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1 Introduction 

1.1 Infinite Regress in Procedural Choice 

Imagine a group of individuals faces a collective choice problem from the set of alternatives 𝑋 

without an ex ante agreement on the procedure that will be used to aggregate their preferences. 

As Nurmi (1992) points out, different voting procedures can result in different outcomes even if 

we fix each individual’s preferences over 𝑋. Nurmi provides an example that shows plurality, 

runoff, amendment, Borda count, and approval voting each result in different outcomes for a 

given preference profile. Even when we restrict our attention to scoring rules only, Saari (1992) 

shows that if there are ten alternatives, millions of different rankings of 𝑋 can be achieved by 

the choice of scoring rule. In fact, many researchers have verified such possibilities based on 

real election data such as those from the 1968 (Roderick, 1979) and the 1992 (Brams & Merrill, 

1994) U.S. presidential elections. These observations demonstrate that the choice of procedure 

is no less important than the choice of 𝑋.  

In social choice theory, there are many axiomatic studies of voting rules, such as May's 

(1952) characterization of majority rule, based on the premise that a good rule is one that 

satisfies normative and/or intuitive criteria such as Condorcet’s criterion, unanimity, etc. 

However, many negative results, the best known of which are Arrow’s and Gibbard and 

Satterthwaite’s, suggest that there is no perfect voting rule. On the other hand, there is another 

point of view that a good rule is one that is favored by the group of individuals themselves, even 

though such a procedure might fail to satisfy the normative axioms that social choice 

researchers esteem. Dietrich (2005) formally defines this view as Procedural Autonomy (PA). It 

demands that the procedure by which the society aggregates voters’ procedural judgments 

should be entirely determined by the procedural judgments, i.e. their (true) preferences over the 

set of possible procedures, within the group. However, taking PA literally we could face an 

infinite regress problem as follows. When a society faces a decision-making problem, 𝑋, PA 

demands that the rule to aggregate the society members’ opinions over 𝑋 must be determined 

by their opinions over such rules. This means the society faces a new decision-making problem: 

how to choose the rules to choose 𝑋. Using PA again, it follows that the society needs to 

aggregate its members’ opinions over the rules to choose the rule to choose 𝑋. This process can 

go on ad infinitum unless there is an ex ante agreement at some meta level, because no 

procedure is legitimate before it is selected by the meta rule to choose such procedures—this is 

the infinite regress problem in procedural choice1.  

 The objective of this research is to find a rational way to stop and solve this infinite 

                                                         
1 Similar regress problems have appeared in many academic disciplines. For instance, the epistemic 

regress problem, i.e., a belief B1 must by justified by belief B2 but B2 must be also justified by belief B3, 

and so on, is a classic problem in epistemology (See, Steup, 2006).  
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regress problem; I propose a new concept—weak/strong convergence—as the solution. The 

objective is stated in detail in section 1.2, with reference to relevant literature. Section 1.2 also 

introduces the basic concept of convergence. Section 1.3 provides a more formal introduction 

with some preliminary results demonstrating the basic difficulties with procedural choice. 

Chapter 2 gives a rigorous definition of the weak/strong convergence concept and shows some 

initial results. In Chapter 3, I discuss the design possibilities for menus of voting rules following 

a convergence approach. 

In the convergence model (and most of the related literature referred to in section 1.2), 

the society—the set of individuals who have the right to vote—is supposed to be fixed a priori. 

There are, however, some cases where this implicit assumption is not appropriate. In Section 

1.3, I introduce the classic boundary problem, or how to determine the “society” itself and I 

briefly sketch its expression as an aggregation problem. Chapter 4 includes the arguments 

related to the strategic aspect of such aggregation procedures. Concluding remarks are given in 

Chapter 5.  

 

1.2 Related Literature 

The infinite regress problem of procedural choice is a classic problem that Buchanan and 

Tullock (1962) referred to, arguing the importance of unanimity of consent at the constitutional 

level. Rae (1969) also studies individuals’ procedural judgments in terms of minimizing the 

expected frequency of losing in the future. Lagunoff (1992) argues for a possible solution to the 

infinite regress problem, showing that a society can reach a Pareto-optimal outcome by 

repeatedly dropping the unsuitable mechanisms that fail to satisfy his “Free Choice” condition, 

which rules out such mechanisms that make some agent locked in to an equilibrium outcome.  

Recently, a sequence of studies examined the procedural choice problem based on so-

called fixed point approach (Barbera & Jackson, 2004; Koray, 2000; Koray & Slinko, 2006; 

Kultti & Paavo, 2009). Intuitively, a social choice function (SCF) is called self-selective if it 

chooses itself from among other rival SCFs (Koray, 2000). If procedural choice is to be made 

using the existing procedure (e.g., the amendment procedure of the Constitution of Japan) self-

selectivity is a powerful tool for detecting stable states. Barbera and Jackson (2004) considered 

the process of constitutional design, where one alternative is the status quo, and studied the class 

of voting rules that choose themselves (i.e., self-stable voting rules). Kultti and Paavo (2009) 

extended the notion of stability so that the model incorporates higher-level meta procedures. 

There are, however, some impossibilities on the design of self-selective procedure. Koray 

(2000) shows that for unanimous and neutral SCFs, the (universal) self-selectivity is logically 

equivalent to dictatorship, in the proof of which Koray shows the logical relationship with 

Arrow’s impossibility result. Subsequently, Koray and Slinko (2006) characterized the class of 
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dictatorship and anti-dictatorship using a weaker requirement of self-selectivity.  

 While these researchers considered single voting rules, the notion of stability was later 

extended to apply to menus of voting rules. Houy (2004) states that a menu of social choice 

rules (SCRs) satisfies the condition of first-level stability if, for all preference profiles over the 

voting rules, the menu includes one and only one SCR that chooses itself. Houy then shows the 

negative result that no menu of SCRs can satisfy first-level stability and two more intuitive 

conditions (this result is discussed further in Chapter 3). On the other hand, Diss, Louichi, 

Merlin, and Smaoui (2012) and Diss and Merlin (2010) studied the actual probability that a 

menu of SCRs is stable (i.e., there is at least one SCR that chooses itself) under the Impartial 

Culture (IC) and Impartial Anonymous Culture (IAC) models, respectively. Their results show 

that when the population is (infinitely) large, the probability that the set of {plurality (P), Borda 

(B), anti-plurality (A)} is stable is 84.49% in the IC model and 84.10% in the IAC model.  

These studies show the difficulty of determining the most legitimate procedure based 

on voters’ own procedural judgments. The difficulty exists even when a society chooses the 

procedure from among three popular voting rules (e.g., P, B, and A). The objective of this study 

is to eliminate these difficulties, specifically, 1) to provide a procedural choice method that can 

determine the unique legitimate outcome without failure and 2) to enable choice from a set of 

familiar voting procedures, such as the set: {P, B, A}. To achieve this objective, I propose a new 

approach based on the concept of weak/strong convergence. Using two examples below, I 

outline the idea of convergence. The examples also indicate why we need the concept of 

convergence instead of the previous concept of stability (e.g., of a menu of voting rules). In the 

following examples, let 𝑋 = {𝑎, 𝑏, 𝑐} be a set of mutually exclusive alternatives (social states) 

and 𝐹 = {𝑃, 𝐵, 𝐴} be a set of admissible SCRs.  

 

Example 1: The Menu is Stable but the Outcome is not Uniquely Determined 

Suppose 𝑛 = 42 with the following preferences:  

- 9 voters’ preferences are 𝑎, 𝑏, 𝑐 and 𝑃,𝐵, 𝐴, (i.e., among the alternatives they 

prefer 𝑎 to 𝑏 and 𝑏 to 𝑐, while among voting rules, they prefer 𝑃 to 𝐵 and 𝐵 to 

𝐴)  

- 11 voters’ preferences are 𝑎, 𝑐, 𝑏 and 𝑃, 𝐴, 𝐵,  

- 17 voters’ preferences are 𝑏, 𝑐, 𝑎 and 𝐵, 𝐴, 𝑃,  

- 1 voter’s preference is 𝑐, 𝑎, 𝑏 and 𝐴, 𝑃, 𝐵, and 

- 4 voters’ preference is 𝑐, 𝑏, 𝑎 and 𝐴,𝐵, 𝑃.  

(The reader might wonder about the plausibility of such preferences with regard to 𝑋 and 𝐹, 

however, I will formally show in Chapter 2 that this profile is possible with the assumption of 

consequentialism.) 
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Let 𝐿0 and 𝐿1 be the combination of such preferences (the preference profile) 

regarding 𝑋 and 𝐹, respectively. Once 𝐿0 and 𝐿1 are given, the reader can easily check that 

each procedure chooses itself among 𝐹, i.e. 𝑃(𝐿1) = 𝑃, 𝐵(𝐿1) = 𝐵, and 𝐴(𝐿1) = 𝐴. The 

menu is clearly stable at 𝐿1 in Diss and Merlin's (2010) sense. However, there arises a new 

problem: which of the self-selecting procedures should be used when each of them results in a 

different outcome?  

 

Example 2: The Menu is not Stable but the Outcome is Uniquely Determined 

Suppose 𝑛 = 14 and the individuals have the following preferences:  

- 4 voters’ preferences are 𝑎, 𝑏, 𝑐 and 𝑃,𝐵, 𝐴, 

- 6 voters’ preferences are 𝑎, 𝑏, 𝑐 and 𝐵, 𝑃, 𝐴, and 

- 4 voters’ preferences are 𝑏, 𝑐, 𝑎 and 𝐴, 𝑃, 𝐵. 

In this case, no voting rule chooses itself. So, the menu 𝐹 is not stable at this preference profile 

regarding 𝐹. However, each 𝑃,𝐵, 𝐴—when used as a rule to choose the rule to choose from 𝑋 

—results in the same outcome (see Figure 1). In such a case, the failure of stability seems less 

problematic—the ultimate outcome is the same no matter which of the rules to choose the rule 

is selected. 

 

 

Figure 1. Example of a regress convergence 

𝐹1 denotes the set of voting rules for the choice of alternatives and 𝐹2 denotes the set of 

voting rules for the choice of 𝐹1. 

 

These examples show that the stability of a menu does not indicate its ability to determine 

a unique outcome. Indeed, Example 2 shows the possibility that each procedure may ultimately 

reach the same outcome at some meta level even though the judgments of the procedures do not 

coincide and no procedure chooses itself. The phenomenon of every procedure ultimately 

reaching the same outcome is what I name convergence. The formal definition and technical 

results are presented in Chapters 2 and 3.  

I conclude this section with some technical clarifications based on my literature review. In 

the formulation of procedural choice, the timing of the procedural choice is a key assumption. In 

the literature, there are two types of assumption with respect to this timing: type 0, when there is 
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no specific agenda such as Rawls’ veil of ignorance (Barbera & Jackson, 2004; Houy, 2004; 

Rae, 1969), and type 1, when a society is facing a specific agenda (Koray, 2000; Koray & 

Slinko, 2006; Lagunoff, 1992). This dissertation makes the latter assumption, because it seems 

more suited to the assumption of PA that voters’ procedural judgments can and may differ for 

different agendas.  

Another important assumption in the model is what type of procedural judgments are 

allowed. Roughly speaking, in studies assuming a type 0 situation, voters’ procedural judgments 

are evaluated in terms of the expected payoff or probability of being in the losing side in the 

future events. In contrast, in most of the studies assuming a type 1 situation, each individual is 

assumed to hold a consequential procedural preference: they are assumed to evaluate meta-level 

procedures according to their outcomes (consequentialism). Although the consequentialism 

assumption is easy to deal with, other types of meta-preferences are also considered in related 

literature. For example, Nurmi (2015) argues the preference over the criteria of voting rules 

such as Condorcet winner criterion, monotonicity, etc. From the deliberating point of view, List 

(2007) argues the possibility that votes agree on the conceptualization of the decision problem. 

In the next section, I give a formal mathematical introduction to the procedural choice problem 

and show the basic impossibility arising when we consider any type of meta-preference. This 

negative result motivates the analysis in Chapters 2 and 3, which gives a solution concept under 

a consequential society.  

 

1.3 Preliminary Formal Discussion2 

In this section, I provide a formal introduction to the procedural choice problem and show the 

basic difficulty with procedural choice that motivates the analysis in the next chapters. I 

formulate a procedural choice rule (PCR), which is the rule for aggregating voters’ procedural 

judgments and is technically close to the decision rule studied in Dietrich (2005). I introduce 

several new axioms, which I argue are necessary for the process of choosing voting procedures 

without an ex ante agreement, and show an impossibility.  

 

1.3.1 Notation 

Let 𝑁 = {1,2,… , 𝑛}  denote a society with at least two individuals, 𝑛 ≥ 2 , that is to make a 

collective decision. Let 𝑋 denote the set of decision alternatives, whose cardinality is 2 ≤ |𝑋| <

∞. The society is supposed to make an endogenous decision over 𝑋 without an agreement on 

the procedure to aggregate their preferences.  

                                                         
2 Main results of this subsection are originally published in the following: Takahiro Suzuki and Masahide 

Horita, "How to Order the Alternatives, Rules, and the Rules to Choose Rules: When the Endogenous 

Procedural Choice Regresses". Outlooks and Insights on Group Decision and Negotiation. Springer 

International Publishing, 2015. p.47-59. 
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A binary relation 𝑅 over a non-empty set 𝐴 is defined as a subset of 𝐴×𝐴. As usual, for 

𝑎, 𝑏 ∈ 𝐴, I often write 𝑎𝑅𝑏 instead of (𝑎, 𝑏) ∈ 𝑅. For a binary relation 𝑅 on 𝐴,  

- 𝑅 is reflexive if 𝑎𝑅𝑎 for all 𝑎 ∈ 𝐴. 

 - 𝑅 is transitive if, for all 𝑎, 𝑏, 𝑐 ∈ 𝐴, 𝑎𝑅𝑏 and 𝑏𝑅𝑐 implies 𝑎𝑅𝑐.  

 - 𝑅 is complete if, for all 𝑎, 𝑏 ∈ 𝐴, 𝑎𝑅𝑏 or 𝑏𝑅𝑎 holds.  

 - 𝑅 is anti-symmetric if, for all 𝑎, 𝑏 ∈ 𝐴, [𝑎𝑅𝑏 & 𝑏𝑅𝑎] implies 𝑎 = 𝑏.  

 - 𝑅 is a weak order if it is reflexive, transitive, and complete.  

 - 𝑅 is a linear order if it is an anti-symmetric weak order.  

Let 𝒲(𝐴) and ℒ(𝐴) be the set of all weak orders and linear orders over 𝐴, respectively. Let 

𝑃(𝑅) and 𝐼(𝑅) respectively denote the asymmetric and symmetric parts of binary relation 𝑅, 

i.e.:  

𝑃(𝑅) ≔ {(𝑎, 𝑏) ∈ 𝐴×𝐴│(𝑎, 𝑏) ∈ 𝑅 and (𝑏, 𝑎) ∉ 𝑅}. 

𝐼(𝑅) ≔ {(𝑎, 𝑏) ∈ 𝐴×𝐴│(𝑎, 𝑏) ∈ 𝑅 and (𝑏, 𝑎) ∈ 𝑅}. 

Given a binary relation 𝑅  over 𝐴  and a nonempty subset 𝐵 ⊆ 𝐴 , I denote by 𝐺(𝑅, 𝐵)  the 

greatest elements of 𝐵 relative to 𝑅, i.e., 𝐺(𝑅, 𝐵) ≔ {𝑥 ∈ 𝐵│𝑥𝑅𝑦 for all 𝑦 ∈ 𝑋}. 

 A preference profile over a nonempty set 𝐴  is an 𝑛 -tuple of weak orders 𝑅 =

(𝑅1, 𝑅2, … , 𝑅𝑛) ∈ 𝒲(𝐴)𝑛 , where the 𝑖th  element 𝑅𝑖  represents individual 𝑖 ’s preference. A 

social choice function (SCF) 𝑓  over 𝐴  is a function that assigns an alternative to each 

preference profile over 𝐴 , such that 𝑓：𝒲(𝐴)𝑛 → 𝐴 . Let ℕ = {1,2,3, … }  denote the set of 

positive integers. I define a sequence 𝐹0, 𝐹1, 𝐹2, … of sets of SCFs as compatible if:  

(1) 𝐹0 = 𝑋, and 

(2) ∀𝑘 ∈ ℕ, 𝐹𝑘 is a set of SCFs over 𝐹𝑘−1.  

Given such a compatible sequence, I define an element of 𝐹𝑘  as a level-𝑘  SCF (or level-𝑘 

procedure, interchangeably). In words, a level-𝑘  SCF is a rule [to choose the rule] ((𝑘 − 1) 

times) to choose an alternative. Note that there are many compatible sequences.  

 

Example 3: Universal Domain 

For all 𝑘 ∈ ℕ, let 𝐹𝑘 be the set of all SCFs over 𝐹𝑘−1. It is easy to see that, defined in this way, 

the sequence 𝐹0, 𝐹1, 𝐹2, … is compatible.  

 

According to Dietrich (2005), Universal Domain (UD) is an assumption that the society considers 

all level-1 procedures. The sequence in Example 3 is a straight extension of UD because it also 

considers any meta-level procedures. In the following argument, I call such 𝐹0, 𝐹1, 𝐹2, … the 

UD-sequence.  

Given a compatible sequence 𝐹0, 𝐹1, 𝐹2, …, I assume that each individual 𝑖 ∈ 𝑁 has a 

preference order 𝑅𝑖
𝑘 ∈ 𝒲(𝐹𝑘)  for all 𝑘 ∈ ℕ . A level- 𝑘  preference profile 𝑅𝑘 =
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(𝑅1
𝑘, 𝑅2

𝑘 , … , 𝑅𝑛
𝑘)  is a preference profile over 𝐹𝑘 . Integrating the level- 𝑘  (𝑘 = 0,1,… , 𝐿) 

preference profile 𝑅0, 𝑅1, … , 𝑅𝐿, I call 𝑅 = (𝑅0, 𝑅1, … , 𝑅𝐿) a level-𝐿 meta-profile.  

 

Definition 1. Procedural Choice Rule 

Let 𝐿 ∈ ℕ  and 𝐷 ⊆ 𝒲(𝑋)𝑛×𝒲(𝐹1)𝑛×⋯×𝒲(𝐹𝐿)𝑛 . A level-𝐿  PCR 𝐸  of domain 𝐷  is 

defined as a function assigning a level-𝐿 social meta preference 𝐸 = (𝐸0, 𝐸1, 𝐸2, … , 𝐸𝐿) to each 

level-𝐿 meta-profile, i.e., 𝐸: 𝐷 → 𝒲(𝑋)𝑛×𝒲(𝐹1)𝑛⋯×𝒲(𝐹𝐿)𝑛.  

 

A PCR expresses a way of determining a society’s collective judgments over the meta-level 

procedures. Given a meta-profile, i.e., each individual’s procedural judgment, the PCR returns 

the collective procedural judgment of the society. Unlike usual social welfare functions, a PCR 

considers people’s procedural judgments. Note that the PCR is an extension of the concept of the 

decision rule in Dietrich (2005), which is a correspondence assigning a subset of 𝑋 for each 

level- 1  meta-profile given the individuals’ procedural judgments 3 . I define the Universal 

Preference Domain (UPD), 𝐷̅, as:  

𝐷̅ ≔ 𝒲(𝑋)𝑛×𝒲(𝐹1)×⋯×𝒲(𝐹𝐿)𝑛. 

 

Example 4: Dictatorial PCR 

Take an individual, called a dictator, 𝑖∗ ∈ 𝑁 and define a dictatorial PCR 𝐸𝑑  as for all level-𝐿 

meta-profile 𝑅,  

∀𝑘 ∈ {0,1,… , 𝐿}, ∀𝑓, 𝑔 ∈ 𝐹𝑘, 𝑓𝐸𝑑
𝑘(𝑅)𝑔 ⇔ 𝑓𝑅𝑖∗

𝑘𝑔. 

 

This is a PCR that judges each element in 𝐹𝑘 according to the will of the dictator. A possible 

problem concerning the dictatorial PCR is that if the dictator 𝑖∗ ’s meta-preference is not 

consistent, the PCR itself must also fail to be consistent.  

 

Definition 2: Inter-Level Consistency (ILC) 

A level-𝐿 PCR of domain 𝐷 satisfies the axiom of Inter-Level Consistency (ILC) if, and only if, 

for all 𝑅 ∈ 𝐷, 𝑘 ∈ {1, … , 𝐿} and 𝑓, 𝑔 ∈ 𝐹𝑘, [𝑓𝐸𝑘𝑔 ⇔ 𝑓(𝑅𝑘−1)𝐸𝑘−1𝑔(𝑅𝑘−1)]. 

 

This consistency property rules out inconsistent social meta-preferences such as those that 

evaluate SCF 𝑓 as being at least as good as SCF 𝑔, even though 𝑓’s outcome is not as good as 

𝑔’s. Behind the axiom of ILC lies the idea that procedural judgments must be made for the very 

decision-making problem that the society faces. It is not that the society determines a universally 

                                                         
3 Note that, technically speaking, the decision rule is more than a level-1 PCR, because Dietrich (2005) does not 

restrict his attention to weak order preferences. Dietrich’s argument is made without specifying the messages on 𝑋.  
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desirable procedure that can be applied to any possible agenda or decision-making process. The 

model allows for an individual who esteems a supermajority rule for amendments to the nation’s 

constitution while that same individual supports the simple majority rule for ordinary legislation.  

 

The next axiom demands that a better rule must result in a better outcome, and a better outcome 

must be supported by a better rule.  

 

Definition 3: Arbitrary Focus (AF) 

A level-𝐿  PCR 𝐸  of domain 𝐷  satisfies the axiom of Arbitrary Focus (AF) if, for all 𝑗 =

0,1, … , 𝐿 − 1 , 𝑅 = (𝑅0, 𝑅1, … , 𝑅𝐿) , and 𝑅′ = (𝑅′
0
, 𝑅′

1
, … , 𝑅′

𝐿
) ∈ 𝐷 , if 𝑅𝜇 = 𝑅′

𝜇
  for all 

𝜇 ≥ 𝑗, then 𝐸𝑗(𝑅) = 𝐸𝑗(𝑅′).  

 

AF states that the level-𝑗 social meta-preference is entirely determined by the level-𝑗 or higher 

level meta-profile. For all 𝑓, 𝑔 ∈ 𝐹𝑗 , AF demands that the collective decision over 𝑓 and 𝑔 is 

determined by the rule to evaluate them, not by their outcomes. To put it differently, AF assumes 

that the choice from 𝐹𝑘 can be treated independently of the original choice problem 𝑋.  

 

1.3.2 Results and Discussion 

Before stating the impossibility theorem concerning the design of PCR, I will introduce the 

technical condition for a connected sequence.  

 

Definition 4: Connected Sequence of Sets of Procedures 

𝐹0, 𝐹1, 𝐹2, …  is called a connected sequence (CON-sequence, hereafter) if it satisfies the 

condition that for all 𝑘 ∈ ℕ  and 𝑓, 𝑔 ∈ 𝐹𝑘  there exist 𝑝 ∈ ℕ  and ℎ0, ℎ1, … , ℎ𝑝 ∈ 𝐹
𝑘  such 

that for some 𝑅1, 𝑅2, … , 𝑅𝑝 ∈ 𝐷,  

ℎ𝑞−1(𝑅𝑞) = ℎ𝑞(𝑅𝑞) for all 𝑞 ∈ {1,2,… , 𝑝}. 

 

Although this definition looks technical, it is not very demanding. Assuming UPD (i.e., allowing 

all logically possible meta-profiles) and supposing also that each 𝐹𝑘 is the set of unanimous 

SCFs where for all level-(𝑘 − 1) SCF 𝑓 ∈ 𝐹𝑘−1, if everyone ranks 𝑓 as superior to any other 

level-(𝑘 − 1) SCF, then the level-𝑘 SCF chooses 𝑓. We can verify that the sequence is a CON-

sequence when 𝑝 = 1 because all the level-𝑘 procedures yield the same outcome at this profile. 

