. Q-
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SNAREs are further classified into Qa-, Qb-, Qc-, and Qb+Qc-SNAREs based on the 

similarity and the number of the SNARE motif (Fasshauer et al., 1998; Bock et al., 2001; 

Antonin et al., 2002). Specific combinations of four SNARE motifs, each of which is 

supplied by Qa-, Qb-, Qc-, and R-SNARE proteins or by Qa-, Qb+Qc-, and R-SNARE 

proteins, assemble into a tight complex, which results in membrane fusion of transport 

vesicles with target organelles. The repertoire of SNARE proteins and their functions are 

well conserved among eukaryotic lineages, including animals, yeasts, and plants (Hong, 

2005; Dacks & Field, 2007; Sanderfoot, 2007). 

In addition to fundamental roles at the cellular level, membrane trafficking 

fulfills various higher-ordered functions in animals and plants. In land plants, various 

higher-ordered and plant-unique processes are reported to depend on the membrane 

trafficking system, including cell wall synthesis/remodeling, polar transport of auxin, 

embryogenesis, abiotic/biotic stress responses, and gravitropism (Lukowitz et al., 1996; 

Geldner et al., 2001; Kato et al., 2002; Morita et al., 2002; Collins et al., 2003; Yano et 

al., 2003; Leshem et al., 2006; Petrasek et al., 2006; Wisniewska et al., 2006; Crowell et 

al., 2009; Gutierrez et al., 2009; Asaoka et al., 2012; Uemura et al., 2012; Hashiguchi et 

al., 2014; Inada & Ueda, 2014; Kim & Brandizzi, 2014; Tanaka et al., 2014; Uehara et 

al., 2014). These diverse and specialized functions appear to result from land plants 

pioneer novel trafficking pathways accompanied by acquisition of new and land-plant-

specific machinery components for membrane trafficking (Fujimoto & Ueda, 2012). For 

instance, VAMP727, an R-SNARE protein unique to seed plants with a typical insertion 

in its longin domain, plays significant roles in development and germination of the seeds 

in Arabidopsis thaliana (Ebine et al., 2008). A member of RAB5 GTPases, ARA6, which 

is highly conserved in land plants and functions in endosomal trafficking, is also a notable 
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example uniquely acquired during plant evolution (Ueda et al., 2001; Ebine et al., 2011). 

Evolutionarily conserved machineries such as RAB5 and RAB7 are also shown to be 

recruited to different trafficking pathways between animals and land plants (Cui et al., 

2014; Ebine et al., 2014; Singh et al., 2014). Thus plants, especially seed plants, have 

acquired specific and novel membrane trafficking pathways. 

 It has been proposed that the diversification of components involved in 

membrane trafficking was achieved by reiterating multiplication of corresponding genes 

followed by accumulation of mutations leading to functional differentiation (Dacks & 

Field, 2007). In the green plant lineage, the remarkable expansion of genes involved in 

membrane trafficking has been considered to accompany terrestrialization and/or 

multicellularization of plants (Sanderfoot et al., 2000; Rutherford & Moore, 2002; Dacks 

& Field, 2007; Sanderfoot, 2007). The diversification of SNARE molecules involved in 

the secretory pathway is especially apparent. The Qa-SNARE SYP1 group, which is 

composed of three subgroups (SYP11, SYP12, and SYP13) in seed plants and 

predominantly localized to the PM, is one of the most diversified SNARE molecules in 

land plants. SYP111/KNOLLE is specifically expressed in dividing cells and plays an 

essential role in formation of the cell plate to accomplish cytokinesis in A. thaliana 

(Lukowitz et al., 1996; Lauber et al., 1997). SYP121/PEN1/SYR1 is responsible for non-

host penetration resistance against barley powdery mildew fungus in A. thaliana (Collins 

et al., 2003; Kwon et al., 2008). SYP121 is also reported to mediate the regulation of PM-

resident ion channels (Sutter et al., 2006; Honsbein et al., 2009; Grefen et al., 2010; 

Grefen et al., 2015). For the SYP13 subgroup, SYP132 is ubiquitously expressed and is 

considered to execute constitutive secretion in A. thaliana plants, and also functions in 

tip-growing root hair cells in collaboration with SYP123, whereas its paralog SYP131 is 
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limitedly expressed in pollen grains (Enami et al., 2009; Ichikawa et al., 2014). 

The relevance between the diversification of machinery components of 

membrane trafficking and terrestrialization and/or multicellularization in the green plant 

lineage has been mainly proposed by comparative genomics; the number of SNARE 

proteins encoded in the genome of the moss, Physcomitrella patens, is larger compared 

with unicellular green algal species (Sanderfoot, 2007). However, the knowledge 

regarding the organization, subcellular localization, and neofunctionalization of SNAREs 

in these species remains limited. P. patens has been shown to undergo large-scale genome 

duplications during evolution (Rensing et al., 2007; Rensing et al., 2008), which might 

imply that the increase of the number of SNARE genes in P. patens indicates the existence 

of paralogous genes without remarkable neofunctionalization. To gather more knowledge 

on the diversification of membrane trafficking in the evolutionary process of the green 

plant lineage, information from other basal land-plant lineages such as bryophytes 

(liverworts, mosses, and hornworts) and charophyte algae is apparently needed.  

Marchantia polymorpha is a member of Marchantiophyta (liverwort), which are 

considered to occupy a basal position in phylogeny of terrestrial plants, while which 

lineage of the bryophytes  is basalmost remains debatable (Qiu et al., 2006; Wickett et 

al., 2014). In this study, M. polymorpha has been selected as a model of liverworts 

because genome and transcriptome information is available, and genetical and cell 

biological techniques, including agrobacterium-mediated transformation, gene targeting, 

and genome editing, have been established (Chiyoda et al., 2007; Ishizaki et al., 2008; 

Era et al., 2009; Era et al., 2013; Ishizaki et al., 2013; Kubota et al., 2013; Tsuboyama & 

Kodama, 2013; Sugano et al., 2014; Ishizaki et al., 2015; Kanazawa, 2015; Tsuboyama-

Tanaka & Kodama, 2015). In order to acquire the knowledge on diversification of 
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organelle functions and membrane trafficking pathways, I systematically analyzed 

organization, subcellular localization, and functions of SNARE molecules in this 

emerging model plant, which provided key insights into diversification of membrane 

trafficking during land plant evolution.  
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Chapter II: Materials and Methods 

 

Identification of genes of M. polymorpha and phylogenic analyses 

Similarity search for M. polymorpha genes was executed using proteins of A. 

thaliana as queries as previously described in Kato et al. (2015) with version 3.1. 

Phylogenetic analysis in Figure 3-2 was performed as previously described (Banks et al., 

2011), with updated datasets. The dataset was as of Jan 17, 2015. Additional datasets of 

Klebsormidium flaccidum (Hori et al., 2014, 

http://www.plantmorphogenesis.bio.titech.ac.jp/~algae_genome_project/klebsormidium

/kf_download/131203_kfl_initial_genesets_v1.0_AA.fasta), Physcomitrella patens v1.6 

(Zimmer et al., 2013, 

https://www.cosmoss.org/physcome_project/linked_stuff/Annotation/V1.6/P.patens.V6_

filtered_cosmoss_proteins.fas.gz), and Pinus taeda (Neale et al., 2014, 

http://loblolly.ucdavis.edu/bipod/ftp/Genome_Data/genome/pinerefseq/Pita/v1.01/Pita_

Annotation_v2/) were included. After retrieving 1000 similar sequences, the M. 

polymorpha SNARE sequences were merged and 1000 similar sequences were selected 

again, aligned with MAFFT v6.811b (Katoh & Toh, 2008), and a conserved sequence 

region was manually selected with MacClade 4 (Maddison & Maddison, 2000). The 

Neighbor Joining (Saitou & Nei, 1987) tree using maximum likelihood distance under 

the JTT model (Jones et al., 1992) was constructed by using PHYLIP package 3.695 

(Felsenstein, 2013). Bootstrap analysis was performed by resampling 1000 sets. After 

reviewing the large tree, sequences were further selected to retain the diversity but fit into 

a page and the phylogenetic analysis was repeated. 

For Figure 5-3, sequences with AP2 domain were collected from M. polymorpha 
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genome database version 3.1 and A. thaliana genome database TAIR annotation version 

10. Sequences were aligned with MUSCLE program version 3.8.31 (Edgar, 2004), and a 

conserved sequence region was manually selected, and the phylogenetic tree was 

constructed by PhyML program version 3.0 (Guindon et al., 2010) under the LG model 

(Le et al., 2008). Bootstrap analysis was performed by resampling 1000 sets. 

 

Plant materials and transformation 

The M. polymorpha male and female accessions Takaragaike-1 (Tak-1) and 

Takaragaike-2 (Tak-2), respectively (Ishizaki et al., 2008), were used in this study. The 

gemmae and thalli were grown asexually on 1/2× Gamborg’s B5 medium (Gamborg et 

al., 1968) with 1.4% (w/v) agar at 22°C under continuous white fluorescent light. F1 

spores were generated by crossing Tak-1 and Tak-2. The transition from the vegetative 

phase to the reproductive phase was induced by far-red illumination as previously 

described (Chiyoda et al., 2008). Transformation of M. polymorpha was carried out 

according to previously described methods using the sporelings or excised thalli mediated 

by Agrobacterium tumefaciens strain GV2260 (Ishizaki et al., 2008; Kubota et al., 2013). 

Transgenic liverworts were selected on plates containing 10 mg/L hygromycin B and 100 

mg/L cefotaxime or 0.5 μM chlorsulfuron and 100 mg/L cefotaxime (Ishizaki et al., 2015). 

 

Reverse transcription polymerase chain reaction (RT-PCR) 

Total RNA from 5-day-old thalli, antheridiophores, archegoniophores, and 7-

day-old sporelings was isolated by the RNeasy Plant Mini Kit (Qiagen) and was used as 

templates for reverse transcription using SuperScript III Reverse Transcriptase 

(Invitrogen) and the oligo dT (18 mer) primer according to the manufacturer’s instructions. 



14 

 

The cDNA was used for polymerase chain reaction (PCR) analyses. The primer sequences 

were listed in Table 2-1. The expression of MpEF1α was used as a positive control.  

