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Chapter 1

Introduction and Main Results

This thesis is threefold. The fist one is the positivity of the holomorphic sectional
curvature of compact Kéahler manifolds. The second one is the Schwarz lemma
for conical Kahler metrics. The third one is the scalar curvature behavior of the
conical Kahler-Ricci flow. In this chapter, we summarize the backgrounds and
main results for each topic.

In Chapter [, we treat compact Kahler manifolds with positive or negative
holomorphic sectional curvature. For a compact Kéhler manifold (X, w), we can
associate two notions of curvature: the Ricci curvature Ric(w), and the holomor-
phic sectional curvature H(w). The relation between them is not yet clear. For
instance, it is still open that if X admits a Kéhler form with semi-positive Ricci
curvature, then X admits an another Kéhler form with semi-positive holomor-
phic sectional curvature. However, by considering the Ric(w) represents the 1st
Chern class of the anti-canonical bundle —Kx, we can ask the following weaker
queation: What is the relationship between the positivity of K x and the negativity
of holomorphic sectional curvature? This question was originally raised by Yau
(see [HLW16L Conjecture 1.2]). Recently, Wu-Yau and Tosatti-Yang obtained the
following answer to this question.

Theorem A (=Theorem B31] [WY16a, Theorem 2], [ToY15, Corollary 1.3]). If
X admits a Kahler form with strictly negative holomorphic sectional curvature,
then the canonical bundle Kx is ample. In particular, X is projective.

Theorem B (=TheoremB.3.2] [ToY15, Theorem 1.1]). If X admits a Kdhler form
with semi-negative holomorphic sectional curvature, then the canonical bundle K
is nef.

The original proofs of both theorems are based on the following idea, in [WY16a,
constructing a Kéhler form w. € 27w (Kx) + €]@] satisfying

Ric(w:) = —we + @,

and considering the limiting behavior of w. as € N\, 0. Here, & is a Kéhler form
whose holomorphic sectional curvature is (strictly /semi-) negative.

In Chapter 3, we give an another proof of these theorems via Kéhler-Ricci flow.
Our proof is, in a sense, a parabolic proof of them [NomI6al.
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We remark that Diverio and Trapani [DT16] showed that the amplenss of Kx
can be obtained under the assumption that the holomorphic sectional curvature is
semi-negative everywhere and strictly negative at one point. For the moment, we
can only prove the above two theorems.

In Chapter 4l we treat the Schwarz lemma for conical Kéhler metrics. The
Schwarz—Pick lemma states that any holomorphic map between the unit disks in
the complex plane decreases the Poincaré metrics. After that, Ahlfors [AhLI3S]
generalized it to a holomorphic map from the unit disk to a hyperbolic Riemann
surface. For higher dimensions, Yau [Yau78a] showed that any holomorphic map
from complete Kahler manifold whose Ricci curvature is bounded from below to
a Hermitian manifold whose holomorphic bisectional curvature is bounded by a
negative constant decreases the metric up to a multiplicative constant. Also, he
showed that, under similar conditions on curvatures, any holomorphic map de-
creases the volume forms up to a multiplicative constant. Both results essentially
based on his maximum principle for complete Riemannian manifolds. Later on,
many generalizations obtained in various geometric settigs.

We forcus on the conical Kéahler metrics, for short, cone metrics. Let X be a
compact Kahler manifold of dimension n, D be a smooth divisor on X, and  be
a real number satisfying 0 < § < 1. The cone metric w with cone angle 273 along
D is a Kéhler metric on X \ D which is locally quasi-isometric to the standard
cone metric

n
dz' Ndzt+ ) ‘/2_1dzi A dz,

1=2

7 VT
wg -

T PR 2

and satisfies some regularity conditions. For a precise definition of the cone met-
ric, see Definition The notion of cone metrics plays an important role in
recent advances in Kahler geometries, in particular Kéahler -Einstein problems,
for instance see [CDS15al [CDS15b, [CDS15¢], and [Tial5)].

To state the theorems, we use the following setups and notations. Let X and Y
be compact Kéhler manifolds, D C X, E C Y be smooth divisors, and f: X — Y
be a surjective holomorphic map satisfying f*(F) = kD with k € Z-. Let wy
(resp. wy) be a cone metric with cone angle 2w« (resp. 27f3) along D (resp. E)
on X (resp. Y). Let s € H°(X,Ox(D)) be a holomorphic section of the line
bundle Ox (D) whose zero divisor is D and h be a smooth Hermitian metric on
it satisfying |s|, < 1. Let C' > 0 be an upper bound for the Chern curvature
of hie. /—1R, < Cwx. For a Kéhler form w, we will denote by Ric(w) the
Ricci curvature of w, R(w) the scalar curvature of w, and Bisec(w) the bisectional
curvature of w.

Schwarz lemma for the cone metrics obtained by Jeffres [Jef00al is states as
follows.

Theorem ([Jef00a, Theorem|). Assume that dim X = dimY = n, the cone angles
satisfy a < B and there exists non-negative constants A, B > 0 satisfying

R(wx) > —A, Ric(wy) < —Bwy < 0.



Then, the volume forms satisfy
* A "
Fran < <B) W on X\ D.

Since the cone metric is not complete on X \ D, we cannot apply the maximum
principle argument directly. Jeffers overcame this difficulty by using a barrier
function, called “Jeffres’ trick”. However, his original proof seems to need more
assumptions on the regularity of the cone metrics along D as in Definition .21
(see the proof of Proposition [3:6]). We will generalize this theorem to a general
cone angle and prove a Schwarz lemma for cone metrics [Nom16b].

Theorem C (=Theorem A.3.3)). Assume that dim X = dimY = n and the curva-
ture condition in above theorem holds.

(a) Suppose a < kf. Then we have

A n
[rwy < <B> wy on X\ D.
n

(b) Suppose o > kf. Then we have

o < (At @=kBC\" i
! “Y§< nB s

Theorem D (=Theorem [1.34). Assume that there exists non-negative constants
A, B > 0 such that the curvatures satisfy the following:

on X \ D.

Ric(wy) > —Awy, Bisec(wy) < —B < 0.

(a) Suppose a < kf. Then we have
. A
ffwy < wa on X\ D.

(b) Suppose o > kf. Then we have

< A+ (a—kB)C  wx

oy < e on X\ D.
B |S|h( B)

We remark that the condition @ < kf3 on cone angles in the statement (a) is
weaker than assumptions in Jeffres’ Schwarz Lemma.

In Chapter B, we consider the normalized conical Kéahler-Ricci flow w; on X
which is a family of cone metrics with cone angle 275 along D satisfying the
following parabolic equation:

o
;@ = —Ric(w) —w +27(1 - B)[D],
Wele=o = w*,



where [D] is the current of integration over D, and w* is a certain initial cone
metric defined later (see (LOI)). In the case of D = 0, w; is called the normalized
Kéhler-Ricci flow. This case has been studied extensively in the past decades
(see [TZ06) [STT6D, [ST12, ICW12, BEGI3] [CW14al [CT15, IGSWT5|, [TZ16] and the
references therein).

The maximal existence time T of the normalized conical Kéahler-Ricci flow w;y
is characterized by the following cohomological condition:

T =sup{t > 0| [w] = e Fwo] + (1 — ™) 271 (Kx + (1 — B)D) is Kéhler }.

In particular, the limiting class [wr| is nef but not Kéhler. This characterization is
due to Shen [Shel4al [Shel4b]. Ast tends to T', the flow w; might form singularities.
The analysis of the singularities, in particular its curvature behavior, is one of the
main objects in the study of the geometric flows. Our purpose here is to investigate
the scalar curvature behavior of w; with finite time singularites (i.e. T'< o0) as t
approaches to T

In the infinite time singularites case (i.e. 7' = 00), the uniform boundedness of
the scalar curvature of the normalized Kéhler-Ricci flow (i.e. D = 0) was proved
by Zhang [Zha09] when Kx is nef and big. This result was extended by Song-Tian
[ST16a] when Ky is semi-ample. Furthermore, Edwards [Edw15] generalized these
results to the conic setting. In the case of Fano manifolds (i.e. —Kx is ample),
Perelman established a uniform boundedness of it (see [SeT08]) and Liu-Zhang
[LZ14] extended to the conic case.

On the other hand, in the finite time singularities case, Zhang [Zhal(] showed
that the scalar curvature R(w;) of the normalized Ké&hler-Ricci flow w; satisfies

C
Rew) < (T —t)?
assuming the semi-ampleness of [wr]. This condition is natural in terms of the
deep relationship between the Kéhler-Ricci flow and the minimal model program
(see [ST16D, [Zhal0]). Our main theorem generalizes this to the conic setting.

We assume the following contraction type condition on the cohomology class
[wr]. Let f: X — Z be a holomophic map between compact Kéhler manifolds,
whose image is contained in a normal irreducible subvariety Y of Z. Let Dy be
an effective Cartier divisor on Y such that the pullback of Dy satisfies D = f*Dy-.
Let hy be a smooth Hermitian metric on the line bundle Oy (Dy) in the sense
of [EGZ09, Section 5], and sy be a holomorphic section of Oy (Dy) whose zero
divisor is Dy . We define the initial cone metric w* by

w* 1= wy + kV/—=199]s]7’, (1.0.1)

where wy is a smooth Kahler form on X, & € R,y is a sufficiently small real
number, s := f*sy is the holomorphic section of Ox (D), and h := f*hy is the
smooth Hermitian metric on Ox (D). We remark that if we take k sufficiently
small, w* is actually a cone metric with cone angle 273 along D.

Let w; be the normalized conical Kéahler-Ricci flow with initial cone metric w*,
and T be the maximal existence time of w;. We further assume that T is finite
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and there exists a smooth Kéhler form w; on Z satisfying
[f*wz] = [wr] € HY (X, R).
Under these assumptions, we have the following theorem [NomI16c].

Theorem E (=Theorem B.IH). The scalar curvature R(w;) of wy satisfies

R(w;) <

C
_m OnX\D,

where C' > 0 is a constant independent of t.

In contrast with Zhang’s result, we need to treat with the singularities of w;
along D. This is overcame by using the approximation technique used in [CGP13|
Shel4al LZ14, [Edw15].



Chapter 2

Preliminaries

In this chapter, we recall some definitions and properties of Kahler manifolds.
In Section 2.1 to 2.4, we recall basic Kahler geometry, especially the notion of
curvature. In Section 2.5l we fix some notations. In Section 2.6l we recall the
maximum principle argument which will be used in many places. In Section 2.7,
we prove the Laplacian estimate called Chern-Lu’s inequality.

2.1 Curvature of Hermitian Holomorphic Vector
Bundles

Let E be a complex vector bundle on a C'°-manifold on M. A C-linear map
V:C®(M,E) = C®(M,\' ® E) is called a connection of E if it satisfies the
Leibniz rule i.e for any function f € C°°(M,C) and any section s € C*(M, E),
we have the following:

V(fs) = ([df) @ s + F(Vs)
For any vector field X € C*(M,TM), we set Vxs := (Vs)(X) € C*(M,E). We

can extend V to a C-linear map dy: C°(M, \P ® E) — C®(M, A\’ ® E) which
is defined by

p . —
(de)(Xl, ce ,Xp+1) = Z(—1)2+1VX,L (S(Xl, c. 7Xi7 . 7Xp+1))

=1
+ Z(_l)i+j8([Xi7Xj]vX17 s ’)/51‘7 s aj(\ﬁ s aXp+1)7
i<j
where s € C*°(M,\NP®FE) and Xy, -+, X,41 € C°(M,TM). The map dy is called
the covariant differentiation associated to V. Since the definition of dy is similar
to that of the exterior derivative d, we have the following generalized Leibniz rule:
for any n € C°(M, A*) and s € C=(M, \’ ® E), we have

dy(n A s) = (dn) s+ (=1)n A (dys).