It is also verified that the UD-sequence is an example of a CON-sequence under UPD. 

 

Now, I state the impossibility result. Let 𝐸𝐼   be the indifferent PCR such that for all 𝑘 ∈
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{0,1,2, … , 𝐿}, 𝑓, 𝑔 ∈ 𝐹𝑘, and 𝑅 ∈ 𝐷, it follows that 𝑓𝐼 (𝐸𝑘(𝑅))𝑔. In other words, this is a PCR 

that judges any two elements of any level as indifferent.  

 

Theorem 1 

Under any CON-sequence 𝐹0, 𝐹1, 𝐹2, … and UPD, a PCR satisfies ILC and AF if and only if it 

is 𝐸𝐼 .  

 

Proof of Theorem 1. 

The ‘if’ part is straightforward. Let me show the ‘only if’ part. Let 𝐸 be a level-𝐿 PCR. Take 

any 𝑘 ∈ {1,2, … , 𝐿} and 𝑓, 𝑔 ∈ 𝐹𝑘. Take also 𝑅 = (𝑅0, 𝑅1, 𝑅2, … , 𝑅𝐿) ∈ 𝐷.  

Because 𝐹0, 𝐹1, 𝐹2, … is assumed to be connected, there exist level-(𝑘 − 1) profiles 

𝑅1, 𝑅2, … , 𝑅𝑝 ∈ 𝐷
𝑘 and ℎ0(= 𝑓), ℎ1, … , ℎ𝑝(= 𝑔) ∈ 𝐹

𝑘 such that ℎ𝑞−1(𝑅𝑞) = ℎ𝑞(𝑅𝑞) for all 

𝑞 = 1,2, … , 𝑝. Suppose to the contrary that 𝑓𝑃(𝐸𝑘)𝑔. Then, it follows that (ℎ𝑞−1, ℎ𝑞) ∉ 𝐼(𝐸
𝑘) 

for some 𝑞 = 1,2,… , 𝑝  [otherwise, that is if (ℎ0, ℎ1), (ℎ1, ℎ2), … , (ℎ𝑝−1, ℎ𝑝) ∈ 𝐼(𝐸
𝑘) , the 

transitivity of 𝐸𝑘 requires (ℎ0, ℎ𝑝) ∈ 𝐼(𝐸
𝑘), and this is contradictory with regard to 𝑓𝑃(𝐸𝑘)𝑔]. 

Now, let 𝑅′ ∈ 𝐷  be a meta-profile obtained from 𝑅  by substituting 𝑅𝑞  for 𝑅𝑘 . Because 

𝑓(𝑅𝑞) = 𝑔(𝑅𝑞), ILC demands that 𝑓𝐼(𝐸𝑘)𝑔. This contradicts 𝑓𝑃(𝐸𝑘)𝑔. ■ 

 

The theorem states that there is no PCR (the way a society ranks each alternative, rule, the rule to 

choose rules, and so on) that satisfies ILC and AF without being degenerate. In addition to ILC 

and AF, I imposed two assumptions, UPD and CON-sequence. For interpretation of the theorem, 

let me add some notes on these assumptions.  

The first comment is on CON-sequence. I already noted that the UD-sequence is a CON-

sequence. So, it follows that Theorem 1 holds even if we substitute UD-sequence for CON-

sequence. Recall that the UD-sequence represents a situation where a given society does not have 

any agreement about the (meta-level) rules. Once the procedural choice is entirely entrusted to a 

society, it is irrational to drop several SCFs beforehand: even the notorious dictatorship might be 

selected, for example, in the situation where all the group members favor it. In other cases, 

however, the procedural choice is made among a restricted number of SCFs, say {plurality, Borda 

count, anti-plurality}.  

The second comment is on UPD. The next result says what happens if the allowed meta-

profile is restricted.  

 

Definition 5 

Let 𝑘 ∈ {1,2, … , 𝐿} , 𝑓 ∈ 𝐹𝑘 , and 𝑅 = (𝑅0, 𝑅1, … , 𝑅𝐿) ∈ 𝐷 . I define the class of 𝑓  at 𝑅 , 
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denoted 𝐶𝑓[𝑅], as follows:  

- For 𝑘 = 1, 𝐶𝑓[𝑅] = 𝑓(𝑅0).  

- For 𝑘 ≥ 2, 𝐶𝑓[𝑅] = 𝐶𝑓(𝑅𝑘−1)[𝑅].  

 

Definition 6 

Let 𝑅 ∈ 𝐷. I call 𝑖’s level-𝐿 meta-preference 𝑅𝑖 = (𝑅𝑖
0, 𝑅𝑖

1, … , 𝑅𝑖
𝐿) extremely consequential if, 

for all 𝑘 ∈ ℕ and 𝑓, 𝑔 ∈ 𝐹𝑘, 𝐶𝑓[𝑅]𝑅𝑖
0𝐶𝑔[𝑅] ⇔ 𝑓𝑅𝑖

𝑘𝑔.  

 

In general, ILC is such a strong condition that 𝐸1, 𝐸2, … is unique with respect to 𝐸0. I say a 

PCR 𝐸 is derived from a social welfare function (SWF) ℎ on 𝑋 if  

1) for all 𝑓, 𝑔 ∈ 𝐹1, 𝑓𝐸1𝑔 ⇔ 𝑓(𝑅0)ℎ(𝑅0)𝑔(𝑅0), and 

2) for all 𝑘 ≥ 2 and 𝑓, 𝑔 ∈ 𝐹𝑘, 𝑓𝐸𝑘𝑔 ⇔ 𝐶𝑓[𝑅]ℎ(𝑅
0)𝐶𝑔[𝑅]. 

Then, it is easy to verify the following (I omit the proof).  

 

Lemma 1 

A level-𝐿 PCR 𝐸 of domain 𝐷 ⊆ 𝐷̅ satisfies ILC if and only if it is derived from a SWF ℎ on 

𝑋.  

 

Let 𝐷𝐶∗ ⊆ 𝒲(𝑋)×𝒲(𝐹1)×⋯×𝒲(𝐹𝐿) be the set of all extremely consequential meta-profiles. 

We have the following:  

 

Theorem 2 

Take UD-sequence 𝐹0, 𝐹1, 𝐹2, …  and 𝐿 ∈ ℕ . Let 𝐷 = 𝐷0×𝐷1×…×𝐷𝑘 , where 𝜙 ≠ 𝐷𝑘 ⊆

𝒲(𝐹𝑘) for all 𝑘 = 0,1,2,… , 𝐿.  

(1) If 𝐷 = 𝐷𝐶∗, there exists a PCR that satisfies ILC and AF.  

(2) If 𝐷 ∩ (𝐷̅ ∖ 𝐷𝐶∗) ≠ 𝜙, there is no PCR that satisfies ILC and AF.  

 

Proof of Theorem 2 

Proof of (1). It is straightforward to check that a PCR derived from some SWF ℎ on 𝑋 satisfies 

the two axioms.  

 

Proof of (2). Suppose 𝑅𝑖 with respect to 𝑅 = (𝑅1, … , 𝑅𝑛) ∈ 𝐷 ∩ (𝐷̅ ∖ 𝐷𝐶∗) is not extremely 

consequential. Let 𝑘 ∈ {1,2,… , 𝐿} be the smallest level at which the condition collapses. Then, 

we have 𝑓, 𝑔 ∈ 𝐹𝑘  such that 𝐶𝑓[𝑅]𝑅𝑖
0𝐶𝑔[𝑅]  but not 𝑓𝑅𝑖

𝑘𝑔 . 𝑅𝑖
𝑘  is assumed to be complete, 

and so we have 𝑔𝑃(𝑅𝑖
𝑘)𝑓.  

(a) If 𝑅′
𝑘−1

∈ 𝒲(𝐹𝑘−1)
𝑛

  exists such that 𝑓(𝑅′
𝑘−1

) = 𝑔(𝑅′
𝑘−1

) , let 𝑅′ ∈ 𝐷  be a 
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meta-profile obtained from 𝑅 by substituting 𝑅′
𝑘−1

 for 𝑅𝑘−1. AF demands that 𝐸𝑘 = 𝐸′
𝑘
. So, 

we have 𝑔𝑃(𝐸′
𝑘
)𝑓. However, ILC demands 𝑔𝐼(𝐸′

𝑘
)𝑓. Contradiction.  

(b) Consider the other case, i.e., there is no 𝑅′
𝑘−1

∈ 𝒲(𝐹𝑘−1)
𝑛

 such that 𝑓(𝑅′
𝑘−1

) =

𝑔(𝑅′
𝑘−1

) . Because we consider a UD-sequence, there exist ℎ ∈ 𝐹𝑘  such that ℎ(𝑅𝑘−1) =

𝑓(𝑅𝑘−1) and ℎ(𝑅′
𝑘−1

) = 𝑔(𝑅′
𝑘−1

) for all 𝑅′
𝑘−1

∈ 𝐷𝑘−1. With the argument in (a), we have 

that 𝑓𝐼(𝐸𝑘)ℎ and ℎ𝐼(𝐸𝑘)𝑔. With the transitivity of 𝐸𝑘, we have 𝑓𝐼(𝐸𝑘)ℎ. ■ 

 

Under UD-sequence, Theorem 2 states the necessary and sufficient condition for a PCL satisfying 

ILC and AF to exist. It says that it matters whether there exists an individual that is not extremely 

consequential.  

 To conclude, the present section outlines a preliminary model of procedural choice. 

While Theorem 1 states the basic impossibility faced when any type of meta-preference is 

considered (as well as some axioms of PCRs), Theorem 2 shows that the impossibility disappears 

when a society made up of consequential individuals is considered. Based on these observations, 

Chapters 2 and 3 address the situation where a consequential society has a restricted number of 

voting procedures.  

 

1.4 Determination of the Society 

To begin the last part of this introduction, I consider a pre-step of the procedural choice considered 

above. Although most of the research referred to in Section 1.1 and the analysis in Section 1.3 

assume that the society has been defined prior to the voting step, there are some cases where there 

is ambiguity in the definition of which individuals have the right to vote. Indeed, the boundary 

problem—who should be eligible to take part in which decision-making processes (Arrhenius, 

2005; Dahl, 1991)—is a classical problem in political science. While a number of solutions have 

been proposed, Schumpeter (1942) argues that it is the people involved who should determine 

who is entitled to participate in the democratic process: 

Observe: it is not relevant whether we, the observers, admit the validity of those 

reasons or of the practical rules by which they are made to exclude portions of the 

population; all that matters is that the society in question admits it. (Schumpeter, 1942, 

p. 244).  

In Chapter 4, I consider the boundary problem as an aggregation problem, in other words, to 

determine or define a given society based on individuals’ views on who is (or should be) 

included in the society and who is not (or should not be). Formally speaking, let 𝑁̅ be the set of 

potential individuals where each 𝑖 ∈ 𝑁̅ is assumed to have an opinion 𝑁𝑖 ⊆ 𝑁̅ about who he 

or she thinks should be included in the society. Seen as an aggregation problem, one can 

describe the boundary problem as the need to determine the aggregator, hereafter called the 
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nomination rule, 𝜑, that maps each profile (𝑁1, 𝑁2, … ,𝑁𝑛) into 𝜑(𝑁1, 𝑁2, … , 𝑁𝑛) ⊆ 𝑁̅.  

Holzman and Moulin (2010, 2013) made axiomatic studies of such nomination rules 

from a technical perspective, using the determination of prize winners as an example. This 

model is different from an ordinary social choice problem in that each individual 𝑖 ∈ 𝑁̅ is a 

candidate as well as a voter. Therefore, if they are selfish in the sense that they care greatly or 

only about whether they are themselves selected, certain types of strategic voting can occur: a 

rational voter 𝑖 ∈ 𝑁̅ might present a misrepresentation of his or her opinion as 𝑁𝑖̃ instead of 

presenting his or her true opinion 𝑁𝑖 so that 𝑖 can win. Indeed, approval voting (AV), often 

noted for its strategy-proofness (Endriss 2013), is nonetheless shown to be fragile to this kind of 

manipulation. Holzman and Moulin (2013) proposed an axiom of impartiality (IMP), which 

demands that the nomination rule be robust against such manipulations.  

 At the same time, however, Holzman and Moulin (2013) show that the constant rule, 

which selects the same individual no matter what the ballots are, is the unique nomination 

function that satisfies the both IMP and the Anonymous Ballots axiom (AB), which corresponds 

with the usual anonymity condition. Their result is based on the assumption that each 𝑁𝑖 is a 

singleton—each person is supposed to submit another person’s name (the person who they think 

deserves the prize), and that the prize winner 𝜑(𝑁1, 𝑁2, … ,𝑁𝑛) is only one person. In other 

words, they think of the nomination rule 𝜑 as a function from the domain 

{(𝑁1, 𝑁2 , … ,𝑁𝑛)│𝑁𝑖 ∈ 𝑁̅ ∖ {𝑖} for all 𝑖 ∈ 𝑁̅} to codomain 𝑁̅. In their subsequent work, 

Tamura (2015) and Tamura and Ohseto (2014) considered nomination correspondence (i.e., 

allowing multiple winners) and show that the impossibility shown in Holzman and Moulin 

(2013) can be relieved. Other domains and codomains have also been studied: the domain of 

approval ballots 𝑁𝑖 ⊆ 𝑁̅ (Alon et al. 2011), the codomain of 𝑁̅ ∪ {𝜙} (Mackenzie 2015)4, etc.  

 Although a variety of studies have considered the design possibility of impartial 

nomination rules under each domain-codomain pair, there seems no systematic study of the 

comparisons between popular pairs. In Chapter 4, I aim to answer the question of which 

domain-codomain pairs perform well in terms of design possibility by the comparative study of 

each domain-codomain pair. As Dietrich (2005) argues, some axioms (anonymity, neutrality, 

and monotonicity) are considered to be essential under PA. Chapter 4 is also designed to find 

impartial nomination rules satisfying these axioms. In Chapter 4, I first show the common 

structure that an impartial and anonymous nomination rule has under various domain-codomain 

pairs (Lemma 7). Later, the design possibility under each domain-codomain setting will be 

discussed.  

 Finally, I introduce literature that relates to the nomination rules. The framework of 

                                                         
4 While some of them (Alon et al. 2011; Holzman and Moulin 2013) also consider nondeterministic rules (i.e., the 

codomain is the set of probability distributions over 𝑁̅), I restrict my attention to deterministic rules only throughout 

the chapter.  
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nomination rules is very similar to the endogenous choice of representative committees (Brams, 

Kilgour, & Sanver, 2007; Kilgour, Brams, & Sanver, 2006). Indeed, Brams et al. (2007) studied 

the aggregation of approval ballots, where each of the ballots is the set of individuals who the 

voter thinks should be on the committee. They proposed the Minimax procedure based on the 

minimization of the Humming distance from the voters’ ballots. For strategic aspects of 

endogenous choice, Amorós (2009, 2011) considered a strategy-proof mechanism in the slightly 

different context that there exists a unique person who everyone thinks is the best person to be 

chosen.  

 In the nomination rule, each individual 𝑖 ∈ 𝑁̅ is assumed to submit 𝑁𝑖 ⊆ 𝑁̅. 

Technically speaking, such 𝑁𝑖 can be regarded as 𝑖’s (presented) dichotomous preference over 

𝑁̅. In general, a preference relation on a certain set of alternatives is called dichotomous if it has 

at most two indifferent classes, usually interpreted as the acceptable class and the unacceptable 

class. The study of approval voting (AV) in this preference domain has resulted in a lot of 

concern (Vorsatz, 2008; Vorsatz, 2007; Sato, 2014). As I noted above, however, AV is not 

impartial. Therefore, a natural question is how can the mechanism of AV be modified to satisfy 

impartiality without losing its preferable properties such as anonymity and neutrality? My 

comparative study of various rules described in Chapter 4 provides an answer to this question.  
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2 Regress Convergence5 

2.1 Intuition of Regress Convergence 

In this chapter, I formulate a phenomenon—weak/strong convergence (of a preference profile)— 

where the regress argument is supposed to naturally disappear within finite steps. Intuitively speaking, 

convergence is a phenomenon where every voting rule in the menu ultimately provides the same 

outcome6. The aim of this chapter is to show how and how often this phenomenon occurs.  

I will first explain the basic idea using an example. Suppose a society of 14 individuals 

must choose one of three candidates—𝑎, 𝑏, and 𝑐—and there is an ex ante agreement on the set, F, of 

potential voting rules, where 𝐹 = {plurality (𝑃), Borda (𝐵), anti − plurality (𝐴)} . When the 

preference profile on the set of candidates 𝑋  is given as 𝐿1−10
0 : 𝑎𝑏𝑐 , and 𝐿11−14

0 : 𝑏𝑐𝑎  (i.e., 

individuals 1,2,… ,10  prefer 𝑎  to 𝑏  and 𝑏  to 𝑐 ; individuals 11, 12, 13, and 14  prefer 𝑏  to 𝑐 

and 𝑐 to 𝑎), the three voting rules 𝑃, 𝐵, and 𝐴 yield {𝑎}, {𝑎}, and {𝑏}, respectively. Suppose now 

that the same society votes on which rule in 𝐹 to use. If everyone is consequential (i.e., preferring 

those rules that yield their own preferred results) and is required to submit a linear order, it is 

understood that the first 10 individuals submit either "𝑃𝐵𝐴" or "𝐵𝑃𝐴, " and the remaining four 

individuals submit "𝐴𝑃𝐵" or "𝐴𝐵𝑃". If they submit as: 𝐿1−4
1 : 𝑃𝐵𝐴, 𝐿5−10

1 : 𝐵𝑃𝐴, and 𝐿11−14
1 :𝐴𝑃𝐵, 

then applying the same three voting rules to this profile (𝐿1
1 , 𝐿2

1 … , 𝐿14
1 ), 𝑃 yields {𝐵} while 𝐵 and 

𝐴 yield {𝑃} (see Figure 12).  

 

 

Figure 2. Example of a regress convergence 

𝐹1 denotes the set of voting rules for the choice of candidates and 𝐹2 denotes the set of 

voting rules for the choice of 𝐹1.  

 

Note that each 𝑃2, 𝐵2, and 𝐴2 (the rule to choose the rule) ultimately reaches the same outcome {𝑎}. 

                                                         
5 Main results of this section are originally published in the following: Takahiro Suzuki and Masahide 

Horita (2017), “Plurality, Borda count, or anti-plurality: regress convergence phenomenon in the 

procedural choice”. Bajwa, D., Koeszegi, S. T., and Vetschera, R. (eds) Group Decision and Negotiation. 

Theory, Empirical Evidence, and Application: 16th International Conference, GDN 2016, Bellingham, 

WA, USA, June 20-24, 2016, Revised Selected Papers, LNBIP Vol.274, 43-56. 
6 Saari & Tataru (1999) argue in their introduction that “Except in extreme cases such as where the voters are in total 

agreement, or where all procedures give a common outcome, it is debatable how to determine the ‘true wishes’ of the 

voters.” Clearly, the intuition of regress convergence lies in these latter “extreme cases” where all procedures (rules) 

produce the same (ultimate) outcome, although our results show that the phenomenon can occur relatively frequently 

in some familiar menus. 
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Thus, no matter which rule in 𝐹2, 𝐹3, … is selected, the ultimate outcome is the same. Thus, further 

regress has no meaning for the determination of the ultimate outcome. In general, a profile 𝐿0 is said 

to weakly converge to 𝐶 ⊆ 𝑋 if such a (sequence of) consequential profile(s) exists and any higher-

level meta rules ultimately result in the same 𝐶.  

 The current chapter is organized as follows. Section 2.2 shows basic notation. In Section 2.3, 

I show the formal definition of convergence. Section 2.4 states the probability model and the basic 

technique of the probability calculation. In Section 2.5, I show theoretical results.  

 

2.2 Basic Notation 

Let 𝑁 = {1,2,… , 𝑛}  be a society of 𝑛  individuals, where 2 ≤ 𝑛 < +∞ . For any nonempty and 

finite set 𝐴, ℒ(𝐴) denotes the set of all linear orders over 𝐴. A preference profile over 𝐴 is an 𝑛-

tuple of linear orders (𝐿1, 𝐿2, … , 𝐿𝑛) ∈ ℒ(𝐴)
𝑛, where the 𝑖th element 𝐿𝑖 is interpreted as individual 

𝑖’s preference. For any nonempty and finite set of alternatives 𝐴, a social choice rule (SCR) 𝑓 maps 

the preference profile 𝐿 = (𝐿1, … , 𝐿𝑛) ∈ ℒ(𝐴)
𝑛 into a nonempty subset of 𝐴, i.e. 𝜙 ≠ 𝑓(𝐿;𝐴) ⊆ 𝐴. 

A SCR 𝑓 is called a social choice function (SCF) if it is always singleton-valued. When 𝑓 is a SCF, 

with a slight abuse of notation, I write 𝑓(𝐿) = 𝑥 instead of 𝑓(𝐿) = {𝑥}.  

Let 𝐴  and 𝐵  be any nonempty and finite sets with the same cardinalities, 0 < |𝐴| =

|𝐵| < ∞ (𝐴 and 𝐵 can be identical). For any preference profile 𝐿 = (𝐿1, 𝐿2, … , 𝐿𝑛) ∈ ℒ(𝐴)
𝑛 and 

a bijection 𝜎: 𝐵 → 𝐴, I define a (permuted) preference profile 𝐿𝜎 = (𝐿1
𝜎, 𝐿2

𝜎 , … , 𝐿𝑛
𝜎) ∈ ℒ(𝐵)𝑛 on 𝐵 

as follows: for all 𝑎, 𝑏 ∈ 𝐵 and 𝑖 ∈ 𝑁,  

𝑎𝐿𝑖
𝜎𝑏 ⇔ 𝜎(𝑎)𝐿𝑖𝜎(𝑏). 

I say a SCR is neutral if, for any finite nonempty sets 𝐴 and 𝐵 with |𝐴| = |𝐵|, alternative 𝑏 ∈ 𝐵, 

bijection 𝜎: 𝐵 → 𝐴, and profile 𝐿 ∈ ℒ(𝐴)𝑛,  

𝜎(𝑏) ∈ 𝑓(𝐿; 𝐴) ⇔ 𝑎 ∈ 𝑓(𝐿𝜎; 𝐵). 

This axiom demands that the outcome of the SCR must not depend on the names of the alternatives. 

Following are brief descriptions of several SCRs7 that are well-known in social choice theory. Note 

that all of them are neutral.  

 

(1) Scoring Rules (Positional Rules) 

A scoring rule 𝑓 is characterized with the combination of vectors [𝑠1
𝑚 , 𝑠2

𝑚 , … , 𝑠𝑚
𝑚]𝑚≥3. For a given 

set 𝐴 with |𝐴| = 𝑚 ≥ 2 and a preference profile 𝐿 ∈ ℒ(𝐴)𝑛, 𝑓 assigns to each alternative 𝑠𝑗
𝑚 

points (𝑗 = 1,2, … ,𝑚) if it is ranked at the 𝑗th position in one’s preference, where we assume that 

1 = 𝑠1
𝑚 ≥ 𝑠2

𝑚 ≥ ⋯ ≥ 𝑠𝑚
𝑚 = 0 for each 𝑚 ≥ 28. The choice set 𝑓(⋅) is defined as the set of options 

                                                         
7 Nurmi (2002) gives a more detailed description of these voting rules, including their axiomatic properties and the 

related paradox.  
8 As Saari (2012) and many other authors point out, without loss of generality we can standardize arbitrary scoring 

rules into this form.  
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with the highest scores. For example, plurality, denoted 𝑓𝑃, has the score assignment [1,0,0]𝑚=3 

and [1,0,0,0]𝑚=4, Borda count, denoted 𝑓𝐵, has [1, 1 2⁄ , 0]𝑚=3 and [1, 2 3⁄ , 1 3⁄ , 0]𝑚=4, and 

anti-plurality, denoted 𝑓𝐴, has [1,1,0]𝑚=3 and [1,1,1,0]𝑚=4. In general, Borda count9 assigns 

𝑠𝑗
𝑚 =

𝑚−𝑗

𝑚−1
 for each 𝑗 = 1,2,… ,𝑚. For 𝑘 ∈ ℕ, a SCR 𝑓 is called a 𝑘-approval voting 𝐸𝑘 if it is a 

scoring rule with the assignment [𝑠1
𝑚, 𝑠2

𝑚 , … , 𝑠𝑚
𝑚]𝑚≥3, where if 𝑚 > 𝑘, then  

𝑠𝑗
𝑚 = {

1 if 𝑗 ≤ 𝑘
0 otherwise.

