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Chapter 1

Introduction and Main Results

This thesis is threefold. The fist one is the positivity of the holomorphic sectional
curvature of compact Kähler manifolds. The second one is the Schwarz lemma
for conical Kähler metrics. The third one is the scalar curvature behavior of the
conical Kähler-Ricci flow. In this chapter, we summarize the backgrounds and
main results for each topic.

In Chapter 3, we treat compact Kähler manifolds with positive or negative
holomorphic sectional curvature. For a compact Kähler manifold (X, ω), we can
associate two notions of curvature: the Ricci curvature Ric(ω), and the holomor-
phic sectional curvature H(ω). The relation between them is not yet clear. For
instance, it is still open that if X admits a Kähler form with semi-positive Ricci
curvature, then X admits an another Kähler form with semi-positive holomor-
phic sectional curvature. However, by considering the Ric(ω) represents the 1st
Chern class of the anti-canonical bundle −KX , we can ask the following weaker
queation: What is the relationship between the positivity of KX and the negativity
of holomorphic sectional curvature? This question was originally raised by Yau
(see [HLW16, Conjecture 1.2]). Recently, Wu-Yau and Tosatti-Yang obtained the
following answer to this question.

Theorem A (=Theorem 3.3.1, [WY16a, Theorem 2], [ToY15, Corollary 1.3]). If
X admits a Kähler form with strictly negative holomorphic sectional curvature,
then the canonical bundle KX is ample. In particular, X is projective.

Theorem B (=Theorem 3.3.2, [ToY15, Theorem 1.1]). If X admits a Kähler form
with semi-negative holomorphic sectional curvature, then the canonical bundle KX

is nef.

The original proofs of both theorems are based on the following idea, in [WY16a],
constructing a Kähler form ωε ∈ 2πc1(KX) + ε[ω̂] satisfying

Ric(ωε) = −ωε + εω̂,

and considering the limiting behavior of ωε as ε ↘ 0. Here, ω̂ is a Kähler form
whose holomorphic sectional curvature is (strictly/semi-) negative.

In Chapter 3, we give an another proof of these theorems via Kähler-Ricci flow.
Our proof is, in a sense, a parabolic proof of them [Nom16a].
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We remark that Diverio and Trapani [DT16] showed that the amplenss of KX

can be obtained under the assumption that the holomorphic sectional curvature is
semi-negative everywhere and strictly negative at one point. For the moment, we
can only prove the above two theorems.

In Chapter 4, we treat the Schwarz lemma for conical Kähler metrics. The
Schwarz–Pick lemma states that any holomorphic map between the unit disks in
the complex plane decreases the Poincaré metrics. After that, Ahlfors [Ahl38]
generalized it to a holomorphic map from the unit disk to a hyperbolic Riemann
surface. For higher dimensions, Yau [Yau78a] showed that any holomorphic map
from complete Kähler manifold whose Ricci curvature is bounded from below to
a Hermitian manifold whose holomorphic bisectional curvature is bounded by a
negative constant decreases the metric up to a multiplicative constant. Also, he
showed that, under similar conditions on curvatures, any holomorphic map de-
creases the volume forms up to a multiplicative constant. Both results essentially
based on his maximum principle for complete Riemannian manifolds. Later on,
many generalizations obtained in various geometric settigs.

We forcus on the conical Kähler metrics, for short, cone metrics. Let X be a
compact Kähler manifold of dimension n, D be a smooth divisor on X, and β be
a real number satisfying 0 < β < 1. The cone metric ω with cone angle 2πβ along
D is a Kähler metric on X \ D which is locally quasi-isometric to the standard
cone metric

ωβ := β2

|z|2(1−β)

√
−1
2

dz1 ∧ dz1 +
n∑

i=2

√
−1
2

dzi ∧ dzi,

and satisfies some regularity conditions. For a precise definition of the cone met-
ric, see Definition 4.2.2. The notion of cone metrics plays an important role in
recent advances in Kähler geometries, in particular Kähler -Einstein problems,
for instance see [CDS15a, CDS15b, CDS15c], and [Tia15].

To state the theorems, we use the following setups and notations. Let X and Y
be compact Kähler manifolds, D ⊂ X, E ⊂ Y be smooth divisors, and f : X → Y
be a surjective holomorphic map satisfying f ∗(E) = kD with k ∈ Z>0. Let ωX

(resp. ωY ) be a cone metric with cone angle 2πα (resp. 2πβ) along D (resp. E)
on X (resp. Y ). Let s ∈ H0(X, OX(D)) be a holomorphic section of the line
bundle OX(D) whose zero divisor is D and h be a smooth Hermitian metric on
it satisfying |s|h ≤ 1. Let C > 0 be an upper bound for the Chern curvature
of h i.e.

√
−1 Rh ≤ CωX . For a Kähler form ω, we will denote by Ric(ω) the

Ricci curvature of ω, R(ω) the scalar curvature of ω, and Bisec(ω) the bisectional
curvature of ω.

Schwarz lemma for the cone metrics obtained by Jeffres [Jef00a] is states as
follows.

Theorem ([Jef00a, Theorem]). Assume that dim X = dim Y = n, the cone angles
satisfy α ≤ β and there exists non-negative constants A, B ≥ 0 satisfying

R(ωX) ≥ −A, Ric(ωY ) ≤ −BωY < 0.
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Then, the volume forms satisfy

f ∗ωn
Y ≤

(
A

B

)n

ωn
X on X \ D.

Since the cone metric is not complete on X \D, we cannot apply the maximum
principle argument directly. Jeffers overcame this difficulty by using a barrier
function, called “Jeffres’ trick”. However, his original proof seems to need more
assumptions on the regularity of the cone metrics along D as in Definition 4.2.1
(see the proof of Proposition 4.3.6). We will generalize this theorem to a general
cone angle and prove a Schwarz lemma for cone metrics [Nom16b].

Theorem C (=Theorem 4.3.3). Assume that dim X = dim Y = n and the curva-
ture condition in above theorem holds.

(a) Suppose α ≤ kβ. Then we have

f ∗ωn
Y ≤

(
A

nB

)n

ωn
X on X \ D.

(b) Suppose α > kβ. Then we have

f ∗ωn
Y ≤

(
A + (α − kβ)C

nB

)n
ωn

X

|s|2(α−kβ)
h

on X \ D.

Theorem D (=Theorem 4.3.4). Assume that there exists non-negative constants
A, B ≥ 0 such that the curvatures satisfy the following:

Ric(ωX) ≥ −AωX , Bisec(ωY ) ≤ −B < 0.

(a) Suppose α ≤ kβ. Then we have

f ∗ωY ≤ A

B
ωX on X \ D.

(b) Suppose α > kβ. Then we have

f ∗ωY ≤ A + (α − kβ)C
B

ωX

|s|2(α−kβ)
h

on X \ D.

We remark that the condition α ≤ kβ on cone angles in the statement (a) is
weaker than assumptions in Jeffres’ Schwarz Lemma.

In Chapter 5, we consider the normalized conical Kähler-Ricci flow ωt on X
which is a family of cone metrics with cone angle 2πβ along D satisfying the
following parabolic equation:

∂

∂t
ωt = −Ric(ωt) − ωt + 2π(1 − β)[D],

ωt|t=0 = ω∗,
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where [D] is the current of integration over D, and ω∗ is a certain initial cone
metric defined later (see (1.0.1)). In the case of D = 0, ωt is called the normalized
Kähler-Ricci flow. This case has been studied extensively in the past decades
(see [TZ06, ST16b, ST12, CW12, BEG13, CW14a, CT15, GSW15, TZ16] and the
references therein).

The maximal existence time T of the normalized conical Kähler-Ricci flow ωt

is characterized by the following cohomological condition:

T = sup{t > 0 | [ωt] = e−t[ω0] + (1 − e−t)2πc1(KX + (1 − β)D) is Kähler }.

In particular, the limiting class [ωT ] is nef but not Kähler. This characterization is
due to Shen [She14a, She14b]. As t tends to T , the flow ωt might form singularities.
The analysis of the singularities, in particular its curvature behavior, is one of the
main objects in the study of the geometric flows. Our purpose here is to investigate
the scalar curvature behavior of ωt with finite time singularites (i.e. T < ∞) as t
approaches to T .

In the infinite time singularites case (i.e. T = ∞), the uniform boundedness of
the scalar curvature of the normalized Kähler-Ricci flow (i.e. D = 0) was proved
by Zhang [Zha09] when KX is nef and big. This result was extended by Song-Tian
[ST16a] when KX is semi-ample. Furthermore, Edwards [Edw15] generalized these
results to the conic setting. In the case of Fano manifolds (i.e. −KX is ample),
Perelman established a uniform boundedness of it (see [SeT08]) and Liu-Zhang
[LZ14] extended to the conic case.

On the other hand, in the finite time singularities case, Zhang [Zha10] showed
that the scalar curvature R(ωt) of the normalized Kähler-Ricci flow ωt satisfies

R(ωt) ≤ C

(T − t)2

assuming the semi-ampleness of [ωT ]. This condition is natural in terms of the
deep relationship between the Kähler-Ricci flow and the minimal model program
(see [ST16b, Zha10]). Our main theorem generalizes this to the conic setting.

We assume the following contraction type condition on the cohomology class
[ωT ]. Let f : X → Z be a holomophic map between compact Kähler manifolds,
whose image is contained in a normal irreducible subvariety Y of Z. Let DY be
an effective Cartier divisor on Y such that the pullback of DY satisfies D = f ∗DY .
Let hY be a smooth Hermitian metric on the line bundle OY (DY ) in the sense
of [EGZ09, Section 5], and sY be a holomorphic section of OY (DY ) whose zero
divisor is DY . We define the initial cone metric ω∗ by

ω∗ := ω0 + k
√

−1 ∂∂|s|2β
h , (1.0.1)

where ω0 is a smooth Kähler form on X, k ∈ R>0 is a sufficiently small real
number, s := f ∗sY is the holomorphic section of OX(D), and h := f ∗hY is the
smooth Hermitian metric on OX(D). We remark that if we take k sufficiently
small, ω∗ is actually a cone metric with cone angle 2πβ along D.

Let ωt be the normalized conical Kähler-Ricci flow with initial cone metric ω∗,
and T be the maximal existence time of ωt. We further assume that T is finite
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and there exists a smooth Kähler form ωZ on Z satisfying

[f ∗ωZ ] = [ωT ] ∈ H1,1(X,R).

Under these assumptions, we have the following theorem [Nom16c].

Theorem E (=Theorem 5.1.5). The scalar curvature R(ωt) of ωt satisfies

R(ωt) ≤ C

(T − t)2 on X \ D,

where C > 0 is a constant independent of t.

In contrast with Zhang’s result, we need to treat with the singularities of ωt

along D. This is overcame by using the approximation technique used in [CGP13,
She14a, LZ14, Edw15].
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Chapter 2

Preliminaries

In this chapter, we recall some definitions and properties of Kähler manifolds.
In Section 2.1 to 2.4, we recall basic Kähler geometry, especially the notion of
curvature. In Section 2.5, we fix some notations. In Section 2.6, we recall the
maximum principle argument which will be used in many places. In Section 2.7,
we prove the Laplacian estimate called Chern-Lu’s inequality.

2.1 Curvature of Hermitian Holomorphic Vector
Bundles

Let E be a complex vector bundle on a C∞-manifold on M . A C-linear map
∇ : C∞(M, E) → C∞(M,

∧1 ⊗ E) is called a connection of E if it satisfies the
Leibniz rule i.e for any function f ∈ C∞(M,C) and any section s ∈ C∞(M, E),
we have the following:

∇(fs) = (df) ⊗ s + f(∇s).

For any vector field X ∈ C∞(M, TM), we set ∇Xs := (∇s)(X) ∈ C∞(M, E). We
can extend ∇ to a C-linear map d∇ : C∞(M,

∧p ⊗ E) → C∞(M,
∧p+1 ⊗ E) which

is defined by

(d∇s)(X1, . . . , Xp+1) :=
p∑

i=1
(−1)i+1∇Xi

(
s(X1, . . . , X̂i, . . . , Xp+1)

)
+
∑
i<j

(−1)i+js([Xi, Xj], X1, . . . , X̂i, . . . , X̂j, . . . , Xp+1),

where s ∈ C∞(M,
∧p⊗E) and X1, · · · , Xp+1 ∈ C∞(M, TM). The map d∇ is called

the covariant differentiation associated to ∇. Since the definition of d∇ is similar
to that of the exterior derivative d, we have the following generalized Leibniz rule:
for any η ∈ C∞(M,

∧k) and s ∈ C∞(M,
∧p ⊗ E), we have

d∇(η ∧ s) = (dη) ∧ s + (−1)kη ∧ (d∇s).

It is easily seen that d∇ ◦ d∇ is C∞(X,C)-linear map. Thus, we can define the
curvature R∇ ∈ C∞(M,

∧2 ⊗ End(E)) of the connection ∇ satisfying

(d∇ ◦ d∇)s = R∇ ∧ s,
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for any s ∈ C∞(M,
∧p ⊗ E). By taking local frame, we can show that tr(R∇) is a

closed 2-form on M .
Let (E, h) be a Hermitian complex vector bundle on M . A connection ∇ of E

is said to be h-compatible if for any section s, t ∈ C∞(M, E) the following holds:

d ⟨s, t⟩h = ⟨∇s, t⟩h + ⟨s, ∇t⟩h . (2.1.1)

Here ⟨·, ·⟩h : C∞(M,
∧p⊗E)×C∞(M,

∧q ⊗E) → C∞(M,
∧p+q ⊗E) is s sesquilinear

form obtained by combining the wedge product and h. It is easily seen that for all
s ∈ C∞(M,

∧p ⊗ E) and t ∈ C∞(M,
∧q ⊗ E), the following holds:

d ⟨s, t⟩h = ⟨∇s, t⟩h + (−1)p ⟨s, ∇t⟩h .

Therefore, by applying d again, we get the curvature R∇ of h-compatible connec-
tion ∇ is skew-Hermitian i.e. ⟨R∇s, t⟩h = − ⟨s, R∇t⟩h. In particular tr(

√
−1 Rh)

is a closed real 2-form on M .
Let X be a complex manifold of dimension n and J ∈ C∞(X, End(TX)) be

the complex structure of X. Since J2 = −idT X , the complexified tanget bundle
TCX := TX ⊗ C is decomposed into two eigen spaces:

TCX = T 1,0X ⊕ T 0,1X,

T 1,0X := {v ∈ TCX | Jv =
√

−1 v},

T 0,1X := {v ∈ TCX | Jv = −
√

−1 v}.

