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1 Introduction
1.1 Infinite Regress in Procedural Choice

Imagine a group of individuals faces a collective choice problem from the set of alternatives X
without an ex ante agreement on the procedure that will be used to aggregate their preferences.
As Nurmi (1992) points out, different voting procedures can result in different outcomes even if
we fix each individual’s preferences over X. Nurmi provides an example that shows plurality,
runoff, amendment, Borda count, and approval voting each result in different outcomes for a
given preference profile. Even when we restrict our attention to scoring rules only, Saari (1992)
shows that if there are ten alternatives, millions of different rankings of X can be achieved by
the choice of scoring rule. In fact, many researchers have verified such possibilities based on
real election data such as those from the 1968 (Roderick, 1979) and the 1992 (Brams & Merrill,
1994) U.S. presidential elections. These observations demonstrate that the choice of procedure
is no less important than the choice of X.

In social choice theory, there are many axiomatic studies of voting rules, such as May's
(1952) characterization of majority rule, based on the premise that a good rule is one that
satisfies normative and/or intuitive criteria such as Condorcet’s criterion, unanimity, etc.
However, many negative results, the best known of which are Arrow’s and Gibbard and
Satterthwaite’s, suggest that there is no perfect voting rule. On the other hand, there is another
point of view that a good rule is one that is favored by the group of individuals themselves, even
though such a procedure might fail to satisfy the normative axioms that social choice
researchers esteem. Dietrich (2005) formally defines this view as Procedural Autonomy (PA). It
demands that the procedure by which the society aggregates voters’ procedural judgments
should be entirely determined by the procedural judgments, i.e. their (true) preferences over the
set of possible procedures, within the group. However, taking PA literally we could face an
infinite regress problem as follows. When a society faces a decision-making problem, X, PA
demands that the rule to aggregate the society members’ opinions over X must be determined
by their opinions over such rules. This means the society faces a new decision-making problem:
how to choose the rules to choose X. Using PA again, it follows that the society needs to
aggregate its members’ opinions over the rules to choose the rule to choose X. This process can
go on ad infinitum unless there is an ex ante agreement at some meta level, because no
procedure is legitimate before it is selected by the meta rule to choose such procedures—this is
the infinite regress problem in procedural choice?.

The objective of this research is to find a rational way to stop and solve this infinite

! Similar regress problems have appeared in many academic disciplines. For instance, the epistemic
regress problem, i.e., a belief B1 must by justified by belief B2 but B2 must be also justified by belief B3,
and so on, is a classic problem in epistemology (See, Steup, 2006).
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regress problem; I propose a new concept—weak/strong convergence—as the solution. The
objective is stated in detail in section 1.2, with reference to relevant literature. Section 1.2 also
introduces the basic concept of convergence. Section 1.3 provides a more formal introduction
with some preliminary results demonstrating the basic difficulties with procedural choice.
Chapter 2 gives a rigorous definition of the weak/strong convergence concept and shows some
initial results. In Chapter 3, I discuss the design possibilities for menus of voting rules following
a convergence approach.

In the convergence model (and most of the related literature referred to in section 1.2),
the society—the set of individuals who have the right to vote—is supposed to be fixed a priori.
There are, however, some cases where this implicit assumption is not appropriate. In Section
1.3, I introduce the classic boundary problem, or how to determine the “society” itself and I
briefly sketch its expression as an aggregation problem. Chapter 4 includes the arguments
related to the strategic aspect of such aggregation procedures. Concluding remarks are given in
Chapter 5.

1.2 Related Literature

The infinite regress problem of procedural choice is a classic problem that Buchanan and
Tullock (1962) referred to, arguing the importance of unanimity of consent at the constitutional
level. Rae (1969) also studies individuals’ procedural judgments in terms of minimizing the
expected frequency of losing in the future. Lagunoff (1992) argues for a possible solution to the
infinite regress problem, showing that a society can reach a Pareto-optimal outcome by
repeatedly dropping the unsuitable mechanisms that fail to satisfy his “Free Choice” condition,
which rules out such mechanisms that make some agent locked in to an equilibrium outcome.

Recently, a sequence of studies examined the procedural choice problem based on so-
called fixed point approach (Barbera & Jackson, 2004; Koray, 2000; Koray & Slinko, 2006;
Kultti & Paavo, 2009). Intuitively, a social choice function (SCF) is called self-selective if it
chooses itself from among other rival SCFs (Koray, 2000). If procedural choice is to be made
using the existing procedure (e.g., the amendment procedure of the Constitution of Japan) self-
selectivity is a powerful tool for detecting stable states. Barbera and Jackson (2004) considered
the process of constitutional design, where one alternative is the status quo, and studied the class
of voting rules that choose themselves (i.e., self-stable voting rules). Kultti and Paavo (2009)
extended the notion of stability so that the model incorporates higher-level meta procedures.
There are, however, some impossibilities on the design of self-selective procedure. Koray
(2000) shows that for unanimous and neutral SCFs, the (universal) self-selectivity is logically
equivalent to dictatorship, in the proof of which Koray shows the logical relationship with

Arrow’s impossibility result. Subsequently, Koray and Slinko (2006) characterized the class of



dictatorship and anti-dictatorship using a weaker requirement of self-selectivity.

While these researchers considered single voting rules, the notion of stability was later
extended to apply to menus of voting rules. Houy (2004) states that a menu of social choice
rules (SCRs) satisfies the condition of first-level stability if, for all preference profiles over the
voting rules, the menu includes one and only one SCR that chooses itself. Houy then shows the
negative result that no menu of SCRs can satisfy first-level stability and two more intuitive
conditions (this result is discussed further in Chapter 3). On the other hand, Diss, Louichi,
Merlin, and Smaoui (2012) and Diss and Merlin (2010) studied the actual probability that a
menu of SCRs is stable (i.e., there is at least one SCR that chooses itself) under the Impartial
Culture (IC) and Impartial Anonymous Culture (IAC) models, respectively. Their results show
that when the population is (infinitely) large, the probability that the set of {plurality (P), Borda
(B), anti-plurality (A)} is stable is 84.49% in the IC model and 84.10% in the IAC model.

These studies show the difficulty of determining the most legitimate procedure based
on voters’ own procedural judgments. The difficulty exists even when a society chooses the
procedure from among three popular voting rules (e.g., P, B, and A). The objective of this study
is to eliminate these difficulties, specifically, 1) to provide a procedural choice method that can
determine the unique legitimate outcome without failure and 2) to enable choice from a set of
familiar voting procedures, such as the set: {P, B, A}. To achieve this objective, I propose a new
approach based on the concept of weak/strong convergence. Using two examples below, |
outline the idea of convergence. The examples also indicate why we need the concept of
convergence instead of the previous concept of stability (e.g., of a menu of voting rules). In the
following examples, let X = {a, b, c} be a set of mutually exclusive alternatives (social states)
and F = {P, B, A} be a set of admissible SCRs.

Example 1: The Menu is Stable but the Qutcome is not Uniquely Determined

Suppose n = 42 with the following preferences:
- 9 voters’ preferences are a,b,c and P, B, A, (i.e., among the alternatives they
prefer a to b and b to c, while among voting rules, they prefer P to B and B to
A)

11 voters’ preferences are a,c,b and P, A,B,

17 voters’ preferences are b,c,a and B, A, P,

1 voter’s preference is ¢,a,b and A4, P,B, and

- 4 voters’ preference is ¢,b,a and A,B,P.
(The reader might wonder about the plausibility of such preferences with regard to X and F,
however, [ will formally show in Chapter 2 that this profile is possible with the assumption of

consequentialism.)



Let L° and L' be the combination of such preferences (the preference profile)
regarding X and F, respectively. Once L° and L' are given, the reader can easily check that
each procedure chooses itself among F,i.e. P(LY) = P, B(L') = B, and A(L') = A. The
menu is clearly stable at L! in Diss and Merlin's (2010) sense. However, there arises a new
problem: which of the self-selecting procedures should be used when each of them results in a

different outcome?

Example 2: The Menu is not Stable but the Outcome is Uniquely Determined
Suppose n = 14 and the individuals have the following preferences:

- 4 voters’ preferences are a,b,c and P,B,A,

- 6 voters’ preferences are a,b,c and B, P, A, and

- 4 voters’ preferences are b,c,a and A,P,B.
In this case, no voting rule chooses itself. So, the menu F is not stable at this preference profile
regarding F. However, each P, B, A—when used as a rule to choose the rule to choose from X
—results in the same outcome (see Figure 1). In such a case, the failure of stability seems less
problematic—the ultimate outcome is the same no matter which of the rules to choose the rule

1s selected.

Figure 1. Example of a regress convergence

F1 denotes the set of voting rules for the choice of alternatives and F? denotes the set of

voting rules for the choice of F1.

These examples show that the stability of a menu does not indicate its ability to determine
a unique outcome. Indeed, Example 2 shows the possibility that each procedure may ultimately
reach the same outcome at some meta level even though the judgments of the procedures do not
coincide and no procedure chooses itself. The phenomenon of every procedure ultimately
reaching the same outcome is what I name convergence. The formal definition and technical
results are presented in Chapters 2 and 3.

I conclude this section with some technical clarifications based on my literature review. In
the formulation of procedural choice, the timing of the procedural choice is a key assumption. In

the literature, there are two types of assumption with respect to this timing: type 0, when there is



no specific agenda such as Rawls’ veil of ignorance (Barbera & Jackson, 2004; Houy, 2004;
Rae, 1969), and type 1, when a society is facing a specific agenda (Koray, 2000; Koray &
Slinko, 2006; Lagunoff, 1992). This dissertation makes the latter assumption, because it seems
more suited to the assumption of PA that voters’ procedural judgments can and may differ for
different agendas.

Another important assumption in the model is what type of procedural judgments are
allowed. Roughly speaking, in studies assuming a type 0 situation, voters’ procedural judgments
are evaluated in terms of the expected payoff or probability of being in the losing side in the
future events. In contrast, in most of the studies assuming a type 1 situation, each individual is
assumed to hold a consequential procedural preference: they are assumed to evaluate meta-level
procedures according to their outcomes (consequentialism). Although the consequentialism
assumption is easy to deal with, other types of meta-preferences are also considered in related
literature. For example, Nurmi (2015) argues the preference over the criteria of voting rules
such as Condorcet winner criterion, monotonicity, etc. From the deliberating point of view, List
(2007) argues the possibility that votes agree on the conceptualization of the decision problem.
In the next section, I give a formal mathematical introduction to the procedural choice problem
and show the basic impossibility arising when we consider any type of meta-preference. This
negative result motivates the analysis in Chapters 2 and 3, which gives a solution concept under

a consequential society.

1.3 Preliminary Formal Discussion?
In this section, I provide a formal introduction to the procedural choice problem and show the
basic difficulty with procedural choice that motivates the analysis in the next chapters. |
formulate a procedural choice rule (PCR), which is the rule for aggregating voters’ procedural
judgments and is technically close to the decision rule studied in Dietrich (2005). I introduce
several new axioms, which [ argue are necessary for the process of choosing voting procedures

without an ex ante agreement, and show an impossibility.

1.3.1 Notation
Let N ={1,2,...,n} denote a society with at least two individuals, n > 2, that is to make a
collective decision. Let X denote the set of decision alternatives, whose cardinality is 2 < |X| <
co. The society is supposed to make an endogenous decision over X without an agreement on

the procedure to aggregate their preferences.

2 Main results of this subsection are originally published in the following: Takahiro Suzuki and Masahide
Horita, "How to Order the Alternatives, Rules, and the Rules to Choose Rules: When the Endogenous
Procedural Choice Regresses". Outlooks and Insights on Group Decision and Negotiation. Springer
International Publishing, 2015. p.47-59.



A binary relation R over a non-empty set A is defined as a subset of AXA. As usual, for

a,b € A, 1 often write aRb instead of (a,b) € R. For a binary relation R on A4,

- R isreflexive if aRa forall a € A.

- R is transitive if, for all a,b,c € A, aRb and bRc implies aRc.

- R is complete if, for all a,b € A, aRb or bRa holds.
- R is anti-symmetric if, for all a,b € A, [aRb & bRa] implies a = b.
- R is a weak order if it is reflexive, transitive, and complete.

- R is alinear order if it is an anti-symmetric weak order.
Let W(A) and L(A) be the set of all weak orders and linear orders over A, respectively. Let
P(R) and I(R) respectively denote the asymmetric and symmetric parts of binary relation R,
ie.

P(R) = {(a,b) € AxA|(a,b) ER and (b,a) & R}.
I(R) = {(a,b) € AXA| (a,b) €R and (b,a) € R}.

Given a binary relation R over A and a nonempty subset B € A, I denote by G(R,B) the
greatest elements of B relativeto R, i.e., G(R,B) = {x €EB | xRy for all y € X}.

A preference profile over a nonempty set A is an n-tuple of weak orders R =
(Ry, Ry, ..., Ry) € W(A)™, where the it element R; represents individual i’s preference. A
social choice function (SCF) f over A is a function that assigns an alternative to each
preference profile over A, such that f: W(A)™ - A. Let N ={1,2,3,...} denote the set of
positive integers. I define a sequence FO, F1,F2, ... of sets of SCFs as compatible if:

(1) F° =X, and

(2) Yk € N, F¥ isaset of SCFs over FK1.
Given such a compatible sequence, I define an element of F¥ as a level-k SCF (or level-k
procedure, interchangeably). In words, a level-k SCF is a rule [to choose the rule] ((k — 1)

times) to choose an alternative. Note that there are many compatible sequences.

Example 3: Universal Domain
Forall k € N, let F¥ be the set of all SCFs over F¥~1. 1tis easy to see that, defined in this way,

the sequence FO, F1,F2,... is compatible.

According to Dietrich (2005), Universal Domain (UD) is an assumption that the society considers
all level-1 procedures. The sequence in Example 3 is a straight extension of UD because it also
considers any meta-level procedures. In the following argument, I call such F° F1,F2, ... the
UD-sequence.

Given a compatible sequence F°,F1, F?, ..., I assume that each individual { € N has a

preference order RF EW(F k) for all k€N . A level- k preference profile R* =



(R{‘, Ré‘,...,Rﬁ) is a preference profile over Fk Integrating the level-k (k=0,1,...,L)
preference profile R%, RY,...,RE, Tcall R = (R% RY,...,RY) alevel-L meta-profile.

Definition 1. Procedural Choice Rule
Let LEN and D € W(X)"XW(F)"x ---xW(FL)". A level-L PCR E of domain D is
defined as a function assigning a level-L social meta preference E = (E 0 EvE?, .. ,EY) toeach

level-L meta-profile, i.e., E:D - W(X)"XW(FH)"™---xW(FH)".

A PCR expresses a way of determining a society’s collective judgments over the meta-level
procedures. Given a meta-profile, i.e., each individual’s procedural judgment, the PCR returns
the collective procedural judgment of the society. Unlike usual social welfare functions, a PCR
considers people’s procedural judgments. Note that the PCR is an extension of the concept of the
decision rule in Dietrich (2005), which is a correspondence assigning a subset of X for each
level-1 meta-profile given the individuals’ procedural judgments®. 1 define the Universal
Preference Domain (UPD), D, as:
D =WX)"XW(FH)x ---xW(F)".

Example 4: Dictatorial PCR
Take an individual, called a dictator, i* € N and define a dictatorial PCR E,; as for all level-L
meta-profile R,

vk €{0,1,..,L}, Vf,g € F¥, fEX(R)g & fREg.

This is a PCR that judges each element in F¥ according to the will of the dictator. A possible
problem concerning the dictatorial PCR is that if the dictator i*’s meta-preference is not

consistent, the PCR itself must also fail to be consistent.

Definition 2: Inter-Level Consistency (ILC)
Alevel-L PCR of domain D satisfies the axiom of Inter-Level Consistency (ILC) if, and only if,
forall R€D, k€{1,..,L} and f,g € F¥, [fE¥g & f(R*1)EF-1g(RF1).

This consistency property rules out inconsistent social meta-preferences such as those that
evaluate SCF f as being at least as good as SCF g, even though f’s outcome is not as good as
g’s. Behind the axiom of ILC lies the idea that procedural judgments must be made for the very

decision-making problem that the society faces. It is not that the society determines a universally

3 Note that, technically speaking, the decision rule is more than a level-1 PCR, because Dietrich (2005) does not
restrict his attention to weak order preferences. Dietrich’s argument is made without specifying the messages on X.
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desirable procedure that can be applied to any possible agenda or decision-making process. The
model allows for an individual who esteems a supermajority rule for amendments to the nation’s

constitution while that same individual supports the simple majority rule for ordinary legislation.

The next axiom demands that a better rule must result in a better outcome, and a better outcome

must be supported by a better rule.

Definition 3: Arbitrary Focus (AF)

A level-L PCR E of domain D satisfies the axiom of Arbitrary Focus (AF) if, for all j =
01,..,L—1, R=(R%RY,..,RY), and R' = (R"*,R",..,R") €D, if R*=R'* for all
p = j,then E/(R) = E/(R).

AF states that the level-j social meta-preference is entirely determined by the level-j or higher
level meta-profile. For all f,g € F/, AF demands that the collective decision over f and g is
determined by the rule to evaluate them, not by their outcomes. To put it differently, AF assumes

that the choice from F* can be treated independently of the original choice problem X.

1.3.2 Results and Discussion
Before stating the impossibility theorem concerning the design of PCR, I will introduce the

technical condition for a connected sequence.

Definition 4: Connected Sequence of Sets of Procedures

FO F1 F?,.. is called a connected sequence (CON-sequence, hereafter) if it satisfies the
condition that for all k € N and f,g € F¥ there exist p € N and hg, hy, ..., h, € F¥ such
that for some Ry, Ry, ...,R, €D,

hq_l(Rq) = hq(Rq) for all q € {1,2,...,p}.

Although this definition looks technical, it is not very demanding. Assuming UPD (i.e., allowing
all logically possible meta-profiles) and supposing also that each F¥ is the set of unanimous
SCFs where for all level-(k — 1) SCF f € F*¥~1, if everyone ranks f as superior to any other
level-(k — 1) SCEF, then the level-k SCF chooses f. We can verify that the sequence is a CON-
sequence when p = 1 because all the level-k procedures yield the same outcome at this profile.

It is also verified that the UD-sequence is an example of a CON-sequence under UPD.

Now, I state the impossibility result. Let E; be the indifferent PCR such that for all k €

10



{0,1,2,...,L}, f,g € F¥,and R € D, it follows that fI (Ek(R))g. In other words, this is a PCR

that judges any two elements of any level as indifferent.

Theorem 1
Under any CON-sequence F° F1,F?, ... and UPD, a PCR satisfies ILC and AF if and only if it
1S EI‘

Proof of Theorem 1.
The ‘if” part is straightforward. Let me show the ‘only if” part. Let E be a level-L PCR. Take
any k € {1,2,..,L} and f,g € F¥. Take also R = (R°, RY,R?,...,R") € D.

Because F°, F1,F?,... is assumed to be connected, there exist level-(k — 1) profiles
Ry, Ry, ...,Ry, € D¥ and ho(= f), hy, ..., hp(= g) € F¥ such that hy_1(Ry) = hq(Ry) for all
q = 1,2, ...,p. Suppose to the contrary that fP (Ek)g. Then, it follows that (hq_l, hq) ¢ I(Ek)
for some q =1,2,...,p [otherwise, that is if (hg, hy), (hl,hz),...,(hp_l,hp) € I(Ek), the
transitivity of E¥ requires (ho, hp) €l (E k), and this is contradictory with regard to fP (E k) gl
Now, let R" € D be a meta-profile obtained from R by substituting R, for R¥. Because
f(Rq) = g(Rq), ILC demands that fI(Ek)g. This contradicts fP(Ek)g. ]

The theorem states that there is no PCR (the way a society ranks each alternative, rule, the rule to
choose rules, and so on) that satisfies ILC and AF without being degenerate. In addition to ILC
and AF, I imposed two assumptions, UPD and CON-sequence. For interpretation of the theorem,
let me add some notes on these assumptions.

The first comment is on CON-sequence. I already noted that the UD-sequence is a CON-
sequence. So, it follows that Theorem 1 holds even if we substitute UD-sequence for CON-
sequence. Recall that the UD-sequence represents a situation where a given society does not have
any agreement about the (meta-level) rules. Once the procedural choice is entirely entrusted to a
society, it is irrational to drop several SCFs beforehand: even the notorious dictatorship might be
selected, for example, in the situation where all the group members favor it. In other cases,
however, the procedural choice is made among a restricted number of SCFs, say {plurality, Borda
count, anti-plurality}.

The second comment is on UPD. The next result says what happens if the allowed meta-

profile is restricted.

Definition 5
Let ke {1,2,..,L}, f € F¥, and R = (R%R%,..,R") € D. I define the class of f at R,

11



denoted Cf[R], as follows:
-For k =1, C¢[R] = f(R).
-For k > 2, Cf[R] = Cf(Rk—l)[R].

Definition 6

Let R € D.Icall i’slevel-L meta-preference R; = (R, R}, ..., RF) extremely consequential if,

forall k €N and f,g € F¥, C;[RIR)C,[R] & fRfg.

In general, ILC is such a strong condition that E1, E?, ... is unique with respect to E°. I say a
PCR E is derived from a social welfare function (SWF) h on X if

I)forall f,g € F1, fE'g & f(RO)h(R®)g(R®), and

2)forall k=2 and f,g € F¥, fE¥g & C¢[RIh(R®)C4[R].
Then, it is easy to verify the following (I omit the proof).

Lemma 1
Alevel-L PCR E ofdomain D € D satisfies ILC if and only if it is derived from a SWF h on
X.

Let Do S WX)XW(FH)X --XxW(FY) be the set of all extremely consequential meta-profiles.
We have the following:

Theorem 2

Take UD-sequence F° F1,F?,.. and LE€N. Let D = DygxD;X ..XDy, where ¢ # Dy C
W(F¥) forall k =0,12,..,L.

(1) If D = D+, there exists a PCR that satisfies ILC and AF.

(2)If DN (D \ D¢+) # ¢, there is no PCR that satisfies ILC and AF.

Proof of Theorem 2
Proof of (1). 1t is straightforward to check that a PCR derived from some SWF h on X satisfies

the two axioms.

Proof of (2). Suppose R; with respect to R = (Ry,...,R,) € DN (D \ D¢+) is not extremely
consequential. Let k € {1,2,...,L} be the smallest level at which the condition collapses. Then,
we have f,g € F¥ such that Cr [R]R?Cg [R] but not fRF¥g. RF is assumed to be complete,
and so we have gP(R{‘)f.

(@ If R e W(Fk‘l)n exists such that f(R’k_l) = g(R’k_l), let R"€D bea
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meta-profile obtained from R by substituting R "*=1 for R¥~1. AF demands that E¥ = E'¥. So,
we have gP(E ’k) f. However, ILC demands gl (E ’k) f. Contradiction.

(b) Consider the other case, i.e., thereisno R’*™' € W(Fk‘l)n such that f(R"*™") =
g(R’k_l). Because we consider a UD-sequence, there exist h € F¥ such that h(Rk_l) =
f(R¥"1) and h(R’k_l) = g(R’k_l) for all R"“™" € Dy_,. With the argument in (a), we have
that fI(Ek)h and hI(Ek)g. With the transitivity of E*, we have fI(Ek)h. ]

Under UD-sequence, Theorem 2 states the necessary and sufficient condition for a PCL satisfying
ILC and AF to exist. It says that it matters whether there exists an individual that is not extremely
consequential.

To conclude, the present section outlines a preliminary model of procedural choice.
While Theorem 1 states the basic impossibility faced when any type of meta-preference is
considered (as well as some axioms of PCRs), Theorem 2 shows that the impossibility disappears
when a society made up of consequential individuals is considered. Based on these observations,
Chapters 2 and 3 address the situation where a consequential society has a restricted number of

voting procedures.

1.4 Determination of the Society

To begin the last part of this introduction, I consider a pre-step of the procedural choice considered
above. Although most of the research referred to in Section 1.1 and the analysis in Section 1.3
assume that the society has been defined prior to the voting step, there are some cases where there
is ambiguity in the definition of which individuals have the right to vote. Indeed, the boundary
problem—who should be eligible to take part in which decision-making processes (Arrhenius,
2005; Dahl, 1991)—is a classical problem in political science. While a number of solutions have
been proposed, Schumpeter (1942) argues that it is the people involved who should determine
who is entitled to participate in the democratic process:

Observe: it is not relevant whether we, the observers, admit the validity of those

reasons or of the practical rules by which they are made to exclude portions of the

population; all that matters is that the society in question admits it. (Schumpeter, 1942,

p. 244).
In Chapter 4, | consider the boundary problem as an aggregation problem, in other words, to
determine or define a given society based on individuals’ views on who is (or should be)
included in the society and who is not (or should not be). Formally speaking, let N be the set of
potential individuals where each i € N is assumed to have an opinion N; € N about who he
or she thinks should be included in the society. Seen as an aggregation problem, one can
describe the boundary problem as the need to determine the aggregator, hereafter called the

13



nomination rule, ¢, that maps each profile (N, N,, ..., N,,) into @(N;,N,, ..., N,) €S N.

Holzman and Moulin (2010, 2013) made axiomatic studies of such nomination rules
from a technical perspective, using the determination of prize winners as an example. This
model is different from an ordinary social choice problem in that each individual i € N isa
candidate as well as a voter. Therefore, if they are selfish in the sense that they care greatly or
only about whether they are themselves selected, certain types of strategic voting can occur: a
rational voter i € N might present a misrepresentation of his or her opinion as N, instead of
presenting his or her true opinion N; so that i can win. Indeed, approval voting (AV), often
noted for its strategy-proofness (Endriss 2013), is nonetheless shown to be fragile to this kind of
manipulation. Holzman and Moulin (2013) proposed an axiom of impartiality (IMP), which
demands that the nomination rule be robust against such manipulations.

At the same time, however, Holzman and Moulin (2013) show that the constant rule,
which selects the same individual no matter what the ballots are, is the unique nomination
function that satisfies the both IMP and the Anonymous Ballots axiom (AB), which corresponds
with the usual anonymity condition. Their result is based on the assumption that each N; isa
singleton—each person is supposed to submit another person’s name (the person who they think
deserves the prize), and that the prize winner @(Ny, N,, ..., N,,) is only one person. In other
words, they think of the nomination rule ¢ as a function from the domain
{(N, Ny, ...,N) | N; € N\ {i} for all i € N} to codomain N. In their subsequent work,
Tamura (2015) and Tamura and Ohseto (2014) considered nomination correspondence (i.e.,
allowing multiple winners) and show that the impossibility shown in Holzman and Moulin
(2013) can be relieved. Other domains and codomains have also been studied: the domain of
approval ballots N; € N (Alon et al. 2011), the codomain of N U {¢} (Mackenzie 2015)*, etc.

Although a variety of studies have considered the design possibility of impartial
nomination rules under each domain-codomain pair, there seems no systematic study of the
comparisons between popular pairs. In Chapter 4, | aim to answer the question of which
domain-codomain pairs perform well in terms of design possibility by the comparative study of
each domain-codomain pair. As Dietrich (2005) argues, some axioms (anonymity, neutrality,
and monotonicity) are considered to be essential under PA. Chapter 4 is also designed to find
impartial nomination rules satisfying these axioms. In Chapter 4, I first show the common
structure that an impartial and anonymous nomination rule has under various domain-codomain
pairs (Lemma 7). Later, the design possibility under each domain-codomain setting will be
discussed.

Finally, I introduce literature that relates to the nomination rules. The framework of

4 While some of them (Alon et al. 2011; Holzman and Moulin 2013) also consider nondeterministic rules (i.e., the
codomain is the set of probability distributions over N), I restrict my attention to deterministic rules only throughout
the chapter.

14



nomination rules is very similar to the endogenous choice of representative committees (Brams,
Kilgour, & Sanver, 2007; Kilgour, Brams, & Sanver, 2006). Indeed, Brams et al. (2007) studied
the aggregation of approval ballots, where each of the ballots is the set of individuals who the
voter thinks should be on the committee. They proposed the Minimax procedure based on the
minimization of the Humming distance from the voters’ ballots. For strategic aspects of
endogenous choice, Amords (2009, 2011) considered a strategy-proof mechanism in the slightly
different context that there exists a unique person who everyone thinks is the best person to be
chosen.

In the nomination rule, each individual i € N is assumed to submit N; € N.
Technically speaking, such N; can be regarded as i’s (presented) dichotomous preference over
N. In general, a preference relation on a certain set of alternatives is called dichotomous if it has
at most two indifferent classes, usually interpreted as the acceptable class and the unacceptable
class. The study of approval voting (AV) in this preference domain has resulted in a lot of
concern (Vorsatz, 2008; Vorsatz, 2007; Sato, 2014). As I noted above, however, AV is not
impartial. Therefore, a natural question is how can the mechanism of AV be modified to satisfy
impartiality without losing its preferable properties such as anonymity and neutrality? My

comparative study of various rules described in Chapter 4 provides an answer to this question.
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2 Regress Convergence®

2.1 Intuition of Regress Convergence
In this chapter, I formulate a phenomenon—weak/strong convergence (of a preference profile)—
where the regress argument is supposed to naturally disappear within finite steps. Intuitively speaking,
convergence is a phenomenon where every voting rule in the menu ultimately provides the same
outcome®. The aim of this chapter is to show how and how often this phenomenon occurs.

I will first explain the basic idea using an example. Suppose a society of 14 individuals
must choose one of three candidates—a, b, and c—and there is an ex ante agreement on the set, F, of
potential voting rules, where F = {plurality (P),Borda (B),anti — plurality (4)}. When the
preference profile on the set of candidates X is given as LY_j,:abc, and L9,_;4:bca (ie.,
individuals 1,2,...,10 prefer a to b and b to c; individuals 11,12,13,and 14 prefer b to ¢
and ¢ to a), the three votingrules P,B,and A yield {a},{a}, and {b}, respectively. Suppose now
that the same society votes on which rule in F to use. If everyone is consequential (i.e., preferring
those rules that yield their own preferred results) and is required to submit a linear order, it is
understood that the first 10 individuals submit either "PBA" or "BPA," and the remaining four
individuals submit "APB" or "ABP".Ifthey submitas: Li_,:PBA, LL_,,:BPA,and L};_,4:APB,
then applying the same three voting rules to this profile (L}, L} ...,L1,), P yields {B} while B and
A vyield {P} (see Figure 12).

Figure 2. Example of a regress convergence

F' denotes the set of voting rules for the choice of candidates and F? denotes the set of

voting rules for the choice of F1.

Note thateach P2, B?, and A? (the rule to choose the rule) ultimately reaches the same outcome {a}.

5 Main results of this section are originally published in the following: Takahiro Suzuki and Masahide
Horita (2017), “Plurality, Borda count, or anti-plurality: regress convergence phenomenon in the
procedural choice”. Bajwa, D., Koeszegi, S. T., and Vetschera, R. (eds) Group Decision and Negotiation.
Theory, Empirical Evidence, and Application: 16th International Conference, GDN 2016, Bellingham,
WA, USA, June 20-24, 2016, Revised Selected Papers, LNBIP Vol.274, 43-56.

6 Saari & Tataru (1999) argue in their introduction that “Except in extreme cases such as where the voters are in total
agreement, or where all procedures give a common outcome, it is debatable how to determine the ‘true wishes’ of the
voters.” Clearly, the intuition of regress convergence lies in these latter “extreme cases” where all procedures (rules)
produce the same (ultimate) outcome, although our results show that the phenomenon can occur relatively frequently
in some familiar menus.
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Thus, no matter which rule in F?, F3, ... is selected, the ultimate outcome is the same. Thus, further
regress has no meaning for the determination of the ultimate outcome. In general, a profile L° is said
to weakly converge to C € X if such a (sequence of) consequential profile(s) exists and any higher-
level meta rules ultimately result in the same C.

The current chapter is organized as follows. Section 2.2 shows basic notation. In Section 2.3,
I show the formal definition of convergence. Section 2.4 states the probability model and the basic

technique of the probability calculation. In Section 2.5, I show theoretical results.

2.2 Basic Notation

Let N ={1,2,...,n} be a society of n individuals, where 2 < n < +oo. For any nonempty and
finite set A, L(A) denotes the set of all linear orders over A. A preference profile over A is an n-
tuple of linear orders (L, L, ..., L,) € L(A)™, where the i™ element L; is interpreted as individual
i’s preference. For any nonempty and finite set of alternatives A, a social choice rule (SCR) f maps
the preference profile L = (Ly, ..., L,) € L(A)™ into a nonempty subset of 4,i.e. ¢ # f(L;A) S A.
ASCR f is called a social choice function (SCF) if it is always singleton-valued. When f isa SCF,
with a slight abuse of notation, I write f(L) = x instead of f(L) = {x}.

Let A and B be any nonempty and finite sets with the same cardinalities, 0 < |4| =
|B| < o (A and B can be identical). For any preference profile L = (Ly,L,,...,L,) € L(A)™ and
a bijection 0: B — A, I define a (permuted) preference profile L° = (L{,L%,...,L%) € L(B)"™ on B
as follows: for all a,b € B and i EN,

al{b & a(a)L;o(b).
I say a SCR is neutral if, for any finite nonempty sets A and B with |A| = |B|, alternative b € B,
bijection ¢:B — A, and profile L € L(A)",
o) € f(L;A) © a € f(L?; B).
This axiom demands that the outcome of the SCR must not depend on the names of the alternatives.
Following are brief descriptions of several SCRs’ that are well-known in social choice theory. Note

that all of them are neutral.

(1) Scoring Rules (Positional Rules)
A scoring rule f is characterized with the combination of vectors [sT%,sTY, ..., ST ],,=3. For a given

sm

set A with |[A| =m > 2 and a preference profile L € L(A)™, f assigns to each alternative s;

points (j = 1,2, ...,m) if it is ranked at the j th position in one’s preference, where we assume that

1=s"">s' > >sp =0 foreach m > 28 The choice set f(-) is defined as the set of options

7 Nurmi (2002) gives a more detailed description of these voting rules, including their axiomatic properties and the
related paradox.

8 As Saari (2012) and many other authors point out, without loss of generality we can standardize arbitrary scoring
rules into this form.
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with the highest scores. For example, plurality, denoted fp, has the score assignment [1,0,0],,,—5
and [1,0,0,0],,—4, Borda count, denoted fz, has [1,1/2,0],,-53 and [1,2/3,1/3,0],,=4, and

anti-plurality, denoted f4, has [1,1,0],,=3 and [1,1,1,0],,=4. In general, Borda count® assigns

sm

;= % foreach j =1,2,...,m.For k € N;aSCR f iscalleda k-approval voting Ej, ifitisa

scoring rule with the assignment [s]%, 57", ..., ST] 23, Where if m > k, then

om — {1 if j<k

J 0 otherwise.

In words, a k-approval voting rule E, assigns 1 point to the 15¢,219, . k™ ranked alternatives
and zero points to the others. Note that we do not specify how Ej works if there are equal to or less

than k alternatives. Therefore, technically speaking, Ej just specifies the class of scoring rules.

(2) Sequential Positional Rules

The sequential positional rules have multiple rounds to determine the winners. From the first to the
(m — 2) round, the score of each remaining alternative is calculated and the alternative with the
lowest score is eliminated. In the (1 — 1) round (note that exactly two alternatives remain now),
the winning alternative is determined by the majority rule. For the score calculation in each round,
Hare's system fy; uses the plurality rule and Coomb's procedure f; uses the anti-plurality rule.
Nanson’s procedure is defined in a similar way. In each round, it eliminates all the candidates whose
Borda score (the scores of candidates evaluated by Borda count) do not surpass the average Borda

Score.

(3) Maximin Rule (f3,)

The Maximin score of alternative x € X is defined as rrg)r(1|{1 EN | xLiy}|. Then, fy chooses the
y

alternative(s) with the highest scores.

(4) Black's Rule (fg;)

Black’s rule chooses the Condorcet winner, if it exists. Otherwise, it chooses the Borda winner.

2.3 Definition of Convergence
To help the reader understand the formal definition of convergence that follows, I will first outline the

hypothetical situation. Assume that a society faces a decision requiring a choice from a set of

9 Note that my model normalizes the score assignment. In common use, Borda count assigns (m — j) points for the
alternative ranked at the j™ position (when there are m options). Dividing the assignments by the constant

— m_m7J . i
(m—1), my s; s obtained.
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alternatives X = {xy, %y, ..., Xy}, where 3 <M < 400 and that they have in mind a menu F =
{fi, -, fm} (2 <m < +4o) of possible SCRs (throughout Chapters 2 and 3, I use the letter F as a
menu of SCRs only). For instance, they agree on the use of either the plurality, Borda count, or anti-
plurality rule but there is no agreement on which of them should be used for the current agenda. At the
first level, the society applies each SCR in F! (upper script expresses the argument level) to the
collected preference profile L° over X. If every SCR gives the same outcome (convergence), the
regress stops. Otherwise, the society tries to vote on F1. Then, the society applies each SCR in F? to
the collected preference profile L' over F!. If every SCR gives essentially the same outcome
(convergence), the regress stops. Otherwise, the society tries to vote on FZ. The process can go on ad

infinitum unless the society finds a convergence.

Definition 7: Level®

The level-1 issue is the choice of X using each f] € F. In this context, each f] (G=12,..,m)is

called a level-1 SCR and denoted fjl and the level-1 menu is denoted F! = {f]}, ..., f;1}. For any

integer k > 2, the level-k issue is the choice of F¥~1 using fi, f5, ..., fin. In this context, each

f]- (j=1,2,..,m) iscalled a level-k SCR and denoted fjk and the level-k menu is denoted F* =

U fE s fin -

Definition 8: Class
- For any level-1 SCR f! € F!, its class at a level-0 preference profile L° € L(X)", denoted
Cp1[L°], is defined as Cp1[L°] = f1(L°).
- For any level-k(=2) SCR fk e Fk, its class at a level-0,1,2, ..., (k — 1) preference profile
Lo LY, ..., L¥=1, denoted Cpe[L®, LY, o, L¥71], is defined as

Cplto, o = ] Gt 1,

gk‘lefk(Lk‘l)

Remark. Let ~ be abinary relation over F¥ such that for all f*, gk € F,
fk~gkt Crie = Cyk.
Then it is clear that ~ makes an equivalence relation and each equivalence class is made up of the

rules with the same class. It is in this sense that I use the term “class” here.

Intuitively, the class of f* € F¥ represents the ultimate outcome that f* derives into X. When the
sequence L°, L1, ..,L¥71 is obvious in the context, I write simply as C £k instead of
Crx [L°, 1%, ..., Lk~1].

10 In this article, I suppose that the society uses the fixed set of SCRs, fi, ..., f for any level. The distinction
between fjl and sz by the superscripts is made based on the supposed agenda.
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Example 5
Let f1,f> € F. Let L° and L' be profiles over X and F?, respectively. Suppose fi1(L°) = {x} S
X, fA(L%) ={x,y} € X,and fZ(L') = {f, f7} Then, the class of fi' at L° is {x} while the class
of fZ at (L% L) is {x,y}. These are denoted as follows.

CulLf] = ()

Cel10,11] = (x93

Definition 9: Preference Extension System
For each i € N, I define e;: L(X) » L(BX) \ {¢p}) as a preference extension system if it satisfies
the following:

1) for each a,b € X and L? € L(X),if (a,b) € LI, then {a}ei(L?){b}.

2) foranyset ACS X and b € X\ A suchthat bL%a forall a € A, AU {b}ei(L?)A.

In words, e; mapseach L; € L(X) to a linear order preference over the power set of X (without the
empty set). Condition 1 is known in the literature as the Extension Rule (e.g. Barbera, Bossert, &
Pattanaik, 2004). Almost all the well-known preference extension systems satisfy this condition.
Condition 2 says that if better alternative b is added to A, the new set A U {b} is evaluated as better
than A. This condition is also often referred to in the literature (see, e.g., Gardenfors, 1976; Kannai &
Peleg, 1984). Note that there are many preference extension systems that satisfy these two conditions.
Throughout this dissertation, I do not specify what kind of e; each individual has, except when I give

a specific example. This guarantees the generality of the following argument.

Definition 10: Consequentially Induced Preference/Profile
Forany i €N, k €N, and L° € L(X)™, L' € L(FD)™, ..., LF"1 € L(F¥~1)", I define RF € W(F¥)
as the i’s level-k consequentially-induced weak order preference if, for each f*, gk € Fk,

(fk, ") e L¥ & (C[f*: 1O, 1Y, .., ¥, C[gk: 1O, 1Y, ..., LF71]) € e;(L?).
Alinear order L¥ € L(F¥) iscalledan i’slevel-k linear order preference or consequentially induced
preference (hereafter, level-k CI preference) if it is compatible with the i’s level-k consequentially-
induced weak order preference. I say L° € L(X)™, L' € L(FV)™, ..., L¥ € L(F*)™ as a sequence of
Cl profiles till level-k if L/ (j = 1,2,...,k) isa CIprofile with respect to the previous-level profiles
L0, LY, ..., L/~ T denote by L¥[L?, ..., L¥"1] the set of all level-k CI profiles with respect to a given
sequence LO, L%, ..., LK~ of CI profiles till level (k — 1).