 

In words, a 𝑘-approval voting rule 𝐸𝑘 assigns 1 point to the 1st, 2nd,… , 𝑘th ranked alternatives 

and zero points to the others. Note that we do not specify how 𝐸𝑘 works if there are equal to or less 

than 𝑘 alternatives. Therefore, technically speaking, 𝐸𝑘 just specifies the class of scoring rules.  

 

(2) Sequential Positional Rules 

The sequential positional rules have multiple rounds to determine the winners. From the first to the 

(𝑚 − 2) round, the score of each remaining alternative is calculated and the alternative with the 

lowest score is eliminated. In the (𝑚 − 1) round (note that exactly two alternatives remain now), 

the winning alternative is determined by the majority rule. For the score calculation in each round, 

Hare's system 𝑓𝐻 uses the plurality rule and Coomb's procedure 𝑓𝐶 uses the anti-plurality rule. 

Nanson’s procedure is defined in a similar way. In each round, it eliminates all the candidates whose 

Borda score (the scores of candidates evaluated by Borda count) do not surpass the average Borda 

score.  

 

(3) Maximin Rule (𝑓𝑀) 

The Maximin score of alternative 𝑥 ∈ 𝑋 is defined as min
𝑦∈𝑋

|{𝑖 ∈ 𝑁│𝑥𝐿𝑖𝑦}|. Then, 𝑓𝑀 chooses the 

alternative(s) with the highest scores.  

 

(4) Black's Rule (𝑓𝐵𝑙) 

Black’s rule chooses the Condorcet winner, if it exists. Otherwise, it chooses the Borda winner. 

 

2.3 Definition of Convergence 

To help the reader understand the formal definition of convergence that follows, I will first outline the 

hypothetical situation. Assume that a society faces a decision requiring a choice from a set of 

                                                         
9 Note that my model normalizes the score assignment. In common use, Borda count assigns (𝑚 − 𝑗) points for the 

alternative ranked at the 𝑗th position (when there are 𝑚 options). Dividing the assignments by the constant 

(𝑚 − 1), my 𝑠𝑗
𝑚 =

𝑚−𝑗

𝑚−1
 is obtained.  
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alternatives 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑀} , where 3 ≤ 𝑀 < +∞  and that they have in mind a menu 𝐹 =

{𝑓1, … , 𝑓𝑚} (2 ≤ 𝑚 < +∞) of possible SCRs (throughout Chapters 2 and 3, I use the letter 𝐹 as a 

menu of SCRs only). For instance, they agree on the use of either the plurality, Borda count, or anti-

plurality rule but there is no agreement on which of them should be used for the current agenda. At the 

first level, the society applies each SCR in 𝐹1  (upper script expresses the argument level) to the 

collected preference profile 𝐿0 over 𝑋. If every SCR gives the same outcome (convergence), the 

regress stops. Otherwise, the society tries to vote on 𝐹1. Then, the society applies each SCR in 𝐹2 to 

the collected preference profile 𝐿1  over 𝐹1 . If every SCR gives essentially the same outcome 

(convergence), the regress stops. Otherwise, the society tries to vote on 𝐹2. The process can go on ad 

infinitum unless the society finds a convergence.  

 

Definition 7: Level10  

The level-1 issue is the choice of 𝑋 using each 𝑓𝑗 ∈ 𝐹. In this context, each 𝑓𝑗 (𝑗 = 1,2,… ,𝑚) is 

called a level-1 SCR and denoted 𝑓𝑗
1 and the level-1 menu is denoted 𝐹1 = {𝑓1

1,… , 𝑓𝑚
1}. For any 

integer 𝑘 ≥ 2, the level-𝑘 issue is the choice of 𝐹𝑘−1 using 𝑓1, 𝑓2, … , 𝑓𝑚. In this context, each 

𝑓𝑗 (𝑗 = 1,2,… ,𝑚) is called a level-𝑘 SCR and denoted 𝑓𝑗
𝑘 and the level-𝑘 menu is denoted 𝐹𝑘 =

{𝑓1
𝑘, 𝑓2

𝑘,… , 𝑓𝑚
𝑘}.  

 

Definition 8: Class  

- For any level-1  SCR 𝑓1 ∈ 𝐹1 , its class at a level-0  preference profile 𝐿0 ∈ ℒ(𝑋)𝑛 , denoted 

𝐶𝑓1[𝐿
0], is defined as 𝐶𝑓1[𝐿

0] = 𝑓1(𝐿0). 

- For any level-𝑘(≥ 2)  SCR 𝑓𝑘 ∈ ℱ𝑘 , its class at a level-0,1,2, … , (𝑘 − 1)  preference profile 

𝐿0, 𝐿1, … , 𝐿𝑘−1, denoted  𝐶𝑓𝑘[𝐿
0, 𝐿1, … , 𝐿𝑘−1], is defined as  

𝐶𝑓𝑘[𝐿
0, 𝐿1, … , 𝐿𝑘−1] ≔ ⋃ 𝐶𝑔𝑘−1[𝐿

0, 𝐿1, … , 𝐿𝑘−2]

𝑔𝑘−1∈𝑓𝑘(𝐿𝑘−1)

. 

 

Remark. Let ~ be a binary relation over 𝐹𝑘 such that for all 𝑓𝑘, 𝑔𝑘 ∈ 𝐹𝑘,  

𝑓𝑘~𝑔𝑘 ⇔ 𝐶𝑓𝑘 = 𝐶𝑔𝑘 . 

Then it is clear that ~ makes an equivalence relation and each equivalence class is made up of the 

rules with the same class. It is in this sense that I use the term “class” here.  

 

Intuitively, the class of 𝑓𝑘 ∈ ℱ𝑘 represents the ultimate outcome that 𝑓𝑘 derives into 𝑋. When the 

sequence 𝐿0, 𝐿1, … , 𝐿𝑘−1  is obvious in the context, I write simply as 𝐶𝑓𝑘  instead of 

𝐶𝑓𝑘[𝐿
0, 𝐿1, … , 𝐿𝑘−1].  

                                                         
10 In this article, I suppose that the society uses the fixed set of SCRs, 𝑓1, … , 𝑓𝑚 for any level. The distinction 

between 𝑓𝑗
1 and 𝑓𝑗

2 by the superscripts is made based on the supposed agenda. 
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Example 5 

Let 𝑓1, 𝑓2 ∈ 𝐹. Let 𝐿0 and 𝐿1 be profiles over 𝑋 and 𝐹1, respectively. Suppose 𝑓1
1(𝐿0) = {𝑥} ⊆

𝑋, 𝑓2
1(𝐿0) = {𝑥, 𝑦} ⊆ 𝑋, and 𝑓1

2(𝐿1) = {𝑓1
1, 𝑓2

1}. Then, the class of 𝑓1
1 at 𝐿0 is {𝑥} while the class 

of 𝑓1
2 at (𝐿0, 𝐿1) is {𝑥, 𝑦}. These are denoted as follows.  

𝐶𝑓11[𝐿
0] = {𝑥} 

𝐶𝑓12[𝐿
0, 𝐿1] = {𝑥, 𝑦}. 

 

Definition 9: Preference Extension System 

For each 𝑖 ∈ 𝑁, I define 𝑒𝑖: ℒ(𝑋) → ℒ(𝔓(𝑋) ∖ {𝜙}) as a preference extension system if it satisfies 

the following:  

1) for each 𝑎, 𝑏 ∈ 𝑋 and 𝐿𝑖
0 ∈ ℒ(𝑋), if (𝑎, 𝑏) ∈ 𝐿𝑖

0, then {𝑎}𝑒𝑖(𝐿𝑖
0){𝑏}.  

2) for any set 𝐴 ⊆ 𝑋 and 𝑏 ∈ 𝑋 ∖ 𝐴 such that 𝑏𝐿𝑖
0𝑎 for all 𝑎 ∈ 𝐴, 𝐴 ∪ {𝑏}𝑒𝑖(𝐿𝑖

0)𝐴.  

 

In words, 𝑒𝑖 maps each 𝐿𝑖 ∈ ℒ(𝑋) to a linear order preference over the power set of 𝑋 (without the 

empty set). Condition 1 is known in the literature as the Extension Rule (e.g. Barbera, Bossert, & 

Pattanaik, 2004). Almost all the well-known preference extension systems satisfy this condition. 

Condition 2 says that if better alternative 𝑏 is added to 𝐴, the new set 𝐴 ∪ {𝑏} is evaluated as better 

than 𝐴. This condition is also often referred to in the literature (see, e.g., Gardenfors, 1976; Kannai & 

Peleg, 1984). Note that there are many preference extension systems that satisfy these two conditions. 

Throughout this dissertation, I do not specify what kind of 𝑒𝑖 each individual has, except when I give 

a specific example. This guarantees the generality of the following argument.  

 

Definition 10: Consequentially Induced Preference/Profile  

For any 𝑖 ∈ 𝑁, 𝑘 ∈ ℕ, and 𝐿0 ∈ ℒ(𝑋)𝑛 , 𝐿1 ∈ ℒ(𝐹1)𝑛, … , 𝐿𝑘−1 ∈ ℒ(𝐹𝑘−1)𝑛, I define 𝑅𝑖
𝑘 ∈ 𝒲(𝐹𝑘) 

as the 𝑖’s level-𝑘 consequentially-induced weak order preference if, for each 𝑓𝑘, 𝑔𝑘 ∈ 𝐹𝑘,  

(𝑓𝑘, 𝑔𝑘) ∈ 𝐿𝑖
𝑘 ⇔ (𝐶[𝑓𝑘: 𝐿0, 𝐿1, … , 𝐿𝑘−1], 𝐶[𝑔𝑘: 𝐿0, 𝐿1, … , 𝐿𝑘−1]) ∈ 𝑒𝑖(𝐿𝑖

0). 

A linear order 𝐿𝑖
𝑘 ∈ ℒ(𝐹𝑘) is called an 𝑖’s level-𝑘 linear order preference or consequentially induced 

preference (hereafter, level-𝑘 CI preference) if it is compatible with the 𝑖’s level-𝑘 consequentially-

induced weak order preference. I say 𝐿0 ∈ ℒ(𝑋)𝑛, 𝐿1 ∈ ℒ(𝐹1)𝑛, …, 𝐿𝑘 ∈ ℒ(𝐹𝑘)𝑛 as a sequence of 

CI profiles till level-𝑘 if 𝐿𝑗  (𝑗 = 1,2,… , 𝑘) is a CI profile with respect to the previous-level profiles 

𝐿0, 𝐿1, … , 𝐿𝑗−1. I denote by ℒ𝑘[𝐿0, … , 𝐿𝑘−1] the set of all level-𝑘 CI profiles with respect to a given 

sequence 𝐿0, 𝐿1, … , 𝐿𝑘−1 of CI profiles till level (𝑘 − 1).  

 

When 𝑘 = 1  and 𝐹  is made up of SCFs only, the CI preference is nothing but the “induced 

preference” used in the study of self-selective SCRs (Koray, 2000). In this sense, the CI preference is 
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a generalization of the induced preference so that we can deal with higher levels and SCRs, i.e. 

correspondences instead of functions.  

 

Definition 11: Weak Convergence  

A level-0 preference profile 𝐿0 ∈ ℒ(𝑋)𝑛 is said to weakly converge to 𝐶 ⊆ 𝑋 if and only if 𝑘 ∈ ℕ 

and a sequence of CI profiles till level (𝑘 − 1) 𝐿0, 𝐿1, … , 𝐿𝑘−1 exist such that each 𝑓𝑘 ∈ 𝐹𝑘 has the 

same class, i.e., 𝐶[𝑓𝑘: 𝐿0, 𝐿1, … , 𝐿𝑘−1] = 𝐶 for all 𝑓𝑘 ∈ 𝐹𝑘.  

 

Remark. Whether a profile 𝐿0 weakly converges or not depends on what kind of menu 𝐹 the society 

considers, and so it is more precise to say “𝐿0 weakly converges with respect to the menu 𝐹.” In the 

subsequent argument, however, the menu 𝐹 is explicit from the context. So, we simply say it as “𝐿0 

weakly converges to 𝐶 ⊆ 𝑋”.  

 

Remark. In the definition of weak convergence, I do not specify individuals’ preference extension 

systems {𝑒𝑖}𝑖∈𝑁. Strictly speaking, a profile 𝐿0 is defined as weakly converging to 𝐶 ⊆ 𝑋 if and 

only if, for combinations of all preference extension systems {𝑒𝑖}𝑖∈𝑁, the required sequence of CI 

profiles exists. This point will be exemplified later (see Example 11).  

 

Note that once a profile 𝐿0 weakly converges to 𝐶 at level 𝑘, the class of any rule of level 𝑘′ > 𝑘 

is also 𝐶. Thus, further regress is thought to be meaningless. Following are some examples of the 

notions introduced in this section.  

 

Example 6: Weak Convergence (The Example Introduced in Section 2.1) 

Let 𝑛 = 14 , 𝑋 = {𝑎, 𝑏, 𝑐} , and 𝐹 = {𝑓𝑃, 𝑓𝐵, 𝑓𝐴} . Suppose the preference profile 𝐿0 =

(𝐿1
0 , 𝐿2

0 , … , 𝐿14
0 ) is 𝐿1−10

0 : 𝑎𝑏𝑐, and 𝐿11−14
0 : 𝑏𝑐𝑎. Then, 𝑓𝑃(𝐿

0) = 𝑓𝐵(𝐿
0) = 𝑎 and 𝑓𝐴(𝐿

0) = 𝑏, and 

so the CI preference is  

ℒ𝑖[𝐿
0] = {𝑓𝑃𝑓𝐵𝑓𝐴, 𝑓𝐵𝑓𝑃𝑓𝐴} for all 𝑖 = 1,2,… ,10 

ℒ𝑖[𝐿
0] = {𝑓𝐴𝑓𝑃𝑓𝐵, 𝑓𝐴𝑓𝐵𝑓𝐴} for all 𝑖 = 11,12,13,14. 

Let 𝐿1−4
1 :𝑃𝐵𝐴 , 𝐿5−10

1 : 𝐵𝑃𝐴 , and 𝐿11−14
1 : 𝐴𝑃𝐵 . Now, 𝐿1 = (𝐿1

1 , 𝐿2
1 , … , 𝐿14

1 )  defined in this way is 

actually in ℒ[𝐿0]. It follows that 𝐶[𝑓𝑃
2; 𝐿0, 𝐿1] = 𝐶[𝑓𝐵

2; 𝐿0, 𝐿1] = 𝐶[𝑓𝐴
2; 𝐿0, 𝐿1] = {𝑎}. This means 𝐿0 

weakly converges to {𝑎}.  

 

Example 7: Singleton Menu 

I assumed |𝐹| ≥ 2 in the beginning of this section. This is because if |𝐹| = 1, then the society has 

no other options but to choose the unique procedure, and hence there is no need of procedural choice. 

The above sequence of definitions, however, applies even for |𝐹| = 1. So, only in several examples 
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throughout the chapter, I refer to such singleton menus. Suppose 𝐹 = {𝑓}, where 𝑓 is an arbitrary 

SCR. It is clear that for any set of alternatives 𝑋  and for any preference profile 𝐿 ∈ ℒ(𝑋)𝑛 , 𝐿 

weakly converges to 𝑓(𝐿) ⊆ 𝑋.  

 

Example 8: Menu of two SCRs 

Let 𝑓, 𝑔 be any (distinct) neutral SCFs and let 𝐹 = {𝑓, 𝑔}. For all 𝐿 ∈ ℒ(𝑋)𝑛, if 𝑎 = 𝑓(𝐿) = 𝑔(𝐿), 

it follows that 𝐿 strongly converges to 𝑎. If 𝑎 = 𝑓(𝐿) ≠ 𝑔(𝐿) = 𝑏, then the level-1 CI profile is 

uniquely determined because 𝑎𝐿𝑖
0𝑏 ⇔ 𝑓𝐿𝑖

1𝑔  for all 𝑖 ∈ 𝑁  by the extension rule. If 𝑓2(𝐿1) =

𝑔2(𝐿1), it follows that 𝐿0 weakly converges. Otherwise, 𝐿0 never (weakly) converges, because it is 

easy to see that for all 𝑘 ≥ 2 , level- 𝑘  CI profile 𝐿𝑘  is unique and 𝑓𝑘(𝐿𝑘−1) = 𝑓𝑘−1  and 

𝑔𝑘(𝐿𝑘−1) = 𝑔𝑘−1 (see Proposition 1).  

 

As a generalization of Example 8, I define a class of profiles called trivial deadlock, where 

convergence never occurs.  

 

Definition 12: Trivial Deadlock 

Let 𝐹 = {𝑓1, 𝑓2, … , 𝑓𝑚}  be the menu of SCRs. A preference profile 𝐿0  is said to be in a trivial 

deadlock if:  

1) each 𝑓1
1(𝐿0), 𝑓2

1(𝐿0),… , 𝑓𝑚
1(𝐿0) is a distinct singleton, and  

2) each 𝑓1
2(𝐿1), 𝑓2

2(𝐿1),… , 𝑓𝑚
2(𝐿1) is also a distinct singleton for all 𝐿1 ∈ ℒ1[𝐿0].  

 

From a technical perspective, the intuition behind this trivial deadlock comes from the following:  

 

Proposition 1: Trivial Deadlock Fails to Converge11 

Let 𝐹 be a menu of neutral SCRs. If 𝐿0 is in a trivial deadlock, then 𝐿0 does not (weakly) converge.  

 

(From now on, all proofs of lemmas, propositions, and theorems are shown in the Appendix, unless 

otherwise noted.) 

 

Remark. When |𝑋| = |𝐹|, the condition 2) in the definition of trivial deadlock is unnecessary because 

1) directly implies 2). This can be easily shown, as can the proof of Proposition 1.  

 

Example 9: Trivial Deadlock 

Suppose 𝑛 = 42, 𝑋 = {𝑥1, 𝑥2, 𝑥3}, and 𝐹 = {𝑓𝑃, 𝑓𝐵, 𝑓𝐴}. Let 𝑛1, 𝑛2, … , 𝑛6 be the number of voters 

                                                         
11 Note that this proposition does not hold if |𝐹| = 1, for in such a case it follows that trivial deadlock implies weak 

convergence.  
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whose preferences are 𝑥1𝑥2𝑥3, 𝑥1𝑥3𝑥2, 𝑥2𝑥1𝑥3, 𝑥2𝑥3𝑥1, 𝑥3𝑥1𝑥2, 𝑥3𝑥2𝑥1, respectively. If 

(𝑛1, 𝑛2, … , 𝑛6) = (9,11,0,17,1,4), such profile is in a trivial deadlock. Because of Proposition 1, we 

know that this profile never weakly converges. The figure below shows the regress structure.  

 

 

Figure 3. A graph image of trivial deadlock 

 

The proposition tells us that (weak) convergence and trivial deadlock are mutually exclusive as long 

as we consider neutral SCRs only. Also, as we saw in Example 9, once a profile turns out to be in 

trivial deadlock, the ‘structure’ (i.e., which higher-level rule chooses which rule) does not change at 

all, no matter how high a level is considered. Hence, considering further regress under trivial deadlock 

has little effective meaning (although, of course, it does not yield weak convergence). Finally, I note 

that trivial deadlock is, in this sense, the polar opposite of weak convergence. There are, of course, 

some profiles that are not in trivial deadlock, but do not weakly converge either.  

 

Example 10 

Let 𝑛 = 17, 𝑋 = {𝑎, 𝑏, 𝑐}, and 𝐹 = {𝑓𝑃, 𝑓𝐴, 𝑓𝐷}, where 𝑓𝐷: [1,0.75,0]. Suppose that two individuals 

have level-0 preference 𝑎𝑏𝑐, three have 𝑎𝑐𝑏, five have 𝑏𝑎𝑐, two have 𝑏𝑐𝑎, three have 𝑐𝑎𝑏, and 

two have 𝑐𝑏𝑎 . Then, it is easy to inductively verify that for all 𝑘 ≥ 2  and for all CI sequence 

𝐿0, 𝐿1, … , 𝐿𝑘−1, the class of 𝑓𝑃
𝑘 is {𝑎} while the classes of 𝑓𝐷

𝑘 and 𝑓𝐴
𝑘 are both {𝑏}.  

 

Example 11 

Let 𝑛 = 1700, 𝑋 = {𝑎, 𝑏, 𝑐}, and 𝐹 = {𝑓𝑃, 𝑓𝐵, 𝑓𝐴}. Assume the profile 𝐿1 ∈ ℒ(𝑋)𝑛 is as follows:  

𝐿𝑖
0: 𝑎𝑏𝑐 if 1 ≤ 𝑖 ≤ 400 (Ⅰ)

𝐿𝑖
0: 𝑎𝑐𝑏 if 401 ≤ i ≤ 500 (Ⅱ)

𝐿𝑖
0: 𝑏𝑎𝑐 if 501 ≤ 𝑖 ≤ 800 (Ⅲ)

𝐿𝑖
0: 𝑏𝑐𝑎 if 801 ≤ 𝑖 ≤ 1000 (Ⅳ)

𝐿𝑖
0: 𝑐𝑎𝑏 if 1001 ≤ 𝑖 ≤ 1400 (Ⅴ)

𝐿𝑖
0: 𝑐𝑏𝑎 if 1401 ≤ 𝑖 ≤ 1700 (Ⅵ).

 

At this profile 𝐿0, we have 𝑓𝑃
1(𝐿0) = {𝑐}, 𝑓𝐵

1(𝐿0) = {𝑎, 𝑏, 𝑐}, and 𝑓𝐴
1(𝐿0) = {𝑎, 𝑏}. As denoted, we 

designate the voters whose level-0 preference is 𝑎𝑏𝑐, 𝑎𝑐𝑏, 𝑏𝑎𝑐, 𝑏𝑐𝑎, 𝑐𝑎𝑏, 𝑐𝑏𝑎 as type Ⅰ,Ⅱ,Ⅲ,Ⅳ,

Ⅴ,Ⅵ , respectively. By the definition of CI preference, type Ⅰ  and type Ⅲ  voters’ level-1 
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preference must be 𝑓𝐴
1, 𝑓𝐵

1, 𝑓𝑃
1  and type Ⅴ  and type Ⅵ  voters’ level-1  preference must be 

𝑓𝑃
1, 𝑓𝐵

1, 𝑓𝐴
1. On the other hand, type Ⅱ and type Ⅳ voters’ level-1 preference is indeterminate. I 

now show that the possibility of weak convergence depends on what kind of preference extension 

systems {𝑒𝑖}𝑖∈𝑁 the voters have. Suppose:  

－ All the type Ⅱ voters and 35 voters of type Ⅳ have 

{𝑎, 𝑏}𝑒𝑖(𝐿𝑖
0){𝑐}𝑒𝑖(𝐿𝑖

0){𝑎, 𝑏, 𝑐}. 

This implies that their level-1 CI preference is 𝑓𝐴
1, 𝑓𝐵

1, 𝑓𝑃
1.  