It is easily seen that dy o dy is C*°(X, C)-linear map. Thus, we can define the
curvature Ry € C*°(M, \* ® End(E)) of the connection V satisfying

(dv o dv)S = RV A S,



for any s € C°(M, \’ ® F). By taking local frame, we can show that tr(Ry) is a
closed 2-form on M.

Let (F,h) be a Hermitian complex vector bundle on M. A connection V of E
is said to be h-compatible if for any section s,t € C*°(M, E) the following holds:

d(s,t), = (Vs,t), + (s, Vt), . (2.1.1)

Here (-, ), : C®°(M,N\PQE)x C>®(M,\N"®QF) — C>®(M, \"""®@E) is s sesquilinear
form obtained by combining the wedge product and h. It is easily seen that for all
s€ C®(M,NP®FE) and t € C*°(M,\? ® E), the following holds:

d(s,t), = (Vs,t), + (=1)P (s, V1), .

Therefore, by applying d again, we get the curvature Ry of h-compatible connec-
tion V is skew-Hermitian i.e. (Rys,t), = — (s, Ryt),. In particular tr(v/—1 Rj,)
is a closed real 2-form on M.

Let X be a complex manifold of dimension n and J € C*°(X,End(TX)) be
the complex structure of X. Since J? = —idry, the complexified tanget bundle
TCX :=TX ® C is decomposed into two eigen spaces:

T°X =TYX ¢ TO1 X,
THX :={v e TX | Jv=+—1v},
THX ={veTX | Jv=—+v—1v}.

Then, 71X is a holomorphic vector bundle, and T%!'X is an anti-holomorphic
vector bundle. Dually, the complexified cotanget bundle T*¢X := T*X ® C also
decomposed into T*¢X = T*0X @ T*01 X . We set AP := A\PT*0X @ \NIT01 X,
For a section s € C®(X,A\P'?), s is called a (p,q)-form and (p,q) is called the
bidegree of s. By using the fact that J is integrable, the exterior covariant
derivative d: C°(X, A\P?) — C>®(X, AP is decomposed into d = 9 + d where
O: C=(X, \P1) — C®°(X, \PTH), §: C°(X, A1) — C=(X, A\P7T). If we take a
local holomorhic coordinate (2!, -+ ,2") of X, 9 and 9 is expressed as

noon, 5 . _
=3 3 ZET i ndt A de,
= =0
[|=p,|J|=q =1
_ n 877177 _ 7 —
on = Z Z —~dz* Ndz" Ndz/,

1
T|=p,|J|=q i=1 9%

where 1 = 37712, 1/|=q 771,de[ A dz7 is a (p,q)-form and the sum runs for all I =
(i1,...,4p) and J = (j1,...,J,) satisfying 1 <43 < --- < i, <nand 1 < j; <
-+ < j, < m. Since dod = 0, by considering the bidegree, we get 909 = dod = 0
and 9o d+dod=0.

For a holomorphic vector bundle F of rank r» on X, we can naturally associate
a C-linear map dp: C®(X, E) — C=(X, \”!' ® E) called the d-operator of E. By

using a local holomorphic frame (ey,--- ,e,) of E, O is defined as
Ops = Op (Z s’\eA> = 2(53’\) ® ey,
A=1 A=1



where s € C°(X, E) is locally denoted as s = 37} _; s*ey. Since E is holomorphic,
Op is a well-defined C-linear map satisfying Leibniz rule i.e. for any function
f € C>®(X,C) and for any section s € C*(X, F), we have the following:

As in the case of the connection, we can extend dg to a C-linear map dp: C®(X, \P'®
E) — C®(X, \P""! @ E) such that for any n € C®(X, A¥) and s € C®(X, \P? ®
E), we have

Ip(nAs)=(0n)As+ (—=1)"nA (Ops).

We remark that the Jp satisfies Op 0 O = 0.

For a Hermitian holomorphic vector bundle (E, h) on X, there exists a unique
connection V on E, called the Chern connection of (E, h), which is h-compatible
and (0, 1)-part of V coincides with 9. We denote V = V), = 0, + dr where 9y,
is the (1,0)-part of V. The exterior covariant derivative dj, := dy, of the Chern
connection V;, decomposed into dj, = 95, + O where we extend 0, to a C-linear
map O (X, \P1QFE) — C®°(X, A" ®E). By considering the bidegree in (Z1.1)),
we get

0 (s, t), = (Ohs, 1), + <s,5Et>h, 9 (s,t), = <5Es, t>h + (s, 0nt),, - (2.1.2)

Let (e1,--- ,e,) be a local holomorphic frame of E, (e, -+, ¢") be the dual frame
of E* and (z',---,2") be a holomorphic local coordinate of X. We set hy; =
h(ex,e,). By using (ZI.2), we can represent the Chern connection as follows:

8he,\ == h”ﬁahm X €y, EESA = 0.
Also, the Chern curvature Ry, := Ry of the Chern connection is represented as

Ry, =00 + 0w0p = R ldz" NdzT @ & @ ¢y,
Rz = =W (8,0:hxp) + MR (Dihe) (F5hu).

In particular if (L, h) is a Hermitian holomorphic line bundle i.e. rank(L) = 1 and
if we take a holomorphic frame e of L and set H := h(e, e), we have the formula

\/—1Rh = —\/—18510g[‘[.

2.2 Kahler Manifolds

Let X be a complex manifold of complex dimension n and J € C*(X, End(TX))
be the complex structure of X. A Riemannian metric g on X is called J-invariant
if for any tangent vector v,w € T'X, g satisfies

g(Jvu, Jw) = g(v,w).



By extending C-bilinearly, g defines a non-degenerate C-bilinear form on TCX,
which we also write ¢g. J-invariant Riemannian metric g defines a Hermitian metric
hy on T®X by hy(v,w) := g(v,w), and 2-form w, by w, := g(J-,-). Since g is J-
invariant, 7'°X and T%'X is orthogonal with respect to h,, and w, is a real
(1,1)-form on X. If we take a local holomorphic chart (U, (z'.---,2")), w, is
locally written as

oo o 0

ij=1

In this notation, (gzg(m)) _is a positive definite Hermitian matrix for any x € U.
l’]

A J-invariant Riemannian metric g on X is called a Kdhler metric if corre-
spoinding (1, 1)-form w, is d-closd. This condition is equivalent to
99,3 _ 9y
ozk 0z
foranyi,j,k=1,--- ,n. We callw, a Kdihler form associated to g, and (X, J, g, wy)
a Kahler manifold. -
Areal (1,1)-form w is called positive if we write w asw = /=137, _; gﬁdz"/\dzj

locally, the Hermitian matrix (gzg(az)) _is a positive definite. For instance, any
/L?]

Kéhler form is positive. We remark that for any positive closed real (1, 1)-form w,
if we set g by g := w(-,J-), then g is a Kéahler metric satisfying w, = w. In the
following, a positive closed real (1,1)-form w is also called a Kéhler form on X
without specifing corresponding Kahler metric.

2.3 Cohomology of Compact Kahler Manifolds
Let E be a holomorphic vector bundle on a compact complex manifold X. Since
Op o g = 0, we define the Dolbeault cohomology of E by

Ker(0p: C®*(X,\P1® E) — C®(X, \""™ @ E))
Im(dp: C*(X, NP '@ E) = C=(X,\""® E))

HPY(X FE) =

It is well-known that H?9( X, F) is finite dimensional vector space. By the Dolbeault-
Grothendieck lemma, HP4(X, FE) is isomorphic to the ¢-th cohomology group
HI(X, Q% ® E) of sheaf of holomophic E-valued p-forms. We set HP4(X,C) :=
HP4(X,0x) and HP?(X,R) := HPP(X,C) N H%(X,R)

On a compact Kéhler manifold X, the following 9-lemma is essential.

Lemma 2.3.1 (09-lemma). Assume that p,q > 1 and u € C*°(X, \P?) is d-ezact
i.e. u=dv for some v € C®(X, \’T?"1). Then there exists w € C*°(X, \P"H71)
such that u = 0ow.

This lemma is a corollary of the Hodge theory. In particular, we have the
following identification:

~ine C®(X, A" |dn=0, a=a}

H'YX.R _
(X,R) V—100C>(X,R)




We define the Kdhler cone Kx of X by

Kx :={a € H"(X,R) | «is represented by a Kihler form on X}
c HY(X,R).

A cohomology class a € HY (X, R) is said to be a Kdhler class if « € Kx and a
nef class if @ € Kx. Here Kx is the closure of Kx with respect to the Euclidean
topology in the finite dimensional vector space H“!'(X,R). It is easily seen that
Kx is an open convex cone in H"!(X, R).

By the Chern-Weil theory, for any complex vector bundle £ on X with con-
nection V, the 1st Chern class 27c;(E) of E is represented by tr(y/—1 Ry) in
HZ.(X,R). In particular, since the bidegree of the Chern curvature is (1, 1), for
any holomophic vector bundle FE, the 1st Chern class 2w (F) of E belongs to
H'“'(X,R). Furthermore, thanks to Kodaira’s embedding theorem, the ampleness
of a holomophic line bundle L on X is equivalent to 2mwc; (L) € Kx. Therefore, the

Kéhler cone Kx closely related to the notion of positivity.

2.4 Curvature of Kahler Manifolds

In this section, we define various notions of curvature of Kahler manifolds. Let
(X, J,g,w) be a Kéhler manifold of dimension n. The Kéhler metric g defines the
Levi-Civita connection VX on the tangent bundle TX by

2g(VECv, w) = ug(v, w) + vg(w, u) — wg(u,v)
+ g([”? U]v U)) - g([va w]? u) - g([uv w]7 U)

where u,v,w € C*°(X,TX). This is the unique g-compatible torsion free connec-
tion i.e. for any vector fields u,v,w € C®(X,TX), VLC satisfies

u(g(v, w)) = g(Viv,w) + g(v, Viw),

VECYy = VECu 4 [u, v].

By extending C-linearly, V*¢ induces a connection on 7T¢ X, which we write simply
VL€ We set D the restriction of VZ¢ to T'9X. By the definition of V¢ and the
Kéhler condition dw = 0, D coincides with the Chern connection of the Hermitian
holomorphic vector bundle (71X h,). We decompose D into D = V + V where
V is the (1,0)-part and V is the (0, 1)-part of D. If we take a local holomorphic
cordinate (z.--- 2"), the curvature tensor Rp € C®°(X, A" @ End(T*°X)) of D
is locally written as

. _ 0 - -
Rp =Rg/dz' Nz @ d2" @ EE Rzl = =g (8:05017) + 9" 9" (Dig1z) (3;9,7)-
We define the Riemann curvature tensor Rm(w) by

Rm(w) :Rﬁkidzi ®dz) @ d* A d2l = gpgRipkzdzi ® dzl @ dz* A d2,

Riq = —0i050, + 9" (0i917) (059,1),
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the Ricci curvature Ric(w) by

Ric(w) :==+v—1 Rﬁdzi A dz, Rz = ngRkif = 0;05log det(g,5),

7=

and the scalar curvature R(w) by
R(w) := g’;Rﬁ = gﬁ@iaj%log det(g,g)-

Since w” defines a Hermitian metric on the anti-canonical bundle — Ky := AT X
and its Chern curvature is equal to the Ricci curvature of w, the Ricci curvature
Ric(w) represents the first Chern class 27¢; (X) = —2mc; (Kx) € HYY(X,R) of X.

For any tangent vector & = £0/0z'n = n'0/0z" € T'X, we define the
holomorphic bisectional curvature Bisec(w)(&,n) by

. Rm(w)(f, Ev 7, 77) ’Lgkié.zgjnknl
B ) = = N ()
isec(w)(&,7) |§|i \n|i (9:55€7) (grgm*n’)

the holomorphic sectional curvature H(w)(§) by

R £ ¢€ R igjek gl
H(w)(€) = Bisec(w)(€, ) = m<w)’§i§,&£) _ (J;,i 55] g)f

Here, abuse of notation, we denote |€]7 = hy(¢, €).