Then, T 1,0X is a holomorphic vector bundle, and T 0,1X is an anti-holomorphic
vector bundle. Dually, the complexified cotanget bundle T ∗CX := T ∗X ⊗ C also
decomposed into T ∗CX = T ∗1,0X ⊕ T ∗0,1X. We set ∧p,q := ∧pT ∗1,0X ⊗ ∧qT ∗0,1X.
For a section s ∈ C∞(X,

∧p,q), s is called a (p, q)-form and (p, q) is called the
bidegree of s. By using the fact that J is integrable, the exterior covariant
derivative d : C∞(X,

∧p,q) → C∞(X,
∧p+q+1) is decomposed into d = ∂ + ∂ where

∂ : C∞(X,
∧p,q) → C∞(X,

∧p+1,q), ∂ : C∞(X,
∧p,q) → C∞(X,

∧p,q+1). If we take a
local holomorhic coordinate (z1, · · · , zn) of X, ∂ and ∂ is expressed as

∂η =
∑

|I|=p,|J |=q

n∑
i=1

∂ηI,J

∂zi
dzi ∧ dzI ∧ dzJ ,

∂η =
∑

|I|=p,|J |=q

n∑
i=1

∂ηI,J

∂zi
dzi ∧ dzI ∧ dzJ ,

where η = ∑
|I|=p,|J |=q ηI,JdzI ∧ dzJ is a (p, q)-form and the sum runs for all I =

(i1, . . . , ip) and J = (j1, . . . , jq) satisfying 1 ≤ i1 < · · · < ip ≤ n and 1 ≤ j1 <
· · · < jq ≤ n. Since d ◦ d = 0, by considering the bidegree, we get ∂ ◦ ∂ = ∂ ◦ ∂ = 0
and ∂ ◦ ∂ + ∂ ◦ ∂ = 0.

For a holomorphic vector bundle E of rank r on X, we can naturally associate
a C-linear map ∂E : C∞(X, E) → C∞(X,

∧0,1 ⊗ E) called the ∂-operator of E. By
using a local holomorphic frame (e1, · · · , er) of E, ∂E is defined as

∂Es = ∂E

(
r∑

λ=1
sλeλ

)
:=

r∑
λ=1

(∂sλ) ⊗ eλ,
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where s ∈ C∞(X, E) is locally denoted as s = ∑r
λ=1 sλeλ. Since E is holomorphic,

∂E is a well-defined C-linear map satisfying Leibniz rule i.e. for any function
f ∈ C∞(X,C) and for any section s ∈ C∞(X, E), we have the following:

∂E(fs) = (∂f) ⊗ s + f(∂Es).

As in the case of the connection, we can extend ∂E to a C-linear map ∂E : C∞(X,
∧p,q⊗

E) → C∞(X,
∧p,q+1 ⊗ E) such that for any η ∈ C∞(X,

∧k) and s ∈ C∞(X,
∧p,q ⊗

E), we have

∂E(η ∧ s) = (∂η) ∧ s + (−1)kη ∧ (∂Es).

We remark that the ∂E satisfies ∂E ◦ ∂E = 0.
For a Hermitian holomorphic vector bundle (E, h) on X, there exists a unique

connection ∇ on E, called the Chern connection of (E, h), which is h-compatible
and (0, 1)-part of ∇ coincides with ∂E. We denote ∇ = ∇h = ∂h + ∂E where ∂h

is the (1, 0)-part of ∇. The exterior covariant derivative dh := d∇h
of the Chern

connection ∇h decomposed into dh = ∂h + ∂E where we extend ∂h to a C-linear
map C∞(X,

∧p,q⊗E) → C∞(X,
∧p+1,q⊗E). By considering the bidegree in (2.1.1),

we get

∂ ⟨s, t⟩h = ⟨∂hs, t⟩h +
⟨
s, ∂Et

⟩
h

, ∂ ⟨s, t⟩h =
⟨
∂Es, t

⟩
h

+ ⟨s, ∂ht⟩h . (2.1.2)

Let (e1, · · · , er) be a local holomorphic frame of E, (e1, · · · , er) be the dual frame
of E∗ and (z1, · · · , zn) be a holomorphic local coordinate of X. We set hλµ :=
h(eλ, eν). By using (2.1.2), we can represent the Chern connection as follows:

∂heλ = hνµ∂hλµ ⊗ eν , ∂Eeλ = 0.

Also, the Chern curvature Rh := R∇ of the Chern connection is represented as

Rh =∂E∂h + ∂h∂E = R µ
ijλ dzi ∧ dzj ⊗ eλ ⊗ eµ,

R µ
ijλ = −hµν(∂i∂jhλν) + hµνhκτ (∂ihλτ )(∂jhκν).

In particular if (L, h) is a Hermitian holomorphic line bundle i.e. rank(L) = 1 and
if we take a holomorphic frame e of L and set H := h(e, e), we have the formula

√
−1 Rh = −

√
−1 ∂∂ log H.

2.2 Kähler Manifolds
Let X be a complex manifold of complex dimension n and J ∈ C∞(X, End(TX))
be the complex structure of X. A Riemannian metric g on X is called J-invariant
if for any tangent vector v, w ∈ TX, g satisfies

g(Jv, Jw) = g(v, w).
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By extending C-bilinearly, g defines a non-degenerate C-bilinear form on TCX,
which we also write g. J-invariant Riemannian metric g defines a Hermitian metric
hg on TCX by hg(v, w) := g(v, w), and 2-form ωg by ωg := g(J ·, ·). Since g is J-
invariant, T 1,0X and T 0,1X is orthogonal with respect to hg, and ωg is a real
(1, 1)-form on X. If we take a local holomorphic chart (U, (z1. · · · , zn)), ωg is
locally written as

ωg =
√

−1
n∑

i,j=1
gijdzi ∧ dzj, gij := g

(
∂

∂zi
,

∂

∂zj

)
.

In this notation,
(
gij(x)

)
i,j

is a positive definite Hermitian matrix for any x ∈ U .
A J-invariant Riemannian metric g on X is called a Kähler metric if corre-

spoinding (1, 1)-form ωg is d-closd. This condition is equivalent to
∂gij

∂zk
= ∂gkl

∂zi

for any i, j, k = 1, · · · , n. We call ωg a Kähler form associated to g, and (X, J, g, ωg)
a Kähler manifold.

A real (1, 1)-form ω is called positive if we write ω as ω =
√

−1∑n
i,j=1 gijdzi∧dzj

locally, the Hermitian matrix
(
gij(x)

)
i,j

is a positive definite. For instance, any
Kähler form is positive. We remark that for any positive closed real (1, 1)-form ω,
if we set g by g := ω(·, J ·), then g is a Kähler metric satisfying ωg = ω. In the
following, a positive closed real (1, 1)-form ω is also called a Kähler form on X
without specifing corresponding Kähler metric.

2.3 Cohomology of Compact Kähler Manifolds
Let E be a holomorphic vector bundle on a compact complex manifold X. Since
∂E ◦ ∂E = 0, we define the Dolbeault cohomology of E by

Hp,q(X, E) := Ker(∂E : C∞(X,
∧p,q ⊗ E) → C∞(X,

∧p,q+1 ⊗ E))
Im(∂E : C∞(X,

∧p,q−1 ⊗ E) → C∞(X,
∧p,q ⊗ E))

.

It is well-known that Hp,q(X, E) is finite dimensional vector space. By the Dolbeault-
Grothendieck lemma, Hp,q(X, E) is isomorphic to the q-th cohomology group
Hq(X, Ωp

X ⊗ E) of sheaf of holomophic E-valued p-forms. We set Hp,q(X,C) :=
Hp,q(X, OX) and Hp,p(X,R) := Hp,p(X,C) ∩ H2p

dR(X,R)
On a compact Kähler manifold X, the following ∂∂-lemma is essential.

Lemma 2.3.1 (∂∂-lemma). Assume that p, q ≥ 1 and u ∈ C∞(X,
∧p,q) is d-exact

i.e. u = dv for some v ∈ C∞(X,
∧p+q−1). Then there exists w ∈ C∞(X,

∧p−1,q−1)
such that u = ∂∂w.

This lemma is a corollary of the Hodge theory. In particular, we have the
following identification:

H1,1(X,R) ∼=
{η ∈ C∞(X,

∧1,1) | dη = 0, α = α}√
−1 ∂∂C∞(X,R)

.
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We define the Kähler cone KX of X by

KX := {α ∈ H1,1(X,R) | α is represented by a Kähler form on X}
⊂ H1,1(X,R).

A cohomology class α ∈ H1,1(X,R) is said to be a Kähler class if α ∈ KX and a
nef class if α ∈ KX . Here KX is the closure of KX with respect to the Euclidean
topology in the finite dimensional vector space H1,1(X,R). It is easily seen that
KX is an open convex cone in H1,1(X,R).

By the Chern-Weil theory, for any complex vector bundle E on X with con-
nection ∇, the 1st Chern class 2πc1(E) of E is represented by tr(

√
−1 R∇) in

H2
dR(X,R). In particular, since the bidegree of the Chern curvature is (1, 1), for

any holomophic vector bundle E, the 1st Chern class 2πc1(E) of E belongs to
H1,1(X,R). Furthermore, thanks to Kodaira’s embedding theorem, the ampleness
of a holomophic line bundle L on X is equivalent to 2πc1(L) ∈ KX . Therefore, the
Kähler cone KX closely related to the notion of positivity.

2.4 Curvature of Kähler Manifolds
In this section, we define various notions of curvature of Kähler manifolds. Let
(X, J, g, ω) be a Kähler manifold of dimension n. The Kähler metric g defines the
Levi-Civita connection ∇LC on the tangent bundle TX by

2g(∇LC
u v, w) := ug(v, w) + vg(w, u) − wg(u, v)

+ g([u, v], w) − g([v, w], u) − g([u, w], v)

where u, v, w ∈ C∞(X, TX). This is the unique g-compatible torsion free connec-
tion i.e. for any vector fields u, v, w ∈ C∞(X, TX), ∇LC satisfies

u(g(v, w)) = g(∇LC
u v, w) + g(v, ∇LC

u w),
∇LC

u v = ∇LC
v u + [u, v].

By extending C-linearly, ∇LC induces a connection on TCX, which we write simply
∇LC . We set D the restriction of ∇LC to T 1,0X. By the definition of ∇LC and the
Kähler condition dω = 0, D coincides with the Chern connection of the Hermitian
holomorphic vector bundle (T 1,0X, hg). We decompose D into D = ∇ + ∇ where
∇ is the (1, 0)-part and ∇ is the (0, 1)-part of D. If we take a local holomorphic
cordinate (z1. · · · , zn), the curvature tensor RD ∈ C∞(X,

∧1,1 ⊗ End(T 1,0X)) of D
is locally written as

RD =R l
ijk dzi ∧ dzj ⊗ dzk ⊗ ∂

∂zl
, R l

ijk = −glr(∂i∂jgkr) + glrgpq(∂iglq)(∂jgpr).

We define the Riemann curvature tensor Rm(ω) by

Rm(ω) =Rijkldzi ⊗ dzj ⊗ dzk ∧ dzl := gpjR
p

i kl
dzi ⊗ dzj ⊗ dzk ∧ dzl,

Rijkl = −∂i∂jgkl + gpq(∂igkq)(∂jgpl),
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the Ricci curvature Ric(ω) by

Ric(ω) :=
√

−1 Rijdzi ∧ dzj, Rij = gklRklij = ∂i∂j log det(gpq),

and the scalar curvature R(ω) by

R(ω) := gijRij = gij∂i∂j log det(gpq).

Since ωn defines a Hermitian metric on the anti-canonical bundle −KX := ∧nT 1,0X
and its Chern curvature is equal to the Ricci curvature of ω, the Ricci curvature
Ric(ω) represents the first Chern class 2πc1(X) = −2πc1(KX) ∈ H1,1(X,R) of X.

For any tangent vector ξ = ξi∂/∂zi, η = ηi∂/∂zi ∈ T 1,0X, we define the
holomorphic bisectional curvature Bisec(ω)(ξ, η) by

Bisec(ω)(ξ, η) := Rm(ω)(ξ, ξ, η, η)
|ξ|2ω |η|2ω

=
Rijklξ

iξjηkηl

(gijξ
iξj)(gklη

kηl)
,

the holomorphic sectional curvature H(ω)(ξ) by

H(ω)(ξ) := Bisec(ω)(ξ, ξ) = Rm(ω)(ξ, ξ, ξ, ξ)
|ξ|4ω

=
Rijklξ

iξjξkξl

(gijξ
iξj)2

,

Here, abuse of notation, we denote |ξ|2ω := hg(ξ, ξ).

2.5 Some Notations
Let (X, J, g, ω) be a Kähler manifold X of dimension n. For a real (1, 1)-form α
on X, we set the trace trω (α) of α with respect to ω by

trω (α) := nα ∧ ωn−1

ωn
= gijαij,

where we denote ω =
√

−1 gijdzi ∧ dzj, α =
√

−1 αijdzi ∧ dzj. In this notation,
(minus sign of) the ∂-Laplace operator associated to ω acts on the space of smooth
functions is represented as

∆ωf = trω

(√
−1 ∂∂f

)
= gij∂i∂jf,

and the scalar curvature of ω is represented as R(ω) = trω (Ric(ω)).
For any tensors T, S on X of the same type, we denote ⟨T, S⟩ω the Hermitian

inner product of T and S, |T |ω the norm of T measured by the Hermitian metric
on tensor bundles induced by hg. For instance, if T = T k

ij dzi ⊗ dzj ⊗ ∂/∂zk, then
the norm of T is locally written as

|T |2ω = gijgklgpqT
q

ik T p
jl .

We denote ∇ (resp. ∇) the (1, 0)-part (resp. (0, 1)-part) of the exterior co-
variant derivative dD of the Levi-Civita connection D of ω. In this notation, for a
smooth function f on X, we have ∇f = ∂f and ∇f = ∂f .
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2.6 The Maximum Principle Argument
In this section, we recall the maximum principle argument which is a fundamental
technique to obtain estimates for non-linear parabolic equations. Let f = f(x, t) ∈
C∞(X × [0, T ],R) be a smooth function on a compact complex manifold X where
T ∈ R>0. Since X × [0, T ] is compact, f attains its maximum at some point
(x0, t0) ∈ X × [0, T ]. Then, at this point, we have the following inequalities:

√
−1 ∂∂f(x0, t0) ≤ 0, (2.6.1)

and

∂

∂t
f(x0, t0)


≤ 0 if t0 = 0
= 0 if 0 < t0 < T

≥ 0 if t0 = T.