－ 105 voters of type Ⅳ have  

{𝑎, 𝑏, 𝑐}𝑒𝑖(𝐿𝑖
0){𝑐}𝑒𝑖(𝐿𝑖

0){𝑎, 𝑏}. 

This implies that their level-1 CI preference is 𝑓𝐵
1, 𝑓𝑃

1, 𝑓𝐴
1.  

－ The other 60 voters of type Ⅳ have  

{𝑐}𝑒𝑖(𝐿𝑖
0){𝑎, 𝑏, 𝑐}𝑒𝑖(𝐿𝑖

0){𝑎, 𝑏}. 

This implies that their level-1 CI preference is 𝑓𝑃
1, 𝑓𝐵

1, 𝑓𝐴
1.  

 

The reader can easily check that there exists a preference extension system that is compatible with 

these preferences. At this level-1 CI preference profile 𝐿1, we have that 𝑓𝑃
2(𝐿1) = {𝑓𝐴

1}, 𝑓𝐵
2(𝐿2) =

{𝑓𝑃
1}, and 𝑓𝐴

2(𝐿1) = {𝑓𝐵
1}. The proof that we cannot find weak convergence12 in the subsequent levels 

for this profile is similar to the proof of Proposition 1. The profile 𝐿0 is not in trivial deadlock, and 

so this example shows the existence of a profile that is neither weakly convergent nor in trivial 

deadlock.  

 

2.4 Probability Model 

The examples in the previous section show that the possibility of weak/strong convergence largely 

depends on the menu 𝐹. To state this formally, we need to determine the probability model. In social 

choice theory, there are two major probability models—the Impartial Culture (IC) model and the 

Impartial Anonymous Culture (IAC) model. Because of its simplicity, I assume IAC unless otherwise 

noted. I briefly introduce them here for the reader’s convenience.  

IC assumes that each voter independently chooses, with equal likelihood, one of the linear orders 

over 𝑋 . Therefore, each profile 𝐿0 ∈ ℒ(𝑋)𝑛  occurs with the equal probability 1 (|𝑋|!)𝑛⁄  . On the 

other hand, IAC assumes that every voting situation, a combination of the numbers of individuals who 

each have a specific linear order, occurs with equal likelihood. Hence, each (𝑛1, … , 𝑛𝑚!), where 𝑛𝑗  

represents the number of individuals who have the 𝑗𝑡ℎ linear order, occurs with the equal probability 

1/𝑛+𝑚!−1𝐶𝑛. In either model, it is well known that the probability that a certain scoring rule yields a 

                                                         
12 On the other hand, if all the type Ⅱ and Ⅳ voters have a level-1 preference of 𝑓𝐴

1, 𝑓𝐵
1, 𝑓𝑃

1, it is also easy to 

verify that 𝐿0 weakly converges to {𝑎, 𝑏}. Thus, whether the profile can weakly converge depends on the preference 

extension systems {𝑒𝑖}𝑖∈𝑁.  
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tied outcome is negligible as 𝑛 → ∞13 (Marchant, 2001, Pritchard and Wilson, 2007, Pritchard and 

Wilson, 2009, and Diss and Merlin, 2010). This fact allows us to restrict our attention to those profiles 

where each rule in the menu yields only a singleton, when we restrict our attention to a large society. 

For convenience in the subsequent argument, I give a similar statement and its elementary proof as a 

lemma.  

 

Lemma 2 

Take any distinct 𝑥, 𝑦 ∈ 𝑋 . Let 𝑃(𝛼)  be the probability that exactly 𝑛𝛼  voters prefer 𝑥  to 𝑦 . 

Under either IC or IAC models and for all 𝛼 ∈ [0,1], 𝑃(𝛼) → 0 as 𝑛 → ∞.  

 

2.5 Menu of Three Scoring Rules 

From this point on, I show my theoretical results. In this section, I show the fundamental result 

concerning the weak convergence of a menu of three scoring rules.  

  

Lemma 3 

Let 𝑛 ≥ 𝑚  and 𝐹 = {𝑔1, 𝑔2, … , 𝑔𝑝, ℎ1, ℎ2, … , ℎ𝑞}  (𝑝 ≥ 𝑞 ≥ 0)  be the menu of scoring SCRs, 

where 𝑚 = 𝑝 + 𝑞 ≥ 3 . For any sequence 𝐿0, 𝐿1, … , 𝐿𝑘−1  of CI profiles to level (𝑘 − 1)  and 

alternatives 𝑥, 𝑦 ∈ 𝑋, suppose the class of each level-𝑘 SCR is:  

𝐶𝑔𝑗
𝑘[𝐿0, 𝐿1, … , 𝐿𝑘−1] = {𝑥} for all 𝑗 = 1,2,… , 𝑝. 

𝐶ℎ𝑗
𝑘[𝐿0, 𝐿1, … , 𝐿𝑘−1] = {𝑦} for all 𝑗 = 1,2, … , 𝑞. 

If |{𝑖 ∈ 𝑁│𝑥𝐿𝑖
0𝑦}| > |{𝑖 ∈ 𝑁│𝑦𝐿𝑖

0𝑥}|, then 𝐿0 weakly converges to {𝑥}.  

 

The lemma considers the case where every level-𝑘 rule results in either {𝑥} or {𝑦}. It says that if at 

least half of the rules result in {𝑥} and more than half of the people prefer 𝑥 to 𝑦, then the original 

profile weakly converges to {𝑥}. Hence, the lemma indicates a specific case of weak convergence. 

Note that the lemma tells only about the possibility of weak convergence and it is still possible that 

the same profile weakly converges to {𝑦}  at the same time. The uniqueness of the convergent 

outcome will be argued later in relation with the notion of strong convergence in section 2.6.  

 

Lemma 4 

Let 𝑛 ≥ 𝑚, 𝑚 = 3 or 4, and 𝑥, 𝑦 ∈ 𝑋 such that |{𝑖 ∈ 𝑁│𝑥𝐿𝑖
0𝑦}| ≠

𝑛

2
. If the menu of SCRs is 𝐹 =

{𝐸1, 𝐸2, … , 𝐸𝑚−1, 𝑓𝐵} and the class of each level-𝑘 SCR is either {𝑥} or {𝑦} for a given sequence 

of CI profiles 𝐿0, 𝐿1, … , 𝐿𝑘−1, then 𝐿0 weakly converges.  

 

                                                         
13 For a relatively small 𝑛, the probabilities of tied outcomes when using well-known scoring rules, such as plurality 

and Borda count, are studied by Gillet (1977; 1980) and Marchant (2001). 
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These lemmas both give sufficient conditions for weak convergence. In Lemma 3, no condition is 

placed on the menu 𝐹, but the condition that more than half the people prefer 𝑥 to 𝑦 is imposed on 

the preference profile. Lemma 4, on the other hand, considers the specific menu 𝐹 that is made up of 

𝑘-approval voting and Borda count only and placed little condition on the preference profile. As noted 

in section 2.4, an event such as: 

|{𝑖 ∈ 𝑁│𝑥𝐿𝑖
0𝑦}| =

𝑛

2
 

is unlikely as 𝑛 → ∞. Therefore, Lemma 4 almost always holds in the case of a large society with 

such a menu.  

 

Lemma 5 Let 𝑚 = 3 and 𝐹𝑘 = {𝑔1
𝑘, 𝑔2

𝑘, 𝑔3
𝑘}, where 𝑔𝑗

𝑘: [1, 𝑠𝑗 , 0]. Assume  𝐶𝑔1𝑘 = 𝐶𝑔2𝑘 =
{𝑥} and 

𝐶𝑔3𝑘 =
{𝑦}. Then, there exists 𝐿𝑘 ∈ ℒ𝑘[𝐿0, 𝐿1, … , 𝐿𝑘−1] such that |𝑠𝑗(𝑔1

𝑘: 𝐿𝑘) − 𝑠𝑗(𝑔2
𝑘: 𝐿𝑘)| ≤ 1 for 

all 𝑗 = 1,2,3, where 𝑠𝑗( ) denotes the score evaluated by 𝑔𝑗
𝑘+1.  

 

Theorem 3 

Let 𝐹 = {𝑓1, 𝑓2, 𝑓3}  be a menu of SCRs containing three scoring rules, where 𝑓𝑗: [1, 𝑠𝑗 , 0] 

(𝑗 = 1,2,3), 1 ≥ 𝑠1 > 𝑠2 > 𝑠3 ≥ 0, and  

 𝑠3 ≥ 1 2⁄  or [𝑠3 < 1 2⁄  and 𝑠2 ≤
1 + 𝑠3
2 − 𝑠3

]. (1)    

Under either IC or IAC, we have 

𝑝𝑊𝐶 + 𝑝𝐷 → 1 as 𝑛 → ∞. 

Here, 𝑝𝑊𝐶  denotes the probability of occurrence of those profiles that weakly converge and 𝑝𝐷 

denotes the probability of occurrence of those profiles that are in trivial deadlock.  

 

It is worth noting that if 𝐹  contains {𝑓𝑃, 𝑓𝐵}  or {𝑓𝐵, 𝑓𝐴} , equation (1) automatically holds 

irrespective of the third scoring rule. For instance, if a large consequential society admits the menu 

𝐹 = {𝑓𝑃 , 𝑓𝐵, 𝑓𝐴}, the theorem states that there are asymptotically only two possibilities: they face a 

trivial deadlock or they are endowed with the ability to find weak convergence. In either case, my 

argument in section 2.3 indicates that further regress has little or no meaning. However, before 

declaring that the infinite regress is solved, the probabilities 𝑝𝑊𝐶 and 𝑝𝐷must be estimated. This is 

because trivial deadlock is simply a case where the regress structure does not change at all and, thus, 

trivial deadlock does not provide a specific answer. The actual calculation of 𝑝𝑊𝐶 and 𝑝𝐷 can be 

done using the technique presented by Diss et al. (2012) and Diss and Merlin (2010).  

 

Corollary 1 

Let |𝑋| = 3, 𝑛 → ∞, and 𝐹 = {𝑓𝑃, 𝑓𝐵, 𝑓𝐴}. Under IC, 𝑝𝑊𝐶 is 98.2%. Under IAC, 𝑝𝑊𝐶 is 98.8%.  
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This result shows for the menu 𝐹 = {𝑓𝑃, 𝑓𝐵 , 𝑓𝐴} that the probability of weak convergence is much 

larger than that of stability. This fact implies that such a society can solve the infinite regress with 

quite high probability (98.2% under IC and 98.8% under IAC). 

 

2.6 Strong Convergence 

Recall that 𝐿0 ∈ ℒ(𝑋) is, by definition, said to weakly converge if at least one consequential sequence 

of (subsequent) profiles 𝐿1, 𝐿2, … exists14 that adjusts the rules’ ultimate judgments at a certain level. 

The existence of such 𝐿1, 𝐿2, … guarantees that we can stop the apparent infinite regress arguments 

through finite steps of regress. One might, however, be concerned that the same 𝐿0 might weakly 

converge to a distinct 𝐶 and 𝐶′ by the choice of sequence. Indeed, the following example shows 

that such multiplicity can actually occur.  

 

Example 12 

Let 𝑋 = {𝑎, 𝑏, 𝑐} and 𝐹 = {𝑓1, 𝑓2, 𝑓3(= 𝑓𝑃)}, where 𝑓1: [1,
137

589
, 0] , 𝑓2: [1,

68

2945
, 0] , 𝑓3: [1,0,0].  

Consider 𝐿0 ∈ ℒ(𝑋)𝑛  such that 1  voter: 𝑎𝑏𝑐 , 87  voters: 𝑎𝑐𝑏 , 88  voters: 𝑏𝑎𝑐 , 1  voter: 𝑏𝑐𝑎 , 

22  voters: 𝑐𝑎𝑏 , and 1  voter: 𝑐𝑏𝑎  (𝑛 = 200 ). Now, we have that 𝑓1(𝐿
0) = 𝑓2(𝐿

0) = {𝑎}  and 

𝑓3(𝐿
0) = {𝑏}. It is easy to check that there exist 𝐿1, 𝐿̃1 ∈ ℒ[𝐿0] such that  

𝑓1
2(𝐿1), 𝑓2

2(𝐿1), 𝑓3
2(𝐿1) ⊆ {𝑓1

1, 𝑓2
1} but 𝑓1

2(𝐿̃1), 𝑓2
2(𝐿̃1), 𝑓3

2(𝐿̃1) ⊆ {𝑓3
1}.  

 

To avoid this issue, I define the notion of strong convergence, which completely avoids multiplicity.  

 

Definition 13: Strong Convergence 

A level-0  preference profile 𝐿0 ∈ ℒ(𝑋)𝑛  is said to strongly converge to 𝐶 ⊆ 𝑋  if and only if it 

weakly converges to 𝐶 ⊆ 𝑋 and it does not weakly converge to any other set 𝐶′ ≠ 𝐶.  

 

It is clear from the definition that strong convergence is logically stronger than weak convergence and 

that multiplicity entirely disappears once a profile is shown to strongly converge. The next result shows 

the frequency of strong convergence for the menu {𝑓𝑃 , 𝑓𝐵, 𝑓𝐴}.   

                                                         
14 Technically speaking, we can find the similar use of a compatible linear order in Koray (2000) and Koray and 

Slinko (2006). They define a social choice function (SCF) 𝑓 as self-selective at 𝐿0 relative to the menu of SCFs 𝐹1 

if and only if there is a consequentially induced 𝐿1 ∈ ℒ(𝐹1)𝑛 such that 𝑓2(𝐿1) = 𝑓1. If we impose that the rule 

chooses itself for all compatible linear orders, as Koray and Slinko (2006; p.9) state, “it leads to a vacuous concept.” 

The same applies to regress convergence.  
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Theorem 4 

Let 𝐹 = {𝑓𝑃, 𝑓𝐵, 𝑓𝐴}. Under either IC or IAC, we have  

𝑝𝑆𝐶 + 𝑝𝐷 → 1 as 𝑛 → ∞. 

 

As a direct corollary of Theorem 3, we already know that a large society with the menu {𝑓𝑃, 𝑓𝐵, 𝑓𝐴} 

has asymptotically only two cases—weak convergence or trivial deadlock. Theorem 4, however, states 

that the two cases are actually strong convergence or trivial deadlock. To this point, I have mainly 

restricted attention to large societies, i.e., 𝑛 → ∞ . But strong convergence can also be found in 

relatively small societies, as follows.  

 

Example 13 

The profile I gave in Example 6 strongly converges to {𝑎}  as can be demonstrated with a slight 

modification to the proof of Theorem 4. 

 

Example 14 

Let 𝐹 = {𝑓, 𝑔}, where 𝑓 and 𝑔 are any (distinct) SCRs. If 𝑓(𝐿0) = 𝑔(𝐿0) = 𝐶, then 𝐿0 strongly 

converges to 𝐶.  

 

Finally, I deal with the choice of SCFs (i.e., not a correspondence but a function) and provide SCRs 

with neutral tie-breaking systems. Specifically, for any SCR 𝑓𝑌, I denote by 𝑓𝑌∗ the SCF that breaks 

ties in favor of 𝑖𝑌 ∈ 𝑁, named the tie breaker of 𝑓𝑌. Note that different SCRs can have different tie 

breakers (for example, the plurality tie breaker 𝑖𝑃 = 1 and the Borda count tie breaker 𝑖𝐵 = 2). Then, 

Theorem 4 can be revised for a relatively small 𝑛. 

 

Theorem 5 

Assume 𝑛 ≥ 3 is odd, |𝑋| = 3, and the menu of SCFs is {𝑓𝑃∗ , 𝑓𝑋∗ , 𝑓𝐴∗}, where 𝑓𝑋 is either Borda 

count, Black’s rule, Copeland’s method, or the Hare system. Then, any level-0 profile 𝐿0 strongly 

converges unless it is in a trivial deadlock.  
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3 Convergent Menus of SCRs 

In Chapter 2, we saw basic results for the concepts of weak and strong convergence. Specifically, I 

showed that a large society with the menu {𝑓𝑃, 𝑓𝐵, 𝑓𝐴}  has asymptotically only two possibilities: 

strong convergence or trivial deadlock. While the probability of the former is quite high when |𝑋| =

3, we cannot deny that trivial deadlock can also occur with small but positive probability, with which 

the society’s attempt to determine the appropriate rule ends in vain. In this chapter, I search for menus 

with which a society can avoid such failure. I assume the IAC model throughout this chapter.  

 

3.1 Convergent Property of a Menu 

First, I formally state the axiom of menus that demands that the society can always find a convergence.  

 

Definition 14: Convergent Property 

(1) If every 𝐿0 ∈ ℒ(𝑋)𝑛 weakly/strongly converges, I say that the menu 𝐹 satisfies the weak/strong 

convergent property.  

(2) Let 𝑝𝑊𝐶 (𝑝𝑆𝐶)  be the probability that those level-0  preference profiles occur that weakly 

(strongly) converge. If 𝑝𝑊𝐶 → 1 (𝑝𝑆𝐶 → 1) as 𝑛 → ∞, I say that 𝐹 satisfies the asymptotic weak 

(strong) convergent property.  

 

Clearly, the strong convergent property is logically the strongest of the four axioms and the asymptotic 

weak convergent property is the weakest. The logical relationship between them is shown below.  

 

 

Let us see some examples concerning these axioms.  

 

Example 15: Singleton Menu 

If 𝐹 = {𝑓} (a singleton menu), any profile 𝐿0 ∈ ℒ(𝑋)𝑛 strongly converges to 𝑓(𝐿0). Hence, any 

singleton menu satisfies the strong convergent property.  

 

Example 16: Menus of two Neutral SCFs 

Let 𝐹 = {𝑓, 𝑔}  be a menu of two neutral SCFs and |𝑋| = 2 . If 𝐿0 ∈ ℒ(𝑋)𝑛  exists such that 

𝑓(𝐿0) ≠ 𝑔(𝐿0), then 𝐹 fails to satisfy the weak convergent property because we can verify that such 

a profile 𝐿0 causes a trivial deadlock and hence, it never weakly converges.  
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I previously introduced eight familiar SCRs—plurality, Borda, anti-plurality, Hare, Nanson, Coomb, 

Maximin, and Black—in section 2.2. If we construct a menu of three SCRs from these eight SCRs, 

there are  

(
8
3
) = 56 

different menus. Our next result shows that these 56  menus also have the properties shown in  

Theorem 3 for a triplet of scoring rules. For the convenience of the proof, let ℱ be the set of these 

eight SCRs: 

ℱ = {𝑓𝑃 , 𝑓𝐵, 𝑓𝐴, 𝑓𝐻, 𝑓𝑁 , 𝑓𝐶 , 𝑓𝑀, 𝑓𝐵𝑙}. 

 

Lemma 6 

Suppose 𝑛 is sufficiently large. Let 𝑥, 𝑦 ∈ 𝑋 and |𝐹| = 3, where 𝐹 ⊆ ℱ. Let 𝐿0, 𝐿1, … , 𝐿𝑘−1 be a 

sequence of CI profiles to level (𝑘 − 1), where 𝑘 ∈ ℕ. Suppose  

{𝐶𝑓[𝐿
0, 𝐿1, … , 𝐿𝑘−1]│𝑓 ∈ 𝐹𝑘} = {{𝑥}, {𝑦}}. 

If  

#{𝑖 ∈ 𝑁│𝑥𝐿𝑖
0𝑦} > #{𝑖 ∈ 𝑁│𝑦𝐿𝑖

0𝑥}, 

then 𝐿0 weakly converges to 𝑥. 

 

Theorem 6 

Of the 56 menus of SCRs, the following ten menus of SCRs satisfy the asymptotic weak 

convergent property, i.e., 𝑝𝑊𝐶 → 1 as 𝑛 → ∞,  

{𝑓𝑃 , 𝑓𝑁 , 𝑓𝑀}, {𝑓𝐴, 𝑓𝑁 , 𝑓𝑀}, {𝑓𝐵, 𝑓𝐻, 𝑓𝐵𝑙}, {𝑓𝐵, 𝑓𝑁 , 𝑓𝑀}, {𝑓𝐵, 𝑓𝑁, 𝑓𝐵𝑙} 

{𝑓𝐵, 𝑓𝐶 , 𝑓𝐵𝑙}, {𝑓𝐵, 𝑓𝑀, 𝑓𝐵𝑙}, {𝑓𝐻, 𝑓𝑁 , 𝑓𝑀}, {𝑓𝑁, 𝑓𝐶 , 𝑓𝑀}, {𝑓𝑁, 𝑓𝑀, 𝑓𝐵𝑙} 

 

The theorem shows a basic possibility concerning the asymptotically weak convergent property. It can 

be confirmed using familiar SCRs. Note that the menus not cited in the theorem do not have the 

asymptotically weak convergent property. Using the barvinok computer software implemented by 

Verdoolaege et al. (2004), we can calculate the asymptotic probability of trivial deadlock (see 

Appendix, 0).  

 

3.2 Strongly Convergent Menus 

In the previous section, we saw that many menus of familiar SCRs provide weak convergence with 

high probability. The next result shows that we can even construct a menu that satisfies the strong 

convergent property.  
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Definition 15: Difference 

A menu 𝐹  of SCRs satisfies the criterion of difference if, for all 𝑓, 𝑔 ∈ 𝐹  and for any set 𝑋  of 

alternatives with |𝑋| ≥ 3, there exists a profile 𝐿 ∈ ℒ(𝑋)𝑛 such that 𝑓(𝐿) ≠ 𝑔(𝐿).  

 

This axiom is introduced by Houy (2004) and is quite a weak condition: it demands only that 𝐹 

should not include more than two identical SCRs. Houy (2004) shows that there is no set 𝐹 that 

satisfies neutrality (i.e., each 𝑓 ∈ 𝐹 is neutral), difference, and strong first-level stability (i.e., exactly 

one self-selective SCR exists at every 𝐿 ∈ ℒ(𝑋)𝑛 ). Our first result shows that the impossibility 

disappears if we substitute strong first-level stability for strong convergent property.  

 

Theorem 7: Strong Convergent Menu 

A set 𝐹 of neutral SCRs exists that satisfies both the condition of difference and the strong 

convergent property.  

 

3.3 Convergent Expansion 

In sections 3.1 and 3.2, I showed that several menus, such as {Borda,Hare,Black} or the menu used 

in the proof of Theorem 7, satisfy the convergent property. A straightforward conclusion from these 

results is that a (large) society can solve infinite regress once they accept those menus. However, if a 

society has already accepted a menu, such as {plurality, Borda, anti − plurality} , which fails to 

satisfy the convergent property, it may be, for some reason, difficult to replace this with the technical 

menu introduced in Theorem 7. This section considers how the convergent property may be given to 

such menus.  

Let us define chair rule 𝜑. Take an individual 𝑖∗ ∈ 𝑁 designated as the chair:  

𝜑(𝐿) ≔ {
𝑓𝐵(𝐿) if 𝑓𝑃(𝐿) ≠ 𝑓𝐵𝑜(𝐿) and (𝑓𝑃(𝐿), 𝑓𝐵(𝐿)) ∈ 𝑒𝑖∗(𝐿𝑖∗)

𝑓𝑃(𝐿) otherwise.
 

In words, 𝜑 is a SCR in which the chair 𝑖∗ chooses the outcome among 𝑓𝑃(⋅) and 𝑓𝐵𝑜(⋅) 

according to his or her own preference. Surprisingly, we have the following:  

 

Theorem 8 

The menu {𝑓𝑃, 𝑓𝐵𝑜, 𝑓𝐴, 𝜑} satisfies the asymptotically weak convergent property.  

 

Definition 16 

Let 𝐹  be a menu of SCRs. 𝐺 ⊇ 𝐹  is defined as an asymptotically-convergent expansion (AC 

expansion) of 𝐹 if the menu 𝐺 has the asymptotically weak convergent property.  