2.5 Some Notations

Let (X, J,g,w) be a Kéhler manifold X of dimension n. For a real (1, 1)-form «
on X, we set the trace tr, (a) of o with respect to w by

na A w1 =
trw (Oé) = T = g”ai}
where we denote w = /=1 gzdz' ANdz/, o = /=T agzdz' Adz/. In this notation,
(minus sign of) the J-Laplace operator associated to w acts on the space of smooth
functions is represented as

Auf =, (V=100f) = g70,05f,

and the scalar curvature of w is represented as R(w) = tr,, (Ric(w)).

For any tensors 7',.S on X of the same type, we denote (7', S)_ the Hermitian
inner product of 7" and S, |T'|, the norm of 7" measured by the Hermitian metric
on tensor bundles induced by hy. For instance, if T = T;;*dz' @ d2/ ® 8/02%, then
the norm of T is locally written as

T2 = g7g" g, T, 0T,

We denote V (resp. V) the (1,0)-part (resp. (0,1)-part) of the exterior co-
variant derivative dp of the Levi-Civita connection D of w. In this notation, for a
smooth function f on X, we have Vf = 0f and Vf = 0f.
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2.6 The Maximum Principle Argument

In this section, we recall the maximum principle argument which is a fundamental
technique to obtain estimates for non-linear parabolic equations. Let f = f(x,t) €
C>°(X x [0,T],R) be a smooth function on a compact complex manifold X where
T € Rsy. Since X x [0,7] is compact, f attains its maximum at some point
(xo,t0) € X x [0,T]. Then, at this point, we have the following inequalities:

\% —1 agf(‘rmtO) S 07 (261>
and
9 .
5 [@oto) ¢ =0 if 0<to<T (2.6.2)

>0 if to="T.

These inequalites are elementary but very useful in the subsequent arguments.
The direct application is the following estimate.

Proposition 2.6.3. Let w; be a smooth family of Kdahler forms. For any function
f=flz,t) € C°(X x [0,T],R) satisfying

0
— — <
(82& Awt> f <0,

< .
[ < )gr%}f

the following estimate holds:

Proof. For any constant € > 0, we set f. := f — et. It is obvious that f. satisfies
0
— — A, . < —e<0.
(2 )=
Therefore, by applying the inequalities (Z6.1]), (Z.6.2)) to f., any maximum point
(xo,t0) € X x [0,T] of f. satisfies tyg = 0. This implies that

< = .
fe < max fe max f

By taking € N\, 0, we get the assertion. O]

Of course, similar statement for minumum also holds if we replace < by >.

2.7 Chern-Lu’s Inequality

In this section, we prove well-known Laplacian estimate called Chern-Lu’s inequal-
ity [Che68), Lu68] which will be used later. We setup notations. Let f: (X,w) —
(Y,wy) be a holomorphic map between compact Kahler manifolds. We set £ :=
Hom (TM0X, f*T*10V) = T*10X @ f*T*1.0Y | denote h the Hermitian metric on F
induced by w and wy, and Vg the Chern connection of (E,h). We regard Jf as
a holomorphic section of E. Let C' € R be an upper bound for the bisectional
curvature of wy i.e. Bisec(wy) < C.

12



Proposition 2.7.1. In the above setting, we get the following estimates.
(a) Estimate for the Laplacian of tr,, (f*wy):
Autr, (ffwy) = (Ric(w), frwy), — tr?trd* (f*Rm(wy)) + |VE8f]i’h

| * . we Vi, (Frov) 2
> (Ric(w), fwy), = C (i (fwr))* + =027

> (Ric(w), frwy), — C (tr, (frwy))?

(b) Estimate for the Laplacian of logtr,, (f*wy):

Ay logtr, (ffwy) = tl"(fl*wY) ((Ric(w), froy), — tr?trd? (f*Rm(WY))>
1
Gy e ) IVe0f L = 1V () )
1

> gy (R, froy), = ol (/R )

(Ric(w), f*wy),

trw (f*CUY) - Ctrw (f*wY>

Proof. Let (2',...,2") and (w',...,w™) be normal coodinates on X and Y respec-
tively. We set

w=+v-1 gﬁdzi ANdzT, wy =+v/—1 hozdw® A dw?,
ffwy =v—-1 h%dzi Adzd = V—=1(h,z0 D)0 f*)(9;f5)dz" A dzd,

and denote Rz; and SaByS by the curvature tensor of w and wy respectively. Then
we have the following inequalities.

Autr, (frwy) = 70, & ( gﬁh%) — gM (ak ) gz‘j) ns + gHlgi (@;51 h%)

= g"RTh5 + (9“9”(0@-3# “)0;0117)(hog 0 f)

— g9 (0. D 1) (DS )BT (S50 f >)
= (Ric(w), f*wy),, + [VEOfI5, — tr?trd* (f"Rm(wy))

Vi, (frwy)|

tr (Fany) — tr22 3t (f*Rm(wy)) .

> (Ric(w), ffwy), +

In the last inequality, we used the inequality |Vtr,, (f*wy)|> < |VE8f|th tr, (f*wy)
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which can be obtained as follows:
Vi, (ffwy)|2 = g7 (09" hip) (059" hiy) = g7 M gP (Dii) (O5hi)
= Y (0:0kf*)(OcS*)(0:0,17) (0, f")

i,k,p,a, 3

1/2 1/2
> (@pfﬁakf“<20ﬁkf“> (Z\ajapfﬂﬁ) )
i J

k,p,a,8
1/2\ 2
- (z 97 (Z |<aiakfa|2> )
k,a A
< (Z@fﬂg) (Z |aiakf0‘|2)
LB

ik,

= tr, (ffwy) gkzgg(ai@kfa)(ajalfﬂ)
= |VEOf[ 5 tro (frwy) .

Here, we used the Cauchy-Schwarz inequalities. By using the upper bound for the
bisectional curvature of wy, the term trl2tr>* (f*Rm(wy)) estimated as

trl2trt (F*Rm(wy)) = C (tr, (frwy))?.

This follows from the following calculation: if we set & by (df)(9/0z"), their norm
is

af* of8
612, = Paslon) 2 (20) ().

By combining the definition of the bisectional curvature, we get

trl2tr3 (F*Rm(wy)) = gﬁgki(aifa)(ajfﬂ)(3kf7)(alf6>(sa@yg o f)
= Z R‘m(wY)(g% g? éku a) (yO)
i,k

<> C-lG2, 162,
ik
_ _of*of” _of*of”
=c zl: (ho‘ﬁ 0zt 82’) zk: (ho‘ﬁ 0zF OzF
5, 0107\ [, ofof’
— . Uh — —_4 _ —_J
¢ (g o 0zt 029 ) (g o 0zF 0z
= C (tr, (f*wy))?.

These estimates gives the desired inequality (a).
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The proof of (b) is straightforward:

Ayt (frwy)  |Vir, (frwy)l
tr, (f*wy) (tro (f*wy))?

A, logtr, (ffwy) =

! 1 * 1,2,.3 *
=t (for) ((Ric(w), frwy), — b2t (f Rm(wy)))
1 * 2 * 2
+ m (tl"w (f WY) |anf‘w,h — |Vt1"w (f wY)|w)

S

~try, (frwy)

(Ric(w), frwy),,
tr, (f*wy)

((Ric(w), frwy), — 2" (f Rm(wy)))

— Ctr, (frwy).
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Chapter 3

Compact Kahler Manifolds with
Positive or Negative Holomorphic
Sectional Curvature

In this chapter, we consider Kahler manifolds with positive or negative Holomor-
phic Sectional Curvature. In Section B.I we quickly review known results for
positive holomorphic sectional curvature case. In Section 3.2, we summarize basic
properties of the Kahler-Ricci flow which will be used in the next section. The main
part of this chapter is Section 3.3l In this section, by using the Kéahler-Ricci flow,
we provide a new proof to Wu-Yau’s and Tosatti-Yang’s theorems which represent
the relationship between the negativity of the holomorphic sectional curvature
and the positivity of the canonical bundle Ky of a compact Kéhler manifold X
[Nom16al.

3.1 Kaihler Manifolds with Positive Holomorphic
Sectional Curvature

In this section, we review related results.

Theorem 3.1.1 ([HW12| Theorem 1.1]). Let X be a smooth projective variety. If
X admits a Kdhler form w satisfying

/ R(w)w" > 0,
X
then X is uniruled. In particular, the Kodaira dimension of X is —oo.

We remark that this condition is cohomological (see ([B.1.2))). Since the scalar
curvature is determined by the holomorphic sectional curvature by the formula

R = [ HEE Wi

if X admits a Kahler form with strictly positive holomorphic sectional curvature,
then X is uniruled.
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Proof. 1f we assume that X is not uniruled, then Ky is pseudoeffective i.e. 27wy (Kx)
is represented by some closed positive (1, 1)-current on X. This deep result is due
to Boucksom-Demailly-Paun-Peternell [BDPP13 Corollary 0.3]. Therefore, the
intersection number satisfies (27¢;(Kx) - [w]"™') > 0. On the other hand, by using
the assumption on the scalar curvature, we have the following esitimate:

—1
@2rer(Kx) - W] ) = / “Ricw) Aw™ = — [ Rww" <0,  (3.12)
b's n Jx
hence we get the contradiction. O]

In the Hermitian setting, Yang showed the following theorem.

Theorem 3.1.3 ([Yan16, Theorem 1.2]). Let (X,w) be a compact Hermitian man-
ifold. Asuume that the holomorphic sectional curvature H(w) > 0 and not identi-
cally zero, then the Kodaira dimension of X is —oo.

The proof is based on some Bochner type formula for a Hermitian metric which
is conformal to the Gauduchon metric.

3.2 The Kahler-Ricci Flow

In this section, we summarize well-known properties of the Kahler-Ricci flow which
will be used later. For more detailed exposition, we refere the book [BEG13]. In the
following argument, we will denote by X a compact Kéahler manifold of dimension
n.

Definition 3.2.1. A smooth family of Kahler forms {w; }>0 is called the Kdhler-
Ricci flow (resp. the normalized Kdhler-Ricci flow) if it satisfies the following
equation:

0 .
5 wy = —Ric(wy) + Awy, (3.2.2)
Wt|t=0 = Wo,

where A = 0 (resp. A = —1).

By considering the cohomology class in HY (X, R) of (3.22), w; belongs to
a; € HY(X,R) which is defined as

. {[wo] + 2mtey (K x) it A=0, 523)

e Hwo] + (1 — e7")27ey (Kx) if A\=-1.
The maximal existence theorem for the Kéahler-Ricci flow is stated as follows.

Theorem 3.2.4 ([Cao85, [Tsu88, [TZ06], see also [BEG13| 3.3.1]). For any Kdhler
form wy, the Kdhler-Ricci flow (resp. the normalized Kéihler-Ricci flow) w, starting
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from wy exists uniquely for t € [0,T) and cannnot extend beyond T, where T is

defined by
T :=sup{t > 0| ay defined by (32.3) is Kahler }, (3.2.5)

and called the mairimal existence time. In particular, w, exists for t € [0,00) if
and only if Kx is nef, i.e. 2wci(Kx) belongs to the closure of the Kdihler cone of
X.

We prove well-known estimates which will be used in the proof of Theorem
B3 and B32

The following lower bound for the scalar curvature along the Kéhler-Ricci flow
due to Hamilton [Ham82] is obtained by a simple maximum principle argument.

Proposition 3.2.6 ([BEG13, 3.2.2]). For the Kdhler-Ricci flow wy, we have the
following lower bound for the scalar curvature:

R(w;) > An — Ce™,
where C':= —miny (R(wy) — An).
Proof. The time derivative of the Ricci curvature is calculated as follows:

gtRiC<UJt) =—+/-190 (8615 log wf) = —+/~100 (trwt (8875 wt>> = V/—100R(w).