When k=1 and F is made up of SCFs only, the CI preference is nothing but the “induced
preference” used in the study of self-selective SCRs (Koray, 2000). In this sense, the CI preference is
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a generalization of the induced preference so that we can deal with higher levels and SCRs, i.e.

correspondences instead of functions.

Definition 11: Weak Convergence

Alevel-0 preference profile L° € L(X)™ is said to weakly converge to C € X ifand only if k € N
and a sequence of CI profiles till level (k —1) L% L%, ...,L*¥"1 exist such thateach f* € F¥ has the
same class, i.e., C[f*:L% L, ...,LF"1] = C forall f¥ € Fk,

Remark. Whether a profile L° weakly converges or not depends on what kind of menu F the society
considers, and so it is more precise to say “L° weakly converges with respect to the menu F.” In the
subsequent argument, however, the menu F is explicit from the context. So, we simply say it as “L°

weakly converges to C S X”.

Remark. In the definition of weak convergence, I do not specify individuals’ preference extension
systems {e;};cy. Strictly speaking, a profile L° is defined as weakly converging to C € X if and
only if, for combinations of all preference extension systems {e;};cy, the required sequence of CI

profiles exists. This point will be exemplified later (see Example 11).

Note that once a profile L° weakly converges to C at level k, the class of any rule of level k' > k
is also C. Thus, further regress is thought to be meaningless. Following are some examples of the

notions introduced in this section.

Example 6: Weak Convergence (The Example Introduced in Section 2.1)
Let n=14, X={a,b,c}, and F ={fp,f5 fa} . Suppose the preference profile L° =
(19,19, ...,18,) is L_,p:abc, and L9,_1,4:bca. Then, fp(L°) = f5(L°) = a and f,(L°) = b, and
so the CI preference is

L% = {fofefa fefefa} for all i=1.2,..,10

L1101 = {fafofa fafafa) for all i =11,12,13,14.
Let LY_,:PBA, Lt _,,:BPA, and L},_1,:APB. Now, L' = (L},13,...,1},) defined in this way is
actually in L[L°]. It follows that C[f%; L%, L'] = C[fZ;L°, L] = C[f?; L% L'] = {a}. This means L°

weakly converges to {a}.

Example 7: Singleton Menu
T assumed |F| = 2 in the beginning of this section. This is because if |F| = 1, then the society has
no other options but to choose the unique procedure, and hence there is no need of procedural choice.

The above sequence of definitions, however, applies even for |F| = 1. So, only in several examples
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throughout the chapter, I refer to such singleton menus. Suppose F = {f}, where f is an arbitrary
SCR. It is clear that for any set of alternatives X and for any preference profile L € L(X)", L
weakly convergesto f(L) € X.

Example 8: Menu of two SCRs

Let f,g be any (distinct) neutral SCFs and let F = {f, g}. Forall L € L(X)™,if a = f(L) = g(L),
it follows that L strongly converges to a. If a = f(L) # g(L) = b, then the level-1 CI profile is
uniquely determined because allb < fLlg for all i € N by the extension rule. If f2(L') =
g?(LY), it follows that L° weakly converges. Otherwise, L° never (weakly) converges, because it is
easy to see that for all k =2, level-k CI profile L* is unique and f*(L¥"1) = f*=1 and

gk(Lk=1) = gk=1 (see Proposition 1).

As a generalization of Example 8, I define a class of profiles called trivial deadlock, where

convergence never occurs.

Definition 12: Trivial Deadlock
Let F ={fy, f2, -, fm} be the menu of SCRs. A preference profile L° is said to be in a trivial
deadlock if:

1)each f1(L°), fF(LY), ..., f,L(L%) is a distinct singleton, and

2)each fZ(LY), fZ(LY), ..., f;2(LY) is also a distinct singleton for all L* € L1[L°].

From a technical perspective, the intuition behind this trivial deadlock comes from the following:

Proposition 1: Trivial Deadlock Fails to Converge!!

Let F be amenu ofneutral SCRs. If L° isin a trivial deadlock, then L° does not (weakly) converge.

(From now on, all proofs of lemmas, propositions, and theorems are shown in the Appendix, unless

otherwise noted.)

Remark. When |X| = |F|, the condition 2) in the definition of trivial deadlock is unnecessary because

1) directly implies 2). This can be easily shown, as can the proof of Proposition 1.

Example 9: Trivial Deadlock

Suppose n =42, X = {x1,x5,x3}, and F = {fp, f5, f4}. Let ny, ny, ..., ng be the number of voters

11 Note that this proposition does not hold if |F| = 1, for in such a case it follows that trivial deadlock implies weak
convergence.
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whose preferences are x;X,X3, X1X3X9, XX1 X3, X2 X3X1, X3X1Xo, X3X2X1, Tespectively. If
(nq,ny, ...,ng) = (9,11,0,17,1,4), such profile is in a trivial deadlock. Because of Proposition 1, we

know that this profile never weakly converges. The figure below shows the regress structure.

X F! F?
D //f”l\\ {/;”2\\

Figure 3. A graph image of trivial deadlock

The proposition tells us that (weak) convergence and trivial deadlock are mutually exclusive as long
as we consider neutral SCRs only. Also, as we saw in Example 9, once a profile turns out to be in
trivial deadlock, the ‘structure’ (i.e., which higher-level rule chooses which rule) does not change at
all, no matter how high a level is considered. Hence, considering further regress under trivial deadlock
has little effective meaning (although, of course, it does not yield weak convergence). Finally, I note
that trivial deadlock is, in this sense, the polar opposite of weak convergence. There are, of course,

some profiles that are not in trivial deadlock, but do not weakly converge either.

Example 10
Let n =17, X ={a,b,c}, and F = {fp, f4, fp}, where fp:[1,0.75,0]. Suppose that two individuals

have level-0 preference abc, three have acb, five have bac, two have bca, three have cab, and
two have cba. Then, it is easy to inductively verify that for all k = 2 and for all CI sequence

L, LY, ..., L¥=1 the class of f¥ is {a} while the classes of f¥ and fX are both {b}.

Example 11
Let n =1700, X ={a,b,c}, and F = {fp, f5, fa}. Assume the profile L' € L(X)™" is as follows:
L:abc if 1<i<400 (1)
LY:ach if 401 <i<500 (II)
LY:bac if 501 <i <800 (II)
L:bca if 801 <i <1000 (IV)
LY:cab if 1001 < i <1400 (V)
L%:cba if 1401 <i <1700 (VI).
At this profile L%, we have f7(L°) = {c}, fa(L°) = {a, b,c}, and f;(L°) = {a, b}. As denoted, we
designate the voters whose level-0 preference is abc, ach, bac, bca, cab,cha astype 1,II,1I,1V,

V, VI, respectively. By the definition of CI preference, type 1 and type Il voters’ level-1
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preference must be fi,f4,f2 and type V and type VI voters’ level-1 preference must be

f#, fa, fi. On the other hand, type Il and type IV voters’ level-1 preference is indeterminate. I
now show that the possibility of weak convergence depends on what kind of preference extension
systems {e;};cy the voters have. Suppose:
— Allthe type II voters and 35 voters of type IV have
{a, b}ei(L?){c}ei (L?){a, b, c}.
This implies that their level-1 CI preference is f7, f4, fr
— 105 voters of type IV have
{a,b, c}ei(L?){c}ei(L?){a, b}.
This implies that their level-1 CI preference is fg, f2, f4 .
— The other 60 voters of type IV have
{c}ei(L?){a, b,c}e; (L?){a, b}.

This implies that their level-1 CI preference is fq, f4, f4 .

The reader can easily check that there exists a preference extension system that is compatible with
these preferences. At this level-1 CI preference profile L!, we have that fZ(LY) = {f}}, fZ(L?) =
{f2},and f2(LY) = {f#}. The proof that we cannot find weak convergence'? in the subsequent levels
for this profile is similar to the proof of Proposition 1. The profile L is not in trivial deadlock, and
so this example shows the existence of a profile that is neither weakly convergent nor in trivial
deadlock.

2.4 Probability Model
The examples in the previous section show that the possibility of weak/strong convergence largely
depends on the menu F. To state this formally, we need to determine the probability model. In social
choice theory, there are two major probability models—the Impartial Culture (IC) model and the
Impartial Anonymous Culture (IAC) model. Because of its simplicity, I assume IAC unless otherwise
noted. I briefly introduce them here for the reader’s convenience.

IC assumes that each voter independently chooses, with equal likelihood, one of the linear orders
over X. Therefore, each profile L° € L(X)™ occurs with the equal probability 1/(]X|!)"*. On the
other hand, IAC assumes that every voting situation, a combination of the numbers of individuals who
each have a specific linear order, occurs with equal likelihood. Hence, each (ny, ..., 1), where n;
represents the number of individuals who have the j* linear order, occurs with the equal probability

1/n+mi—1Cp- In either model, it is well known that the probability that a certain scoring rule yields a

2 On the other hand, if all the type I and IV voters have a level-1 preference of f7, fa, f2, it is also easy to
verify that L° weakly converges to {a, b}. Thus, whether the profile can weakly converge depends on the preference
extension systems {e;};en-
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tied outcome is negligible as n — o'% (Marchant, 2001, Pritchard and Wilson, 2007, Pritchard and
Wilson, 2009, and Diss and Merlin, 2010). This fact allows us to restrict our attention to those profiles
where each rule in the menu yields only a singleton, when we restrict our attention to a large society.
For convenience in the subsequent argument, I give a similar statement and its elementary proof as a

lemma.

Lemma 2
Take any distinct x,y € X. Let P(a) be the probability that exactly na voters prefer x to y.
Under either IC or IAC models and for all « € [0,1], P(a) » 0 as n — oo.

2.5 Menu of Three Scoring Rules
From this point on, I show my theoretical results. In this section, I show the fundamental result

concerning the weak convergence of a menu of three scoring rules.

Lemma 3
Let n=>m and F = {gl,gz, s Gps Ry, g, ...,hq} (p = q =0) be the menu of scoring SCRs,
where m =p+q = 3. For any sequence L°,L%,...,L¥=1 of CI profiles to level (k—1) and
alternatives x,y € X, suppose the class of each level-k SCR is:

Cg;c[Lo, LY, .., ¥ ={x} for all j =1,2,..,p.

Ch;c[LO,Ll, o L ={y} for all j=1,2,..,q.

If |{l EN | xL?y}| > |{l EN | yL?x}|, then L° weakly converges to {x}.

The lemma considers the case where every level-k rule results in either {x} or {y}. It says that if at
least half of the rules result in {x} and more than half of the people prefer x to y, then the original
profile weakly converges to {x}. Hence, the lemma indicates a specific case of weak convergence.
Note that the lemma tells only about the possibility of weak convergence and it is still possible that
the same profile weakly converges to {y} at the same time. The uniqueness of the convergent

outcome will be argued later in relation with the notion of strong convergence in section 2.6.

Lemma 4
Let n>m, m=3 or 4,and x,y € X such that |{l EN | xL?y}| * g Ifthe menu of SCRsis F =
{E1,E,, ..., E;_1q, fg} and the class of each level-k SCR is either {x} or {y} for a given sequence

of CI profiles L, LY, ...,L¥"1, then L° weakly converges.

13 For a relatively small n, the probabilities of tied outcomes when using well-known scoring rules, such as plurality
and Borda count, are studied by Gillet (1977; 1980) and Marchant (2001).
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These lemmas both give sufficient conditions for weak convergence. In Lemma 3, no condition is
placed on the menu F, but the condition that more than half the people prefer x to y is imposed on
the preference profile. Lemma 4, on the other hand, considers the specific menu F that is made up of
k-approval voting and Borda count only and placed little condition on the preference profile. As noted

in section 2.4, an event such as:
n
i€ N|xty)| =2

is unlikely as n — oo. Therefore, Lemma 4 almost always holds in the case of a large society with

such a menu.

Lemma 5 Let m =3 and F* = {gf,gé‘,gé‘}, where g]’-‘: [1, sj,O]. Assume Cg;f = ng = {x} and
Cgi = {¥}. Then, there exists L¥ € L¥[LO, LY, ..., L¥=1] such that |s;(g¥: LX) —s;(g%:L¥)| <1 for
k+1

all j =1,2,3, where s;( ) denotes the score evaluated by g;

Theorem 3
Let F ={fy,fo,f3} be a menu of SCRs containing three scoring rules, where fj:[l, sj,O]

(G=123), 1=5s;>s,>s3=0,and

1+s
s3=1/2 or |s3<1/2 and SZSZ >

@)

—_ 53 '
Under either IC or IAC, we have

Pwc+pp—1 as n— oo
Here, py,¢ denotes the probability of occurrence of those profiles that weakly converge and pp

denotes the probability of occurrence of those profiles that are in trivial deadlock.

It is worth noting that if F contains {fp, fg} or {fs fa}, equation (1) automatically holds
irrespective of the third scoring rule. For instance, if a large consequential society admits the menu
F = {fp, f5, fa}, the theorem states that there are asymptotically only two possibilities: they face a
trivial deadlock or they are endowed with the ability to find weak convergence. In either case, my
argument in section 2.3 indicates that further regress has little or no meaning. However, before
declaring that the infinite regress is solved, the probabilities py,- and ppmust be estimated. This is
because trivial deadlock is simply a case where the regress structure does not change at all and, thus,
trivial deadlock does not provide a specific answer. The actual calculation of py,c and pp can be

done using the technique presented by Diss et al. (2012) and Diss and Merlin (2010).

Corollary 1
Let |X| =3, n > o, and F = {fp, f5, fa}. Under IC, py, is 98.2%. Under IAC, py is 98.8%.
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This result shows for the menu F = {f;, f5, f4} that the probability of weak convergence is much
larger than that of stability. This fact implies that such a society can solve the infinite regress with

quite high probability (98.2% under IC and 98.8% under IAC).

2.6 Strong Convergence
Recall that L° € L(X) is, by definition, said to weakly converge if at least one consequential sequence
of (subsequent) profiles L', L?, ... exists}* that adjusts the rules’ ultimate judgments at a certain level.
The existence of such L, L2, ... guarantees that we can stop the apparent infinite regress arguments
through finite steps of regress. One might, however, be concerned that the same L° might weakly
converge to a distinct € and C' by the choice of sequence. Indeed, the following example shows

that such multiplicity can actually occur.

Example 12

Let X = {a,b,c} and F = {f;, fo, fs(= fo)}, where fi:[1,52,0], fo: [1, 52, 0] f5: [1,0,0].

Consider L° € L(X)™ such that 1 voter: abc, 87 voters: ach, 88 voters: bac, 1 voter: bca,
22 voters: cab, and 1 voter: cha (n = 200). Now, we have that f;(L%) = f,(L°) = {a} and
f3(L%) = {b}. It is easy to check that there exist L!,L* € L[L°] such that

fEAN), FFUD, AN € (1 73 but f2(I), (1), f2(1Y) € (5.

To avoid this issue, I define the notion of strong convergence, which completely avoids multiplicity.

Definition 13: Strong Convergence
A level-0 preference profile L° € L(X)™ is said to strongly converge to € € X if and only if it

weakly converges to € € X and it does not weakly converge to any other set C' # C.

It is clear from the definition that strong convergence is logically stronger than weak convergence and
that multiplicity entirely disappears once a profile is shown to strongly converge. The next result shows

the frequency of strong convergence for the menu {fp, f, fa}.

14 Technically speaking, we can find the similar use of a compatible linear order in Koray (2000) and Koray and
Slinko (2006). They define a social choice function (SCF) f as self-selective at L° relative to the menu of SCFs F?!
if and only if there is a consequentially induced L' € L(F')™ such that f2(L') = f. If we impose that the rule
chooses itself for all compatible linear orders, as Koray and Slinko (2006; p.9) state, “it leads to a vacuous concept.”
The same applies to regress convergence.

27



Theorem 4
Let F = {fp, f5, f4}. Under either IC or IAC, we have

Psc +pp > 1 as n— .

As a direct corollary of Theorem 3, we already know that a large society with the menu {fp, f5, fa}
has asymptotically only two cases—weak convergence or trivial deadlock. Theorem 4, however, states
that the two cases are actually strong convergence or trivial deadlock. To this point, I have mainly
restricted attention to large societies, i.e., n = co. But strong convergence can also be found in

relatively small societies, as follows.

Example 13
The profile I gave in Example 6 strongly converges to {a} as can be demonstrated with a slight

modification to the proof of Theorem 4.

Example 14
Let F = {f, g}, where f and g are any (distinct) SCRs. If f(L°) = g(L°) = C, then L° strongly

converges to C.

Finally, I deal with the choice of SCFs (i.e., not a correspondence but a function) and provide SCRs
with neutral tie-breaking systems. Specifically, for any SCR fy, [ denote by fy+ the SCF that breaks
ties in favor of iy € N, named the tie breaker of f;,. Note that different SCRs can have different tie
breakers (for example, the plurality tie breaker i, = 1 and the Borda count tie breaker iz = 2). Then,

Theorem 4 can be revised for a relatively small n.

Theorem 5
Assume n = 3 is odd, |X| = 3, and the menu of SCFs is {fp+, fx*, fa*}, where fy is either Borda
count, Black’s rule, Copeland’s method, or the Hare system. Then, any level-0 profile L° strongly

converges unless it is in a trivial deadlock.
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3 Convergent Menus of SCRs

In Chapter 2, we saw basic results for the concepts of weak and strong convergence. Specifically, I
showed that a large society with the menu {fp, fz, f4} has asymptotically only two possibilities:
strong convergence or trivial deadlock. While the probability of the former is quite high when |X| =
3, we cannot deny that trivial deadlock can also occur with small but positive probability, with which
the society’s attempt to determine the appropriate rule ends in vain. In this chapter, I search for menus

with which a society can avoid such failure. I assume the IAC model throughout this chapter.

3.1 Convergent Property of a Menu

First, I formally state the axiom of menus that demands that the society can always find a convergence.

Definition 14: Convergent Property

(1) Ifevery L° € L(X)™ weakly/strongly converges, I say that the menu F satisfies the weak/strong
convergent property.

(2) Let pywc (psc) be the probability that those level-0 preference profiles occur that weakly
(strongly) converge. If pyyc =1 (psc = 1) as n — oo, I say that F satisfies the asymptotic weak

(strong) convergent property.

Clearly, the strong convergent property is logically the strongest of the four axioms and the asymptotic

weak convergent property is the weakest. The logical relationship between them is shown below.

strong convergent property = asymptotic strong convergent property
U N I

weak convergent property = asymptotic weak convergent property

Let us see some examples concerning these axioms.

Example 15: Singleton Menu
If F={f} (a singleton menu), any profile L° € L(X)™ strongly converges to f(L°). Hence, any

singleton menu satisfies the strong convergent property.

Example 16: Menus of two Neutral SCFs
Let F ={f,g} be a menu of two neutral SCFs and |X|=2.If L° € L(X)" exists such that
F(L®) # g(L°), then F fails to satisfy the weak convergent property because we can verify that such

aprofile L° causes a trivial deadlock and hence, it never weakly converges.
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I previously introduced eight familiar SCRs—plurality, Borda, anti-plurality, Hare, Nanson, Coomb,
Maximin, and Black—in section 2.2. If we construct a menu of three SCRs from these eight SCRs,

there are

R

different menus. Our next result shows that these 56 menus also have the properties shown in
Theorem 3 for a triplet of scoring rules. For the convenience of the proof, let F be the set of these
eight SCRs:

F ={fe. S5 far i fn. e s fa1}-

Lemma 6
Suppose n is sufficiently large. Let x,y € X and |F| = 3, where F € F.Let L%, L}, ..., L ! bea
sequence of CI profiles to level (k — 1), where k € N. Suppose
(G018, o, 11 | £ € F¥) = {0, (3):
If
#{i € N|xLly} > #{i € N|yLox},

then L° weakly converges to x.

Theorem 6
Of'the 56 menus of SCRs, the following ten menus of SCRs satisfy the asymptotic weak
convergent property, i.e., pyc = 1 as n — oo,
e fwo b s fn fud fss foao foib U fivs fuad fss fivs faid
s for foid s funs foi3 s fvs fund A oo fuads Afws s f3

The theorem shows a basic possibility concerning the asymptotically weak convergent property. It can
be confirmed using familiar SCRs. Note that the menus not cited in the theorem do not have the
asymptotically weak convergent property. Using the barvinok computer software implemented by
Verdoolaege et al. (2004), we can calculate the asymptotic probability of trivial deadlock (see
Appendix, 0).

3.2 Strongly Convergent Menus
In the previous section, we saw that many menus of familiar SCRs provide weak convergence with
high probability. The next result shows that we can even construct a menu that satisfies the strong

convergent property.
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Definition 15: Difference
A menu F of SCRs satisfies the criterion of difference if, for all f,g € F and for any set X of
alternatives with |X| > 3, there exists a profile L € L(X)™ such that f(L) # g(L).

This axiom is introduced by Houy (2004) and is quite a weak condition: it demands only that F
should not include more than two identical SCRs. Houy (2004) shows that there is no set F that
satisfies neutrality (i.e., each f € F is neutral), difference, and strong first-level stability (i.e., exactly
one self-selective SCR exists at every L € L(X)™). Our first result shows that the impossibility

disappears if we substitute strong first-level stability for strong convergent property.

Theorem 7: Strong Convergent Menu
Aset F of neutral SCRs exists that satisfies both the condition of difference and the strong

convergent property.

3.3 Convergent Expansion

In sections 3.1 and 3.2, I showed that several menus, such as {Borda, Hare, Black} or the menu used
in the proof of Theorem 7, satisfy the convergent property. A straightforward conclusion from these
results is that a (large) society can solve infinite regress once they accept those menus. However, if a
society has already accepted a menu, such as {plurality, Borda, anti — plurality}, which fails to
satisfy the convergent property, it may be, for some reason, difficult to replace this with the technical
menu introduced in Theorem 7. This section considers how the convergent property may be given to
such menus.

Let us define chair rule ¢. Take an individual i* € N designated as the chair:

fa(L) if fp(L) # fzo(L) and (fp(L), f5(L)) € e;- (L)

o(L) = {fp (L) otherwise.

In words, ¢ is a SCR in which the chair i* chooses the outcome among fp(-) and fg,(-)

according to his or her own preference. Surprisingly, we have the following:

Theorem 8

The menu {fp, fzo, f4, @} satisfies the asymptotically weak convergent property.

Definition 16

Let F be a menu of SCRs. G 2 F is defined as an asymptotically-convergent expansion (AC
expansion) of F ifthe menu G has the asymptotically weak convergent property.

With this, we can write Theorem 8 as:
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G = {fp, fBos far @} is an AC expansion of F = {fp, fpo, fa}-

Definition 17
For a scoring rule f:[sT%,s¥, ...,s™]ms3, its assignment function f™:[1,m] - [0,1] (on m
alternatives) is defined as follows: for all j € {1,2,...,m — 1},

ol en @) = (87t = /") (x =) + s

In other words, an assignment function is obtained in two steps. First, plot m points
(1,s™), (2,57, ..., (m, sM) and second, connect each point to the ones next to it. If the number of
alternatives are obvious in the context, we often write the assignment function without its upper script

letters, for example, f instead of f™.

Definition 18: Concave Function

Let I € R beaninterval. A function f:I - R is said to be concave if, forall x,y € I,and t € [0,1],

tf(x) + (1 -0)f () < fltx + (1= )y). )

Definition 19: Concave Scoring Rule

Ascoring rule f is said to be concave if its assignment functions { f m}m>3 are all concave. I denote
by C the set ofall concave scoring rules and by G, the set of all score assignments [s7*, 577, ..., Sir]

whose assignment function is concave.

Example 17

Borda count fp and anti-plurality f, are both concave, while plurality is not.

Proposition 2

Let f:[s{", s7" ..., Smi]lm=3 be a concave scoring rule. For all m >3 and 1 < a <m, we have

fa () < fmx) < 1.

Proof of Proposition 2

It is sufficient to show that Em(x) < fm™(x) for all x=12,..,m.If x=1 or x =m, the
statement holds trivially because the definition of a scoring rule demands that f™(1) = ﬁgm(l) =1
and fm(m)=f3 (m)=0. Let x=23,..,m—1. Substituting x =1, y=m, and t=

(m —x)/(m — 1) in the equation of Definition 18, we get the proposition. m

The following two propositions can similarly be obtained from Definition 18.
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Proposition 3
Let f:[sT", sT, ..., St ]m=3 be a concave scoring rule. Forall m = 3 and 1 < a < b < m, we have
(1) Lyp(a) < f™(@) < minf1,Ly,,(a)}, and
2) Lom(b) < F™(5) < Lyo(b).
where L, (for distinct p,q € {1,2,...,m}) expresses the equation of the straight line passing
through (p, s{,") and (q,s{{‘), ie.:

sMm _ gm
L, (x) ==—P2 (x —p) + s
p.q q- p

Proposition 4
Let f:[sT", sT, ..., s/t ;=3 be aconcave scoring rule. Forall m =3 and 1 < a < b < m, we have
(DIf 1<c<a, Lig(c) < f™(c) <min{1, Ly, ()},
(Q)If a<c<b, Lyp(c) < f™(c) < min{Ly4(c), Lym(c)}, and
B)If b<c<m, Lyy(c) < f™(c) < Lgy(c).
where L, , (for distinct p,q € {1,2,...,m}) expresses the equation of straight line passing through
(p.s5") and (q.s7").

Theorem 9
Assume IAC. Let F = {fy, f5, ..., fu} beamenuof M > 3 concave scoring rules. Then, there exists

G 2 F that has the asymptotically weak convergent property.

Theorem 9 says that forany menu F of any finite size, if F is made up of concave scoring rules only,
we can expand it to G 2 F so that this G has the weak convergent property. Thus, a large society
can avoid the risk of trivial deadlock without abandoning the concave scoring rules in the status quo.
As a straightforward result from the theorem, I will introduce two specific classes of concave scoring

rules.

Corollary 2: Polynomial Concave Scoring Rule

The polynomial concave scoring rule p, (with parameter a > 1) is defined as a scoring rule such

m 1 '

Let F = {pal,paz, ...,paf}, where a;,ay,...,ag € [1,+00) are distinct real numbers. Then there

exists G 2 F that has the asymptotically weak convergent property.
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Just as in the proof of Corollary 2, we have also the following.

Corollary 3: Exponential Concave Scoring Rule
The exponential concave scoring rule e, (with parameter 0 < a < 1) is defined as a scoring rule

such that, for all m = 3,

m a*—aqm
st =—
* a—am

Let F = {eal,eaz, ...,eas}, where aq,a,, o, Uz € [1,+c0) are distinct real numbers. Then there

exists G 2 F that has the asymptotically weak convergent property.

Example 18: Polynomial Concave Scoring Rule

Let F = {fp, 01,02 fa} be the menu of concave scoring rules. Note that p; is identical to Borda
count. Suppose X ={a,b,c,d}. Let ny,n,, ns,...,ny, be the number of voters whose level-0
preference is abcd, abdc,acbd, ..., dcba (lexicographic order), respectively. Suppose the level-0
preference profile L° satisfies

(n4,ny, ..., Ny,) = (119,60,61,61,83,61,61,95,61,67,61,61,
65,130,61,61,61,61,61,61,61,147,61,61).

Then it is easily verified that L is in trivial deadlock. However, when we expand F = {p;, p,, fa}
in the way shown in the proof of Theorem 9 (4 = 10 and r = 10) and suppose 44 rules choose {a},
44 rules choose {b}, 44 rules choose {c}, and 55 rules choose {d} at L, then, if we construct
level-1 Clprofile L' in the way shown in the same proof, it follows that every level-2 has class {d}.
This means a weak convergence to {d}. Although such resolution of trivial deadlock is not what
Theorem 9 says, this indicates that the expansion of a given menu can be used to solve the trivial

deadlock in some cases.

3.4 AHistorical Example
Abraham Lincoln (1809-1865), the 16" President of the United States, was elected in 1860. The
election, historically known as the impetus for the outbreak of the Civil War, is quite interesting from
the perspective of social choice theory. There were four candidates running: Abraham Lincoln
(Republican Party), John C. Breckinridge (Southern Democratic Party), John Bell (Constitutional
Union Party), and Stephen A. Douglas (Northern Democratic Party). Each of them received a
significant number of ballots. Indeed, some researchers argue that if the citizens’ preference profiles
had been aggregated using other voting procedures, the result might have been different (Riker, 1982;
Tabarrok & Spector, 1999). In this section, we use this example to illustrate the notion of convergence.

Although we cannot know the complete preference profile of the citizens at that time, Riker
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(1982) and Tabarrok and Spector (1999) give estimations. Riker (1982) estimates the full preference
ranking for each state himself (Riker’s profile) while Tabarrok and Spector (1999, p.274) “carried out
a survey among a number of historians, all of whom had written on the election of 1860 or more
generally on the politics of the pre-civil war era.” Their estimation, the Mean Historian Profile, is
made by taking the average of the 13 entire profiles estimated by the historians. For the convenience

of the reader, I cite their results in the tables below.

Table 1. Riker’s Profile (Ballots)

LDRB 0 RLDB 0
LDBR 450000 RLBD 0
LRDB 0 RDLB 104000
LRBD 0 RDBL 329000
LBDR 1414000 RBLD 0
LBRD 0 RBDL 413000
DLRB 83000 BLDR 270000
DLBR 318000 BLRD 0
DRLB 173000 BDLR 114000
DRBL 489000 BDRL 28000
DBLR 319000 BRLD 31000
DBRL 0 BRDL 146000
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Table 2. Mean Historian Profile (%)

LDRB 0 RLDB 0
LDBR 21.17 RLBD 0
LRDB 0 RDLB 0.13
LRBD 0 RDBL 6.87
LBDR 18.61 RBLD 0
LBRD 0 RBDL 11.19
DLRB 0.11 BLDR 1.7
DLBR 8.04 BLRD 0
DRLB 0.22 BDLR 4.48
DRBL 4.87 BDRL 3.81
DBLR 8.59 BRLD 0.04
DBRL 7.53 BRDL 2.56

Based on these estimated profiles, they showed that different procedures (e.g., plurality and anti-
plurality) yield different outputs. I now demonstrate how these discrepancies can be resolved through
the notion of weak/strong convergence. Let L% and L3, be Riker’s profile and the Mean Historian

Profile over X = {Lincoln (L),Douglas (D),Bell (B),Breckinridge (R)}, respectively.

(1) Strong Convergence in Riker’s Profile.
Let F = {fp, f, fa}. For this profile, it follows that fa(L%) = {L} while f2(L%) = fi(L%) = {D}

(see Figure 4). Just as in the proof of Theorem 8, we can see that L° strongly converges to {D}.

[ S

P
B -
A ¥ \-- 4

Figure 4. Strong convergence in Riker’s profile

(2) Trivial Deadlock in Riker’s Profile.
Let F = {fp, fx, fa}, where fy is aslight change of fg such that

'[1 ! O] [11 ! 0]
fX- I2J ’ ) )3' .

It is easy to check that L° is in trivial deadlock (see Figure 5).
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Figure 5. Trivial deadlock in Riker’s profile

(3) Strong convergence in the Mean Historian Profile.

Let F = {fp, f5, fa} again. Just as in (1), we can verify that LS, strongly converges to {D}.

(1), (2), and (3) provide a good example of how procedural choice can be made using the notion
of convergence. In (1) and (3), L% and L3, both strongly converges not to Lincoln (L) but to
Douglas (D). Part of the reason for this result is that Douglas wins over Lincoln using the simple
majority rule under the both profiles. I do not claim that Douglas should have been the winner. In
terms of convergence theory, whether a specific candidate (e.g., Douglas) should be elected depends
on what kind of menu the society accepts. For example, if the U.S. citizens at that time thought that
fp was the unique appropriate procedure, i.e., F = {fp}, the convergence clearly shows that the
winner should have been Lincoln, because both profiles strongly converges to {L}. The procedural

choice based on convergence depends on which procedures are on the menu.

3.5 Discussion

In Chapters 2 and 3, I investigated the notion of weak/strong convergence. A preference profile L°
over the set of alternatives X is said to (weakly/strongly) converge if every rule to choose the rule to
... to choose the rule to choose from X derives the same subset C of X. In Chapter 2, the results
showed that a large society with three “familiar” SCRs can find convergence with relatively high
probability when there are three alternatives. Specifically, the probability of weak convergence marks
100% (as n — oo) for ten menus (Theorem 6). In Chapter 3, we focused on the question of under
which menus of SCRs a (large) society can always find convergence. When little or no condition is
placed on menus, Theorem 7 shows the existence of a menu satisfying the strongest property, i.e., the
strong convergent property. On the other hand, I also showed that if F is made up of concave scoring
rules, there is an AC-expansion G 2 F (Theorem 9). This result enables a large society to acquire the
asymptotic convergent property without abandoning the SCRs that they have already accepted. To
conclude the chapter, I will add several comments on these results.

The first comment is on the calculation of probability. Throughout Chapters 2 and 3, the
argument originates from the set of alternatives X, and I assume that the probability model of voters’
preferences over X follows either the IC or IAC model. Therefore, the probability of convergence or

of trivial deadlock can differ once the number of alternatives changes. There is, however, a slightly
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different use of the IC or IAC model: to assume that people’s preferences over the menu F follow
one of these models. In this alternative interpretation®®, the choice from menu F should correspond
with “the set of alternatives X”. If we do not use the original set of alternatives explicitly, in this way,
we can determine the probability of convergence without depending on the number of original
alternatives, because we can regard Theorem 6 as a purely general case.

The second comment is on the definition of weak convergence. I defined a profile as weakly
convergent if there exists a sequence of CI profiles that satisfy the required condition. Theoretically,
CI preference is a generalization of the “induced preference” used by Koray (2000). Koray defines a
voting rule to be self-selective if there exists an induced preference profile that satisfies a couple of
conditions. As Koray and Slinko (2006; p.6) argued, if we substitute the italic part in the last sentence
into “for all induced preference profiles”, the notion of self-selectivity turns out to be degenerate, and
so too does the notion of convergence. In this sense, our notion of convergence is theoretically close
to the notion of self-selectivity or self-stability: I note, however, that they are independent of each
other. More specifically, Diss et al. (2012) and Diss and Merlin (2010) define a menu of SCRs as stable
if there exists at least one self-selecting SCR for all preference profiles. What I claim here is that the
two statements “‘a menu is stable” and “a menu weakly converges” are independent. To show this, it
is sufficient to give two examples. The first is a profile that is stable and not weakly convergent; such
a profile was shown in the introduction of trivial deadlock (see Example 9). The second example is a
profile that is not stable and is weakly convergent, as shown in Figure 1 (page 6). The reader can see
that no (level-1 and level-2) SCR chooses itself in the figure.

The last and concluding comment is on the meta-level profiles. The notion of convergence
is, by definition, based on the implicit assumption that voters’ meta-preferences are consequential. If
everyone is (supposed to be) consequential, the convergence notion performs relatively well to resolve
the infinite regress of procedural choice, just by manipulating the indifferent class in consequentially
induced weak preference profiles. However, the notion does not work well if there exist some voters
whose meta-level preferences are not consequential. For example, suppose a voter, Mr. Z, prefers
Douglas to Lincoln and prefers plurality to anti-plurality. Such a voter is not consequential because
plurality chooses Lincoln while anti-plurality chooses Douglas (section 3.4). But the point is a little
more demanding. To reject the theory of convergence, there must be a voter whose meta-preference is
not consequential, regardless of how high a level is considered. If Mr. Z prefers any level-k > 2 rule

(i.e., arule in F¥)that ultimately chooses level-1 plurality, then we can regard him as consequential

15 Indeed, Diss et al. (2012) accepts this interpretation. They assume that the probability distribution over of the
preference profile over the rules should follow IAC model. Nevertheless, I assumed that voters’ preference profile
over X follows IC or IAC. The reason is my personal idea that the procedural choice should be made for the very
agenda that the society faces. It could be that a man does not care whether his wife decides dictatorially which
restaurant to go for lunch but at the same time the man hates the use of dictatorship to determine whether the Diet
abolishes a national law. One’s procedural judgment can vary according to the agenda. Therefore, our theory treats X
explicitly.
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from level-2. If every i € N is consequential at some finite level k; € N, then the convergence
phenomenon will work, for we can say that everyone is consequential from the level k* :=
max{k,, K, ..., k,} and hence the theory works once we regard X as FX. Once this translation is
done, my series of theorems works to provide the convergence for a society. Thus, whether the notion
of convergence can work depends on whether some individuals are not consequential at any level. For
instance, whether there is an individual who prefers plurality at any level, even though level-10
plurality might choose level-9 anti-plurality. To determine what kind of meta-preference (for infinite

number of levels) can be an interesting future topic.
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4 Determine the Society

In the study of convergence in the previous chapters, the society N is assumed to be given. In
other words, an ex ante agreement is assumed to exist as to who has voting rights and who does
not. While this implicit assumption is commonly used in the literature referred to in the previous
chapter, the determination of N can sometimes be quite controversial, especially when it is not
clear who belongs to the set of individuals affected by the decision. In such a case, a voting rule
is needed to aggregate individuals’ opinions on who should be included in N. This chapter
focuses on the strategic aspect of such an aggregation procedure.

Consider that a set of individuals N = {1,2,...,n}, where n > 2, assigns some (honorable)
positions among them based on their mutual evaluations. I assume that everyone is selfish, in the sense
that they want to win the honor for themselves. These situations differ from an ordinary social choice
problem because each individual is a candidate as well as a voter, and therefore, specific kinds of
strategic voting may occur. A basic interpretation of the word positions in the context of this
dissertation is (a person who has) the right to vote. However, the subsequent argument is not specific
to this context. Indeed, there are many other decision-making situations that have a similar structure,
such as the awarding of prizes at an academic conference, a leadership contest within a political party,
and the selection of representatives within a group.

For these situations, Holzman and Moulin (2013) proposed an axiomatic framework of
nomination rules and the axiom of Impartiality (IMP). A nomination rule is a rule for choosing the set
of winners through the aggregation of individuals’ ballots that state who should receive the honorable
positions. Under many familiar nomination rules such as approval voting (AV), a rational voter might
manipulate his or her ballot in order to improve their own chance of winning. Consider, for instance,
a society of four individuals: 1,2,3,and 4. They choose the prize winner(s) from among themselves
by AV, where everyone is obliged to approve others and is not allowed to self-approve or abstain.
Suppose individual 1 approves 2, 2 approves 3, 3 approves 4, and 4 approves 3. In this case,
AV declares victory for individual 3, because he or she receives the highest score (two points).
However, if individual 4 approved 1 instead, AV would declare victory for the entire set of
individuals (i.e., 1, 2, 3, and 4) because everyone’s score would be the same. Thus, individual 4
would be better off by manipulating his or her ballot*®. A nomination rule is called impartial if everyone
can approve of anyone without fearing that the vote might spoil his or her own chance of winning. The
example shows that AV is not impartial, despite its widely accepted robustness against strategic

manipulation.

16 This possibility of manipulation still exists even if the method of AV uses a deterministic tie-breaking rule to
restrict the set of winners to singletons only. Suppose individual A wins when A approves B, B approves C, C
approves D, and D approves A. In this case, individual A has an opportunity to manipulate at the following ballot
profile: A approves C, B approves C, C approves D,and D approves A.Individual A would be better off
approving B instead.
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Described technically, Holzman and Moulin (2013) study the nomination function—where
exactly one person wins—and propose several impossibility theorems. The combination of IMP and
Anonymous Ballots (AB), an axiom that demands that each individual be treated equally as a voter,
show one of the most striking impossibilities: the constant rule is the only nomination rule that satisfies
both of these two axioms. Among subsequent axiomatic studies, Tamura and Ohseto's (2014) is the
closest to my study. They showed that by considering nomination correspondences (i.e., allowing
multiple winners), the impossibilities can be relieved. However, they faced another impossibility
concerning IMP, AB, and Positive Unanimity (PU).

In general, the framework of a nomination rule is determined by two sets: (1) the domain
(i.e., the admissible set of ballot profiles), and (2) the codomain (i.e., the admissible set of sets of
winners). | refer to this pair as the setting of the nomination rule. As Tamura and Ohseto (2014) show,
the extent of design possibility for normative nomination rules can differ among these settings. This
strand of research motivates me to consider other popular settings and to find further escape routes
from the impossibilities. The comparative study of different settings is also motivated from an
empirical point of view. Consider, for example, nominations for the best paper award in some
academic societies, or for the position of president of a country. In such cases, the number of winners
is supposed to be restricted to one or at least bounded from above. By considering various domains
with the number of winners fixed (to one), we can provide an escape route from the Holzman and
Moulin impossibility.