 

With this, we can write Theorem 8 as:  
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𝐺 = {𝑓𝑃, 𝑓𝐵𝑜, 𝑓𝐴, 𝜑} is an AC expansion of 𝐹 = {𝑓𝑃 , 𝑓𝐵𝑜, 𝑓𝐴}.  

 

Definition 17  

For a scoring rule 𝑓: [𝑠1
𝑚 , 𝑠2

𝑚 , … , 𝑠𝑚
𝑚]𝑚≥3 , its assignment function 𝑓̅𝑚: [1,𝑚] → [0,1]  (on 𝑚 

alternatives) is defined as follows: for all 𝑗 ∈ {1,2,… ,𝑚 − 1}, 

𝑓̅𝑚│[𝑗,𝑗+1](𝑥) ≔ (𝑠𝑗+1
𝑚 − 𝑠𝑗

𝑚)(𝑥 − 𝑗) + 𝑠𝑗
𝑚 . 

 

In other words, an assignment function is obtained in two steps. First, plot 𝑚  points 

(1, 𝑠1
𝑚), (2, 𝑠2

𝑚),… , (𝑚, 𝑠𝑚
𝑚) and second, connect each point to the ones next to it. If the number of 

alternatives are obvious in the context, we often write the assignment function without its upper script 

letters, for example, 𝑓 ̅ instead of 𝑓̅𝑚.  

 

Definition 18: Concave Function 

Let 𝐼 ⊆ ℝ be an interval. A function 𝑓: 𝐼 → ℝ is said to be concave if, for all 𝑥, 𝑦 ∈ 𝐼, and 𝑡 ∈ [0,1],  

 𝑡𝑓(𝑥) + (1 − 𝑡)𝑓(𝑦) ≤ 𝑓(𝑡𝑥 + (1 − 𝑡)𝑦). (2)    

 

Definition 19: Concave Scoring Rule 

A scoring rule 𝑓 is said to be concave if its assignment functions {𝑓̅𝑚}
𝑚≥3

 are all concave. I denote 

by 𝒞 the set of all concave scoring rules and by 𝒞𝑚 the set of all score assignments [𝑠1
𝑚 , 𝑠2

𝑚 , … , 𝑠𝑚
𝑚] 

whose assignment function is concave.  

 

Example 17 

Borda count 𝑓𝐵 and anti-plurality 𝑓𝐴 are both concave, while plurality is not.  

 

Proposition 2 

Let 𝑓: [𝑠1
𝑚 , 𝑠2

𝑚 , … , 𝑠𝑚
𝑚]𝑚≥3  be a concave scoring rule. For all 𝑚 ≥ 3  and 1 < 𝑎 < 𝑚 , we have 

𝑓𝐵̅
𝑚
(𝑥) ≤ 𝑓̅𝑚(𝑥) ≤ 1. 

 

Proof of Proposition 2 

It is sufficient to show that 𝑓𝐵̅
𝑚
(𝑥) ≤ 𝑓̅𝑚(𝑥)  for all 𝑥 = 1,2,… ,𝑚 . If 𝑥 = 1  or 𝑥 = 𝑚 , the 

statement holds trivially because the definition of a scoring rule demands that 𝑓̅𝑚(1) = 𝑓𝐵̅
𝑚
(1) = 1 

and 𝑓̅𝑚(𝑚) = 𝑓𝐵̅
𝑚
(𝑚) = 0 . Let 𝑥 = 2,3, … ,𝑚 − 1 . Substituting 𝑥 = 1 , 𝑦 = 𝑚 , and 𝑡 =

(𝑚 − 𝑥) (𝑚 − 1)⁄  in the equation of Definition 18, we get the proposition. ■ 

 

The following two propositions can similarly be obtained from Definition 18. 
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Proposition 3 

Let 𝑓: [𝑠1
𝑚 , 𝑠2

𝑚 , … , 𝑠𝑚
𝑚]𝑚≥3 be a concave scoring rule. For all 𝑚 ≥ 3 and 1 < 𝑎 < 𝑏 < 𝑚, we have  

(1) 𝐿1,𝑏(𝑎) ≤ 𝑓̅
𝑚(𝑎) ≤ min{1, 𝐿𝑏,𝑚(𝑎)}, and 

(2) 𝐿𝑎,𝑚(𝑏) ≤ 𝑓̅
𝑚(𝑏) ≤ 𝐿1,𝑎(𝑏). 

where 𝐿𝑝,𝑞  (for distinct 𝑝, 𝑞 ∈ {1,2,… ,𝑚} ) expresses the equation of the straight line passing 

through (𝑝, 𝑠𝑝
𝑚) and (𝑞, 𝑠𝑞

𝑚), i.e.:  

𝐿𝑝,𝑞(𝑥) ≔
𝑠𝑞
𝑚 − 𝑠𝑝

𝑚

𝑞 − 𝑝
(𝑥 − 𝑝) + 𝑠𝑝

𝑚 . 

 

Proposition 4 

Let 𝑓: [𝑠1
𝑚 , 𝑠2

𝑚 , … , 𝑠𝑚
𝑚]𝑚≥3 be a concave scoring rule. For all 𝑚 ≥ 3 and 1 < 𝑎 < 𝑏 < 𝑚, we have  

(1) If 1 < 𝑐 < 𝑎, 𝐿1,𝑎(𝑐) ≤ 𝑓̅
𝑚(𝑐) ≤ min{1, 𝐿𝑎,𝑏(𝑐)}, 

(2) If 𝑎 < 𝑐 < 𝑏, 𝐿𝑎𝑏(𝑐) ≤ 𝑓̅
𝑚(𝑐) ≤ min{𝐿1,𝑎(𝑐), 𝐿𝑏,𝑚(𝑐)}, and 

(3) If 𝑏 < 𝑐 < 𝑚, 𝐿𝑏𝑚(𝑐) ≤ 𝑓̅
𝑚(𝑐) ≤ 𝐿𝑎𝑏(𝑐).  

where 𝐿𝑝,𝑞 (for distinct 𝑝, 𝑞 ∈ {1,2,… ,𝑚}) expresses the equation of straight line passing through 

(𝑝, 𝑠𝑝
𝑚) and (𝑞, 𝑠𝑞

𝑚).  

 

Theorem 9 

Assume IAC. Let 𝐹 = {𝑓1, 𝑓2, … , 𝑓𝑀} be a menu of 𝑀 ≥ 3 concave scoring rules. Then, there exists 

𝐺 ⊇ 𝐹 that has the asymptotically weak convergent property.  

 

Theorem 9 says that for any menu 𝐹 of any finite size, if 𝐹 is made up of concave scoring rules only, 

we can expand it to 𝐺 ⊇ 𝐹 so that this 𝐺 has the weak convergent property. Thus, a large society 

can avoid the risk of trivial deadlock without abandoning the concave scoring rules in the status quo. 

As a straightforward result from the theorem, I will introduce two specific classes of concave scoring 

rules.  

 

Corollary 2: Polynomial Concave Scoring Rule 

The polynomial concave scoring rule 𝑝𝛼 (with parameter 𝛼 ≥ 1) is defined as a scoring rule such 

that, for all 𝑚 ≥ 3,  

𝑠𝑥
𝑚 = 1 − (

𝑥 − 1

𝑚− 1
)
𝛼

. 

Let 𝐹 = {𝑝𝛼1 , 𝑝𝛼2 , … , 𝑝𝛼𝜉} , where 𝛼1, 𝛼2, … , 𝛼𝜉 ∈ [1,+∞)  are distinct real numbers. Then there 

exists 𝐺 ⊇ 𝐹 that has the asymptotically weak convergent property.  
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Just as in the proof of Corollary 2, we have also the following.  

 

Corollary 3: Exponential Concave Scoring Rule 

The exponential concave scoring rule 𝑒𝛼 (with parameter 0 < 𝛼 < 1) is defined as a scoring rule 

such that, for all 𝑚 ≥ 3,  

𝑠𝑥
𝑚 =

𝛼𝑥 − 𝛼𝑚

𝛼 − 𝛼𝑚
. 

Let 𝐹 = {𝑒𝛼1 , 𝑒𝛼2 , … , 𝑒𝛼𝜉} , where 𝛼1, 𝛼2, … , 𝛼𝜉 ∈ [1,+∞)  are distinct real numbers. Then there 

exists 𝐺 ⊇ 𝐹 that has the asymptotically weak convergent property. 

 

Example 18: Polynomial Concave Scoring Rule 

Let 𝐹 = {𝑓𝑃, 𝑝1, 𝑝2, 𝑓𝐴}  be the menu of concave scoring rules. Note that 𝑝1  is identical to Borda 

count. Suppose 𝑋 = {𝑎, 𝑏, 𝑐, 𝑑} . Let 𝑛1, 𝑛2, 𝑛3, … , 𝑛24  be the number of voters whose level-0 

preference is 𝑎𝑏𝑐𝑑, 𝑎𝑏𝑑𝑐, 𝑎𝑐𝑏𝑑, … , 𝑑𝑐𝑏𝑎  (lexicographic order), respectively. Suppose the level-0 

preference profile 𝐿0 satisfies  

(𝑛1, 𝑛2, … , 𝑛24) = (119,60,61,61,83,61,61,95,61,67,61,61, 

        65,130,61,61,61,61,61,61,61,147,61,61). 

Then it is easily verified that 𝐿0 is in trivial deadlock. However, when we expand 𝐹̃ = {𝑝1, 𝑝2, 𝑓𝐴} 

in the way shown in the proof of Theorem 9 (𝜇 = 10 and 𝑟 = 10) and suppose 44 rules choose {𝑎}, 

44 rules choose {𝑏}, 44 rules choose {𝑐}, and 55 rules choose {𝑑} at 𝐿0, then, if we construct 

level-1 CI profile 𝐿1 in the way shown in the same proof, it follows that every level-2 has class {𝑑}. 

This means a weak convergence to {𝑑} . Although such resolution of trivial deadlock is not what 

Theorem 9 says, this indicates that the expansion of a given menu can be used to solve the trivial 

deadlock in some cases.  

 

3.4 A Historical Example 

Abraham Lincoln (1809‒1865), the 16th President of the United States, was elected in 1860. The 

election, historically known as the impetus for the outbreak of the Civil War, is quite interesting from 

the perspective of social choice theory. There were four candidates running: Abraham Lincoln 

(Republican Party), John C. Breckinridge (Southern Democratic Party), John Bell (Constitutional 

Union Party), and Stephen A. Douglas (Northern Democratic Party). Each of them received a 

significant number of ballots. Indeed, some researchers argue that if the citizens’ preference profiles 

had been aggregated using other voting procedures, the result might have been different (Riker, 1982; 

Tabarrok & Spector, 1999). In this section, we use this example to illustrate the notion of convergence.  

 Although we cannot know the complete preference profile of the citizens at that time, Riker 
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(1982) and Tabarrok and Spector (1999) give estimations. Riker (1982) estimates the full preference 

ranking for each state himself (Riker’s profile) while Tabarrok and Spector (1999, p.274) “carried out 

a survey among a number of historians, all of whom had written on the election of 1860 or more 

generally on the politics of the pre-civil war era.” Their estimation, the Mean Historian Profile, is 

made by taking the average of the 13 entire profiles estimated by the historians. For the convenience 

of the reader, I cite their results in the tables below.  

 

Table 1. Riker’s Profile (Ballots) 

LDRB 0 RLDB 0 

LDBR 450000 RLBD 0 

LRDB 0 RDLB 104000 

LRBD 0 RDBL 329000 

LBDR 1414000 RBLD 0 

LBRD 0 RBDL 413000 

DLRB 83000 BLDR 270000 

DLBR 318000 BLRD 0 

DRLB 173000 BDLR 114000 

DRBL 489000 BDRL 28000 

DBLR 319000 BRLD 31000 

DBRL 0 BRDL 146000 
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Table 2. Mean Historian Profile (%) 

LDRB 0 RLDB 0 

LDBR 21.17 RLBD 0 

LRDB 0 RDLB 0.13 

LRBD 0 RDBL 6.87 

LBDR 18.61 RBLD 0 

LBRD 0 RBDL 11.19 

DLRB 0.11 BLDR 1.7 

DLBR 8.04 BLRD 0 

DRLB 0.22 BDLR 4.48 

DRBL 4.87 BDRL 3.81 

DBLR 8.59 BRLD 0.04 

DBRL 7.53 BRDL 2.56 

 

Based on these estimated profiles, they showed that different procedures (e.g., plurality and anti-

plurality) yield different outputs. I now demonstrate how these discrepancies can be resolved through 

the notion of weak/strong convergence. Let 𝐿𝑅
0  and 𝐿𝑀

0  be Riker’s profile and the Mean Historian 

Profile over 𝑋 = {Lincoln (𝐿),Douglas (𝐷),Bell (𝐵), Breckinridge (𝑅)}, respectively.  

 

(1) Strong Convergence in Riker’s Profile.  

Let 𝐹 = {𝑓𝑃, 𝑓𝐵, 𝑓𝐴}. For this profile, it follows that 𝑓𝑃
1(𝐿𝑅

0 ) = {𝐿} while 𝑓𝐵
1(𝐿𝑅

0 ) = 𝑓𝐴
1(𝐿𝑅

0 ) = {𝐷} 

(see Figure 4). Just as in the proof of Theorem 8, we can see that 𝐿0 strongly converges to {𝐷}.  

 

Figure 4. Strong convergence in Riker’s profile 

 

(2) Trivial Deadlock in Riker’s Profile.  

Let 𝐹 = {𝑓𝑃, 𝑓𝑋, 𝑓𝐴}, where 𝑓𝑋 is a slight change of 𝑓𝐵 such that  

𝑓𝑋: [1,
1

2
, 0] , [1,1,

1

3
, 0]. 

It is easy to check that 𝐿0 is in trivial deadlock (see Figure 5).  
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Figure 5. Trivial deadlock in Riker’s profile 

 

(3) Strong convergence in the Mean Historian Profile.  

Let 𝐹 = {𝑓𝑃, 𝑓𝐵, 𝑓𝐴} again. Just as in (1), we can verify that 𝐿𝑀
0  strongly converges to {𝐷}.  

 

(1), (2), and (3) provide a good example of how procedural choice can be made using the notion 

of convergence. In (1) and (3), 𝐿𝑅
0   and 𝐿𝑀

0   both strongly converges not to Lincoln (𝐿)  but to 

Douglas (𝐷). Part of the reason for this result is that Douglas wins over Lincoln using the simple 

majority rule under the both profiles. I do not claim that Douglas should have been the winner. In 

terms of convergence theory, whether a specific candidate (e.g., Douglas) should be elected depends 

on what kind of menu the society accepts. For example, if the U.S. citizens at that time thought that 

𝑓𝑃  was the unique appropriate procedure, i.e., 𝐹 = {𝑓𝑃} , the convergence clearly shows that the 

winner should have been Lincoln, because both profiles strongly converges to {𝐿}. The procedural 

choice based on convergence depends on which procedures are on the menu.  

 

3.5 Discussion 

In Chapters 2 and 3, I investigated the notion of weak/strong convergence. A preference profile 𝐿0 

over the set of alternatives 𝑋 is said to (weakly/strongly) converge if every rule to choose the rule to 

… to choose the rule to choose from 𝑋 derives the same subset 𝐶 of 𝑋. In Chapter 2, the results 

showed that a large society with three “familiar” SCRs can find convergence with relatively high 

probability when there are three alternatives. Specifically, the probability of weak convergence marks 

100% (as 𝑛 → ∞) for ten menus (Theorem 6). In Chapter 3, we focused on the question of under 

which menus of SCRs a (large) society can always find convergence. When little or no condition is 

placed on menus, Theorem 7 shows the existence of a menu satisfying the strongest property, i.e., the 

strong convergent property. On the other hand, I also showed that if 𝐹 is made up of concave scoring 

rules, there is an AC-expansion 𝐺 ⊇ 𝐹 (Theorem 9). This result enables a large society to acquire the 

asymptotic convergent property without abandoning the SCRs that they have already accepted. To 

conclude the chapter, I will add several comments on these results.  

The first comment is on the calculation of probability. Throughout Chapters 2 and 3, the 

argument originates from the set of alternatives 𝑋, and I assume that the probability model of voters’ 

preferences over 𝑋 follows either the IC or IAC model. Therefore, the probability of convergence or 

of trivial deadlock can differ once the number of alternatives changes. There is, however, a slightly 
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different use of the IC or IAC model: to assume that people’s preferences over the menu 𝐹 follow 

one of these models. In this alternative interpretation15, the choice from menu 𝐹 should correspond 

with “the set of alternatives 𝑋”. If we do not use the original set of alternatives explicitly, in this way, 

we can determine the probability of convergence without depending on the number of original 

alternatives, because we can regard Theorem 6 as a purely general case.  

 The second comment is on the definition of weak convergence. I defined a profile as weakly 

convergent if there exists a sequence of CI profiles that satisfy the required condition. Theoretically, 

CI preference is a generalization of the “induced preference” used by Koray (2000). Koray defines a 

voting rule to be self-selective if there exists an induced preference profile that satisfies a couple of 

conditions. As Koray and Slinko (2006; p.6) argued, if we substitute the italic part in the last sentence 

into “for all induced preference profiles”, the notion of self-selectivity turns out to be degenerate, and 

so too does the notion of convergence. In this sense, our notion of convergence is theoretically close 

to the notion of self-selectivity or self-stability: I note, however, that they are independent of each 

other. More specifically, Diss et al. (2012) and Diss and Merlin (2010) define a menu of SCRs as stable 

if there exists at least one self-selecting SCR for all preference profiles. What I claim here is that the 

two statements “a menu is stable” and “a menu weakly converges” are independent. To show this, it 

is sufficient to give two examples. The first is a profile that is stable and not weakly convergent; such 

a profile was shown in the introduction of trivial deadlock (see Example 9). The second example is a 

profile that is not stable and is weakly convergent, as shown in Figure 1 (page 6). The reader can see 

that no (level-1 and level-2) SCR chooses itself in the figure.  

 The last and concluding comment is on the meta-level profiles. The notion of convergence 

is, by definition, based on the implicit assumption that voters’ meta-preferences are consequential. If 

everyone is (supposed to be) consequential, the convergence notion performs relatively well to resolve 

the infinite regress of procedural choice, just by manipulating the indifferent class in consequentially 

induced weak preference profiles. However, the notion does not work well if there exist some voters 

whose meta-level preferences are not consequential. For example, suppose a voter, Mr. 𝑍, prefers 

Douglas to Lincoln and prefers plurality to anti-plurality. Such a voter is not consequential because 

plurality chooses Lincoln while anti-plurality chooses Douglas (section 3.4). But the point is a little 

more demanding. To reject the theory of convergence, there must be a voter whose meta-preference is 

not consequential, regardless of how high a level is considered. If Mr. 𝑍 prefers any level-𝑘 ≥ 2 rule 

(i.e., a rule in 𝐹𝑘) that ultimately chooses level-1 plurality, then we can regard him as consequential 

                                                         
15 Indeed, Diss et al. (2012) accepts this interpretation. They assume that the probability distribution over of the 

preference profile over the rules should follow IAC model. Nevertheless, I assumed that voters’ preference profile 

over 𝑋 follows IC or IAC. The reason is my personal idea that the procedural choice should be made for the very 
agenda that the society faces. It could be that a man does not care whether his wife decides dictatorially which 

restaurant to go for lunch but at the same time the man hates the use of dictatorship to determine whether the Diet 

abolishes a national law. One’s procedural judgment can vary according to the agenda. Therefore, our theory treats 𝑋 

explicitly.  
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from level-2 . If every 𝑖 ∈ 𝑁  is consequential at some finite level 𝑘𝑖 ∈ ℕ , then the convergence 

phenomenon will work, for we can say that everyone is consequential from the level 𝑘∗ ≔

max{𝑘1, 𝑘2, … , 𝑘𝑛} and hence the theory works once we regard 𝑋 as 𝐹𝑘
∗
. Once this translation is 

done, my series of theorems works to provide the convergence for a society. Thus, whether the notion 

of convergence can work depends on whether some individuals are not consequential at any level. For 

instance, whether there is an individual who prefers plurality at any level, even though level-10 

plurality might choose level-9 anti-plurality. To determine what kind of meta-preference (for infinite 

number of levels) can be an interesting future topic.  
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4 Determine the Society 

In the study of convergence in the previous chapters, the society 𝑁 is assumed to be given. In 

other words, an ex ante agreement is assumed to exist as to who has voting rights and who does 

not. While this implicit assumption is commonly used in the literature referred to in the previous 

chapter, the determination of 𝑁 can sometimes be quite controversial, especially when it is not 

clear who belongs to the set of individuals affected by the decision. In such a case, a voting rule 

is needed to aggregate individuals’ opinions on who should be included in 𝑁 . This chapter 

focuses on the strategic aspect of such an aggregation procedure.  

Consider that a set of individuals 𝑁̅ = {1,2,… , 𝑛}, where 𝑛 ≥ 2, assigns some (honorable) 

positions among them based on their mutual evaluations. I assume that everyone is selfish, in the sense 

that they want to win the honor for themselves. These situations differ from an ordinary social choice 

problem because each individual is a candidate as well as a voter, and therefore, specific kinds of 

strategic voting may occur. A basic interpretation of the word positions in the context of this 

dissertation is (a person who has) the right to vote. However, the subsequent argument is not specific 

to this context. Indeed, there are many other decision-making situations that have a similar structure, 

such as the awarding of prizes at an academic conference, a leadership contest within a political party, 

and the selection of representatives within a group.  

For these situations, Holzman and Moulin (2013) proposed an axiomatic framework of 

nomination rules and the axiom of Impartiality (IMP). A nomination rule is a rule for choosing the set 

of winners through the aggregation of individuals’ ballots that state who should receive the honorable 

positions. Under many familiar nomination rules such as approval voting (AV), a rational voter might 

manipulate his or her ballot in order to improve their own chance of winning. Consider, for instance, 

a society of four individuals: 1, 2, 3, and 4. They choose the prize winner(s) from among themselves 

by AV, where everyone is obliged to approve others and is not allowed to self-approve or abstain. 

Suppose individual 1 approves 2, 2 approves 3, 3 approves 4, and 4 approves 3. In this case, 

AV declares victory for individual 3 , because he or she receives the highest score (two points). 

However, if individual 4  approved 1  instead, AV would declare victory for the entire set of 

individuals (i.e., 1, 2, 3, and 4) because everyone’s score would be the same. Thus, individual 4 

would be better off by manipulating his or her ballot16. A nomination rule is called impartial if everyone 

can approve of anyone without fearing that the vote might spoil his or her own chance of winning. The 

example shows that AV is not impartial, despite its widely accepted robustness against strategic 

manipulation.  

                                                         
16 This possibility of manipulation still exists even if the method of AV uses a deterministic tie-breaking rule to 

restrict the set of winners to singletons only. Suppose individual A wins when A approves B, B approves C, C 

approves D, and D approves A. In this case, individual A has an opportunity to manipulate at the following ballot 

profile: A approves C, B approves C, C approves D, and D approves A. Individual A would be better off 

approving B instead.  
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 Described technically, Holzman and Moulin (2013) study the nomination function—where 

exactly one person wins—and propose several impossibility theorems. The combination of IMP and 

Anonymous Ballots (AB), an axiom that demands that each individual be treated equally as a voter, 

show one of the most striking impossibilities: the constant rule is the only nomination rule that satisfies 

both of these two axioms. Among subsequent axiomatic studies, Tamura and Ohseto's (2014) is the 

closest to my study. They showed that by considering nomination correspondences (i.e., allowing 

multiple winners), the impossibilities can be relieved. However, they faced another impossibility 

concerning IMP, AB, and Positive Unanimity (PU). 