 

Constructs 

Open reading frames (ORFs) and genomic sequences of M. polymorpha genes 

were respectively amplified by PCR from cDNA and genome DNA prepared from the M. 

polymorpha accession Tak-1, and the PCR products were subcloned into pENTRTM/D-

TOPO (Invitrogen) according to the manufacturer’s instructions. The oligonucleotide 

sequences used in PCR are listed in Table 2-1. To construct mCitrine-MpSYP12A, 

mCitrine-MpSYP12B, mCitrine-MpSYP13A, mCitrine-MpSYP13B, and mCitrine-

MpSYP2, genomic sequences comprising the 5′ flanking sequences (promoter + 5′ UTR), 

protein-coding regions, introns, and 3′ flanking sequences (7.0 kb for MpSYP12A, 7.4 kb 

for MpSYP12B, 9.8 kb for MpSYP13A, 7.1 kb for MpSYP13B, and 8.8 kb for MpSYP2) 

were amplified and subcloned into the pENTR vectors. Next, the cDNA for mCitrine was 

inserted into the 5′ end of the protein-coding region using the In-Fusion HD Cloning 

System (Clontech) according to the manufacturer’s instructions. To construct 

pMpGWB301-derived gateway vectors (proMpSYP12A:mCitrine-GW, 

proMpCYCB1:mCitrine-GW and proMpSYP12B:mCitrine-GW), the promoter:mCitrine 

sequences were amplified from genomic construct described above, and was inserted into 

the HindIII site of pMpGWB301 using the In-Fusion HD Cloning System. For the 

transformation of M. polymorpha, the resultant entry sequences were introduced into 

pMpGWB series (Ishizaki et al., 2015) and modified pMpGWB (described above) for 

with Gateway LR Clonase™ II Enzyme Mix (Invitrogen) according to the manufacturer’s 

instructions. For genome editing mediated by the clustered regularly interspaced short 
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palindromic repeats-associated endonuclease Cas9 system (CRISPR/Cas9), target 

sequences were inserted into the BsaI site of the pMpGE_En03 entry vector (Sugano et 

al., unpublished). The resultant sequences were then introduced into pMpGE010 or 

pMpGE011 (Sugano et al., unpublished) using the Gateway LR Clonase™ II Enzyme 

Mix. For transient expression in protoplasts of A. thaliana, subcloned cDNA or mutated 

sequences with fluorescent proteins were transferred into the p2GWY vector (Karimi et 

al., 2005).  

 

Transient expression in protoplasts of A. thaliana suspension cultured cells  

Transient expression of chimeric proteins of the N-terminal sequences of 

VAMP72 members with enhanced yellow fluorescent protein (EYFP) in A. thaliana cells 

cultured in suspension was performed as previously described (Ueda et al., 2001; Uemura 

et al., 2004). Protoplasts of A. thaliana were prepared by incubation of approximately 2 

g of the cultured cells in 25 mL enzyme solution (400 mM mannitol, 5 mM EGTA, 1% 

(w/v) cellulase Y-C, and 0.05% (w/v) Pectolyase Y-23). Protoplasts were washed twice 

by wash buffer (400 mM mannitol, 70 mM CaCl2, and 5 mM MES-KOH (pH 5.7)) and 

resuspended in MaMg solution (400 mM mannitol, 15 mM MgCl2, and 5 mM MES-KOH, 

pH 5.7). The suspended protoplasts, plasmid, and single-strand carrier DNA were mixed 

with DNA uptake solution (400 mM mannitol, 40% (w/v) polyethylene glycol 6000 and 

100 mM Ca(NO3)2), placed on ice for 20 min, and diluted into dilution solution (400 mM 

mannitol, 125 mM CaCl2, 5 mM KCl, 5 mM glucose and 1.5 mM MES-KOH, pH 5.7). 

Protoplasts were collected and resuspended in MS medium supplemented with 400 mM 

mannitol and incubated with gentle rotation at 23°C for approximately 16 hours in the 

dark. 
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Confocal laser scanning microscopy 

5-day-old thalli were used for observation unless otherwise defined. The samples 

were mounted in distilled water or dyeing solution and observed using an LSM 780 

confocal microscope (Carl Zeiss) equipped with an oil immersion lens (63×, numerical 

aperture = 1.4) and an electrically driven stage. The samples were excited by laser at 488 

nm (Argon 488) and 561 nm (DPSS 561-10), and the fluorescent emission was collected 

between 482-659 nm using twenty GaAsP detectors. Spectral unmixing, processing of the 

obtained images, and the construction of maximum intensity projection images were 

conducted using ZEN2012 software (Carl Zeiss). The images were processed digitally 

with ZEN2012 software and Photoshop software (Adobe Systems). For 4,4-difluoro-

1,3,5,7,8-pentamethyl-4-bora-3a,4a-diaza-s-indacene (BODIPY 493/503, Thermo 

Fisher) staining, thalli or gemmae were incubated in 200 nM BODIPY 493/503 dissolved 

in water for 10 min. For N-(3-triethylammoniumpropyl)-4-(6-(4-

(diethylamino)phenyl)hexatrienyl) pyridinium dibromide (FM4-64, Thermo Fisher) 

staining, thalli were soaked in 10 μM FM4-64 solution for 2 min. Samples were then 

washed twice before observation. For observation by semi-super resolution microscopy, 

LSM 880 with Airy scan (Carl Zeiss) equipped with an oil immersion lens (63×, 

numerical aperture = 1.4) was used. The acquisition and calculation of images were 

conducted using ZEN 2 software (Carl Zeiss).  

 

Electron microscopy 

For the immunoelectron microscopic observation, 5-day-old Tak-1 thalli and the 

plant expressing mCitrine-MpSYP12B were used. The samples were fixed with 4% (w/v) 
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paraformaldehyde (PFA), 0.1% (w/v) glutaraldehyde (GA) (Distilled EM grade; Electron 

Microscopy Sciences, Hatfield, PA) and 0.5% (w/v) tannic acid in 0.05 M cacodylate 

buffer pH 7.4 at 4°C for 90 min, and then they were washed 3 times in 0.1 M cacodylate 

buffer for 15 min each. The samples were dehydrated in graded ethanol solutions (50% 

(v/v) and 70% (v/v)) at 4°C for 30 min each. The samples were infiltrated with a 50:50 

mixture of ethanol and resin (LR white; London Resin Co. Ltd., Berkshire, UK) for 30 

min each 3 times. After this infiltration, samples were incubated in 100% LR white three 

times at 4°C for 30 min each. The samples were transferred to a fresh 100% resin, and 

were polymerized at 50°C overnight. The polymerized resins were ultra-thin sectioned at 

80 nm with a diamond knife using an ultramicrotome (Ultracut UCT; Leica, Vienna, 

Austria) and the sections were mounted on nickel grids. The grids were incubated with 

the primary antibody (rabbit polyclonal GFP pAb) in phosphate buffered saline (PBS) 

containing 1% (w/v) bovine serum albumin (BSA) at 4°C overnight, then they were 

washed with PBS plus 1% (w/v) BSA 3 times for 1 min. They were subsequently 

incubated with the secondary antibody conjugated to 10 nm gold particles (goat anti rabbit 

IgG pAb) for 1 hour at room temperature. And after washing with PBS, the grids were 

placed in 2% (w/v) GA in 0.1 M cacodylate buffer. Afterwards, the grids were dried and 

then were stained with 2% (w/v) uranyl acetate for 15 min and in Lead stain solution 

(Sigma-Aldrich Co., Tokyo, Japan) at room temperature for 3 min. The grids were 

observed by a transmission electron microscope (TEM, JEM-1400Plus; JEOL Ltd., 

Tokyo, Japan) at an acceleration voltage of 80 kV. Digital images (2048 × 2048 pixels) 

were taken with a CCD camera (VELETA; Olympus Soft Imaging Solutions GmbH, 

Münster, Germany). 

For morphological observation by a TEM, 5-day-old Tak-1 thalli were used. The 
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samples were fixed with 2% (w/v) PFA and 2% (w/v) GA in 0.05 M cacodylate buffer pH 

7.4 at 4°C overnight. After the fixation, samples were washed 3 times with 0.05 M 

cacodylate buffer for 30 min each, and were postfixed with 2% (w/v) osmium tetroxide 

in 0.05 M cacodylate buffer at 4°C for 3 hours. The samples were dehydrated in graded 

ethanol solutions (50% (v/v), 70% (v/v), 90% (v/v), and 100% (v/v)). The schedule was 

as follows: 50% (v/v) and 70% (v/v) for 30 min each at 4°C, 90% (v/v) for 30 min at 

room temperature, and 4 times of 100% for 30 min each at room temperature. After these 

dehydration processes, the samples were continuously dehydrated in 100% ethanol at 

room temperature overnight. The samples were transferred to a fresh 100% resin, and 

were polymerized at 60°C for 48 hours. The polymerized samples were ultra-thin 

sectioned at 70 nm with a diamond knife using an ultramicrotome (Ultracut UCT) and the 

sections were mounted on cupper grids. They were stained with 2% (w/v) uranyl acetate 

at room temperature for 15 min, and then they were washed with distilled water followed 

by being secondary-stained with Lead stain solution (Sigma-Aldrich) at room temperature 

for 3 min. The grids were observed with a TEM (JEM-1400Plus) at an acceleration 

voltage of 80 kV. Digital images (2048 × 2048 pixels) were taken with a CCD camera 

(VELETA).  

 

Lightsheet microscopy 

5-day-old thalli expressing 2×Citrine driven by the MpSYP12B promoter were 

used for observation. The samples were embedded in low melt agarose gel and were 

observed using an Lightsheet Z.1 microscope (Carl Zeiss) equipped with a water 

immersion lens (5×, numerical aperture = 0.16). The samples were excited by laser at 488 

nm (Argon 488). Acquisition of images and construction of three-dimension images from 
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multi-angle images were carried out using ZEN2014 software (Carl Zeiss). The images 

were processed digitally with Imaris software (Bitplane) and Photoshop software (Adobe 

Systems). 

 

Thermal asymmetric interlaced-PCR (TAIL-PCR) and sequencing of TAIL-PCR 

products 

TAIL-PCR was performed to identify flanking sequences of transfer DNA (T-

DNA) insertions according to Liu et al., 1995; Ishizaki et al., 2008; Proust et al., 2016 

with minor modifications. Crude-extracted DNA was used as a template, flanking 

sequences were amplified using KOD FX neo DNA polymerase (Toyobo) and T-DNA-

specific primers (TR1–3 and TL1–3 for the right border and the left border of T-DNA, 

respectively) and universal adaptor primers (AD1–6). The reaction cycles were shown in 

Table 2-2. After electrophoresis of the final TAIL-PCR products, bands were excised and 

DNA was purified from agarose gel using Wizard SV Gel and PCR Clean-Up System 

(Promega). Purified products were directly sequenced using TR3 or TL3 primer. 
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Table 2-1. The list of oligonucleotides used in the study.  
 