In a technical sense, | consider four types of ballot domain:

1) All voters can approve as many other individuals as they like and neither self-approval
nor abstention is allowed.

2) All voters can approve as many individuals as they like and abstention is not allowed.

3) All voters can approve as many individuals as they like and self-approval is not allowed.

4) All voters must approve a fixed number of others (self-approval is not allowed).

In Holzman and Moulin (2013), Tamura and Ohseto (2014), and Tamura (2015), each
individual was allowed to approve another individual. Their framework is a special case of my ballot
profile domain 4). This ballot profile domain was also studied in relation to AV (e.g., Peters, Roy, &
Storcken, 2012).

As for codomains, I consider three types:

a) The number of winners is fixed.

b) The number of winners is bounded by a maximum of some fixed number.

¢) The number of winners is bounded by a minimum of some fixed number.
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By considering every combination of the domains (i.e., 1-4) and codomains (i.e., a—d), we
can evaluate the nomination rules for a large number of settings. For example, for n = 10 individuals,
the number of possible settings is as high as 275. I have investigated, for each of the possible settings,
whether a nomination rule exists that will satisfy IMP, AB, Pairwise Candidate Neutrality (2CN), Weak
PU (WPU), and Negative Unanimity (NU). 2CN is a new axiom that I have formulated to express the
idea of neutrality for endogenous nominating settings. My comparison analysis is possible because I
succeed in describing the general structure that the impartial nomination rules commonly have under
various settings (Lemma 7, Lemma 8, Lemma 9, Lemma 10, and Lemma 11 in subsection 4.3.2).
Comparative results will be described in subsection 4.3.3.

Roughly speaking, the result shows that the threshold rule performs well in many settings.
The threshold rule is defined as a rule that chooses all individuals whose scores (i.e., the number of
approvals received by the individual) reach the fixed threshold. For example, if the threshold is fixed
to two, every individual wins if and only if he or she is approved by at least two individuals. Indeed,
the threshold rule, if it is well-defined for the setting, satisfies IMP and AB for almost all settings
except those where self-approvals are allowed. The intuitive reason for this is that, when self-approval
is not allowed, individuals cannot change their own score. This implies that individuals’ own ballots
cannot affect whether their score reaches the fixed threshold. I will show that the threshold rule is
characterized using IMP and some of the axioms well-known in relation to AV: anonymity, neutrality,
positive/negative unanimity, and weak monotonicity.

The current chapter is organized as follows. Section 4.1 denotes the basic notation and
section 4.2 describes the axioms of nomination rules in detail. I show the technical results of my
comparative study in section 4.3. Further comments and discussion on the results are given in section

4.4. All proofs are in the Appendix.

4.1 Notation
Let N ={1,2,...,n} be a society consisting of n (3 < n < o) individuals. Each individual i € N
casts a ballot N; © N, where the ballot N; is interpreted as the set of candidates approved by i. |
refer to several circumstances that differ in the kinds of ballots that are admitted and winners that can
be chosen. These pieces of information are formally expressed as the domains and codomains of

nomination rules.

Definition 20: Ballot Profile Domains—The Domain of the Nomination Rule
Let k € {1,2,...,n—2}. Forany i € N | define four types of admissible ballot domains
R, NV, NAB, RE < P(N) as follows:

L

%, = {N; € BA) [ ¢ = N; < N\ (i3}
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n = (v e B ¢ = N; € N\ (i}

= (N € B | N € N\ (13}

R = (N, e R(N) | N; € N\ {¢} and |N;| = k}

I refer to each 9;, ETlfelf , NAB and MF as i’s ballot domain, generally denoted by D;. A
combination of all individuals’ ballots is called a ballot profile. | denote by 9t, 9t5e/, NAE Nk the
corresponding set of admissible ballot profiles for each of ®; = 9, RAZ, NV, Nk

N =N x .. XN,

qself = o5 x Lx Y

N4 = PP X\ {(D, ¢, ..., D)}

9Nk = NhxL.x ok
| refer to each M, NseY, NA48, and N* as a (ballot profile) domain, generally denoted by D.

A ballot profile domain D; expresses what kind of ballot i can cast. As we can see from
the definition, 9t; allows individual i to approve as many individuals as he or she likes, if i
approves at least one individual (i.e., no abstention) and does not approve him or herself (i.e., no
self-approval). The next two ballot profile domains 9t%¢Y and 948 are situations where self-
approval or abstention, respectively, are permitted. Finally, ¥ is a ballot domain where i must
approve a fixed number of k individuals from among the others. Note that the condition of k <
n — 2 is not restricting because it only rules out 9t~ where i has no choice but to approve all
others. Considering all possible combinations of individuals’ ballots from the corresponding ballot
profile domains D;, | define the profile domains . I note that 9t48 excludes the empty profile,
where no one approves anyone.!” | denote the ballots using capital letters with a subscript
representing the individual N;, M;, K;(€ ;). Ballot profiles are denoted by scripted styles
N, M, K (€ D), and ballot profile domains are denoted by fraktur letters Ri,D, etc.

Definition 21: Possible Winners—The Codomain of the Nomination Rule
Let [ € {1,2,..,n — 1}. We consider several types of the codomain X of the nomination rule.
X=PWN)\{¢}
xt={w e | Iwl =1}
¥={wepm|Iwl =1}
x={wesm|wi<i}
| refer to each X, X, X!, and X' as a codomain, generally denoted by X.

17" As we describe later, this condition follows the model of Alon et al. (2009).
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The codomain ¥ = X, X!, X!, X! contains the information on the possible number of
winners. The codomain X admits any number of winners except zero, while X! admits only the
fixed number of winners, X! admits { or more winners, and X! admits [ or less winners. It
follows from the definition that X is a special case of X!, or X = X*. Though | do not consider the
case of [ = n, itisclear that X™ = X" has little importance, and X"(= X' = ¥) is included in the
other types. Thus, the restriction of [ < n eliminates the trivial cases only. Hereafter, | call the pair
of the domain and codomain a setting. A nomination rule is formally defined for each combination
of domain and codomain.

Definition 22: Nomination Rule
The nomination rule ¢ of setting (D, X) is a function ¢:D — X, which assigns to each ballot
profile V' = (Ny, ..., N,) € D the set of winners ¢ (N') € X.

My definition deals with many variations in the settings. Holzman and Moulin (2010) study
the setting of (D, ¥) = (N, X'), Tamura and Ohseto (2014) study the setting of (D, ¥) = (N4, %),
and Alon et al. (2009) study the setting of (9148, x%).

Here I will provide a few more notations. For any N € D, | will denote by s;(V) the i’s
score at ballot profile & = (N, ..., N,) € D, which is calculated as follows:

s5;(V) = |{] EN | i€ N]}|
This counts the number of ballots that include i. | denote by s(V) = (s;(V), 53(V), ..., s, (V)
the profile of scores at a ballot profile V. To distinguish this from ballot profiles, | denote by s(NV)
the score profile (with respect to V). I also denote by sj_i(]\f ) the individual j’s score coming
from the individuals in N \ {i} as follows:
5T = [{re N\ (i} ] € NJ|

Finally, I define a special type of ballot profile that is useful for the proof. For all j €N, I
define JEN as J=n if j=0 (mod n) and J=1 if j=1 (mod n) forsome 1<l <n-—
1. For example, T=1i forall i € N,and 0=n—-1=n—-1-2=n—-2,...and n+1=
1,n+ 2 = 2, .... Let me define cyclic ballot profiles C*,C?,...,C* ' € N.Forany 1<m<n-—1,
I define the m-cyclic ballot profile €™ = (C/",CI*,...,CI) €N as (" ={t+ 1,1+ 2,..,1 + m}.
I further define a reversed m-cyclic ballot profile R™ = (RT", ..., Rj") such that R[" :=

{i—1,1—2,..,1—mj} forall i €N.
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4.2 Axioms for Nomination Rules

4.2.1 Axioms
I introduce some normative axioms for nomination rules. After the definitions, | will show some
well-known nomination rules and argue their axiomatic performance in 4.2.2.

Let ¢:D — X be anomination rule.

(1) ¢ satisfies IMP if

forany v = (N;, N_;) € D,i € N,and N/ € D;, we have i € p(N;,N_;) © i €
o(N{,N_y).
(2) ¢ satisfies (strong) PU if

forall ¥ € D, if i € N exists such that i € N;.; N;, then

(p(N)={i€1V|iENj for all jEIV}.

(3) ¢ satisfies WPU if

forany v = (N, N_) €D and i € N, if i € N; forall j € N\ {i}, then i € p(IV).
(4) @ satisfies NU if

forall ¥ € ® and i € N,if i € N; forall j € N\ {i}, then i & @(IV).
(5) ¢ satisfies AB if

forall 7, NV’ € D,if s(W) =s(N'), then (N) = p(N").
(6) ¢ satisfies No Dummy (ND) if

forall i e N, & = (N;,N_;) and N/ € D; exist suchthat @(N) # @(N").

Note that these axioms, except WPU, coincide with those used in both Holzman and
Moulin (2013) and Tamura and Ohseto (2014), if we consider the settings studied in those papers.
WPU is my own axiom. To make this dissertation self-contained, | will briefly explain these axioms.

Axiom IMP demands that each voter’s ballot has no influence over whether that voter wins
or loses. In other words, everyone can approve anyone without fearing that the approval of one’s
potential rivals decreases one’s own chance of winning.

The axioms of PU, WPU, and NU relate to the idea of unanimity. PU and WPU demand that
one must win if one earns unanimous approval from all others, and PU furthermore demands that
those who fail to obtain unanimous approval from the others cannot win if someone else obtains
unanimous approval. Note that PU and WPU are logically equivalent in some settings (e.g., in
(91, x1)), which Holzman and Moulin (2013) studied. On the other hand, NU demands that if one
cannot obtain approval from any of the others, he or she must not win.

The fifth axiom, AB, states that all individuals should be treated equally as voters. If a rule
satisfies AB, then it does not see who approves who, but only the scores of each individual. Note that
this condition does not necessarily require individual equality as a candidate. For example, a

nomination rule that chooses some fixed individual i € N satisfies AB, although this rule is clearly
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discriminative over other candidates.

The sixth axiom, ND, states that all voters have at least one situation (i.e., one ballot profile)
where they can change the winners ¢ (-). Thus, the constant rule does not satisfy ND because
anyone in the society is a dummy voter.

Note also that all the above axioms are satisfied by AV, except for IMP. Formal discussion
on the properties of each rule will be given in section 4.2.2.

To state the next axiom, | need to introduce further notation. Let o = (i,j) be any
transposition'® over N that swaps i and j. For any ballot profile " = (Ny,...,N,)) € D such that
€ N; and j €N, let V° = (N7,..,N7) be the transposed ballot profile defined for any k € N
and u=1i,j, p € N, © o(u) € N¢.

In words, V¢ is a ballot profile where the approvers of i and j are swapped from the
original ballot profile V': those who approved i at N will newly approve j at N'°, and those
who approved j at ' will approve i at V'°. This means that the individuals’ judgments over i
and j are swapped with each other. Note that for any transposition ¢ = (i,j) and a ballot profile
N € D(= NNV, 4B, ¢k) such that i & N; and j & N, it follows that N'° € D. Therefore, we
can freely consider the transposed ballot profile as long as i € N; and j € N;. Note also that if it
were not for the condition of i € N; and j € N, it could be that N € D but N & D. This is
because self-approval is not permitted in the domains D = 9t, tAB, t*. Therefore, if i approves j
at the original ballot profile V', we cannot define ° for ¢ = (i,j) in a direct manner because
N should include i instead of j, which constitutes self-approval. Using this notation I introduce

the next axiom.

(7) ¢ satisfies Pairwise Candidate Neutrality (2CN) if
forall v €D, i,j € N, and transposition ¢ = (i, ), if i & N; and j & N;, then we have
i€EpWV) e a(i) e p(N).
(8) ¢ satisfies Cancellation (C) if
forall v € D, if s;(W) = s;(W) forall i.j €N, then (M) =N.
(9) ¢ satisfies Weak Monotonicity (WM) if
forall & = (Ny,..,N,) €D, i € (V) S N,and j,k € N\ {i} suchthat i ¢ N; and
k €N,
i €V for N =(N/,N_;) € D, where N/ = (N; U {i}) \ {k}.

2CN reflects the idea of the neutrality axiom in the nomination environment. Roughly speaking,

2CN demands that the swap of i and j in the ballot profile causes the swap of i and j in the

18 We say that o = (i,j) is a transposition over N between i and j if 6:N — N is a bijection and ¢ (i) = j,
o(j) =i,and o(k) =k forall k € N\ {i,j}.
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result of . However, 2CN says nothing if there is an internal approval between i and j. Under

2CN, we can say that each individual is treated almost equally. Cancellation states that if the scores
of all the individuals are the same, then all the individuals win. As | show in Lemma 10, this axiom
is logically connected to the others®®. The last axiom, WM, states that the original winner i € N is

still one of the winners after some j newly approves i instead of some k.

Remark. 2CN is a weaker axiom than Candidate Neutrality (CN), which is used in Mackenzie
(2015). To see this, let me give a slight paraphrasing of AC. If we consider 9t or 0¥ as the
domain, the condition of [i € X; and j ¢ Xi] is equivalent to saying X° € D?. Furthermore,
[i € p(X) ©j € p(X?)] is equivalent to saying [@,(;)(X°) = ¢;(X)] if we consider
deterministic rules. Therefore, in these domains, 2CN and CN can be expressed as follows:

CN: For each profile X = (X4, X5, ..., X,) € D, each i € N, and each permutation o € Sy,

X7 € D implies @q;)(X7) = @;(X).
2CN: For each profile X = (Xq,X,,...,X;) € B, and each i € N and each transposition
o=(@0j)),
X% € D implies @q;)(X7) = @;(X).

The difference is whether they consider any permutation or any transposition. Clearly, CN implies
2CN because a transposition is a permutation. It is well known that any permutation can be written
as a product of transpositions, and so the reader might think that 2CN and CN are logically
equivalent, but they are not. 2CN is strictly logically weaker than CN. The following example shows
this fact.

Let ¢:9t — B(N) \ {¢} be defined as follows: for each N' = (N;,N,, ..., N,) € X,

00 ={3) Cnerunse.
In words, this rule chooses individual 1 only if the ballot profile is either (n — 2)-cyclic profile
C""2 oritsreverse R""2. Otherwise, it chooses those who individual 1 approves. Let me show two
statements:

[1] the rule ¢ satisfies 2CN, and

[2] the rule ¢ fails to satisfy CN.

Proof of [1]
I show [1] with four steps. Let 1: N — N be the identity function.

19 We found some works that use this axiom in the characterization of AV: Fishburn (1978), Laffont (1979), and
Alds-Ferrer (2006).

20 In this remark, I use the following notation so that I can compare the definitions to those of Mackenzie (2015).
Xf =) =t |y € xi}.
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Step 1: To show that (a) for each o € Sg, [0(C""2) € D © o is either (1,2,...,n) or 1], and (b)
for each o € Sg, [c(R"2) € D © o iseither (n,n—1,...,1) or 1].

The proofs are similar, and so let me show (a) only. [&] is straightforward, therefore I show
[=]. Takeany o € Sy suchthat 0(C™2) € D and o # 1.Takeany i € N.Suppose i # o(i) and
let j =0(i). 0o(C"%) €D, and so j doesnot nominate himself or herself at the profile o(C™2).

Formally,

je{ueN|je 9} ={ueN|iect?}=N\{ii+ 1.
So, j iseither i or 1+ 1. We assumed j # i, and so we have j = o(i) =1 + 1.

o # 1, and so there exists at least one individual iy € N such that o(iy) # iy. With the
argument from the previous paragraph, we have o(iy) =1, + 1. o is a permutation, and so we have
o0(1p + 1) # 1, + 1, because otherwise o(iy) and (i, + 1) would become the same. Inductively,
we have o(i) # i for all i € N. With the previous paragraph, this means (i) =1+ 1 for all i €

N. As an extra notation, let me denote as % = (1,2,...,n) (and ™' = (n,n—1,...,1)).

Step 2: To confirm that (€™ %) = R""2 and X™1(R"2) =Cc" 2
The confirmation is straightforward. Note that Step 1 and Step 2 together imply that if

o(C™2) € D forsome o € Sy, it follows that (€™ 2) is either C""2 or R 2.

Step 3: To show that there is no T €Sy and N € D\ {C" % R"* 2} such that t(WN) €
(cn—2, jn2),
Suppose to the contrary that T(V) =C" 2% for T € Sg and NV € D\ {€"2,R"2}.
Then,
e ) =7 (7 (V) = V.
This contradicts Step 2.

Step 4: To show that ¢ satisfies 2CN.

Take any i,j € N and N € D. Let 0 = (i,j). If V € {€"2,R" 2}, Step 1 tells us that
o(NV) & D (if n = 3). So, the statement of 2CN automatically holds. If M € D\ {€""%, R" 2},
step 3 shows that o(IV) € D or a(NV) € D\ {€" 2, R"2}. In the former case, the statement of
2CN automatically holds. In the latter case, 2CN also holds because @(N) = N; and (V%) = N/.
|

Proof of [2]

To check that ¢ does not satisfy CN, let us consider profiles ™2 and R™ 2 and permutation 5
defined in the proof of [1]. By definition, @(C™ %) = @(R™ 2) = {1}. However, CN demands that
@(R™2) = 2 (™ ?) = {2}. Contradiction. H
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4.2.2 Independence of the Axioms
Here 1 show some basic examples of nomination rules and discuss whether they satisfy the main
axioms: IMP, AB, WPU, PU, 2CN, and NU, which will be used frequently later on. Then I show the

logical relation of the main axioms, mainly on the setting (9, ¥)2L.

(1) Approval Voting @.: D — %
AV ¢, isthe nomination rule that chooses as the winners those with the highest scores. For any
ballot profile v € D,

@y (V) = argmax s;(V) = {i € N|s;(V) = 5;(IV) for all j € N}.
ieN

As | noted in the introduction, this rule is not impartial on © = 9, NtseY, NAE, Rk, | will briefly
show this through two counterexamples.

For the domains © = 3, NAE, s, N, let N = {1,2,3} and consider a ballot profile
N = (Ny,N,, N3) € R, where N; = {2}, N, = {1}, N; = {2}. The score profile is given by s(WN') =
(51(V), 55,(W), s3(V)) = (1,2,0). Thus, ¢4y (V) = {2}. However, individual 1 can be better off
by changing his or her ballot N; to N{ := {3}. AV will choose ¢,,(N{,N_;) = {1,2,3} atthis
new ballot profile, for s;(V) = s,(WV) = s5(NV') = 1, thus contradicting IMP.

For the domain D = 9%, let N = {1,2,...,n}(n = 3) and consider the k-cyclic ballot
profile C¥ € 3t*. Then @(C*) = N. Next, consider individual 1’s manipulation as D =
(Dy,D_;) € Mk, where D, = (Cf U {n})\ {2} and D_; = C¥,. Note that k <n— 2 implies n ¢
Ck. Therefore, we can see D as a ballot profile such that individual 1 approves n instead of 2.
Then, we have s, (D) =k + 1 > s,(D) = k, which implies 1 & ¢, (D). Therefore, this rule does
not satisfy IMP. These examples show a basic gap between the concept of AV and the axiom of
IMP.

(2) Constant-C Rule con¢:® - X
Let C € X be asubset of N. The constant-C rule, conc, is the nomination rule that always
nominates C regardless of the ballots:

;) =C for all ¥ eX
Two illustrative cases are when € = {i} forsome i € N and C =N (i.e., congy and cong). The
former is shown to be the unique nomination rule on the setting (9%, X') that satisfies both IMP
and AB (Holzman & Moulin, 2013). In fact, it is easy to see that the constant-C rule, where C € ¥

2L For the logical relationship of the main axioms in other typical settings, see Holzman and Moulin (2013) for
(ML, ¥Y) and Tamura and Ohseto (2014) for (N1, %).
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is any admissible set, satisfies IMP and AB. Consider the latter case cony on the setting (%, %). In
this case, it is clear that cony: 3t — X satisfies WPU and 2CN, however, it fails to satisfy PU and
NU.

(3) Plurality With Runners-up Rule ¢p:9t —» X
The plurality with runners-up rule, @p, defined below, is an extension of the original definition
proposed in Tamura and Ohseto (2014). Although it was invented on the setting (i, %), I show that
a similar idea works in (9%, X), in the sense that ¢p satisfies IMP and some other axioms. For any
given ballot profile V' € 9t, I define Fy, Sy € N as follows:

Fy = {i EN|s;(WV) > s;(W) for all j € IV}

Sy ={i € N|s;(V) = s, (W) — 1}
where s, (V) = s5;(WV) for some i € Fj,. Note that Fy is the set of individuals with the largest

scores. Therefore, it is nonempty for all ballot profiles V' € 9t. On the other hand, Sy is the set of
individuals whose score is just one point smaller than the largest. Thus, Sj;- can be empty for some
ballot profiles. Let me define the plurality with runners-up rule, @p, on (9, %) as follows:
forall ¥ = (N4, ...,N,,) €N,
Pp(N) = Fy U{i € Sy | Fae € N;}

This rule unconditionally chooses all individuals in F,. For individuals in Sjr, on the other hand, the
rule chooses them if and only if they approve all of the individuals in Fj, at the given ballot profile
. Note that if we swap the domain 9t in the above definition to domain 9t!, the result is identical
to what is proposed in Tamura and Ohseto (2014) under the setting (9t%, X). Proposition 5 will show
that this rule satisfies WPU, NU, and IMP, but not PU??> nor 2CN. Furthermore, it fails to satisfy AB

if n = 4.

(4) Threshold-t Rule ¢!
Forall t € {0,1,2,...,n}, | define the threshold-t rule, ®(N), forall ' € D as follows:
Pt (V) ={i e N|s;(W) = t}.

In words, this rule chooses all of the individuals whose scores reach t. Note that for the threshold
rule to be well-defined, the codomain must be rich enough. Consider a society of four individuals
N = {1,2,3,4} and the setting (9, X'). Atthe 1-cyclic ballot profile C*, we have

s1(CH) =s,(CH) = 53(61) =s,(CH =1
Therefore, the threshold-1 rule should choose ¢'(C') = N. However, because N ¢ X', we can see
that the rule is not well-defined on this setting. For the same reason, we cannot provide ¢! on the
setting (9, %Y or (9,%Y).

22 In their Theorem 1, Tamura and Ohseto (2014) show that their @p: 9! — X also satisfies PU. However, according
to my expanded definition, ¢@p:9t = X does not satisfy PU. Proposition 10 will demonstrate that this is because of
the intrinsic impossibility in this setting rather than my failure to properly redefine the rule.
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Although unorthodox, I introduce three other nomination rules. These are introduced to

show the logical independence of the main axioms.

(5) Pseudo Threshold Rule &:9t — X for some i € N
Forall v e ¢,

1 .
: e'(V) if s;(M)#n—1
o = |
FOD= o0\ 11 i s = -1
This rule is very similar to the threshold-1 rule, ¢*, and only differs when individual i receives
unanimous approval from the others. It is easy to see that the pseudo threshold rule satisfies IMP,

AB, 2CN, and NU, and does not satisfy WPU.

(6) Pseudo Threshold Rule’ E’i: 9t — X for some i € N
Forall Ve N,

eIV if s;(V) = 1
P W\ {i} if s;(V) =1

It is clear that this rule satisfies IMP, AB, WPU, and NU, but not 2CN.

£ ={

(7) Pseudo-Dictatorial Rule d':9t - %

Ni if Si(N)<n—1

d'(V) = {Ni Ui} if (W) =n—1

Under this rule, j # i wins if and only if j is approved by i while i wins only if i receives

unanimous approval from the others. We can verify that the pseudo-dictatorial rule d':9t — X

satisfies WPU, NU, IMP, and 2CN, but not AB.

The following presents the conclusions from this section.

Proposition 5.

Let n >3 and i € N. The axioms IMP, AB, 2CN, WPU, and NU are all logically independent under

the setting (9%, X). In fact, we have the following:
(1) @4y satisfies AB, 2CN, WPU, and NU, but not IMP.
(2) cong satisfies IMP, AB, 2CN, and WPU, but not NU.

(3)?® @p satisfies IMP, WPU, and NU, but not 2CN. ¢, satisfies AB if n = 3, but fails if

(4) @' satisfies IMP, AB, 2CN, WPU, and NU.
(5) &t satisfies IMP, AB, 2CN, and NU, but not WPU.

23 Part of the proofthat ¢p satisfies I, specifically, can be obtained by modifying the proof from Tamura and Ohseto's

(2014) Theorem 1.
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6) & ' satisfies IMP, AB, NU, and WPU, but not 2CN.
(7) d* satisfies IMP, 2CN, WPU, and NU, but not AB.

These results are described in Table 3. For each entry in the table, 0 means that the rule
does not satisfy the axiom, and 1 means that the rule satisfies the axiom. We can infer from the

table that all the five axioms are logically independent of each other on the setting (9, X).

Table 3. Axiomatic Performances of Each Nomination Rule

IMP AB 2CN WPU NU
Oav 0 1 1 1 1
cong 1 1 1 1 0
©p 1 0 0 1 1
P! 1 1 1 1 1
&t 1 1 1 0 1
gl 1 1 0 1 1
dt 1 0 1 1 1
4.3 Results

4.3.1 Known Impossibilities
Before my own contributions in 4.3.2, | will state some other related results.
Proposition 6 (Alon et al., 2011)*
Let I € {1,2,...,n — 1}. There is no nomination rule ¢: NAB 5 X! that satisfies IMP and NU.

Proposition 7 (Holzman & Moulin, 2013)

Let ¢: 90! —> X! be a nomination rule.
(1) ¢ satisfies AB and IMP if and only if it is the constant rule ¢;.
(2) There is no nomination rule that satisfies IMP, PU, and NU.

Proposition 8 (Tamura & Ohseto, 2014)
Let ¢:9t! - X be a nomination rule.
(1) The plurality with runners-up rule satisfies IMP, PU, and NU.
(2) If n = 4, there is no nomination rule ¢ that satisfies IMP, AB, and PU.

24 Indeed, their result is based on the concept of finite approximate ratio, and they do not explicitly refer to NU.
However, one can easily derive this from their Theorem 3.1.
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Each of these propositions shows a basic impossibility or difficulty regarding IMP and some
of the well-known axioms, though most of their results differ both in the domain and the codomain,
which makes it difficult to directly compare the extent of the possibilities. Roughly speaking, we can
infer from these results that it seems difficult to design a nomination rule that satisfies IMP, AB, and
the axioms related to unanimity. This motivates me to investigate the extent of the possibilities for

other typical settings.

4.3.2 Basic Results
Clearly, the axiomatic possibility of designing impartial nomination rules ¢:® — X depends largely
on the setting (D, X). However, I will first show the structure that impartial nomination rules have in
common under various settings, especially as it pertains to AB. For simplicity of description, I

introduce another term.

Definition 23
Let ¢:D — X be the nomination rule. For any ballot profiles V', V' € D and an individual i € N,
we say that two ballot profiles V' and ' are i-equivalent (under the nomination rule ¢), or

N~ N" ifand only if [i € p(NV) & i € p(N")] holds.

The i-equivalence relationship ~; defined in this way makes an equivalence relation over the
domain D (i.e., it satisfies reflexivity, symmetry, and transitivity). With this terminology, we can
rephrase the axiom of IMP as: a nomination rule ¢:D — X satisfies IMP if and only if for any i € N

and for any ballot profiles N = (N;,N_;) €D, N' = (N/,N_;) €D, N and N’ are i-equivalent.

Lemma 7: Table Lemma, the Common Structure Stipulated by IMP and AB*®

Let k€{1,2,..,n—2} and [ € {1,2,...,n—1}. Let D be either 9, NAB, NV Nk and let ¢ #
X € B(N) \ {¢}. Suppose a nomination rule ¢:D — X satisfies IMP and AB. For any ballot profiles
N,N' €D and for any individual i € N, if 5;(IV) = s5;(N"), then N and N’ are i-equivalent.

This lemma states that, under IMP and AB, the i-equivalence class grows much larger than
under IMP only. It also states that, for any individual i € N, any two ballot profiles N, N/ € D with
individual i’s score being the same, or s;(NV) = 5;(NV"), must yield the same result on i. This
property is widely observed in all settings that are introduced in section 4.1. Indeed, this lemma applies

for all combinations of the domain D = 9, 9t¢Y, N48, N* (i.e.,as many as (n+ 1) domains)

%5 The caseof ® = N and X = X! is implicitly shown in the proof of Holzman and Moulin's (2013) Theorem 3.
Thus, this lemma can be interpreted as a generalization result for any setting (D,X) that is introduced in section 4.1.
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and the codomain ¥ = X, X!, ¥, X! (i.e.,as many as (3n—5) codomains).?® This lemma holds
even for other codomains if they are nonempty and do not allow an empty set as a winner set.

The technical implications of this lemma will be shown in the proofs of the following results.
Here I provide an intuitive explanation of this lemma. Consider a society with four individuals, N =
{1,2,3,4}, and a nomination rule ¢: 9 — X. Because the number of possible ballots by any i € N is
23 — 1 =7, the cardinality of the ballot profile domain 9t is 7* = 2401. The number of possible
sets of winners is |§'| = |B(N) \ {¢}| = 2* — 1 = 15. Therefore, the number of possible nomination
rules is as many as 152401 > 102890, However, according to Lemma 7, the nomination rule that
satisfies IMP and AB is fully expressed by the table below.

Table 4. A Table Expressing a Nomination Rule

si(M)\ i 1 2 3 4
0 Win Lose Win Win
1 Win Win Lose Win
2 Win Win Lose Lose
3 Win Lose Lose Lose

The columns in table 2 are labeled with the individuals and the rows express the score. For
example, the information in row "2" and column "1" states whether individual 1 wins or loses
when individual 1’s score is two. Because any two ballot profiles with 1’s score being two are 1-
equivalent, we can say that a nomination rule corresponds with a way to fill in the table. Thus, we
know that the number of possible nomination rules that satisfy IMP and AB for four individuals is at
most 216 = 65536.7"

For a given ballot profile domain D, we define the score profile domain S[D] as follows:

S[D] = {5 = (51,..,5,) € {0,1,...,n)" | IN €D s.t. s;(NV) =s; for all i € N}
Thus, S[D] is the set of all score profiles that can appear under the ballot profile domain . Under
AB, any two ballot profiles N, N’ € D such that s(V) = s(V'') yield the same result. Thus, we
can interpret a given nomination rule ¢:®D — X as a function of ¢: S[D] - X with a natural
manner that forall s € S[D], ¢(s) = ('), where V' is a ballot profile such that s(N") = s. The
axiom of AB guarantees that ¢:S[®D] - X defined in this manner is well-defined. Lemma 8 shows

the structure of S[D] for any D = N, NSV, NAE, Nk,

Lemma 8: The Relationship Between D and S[D]
Let k€ {1,2,..,n—1}.

% If n = 10, the number of the combinations equals 275.
27 There are not as many as 65536 different nomination rules. This is because we cannot fill in all the entries in

column 2 with ‘lose’. Considering ¢(C?) # ¢, we know that there is at least one individual who wins when he or
she receives a score of two.
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S[9*] =

(sy, ., sp) €{0,1,.. n—l}”|ZSl—nk}

S[N] =

(5y, 0, 50) €01, ..., —1p|2€ > }
S[mseV| = {(sl,.. s,) € {0,1,.. n}n|z > }

S[MAB] = {(51, v sy) €101, ...,n— 17| ZS‘ > 1}

This lemma shows that all the score profile domains related to iRk , T, NSV NAE canbe captured
through a simple arithmetic formula on the sum of the individual scores. The next lemma shows that
by imposing 2CN as well, each individual should be treated almost equally in terms of their score. In

terms of the table, this implies that the entries in almost every row should be filled in with the same

results.
Let Mg € Z be the maximum score possible at the domain D, viz.
Mo = {n— 1 if D = N,N48, Nk
o=
n if ® =NV,
Lemma 9

Let D = 9N, NV, N4E, Nk be the domain and X = X!, X!, X'. Suppose a nominationrule ¢: D — ¥
satisfies IMP, AB and 2CN. For any ballot profile V' € © and for any individual i € N, suppose i €
@) and 0 <d =s;(N) < Mg — 1. Then, for any individual j € N and N' € D, if we have
sj(W) = d, then j € p(N').

As a direct consequence of these lemmas (8 and 9), the relationship between C and other

main axioms can be found, which fact will also be used in the proofs of the results in section 4.3.3.

Lemma 10: Derivation of Cancellation
Let n >4, D=%0N%Nk and ¥ = %l,fl,f. If a nomination rule ¢:® — X satisfies IMP, AB, WPU,
and 2CN, @(C™) = N holds for any m € {1,2,....n — 1}.

Proof of Lemma 10

Take any m-cyclic ballot profile C™ € D, where m € {1,2,...,n — 1}.?2 Thecaseof m=n—1
is easily verified by WPU. Assume 1 < m < n — 2. Then Lemma 9 implies that i € p(C™) & j €
@(C™) forall i,j € N. Because @(C™) # ¢, this implies that ¢(C™)=N.m

28 Note that C1,...,C" ! areallin D =N and C¥ isalsoin Nk.
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Although the statement of the lemma specifies only @(C*) = N, using the AB condition,
any ballot profile V' € 9t such that s(V") = s(C¥), in other words s; (V) = 5,(NV) = --- =
s,(V) =k, yields the same choice as C*: @ (V) = @(C¥). Therefore, we can say that the
combination of IMP, AB, 2CN, and WPU implies C.

Lemma 11: Threshold Lemma

Let D=9 N5, N Nk(1<k<n-2) and X =%, X, X" Let ¢:D — X be a nomination
rule that satisfies IMP, AB, 2CN, and WM. Suppose i € @(N') for some individual i € N and ballot
profile V' € D such that s;(V) < Mg — 1. Then, for any individual j € N and N’ € D, if we
have s;(V') = 5;(W'), then j € (V).

This lemma states that under IMP, AB, 2CN, and WM, a possible nomination rule, if it
exists, would be the threshold rule. However, I do not intend to claim that the reverse holds. As 1
have noted in section 4.2.2, there are many settings where the threshold rule is not well-defined, and
therefore this lemma fails to characterize the threshold rule. The details pertaining to this will be

shown in the next section. Note also that as a corollary of these lemmas, we have the following:

Corollary 4
Let D = 9N, NAE, 9t5el/ Rk and X = XL, X!. There is no nomination rule ¢:D — X that satisfies
IMP, AB, and 2CN.

Proof of Corollary 4

Take any k € {1,2,...,n — 2}. Note that C¥ € 3tk € N = NA48 N NS¢V Therefore, we have C* €
D. Assume that a nomination rule ¢:®D — X exists that satisfies IMP, AB, and 2CN. Because ¢ ¢
X, there is a winner i € ¢(C*). Based on Lemma 9, the entire society N should be the winner set,

which contradicts ¢ ¢ X. m

Corollary 5
Let D=RNN* (1 <k <n-2) and ¥ = X'. Suppose a nominationrule ¢:D — X fails to satisfy
NU. In this case, ¢ satisfies IMP, AB, 2CN, and WM, if and only if it is cong.

Proof of Corollary 5

It is clear that cony: D — X! satisfies IMP, AB, 2CN, and WM, but not NU. Suppose a nomination
rule @:D — X fails to satisfy NU. In this case, there is an individual { € N and a ballot profile

N €D suchthat i € (V) and s;(IV) = 0. Based on Lemma 11, it follows that j € (V') for
all j € N and V' € D. This means that ¢ is identical to congy. m
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Corollary 6: IMP, AB, 2CN, WM=WPU
Let © = N, N NAB Ntk and ¥ = XL, X1, f. If a nomination rule ¢:® — X satisfies IMP,
AB, 2CN, and WM, then it also satisfies WPU.

Proof of Corollary 6
Note that C¥ € D and s5;(C¥) =k <n—2 forall i € N. Because ¢ & X, there is a winner j €
@ (CK). Therefore, according to Lemma 5, we have forall i € N and for all NV € D, if s;(WV) = k,

then j € (V). This means that one can win whenever one obtains a score Mp. m

Let me discuss these results from the viewpoint of designing a nomination rule ¢: D —» X
that satisfies IMP and AB. Corollary 4 shows that the codomain of X!, X!, both of which bound the
number of winners from above, are not suited to further impose 2CN; the number of winners must be
unbound for consideration of 2CN. Indeed, Corollary 5 shows that the codomain X' enables us to
impose 2CN as well. Another lesson from Corollary 5 is the importance of NU. Once NU is broken,
the possibility of designing an impartial nomination rule is limited by the four axioms of IMP, AB,
2CN, and WM. These results motivate me to consider the class of nomination rules that satisfy IMP,
AB, and NU in each of the possible settings, and we will answer this in the next subsection. On the
other hand, Corollary 6 can be seen as a relationship between WPU and WM under the axioms of

IMP, AB, and 2CN. This result will also be used to compare the possibility results in 4.2.2.

4.3.3 Comparative Results for Various Settings

I first show a basic impossibility result that motivates us to compare various settings.

Proposition 9: Universal Impossibility
Let D = 9N, N, RAB Nk and ¥ = X, X!, ¥, XL There is no nomination rule ¢@:D — X that
satisfies IMP, AB, and PU.

Note that Proposition 5 is a generalization of Proposition 8 (Tamura & Ohseto, 2014).

Proposition 10: Complementary Results on Proposition 9
[1]Let © = N, NV, NAE NK and X = X}, fl,f.Anomination rule @:D — X exists that satisfies
IMP and AB.
[2] Let D = N, NV, NAB If X = %l,f, there is no nomination rule that satisfies PU. If ¥ = ¥,
there is no nomination rule that satisfies IMP and PU.
Let D = Nk,
Let X=X 1If k=1 and [ = 1, a nomination rule ¢:® — X! exists that satisfies IMP
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PU.

and PU if and only if n > 4. Otherwise (k = 2 or [ > 2), there is no nomination rule
@: D — X that satisfies IMP and PU.

If ¥ = X!, anominationrule ¢:D — X exists that satisfies IMP and PU if and only if k <
n—3 and [ =1.

If X=X! and k > [, there is no nomination rule ¢:D — X that satisfies PU.

If X=X and k =n — 2, there is no nomination rule ¢:D — ¥ that satisfies IMP and

If X=X and k = 1, anomination rule ¢:D — ¥ exists that satisfies IMP and PU.

[3]Let © = N, NV, N48 and X = X'. There is a nomination rule that satisfies AB and PU.
Let D = Nk,

If X = X!, anomination rule ¢:® — X exists that satisfies AB and PU if and only if k =
1 and [ =1.

If ¥ = X!, a nomination rule ¢:® — X exists that satisfies AB and PU if and only if [ =
1.

If ¥ = X!, anomination rule ¢:D — X exists that satisfies AB and PU if and only if k <
l.

Proposition 9 shows a simple limitation to the design of impartial nomination rules, saying

that a nomination rule cannot be designed to satisfy IMP, AB, and PU under any setting we have

defined. The essence of the proof is very simple and worth noting. Once we admit IMP and AB,

Lemma 7 tells us that the winners are determined by individual scores rather than the structure of the

ballot profile itself. If PU is then imposed, the existence of ballot profiles of the form

( v S = My, ..., 55 = x, ) will inevitably demand that individual j will lose the election

whenever j gets score x. Because this argument holds as long as x < My, it is very difficult to

determines the winner when no one obtains score Mg

For more detail, Proposition 10 shows the necessity of each axiom to derive the

impossibility. We can see that it is generally difficult to satisfy PU. While the axiom pair IMP and

AB does not itself yield an impossibility (see [1] in Proposition 10), PU itself or the combination of

PU and one of IMP or AB often leads to a negative result. Let me describe the difficulties concerning

PU. The first problem comes from the unconditional acceptance of those with a maximum score My

(let me call them Mx-holders). Under the domain D = 9t, %t5¢Y, N4E | for example, the number of

Mxy-holders can vary from zero to n — 1. However, if the codomain X does not allow that many

winners, there is no way to design a nomination rule with PU. This problem occurs when the

codomain is X = X!, ¥!. Note that we cannot escape this problem even if we substitute WPU for PU.

The second problem is the exclusiveness of PU. Recall that PU chooses only Mqg-holders if they

exist. Thus, PU directly yields impossibility under the following circumstances:
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X = X1, X! and if there is a ballot profile ' € D where less than [ (but at least one)

individuals are Mg-holders, or

X = ¥4, X! and if there is a ballot profile V' € D where more than [ individuals are

My-holders.
In this case, the situation would be expected to improve once we substitute WPU for PU.
Furthermore, the exclusiveness of PU is also harmful when we consider its combination with IMP or
AB. As shown in the intuitive proof of Proposition 9 in the previous paragraph, this exclusiveness
essentially works to derive the impossibility.