 In general, the framework of a nomination rule is determined by two sets: (1) the domain 

(i.e., the admissible set of ballot profiles), and (2) the codomain (i.e., the admissible set of sets of 

winners). I refer to this pair as the setting of the nomination rule. As Tamura and Ohseto (2014) show, 

the extent of design possibility for normative nomination rules can differ among these settings. This 

strand of research motivates me to consider other popular settings and to find further escape routes 

from the impossibilities. The comparative study of different settings is also motivated from an 

empirical point of view. Consider, for example, nominations for the best paper award in some 

academic societies, or for the position of president of a country. In such cases, the number of winners 

is supposed to be restricted to one or at least bounded from above. By considering various domains 

with the number of winners fixed (to one), we can provide an escape route from the Holzman and 

Moulin impossibility.  

In a technical sense, I consider four types of ballot domain:  

 

1) All voters can approve as many other individuals as they like and neither self-approval 

nor abstention is allowed. 

2) All voters can approve as many individuals as they like and abstention is not allowed.  

3) All voters can approve as many individuals as they like and self-approval is not allowed. 

4) All voters must approve a fixed number of others (self-approval is not allowed). 

 

 In Holzman and Moulin (2013), Tamura and Ohseto (2014), and Tamura (2015), each 

individual was allowed to approve another individual. Their framework is a special case of my ballot 

profile domain 4). This ballot profile domain was also studied in relation to AV (e.g., Peters, Roy, & 

Storcken, 2012).  

As for codomains, I consider three types: 

a) The number of winners is fixed. 

b) The number of winners is bounded by a maximum of some fixed number. 

c) The number of winners is bounded by a minimum of some fixed number. 

 



42 
 

 By considering every combination of the domains (i.e., 1–4) and codomains (i.e., a–d), we 

can evaluate the nomination rules for a large number of settings. For example, for 𝑛 = 10 individuals, 

the number of possible settings is as high as 275. I have investigated, for each of the possible settings, 

whether a nomination rule exists that will satisfy IMP, AB, Pairwise Candidate Neutrality (2CN), Weak 

PU (WPU), and Negative Unanimity (NU). 2CN is a new axiom that I have formulated to express the 

idea of neutrality for endogenous nominating settings. My comparison analysis is possible because I 

succeed in describing the general structure that the impartial nomination rules commonly have under 

various settings (Lemma 7, Lemma 8, Lemma 9, Lemma 10, and Lemma 11 in subsection 4.3.2). 

Comparative results will be described in subsection 4.3.3.  

 Roughly speaking, the result shows that the threshold rule performs well in many settings. 

The threshold rule is defined as a rule that chooses all individuals whose scores (i.e., the number of 

approvals received by the individual) reach the fixed threshold. For example, if the threshold is fixed 

to two, every individual wins if and only if he or she is approved by at least two individuals. Indeed, 

the threshold rule, if it is well-defined for the setting, satisfies IMP and AB for almost all settings 

except those where self-approvals are allowed. The intuitive reason for this is that, when self-approval 

is not allowed, individuals cannot change their own score. This implies that individuals’ own ballots 

cannot affect whether their score reaches the fixed threshold. I will show that the threshold rule is 

characterized using IMP and some of the axioms well-known in relation to AV: anonymity, neutrality, 

positive/negative unanimity, and weak monotonicity.  

 The current chapter is organized as follows. Section 4.1 denotes the basic notation and 

section 4.2 describes the axioms of nomination rules in detail. I show the technical results of my 

comparative study in section 4.3. Further comments and discussion on the results are given in section 

4.4. All proofs are in the Appendix.  

 

4.1 Notation 

Let 𝑁̅ = {1,2,… , 𝑛} be a society consisting of 𝑛 (3 ≤ 𝑛 < ∞) individuals. Each individual 𝑖 ∈ 𝑁̅ 

casts a ballot 𝑁𝑖 ⊂ 𝑁̅, where the ballot 𝑁𝑖 is interpreted as the set of candidates approved by 𝑖. I 

refer to several circumstances that differ in the kinds of ballots that are admitted and winners that can 

be chosen. These pieces of information are formally expressed as the domains and codomains of 

nomination rules.  

 

Definition 20: Ballot Profile Domains—The Domain of the Nomination Rule  

Let 𝑘 ∈ {1,2,… , 𝑛 − 2}. For any 𝑖 ∈ 𝑁̅ I define four types of admissible ballot domains 

𝔑i, 𝔑𝑖
𝑠𝑒𝑙𝑓

, 𝔑𝑖
𝐴𝐵, 𝔑𝑖

𝑘 ⊆ 𝔓(𝑁̅) as follows: 

𝔑𝑖 = {𝑁𝑖 ∈ 𝔓(𝑁̅)│𝜙 ≠ 𝑁𝑖 ⊆ 𝑁̅ ∖ {𝑖}} 
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𝔑𝑖
𝑠𝑒𝑙𝑓

= {𝑁𝑖 ∈ 𝔓(𝑁̅)│𝜙 ≠ 𝑁𝑖 ⊆ 𝑁̅ ∖ {𝑖}} 

𝔑𝑖
𝐴𝐵 = {𝑁𝑖 ∈ 𝔓(𝑁̅)│𝑁𝑖 ⊆ 𝑁̅ ∖ {𝑖}} 

𝔑𝑖
𝑘 = {𝑁𝑖 ∈ 𝔑(𝑁̅)│𝑁𝑖 ⊆ 𝑁̅ ∖ {𝜙} 𝑎𝑛𝑑 |𝑁𝑖| = 𝑘} 

I refer to each 𝔑i, 𝔑𝑖
𝑠𝑒𝑙𝑓

, 𝔑𝑖
𝐴𝐵, and 𝔑𝑖

𝑘 as 𝑖’s ballot domain, generally denoted by 𝔇𝑖. A 

combination of all individuals’ ballots is called a ballot profile. I denote by 𝔑,𝔑𝑠𝑒𝑙𝑓 , 𝔑𝐴𝐵, 𝔑𝑘 the 

corresponding set of admissible ballot profiles for each of 𝔇𝑖 = 𝔑𝑖, 𝔑𝑖
𝐴𝐵,𝔑𝑖

𝑠𝑒𝑙𝑓
, 𝔑𝑖

𝑘: 

𝔑 = 𝔑1×…×𝔑𝑛 

𝔑𝑠𝑒𝑙𝑓 = 𝔑1
𝑠𝑒𝑙𝑓

×…×𝔑𝑛
𝑠𝑒𝑙𝑓

 

𝔑𝐴𝐵 = (𝔑1
𝐴𝐵×…×𝔑𝑛

𝐴𝐵) ∖ {(𝜙,𝜙, … , 𝜙)} 

𝔑𝑘 = 𝔑1
𝑘×…×𝔑𝑛

𝑘 

I refer to each 𝔑, 𝔑𝑠𝑒𝑙𝑓, 𝔑𝐴𝐵, and 𝔑𝑘 as a (ballot profile) domain, generally denoted by 𝔇.  

 

 A ballot profile domain 𝔇𝑖 expresses what kind of ballot 𝑖 can cast. As we can see from 

the definition, 𝔑i allows individual 𝑖 to approve as many individuals as he or she likes, if 𝑖 

approves at least one individual (i.e., no abstention) and does not approve him or herself (i.e., no 

self-approval). The next two ballot profile domains 𝔑𝑠𝑒𝑙𝑓 and 𝔑𝐴𝐵 are situations where self-

approval or abstention, respectively, are permitted. Finally, 𝔑𝑖
𝑘 is a ballot domain where 𝑖 must 

approve a fixed number of 𝑘 individuals from among the others. Note that the condition of 𝑘 ≤

𝑛 − 2 is not restricting because it only rules out 𝔑𝑖
𝑛−1 where 𝑖 has no choice but to approve all 

others. Considering all possible combinations of individuals’ ballots from the corresponding ballot 

profile domains 𝔇𝑖, I define the profile domains 𝔇. I note that 𝔑𝐴𝐵 excludes the empty profile, 

where no one approves anyone.17 I denote the ballots using capital letters with a subscript 

representing the individual 𝑁𝑖,𝑀𝑖, 𝐾𝑖(∈ 𝔇𝑖). Ballot profiles are denoted by scripted styles 

𝒩,ℳ,𝒦(∈ 𝔇), and ballot profile domains are denoted by fraktur letters 𝔑,𝔇, etc. 

 

Definition 21: Possible Winners—The Codomain of the Nomination Rule 

Let 𝑙 ∈ {1,2,… , 𝑛 − 1}. We consider several types of the codomain 𝔛 of the nomination rule.  

𝔛̅ = 𝔓(𝑁̅) ∖ {𝜙} 

𝔛𝑙 = {𝑊 ∈ 𝔓(𝑁̅)│|𝑊| = 𝑙} 

𝔛̅𝑙 = {𝑊 ∈ 𝔓(𝑁̅)│|𝑊| ≥ 𝑙} 

𝔛𝑙 = {𝑊 ∈ 𝔓(𝑁̅)│|𝑊| ≤ 𝑙} 

I refer to each 𝔛̅, 𝔛, 𝔛̅𝑙, and 𝔛𝑙 as a codomain, generally denoted by 𝔛.  

 

                                                         
17 As we describe later, this condition follows the model of Alon et al. (2009).  
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The codomain 𝔛 = 𝔛̅,𝔛𝑙, 𝔛̅𝑙, 𝔛𝑙 contains the information on the possible number of 

winners. The codomain 𝔛̅ admits any number of winners except zero, while 𝔛𝑙 admits only the 

fixed number of winners, 𝔛̅𝑙 admits 𝑙 or more winners, and 𝔛𝑙 admits 𝑙 or less winners. It 

follows from the definition that 𝔛̅ is a special case of 𝔛̅𝑙, or 𝔛̅ = 𝔛̅1. Though I do not consider the 

case of 𝑙 = 𝑛, it is clear that 𝔛𝑛 = 𝔛̅𝑛 has little importance, and 𝔛𝑛(= 𝔛̅1 = 𝔛̅) is included in the 

other types. Thus, the restriction of 𝑙 < 𝑛 eliminates the trivial cases only. Hereafter, I call the pair 

of the domain and codomain a setting. A nomination rule is formally defined for each combination 

of domain and codomain.  

 

Definition 22: Nomination Rule  

The nomination rule 𝜑 of setting (𝔇,𝔛) is a function 𝜑:𝔇 → 𝔛, which assigns to each ballot 

profile 𝒩 = (𝑁1,… ,𝑁𝑛) ∈ 𝔇 the set of winners 𝜑(𝒩) ∈ 𝔛.  

 

My definition deals with many variations in the settings. Holzman and Moulin (2010) study 

the setting of (𝔇, 𝔛) = (𝔑1, 𝔛1), Tamura and Ohseto (2014) study the setting of (𝔇,𝔛) = (𝔑1, 𝔛̅), 

and Alon et al. (2009) study the setting of (𝔑𝐴𝐵, 𝔛𝑙). 

Here I will provide a few more notations. For any 𝒩 ∈ 𝔇, I will denote by 𝑠𝑖(𝒩) the 𝑖’s 

score at ballot profile 𝒩 = (𝑁1, … , 𝑁𝑛) ∈ 𝔇, which is calculated as follows: 

𝑠𝑖(𝒩) ≔ |{𝑗 ∈ 𝑁̅│𝑖 ∈ 𝑁𝑗}|. 

This counts the number of ballots that include 𝑖. I denote by 𝑠(𝒩) = (𝑠1(𝒩), 𝑠2(𝒩),… , 𝑠𝑛(𝒩)) 

the profile of scores at a ballot profile 𝒩. To distinguish this from ballot profiles, I denote by 𝑠(𝒩) 

the score profile (with respect to 𝒩). I also denote by 𝑠𝑗
−𝑖(𝒩) the individual 𝑗’s score coming 

from the individuals in 𝑁̅ ∖ {𝑖} as follows: 

𝑠𝑗
−𝑖(𝒩) = |{𝜇 ∈ 𝑁̅ ∖ {𝑖}│𝑗 ∈ 𝑁𝜇}|. 

Finally, I define a special type of ballot profile that is useful for the proof. For all 𝑗 ∈ ℕ, I 

define 𝑗̅ ∈ 𝑁̅ as 𝑗̅ = 𝑛 if 𝑗 ≡ 0 (mod 𝑛) and 𝑗̅ ≡ 𝑙 if 𝑗 ≡ 𝑙 (mod 𝑛) for some 1 ≤ 𝑙 ≤ 𝑛 −

1. For example, 𝑖̅ = 𝑖 for all 𝑖 ∈ 𝑁̅, and 0̅ = 𝑛, −1̅̅ ̅̅ = 𝑛 − 1,−2̅̅ ̅̅ = 𝑛 − 2,… and  𝑛 + 1̅̅ ̅̅ ̅̅ ̅ =

1, 𝑛 + 2̅̅ ̅̅ ̅̅ ̅ = 2,…. Let me define cyclic ballot profiles 𝒞1, 𝒞2, … , 𝒞𝑛−1 ∈ 𝔑. For any 1 ≤ 𝑚 ≤ 𝑛 − 1, 

I define the 𝑚-cyclic ballot profile 𝒞𝑚 = (𝐶1
𝑚, 𝐶2

𝑚, … , 𝐶𝑛
𝑚) ∈ 𝔑 as 𝐶𝑖

𝑚 ≔ {𝑖 + 1̅̅ ̅̅ ̅̅ , 𝑖 + 2̅̅ ̅̅ ̅̅ , … , 𝑖 +𝑚̅̅ ̅̅ ̅̅ ̅}. 

I further define a reversed 𝑚-cyclic ballot profile ℛ𝑚 = (𝑅1
𝑚, … , 𝑅𝑛

𝑚) such that 𝑅𝑖
𝑚 ≔

{𝑖 − 1̅̅ ̅̅ ̅̅ , 𝑖 − 2̅̅ ̅̅ ̅̅ , … , 𝑖 − 𝑚̅̅ ̅̅ ̅̅ ̅} for all 𝑖 ∈ 𝑁̅.  
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4.2 Axioms for Nomination Rules 

4.2.1 Axioms 

I introduce some normative axioms for nomination rules. After the definitions, I will show some 

well-known nomination rules and argue their axiomatic performance in 4.2.2.  

Let 𝜑:𝔇 → 𝔛 be a nomination rule.  

(1) 𝜑 satisfies IMP if  

for any 𝒩 = (𝑁𝑖, 𝑁−𝑖) ∈ 𝔇, 𝑖 ∈ 𝑁̅, and 𝑁𝑖
′ ∈ 𝔇𝑖, we have 𝑖 ∈ 𝜑(𝑁𝑖, 𝑁−𝑖) ⇔ 𝑖 ∈

𝜑(𝑁𝑖
′, 𝑁−𝑖).  

(2) 𝜑 satisfies (strong) PU if  

for all 𝒩 ∈ 𝔇, if 𝑖 ∈ 𝑁̅ exists such that 𝑖 ∈ ⋂ 𝑁𝑗𝑗≠𝑖 , then  

𝜑(𝒩) = {𝑖 ∈ 𝑁̅│𝑖 ∈ 𝑁𝑗 for all 𝑗 ∈ 𝑁̅}. 

(3) 𝜑 satisfies WPU if  

for any 𝒩 = (𝑁𝑖, 𝑁−𝑖) ∈ 𝔇 and 𝑖 ∈ 𝑁̅, if 𝑖 ∈ 𝑁𝑗 for all 𝑗 ∈ 𝑁̅ ∖ {𝑖}, then 𝑖 ∈ 𝜑(𝒩).  

(4) 𝜑 satisfies NU if  

for all 𝒩 ∈ 𝔇 and 𝑖 ∈ 𝑁̅, if 𝑖 ∉ 𝑁𝑗 for all 𝑗 ∈ 𝑁̅ ∖ {𝑖}, then 𝑖 ∉ 𝜑(𝒩). 

(5) 𝜑 satisfies AB if  

for all 𝒩,𝒩′ ∈ 𝔇, if 𝑠(𝒩) = 𝑠(𝒩′), then 𝜑(𝒩) = 𝜑(𝒩′). 

(6) 𝜑 satisfies No Dummy (ND) if  

for all 𝑖 ∈ 𝑁̅, 𝒩 = (𝑁𝑖, 𝑁−𝑖) and 𝑁𝑖
′ ∈ 𝔇𝑖 exist such that 𝜑(𝒩) ≠ 𝜑(𝒩′).  

 

 Note that these axioms, except WPU, coincide with those used in both Holzman and 

Moulin (2013) and Tamura and Ohseto (2014), if we consider the settings studied in those papers. 

WPU is my own axiom. To make this dissertation self-contained, I will briefly explain these axioms.  

Axiom IMP demands that each voter’s ballot has no influence over whether that voter wins 

or loses. In other words, everyone can approve anyone without fearing that the approval of one’s 

potential rivals decreases one’s own chance of winning.  

The axioms of PU, WPU, and NU relate to the idea of unanimity. PU and WPU demand that 

one must win if one earns unanimous approval from all others, and PU furthermore demands that 

those who fail to obtain unanimous approval from the others cannot win if someone else obtains 

unanimous approval. Note that PU and WPU are logically equivalent in some settings (e.g., in 

(𝔑1, 𝔛1)), which Holzman and Moulin (2013) studied. On the other hand, NU demands that if one 

cannot obtain approval from any of the others, he or she must not win.  

The fifth axiom, AB, states that all individuals should be treated equally as voters. If a rule 

satisfies AB, then it does not see who approves who, but only the scores of each individual. Note that 

this condition does not necessarily require individual equality as a candidate. For example, a 

nomination rule that chooses some fixed individual 𝑖 ∈ 𝑁̅ satisfies AB, although this rule is clearly 
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discriminative over other candidates.  

The sixth axiom, ND, states that all voters have at least one situation (i.e., one ballot profile) 

where they can change the winners 𝜑(⋅). Thus, the constant rule does not satisfy ND because 

anyone in the society is a dummy voter.  

Note also that all the above axioms are satisfied by AV, except for IMP. Formal discussion 

on the properties of each rule will be given in section 4.2.2.  

To state the next axiom, I need to introduce further notation. Let 𝜎 = (𝑖, 𝑗) be any 

transposition18 over 𝑁̅ that swaps 𝑖 and 𝑗. For any ballot profile 𝒩 = (𝑁1,… , 𝑁𝑛) ∈ 𝔇 such that 

𝑖 ∉ 𝑁𝑗 and 𝑗 ∉ 𝑁𝑖, let 𝒩σ = (𝑁1
𝜎 , … , 𝑁𝑛

𝜎) be the transposed ballot profile defined for any 𝑘 ∈ 𝑁̅ 

and 𝜇 = 𝑖, 𝑗, 𝜇 ∈ 𝑁𝑘 ⇔ 𝜎(𝜇) ∈ 𝑁𝑘
𝜎.  

In words, 𝒩σ is a ballot profile where the approvers of 𝑖 and 𝑗 are swapped from the 

original ballot profile 𝒩: those who approved 𝑖 at 𝒩 will newly approve 𝑗 at 𝒩σ, and those 

who approved 𝑗 at 𝒩 will approve 𝑖 at 𝒩σ. This means that the individuals’ judgments over 𝑖 

and 𝑗 are swapped with each other. Note that for any transposition 𝜎 = (𝑖, 𝑗) and a ballot profile 

𝒩 ∈ 𝔇(= 𝔑,𝔑𝑠𝑒𝑙𝑓,𝔑𝐴𝐵, 𝔑𝑘) such that 𝑖 ∉ 𝑁𝑗 and 𝑗 ∉ 𝑁𝑖, it follows that 𝒩σ ∈ 𝔇. Therefore, we 

can freely consider the transposed ballot profile as long as 𝑖 ∉ 𝑁𝑗 and 𝑗 ∉ 𝑁𝑖. Note also that if it 

were not for the condition of 𝑖 ∉ 𝑁𝑗 and 𝑗 ∉ 𝑁𝑖, it could be that 𝒩 ∈ 𝔇 but 𝒩σ ∉ 𝔇. This is 

because self-approval is not permitted in the domains 𝔇 = 𝔑,𝔑AB,𝔑𝑘. Therefore, if 𝑖 approves 𝑗 

at the original ballot profile 𝒩, we cannot define 𝒩σ  for 𝜎 = (𝑖, 𝑗) in a direct manner because 

𝑁𝑖
𝜎 should include 𝑖 instead of 𝑗, which constitutes self-approval. Using this notation I introduce 

the next axiom.  

 

(7) 𝜑 satisfies Pairwise Candidate Neutrality (2CN) if  

for all 𝒩 ∈ 𝔇, 𝑖, 𝑗 ∈ 𝑁̅, and transposition 𝜎 = (𝑖, 𝑗), if 𝑖 ∉ 𝑁𝑗 and 𝑗 ∉ 𝑁𝑖, then we have 

𝑖 ∈ 𝜑(𝒩) ⇔ 𝜎(𝑖) ∈ 𝜑(𝒩𝜎). 

(8) 𝜑 satisfies Cancellation (C) if  

for all 𝒩 ∈ 𝔇, if 𝑠𝑖(𝒩) = 𝑠𝑗(𝒩) for all 𝑖. 𝑗 ∈ 𝑁̅, then 𝜑(𝒩) = 𝑁̅.  

(9) 𝜑 satisfies Weak Monotonicity (WM) if  

for all 𝒩 = (𝑁1,… ,𝑁𝑛) ∈ 𝔇, 𝑖 ∈ 𝜑(𝒩) ⊆ 𝑁̅, and 𝑗, 𝑘 ∈ 𝑁̅ ∖ {𝑖} such that 𝑖 ∉ 𝑁𝑗 and 

𝑘 ∈ 𝑁𝑗, 

𝑖 ∈ 𝜑(𝒩′) for 𝒩′ = (𝑁𝑗
′,𝑁−𝑗) ∈ 𝔇, where 𝑁𝑗

′ = (𝑁𝑗 ∪ {𝑖}) ∖ {𝑘}. 

 

2CN reflects the idea of the neutrality axiom in the nomination environment. Roughly speaking, 

2CN demands that the swap of 𝑖 and 𝑗 in the ballot profile causes the swap of 𝑖 and 𝑗 in the 

                                                         
18 We say that 𝜎 = (𝑖, 𝑗) is a transposition over 𝑁̅ between 𝑖 and 𝑗 if 𝜎: 𝑁̅ → 𝑁̅ is a bijection and 𝜎(𝑖) = 𝑗, 
𝜎(𝑗) = 𝑖, and 𝜎(𝑘) = 𝑘 for all 𝑘 ∈ 𝑁̅ ∖ {𝑖, 𝑗}.  
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result of 𝜑. However, 2CN says nothing if there is an internal approval between 𝑖 and 𝑗. Under 

2CN, we can say that each individual is treated almost equally. Cancellation states that if the scores 

of all the individuals are the same, then all the individuals win. As I show in Lemma 10, this axiom 

is logically connected to the others19. The last axiom, WM, states that the original winner 𝑖 ∈ 𝑁̅ is 

still one of the winners after some 𝑗 newly approves 𝑖 instead of some 𝑘. 

 

Remark. 2CN is a weaker axiom than Candidate Neutrality (CN), which is used in Mackenzie 

(2015). To see this, let me give a slight paraphrasing of AC. If we consider 𝔑̅ or 𝔑𝑘 as the 

domain, the condition of [𝑖 ∉ 𝑋𝑗 and 𝑗 ∉ 𝑋𝑖] is equivalent to saying 𝑋𝜎 ∈ 𝐷20. Furthermore, 

[𝑖 ∈ 𝜑(𝑋) ⇔ 𝑗 ∈ 𝜑(𝑋𝜎)] is equivalent to saying [𝜑𝜎(𝑖)(𝑋
𝜎) = 𝜑𝑖(𝑋)] if we consider 

deterministic rules. Therefore, in these domains, 2CN and CN can be expressed as follows:  

CN: For each profile 𝑋 = (𝑋1, 𝑋2, … , 𝑋𝑛) ∈ 𝐷, each 𝑖 ∈ 𝑁, and each permutation 𝜎 ∈ 𝑆𝑁,  

𝑋𝜎 ∈ 𝐷 implies 𝜑𝜎(𝑖)(𝑋
𝜎) = 𝜑𝑖(𝑋). 