The scalar curvature evolves as

0 0 )
5 R(w;) = 5% tr,, (Ric(w;))

0 . J ..
= — <0t Wy, Rlc(wt)>wt + tr, <3t Rlc(wt)>
= [Ric(w)|2, — AR(wr) + Au, R(wr)

> i (b1, (Ric(wn)))? — AR(wy) + A, R(wy)
— CAR(w) + iR(wt)Q + A R(w).

Therefore we get

which gives the disired result. O]

Since the time derivative of the volume form wy' is computated as

0 wy 0 .
5 log o tr,, <@t wt> = tr,, (—Ric(w;) + Aw; +n)

= —R(w) + An,

the lower bound for R(w;) gives the following volume upper bounds.
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Proposition 3.2.7 (IBEG13| 3.2.3]). The following volume bounds hold:

(a) For any Kdhler-Ricci flow wy, there exists a constant C' > 0 such that for all
te[0,T), wr < eClw? holds.

(b) For any normalized Kihler-Ricci flow wy, there exists a constant C > 0 such

that for allt € [0,T), wi < Cwi holds.

To get C?-estimate, we need the parabolic Schwarz lemma obtained by Song-
Tian [STO7] applied to the identity map (see also [BEGI13, 3.2.6]). This is a
parabolic analogue of the Schwarz lemma due to Yau [Yau78a] (see Section E.T]).

Proposition 3.2.8. Let w; be the Kahler-Ricci flow (resp. the normalized Kdhler-
Ricci flow), f: X — Y be a holomorphic map between compact Kihler manifolds
and wy be a Kihler form on'Y. We set E := Hom(T'X, f*T*0Y) = T*"X ®
[*T*0Y | denote h; the Hermitian metric on E induced by w; and wy, and Vg,
Chern connection of (E, h;). Then we have the following inequality:

(; — Awt> log try, (f*wy)
tryted! (f*Rm(wy)) (tfwt (frwy) IVBOfL, = IVire, (f *wY)|it)
tr,, (f*wy) (tre, (frwy))?
trl?trd? (f*Rm(wy))
tr,, (f*wy)

S

< A+

In particular, applying f =idx: (X,w;) — (X,®), we get the following:

g7 (t)g" (t) R
try, () ’

(gt — Awt> log tr,, (©) < —A+

where X is in (3Z2), wy = /—1g;5(t)dz" A dzi and }A%Z.M is the curvature tensor of
w.

Proof. The direct computation shows the following equality:

o 0
57 o (ffwy) = — <8t Wy, f* WY>M
— <—R1C(wt) + )\wt + 1, f*wy>wt
= —Atry, (fwy) + (Ric(wy), frwy),,

1 0
try, (f*wy) ot tru (F1wy)

1
- m (_)‘trahs (f*WY) + <RiC(Wt), f*wY>wt>
<RiC(Wt), f*u}y>wt

trwt (f*u}y)

0
! log tr,, (ffwy) =

= At
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Recall that in Proposition 27711 we obtained the estimate for A, log tr,, (f*wy):

1 ) . .
Awt lOg trwz (f*CUY) = m ((RIC(CL)t>, f (,c}y)w — tri}ftriﬁl (f Rm<wy>>>
1 i .
‘|‘ m (tl"wt (f WY) |inaf|it,ht — |Vt1‘w (f wy)]it)
1 _ i .
> oy ((Ric(), frev), — 2l (FRm(ey)))
Combining these, we get the assertion. 0

The next proposition due to Royden [Roy80, Lemma| (see also [WWY12,
Lemma 2.1]) will be used to obtain the C*-estimate under the negativity assump-
tion on the holomorphic sectional curvature. This is essentially based on the
symmetry of the curvature tensor of the Kéhler forms.

Proposition 3.2.9. Let f: (X,w) — (Y,wy) be a holomorphic map between Kih-
ler manifolds and r be the mazximal rank of Jacobian of f. Assume that there exists
a non-negative constant k > 0 such that for any tangent vector € € T*°Y , we have

H(wy)(€) < -k <0.
Then the following inequality holds:

K(r+1)

w2t (f Ry ) < -2
:

(tro, (f*wy))”

In particular, for any Kdhler form & on X whose holomorphic sectional curvature
H satisfying

H(¢) < —k <0, (3.2.10)

we have

7;7‘ 7N n + 1
979" Rigq < —r—

— (i, (@) <0,

where w = y/—1 gﬁdzi Adzi and E,i;ki is the curvature tensor of .

Proof. Let S: V xV xV xV — C be a symmetric bi-Hermitian form on a
Hermitian vector space (V. h) i.e. for any £,n,(,w € V, the following holds:

S(Em,¢w) =S(¢n.&w) =SMn&w, ().

Assume that there exists a constant x > 0 satisfying S(&,&,&,€) < —kl€|r. To
prove the proposition, we only need to show the following inequality: for any
orthonormal system (not necessarily a basis) &, -+, &y, we have

2
- 1
> S6:6.6.6) < 5 (Z |§ir;t> -3 (Z |@-|i> <2 (145 ) Zlelh

20



Since the second inequality follows from the Cauchy-Schwarz inequality and x > 0,
we prove the first one.
We set A :={a = (a1,...,ay) € CN | a; = £1,4+/—1} and denote &, € V by

N
§o = Z a;&;
i=1
for any a € A. Since S is bi-Hermitian and symmetric, we have

4N Z S favgavéaaéa - 4N Z Z aza]akal (£Z7£j7£k7£l)

acA acAigk,l

=356 8,68+ Z( (6.8.6.6) + S(fz,fsj,gj,@))

i#£]

_ Zs §,6,6.86) +23 S(6,6,6.5).
i#]j

By using the assumption, we get

QZS £, 6,65, §5) = <ZS &@,&@))

(ZS fz,fz,é},ﬁl +2ZS 57,75176]76]))

i#j

< (Slelt) - v (L)

3.3 Kahler Manifolds with Negative Holomophic
Sectional Curvature

]

In this section, we prove the following two theorems by a method of the Kéahler-
Ricci flow which are main results in this chapter [Nom16al.

Theorem 3.3.1 ([WYI16a, Theorem 2|, [ToY15, Corollary 1.3]). If X admits
a Kdhler form with strictly negative holomorphic sectional curvature, then the
canonical bundle Kx is ample. In particular, X is projective.

Theorem 3.3.2 ([ToY15, Theorem 1.1]). If X admits a Kdhler form with semi-
negative holomorphic sectional curvature, then the canonical bundle Kx is nef.

Proof of Theorem [3.3.2. By the assumption in Theorem [3.3.2] there exists a Kéah-
ler form @ whose holomorphic sectional curvature is semi-negative i.e. K = 0 in
(BZ10). Let w; be the Kahler-Ricci flow stating from arbitrary Kahler form wy on
X. By Theorem [3.2.4], the nefness of Kx is equivalent to the long time existence
of w;. By definition of the maximal existence time (B.2.5) and Theorem B.2.4] it
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is enough to show that if w; exists for [0, Ty) with Ty < oo, then ag, is a Kéhler
class.
By Proposition B.2.8 and ,Proposition B.2.9 we have

) g7 (g™ (1) Rz
— — A, | logtr,, (@) < <= <0.
Applying the maximum principle, we have tr,, () < maxy tr,, (®) =:C and
hence for all t € [0,7}) we get
lo< (3.3.3)
—0 < wy. 3.
oY S W

Therefore, for any irreducible subvariety V' C X of positive dimension, the inter-
section number can be estimated as follows:

, . 1 .
/ [aTO]dlmV — lim w;hmV > / SAmV S
v v

By Demailly-Paun’s characterization of the Kéhler cone [DP04, Main Theorem
0.1], the limiting class oy, is Kéhler. O

The idea of avoiding higher order estimates by using the Demailly-Paun’s the-
orem can be found in the proof of [Zhal0, Theorem 1.1].

Remark 3.3.4. We can also prove that w; converges to a smooth Kéahler form as
t /Ty, in particular ag, is Kahler. In fact, by using (3:33]) and Proposition 327
(a), we get the uniform C?-estimate for wy:

1

Thefore we obtain the higher order estimates (see for example [BEG13|, 3.2.16]),
which guarantees the convergence.

Proof of Theorem [3.31. By the assumption in Theorem B.3.1] there exists a Kéh-

ler form & whose holomorphic sectional curvature is strictly negative i.e. kK > 0 in

(BZ10). Let w; be the normalized Kahler-Ricci flow stating from arbitrary Kéhler

form wy on X. By Theorem 332 Kx is nef, and therefore w; exists for t € [0, 00).
By Proposition [3.2.8] and Proposition 3.2.9, we get

g7 (t)g" (1) Rz n+1

<1- k2", (@),
tr,, (@ - m 2n T, (@)

(8815 — Awt> log tr,, (©) <1+

)
Applying the maximum principle, we have tr,, (©) < C where

2
C' := max 7n,maxtrwt (@) > 0.
k(n+1)" X

This gives, for any ¢ € [0, 00),

Loc (3.3.6)

—0 < wy. 3.

oY S W
Since oy = [wy] converges to 2mei(Kx) as t — 0o, the same argument as in the
proof of Theorem shows the ampleness of K. O
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Remark 3.3.7. As in Remark B:33:4] combining Proposition B:2.7] (b) and (8:3:6)),
we get the C?-estimate for w;, and hence the higher order estimates for w;. By
Arzela-Ascoli argument, there exists a subsequence t; satisfying t; /* oo such that
wy, converges smoothly to a Kéhler form w.,. Since this Kahler form w,, represents
2me1(Kx) by (B2Z3), we get the ampleness of K.

Remark 3.3.8. A classical result due to Cao [Cao85] show that under the as-
sumption on the ampleness of Ky, any normalized Kéhler-Ricci flow w; converges
to the Kéhler-Einstein metric with negative Ricci curvature.
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Chapter 4

Schwarz Lemma for Conical
Kahler Metrics

The Schwarz—Pick lemma is a fundamental result in complex analysis. It is well-
known that Yau generalized it to the higher dimensional manifolds by applying his
maximum principle for complete Riemannian manifolds. Jeffres obtained Schwarz
lemma for volume forms of conical Kahler metrics, based on a barrier function and
the maximum principle argument. The objective of this chapter is to generalize
Jeffres’ result to general cone angles including the case when the pullback of the
metric would blows up along the divisors.

In Section 4.1 we review Yau’s Schwarz lemma. In Section 4.2, we recall the
definition of conical Kéhler metrics according to Donaldson [Donl2]. In Section
4.3 we prove Schwarz lemma for conical Kéhler metrics which is the main result
in this chapter.

4.1 Yau’s Schwarz Lemma

In this section, we review Yau'’s original Schwarz lemma [Yau78al. Let f: (X, wx) —
(Y,wy) be a holomoprhic map from a complete Kéhler manifold of dimension n
to a Hermitian manifold of dimension m. Then Yau’s Schwarz lemma is stated as
follows.

Theorem 4.1.1 ([Yau78a, Theorem 2]). Assume that there exists non-negative
constants A, B > 0 such that the curvatures satisfy the following:

Ric(wx) > —Awy, Bisec(wy) < —B < 0. (4.1.2)
Then we have the following:
[rwy < BYx-

Theorem 4.1.3 ([Yau78al, Theorem 3]). Assume that dim X = dimY = n and
the following curvature condition holds:

R(wx) > —A, Ric(wy) < —Bwy <0, (4.1.4)
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and Ric(wx) is bounded from below. Then the volume form is estimated as follows:
*, N A " n

Remark 4.1.5. If we assume that (Y, wy ) is Kéhler, by applying Royden’s Lemma
(Proposition B:2.9), the assumption on bisectional curvature can be replaced to
that on holomorphic sectional curvature (see [Roy80, Theorem 1]).