Therefore, from this point forward I will mainly consider WPU or other normative axioms

as along with the pair of IMP and AB. The following results are attempts to determine the escape
routes from the impossibility of Proposition 9 by substituting WPU for PU. In some settings, in fact,

I find a very positive result. Assume 1<k <n—2 and 1<I<n-—1

Proposition 11: The Codomain X!
Let ¥ = XL If D = 9, 9t%¢Y, NAE 9k, a nomination rule ¢: D — X satisfies IMP and AB if and

only if it is the constant rule con; forany C € ¥\

Proposition 11 states that if the possible number of winners is fixed and we consider the
domains introduced, the constant rule is the only (class of) nomination rule that satisfies IMP and AB.
This is a generalization of Theorem 3 from Holzman and Moulin (2013) in the sense that Proposition

11 shows that their result holds under any setting I tested.

Proposition 12: The Codomain X'

Let X=%' (1<l<n-1).

If D =N%Y, anomination rule ¢:®D — X! satisfies IMP and AB if and only if it is the constant rule
cony for some X € X\,

If D=N4 and [ > 2, there is no nomination rule ¢:® — X! that satisfies NU.

If ©=N4F and [ = 1, a nomination rule ¢: D — X! satisfies IMP, AB, and NU if and only if it is
1

Q.
If D=9 and [ = 3, there is no nomination rule ¢:® — X that satisfies NU.

If D=%N and [ = 2,anominationrule ¢:D — ¥' satisfies IMP, AB, and NU if and only ifitis ¢.
If D=9 and [ =1, a nomination rule ¢:D — X! satisfies IMP, AB, 2CN, WPU, and NU if and
only ifitis ¢?.

If ©=N* and | > k + 2, there is no nomination rule ¢:D — X' that satisfies NU.

A nomination rule ¢: 9tF — X! where [ <k + 1 satisfies IMP, AB, 2CN, NU, and WM if and only

if it is the threshold-m rule, where x is an integer such that
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nk—(-1n-1 ntkk+1-D+1-1
vers [P ()
Remark on (mk, %l), l < k + 1. Let us briefly evaluate the right-hand side of the inequality we
obtain for (NN*, %Y, I < k + 1. To see the numerator, we have k+1—1>0 and [ —1 >0 by
1 <1< k+1. Theequalities holdif I =k + 1 and [ = 1, respectively. Because k > 1, these
conditions do not hold at the same time, which means that at least one is strictly positive. Thus, we
have

ntkk+1-D+1-1
n—101+1

This implies forall 1<k <n-—-2and 1<I<k+1,
n(k+1—l)+l—1}21

n—10+1

Thus, we know that ¢! is the nomination rule that satisfies IMP, AB, 2CN, WM, and NU for all
(M%), 1<k <n-2 and 1<1<k+ 1. Furthermore, if [ < k, then it is also easy to see that

nkk+1-D+1-1
=2
n—101+1

This means that ¢? is also well-defined and satisfies the five axioms.

Proposition 13: The Codomain X'

Let X=X(1<I<n-1).

If D = 9%, anomination rule ¢:® — X! satisfies IMP and AB if and only if it is the constant rule
cony forsome X € X\

If D = N4E, there is no nomination rule ¢:D — X! that satisfies WPU. Furthermore, there is no
nomination rule that satisfies IMP, AB, and NU.

If D =9, there is no nomination rule ¢:® — X' that satisfies WPU. If [ <n — 2, there is no
nomination rule that satisfies IMP, AB, and NU. If [ = n — 1, a nomination rule ¢: D — X! satisfies
IMP, AB, and NU if and only if it is ¢;:9t - X! (for some i € N) defined for any ballot profile
NER, oL (V) = * W)\ {i}

If ©=%N* and [ < k, there is no nomination rule that satisfies WPU.

Let © =9* and | = k. If n = 3, there is no nomination rule ¢:D — X' that satisfies IMP and
WPU. If n = 4, there is a nomination rule that satisfies IMP and WPU. However, there is no
nomination rule ¢:D — f that satisfies IMP, AB, and WPU.

If D=9t and [ > k, there is a nomination rule that satisfies IMP, AB, and WPU (but we cannot
further impose 2CN).
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Table 5. (Im)Possibilities of Nomination Rules in Various Settings

Dom\ Codomain x! £ xt X(=xYH
[ = 3:NU= WPU=None.
None.
[ <n-—2.IMP,
IMP, AB, 2CN,
IMP and AB& [ =2:IMP, AB, | AB, and NU=
N NU, and WPU&
Const. and NU&@. None. L
'

I=1:IMP,AB, |l=n-1:IMP,
2CN, NU, and AB, and NU&

WPUS!. ol
IMP and AB& IMP and AB& IMP and AB&
IMP and AB&
gself Const. Const. Const.
Const.
l>2:NU=>
WPU=None.
None.
145 IMP and AB& IMP, AB, and IMP, AB, and
Const. NU= None. NUSp.
l=1:1IMP, AB,
and NU&g1.
l < k: WPU=
None.
l=k and n =
l>k+2:NU=>
3: IMP and WPU
None.
=None. IMP, AB, 2CN,
IMP and AB& < k+1:IMP,
Nk =k and n> | NU, and WM&
Const. AB, 2CN, NU, 4 IMP and L .
: an L% .., Q.
and WM& some ¢e ¢
WPU.
threshold.
IMP, AB, and
WPU=None.
l > k: IMP, AB,
and WPU.

Proposition 12 and Proposition 13 are the results from the cases where the possible number
of winners is bounded from below or above, respectively. Although these look complicated, we can

see that the impossibility shown in Proposition 9 is relieved by substituting WPU for PU. Indeed, in
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some of the settings, such as (9%, %X") (I < k + 1), we can see that the threshold rule satisfies many

normative axioms. Because X = X' by definition, we have the following situation.

Corollary 7: The Codomain X = X
Let X = X¥(= X1).
If D =N, a nomination rule ¢:D — X satisfies IMP, AB, 2CN, NU, and WPU if and only if it is

78

If © = Nl there is no nomination rule ¢:® — X that satisfies IMP and NU. A nomination rule
@: D — X satisfies | and AB if and only if it is constant.

If D = N4E, a nomination rule ¢: D — X satisfies IMP, AB, and NU if and only if it is ¢?

If © = 9%, a nomination rule ¢: D — X satisfies IMP, AB, 2CN, NU, and WM if and only if it is
the threshold-x rule for some x € {1,2, ..., k}.

Proof of Corollary 7

For D = N, N, NAB  the corollary is obvious from Proposition 12.

For D = ¥, the case of | =1 < k + 2 in Proposition 12 can be applied. We need only check the
upper bound of the threshold. When [ = 1, we have the following:

O] ] e

The final equality is given by 0 < ﬁ <lm

Table 5 is an aggregation of the preceding results.

Some comments can be made on the comparative results. First, let us examine the table row-
by-row. This comparison is expected to provide a lesson on the choice of domain when a society is
given a fixed codomain X. Take, for example, the domains of 9t and 9t and recall that they differ
only in whether they allow self-approval on the ballots. Let us compare rows 9t and 9t5¢, first
comparing (9t,%!) and (ﬂtself, }ll) , then (9%, %) and (Eﬁself,fl) , and finally (93, f) and
(Eﬁself , f). Then, although we cannot find a difference in the first comparison, we find that 9t works
better than €Y for the given pair of normative axioms. In the second comparison, if the value of
is sufficiently large, both domains fail to generate nomination rules that satisfy NU. When [ is small,
however, we can find for © = Jt many nomination rules that satisfy IMP and NU as well as the other
axioms, while we cannot for D = %€/ A similar comparison with the codomain ¥ = X! also
suggests that the performance of 9 is at least as good as 9t%¢Y for all [ (and indeed the former
seems better in some [, i.e., [ = n — 1). Note that I do not intend to imply that the results in the table

fully describe the advantages and disadvantages of each domain, nor do I say that the comparison
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entirely determines the relative normative ranking of each domain. However, I conclude that the
comparison has some importance for when we face a domain choice problem in terms of the axiomatic
possibility. If the domains are evaluated with respect to the proposed axioms, this table shows that the
acceptance of self-inclusion (iRself ) or the acceptance of abstention (9t48) will not improve the
situation over the normal domain 9t.

Next, let us review the table column-by-column. This corresponds with the situation where a
society is, for some reason, given the domain and is seeking a good codomain. Thus, this view is close
to Tamura and Ohseto (2014), who study the escape routes from the impossibility by expanding the
codomain X! to X. The result shows that the codomain of X! when [ =1 (in the right column ¥)
works as well as any other codomain. This is very intuitive because ¥ is the largest codomain of all.

The second note concerns the axiomatic property of the threshold rule. The threshold rule, if
properly defined on a certain setting (D, X) where D # N°¢Y surely satisfies IMP and AB because
one cannot change one’s own score and thus one cannot change the possibility of winning oneself
(IMP), and the winners are determined through scores (AB). It is also clear that it satisfies 2CN, WPU,
and NU?° if the value of the threshold is between one and the maximum score My It also satisfies
the axioms of ND and NE (no exclusion). Recall that the well-known AV method defined on (91, ¥),
(Eﬁself , i), and (MAB,X) also satisfies all these axioms. In this sense, the basic structure of the
threshold rule has many things in common with AV. The difference between them is the axiom of

IMP—the robustness against manipulation.

4.4 Discussion
My main contribution in the previous section is shown in Table 5 (Proposition 11, Proposition 12,
and Proposition 13), which systematically shows the extent of the possibilities in a variety of
settings, the domain and codomain pairs, and the possible strategies to weaken the impossibility
results. The most positive result among these is the characterization of the threshold rule for those
settings as (9, X1), (M, X2), (MK, XY, ..., (N, X**1) by the combination of IMP, AB, 2CN, NU,
and either WPU or WM. Indeed, I show that the threshold rule satisfies other normative axioms
referred to in previous studies, such as ND or NE. To conclude the chapter, I give here several

comments as well as some extra theorems related mainly to the threshold rule.

(1) Manipulability by More Than one Person

Let us consider the codomain ¥ = X, which allows as many winners as possible except the empty set.
The setting (ﬁﬁself , f) is quite often studied in relation to AV, although in endogenous nominating
environments I showed that (‘ﬁself , 5{) and (MAB,X) are less promising than (9, X). Tamura and
Ohseto (2014) show that the use of (91, %) is effective in relieving the impossibility. In all these

29 Recall that my definition of 948 ensures that there is at least one individual who has a positive score.
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settings except (ﬂtself ,f), we have seen that the threshold rule can be characterized with some of
IMP, AB, 2CN, NU, WPU, and WM. A strong concern, however, regarding the threshold-1 rule, ¢!,
would be the (extreme) simplicity of its winning condition. Because any voter can win simply by
obtaining one approval from the others, this rule might be weak against collusion. For example,
suppose two individuals, i and j, promise in advance to approve each other. Then ¢! will choose
both i and j, even if they fail to get any support from the individuals in N \ {i,j}. Because IMP
guarantees that such mutual approvals between two individuals do not cause them to lose their chance
of winning, this type of collusion could be understood as a weakly dominant strategy for all voters.
My purpose here is to impose a measure of robustness against this type of collusion; I will first define

this robustness against collusion.

Definition 24

A nomination rule ¢:®D — X satisfies weak 2CP (2-person collusion-proof) if and only if for any
distinct individuals i,j € N and for any ballot profile N = (Nl-,Nj,N_i, j) €ED and N' =
(N/,N/,N_;;) €D,if i ¢ (W) and j & @(IN"), then i & (V') or j & p(N").

In other words, two individuals, i and j, will not be better off by forming a two-person coalition.
This axiom is weak in the sense that it only excludes the possibility of rules under which two persons
can be strictly better off at some profile. The following result provides a basic limit for the design of

weak 2CP and Impartial nomination rules.

Proposition 14: Collusion Proof

Let X=X

[1]Let D = 9, 9%, 48, 9tk (2 <k <n—3) and n > 4. There is no nomination rule of the
setting (D, X) that satisfies IMP, AB, ND, and weak 2CP.

[2]Let D =Nk (k=1) and n > 4. Then, a nomination rule ¢:® — X exists that satisfies IMP,
AB, ND, and weak 2CP. However, there is no nomination rule that satisfies IMP, AB, NU, and weak
2CP.

[3]Let D = 9tk (k = n — 2). In this case, the threshold-1 rule ¢! satisfies all of IMP, AB, 2CN,
NU, WPU, ND, and weak 2CP.

Under the axioms IMP and AB, [1] says that we cannot expect ND and weak 2CP at the
same time, and [2] shows that the domain of 9! is promising, but has the limitation that we cannot
have NU and weak 2CP as well as IMP and AB. Interestingly, there is a strong possibility in the
threshold-1 rule, @', in [3]: D = 9" 2. The reason ¢! satisfies weak 2CP in this setting can be

described as follows. According to the definition, a nomination rule can fail to satisfy weak 2CP only
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if there is a ballot profile where two individuals, i,j € N for example, have a score of zero.
However, 9t"~2 does not allow that kind of situation. Consider a score profile s = (sq, ..., S,) €
{0,1,...,n—1}", where s, = =s,_, =n—1 (and s,,_; =k, and s, = 0, for example).
Because sy, ...,5,_, is maximal at this score profile, we cannot assign more to the first n — 2
individuals. This means that the sum of the scores of any two individuals must be at least k.

Therefore, if k is almost as large as n, we cannot have two individuals with a score of zero. 3

(2) Relative Ranking Among the Candidates
My characterization results show the high performance of the threshold rule in terms of IMP and
other classical axioms such as anonymity, neutrality, or unanimity. The threshold rule, by definition,
determines the winner not by the relative score, but by the absolute score of each individual. As a
result, the threshold rule can often yield a much larger number of winners compared with other
familiar nomination rules like AV. And it also follows that the rule can choose someone who has the
lowest number of approvals from the others. Let me discuss this using an example. Consider a
society of 10 individuals N = {1,2,...,10} and a ballot profile N = (N, ..., N;,) € 9t as

N; ={23,...,10}

N, = {3,4,...,10}
N3 = {4,5...,10}
Nip = {1}

At this ballot profile, each individual gets a score of at least 1, and so @(V) =
{1,2,3,4,5,6,7,8,9,10}, while ¢4, = {10} and ¢p = {9,10}. Furthermore, calculation of the scores
in the above ballot profile V' shows that individual 10 earns the maximum score 9, individual 9
earns 8, and so on. Thus, the relative ranking of scores is as follows:

9 =510(W) > 59(N) > - >5,(NW) =5;,(WV) = 1.
Although the scores differ greatly, each individual is not distinguished in the eyes of the threshold-1
rule. The threshold rule is, in this sense, does not discern the relative ranking of the scores. Note that
these properties can be problematic for certain contexts, such as the determination of prize-winners.
Based on this observation, I consider the existence of nomination rules such that (1) the number of
the winners is restricted, and (2) the rule excludes those who have bad score rankings. To state the

latter formally, let me define a term.

30 This argument does not fully succeed if k < 1 & n = 3. For complete proof, see the Appendix.
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Definition 25
For any individual i € N and ballot profile V' € D, I define the score ranking of i at N as
r;(V), where

n(W) = |{j € N|s;(W) > s;,(W)}| + 1
Thus, if s;(N) is the largest among s;(N), s,(N), ..., 5,(N), then 7;(NV') = 1. If there is just one
individual j # i such that s;(V) > s;(V), then we have 7;(V) = 2, and so on.

Definition 265
Let ¢: 9t - X! be a nomination rule and let r € {1,2,...,n}. Isay ¢ hasrank r ifand only if
r<rn() for all ¥ €D and i € p(N)

In words, a nomination rule ¢ is said to have rank r ifits winners ¢(-) are always in the top rt"
ranking of scores. Let us calculate the rank in the previous example V. According to the definition

of r;(V), we can see that

(V) =1
ro(W) =2
rg(W) =3
(W) =8

(V) =r(V)=9
Thus, a nomination rule of rank r = 3, for example, must choose the winner from {8,9,10}, whose
ranking is equal to or less than 3, or 7;(*) < 3. 1,2 € @1 (V), and so we can say that the rank of
1
@

(with some tie-breaking rule) has rank 1, though it is not impartial. A natural question arises: is there

is 9 or larger in the society of 10 individuals. On the other hand, it is clear that ¢4, : 9t — X!

a rank-based impartial nomination rule? However, the following proposition gives a negative result

on the setting (9, X1).

Proposition 15
Let n>3, 1<1<n-1,and D = %N, N, N45. There is no impartial nomination rule ¢:D —

X! that has rank n — 1.

Proposition 15 says that under the setting (9%, X!), the concepts of rank and impartiality are entirely

incompatible. Although the formal proofis a little complicated, we can easily see that no impartial

31 The reader might wonder about the looseness of this definition, for if a nomination rule ¢ has rank r €
{1,2,...,n — 13}, then it must be that the rule also has rank r + 1,7 + 2, ..., n. This ambiguity can be omitted by
adding the extra condition of “r = r;(IN") for some N € D and i € ¢(N)” for the definition of rank. For the sake
of simplicity I omit the uniqueness because it is unnecessary for stating the result of Proposition 15.
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nomination rule on the setting (9%, ¥!) has rank less than n — 2. To demonstrate this, consider a
ballot profile C* = (C},...,C}) € M. ¢ & X', and so there is a winner i € @(C'). Now consider a
ballot profile V" € Jt as

N; =N\ {}

N; = C' for all j €N\ {i}.
IMP demands i € (V). However, because s;(V) = sg(WV) =1 <s5,(NV) =2 forall u € N\
{i,1 + 1}, the score ranking of individual i at this ballot profile V" is such that r;(V) =n — 1.
Thus, we cannot avoid choosing a winner at n — 1 (or more). The proposition says that there exists
a ballot profile for which the impartial nomination rule chooses the individual with the worst score

ranking.
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5 Conclusion
In this dissertation, I study the infinite regress problem in collective decision making. I give here
a brief summary of each chapter and some additional comments.

In Chapter 2, I introduced the notion of (weak/strong) convergence, which I regard as a
basic solution concept for the infinite regress of procedural choice, and studied its basic
performance on a menu of three scoring rules. Specifically, Theorem 4 states that a large society
with the menu {plurality (P), Borda (B), anti-plurality (A)} can almost always find a strong
convergence unless it is in a trivial deadlock. Further regress has no effective meaning in each
case, and so an interpretation of the theorems in the chapter is as follows: the infinite regress
problem degenerates in such a society and, moreover, for the menu {P, B, A} and for a set of three
alternatives X, its probability of convergence (98.2% under IC and 98.8% under IAC) is
shown to be much higher than that of stability (84.49% under IC and 84.10% under IAC).
Although trivial deadlock gives no specific answers to the problem of infinite regress, the
probability calculation shows the positive effect of considering my convergence notion.

The results in Chapter 2 show that trivial deadlock can happen, with a small but positive
probability for a large society with the menu {P, B, A}. This problem motivates my analysis in
Chapter 3, which focuses on finding a menu of voting rules with which a society can always find
convergence: in my words, menus with the weak/strong convergent property and asymptotically
weak/strong convergent property. In the first part of Chapter 3, I investigate the possibility of each
property. Specifically, I question if there exists a menu of voting rules that have the strong
convergent property, the strongest of the four, and find the answer to be yes (Theorem 7). Such a
menu completely releases any society (of any finite size) from the troublesome infinite regress
problem.

One problem concerning Theorem 7 might be that the proposed menu is made up of
somewhat technical (and not intuitive) voting rules. In the latter part of Chapter 3, therefore, |
consider how the convergent property can be obtained for a given menu that does not already
have this property such as {P, B, A}. My Theorem 8 shows that the expanded menu {P,B, A, @}
has the asymptotically weak convergent property. This means that a society with the menu
{P,B,A} can acquire the convergent property without abandoning any of P, B, or A. The society
has only to add an extra voting rule as an alternative rule. Indeed, such expansion is shown to be
possible for many cases (Theorem 9).

To sum up, I find two answers to the question of how to find a convergence. One answer
is to equip the society with the menu proposed in Theorem 7. The other, oriented toward a large
society, is to expand the menu in the way shown in Theorem 9.

Having discussed the frequency and the mechanism of the convergence phenomenon, I

will add some comments about it. My first comment is on how convergence works in a real
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situation using the example introduced in Chapter 2. Let me show it again here:

- The society is N = {1,2,...,14}

- The set of alternatives is X = {a, b, c}.

- The level-0 preference profile L° is L_;q:abc and L3,_;,:bca.
Although the outcomes of the first-level SCRs are not the same (fp(L%) = fz(L°) = a and
fa(L%) = b), the profile L° strongly converges to {a}. This means that

- If the level-1 preference profile L! is, for instance, L’i_4: PBA, Lé_lO:BPA, and

LY, _,4: APB, then any level-2 SCR in the menu ultimately results in {a}.

- No matter what other CI profiles are examined, they do not weakly converge to

{b},{c},{a,b},{b,c},{c,a}, or {a,b,c}.
In the process of finding the convergence, we need to take an appropriate sequence of CI profiles.
The fact that LO strongly converges to {a} does not claim that if each i € N reports their
consequential meta preferences independently, then L° necessarily converges at some level. It is
of course possible that such non-systematic reports never reach convergence. Rather, the fact that
L° strongly converges to {a} means that if L° converges, the outcome couldn’t be other than
{a}. So, in one sense, the society faces two options: to accept the outcome of strong convergence
or to get into the entangled infinite regress without finding an answer. In other words, if everyone
agreed to the process in which the authority picked up appropriate voters’ meta-level preferences
from the submitted level-0 preference profile (i.e. if the authority were admitted to manipulate
only the indifference part of the consequentially-induced weak preference profile), then the
convergence could be found. In this sense, once accepted, the notion of convergence tells us the
possible outcome that could be reached from the submitted level-0 preference profile. Thus, each
individual has only to submit their preferences over the original set X just as required in an
ordinary voting procedure.

As my second comment, I would like to state the mechanism of convergence with
respect to a formal description of the infinite regress problem in procedural choice. Gratton (2009)
formally states that an infinite regress argument is made up of two propositions: the regress
formula, a universal proposition that can be endlessly instantiated, and the triggering statement.3?
Borrowing from Gratton, an example of two such propositions is: “every intelligent act is
preceded by an intelligent act” (regress formula) and “act 1 is intelligent” (triggering statement).
With the repeated use of the regress formula, we have that “act 1 is preceded by act 27, “act 2 is
preceded by act 3”, and so on. Using his words, the infinite regress of procedural choice can be
described by two propositions “for all level k € N, a level-k voting procedure is shown to be

legitimate if it is selected by a level-(k + 1) legitimate voting procedure” (regress formula) and

32 Technically speaking, Gratton provides some hypothesis for the condition that such argument is truly an infinite
regress argument in the subsequent argument.
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“we (hope to) show that a level-k* voting rule f is legitimate”. At first glance, this pair of
propositions demonstrates an infinite regress. However, according to Chapters 2 and 3, the regress
get degenerated within finite levels, if we restrict our attention to a set of a few voting rules, say
{P, B, A}, and if we have good reasons to regard the voters as consequentialist. Indeed, Corollary
1 and Theorem 4 state that the probability of convergence is quite high (when there are three
alternatives). We humans cannot verify the infinitely long process of justification, but
convergence says that no matter which rule in a higher level is selected, its ultimate outcome is
uniquely determined within finite steps, the proof of which I have shown. Indeed, in the profile
L° upon which I based my argument in the previous paragraph, I find such a phenomenon at level
1. The convergence is thus a phenomenon that solves the infinite regress within finite levels of
arguments.

Subsequently, in Chapter 4, I discuss the axiomatic design of nomination rules:

¢: (Ny, Ny, ..., N,) = @(Ny, Ny, ...,N,,) € N.

When each individual is a candidate as well as a voter and they want to be chosen themselves,
then voters may be inclined to cast ballots that can make themselves better off. Impartiality (IMP),
invented by Holzman and Moulin (2013), is an axiom of nomination rules that demands that each
individual cannot change his or her own result even by manipulating his or her ballot. My analysis
in Chapter 4 aims to find some escape routes from Holzman and Moulin’s impossibility by
considering various typical domains and codomains of the nomination rules. I first specify the
common structure of nomination rules under various settings (Lemma 7), and then I investigate
the design possibility of nomination rules for each setting (Proposition 11, Proposition 12,
Proposition 13, and Table 5). The results indicate that the threshold rule works well in many
settings in terms of IMP, anonymity, neutrality, and unanimity. In other words, we can acquire
impartiality and satisfy other popular axioms by using the objective score of each individual (i.e.,
whether they reach a set threshold) instead of the relative score (i.e., who gets the highest score,
as in AV).

As I suggest at the beginning of Chapter 4, the axiomatic study is oriented to the
determination of the society N (i.e., who should have the right to vote) before the procedural
choice is made. In environmental issues, for instance, the boundary of the effects of a decision is
sometimes vague, and hence there may sometimes be no ex ante answer for the question of whose
opinions should be reflected in the decision-making. The framework of nomination rules can be
applied to such cases if we interpret N; as the set of individuals who i € N thinks should have
the right to vote and ¢ as the aggregation rule for people’s ballot profiles (Ny, N, ..., N,,). From
his premise of Procedural Autonomy, Dietrich (2005) derives anonymity (precisely speaking,
anonymous procedural submission), neutrality, and monotonicity as the basic axioms that should

be satisfied by the manner of procedural choice. Indeed, if the determination of the society is
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made before the procedural choice is made (and therefore, there are no persons or alternatives that
have some kind of dominance over others) consideration of anonymity and neutrality is largely
noncontroversial because their very demand is that each individual and alternative must be treated
equally. Monotonicity (or unanimity as a weaker axiom) is also natural to impose because the
determination of a society is supposed to reflect individuals’ opinions properly. IMP is a rather
empirical, but also rational, axiom that demands that each individual can record his or her true
opinion without fearing ruling him- or herself out from the determined society. Therefore, the
threshold rule, which I show satisfies these axioms in various domain-codomain settings, can be
regarded as the most appropriate way of determining a society.

To conclude, the dissertation consists of two main parts: Chapters 2 and 3 (the first part)
and Chapter 4 (the second part). The first part studies the question of “how to determine sow to
choose based on people’s preferences” while the second part studies the question of “how to
determine who should form the society.” In each part, I provide answers for each of the “how”
and “who” problems with some underlying assumptions. Although these two problems comprise
the essential parts of procedural choice, there are additional components of the issue of
procedural choice that are of interest, such as the choice of the decision problem itself (Kesting
& Lindstéadt, 2004). For example, considering the whole process of choosing a constitution could

be an interesting future study.
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Appendix
Probability of Trivial Deadlock Under the 56 Menus
When n - o, |X| =3, IAC, the probability of trivial deadlock can be calculated in the way
described by Diss et al. (2012). Here I show the probability of trivial deadlock under the 56 menus
cited in Theorem 6. Figure 6 shows the result. The horizontal axis shows the 56 menus, numbered
from 1 to 56 as described in Table 6, and the vertical axis shows the probability of deadlock. Note
that each of the 56 menus yields at most a probability of 0.035 = 3.5% of trivial deadlock (the
highest is actually 3.35648% in the menu {fp, f4, fy}; Data number 2). In other words, the

probability of weak convergence is at least 100% — 3.5% = 96.5% in all menus.
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Figure 6. Probability of trivial deadlock under the 56 menus when |X| = 3.

The specific ingredients in and probability of each menu is shown in Table 6 below.
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Table 6. Specific Values for Each Menu; Data Numbers 1-28 (continued on next page)

Data number Menu Prob of trivial deadlock
1 plurality anti-plurality Borda 1/84
2 plurality anti-plurality Hare 29/864
3 plurality anti-plurality Nanson 5/432
4 plurality anti-plurality Coomb 43/1728
5 plurality anti-plurality Maximin 5/432
6 plurality anti-plurality Black 199/17280
7 plurality Borda Hare 115/6912
8 plurality Borda Nanson 1/432
9 plurality Borda Coomb 1/192
10 plurality Borda Maximin 1/432
11 plurality Borda Black 1/864
12 plurality Hare Nanson 25/1728
13 plurality Hare Coomb 131/6912
14 plurality Hare Maximin 25/1728
15 plurality Hare Black 115/6912
16 plurality Nanson Coomb 7/1728
17 plurality Nanson Maximin 0
18 plurality Nanson Black 1/864
19 plurality Coomb Maximin 7/1728
20 plurality Coomb Black 7/1728
21 plurality Maximin Black 1/864
22 anti-plurality Borda Hare 241/16128
23 anti-plurality Borda Nanson 67/12096
24 anti-plurality Borda Coomb 17/1512
25 anti-plurality Borda Maximin 67/12096
26 anti-plurality Borda Black 181/60480
27 anti-plurality Hare Nanson 11/864
28 anti-plurality Hare Coomb 185/6912
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Table 6: Specific Values for Each Menu; Data Numbers 29-56 (continued from previous page)

29 anti-plurality Hare Maximin 11/864
30 anti-plurality Hare Black 413/34560
31 anti-plurality Nanson Coomb 25/1728
32 anti-plurality Nanson Maximin 0

33 anti-plurality Nanson Black 11/4320
34 anti-plurality Coomb Maximin 25/1728
35 anti-plurality Coomb Black 113/8640
36 anti-plurality Maximin Black 11/4320
37 Borda Hare Nanson 23/6912
38 Borda Hare Coomb 23/3456
39 Borda Hare Maximin 23/6912
40 Borda Hare Black 0

41 Borda Nanson Coomb 1/864
42 Borda Nanson Maximin 0

43 Borda Nanson Black 0
44 Borda Coomb Maximin 1/864
45 Borda Coomb Black 0
46 Borda Maximin Black 0

47 Hare Nanson Coomb 31/6912
48 Hare Nanson Maximin 0

49 Hare Nanson Black 23/6912
50 Hare Coomb Maximin 31/6912
51 Hare Coomb Black 23/3456
52 Hare Maximin Black 23/6912
53 Nanson Coomb Maximin 0

54 Nanson Coomb Black 1/864
55 Nanson Maximin Black 0

56 Coomb Maximin Black 1/864
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Proof of Proposition 1

Suppose L° is in a trivial deadlock under the menu F = {f, f5, ..., fm}. 1 show the following
statement to be true:

For all k > 2 and for all sequence L% L%, ...,L¥~1 of CI profiles to level k, the class of

each ff, £F, .., £k withrespectto L% L, ...,L¥~1 is a distinct singleton.
(Note that the proposition is straightforward once this statement is proven.) I prove the statement by
an induction on k > 2. For k = 2, the statement is straightforward from the definition of trivial
deadlock. Let ky = 2 and suppose that the statement holds until k < k. Take any sequence of CI
profiles L% LY, ..., Lko=1 By the assumption of the induction, each f, ko, zk", " f,::o is assumed to

result in a distinct singleton. This can be denoted as

flo(Lkom1) = {fa"&;l} for all p € {1,2, ..., m}.

Now, 0:{1,2,...,m} - {1,2,...,m} defined in this way is clearly a bijection. By the assumption of
the induction again, each SCR in F!,F?, ..., Fo yields a singleton at the given profile. Hence, their
classes are also singleton subsets of X. Take any fpk", qk" € F¥o and denote their classes as {x} and
{y}, respectively (x,y € X). By the definition of a CI profile, we have that for all i € N, and for all
L*o € L[I°, 1, ..., Lko=1],

oL sy

& (e (L))

© xL%y (- Extension rule).
Therefore, the level-k, CI profile L*o is uniquely determined. Moreover, it is clear that the classes
of fak(gl and fak(gl are also {x} and {y}, respectively. Similarly, we have that

ko—1,ko—1 sko—1
Totn Li* Jotqy © XLIY.
ko1 ko1 ko1 ¢k

o(p) ~i o(q) * Jp
F%o, and so this logical equivalence implies that Lo is a permutated profile from L¥~! by o.

In summary, we have that fpk" Lll.(0 qu" o and qu" are arbitrary elements in

Because of the neutrality of the menu, we have that frk"H(Lko) = { fak("r)} forall r € {1,2,...,m}.

o is a bijection, and so this guarantees the statement when k =k, +1. W
Proof of Lemma 2
Suppose na € N.

[Under IC] All the alternatives are treated symmetrically in IC, and so each voter prefers x to y with
probability % (and y to x with probability %). Therefore, we have:

r@= () @ =)

Because the proofs are similar, I show the proof only for even n. Let n = 2p (p € N). Because of
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the property of combination, we can evaluate this as follows:

o <)~ ()E) -2

Using Stirling’s approximation, we can evaluate the right-hand side as

CE il M

i i Sr(a) —imy==o
PP (7w (2)) g
[Under IAC] Let a = #{i EN | xL?y} =na and b = n — a. The probability is described as:

|X]! X b+ X1 -1
P(a):<a+7—1>,<b+ 5 1)/(a+ a++|bl- )

a b
With a simple calculation, this is shown to converge to zeroas n=a+b - co. H

Proof of Lemma 3
Assume that F = {gl, wor Gp P, ...,hq} and L% LY, .., L*"1 satisfy the given condition. Let A =
{1,2,...,a} = {i EN | xL?y}. If g = 0, the lemma is obvious. So, we assume p = g > 0. It follows
that 0 < |A| =a <n (if a =0,e.g,nolevel-1 SCR chooses {x}, which contradicts p > 0). n >
m, and so we have a > (n/2) = (m/2) = q. Let L¥ € L(F¥)" be defined as follows:
LY: g%, gk, ..., gk RE RS, . hE Ry, . RERE for all 1<i<gq.
LY: g%, g%, ..., gk hE, R, . hE for all g+ 1<i<a
LY: %, RE, ... hE, g%, g5, ..., gk for all i€ N\ A.
In words, this is a level-k profile where everyone (except the first g individuals) orders { g%, ..., glg}
and {h¥, ..., hk} lexicographically. Clearly, we have L¥ € LK[L?, ..., L*¥"!]. Take any f**1:[1=
1,82, e, Sm = 0] € F¥*1 and consider the scores evaluated by this f**1. Note that h¥ has the
largest score among he .., h’cf. We have:
s(g{‘) - s(h’f) = {a +(n— a)sq+1} — {n —a+(a— l)sp+1}
=22a—n+Mm—a)sgy —(@—1Dsge ( P=q=Sqe = sp+1)
= (2a - n)(l - sq+1) +5q41>0 (v2a>n and 0< Sq+1 < 1).

This holds for any f*+1 € F¥+1 and so the profile weak convergences to {x}. m

Proof of Lemma 4

Let A={1,2,...,a}={i€N|xL?y}, G := {g|Cg:{x}}={gf,...,g{,f} (p=1G|) and H =

{h | Cy = {y}} = {hk, s h’;} (q = |H[). With Lemma 3, we have only to consider 0 <a <n-—a

and p>q>0 (ie., (p,q) =(2,1) if m=3 or (p,q) = (3,1) if m = 4). Because the proofs

are similar, I show only the proof for the latter, m = 4. We can check that forall L¥ € £¥[L?, ..., L¥=1],
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fe,(L*) € H and the scores (at L*) satisfy:

S = sB(gf) + sB(gé‘) + sB(gé‘) =a(s;+s;+s3)+(m—a)(s+s3+s,) =n+a.
Let pq,..,ps be preferences over G such that p:gkgkgk | p,igXkg¥gl ., ps:g¥gkgk ,
Pa: gXg¥ gk, ps:g¥g¥gk, and pe: gk g¥gk. We construct L¥ € L¥[L?, ..., L¥71] as follows: if i = j
(mod 6) then L’l-‘ | ¢ =Dj (G=12,..,6), and g}jL’i‘h’f (u=1,23) @i <a. Because of the
symmetry, we obtain that SB(g]’-‘: Lk) -5/3€{-1/3,0,1/3} (j = 1,2,3). Hence:
1

2
D(L¥) = sg(h¥: L¥) — max{sg(g¥: LX), sp(g5: L¥), s (g%: L¥)} = 3 (n—2a)— T

n — 2a > 1, and so we have D(L¥) > 0.

(1) In the case of n —2a > 2, we have D(L¥) > 1. Suppose {g, h’f} € ij, (L¥) for some g € G
and j' = 2,3.Let j be the smallestsuch j'. s; (h’f) =n — a < n, and so there exists iy € N whose
L’fg assign zero pointsto g and one pointto g' € G \ {g}. Now let L'* be aprofile where i; swaps
g and g'. Then we have s;(g:L'") > 5;(g: L¥) = s5;(h¥: L¥) > s;(h¥: L'*). Therefore, ij(L’k) =
{g} € G. The change in Borda score of gX, gk, g% is at most 2/3, and so we still have D(L’k) >
1-(2/3)>0.

(2) In the case of n — 2a = 1, because n is odd, we can write n = 6u + v, where u € N U {0} and
v = 1,3,5. Note that the swap of L¥ | ¢ and L}‘ | ¢ forany i,j € N doesnotaffect s;(-) and sg(-).
If n=6u+1 (u=1 because n=>m = 4), let (L(l))n € LF[L?,...,L¥ 1] be defined as: 1<
i<pu=IlOfp, ., u+l1<i<2u=LONp,, 2u+1<i<3u=LOp, u+1<i<
4u :L(l)?:pl, 4u+1<i<sSu= L(l)f:pz, Su+1<i<éu= L(l)i-(:p6, and i=6u+1=

L™ p, . Then we have s; (gf:L(l)k) >s, (g{‘: L(l)k) =3u+2>3u+1l=s, (h’f:L(l)k) =

S3 (h’f: L(l)k). It follows that fF*! (L(l)k) € G and ffH (L(l)k) C G. For the other cases of n =

6u+ 3 and n = 6u + 5, the following L(z)k (g% wins) and L(3)k (gk wins), respectively, give
the corresponding inequalities.
L(Z)k is defined as: 1<i<pu=>p,, u+1<i<2u=>ps, 2u+1<i<3u=>pg, i =3u+
1=>p, 3u+2<i<4u+1=p;, 4u+2<i<5u+1=p,, 5pu+2<i<6u+1=>p;,
i=6u+2=>pyand i =64+ 3= p;.
L(3)k is defined as: 1<i<u=p,, pu+1<i<2u=>p;, 2u+1<i<3u=>p,, i=3u+
1=2p;, i=3u+2=>p,, 3u+3<5i<4u+2=p;, 4u+3<i<5u+2=p;, 5u+3<
i<6u+2=>pg, i=6u+3=>p,and i=6u+4=>p,,and i =6u+5=ps.

In either case above, at least 2 level-(k + 1) SCRs have class {x} and the other two have

either {x} or {y}. So, we can apply Lemma 3 to get the weak convergence. m
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Proof of Lemma 5

Let A={1,2,..,a} = {i EN | xL?y}. Assume that both a and n — a are odd. (The cases where at

least one of them is even can be similarly, and more simply, proven.) Note that the fact that C gk = {x}
and Cok = {y} guaranteesthat a >0 and n —a > 0.
Let L¥ € L(F¥)™ be such that gkL¥gkLkgk forall i: 1<i< % + g, giLEgkLEgk forall i: 1<
<52, gkLigkLlgl forall i 1<i<™"—= and gkLigkLlgh forall i 1<i<™242
Clearly, L¥ € LF[L°, L}, ..., L¥=1]. We have also that:

|s(gt) —s(g5)| = 1(1 =) —s| = |1 - 2s].

The assumption of 0 < s < 1 indicates that this absolute value is at most one. m

Proof of Theorem 3

As I stated in section 2.4, the probability of a tied outcome is negligible as n — . So, we can consider
the case where every level-1 SCR chooses a singleton subset of X. If f1(L%) = f1(L°) = f5(L°),
weak convergence is straightforward. If each fi1(L°), ;£ (L), f3 (L%) is a distinct singleton, L° is in
trivial deadlock. Therefore, the only nontrivial case is that in which two level-1 SCRs choose {x}
and the other one chooses {y}, where x,y € X.

Let A={ieN | xL;y} and a:=|A|/n. Let us label them as gi(L°) = g3(L°) = {x} and
ga(L%) = {y}, where F! = {gl, g3, g3} Dueto Lemma 3, we need only consider a < 1/2. Take any
f:[1,s,0] € F?. With Lemma 5, we have the following:

s(gh: M) =n- |A|,L1ré1La[)L<0]s(gll:L1) = |A] + s(n — |A])

1 1
: 1,71 2. 71 I _ z
Lmin, max{{s(gi: L), s(g5: L)} < S {IAI(1 +5) + (n = |ADs} + 3.
Therefore, f can choose {gi} (or {g3}) if and only if:

n—2|A] 1-2a

Al +s(n—|A]) >n—|A| & s > Al 1-a = ¢p(a).
Also, f canchoose {gi} if:
1 1
S04 +5) + (= [ADs} +5 <n—14]
314 1 1
©s<2————=2-3a——(—>2-3a=y(a) as n - x).
n n n

If @ <1/3,wehave y(a) > 1. Thus,any scoring SCR f:[1,s,0] canchoose {gi}.If 1/3 <a<
1/2, we have three cases. (Note that events such as @ =1/3 or Y(a) —1/n<s <yP(a) are
negligible because of Lemma 2.)

