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Introduction

Lysocin E' (1, Figure 1) is a 37-membered cyclic depsipeptide isolated from Lysobacter sp. Peptide 1
exhibits antimicrobial activity against methicillin-resistant S. aureus (MRSA) with a minimum inhibitory
concentration (MIC) of 4 pg/mL. Therefore 1 is expected to be a promising seed for MRSA treatment.

The molecular target of 1 is distinct from that of any other reported antibiotics. A series of mutational
analyses revealed that 1 directly binds to menaquinone (MK) within the bacterial membrane. MK is an
essential factor for electron transfer in the bacterial respiratory chain. Formation of the 1-MK complex is
considered to disrupt the functional integrity of the bacterial membrane, resulting in rapid bacteriolysis. In
contrast, no complexation occurs between 1 and ubiquinone (UQ), a coenzyme in the mammalian respiratory
chain. The bacterial/mammalian cell selectivity of 1 is attributable to the selectivity of 1 toward MK over UQ.
However, structural requirement of 1 for its potent biological activity remained to be elucidated. Herein,
comprehensive structure-activity relationship (SAR) study of 1 was conducted 1) to investigate the side-chain

functionalities relevant to the molecular mode of action and 2) to create more potent derivatives.

Total synthesis and functional evaluation of fourteen derivatives of lysocin E

To investigate the importance of side-chain functionalities of 1, side-chain modified derivatives of 1 were to
be designed and synthesized. Prior to the SAR study of 1, the following three potential interactions among 1,
MK, and phospholipids were hypothesized: 1) an electrostatic interaction of the anionic carboxylate group or the
cationic guanidine moieties with the polar head group of phospholipids or the carbonyl groups of MK; 2) an
aromatic-aromatic interaction of the phenyl group or indole ring with the naphthoquinone ring of MK; and 3) a
hydrophobic interaction of the acyl chain with the lipid chains of MK or phospholipids. To systematically
investigate the significance of each of these interactions, fourteen analogues 2-15 were designed (Figure 1).

Syntheses of the natural 1, amine analogues 4, 16a, 16b, and 16¢ were envisioned to permit rapid access to
analogues 2/3, 5-7, 8-13, 14, and 15 respectively, by applying chemoselective single-step reactions (Figure 2).
Fmoc solid-phase peptide synthesis strategies enabled efficient construction of the main chain structure without
purification of intermediates (Figure 2A and 2B).> Compound 25 was used to incorporate acyl chain of 1 and
4 in SPPS (Figure 2A, 22—34—35—1 or 4). In contrast, compound 30 was employed to incorporate ester
linkage and Boc-protected amine for post-SPPS modification of acyl chain (Figure 2B, 22—37—38—16).
These synthetic strategies were applied to prepare 1, 4, 16a, 16b, and 16¢ in 8.0, 6.1, 26, 12, and 6.5% overall
yields, respectively. Condensation of 1 with 34 and 35 in the presence of PyBOP afforded amide analogues 2
and 3 in 48 and 44% yields, respectively. Treatment of 4 with 36, 37, and 38 gave rise to the
dimethylguanidine (5), urea (6), and acetyl (7) analogues in 46, 58, and 27% yields, respectively. Treatment of
16a-16c with activated carboxylic acids, which were prepared from 39-45 in the presence of
isobutylchloroformate and N-methylmorpholine, afforded analogues 8, 9, 10, 11, 12, 13, 14, and 15 in 34, 51, 29,
33,41, 25, 22, and 34% yields, respectively.
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Figure 1. Structures of lysocin E (1), analogues 2-15, intermediates 16a-c, menaquinone-4 (17), and
ubiquinone-10 (18). Membrane disrupting activities and antimicrobial activities of 1-15 are also displayed.
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Figure 2. Solid-phase peptide syntheses of 1, 4, and 16a-c, synthesis of 2, 3, and 5-15, and component amino

acids 19-33.