The proof of both Theorems is based on the maximum principle for comlete
Riemannian manifolds due to Omori [Omo67] and Yau [Yau75].

Theorem 4.1.6. Let (M, g) be a complete Riemannian manifold with Ricci cur-
vature is bounded from below. Then for any function f € C?*(M,R) bounded from
below and for any € > 0, there exists a point x. € M such that

IVfI2(xe) <&, Agf(xe) > —e, flae) < i]r\14ff +e. (4.1.7)

Since M is not necessarily compact, the function f does not have minimum in
general. This theorem states that there exists a point x. € M which is very close
to minumum point under the completeness and curvature bound.

Corollary 4.1.8. Let (X,wx) be a complete Kihler manifold whose Ricci curva-
ture is bounded from below. If u € C*(M,R) is non-negative and satisfies

Ay u > u(Buf — A) (4.1.9)

for some p, B > 0. Then A > 0 and the following holds:

AN P
<[ —= .
v <B>
Proof. We denote f := (u + ¢)7?/? with fixed constant ¢ > 0. The direct compu-
tation shows that

(p+2)

2 2
Apu=—=(u+c)""PPA, f+ = (u+ o) IV (4.1.10)
p p

Applying Theorem to f > 0, we get a sequence x. € X satisfying (EIL1).
Combining with the assumption (£I1.9) and (LII0), we have the following in-
equality which holds at z.:

2 2 2
Bult? — Au< ¢ ((u+c)1+p/2+(p:r)(u4rc)l+p> : (4.1.11)
P p

We remark that as € goes to 0, f(z.) converges to infx f and u(x.) to supy u.
Combining (ITII) and B > 0, supy u is finite. Therefore, by using (EIII)
again, we have the desired estimate. O
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Thanks to this corollary, we only need to prove that v := f*w{ /W% and u =
try, (f*wy) satisfies the Laplacian estimate ([LI9). The estimate for v is due
to [MYS83l Section 1], and that for u is due to Chern-Lu inequality (Proposition
[2Z77T). We remark that both inequalities holds even if Y is a Hermitian manifold.
For simplicity, we only prove when Y is Kéhler.

Proposition 4.1.12. Let X, Y be (not necessarily compact) Kihler manifolds, and
f: X =Y be a holomorphic map. Let wx (resp. wy) be a smooth Kihler metric
on X (resp. Y). We set v := f*wi/wh, and u = tr,, (ffwy).

(a) Suppose that there exists non-negative constants A, B > 0 satisfying R(wx) >
—A, Ric(wy) < —Bwy, and dim X = dimY = n. Then we have

A,y logv > nBvY™ — A,
A, v > v(nBo/™ — A).
(b) Suppose that there exists non-negative constants A, B > 0 satisfying Ric(wy) >
—Awy, Bisec(wy) < —Bwy. Then we have
Ay logu > Bu — A,
Aycu > u(Bu — A).
Proof (b) follows from Proposition 7.0l We prove (a). Let (z',...,2") and
(w, ..., w™) be normal coodinates on X and Y respectively. We set
wyxy = \/—_1gi3dzi ANdZI, wy = J—_lhagdwo‘ A dw?.
v is locally denoted as
frwp det(hygo f)[det J(f)?
N W N det(gij)
where J(f) is the Jacobian of f. Therefore, on Q := {x € X | det J(f)(z) # 0},

we obtain

(4.1.13)

V—=109logv = f*/=1901log det(h,5) + v/ —109log det(g;)
—v/—=1001og | det J(f)?
= f*(—Ric(wy)) + Ric(wx).

By the assumption on curvatures and the inequality of arithmetic and geometric
means, we have the following estimates on €2:

A,y logv = tr,, (\/—_18510g v) = try, (f"(—Ric(wy))) + R(wx)
> Btr,, (ffwy) — A
> nBu'/m — A,

v=A,, et = ¢loeY (|V10g o2, + Ay logv)

vA,, logv
v(nBu'/™ — A).

A

wx wx

>
>

By continuity, the last inequality holds on the whole X. O
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4.2 Conical Kahler Metrics

In this section, we recall the definition of conical Kéhler metrics, for short cone
metrics, following [Donl2, Section 4]. Let X be a compact Kéahler manifold of
dimension n, D be a smooth divisor on X, and 8 be a real number satisfying
0 < 8 < 1. If we take a local holomorphic chart (U, (21, ..., 2")) satisfying DNU =
{z! = 0}, the standard cone metric wy is defined as

7 VT
wg -

RE RGO

__ " o/=1 . —
dz' A dzt + Z sz’ A dzt.

=2

We remark that wg induces a distance function dg on U which is expressed as

dﬁ(z7w) = (‘(ZJ)B _ (wl)ﬁ’ + |22 _w2|2 4. 4 |Zn _wn|2) :

where z = (2%,...,2"),w = (w',...,w"). Here, we take a suitable branch of z°.

Definition 4.2.1 (C**f-functions). Let o be a constant satiftying 0 < a <
min{1/8 —1,1}. We define the regularites of functions along D as follows.

1. A function f on X is said to be of class C>*# if for any local holomorphic chart
(U, (z',...,2")) satisfying DNU = {z' = 0}, f is an a-Holder continuous
function on U with respect to the distance function dg.

This definition is equivalent to the following statement which is the original
definition in [DonI2]. Weset f by f(&,2%,...,2") == f(|E[VP71E, 2%, .. 2m).
Then f is an a-Hoélder continuous function with respect to &, 22, ..., 2" with
respect to the Euclidean distance.

2. A (1,0)-form 7 is said to be of class C-*7 if

7 (%) e 0

7'(8) cC* for i=2...,n
0zt

3. A (1,1)-form o is said to be of class C**# if

1-8 o 0 o8 ,
‘zl‘ U(@Z“@zi)ECH for 1=2,...,n,
‘Z1‘160<8azi’6(z> e CP for i=2,...,n,
0<aii,£>60aﬂ for i,5=2,...,n.



4. A function f is said to be of class C>*8 if f, Of, Of, /—100f are of class
CeP,

Definition 4.2.2 (Cone metrics). A closed positive (1, 1)-current w on X is called
a cone metric with cone angle 213 along D if it satisfies the following three con-
ditions:

(i) w is a Kahler metric on X \ D

(ii) For each point € D, there exists a local holomorphic chart (U, (2!, ..., 2"))

satisfying D N U = {z! = 0} such that w is quasi-isometric to the standard
cone metric wg on U \ D, that is, there exists a constant C' = Cy > 0 such
that

1
6w5§w§0w5 on U\ D.

(iii) There exists a smooth Kéhler form wy on X, and a C**-function ¢ such
that

w=wy+V—100p.

In [Jef00a], the regularity condition (iii) does not assumed. However, we assume
here.

A typical example of the cone metric is w 1= wy + 6 v/—199|s|;, where wy is a
smooth Kéhler metric on X, ¢ is a sufficiently small constant, s € H°(X, Ox(D))
is a holomorphic section of the line bundle Ox (D) whose zero divisor is D, and h
is a smooth Hermitian metric.

4.3 Schwarz Lemma for Conical Kiahler Metrics

In this section, we prove Schwarz lemma for conical Kéahler metrics, which is the
main result in this chapter [Nom16b].

To state the theorems, we use the following setups and notations. Let X and Y
be compact Kahler manifolds, D C X, F C Y be smooth divisors, and f: X — Y
be a surjective holomorphic map satisfying f*(E) = kD with k € Z-o. Let wx
(resp. wy) be a cone metric with cone angle 2w« (resp. 27f3) along D (resp. E)
on X (resp. Y). Let s € H°(X,Ox(D)) be a holomorphic section of the line
bundle Ox (D) whose zero divisor is D and h be a smooth Hermitian metric on
it satisfying |s|, < 1. Let C' > 0 be an upper bound for the Chern curvature
of hie. v/—1R, < Cwx. For a Kéhler form w, we will denote by Ric(w) the
Ricci curvature of w, R(w) the scalar curvature of w, and Bisec(w) the bisectional
curvature of w.

Schwarz lemma for the cone metrics obtained by Jeffres [Jef00al is states as
follows.
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Theorem 4.3.1 ([Jef00a, Theorem]). Assume that dim X = dimY = n, the cone
angles satisfy o < [ and there exists non-negative constants A, B > 0 satisfying

R(wx) > —A, Ric(wy) < —Buwy < 0. (4.3.2)

Then, the volume forms satisfy
o (AY
frfwy < <B) Wy on X\ D.

Since the cone metric is not complete on X \ D, we cannot apply the maximum
principle argument directly. Jeffers overcame this difficulty by using a barrier
function, called “Jeffres’ trick”. However, his original proof seems to need more
assumptions on the regularity of the cone metrics along D as in Definition 2.1
(see the proof of Proposition A.3.6)).

We will generalize this theorem to a general cone angle and prove a Schwarz
lemma for cone metrics.

Theorem 4.3.3 (Volume forms). Assume that dim X = dimY = n and the cur-
vature condition ({{.3.3) holds.

(a) Suppose a < kf. Then we have

A n
frwy < (B) Wy on X\ D.
n

(b) Suppose o > k. Then we have

A+ (a—kB)C\" Wi
nb sl

f*%ZS( on X \ D.

We remark that the condition @ < kf8 on cone angles in the statement (a) is
weaker than assumptions in Theorem 4311

Theorem 4.3.4 (Metrics). Assume that there exists non-negative constants A, B >
0 such that the curvatures satisfy the following:

Ric(wy) > —Awx, Bisec(wy) < —B < 0. (4.3.5)

(a) Suppose a < kf. Then we have
. A
ffwy < Bwx on X\ D.

(b) Suppose o > kf3. Then we have

. A+ (a—kB)C  wx
f Wy S B ’S’i(aik’g)

on X\ D.
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If the cone angle satisfies a > kf3, the pullback f*wy has singularites along D.
In fact, even in a one-dimensional case, the pullback of the standard cone metric
wg = (B*/|w]* =) /=Tdw A dw/2 by f: 2+ w= 2" is given by

e

ffws = Bkalz\Q(kﬁ_l)sz N dz,

therefore we have

f*wﬁ _ 52]{2 ‘Z|2(k67a)
W, A ’

which is singular if o > kf5.
The next proposition is the so-called “Jeffres’ trick” and needs regularity on
the definition of cone metrics.

Proposition 4.3.6 ([Jef00al, Section 4]). Let X be a compact Kihler manifold,
D be a smooth divisor, and B be a real number satisfying 0 < < 1. Let s €
H°(X,Ox(D)) be a holomorphic section of the line bundle Ox (D) whose zero
divisor is D, and h is a smooth Hermitian metric. Then, for any functionu € C*8
and € > 0, every maximum point of the function

Ue = U+ s\sﬁﬂ

on X belongs to X \ D if 0 < 2y < afs.

Proof. We assume that us takes maximum at zo € D. Let (U, (z!,...,2")) be a

holomorphic chart centered at xq satisfying D N U = {z! = 0}. By the definition
of g, for any x = (2,0,...,0) € U, we have

Ju(z) — u(wo)| _ fulx) —u(zo)| _ elsly (@) _ e |2

dg(x,zo)e — ff T Jzef T O

Since 0 < 2v < af, the right hand side goes to oo as z — 0. This contradicts with
the definition of C"*5. [

Theorem .33 and Theorem .3.4] can be shown in a smilar manner. We only
prove Theorem [4.3.3] here.