1) The case of s; = ¢@(1/3) = 1/2. In this case, each f? f2,f5 can exclude gi for any a €
(1/3,1/2).
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2) The case of s3 < @(1/3) and s, < ¢(g0‘1(s3)). Note that the event @ = ¢~ 1(s3) is negligible
because of Lemma 2. In this case, if 1/3 < a < ¢~ 1(s3), we have P (a) > s,, which implies that
L' € L1[L°] existssuchthat f7(L') = fA(LY) = {g3} and fZ(L®) iseither {gi} or {gi}. Ineither
case, L? is shown to weakly converge to {y}. If ¢~ 1(s3) < a < 1/2, L' € L[L°] exists such that
201 = f2011) = £2(1) = {g}).

3) The case of s3 < ¢(1/3) and s, > lp(q)_l(s;,)). In this case, an interval of @ (with a positive
Lebesgue measure) exists where fi' and f;! necessarily choose {gi} or {gi} and f2 necessarily
chooses {gi}. If a is in this interval, we cannot solve the regress, because inductively we can show
forall k >3 that f*(L*"%) and ff(L*1) areeither {ff~1} or {1} and fF(LFY) ={fF1}.

Proof of Corollary 1
Under IC, trivial deadlock corresponds with cases 1, 2, 9, 10, 11, and 27 in Diss and Merlin (2010).
Their Table 7 (p. 302) shows that each probability is 0.00299346. Therefore, pp = 0.00299346X%
6 = 1.8%. Under IAC, on the other hand, trivial deadlock corresponds with the cases 1, 2, 9, 10, 11,
and 27 in Diss et al. (2012). Their Table 9 (p. 62) shows that each probability is 1/504. Therefore,
pp = (1/504)%x6 = 1.2%. m

Proof of Theorem 4
The only nontrivial case is fi1(L°) = f(L°) = {x} and f3(L°) = {y}, where F! = {f1, 3, f} for
distinct x,y € X.Let A = {i EN | xL?y} ={1,2,...,a}. Ishow that L% strongly convergesunless a
takes several specific values. The case of @ > 2/3 or a < 1/3 is straightforward. Because the
proofs are similar, I show only the proof for 1/3 < @ < 1/2. To prove the uniqueness of convergence
to {y}, I inductively show that for any level k > 2, f* € F¥ exists whose class is {y}. For k = 2,
it follows that f;Z(L') = {f3'}. Assume that the statement holds until k — 1(=2) and C g1 = (v}

For the other two rules g&¥ and g¥, the class is either {x},{x,y}, or {y}. Because gk=! and g&¥!

are symmetric, there are six possible cases on the combination of (C_k-1,C k-1,C k-1 ): Case 1:
g1 g2 g3

(v} {x} {x}), Case 2: ({y}, {x},{x, ¥}, Case 3: ({y},{x},{y}), Case4: ({y}{x,¥},{x,¥}), CaseS:
(v}, {x, ¥}, {y}), and Case 6: ({y},{y}, {y}). For each case, I show that at least one of fi¥, f¥, fX has
class {y}. For cases 1, 3, and 6, this is obvious. For case 2, LK"1[L?,...,L¥2] is a singleton:
Lk=1: fltfk=16k=1 forall i € A and L1 -t fk=1£k=1 forall i ¢ A. Because a < n/2, we
have f¥(L¥=1) = {f{!}, which means C = {y}. Case 4 is similarly shown. For case 5, we have

Y c {fF 1 forall LF-t e L7110, .., L ] m
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Proof of Theorem 5
Take a profile L° € L(X)™ that is not in trivial deadlock. Because of the remark just after
Proposition 1, fp(L%), fyx+(L°), f4(L?) cannot be three distinct singletons. If all three coincide with
each other, strong convergence is straightforward. Otherwise, we have that:

{fpr (L), fi+ (L0, fur (10D} = {{x3, (¥}

for some distinct x,y € X. Without loss of generality, f,g € F! choose {x} and h chooses {y}.
We assume n is odd, and so we have a = #{i EN | xL?y} * #{i EN | yL‘l-)x}. The rest of the
proof, i.e., to check Weak Convergence and Uniqueness, can be done in the same way as in the proof

of Theorem4. M

Proof of Lemma 6
Given amenu F and a sequence of CI profiles L, ..., L¥~1 which satisfy the stated conditions,

let

F={f € FlGLL° 11, ... "] = (x}},

E, := {f eF|C[f: 1LY, ..., 11 = {y}},

and let a == |F,| and B := |F,|. We label the elements as F, = {g4, 92, ., g} and F, =
{h1, hy, ., hg}. Also Ny = {i € N|xL%y}, Ny, = {i € N|yLx}, n, = [N,|, and n,, = |N,|.
Since a + f = 3, we have two possible cases: (a) (a,f) = (2,1) and (b) (a,B) = (1,2).

(a) The case of (a,B) = (2,1).
Define L¥ € LK[L?,...,L¥1] as follows.
k. {91»92»h1 if i€Ny
t"hy, 91,92 if T E€N,.
It is easy to see that every f € F chooses a subset of {g;, g,}. So, L® weakly converges to
{x}.
(b) The case of (a,B) = (1,2).
Define L* € LK[LO, 11, ...,L¥~1] as follows.
(g1, hi, hy for (ny + 1) individuals in N,
v )9 hy, hy for n, — (ny + 1) individuals in N,
a | h1, h2, 91 for EJ — (ny + 1) individuals in N,
h,,hi,g1 for the other individuals.

Intuitively, L* is a profile such that the score of g, is the largest and the scores of h; and h,

are the smallest. First, it is easy to see that each level-(k + 1) fp, fu, fc, fz1, fu chooses {g4}.
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Consider f5. For simplicity, we denote by s(f) the score of f € F¥ evaluated by
/- Since each i € N, ranks g, at the first position and each i € N,, ranks it at the third, we

have s(g;) = n,. Since EJ individuals rank h, above h, and n — EJ = E] individuals
rank h, above hq, we have s(h,) = s(hy). Furthermore,

() = 5 (s — (ny + D)+ {[3] = Gy + )] + (2, +1- [3])

=1nx+ny—1-[fj

D
Sinx+ny—§-ny ( EJZny)

<ny =5(g1) (v ny>ny).
Therefore, f¥+1(L¥) = {g,}. It is straightforward to check that f*1(L¥) = {g,}.
Finally, consider f,. Since n, individuals rank g; at the third position and
(ny + 1) individuals rank h, at the third, it follows that f{**(L*) € {g4, hy}. Recall that
each f € F\ {fy} chooses {gi} at LK. If fF*1(L¥) = {g,}, this implies that L® weakly
converges to {x}. If fF+1(L¥) = {h,}, we can apply the case (a) to the CI sequence
19,11, ... LK (instead of the sequence 1911, ..., Lk_l) to find the convergence. Suppose
fA(LF) = {gy, hy}. Then, it follows that
ny, — (ny + 1) = Ny.
This implies that n, = 2n;, + 1. Then, let M* € L¥[L°,L*, ..., L] as
(g1, h1, hy for (ny + 2) individuals in N,
k. )9 h,,hy for (ny — 1) individuals in N,
. |h1,h2,g1 for EJ — (ny + 2) individuals in N,
h,,hy,g, for the other individuals.

In a similar way, we can check that fp, fy, fc, fai, fu, f5, fu chooses {g;} at M¥. Also, we
have fAk+1(Mk) = {h;}. So, we can apply the case (a) to the CI sequence L°, L1, ..., M¥* to find

the convergence. l

Proof of Theorem 6
Let fi, f2, f3 be distinct SCRs among fp, f5, fa, fu, fnr for fmr fa1- When n— oo under IAC, it is
easy to see that the probability of tied outcomes by some of f,f7 f3 is negligible. So, we can
discuss only L° € L(X)™ such that each f1(L%), (L%, f(L°) is a singleton. Let F =
e fBor far fuus fus foo funs fi}-

(1) The Case of |{f1(L°), f2(L°), f3(L")}| = 2
Let {f1(L%), f,(L%), f3(L°)} = {x,y}. When n — oo, the probability of the event
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#{i € N|xL0y} < #{i € N | yLox} + 2m

is negligible. Hence, we can apply Lemma 6 to derive weak convergence.

(2) The Case of |{f1(L%), f2(L%), f3(L")}| = 3
In this case, level-1 CI profile L' is uniquely determined. It is also straightforward that the
probability of tied outcomes by some of the level- 2 SCRs 1is negligible. If
I{fZ2(LY), F2(LY), f2(LY)}| = 2, we can apply Lemma 6 again to derive weak convergence. I next show
that |{f2(LY), fA(LY), f£(LY)}| cannot be 3 if the menu F is one of the stated menus in the
proposition. Suppose to the contrary that it is 3. Note that
LFY) = {fifofs frfsfo fofifs fafsfu fafifo fafafi}-

Let n; be the number of individuals who have j th preference. For example, n; and n, are the
numbers of individuals whose level-1 CI preferences are f;f,f; and f3f; f5, respectively.

From now on, the proofis similar for the ten menus in the proposition. Let us prove the case
of F ={fg, fu,fsi}. Without loss of generality, we can assume fZ(L!) = f;, f#(L}) = f,, and

fZ(LY) = f5. With ngy, ..., ng, we can rephrase these conditions as follows:

F2 (1Y) =f1.{n1 +2n, + ng > nz + 2ny + ng
Bo 1'12ny + ny + ng > ny + ng + 2ng

( n3+n4>n1+n2
| Ng +ng >Ny +1n,
ny+ng+ng>n, +ns+ng
F@ = 41 or
ny +n, >ng + ng
| N + 1y > N5 + N
kn1+n2+n5<n3+n4+n6

fle(Ll) = f3:
(ng + ng +ng >ny +n, +n3 and n, + ng +ng >ny +n3 +ny)
or
[ (N3 +ny+ng>ny+n,+ng or ng+ns+ng>ng +n, +ns3) 7
and
(ny+ny,+ns>ng+n,+ng or ny +ng+ng >ny +ns+ny,)
X and
(ny +ny +n3 >ny+ng5+ng or ny +nz+ny >n, +ng +ng)
and
Ny +ng + 2ng > 2nq + ny + N5
and
n2+2n5+n6>n1+2n3+n4

With elementary verification 3, we can see that there is no non-negative integer solution

(nq,ny, ...,ng) for this system of inequalities. m

33 For actual verification, I used the function "FindInstance" in the software Mathematica.
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Proof of Theorem 7

I provide extra notation in (0), and then prove for three distinct cases (1), (2), and (3).
(0) Extra Notation
Let F = {fy, f, f3} be a menu of SCFs such that:
fi: plurality rule where ties are broken in favor of individual 1,
f>: anti-plurality rule where ties are broken in favor of individual 1, and
fz:forallset A and L = (L, Ly, ...,Ly,) € LLA™, f3(L) is

- the greatest element for L; among fp(L) if |fp(L)| = 2,

- fi(L) if plurality score of some alternative is greater than n/2, and

- f2(L) otherwise.
I show that this set F satisfies the required conditions (to confirm neutrality and difference is
straightforward) and has the strong convergent property.

Take any L° € L(X)™ Note that f;(L%) is either f;(L°) or fo(L°). If f;(L°) = £, (L),
strong convergence is straightforward. Assume f;(L°) # f,(L°). We can label F! = {g;, 9, 95},
where g;(L%) = g,(1°) = x and g5(1°) =y. Let N, = {i € N|xL%y} and N, = {i € N|yLox}.
I denote their cardinalities as n, = |N,| and n, = |Ny|. Note that we have N = Ny UN,, and n =

Ny + Ny,

(1) The Case of ny > n,,

I show that LO strongly converges to {x}. To prove this, we need to show two things:
Weak convergence: L° weakly converges to {x}, and
Uniqueness: L° does not weakly converge to other C' # {x}.

We prove them one by one.

Weak convergence: Take L' € L[L°] such that:

L}: g1, 95,95 for all i €N,.
L}:g95,91,9, for all i € N,,.

n, > n,, and so it follows that f2(L') = f2(LY) = f2(L?) € {94, g,}. This means that L° weakly
y 1 2 3

converges to {x}.

Uniqueness: I inductively prove the following proposition, which implies that L° does not weakly

converge to C' # {x}.

Proposition: Assume the conditions in (0) and n, > n,. For all k € N, and for all sequences of CI

profiles to level (k —1) L° LY, ...,L*¥"1, there exists f € F¥ suchthat C[f:L% L', ...,L*"1] = {x}.
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Proof of the Proposition:
If k =1, the proposition is straightforward from the assumption. Suppose the statement holds for
k=12,..,ky—1 (ko € N). Take any sequence of CI profiles L°, L%, ..., L¥o~1,

(a) Ifevery f, ko, Zko, f3k° has class {x}, the proposition is straightforward.

(b) Suppose two of f, ko, 2k°, 3k°,denoted h’f" and h’;°,have class {x} and the other one,
denoted h’;", has class {y}. For all Lk € L[L° L', ...,L¥~"], individuals in N, rank h’f" or h’;"
at the worst, while individuals in N, rank h’;" at the worst. n, >n,,, and so it follows that
£t (Lko) € (Rl nk0).

(¢) Suppose one of flk", Zk", f. k", denoted h'fo, has class {x} and the other two, denoted
h’;" and h’;", have class {y}. For any L¥o € L[L° L, ..., L*0~"], individuals in N, rank h;‘" or
hg" at the top while individuals in N, rank h;‘" at the top. n, >n,, and so it follows that
f1k0+1(Lk0) _ hllco.

(2) The Case of n, <m,,

In this case, L° strongly converges to {y}.

Weak convergence: Consider the same L' € L[L°] defined in (1). n, >ny,, and so we have
fE(LY) = g5 and f£(LY) = g5. If f2(LY) = g3, weak convergence is straightforward. Otherwise,
without loss of generality, we can assume f2(L!) = g,. Letus take L? € L[L° L] as follows:

L%:fz,fl,fg for all i € Nx.
L2 f1, fs. f» for all i€ N,

It follows that f3(L%) = £ (L?) = f3(L?) = fi.
Uniqueness: The proof can be made in the same way as in (1).

(3) The Case of ny =n,
Uniqueness proof can be shown as in (1), and so I show only the proof of weak convergence.

(a) Suppose xL3y. In this case, L° strongly converges to {x}. Consider the same L' €
L[L°] as in (1). fp(L*) ={g1, 93} and g,Llgs, and so we have f;(L') = g;. It also follows that
(LY = f3(LH = g1
(b) Suppose yL3x. In this case, L° strongly converges to {y}. Consider the same L' € L[L°] as in
(1). It follows that f; (L%) = f3(L°) = g3 and f,(L°) = g;. Consider L2 € L[L° L'] that we used in
(2). Now, we have f3(L?) = f(L?) = £ (L?) = f2. This completes the proof. m

Proof of Theorem 8
The probability of tied outcomes at level—1 SCRs can be negligible, and so we can expect that each

AL, fALL), £ (L), (L0 is a singleton. If |F*(L%)| < 2, we can apply Lemma 6 to guarantee
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the weak convergence. Because of the definition of ¢, we know that ¢ (L°) € f7(L®) U f(L°) U
fi(L°). So, we can assume |F1(L%)| = 3. Let F! = {g1, g3, g3, gi}. Without loss of generality, we
can assume g}(L%) = gi(1%) = {1}, GE(L%) = {2z}, and g1(L%) = {x;}.

Let L' € L[L°] be such that everyone ranks gi above gi. Note that the probability of

tied outcomes by some of f7Z,fZ,fZ, ¢?

can be also negligible. So, we can expect that
ALY, FZUY), f2(LY), 92 (L) are also singletons. It is simple to see that there are six types of
preference in L'. Let ny,..,ng be the number of individuals who have each specific type of
preference as follows:

individuals:

1,1 .1 .1
n 91,92, 93,94

n;
ns
Ny

Nsg

individuals:
individuals:
individuals:

individuals:

91,93, 93, 9i
93,91, 93, 9i
93,94 91, 92
94 91,93, 93

91,95, 91,92,
where n =mn; +n, + ng + ny + ng + ng. Note also that if |F2(L')| < 2, then Lemma 6 again

ne individuals:

guarantees the weak convergence. So, we assume that |F2(LY)| = 3. At this time, @2(L!) is either
fA(LY) or fZ(LY). We can also expect n; > 0 for i = 1,2,3,4,5,6 when n — oo, and so we have
that f2(L') = {g}}. Now, we have only two possibilities:

(D) fa@") = *(LY = {g3}, fFULY ={ga},and fZ(LY) = {gi}, or

Q) fEUD =1{g3}, fEUD = @*(LN) ={gi}, and f7(LY) = {gi}.

(1) The case of f7(L") = p2(L") = {g3}, fF(L") = {g4},and fZ(L") = {g1}.
Let L2 € (L(FZ))n be as follows:
n, individuals: f2,fZ, @2 .
individuals: f2, f, fZ, .
individuals: f2, @2, f2, f#.
individuals: f2, o2, f#, f2.
individuals: f2, f2, fZ, .
individuals: f2, fi2, @2, f2.

ny

N3

Ny

Ns

Ng
Clearly, we have L? € L2[L°, L'].
n4,..,Ng are positive, and so we obtain that £3(L?) = {fZ}. fZ(LY) = {g1}, and so the plurality
score of gi is greater than those of gi and g3:

{ns +ng >ny +n,
Ng + Ng > Nz + Ny.

This also shows that the plurality score of f;# is greater than those of 2 and f# at L?. Hence, we

have that f3(L?) = {f#}. Next, we show that f3(L?) = {f¢}.
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Because fZ(L'Y) = {gi}, the Borda scores at L' are as follows:

2 1 2 1
sg(gd) > sg(gh) @ ny +ny +§n6 +§n1 >n, +n, +§(n3 + ns) +§(n4 + ng).

2 1 2
sg(gd) > sg(gh) e ng +n, + 3" + 3™ > ng +ng + 3 + 3N

At L?, we have:

2
sp(ff) =ns +ng +§n2 +§n4.

2 1
sp(ff) =ns +ny +§(n1 + ng) +§(n2 + ns).

2
sg(f2) =ny +ny + =ns + =ns.

3 3
sp(@?) < sp(f).
These equations show that sz (fi2) > max{sg(fi#),sg(fZ),sz(@?)}.

(2) The case of fF(L") = {g3}, fF(L") = p(L") = {g3}, and f(L") = {gi}.
fZ(LY) = {g}}, and so the score of gl at L! is strictly greater than those of g and gi. Formally,
we have that:
2 1 2 1
ng +ny +§n6 +§n1 >n, +n, +§(n3 +ng) +§(n4 + ng).
3

2 1
ns +n4+§n6 +§n1 > Ng + ng +§n4 +§n2.

Let L2 € £L?[L° L] be such that:

n, individuals: f2,fZ, f#, 2.

n, individuals: f2,fZ, @2, f2.

ng individuals: f2, fZ, f#, @>.

n, individuals: f2, fZ, @2, f2.

ns individuals: f2, @2, f2, f2.

ne individuals: f2, @2, 2, f2.
In words, this is a consequentially induced preference where everyone ranks f# above ¢?. Similar
to (1), we can check that fg5(L?) = f2(L?) = {f#}. Furthermore, the scores of fZ,f#, f# >
evaluated by f3 are as follows:

2
sg(fA) =n, +ny + 3" +§n5.

2
SB(fBZ) =nNns +n4+§n1 +§n6

2 1
sp(ff) = ns +ng +§(n2 +ny) +§(n1 + n3).
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With (1) we have that sg(fi#) > sg(f2). Note that ties between fZ, f# occur only if

2 1 2 1
gty +gng tone =ns+ne +§(n2+n4)+§(n1+n3).

This event can be negligible as n - co. Wl

Proof of Theorem 9
Let F ={fi, f2 -, fu} be a menu of M >3 concave scoring rules. Define E = {El,EZ, -"'Eu}
and C = {cf,j |f €EEUC and j=1,2, ...,r}, where ¢y ; is a voting rule such that

G(Ly,X) if [{ieN|L;=Ly}| =j,and

i (L:X) = {f(L:X) otherwise.

The probability of the event |{L EN | L;= L1}| =j is negligible as n —- oo, and so each
Cf1) Cf 20 o) Cp 15 asymptotically the same as f. In this sense, C is a set of pseudo-copies of the
elements in F U E. We show that G := F U E U C has the asymptotically weak convergent property
for 4 and r suchthat r > p > M. The proof is made up of several steps.

Step 1: To Prove the Following Statement
Let k> 1.Let L% L%, ...,L* be a sequence of CI profiles to level (k — 1). Suppose:

(1) {Cgl1% 11, .., 1] | g € G*} = ({31}, (2}, -, (v},
(2) ¢p (1) = f(L*) forall fEFUE and j=12,..,7,and

(3) {j*} = argmax |Uj|, where forall j =1,2,...,m,
jef1,2,..,m}

Uj = {i EN | y]-L(i)y for all y € {y,,y,, ...,ym}}.

Then there exists L¥ € L¥[LC, LY, ..., L*~1] such that
Cprna[L0, .., L7 1F] = {y;-} for all EF** € EF*1.,
Proof of the Statement
For each j = 1,2,...,m, let us define some extra notation: let u; := |Uj| be the cardinality of each
Uj. Let Gj = {g € G¥ | Cy [L°, ..., LF1] = {yj}} be the set of level-k voting rules whose class is y;
and let b; := |G]-| be the cardinality of G;. We label each element of G; as
G = {gj,lng,Zr ---;gj,b]-}-

Without loss of generality, we can assume j* = 1. Next, we define a profile Lk = (Lk,Lk, ...,L’fl) €

n
(L(G k)) through five steps:
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(a) Preferences on Gj-(= Gy).
Forall i €N, let
L’f G]* gj*,l’ gj*,Z' ""g].*,bj*'

(b) Re-Label Individuals
There are m! possible preferences over {y;,¥s, ..., ¥m}. Suppose we array them in lexicographic
order (in terms of the subscripts) and denote them as the 15¢,279, .., (mD)™ preferences. For example,

the 15t preference is y1, Vo, eve) Ym—1, Yin» the second is y1, Vo, wor) Vs Yim—1, and the (mD™ (last)

one is Ym,Ym—1, -, Y1 For each j =1,2,..,m, let N; denote the set of individuals who have the
j™ preference over {y;, Vs, ..., ¥im}. Let n; = |N]| be its cardinality. Let us re-label individuals as

follows: N; = {il,iz, ...,inl}. Foreach j € {2,3,...,m}, let

N; = {ln1+nz+~~-+nj_1+1' bng+ng+ednjog+2r =0 ln1+n2+--~+nj_1+nj}'

Note that Ny, N, ..., N, gives a partition of N.

(¢) Define Permutations on G;.
Foreach j =23, ...,m, let g;: G; > G; be a permutation on G; such that

_ (Yjp+1 if 1<p<bjand
9i(9j») = {gj_l if p=by.

As usual, we denote qu =gjogje--o0; (q times) for each positive integer q. We interpret 0]-0 as

the identity.

(d) Preferences on G; # Gj-.

Foreach p =1,2,..,n and j =23, ...,m, let

1 16207 (g50). 07 (gj2), 07 (91,

(e) Preferences Between G; and Gjr.
For all distinct j,j’ € {1,2,..,m}, g € G;,and g’ € G/, let
gLig e yilly;.

Now, let us confirm that Ef**(L¥), E¥*1(L¥), -, Ef**(L¥) € Gf. Condition (2) demands that each
by, b, ..., by is at least as large as 1 + 1, because at least one elementin F U E has class y; and r
copies yield the same outcome as theirs. Recall that we assumed u <r. E, (1 <e < pu) looks only
at the first, second, ..., e™® position in the preference profile, and so it follows that voters in U;

assign positive scores only to elements in G]-k at L¥. Therefore, we have that for all j = 1,2,...,m
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and g] € G],
s(g;) < u.
It is straightforward from (a) that s(gl,l) = uy. Uy is, bydefinition, the largest among uq, Uy, ..., Up,

and so we have

5(91,1) =u > ji?zéajs(gj).

This completes the proof of step 1.

In general, the proof process above determines the way we design L* in the face of L°, L1, ..., LF~1

under conditions (1), (2), and (3). From now on, I denote by L** sucha profile L.

Step 2: Asymptotic Consequence of step 1
Let us define the effective number (of alternatives) {my}x—¢ 1, inductively. Intuitively, my
represents the number of classes at level k.

First, let my := |X|. When n — oo, the probability of a tied outcome by some SCRin G is
negligible. Hence, we accept that condition (1) holds when k = 1. In a similar way, we can check that
conditions (2) and (3) also hold when k = 1 as n — oo. Hence, we can infer that L** is well-defined.
Suppose L** is well-defined for k = 01,..,k. Again, we can infer that the probability that any of
the conditions (1), (2), or (3) breaks is negligible as n — co. Therefore, inductively we can say that if
k is finite, we can design L°, L1, ..., L¥ so that each condition (1), (2), and (3) holds till level k.
Now, let m; be the value of m determined at level k = 1,2, k. Clearly, the sequence
Mg, My, ..., Mg, is decreasing, i.e, M =mog=my =2my=--=2mg =1 and my <|G|. If
myg =1, it directly means convergence. Suppose mg =2 . It follows that |G| integers
my, ..., Mg are between 2 and |G|. Therefore, there exists k; € {1,2,...,|G|} such that My, 4 =
my,.
Step 3: Classes of Level-k; Voting Rules
For simplicity, let k = k; and m = m;, throughout this step. Based on the discussion in step 2, we
have that:

(1) {C,[10, 1%, ..., L* '] | g € G¥} = {{z1), {22}, -, {2} ),
2) cf,j(L*k_l) = f(L*k_l) forall fEFUE and j=1,2,..,r,and
(3) {|T;-|} = argmax{|T; |, |T;|, ..., ||}, where forall j =1,2,...,m,

Tj = {i EN | ZjL?Z for all z € {z,,2,, ...,Zm}}.

For each j = 1,2,...,m, let ij = {g € G¥ | Cg[LO,L*l, ...,L*k_l] = {zj}} and q; = |G]-|. We also
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denote by t; the cardinality of T;. Without loss of generality, we can assume again that |T;| >
|T,], ..., | Ty |. Furthermore, step 1 shows that the elementsin E and its copies are allin GX. Therefore,

we have a; = u(1+7r) and a,,...,a, < M1 +71).

Take arbitrary concave score assignments [SlGl, séGl, . Sllg ” and calculate the score of each g € G k

evaluated by this f at L**. For simplicity, we write s; instead of s/ (j = 1,2,..,m) throughout
this step.

First, we consider the score of gf ;- Note that voters in |T;| rank gf , at the first position
and the other voters rank g¥; at least at the (a; + az + -+ a,, + 1)™ position. Hence, we have

that

m

S(52) 2 517 Tl + ) Sayeayrsagen - [T

j=2
Take any g, € G)’f (2 <2 <m) and let us evaluate its score s(g}f). Because of the recipe for L*,
we can infer that the scores of the elements in G¥ do not vary much from each other. Indeed, we have

the following proposition.

Proposition. Take any j € {2,3,..,m} and g,g' € ij. Then we have [s(g) —s(g')| < |G|! at
L*k

Proof. Let us introduce some extra notation. For any A € N and h € G¥, let s(g:A) be the score
of h from A.Formally,

1G]

s(h:A) = Z s, - Ry(h: A)

x=1
Here, we denote by R, (h:A) the number of individuals in A who rank h atthe x™ position. With
this notion, we can develop the score of g as follows:

m!

s(h) = z s(h:N)).
=
Because of this equation (and m < |G|), we have only to prove the following: that for each p =
1,2,..,m!, |s(g:Np) —S(g’:NP)| < |G|. Take any N, € {N;,N;, N3, ..., Ny, }. Dividing n, by
6
j

, we have
n, = a|Gj| +p
where e NU{0} and 0 < B < |Gj|. For simplicity, let v; == n; +n, + -+ n;_;. First, look at

individuals [ := {iij, ly42,""") iv,-+a| Gj|}. Recall that their level-k CI preferences are the same over

k\ ok
G*\ G;° and
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Lll(v ol Gk’ 0_}(% i (9;1). U(lv R (952), - (lv A (gj,aj)

j ) (lv +2) (1,, +2) 1
Lli(vj+2 | G]I-‘: O-] (g] 1) U (g] 2) (gj,aj)

Lk | k (‘v +“|GJ) ( ]1) O_(lv +“|GI) (.912) (LV‘+a|Gj|)_1 (gj,a,-)'

+a|G |
Because aj = crj (identity), we can see the symmetry between elements, i.e., each element g € G;
appears at each rank with exactly the same frequency. Hence, we have
s(g:) =s(g": D).
Therefore,
|s(g:Np) —s(g":Np)| = [{sCg: D + s(g: Ny \ 1)} — {s(g": D + s(g": Ny \ T)}|
= |s(g: Ny \ 1) - s(g’:Np \ I)|
For any individual i € N and any h, h’ € G;, we have (by the definition of a scoring rule):
IsCh, {ih —s(r, {ihl < 1.
Using this, we have
[s(g:Np \ D) = s(g"s N \ D[ < 1s(g: (i) = s(g": (D)
{ENp\I
< [N\ 1]
=B <|Gl.

This completes the proof of the proposition. m

For each j # A, voters in T; rank g, at the a; + 1t or lower position, because such voters rank
the elements of G-k atthe 15¢,279, . ?h positions. On the other hand, voters in Tj rank g¥ atthe

15 or lower position. Therefore, we can evaluate s(g ) as follows:

m

s(g ) < — (51 +s5,+ -+ sal) [T, | +z (saj+1 +Sq42 + ot Saj+a,1) . |T]| + |G|
JjEA
For each w;,w, € N such that w; < w,, we write for simplicity
Apnqg = Ap + Apyq + -+ aq.
Sp~q = Sp + Spr1 T+ Spiq-

Now the difference between s( gf 1) and s( g/’{) can be evaluated as follows:
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S(a,+1)~(as+ S1~
5(91‘,1) - 5(95) > (51 - M) |Til + <Sa2~m+1 - alal) Tyl

a
m
S(aj+1)~(aj+az)
P e RS
Jj*1,A A

Recall that |T;]| is assumed to be the largest among |T; |, |T,|, ..., |Tin|. Note also that the coefficients
of |Ty| and |'I}| for j # 1,1 are non-positive, because s;,S,, ... is, by definition, a decreasing

sequence. Therefore, we have that

S(ay+1)~(as +ay) Si~a
s(g81) = (a5) > (s2 =~ SETD) Ty 4 (50,00 =0 2) 1T

m

S(aj+1)~(aj+ay)
J ) A
1 0 (Saaomrs == L ) AT Gl
Jj#1,4
m
> (g - S@D~@tan | o Steaz Z (S S(aj+1)~(aj+aa)) G 7|
= 1= = ~mt1 T om+t1 = = )Ty ) M1l
Y A @ i

In the next step, I show that the right-hand side is non-negative for any concave score assignment
[sl, S2 eee) s|G|]. Once that is shown, the proof of Theorem 9 is complete, because s(gfl) - s(g,lf) >
0 (for any concave score assignment) implies that any concave voting rule in G**1 would choose a

subset of G¥. This means convergence to {x;} atlevel (k + 1).

Step 4: Prove the Inequality
Let H (51, S, wee) S|G|) be the coefficient part of |T;| in the last inequality, i.e.,
H(sl, Sy, ey s|G|)

m

— g _SatD~(@tay) | o _ Sty z (s _S(aj+1)~(a,-+a,1))
TRl aym+1 Ay m+1 -
a 2~m a, “ 2~m a,
G|!
Ty |

I will show that H(sl,sz, ...,S|G|) =0 forall [51,52, ...,s|G|] € C|g|- To show this, let t =54, .4.
Let D; S Cj| be the set of score assignments in C|g| such that s,, = t. Because of Proposition
2, we have

C|G| = U Dt'

B
Se, m+1Sts1

We also define:
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Ht(sl,sz, s Say s Say 427 ...,s|G|)

= H(sl, S2s e Say i by Say 420 e s|G|)

m
—14+ (m _ 1)t _ Sa1+:a1+al _ Sl(;al _ Sal-+1(;aj+al) (4)
2 ) 2
_lal
|7

In words, H, is a (|G| — 1)-variable function that is generated from H by regarding Sapmt1 =1

as a fixed parameter. For simplicity, we write this combination of |G| — 1 elements as [sj]jia e
2~m

Let

1—-t
ll(x):_a

x—-1+1

2~m
be the equation of the straight line passing through (1,1) and (az,, + 1,t). Let e :=s,, —
l,(ayp) (> 0), and define

I(x) = —(sa%m - t)(x —dyem— 1D+t
as the equation of the straight line passing through (a2~m'sa2~m+1) and (a,.,, + 1,t). Because of
the concavity of (51,52, ...,S|G|), we have that s, < [,(x) forall 1 <x < ay.p,.

Let

e, '= max ]{min{lz(x), 1} -1 (x)}

x€[1,a3-m
Because of concavity, we have that s, < [,(x) forall a; +1 < x < a, + a;.

Next, consider [Sj*] € D, such that

Jj#ay.m+1

jr—

x *

{ll(x) if x #|G|.
0 if x=|G|.

It is straightforward to check that this [s;] isin D;. Let

j#az.m+1
es == 5211_5 - lz(af + 1) (¢E=12 ..,ap.
Then we have

a1+1—(a2~m+1)' S em

2 = - ez.
ayem+1—x, azem

€3 =2

When a; » a,...,, we have e; = (m — 1) - e,. This means that the middle three terms in equation

“4):

m
_ Sai+1~a;+ay _ Si~ay _ (Saj+1~aj+a,1)

a a a
A A j#ELA A

have their minimum value at [s]f‘] and therefore, H, has its minimum value when all the

Jj#Eaym+1
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S1,S2, -+, S|g| are on l;(x). Let S|*G| =0. s7,S5, ...,S|*G|_1 is a sequence of numbers with common

difference, and so we have:

* * m *
H(Sik, ...,Sl*GI) =1+(m—-Dt— Say+1~a+a;  Si~a; Z (Saj+1~aj+a/1> _ G|!

a @ e a Ty
m
1+a 1+a 1+a G|
=1+ (m-De-h(a ) k(= A)‘Zh(“ﬁTA)‘%
1

Jj#1,A

m
a; + (X75120) +5 (@ — 1) G|!

(-t |1—m+— (F129) +3 _lel
Az-m Ty

If t = 1, the proof of H(sf, ""SI*GI) > 0 is trivial. Suppose t < 1. Then, if a, is sufficiently large,

the equation denoted by [-+-] can be large enough to make H(sj, ..., S| c;|) positive. m

Proof of Corollary 2
Let us first confirm that p, defined above is actually a scoring rule. To see this, we need to check

that s =1, s = 0, and that s, s2%, ...,s™ is decreasing.
1 > °m H 1 2 m

m 1-1\¢
S1 = —(m) =1,and
m—1\%
Sg:l_(m—l) =0
Let
x—1\“
h(x) = _(m 1)

This function is clearly decreasing, and so we have s = h(1),s7" = h(2),...,s = h(m) is also
decreasing.
Next, we show that p, is concave. By taking the second derivative of h(x), we have

ala—1)

W@ =~ =)

(x—1D*?2<0.

This shows thatis h(x) concave. Therefore, p, is concave. m

Proof of Proposition 5
It will be sufficient to show a proof for (3) ¢p, because the other cases are straightforward.
WPU and NU: It is obvious that ¢p satisfies WPU; I will show that ¢p also satisfies NU.
Takeany i € N and V' € 9t such that s;(V") = 0. Because abstention is not allowed, there must be
an individual u € N that has a score of at least two. Hence, we can say that i & Fy- U Sj;, which
implies i & @p(NV).
IMP: Take any individual i € N and ballot profiles N = (N;, N_;)),N' = (N{,N_;) € .
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1) The Case of i € F. 1t follows that i € @p(N'), and we will show i € @p(N'). Note
that for all j € N, si(V") < 5;(V) + 1, where the equality holds only if j € N;. So, we have either
i €EFyr or[i €Sy and Fyr S N/]. Thus, i € @p(N').

2) The Case of i & F . Let us first consider the case of i € @p (V). It follows that i € Sy,
and F) € N;. These statements show that for any j € N, Si(V') < sp, (V) =s5;(V) +1 =
si(N") + 1. Indeed, s;(V'") = sg, (V) holds only if j € N;. Thus, we have again either i € Fp-
or [i € Sy and Fy+ S N/], either of which implies i € @p(N').

Next, consider the case of i € @p(N'). [ will show that i & @p(N''). Because i & @p(N),
there is an individual j € N \ {i} such that either (a) si(V) = 5;(V) + 2 or(b) s;(NV) =5,(NV) +
1 and j € N;. In the case of (a), it is clear that 5;(V") = 5;(V) =12 5;(V) +1 =5;(N') +1,
where 5;(V') = s;(V) — 1 holds only if j & N;. So, we have i & @p(N"). In the case of (b), we
have s;(N') = 5;(V) = 5;(W') + 1 = 5;(V) + 1, where the equality in the first inequality holds
only if j & N;. Again, we can say that i & @p(N").

Non-2CN: Here I will use a counterexample. Consider a ballot profile NV = (N, ..., N,,) €
N1 S N (the following proof holds for both settings (9, %) and (N, X)) as follows:

N, = {3}, N, = {1},and

N;={t+1} for all i e N\ {1,2}.
Then we have s;(V) =2, s,(W) =0, s3(W)=--=s5,(N)=1, Fp ={1} and Sy =N\
{1,3}. Furthermore, we have @p(N) = {1,2,n}. Now consider a transposed ballot profile NV °, where
o = (2,3). In this case we have Fyo = {1} and Sy = N\ {1,2}. Because 1 & N3, we have 3 ¢
@p(IN9), whereas 2CN demands that 3 € @p(N).

AB: It follows from Theorems 1 and 2 of Tamura and Ohseto (2014) that ¢p does not

satisfy AB under (9t%,X) if n > 4. In fact, we can generalize their result as follows:
1) @p satisfies AB if n =3 bothunder (9, %) and (N, X%).
2) @p satisfies AB if n > 4 bothunder (9, %) and (N, X%).
Note that the following proof applies for both settings.

1 If n =3, @p satisfies AB. Take any two ballot profiles N, M € 9t such that s(V') =
s(M). I will show that @(N) = @(M). Let t := #{i EN | 5;(N) =s5;,(M) = 2}.

a) The case of t = 3. We have @p(IN) = @p(M) = N, because Fy- = Fpr = N.

b) The case of t = 2.Suppose s;(N) = 5;(N) = 2 > 5,,(NV). Because Fy = Fypr = {i, j},
we have {i,j} € Fjr N Fy . Furthermore, s;(WV) =s;(N) =2 implies (Fy = Fy =){i,j} S
Ny, My, so whether k is in @p(N') is determined thoroughly by k belonging to S)- and S,
which is also entirely determined by the score profile. Thus, we have @p(N) = @p(M).

c) The case of t = 1. Suppose 2 = s;(N') > 5;(NV) = s, (V). Then s;(N) = 5;(M) = 2
implies i € N; N Ny N M; N M. Recall that in Y7L, s; >n, there are only two possibilities for the
value of the score profile: (Si, sj,sk) =(2,1,1) and (si, sj,sk) =(2,1,0). If (si, sj,sk) =(2,1,1),
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it follows that {j,k} S Sy NSy and we have {j,k} S @p(N) N @p(M). On the other hand, if
(si, sj,sk) = (2,1,0), we have Sy = Syr = {j} and therefore j € @p(N) N @p(M). In either case,
k & @p(N) U @p(M).
d) The case of t = 0. Because )j-;S; =n, the only possible score profile is s(NV) =
s(M) = (1,1,1). Because Fy = Fpy = N, we have @p(N) = ¢p(M) = N.
In all four of these cases, I have shown that @p(N) = @p(M). Because N, M are
arbitrary ballot profiles with the same score profile, this means that ¢p satisfies AB if n = 3.
2)If n > 4, @p does not satisfy AB. 1 will provide a counterexample. Consider two ballot
profiles NV = (Ny, ..., Np),M = (M, ..., M) € Nt € N as follows:
Ny ={3},N, ={1}
N;={t+1} for all i € N\ {1,2}
and
My ={3},M, = {4}, M5 = {1}
M;={1+1} for all ie N
Because we have s(WV) = s(M) = (2,0,1,1,...), AB demands that @p(N') = @p(M). However, we
can check that 3 & @p(NV) and 3 € ¢@p(M). This shows that ¢p does not satisfy ABif n > 4. m

Proof of Lemma 7
Case 1: D = 0tk. To prove case 1, we provide two lemmas.
Lemma 12. Let ¢ + X € B(N) \ {¢p} and ¢: " —> X be a nomination rule that satisfies IMP and
AB. For any distinct individuals i,a, f € N and for any ballot profile ' € 9t* such that i € Ng,
and i € N, there is a ballot profile ' € ¥ suchthat N ~; N/, i€ N/, i & Ng,and i € N, &
[EN, forall y € N\ {i,a,B}.
Proof of Lemma 12. If there is an individual u € N \ {i, @, B} such that u € N, and u ¢ Ng, then
let N = (Nj,...,N;) € 90tk be such that:
Ng = (Ng U {iD) \ {u},
Ng = (Ngu {u}) \ {i}, and
Ny =N, for all y € N\ {a,f}.
Because s(WV) = s(N'), AB demands V' ~; N'. Therefore, because we also have i € N, i &
Ng,and Ny =N, forall y € N \ {a, £}, the lemma holds.
Suppose there is no such individual u. Then forany u € N\ {i,a, B}, u € N, implies
i € Npg. It follows that Ny \ {i, @, 8} € Ng \ {i,a, f}. Because we also have |N,| = |Nﬁ
that |N, N {i,a, B}| = |NB N {i, a,,B}|. Recall that we have N, N {i,a} = ¢ and i € Ny by the
assumptions. Therefore, we can say that N, N {i,a, f} = {B} and Ngn{i,a,p} = {i}.