Purpose Gene name primer 1 (5’ to 3’) primer 2 (5’ to 3’) 

RT-PCR MpSYP8 CACCATGGCTACTGCCAAGGATGTAAC TTATTGATACCAGTCCAAAAAC 

MpSYP3 CACCATGCCGGTGGCTCTGGGATCAGC TCATGCTACGAAAACAACGAAAATTAAC 

MpSEC20 CACCATGGATCAAGATGTAGAAGAAGC TTAGAGTTCATCATTGATTGGTAC 

MpMEMB1 CACCATGGCGATGATGGGGAGCG CTATCCACGGGCCCATCTCC 

MpGOS11 CACCATGGCAGTTGCGAATGGCTG CTATTTCGATATCCAGTACATG 

MpGOS12.1 ATGGAGGATGCGGACCCCGGATGGG CTATCTTCCTGCGTCCGTTCGATATCC 

MpGOS12.2 ATGGAGGATGCGGACCCCGGATGGG GTCAACGAGCATGAAGGGTGC 

MpUSE1A CACCATGGGAATTTCGCAAGCGGAAG CTAACCAGTGAGCCTTATCAAC 

MpUSE1B CACCATGATACTTAGTAGAGCAGAG TCAAGTGAGACGAATAATGAC 

MpBET1 CACCATGATGAACACTCGCCGAG TCACTTTGTCAAGTAGTAAAC 

MpSFT1 CACCATGGCCAAGGGATCGAAGAGC TTATCTAAGGAATTTAGCCC 

MpSEC22 CACCATGGTTAAATTAACCATTATTGC TCAGCCGAAAATGTATCGC 

MpSYP4 CACCATGGCGACGCGCAATCAGACCG TCAGAATAGAATTTTCTTCATGATATAC 

MpSYP2 CACCATGAGTTTTTTAGATCTAGAGG TCACGCAAACATGACGATGATG 

MpVTI1 CTGTCTCGGAAATGTACATCCACC CACCAATGATCCCTCCCATGATCC 

MpSYP6A CACCATGTCGGCTTTAGATCCGTTTTAC CTAGGCATTGAAAACAAGATAGGT 

MpSYP6B CACCATGTCGCATCTCGATCCTTATTATC TCAAGTGTAAAATATCAGCATG 

MpSYP5 CACCATGGCGCAAGCGGCGTCGG TTACAAGGATTTGACCAAGC 

MpYKT6 CACCATGAAGATTACGGCCATTCTCC TCACAATATCGAACAACACTGG 

MpVAMP71 CACCATGGCTATTTTATATGCGCTC TTAAGAGTGGCAGCCATACAAG 

MpSYP12A CACCATGAACGATCTTCTGCAGAAAACG CTACTTCTTCAAACTCGTAGCTATG 

MpSYP12B CACCATGAACGATCTGCTGGCAAG TCACTTTGCCGTTGCAATGATGG 

MpSYP13A CACCATGAACGATCTTTTAGGGGAG TCATGCTTTGTTTGTTTTCCAAG 

MpSYP13B CACCATGAACGATCTTCTGGGAGACTC TCACTTTTGCCAGGGCTTGACG 

MpSNAP CACCATGACCTCCGTGCATAGTAACC TTATCGGTGGATGAGTCGTCGTG 

MpNPSN1 CACCATGGCCTCCCAAGGTCCCGAG CTAGGACTCCAACAAAGCGAG 

MpSYP7A CACCATGAGTGTTATAGATATCTTGAC TCAGGCCAATAATTTGTATAG 

MpSYP7B CACCATGAGCGTTACAGACTTGC CTAGAAGAATTGATCTCCGAAG 

MpVAMP72A CACCATGGGTGTGAACTCGTTGATTTAC TTACTTGCACTTAAATCCCTTGC 

MpVAMP72B CTACTGCTTCGTGGCTCGAGGAACGG CGCCGACCGCCGGGAGGAGCAGTGCC 

MpVAMP72C GTCACGTACACACGCGACAGCCACACC GATTACAAGATGAGCTTGATTACAAGCG 

MpVAMP72D GGTGGTGCTAGCGGAGTACAAGCCG CGCCAAGTTGGCCAGAATCTCGGC 

MpVAMP72E CACCATGGGGGCGAATCTTAGCAG CTATATTGCAGTTTTAGCTTTTAG 

MpTOMOSYN11 GTACAGATTCGTTGCGTCTTTACGC CATTTCCATTACACTCGACACCTCC 

MpTOMOSYN12 CACCATGTGTCTTACTGGCCGCTCC TCACAGCTCGTACCACTTCCTG 

CUFF.11493 CGTGCCTCACGTCGGAATCTGATC CTGGACATGGAGCTCAGCTTCGGG 

CUFF.21491 CACCATGCCTAGGACAATTGAAGTTGCC TCATTCCCCCCTACATTGCACGAAC 

MpEF1α TCACTCTGGGTGTGAAGCAGATGA GCCTCGAGTAAAGCTTCGTGGTG 
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Table 2-1. (continued)  
  
Purpose Gene name primer 1 (5’ to 3’) primer 2 (5’ to 3’) 

pENTR 
for CDS 

MpSYP8 CACCATGGCTACTGCCAAGGATGTAAC TTATTGATACCAGTCCAAAAAC 

MpSYP3 CACCATGCCGGTGGCTCTGGGATCAGC TCATGCTACGAAAACAACGAAAATTAAC 

MpSEC20 CACCATGGATCAAGATGTAGAAGAAGC TTAGAGTTCATCATTGATTGGTAC 

MpMEMB1 CACCATGGCGATGATGGGGAGCG CTATCCACGGGCCCATCTCC 

MpGOS11 CACCATGGCAGTTGCGAATGGCTG CTATTTCGATATCCAGTACATG 

MpGOS12.1 CACCATGGAGGATGCGGACCCCGG CTATCTTCCTGCGTCCGTTCG 

MpGOS12.2 CACCATGGAGGATGCGGACCCCGG TCACTTGGAAATCCAGTAAAC 

MpUSE1A CACCATGGGAATTTCGCAAGCGGAAG CTAACCAGTGAGCCTTATCAAC 

MpUSE1B CACCATGATACTTAGTAGAGCAGAG TCAAGTGAGACGAATAATGAC 

MpBET1 CACCATGATGAACACTCGCCGAG TCACTTTGTCAAGTAGTAAAC 

MpSFT1 CACCATGGCCAAGGGATCGAAGAGC TTATCTAAGGAATTTAGCCC 

MpSEC22 CACCATGGTTAAATTAACCATTATTGC TCAGCCGAAAATGTATCGC 

MpSYP4 CACCATGGCGACGCGCAATCAGACCG TCAGAATAGAATTTTCTTCATGATATAC 

MpSYP2 CACCATGAGTTTTTTAGATCTAGAGG TCACGCAAACATGACGATGATG 

MpVTI1 CACCATGTCTGAGATATTCGAAGGC CTACTTACTACGACTGCTG 

MpSYP6A CACCATGTCGGCTTTAGATCCGTTTTAC CTAGGCATTGAAAACAAGATAGGT 

MpSYP6B CACCATGTCGCATCTCGATCCTTATTATC TCAAGTGTAAAATATCAGCATG 

MpSYP5 CACCATGGCGCAAGCGGCGTCGG TTACAAGGATTTGACCAAGC 

MpYKT6 CACCATGAAGATTACGGCCATTCTCC TCACAATATCGAACAACACTGG 

MpVAMP71 CACCATGGCTATTTTATATGCGCTC TTAAGAGTGGCAGCCATACAAG 

MpSYP12A CACCATGAACGATCTTCTGCAGAAAACG CTACTTCTTCAAACTCGTAGCTATG 

MpSYP12B CACCATGAACGATCTGCTGGCAAG TCACTTTGCCGTTGCAATGATGG 

MpSYP13A CACCATGAACGATCTTTTAGGGGAG TCATGCTTTGTTTGTTTTCCAAG 

MpSYP13B CACCATGAACGATCTTCTGGGAGACTC TCACTTTTGCCAGGGCTTGACG 

MpSNAP CACCATGACCTCCGTGCATAGTAACC TTATCGGTGGATGAGTCGTCGTG 

MpNPSN1 CACCATGGCCTCCCAAGGTCCCGAG CTAGGACTCCAACAAAGCGAG 

MpSYP7A CACCATGAGTGTTATAGATATCTTGAC TCAGGCCAATAATTTGTATAG 

MpSYP7B.1 CACCATGAGCGTTACAGACTTGC TCATAAACGGAAGATCAAATTC 

MpSYP7B.2 CACCATGAGCGTTACAGACTTGC CTAGAAGAATTGATCTCCGAAG 

MpVAMP72A CACCATGGGTGTGAACTCGTTGATTTAC TTACTTGCACTTAAATCCCTTGC 

MpVAMP72B CACCATGGGGGCGAAGAATGGC TCACAGGAGGCGCCGACCGC 

MpVAMP72C CACCATGGGATCGATTCTTAGCAG TCATAAAAAATCTATACAACTTTTG 

MpVAMP72CG2A CACCATGGCATCGATTCTTAGC TCATAAAAAATCTATACAACTTTTG 

MpVAMP72D CACCATGGGAGCGATTCTTAGCAG CTAAAAATTTATACAAAGGTTAC 

MpVAMP72DG2A CACCATGGCAGCGATTCTTAGC CTAAAAATTTATACAAAGGTTAC 

MpVAMP72E CACCATGGGGGCGAATCTTAGCAG CTATATTGCAGTTTTAGCTTTTAG 

MpVAMP72EG2A CACCATGGCGGCGAATCTTAGC CTATATTGCAGTTTTAGCTTTTAG 

MpTOMOSYN11 CACCATGTTTATCAAGCGGTTTCTTCAG TCAAAGTTCCCACCACTTCTTTGC 

MpTOMOSYN12 CACCATGTGTCTTACTGGCCGCTCC TCACAGCTCGTACCACTTCCTG 

MpCLC CACCATGGCGGAGTTCGAGTATGGGG GGCAGTCACAGCTGCTGCCGC 
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Table 2-1. (continued)  
 
Purpose Gene name primer 1 (5’ to 3’) primer 2 (5’ to 3’) 

pENTR for 

transient 

expression 

in A. 