Proof of Theorem [[.3.3 (a). Since f can be represented as (w', ..., w") = ((z*)*,
f2(2), ..., fu(2)) such that D = {z! =0} and E = {w' = 0}, the direct computa-
tion gives that f is locally Holder continuous with respect to d, and dg if a@ < kf3.
Combining with (I.13) and the definition of the cone metrics, v := f*w} /W is
a C'%# function for some 0 < o < 1. By Proposition E3.6, all maximum points
of vs = v + €|s|}” belong to X \ D where v is sufficiently small. Since v, is
smooth on X \ D, we can apply the maximum principle argument to v.. The
direct computation show that

V=100|s|? = V=180l = | 5|27 (v /=1 0D log |s|> + v> V=1 dlog|s|? A Dlog |s|?)
> =95l V=1 Ry.
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Therefore, there exists a constant C' > 0 (which is independent of ¢) satisfying
Aui s’ > —C.

Let g € X\ D be a maximum point of v.. At this point, by Proposition L.T.12
(a), we have

0> Ay v = Ay v+ Ay, |s[)) > v(nBol/™ — A) — eC.

Simple calculus show that the function ¢ — t"(nBt — A) — eC' takes non-positive
values exactly on some bounded interval [0,7;] and 7. — A/(nB) as ¢ — 0. It
follows that

v (o) = v(x0) +els]y (xo) < T + € sup Ele
Since the right hand side does not depend on zy and zy is any maximum point of
Ve, this inequality holds on whole X. Therefore, we have the following inequality

v=uv. —els|y) <v. <T"+ € sup |s|>

on X. By taking ¢ — 0, we obtain v < (4/(nB))". O

Proof of Theorem [{.3-3 (b). By definition of the cone metric, we can easily see
that for any € > 0,

*
2(¢+¢) Jrwy

2(0+
e)v _ |5’h( ~
X

v, == [s|}

tends to 0 as x approaches to D, where ¢ := o — k8 > 0. Then, combining the
Laplacian estimate in Proposition I.T.12 (a), we have

A,y logv. = —(0 + e)try, (\/—_1 Rh) + A, logv
> —({+¢)C — A+ nBo'/,
Auyve > v (—(0 4 ¢)C — A+ nBv'/™).
If xp € X is a maximum of v., we can assume that o € X \ D. At this point, by
applying the maximum principle, we have
A+ (l+e)O\"
v(xg) < <+(n;—)> :

Therefore, we get

(o) < |12 (o) (

A+ (l+e)C "< A+ (1+e)C\"
nB - nB '

Since the right hand side does not depend on xg, this inequality holds on X. Taking
e — 0, we obtain

5]

W <A+€C>"‘

h W nB
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Chapter 5

Blowup Behavior of the Conical
Kahler-Ricci Flow

In this chapter, we investigate the scalar curvature behavior along the normalized
conical Kéahler-Ricci flow w;, which is the conic version of the normalized Kéahler-
Ricci flow, with finite maximal existence time T" < oco. In Theorem B.I.5 we
prove that the scalar curvature of w; is bounded from above by C'/(T — t)? under
the existence of a contraction associated to the limiting cohomology class [wr]
[Nom16c|. This generalizes Zhang’s work [Zhal0] to the conic case.

5.1 Statement of the Result

In this section, we recall the definitions and properties for the conical Kahler-Ricci
flow and state the main result Theorem in this chapter.

Let X be a compact Kéahler manifold of dimension n, D be a smooth divisor
on X, and 3 be a positive real number satisfying 0 < g < 1.

Definition 5.1.1. A family of cone metrics w; with cone angle 275 along D called
the conical Kdhler-Ricci flow if it satisfies the following parabolic equation:

aatwt = —RlC(wt) — wy + 277(1 - 6)[‘D]’

Wt’t:O =w,

(5.1.2)

where [D] is the current of integration over D, and w* is a initial cone metric.

The maximal existence theorem for conical Kahler-Ricci flow holds for certain
inital metrics which is similar to the Kahler-Ricci flow case Theorem [3.2.41

Theorem 5.1.3 ([Sheldal [Sheldb]). Let s € H(X, Ox (D)) be a section whose zero
divisor is D, h be a smooth Hermitian metric on Ox (D) and wy be a smooth Kihler
Jorm on X. We set w* = wy+ k/—100|s|?” with sufficiently small k € Rxq such
that w* is a cone metric with cone angle 23 along D. Then the conical Kdhler-
Ricci flow starting from w* uniquely exists for t € [0,T) where

T =sup{t > 0| [w] = e wo] + (1 — e ")2me1 (Kx + (1 — B)D) is Kihler }.
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We call T' the maximal existence time for the conical Kahler-Ricci flow. By
Theorem [3.2.4, the Kéhler-Ricci flowis closely related to the canonical bundle Ky,
on the other hand, by Theorem [(.1.3] the conical Kéhler-Ricci flowis to the log-
canonical bundle Ky + (1 — 5)D.

In this chapter, we treat the singularity behavior of the scalar curvature along
the conical Kahler-Ricci flow as ¢ approaches to 7. We assume the following
contraction type condition on the cohomology class [wr|. Let f: X — Z be a
holomophic map between compact Kahler manifolds, whose image is contained
in a normal irreducible subvariety Y of Z. Let Dy be an effective Cartier divisor
on Y such that the pullback of Dy satisties D = f*Dy. Let hy be a smooth
Hermitian metric on the line bundle Oy (Dy) in the sense of [EGZ09, Section 5],
and sy be a holomorphic section of Oy (Dy) whose zero divisor is Dy. We define
the initial cone metric w* by

w* = wy + kvV/—189]s|2, (5.1.4)

where wy is a smooth Kéhler form on X, k& € Ry, is a sufficiently small real
number, s := f*sy is the holomorphic section of Ox (D), and h := f*hy is the
smooth Hermitian metric on Ox (D). We remark that if we take k sufficiently
small, w* is actually a cone metric with cone angle 273 along D.

Let w; be the normalized conical Kéhler-Ricci flow with initial cone metric w*,
and T be the maximal existence time of w;,. We further assume that 7 is finite
and there exists a smooth Kéahler form wy on Z satisfying

[f*wz] = [wr] € HY(X,R).
Under these assumptions, we have the following theorem.

Theorem 5.1.5. The scalar curvature R(w;) of wy satisfies

C
R(Wt) < m

where C' > 0 is a constant independent of t.

on X\ D,

This Theorem is a cone metric analogue to the following Zhang’s result.

Theorem 5.1.6 ([Zhal0]). Let wy be a Kdahler form such that the maximal ex-
istence time Tk g for the normalized Kdahler-Ricci flow (323) is finite. Assume
that there exists a holomorphic map f: X — (Z,wz) between compact Kahler man-

ifolds such that [f*wz] = [wrypp]- Then there exists a constant C' > 0 such that
the scalar curvature of the normalized Kdihler-Ricci flowsatisfies
C
Rw) < —m.
() < (Txrr — t)?

In contrast with Zhang’s result, we need to treat with the singularities of w;
along D. This is overcame by using the approximation technique used in [CGP13|
Shel4al [LZ14, [Edw15].

Remark 5.1.7. If we replace (1—8)D by > ;c;(1—05;) D; where D; are smooth divi-
sors intersecting transversely, the same argument below gives the same conclusion.
But for simplicity, we only treat one smooth divisor case.
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5.2 Approximation by the Twisted Normalized
Kahler-Ricci Flow

In the following argument, we assume that the conditions in Theorem [B.1.5] are
always satisfied. We first define a family of reference smooth Kéhler forms &,
whose cohomology classes are equal to [w]. We set @y, by

e L1 £
Woo m T 0 T ) W2
et 1
€ ———|wo] + ———wr] = 2mer (Kx + (1 = 8)D),
1—e l1—e
and w; by
Qpi=elwy+ (1 — e D = aywy + (1 — a)@r, (5.2.1)

where a; == (e7'—e™ 1) /(1 —e™T). In this setting, Oy = f*wz > 0 is semi-positive,
hence @; are smooth Kéhler forms for any ¢ € [0,T). The cohomology class of &,
coincide with [w;].

We next define a family of reference smooth Kahler forms w.; whose co-
homology classes are equal to [wy]. We use the approximation method as in
[Shel4al, [LZ14, [Edw15] originated from [CGP13]. We denote p. := x(|s|3,&?),
where

u 2\ _ 28
x(u, &%) == ﬂ/ (rt+e)’—e dr.
0 r
Then, p. are smooth functions on X and converge to |s|>’ in C2(X \ D) as e — 0.
In this notation, we define reference smooth Kahler forms . ; by
Bey =B+ kV=100p. = a0 + (1 — a))Ber. (5.2.2)

These forms converge to wy; in C22(X \ D) and as current on X when ¢ tends to 0.
We prove that if we take & sufficiently small, @.; is positive for all ¢ € [0,T).
Let € > 0 be a constant satisfying

—Clwg < \/—_1R;ZY < Ciwz onY, (5.2.3)
where R}, is the Chern curvature of hy. Since h = f*hy and Oy = f*wyz, we have
—Cior < V—-1R,, < Ci&p on X. (5.2.4)
Let Cy5 > 0and C3 > 1 be constants such that
sup sy |ny < Oy, (5.2.5)
wr = ffwy < C3wy on X. (5.2.6)
By (5:23), there exists a constant Cy > 0 independent of ¢ such that

0<p.<Cy onX. (5.2.7)
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By the computation in [CGP13| Section 3|, we have

VT00p. = YRV g2 9y TTR, (529

(Isff +¢2)'=7
> —BC,C30r,

where V is the Chern connection of the line bundle (Ox (D), h), Ry, is its Chern
curvature, and v/—1(VsAVs), is a semi-positive closed real (1, 1)-form combining
the wedge product of differential forms with the Hermitian metric h on Ox(D).

By (£22), (528), and (5.2.6]), we obtain the following inequalities:
B = Or + kv/=100p. > (1 — kBC1C3or > (1 — kBCLCY Cy)ar,  (5.2.9)
Beo = wo 4 kV/—100p. > wy — kBCLC G > (1 — kBCLCE Ca)wy.  (5.2.10)

Finally, these inequalities give the positivity of &, for any ¢ € [0,T):
Bey = O + kV=100p. = a@ep + (1 — )y > (1 — EBC1C5°Cs)@, > 0.

By using these reference smooth Kahler forms, we consider the following ap-
proximate flow:

Doy +/—100¢p.,)"
O e —10g Gt VLO0P)" (1 ) log((s} + %) — k.
ot Q
Soa,t‘t:l) = 07
(5.2.11)
where () is a smooth volume form on X satisfying
—Ric(Q) + (1 = B) V—1Ry =0 €2mci1(Kx + (1 —3)D).
We set w,; by
Wey = Qep +V—100¢. ;. (5.2.12)
Then, w,; satisfies the following twisted Kéahler-Ricci flow:
0 Ric(we ) +
a; We = —RIC(We t) — We =
{ ot S (5.2.13)
Wiltmo = Weo(i=wo + k+/—100p:),

where 7). is a closed real (1, 1)-form defined by 7. := (1—3) /=199 log(|s|? +%)+
(1= ) v/—1Ry. n. converges to 2 (1 — 3)[D] in C32(X \ D) and as current on X
when € goes to 0.

The validity of these approximations (B.2.11]), (.2ZI3) is justified by the fol-
lowing theorem due to Shen [Shel4al.

Theorem 5.2.14 ([Sheldal, Section 2]). There exists a subsequence €; converging
to 0 as i — oo such that ., converges to @; in Cp2(X \ D) and w.,+ converges
to wy in C2(X \ D) and as current on X.

Thanks to this theorem, we only need to estimate ¢, ; and w. ;.
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5.3 Overview of the Proof of Theorem [5.1.5!

In this section, we outline the proof of Theorem A. First, we need the following
formulas.

Proposition 5.3.1. The Ricci curvature Ric(w. ) and the scalar curvature R(we )
satisfy the following formulas:

(a) (1 —e" 1) (Ric(wey) — ) = —V/—100v. 4 + " T, — &,
(b) (]‘ - 6t_T)(R(w51t) - trwa,t (77€>> = _Awe,tvayt + net_T - trws,t (&\}T)7
where

Ve = (1— €t_T>¢a,t + Yo + kpe.