, it follows

Because 1 < k <n—2, i’sballot M; € N exists such that @ € M; and b ¢ M;. Let
us define M = (M;, M_;) € Ntk as M_; = N_;. IMP demands ' ~; M. Note that we have M, N
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{i,a, B} ={B}, Mgn{i,a,p}={i},and M; N {i,a, B} = {a}. Therefore, we can construct M’ =
(M3, ..., M},) € 9tk as follows:

M{ = (M; U (BD\ {a},

My = (Mo U {iD\ {B},

M = (Mg U {a})\ {i},and

My, =M, =N, for all y € N\ {i,a, B}.
By AB, we have M ~; M. Itis clear that M’ has the necessary properties. m

Lemma 13.

Let ¢ # XS B(N) \ {¢} and ¢: 9tk > X be a nomination rule that satisfies IMP and AB. Take any
individual i € N and a ballot profile N = (N, ...,N,,) € t*. For any u,4,v € {1,2,...,n — 1}, if
1+1¢ Nizz and 1+V € Ny, then we have V' ~; N/ = Nl'+—#, Nim), where NL'+—# = (N@ u
{t+ah\ G+

Proof of Lemma 13. Take any i € N, NV € % and integers u,A,v € {1,2,...,n — 1} such that
1+t1¢ Nizz and 1+V € N Because 1<k <n-—2, i’s ballot M; € Nk exists such that
1+A€M; and 1+v€&M,;. Let M =(M;,M_;) €NF be such that M_; = N_;. IMP demands
N ~; M.Define M' = (Mj,...,M},) € ¥ as follows:

M =M ut+vH\{t+1}.

Micg = (M U F A\ TF9)

M, =M, for all x € N\ {i,1 + u}.
By AB, we have M ~; M'. Finally, let us define M"' = (M]',M";) € "* as M]' = N/’ and
M”; = N”;,. IMP demands M' ~; M". Clearly, M has all the properties required for N'. m

Proof of Case 1: D = N* (Lemma 7). Suppose a nomination rule ¢: 9tk — X satisfies IMP and
AB. Fix any i € N through the proof. Let us partition the ballot profile domains 9% to
IO ML, ..., ML, where:

RE=MOUMI U ...UM L and
M = (v € N¥ | 5;(W) = d}.
In words, MM? is the set of ballot profiles where individual i gets score d. For any d €
{0,1, ...,n — 1}, we define a ballot profile M% = (Mf, ...,Mﬁ) € M? as follows:
M ={i+1,..,1+k}
MEL={i i+ 1, ..t +k}\{+ @} if 1<p<minfd k+1}.
ME={+1 i +k+ I\ Fm ifd<pu<k+1
ME={ii+1, .. 1+k-1}ifk+1<pu<d
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Miz={+1 .., i+k}ifmax{dk+1}<p<n-1

In words, this is a ballot profile where individuals’ approvals are shifted toward

i,t+1,..,1+k,1+k+ 1 without changing i’s score. Note that for any d € {0,1,...,n — 1}, M¢
is uniquely determined and M¢ € 9%, I show that for any d and N € M%, we have N ~; M.
Showing this completes the proof because N, N' € M implies N ~; M? and V' ~; M4,
thus N ~; N,
Take any d € {0,1,..,n—1} and N € M?. With the repetition of the procedure in
Lemma 12, we obtain V! € 0¥ such that ¥ ~; ' and only the individuals in {T+x [1<x<
d} approve i. Next, N2 € M4 is defined as N? = {l +1,..,1+ k} and N2, =N2,. IMP
demands N'' ~; N2 Starting from N2, we sequentially transform NZ; to Mg for each u =
1,2,...,n—1 as follows:
= (MW o i W
Next, (M&, M4, N25, N25 ..., N2

+n—-1
d d d 2
NeXt (M Ml+1’Ml+2’Nl+3 N+n 1)

Finally, (M&, M&;, M&5, M ... ME—) = M4,
Because we have i € N2 & i € M¢ for all x € N \ {i}, the only difference between N2 and M?
is on individuals other than i. Recall that Lemma 13 states that the substitution of the approval toward
1+v e N\ {i} with that toward 1 + 1 in someone’s ballot retains i-equivalence. Therefore, the

above procedure from N2 to M¢ maintains i-equivalence. Hence, we have N2 ~; M%. m

Case 2: D = 9. For the proof of case 2, we provide another lemma.
Lemma 14. Let ¢ = X S B(N) \ {¢} and ¢: 9 - X be a nomination rule that satisfies IMP and
AB. Fix any individual i € N. For any ballot profile V' € ¢, if there is an individual j € N such
that |N]| > 2, then, for any a € N;\ {i}, we have that NV’ = (Nj',Nij) EN and NV are i-
equivalent, where N/ = N; \ {a}.

Proof of Lemma 14. If j = i, the lemma is obvious by IMP. Suppose j # i and |Nj| =2 at Ve
9. Take a € N; \ {i}. Let M €t as M; = {j} and M_; = N_;. Then we have a € N; and a €
N; and can define M’ € 9%t as M; = M; U {u}, Mj = M; \ {u},and M, = M, forall x € N\
{i,j}. Because s(M) = s(M"), we have M ~; M'. Furthermore, let M € N as M;' = N; and
M!; = ML, IMP demands M’ ~; M". Therefore, M satisfies the required property. m

Proof of Case 2: D = N. Take any N1, N2 € 9 such that s;(NV'1) = 5;(IV2). For each of these,
we can iterate the procedure in Lemma 14 until everyone’s ballot becomes a singleton. Let £1, £?

be the final outputs of N1 and N2, respectively. Then, we have N1 ~; L1, N2 ~; L2 and

102



L1, L2 € N € N. Because s(LY) = s(L£?), case | shows that L1~; L£2. Hence, we determine that
Nl ~i Nz. |

Case 3: 0t = gr°el/,
Lemma15.Let ¢ = X S B(N) \ {¢p} and ¢: N¢Y - X be a nomination rule that satisfies IMP and
AB. For all i €N and V € B¢ | if j € N\ {i} exists such that j € N;, then there is a ballot
profile V' € MY suchthat N ~; N, s;(V) = s5;,(NV"), j & N/,and N, = N; forall x € N\
Ut
Proof of Lemma 15. Assume j € N; for some j € N\ {i}. Take any u € N\ {i,j}. Let M =
(M;, M_;) € WY | where M; = {u} and M_; = N_;. Then IMP demands N ~; M. Let us
consider two cases, (a) and (b).

a) The case of p € M;. Let M' = (Mj, ..., My) € ¢ such that M; = M; U {j}, M; =
M;\ {j},and M; = M, forall v € N \ {i, j}. Note that the assumption of u € M; guarantees that
Mj # ¢. By AB, we have M ~; M'. Let M" € Y because M;' = N; and M”; = M_;. IMP
demands M’ ~; M". Clearly, this ballot profile M'"" satisfies the required properties.

b) The case of u & Mj. Let M'" = (My",...,My") € ¢ such that M;" = (M; U {j}) \
{3}, Mj' = (M; u{u})\ {j},and M =M, forall v €N\ {i,j}. AB implies M ~; M"". Let
M= (M]",M"]") € €Y because M{"" = N; and M = M"]. IMP demands

M ~; M"". Clearly, this ballot profile M'""" satisfies the required properties. m

Proof of Case 3: D = NV . Take any individual i € N and ballot profiles N1, N2 € :t*¢Y such
that s;(WV'1) = 5;(IV2). The iteration of the procedure in Lemma 15 for each of N1, V2 will give
ML, M2 e nNseY such that:
jé Mjl and j & sz forall j # i,
s;(M1) = s;(M?), and
N1~ Mt and N2 ~; M2
If i ¢ M} and i ¢ M?, we have M, M2 € :. Then it follows from case 2 that
M?t ~; M? and the proof is done. Therefore, without loss of generality we can focus on two cases:
1) i € M} and i € M?, and 2) i € M} N M?. Note that in either case it is enough to prove the i-
equivalence of M'! and M?2.
1) The case of i € M} and i ¢ M?. Because s;(M'') = s;(M?), j € N\{i} exists such
that i € M}'. Take an individual u € M}". Note that [ # j. Letus define M3 = (M}, M3;) € e
as M? = {i} and M3, = M!,. IMP demands M'* ~; M3. Note that we have i € M3, u ¢ M2,
i & Mj3, and u € Mjg. We define M* € Nt5¢Y as follows:
M = (M7 U GD)\ (&,
M = (M7 U {i})\ {u},and
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M= M3 for all x€ N\ {i,j}.
AB demands M3 ~; M*. Note that no one makes a self-approval at M*, so we have M2, M* €
9. Furthermore, we have s;(M*) = (= 5;(M3) = s;(M?) =)s;(M?). Case 2 shows that
M* ~; M?, which means that Mt ~; M?2
2) The case of i € M} N M?. Let us define ballot profiles K1, K2 € 9t%¢Y as follows:
K= WM} u{t+ 1)\ {i}, K, = M2, and
KZ=(MZu{t+13)\{i}, K = M?,.
IMP demands M1 ~; K1 and M2 ~; K2 Note that K1, K? € N. Because s;(K?1) =
si(M1Y) —1 =5,(M?) — 1 =5;(K?), case 2 shows K1 ~; K2 whichyields Ml ~; M2 m

Case 4: 9t = Bt4B. [ will first provide a lemma.

Lemma 16. Let @: 4P — X be a nomination rule that satisfies IMP and AB. Forall i € N and V€
M€ if jEN exists such that N; = ¢, then there is a ballot profile N’ € R48 such that
N~ N, 5;(N) = 5;(N"), Nj # $p,and N, = N, forall x € N\ {j}.
Proof of Lemma 16. The case of j =i is straightforward from IMP. Assume j # i and take any
N € N8 Because n =3, u € N\ {i,j} exists. Let us consider M € NAE, where M; = {u, j}
and M_; = N_;. IMP implies V' ~; M. Then consider a ballot profile M’ = (My, ..., M;,) € NAB
as follows:

Mi = M; \ {u},

M; = {u},and

M, =M, for all ve N\ {i,j}.
Because s(M) = s(M'), AB implies M ~; M. Finally, let us define M = (M{’,M";) € N5,
where M;" = N; and M”; = M, IMP implies M’ ~; M". Clearly, M has the required
properties. m
Proof of Case 4: Tt = 048 Take any individual i € N and ballot profiles V', V2 € 948 such
that d = s5;(W'1) = s5;(V'2). By iterating the procedure in Lemma 16 from N1, "2 until there is
no abstention, we obtain K1, K? € N48 such that N1 ~; K1, N? ~; K2 and K1, K?% €N
Because the procedure does not change i’s score, we have s;(K1) = s;(KX?) = d. By case 2, we

have K1 ~; K72, which implies N'! ~; N2 m

Proof of Lemma 8
Case 1: D =%k, Let T be the right-hand side of the equality in the lemma. Because
S[9¥] S T is obvious, I will show T € S[9t¥]. Take any s = (sy, ...,s,) € T.Ishow that V' € Nk
exists such that s(IV') = s.
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I define a class of sets of sets, called assignments, as follows. For any i € N, a set of sets

Nt= (Nll N}l) is called an assignment (from 1) until i (with respectto s = (sq, ..., S,)) if and
only if:

Nf € N\ {i} for all j €N,

IN/| <k for all j €N,

sj(Ni) =s; for all j <i,and

sj(Ni) =0 for all j >i.
With a slight abuse of notation, I define s; (N‘) = |{u EN |j € N,ﬁ}| and also S(Ni) =

(Sl (J\f i), ) Sp (N ‘)) I denote by J' the set of all assignments until i. Note that an assignment

until i, V! € I, expresses a way to take s; individuals from N \ {1} so that they approve
individual 1 in their ballots, s, individuals from N\ {2} so that they can approve individual 2
in their ballots, ..., and s; individuals so that they can approve individual i in their ballots. Note
also that if there is an assignment until n, and N™ = (N, ..., N;}) € 3™, then N is an element in

9Nk such that s(V™) = s. This can be easily shown as we can see by definition the following:
n n

n
N = s, (N = s, = nk.
J it I

=1

J p=1 u=1
The last equation is given by s € T. Because |N]"| < k forall j € N, we have |NJ*| =

IN}| = -+ = |NJ}| = k. Furthermore, N]-” S N\ {j} is also guaranteed by the definition. Therefore,
we have V™ € ¥, It is also clear that S(N J ) = s. Thus, the proof'is completed if we show JI™ #
¢. Indeed, I show that ! # ¢ forall i = 1,2,...,n by an induction on i. Forany i € N and
Nt eFi, letus denote by F (N i) the set of individuals who have already been fully assigned—i.e.,
F(Ni) = {j EN | |1le| = k}. For any u € N, I denote by F_”(Ni) the set of individuals among
N\ {u}, thatis, F7#(%) = {j € N\ {u} | |N}| = k).
Let us begin the induction. We first check that I # ¢. Because 0 < s; < n — 1, we have
2,3,..,5; + 1 € N\ {1}. Therefore, let N'* = (N{,...,N}) be such that:
N' ={1} if 2<j<s;+1,and
N'=¢ if j=1or j>s;+1
Clearly, this makes an assignment until 1. So, we have I # ¢.
Now let i € {1,2,...,n — 1} and suppose none of I, J?,...,J! is empty. I will show
Ji+1 = ¢ with several steps. Suppose to the contrary that J+1 = ¢. Because J' # ¢, we can take
an assignment V! = (N}, ...,Ni) € 3¢ that has the minimal |F~(+D( )| among I, as follows:
Nt € argmin|F~ED ().
Miegt
(1) To show that |F'(i+1)(J\fi)| >n — s;,1. Because we assumed that 31 = ¢, we

cannot construct an assignment until i + 1 on the basis of M. This means that we cannot take
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Si4q distinct sets among N, ..., Nl-i, Nl-i+2, ..., N} that have cardinality less than k. Therefore, we
have the following:
|((N\ i + DD\ FED(N)] < s
This is equivalent to
|[F~ED(N)|=2n—1—si41 +1=n— 541
Because n — s;,; > 0, the above inequality shows F~(+D (N i) * ¢.
(2) To show that |NL| € {k — 1,k} forall u € N. Suppose to the contrary that v € N
exists such that |NE| < k — 2. Because F~FD(W) = ¢, 1 € F~UFD(V) exists (ie., A € N\
{i}) such that |N/{| = k. Because |N1§| <k—-2 and |N,{| =k, a € N\ {v,1} exists such that a €
N/{ and a ¢ N.. Now, we define another assignment until i, denoted by M’ = (Mi M,‘l) € 3¢,
as M. = N} \ {a}, M{ = N} U {a}, and M]i, = N)f forall y € N \ {4,v}. It is clear that M’ € .
Furthermore, we have the following:
F—(i+1)(Ni) \ {4V} = F—(i+1)(Mi) \ {4},
1E F_(”l)(]\fi) and 1 ¢ F_(”D(Mi),and
v g F~D(vt) and v ¢ F-EHD(vrh),
Therefore, we have
|F~G D ()| > |[F~@0 ()],
This is in contradiction to the way N is defined.

(3) To show that |N!, | = k. Assume to the contrary that |Nf,,| < k — 1. By (2), this is
equivalent to assuming |Nii+1| =k—1.By(l), 1 € F~(+D (Nl) exists. Because we have i +1 €
N /{ (recall that the supporters of i + 1 are not yet assigned at the assignment until i), it follows that
S € N\ {i,A} exists such that § € N)f and (€ Nl-i+1. Again, we define another assignment until i,
Ki=(Ki, .. Ki)e3" as Kj = Nf \ {B}, K}\,; = N, U{B},and K} = N} forall y e N\

{A,i + 1}. Clearly, ¥' is also an assignment until i. Furthermore, because S gets out of
F~(+D (%), we have the following:

|F~GD ()| > |[F-@0 (%)),
This is in contradiction to the way N is defined.

(4) To complete the induction. Now, recall that we have assumed Ji+1 = ¢ and
achieved (1), (2) and (3). If we derive a contradiction from these expressions, it follows that Ji+1 #
¢, which completes the induction. By (1), (2), and (3), we know that |Nl-i+1| =k, atleast (n —s;,1)
sets among Nli, . Nl-i, Nl-i+2, . N,il have cardinality k, and the rest of the sets have cardinality of at

least k — 1. Therefore, the sum of the cardinalities satisfies the following:
n

Z|le| 2k+Mm—sp)k+ (S0 — Dk —1) =nk — s34, + 1.
Jj=1
The definition of the assignments demands that the left-hand side is
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Thus, we have

Jj=1
This implies
n i n
25] = 25] +5S5i41 + Z S;
j=1 j=1 j=i+2
n
=nk -S4+ 1+5;49+ Z Sj
j=i+2

>nk + 1.

On the other hand, because s € T, the sum must be exactly nk. This contradiction completes the
proof. m

Case 2: D =%. Let T be the right-hand side of the equality in Lemma 8. Because
S[N] € T is obvious, I show T & S[N]. First, I provide another lemma.

Lemma 17.
Let T = {(sl, .Sy €{0,1,...,n—1}" | YieSi = n}. For any s’ = (sq,..,S,) € S[9] and an
individual i € N, if s = (sy,...,,) defined as s; =s{ — 1 and s; = sj forall j€ N\ {i} is in

T, then s € S[].

Proof of Lemma 17. Take any s’ € S[9t] and s € T that satisfy the given conditions. Note that
s € T implies that s; > 1 and }J_;s, =n+ 1. Because s’ € S[9t], we can take a ballot profile
N' = (N{,..,N},) €N suchthat s(V') =s’. Because s > 1, there is an individual j € N \ {i}
such that i € N;.

If |N]'| > 2, then it follows that N; \ {i} € ;. Clearly, the n-tuple (N, e NZ NP\
(i N e N;,) makes a ballot profile in 9t whose score profile is s.

Assume |N]’| = 1. Because ﬁ:15;,1 >n+1 and |N,i| > 1 forall u € N, it follows that
A€ N\ {j} existssuch that |N;| > 2.1f i € Nj, the n-tuple of (Ny,...,N;_4,Nj \ {i}, N; 4, .., N},
makes the ballot profile in 9t whose score profile is s. Otherwise (i.e., if i € N;) there is an
individual v € N \ {i,j, A} such that v € N;. Now we can construct a ballot profile V"' € 9t as
N/"=N/Uu{v}, N =N;\{v}, and Ny =N, forall y € N\ {j, A}. We have |Nj”| > 2. So, the
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n-tuple (N S Nj’il, Nj" \ {i}, Nj’frl, . N{L’) makes a ballot profile in 9t whose score profile is s.
[

Let me begin the proof of case 2: D = Jt. Take any s € T. It follows from the definition of
T that for any n-tuple t € {0,1,...,n — 1} such that s; <t; for all i € N, we have t € T.
Therefore, there is a sequence t°,t%,...,t™ € T such that:

1. ti°=n—1 for all i €N,

2. t™ =5, and

3.forany p € {0,1,...,m — 1}, there is one and only one individual i € N such that sf =

sP*'+1 and sjp+1 = s} forall j €N\ {i}.

Lemma 17 enables us to prove that t™ € S[N] inductively along with this sequence. For
t% weknow C*1 € M and s(C™1) =t If tP € S[N], we can apply Lemma 17 to obtain tP*! €
S[MN], because tP*1 € T. m

Case 3: D =Y Let T be the right-hand side of the equality in the lemma. Because
S[mself] C T is obvious, I will show T S[SRS”f]. For any s €T, let M(s) = #{i EN | s; = n}
be the number of individuals whose score is n at s. Take any s € T. I will show that s € S[ﬂtself ]

If M(s) = ¢, from case 2 we have s € S[N]. Because S[N] < S[ERSEU], it follows that s €
S[gsev].

If s =(0,..,0,n,0,..,0), (ie., only one individual i gets score n and all the others get
scores of zero, then a ballot profile NV = ({i},{i}, ..., {i}) corresponds with s. Otherwise, (i.e., if
M(s) # ¢ and at least two individuals get positive scores) let s = (s, ..., S;,) such that:

si=n—1 for all i € M(s),and

s{ =s; for all i € N\ M(s).
Because the sum of si, ..., s;, is at least n and each sy, ...,s;, isin {0,1,...,n — 1}, case 2 shows
s" € S[9]. So, there is a ballot profile ' € 9t such that s(WV) =s’. Let N’ € 9t®¥ such that
N/ = N; UM(s) for all i € N. Clearly, we have s(V') = s and therefore, this makes a required
ballot profile. m

Case 4: D =948, Let T be the right-hand side of the equality in Lemma 8. Because
S[NA4B] € T is obvious from the definition of the domain 9148, I will show T & S[NAE].

Take any element s = (sq,...,5,) € T. Let us directly construct a ballot profile N =
(Ny,..,N,) € R4 as for all i €N and a €{1,2,..,n—1}, 1+ a € N; © a < s;z5. In words,
this is a ballot profile where any j € N is approved by the preceding s; individuals. Then, it is easy
to see that V' defined in this way is actually a ballot profile in N 48 and its score profile is s(V) =

S.n

Proof of Lemma 9

As the first step toward a proof of Lemma 9, I provide the following lemma.
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Lemma 18. Let X = X!, ?l,f. Let ¢@:®D — X be a nomination rule that satisfies IMP, AB and 2CN.
For any ballot profile ' € D and for any individuals i,j € N, if 0 < s5;(\V) = Si(V) < Mp— 1,
then i € p(V) & j € p(NV).

Proof of Lemma 18. First, let us consider the case of s;(V) = s;(V)) = 0. In this case it is clear that
[ € N; and j € N;. Thus, it follows that V'° € D, where o = (i, ) is the transposition over i,j. By
2CN, we have i € p(IV) & j € (V7). Because s;(NV) = s5;(N°) =0 and s;(NV) = 5;(N7) =
0, Lemma 7 demands that i € p(NV) & i € @(N?) and j € p(N') & j € @(IN?). Therefore, we
have i € p(NV') & j € (V). From here I focus only on the case of 0 < s;(V) = 5;(NV) < Mg —
1.

Case 1: D = N, NAB, N Take any IV € D and two distinct individuals i,j € N such
that 1 <m := 5;(NV) = 5;(V) < Mp — 1. Because 1 <m < My — 1, it is easy to find a ballot
profile V' € D suchthat j € N;, i € Nj,and s;(V'") = s;(W') = m. Lemma 7 demands that
N ~; N and V' ~; N'. Because i € N; and j & N;, there is a transposed ballot profile V"' =
(W), where o = (i,). Because s(NV') = s(W"), AB demands @(N") = o(N""), while 2CN
demands i € 9(W') & j € @(N'"'). Therefore, we obtain i € p(N') & j € p(N'), and thus, i €
V) & j € pV).

Case2: D =Nk Takeany i,j € N and V€ Nk suchthat 1 <m :=s5;(IV) =
si(V) <n-2.

1) The case of i € N; and j & N;. This proof is essentially the same as for case 1.

2) The case of i € N; and j € N;. Because |N;| =k <n—2 and j € N;, there is an
individual n € N \ {i,j} such that n & N;. Consider a ballot profile M = (M;, M_;) € 9Nk, where
M; = (N;u{nH\ {j} and M_; = N_;. Note that 5;(NV") = 5;(IV) = 5;(M) = m, but 5;(M) =
m — 1. Then, IMP demands that i € (V') & i € 9(M). Because i € M; and j & M;, we can
consider the transposed ballot profile M7, where ¢ = (i,j). 2CN demands that i € p(M) & j €
@(M?). Because s;(M?) = s;(N) = m, Lemma 7 implies that j € o(M?) & j € (V).
Therefore, we have i € (V) © j € p(N).

3) The case of i € N; and j & N;. This case is essentially the same as 2), above.

4) The case of i € N; and j € N; wherea) k =2 andb) k =1.

a) k = 2.Note that [N| =k > 2. Because 1 <s;(M)<n-—-2and i EN;, €€ N\
{i,j} exists such that i & N,. Therefore, 1 € N \ {i,], €} exists such that 1 € N,. By the
assumption that k < n — 2, there are at least k individuals other than i, j. This and i € N; imply
that u € N \ {i,j} exists such that u ¢ N;. So, the following N 1 makes a ballot profile in Jt*:

Nt = (N u ) \ {3},
N¢ = (Ne U {ih) \ {4}, and
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Nl =N, for all vEN\ {j,€}.
Note that s;(V) = 5;(N1) = 5;(\V) = 5;(N') = m. So, Lemma 7 shows N ~; N'! and
N ~; N Furthermore, because 1 <m = s;(N'') =s5;(N') <n—2 and i & N/, we can apply
the approach from 2), above, to N1 to obtain i € @(N'1) & j € (WNV'1). Therefore, we have i €
V) & j € V).
b) k=1.1f x € N\ {i,j} exists such that N, N {i,j} = ¢, let N, = {y} and consider a
ballot profile N2 = (NZ,...,N2?) € t! as follows:
N? = {y},NZ = {i},and
NZ2=N, for all z€ N\ {j, x}.
Then, we have s5;(V) = 5;(N'1) = 5;(WV) = 5;(V') = m. So, Lemma 7 shows
N ~; N2 and ~i N 2. Again, we can apply the approach from 2) to obtain i € p(N'?) &
j € @(W?2). Hence, i € p(IN) & j € (V).
Suppose there isno x € N \ {i,j} such that N, N {i,j} = ¢. Then it follows that every

€ € N\ {i,j} casts a ballot of either N, = {i} or N, = {j}. Let I = {e e N\ {ij} | N, = {i}} and

J = {E €N\ {i,j} | N, = {j}}. Note that the triplet of {i,j},1,] gives a partition of N.Because

si(N) =sj(W) and n >3, wehave |I| =|/]| > 1.Take b €] and c €. Let N3 € N' be such
that:

N} = {c}, N} = {b},Nj = {i},and

N} =N, for all pe N\{ij,b}.
Because s;(NV) = s5;(WV3) =m, wehave N ~; N3 according to Lemma 7. Furthermore, because
i € N} and j € N7, we can construct a transposed ballot profile N'* = (N'3)? € i, where ¢ =
(i,/)- Then, 2CN demands that i € p(V3) & j € @(NV'*). Because s;(NV) = s5;(V*) =m,
Lemma 7 gives N ~; N'* Therefore, we obtain i € p(NV) & j € (V). m

Take any i € N and IV € D. Suppose i € ¢(N) and 0 < s;(V) = d < Mg — 1. We will show
that forall j € N and V' € D, if sj(W') = d, then j € @(IN"). Note that the case of j =i is
straightforward from Lemma 7, therefore, in this proof I assume j # i. Note also that, drawing from
Lemma 7, we can prove this statement simply by finding a ballot profile N/ € D such that
si(V/) =d and j € p(NV).
1) The Case of D = 0,95V, N8 or [D=MN* and 0 <nk—2d <
n-2)(n— 1)]. In this case, there uniquely exists a pair of integers (p,q) € Z? such that
nk—2d =pn—1) +q,
0<p<n-2and

0<g<n-2

110



Note that g > 0 holds only if p < n — 2. Labelling the individuals other than i,j as N \ {i,j} =
{ay, ..., an_,}(# @), 1 consider an n-tuple of integers s* = (s1,...,s1) € {0,1,...,n — 1} as
follows:

1 =

= 5j

1 _
Sapy, = G-

Séu=0 for all u>p+ 2.

d.sau=n—1 for all 1<u<np.

By the definition of p and q, the sum of these integers is exactly nk. Therefore, according to
Lemma 8, N1 € D(= 9, N5, NAB, Nk) exists such that s(NV'1) = s1. Note that we have
si(W1) = s;(W2) = d. Therefore, we can apply Lemma 18 to obtain i € p(N) & j € (V1.
Lemma 7 and s;(V) = s5;(W1) =d imply N ~; N1 Because we have assumed i € @(NV), we
obtain j € @(N'1), where s;(NV1) = d,.

2) The Case of ® = N* and nk — 2d < 0 © nk < 2d. Because we have assumed n >
d, this case occurs only if k < 2, which means k = 1. Let us label the individuals as N \ {i,j} =

{a,, ..., an_,}. Consider an n-tuple of integers s3 = (s3,...,s3) as follows:

P=d
3 _
Sj =n—-d-2
Sa, =2

s8=0 for all ae N\ {ij, a;}
Note that the assumption of d < n — 2 yields n—d — 2 = 0. So, we can say s> €
{0,1, ...,n — 1}™. Now, let us consider a ballot profile N3 € 9t* as follows:
Ni3 = Nj3 = {a;}.
N,f# = {i} for all u € {ay,a,,...,aq,}.
N ={} for all pe N\ {ij,ay,..,aq,}.
It is clear that s(V'3) = s3. Because we have s;(V3) =d = s5;(W3) and i € p(N?3), Lemma 7
implies i € @(N'3). Furthermore, because i & Nj3 and j € N2, we can consider a transposed ballot
profile V* = (IW3)?, where o = (i,j). Then, 2CN yields j € @(IN'*), because we already have
i € @(W3). Because s;(V*) = s;(V?3) = d, this completes the proof of case 2).
3) The Case of (n—2)(n— 1) < nk — 2d. By focusing on the constraint, we have the
following:
2d<nk—(mn-2)(n—1)=-n{n—(k+3)}—2.
In order for the right-hand side to be positive, it is necessary that n — (k + 3) < 0, or equivalently
n — 2 < k. Because we assumed k < n — 2, we obtain k = n — 2. We label the individuals as N \
{i,j} ={ay, ...,a,_,} and consider an n-tuple of integers s° = (515, ...,sf{) €{0,1,..,n—1}" as
follows:

5 _

Sg, = =S5 ,=n—1

an-2 —
si5=d,sj5=n—2—d.
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Note that the sum of these integers is nk. Therefore, according to Lemma 8, N> € Jt* exists such
that s(V'°) = s°. Furthermore, because |N]5| = |Nl-5| =k=n-—2 and sal(J\fs) =.. =
Sq,_,(W®) =n—1,wehave N? = N = {a;,ay, ..., ay_}. This implies i ¢ N> and j & N?.
Thus, there is a transposed ballot profile N'¢ = (W'>)?, where ¢ = (i, ). 2CN demands that i €
(V5 & j € (). Because s;(NV°) =s;(W°) = d, Lemma 7 demands i € @(N').
Therefore, we have j € @(N'°), where s;(WV°) =d.

Proof of Lemma 11

Takeany i € N and N € D. Assume i € ¢(NV'°) and let d, == 5;(IV°). Let @(d) be
a proposition saying that forall j € N and IV € D, [sj (W) =d = j € p(IV)]. We will show the
propositions @(dy), ®@(dy + 1), ..., @(d), ..., ®(Mg) with an induction on d. Note that ®(d,) is
already shown in Lemma 9. Note also that, drawing from Lemma 7, we can prove ®(d) simply by
finding for each j € N a ballot profile N/ € D such that si(W)=d and j € o(NV7).

Assume @(d), @(dy + 1), ..., @(d) holds, where dy <d < My — 1. Takeany j € N
and we will find V' € D such that j € (V) and s;(N) =d + 1. Let t €{0,1,..,n—1}" be
such that:

ti=d,
t,=n—1 for all u=j+v,isv=<sk-1,
tsr=n—1- d,
Uikt = k,and
t, =0 for all u=j+vk+2<v<n-1.
Then, it is clear that ),;t; = nk. So, according to Lemma 8, M € D exists such that s(M) = t.
Because s;(M) =d < Mgp—1, A€ N existssuchthat j & My, j€N if D=0 and jEN\
{j} otherwise. Take n € M, and consider M = (Mj, ..., M},) € D, where:
My = (M v D\ {n} and
M., =M_,.
Then WM shows that j € (M), where s;(M") = d + 1. Because j € N was arbitrary, this
argument shows @(d + 1). So, the induction shows @(d,), @(dy + 1), ..., ?(Mp). m

Proof of Proposition 9
Let © =90, Ns¢, N4 Nk and ¥ = XL, X, X where 1<k<n—-2and 1<[<n-—
1. Suppose ¢:D — X is a nomination rule that satisfies IMP, AB, and PU. Take two distinct
individuals i,j € N and label the others as N \ {i,j} = {ay, ..., a,_,}. Let us define an n-tuple of

integers s = (s, ..., S,) as follows:

si=n—1,
Sj:k,
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Sq, =" =58q, , ,=k—1and
sy =k for all p€N\{i,j,ay,..,an-1-}-

Note that n — 1 —k > 0 is derived from k < n — 2. Clearly, the sum of these integers is
exactly nk. So, by Lemma 8, there is a ballot profile V' € D such that s(V') = s. Because
si(V) =n—1> s;(V), PU demands j & @(IV). According to Lemma 7, we get j & ¢(C*),
while C* € D. Because j was an arbitrary individual, this implies @(C¥) = ¢. This contradicts
the condition of ¢ € X. m

Proof of Proposition 10
Proof of Proposition 10-[1]. It is clear that the constant rule, cong:® — X, satisfies IMP and AB. m
Proof of Proposition 10-[2].
1) The Case of R, % NAB, et ¥ = X!, X'. Note that €™~ € D. Although |@(C™ 1| <1, PU
(or alternatively WPU) demands ¢ (€™1) = N. This contradiction proves the impossibility.

Next, consider the case of X = X!. Suppose to the contrary that ¢:D — X satisfies IMP
and PU. Because C" 2 € D and ¢ ¢ ¥, i €N exists such that i € (C™2). Note that 1 — 1 &
Cl'2 and 1+ 1 € C]*"2. Let us consider N € D as N; = (Ci"_z U {ﬂ}) \{t+1} and N_; =
C™72. IMP demands i € ("), but PU demands ¢ (') = {t — 1}. This is a contradiction. m
2) The Caseof ® = Nk and X = X', k =1 and | = 1. Suppose first that n = 3.1 will show that
there is no nomination rule ¢: 9 — X! that satisfies IMP and PU. Consider the 1-cyclic ballot
profile C* € M' and take individual i € @(C'). Note that 1 + 1 € C}' and 1 — 1 & C}. Consider a
ballot profile N € 9t* as N} ={t—1} and N_; =C2,. IMP demands i € ("), while PU
demands @ (V) = {1 — 1}. This is a contradiction.

Next, assume that n > 4. I will show that there is a nomination rule ¢:9t! - X! that
satisfies IMP and PU. Take the pivotal individual i and denote the other individuals as N \ {i} =
{ay, ..., ap_1}. Let us denote the following:

BN={,uEIV|s,:i(N)2n—2}.
For any ballot profile V' € N2, let

_ BN if BN * (;b,and
¢V) _{ {i} otherwise.
I will show a) ¢ is a nomination rule on (9%, %), b) ¢ satisfies IMP, and ¢) ¢ satisfies PU.
Proof of a). Take any N € NL. If By, = ¢, it is clear that @(N) = {i} € X1. Suppose

By # ¢. I will show that By, is a singleton. Suppose to the contrary that |Bj| = 2. Then, we have

n

D 5@ = Ny +isgi<N)
u=1

u=1
>1+2(n—2)

=n+((n-3)>n
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The last inequality is given by n > 4. This contradicts Lemma 8.

Proof of b). 1t is clear that i is a dummy voter, i.e., his or her ballot has no effects on the
nomination, under the rule. Take any individual j € N \ {i} and a ballot profile N = (N], N_ j) € D.
Because s;( ) is determined without j’s ballot, we have j € By < j € By for all V' =
(Nj’, N_]-) € D. This implies j € p(N) & j € p(N').

Proof of ¢). For any individual j € N and supposing s;(NV) =n —1. It follows that
sj_i(]\f ) = n — 2, which implies j € By,. Therefore, we can derive j € (). m
3) The Case of ® = N* and X = X!, k> 2 or 1 > 2. Suppose first that k > 2 (I is arbitrary).
Consider two n-tuples of integers s = (sy, ..., Sp), s’ = (s1, ..., Sp) €{0,1,...,n — 1} as follows:

S =8, ==s5,=n-—1,
Sk+1 = kr
s, =0 forall u€{k+2,k+3,..,n}

— — o —
Si=+"=S_,=n—1,

Ny n—2,

1
k
Sk = k(<n—1),
Sk42 = 1,and
s,’l =0 for all u€ N\{1,2,..,k +2}.

According to Lemma 8, N, V' € 9tk existsuch that s(V) = s and s(V') = s’. The codomain ¥
demands |@(WV)| = |(WN')| =1. However, PU demands ¢@(N)={1,..,k} and @(N') =
{1,...,k — 1}. Whether k =1 or k # [, this ends with a contradiction.

Finally, consider the case of k =1 and [ = 2. Then the score profile s defined above is
also well-defined. PU demands ¢ (W) ={1} and [>2 implies {1} & X'. This is also a
contradiction. m
4) The Case of D = Nk and X = X 1 will show two things here.

a)If k=n—2 or | > 2, thereisnonominationrule ¢:® — X thatsatisfies IMP and PU.

b)If k<n—3 and [ =1, anominationrule ¢:® — X exists that satisfies IMP and PU.

Proof of a). The impossibility for the case of k =n — 2 is shown as a). Let us assume that
1 = 2. I will first show the following inequality:

O<nk—-(n-1)<(n-1)n-2) - ().
For the left-hand side, we have
nk—(n—1)=nk—-1)+1>0.
This inequality is given by k > 1. For the right-hand side, we have
n—1Dn-2)—{nk— (-1}
=nn-2-k)-n+2+n-1>0.

The inequality is given by n = k + 2. Thus, we know that (*) holds. Therefore, there exist a pair of
integers (p,q) € Z? such that:
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nk—(n—-1) =pn-2)+gq,and
0<p<n—1land 0<g<n-2

Note that g > 0 can hold only if p <n — 1. With these integers, we can consider N € % as

follows:
ss=n-—1,
Sy =n—2 forall 2<u<p+1,

Sp+2 = q,and
s, =0 forall p+3<pu<n.
Then, it follows that the sum of s, ..., s, is (n — 1) + p(n — 2) + q = nk (this holds whether q >
0 or ¢ =0). So, according to Lemma 8, N € 9k exists such that s(V) =s. PU demands
(V) ={1} and [ > 2 implies {1} & X'. This contradiction proves the proposition. m
Proof of b). Suppose k >n—3 and | =1. We construct a nomination rule ¢: ¥ —
X(= X') that satisfies IMP and PU. Let us define ¢: X - X as follows:
Forall IV € ¥,
Fy if sp, =n—1,
oWV) =1{{i e N| (Fy \ (i) € N;} if sp, =n—2,and
N.
Recall that Fj, is the set of individuals who have the largest scores at V', and sg, denotes the score
of the individuals in Fj-. I will show the following:
1. ¢ isanomination rule on the setting (9t%, X), and
2. ¢ satisfies PU and IMP.
1. @ is a nomination rule on the setting (%, %). To show this, we need only to prove that
(V) # ¢ forall NV € 9tk Take IV € Nk If Sp, # N — 2,itis obvious that ¢(N') # ¢. Suppose
Spy =n— 2. Let Wy == {i € IV| (Fp \ {i}) < Nl-}. If |Fj| = 1, its element clearly also belongs to
W:. So, we can focus on the case of |Fj:| = 2. Indeed, we can also say that |Fj| <n—1 asfollows.
If |Fy| = n, the sum of individuals’ scores would be n(n — 2) > n(n — 3) = nk, which contradicts
Lemma 8. So, we can conclude that 2 < |Fy| < n — 1. Letus label them as Fj, = {il, ...,ip}, where
2 < p < n— 1. Take an individual j € N \ Fj.. Now, assume that Wy N Fy- = ¢. I will show that

j € Wy Because Wy, N Fy, = ¢, for any individual i € Fj, there is an individual a; € Fy- \ {i}

such that a; € N;. If a; = a; for some distinct i,i’ € {il,...,ip}, it follows that s, (V) <=

Sa, (N)) < N\({a;i,i'’}<n—3, which contradicts a;(=a;) € F)- . Thus, we have that

{il, e ip} = {al, e ap}. In other words, for any individual a; € Fj, there is an individual i € F,
such that a; € N;. Because sp, =n — 2, it follows that everyone in N\ Fj approves the whole

Fy-. Therefore, we have Fy- S Nj, which means j € Wy,
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2. @ satisfies PU and IMP. This rule clearly satisfies PU, and I show that it also satisfies IMP.
The basic idea of the proof is similar to that of ¢p in Proposition 5. Note that one’s ballot does not
impact one’s own score.