2CN: For each profile 𝑋 = (𝑋1, 𝑋2,… , 𝑋𝑛) ∈ 𝐵 , and each 𝑖 ∈ 𝑁  and each transposition 

𝜎 = (𝑖, 𝑗),  

𝑋𝜎 ∈ 𝐷 implies 𝜑𝜎(𝑖)(𝑋
𝜎) = 𝜑𝑖(𝑋). 

The difference is whether they consider any permutation or any transposition. Clearly, CN implies 

2CN because a transposition is a permutation. It is well known that any permutation can be written 

as a product of transpositions, and so the reader might think that 2CN and CN are logically 

equivalent, but they are not. 2CN is strictly logically weaker than CN. The following example shows 

this fact.  

Let 𝜑:𝔑 → 𝔓(𝑁) ∖ {𝜙} be defined as follows: for each 𝒩 = (𝑁1,𝑁2, … , 𝑁𝑛) ∈ 𝒳̅,  

𝜑(𝑋) ≔ {
{1} if 𝑋 ∈ {𝐶𝑛−2, 𝑅𝑛−2}
𝑁1 otherwise.

 

In words, this rule chooses individual 1  only if the ballot profile is either (𝑛 − 2) -cyclic profile 

𝒞n−2 or its reverse ℛn−2. Otherwise, it chooses those who individual 1 approves. Let me show two 

statements:  

[1] the rule 𝜑 satisfies 2CN, and 

[2] the rule 𝜑 fails to satisfy CN.  

 

Proof of [1]  

I show [1] with four steps. Let 𝟏: 𝑁̅ → 𝑁̅ be the identity function.  

 

                                                         
19 We found some works that use this axiom in the characterization of AV: Fishburn (1978), Laffont (1979), and 

Alós-Ferrer (2006). 
20 In this remark, I use the following notation so that I can compare the definitions to those of Mackenzie (2015). 

𝑋𝑖
𝜏 = 𝜏(𝑋𝑖) = {𝜏(𝑦)│𝑦 ∈ 𝑋𝑖}. 
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Step 1: To show that (a) for each 𝜎 ∈ 𝑆𝑁̅, [𝜎(𝒞𝑛−2) ∈ 𝔇 ⇔ 𝜎 is either (1,2,… , 𝑛) or 𝟏], and (b) 

for each 𝜎 ∈ 𝑆𝑁̅, [𝜎(ℛ𝑛−2) ∈ 𝔇 ⇔ σ is either (𝑛, 𝑛 − 1, … ,1) or 𝟏].  

The proofs are similar, and so let me show (a) only. [⇐] is straightforward, therefore I show 

[⇒]. Take any 𝜎 ∈ 𝑆𝑁̅ such that 𝜎(𝒞𝑛−2) ∈ 𝔇 and 𝜎 ≠ 𝟏. Take any 𝑖 ∈ 𝑁̅. Suppose 𝑖 ≠ 𝜎(𝑖) and 

let 𝑗 = 𝜎(𝑖). 𝜎(𝒞𝑛−2) ∈ 𝔇, and so 𝑗 does not nominate himself or herself at the profile 𝜎(𝒞𝑛−2). 

Formally,  

𝑗 ∉ {𝜇 ∈ 𝑁̅│𝑗 ∈ (𝒞𝑛−2)𝜇
𝜎} = {𝜇 ∈ 𝑁̅│𝑖 ∈ 𝐶𝜇

𝑛−2} = 𝑁̅ ∖ {𝑖, 𝑖 + 1̅̅ ̅̅ ̅̅ }. 

So, 𝑗 is either 𝑖 or 𝑖 + 1̅̅ ̅̅ ̅̅ . We assumed 𝑗 ≠ 𝑖, and so we have 𝑗 = 𝜎(𝑖) = 𝑖 + 1̅̅ ̅̅ ̅̅ .  

𝜎 ≠ 𝟏, and so there exists at least one individual 𝑖0 ∈ 𝑁̅ such that 𝜎(𝑖0) ≠ 𝑖0. With the 

argument from the previous paragraph, we have 𝜎(𝑖0) = 𝑖0 + 1̅̅ ̅̅ ̅̅ ̅̅ . 𝜎 is a permutation, and so we have 

𝜎(𝑖0 + 1̅̅ ̅̅ ̅̅ ̅̅ ) ≠ 𝑖0 + 1̅̅ ̅̅ ̅̅ ̅̅ , because otherwise 𝜎(𝑖0) and 𝜎(𝑖0 + 1̅̅ ̅̅ ̅̅ ̅̅ ) would become the same. Inductively, 

we have 𝜎(𝑖) ≠ 𝑖 for all 𝑖 ∈ 𝑁̅. With the previous paragraph, this means 𝜎(𝑖) = 𝑖 + 1̅̅ ̅̅ ̅̅  for all 𝑖 ∈

𝑁̅. As an extra notation, let me denote as Σ = (1,2,… , 𝑛) (and Σ−1 = (𝑛, 𝑛 − 1,… ,1)).  

 

Step 2: To confirm that 𝛴(𝒞𝑛−2) = ℛ𝑛−2 and Σ−1(ℛ𝑛−2) = 𝒞𝑛−2.  

The confirmation is straightforward. Note that Step 1 and Step 2 together imply that if 

𝜎(𝐶𝑛−2) ∈ 𝔇 for some 𝜎 ∈ 𝑆𝑁̅, it follows that 𝜎(𝒞𝑛−2) is either 𝒞𝑛−2 or ℛ𝑛−2.  

 

Step 3: To show that there is no 𝜏 ∈ 𝑆𝑁̅  and 𝒩 ∈ 𝔇 ∖ {𝒞𝑛−2, ℛ𝑛−2}  such that 𝜏(𝒩) ∈

{𝒞𝑛−2,ℛ𝑛−2}.  

 Suppose to the contrary that 𝜏(𝒩) = 𝒞𝑛−2  for 𝜏 ∈ 𝑆𝑁̅  and 𝒩 ∈ 𝔇 ∖ {𝒞𝑛−2,ℛ𝑛−2} . 

Then,  

𝜏−1(𝒞𝑛−2) = 𝜏−1(𝜏(𝒩)) = 𝒩. 

This contradicts Step 2.  

 

Step 4: To show that 𝜑 satisfies 2CN.  

Take any 𝑖, 𝑗 ∈ 𝑁̅ and 𝒩 ∈ 𝔇. Let 𝜎 = (𝑖, 𝑗). If 𝒩 ∈ {𝒞𝑛−2, ℛ𝑛−2}, Step 1 tells us that 

𝜎(𝒩) ∉ 𝔇  (if 𝑛 ≥ 3 ). So, the statement of 2CN automatically holds. If 𝒩 ∈ 𝔇 ∖ {𝒞𝑛−2, ℛ𝑛−2} , 

step 3 shows that 𝜎(𝒩) ∉ 𝔇  or 𝜎(𝒩) ∈ 𝔇 ∖ {𝒞𝑛−2, ℛ𝑛−2} . In the former case, the statement of 

2CN automatically holds. In the latter case, 2CN also holds because 𝜑(𝒩) = 𝑁1 and 𝜑(𝒩𝜎) = 𝑁1
𝜎. 

■ 

 

Proof of [2] 

To check that 𝜑 does not satisfy CN, let us consider profiles 𝒞𝑛−2 and ℛ𝑛−2 and permutation 𝛴 

defined in the proof of [1]. By definition, 𝜑(𝒞𝑛−2) = 𝜑(ℛ𝑛−2) = {1}. However, CN demands that 

𝜑(ℛ𝑛−2) = 𝛴(𝒞𝑛−2) = {2}. Contradiction. ■ 
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4.2.2 Independence of the Axioms 

Here I show some basic examples of nomination rules and discuss whether they satisfy the main 

axioms: IMP, AB, WPU, PU, 2CN, and NU, which will be used frequently later on. Then I show the 

logical relation of the main axioms, mainly on the setting (𝔑, 𝔛̅)21.  

 

(1) Approval Voting 𝝋𝑨𝑽:𝕯 → 𝖃̅  

AV 𝜑𝐴𝑉 is the nomination rule that chooses as the winners those with the highest scores. For any 

ballot profile 𝒩 ∈ 𝔇,  

𝜑𝐴𝑉(𝒩) ≔ argmax
𝑖∈𝑁̅

𝑠𝑖(𝒩) = {𝑖 ∈ 𝑁̅|𝑠𝑖(𝒩) ≥ 𝑠𝑗(𝒩) for all 𝑗 ∈ 𝑁̅}. 

As I noted in the introduction, this rule is not impartial on 𝔇 = 𝔑,𝔑𝑠𝑒𝑙𝑓, 𝔑𝐴𝐵, 𝔑𝑘. I will briefly 

show this through two counterexamples.  

For the domains 𝔇 = 𝔑,𝔑𝐴𝐵,𝔑𝑠𝑒𝑙𝑓 , 𝔑1, let 𝑁̅ = {1,2,3} and consider a ballot profile 

𝒩 = (𝑁1,𝑁2, 𝑁3) ∈ 𝔑, where 𝑁1 = {2},𝑁2 = {1},𝑁3 = {2}. The score profile is given by 𝑠(𝒩) =

(𝑠1(𝒩), 𝑠2(𝒩), 𝑠3(𝒩)) = (1,2,0). Thus, 𝜑𝐴𝑉(𝒩) = {2}. However, individual 1 can be better off 

by changing his or her ballot 𝑁1 to 𝑁1
′ ≔ {3}. AV will choose 𝜑𝐴𝑉(𝑁1

′, 𝑁−1) = {1,2,3} at this 

new ballot profile, for 𝑠1(𝒩) = 𝑠2(𝒩) = 𝑠3(𝒩) = 1, thus contradicting IMP.  

For the domain 𝔇 = 𝔑𝑘, let 𝑁̅ = {1,2,… , 𝑛}(𝑛 ≥ 3) and consider the 𝑘-cyclic ballot 

profile 𝒞𝑘 ∈ 𝔑𝑘. Then 𝜑(𝒞𝑘) = 𝑁̅. Next, consider individual 1’s manipulation as 𝒟 =

(𝐷1, 𝐷−1) ∈ 𝔑
𝑘, where 𝐷1 = (𝐶1

𝑘 ∪ {𝑛}) ∖ {2} and 𝐷−𝑖 = 𝐶−𝑖
𝑘 . Note that 𝑘 ≤ 𝑛 − 2 implies 𝑛 ∉

𝐶1
𝑘. Therefore, we can see 𝒟 as a ballot profile such that individual 1 approves 𝑛 instead of 2. 

Then, we have 𝑠𝑛(𝒟) = 𝑘 + 1 > 𝑠1(𝒟) = 𝑘, which implies 1 ∉ 𝜑𝐴𝑉(𝒟). Therefore, this rule does 

not satisfy IMP. These examples show a basic gap between the concept of AV and the axiom of 

IMP.  

 

(2) Constant-𝑪 Rule 𝒄𝒐𝒏𝐂:𝕯 → 𝖃  

Let 𝐶 ∈ 𝔛 be a subset of 𝑁̅. The constant-𝐶 rule, 𝑐𝑜𝑛𝐶, is the nomination rule that always 

nominates 𝐶 regardless of the ballots:  

𝜑𝑖(𝒩) = 𝐶 for all 𝒩 ∈ 𝔛 

Two illustrative cases are when 𝐶 = {𝑖} for some 𝑖 ∈ 𝑁̅ and 𝐶 = 𝑁̅ (i.e., 𝑐𝑜𝑛{𝑖} and 𝑐𝑜𝑛𝑁̅). The 

former is shown to be the unique nomination rule on the setting (𝔑1, 𝔛1) that satisfies both IMP 

and AB (Holzman & Moulin, 2013). In fact, it is easy to see that the constant-𝐶 rule, where 𝐶 ∈ 𝔛̅ 

                                                         
21 For the logical relationship of the main axioms in other typical settings, see Holzman and Moulin (2013) for 

(𝔑1, 𝔛1) and Tamura and Ohseto (2014) for (𝔑1, 𝔛̅).  
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is any admissible set, satisfies IMP and AB. Consider the latter case 𝑐𝑜𝑛𝑁̅ on the setting (𝔑, 𝔛̅). In 

this case, it is clear that 𝑐𝑜𝑛𝑁̅:𝔑 → 𝔛̅ satisfies WPU and 2CN, however, it fails to satisfy PU and 

NU.  

 

(3) Plurality With Runners-up Rule 𝝋𝑷:𝕹 → 𝖃̅  

The plurality with runners-up rule, 𝜑𝑃, defined below, is an extension of the original definition 

proposed in Tamura and Ohseto (2014). Although it was invented on the setting (𝔑1, 𝔛̅), I show that 

a similar idea works in (𝔑, 𝔛̅), in the sense that 𝜑𝑃 satisfies IMP and some other axioms. For any 

given ballot profile 𝒩 ∈ 𝔑, I define 𝐹𝒩, 𝑆𝒩 ⊆ 𝑁̅ as follows:  

𝐹𝒩 ≔ {𝑖 ∈ 𝑁̅│𝑠𝑖(𝒩) ≥ 𝑠𝑗(𝒩) for all 𝑗 ∈ 𝑁̅} 

𝑆𝒩 ≔ {𝑖 ∈ 𝑁̅│𝑠𝑖(𝒩) = 𝑠𝐹𝒩(𝒩)− 1} 

where 𝑠𝐹𝒩(𝒩) = 𝑠𝑖(𝒩) for some 𝑖 ∈ 𝐹𝒩. Note that 𝐹𝒩 is the set of individuals with the largest 

scores. Therefore, it is nonempty for all ballot profiles 𝒩 ∈ 𝔑. On the other hand, 𝑆𝒩 is the set of 

individuals whose score is just one point smaller than the largest. Thus, 𝑆𝒩 can be empty for some 

ballot profiles. Let me define the plurality with runners-up rule, 𝜑𝑃, on (𝔑, 𝔛̅) as follows: 

for all 𝒩 = (𝑁1,… ,𝑁𝑛) ∈ 𝔑, 

𝜑𝑃(𝒩) = 𝐹𝒩 ∪ {𝑖 ∈ 𝑆𝒩│𝐹𝒩 ⊆ 𝑁𝑖} 

This rule unconditionally chooses all individuals in 𝐹𝒩. For individuals in 𝑆𝒩, on the other hand, the 

rule chooses them if and only if they approve all of the individuals in 𝐹𝒩 at the given ballot profile 

𝒩. Note that if we swap the domain 𝔑 in the above definition to domain 𝔑1, the result is identical 

to what is proposed in Tamura and Ohseto (2014) under the setting (𝔑1, 𝔛̅). Proposition 5 will show 

that this rule satisfies WPU, NU, and IMP, but not PU22 nor 2CN. Furthermore, it fails to satisfy AB 

if 𝑛 ≥ 4.  

 

(4) Threshold-𝒕 Rule 𝝋𝒕 

For all 𝑡 ∈ {0,1,2,… , 𝑛}, I define the threshold-𝑡 rule, 𝜑𝑡(𝒩), for all 𝒩 ∈ 𝔇 as follows:  

𝜑𝑡(𝒩) = {𝑖 ∈ 𝑁̅│𝑠𝑖(𝒩) ≥ 𝑡}. 

In words, this rule chooses all of the individuals whose scores reach 𝑡. Note that for the threshold 

rule to be well-defined, the codomain must be rich enough. Consider a society of four individuals 

𝑁̅ = {1,2,3,4} and the setting (𝔑,𝔛1). At the 1-cyclic ballot profile 𝒞1, we have  

𝑠1(𝒞
1) = s2(𝒞

1) = 𝑠3(𝒞
1) = 𝑠4(𝒞

1) = 1. 

Therefore, the threshold-1 rule should choose 𝜑1(𝒞1) = 𝑁̅. However, because 𝑁̅ ∉ 𝔛1, we can see 

that the rule is not well-defined on this setting. For the same reason, we cannot provide 𝜑1 on the 

setting (𝔑,𝔛𝑙) or (𝔑,𝔛𝑙).  

                                                         
22 In their Theorem 1, Tamura and Ohseto (2014) show that their 𝜑𝑃: 𝔑

1 → 𝔛̅ also satisfies PU. However, according 

to my expanded definition, 𝜑𝑃 : 𝔑 → 𝔛̅ does not satisfy PU. Proposition 10 will demonstrate that this is because of 

the intrinsic impossibility in this setting rather than my failure to properly redefine the rule.  
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 Although unorthodox, I introduce three other nomination rules. These are introduced to 

show the logical independence of the main axioms.  

 

(5) Pseudo Threshold Rule 𝝃𝒊: 𝕹 → 𝖃̅ for some 𝒊 ∈ 𝑵̅  

For all 𝒩 ∈ 𝔑,  

𝜉𝑖(𝒩) = {
𝜑1(𝒩) if 𝑠𝑖(𝒩) ≠ 𝑛 − 1

𝜑1(𝒩) ∖ {𝑖} if 𝑠𝑖(𝒩) = 𝑛 − 1
 

This rule is very similar to the threshold-1 rule, 𝜑1, and only differs when individual 𝑖 receives 

unanimous approval from the others. It is easy to see that the pseudo threshold rule satisfies IMP, 

AB, 2CN, and NU, and does not satisfy WPU.  

 

(6) Pseudo Threshold Rule’ 𝝃′𝒊:𝕹 → 𝖃̅ for some 𝒊 ∈ 𝑵̅  

For all 𝒩 ∈ 𝔑,  

𝜉′𝑖(𝒩) = {
𝜑1(𝒩) if 𝑠𝑖(𝒩) ≠ 1

𝜑1(𝒩) ∖ {𝑖} if 𝑠𝑖(𝒩) = 1
 

It is clear that this rule satisfies IMP, AB, WPU, and NU, but not 2CN.  

 

(7) Pseudo-Dictatorial Rule 𝒅𝒊:𝕹 → 𝖃̅ 

𝑑𝑖(𝒩) = {
𝑁𝑖 if 𝑠𝑖(𝒩) < 𝑛 − 1

𝑁𝑖 ∪ {𝑖} if 𝑠𝑖(𝒩) = 𝑛 − 1
 

Under this rule, 𝑗 ≠ 𝑖  wins if and only if 𝑗  is approved by 𝑖  while 𝑖  wins only if 𝑖  receives 

unanimous approval from the others. We can verify that the pseudo-dictatorial rule 𝑑𝑖:𝔑 → 𝔛̅ 

satisfies WPU, NU, IMP, and 2CN, but not AB.  

 

 The following presents the conclusions from this section.  

Proposition 5.  

Let 𝑛 ≥ 3 and 𝑖 ∈ 𝑁̅. The axioms IMP, AB, 2CN, WPU, and NU are all logically independent under 

the setting (𝔑, 𝔛̅). In fact, we have the following: 

(1) 𝜑𝐴𝑉 satisfies AB, 2CN, WPU, and NU, but not IMP. 

(2) 𝑐𝑜𝑛𝑁̅ satisfies IMP, AB, 2CN, and WPU, but not NU.  

(3)23 𝜑𝑃 satisfies IMP, WPU, and NU, but not 2CN. 𝜑𝑃 satisfies AB if 𝑛 = 3, but fails if 

𝑛 ≥ 4.  

(4) 𝜑1 satisfies IMP, AB, 2CN, WPU, and NU.  

(5) 𝜉𝑖 satisfies IMP, AB, 2CN, and NU, but not WPU.  

                                                         
23 Part of the proof that 𝜑𝑃 satisfies I, specifically, can be obtained by modifying the proof from Tamura and Ohseto's 

(2014) Theorem 1.  
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(6) 𝜉′𝑖 satisfies IMP, AB, NU, and WPU, but not 2CN.  

(7) 𝑑𝑖 satisfies IMP, 2CN, WPU, and NU, but not AB.  

 

 These results are described in Table 3. For each entry in the table, 0 means that the rule 

does not satisfy the axiom, and 1 means that the rule satisfies the axiom. We can infer from the 

table that all the five axioms are logically independent of each other on the setting (𝔑, 𝔛̅).  

 

Table 3. Axiomatic Performances of Each Nomination Rule 

 IMP AB 2CN WPU NU 

𝜑𝐴𝑉 0 1 1 1 1 

𝑐𝑜𝑛𝑁̅ 1 1 1 1 0 

𝜑𝑃 1 0 0 1 1 

𝜑1 1 1 1 1 1 

𝜉1 1 1 1 0 1 

ξ′i 1 1 0 1 1 

𝑑𝑖 1 0 1 1 1 

 

 

4.3 Results 

4.3.1 Known Impossibilities 

Before my own contributions in 4.3.2, I will state some other related results.  

Proposition 6 (Alon et al., 2011)24   

Let 𝑙 ∈ {1,2,… , 𝑛 − 1}. There is no nomination rule 𝜑:𝔑𝐴𝐵 → 𝔛𝑙 that satisfies IMP and NU.   

 

Proposition 7 (Holzman & Moulin, 2013)  

Let 𝜑:𝔑1 → 𝔛1 be a nomination rule.  

(1) 𝜑 satisfies AB and IMP if and only if it is the constant rule 𝜑𝑖. 

(2) There is no nomination rule that satisfies IMP, PU, and NU.  

 

Proposition 8 (Tamura & Ohseto, 2014)  

Let 𝜑:𝔑1 → 𝔛̅ be a nomination rule.  

(1) The plurality with runners-up rule satisfies IMP, PU, and NU.  

(2) If 𝑛 ≥ 4, there is no nomination rule 𝜑 that satisfies IMP, AB, and PU.  

 

                                                         
24 Indeed, their result is based on the concept of finite approximate ratio, and they do not explicitly refer to NU. 

However, one can easily derive this from their Theorem 3.1. 
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 Each of these propositions shows a basic impossibility or difficulty regarding IMP and some 

of the well-known axioms, though most of their results differ both in the domain and the codomain, 

which makes it difficult to directly compare the extent of the possibilities. Roughly speaking, we can 

infer from these results that it seems difficult to design a nomination rule that satisfies IMP, AB, and 

the axioms related to unanimity. This motivates me to investigate the extent of the possibilities for 

other typical settings.  

 

4.3.2 Basic Results 

Clearly, the axiomatic possibility of designing impartial nomination rules 𝜑:𝔇 → 𝔛 depends largely 

on the setting (𝔇,𝔛). However, I will first show the structure that impartial nomination rules have in 

common under various settings, especially as it pertains to AB. For simplicity of description, I 

introduce another term.  

 

Definition 23  

Let 𝜑:𝔇 → 𝔛 be the nomination rule. For any ballot profiles 𝒩,𝒩′ ∈ 𝔇 and an individual 𝑖 ∈ 𝑁̅, 

we say that two ballot profiles 𝒩  and 𝒩′  are 𝑖 -equivalent (under the nomination rule 𝜑 ), or 

𝒩~𝑖𝒩
′ if and only if [𝑖 ∈ 𝜑(𝒩) ⇔ 𝑖 ∈ 𝜑(𝒩′)] holds.  

 

The 𝑖 -equivalence relationship ~𝑖  defined in this way makes an equivalence relation over the 

domain 𝔇  (i.e., it satisfies reflexivity, symmetry, and transitivity). With this terminology, we can 

rephrase the axiom of IMP as: a nomination rule 𝜑:𝔇 → 𝔛 satisfies IMP if and only if for any 𝑖 ∈ 𝑁̅ 

and for any ballot profiles 𝒩 = (𝑁𝑖, 𝑁−𝑖) ∈ 𝔇, 𝒩′ = (𝑁𝑖
′, 𝑁−𝑖) ∈ 𝔇, 𝒩 and 𝒩′ are 𝑖-equivalent.  