(2.6.2)

These inequalites are elementary but very useful in the subsequent arguments.
The direct application is the following estimate.
Proposition 2.6.3. Let ωt be a smooth family of Kähler forms. For any function
f = f(x, t) ∈ C∞(X × [0, T ],R) satisfying(

∂

∂t
− ∆ωt

)
f ≤ 0,

the following estimate holds:

f ≤ max
X×{0}

f.

Proof. For any constant ε > 0, we set fε := f − εt. It is obvious that fε satisfies(
∂

∂t
− ∆ωε,t

)
fε ≤ −ε < 0.

Therefore, by applying the inequalities (2.6.1), (2.6.2) to fε, any maximum point
(x0, t0) ∈ X × [0, T ] of fε satisfies t0 = 0. This implies that

fε ≤ max
X×{0}

fε = max
X×{0}

f.

By taking ε ↘ 0, we get the assertion.

Of course, similar statement for minumum also holds if we replace ≤ by ≥.

2.7 Chern-Lu’s Inequality
In this section, we prove well-known Laplacian estimate called Chern-Lu’s inequal-
ity [Che68, Lu68] which will be used later. We setup notations. Let f : (X, ω) →
(Y, ωY ) be a holomorphic map between compact Kähler manifolds. We set E :=
Hom(T 1,0X, f ∗T ∗1,0Y ) = T ∗1,0X ⊗ f ∗T ∗1,0Y , denote h the Hermitian metric on E
induced by ω and ωY , and ∇E the Chern connection of (E, h). We regard ∂f as
a holomorphic section of E. Let C ∈ R be an upper bound for the bisectional
curvature of ωY i.e. Bisec(ωY ) ≤ C.
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Proposition 2.7.1. In the above setting, we get the following estimates.

(a) Estimate for the Laplacian of trω (f ∗ωY ):

∆ωtrω (f ∗ωY ) = ⟨Ric(ω), f ∗ωY ⟩ω − tr1,2
ω tr3,4

ω (f ∗Rm(ωY )) + |∇E∂f |2ω,h

≥ ⟨Ric(ω), f ∗ωY ⟩ω − C (trω (f ∗ωY ))2 + |∇trω (f ∗ωY )|2ω
trω (f ∗ωY )

≥ ⟨Ric(ω), f ∗ωY ⟩ω − C (trω (f ∗ωY ))2

(b) Estimate for the Laplacian of log trω (f ∗ωY ):

∆ω log trω (f ∗ωY ) = 1
trω (f ∗ωY )

(
⟨Ric(ω), f ∗ωY ⟩ω − tr1,2

ω tr3,4
ω (f ∗Rm(ωY ))

)

+ 1
(trω (f ∗ωY ))2

(
trω (f ∗ωY ) |∇E∂f |2ω,h − |∇trω (f ∗ωY )|2ω

)

≥ 1
trω (f ∗ωY )

(
⟨Ric(ω), f ∗ωY ⟩ω − tr1,2

ω tr3,4
ω (f ∗Rm(ωY ))

)

≥ ⟨Ric(ω), f ∗ωY ⟩ω

trω (f ∗ωY )
− Ctrω (f ∗ωY )

Proof. Let (z1, . . . , zn) and (w1, . . . , wn) be normal coodinates on X and Y respec-
tively. We set

ω =
√

−1 gijdzi ∧ dzj, ωY =
√

−1 hαβdwα ∧ dwβ,

f ∗ωY =
√

−1 h∗
ijdzi ∧ dzj :=

√
−1(hαβ ◦ f)(∂if

α)(∂jfβ)dzi ∧ dzj,

and denote Rijkl and Sαβγδ by the curvature tensor of ω and ωY respectively. Then
we have the following inequalities.

∆ωtrω (f ∗ωY ) = gkl∂k∂l

(
gijh∗

ij

)
= gkl

(
∂k∂lg

ij
)

h∗
ij + gklgij

(
∂k∂lh

∗
ij

)
= gklR ij

kl
h∗

ij +
(

gklgij(∂i∂kfα)(∂j∂lfβ)(hαβ ◦ f)

− gklgij(∂if
α)(∂jfβ)(∂kfγ)(∂lf δ)(Sαβγδ ◦ f)

)
= ⟨Ric(ω), f ∗ωY ⟩ω + |∇E∂f |2ω,h − tr1,2

ω tr3,4
ω (f ∗Rm(ωY ))

≥ ⟨Ric(ω), f ∗ωY ⟩ω + |∇trω (f ∗ωY )|2ω
trω (f ∗ωY )

− tr1,2
ω tr3,4

ω (f ∗Rm(ωY )) .

In the last inequality, we used the inequality |∇trω (f ∗ωY )|2ω ≤ |∇E∂f |2ω,h trω (f ∗ωY )
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which can be obtained as follows:

|∇trω (f ∗ωY )|2ω = gij(∂ig
klh∗

kl
)(∂jg

pqh∗
pq) = gijgklgpq(∂ih

∗
kl

)(∂jh
∗
pq)

=
∑

i,k,p,α,β

(∂i∂kfα)(∂kfα)(∂i∂pfβ)(∂pfβ)

≤
∑

k,p,α,β

|∂pfβ||∂kfα|
(∑

i

|∂i∂kfα|2
)1/2

∑
j

|∂j∂pfβ|2
1/2


=

∑
k,α

|∂kfβ|
(∑

i

|(∂i∂kfα|2
)1/2

2

≤

∑
l,β

|∂lf
β|2
∑

i,k,α

|∂i∂kfα|2


= trω (f ∗ωY ) gklgij(∂i∂kfα)(∂j∂lfβ)
= |∇E∂f |2ω,h trω (f ∗ωY ) .

Here, we used the Cauchy-Schwarz inequalities. By using the upper bound for the
bisectional curvature of ωY , the term tr1,2

ω tr3,4
ω (f ∗Rm(ωY )) estimated as

tr1,2
ω tr3,4

ω (f ∗Rm(ωY )) = C (trω (f ∗ωY ))2 .

This follows from the following calculation: if we set ξi by (df)(∂/∂zi), their norm
is

|ξi|2ωY
= hαβ(y0)

∂fα

∂zi
(x0)

∂fβ

∂zi
(x0).

By combining the definition of the bisectional curvature, we get

tr1,2
ω tr3,4

ω (f ∗Rm(ωY )) = gijgkl(∂if
α)(∂jfβ)(∂kfγ)(∂lf δ)(Sαβγδ ◦ f)

=
∑
i,k

Rm(ωY )(ξi, ξi, ξk, ξk)(y0)

≤
∑
i,k

C · |ξi|2ωY
|ξk|2ωY

= C ·
∑

i

hαβ

∂fα

∂zi

∂fβ

∂zi

 ·
∑

k

hαβ

∂fα

∂zk

∂fβ

∂zk


= C ·

gijhαβ

∂fα

∂zi

∂fβ

∂zj

gklhαβ

∂fα

∂zk

∂fβ

∂zl


= C (trω (f ∗ωY ))2 .

These estimates gives the desired inequality (a).
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The proof of (b) is straightforward:

∆ω log trω (f ∗ωY ) = ∆ωtrω (f ∗ωY )
trω (f ∗ωY )

− |∇trω (f ∗ωY )|2ω
(trω (f ∗ωY ))2

= 1
trω (f ∗ωY )

(
⟨Ric(ω), f ∗ωY ⟩ω − tr1,2

ω tr3,4
ω (f ∗Rm(ωY ))

)

+ 1
(trω (f ∗ωY ))2

(
trω (f ∗ωY ) |∇E∂f |2ω,h − |∇trω (f ∗ωY )|2ω

)

≥ 1
trω (f ∗ωY )

(
⟨Ric(ω), f ∗ωY ⟩ω − tr1,2

ω tr3,4
ω (f ∗Rm(ωY ))

)

≥ ⟨Ric(ω), f ∗ωY ⟩ω

trω (f ∗ωY )
− Ctrω (f ∗ωY ) .
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Chapter 3

Compact Kähler Manifolds with
Positive or Negative Holomorphic
Sectional Curvature

In this chapter, we consider Kähler manifolds with positive or negative Holomor-
phic Sectional Curvature. In Section 3.1, we quickly review known results for
positive holomorphic sectional curvature case. In Section 3.2, we summarize basic
properties of the Kähler-Ricci flow which will be used in the next section. The main
part of this chapter is Section 3.3. In this section, by using the Kähler-Ricci flow,
we provide a new proof to Wu-Yau’s and Tosatti-Yang’s theorems which represent
the relationship between the negativity of the holomorphic sectional curvature
and the positivity of the canonical bundle KX of a compact Kähler manifold X
[Nom16a].

3.1 Kähler Manifolds with Positive Holomorphic
Sectional Curvature

In this section, we review related results.

Theorem 3.1.1 ([HW12, Theorem 1.1]). Let X be a smooth projective variety. If
X admits a Kähler form ω satisfying∫

X
R(ω)ωn > 0,

then X is uniruled. In particular, the Kodaira dimension of X is −∞.

We remark that this condition is cohomological (see (3.1.2)). Since the scalar
curvature is determined by the holomorphic sectional curvature by the formula

R(ω)(x) = n(n + 1)
2

∫
ξ∈P(T 1,0

x X)
H(ω)(ξ) ωn−1

F S ,

if X admits a Kähler form with strictly positive holomorphic sectional curvature,
then X is uniruled.
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Proof. If we assume that X is not uniruled, then KX is pseudoeffective i.e. 2πc1(KX)
is represented by some closed positive (1, 1)-current on X. This deep result is due
to Boucksom-Demailly-Păun-Peternell [BDPP13, Corollary 0.3]. Therefore, the
intersection number satisfies (2πc1(KX) · [ω]n−1) ≥ 0. On the other hand, by using
the assumption on the scalar curvature, we have the following esitimate:

(2πc1(KX) · [ω]n−1) =
∫

X
−Ric(ω) ∧ ωn−1 = −1

n

∫
X

R(ω)ωn < 0, (3.1.2)

hence we get the contradiction.

In the Hermitian setting, Yang showed the following theorem.

Theorem 3.1.3 ([Yan16, Theorem 1.2]). Let (X, ω) be a compact Hermitian man-
ifold. Asuume that the holomorphic sectional curvature H(ω) ≥ 0 and not identi-
cally zero, then the Kodaira dimension of X is −∞.

The proof is based on some Bochner type formula for a Hermitian metric which
is conformal to the Gauduchon metric.

3.2 The Kähler-Ricci Flow
In this section, we summarize well-known properties of the Kähler-Ricci flow which
will be used later. For more detailed exposition, we refere the book [BEG13]. In the
following argument, we will denote by X a compact Kähler manifold of dimension
n.

Definition 3.2.1. A smooth family of Kähler forms {ωt}t≥0 is called the Kähler-
Ricci flow (resp. the normalized Kähler-Ricci flow) if it satisfies the following
equation: 

∂

∂t
ωt = −Ric(ωt) + λωt,

ωt|t=0 = ω0,
(3.2.2)

where λ = 0 (resp. λ = −1).

By considering the cohomology class in H1,1(X,R) of (3.2.2), ωt belongs to
αt ∈ H1,1(X,R) which is defined as

αt =

[ω0] + 2πtc1(KX) if λ = 0,

e−t[ω0] + (1 − e−t)2πc1(KX) if λ = −1.
(3.2.3)

The maximal existence theorem for the Kähler-Ricci flow is stated as follows.

Theorem 3.2.4 ([Cao85, Tsu88, TZ06], see also [BEG13, 3.3.1]). For any Kähler
form ω0, the Kähler-Ricci flow (resp. the normalized Kähler-Ricci flow) ωt starting
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from ω0 exists uniquely for t ∈ [0, T ) and cannnot extend beyond T , where T is
defined by

T := sup{t > 0 | αt defined by (3.2.3) is Kähler }, (3.2.5)

and called the maiximal existence time. In particular, ωt exists for t ∈ [0, ∞) if
and only if KX is nef, i.e. 2πc1(KX) belongs to the closure of the Kähler cone of
X.

We prove well-known estimates which will be used in the proof of Theorem
3.3.1, and 3.3.2.

The following lower bound for the scalar curvature along the Kähler-Ricci flow
due to Hamilton [Ham82] is obtained by a simple maximum principle argument.

Proposition 3.2.6 ([BEG13, 3.2.2]). For the Kähler-Ricci flow ωt, we have the
following lower bound for the scalar curvature:

R(ωt) ≥ λn − Ceλt,

where C := − minX (R(ω0) − λn).

Proof. The time derivative of the Ricci curvature is calculated as follows:

∂

∂t
Ric(ωt) = −

√
−1 ∂∂

(
∂

∂t
log ωn

t

)
= −

√
−1 ∂∂

(
trωt

(
∂

∂t
ωt

))
=

√
−1 ∂∂R(ωt).

The scalar curvature evolves as
∂

∂t
R(ωt) = ∂

∂t
trωt (Ric(ωt))

= −
⟨

∂

∂t
ωt, Ric(ωt)

⟩
ωt

+ trωt

(
∂

∂t
Ric(ωt)

)
= |Ric(ωt)|2ωt

− λR(ωt) + ∆ωtR(ωt)

≥ 1
n

(trωt (Ric(ωt)))2 − λR(ωt) + ∆ωtR(ωt)

= −λR(ωt) + 1
n

R(ωt)2 + ∆ωtR(ωt).

Therefore we get (
∂

∂t
− ∆ωt

)(
e−λt(R(ωt) − λn)

)
≥ 0,

which gives the disired result.

Since the time derivative of the volume form ωn
t is computated as

∂

∂t
log ωn

t

ω0
= trωt

(
∂

∂t
ωt

)
= trωt (−Ric(ωt) + λωt + n)

= −R(ωt) + λn,

the lower bound for R(ωt) gives the following volume upper bounds.
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Proposition 3.2.7 ([BEG13, 3.2.3]). The following volume bounds hold:

(a) For any Kähler-Ricci flow ωt, there exists a constant C > 0 such that for all
t ∈ [0, T ), ωn

t ≤ eCtωn
0 holds.

(b) For any normalized Kähler-Ricci flow ωt, there exists a constant C > 0 such
that for all t ∈ [0, T ), ωn

t ≤ Cωn
0 holds.