thaliana 

cells 

MpVAMP72A GGCAAGCTTAAGGGTGGGCGCGCCG

ACCCAG 

GGCAAGCTTCTCTGCCAGCACGACA

GTACCTC 

MpVAMP72B GGCAAGCTTAAGGGTGGGCGCGCCG

ACCCAG 

GGCAAGCTTCACTCCCGGCCCCGTT

CCTCGAG 

MpVAMP72C GGCAAGCTTAAGGGTGGGCGCGCCG

ACCCAG 

GGCAAGCTTCAAGCCATTCTTCGCC

CGGGGCGAAGAATGGCTTGATCTAC

TGCTAAGAATCGATC 

MpVAMP72CG2A GGCAAGCTTAAGGGTGGGCGCGCCG

ACCCAG 

GGCAAGCTTCAAGCCATTCTTCGCC

CGGGGCGAAGAATGGCTTGATCTAC

TGCTAAGAATCGATC 

MpVAMP72D GGCAAGCTTAAGGGTGGGCGCGCCG

ACCCAG 

GGCAAGCTTCAAGCCATTCTTCGGC

CCGGGC 

MpVAMP72DG2A GGCAAGCTTAAGGGTGGGCGCGCCG

ACCCAG 

GGCAAGCTTCAAGCCATTCTTCGGC

CCGGGC 

MpVAMP72E GGCAAGCTTAAGGGTGGGCGCGCCG

ACCCAG 

GGCAAGCTTGATCAAGTGATTCTTC

ACATCG 

MpVAMP72EG2A GGCAAGCTTAAGGGTGGGCGCGCCG

ACCCAG 

GGCAAGCTTGATCAAGTGATTCTTC

ACATCG 

pENTR for 

genomic 

sequences 

MpSYP12A 5’ GCAGGCTCCGCGGCCAAATTTAATA

CTTATAGATTTG 

GTGAAGGGGGCGGCCTTTGGCAGAT

CACTCCACCGTTG 

MpSYP12A CDS+3’ CACCCCCGGGGGCAGCGGCATGAAC

GATCTTCTGCAGAAAAC 

AAGTGATTTCAATGTATGTCCCTC 

MpSYP12B 5’ GCAGGCTCCGCGGCCTCTGTACTTG

CATTTAGAAAATC 

GTGAAGGGGGCGGCCGACTGCTAAG

CACAGAGTCGCAG 

MpSYP12B CDS+3’ CACCCCCGGGGGCAGCGGCATGAAC

GATCTGCTGGCAAGAG 

ATCAGCCCCCCCGCGACGACAG 

MpSYP13A 5’ GCAGGCTCCGCGGCCAATTAGCAGA

TCCAGCTGCTTCC 

GTGAAGGGGGCGGCCGATTGCCGCC

TGCTTGGCTTACTG 

MpSYP13A CDS+3’ AAGAAGGGTGGGCGCATGAACGATC

TTTTAGGGGTATG 

GCTGGGTCGGCGCGCAGATGTGACA

AGGTCAAGAAGAAC 

MpSYP13B 5’ GCAGGCTCCGCGGCCGATCATGGCG

AGTGTGTCGTGC 

GTGAAGGGGGCGGCCGATTGCGCGC

TGCTGCTGCCTCC 

MpSYP13B CDS+3’ CACCGGATCCGGCGGCAGCGGCATG

AACGATCTTCTGGGAGACTC 

CATACAACTCAAAACAATTTTGATG 

MpSYP2 5’ GCAGGCTCCGCGGCCCACGAGCGAG

TGAGACACCAGAGGAG 

GTGAAGGGGGCGGCCCCTCCTGCTT

CGTGGTAAATCCTCTTC 

MpSYP2 CDS+3’ CACCCCCGGGGGCAGCGGCATGAGT

TTTTTAGATCTAGAGGC 

GCAAGTGGTGATGAGCCTTGCGTGC 

mCitrine-SmaI GCCCCCTTCACCCCCATGGTGAGCA

AGGGCGAGGAG 

CATGCCGCTGCCCCCCTTGTACAGC

TCGTCCATGCC 

mCitrine-BamHI CCCCTTCACCGGATCATGGTGAGCA

AGGGCGAGGAG 

GCTGCCGCCGGATCCCTTGTACAGC

TCGTCCATGCC 
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Table 2-1. (continued)   
 

Purpose Gene name primer 1 (5’ to 3’) primer 2 (5’ to 3’) 

gRNA MpSYP12A 

gRNA2 

CTCGAGAAAGACACGACGGAGTCA AAACTGACTCCGTCGTGTCTTTCT 

CUFF.11493 

gRNA1 

CTCGGCCGCCTTCTCCACCATCGT AAACACGATGGTGGAGAAGGCGGC 

CUFF.11493 

gRNA4 

CTCGGTCAAATATATGTCTGGTAA AAACTTACCAGACATATATTTGAC 

Gateway 

vectors 

proMpSYP12A: 

mCitrine 

GGCCAGTGCCAAGCTAAATTTAATACTT

ATAGATTTG 

TTTGTACAAACTTGTCTTGTACAGCTC

GTCCATGCCG 

proMpSYP12B: 

mCitrine 

GGCCAGTGCCAAGCTTCTGTACTTGCAT

TTAGAAAATC 

TTTGTACAAACTTGTCTTGTACAGCTC

GTCCATGCCG 

proMpCYCB1: 

mCitrine 

GGCCAGTGCCAAGCTGAGGATGGTTTAA

TCCTTTTTGC 

TTTGTACAAACTTGTCTTGTACAGCTC

GTCCATGCCG 

Genotyping CUFF.11493 

a-b 

CTTGCTAACAACGTGAGAAGCTGG CATGTTCAATGATTATACTCACCTC 

CUFF.11493 

c-d 

CTGCCGTCATGCGATCTCGCTCGG GATGCTTGGATACGCAGTTGGTCG 

CUFF.21491 

e-f 

CACCATGCCTAGGACAATTGAAGTTGCC TCATTCCCCCCTACATTGCACGAAC 

TAIL-PCR AD1 NGTCGASWGANAWGAA 
 

AD2 TGWGNAGSANCASAGA 
 

AD3 AGWGNAGWANCAWAGG 
 

AD4 GTNCGASWCANAWGTT 
 

AD5 NTCGASTWTSGWGTT 
 

AD6 WGTGNAGWANCANAGA 
 

TR1 CCTGCAGGCATGCAAGCTTGG 
 

TR2 GCTGGCGTAATAGCGAAGAGG 
 

TR3 CCTGAATGGCGAATGCTAGAG 
 

TL1 CAGATAAGGGAATTAGGGTTCCTATAGG 
 

TL2 TATAGGGTTTCGCTCATGTGTTGAGC 
 

TL3 AGTACATTAAAAACGTCCGCAATGTG 
 

 
 
  



24 

 

Figure 2-1. Gateway constructs  

Schematic structures of gateway constructs prepared in this study. The vectors are derived 

from pMpGWB301 (Ishizaki et al., 2015).  
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Table 2-2. Cycle setting for TAIL-PCR  

 

 

   

Reaction Cycle No. Thermal settings 

Primary 1 94°C 1 min, 95°C 1 min 

5 94°C 1 min, 65°C 1 min, 68°C 3 min 

1 94°C 1 min, 30°C 1min 

 Ramping to 68°C 3 min, 68°C 3 min 

13 94°C 30 sec, 68°C 4 min 

 94°C 30 sec, 68°C 4 min 

 94°C 30 sec, 44°C 1 min, 68°C 3min 

1 68°C 5 min 

Secondary 1 94°C 1 min, 95°C 1 min 

13 94°C 30 sec, 68°C 4 min 

 94°C 30 sec, 68°C 4 min 

 94°C 30 sec, 44°C 1 min, 68°C 3 min 

1 68°C 5 min 

Tertiary 1 94°C 1 min, 95°C 1 min 

13 94°C 30 sec, 68°C 4 min 

 94°C 30 sec, 68°C 4 min 

 94°C 30 sec, 44°C 1 min, 68°C 3 min 

1 68°C 5 min 
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Chapter III: Characterization of SNARE molecules of Marchantia polymorpha 

 

Introduction 

Membrane trafficking pathways and functions of organelles have been 

diversified among eukaryotic lineages, likely to fulfill functions specific to each lineage 

and/or organism, even though the basic molecular framework is highly conserved 

throughout eukaryotes. Completion of genome sequencing of Archaeplastida such as 

Arabidopsis thaliana (Arabidopsis Genome, 2000), Populus trichocarpa (Tuskan et al., 

2006), Oryza sativa (International Rice Genome Sequencing, 2005), Selaginella 

moellendorffii (Banks et al., 2011), Physcomitrella patens (Rensing et al., 2008), 

Klebsormidium flaccidum (Hori et al., 2014), Chlamydomonas reinhardtii (Merchant et 

al., 2007), Ostreococcus tauri (Palenik et al., 2007), Cyanidioschyzon merolae 

(Matsuzaki et al., 2004; Nozaki et al., 2007), and many organisms of non-plant systems 

has enabled us to estimate and compare the complexity of the membrane trafficking 

system by counting numbers of machinery components of membrane trafficking such as 

Rab GTPases and SNARE molecules encoded in their genomes, which has provided 

insights into diversification and specification of membrane trafficking during eukaryotic 

evolution (Rutherford & Moore, 2002; Dacks & Field, 2007; Sanderfoot, 2007; Elias, 

2008; Elias et al., 2012).  

In the green plant lineage, association between diversification of post-Golgi 

trafficking pathways and terrestrialization and/or multicellularization has been pointed 

out, which is based on increased numbers of genes for Rab GTPase, tethers, and SNARE 

proteins in land plants compared with algal species (Rutherford & Moore, 2002; 

Sanderfoot, 2007; Vukasinovic & Zarsky, 2016). Consistently, the evidence of unique 
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diversification of the post-Golgi trafficking system in plants has been obtained from 

studies using A. thaliana and tobacco. For example, the plant trans-Golgi network (TGN) 

has distinct functions from the TGN in animal cells; the TGN acts as the early endosome 

as well as functioning as a sorting hub in the secretory pathway in plant cells (Richter et 

al., 2009; Uemura, 2016). The vacuolar transport is also organized in a plant-unique way, 

which acts as a fundamental basis of plant-specific vacuolar functions (Ebine et al., 2014; 

Uemura & Ueda, 2014). Nevertheless, it is still possible that the increase in number of 

the machinery components reflects expansion of genes without functional differentiation 

because of recent whole or large-scale genome duplication, which is reported in several 

plant species (Tang et al., 2008; Barker et al., 2009). Thus, to gain more precise 

information on functional diversification of membrane trafficking during plant evolution, 

analyses in basal plant lineages including bryophytes and algal species are apparently 

needed.  

To gather information regarding evolution and diversification of the membrane 

trafficking pathways in plants, I systematically analyzed SNARE molecules in the 

liverwort, Marchantia polymorpha. I identified 34 genes for SNARE proteins in M. 

polymorpha and subcellular localization of the majority of these SNARE molecules by 

expressing fluorescently tagged proteins in M. polymorpha thallus cells. The comparison 

of the subcellular localization of orthologous products between M. polymorpha and A. 

thaliana indicated that the membrane trafficking system has increased its complexity 

during land plant evolution, although M. polymorpha also seems to acquire specialized 

trafficking pathways unique to the organism. 
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Results 

Genes for SNARE proteins encoded in the M. polymorpha genome 

To gather information about the diversification of membrane trafficking 

pathways during the evolution of land plants, I comprehensively analyzed SNARE 

molecules in the liverwort M. polymorpha. I searched genes for proteins with the SNARE 

motif from the genome and transcriptome databases of M. polymorpha and discovered 

that 37 SNARE proteins in 34 loci were encoded in the M. polymorpha genome (Figure 

3-1). These proteins were classified into 5 groups: 8 Qa-SNAREs, 7 Qb-SNAREs, 10 Qc-

SNAREs, 1 Qb+Qc-SNARE, and 11 R-SNAREs. The majority of the SNARE genes in 

M. polymorpha lack paralogs in the genome, except MpGOS1, MpUSE1, MpSYP6, 

MpSYP1, MpSYP7, MpVAMP72, and MpTOMOSYN1 (Figure 3-1). Homologs of all 

SNARE genes in M. polymorpha were also found in other land plants with a greater 

degree of redundancy, while the SYP1 group was multiplicated also in M. polymorpha. 