Proof. (b) follows from (a) by taking traces. We prove (a). By (.213), (52.2),
and (B.2Z12), we have

) 0
Ric(wer) — ne = 5 Wet — Wet
0 0 _ — an a5
= — (@t @t —’- E V _]_ aa(pe’t> - (@t + k _]. aapg + _1 aa@s,t)

= 0
= —/—1 38(g05,t + Pet + kpg) - ((A}t + atwt> .

On the other hand,

e Ricl) = ) = =T (= 5 s = )

o __ 0 = _
= €t7T <(9t Wy + a v—=1 8&05,25) + €t Twe,t

= \/—_185 (et_T(,bgyt) + et_T(JJ57t + et_Tg (J/:)t.
ot
Combining these equalities and (5.21]), we have (a). O
By this proposition, to obtain the upper bound for the scalar curvature R(w: ),
we only need to estimate u.; = tr,,, (wr) and A, Ve We devide our argument
into the following 5 steps:

Step 1. The C-estimate for v, (Section [(.4)).

Step 2. The C%-estimate for u.; := tr,_,(@r) using Step 1 and the parabolic
Schwarz lemma (Section [(.5)).

Step 3. The gradient estimate for v., (Section [(.6)).

Step 4. The Laplacian estimate for v.; (Section [5.7):
C

Awg,tve,t > — ﬁ

Step 5. Proof of Theorem A (Section [5.7)).
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5.4 The C'-estimate for v,

In this section, we prove the C%-estimates for v.,. More precisely, we prove the
following proposition.

Proposition 5.4.1. There exists a constant Cy > 0 independent of € and t such
that

|vetllco < Cs
holds.

To apply the maximum principle, we need the following lemma.

Lemma 5.4.2. v.; satisfies the following evolution equation

0
(015 — Aws,t> Vet = —N + Ug g,

where uey = tr,, , (@r).

Proof. Differentiating (5.2Z.11]) with respect to ¢, we have

0 . 0 /. — )
Ot Pt =ty , <8t (ws,t +v-1 38805,t)> — eyt

.0 . J .
ie. En (Pt + Q) = tra,, (315 wt> + Au. Pes (5.4.3)
On the other hand, by (5Z12) and (5.2.2)), we have

Aws,t‘pa,t = try,, (ws,t> —tro,, (@E,t) =n—try, (@) — Aws,t(kps)'

Combing these, we obtain

J ¢, - : 0
5 (sog,t + pep +hV-1 c%’pg) = Au. (Pet + Qe + kpe) —n+try,, (wt + o Wt) :
(5.4.4)

Next, by using (5.4.3), we have

0

i ey 40 r
% (—et T<Ps,t> = —¢' T& (Pt + Pet) = —tru., (et Ta wt) - Aws,t(et Toe)-
(5.4.5)

By (644), (545), and (5:2.0]), we get the assertion. O

Next, we prove the uniform volume estimate of the reference metrics @, ;.

Lemma 5.4.6. There exists a constant Cg > 0 independent of € ant t satisfying
the following inequalites:
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(¢) 1 0 0

—————— < W) S G-
Co (sl +e2)'=8 = 720 = "0 (Jsf} 4 )17

(v) 0

e = GO
Proof. The first inequality follows from (5.2.8). We prove the second one. For
0 < k < Cs, by (B:24) and (5.22), we have
Wer = Wr + k V—=100p. < Cswy + kv/—100p. < Ce 0.
Since C3 > 1, we have
Oep = e+ (1 — an)Wer < e+ C3(1 — ar)@. o < CaWeyp.
Therefore, we get the assertion. O
Using these lemmas, we can prove the uniform lower boundedness of v, ;.

Proposition 5.4.7. v.; is uniformly lower bounded. More precisely, there exists
a constant C7; > 0 independent of € and t such that

Ve t 2 _07-

Proof. By Lemma [(.4.2] and the semi-positivity of Wy, we have

0
<at o Aweat> (,Ua,t + nt) = ua,t = trws,t (@T) Z O

Thus, the maximum principle for v.; + nt gives the following:

Vey+nt > min (voy+nt) = (1—e D)oo+ kp. > (1—e)pep.
X x{0}

Lemma (a) and (5.27) give the lower boundedness of right hand side as
follows:

ajn
5.0 = lo =0 — 9.0 — kpe > —log C — kO,
Pe0 g Q/(|S|}21 + 52)1_/3 Pe,0 Pe = g Lg 4
Therefore we get the assertion. O]

To prove the uniform upper boundedness of v.; = (1 — et_T)@E,t + e + kpe,
it is enough to show that ., and ¢.; are unifomly upper bounded.

Proposition 5.4.8. We have the following inequalities:
(a’) Sps,t S 08;

(b) gba,t S 09;
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where Cg > 0, Cy > 0 independent of € and t.

Proof. (a) Since p.o = 0, we may assume that o, takes maximum at (zo, %) €
X x (0,7). By Lemma (b), we have the following inequatliy which holds at

(1’0, to)i

(a)e,t + \% _185305,1‘,)” N —k
/(s +exyr T

0
0 S a Pet = log

N
we,t

<l — Ye —k €
(R

< 1Og(C§LC6) — Pet-
Therefore, we obtain
@et(T0, to) < log(CyCg) =: Cs.

Since (o, o) is arbitrary, ¢.; < Cs holds on X x [0,7).
(b) We set H.; := (1 — €")pes + @er + kp- + nt. The same computation in
Lemma gives

0
(815 — Aws,t) H&t = trwa,t(wo) > 0

By the maximum principle for H, ;, we have

H.y > min H,., = kp. > 0.

’ X x{0}
Therefore, combining with (a) and (5.2.7)), we get the upper bound for ¢, ;:

Yer +kpe +nt _ Cs+ kCy +nT
Pet = o1 < — .

Combining with the uniform local estimate for the parabolic equation, we get the
assertion. O

5.5 The C'-estimate for u.,

In this section, we prove the following proposition.

Proposition 5.5.1. There exists a constant Cg > 0 independent of ¢ and t such
that

0 <wuy = tr,, ,(@r) < Cho.

To prove this proposition, we need to estimate on 7. := (1—3) v/—1 99 1og(|s|2+
e?) 4+ (1 — 8) vV/—1R;, and the parabolic Schwartz lemma. A direct computation
gives the following.
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Lemma 5.5.2. We have the following inequalities of ..
(a) Lower boundedness of n.:

£? (\/—_1(V57 Vs)n

5|2 + €2 5|2 + €2

7752(1_6)

+ \/—_th> > —(1 - B)Cor.

(b) For any Kdihler form w, we have
—(0e, 1) < (1= B)Chl@r [ < (1= B)Ci(tru(@r)).

By the fact that @& is the pullback of wz by f, we can use the parabolic Schwarz
lemma which is obtained by Song-Tian [ST07]. This is the parabolic version of

[Yau78al]. This lemma follows from similar computation as in Proposition B.2.8
(see also Proposition [Z77.7).

Lemma 5.5.3 (Parabolic Schwarz lemma). u.; and logu.; satisfy the following
inequalites.

(a)

Awg,tus,t Z _CZUit + <Ric<wa,t)a @T>wg,t
> —OnuZ, + (Ric(Wer) = 1, O7) -

(b)

2
8 |VU’8 t|
2 ~ WlWe t
( - Awsﬂz us,t S Ue,t + CZUE,t - <nsawT>w5,t - .
ot Ue t
Ve, |?
2 | ellw b
S ue,t + Clluat - . .
ua,t

(c)

0 _—
B~ D loguEtSCZUst—i-l—M
ot * : 7 o

< Chiugy + 1.

Here, V is (1,0)-part of the Levi-Civita connection of w.;, Cz > 0 is an upper
bound for the bisectional curvature of wz, and C11 := Cz + (1 — 5)Cy > 0.

Proof of Proposition[5.5.11We set G = logu. s —C2v.y where Chg := C1j1+1 >0
is a uniform constant. The uniform upper boundedness of G. o follows from (5.2.6]),
(5.210) and Proposition B.4Tl If we suppose that G., achieves maximum at
(%o, t0) € X x (0,7), we have u. (g, tp) > 0 and

) 0 0
<8t - Am,t) Ge,t = (at - A%,t) log Uet — 012 <6t - AWE,t) Vet

< (Citey + 1) — Cia(uey — n)
= —u&t + (Cun + ].) at (l’o,to).
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By using the uniform boundedness of v.; (Proposition 5.4.1]), we obtain
G&t S log(Clgn + ]_) — Clg’l}a’t S IOg(CmTL + ]_) + 01205 at (170, to)

Since (g, o) is arbitrary, we have G.; < Cj3 on X X [0,T"). Hence, using the
definition of G ; and Proposition b.4.1l we obtain

loguey < Ciavey + Ciz < C12C5 + Chis,

which prove the assertion. O

5.6 The Gradient Estimate for v.,

In this section, we prove the following gradient estimate.

Proposition 5.6.1. There exists a uniform constant C4 > 0 which is independent
of € and t such that

Vo, ia’t < Cuy.
. o . . ‘vvatE}s t
To prove this proposition, as in [ZhalQ], we set U, ,; 1= T’, where A >
— Vet

Cs 4+ 1 is a fixed constant (see Proposition BAT). We will use the maximum
principle to W, ; + u. ;. The direct computation gives the following formulas.

Lemma 5.6.2. We have the following formulas.

" 9 _ A Vv
(975 We ,t et

2 = ’vvs,t‘iayt - UE(VUE,ta vvs,t) + 2 Re<vvs,t7 vus,t>w57t

We,t

— |[VVu, 2 — [VVu,?

We,t We,t

0 _
<8t - Aws,t> Apo Ve = Do, (Ve + tey) + (Ric(wer) — 1ey V—1000e 1),
C
(c) o,
875 We,t e\t
1 — _
= A " (‘VUE’t‘ZEYt — |VVUE¢\SJE¢ — |VV’UE¢\EJM — ng(Vvat, V’Ugyt)
- Uept

+ 2 Re(vvs,tu vu&t)‘”fvt)
1

+ m ((Uat —n)|[Vue, ie,t —2 Re<v|vve,t|ig,ta vv57t>we,t)
2
C(A—v t)3|vvs’t|i€’t
€,
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Proof of Proposition [0.6.1 We will apply the maximum principle to W.; + u.;.

0
First, we estimate ((‘% — Awe,t> VU, ,. By Lemma (5.2 (a), we have

_ns(vvs,tavvs,t) S (1 - B)Cl|vvs,t’is7t-

For sufficiently small constant 6 > 0 which will be determined later, we have

1
2Re(Vue s, Ve t)w. , < 2|V tlo | Ve o, < 5|Vv€,t\iiﬁt -+ 5]Vu€,t|f}£7t.