To get C2-estimate, we need the parabolic Schwarz lemma obtained by Song-
Tian [ST07] applied to the identity map (see also [BEG13, 3.2.6]). This is a
parabolic analogue of the Schwarz lemma due to Yau [Yau78a] (see Section 4.1).

Proposition 3.2.8. Let ωt be the Kähler-Ricci flow (resp. the normalized Kähler-
Ricci flow), f : X → Y be a holomorphic map between compact Kähler manifolds
and ωY be a Kähler form on Y . We set E := Hom(T 1,0X, f ∗T ∗1,0Y ) = T ∗1,0X ⊗
f ∗T ∗1,0Y , denote ht the Hermitian metric on E induced by ωt and ωY , and ∇Et

Chern connection of (E, ht). Then we have the following inequality:(
∂

∂t
− ∆ωt

)
log trωt (f ∗ωY )

= −λ +
tr1,2

ωt
tr3,4

ωt
(f ∗Rm(ωY ))

trωt (f ∗ωY )
−

(
trωt (f ∗ωY ) |∇Et∂f |2ωt,ht

− |∇trωt (f ∗ωY )|2ωt

)
(trωt (f ∗ωY ))2

≤ −λ +
tr1,2

ωt
tr3,4

ωt
(f ∗Rm(ωY ))

trωt (f ∗ωY )

In particular, applying f = idX : (X, ωt) → (X, ω̂), we get the following:
(

∂

∂t
− ∆ωt

)
log trωt (ω̂) ≤ −λ +

gij(t)gkl(t)R̂ijkl

trωt (ω̂)
,

where λ is in (3.2.2), ωt =
√

−1 gij(t)dzi ∧ dzj and R̂ijkl is the curvature tensor of
ω̂.

Proof. The direct computation shows the following equality:

∂

∂t
trωt (f ∗ωY ) = −

⟨
∂

∂t
ωt, f ∗ωY

⟩
ωt

= − ⟨−Ric(ωt) + λωt + η, f ∗ωY ⟩ωt

= −λtrωt (f ∗ωY ) + ⟨Ric(ωt), f ∗ωY ⟩ωt
,

∂

∂t
log trωt (f ∗ωY ) = 1

trωt (f ∗ωY )
∂

∂t
trωt (f ∗ωY )

= 1
trωt (f ∗ωY )

(
−λtrωt (f ∗ωY ) + ⟨Ric(ωt), f ∗ωY ⟩ωt

)
= −λ +

⟨Ric(ωt), f ∗ωY ⟩ωt

trωt (f ∗ωY )
.
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Recall that in Proposition 2.7.1, we obtained the estimate for ∆ωt log trωt (f ∗ωY ):

∆ωt log trωt (f ∗ωY ) = 1
trωt (f ∗ωY )

(
⟨Ric(ωt), f ∗ωY ⟩ω − tr1,2

ωt
tr3,4

ωt
(f ∗Rm(ωY ))

)

+ 1
(trωt (f ∗ωY ))2

(
trωt (f ∗ωY ) |∇Et∂f |2ωt,ht

− |∇trω (f ∗ωY )|2ωt

)

≥ 1
trωt (f ∗ωY )

(
⟨Ric(ωt), f ∗ωY ⟩ω − tr1,2

ωt
tr3,4

ωt
(f ∗Rm(ωY ))

)
Combining these, we get the assertion.

The next proposition due to Royden [Roy80, Lemma] (see also [WWY12,
Lemma 2.1]) will be used to obtain the C2-estimate under the negativity assump-
tion on the holomorphic sectional curvature. This is essentially based on the
symmetry of the curvature tensor of the Kähler forms.

Proposition 3.2.9. Let f : (X, ω) → (Y, ωY ) be a holomorphic map between Käh-
ler manifolds and r be the maximal rank of Jacobian of f . Assume that there exists
a non-negative constant κ ≥ 0 such that for any tangent vector ξ ∈ T 1,0Y , we have

H(ωY )(ξ) ≤ −κ ≤ 0.

Then the following inequality holds:

tr1,2
ω tr3,4

ω (f ∗Rm(ωY )) ≤ −κ(r + 1)
2r

(trω (f ∗ωY ))2 .

In particular, for any Kähler form ω̂ on X whose holomorphic sectional curvature
Ĥ satisfying

Ĥ(ξ) ≤ −κ ≤ 0, (3.2.10)

we have

gijgklR̂ijkl ≤ −κ
n + 1

2n
(trω (ω̂))2 ≤ 0,

where ω =
√

−1 gijdzi ∧ dzj and R̂ijkl is the curvature tensor of ω̂.

Proof. Let S : V × V × V × V → C be a symmetric bi-Hermitian form on a
Hermitian vector space (V, h) i.e. for any ξ, η, ζ, ω ∈ V , the following holds:

S(ξ, η, ζ, ω) = S(ζ, η, ξ, ω) = S(η, ξ, ω, ζ).

Assume that there exists a constant κ ≥ 0 satisfying S(ξ, ξ, ξ, ξ) ≤ −κ|ξ|4h. To
prove the proposition, we only need to show the following inequality: for any
orthonormal system (not necessarily a basis) ξ1, · · · , ξN , we have

∑
i,j

S(ξi, ξi, ξj, ξj) ≤ −κ

2

(∑
i

|ξi|4h

)
− κ

2

(∑
i

|ξi|2h

)2

≤ −κ

2

(
1 + 1

N

)∑
i

|ξi|2h .
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Since the second inequality follows from the Cauchy-Schwarz inequality and κ ≥ 0,
we prove the first one.

We set A := {a = (a1, . . . , aN) ∈ CN | ai = ±1, ±
√

−1} and denote ξa ∈ V by

ξa :=
N∑

i=1
aiξi

for any a ∈ A. Since S is bi-Hermitian and symmetric, we have

1
4N

∑
a∈A

S(ξa, ξa, ξa, ξa) = 1
4N

∑
a∈A

∑
i,j,k,l

aiajakal S(ξi, ξj, ξk, ξl)

=
∑

i

S(ξi, ξi, ξi, ξi) +
∑
i ̸=j

(
S(ξi, ξi, ξj, ξj) + S(ξi, ξj, ξj, ξi)

)
=
∑

i

S(ξi, ξi, ξi, ξi) + 2
∑
i ̸=j

S(ξi, ξi, ξj, ξj).

By using the assumption, we get

2
∑
i,j

S(ξi, ξi, ξj, ξj) =
(∑

i

S(ξi, ξi, ξi, ξi)
)

+

∑
i

S(ξi, ξi, ξi, ξi) + 2
∑
i ̸=j

S(ξi, ξi, ξj, ξj)


≤ −κ

(∑
i

|ξi|4h

)
− κ

(∑
i

|ξi|2h

)2

.

3.3 Kähler Manifolds with Negative Holomophic
Sectional Curvature

In this section, we prove the following two theorems by a method of the Kähler-
Ricci flow which are main results in this chapter [Nom16a].

Theorem 3.3.1 ([WY16a, Theorem 2], [ToY15, Corollary 1.3]). If X admits
a Kähler form with strictly negative holomorphic sectional curvature, then the
canonical bundle KX is ample. In particular, X is projective.

Theorem 3.3.2 ([ToY15, Theorem 1.1]). If X admits a Kähler form with semi-
negative holomorphic sectional curvature, then the canonical bundle KX is nef.

Proof of Theorem 3.3.2. By the assumption in Theorem 3.3.2, there exists a Käh-
ler form ω̂ whose holomorphic sectional curvature is semi-negative i.e. κ = 0 in
(3.2.10). Let ωt be the Kähler-Ricci flow stating from arbitrary Kähler form ω0 on
X. By Theorem 3.2.4, the nefness of KX is equivalent to the long time existence
of ωt. By definition of the maximal existence time (3.2.5) and Theorem 3.2.4, it
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is enough to show that if ωt exists for [0, T0) with T0 < ∞, then αT0 is a Kähler
class.

By Proposition 3.2.8 and ,Proposition 3.2.9 we have(
∂

∂t
− ∆ωt

)
log trωt (ω̂) ≤

gij(t)gkl(t)R̂ijkl

trωt (ω̂)
≤ 0.

Applying the maximum principle, we have trωt (ω̂) ≤ maxX trω0 (ω̂) :=C and
hence for all t ∈ [0, T0) we get

1
C

ω̂ ≤ ωt. (3.3.3)

Therefore, for any irreducible subvariety V ⊂ X of positive dimension, the inter-
section number can be estimated as follows:∫

V
[αT0 ]dim V = lim

t↗T0

∫
V

ωdim V
t ≥ 1

Cdim V

∫
V

ω̂dim V > 0.

By Demailly-Păun’s characterization of the Kähler cone [DP04, Main Theorem
0.1], the limiting class αT0 is Kähler.

The idea of avoiding higher order estimates by using the Demailly-Păun’s the-
orem can be found in the proof of [Zha10, Theorem 1.1].
Remark 3.3.4. We can also prove that ωt converges to a smooth Kähler form as
t ↗ T0, in particular αT0 is Kähler. In fact, by using (3.3.3) and Proposition 3.2.7
(a), we get the uniform C2-estimate for ωt:

1
C

ω̂ ≤ ωt ≤ C ′ω̂. (3.3.5)

Thefore we obtain the higher order estimates (see for example [BEG13, 3.2.16]),
which guarantees the convergence.
Proof of Theorem 3.3.1. By the assumption in Theorem 3.3.1, there exists a Käh-
ler form ω̂ whose holomorphic sectional curvature is strictly negative i.e. κ > 0 in
(3.2.10). Let ωt be the normalized Kähler-Ricci flow stating from arbitrary Kähler
form ω0 on X. By Theorem 3.3.2, KX is nef, and therefore ωt exists for t ∈ [0, ∞).

By Proposition 3.2.8 and Proposition 3.2.9, we get(
∂

∂t
− ∆ωt

)
log trωt (ω̂) ≤ 1 +

gij(t)gkl(t)R̂ijkl

trωt (ω̂)
≤ 1 − κ

n + 1
2n

trωt (ω̂) .

Applying the maximum principle, we have trωt (ω̂) ≤ C where

C := max
{

2n

κ(n + 1)
, max

X
trωt (ω̂)

}
> 0.

This gives, for any t ∈ [0, ∞),
1
C

ω̂ ≤ ωt. (3.3.6)

Since αt = [ωt] converges to 2πc1(KX) as t → ∞, the same argument as in the
proof of Theorem 3.3.2 shows the ampleness of KX .

22



Remark 3.3.7. As in Remark 3.3.4, combining Proposition 3.2.7 (b) and (3.3.6),
we get the C2-estimate for ωt, and hence the higher order estimates for ωt. By
Arzelà-Ascoli argument, there exists a subsequence ti satisfying ti ↗ ∞ such that
ωti

converges smoothly to a Kähler form ω∞. Since this Kähler form ω∞ represents
2πc1(KX) by (3.2.3), we get the ampleness of KX .

Remark 3.3.8. A classical result due to Cao [Cao85] show that under the as-
sumption on the ampleness of KX , any normalized Kähler-Ricci flow ωt converges
to the Kähler-Einstein metric with negative Ricci curvature.
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Chapter 4

Schwarz Lemma for Conical
Kähler Metrics

The Schwarz–Pick lemma is a fundamental result in complex analysis. It is well-
known that Yau generalized it to the higher dimensional manifolds by applying his
maximum principle for complete Riemannian manifolds. Jeffres obtained Schwarz
lemma for volume forms of conical Kähler metrics, based on a barrier function and
the maximum principle argument. The objective of this chapter is to generalize
Jeffres’ result to general cone angles including the case when the pullback of the
metric would blows up along the divisors.

In Section 4.1, we review Yau’s Schwarz lemma. In Section 4.2, we recall the
definition of conical Kähler metrics according to Donaldson [Don12]. In Section
4.3, we prove Schwarz lemma for conical Kähler metrics which is the main result
in this chapter.

4.1 Yau’s Schwarz Lemma
In this section, we review Yau’s original Schwarz lemma [Yau78a]. Let f : (X, ωX) →
(Y, ωY ) be a holomoprhic map from a complete Kähler manifold of dimension n
to a Hermitian manifold of dimension m. Then Yau’s Schwarz lemma is stated as
follows.

Theorem 4.1.1 ([Yau78a, Theorem 2]). Assume that there exists non-negative
constants A, B ≥ 0 such that the curvatures satisfy the following:

Ric(ωX) ≥ −AωX , Bisec(ωY ) ≤ −B < 0. (4.1.2)

Then we have the following:

f ∗ωY ≤ A

B
ωX .

Theorem 4.1.3 ([Yau78a, Theorem 3]). Assume that dim X = dim Y = n and
the following curvature condition holds:

R(ωX) ≥ −A, Ric(ωY ) ≤ −BωY < 0, (4.1.4)
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and Ric(ωX) is bounded from below. Then the volume form is estimated as follows:

f ∗ωn
Y ≤

(
A

nB

)n

ωn
X .

Remark 4.1.5. If we assume that (Y, ωY ) is Kähler, by applying Royden’s Lemma
(Proposition 3.2.9), the assumption on bisectional curvature can be replaced to
that on holomorphic sectional curvature (see [Roy80, Theorem 1]).

The proof of both Theorems is based on the maximum principle for comlete
Riemannian manifolds due to Omori [Omo67] and Yau [Yau75].

Theorem 4.1.6. Let (M, g) be a complete Riemannian manifold with Ricci cur-
vature is bounded from below. Then for any function f ∈ C2(M,R) bounded from
below and for any ε > 0, there exists a point xε ∈ M such that

|∇f |2g(xε) < ε, ∆gf(xε) > −ε, f(xε) < inf
M

f + ε. (4.1.7)

Since M is not necessarily compact, the function f does not have minimum in
general. This theorem states that there exists a point xε ∈ M which is very close
to minumum point under the completeness and curvature bound.

Corollary 4.1.8. Let (X, ωX) be a complete Kähler manifold whose Ricci curva-
ture is bounded from below. If u ∈ C2(M,R) is non-negative and satisfies

∆ωX
u ≥ u(Bup − A) (4.1.9)

for some p, B > 0. Then A ≥ 0 and the following holds:

u ≤
(

A

B

)1/p

.