Four SYP1 genes were found in the genome of M. polymorpha, two each of which were 

categorized into the SYP11/12 and SYP13 groups. The phylogenic analysis estimated that 

the SYP1 group of the green plants is divided into two major groups: chlorophyte SYP1 

and streptophyte SYP1, furthermore the SYP1 group of streptophytes is separated into 

two major groups: SYP13 and SYP11/12 groups (Figure 3-1 and 3-2). Among SYP11/12 

group, SYP11 and SYP12 subgroups could diverge at the emergence of seed plants, and 

lycophytes and bryophytes including M. polymorpha possess the ancestral class of the 

SYP11/12 members (Figure 3-2). Each SYP1 member of M. polymorpha typically 

possessed a syntaxin domain, a Qa-SNARE domain, and a transmembrane domain 

(TMD), and these four SYP1 members were highly similar in their primary sequences 

aligned (Figure 3-3). 
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Splicing variants were detected for three loci, MpSYP7B, MpVAMP72A, and 

MpGOS12. Two splicing variants at the MpSYP7B locus were amplified by RT-PCR; 

MpSYP7B.1 encoded a canonical Qc-SNARE protein comprising of a syntaxin domain, 

a Qc-SNARE domain, and a TMD, while the protein translated from the other transcript, 

MpSYP7B.2 lacked the TMD (Figure 3-4A). Two different transcripts were amplified 

from the MpVAMP72A locus with a consequence of alternative splicing. Each R-SNARE 

protein translated from the transcripts contained a longin domain, an R-SNARE domain, 

and a TMD, which R-SNARE proteins were comprised of different lengths of the longin 

domains (Figure 3-4B). Based on the transcriptome information, two different length of 

transcripts were amplified from the MpGOS12 locus. Both transcripts were predicted to 

be translated into Qb-SNARE proteins containing a Qb-SNARE domain and a TMD, with 

differences in the lengths of the carboxyl termini (Figure 3-4C).  

Next, I examined the transcription profiles of the SNARE genes by RT-PCR in 

different developmental organs using MpEF1α as a standard, the mRNA levels of which 

exhibit a constant accumulation in various tissues and under several environmental-stress 

conditions examined to date (Althoff et al., 2013; Kanazawa et al., 2013). Most of the 

SNAREs were ubiquitously transcribed in all of the demonstrated organs [5-day-old thalli, 

antheridiophores (male reproductive organs), archegoniophores (female reproductive 

organs), and 7-day-old sporelings], while several genes were detected to be transcribed 

in specific organs (Figure 3-5). One of the transcript variants at MpGOS12 locus, 

MpGOS12.2, was detected only in thalli. MpUSE1B was transcribed in antheridiophores, 

archegoniophores, and sporelings but not in thalli, and the transcripts of both MpSYP6B 

and MpSYP7B were detected only in antheridiophores. Both MpSYP12B and 

MpTOMOSYN12 were transcribed in thalli, antheridiophores, and archegoniophores but 
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not in sporelings. The transcripts of MpVAMP72E were detected in thalli, 

archegoniophores, and sporelings but not in antheridiophores. I could not detect the 

transcripts of MpVAMP72D in any organs under the experimental condition. These results 

indicate that the genes without their paralogs are constitutively expressed in M. 

polymorpha plants during all developmental stages, in contrast several genes with their 

paralogs exhibit organ-specific transcription profiles, probably reflecting specific and/or 

additional requirements for development of specific cells.  

 

Novel VAMP72 members with characteristic structures in M. polymorpha 

In addition to the basal set of SNARE molecules that are conserved among land 

plants (Figure 3-1), I identified three VAMP72 members, with unique structures. VAMP7 

belongs to the longin-type R-SNAREs. The longin domain of VAMP7 is usually 

positioned at the N-terminus followed by an R-SNARE domain and a TMD. In addition 

to these canonical three domains, MpVAMP72C, MpVAMP72D, and MpVAMP72E 

possessed extended sequences comprising 12-14 amino acid residues at their N-termini, 

which were predicted to contain the consensus sequence for N-myristoylation (predicted 

by NMT; http://mendel.imp.ac.at/myristate/SUPLpredictor.htm and Myristoylator; 

http://web.expasy.org/myristoylator/, Bologna et al., 2004) (Figure 3-6A). R-SNARE 

proteins with potential N-myristoylation extension have not been reported to be identified 

in any other species, suggesting that this type of R-SNARE is uniquely acquired in 

liverworts. The other four VAMP7 proteins in M. polymorpha, MpVAMP71, two 

MpVAMP72A products derived from the same gene, and MpVAMP72B, did not contain 

the consensus for N-myristoylation. To verify whether the N-terminal sequences of 

MpVAMP72C–E were actually N-myristoylated in plant cells, I expressed the N-terminal 
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20 amino acids of MpVAMP72C–E tagged with enhanced yellow fluorescent protein 

(EYFP) in the protoplasts of A. thaliana cells cultured in suspension. The results showed 

that these chimeric proteins were localized to membrane vesicles, the endoplasmic 

reticulum (ER), and the plasma membrane (PM) (Figure 3-6B, D, and F). In contrast, the 

N-terminal 20 amino acid sequences of MpVAMP72A and MpVAMP72B and N-terminal 

sequences of MpVAMP72C–E, in which the glycine residue that was expected to undergo 

N-myristoylation was replaced with alanine (G2A), did not target EYFP to membranous 

compartments but revealed the dispersal of EYFP into the cytosol and nuclei (Figure 3-

6C, E, G, H, and I). These results indicated that M. polymorpha possesses novel VAMP72 

members that are N-myristoylated. 

 

Markers of the Golgi apparatus and trans-Golgi network in M. polymorpha 

To elucidate the functions of SNARE molecules, it is important and efficient to 

know their subcellular localization, and this endeavor should be preceded by the 

establishment of reliable organelle markers in M. polymorpha. To achieve this goal, I 

examined whether the Golgi marker used in A. thaliana and tobacco also works in M. 

polymorpha. Fluorescent proteins fused with the TMD of rat sialyltransferase (ST) are 

widely used as reliable Golgi markers (Boevink et al., 1998; Ito, Y et al., 2012). To verify 

whether the ST tagged with a fluorescent protein (XFP) is also useful in M. polymorpha, 

I expressed ST-Venus and ST-monomeric red fluorescent protein (mRFP) driven by the 

cauliflower mosaic virus (CaMV) 35S promoter in M. polymorpha thallus cells. These 

chimeric proteins were localized to punctate compartments in the cytoplasm and showed 

perfect overlap (Figure 3-7A). As a marker of the trans-Golgi network (TGN), I employed 

MpSYP6A because its orthologous product of A. thaliana is an established marker of the 
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TGN (Sanderfoot et al., 2001a; Uemura et al., 2004; Robert et al., 2008; Choi et al., 2013). 

Fluorescence from Citrine-MpSYP6A and mRFP-MpSYP6A driven by the CaMV 35S 

promoter and MpEF1 promoter, respectively, was observed on punctate compartments 

and the PM with perfect overlap (Figure 3-7B and C). Immune-electron microscopy using 

a polyclonal anti-GFP antibody demonstrated that punctate compartments visualized by 

ST-Venus or Citrine-MpSYP6A were trans cisternae of the Golgi apparatus and the TGN, 

respectively, in transgenic M. polymorpha expressing ST-Venus or Citrine-MpSYP6A 

(Era, 2013). These results indicated that ST-XFP is also useful as a Golgi apparatus 

marker in M. polymorpha cells. Thus, ST-mRFP and mRFP-MpSYP6A can be used as 

markers of the Golgi apparatus and TGN in M. polymorpha, respectively. Most of the 

TGN was observed to be associated with the Golgi apparatus, but Golgi-independent 

TGN was also observed (arrowheads in Figure 3-7D and E). Similar Golgi-associated and 

Golgi-independent TGN have also been reported in A. thaliana (Viotti et al., 2010; 

Uemura et al., 2014), which suggests that the organization and function of the TGN are 

conserved at least partially among land plant lineages. 

 

Subcellular localization of fluorescently tagged SNARE proteins in M. polymorpha 

Next, I analyzed the subcellular localizations of major members of the SNARE 

family in M. polymorpha by expressing fluorescently tagged SNARE molecules under 

the control of the CaMV 35S or their own promoters. The subcellular localization of these 

molecules was classified into several categories. 

ER- and Golgi apparatus-localized SNAREs 

I identified at least six ER-localized SNAREs: Qa-MpSYP8, Qb-MpSEC20, Qc-

MpUSE1A, Qc-MpUSE1B, Qc-MpSYP7B.1, and R-MpSEC22. Citrine-fused 
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MpSYP7B.1, MpSEC20, MpUSE1A, and MpSEC22 driven by the CaMV 35S promoter 

were localized to reticulated membrane tubules and cisternal structures that were 

connected to the tubules (Figure 3-8A–D), which is the typical structure of the ER in both 

plant and animal cells (Voeltz et al., 2002; Borgese et al., 2006). The fluorescence of 

Citrine-MpUSE1B was scarcely detected in the reticulated pattern; it was observed on the 

nuclear envelope almost exclusively (Figure 3-8E), which is continuous with the ER. 

Nuclear-envelope localization was also observed in cells expressing other fluorescently 

tagged ER-localized SNAREs (for example, see Figure 3-8D). Citrine-MpSYP8 was 

localized to numerous punctate membrane domains, which were independent of and 

smaller in size than the Golgi apparatus visualized using ST-mRFP (Figure 3-8F). The 

punctate domains could be subdomains of the ER, as previously described for tobacco 

leaf cells (Bubeck et al., 2008). In a consistent manner, Citrine-MpSYP8 was also 

localized to the reticulated network occasionally in addition to small punctate domains 

associated with the network (asterisk in Figure 3-8F). 

 Seven SNARE proteins were localized to the Golgi apparatus: Qa-MpSYP3, 

Qb-MpMEMB1, Qb-MpGOS11, Qb-MpGOS12.1, Qb-MpGOS12.2, and Qc-MpSFT1, 

and R-MpTOMOSYN11. These proteins driven by the CaMV 35S promoter were 

observed only on punctate organelles in the cytoplasm in M. polymorpha thallus cells, in 

which these SNAREs colocalized or tightly associated with ST-mRFP (Figure 3-9A, C, 

E, G, I, K, and M). Conversely, colocalization was not observed between these SNAREs 

and the TGN marker, mRFP-MpSYP6A (Figure 3-9B, D, F, H, J, L, and N). 

 These ER- or Golgi-localized SNARE molecules should be involved in the 

membrane trafficking pathways between the ER and Golgi apparatus and/or around the 

Golgi apparatus, such as the intra-Golgi transport and retrograde transport from post-
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Golgi organelles in M. polymorpha. 