Since
_— VIVl [VoelZ, o o
A- Vet " (A —ve4)? Vet (5.6.3)
we have
2—90 )
B m Re<v|vv‘€’t|we,t’ vvf,t)%,t
2-0 ‘VUE t‘i
== Re(VV.,, Vi )o., + (2 — 8)— =L
A v, e(VVU. ¢, Vuy) ot ( )(A BPNE

On the other hand, the Cauchy-Schwarz inequality gives

’<V‘Vvs,t|ig,ta vvs,t>ws,t‘ = gijgkl((@@Us,t)(aﬁ've,t)(&lve,t) + (3ivs,t)(aka?ve,t)(&lvs,t)>’
< |vva,t|ig,t(|vvve,t’wa,z + |VvU6,t|ws,t)
<V2IVul (VY2 + [V V2 )2

Therefore, we obtain the following:

)
(A—v,? Re(V|Voe,l?,, Ver)w.,
5 PE—
< Ao VAVl 9Vl + 1990l ')
— Ueyt

VoedlZ., (IVVuel2., + 1V V0|2 )2

= V2§ N

V2 (A —wv.,)3? (A — v )12
< é ‘vvat‘is,t " 5|VV1)5¢]ZE¢ + lvvvg,t\is’t
T 2(A—v,)? A—wvgy '

Combining these inequalities with Proposition (.51 Lemma B.6.2 (c), and A —
Ve > 1, we obtain the following inequality:

0
— —A 1\
<8t wgﬂg) e\t

2—90 0 ‘Vve,t‘ie
< Cis| Vo2, + 0| Vuey?, — y

Re(VW. i, VUet)o., — 57572
et A— Vet e< ! ! ’t> - 2 (A - Ua,t)g
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where C15 :=1+ (1 — 5)Cy + (1/6) + Cyp > 0.
On the other hand, by Lemma (a), we have

‘Vu&t‘z)s,t

0
(815 - Aw57t> us,t S us,t + Clluz,t -

ua,t
< Cho + C1iChy — 25|Vue,t|¢2u€,t
= 016 - 2(5|VU577§|Z}E¢

Here, we take 0 < 6 < 1/(2C}p). Finally, we obtain the following:

0
< - Awevt> (\112715 + ua,t)

ot
2_5 5 |Vv<5t|wgt
< (Cl5|vvs,t|z;57t + 5‘VUs,t‘iE,t T Ao, Re(VV.;, V. i)u., — 2(A—u.,)
+ (016 — 2(5|VU57t|iE,t)
2 6 6 ’vv€7t|é]5t
= 016 + ClSIVvs,t’ia,t — (5]Vu5,t]i€’t A_ Re<V\I’5 ts VUE t>wg : im
<C +<C + )|V 12 2_5R<V(\If FUey), Vo) AL
>~ V16 15 Vet We t A . € et Ueit)y VVet)we 9 (A U57t)3 .
(5.6.4)
Here, we used the following inequality:
2—9
Re<vu6t>vvat>wst > 2|vvat’wat’vuat’wst = ‘VUE t| , T 5|vu5t|c20 .
A— Ve t ’ ) et

The uniform boundedness of U, +u. o follows from [CGP13|, Section 4], Propo-
sition B.4.1] and Proposition 5.5l If U, , 4+ u.; achieves maximum at (zo,%y) €
X x (0,7, by (5:64), we have the following:

0< Che+ <C + ) V0.2 0 [V0etlg
= 16 15 €tw5t 2(A—U£t)3
) 1
< Chs + <015 + ) |vat|w5t WWUHIWH at (zo,to).

Therefore there exists a constant C'; > 0 satisfying

\va,t\im S 017 at (33'0,750),
which does not depend on € and ¢. By using the definition of ¥.;, A—v.; > 1, and
Proposition (.5.1], we have the uniform upper bound of ¥, ; + u.; on X x [0,7),
and therefore we obtain the uniform upper bound of |Vu.,|?_,. U

5.7 The Laplacian Estimate for v,

In this section, we estimate A, ,v.;. In order to prove the uniform upper bound-
edness of A,_,v.;, we need the lower boundedness of the scalar curvature. It is
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obtained by [Edw15, Corollary 4.3], which is proved by the maximum principle
argument as in the case of normalized Kéahler-Ricci flow (see Proposition B.2.6]).

Proposition 5.7.1 ([Edw15|, Corollary 4.3]). The scalar curvature R(w.+) evolves
as

<§r—A%J(R@w)—H%AmD=4mem)—mﬁm+(wa)—u%AmD,
and is uniformly bounded from below by

R(wey) — tro, ,(ne) = —Chs,
where Cig > 0 is a constant independent of € and t.

Using this estimate, we can easily obtain the following upper bound.

Proposition 5.7.2. There exists a uniform constant Cig9 > 0 which is independent
of € and t such that

Awg,tvat < Cio.
Proof. By Proposition 531l 571l and u.; > 0, we have
B ves = 1T — gy — (1= " T)(Rlwer) — tran, (1) < 1+ Cis = Ch,
which proves the assertion. Il

Proposition 5.7.3. There exists a constant Cyy > 0 independent of ¢ and t such

that
Cao
Aw € > — .
eclet = Ty
Proof. As in [Zhal(), Section 3.3], we set
@ o B - Awg,tva,t
et B _ Usyt )

where B > 0 is a sufficiently large uniform constant satisfying B — Ci9 > 0,
and B — C5 > 1 so that the numerator and the denominator of ®., are positive.
Straightforward calculations show that

0
— —A O,
(at ws,t) it

—1
= . Vs Awg,tve,t + m(usyt — n)(B — Aws,t'lj&t) (574)
1 _
S <<RiC(ws,t) e V=1 002 ), + A%tus,t) (5.7.5)
- Vet
2
+ m Re<vvevt7 VAwe,tU57t>we,t (576)
- Vet
2
R e
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By using B—v.; > 1, B—A,,_,v.; > 0, and Proposition [5.5.1], (5.7.4)) is estimated
as follows:

—1 1
Aw € . o \Wer — B_Aw + Ve
B v, ot T G e te T B T Bt

B Aw Vet -B 1
= — et — B — Aw e
( B, ' B- ) MEGETmER
B — A, ,vet Cho
< e,t 5 B _ Aw R
- B — Ve t * (B — /Ua,t)2( E,tv 7t)
< Co(B — Ay, Vey),

where 021 =1+ ClO > 0.

We next estimate (5.7.5).
(a), we obtain

— <R,1C< ) —Ney V— 861)5 t>w T Awe,tu&t
S _<R (ws t) 7767 vV — aavs t>o.;E t (022 - <Ric<ws,t)
- _<R10(wa,t) —Ney V— aava,t + WT>w€7t + 022

1 _ R elt=T
= W' V=100v., + o, - W(Aws,tvevt + uey) + Coa,

By using Lemma ] (a) and Proposition (3.1

- 7757 &‘\}T>W5,t)

where Coy := CzC% + (1 — 8)C1C%,. The first term is estimated as follows:
|V=100v., + Orl3, = | V=100v.4[%_, + |0r[2_, + 2Re(v/—~10v., &r)
< V=100, 2, + |rl2,, + 6| V=100v.,2_,

= (1+0)|VVu, 2, + (1 +1/8)@r)?,
(1+5)|vw€t|w“ +(1+1/6)C%,

+ 5|@T|is,t

where § > 0 is a uniform constant determined later. Here, we used | /—1 d0v, t|i ,

IVVul2.,, |orl2,, < trg., (Or)? = uZ, < CF. For the second term, we have

eth eth

T Bun Ve i) = T (B = B ve) =

1
m(B — Aws’tve’t>.

Beth

1 —et-T

IA

Finally, we get
1

B— ., <<RiC(ws,t) — e,V —1 851)”)%”5 + Aws,tua,t>
CT 1 + 5 __ 9 1 ) C
= L+~ B-A
) T o t (B o ’Ue’t ’vvva,t‘wsyt + ( + 6) ClO T — ( we, tUS t) + 022’

where Cr > 0 is a uniform constant satisfying

1 Cr
<
1—et-T — T —t
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for 0 <t < T. Since, we have

(5.7.6) can be computated as follows:

2
Re<vve,t7 VAws,t Us,t>wa,t

2 2
= — Re(V®. ., Vu.y)o., +
B - Us,t e< ! Y 7t> © + (B — Us,t)3

(B - Awa,tve,tﬂvvs,t’ia,t'

Combining these estimates, we get

0
— —A D,
<at Ws,t) it

S C’21 (B - Awg,tva,t)

+ TCT (Blj_ g VVu, t| <1 + (15) Cfo) + TCT (B = Ay, Vet) + Co2
- = _2% Re(VP. 1, Vo o,

< Tcigt + Tci?’t(B — Ay, V) + TC_TtBl_jLUi’t vae,tkzus,t
- _2% Re(V. ), V. ).,

Finally, we obtain

9
ot

— AWS,t) (T - t)@a,t — _(I)a,t —|— (T — t) (aat

S (T t) <§t Awa,t> (I)E,t

- Awg,t> q)E,t

1496
< Cog+ Cy3(B — Ay vey) + CTB

|VVvat|

Re(V(T — t)®.,, Vva,t>wg,t.

B — Ue,t
=y ’V/ljat'i t
We set U, ; 1= Bia Combining with Lemma [5.6.2] (¢) and (5.6.3]), we have
= Vet
0 ~
ar Aw \IIE
(at s,t> ’t
IVVu.l2, 2 2 ~
S C124 - + Re(V'Ug,t, vua,t>w5,t - Re<v\ya,ta VUE,t)Ungt’

B — Vet B — Vet B — Vet
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where Cyy 1= Ciy + (1 — 5)C1C14 + C14C10 > 0. On the other hand, we have

4
Re(V’U&t, VU&t)w&t S 5]Vu5,tlis7t + 5|VU5¢|ZE¢.

B — Us,t
By using Lemma [5:5.3] (b), Proposition [5.5.1] and Proposition B.6.1], we get
8 |VU5 t |2
(875 E,t) et = UWegit 11%e ¢ Ug,t

We,t

1
< Cho+ C11C3y — C—|Vu€¢|2
10

< —

Re<vvs,t7 vuz—:,t>w5,t + CY257

— Vgt

where we take 0 < § < 1/C1g, and Cys := Cyg + C11C% + 4C14/5 > 0.
Combining these inequalities, we have

0 -
(at—A%A)«T—ﬂ®w+20ﬂ@f+ﬂkwﬁ

146
< Oz 4 Co3(B — Ay, V) + CTB -

lvvve,t |3Js,t

— Vgt

— B_ ’UE’t RG<V(T — t)@g’t7 VU57t>wsyt

]Vﬁvsyt\is . 2
=+
B — Vet B — Ve

Re<v(1vje,ta VUE,t>wE,t>

+ 2Cr <024 —
2
B — Us,t

4
+2C7 <_B

- Ua,t

Re(VU&t, vua,t>we,t

Re<vva,ta vua,t>we,t + 025>

1—96
< Cos 4 Co6(B — Ay, Vep) — CTB

2
B — U&t

‘ VVUE’t |0205,t

- 'Ua,t

Re <V ((T - t)q)s,t + 2CT‘I]5,t + 2CTus,t> ; vUs,t>

We,t

The uniform boundedness of (T'—t)®.; + ZCT(IVIW +2C7u., at t = 0 follows from
[CGP13, Section 4], Proposition 54Tl Proposition B.5.1] and Proposition B.6.11 If
(T'—t)D., +20T{Iv/87t +2C U, ; achieves maximum at (z,ty) € X x (0,7"), we have
the following at this point:

1—-6 —
0 < Oy + Co(B — Ay ,vey) — Cp IVVu)? .
’ B — Ve t ©
1—-946 1 B?
< B — A, vey) — (B — A, v0)— — .
< Oy + Cog( et U +) CTB Y- <n< e Veit) 0 )

Here, we used Proposition (.4.1], and

1 B?
(B = Au et = —.
’ n

IVVul,, = gﬁg’“’(&i&lvw)(@;@kv&t) > —(Ay.v24)* > -

3|~
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Therefore, at this point, there exists a constant Cy; satisfying
—Ay. ey < Oy at (wo,to)

which is independent of €, ¢, and (xg, ty). Combining Proposition[5.4.1] Proposition
B.6.1] and Proposition £.5.1] we obtain the uniform upper boundedness of (7" —
).y +2CrV,. , + 2Cru., on X x [0,7). Finally, we conclude that

Cao
T—t

AwatUE7t Z -

Proof of Theorem A By Proposition B.3.1], and Proposition [5.7.3] we have

1 _
R(wey) — o, (n:) = = (—Awmvg,t +net™T — uz—:,t)
Cr Coo C

_T—t<T—t+n) Sm’

where C' > 0 does not depend on ¢ and t. Therefore, by taking ; — 0, we get the
asssertion. |
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