Proof. We denote f := (u + c)−p/2 with fixed constant c > 0. The direct compu-
tation shows that

∆ωX
u = −2

p
(u + c)1+p/2∆ωX

f + 2(p + 2)
p2 (u + c)1+p|∇f |2ωX

. (4.1.10)

Applying Theorem 4.1.6 to f ≥ 0, we get a sequence xε ∈ X satisfying (4.1.7).
Combining with the assumption (4.1.9) and (4.1.10), we have the following in-
equality which holds at xε:

Bu1+p − Au ≤ ε

(
2
p

(u + c)1+p/2 + 2(p + 2)
p2 (u + c)1+p

)
. (4.1.11)

We remark that as ε goes to 0, f(xε) converges to infX f and u(xε) to supX u.
Combining (4.1.11) and B > 0, supX u is finite. Therefore, by using (4.1.11)
again, we have the desired estimate.
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Thanks to this corollary, we only need to prove that v := f ∗ωn
Y /ωn

X and u :=
trωX

(f ∗ωY ) satisfies the Laplacian estimate (4.1.9). The estimate for v is due
to [MY83, Section 1], and that for u is due to Chern-Lu inequality (Proposition
2.7.1). We remark that both inequalities holds even if Y is a Hermitian manifold.
For simplicity, we only prove when Y is Kähler.
Proposition 4.1.12. Let X, Y be (not necessarily compact) Kähler manifolds, and
f : X → Y be a holomorphic map. Let ωX (resp. ωY ) be a smooth Kähler metric
on X (resp. Y ). We set v := f ∗ωn

Y /ωn
X , and u := trωX

(f ∗ωY ).
(a) Suppose that there exists non-negative constants A, B ≥ 0 satisfying R(ωX) ≥

−A, Ric(ωY ) ≤ −BωY , and dim X = dim Y = n. Then we have

∆ωX
log v ≥ nBv1/n − A,

∆ωX
v ≥ v(nBv1/n − A).

(b) Suppose that there exists non-negative constants A, B ≥ 0 satisfying Ric(ωX) ≥
−AωX , Bisec(ωY ) ≤ −BωY . Then we have

∆ωX
log u ≥ Bu − A,

∆ωX
u ≥ u(Bu − A).

Proof. (b) follows from Proposition 2.7.1. We prove (a). Let (z1, . . . , zn) and
(w1, . . . , wn) be normal coodinates on X and Y respectively. We set

ωX =
√

−1 gijdzi ∧ dzj, ωY =
√

−1 hαβdwα ∧ dwβ.

v is locally denoted as

v = f ∗ωn
Y

ωn
X

=
det(hαβ ◦ f) | det J(f)|2

det(gij)
(4.1.13)

where J(f) is the Jacobian of f . Therefore, on Ω := {x ∈ X | det J(f)(x) ̸= 0},
we obtain

√
−1 ∂∂ log v = f ∗ √

−1 ∂∂ log det(hαβ) +
√

−1 ∂∂ log det(gij)
−

√
−1 ∂∂ log | det J(f)|2

= f ∗(−Ric(ωY )) + Ric(ωX).

By the assumption on curvatures and the inequality of arithmetic and geometric
means, we have the following estimates on Ω:

∆ωX
log v = trωX

(√
−1 ∂∂ log v

)
= trωX

(f ∗(−Ric(ωY ))) + R(ωX)
≥ BtrωX

(f ∗ωY ) − A

≥ nBv1/n − A,

∆ωX
v = ∆ωX

elog v = elog v
(
|∇ log v|2ωX

+ ∆ωX
log v

)
≥ v∆ωX

log v

≥ v(nBv1/n − A).

By continuity, the last inequality holds on the whole X.
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4.2 Conical Kähler Metrics
In this section, we recall the definition of conical Kähler metrics, for short cone
metrics, following [Don12, Section 4]. Let X be a compact Kähler manifold of
dimension n, D be a smooth divisor on X, and β be a real number satisfying
0 < β < 1. If we take a local holomorphic chart (U, (z1, . . . , zn)) satisfying D∩U =
{z1 = 0}, the standard cone metric ωβ is defined as

ωβ := β2

|z|2(1−β)

√
−1
2

dz1 ∧ dz1 +
n∑

i=2

√
−1
2

dzi ∧ dzi.

We remark that ωβ induces a distance function dβ on U which is expressed as

dβ(z, w) =
(∣∣∣(z1)β − (w1)β

∣∣∣2 + |z2 − w2|2 + · · · + |zn − wn|2
)1/2

,

where z = (z1, . . . , zn), w = (w1, . . . , wn). Here, we take a suitable branch of zβ.

Definition 4.2.1 (C2,α,β-functions). Let α be a constant satiftying 0 < α <
min{1/β − 1, 1}. We define the regularites of functions along D as follows.

1. A function f on X is said to be of class C ,α,β if for any local holomorphic chart
(U, (z1, . . . , zn)) satisfying D ∩ U = {z1 = 0}, f is an α-Hölder continuous
function on U with respect to the distance function dβ.
This definition is equivalent to the following statement which is the original
definition in [Don12]. We set f̃ by f̃(ξ, z2, . . . , zn) := f(|ξ|1/β−1 ξ, z2, . . . , zn).
Then f̃ is an α-Hölder continuous function with respect to ξ, z2, . . . , zn with
respect to the Euclidean distance.

2. A (1, 0)-form τ is said to be of class C ,α,β if

∣∣∣z1
∣∣∣1−β

τ

(
∂

∂z1

)
∈ C ,α,β,

τ

(
∂

∂zi

)
∈ C ,α,β for i = 2, . . . , n

3. A (1, 1)-form σ is said to be of class C ,α,β if

∣∣∣z1
∣∣∣2(1−β)

σ

(
∂

∂z1 ,
∂

∂z1

)
∈ C ,α,β,

∣∣∣z1
∣∣∣1−β

σ

(
∂

∂z1 ,
∂

∂zi

)
∈ C ,α,β for i = 2, . . . , n,

∣∣∣z1
∣∣∣1−β

σ

(
∂

∂zi
,

∂

∂z1

)
∈ C ,α,β for i = 2, . . . , n,

σ

(
∂

∂zi
,

∂

∂zj

)
∈ C ,α,β for i, j = 2, . . . , n.
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4. A function f is said to be of class C2,α,β if f , ∂f , ∂f ,
√

−1 ∂∂f are of class
C ,α,β.

Definition 4.2.2 (Cone metrics). A closed positive (1, 1)-current ω on X is called
a cone metric with cone angle 2πβ along D if it satisfies the following three con-
ditions:

(i) ω is a Kähler metric on X \ D

(ii) For each point x ∈ D, there exists a local holomorphic chart (U, (z1, . . . , zn))
satisfying D ∩ U = {z1 = 0} such that ω is quasi-isometric to the standard
cone metric ωβ on U \ D, that is, there exists a constant C = CU > 0 such
that

1
C

ωβ ≤ ω ≤ Cωβ on U \ D.

(iii) There exists a smooth Kähler form ω0 on X, and a C2,α,β-function φ such
that

ω = ω0 +
√

−1 ∂∂φ.

In [Jef00a], the regularity condition (iii) does not assumed. However, we assume
here.

A typical example of the cone metric is ω := ω0 + δ
√

−1 ∂∂|s|βh, where ω0 is a
smooth Kähler metric on X, δ is a sufficiently small constant, s ∈ H0(X, OX(D))
is a holomorphic section of the line bundle OX(D) whose zero divisor is D, and h
is a smooth Hermitian metric.

4.3 Schwarz Lemma for Conical Kähler Metrics
In this section, we prove Schwarz lemma for conical Kähler metrics, which is the
main result in this chapter [Nom16b].

To state the theorems, we use the following setups and notations. Let X and Y
be compact Kähler manifolds, D ⊂ X, E ⊂ Y be smooth divisors, and f : X → Y
be a surjective holomorphic map satisfying f ∗(E) = kD with k ∈ Z>0. Let ωX

(resp. ωY ) be a cone metric with cone angle 2πα (resp. 2πβ) along D (resp. E)
on X (resp. Y ). Let s ∈ H0(X, OX(D)) be a holomorphic section of the line
bundle OX(D) whose zero divisor is D and h be a smooth Hermitian metric on
it satisfying |s|h ≤ 1. Let C > 0 be an upper bound for the Chern curvature
of h i.e.

√
−1 Rh ≤ CωX . For a Kähler form ω, we will denote by Ric(ω) the

Ricci curvature of ω, R(ω) the scalar curvature of ω, and Bisec(ω) the bisectional
curvature of ω.

Schwarz lemma for the cone metrics obtained by Jeffres [Jef00a] is states as
follows.
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Theorem 4.3.1 ([Jef00a, Theorem]). Assume that dim X = dim Y = n, the cone
angles satisfy α ≤ β and there exists non-negative constants A, B ≥ 0 satisfying

R(ωX) ≥ −A, Ric(ωY ) ≤ −BωY < 0. (4.3.2)

Then, the volume forms satisfy

f ∗ωn
Y ≤

(
A

B

)n

ωn
X on X \ D.

Since the cone metric is not complete on X \D, we cannot apply the maximum
principle argument directly. Jeffers overcame this difficulty by using a barrier
function, called “Jeffres’ trick”. However, his original proof seems to need more
assumptions on the regularity of the cone metrics along D as in Definition 4.2.1
(see the proof of Proposition 4.3.6).

We will generalize this theorem to a general cone angle and prove a Schwarz
lemma for cone metrics.

Theorem 4.3.3 (Volume forms). Assume that dim X = dim Y = n and the cur-
vature condition (4.3.2) holds.

(a) Suppose α ≤ kβ. Then we have

f ∗ωn
Y ≤

(
A

nB

)n

ωn
X on X \ D.

(b) Suppose α > kβ. Then we have

f ∗ωn
Y ≤

(
A + (α − kβ)C

nB

)n
ωn

X

|s|2(α−kβ)
h

on X \ D.

We remark that the condition α ≤ kβ on cone angles in the statement (a) is
weaker than assumptions in Theorem 4.3.1.

Theorem 4.3.4 (Metrics). Assume that there exists non-negative constants A, B ≥
0 such that the curvatures satisfy the following:

Ric(ωX) ≥ −AωX , Bisec(ωY ) ≤ −B < 0. (4.3.5)

(a) Suppose α ≤ kβ. Then we have

f ∗ωY ≤ A

B
ωX on X \ D.

(b) Suppose α > kβ. Then we have

f ∗ωY ≤ A + (α − kβ)C
B

ωX

|s|2(α−kβ)
h

on X \ D.
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If the cone angle satisfies α > kβ, the pullback f ∗ωY has singularites along D.
In fact, even in a one-dimensional case, the pullback of the standard cone metric
ωβ = (β2/|w|2(1−β))

√
−1 dw ∧ dw/2 by f : z 7→ w = zk is given by

f ∗ωβ = β2k2|z|2(kβ−1)
√

−1
2

dz ∧ dz,

therefore we have

f ∗ωβ

ωα

= β2k2

α2 |z|2(kβ−α),

which is singular if α > kβ.
The next proposition is the so-called “Jeffres’ trick” and needs regularity on

the definition of cone metrics.

Proposition 4.3.6 ([Jef00a, Section 4]). Let X be a compact Kähler manifold,
D be a smooth divisor, and β be a real number satisfying 0 < β < 1. Let s ∈
H0(X, OX(D)) be a holomorphic section of the line bundle OX(D) whose zero
divisor is D, and h is a smooth Hermitian metric. Then, for any function u ∈ C ,α,β

and ε > 0, every maximum point of the function

uε := u + ε|s|2γ
h

on X belongs to X \ D if 0 < 2γ < αβ.

Proof. We assume that uδ takes maximum at x0 ∈ D. Let (U, (z1, . . . , zn)) be a
holomorphic chart centered at x0 satisfying D ∩ U = {z1 = 0}. By the definition
of x0, for any x = (z, 0, . . . , 0) ∈ U , we have

|u(x) − u(x0)|
dβ(x, x0)α

= |u(x) − u(x0)|
|z|αβ

≥ ε|s|2γ
h (x)

|z|αβ
≥ ε

C

|z|2γ

|z|αβ
.

Since 0 < 2γ < αβ, the right hand side goes to ∞ as z → 0. This contradicts with
the definition of C ,α,β.

Theorem 4.3.3 and Theorem 4.3.4 can be shown in a smilar manner. We only
prove Theorem 4.3.3 here.

Proof of Theorem 4.3.3 (a). Since f can be represented as (w1, . . . , wn) = ((z1)k,
f2(z), . . . , fn(z)) such that D = {z1 = 0} and E = {w1 = 0}, the direct computa-
tion gives that f is locally Hölder continuous with respect to dα and dβ if α ≤ kβ.
Combining with (4.1.13) and the definition of the cone metrics, v := f ∗ωn

Y /ωn
X is

a C ,σ,β function for some 0 < σ < 1. By Proposition 4.3.6, all maximum points
of vδ := v + ε|s|2γ

h belong to X \ D where γ is sufficiently small. Since vε is
smooth on X \ D, we can apply the maximum principle argument to vε. The
direct computation show that
√

−1 ∂∂|s|2γ
h =

√
−1 ∂∂eγ log |s|2h = |s|2γ

h (γ
√

−1 ∂∂ log |s|2h + γ2 √
−1 ∂ log |s|2h ∧ ∂ log |s|2h)

≥ −γ|s|2γ
h

√
−1 Rh.
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Therefore, there exists a constant C > 0 (which is independent of ε) satisfying

∆ωX
|s|2γ

h ≥ − C.

Let x0 ∈ X \D be a maximum point of vε. At this point, by Proposition 4.1.12
(a), we have

0 ≥ ∆ωX
vε = ∆ωX

v + ε∆ωX
|s|2γ

h ≥ v(nBv1/n − A) − εC.

Simple calculus show that the function t 7→ tn(nBt − A) − εC takes non-positive
values exactly on some bounded interval [0, Tε] and Tε → A/(nB) as ε → 0. It
follows that

vε(x0) = v(x0) + ε|s|2γ
h (x0) ≤ T n

ε + ε sup
X

|s|2γ
h .

Since the right hand side does not depend on x0 and x0 is any maximum point of
vε, this inequality holds on whole X. Therefore, we have the following inequality

v = vε − ε|s|2γ
h ≤ vε ≤ T n

ε + ε sup
X

|s|2γ
h

on X. By taking ε → 0, we obtain v ≤ (A/(nB))n.