 

TGN-localized SNAREs 

I identified six TGN-localized SNAREs: Qa-MpSYP4, Qb-MpVTI1, Qc-

MpBET1, Qc-MpSYP6A, Qc-MpSYP6B, and R-MpVAMP72B. Citrine-fused MpSYP4, 

MpVTI1, MpBET1, and MpSYP6B driven by the CaMV 35S promoter were localized to 

punctate compartments in M. polymorpha thallus cells, which also bore mRFP-

MpSYP6A, the TGN marker (Figure 3-10A, C, E, and G). ST-mRFP, the Golgi apparatus 

marker, was not colocalized with these SNARE members (Figure 3-10B, D, F, and H).  

 

Vacuolar membrane-localized SNAREs 

Qa-MpSYP2, Qc-MpSYP5, and R-MpVAMP71 were localized to the vacuolar 

membrane in M. polymorpha thallus cells. Citrine-fused MpSYP2 and MpSYP5 driven 

by the CaMV 35S promoter were observed exclusively on the vacuolar membrane (Figure 

3-11A and B), and Citrine-MpVAMP71 was also localized to punctate compartments 

(Figure 3-11C and D). To identify the punctate compartments, I coexpressed Citrine-

MpVAMP71 and ST-mRFP or mRFP-MpSYP6A in M. polymorpha plants, and I 

discovered that Citrine-MpVAMP71 did not colocalize with either marker, although they 

are frequently observed in a close proximity (Figure 3-11C and D). These punctate 

compartments might represent multivesiculated endosomes, which have been 

occasionally observed close to the Golgi and TGN in A. thaliana cells (Richter et al., 

2007; Scheuring et al., 2011; Singh et al., 2014), or adaptor protein complex 3 (AP-3)-

positive compartments, which are responsible for the transport of VAMP713 in A. 

thaliana (Ebine et al., 2014). 
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In transgenic plants expressing Citrine-fused vacuolar membrane SNAREs, 

spherical structures with a strong fluorescence intensity, which were referred to as bulbs 

in A. thaliana (Saito et al., 2002), were frequently observed in vacuoles (Figure 3-12A, 

C, and D). It has recently been reported that overexpression and a weak dimerizing nature 

of GFP lead to artificial enhancement of the accumulation of bulbs in A. thaliana (Segami 

et al., 2014). To eliminate potential artificial effects of overexpression and dimerization 

of the fluorescent protein fused to MpSYP2 in M. polymorpha, I constructed a chimeric 

gene consisting of the MpSYP2 promoter, the cDNA for monomeric Citrine (mCitrine) to 

which the mutation leading to monomerization of GFP variants (Segami et al., 2014) was 

introduced, and the genomic sequence of MpSYP2 starting from the start codon. In M. 

polymorpha plants expressing mCitrine-MpSYP2 under the regulation of its own 

promoter, I did not observe bulb-like spherical structures in the vacuole (Figure 3-12B). 

This result strongly suggests that overexpression and/or dimerization of fluorescently 

tagged vacuolar membrane SNAREs also results in an artificial enhancement of bulb-like 

structure formation in M. polymorpha.  

 

PM- and oil body membrane-localized SNAREs 

I then focused my interest on SNARE molecules on the PM. A majority of SYP1 

members have been localized to the PM in A. thaliana, whose numbers have been 

reported to expand drastically during land plant evolution (Sanderfoot, 2007). It has also 

been reported that SYP111/KNOLLE, which is responsible for cell plate formation in 

dividing cells (Lukowitz et al., 1996), is mislocalized to the PM when expressed in non-

dividing cells (Völker et al., 2001). Thus, to collect information on the authentic 

localization and expression of SYP1 members in M. polymorpha, I expressed SYP1 
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members tagged with mCitrine under the regulation of their own regulatory elements 

including 5′- and 3′-flanking regions and introns. Qa-MpSYP12A, Qa-MpSYP13A, and 

Qa-MpSYP13B were mainly localized to the PM in almost all cells in thalli (Figure 3-

13A–C). Intriguingly, Qa-MpSYP13A was also localized to the oil body membrane in oil 

body cells (Figure 3-13D), which are a unique development in liverworts. Furthermore, 

Qa-MpSYP12B was specifically expressed in oil body cells and was localized to the oil 

body membrane with faint localization on the PM (Figure 3-13E). Oil body cells, a 

liverwort-specific cell containing the oil body, were recognized as dark-colored cells in 

the low magnification bright field (BF) images (Figure 3-14). Oil body cells were detected 

in 5-day-old thalli, antheridiophores, and archegoniophores, whereas they were not 

observed in sporelings (Figure 3-14), which is consistent with the absence of the 

MpSYP12B transcript in sporelings, as demonstrated by RT-PCR (Figure 3-5). The oil 

body localization was not observed for the other MpSYP1 members (Figure 3-13F and 

G). These results indicate that the functions of SYP1 members have also diverged in M. 

polymorpha. 

Regarding the SNARE molecules of subgroups other than Qa-SNAREs, I found 

that Citrine-tagged Qb-MpNPSN1 and R-MpVAMP72B were localized to the PM when 

they were expressed under the regulation of the CaMV 35S promoter (Figure 3-13H–J). 

Citrine-MpVAMP72B was also observed on punctate compartments, majority of which 

colocalized with the TGN marker, mRFP-MpSYP6A (Figure 3-13I). However, a part of 

the punctate compartments were independent of the TGN (arrowhead in Figure 3-13I), 

which could correspond to the intermediate compartments that are responsible for 

transport between the TGN and PM as reported in A. thaliana (Asaoka et al., 2012). 

Colocalization between Citrine-MpVAMP72B and the Golgi marker, ST-mRFP, was not 
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observed (Figure 3-13J). Citrine-tagged Qb+Qc-MpSNAP, an M. polymorpha homolog 

of SNAP25, was dispersed into the cytosol following its expression under the regulation 

of the CaMV 35S promoter (Figure 3-13K). GFP-tagged orthologous products in A. 

thaliana, SNAP29, SNAP30, and SNAP33 were also shown to be dispersed into the 

cytosol in A. thaliana protoplasts (Uemura et al., 2004), although these molecules mediate 

trafficking events to the PM, including a pathogen response (Kwon et al., 2008) and cell 

plate formation (Heese et al., 2001; El Kasmi et al., 2013). Because the CaMV 35S 

promoter was inactive in the oil body cell (Figure 3-15), I could not verify the localization 

of Qb-, Qc-, and R-SNAREs on the oil body membrane. 
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Discussion 

In Chapter III, I analyzed SNARE molecules in M. polymorpha, the genome of 

which is currently under detailed investigations. I showed that M. polymorpha has a 

conserved set of SNARE molecules with lower degrees of redundancy than the other land 

plant lineages. The genome of the moss P. patens, which also belongs to the bryophyte, 

encodes 57 SNARE proteins (Sanderfoot, 2007; Rensing et al., 2008). This number is 

almost equivalent to the number of SNAREs in A. thaliana, which possesses 63 SNARE 

proteins (Sanderfoot, 2007). Conversely, smaller numbers of SNARE proteins are 

encoded in the genomes of unicellular algal species; 29 and 20 SNARE proteins have 

been identified in C. reinhardtii and O. tauri, respectively (Sanderfoot, 2007). Based on 

this evidence, it has been suggested that the expansion of the SNARE genes could be 

associated with the multicellularization and/or terrestrialization of green plants (Dacks & 

Field, 2007; Sanderfoot, 2007). However, my results and the recently unveiled genome 

of the filamentous charophytic algae, K. flaccidum (Hori et al., 2014), did not firmly 

support this notion; the majority of the subgroups of SNARE protein in M. polymorpha 

consist of only one member that is expressed in all of the organs examined. Conversely, 

subgroups comprising two paralogous members, such as the MpGOS1, MpUSE1, 

MpSYP6, MpSYP7, and MpTOMOSYN1 groups, exhibited distinct expression patterns 

between the subgroup members; one was expressed ubiquitously and the other was 

expressed in an organ-specific manner. The subcellular localization of GOS1, USE1, and 

SYP6 groups with fluorescently tagged SNARE proteins also revealed that the paralogous 

gene products exhibited a similar subcellular localization when expressed under the 

CaMV 35S promoter (summarized in Figure 3-16); this was largely identical to the 

localization of the orthologous products in A. thaliana (Uemura et al., 2004). These 
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results indicated that the duplication of SNARE genes followed by the differentiation of 

regulatory elements such as the promoter resulted in the differentiation of expression 

patterns without changing the subcellular localization and presumably the molecular 

function in these subgroups.  

 

SNAREs with distinct subcellular distributions in A. thaliana and M. polymorpha 

Although the subcellular localization of a majority of SNARE proteins in M. 

polymorpha was comparable with that of the orthologous products of A. thaliana, several 

SNARE proteins exhibited distinct behaviors between A. thaliana and M. polymorpha 

(Figure 3-16).  

 

Early secretory SNAREs 

Several SNARE molecules that function in early secretory organelles such as the 

ER and Golgi apparatus exhibited good conservation in terms of their subcellular 

localization among land plants. For example, a putative set of cognate SNAREs, Qa-

SYP8, Qb-SEC20, Qc-USE1, and R-SEC22, which are counterparts of the SNAREs that 

mediate retrograde transport from the Golgi apparatus to the ER in budding yeast (Lewis 

& Pelham, 1996; Lewis et al., 1997; Dilcher et al., 2003; Hong, 2005), were also localized 

to the ER and related compartments in both A. thaliana (Uemura et al., 2004) and M. 

polymorpha (this study). These results suggest that the functions of these molecules are 

conserved. Among the M. polymorpha SNARE molecules that are homologous to yeast 

SNAREs mediating anterograde transport from the ER to the Golgi apparatus (Qa-Sed5p, 

Qb-Bos1p, Qc-Bet1p, and R-Sec22p, Newman et al., 1990; Hardwick & Pelham, 1992; 

Banfield et al., 1995; Nichols & Pelham, 1998), MpSYP3 (homologous to Sed5) and 
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MpMEMB1 (homologous to Bos1p) were also localized to the Golgi apparatus. However, 

MpBET1 was predominantly localized to the TGN in M. polymorpha, exhibiting good 

colocalization with MpSYP6A (Figure 3-10G). Intriguingly, the A. thaliana BET1 

homolog BET11/BS14a is localized to trans cisternae of the Golgi apparatus in A. 

thaliana cells cultured in suspension (Uemura et al., 2004) and tobacco leaf epidermal 

cells (Chatre et al., 2005). These results may indicate diversified functions of BET1 

among land plant lineages, although the effects of XFP tagging and overexpression on 

subcellular localization should be verified in future studies. 

I also noticed a slight difference in the subcellular localization of Qc-SYP7 

members between A. thaliana s and M. polymorpha. The SYP7 group is plant-specific 

Qc-SNARE (Sanderfoot et al., 2000), and the genome of A. thaliana encodes three SYP7 

members (SYP71–73). GFP-fused SYP71 is predominantly targeted to the PM, with 

slight localization at the ER in meristematic cells, when it is expressed under the 

regulation of its own promoter (Suwastika et al., 2008). The PM localization of SYP71 is 

further supported by fractionation and co-immunoprecipitation studies (Suwastika et al., 

2008; El Kasmi et al., 2013). However, Citrine-tagged MpSYP7B.1 driven by the CaMV 

35S promoter was localized to the ER in M. polymorpha thallus cells (Figure 3-8A). 