Take any i € N, M € Rtk and V' = (N/,N_;) € 9tk. If s;(V) =n — 1, then it is clear
that i € (W) and s;(W') =n — 1. Thus,wehave i € @(N').If s;(N) =n—2 and i € (),
then it follows that Fy- \ {i} € N;. Therefore, we have s;(WV') <n—2 forall j € N \ {i}, where
the equality holds only if j € N;. Because i’s score does not change, Fj is the set of individuals
who obtain the score of n — 2. Thus, we have Fj- \ {i} € N;. This implies i € (N'").

If s;(WV)=n—-2 and i & @(V), it follows that Fy- \ N; # ¢. If N/ n(Fp \ Ny) # ¢,
then there is an individual who obtains a score of n — 1 at the new ballot profile V', which implies
i & @(N"). Suppose N/ N (Fpy \ N;) = ¢. Then it is clear that no one can obtain a score of n —1 at
the new ballot profile V. Furthermore, for some individual j € F- \ N;, we have s;(V') =n — 2.
These facts show that j € Fy \ N;. Therefore, we obtain i & @(N').

If s;(V) <n—3 and i € (N), then it follows that sz < n — 2. Furthermore, we have
{u EN | s, (V) =n— 2} C N; (whether or not the left-hand side is empty, this expression and the
following proof hold). Therefore, we have s;(V') <n—2 for all j € N \ {i}, where the equality
can hold only if j € Nj. This implies that we have one of the following:

{MENlS#(N’)Zn—2}=¢),OI‘
(;bi{,uEN|s#(N’)2n—2}={uEIV|su(]\f’)=n—2}§Ni’.
In either case, we have i € @(N'').
If 5;(N)<n-—3 and i &€ ("), we have one of the following:
j € N\ {i} exists such that si(V)=n—-1,0r
j € N\ {i} exists such that si(M)=n—2 and j & N;.
In either case, we also have one of the following:
p € N\ {i} exists such that s(M)=n—1,0r
p €N\ {i} exists =n—2 and j & N;.
In either case, we have i € @(INV'). m
5) The Case of ® =Nk and X =X%!, k> I. 1t is sufficient to find a ballot profile where k
individuals have score n— 1. Let s = (sq,...,S,) be such that s; =+ =s, =n—1, sg41 =k,
and Sy, = -+ = s, = 0. Because the sum of them is clearly nk, Lemma 8 says that s € S[Jt*]. This
completes the proof. m
6) The Case of D = N* and X = X!, k = n — 2. This proof is the same as for case 1). m
7) The Case of D = N* and X = X!, k = 1. The rule we referred to in case 2) can be regarded as
the nomination rule on the setting (ml,gl) forany [ € {1,2,...,n—1}". m
Proof of Proposition 10-[3].
1) The Case of X = X. The reason that each of the conditions k > 2 or [ > 2 yields the
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impossibility is the same as in 3) of [2]. I will show the existence of the required nomination rule when
k =1=1.Let Fy be the individual in Fj with the minimum index and define ,y: Nt - Xt as
follows:

Fp  if it is a singleton,and

{F_N} otherwise.

Yay (V) = {
It is clear that 1, satisfies AB. To see PU, we only need to check that the set {i EN | s5iV)=n—
1} is a singleton or an empty set for all " € 9tL. This is shown in Lemma 8. m
2) The Case of X = X'. Recall that we have constructed a score profile s = (s, ...,5,) €
S[MN*] suchthat s; =n—1>s; forall j € N\ {1} in4)of[2]. At the correspondent ballot profile
N, PU demands that (") be {1}, which contradicts X!, where [ > 2. So, the rest of the proof is
to show the possibility when [ = 1. However, the Approval Voting @4,: ' — X! surely satisfies
both axioms. =
3) The Case of ¥ = X'. Note that the n-tuple of integers s = (sy, ...,S,), where s; =
we=s,=n—1, sp41 =k, and Sp,q =+ =5, =0 makes a score profile in 9t¥. Because a
nomination rule that satisfies PU must choose {1,2,...,k} at the correspondent ballot profile, it is
necessary that k < [. Indeed, if k <[ holds, we can design a nomination rule that satisfies AB and

PU simply by modifying the rule in 1). For any ballot profile V' € 9t*, I define @(N) as follows:

Fy if sp, =n—1,and

PN = {F_N} otherwise.

It is obvious that this rule satisfies PU and AB. m

Proof of Proposition 11

1) The Case of D = R, 3¢, MAB 1t is clear that con: D — X! forany C € X! satisfies IMP and
AB.Let ¢: D — X! be a nomination rule that satisfies IMP and AB. We show that this rule ¢ is the
constant rule. Let us label the individuals as @(C™ ) ={a;,..,q;}=A and N\ {€"'}=
{by, ..., bp_;} = B. Because we assumed 1 <! <n—1,eachof A and B is not empty. Suppose to
the contrary that ¢ is not constant. Then, N € D exists such that @(N') # A. Because [@(N)| =
[, this implies that b € B N (') exists. Let d = s, (N). Let us consider an n-tuple of integers
s=(sy,..,5,) as S, =d and s, =n—1 for all c € N\ {b}. It follows that

n

ZSi=d+(n—1)(n—1)

i=1

2
Z(n—1)2=(n—§) _2n
2) "4

=1+n
The final inequality is given by n > 3. Therefore, according to Lemma 8, V' € D exists such that
s(W'") = s. Because s,(N') = s, (V) and s,(N') = s,(C™ 1) for all a € A, Lemma 7 shows

117



{b}U A S ("), which means 1+ [ < |@(N")|. This is in contradiction with the codomain X'. m
2) The Case of D = k. Let ¢: 90k - X! be a nomination rule that satisfies IMP and AB—I will
prove this by dividing it into two distinct cases. The proof for the first case, if [ =1, is a direct
extension of that of Holzman and Moulin's (2013) Theorem 3. However, it does not apply generally if
l > 2. So, I will tackle it in a different way. Because we have C* € 9t*, we can label the individuals
as A= (" ={a,,..,q;} and B:=N\ ¢(C¥) ={by,...,b,_;}. Note that A # ¢ and B # ¢
by the assumptionof 1 <l <n-—1.

a) 1 = 1. Suppose to the contrary that ¢ is not constant. Then there is an individual b € B
and a ballot profile N'! € D such that b € p(IV'1). Let d := s, (V). Consider a special class of
score profiles S € S[9t¥] as follows:

§={(sy,.,5,) €ES[NK]|s; = - =5, =k and s, = d}.
Considering how we can assign the scores for the rest of the individual (i.e., B \ {b}), it follows that
S is not empty if and only if the following inequality holds:
0<nk—-(k+d)<(n-1-1n-1).
This is equivalent to
m—Dk—-(n—-1l—-1Dn-1)<d<n-Dk- (%)
Suppose (*) holds. Then, according to Lemma 8, we can find a ballot profile N2 € 9t* such that

(WD) = = 5 (W) = k(= 5,(€) = - = 5,(€"))

sp(N?) =d = s5,(W1).
According to Lemma 7 and given that A € @(C*) and b € p(NV'1), we have AU {b} S p(IV'?).
However, this contradicts |@(N'2)| = L.
Therefore, we complete the proof if the parameters | and k satisfy (x) for any value of
d €{0,1,...,n— 1}. The reader can easily check that if [ =1, (x) holds for any n >3, k €
{1,..,n—1}, and d €{0,1,...,n — 1}. However, this argument does not always succeed. For
example,if n =10, [ =9, k=1,and d =2, it followsthat d =2>n—-Dk=(10—-9)-1=
1.
b) | = 2. Let us introduce several notations. For any integers n,,n, € Z such that n; <
n,, we write [ny,n,] ={n,ny +1,...,n,}. With a slight abuse of terms, I write [n,,n,] to
represent an interval (from n; to n,).Let I = [ny,n,] € [0,n — 1] be an interval, and define two
propositions @,4(I) and @g(I) as follows:
@,(I) © Forany a € A and for any ballot profile N € ¥, [s,(V) €1 = a € (V)]
@5(I) © Forany b € B and for any ballot profile ' € ¥, [s,(N) €1 = b & (V)]
With this notation, I can state that my goal is to show @,4([0,n — 1]) and ®5([0,n — 1]). Note that
p(C*) =A implies ®,([k,k]) and @g([k,k]). I will first show @,([k —1,k+ 1]) and
@5 ([k — 1,k + 1]). I will subsequently prove it for the other intervals.
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Step 1: To show ®,4([k — 1,k + 1]) and ®5([k — 1,k + 1]). Because [ = 2, we can
take any two distinct individuals i,j € A. I will show that there is a ballot profile N € 9t* such that
{si(]\f),sj(]\f)} ={k—1,k+1} and {i,j} S @(IV).Because i and j are arbitrary elements in A4,
to find such an V' is enough to show @,([k — 1,k + 1]).

b-1)If i€eCF and jeCf. If k=1, i€Cf and je€CF imply i=)+1 and j =
1 + 1. This contradicts n > 3, and so we can assume k > 2. Now, I will show i # j + 1. Suppose to

the contrary that i = j + 1. This is equivalent to i =j — (n — 1). However, j € Cf implies i €

{] —1,) — 2, ...,J — k}. These expressions indicate that n — 1 < k, which contradicts the assumption
of k < n — 2. Therefore, we can conclude that i # j + 1. Let us now focus on the individual j + 1.

According to the definition, C]’i—l = {] +2,)+3,..,J+ 1+ k}. Because 1+k <n—1, we have

j € GX+. On the other hand, i € Cf and i =) +1 imply i€ C\G+ T ={+2,...) +k}=

Cflfﬁ \ {] +1+ k}. Therefore, we can conclude that i € C]—'}l. In sum, we have i € CJ% and j €
ck_
T+

Let u = + 1 and consider a ballot profile '3 = (N3, ...,N3) € ¥ such that:
N3 = (cku{})\{i}and
N3, =Ck,.
Clearly, ss(V3)=k—-1, s;(WN3)=k+1, and s,(W3) =5,(C*) for all veN\{ij}.
Therefore, by Lemma 7, we have @(C3)N(N\{i,j}) =N3> nN\{ij}). So, we have
(V) A (6,7} = [9(C") N {i,j}] = 2, which implies {i,j} € p(A).
b-2)If i ¢ Cjk and j € CK.Because s;(C*) = Sj(C’"), u € N\ {i,j} exists such that i €
C,f and j € C,f. Therefore, we can consider a ballot profile V4 = (N, ..., N) € 9t¥ such that:
Nt = (cku{})\{i},and
N%, = Ck,
Clearly, ss(WVH) =k—-1, s;(NV)=k+1, and s,(W*) =5,(C*) for all veN\{ij}.
Therefore, by Lemma 7, we have @(CH NN\ {i,j}) =N n(N\{ij}). So, we have
loWV3) n {i, 3} = lp(C") N {i,j3}| = 2, which implies {i,j} S @(N*).
b-3)If i € Cjk and j ¢ CF. In this case, for the reversed k-cyclic ballot profile R¥ =
(Rf,...,RE) e Mk, we have i € Rf and j € Rff. Therefore, an argument similar to that in b-2)
ensures that there is a ballot profile V'° € 0% such that s;(V?) =k +1, s5;(WV°) =k —1, and
{i.j} € e(V®).
b-4)If i ¢ Cjk and j ¢ CF. Let us consider the individual ¢ — 1. Note that i € Clk_—1 and
i ¢ Cjk imply ©— 1 & {i,j}. I will show j & CX5. Because j & CF = {t+1,..,u+ k}, we can say
j & CX5 < (CF U {i}). Therefore, we can say that j & CX; and i € CX5.
Let u=1— 1. Then, just as in b-1), we can get a ballot profile N'° € 9t¥ such that
ss(N®) =k -1, 5;(NV®) =k+1,and {i,j} S (N®).
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The arguments in b-1) to b-4) show that we have the required ballot profile for any possible
case. Because i and j were arbitrary elements in A, we have @,([k — 1,k +1]) by Lemma 7.
Then, it is easy to show @5 ([k — 1,k + 1]). Take any individual b € B. By Lemma 7, it is sufficient
to find two ballot profiles NV, N’ € 9tk where s,(M) =k —1, s,(N')=k+ 1, and b & p(IV)
and b & @(IV"). These ballot profiles are constructed in similar ways, and so we will construct only
NV Take an element a € A and consider an n-tuple of integers s = (s, ...,s,) € {0,1,...,n — 1}"
as follows:
Sq =k+1,
s, =k—1,and
s. =k for all c € N\ {a,b}.
Then, with Lemma 7, we obtain @(N) N (N \ {b}) = ¢(C¥). Because |p(N)| = |g0(C’k)|, it
follows that b & @ (V). With a similar argument on NV, we can conclude @5z ([k — 1,k + 1]).
Step 2: @,4([0,n —1]) and ®([0,n —1]). Take any a € A and d € [0,n — 1] \ [k —
1,k + 1], and label the other individuals as C := N \ {a} = {c¢y, ¢, ..., ¢4_1}. Consider an n-tuple of
integers s” = (s, ...,s2) € {0,1,...,n — 1}"* as follows:
s) =d,

sy =k —sgn(d—k) for all p€ {cl, o) ...,c|d_k|}34, and
S[Z =k for all 12 € {C|d—k|+1'c|d—k|+2' ...,Cn_l}.

Then, we can calculate the sum as follows:
n

D su=d+1d =kl {k—sgn(d— )} + (n—1—|d —kDDk = nk
u=1
Therefore, by Lemma 8, V7 € Jt* exists such that s(V'7) = s7. With Lemma 7 and step 1, we have

CNASN7) and (CNB)NN")=¢. By |lp(W7)|=1=|CNnAl+1, we have a€
@(N7). Because a € A and d € [0,n— 1]\ [k — 1,k + 1] were arbitrary, we have @,([0,n —
1]). A similar argument for b € B instead of a € A derives ®5([0,n —1]). m

Notes on Proposition 11. 1 will show the necessity of each axiom in the statement.
1) Let © = 9N, NV, NAE Rtk A nomination rule ¢: D — X! exists that satisfies IMP but is not the
constant rule.

The proof. Let us define a nomination rule ¢: D — X! as follows:

Forall V € D,

_ {1,2,..,1} if l € Nj,and
o) = {{1,2, .., —1,1 + 1} otherwise

34 For any integer z € Z, we write the following:
+1if z>0
sgn(z)={ 0ifz=0
-1ifz<0
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Clearly, this rule is impartial but not constant. m
2) Let © = N, N, NAB, Nk A nomination rule ¢:D — X! exists that satisfies AB but is not
constant.
The proof. Let us define ¢:D — X! as follows:
Forall WV € D,
{1,2,...,1} if s;(V) is the largest among {sj (N)}jeﬁ, and
{n,n—1,..,n—1+ 1} otherwise

<p(N)={

Note that [ <n —1 implies n — [+ 1 > 1. So, this rule satisfies AB but is not constant. m

Proof of Proposition 12
1) The Case of D = Y. IMP and AB Sconstant. For any X € X!, it is clear that cony: 9t5¢Y —
X! satisfies IMP and AB. Let ¢: t%® — X! be a nomination rule that satisfies IMP and AB. Take
any individual i € N. I will show the following:

For any d € {0,1,...,n — 1}, there is a pair of ballot profiles V', V' € 9t*¢Y/ such that

s;iV)=d, s;(N)=d+1,and N ~; N,

If this statement is shown, Lemma 7 guarantees that ¢ is nothing but the constant rule, because i €
N was arbitrary. I first show the statement for the case of d € {1,2,...,n — 1}. In this case, we have
C4 € M€Y Let us consider a ballot profile N'! € Ns¢Y such that:

N} = c2 u{i},and

NL =c4,.
Then, IMP demands €% ~; N'!, where 5;(C%) =d and s;(N') =d + 1.

Next, we consider the case of d = 0. Consider a ballot profile N2 € 9t5¢Y as NM2 = {u}
for all w € N. Then, let N3 € 903 be such that NP = {t+ 1} and N3; = N?,. IMP demands
N3 ~; N2 while s5;(NV3)=d and s;(W?)=d + 1.

2) The Case of D = N4B,

a) Let 1 > 2. NU=Impossible. Let us consider a ballot profile N* € N48 as N} = {2}
and N*, = ¢. Then, [ > 2 implies that there are at least two winners. However, only individual 1
obtains a positive score. This contradicts NU. m

b) Let 1 = 1. IMP, AB, and NUS¢1. 1t is clear that ¢!: 48 — X! satisfies all the three
axioms.®® Take a nomination rule ¢@:D — X that satisfies the three axioms and take any i € N. For
NU, it is enough to show the following: for all ' € MA4B if s;(V) > 0, then i € (). By Lemma
7, we must only find, for each integer d € {1,2,...,n — 1}, a ballot profile N € NAB guch that
si(V) =d and i € p(IV).

For d <n— 2, let us consider C% € N4F. Because ¢ & X', we have u € ¢(C%), while
5, (€Y = 5;(€Y). With Lemma 9, we have i € ¢(C?). Finally, consider the case of d =n — 1. Let

%5 1t is also easy to see that ¢! is surely a well-defined nomination rule on this setting.
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N5 €eN as follows:
Nl-5 = ¢,and
NP = {i} for all j €N\ {i}.
Because everyone except i obtains a score of zero, NU implies (N \ {i}) N @(W5) = ¢. So, we

have i € p(NV'°), where s;(N)=n—1.m

3) The Case of D =%t and 1 > 3. NU=Impossible. Takeany i € N andlet N7 € N as Nl7+—1 =
{t+2} and NJ ={i+1} for all ve N\ {1+ 1}. Because |@(N7)| =3, u€ p(N7) exists
such that s,(NV7) = 0, contradicting NU. m
4) The case of D =M and [ = 2: IMP, AB, NU&¢1.This proof can be carried out in the same
way as b) in 2). m
5) The Case of ® =t and [ = 1.1t is clear that @' satisfies the five axioms. Let ¢:9t — X! be
a nomination rule that satisfies the five axioms. By Lemma 10, we have ¢@(C!) =--- = p(C™1) =
N. With Lemma 7, this shows that any individual wins the election once they obtain positive scores.
[
6) The Case of D = 9tk and [ > k + 2.
Let s = (sq,...,5,) €{0,1,...,n — 1}™ be such that:

Sg=-"=85=n-1,

Sg41 = Mk — (n— Dk = k,and

s, =0 for all ue€ N\{1,..,k+1}
Because the sum of each set of s;’s is clearly nk, we have from Lemma 8 that s € S[9t¥]. Because
lp(s)| =1=>k+2, ue N\{1,..,k+1} exists such that u € ¢(s). This contradicts NU. m
7) The Case of D = 9tk and [ < k + 1. From Lemma 11, it is obvious that a nomination rule
satisfies the five axioms only if it is a threshold rule. Thus, to show the following is enough to prove

the proposition.

nk—(l-1)(n-1)

a) For any integer x € {1,2, [ —— }, the threshold-x rule ¢* is well defined

as a function from 9k to X!, and it satisfies the five axioms.

nk—(-1)(n—-1)

b) For any individual i € N and N € R, if s;(V) > [ )

] then i € (V).

Let

g nk—(-1)(n-1)

n—1+1 »and

nk—(-1mn-1)
n—1+1

e=d-—

Note that we have 0 < e < 1.
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a) Take any integer x € {1,2,...,d} and take any ballot profile V' € 9t*. Suppose to the
contrary that {i EN | 5i(V) = x} < [ — 1. Then, it follows that at least n — (I — 1) individuals

have a score strictly less than x. Note that x < d implies the following:

x<[nk—(l—1)(n—1)

- n—1+1
k—(-1 -1
(:)x—lsn ( )(n )—1.
n—1+1

Because x — 1 € N U {0}, it follows that

nk—((-1)n-1)

0<x—-1<
=X n—1+1

Therefore, the sum of individuals’ scores can be bounded above as follows:
n

Zsi(]\f) <-1+Dx-1D+1-Dn—-1)
i=1
nk — (1 —1)(n—1)

<(n-14+1) T

+ (-1 (n—-1) =nk.

This clearly contradicts Lemma 8. Thus, we determine ¢* is actually a function from 9% to ¥’
b) I will find a ballot profile V' € 9t* and an individual i € N such that s;(V) = d and
i € (V). According to Lemma 11, this is enough to prove the proposition.
If [ =1, it follows that:

d= nk—(1-1)mn-1)

n—1+1 =k =k

Therefore, C* € ¥ has the required property. Assume [ > 2. Let us consider s = (sy, ..., S,) as
follows:

s,=n—1forall ueN,1<u<l-2,

n
Si.y=n—1—€e(n—1+1),and
s,=d for all p€ {Li+1,..,n}
Indeed, 1 am going to check that s = (sy,...,s,) € S[N*]. To check that s = (sy,...,s,) €
{0,1,...,n — 1}", it is sufficient to check that s;_; € {0,1,...,n — 1} because the others are clearly in
the interval.
nk—({(-1Dmn-1)
n—I01+1

sl_1=n—1—e(n—l+1)=n—1—<d— )(n—l+1)

=n—-1-dn—-Il+1)+nk—-(U-1)(n-1).
So, we have s;_; € Z. Because 0 < e <1 and n—1+ 1 > 0, we also have the following:
n—-12s,_,=n—-1-en—-1l+D)=2n-1-n-I1+1)=1-2=20.
Therefore, we have s;_; € {0,1,...,n—1}.

In addition, the sum of their scores can be calculated as follows:
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Zsﬂ=(n—1)(l—2)+{n—1—e(n—l+1)}+d(n—l+1)
u=1
=nl-n—-Il+1-k+(d—-€e)(n—1+1) =nk.

The last equation is given by € = d — % Therefore, Lemma 8 guarantees s =

(81, -, Sp) € S[NF]. Because |@(s)| =1, i € {l,l +1,...,n} exists such that i € ¢(s), while
ss(M)=s;=d.m

Notes on Proposition 12
I will show the logical independence of each axiom in each proposition by giving examples. Because
in many cases it is quite easy to determine that the proposed nomination rule satisfies the axioms, I
introduce most of the examples without proof, while I give some comments for complicated ones.
1) Let D = 9t*¢Y and X = X'. IMP but not AB. Take a pivotal individual i € N and let
@: MY — ¥ be a nomination rule such that:

eMW) ={tv+ 1., i+l-1Ju(Nn{i+L..,1t+n—-1}).

2) Let © = ¢ and X = XL AB but not IMP. Let ¢:9t%Y - X! be a nomination rule such
that:

o) ={1,2,..,1 —1}U {i €(LI+1,..,n}|s, (W) =5;(N) for all jE{LI+1,..,n— 1}}

Note that because | <n — 1, we have |{l,l + 1, ...,n}| = 2. Hence, this nomination rule is not the
constant rule.
3)Let D = N8 and X = X!, [ = 1. IMP, AB, but not NU. cong: 9145 — X! clearly satisfies
IMP and AB, but not NU. m
4)Let D =N% and X = X!, [ = 1. IMP, NU, but not AB. Let ¢}(V): 948 — X! be defined
as
if > 2,an

V) = {(pP Ep]\lr()]\f ) i)?;le_rwi:e i
The fact that the rule satisfies NU but not AB is obvious. I will show that it also satisfies IMP. Take
any i € N and a ballot profile V' € t4E. If there is an individual j € N such that s]-_i(]\f )=2,
then we can show that @(N/,N_;) = @p(N{,N_;) forall N/ € Nt#8. Thus, i € p(V) & i€
@(N/,N_;). Suppose there is no such j. Then we have either s;(NV) = s; (W) = {1,0}. If
s; (V) = 0, there is no way for i to win. Suppose s;(V) = 1. Then, i wins, no matter what ballot
he or she casts. m
5) Let © = 4% and X = X!, I = 1. AB, NU, but not IMP. The Approval Voting rule ¢,
satisfies AB and NU but not IMP. m
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6)Let D=9 and X = X!,  <2.NU. The threshold-1 rule ¢®:9t — ¥’ is well-defined and
satisfies NU. m
7)Let D =9 and X = X!, [ = 2. IMP, AB, but not NU: The constant rule cong.
8) Let D =% and X = X!, [ = 2. IMP, NU, but not AB: The rule in 10) has these properties.
9) Let D =9 and X = X!, [ = 2. AB, NU, but not IMP.

o(N)=FyU{ieN|3j€Fy s.t. (€N}
10) Let D=9 and X =X, I = 1: Sec 4.2.2.
11) Let D = 9% and X = X!, I < k + 1. IMP, AB, 2CN, NU but not WM. Take i € N.If [ <
k, the nomination rule ¢:9t* — X! defined as follows has the required properties:

000 = {7 O e

If | =k + 1, the existence of a required nomination rule depends on n and k. Itis
obvious that every individual wins once they obtain score of at least k (by considering a score
profile where the first k — 1 individuals obtain n — 1, the k" obtains m € {k,k +1,..,n — 1},
the (k + 1)'" obtains score n — 1 — m, and the others obtain a score of zero). Thus, if k =1, a
nomination rule ¢: 9% — X! satisfies IMP, AB, 2CN, and NU if and only if it is the threshold-1
rule . On the other hand, if n = 10 and k = 8, for example, it is easy to see that the following
nomination rule has the required properties:

p(W) = {i € N|s;(W) # 2,0}.

12) Let ® = 9tk and X = X!, I < k + 1. IMP, AB, 2CN, WM, but not NU: The constant rule
cong.
13) Let ® = %tk and X = X!, I < k + 1. IMP, AB, NU, WM, but not 2CN. It depends. If k >
2, then let ¢@: ¥ — X! be such that
eI(W)\ {i} if s;(W) =1,and

N) =
o) { @1(V) otherwise
14) Let D = 9t* and X = X', [ < k + 1. IMP, 2CN, NU, WM, but not AB. Let ¢: X - X! be

such that

p(W)=N;u{jeN|je UN” .
HEN;
Clearly, this has the necessary properties.
15) Let D = 9tk and X = X!, I < k + 1. AB, 2CN, NU, WM, but not IMP: Let us denote by
W (V) the set of individuals who have the smallest score at a ballot profile N (i.e., W(N) =
{ieN | s;(v) < sj(V) for all j € N}). Let us define a nomination rule ¢: 948 — X! as follows:
Forany NV € N45,
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(V) = {IX\W(N) if |W(J.\f)| =1,and
N otherwise.

Proof of Proposition 13

1) The Case of D = 5¢Y. IMP and ABConstant. This proof is the same as that of X = X’
2) The Case of D = 45,

a) WPU = Impossibility. WPU demands ¢(C™" ') =N, while N ¢ X'. Thus, no
nomination rule satisfies WPU.

b) IMP, AB, and NU=?Impossibility. Suppose a nomination rule ¢: 48 — X! exists that
satisfies IMP, AB, and NU. Take any i € N and consider a ballot profile N € Nt48 as N;_; = {i}
and N; = ¢ forall j € N.Then, by NU, wehave (N \ {i}) N p(IV') = ¢. Because ¢ & X', wehave
i € (), while s;(IV) = 1. Note that i was an arbitrary individual in N. Therefore, with Lemma
7, we have @ (V) = N. This contradicts the codomainof ¥' (I<n—1).m
3) The Case of ® = t.

a) WPU=Impossibility. Because C"~! € 91, WPU demands @(C™ ') =N and N ¢ X\

b) Let | <n — 2. IMP, AB, and NU=Impossibility. Suppose a nomination rule ¢: 9 —
f exists that satisfies IMP, AB, and NU. Because [ < n — 2, there are two distinct individuals i,j €
N such that {i,j} N @(€™ 1) = ¢. However, Lemma 8 says that s = (sy, ..., s,,) € S[9] such that
si=sj=n—1and s, =0 forall g€ N\ {i,j}. With Lemma 7, wehave i & ¢(s) and j & ¢(s).
With NU, we determine that (N \ {i,j}) N ¢(s) = ¢. Therefore, it follows that ¢(s) = ¢, which
contradicts ¢ & X'. m

¢) Let L = n — 1. IMP, AB, and NUS@1 .1t is clear that ¢!, satisfies the three axioms.
Let ¢:9t > X! (I =n—1) be anomination rule that satisfies IMP, AB, and NU. I will show that ¢
is identical to ¢!; for some i € N.

Step 1: To show that (€™ 1) = N \ {i} for some i € N. I now show that |@(C""1)| =
n — 1. Suppose to the contrary that there are two distinct individuals i,j € N such that {i,j} n
@(€™ 1) = ¢. Then, the same argument as in b) leads to a contradiction. Therefore, we have that
lp(C™1)| = n — 1. Because the codomain is X!, it follows that |@(C™ )| =n — 1. Let us denote
as {i} = N\ ¢(C™1). This completes step 1.

Next I am going to show that ¢ is identical to ¢?; for the individual i. To show this, I
need to show the following: (el) is shown in step 2 and (e2) will be shown in step 3.

(el). For any individual j € N \ {i} and for any ballot profile N’ € R, s;(M) =1 j €
PN).

(e2). For any ballot profile N € R, i & @(NV).

Step 2: To show that @*(N)\ {i} € @(IV'). The “if* part of (el) is obvious from NU.
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Therefore, I will show the “only if” part. According to Lemma 7, I need only find, for each j € N \
{i} and d € {1,2,...,n — 1}, a ballot profile V' € 9t such that s;(V) =d and j € ¢(IV). Take
any individual j € N\ {i} and d € {1,2,..,n—1}. Consider a score profile s = (sy,...,s,) €
{01,..,n—1}"as s;=n—1, s;=d, and s, =0 for all u € N\ {i,j}. Because s; +s; =d +
n —1 = n, it is certain that s € S[9] by Lemma 8. Based on step 1 and Lemma 7, we obtain i &
¢(s). NU demands that (N \ {i,j}) N ¢(s) = ¢. Because ¢ & X', we have ¢(s) = {j}, while sj =
d.

Step 3: To show that i & @(N) for all N € N. 1 show (e2) here. By Lemma 7, it is
sufficient to find, for each d = {0,1,...,n — 1}, a ballot profile ' € N such that s;(N) =d and
i & @(V). The case of d = 0 is straightforward from NU. Suppose d € {1,2, ...,n — 1}—we then
have C% € 9. Furthermore, step 2 and Lemma 7 together show that (N \ {i}) € ¢(C%). Because the
codomainis X! and [ <n—1,wehave i & (C%). m
4) The Case of D = 9k,

a) Let 1 < k. WPU=?Impossibility. Suppose a nomination rule ¢:9t » X! exists that
satisfies WPU. Let s = (sy,...,5,) be such that s, =n—1 for all u€{1,2,..,k}, s, =k, and
s, =0 for all u€ {k+1,k+2,..,n}. Because the sum of these is exactly nk, Lemma 8
guarantees that V' € 9t* exists such that s(V) = s. WPU demands {1,2, ..., k} S @ (). However,
I < k implies {1,2,...,k} & X'. This is a contradiction. m

b) Let I = k and n = 3. IMP and WPU=Impossibility. This case happens only if k =
I =1 (because we assumed 1 < k < n — 2). Suppose @(C¥) = @(CY) = {i}. Consider NV € N*
as N; ={1+2} and N, = C; forall p € N\ {i}. IMP demands C* ~; IV, sowehave i € p(V).
WPU demands 1+ 2 € ¢(N"). Therefore, it follows {i,1 + 2} € @(N'), which contradicts the
codomain of ¥' =X¥'. m

¢) Let l =k and n = 4. IMP and WPU. 1 introduce two examples. The former is for
k =1 < n— 3, while the latter is for k =1 =n— 2.

cl) The case of k = | < n — 3. Take a pivotal individual i € N. For any ballot profile V' €

Nk, we define Uy = {j € N\ {i} |j €N, for all ue N\ {i,j}} as the set of individuals who

obtain the maximum approvals from the individuals in N \ {i}. Therefore, we can also express Uj,
as follows:

Uy ={j € N\ {i}|s7i(v) =n —2}.
Now, let us define a nomination rule ¢: ¥ — X! as follows:

For any ballot profile V' € Jt¥,

pN) = {UN otherwise.

Note that this rule is shown to satisfy WPU but it does not take into account all of the pivotal individual
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i’s ballots.

To show that for any ballot profile N € N, (') € XL. Take any ballot profile N € Jtk.
It is clear that @ (V') # ¢. It is also clear that |@(N)| = |Up| + 1 <1 holds whenever Uy | < L.
Thus, we show that |@(N)| < holds even if |Uj,-| = L. This is equivalent to showing that |Ujy:| <
[ forall ' € :t*. Suppose to the contrary that |Uj-| = [ + 1. Then, we have the following:

s V) = (n—-2)A+ 1).
JeN\{i}
At the same time, the left-hand side is bounded above as follows:
Z STV = Z IN\ )] < Z k= (n—1k.

JEN\{i} JEN\{} JEN\{i}

Therefore, it must be that:
(-2U+D< Y 50N < (- Dk
JEN\{}
However, the comparison of the right-hand side and the left-hand side gives the following:
nmn-Dk-m-2)(+1)=—-(-1-2)<0.

The last inequality is givenby | <n — 3 & n — [ — 3 = 0. This contradiction proves that |Uy-| < L.

To show that ¢ satisfies IMP. Take any individual j € N and N = (N;,N_;) € Nk, I
show that j € (W) & j € (p(N-’,N_j) forall N € 9k If j = i, this is obvious. So, I assume that
j € N\ {i}. Take any of j’s ballots, N; € R%;, and consider a ballot profile ' = (N]-', N_;) € k.
Note that sj_i(N ) = Sj_i(]\f ). So, we have j € Uy & j € Ujyr. According to the definition, whether
j € N\ {i} wins under the rule or not is entirely determined by whether j belongs to Uj-. Hence,
we determine that j € p(V) © j € p(N').

To show that ¢ satisfies WPU. Take any non-pivotal individual j € N \ {i} and any ballot
profile V€ k. If s5;(W) = n — 1, then we have Sj_i(N) = n — 2, which implies j € Uy. So, we
can say that j € (V).

Let me show WPU on the pivotal individual i. Take any N € Jt* such that s;(N) =n —
1. Suppose to the contrary that i & @(N'). It follows that |Up | =1 (recall that |[Up| <1—1

implies I € @(IV)). Therefore, we can calculate the sum of individuals’ scores as follows:

n

D s =s@+ Y 500

u=1 JeN\{i}

=S+ INI+ ) 57N
JEN\{#}

>n—1+k+(n-2)I

=nk+n—k—1>nk.

This contradicts Lemma 8. Therefore, we obtain |Up| <1 —1 whenever s;(N) =n — 1, which
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means i € ¢(N). m
c2) The case of k =1 =n — 2. 1 take a pivotal individual i € N through this proof. I say
that a ballot profile V" € 9tk satisfies condition (x) if and only if:

s; (V) (= s;Hv )) =n — 2, and there is one (and only one) individual j € N \ {i} such

that s;'(V) =n—2 and s;'(V) =n—3 forall L € N\ {i,j}.
With this notation, let us define a nomination rule ¢: 9t* —» X! as forall N € 9tk as follows:
{nenN | s,(N) =n—1}U{i} if IV satisfies condition ()
{yEIVlsu(N) =n—1}.
I will show that this rule is well-defined and that it satisfies both IMP and WPU.
To show that for any ballot profile N € N*, @(N") # ¢. Take any N € 9tk and suppose
@ (V') = ¢. This can occur only if both the following hold:
{ue N'SM(N) =n-— 1} = ¢,and
N fails to satisfy condition ().

V) =

Now I will derive a contradiction from these statements. From the first one, it follows that:
|{y€1V\{i}|s,ji(N) Sn—3}| > k.
(Otherwise, we cannot assign i’s ballot to N \ {i} without making someone’s score reach n — 1.)
Indeed, we can further say that the value of the left-hand side is exactly k. Suppose to the contrary
that |{u €N\ {i} | s,ji(J\f) <n- 3}| =k + 1(= n — 1). Then, it follows that:
n
Y oston =sian+ Y ston
u=1 HEN\{}
<n-24+4m-3)k+1)
=k(n—-1)+2(n—k)-5
<kmn—-1)—-1<k(n-1).
However, we have also that:

n n

D st 00 = D5 | = N = nk— ke = k(n - 1.

#:1 u:]_
Clearly, this contradicts the inequality above. Thus, we can say that:

|{,u€1V\{i}|s,{"(N)Sn—3}|=k.
Let us denote {,uEIV\{i}|s;i(N)Sn—3}={a1,...,ak} and  {j}=N\

{i,ay,a,,...,a;,} . Because N does not satisfy the condition (*) , we can say that
(si_ L), sj_i(]\f )) # (n — 2,n — 2). Furthermore, because no one obtains the score of n — 1 at the

ballot profile 2V, it follows that:
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sei(W) <n—2 for all x € {i,j},and
s;i(W) <n—2 for some x € {i,j}.
So, we can take the sum of individuals’ scores as follows:

n K
D Su @) = NG+ 57 + 57 + ) sl (V)
u=1 x=1
<k+2(n-2)+k(n—-3)=nk.
This contradicts Lemma 8.
To show that for any ballot profile N € ¥, |@(N)| < L Take any IV € 9t* and suppose
(V)| = 1 + 1. I will consider two distinct cases here.
The first case is {u EN | sy (V) =n— 1} > 1 + 1. The sum of the scores is calculated as

follows:
n

PIEAEDEICERMESY
p=1
=nk+n-1+1)>nk.
The last inequality is given by the assumption of k = [ = n — 2. This result contradicts Lemma 8.

The second case is {u EN | sy(V) =n— 1} =1 and N satisfies condition (%) .
However, it is clear from the condition (%) that there is at most one individual who obtains the
unanimous score of n — 1. Therefore, it follows that [ = 1. With | = n — 2, we have n = 3, which
contradicts our assumption of n > 4.

To show that ¢ satisfies IMP. Take any u € N and ballot profiles N = (N#,N_u),N "=
(Nl:, N_#) ENF.If ue N\ {i}, it is easy to see that sﬂ‘i(]\f) = slji(]\f’), which implies u €
e(NV) © p e @(NV'). Suppose u = i. Note that i € o(N') if and only if:

s5;(M)=n—-1,or
N satisfies condition ().
Now, it is clear that i’s choice of N; or N; does not affect these statements:
5;(V) = 5;(W"),and
N satisfies condition (x) © N’ satisfies condition ().

Therefore, we have i € (V) & i € (NV').

10 show that ¢ satisfies WPU. Because {u EN | su(V) =n— 1} C (V) forall Ve
9tk, the nomination rule ¢ satisfies WPU. m

d) Let 1 = k. IMP, AB, and WPU=?Impossibility. Suppose a nomination rule ¢: 9tk — X!
exists that satisfies the three axioms. Take any individual { € N and consider an n-tuple of integers
s = (81,83, ..,8,) € {0,1,...,n — 1}" as follows:

s; =k,

sy =n—1 for all pef{t+1,1+2,...,t+k}and
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s, =0 for all u€ {t+k+1,...i+n—1}.
Note that Lemma 8 assures us that s € S[J9t*]. Because ¢ satisfies WPU, it follows that
{l-l-_l,L-I-—k} C @(s) . Because |@p(s)|<l=k , we can further say that i¢& @(s) =
{l-l-_l, s L-I-—k} With Lemma 7, we can say that i & @(C*). Because i was arbitrary, it follows that
@(C*) = ¢, which contradicts ¢ ¢ X'. m
e) Let 1 > k. IMP, AB, and WPU. Take a pivotal individual i € N. Let ¢: 9% - X! as
follows. For any ballot profile V' € Jt¥,
o) ={i}u{ueN|s,(W)=n-1}.
Because we have (n — 1)k < nk < (n — 1)(k + 1), Lemma 8 shows that there isno N € 9t* such
that |{u EN | su(NV) =n— 1}| >k + 1. Therefore, for all N € 9t*, we have 1< |{i} U {y €
N| s,(N) =n—1}| <k + 1 < L. This shows that the rule is well-defined on the setting (9%, X!).
Furthermore, we can easily determine if this rule satisfies IMP, AB, and WPU. Note that this rule fails
to satisfy NU. m

Notes on Proposition 13
1) Let D = 9t°¢/ and X = X'. IMP but not AB.