Proof of Theorem 4.3.3 (b). By definition of the cone metric, we can easily see
that for any ε > 0,

vε := |s|2(ℓ+ε)
h v = |s|2(ℓ+ε)

h

f ∗ωn
Y

ωn
X

tends to 0 as x approaches to D, where ℓ := α − kβ > 0. Then, combining the
Laplacian estimate in Proposition 4.1.12 (a), we have

∆ωX
log vε = −(ℓ + ε)trωX

(√
−1 Rh

)
+ ∆ωX

log v

≥ −(ℓ + ε)C − A + nBv1/n,

∆ωX
vε ≥ vε(−(ℓ + ε)C − A + nBv1/n).

If x0 ∈ X is a maximum of vε, we can assume that x0 ∈ X \ D. At this point, by
applying the maximum principle, we have

v(x0) ≤
(

A + (ℓ + ε)C
nB

)n

.

Therefore, we get

vε(x0) ≤ |s|ℓ+ε
h (x0)

(
A + (ℓ + ε)C

nB

)n

≤
(

A + (l + ε)C
nB

)n

.

Since the right hand side does not depend on x0, this inequality holds on X. Taking
ε → 0, we obtain

|s|2ℓ
h

f ∗ωn
Y

ωn
X

≤
(

A + ℓC

nB

)n

.
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Chapter 5

Blowup Behavior of the Conical
Kähler-Ricci Flow

In this chapter, we investigate the scalar curvature behavior along the normalized
conical Kähler-Ricci flow ωt, which is the conic version of the normalized Kähler-
Ricci flow, with finite maximal existence time T < ∞. In Theorem 5.1.5, we
prove that the scalar curvature of ωt is bounded from above by C/(T − t)2 under
the existence of a contraction associated to the limiting cohomology class [ωT ]
[Nom16c]. This generalizes Zhang’s work [Zha10] to the conic case.

5.1 Statement of the Result
In this section, we recall the definitions and properties for the conical Kähler-Ricci
flow and state the main result Theorem 5.1.5 in this chapter.

Let X be a compact Kähler manifold of dimension n, D be a smooth divisor
on X, and β be a positive real number satisfying 0 < β < 1.

Definition 5.1.1. A family of cone metrics ωt with cone angle 2πβ along D called
the conical Kähler-Ricci flow if it satisfies the following parabolic equation:

∂

∂t
ωt = −Ric(ωt) − ωt + 2π(1 − β)[D],

ωt|t=0 = ω∗,
(5.1.2)

where [D] is the current of integration over D, and ω∗ is a initial cone metric.

The maximal existence theorem for conical Kähler-Ricci flow holds for certain
inital metrics which is similar to the Kähler-Ricci flow case Theorem 3.2.4.

Theorem 5.1.3 ([She14a, She14b]). Let s ∈ H(X, OX(D)) be a section whose zero
divisor is D, h be a smooth Hermitian metric on OX(D) and ω0 be a smooth Kähler
form on X. We set ω∗ := ω0 + k

√
−1 ∂∂|s|2β

h with sufficiently small k ∈ R>0 such
that ω∗ is a cone metric with cone angle 2πβ along D. Then the conical Kähler-
Ricci flow starting from ω∗ uniquely exists for t ∈ [0, T ) where

T = sup{t > 0 | [ωt] = e−t[ω0] + (1 − e−t)2πc1(KX + (1 − β)D) is Kähler }.
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We call T the maximal existence time for the conical Kähler-Ricci flow. By
Theorem 3.2.4, the Kähler-Ricci flowis closely related to the canonical bundle KX ,
on the other hand, by Theorem 5.1.3, the conical Kähler-Ricci flowis to the log-
canonical bundle KX + (1 − β)D.

In this chapter, we treat the singularity behavior of the scalar curvature along
the conical Kähler-Ricci flow as t approaches to T . We assume the following
contraction type condition on the cohomology class [ωT ]. Let f : X → Z be a
holomophic map between compact Kähler manifolds, whose image is contained
in a normal irreducible subvariety Y of Z. Let DY be an effective Cartier divisor
on Y such that the pullback of DY satisfies D = f ∗DY . Let hY be a smooth
Hermitian metric on the line bundle OY (DY ) in the sense of [EGZ09, Section 5],
and sY be a holomorphic section of OY (DY ) whose zero divisor is DY . We define
the initial cone metric ω∗ by

ω∗ := ω0 + k
√

−1 ∂∂|s|2β
h , (5.1.4)

where ω0 is a smooth Kähler form on X, k ∈ R>0 is a sufficiently small real
number, s := f ∗sY is the holomorphic section of OX(D), and h := f ∗hY is the
smooth Hermitian metric on OX(D). We remark that if we take k sufficiently
small, ω∗ is actually a cone metric with cone angle 2πβ along D.

Let ωt be the normalized conical Kähler-Ricci flow with initial cone metric ω∗,
and T be the maximal existence time of ωt. We further assume that T is finite
and there exists a smooth Kähler form ωZ on Z satisfying

[f ∗ωZ ] = [ωT ] ∈ H1,1(X,R).

Under these assumptions, we have the following theorem.
Theorem 5.1.5. The scalar curvature R(ωt) of ωt satisfies

R(ωt) ≤ C

(T − t)2 on X \ D,

where C > 0 is a constant independent of t.
This Theorem is a cone metric analogue to the following Zhang’s result.

Theorem 5.1.6 ([Zha10]). Let ω0 be a Kähler form such that the maximal ex-
istence time TKRF for the normalized Kähler-Ricci flow (3.2.5) is finite. Assume
that there exists a holomorphic map f : X → (Z, ωZ) between compact Kähler man-
ifolds such that [f ∗ωZ ] = [ωTKRF

]. Then there exists a constant C > 0 such that
the scalar curvature of the normalized Kähler-Ricci flowsatisfies

R(ωt) ≤ C

(TKRF − t)2 .

In contrast with Zhang’s result, we need to treat with the singularities of ωt

along D. This is overcame by using the approximation technique used in [CGP13,
She14a, LZ14, Edw15].
Remark 5.1.7. If we replace (1−β)D by ∑i∈I(1−βi)Di where Di are smooth divi-
sors intersecting transversely, the same argument below gives the same conclusion.
But for simplicity, we only treat one smooth divisor case.
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5.2 Approximation by the Twisted Normalized
Kähler-Ricci Flow

In the following argument, we assume that the conditions in Theorem 5.1.5 are
always satisfied. We first define a family of reference smooth Kähler forms ω̂t

whose cohomology classes are equal to [ωt]. We set ω̂∞ by

ω̂∞ := − e−T

1 − e−T
ω0 + 1

1 − e−T
f ∗ωZ

∈ − e−T

1 − e−T
[ω0] + 1

1 − e−T
[ωT ] = 2πc1(KX + (1 − β)D),

and ω̂t by

ω̂t := e−tω0 + (1 − e−t)ω̂∞ = atω0 + (1 − at)ω̂T , (5.2.1)

where at := (e−t −e−T )/(1−e−T ). In this setting, ω̂T = f ∗ωZ ≥ 0 is semi-positive,
hence ω̂t are smooth Kähler forms for any t ∈ [0, T ). The cohomology class of ω̂t

coincide with [ωt].
We next define a family of reference smooth Kähler forms ω̃ε,t whose co-

homology classes are equal to [ωt]. We use the approximation method as in
[She14a, LZ14, Edw15] originated from [CGP13]. We denote ρε := χ(|s|2h, ε2),
where

χ(u, ε2) := β
∫ u

0

(r + ε2)β − ε2β

r
dr.

Then, ρε are smooth functions on X and converge to |s|2β
h in C∞

loc(X \D) as ε → 0.
In this notation, we define reference smooth Kähler forms ω̃ε,t by

ω̃ε,t := ω̂t + k
√

−1 ∂∂ρε = atω̃ε,0 + (1 − at)ω̃ε,T . (5.2.2)

These forms converge to ω̃t in C∞
loc(X \ D) and as current on X when ε tends to 0.

We prove that if we take k sufficiently small, ω̃ε,t is positive for all t ∈ [0, T ).
Let C1 > 0 be a constant satisfying

−C1ωZ ≤
√

−1 RhY
≤ C1ωZ on Y, (5.2.3)

where RhY
is the Chern curvature of hY . Since h = f ∗hY and ω̂T = f ∗ωZ , we have

−C1ω̂T ≤
√

−1 Rh ≤ C1ω̂T on X. (5.2.4)

Let C2 > 0 and C3 > 1 be constants such that

sup
Y

|sY |hY
≤ C2, (5.2.5)

ω̂T = f ∗ωZ ≤ C3ω0 on X. (5.2.6)

By (5.2.5), there exists a constant C4 > 0 independent of ε such that

0 ≤ ρε ≤ C4 on X. (5.2.7)

34



By the computation in [CGP13, Section 3], we have

√
−1 ∂∂ρε = β2

√
−1⟨∇s, ∇s⟩h

(|s|2h + ε2)1−β
− β

(
(|s|2h + ε2)β − ε2β

)√
−1 Rh (5.2.8)

≥ −βC1C
2β
2 ω̂T ,

where ∇ is the Chern connection of the line bundle (OX(D), h), Rh is its Chern
curvature, and

√
−1⟨∇s∧∇s⟩h is a semi-positive closed real (1, 1)-form combining

the wedge product of differential forms with the Hermitian metric h on OX(D).
By (5.2.2), (5.2.8), and (5.2.6), we obtain the following inequalities:

ω̃ε,T = ω̂T + k
√

−1 ∂∂ρε ≥ (1 − kβC1C
2β
2 )ω̂T ≥ (1 − kβC1C

2β
2 C3)ω̂T , (5.2.9)

ω̃ε,0 = ω0 + k
√

−1 ∂∂ρε ≥ ω0 − kβC1C
2β
2 ω̂T ≥ (1 − kβC1C

2β
2 C3)ω0. (5.2.10)

Finally, these inequalities give the positivity of ω̃ε,t for any t ∈ [0, T ):

ω̃ε,t = ω̂t + k
√

−1 ∂∂ρε = atω̃ε,0 + (1 − at)ω̃ε,T ≥ (1 − kβC1C
2β
2 C3)ω̂t > 0.

By using these reference smooth Kähler forms, we consider the following ap-
proximate flow:

∂

∂t
φε,t = log (ω̃ε,t +

√
−1 ∂∂φε,t)n

Ω
− φε,t + (1 − β) log(|s|2h + ε2) − kρε,

φε,t|t=0 = 0,

(5.2.11)

where Ω is a smooth volume form on X satisfying

−Ric(Ω) + (1 − β)
√

−1 Rh = ω̂∞ ∈ 2πc1(KX + (1 − β)D).

We set ωε,t by

ωε,t := ω̃ε,t +
√

−1 ∂∂φε,t. (5.2.12)

Then, ωε,t satisfies the following twisted Kähler-Ricci flow:
∂

∂t
ωε,t = −Ric(ωε,t) − ωε,t + ηε,

ωt|t=0 = ω̃ε,0(:= ω0 + k
√

−1 ∂∂ρε),
(5.2.13)

where ηε is a closed real (1, 1)-form defined by ηε := (1−β)
√

−1 ∂∂ log(|s|2h +ε2)+
(1 − β)

√
−1 Rh. ηε converges to 2π(1 − β)[D] in C∞

loc(X \ D) and as current on X
when ε goes to 0.

The validity of these approximations (5.2.11), (5.2.13) is justified by the fol-
lowing theorem due to Shen [She14a].

Theorem 5.2.14 ([She14a, Section 2]). There exists a subsequence εi converging
to 0 as i → ∞ such that φεi,t converges to φt in C∞

loc(X \ D) and ωεi,t converges
to ωt in C∞

loc(X \ D) and as current on X.

Thanks to this theorem, we only need to estimate φε,t and ωε,t.
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5.3 Overview of the Proof of Theorem 5.1.5
In this section, we outline the proof of Theorem A. First, we need the following
formulas.
Proposition 5.3.1. The Ricci curvature Ric(ωε,t) and the scalar curvature R(ωε,t)
satisfy the following formulas:

(a) (1 − et−T ) (Ric(ωε,t) − ηε) = −
√

−1 ∂∂vε,t + et−T ωε,t − ω̂T ,

(b) (1 − et−T )(R(ωε,t) − trωε,t(ηε)) = −∆ωε,tvε,t + net−T − trωε,t(ω̂T ),

where

vε,t := (1 − et−T )φ̇ε,t + φε,t + kρε.

Proof. (b) follows from (a) by taking traces. We prove (a). By (5.2.13), (5.2.2),
and (5.2.12), we have

Ric(ωε,t) − ηε = − ∂

∂t
ωε,t − ωε,t

= −
(

∂

∂t
ω̂t + ∂

∂t

√
−1 ∂∂φε,t

)
−
(
ω̂t + k

√
−1 ∂∂ρε +

√
−1 ∂∂φε,t

)
= −

√
−1 ∂∂(φ̇ε,t + φε,t + kρε) −

(
ω̂t + ∂

∂t
ω̂t

)
.

On the other hand,

−et−T (Ric(ωε,t) − ηε) = −et−T

(
− ∂

∂t
ωε,t − ωε,t

)

= et−T

(
∂

∂t
ω̂t + ∂

∂t

√
−1 ∂∂φε,t

)
+ et−T ωε,t

=
√

−1 ∂∂
(
et−T φ̇ε,t

)
+ et−T ωε,t + et−T ∂

∂t
ω̂t.

Combining these equalities and (5.2.1), we have (a).

By this proposition, to obtain the upper bound for the scalar curvature R(ωε,t),
we only need to estimate uε,t := trωε,t(ω̂T ) and ∆ωε,tvε,t. We devide our argument
into the following 5 steps:
Step 1. The C0-estimate for vε,t (Section 5.4).

Step 2. The C0-estimate for uε,t := trωε,t(ω̂T ) using Step 1 and the parabolic
Schwarz lemma (Section 5.5).

Step 3. The gradient estimate for vε,t (Section 5.6).

Step 4. The Laplacian estimate for vε,t (Section 5.7):

∆ωε,tvε,t ≥ − C

T − t
.

Step 5. Proof of Theorem A (Section 5.7).
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5.4 The C0-estimate for vε,t

In this section, we prove the C0-estimates for vε,t. More precisely, we prove the
following proposition.

Proposition 5.4.1. There exists a constant C5 > 0 independent of ε and t such
that

∥vε,t∥C0 ≤ C5

holds.

To apply the maximum principle, we need the following lemma.

Lemma 5.4.2. vε,t satisfies the following evolution equation(
∂

∂t
− ∆ωε,t

)
vε,t = −n + uε,t,

where uε,t := trωε,t(ω̂T ).