These distinct localization patterns are most likely explained by the sensitivity of the 

subcellular localization of SYP7 members to overexpression or ectopic expression. It has 

been reported that transient expression of fluorescently tagged A. thaliana SYP7 members 

in A. thaliana protoplasts and tobacco leaf cells results in localization at the ER (Uemura 

et al., 2004; Wei et al., 2013), which suggests that the expression level must be strictly 

regulated for the proper localization of SYP7. As indicated in Figure 3-5, MpSYP7B is 

not transcribed in thalli. However, I do not rule out the possibility that SYP7 members 
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also mediate membrane fusion at the ER in M. polymorpha (and also in A. thaliana). The 

occurrence of two Qc-SNAREs on the ER, MpUSE1 and MpSYP7, may represent the 

existence of two distinctive trafficking pathways to the ER. Further studies are needed to 

obtain complete information regarding the functions of the SYP7 group in land plants. 

 

Vacuolar SNAREs 

Qa-SYP2 represents the first group of SNAREs to be identified in plants and is 

known to act in vacuolar and endosomal trafficking pathways (Sanderfoot et al., 1999; 

Sanderfoot et al., 2000; Saito & Ueda, 2009). There are three SYP2 genes in the genome 

of A. thaliana (SYP21–23). SYP21/PEP12 and SYP22/VAM3 were initially isolated as A. 

thaliana genes that rescue the deleterious effects of the yeast pep12 and vam3 mutations, 

respectively (Bassham et al., 1995; Sato et al., 1997), which suggests that the functions 

of the SYP2 members had already diverged in the common ancestor of yeasts and plants 

into the SYP21/PEP12 and SYP22/VAM3 groups. However, phylogenetic and 

comparative genomic analyses indicate that these genes diversified independently and 

convergently in fungal and plant lineages (Dacks et al., 2008). In the present study, I 

found that M. polymorpha harbors only one SYP2 member, supporting this notion. 

MpSYP2 resided on the vacuolar membrane, and no other Qa-SNAREs were localized to 

the vacuolar membrane. This result indicated that MpSYP2 is the sole vacuolar Qa-

SNARE. In A. thaliana, SYP21/PEP12 is predominantly localized to the prevacuolar 

compartment (PVC), whereas SYP22/VAM3 is preferentially localized to the vacuolar 

membrane, although they have partially redundant functions (Sanderfoot et al., 1999; 

Sanderfoot et al., 2001b; Ohtomo et al., 2005; Shirakawa et al., 2010; Uemura et al., 

2010). A detailed comparison of MpSYP2 and SYP2 members of A. thaliana would 
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provide invaluable information on the diversification of the subcellular localization and 

functions of SYP2 members during plant evolution. 

 The Qb-VTI1 group would be another good target of study to unravel 

mechanisms underlying the functional diversification of SNARE proteins. There are four 

paralogous VTI1 proteins in A. thaliana (VTI11–14), which are diversified in their 

localization and functions. VTI11 is predominantly localized to the PVC and vacuolar 

membrane with a small population on the TGN in A. thaliana (Zheng et al., 1999; Uemura 

et al., 2004), and it mediates membrane fusion at the vacuole by forming a complex with 

SYP22/VAM3, SYP51, and VAMP727 or VAMP71 (Sanderfoot et al., 1999; Zheng et al., 

1999; Sanderfoot et al., 2001a; Yano et al., 2003; Niihama et al., 2005; Ebine et al., 2008; 

Ebine et al., 2011; Fujiwara et al., 2014). Conversely, VTI12 is mainly localized to the 

TGN and PM (Uemura et al., 2004; Niihama et al., 2005), where it functions distinctly 

from VTI11 in vacuolar trafficking pathways and autophagy (Surpin et al., 2003; 

Sanmartin et al., 2007; Zouhar et al., 2009) in a complex with SYP41, SYP51, and SYP61 

(Bassham et al., 2000; Sanderfoot et al., 2001a; Niihama et al., 2005; Zouhar et al., 2009). 

In contrast, M. polymorpha harbors only one VTI1 homolog. Intriguingly, Citrine-

MpVTI1 was localized to the TGN almost exclusively in M. polymorpha thallus cells 

(Figure 3-10C). This result could indicate that ancestral VTI1 acted centrally in 

membrane trafficking around the TGN, and paralogous expansion of VTI1 genes followed 

by the accumulation of mutations led to the diversification of their subcellular localization, 

binding partners, and functions during land plant evolution. 

 A similar paralogous expansion in A. thaliana was also observed in the VAMP71 

group, for which the M. polymorpha genome contains only one gene. Four VAMP71 

members are encoded in the genome of A. thaliana (VAMP711–714), among which 
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VAMP711, VAMP712, and VAMP713 are exclusively localized on the vacuolar 

membrane (Carter et al., 2004; Szponarski et al., 2004; Uemura et al., 2004; Uemura et 

al., 2005; Geldner et al., 2009; Ebine et al., 2014). However, VAMP714 is also observed 

on the Golgi apparatus (Uemura et al., 2004). VAMP714 is detected in the vacuolar 

membrane fraction (Szponarski et al., 2004) and interacts with SYP22 in co-

immunoprecipitation experiments (Fujiwara et al., 2014). These results may suggest that 

VAMP714 functions during transport from the Golgi apparatus to the vacuole. 

 

Different localization of SYP1 members in M. polymorpha 

The Qa-SYP1 family is one of the most diversified SNARE families in land 

plants, especially in seed plants (Sanderfoot, 2007). For example, close homologs of 

SYP111/KNOLLE, which is expressed only in dividing cells and mediates membrane 

fusion at forming cell plates in A. thaliana (Lukowitz et al., 1996; Lauber et al., 1997; 

Enami et al., 2009), are found only in seed plant lineages (Sanderfoot, 2007); however, 

cytokinesis involving cell plate formation is observed throughout land plant lineages and 

in some algal species (Pickett-Heaps, 1967; Marchant & Pickett-Heaps, 1973; McIntosh 

et al., 1995; Chapman et al., 2001; Cook, 2004; Katsaros et al., 2011). In M. polymorpha, 

I did not identify a Qa-SNARE that was specialized for cell plate formation, although I 

found one of SYP1 members required for cell plate formation during cytokinesis in M. 

polymorpha thallus cells, which will be presented in the next chapter.  

 Three of four SYP1 members in M. polymorpha, MpSYP12A, MpSYP13A, and 

MpSYP13B, were expressed in the whole tissues of 5-day-old thalli, and MpSYP12B was 

only expressed in oil body cells (Figure 3-13). The oil bodies in liverworts, which are 

formed in liverwort-specific oil body cells, are responsible for the synthesis and storage 
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of specific isoprenoids, phenolics, and bisbibenzyl compounds such as marchantin and its 

relatives (Asakawa, 1983; Suire et al., 2000; Asakawa et al., 2013; Tanaka et al., 2016). 

The oil body is surrounded by a single unit membrane, which is reported to originate from 

the ER cisternae (Duckett, 1995; Suire, 2000). Interestingly, my results demonstrated that 

the surface membrane of the oil body and the PM shared the common Qa-SNAREs. In 

the Chapter IV and V, detailed mechanisms underlying oil body formation and the 

involvement of membrane trafficking in this process will be further investigated.  

 

A novel type of R-SNARE 

In this study, I identified novel R-SNARE members with a distinctive structural 

characteristic. MpVAMP72C–E were classified in the VAMP72 group; however, these 

molecules harbor the consensus sequence for N-myristoylation in addition to functional 

domains constituting canonical VAMP7 members. I confirmed that the N-terminal 

sequences of these proteins are indeed N-myristoylated in A. thaliana cells. Thus, these 

N-myristoylated VAMP72 (Myr-VAMP72) proteins should be attached to the membrane 

at two sites in the polypeptides: the myristoylated N-terminus and the C-terminal TMD. 

To my best knowledge, this type of R-SNARE has not been identified in other organisms 

including plants, which indicates that this type of SNARE was uniquely acquired in the 

liverwort during evolution. It is anticipated that uniquely acquired SNARE molecules 

could be involved in distinctive membrane trafficking pathways, underlying the 

specialized functions of the liverwort. The subcellular localization, effect of knock-out 

mutations, and identification of binding partners of these Myr-VAMP72 proteins would 

also be interesting for future projects to unravel the molecular function and physiological 

significance of Myr-VAMP72 in M. polymorpha. 
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 SNARE molecules with distinct but unique structures in terms of membrane 

binding domains have also been reported in other systems. Animal Syntaxin 17, which 

possesses two tandem TMD-like structures, has been shown to mediate membrane fusion 

between the autophagosome and lysosome (Itakura et al., 2012), in addition to its function 

in trafficking between the ER and ER-Golgi intermediate compartment (Steegmaier et al., 

2000; Muppirala et al., 2011). SNARE molecules with two TMDs are also predicted in 

the malaria parasite Plasmodium falciparum (Ayong et al., 2007), although the structural 

topology and functions of these proteins remain elusive. Molecular and functional 

analyses of these uniquely acquired SNARE proteins to each lineage, including Myr-

VAMP72, will provide deeper insights into the diversification and evolution of membrane 

trafficking pathways that are associated with the diversification and/or acquisition of 

SNARE molecules during the evolution of eukaryotic cells. 
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Figure 3-1. SNARE genes in green plants  

SNAREs are classified into three major categories: ER/Golgi SNAREs, TGN/Vacuolar 

SNAREs, and Secretory/PM SNAREs, according to Sanderfoot (2007). The names given 

to the plant orthologs are shown below the classification. SNARE genes are indicated as 

individual boxes regardless of the presence of splicing variants, and each class of SNARE 

proteins is indicated in a different color (Qa, red; Qb, yellow; Qc, green, Qb+Qc, cyan; 

R, purple). The accession numbers of the SNARE genes for the listed organisms 

excluding M. polymorpha and K. flaccidum were retrieved from Sanderfoot 2007. 
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Figure 3-2. Neighbor Joining tree of the green plant SYP1 group 

Amino acid substitution model of JTT (1992) was used. The tree is unrooted but drawn 

with proteins of chlorophytes as the outgroup to proteins of streptophytes. The branch 

lengths are proportional to the estimated number of substitution per site.  
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Figure 3-2. (continued) 

Bootstrap probability is indicated as percentage on each branch with at least 50% support. 