Biological functions of 1 and its analogues were systematically evaluated based on the MK-dependent
membrane lysis of liposomes and antimicrobial activity against S. aureus. To assess membrane lytic activity,
large unilamellar vesicles (LUVs) comprising a 1:1 ratio of EYPC/EYPG were prepared in the presence of 1.25
mol% of MK-4 (16) or UQ-10 (17). Carboxyfluorescein (CF) was encapsulated as a fluorescent indicator in
the LUVs. Membrane disruption caused by 1-15 was evaluated by fluorescence from released CF molecules.
The selective membrane lysis toward LUVs containing 17 over 18 was consistently observed for 1-14. The
natural 1 exhibited 62% membrane disruption at 2.5 puM and MIC of 4 pg/mL. Exchange of the anionic
carboxylate with the neutral amides of 2 and 3 did not decrease membrane lytic activity (64% for 2, 93% for 3)
and antimicrobial activity (MIC 4 ug/mL for 2 and 2 pg/mL for 3). When the cationic guanidine moieties were
exchanged to cationic amine (4) or dimethylguanidine (5), the potency of membrane disruption (62% for 4 and
55% for 5) and antimicrobial activities (MIC 4 pg/mL for 4 and 5) was retained. In contrast, incorporation of
neutral urea (6) and amide (7) analogues decreased both membrane lytic activity (7.4% for 6 and 0% for 7) and
antimicrobial activity (MIC 8 ug/mL for 6 and 16 pg/mL for 7), emphasizing the significance of the cationic
functionalities. C2- (8), C4- (9), C6- (10), C7- (11), and C9- (12) acyl chain-modified analogues exhibited
similar membrane lytic activities (51, 48, 65, 62, and 42%, respectively). Cl1-acyl chain modified analogue 13
showed lower membrane lytic activity (20%). Despite their relative unimportance in the liposome experiments,
the lengths of the acyl chains influenced the MIC (2-4 ug/mL for 9-12, 16 pg/mL for 8, and 32 ng/mL for 13),
indicating the importance of the appropriate hydrophobicity of this moiety for the bioactivity. Although
des-phenyl analogue 14 exhibited weak membrane lytic activity (65% at 10 pM) and antimicrobial activity (MIC
8 pg/mL), deletion of indole ring (15) totally abolished both membrane lytic activity (0% at 10 uM) and
antimicrobial activity (MIC >128 pg/mL). The indole ring appeared to be the most essential part of 1 for the

MK-selective membrane disruption and antimicrobial activity.*

Comprehensive Structure-Activity Relationship study of lysocin E
More comprehensive SAR experiment was conducted expanding the number of analogues to be

evaluated by using one-bead-one-compound (OBOC) strategys. Resin-bound 2,401 lysocin analogues
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tandem mass spectrometry. Screening of 2,401 analogues is currently underway.

Summary

Fourteen side-chain analogues of 1 were
synthesized by using the solid-phase strategy
and chemoselective single-step modification.
The key functional groups for the potent
activity of 1 were found to be cationic groups,
hydrophobic acyl group, and the indole ring.
These results offered a clearer picture of the
mode of action of 1. The cationic guanidine
moieties and the hydrophobic acyl chain help
1 bind through the anionic polar heads and
of the

membrane, respectively. On the membrane
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Figure 4. Hypothetical mechanism of action of 1.

surface, the electron-rich indole and the electron-deficient naphthoquinone of MK bind as a result of the

aromatic-aromatic interaction, leading to the formation of the 1-MK complex.
membrane damage and eventual cell death (Figure 4).

were applied to the OBOC library composed of 2,401 analogues.

Finally, the

Sequential analyses of on-bead and

complexation causes

solution-phase assay

Comprehensive structure-activity relationship

study is currently underway. Furthermore, this new hypothetical mechanism of action and comprehensive

structure-activity relationship study of OBOC library will provide us with valuable information for designing

more active derivatives of 1.
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