Proof. Differentiating (5.2.11) with respect to t, we have

∂

∂t
φ̇ε,t = trωε,t

(
∂

∂t

(
ω̃ε,t +

√
−1 ∂∂φε,t

))
− φ̇ε,t

i.e. ∂

∂t
(φ̇ε,t + φε,t) = trωε,t

(
∂

∂t
ω̂t

)
+ ∆ωε,tφ̇ε,t. (5.4.3)

On the other hand, by (5.2.12) and (5.2.2), we have

∆ωε,tφε,t = trωε,t(ωε,t) − trωε,t(ω̃ε,t) = n − trωε,t(ω̂t) − ∆ωε,t(kρε).

Combing these, we obtain

∂

∂t

(
φ̇ε,t + φε,t + k

√
−1 ∂∂ρε

)
= ∆ωε,t(φ̇ε,t + φε,t + kρε) − n + trωε,t

(
ω̂t + ∂

∂t
ω̂t

)
.

(5.4.4)

Next, by using (5.4.3), we have

∂

∂t

(
−et−T φ̇ε,t

)
= −et−T ∂

∂t
(φ̇ε,t + φε,t) = −trωε,t

(
et−T ∂

∂t
ω̂t

)
− ∆ωε,t(et−T φ̇ε,t).

(5.4.5)

By (5.4.4), (5.4.5), and (5.2.1), we get the assertion.

Next, we prove the uniform volume estimate of the reference metrics ω̃ε,t.

Lemma 5.4.6. There exists a constant C6 > 0 independent of ε ant t satisfying
the following inequalites:
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(a)
1

C6

Ω
(|s|2h + ε2)1−β

≤ ω̃n
ε,0 ≤ C6

Ω
(|s|2h + ε2)1−β

.

(b)
ω̃n

ε,t ≤ Cn
3 C6

Ω
(|s|2h + ε2)1−β

.

Proof. The first inequality follows from (5.2.8). We prove the second one. For
0 < k < C3, by (5.2.4) and (5.2.2), we have

ω̃ε,T = ω̂T + k
√

−1 ∂∂ρε ≤ C3ω0 + k
√

−1 ∂∂ρε ≤ C3ω̃ε,0.

Since C3 > 1, we have

ω̃ε,t = atω̃ε,0 + (1 − at)ω̃ε,T ≤ atω̃ε,0 + C3(1 − at)ω̃ε,0 ≤ C3ω̃ε,0.

Therefore, we get the assertion.

Using these lemmas, we can prove the uniform lower boundedness of vε,t.

Proposition 5.4.7. vε,t is uniformly lower bounded. More precisely, there exists
a constant C7 > 0 independent of ε and t such that

vε,t ≥ −C7.

Proof. By Lemma 5.4.2 and the semi-positivity of ω̂T , we have(
∂

∂t
− ∆ωε,t

)
(vε,t + nt) = uε,t = trωε,t(ω̂T ) ≥ 0.

Thus, the maximum principle for vε,t + nt gives the following:

vε,t + nt ≥ min
X×{0}

(vε,t + nt) = (1 − e−T )φ̇ε,0 + kρε ≥ (1 − e−T )φ̇ε,0.

Lemma 5.4.6 (a) and (5.2.7) give the lower boundedness of right hand side as
follows:

φ̇ε,0 = log
ω̃n

ε,0

Ω/(|s|2h + ε2)1−β
− φε,0 − kρε ≥ − log C6 − kC4.

Therefore we get the assertion.

To prove the uniform upper boundedness of vε,t = (1 − et−T )φ̇ε,t + φε,t + kρε,
it is enough to show that φε,t and φ̇ε,t are unifomly upper bounded.

Proposition 5.4.8. We have the following inequalities:

(a) φε,t ≤ C8,

(b) φ̇ε,t ≤ C9,
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where C8 > 0, C9 > 0 independent of ε and t.

Proof. (a) Since φε,0 = 0, we may assume that φε,t takes maximum at (x0, t0) ∈
X × (0, T ). By Lemma 5.4.6 (b), we have the following inequatliy which holds at
(x0, t0):

0 ≤ ∂

∂t
φε,t = log (ω̃ε,t +

√
−1 ∂∂φε,t)n

Ω/(|s|2h + ε2)1−β
− φε,t − kρε

≤ log
ω̃n

ε,t

Ω/(|s|2h + ε2)1−β
− φε,t − kρε

≤ log(Cn
3 C6) − φε,t.

Therefore, we obtain

φε,t(x0, t0) ≤ log(Cn
3 C6) :=C8.

Since (x0, t0) is arbitrary, φε,t ≤ C8 holds on X × [0, T ).
(b) We set Hε,t := (1 − et)φ̇ε,t + φε,t + kρε + nt. The same computation in

Lemma 5.4.2 gives (
∂

∂t
− ∆ωε,t

)
Hε,t = trωε,t(ω0) > 0.

By the maximum principle for Hε,t, we have

Hε,t ≥ min
X×{0}

Hε,t = kρε ≥ 0.

Therefore, combining with (a) and (5.2.7), we get the upper bound for φ̇ε,t:

φ̇ε,t ≤ φε,t + kρε + nt

et − 1
≤ C8 + kC4 + nT

et − 1
.

Combining with the uniform local estimate for the parabolic equation, we get the
assertion.

5.5 The C0-estimate for uε,t

In this section, we prove the following proposition.

Proposition 5.5.1. There exists a constant C10 > 0 independent of ε and t such
that

0 ≤ uε,t := trωε,t(ω̂T ) ≤ C10.

To prove this proposition, we need to estimate on ηε := (1−β)
√

−1 ∂∂ log(|s|2h+
ε2) + (1 − β)

√
−1 Rh and the parabolic Schwartz lemma. A direct computation

gives the following.
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Lemma 5.5.2. We have the following inequalities of ηε.

(a) Lower boundedness of ηε:

ηε = (1 − β) ε2

|s|2h + ε2

(√
−1⟨∇s, ∇s⟩h

|s|2h + ε2 +
√

−1 Rh

)
≥ −(1 − β)C1ω̂T .

(b) For any Kähler form ω, we have

−⟨ηε, ω̂T ⟩ω ≤ (1 − β)C1|ω̂T |2ω ≤ (1 − β)C1(trω(ω̂T ))2.

By the fact that ω̂T is the pullback of ωZ by f , we can use the parabolic Schwarz
lemma which is obtained by Song-Tian [ST07]. This is the parabolic version of
[Yau78a]. This lemma follows from similar computation as in Proposition 3.2.8
(see also Proposition 2.7.1).

Lemma 5.5.3 (Parabolic Schwarz lemma). uε,t and log uε,t satisfy the following
inequalites.

(a)
∆ωε,tuε,t ≥ −CZu2

ε,t + ⟨Ric(ωε,t), ω̂T ⟩ωε,t

≥ −C11u
2
ε,t + ⟨Ric(ωε,t) − ηε, ω̂T ⟩ωε,t .

(b) (
∂

∂t
− ∆ωε,t

)
uε,t ≤ uε,t + CZu2

ε,t − ⟨ηε, ω̂T ⟩ωε,t −
|∇uε,t|2ωε,t

uε,t

≤ uε,t + C11u
2
ε,t −

|∇uε,t|2ωε,t

uε,t

.

(c) (
∂

∂t
− ∆ωε,t

)
log uε,t ≤ CZuε,t + 1 −

⟨ηε, ω̂T ⟩ωε,t

uε,t

≤ C11uε,t + 1.

Here, ∇ is (1, 0)-part of the Levi-Civita connection of ωε,t, CZ > 0 is an upper
bound for the bisectional curvature of ωZ, and C11 := CZ + (1 − β)C1 > 0.

Proof of Proposition 5.5.1 We set Gε,t := log uε,t −C12vε,t where C12 := C11 +1 > 0
is a uniform constant. The uniform upper boundedness of Gε,0 follows from (5.2.6),
(5.2.10) and Proposition 5.4.1. If we suppose that Gε,t achieves maximum at
(x0, t0) ∈ X × (0, T ), we have uε,t(x0, t0) > 0 and(

∂

∂t
− ∆ωε,t

)
Gε,t =

(
∂

∂t
− ∆ωε,t

)
log uε,t − C12

(
∂

∂t
− ∆ωε,t

)
vε,t

≤ (C11uε,t + 1) − C12(uε,t − n)

= −uε,t + (C12n + 1) at (x0, t0).
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By using the uniform boundedness of vε,t (Proposition 5.4.1), we obtain

Gε,t ≤ log(C12n + 1) − C12vε,t ≤ log(C12n + 1) + C12C5 at (x0, t0).

Since (x0, t0) is arbitrary, we have Gε,t ≤ C13 on X × [0, T ). Hence, using the
definition of Gε,t and Proposition 5.4.1, we obtain

log uε,t ≤ C12vε,t + C13 ≤ C12C5 + C13,

which prove the assertion. □

5.6 The Gradient Estimate for vε,t

In this section, we prove the following gradient estimate.

Proposition 5.6.1. There exists a uniform constant C14 > 0 which is independent
of ε and t such that

|∇vε,t|2ωε,t
≤ C14.

To prove this proposition, as in [Zha10], we set Ψε,t :=
|∇vε,t|2ωε,t

A − vε,t

, where A >

C5 + 1 is a fixed constant (see Proposition 5.4.1). We will use the maximum
principle to Ψε,t + uε,t. The direct computation gives the following formulas.

Lemma 5.6.2. We have the following formulas.

(a) (
∂

∂t
− ∆ωε,t

)
|∇vε,t|2ωε,t

= |∇vε,t|2ωε,t
− ηε(∇vε,t, ∇vε,t) + 2 Re⟨∇vε,t, ∇uε,t⟩ωε,t

− |∇∇vε,t|2ωε,t
− |∇∇vε,t|2ωε,t

(b) (
∂

∂t
− ∆ωε,t

)
∆ωε,tvε,t = ∆ωε,t(vε,t + uε,t) + ⟨Ric(ωε,t) − ηε,

√
−1 ∂∂vε,t⟩ωε,t

(c) (
∂

∂t
− ∆ωε,t

)
Ψε,t

= 1
A − vε,t

(
|∇vε,t|2ωε,t

− |∇∇vε,t|2ωε,t
− |∇∇vε,t|2ωε,t

− ηε(∇vε,t, ∇vε,t)

+ 2 Re⟨∇vε,t, ∇uε,t⟩ωε,t

)

+ 1
(A − vε,t)2

(
(uε,t − n)|∇vε,t|2ωε,t

− 2 Re⟨∇|∇vε,t|2ωε,t
, ∇vε,t⟩ωε,t

)
− 2

(A − vε,t)3 |∇vε,t|4ωε,t
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Proof of Proposition 5.6.1 We will apply the maximum principle to Ψε,t + uε,t.

First, we estimate
(

∂

∂t
− ∆ωε,t

)
Ψε,t. By Lemma 5.5.2 (a), we have

−ηε(∇vε,t, ∇vε,t) ≤ (1 − β)C1|∇vε,t|2ωε,t
.

For sufficiently small constant δ > 0 which will be determined later, we have

2 Re⟨∇vε,t, ∇uε,t⟩ωε,t ≤ 2|∇vε,t|ωε,t |∇uε,t|ωε,t ≤ 1
δ

|∇vε,t|2ωε,t
+ δ|∇uε,t|2ωε,t

.

Since

∇Ψε,t =
∇|∇vε,t|2ωε,t

A − vε,t

+
|∇vε,t|2ωε,t

(A − vε,t)2 ∇vε,t, (5.6.3)

we have

− 2 − δ

(A − vε,t)2 Re⟨∇|∇vε,t|2ωε,t
, ∇vε,t⟩ωε,t

= − 2 − δ

A − vε,t

Re⟨∇Ψε,t, ∇vε,t⟩ωε,t + (2 − δ)
|∇vε,t|4ωε,t

(A − vε,t)3 .

On the other hand, the Cauchy-Schwarz inequality gives

|⟨∇|∇vε,t|2ωε,t
, ∇vε,t⟩ωε,t | =

∣∣∣∣gijgkl
(

(∂k∂ivε,t)(∂jvε,t)(∂lvε,t) + (∂ivε,t)(∂k∂jvε,t)(∂lvε,t)
)∣∣∣∣

≤ |∇vε,t|2ωε,t
(|∇∇vε,t|ωε,t + |∇∇vε,t|ωε,t)

≤
√

2|∇vε,t|2ωε,t
(|∇∇vε,t|2ωε,t

+ |∇∇vε,t|2ωε,t
)1/2.

Therefore, we obtain the following:

−δ

(A − vε,t)2 Re⟨∇|∇vε,t|2ωε,t
, ∇vε,t⟩ωε,t

≤ δ

(A − vε,t)2

(√
2|∇vε,t|2ωε,t

(|∇∇vε,t|2ωε,t
+ |∇∇vε,t|2ωε,t

)1/2
)

=
√

2δ
|∇vε,t|2ωε,t

(A − vε,t)3/2

(|∇∇vε,t|2ωε,t
+ |∇∇vε,t|2ωε,t

)1/2

(A − vε,t)1/2

≤ δ

2
|∇vε,t|4ωε,t

(A − vε,t)3 + δ
|∇∇vε,t|2ωε,t

+ |∇∇vε,t|2ωε,t

A − vε,t

.

Combining these inequalities with Proposition 5.5.1, Lemma 5.6.2 (c), and A −
vε,t > 1, we obtain the following inequality:(

∂

∂t
− ∆ωε,t

)
Ψε,t

≤ C15|∇vε,t|2ωε,t
+ δ|∇uε,t|2ωε,t

− 2 − δ

A − vε,t

Re⟨∇Ψε,t, ∇vε,t⟩ωε,t − δ

2
|∇vε,t|4ωε,t

(A − vε,t)3
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where C15 := 1 + (1 − β)C1 + (1/δ) + C10 > 0.
On the other hand, by Lemma 5.5.3 (a), we have(

∂

∂t
− ∆ωε,t

)
uε,t ≤ uε,t + C11u

2
ε,t −

|∇uε,t|2ωε,t

uε,t

≤ C10 + C11C
2
10 − 2δ|∇uε,t|2ωε,t

:=C16 − 2δ|∇uε,t|2ωε,t

Here, we take 0 < δ < 1/(2C10). Finally, we obtain the following:(
∂

∂t
− ∆ωε,t

)
(Ψε,t + uε,t)

≤
(

C15|∇vε,t|2ωε,t
+ δ|∇uε,t|2ωε,t

− 2 − δ

A − vε,t

Re⟨∇Ψε,t, ∇vε,t⟩ωε,t − δ

2
|∇vε,t|4ωε,t

(A − vε,t)3

)
+
(
C16 − 2δ|∇uε,t|2ωε,t

)
= C16 + C15|∇vε,t|2ωε,t

− δ|∇uε,t|2ωε,t
− 2 − δ

A − vε,t

Re⟨∇Ψε,t, ∇vε,t⟩ωε,t − δ

2
|∇vε,t|4ωε,t

(A − vε,t)3

≤ C16 +
(

C15 + 1
δ

)
|∇vε,t|2ωε,t

− 2 − δ

A − vε,t

Re⟨∇(Ψε,t + uε,t), ∇vε,t⟩ωε,t − δ

2
|∇vε,t|4ωε,t

(A − vε,t)3 .