Sequences from the NCBI database are labeled by their accession numbers. Organism 

names are given next to the accession number. For A. thaliana genes, the AGI codes and 

short names are given. Sequences from other sources have their own identifiers. The color 

of the label is according to the classification, blue: eudicots, blue violet: monocots, dark 

magenta: basal angiosperms (Amborella) and gymnosperms, brown: lycophytes 

(Selaginella), green: bryophytes, light green: green algae. 
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Figure 3-3. Sequence alignment of SYP1 proteins of M. polymorpha  

Amino acid sequences of four MpSYP1 members are aligned. The syntaxin domain (red 

line), SNARE domain (purple line), and transmembrane domain (TMD, light blue line) 

are indicated above the sequences. Identical (asterisk), highly-conserved (colon), and 

weakly-conserved (period) amino acid residues are indicated.  
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Figure 3-4. Schematic models of SNARE genes with splicing variants 

(A) Two transcripts derived from the MpSYP7B locus; one harbors a TMD, whereas the 

other lacks a TMD. (B) Two transcripts derived from the MpVAMP72A locus; the lengths 

of the longin domain vary between the two products. (C) Two transcripts derived from 

the MpGOS12 locus; the lengths of the carboxyl termini vary between the two products. 

Gray boxes indicate protein-coding regions. Black bars = 500 bp. 
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Figure 3-5. Transcription of SNARE genes in M. polymorpha 

Total RNA samples were extracted from 5-day-old thalli (lane 1), antheridiophores (lane 

2), archegoniophores (lane 3), and 7-day-old sporelings (lane 4), which were subjected to 

RT-PCR. The amounts of template cDNA were adjusted based on the MpEF1α expression.  
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Figure 3-6. M. polymorpha harbors unique VAMP72 members 

(A) Schematic primary structures of VAMP72 proteins in M. polymorpha. Canonical 

VAMP72 consists of the longin domain, SNARE domain, and transmembrane domain 

(TMD). In addition to these three domains, N-myristoylated VAMP72 (Myr-VAMP72) 

extends at the amino terminus, which contains the consensus for N-myristoylation. (B–I) 

Confocal images of protoplasts of A. thaliana cells cultured in suspension expressing YFP 

fused with the twenty N-terminal amino acid residues of the MpVAMP72 members. The 

N-terminal sequences of Myr-VAMP72 [MpVAMP72C (B), MpVAMP72D (D), and 

MpVAMP72E (F)] deliver YFP to the endomembrane compartments, although the N-

terminal sequences of canonical VAMP72 [MpVAMP72A (H) and MpVAMP72B (I)] and 

mutated sequences of Myr-VAMP72 (G2A) [MpVAMP72C (C), MpVAMP72D (E), and 

MpVAMP72E (G)] do not. Scale bars = 10 μm. 
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Figure 3-7. Markers of the Golgi apparatus and trans-Golgi network (TGN) in M. 

polymorpha 

(A) Maximum intensity projection images of M. polymorpha thallus cells expressing ST-

Venus and ST-mRFP. (B) Single confocal images of M. polymorpha thallus cells 

expressing Citrine-MpSYP6A and mRFP-MpSYP6A. (C) Maximum intensity projection 

images of M. polymorpha thallus cells expressing Citrine-MpSYP6A and mRFP-

MpSYP6A.  
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Figure 3-7. (continued) 

(D) Maximum intensity projection images of M. polymorpha thallus cells expressing ST-

Venus and mRFP-MpSYP6A. White arrowheads indicate the Golgi-independent TGN. 

(E) Maximum intensity projection images of M. polymorpha thallus cells expressing 

Citrine-MpSYP6A and ST-mRFP. White arrowheads indicate the Golgi-independent 

TGN. Green, magenta, and blue pseudo colors indicate fluorescence from YFP (Citrine 

or Venus), mRFP, and chlorophyll, respectively. Scale bars = 5 μm in (A), (C), (D), and 

(E), 10 μm in (B). 
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Figure 3-8. SNAREs localized to the ER 

Single confocal images of M. polymorpha thallus cells expressing Citrine-MpSYP7B.1 

(A), Citrine-MpSEC20 (B), Citrine-MpUSE1A (C), Citrine-MpSEC22 (D), Citrine-

MpUSE1B (E), or Citrine-MpSYP8 and ST-mRFP (F). Green, magenta, and blue pseudo 

colors indicate fluorescence from Citrine, mRFP, and chlorophyll, respectively. Scale bars 

= 10 μm. 
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Figure 3-9. Golgi apparatus-localized SNAREs 

Colocalization of Golgi-localized SNAREs with the marker for the Golgi apparatus (ST-

mRFP) or the TGN (mRFP-MpSYP6A). (A, C, E, G, I, K, and M) Maximum intensity 

projection images of M. polymorpha thallus cells expressing ST-mRFP and Citrine-

MpSYP3 (A), Citrine-MpMEMB1 (C), Citrine-MpGOS11 (E), Citrine-MpGOS12.1 (G), 

Citrine-MpGOS12.2 (I), Citrine-MpSFT1 (K), or Citrine-MpTOMOSYN11 (M). (B, D, 

F, H, J, L, and N) Maximum intensity projection images of M. polymorpha thallus cells 

expressing mRFP-MpSYP6A and Citrine-MpSYP3 (B), Citrine-MpMEMB1 (D), 

Citrine-MpGOS11 (F), Citrine-MpGOS12.1 (H), Citrine-MpGOS12.2 (J), Citrine-

MpSFT1 (L), or Citrine-MpTOMOSYN11 (N). The green and magenta pseudo colors 

indicate fluorescence from Citrine and mRFP, respectively. Scale bars = 5 μm. 
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Figure 3-9. (continued) 
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Figure 3-10. TGN-localized SNAREs 

Colocalization of TGN-localized SNAREs with the marker for the TGN (mRFP-

MpSYP6A) or the Golgi apparatus (ST-mRFP). (A, C, E, G) Maximum intensity 

projection images of M. polymorpha thallus cells expressing mRFP-MpSYP6A and 

Citrine-MpSYP4 (A), Citrine-MpVTI1 (C), Citrine-MpSYP6B (E), or Citrine-MpBET1 

(G). (B, D, F, H) Maximum intensity projection images of M. polymorpha thallus cells 

expressing ST-mRFP and Citrine-MpSYP4 (B), Citrine-MpVTI1 (D), Citrine-MpSYP6B 

(F), or Citrine-MpBET1 (H). The green and magenta pseudo colors indicate fluorescence 

from Citrine and mRFP, respectively. Scale bars = 5 μm. 
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Figure 3-11. Vacuolar membrane-localized SNAREs 

(A and B) Single confocal images of M. polymorpha thallus cells expressing Citrine-

MpSYP2 (A) or Citrine-MpSYP5 (B) under the regulation of the CaMV 35S promoter. 

(C and D) Single confocal images of M. polymorpha thallus cells expressing Citrine-

MpVAMP71 and ST-mRFP (C) or mRFP-MPSYP6A (D). The insets are magnified 

images of the boxed regions in (C) and (D). Green, magenta, and blue pseudo colors 

indicate fluorescence from Citrine, mRFP, and chlorophyll, respectively. Scale bars = 10 

μm. 
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Figure 3-12. Potential effect of dimerization and overexpression on the localization 

of fluorescently tagged MpSYP2 

(A) A single confocal image of M. polymorpha thallus cells expressing MpSYP2 tagged 

with Citrine under the regulation of the CaMV 35S promoter. (B) A single confocal image 

of M. polymorpha thallus cells expressing MpSYP2 tagged with mCitrine under the 

regulation of the MpSYP2 promoter. (C) Magnified image of the boxed region in B. (D) 

Fluorescence intensity of Citrine along the red arrow (1) in (C). Arrows indicate vacuolar 

membranes, and arrowheads indicate the membrane of the bulb. Scale bars = 10 μm. 
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Figure 3-13 PM- and oil body membrane-localized SNAREs 

(A–C) Single confocal images of M. polymorpha thallus cells expressing mCitrine-

MpSYP12A (A), mCitrine-MpSYP13A (B), or mCitrine-MpSYP13B (C) under the 

regulation of their own promoters. (D–G) Single confocal images of M. polymorpha 

thallus cells expressing mCitrine-MpSYP13A (D), mCitrine-MpSYP12B (E), mCitrine-

MpSYP12A (F), or MpSYP13B (G) driven by their own promoters. BF, bright field 

images. (H) A single confocal image of M. polymorpha thallus cells expressing Citrine-

MpNPSN1 under the regulation of the CaMV 35S promoter. (I and J) Single confocal 

images of M. polymorpha thallus cells expressing Citrine-MpVAMP72B and mRFP-

MpSYP6A (I), or Citrine-MpVAMP72B and ST-mRFP, under the regulation of the CaMV 

35S promoter (J). The insets are magnified images of the boxed regions in (I) and (J). (K) 

A single confocal image of M. polymorpha thallus cells expressing Citrine-MpSNAP 

under the regulation of the CaMV 35S promoter. Green, magenta, and blue pseudo colors 

indicate fluorescence from (m)Citrine, mRFP, and chlorophyll, respectively. Scale bars = 

10 μm.  
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Figure 3-14 Distribution of oil body cells in M. polymorpha  

(A–F) Bright field (BF) images of a 5-day-old thallus (A and B), an antheridiophore (C 

and D), and an archegoniophore (E and F). Magnified images of the boxed regions in (A), 

(C), and (E) are presented as (B), (D), and (F), respectively. Arrowheads indicate oil 

bodies. (G) A maximum intensity projection image of a 7-day-old sporeling overlaid on 

the BF image. The blue pseudo color indicates autofluorescence from chlorophyll. Scale 

bars = 1 mm in (A), (C), and (E), 100 μm in (B), and 200 μm in (D), (F), and (G). 

 

  



63 

 

Figure 3-15 Inactivation of the CaMV 35S promoter in oil body cells. 

(A) Single confocal images of M. polymorpha thallus cells expressing Citrine-MpSYP2 

under the regulation of the CaMV 35S promoter. The Citrine signal is not visible in oil 

body cells (asterisks). (B) Single confocal images of M. polymorpha thallus cells 

expressing mCitrine-MpSYP2 under the regulation of the MpSYP2 promoter. The 

vacuolar membrane in an oil body cell (asterisk) is visualized using mCitrine. Scale bars 

= 10 μm. 
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Figure 3-16 Schematic representation of the SNARE distribution in M. polymorpha  

Subcellular localization of SNARE proteins determined under my experimental 

conditions. 
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Chapter IV: Cell-specific redirection of the secretory trafficking pathway lead to 

acquisition of new organelles during land plant evolution 
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本章については、５年以内に雑誌等で刊行予定のため、非公開。 
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Chapter V: Screening for mutants of oil body biogenesis and morphogenesis 
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Chapter VI: Conclusion 
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The main part of Chapter II and III has been published on Plant and Cell 

Physiology (Oxford University Press) as an article entitled “SNARE Molecules in 

Marchantia polymorpha: Unique and Conserved Features of the Membrane Fusion 

Machinery.” by T. Kanazawa, A. Era, N. Minamino, Y. Shikano, M. Fujimoto, T. 

Uemura, R. Nishihama, K.T. Yamato, K. Ishizaki, T. Nishiyama, T. Kohchi, A. Nakano, 

and T. Ueda (2016, volume 57, Issue 2, pages 307-324). 
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