2) Let ® = 9% and X = X'. AB but not IMP. Let ¢ be the nomination rule that chooses those
who get the highest scores among {1,2, ..., 1}.

3) Let D = 9“8 and X = X'. IMP, AB, but not NU: The constant rule cony(X € X!).

4) Let D = N8 and X = X.. IMP, NU, but not AB: The bilateral edge scan mechanism.

5) Let © = 4% and X = X'. AB, NU, but not IMP.

P(V)
_ {‘PI(N ) if its cardinality is at most [
~ lthose who have the minimum index among (") otherwise

6) Let D = MA8 and X = X!, where [ = 1. IMP but not AB. Take a pivotal individual i € N
and define ¢: N48 - X! as follows:

PN = {gi_g i)ft}?grjvife’.and

7)Let ® =%t and X = X!, where | <n — 2. IMP and AB: The constant rule cony (X € f).
8) Let D=9 and X = X!, where I <n —2.AB and NU: Let ¢ be the nomination rule that
chooses the individual with the minimum index among Fj,.

9) Let D =% and X = X!, where I <n —2.NU and IMP: Let ¢ be the nomination rule that
chooses the individual with the minimum index among Nj.

10) Let D =9 and X = f, where [ =n — 1. IMP and AB, but not NU: The rule in 7).
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11) Let D =% and X = X!, where [ = n — 1. IMP and NU, but not AB: The rule in 9).

12) Let D =9t and X = X!, where [ = n — 1. AB and NU, but not IMP: The rule in 8).
13) Let D = 9tk and X = X!, where I = k and n = 3. IMP: The constant rule

cony (X € XY).

14) Let D = 9tk and X = X!, where [ = k and n = 3. WPU. Note that the condition imply
l = k = 1. Clearly, it follows that there is at most one individual that has a score of n — 1 = 2.
Thus, let

(V) = {?l}e N|s;(v) = 2} i)ft}ilzrivsvi:znempty, and

15) Let D = 9tk and X = X!, where [ = k and n > 4. IMP and AB: The constant rule

cony (X S gl).

16) Let D = 9tk and X = X!, where [ = k and n > 4. AB and WPU. Because there are at
most k individuals who have the maximum score n — 1 at any score profile, we can assign ¢@(s)
for each score profile s € S[9] sothat 1 < |p(s)| < and {i EN | si(V)=n-— 1} c p(s).

Therefore, a nomination rule meeting the requirements can be constructed.

Proof of Proposition 14
Proof of [1]. Let D = 9, 9t5¢, NAE Nk (2 <k <n—3) and X = X. Suppose a nomination rule
@:D — X exists that satisfies IMP, AB, ND, and weak 2CP. Take any i € N. According to ND,
there exist NV = (N;, N_;), N' = (N{,N_;) €D and j € N such that j € (") and j & p(N").
Note that IMP demands j # i. In addition, considering Lemma 7, there are only two possible cases:
(1) jEN; and j & N{,and (2) j € N; and j € N;, because otherwise it follows that s;(V) =
sj(W"), which implies V' ~; N’ by Lemma 7. Then by ND and IMP, there is also M =
(M]-,M_j),M’ = (MJ-’,M_]-) €D and [ € N\ {j} suchthat | € (M) and [ & @(M"). here we
also have only two possible cases: (a) [ € M; and [ & M;,and (b) [ € M; and | € M;.

Now there are four possibilities: (1)&(a), (1)&(b), (2)&(a), and (2)&(b). The proofis
completed if a contradiction is derived from each of the four. I show this only for (2) and (b),
because the other three cases can be demonstrated in a similar way. Let d; + 1 := s;(V ’)(=
si(V) +1) and d; + 1= 5;(M")(= 5;(M) + 1). Then, wehave 1<d;+1<n—-1 and 1<
d; < n — 1.1label the other individuals as N \ {j, [} = {ay, ..., a,_,}. Because n > 4, this set N \
{j, 1} has at least two elements a4, a,.

Forany p € {ay, ..., an_,}, there exist three subsets Ax~2,AX~1, A € {a;, ..., an_5} such
that:

p € Al and |A,’j| =x (x=k—-2,k—1,k).
This is because 2 < k implies x = 0 and k <n—2 implies |{ay,..,ap2}=n—-2=2k+1>

k. Because dj,d; <mn — 2, we can also take two subsets J,L N\ {j, 1} suchthat |J| = d; and
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|L| = d,. With these subsets, we can define N = (N1, ...,N}) € Ntk € 9t = NAE n NseY as
follows:
N'={Bu{a:1<pu<k-1}
N'={}u{aul<u<k-1}
Ni={,JUA;2 for all pejnlL,
Ni={}UAg? for all peJ\L,
Ni={l}UAf™ for all peL\J,and
Nji = Ak for all ue N\ JULU{,ID.
Itis clear that |[N}| =k forall u € N. Thus, V' is a ballot profile. Note that j € N}' and [ €
N}'. With Lemma 7, j € (V') and [ & @(M"), we have j & (V') and [ € p(N'!). Because
ay € {ay, ..., an_»} \ (N} UN}'), we can define a ballot profile N2 = (NZ,...,N?) €D as follows:
N? = (NFu{ad) \ {13,
N7 = (N} u{a )\ {j},and
NZ =N} for all ue N\ {1}
Because we have s;(V?) = s;(NV), s;(N?) = 5,(M), and Lemma 7, it follows that j € @ (N?)
and [ € (N'?). The comparison between N'! and N2 contradicts weak 2CP. m
Proof of [2]. Note that if n = 3, we have k =1 & n — 2 = k. So, the case of n = 3 is a special
case of [3] (below).
a) IMP, AB, ND, and weak 2CP.  First, | propose a nomination rule that satisfies the four
axioms. Take any i € N and let:
eV = {i3u{j e N\ {i}|5;(V) =n—1}.
Clearly this rule has the necessary properties. Furthermore, it satisfies WPU. m
b) IMP, AB, NU, and weak 2CP=Impossibility.
b1) The case of |@(CY)| = 2. Let i,j € p(C) be two distinct winners at C*. Because
n = 4, there are distinct individuals @, 8 € N \ {i, j}. Let us consider a score profile s =
(s1,5n) €{0,1,..,n—1}" as s, =5; =0, s, =spg=2,and s, =1 for all y € N\
{i,j,a, B}. With Lemma 8, V'3 € 9tk exists such that s(V'3) = s. Because s;(V?) = 5;(WV3) =
0, NU demands that {i,j} N @(IN'3) = ¢. Furthermore, i & Nj3 and j & N?. Let N? = {u} and
NP = {v}. Let M* € ¥ be such that:
Nt = (NP U )\ {w,
N} = (NP u{i})\ {v},and
Ni =N} for all pe N\{ij}
Then, because s5;(N*) = 5;(C!) = 5;(W*) = 5;(C*) = 1, Lemma 7 implies that i € @(N*) and
j € (W'*). This contradicts weak 2CP.
b2) The case of |@(CY)| = 1. Let @(CY) = {i}. Consider a ballot profile V> € NF as:
N2; = (G5 u{t+1})\ {i},and
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N; =C; for all pe N\ {1—1}.
Because s,(C1) = s,(WV®) forall u € N\ {i,i + 1}, Lemma 7 and ¢(C*) = {i} show that
@(I®) € {i,1 + 1}. Because NU demands i & @(N'>), we have @(N'°) = {1 + 1}. With Lemma 7,
we can see that i loses at score 0 and wins at score 1, while 1 + 1 wins at score 0 but loses at
score 1.

Let us consider V¢ € 9K, where N2; = {1+ 1}, Nf = {1+ 2}, and N¢ = C} forall
pu#1—1,i. Because s;(V®) =0 and s75(NV®) = s;75(C) = 1, NU and Lemma 7 show that
i €@V and 1+1 ¢ (V). Next, let N7 € Nk be such that N/ = {t + 1}, N2z = {i}, and
N; = Ng¢ forall p #i,1+ 1. Because 5;(NV7) = 5;(C1) =1 and sz (WV7) = sz(W°) = 2,
Lemma 7 shows that {i,1 + 1} € @ (V7). The comparison between N® and N7 contradicts weak
2CP. m
Proof of [3]. It is clear that ¢': X — X satisfies IMP, AB, 2CN, NU, and WPU. I will show this
for the other axioms.

a) ND. Takeany i € N.Let s; = - =sgps =n—1, sg=3 = k(=n—2), and
si=1 = 0. Clearly, this makes a score profile in 9t¥, where k = n — 2. The individual i can
change the result by approving ¢ + n — 1 instead of someone else. m

b) Weak 2CP. Take a distinct i,j € N. The proof is complete if we can show that there is
no N € "2 such that s;(V") = s;(NV) = 0. From the score profile s defined above in a), this

fact is obvious. m

Proof of Proposition 15
Let us assume to the contrary that there exists an impartial nomination rule, denoted ¢: D — ¥! of

rank n — 1.1 first show the case of | = 1, and then I will show the other case of [ > 2.

Proof of Proposition 15 when 1 = 1.

The proof will be done with three steps. The first step is to define a special class of ballot profiles,
denoted by V,,]; C D, where an—1 (i I/;lj_2 c.-C V,,J; cC.-C Vlj C Voj. In the second step, I will
show that if there exists a nomination rule of rank n — 1, then j € @(N') holds for any ballot

profile V" € Vn{, through a downward induction on m. Finally, I will derive a contradiction in the

third step. |@ ()] = 1, and so I often write ¢@(-) =i instead of @(-) = {i} within this proof.

Step 1: Define the Class of Ballot Profiles V{n c® forany m€ {0,1,..,n—1} and jEN
First, I introduce some new notation. For any individual j € N, I call a permutation over N \ {j} an
(n — 1)-tuple

i= (ill ey in—l)
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of individuals in N \ {j}, if {i1,...,i—1} = N \ {j}. When an integer m € {0,1,...,n— 1} and a
permutation 4 over N \ {j} are given, I write
A=(44,..,A7)
as a partition of N \ {j, i, ..., i,p} if there exist a;, by € N \ {j, i1, ..., iy} (1 <t < T) such that:
a;<b, (1<t<T),
a1 =b;+1 (1<t<T-1),and
Ac={i, e N\{}|a;spu<b} 1<st<T)
I denote this a; and b, asthe maximum index and minimum index of the set A;, respectively. If
m=n—1,1define A = (¢p) as the unique partition over N \ {j, iy, ..., i, }. Please note that I use
the term “partition” with a slightly restricted meaning within this proof.
To make this notation familiar to the reader, I will show an example. Suppose n = 6,0or N =
{1,2,3,4,5,6}, and j = 3. Then a permutation 4 over N \ {j} is the way we array the individuals in
N\ {j} = {1,2,4,5,6}. For instance, 4 = (iy,ip, ..., in_1) = (i1, iz, i3,i4,i5) defined as:
ih=2,i,=4,i3=5,i,=1,and ig=6
makes a permutation over N \ {j}. For this permutation and m = 2, a partition over N \
Uity e im} =N\ {,iq, 05} = {is,i4,i5} is how we divide the set {is,i4,is} into pieces without
breaking the index order. For example, the following are both partitions over N AR 7 P .
A = (Ay,42,43) = ({is}, {ia} {is])
A" = (A1, 42) = ({is} {is, is]).
However,
A" = (A1, 4;) = ({iz, is} {iu})
is NOT a partition over N \ {j, iy, ..., i;y}. The reason this is not a partition (in our meaning) is that
iy is skipped in A;. So, incorporating i, into A; we get
A" = (A1) = ({iz, 14,15}
that is actually a partition.
For the second partition given above, A’, the maximum and minimum indices are:
ai(= the minimum index of A}) = 3,b;(= the maximum index of A}) =3
ay (= the minimum index of A}) = 4, b;(= the minimum index of A4}) = 5.
Take any individual j € N, a permutation 4 = (iy, ..., i,_;) over N \ {j}, and a partition A =
(Aq, ..., A7) of N\ {j,iy,..., I} for m € {0,1,...,n — 1}. Now, we define a ballot profile
Vn]; [4; A] € D. Note that this ballot profile Vn{ [4; A] is made up of (m + t) “rings”. For the first
m individuals iy, ..., I,,, each of them and j approves each other. For the rest of the individuals,
each subset A, with j makesa 1-cyclic ballot sub-profile: j approves i, , i;, approves ig, 41,
..., Up,—1 approves i, ,and i, approves j. Formally stated, the ballot profile Vn{ [4; Al =
(N, ..., N) is defined as follows:

N ={iy |1 <u<m}ufia, .. ia},
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Np, = {j} for all 1<t <T,and
Ny, ={iys1} for all g€ N\ ({,by, ... b} U {u] 1< p < m}).

Then we define Vn{ [4] as:
VIli] = { I14; Al | A is a partition of {i,eN lm+1<uc< n}}
Furthermore, we define VW{ as:

V)= U{Vn’;[i] |4 is a permutation of N\ {]'}}.

Step 2: Induction on m

I select an arbitrary individual, fixed as j € N till the end of this step. I am going to show that j is
the winner in all of the ballot profiles in Vbj by an induction on m in a descending order. Thus, this
step is made up of two parts: the first is to show the case of m = n — 1, and the second is to

construct the induction.

[1] The Caseof m=n—1

I show that @ (V') =j for all ballot profiles NV € an_l. Note that there is only one ballot profile
an_l[/i] =:(Ny, ..., N,,) = IV because the partition A is uniquely (¢). Suppose to the contrary that
@(N) =i # j. Consider a ballot profile V' € D as N/ = N \ {i} and N’; = N_;. Then, IMP
demands @(N'') = i. However, i's score ranking at ' can be found as r;(NV'') = n.

Contradiction. So, we can conclude that @(N) = j.

[2] Induction Part
Take any m € {0,1, ...,n — 2}. Assume that @(N') = forall V€ VWJ;H(E Vn{” c...c an—1)-
Then I will show that @(N) =j forall V€ V,,]; by negating the other possibilities. Take any
permutation 4 = (iy,...,iy—;) of N\ {j} and partition A = (4;,...,Ar) of {i, € N\ {j} |m+
1 S,uSn},where A = {iu|atSu Sbt} (1<t<T). m<n-—1,andsowehave T = 1. Let
N1 =(Ny,...,Ny,) = VI[i; Al If there exists t* € {1,...,T} such that |A,-

' [4%; AY], where:

= 1, we can regard
1 ; J 1y
N asanelementin V, , because N =V,
it = (i, oo iy Lqper bmts 0 fae— 15 lagea1s -+ in-1),and
u‘ll = (All ...,At*_l,At*+1, ...,AT).
So, (p(]\f J ) = j is given by the assumption of the induction. Hereafter, I suppose |4;| = 1 for all

te{l,..T}
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(1) iy, ..., iy, Lp,, -, Ip, are not the winners at N.

Take any i, € {il, b Ty e ibt} and suppose that @(N'1) = i,- Then consider another ballot
profile N2 = (Nii,N_ziu) EMN as Nii =N\ {i,} and Nfiu = Nfiu. IMP demands @(N'?) = iy,

On the other hand, the score profile is given as s;, W3 =1<s; (V) forall iy, € N\ {iu}' So,

we have 1;, (V%) = n. This contradicts the assumption that ¢ has rank n — 1. We can conclude

that @(N'Y) € {is, e, iy iy oo i, J-

(2) ig,, ., iq, are not the winners, either.

Assume that @(N'1) = igq, forsome t € {1, ..., T}. I will derive a contradiction. Let N3 € D, as
Ni3t = (N&lt u {]}) \ {iatﬂ} and N_3iat = Nfiat. IMP demands ig, = @(V?), which also means

Jj # @(IV3). Next, let us consider N'* € D such that N* = N? U {i,,} and N*; = N3;. Here, IMP
demands j # @(NV'*). However, we can find N* in Vn{ +1- Indeed, we can check that N'* =
V,,];H[i“; A*], where:

i* = (ig, o) b lag ima1s -0 la,—1 la 41, -0 in ), and

At = (Ay, ., A\ ig J(=14D), ..., Ar).
By the assumption of the induction, we already know that (p(VW{ 4% c/l‘*]) = j. This contradicts
PN #j. a, €{ay,...,ar} was arbitrary, and so it follows that (N1 & {ig ,iq,, .., ig, }-

(3) If j is not the winner at M € V{n, there exists another ballot profile M’ = V’;n [ A']
such that A’ has strictly smaller width of division and j is not the winner.

Let us denote an individual in N \ {j, iy, ..., im, @1, ..., a7, by, ..., by} as a middle term. I will show
that no middle term wins at V"1 by constructing a sequence of ballot profiles in Vn{ that satisfy a
certain condition. For a partition A = (44, ...,A7), let A(A) be the width of the partition defined

as:
T
A@A) = ) 1A\ {au, bl
t=1

= IN\{,i1, ) im Qq, oo, Qp, by, e, b
So, the width simply counts the number of middle terms for a given partition A of N\
G, ity s im -

Now, take any ballot profile V'S == VJ[i%; :A5] € VJ. I will show that if some middle term
wins at V"5, then there exists a ballot profile M € V,,{ such that A(M) < A(NV®) and j # @(M).
Suppose a middle term i; € A, \ {a, b }(1 <t <T) wins at N>, viz. (N°) = iy. Consider a
ballot profile ¢ € D as Nf = {j} and N® = N3, .IMP demands ¢(N®) = i;. Thus, we have

—iz —iy
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Jj # @(I6). Consider a ballot profile N7 € D as N/ = N® U {iz41} and N”; = N°;. In this case,
IMP demands j # @(N'7). Furthermore, we can regard itas N7 = Vn{ [45; A7], where:

A7 = (Ay, s Aeer {iap gy wor ia b {241 o I, b Arsas o Ar).
A; is divided into two parts: {iat, Lapy,r e ia} and {iA+1' ) ibt}, and so we have A(A%) > A(A7).
This is because i; is no longer a middle term in the new partition, while the other individuals keep
the same status.

When a ballot profile M'1(= N'5) € V is given, the argument above shows how we can
get a new ballot profile M2(=N7) € Vn{ where the new partition has strictly less width than the
original and where j # (M ?2). Furthermore, according to (1) and (2), individuals with the
maximum and minimum indices in the new partition cannot win at M 2. Thus, it follows that
@(M?) is also a middle term (in the new partition). So, we can iterate the argument again to get
M3, M*, ..., all of which are in V). Let us start this iteration with M1 = N'1. A(A?) is finite, and
so there exists a terminating level x and ballot profile M* = Vn]; [4%; A*] such that A(M*) = 0.
The width is 0, and so there is no middle term in A*. I have already shown that j # @(M¥*). By
(1) and (2), the other individuals also lose at M*. This contradicts ¢ & X. Thus, we can conclude
that @ (V1) is not a middle term. This completes (3).

The arguments in (1), (2), and (3) show that no individual other than j wins at 1. Thus, we have
@(I1) = j. The permutation 4! and the partition A' were arbitrary, and so this shows that we

have (V) =j forall V€ Vn];.

Step 3: Proof of the Proposition

We know from the last step that for all m € {0,1, ..., n — 1}, permutation 4 and partition A,
<p(V,,}; [4; c/l]) =j. j was an arbitrary individual in N selected at the beginning of the proof and
carried throughout, and so the previous sentence holds for any j € N. Now, take two adjacent
individuals, say j,j + 1 € N. We know from the above that for ballot profiles N8 N° € :t such
that:

N8 = Vbj[(] +1,7+2,..,;+n—=1);(N\ {{D],and

N =VIPGF 2+ 2. F ) (N\ T+ 1D],
we obtain j = @(NV'8) and j + 1 = (V). However, we can easily check that V& = V° = €1,
which directly yields a contradiction. Therefore, our first assumption that there is a nomination rule

@:D — X ofrank (n— 1) is false. This completes the proofof [ = 1. m

Proof of Proposition 15 when 1 > 2.
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Let us assume that there exists a nomination rule ¢:® — ¥! that has rank n — 1. Take any
individual j € N, permutation 4 = (i, ..., i,,_1) over N \ {j}, and a partition A = (N \ {j}). Let
N10 .= V,,jl. [4; Al @(WNV1°) contains at least two individuals, and so there exists an individual i, €
N\ {j} such that i, € @(N''°). Let us consider a ballot profile "' € D as Nitl = N\ {i,} and
Nfilu = N_lgu. IMP demands i, € @(N''). But i, has rank r, (W 1) = n, in contradiction to the

rank of ¢. m
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Materials for a presentation

Decision Procedure: An Axiomatic Study
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BA2(a)-b>c +s,8 25, + 55 + 53(R)
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BA4:c>b >@ +s§,}é‘k RENBITN B,

OBMADDITHIIHKR~ -
» Plurality (P): [1,0,0] (—fLlcDH1E)
» Borda (B): [2,1,0] (1IBRTOTFIFTWVL)
> Antiplurality (A): [1,1,0] (B FALEASMC1R)
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H & % & 3 (Diss and Merlin 2010)
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stable with 84.49% (IC) or 84.10% (IAC).
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Definition 11 (p.21) : $YNK

BIRBEOEAX LD T a7 7 A IVLOHBFINEKT S L1k,
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797 s ANVORLO LY, .. LB BEEL T, £TDlevel-
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10\ : abc Level-1 Level-2
{4A: bca - Cl profile ‘ Cl profile ‘ T

BEABE DEE

Definition 12 (p.22) : BB S
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B—przRERTBEL

> TOIN—IDBIESIESIZBIRL TV BARNR

1 2 8:&?%
- - — [FiT
J
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Example 10 (p.23) : n =17, X ={a,b,c}& L,
wuqum-tﬁLmhéﬁ]
» abc 2AN). ach BA). bac (GA). bca(2AN).

cab BA). cba (2A)
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LWV,
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Example 11 (p.23) : n =1700, X ={a,b,c}\ F =
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(19:abcif1 < i <400(1)

L%:ach if 401 < i< 500(1)
L?:bacif 501 < i <800 (III)
L2:bca if 801 < i <1000 (IV)
L2:cab if 1001 <i <1400 (V)
(L7:cha if 1401 < i <1700 (VD).
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ERI-TV

/
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F={P,BAIT3L, TRk BRIV oTWVWI :

Corollary 1 (p.26) : {P, B, A}, 3B T D UK M

|X|=3, F={P,B,A}& T3, n> o2V T, HI
KA 77 r A NVHBEU 28Ep, 1T,

Pwe = 98.2% (ICETWV)
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84.10% (IAC) (Diss and Merlin 2010, Diss et al. 2012)
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Theorem 6 (p.30) fii : BEN LTIV —IVEHTO _REH

Plurality , Borda, Anti-plurality, Hare (fy), Nanson (fy),
Coomb (f¢), Maximin (fy,), Black (fz;) @ WF D3 — )V
DEBLBIA=2—TlE, n> o TRVKY LD :
(1) PRHDBELIO TR
2)|1X| =30t &, WTho#llTHp,1396.6%L L
(3) RD10ATIX, |X[I2X D Ty ld100%L 3 .
Upr fur fud fas fo fud U fuo foid e fvs fud
Us fu, feih A fo foids (a0 fus foid U fv fuds
Un for fub Afn fuo £33
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“IRE O RERFM 20
(IAC,n — oo,|X| =3 : p. 76)

pp(= 1 - Dwc)
prob of deadlock -

__ {plu,anti, Hare}: 3.35648%

0035y , — __ {plu, anti, Coomb}: 2.48843%
0030 g .
e . «— tanti, Hare, Coomb}: 2.67650%
0025[
0020( . Y1348 D11 R~ 2% TR
0015 N . %3
0010 [ e <
K135 D2 %k ik
0005 ® Y, 2 AL S PR
i * % i 2 ee” s> Datalo.
19} ZU JU 4U U

5608 D 2TIZBWVT, 96.6% LA L DR THINK,
$% . {P,B,A}Tldstable (84.10% : Diss, Louichi, Merlin, and
Smaoui, 2012), SR (98.8%), Y,

21)

A R AR Zm1 A% ) FKe1 AK

“IREHEDEER?2

“REHOBE

3D9DRATYV VI N—NVOMFB*)&E2FE-EIE
n - o THHEMIZIRINEIEHBEO _REL S,

Recall. §§URR &I, CI17a 7 r AV E2EHIC
HMolz®R, bIBETITEEAN —RTBZ L,
Q. ZOM) HRBTHRIEDY 53 °?

Cf. self-selectivity (Koray 2000)
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22)

FR YN R

Definition 13 (p.27) : 3&UXK

XEo7a7r L NVLOHBC C XIZERINET B LI,
(1) CIZHgINER L
Q) CRADEALTC cXIzHbTPERL TV

> EE - fATFEEHASE LEHOCOTOT 7 LAINHIH
B2, EDHILDENEL-oTHRLTHD
BREARBDELZVEWV) &4

> LOASERIUR T 2 = LOBSHIRR T 5
SR & Y SWMEMIC (BT D) L

PRINERIC £ % —IREH

Thanrarm A (n 2Q) « D R ARV &HE 2T
Iheorem4 (p.28) : 1, D ) R4, :

\l

quaamafaoﬁui~ﬁui767n7r{d
WHETL 5K$EPWO Psc = Thli‘

Pwc —Psc = 0 as n - o

% :F={P,BAITIE, WIRZMPRICEZHEZ X
T_IREBLRDIILD, THXDS,

Psc+pp—>1 as n—- x

psc = 98.2% (ICETIV)
Psc = 98.8% (IACETIV)
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A R AR mm1 w0

“IREHDELE 3.1

3DDARATY VI NV—IVOMFR(*)E&EZ2E-EIE |
n - o THHEMICIZPROEHABED _REX 3,

Q. TwoTH), K TEAA=2—B3FE
T30

e 2
4 25)

WDOTHEWNETETEEVOHEE

Fé)‘:-ﬂ-"‘b-’-6o
- FOSERYE GRIUGRYE) 28T EiT,
FEEDOn >3T, 2TO7 a7 7 L IVHBHRK
(BRINEK) T 5,
« FABGESHPGRYE (RERPURYE) 2T LT,
n->0T, pyc—=1 (psc > 1) L& 3B,

» TLWOTH MXER ) TE 3,

vn > 3T 5URR
or or
n—-oo7T RN 3R

- /
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26 )

NI FE D B
vn > 3THEINEK n - w5 FHINEK
PR 1% > A g IR R
o U 3R 14 > 0 R X R
vn = 3THINEK n - w5 IR

E1 {P,B,AH VTV
2. {B,Hare,Black}¥ Do6fHld, #ESINREZ D

QBNKEZ S IOA= 2 —3HETEIH?
ABFLETS

RN, & =9 IL— LA

Theorem 7 (p.31): 5URRE X = 2 —DHHE

(Neutrality, Differencetz il 2 T) BINKM: % 7= ¥
)D—)DﬁFi)‘#ET% o

f1: Plurality SCF in favor of individual 1,
f>: Anti-plurality SCF in favor of individual 1, and

W) if|fp(L)] = 2
f3() =

f1 (L) if majority winner exists
f> (L) otherwise.

EZ®310D F L ¥ : {B,Hare,Black} (LS8R %) ® LD
Ama—ZHAVAZLET., TboTh) NEK) TES,
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N wx SRR am zm mma 2

“IREHDELE 3.2

3DDARATY VI NV—IVOMFR(*)E&EZ2E-EIE
n - o THHEMICIZPNERIEHABED _RET B,

Q. F ={P,B, AHIWHENRMEZ b 7272 VWS,
BAED TR TEZTVD,

29
[ TX] OB

F (P BANCHL. RO b BREN N0k
Mz7=G=Fu{phd, BHEHNEKEZDHD :
o(L) = G(fp(L)V fg(L): L)

Definition 16 (p.31) : ML UX KK

HBGC2FOHRELTHHEFNREZ O L %,
FIZ#n R AT H B L V)
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30)
FZER31-320EE

WoTh) MK TEXB3LVHIAHED )
F&3.1 bliz, B2 LWA=2—2R
SEALHEYATFNIE. chdDA=2—
EEZITIV )
BBEDA=2—{P,BAINRBoT=L LT,
*&3.2 chELHE TTx T30
= LKA MDD A = 2 —THA[EE
‘ Eiiu y
AR
%5 Zii=d
A= a—Fli¥, WnERRIBAEETH S,
P
31)

R EBFEE~at ERA O HH~

»IACETNVOTOHRERROHERFHIL, Ehrhart
polynomial D& H IZ g

> Polylib, Barvinok, NormalizZZZ EDY 7 b7 = TH
b330, BRE Ov—n) 3TV L4AE
DEEDRF

> REZ A= 2—FTId, BENITIZRRT 2 HERH
AHETEZL

HH EBRIETIV—NVDSEZEBEORZXOD
A=a—Fl¥, GERRELEAIETH 3,
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4 32)
=N S

» BIREB4E DS . BordaV—IVDEE&AIX[3,2,1,0]0
rZhZ 7oy FLTRAZLODZEABEBKEVY,

B -

Borda® L s BA%X

— bz

4 33)
MH)L— )L

Definition 19 (p.32) : MJV— )V

ATV IN—=NfRMTHB EiE, vm > 3HDRE
Rz U, BEAREBASMBERK (ie. Licth) &% 3Z
o

# : Borda, Antipluralityld & $ iDLV —)b,

Borda [3,2,1,0] Antiplurality [1,1,1,0]
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34
M & I

s JE 5

Mgl M |2@ETV— VDO LBREBEOREZXD
A= a—Fi¥, #EPRIEATETH S,

13-~

[(MEHEDE %] /ﬁ§§ﬁ&uiﬁ
* F = {M)V—)L 100048} (Z— 9 -
- FONURRERIE (HRH
i) AETELL \ 52979
c$53C2Fl3n - 0T \\\ Sl
RN 100%EL VRSB, N

35)

MEHE DR [45A0H)

Theorem 9 (p.33) : MEH

gmmo ML=V D A =2 —i&, #HERERILATIRET
%,

(GEFHOBLE)
OF ={fi.for e, 3 U pf@DE-T T IV —73)VV—IVE =
{E},Ey, ... E\JBEUFEORD THEE) bC=FUERBELIC
523L, G=FUEUCHERERKEZbHODZ LERT,
OBRAT|CIBREHAZBET., 52HE0LVHEEZY - ZRE
KDRBEhBZLICEHT 3,

O ZEDOREBLICHVT, MRS EAE ML, €DK
ERT.
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36 )

WHE . {520 —IVoA
) 53 Hr

—-NRMTREBREENKR (DRSA) N5

—-BREDERRETIE, ERREEFHERNDIELHEH
Mbhazitbds

— THELNRRED WICBTRED) 1 V) HEF
EENTEIEDOIL—NIZOVTHT S

P

37)

4 I)L—IL

s N={1,2,..,n}: »AEH GHER)

c ZMAie NH, RREBLEZXZBDADEAN, CcNEEL
L CH%E

e (N,N,,..,N)ZEDT7a7 rfIVE X,

Definition 22 (p.44)

BEQ7a7 7 4N = (N, N,,..,N,) e DIicH L. N
DEAEER (P Ho(V) € X NBE X IHE (HE)
%, #84&)NV—) (nominationrule) ¢:D - X& k&,

PHEFMICE S Z (W) S NEREBR
FEEORELELZY), BAVREETH S LK
ZE#ETHLH 3,
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38

EAIL—IL DA

fl (ZREREOREH)
»ZLHNOEMAi e N¥AEA b0 hTRZEIC
HELWER) NA\OEANZRIEL, ThEiH
HVLTZEE (IzB5) (N, N,,...,N)ZRE,

Al : Approval Voting (Brams and Fisuburn, 19784l1)
»EANZHEBLVWER) AZIATHIEATSC
L TcEsd (N, SN)
rELEZLDACTEAESWEZAZBENT S,

FERRESMEAETLH I L&, FRTERNITE
NEU S eEEL B B

P

39)

Impartiality
Bl : n =4 ANDApproval Votingic kX V ZBEZIRD S
1 €—— 4 BALRED XD 2

BULABBETS | 4
\ () \ e 1
- 2 3

2 r——

Definition (Holzman and Moulin, 2013) (p.45)

BBV —Ie:D - XHImpartial IMP)TH B LiF, R
DieN, EFBEOED7a7 » L IV(N,N_)) e DEN/ €
D‘:HL\ (= (p(Ni, N—-i) SiE (p(Ni,, N—i)'

rRUBRICE-T, BAPRBREBLEZHDE) HPREDDS
TVEWV) EHF

P
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F AT

(1) Holzman and Moulin (2013)
>N, €N\ {i} (A Z—ANTER)
»X=N (& I=72—AN)

» (IMP), Positive Unanimity (PU), and Negative
Unanimity (NU)=>A 1] g

(2) Tamura and Ohseto (2014); Tamura (2015)
>N, € N\ {i} (BAIZEE—AIES)
> X =P\ {¢} (HEBOBEZFT)
» plurality with runners-up rule
» (IMP), Anonymous Ballots (AB), (PU)=> A H] g€

AZ DB

8LV —I ¢: D 5 2
w
ZEo7a7r4N _
N =N, Ny, .., N> ¢N) EN

»—iliz, EDESTEDT a7 rANVEEHTEH
(BEBD) . MADODAZRHNTAD (BBEEX) ko
TAEMOBREIIRLS (LTFHTES)

CPAEDHM  RRA T ERE - BiBolEEZAZ LI
&0, TRugett) z2@MT2HhE2H85 :

(ED &) TRE2EFHTiTimpartiallz il Xt D RERY %2
S 2 TRANV-NVHBRETESZH?)

/
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L2 )L— )LD EZSIHD 42
(EDELSBELZHFITH)

1) % = [T,cy N where R, = {N; | ¢ = N, € N\ {i}]}.

*ANROHFBTL BEARLVWER) AN2HEE (GE
- BE30DIEAIZT L) cf Fischer and Klimm
(2013)

2) N5V = [,y 05V, where Y = (N, | ¢ # N; < N}.
*HEOBAENFT

3)ND =[x R\ {(}, D, ..., $)}, where NP =N, U {p}.
*EREHT of Alonet al. (2011)

/

L2 )L— )LD EZSIHD 43 )
(EDQOESBEZHFITH)

4) NE =1,y N, wherek =1,2,...,n — 2
*BANZIEHEZRVTS & ) EkARTEA

* Holzman and Moulin (2010, 2013), Tamura
and Ohseto (2014), Tamura (2015)Z El¥2 Tk =1
DHE
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2 )L — L DRI 44.)
(= AZESRD)
1) X =PWN)\ {¢}
*NOFELTHRAEEERS
2) % ={w e W) | Iw| =1}
*5r) EINERSR
)X ={(WeBWN)|Iw| =1}
DR LBIAZESR
HE =wepM|1<|w| <1}
* (—ABLE) mARIANZRESR

» Holzman and Moulin (201_0; 2013): X!, Tamura and Ohseto
(2014) and Tamura (2015): X, Alon et al. (2011): X!

45
BREEZEL L TOEEDOEH

Definition: Anonymous Ballots (AB) (p. 45)

BEN—Ie:D - XH(AB) =T &IE, s;(WV) =
siiVYVie NTHRIIE, o(WV) = (V)

P2 TOADARAT (A EEZEhTVED) BEL
ThHhiT, ERBEL,

» MEAAIDXEA3IZIEALE & TEA4PEAIZIE
U7 BEUHRZ2LD /EHZLLTEE,

(=) (1

—> 3 2 — .3
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46

EHEE L TOEEDEHE

Definition: Pairwise Candidate Neutrality (2CN) (p.46)

ANV —=Ip:D - XDBQ2CN) 2T EIZ,. £ETOA
Wi, je NCHATIHMMZ RS ELLE, | jlco20
TORRLBIET S,

> BZARERBEL LTRFEETHBILVHIZ L,

Bl 2TOADLICHOVTOFHMEFIET S,

] €&&— 4 i 4
RO
2 —> 3 2 3
1 wins 3 wins )
47

AT A

BOVWTNOERE - BEOXRT(D,X)TH,
(IMP), (AB), (PO Z 7= THAN—INVIZEELET L,

» Tamura and Ohseto (2014) (N, X) TR L = A n] gt
B, LGARDIDEVWS Z L,

» PU (Positive Unanimity) £ I 22— DL :

- A PU (V) = {1}
1‘\

2 3 Weak Positive Unanimity(WPU)

IO BEN! )

163



" Threshold (BIfE) JL—ILD45# 48
&=l

Definition: Bffit- )V — V@t

BV —otlld, RaT7MEULOANEL TR
«N‘E%)l/—)l/o

82 —)o: N - XHB(IMP), (AB), (2CN), (WPU), (NU) %
Wl ToREL- V=t

> Approval Voting (X MICER BBV ABDOAZRESL)
B(IMP) 22XV (F%, £22—BidWk7)

> BIENV -V ENNTETHSMEICEL AER

L ) ¥ CEZ, 22—z T) (IMP) &= )

4 49
BRR 712 (D, X) TOLEEER

[ = 2:1MP, AB,
NUS @l

IMP, AB& Const [ = 1:IMP, AB,
2CN, NU,
WPU® @l

N

l<n—2:IMP,
AB, NU=None.
l=n-1:1,AB,
NU® @l

IMP, AB< Const IMP, AB&<Const IMP, AB< Const

IMP. AB<>Canse |- L HMEAB,HIMP, AB,

NU® ¢! NU=>None
l<k+1:
IMP,AB,2CN,NU [ > k:IMP, AB
<:> 7 7 ? ? 7
IMP, AB< Const WMS and WPU.
L, ..., ™M
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i 50 )
x . ) BEEsT Az L%
e (D,%)T] VR ea '

RLams -1y Gl
iZi&impartial L B IV — IV
DBRENEBL B,

IMP, AB< Const

cf. Holzman and Moulin

\(\2013) showed on (9&1,351)./

IMP, AB<Const IMP, AB<Const IMP, AB< Const

geh IMP, AB& Const f\lj ;:(;'IAP' B :\'I\{'J';‘l\\i;ne
l<k+1:
T IMP, AB<> Const mvﬁ'zc'\mu i; I\jv L“L’J'.F" e
1 m
\ Q,...,Q /
(" 51)

N

% 2 72(D, X) T D LS

l = 2:1MP, AB,
NUS @,
IMP, AB< Const

HBEHZL DAERIZ LY
Fha3RE Bk T,
?Ew—wﬁ%#mé(éﬁ

k+1:

IMP, AB< Const I

l<n—2:IMP,
AB, NU=None.
l=n-1:1,AB,
NU® @l

IMP, AB< Const

IMP, AB,
NU=None

l > k:IMP, AB,
and WPU.
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52)

-

2. 3E : INEEFm[1/2]
NRDESE :

— ECETHLoTHEBRHT ARV’ T VRRTIE,
HoTHRTIFMEARAISZ AL bOLE
VR R-3 N

— BEARX LOREIF (L°) Tx@ERTHIZ

— H3BRRK (a) 2EHLTES (LOPFalTIRR)

X Fl F2 FlO

=\ P P €=-\-===———— - P

—/
(B ‘i B $nefrmm=---- B
A A TN A

Level- 0 Level-1 Level-2
Profile L° ‘ Cl profile ‘ Cl profile »
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2. 3E  INERFm[2/2]

s Q.{P,B AT ETIXEID?
cQ UVOTHNRTZERAA=2—3H23DH?

P, B, A,Hare, Nanson,
Coomb, Maximin, Black®
5 B5D3DTH ARk

“Remoge [

39D AT Y Y FI— )b ORLF B () el & T R 1
n — co THILRIZ liﬂii)‘ﬁ“ﬂ&%‘@ R 3,

[{P,B,A}’Cliﬁﬁﬂ“]kr e T%ﬂi‘t‘%éx—;-—
IR =5 IR O M A = 2 — QFEINGRIEA

L 7
4 55 )

4% EZIL—ILDEKE
® : 54 S - R N

N 3 "‘"‘\‘——«"’ /_::I
N,
RNV —Ie: N> XHh(MP),

/ L
BHAL1DEZ A2REE (BRRESE -
(AB), (2CN), (WPU), (NU) % iil§ 7= T

jlg g W—) Y (er‘N 27 —:;“"7»--Nn)
¢

Bi@mxehkzEl <, #2 2RAEL (: 4
V=) | %D LTERREBEZ SENICHRIFET S
(RZRE#R) LVH, RBEHNTFREBRBE/ O NI,

- /
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