(5.6.4)

Here, we used the following inequality:
2 − δ

A − vε,t

Re⟨∇uε,t, ∇vε,t⟩ωε,t ≤ 2|∇vε,t|ωε,t |∇uε,t|ωε,t ≤ 1
δ

|∇vε,t|2ωε,t
+ δ|∇uε,t|2ωε,t

.

The uniform boundedness of Ψε,0+uε,0 follows from [CGP13, Section 4], Propo-
sition 5.4.1 and Proposition 5.5.1. If Ψε,t + uε,t achieves maximum at (x0, t0) ∈
X × (0, T ), by (5.6.4), we have the following:

0 ≤ C16 +
(

C15 + 1
δ

)
|∇vε,t|2ωε,t

− δ

2
|∇vε,t|4ωε,t

(A − vε,t)3

≤ C16 +
(

C15 + 1
δ

)
|∇vε,t|2ωε,t

− δ

2
1

(A + C5)3 |∇vε,t|4ωε,t
at (x0, t0).

Therefore there exists a constant C17 > 0 satisfying

|∇vε,t|2ωε,t
≤ C17 at (x0, t0),

which does not depend on ε and t. By using the definition of Ψε,t, A−vε,t > 1, and
Proposition 5.5.1, we have the uniform upper bound of Ψε,t + uε,t on X × [0, T ),
and therefore we obtain the uniform upper bound of |∇vε,t|2ωε,t

. □

5.7 The Laplacian Estimate for vε,t

In this section, we estimate ∆ωε,tvε,t. In order to prove the uniform upper bound-
edness of ∆ωε,tvε,t, we need the lower boundedness of the scalar curvature. It is
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obtained by [Edw15, Corollary 4.3], which is proved by the maximum principle
argument as in the case of normalized Kähler-Ricci flow (see Proposition 3.2.6).

Proposition 5.7.1 ([Edw15, Corollary 4.3]). The scalar curvature R(ωε,t) evolves
as(

∂

∂t
− ∆ωε,t

)(
R(ωε,t) − trωε,t(ηε)

)
= |Ric(ωε,t) − ηε|2ωε,t

+
(
R(ωε,t) − trωε,t(ηε)

)
,

and is uniformly bounded from below by

R(ωε,t) − trωε,t(ηε) ≥ −C18,

where C18 > 0 is a constant independent of ε and t.

Using this estimate, we can easily obtain the following upper bound.

Proposition 5.7.2. There exists a uniform constant C19 > 0 which is independent
of ε and t such that

∆ωε,tvε,t ≤ C19.

Proof. By Proposition 5.3.1, 5.7.1, and uε,t ≥ 0, we have

∆ωε,tvε,t = net−T − uε,t − (1 − et−T )(R(ωε,t) − trωε,t(ηε)) ≤ n + C18 :=C19,

which proves the assertion.

Proposition 5.7.3. There exists a constant C20 > 0 independent of ε and t such
that

∆ωε,tvε,t ≥ − C20

T − t
.

Proof. As in [Zha10, Section 3.3], we set

Φε,t :=
B − ∆ωε,tvε,t

B − vε,t

,

where B > 0 is a sufficiently large uniform constant satisfying B − C19 > 0,
and B − C5 > 1 so that the numerator and the denominator of Φε,t are positive.
Straightforward calculations show that(

∂

∂t
− ∆ωε,t

)
Φε,t

= −1
B − vε,t

∆ωε,tvε,t + 1
(B − vε,t)2 (uε,t − n)(B − ∆ωε,tvε,t) (5.7.4)

− 1
B − vε,t

(
⟨Ric(ωε,t) − ηε,

√
−1 ∂∂vε,t⟩ωε,t + ∆ωε,tuε,t

)
(5.7.5)

+ 2
(B − vε,t)2 Re⟨∇vε,t, ∇∆ωε,tvε,t⟩ωε,t (5.7.6)

− 2
(B − vε,t)3 (B − ∆ωε,tvε,t)|∇vε,t|2ωε,t

.
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By using B −vε,t > 1, B −∆ωε,tvε,t > 0, and Proposition 5.5.1, (5.7.4) is estimated
as follows:

−1
B − vε,t

∆ωε,tvε,t + 1
(B − vε,t)2 (uε,t − n)(B − ∆ωε,tvε,t)

=
(

B − ∆ωε,tvε,t

B − vε,t

+ −B

B − vε,t

)
+ 1

(B − vε,t)2 (uε,t − n)(B − ∆ωε,tvε,t)

≤
B − ∆ωε,tvε,t

B − vε,t

+ C10

(B − vε,t)2 (B − ∆ωε,tvε,t)

≤ C21(B − ∆ωε,tvε,t),

where C21 := 1 + C10 > 0.
We next estimate (5.7.5). By using Lemma 5.5.3 (a) and Proposition 5.3.1

(a), we obtain

− ⟨Ric(ωε,t) − ηε,
√

−1 ∂∂vε,t⟩ωε,t − ∆ωε,tuε,t

≤ −⟨Ric(ωε,t) − ηε,
√

−1 ∂∂vε,t⟩ωε,t + (C22 − ⟨Ric(ωε,t) − ηε, ω̂T ⟩ωε,t)
= −⟨Ric(ωε,t) − ηε,

√
−1 ∂∂vε,t + ω̂T ⟩ωε,t + C22

= 1
1 − et−T

|
√

−1 ∂∂vε,t + ω̂T |2ωε,t
− et−T

1 − et−T
(∆ωε,tvε,t + uε,t) + C22,

where C22 := CZC2
10 + (1 − β)C1C

2
10. The first term is estimated as follows:

|
√

−1 ∂∂vε,t + ω̂T |2ωε,t
= |

√
−1 ∂∂vε,t|2ωε,t

+ |ω̂T |2ωε,t
+ 2 Re⟨

√
−1 ∂∂vε,t, ω̂T ⟩ωε,t

≤ |
√

−1 ∂∂vε,t|2ωε,t
+ |ω̂T |2ωε,t

+ δ|
√

−1 ∂∂vε,t|2ωε,t
+ 1

δ
|ω̂T |2ωε,t

= (1 + δ)|∇∇vε,t|2ωε,t
+ (1 + 1/δ)|ω̂T |2ωε,t

≤ (1 + δ)|∇∇vε,t|2ωε,t
+ (1 + 1/δ)C2

10,

where δ > 0 is a uniform constant determined later. Here, we used |
√

−1 ∂∂vε,t|2ωε,t
=

|∇∇vε,t|2ωε,t
, |ω̂T |2ωε,t

≤ trωε,t(ω̂T )2 = u2
ε,t ≤ C2

10. For the second term, we have

− et−T

1 − et−T
(∆ωε,tvε,t + uε,t) = et−T

1 − et−T
(B − ∆ωε,tvε,t) − Bet−T

1 − et−T

≤ 1
1 − et−T

(B − ∆ωε,tvε,t).

Finally, we get

− 1
B − vε,t

(
⟨Ric(ωε,t) − ηε,

√
−1 ∂∂vε,t⟩ωε,t + ∆ωε,tuε,t

)
≤ CT

T − t

(
1 + δ

B − vε,t

|∇∇vε,t|2ωε,t
+
(

1 + 1
δ

)
C2

10

)
+ CT

T − t
(B − ∆ωε,tvε,t) + C22,

where CT > 0 is a uniform constant satisfying

1
1 − et−T

≤ CT

T − t
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for 0 ≤ t < T . Since, we have

∇Φε,t =
(B − ∆ωε,tvε,t)

(B − vε,t)2 ∇vε,t − 1
B − vε,t

∇∆ωε,tvε,t,

(5.7.6) can be computated as follows:

2
(B − vε,t)2 Re⟨∇vε,t, ∇∆ωε,tvε,t⟩ωε,t

= − 2
B − vε,t

Re⟨∇Φε,t, ∇vε,t⟩ωε,t + 2
(B − vε,t)3 (B − ∆ωε,tvε,t)|∇vε,t|2ωε,t

.

Combining these estimates, we get(
∂

∂t
− ∆ωε,t

)
Φε,t

≤ C21(B − ∆ωε,tvε,t)

+ CT

T − t

(
1 + δ

B − vε,t

|∇∇vε,t|2ωε,t
+
(

1 + 1
δ

)
C2

10

)
+ CT

T − t
(B − ∆ωε,tvε,t) + C22

− 2
B − vε,t

Re⟨∇Φε,t, ∇vε,t⟩ωε,t

≤ C23

T − t
+ C23

T − t
(B − ∆ωε,tvε,t) + CT

T − t

1 + δ

B − vε,t

|∇∇vε,t|2ωε,t

− 2
B − vε,t

Re⟨∇Φε,t, ∇vε,t⟩ωε,t .

Finally, we obtain(
∂

∂t
− ∆ωε,t

)
(T − t)Φε,t = −Φε,t + (T − t)

(
∂

∂t
− ∆ωε,t

)
Φε,t

≤ (T − t)
(

∂

∂t
− ∆ωε,t

)
Φε,t

≤ C23 + C23(B − ∆ωε,tvε,t) + CT
1 + δ

B − vε,t

|∇∇vε,t|2ωε,t

− 2
B − vε,t

Re⟨∇(T − t)Φε,t, ∇vε,t⟩ωε,t .

We set Ψ̃ε,t :=
|∇vε,t|2ωε,t

B − vε,t

. Combining with Lemma 5.6.2 (c) and (5.6.3), we have

(
∂

∂t
− ∆ωε,t

)
Ψ̃ε,t

≤ C24 −
|∇∇vε,t|2ωε,t

B − vε,t

+ 2
B − vε,t

Re⟨∇vε,t, ∇uε,t⟩ωε,t − 2
B − vε,t

Re⟨∇Ψ̃ε,t, ∇vε,t⟩ωε,t ,
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where C24 := C14 + (1 − β)C1C14 + C14C10 > 0. On the other hand, we have
4

B − vε,t

Re⟨∇vε,t, ∇uε,t⟩ωε,t ≤ δ|∇uε,t|2ωε,t
+ 4

δ
|∇vε,t|2ωε,t

.

By using Lemma 5.5.3 (b), Proposition 5.5.1, and Proposition 5.6.1, we get(
∂

∂t
− ∆ωε,t

)
uε,t ≤ uε,t + C11u

2
ε,t −

|∇uε,t|2ωε,t

uε,t

≤ C10 + C11C
2
10 − 1

C10
|∇uε,t|2ωε,t

≤ − 4
B − vε,t

Re⟨∇vε,t, ∇uε,t⟩ωε,t + C25,

where we take 0 < δ < 1/C10, and C25 := C10 + C11C
2
10 + 4C14/δ > 0.

Combining these inequalities, we have(
∂

∂t
− ∆ωε,t

)(
(T − t)Φε,t + 2CT Ψ̃ε,t + 2CT uε,t

)
≤ C23 + C23(B − ∆ωε,tvε,t) + CT

1 + δ

B − vε,t

|∇∇vε,t|2ωε,t

− 2
B − vε,t

Re⟨∇(T − t)Φε,t, ∇vε,t⟩ωε,t

+ 2CT

(
C24 −

|∇∇vε,t|2ωε,t

B − vε,t

+ 2
B − vε,t

Re⟨∇vε,t, ∇uε,t⟩ωε,t

− 2
B − vε,t

Re⟨∇Ψ̃ε,t, ∇vε,t⟩ωε,t

)

+ 2CT

(
− 4

B − vε,t

Re⟨∇vε,t, ∇uε,t⟩ωε,t + C25

)

≤ C26 + C26(B − ∆ωε,tvε,t) − CT
1 − δ

B − vε,t

|∇∇vε,t|2ωε,t

− 2
B − vε,t

Re
⟨
∇
(
(T − t)Φε,t + 2CT Ψ̃ε,t + 2CT uε,t

)
, ∇vε,t

⟩
ωε,t

.

The uniform boundedness of (T − t)Φε,t + 2CT Ψ̃ε,t + 2CT uε,t at t = 0 follows from
[CGP13, Section 4], Proposition 5.4.1, Proposition 5.5.1 and Proposition 5.6.1. If
(T − t)Φε,t +2CT Ψ̃ε,t +2CT uε,t achieves maximum at (x0, t0) ∈ X × (0, T ), we have
the following at this point:

0 ≤ C26 + C26(B − ∆ωε,tvε,t) − CT
1 − δ

B − vε,t

|∇∇vε,t|2ωε,t

≤ C26 + C26(B − ∆ωε,tvε,t) − CT
1 − δ

B + C5

(
1
n

(B − ∆ωε,tvε,t)2 − B2

n

)
.

Here, we used Proposition 5.4.1, and

|∇∇vε,t|2ωε,t
= gijgkl(∂i∂lvε,t)(∂j∂kvε,t) ≥ 1

n
(∆ωε,tvε,t)2 ≥ 1

n
(B − ∆ωε,tvε,t)2 − B2

n
.
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Therefore, at this point, there exists a constant C27 satisfying

−∆ωε,tvε,t ≤ C27 at (x0, t0)

which is independent of ε, t, and (x0, t0). Combining Proposition 5.4.1, Proposition
5.6.1, and Proposition 5.5.1, we obtain the uniform upper boundedness of (T −
t)Φε,t + 2CT Ψ̃ε,t + 2CT uε,t on X × [0, T ). Finally, we conclude that

∆ωε,tvε,t ≥ − C20

T − t

Proof of Theorem A By Proposition 5.3.1, and Proposition 5.7.3, we have

R(ωε,t) − trωε,t(ηε) = 1
1 − et−T

(
−∆ωε,tvε,t + net−T − uε,t

)
≤ CT

T − t

(
C20

T − t
+ n

)
≤ C

(T − t)2 ,

where C > 0 does not depend on ε and t. Therefore, by taking εi → 0, we get the
asssertion. □
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