 

Lemma 7: Table Lemma, the Common Structure Stipulated by IMP and AB25  

Let 𝑘 ∈ {1,2,… , 𝑛 − 2}  and 𝑙 ∈ {1,2,… , 𝑛 − 1} . Let 𝔇  be either 𝔑,𝔑AB, 𝔑𝑠𝑒𝑙𝑓,𝔑𝑘  and let 𝜙 ≠

𝔛 ⊆ 𝔓(𝑁̅) ∖ {𝜙}. Suppose a nomination rule 𝜑:𝔇 → 𝔛 satisfies IMP and AB. For any ballot profiles 

𝒩,𝒩′ ∈ 𝔇 and for any individual 𝑖 ∈ 𝑁̅, if 𝑠𝑖(𝒩) = 𝑠𝑖(𝒩
′), then 𝒩 and 𝒩′ are 𝑖-equivalent.  

 

This lemma states that, under IMP and AB, the 𝑖-equivalence class grows much larger than 

under IMP only. It also states that, for any individual 𝑖 ∈ 𝑁̅, any two ballot profiles 𝒩,𝒩′ ∈ 𝔇 with 

individual 𝑖 ’s score being the same, or 𝑠𝑖(𝒩) = 𝑠𝑖(𝒩
′) , must yield the same result on 𝑖 . This 

property is widely observed in all settings that are introduced in section 4.1. Indeed, this lemma applies 

for all combinations of the domain 𝔇 = 𝔑,𝔑𝑠𝑒𝑙𝑓,𝔑𝐴𝐵, 𝔑𝑘 (i. e. , as many as (𝑛 + 1) domains) 

                                                         
25 The case of 𝔇 = 𝔑1 and 𝔛 = 𝔛1 is implicitly shown in the proof of Holzman and Moulin's (2013) Theorem 3. 

Thus, this lemma can be interpreted as a generalization result for any setting (𝔇,𝔛) that is introduced in section 4.1.  
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and the codomain 𝔛 = 𝔛̅, 𝔛𝑙, 𝔛̅𝑙, 𝔛𝑙 (i. e. , as many as (3𝑛 − 5) codomains). 26 This lemma holds 

even for other codomains if they are nonempty and do not allow an empty set as a winner set.  

The technical implications of this lemma will be shown in the proofs of the following results. 

Here I provide an intuitive explanation of this lemma. Consider a society with four individuals, 𝑁̅ =

{1,2,3,4}, and a nomination rule 𝜑:𝔑 → 𝔛̅. Because the number of possible ballots by any 𝑖 ∈ 𝑁̅ is 

23 − 1 = 7, the cardinality of the ballot profile domain 𝔑 is 74 = 2401. The number of possible 

sets of winners is |𝔛̅| = |𝔓(𝑁̅) ∖ {𝜙}| = 24 − 1 = 15. Therefore, the number of possible nomination 

rules is as many as 152401 > 102800 . However, according to Lemma 7, the nomination rule that 

satisfies IMP and AB is fully expressed by the table below.  

Table 4. A Table Expressing a Nomination Rule 

𝑠𝑖(𝒩) ∖ 𝑖 1 2 3 4 

0 Win Lose Win Win 

1 Win Win Lose Win 

2 Win Win Lose Lose 

3 Win Lose Lose Lose 

 

The columns in table 2 are labeled with the individuals and the rows express the score. For 

example, the information in row "2"  and column "1" states whether individual 1 wins or loses 

when individual 1’s score is two. Because any two ballot profiles with 1’s score being two are 1-

equivalent, we can say that a nomination rule corresponds with a way to fill in the table. Thus, we 

know that the number of possible nomination rules that satisfy IMP and AB for four individuals is at 

most 216 = 65536.27  

For a given ballot profile domain 𝔇, we define the score profile domain 𝕊[𝔇] as follows: 

𝕊[𝔇] = {𝑠 = (𝑠1, … , 𝑠𝑛) ∈ {0,1,… , 𝑛}
𝑛│∃𝒩 ∈ 𝔇 s. t.  𝑠𝑖(𝒩) = 𝑠𝑖  for all 𝑖 ∈ 𝑁̅} 

Thus, 𝕊[𝔇] is the set of all score profiles that can appear under the ballot profile domain 𝔇. Under 

AB, any two ballot profiles 𝒩,𝒩′ ∈ 𝔇 such that 𝑠(𝒩) = 𝑠(𝒩′) yield the same result. Thus, we 

can interpret a given nomination rule 𝜑:𝔇 → 𝔛  as a function of 𝜑: 𝕊[𝔇] → 𝔛  with a natural 

manner that for all 𝑠 ∈ 𝕊[𝔇], 𝜑(𝑠) ≔ 𝜑(𝒩), where 𝒩 is a ballot profile such that 𝑠(𝒩) = 𝑠. The 

axiom of AB guarantees that 𝜑:𝕊[𝔇] → 𝔛 defined in this manner is well-defined. Lemma 8 shows 

the structure of 𝕊[𝔇] for any 𝔇 = 𝔑,𝔑𝑠𝑒𝑙𝑓, 𝔑𝐴𝐵,𝔑𝑘.  

  

Lemma 8: The Relationship Between 𝕯 and 𝕊[𝕯] 

Let 𝑘 ∈ {1,2,… , 𝑛 − 1}.  

                                                         
26 If 𝑛 = 10, the number of the combinations equals 275. 
27 There are not as many as 65536 different nomination rules. This is because we cannot fill in all the entries in 

column 2 with ‘lose’. Considering 𝜑(𝒞2) ≠ 𝜙, we know that there is at least one individual who wins when he or 

she receives a score of two.  
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𝕊[𝔑𝑘] = {(𝑠1, … , 𝑠𝑛) ∈ {0,1,… , 𝑛 − 1}
𝑛│∑𝑠𝑖

𝑛

𝑖=1

= 𝑛𝑘} 

𝕊[𝔑] = {(𝑠1, … , 𝑠𝑛) ∈ {0,1,… , 𝑛 − 1}
𝑛│∑𝑠𝑖

𝑛

𝑖=1

≥ 𝑛} 

𝕊[𝔑𝑠𝑒𝑙𝑓] = {(𝑠1, … , 𝑠𝑛) ∈ {0,1,… , 𝑛}
𝑛│∑𝑠𝑖

𝑛

𝑖=1

≥ 𝑛} 

𝕊[𝔑𝐴𝐵] = {(𝑠1, … , 𝑠𝑛) ∈ {0,1,… , 𝑛 − 1}
𝑛│∑𝑠𝑖

𝑛

𝑖=1

≥ 1}. 

This lemma shows that all the score profile domains related to 𝔑𝑘,𝔑,𝔑𝑠𝑒𝑙𝑓, 𝔑𝐴𝐵 can be captured 

through a simple arithmetic formula on the sum of the individual scores. The next lemma shows that 

by imposing 2CN as well, each individual should be treated almost equally in terms of their score. In 

terms of the table, this implies that the entries in almost every row should be filled in with the same 

results.  

Let 𝑀𝔇 ∈ ℤ be the maximum score possible at the domain 𝔇, viz. 

𝑀𝔇 = {
𝑛 − 1 if 𝔇 = 𝔑,𝔑𝐴𝐵, 𝔑𝑘

𝑛 if 𝔇 = 𝔑𝑠𝑒𝑙𝑓.
 

 

Lemma 9   

Let 𝔇 = 𝔑,𝔑𝑠𝑒𝑙𝑓, 𝔑𝐴𝐵, 𝔑𝑘 be the domain and 𝔛 = 𝔛𝑙, 𝔛̅𝑙, 𝔛𝑙. Suppose a nomination rule 𝜑:𝔇 → 𝔛 

satisfies IMP, AB and 2CN. For any ballot profile 𝒩 ∈ 𝔇 and for any individual 𝑖 ∈ 𝑁̅, suppose 𝑖 ∈

𝜑(𝒩)  and 0 ≤ 𝑑 = 𝑠𝑖(𝒩) ≤ 𝑀𝔇 − 1 . Then, for any individual 𝑗 ∈ 𝑁̅  and 𝒩′ ∈ 𝔇 , if we have 

𝑠𝑗(𝒩) = 𝑑, then 𝑗 ∈ 𝜑(𝒩′). 

As a direct consequence of these lemmas (8 and 9), the relationship between C and other 

main axioms can be found, which fact will also be used in the proofs of the results in section 4.3.3.  

 

Lemma 10: Derivation of Cancellation  

Let 𝑛 ≥ 4, 𝔇 = 𝔑,𝔑𝑘, and 𝔛 = 𝔛𝑙, 𝔛̅𝑙, 𝔛𝑙. If a nomination rule 𝜑:𝔇 → 𝔛 satisfies IMP, AB, WPU, 

and 2CN, 𝜑(𝒞𝑚) = 𝑁̅ holds for any 𝑚 ∈ {1,2,… . 𝑛 − 1}.  

 

Proof of Lemma 10  

Take any 𝑚-cyclic ballot profile 𝒞𝑚 ∈ 𝔇, where 𝑚 ∈ {1,2,… , 𝑛 − 1}.28 The case of 𝑚 = 𝑛 − 1 

is easily verified by WPU. Assume 1 ≤ 𝑚 ≤ 𝑛 − 2. Then Lemma 9 implies that 𝑖 ∈ 𝜑(𝒞𝑚) ⇔ 𝑗 ∈

𝜑(𝒞𝑚) for all 𝑖, 𝑗 ∈ 𝑁̅. Because 𝜑(𝒞𝑚) ≠ 𝜙, this implies that 𝜑(𝒞𝑚) = 𝑁̅. ■ 

  

                                                         
28 Note that 𝒞1, … , 𝒞𝑛−1 are all in 𝔇 = 𝔑 and 𝒞𝑘 is also in 𝔑𝑘.  
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Although the statement of the lemma specifies only 𝜑(𝒞𝑘) = 𝑁̅, using the AB condition, 

any ballot profile 𝒩 ∈ 𝔑 such that 𝑠(𝒩) = 𝑠(𝒞𝑘), in other words 𝑠1(𝒩) = 𝑠2(𝒩) = ⋯ =

𝑠𝑛(𝒩) = 𝑘,  yields the same choice as 𝒞𝑘: 𝜑(𝒩) = 𝜑(𝒞𝑘). Therefore, we can say that the 

combination of IMP, AB, 2CN, and WPU implies C.  

 

Lemma 11: Threshold Lemma  

Let 𝔇 = 𝔑,𝔑𝐴𝐵, 𝔑𝑠𝑒𝑙𝑓, 𝔑𝑘(1 ≤ 𝑘 ≤ 𝑛 − 2)  and 𝔛 = 𝔛𝑙, 𝔛̅𝑙, 𝔛𝑙 . Let 𝜑:𝔇 → 𝔛  be a nomination 

rule that satisfies IMP, AB, 2CN, and WM. Suppose 𝑖 ∈ 𝜑(𝒩) for some individual 𝑖 ∈ 𝑁̅ and ballot 

profile 𝒩 ∈ 𝔇  such that 𝑠𝑖(𝒩) ≤ 𝑀𝔇 − 1 . Then, for any individual 𝑗 ∈ 𝑁̅  and 𝒩′ ∈ 𝔇 , if we 

have 𝑠𝑗(𝒩
′) ≥ 𝑠𝑖(𝒩), then 𝑗 ∈ 𝜑(𝒩′).  

 

This lemma states that under IMP, AB, 2CN, and WM, a possible nomination rule, if it 

exists, would be the threshold rule. However, I do not intend to claim that the reverse holds. As I 

have noted in section 4.2.2, there are many settings where the threshold rule is not well-defined, and 

therefore this lemma fails to characterize the threshold rule. The details pertaining to this will be 

shown in the next section. Note also that as a corollary of these lemmas, we have the following:  

 

Corollary 4 

Let 𝔇 = 𝔑,𝔑𝐴𝐵, 𝔑𝑠𝑒𝑙𝑓, 𝔑𝑘  and 𝔛 = 𝔛𝑙, 𝔛𝑙 . There is no nomination rule 𝜑:𝔇 → 𝔛  that satisfies 

IMP, AB, and 2CN.  

 

Proof of Corollary 4  

Take any 𝑘 ∈ {1,2,… , 𝑛 − 2}. Note that 𝒞𝑘 ∈ 𝔑𝑘 ⊆ 𝔑 = 𝔑𝐴𝐵 ∩ 𝔑𝑠𝑒𝑙𝑓. Therefore, we have 𝒞𝑘 ∈

𝔇. Assume that a nomination rule 𝜑:𝔇 → 𝔛 exists that satisfies IMP, AB, and 2CN. Because 𝜙 ∉

𝔛, there is a winner 𝑖 ∈ 𝜑(𝒞𝑘). Based on Lemma 9, the entire society 𝑁̅ should be the winner set, 

which contradicts 𝜙 ∉ 𝔛. ■ 

 

Corollary 5  

Let 𝔇 = 𝔑,𝔑𝑘 (1 ≤ 𝑘 ≤ 𝑛 − 2) and 𝔛 = 𝔛̅𝑙. Suppose a nomination rule 𝜑:𝔇 → 𝔛 fails to satisfy 

NU. In this case, 𝜑 satisfies IMP, AB, 2CN, and WM, if and only if it is 𝑐𝑜𝑛𝑁̅.  

 

Proof of Corollary 5  

It is clear that 𝑐𝑜𝑛𝑁̅:𝔇 → 𝔛̅𝑙 satisfies IMP, AB, 2CN, and WM, but not NU. Suppose a nomination 

rule 𝜑:𝔇 → 𝔛 fails to satisfy NU. In this case, there is an individual 𝑖 ∈ 𝑁̅ and a ballot profile 

𝒩 ∈ 𝔇 such that 𝑖 ∈ 𝜑(𝒩) and 𝑠𝑖(𝒩) = 0. Based on Lemma 11, it follows that 𝑗 ∈ 𝜑(𝒩′) for 

all 𝑗 ∈ 𝑁̅ and 𝒩′ ∈ 𝔇. This means that 𝜑 is identical to 𝑐𝑜𝑛𝑁̅. ■  
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Corollary 6: IMP, AB, 2CN, WM⇒WPU 

Let 𝔇 = 𝔑,𝔑𝑠𝑒𝑙𝑓 , 𝔑𝐴𝐵, 𝔑𝑘 and 𝔛 = 𝔛𝑙, 𝔛̅𝑙, 𝔛𝑙. If a nomination rule 𝜑:𝔇 → 𝔛 satisfies IMP, 

AB, 2CN, and WM, then it also satisfies WPU.  

 

Proof of Corollary 6  

Note that 𝒞𝑘 ∈ 𝔇 and 𝑠𝑖(𝒞
𝑘) = 𝑘 ≤ 𝑛 − 2 for all 𝑖 ∈ 𝑁̅. Because 𝜙 ∉ 𝔛, there is a winner 𝑗 ∈

𝜑(𝒞𝑘). Therefore, according to Lemma 5, we have for all 𝑖 ∈ 𝑁̅ and for all 𝒩 ∈ 𝔇, if 𝑠𝑗(𝒩) ≥ 𝑘, 

then 𝑗 ∈ 𝜑(𝒩). This means that one can win whenever one obtains a score 𝑀𝔇. ■ 

 

Let me discuss these results from the viewpoint of designing a nomination rule 𝜑:𝔇 → 𝔛 

that satisfies IMP and AB. Corollary 4 shows that the codomain of 𝔛𝑙, 𝔛𝑙, both of which bound the 

number of winners from above, are not suited to further impose 2CN; the number of winners must be 

unbound for consideration of 2CN. Indeed, Corollary 5 shows that the codomain 𝔛̅𝑙 enables us to 

impose 2CN as well. Another lesson from Corollary 5 is the importance of NU. Once NU is broken, 

the possibility of designing an impartial nomination rule is limited by the four axioms of IMP, AB, 

2CN, and WM. These results motivate me to consider the class of nomination rules that satisfy IMP, 

AB, and NU in each of the possible settings, and we will answer this in the next subsection. On the 

other hand, Corollary 6 can be seen as a relationship between WPU and WM under the axioms of 

IMP, AB, and 2CN. This result will also be used to compare the possibility results in 4.2.2. 

 

4.3.3 Comparative Results for Various Settings 

I first show a basic impossibility result that motivates us to compare various settings.  

 

Proposition 9: Universal Impossibility 

Let 𝔇 = 𝔑,𝔑self, 𝔑𝐴𝐵,𝔑𝑘 and 𝔛 = 𝔛̅,𝔛𝑙, 𝔛̅𝑙, 𝔛𝑙. There is no nomination rule 𝜑:𝔇 → 𝔛 that 

satisfies IMP, AB, and PU. 

 

Note that Proposition 5 is a generalization of Proposition 8 (Tamura & Ohseto, 2014).   

 

Proposition 10: Complementary Results on Proposition 9   

[1] Let 𝔇 = 𝔑,𝔑𝑠𝑒𝑙𝑓,𝔑𝐴𝐵 , 𝔑𝑘 and 𝔛 = 𝔛𝑙, 𝔛̅𝑙, 𝔛𝑙. A nomination rule 𝜑:𝔇 → 𝔛 exists that satisfies 

IMP and AB.  

[2] Let 𝔇 = 𝔑,𝔑𝑠𝑒𝑙𝑓,𝔑𝐴𝐵. If 𝔛 = 𝔛𝑙, 𝔛𝑙, there is no nomination rule that satisfies PU. If 𝔛 = 𝔛̅𝑙, 

there is no nomination rule that satisfies IMP and PU.  

Let 𝔇 = 𝔑𝑘. 

Let 𝔛 = 𝔛𝑙. If 𝑘 = 1 and 𝑙 = 1, a nomination rule 𝜑:𝔇 → 𝔛𝑙 exists that satisfies IMP 



58 
 

and PU if and only if 𝑛 ≥ 4 . Otherwise (𝑘 ≥ 2  or 𝑙 ≥ 2 ), there is no nomination rule 

𝜑:𝔇 → 𝔛 that satisfies IMP and PU. 

If 𝔛 = 𝔛̅𝑙, a nomination rule 𝜑:𝔇 → 𝔛 exists that satisfies IMP and PU if and only if 𝑘 ≤

𝑛 − 3 and 𝑙 = 1. 

If 𝔛 = 𝔛𝑙 and 𝑘 > 𝑙, there is no nomination rule 𝜑:𝔇 → 𝔛 that satisfies PU.  

If 𝔛 = 𝔛𝑙 and 𝑘 = 𝑛 − 2, there is no nomination rule 𝜑:𝔇 → 𝔛 that satisfies IMP and 

PU. 

If 𝔛 = 𝔛𝑙 and 𝑘 = 1, a nomination rule 𝜑:𝔇 → 𝔛 exists that satisfies IMP and PU.  

[3] Let 𝔇 = 𝔑,𝔑𝑠𝑒𝑙𝑓,𝔑𝐴𝐵 and 𝔛 = 𝔛̅𝑙. There is a nomination rule that satisfies AB and PU.  

Let 𝔇 = 𝔑𝑘. 

If 𝔛 = 𝔛𝑙, a nomination rule 𝜑:𝔇 → 𝔛 exists that satisfies AB and PU if and only if 𝑘 =

1 and 𝑙 = 1.  

If 𝔛 = 𝔛̅𝑙, a nomination rule 𝜑:𝔇 → 𝔛 exists that satisfies AB and PU if and only if 𝑙 =

1. 

If 𝔛 = 𝔛𝑙, a nomination rule 𝜑:𝔇 → 𝔛 exists that satisfies AB and PU if and only if 𝑘 ≤

𝑙. 

 

Proposition 9 shows a simple limitation to the design of impartial nomination rules, saying 

that a nomination rule cannot be designed to satisfy IMP, AB, and PU under any setting we have 

defined. The essence of the proof is very simple and worth noting. Once we admit IMP and AB, 

Lemma 7 tells us that the winners are determined by individual scores rather than the structure of the 

ballot profile itself. If PU is then imposed, the existence of ballot profiles of the form 

(… , 𝑠𝑖 = 𝑀𝔇, … , 𝑠𝑗 = 𝑥,… ) will inevitably demand that individual 𝑗 will lose the election 

whenever 𝑗 gets score 𝑥. Because this argument holds as long as 𝑥 < 𝑀𝔇, it is very difficult to 

determines the winner when no one obtains score 𝑀𝔇.  

For more detail, Proposition 10 shows the necessity of each axiom to derive the 

impossibility. We can see that it is generally difficult to satisfy PU. While the axiom pair IMP and 

AB does not itself yield an impossibility (see [1] in Proposition 10), PU itself or the combination of 

PU and one of IMP or AB often leads to a negative result. Let me describe the difficulties concerning 

PU. The first problem comes from the unconditional acceptance of those with a maximum score 𝑀𝔇 

(let me call them 𝑀𝔇-holders). Under the domain 𝔇 = 𝔑,𝔑𝑠𝑒𝑙𝑓 , 𝔑𝐴𝐵, for example, the number of 

𝑀𝔇-holders can vary from zero to 𝑛 − 1. However, if the codomain 𝔛 does not allow that many 

winners, there is no way to design a nomination rule with PU. This problem occurs when the 

codomain is 𝔛 = 𝔛̅𝑙, 𝔛𝑙. Note that we cannot escape this problem even if we substitute WPU for PU. 

The second problem is the exclusiveness of PU. Recall that PU chooses only 𝑀𝔇-holders if they 

exist. Thus, PU directly yields impossibility under the following circumstances: 
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𝔛 = 𝔛l, 𝔛̅𝑙 and if there is a ballot profile 𝒩 ∈ 𝔇 where less than 𝑙 (but at least one) 

individuals are 𝑀𝔇-holders, or 

𝔛 = 𝔛𝑙, 𝔛𝑙 and if there is a ballot profile 𝒩 ∈ 𝔇 where more than 𝑙 individuals are 

𝑀𝔇-holders. 

In this case, the situation would be expected to improve once we substitute WPU for PU. 

Furthermore, the exclusiveness of PU is also harmful when we consider its combination with IMP or 

AB. As shown in the intuitive proof of Proposition 9 in the previous paragraph, this exclusiveness 

essentially works to derive the impossibility.  

Therefore, from this point forward I will mainly consider WPU or other normative axioms 

as along with the pair of IMP and AB. The following results are attempts to determine the escape 

routes from the impossibility of Proposition 9 by substituting WPU for PU. In some settings, in fact, 

I find a very positive result. Assume 1 ≤ 𝑘 ≤ 𝑛 − 2 and 1 ≤ 𝑙 ≤ 𝑛 − 1.  

 

Proposition 11: The Codomain 𝖃𝒍  

Let 𝔛 = 𝔛𝑙 . If 𝔇 = 𝔑,𝔑𝑠𝑒𝑙𝑓, 𝔑𝐴𝐵, 𝔑𝑘 , a nomination rule 𝜑:𝔇 → 𝔛  satisfies IMP and AB if and 

only if it is the constant rule 𝑐𝑜𝑛𝐶 for any 𝐶 ∈ 𝔛𝑙.  

 

Proposition 11 states that if the possible number of winners is fixed and we consider the 

domains introduced, the constant rule is the only (class of) nomination rule that satisfies IMP and AB. 

This is a generalization of Theorem 3 from Holzman and Moulin (2013) in the sense that Proposition 

11 shows that their result holds under any setting I tested.  

 

Proposition 12: The Codomain 𝖃̅𝒍  

Let 𝔛 = 𝔛̅𝑙 (1 ≤ 𝑙 ≤ 𝑛 − 1).  

If 𝔇 = 𝔑𝑠𝑒𝑙𝑓, a nomination rule 𝜑:𝔇 → 𝔛̅𝑙 satisfies IMP and AB if and only if it is the constant rule 

𝑐𝑜𝑛𝑋 for some 𝑋 ∈ 𝔛̅𝑙.  

If 𝔇 = 𝔑𝐴𝐵 and 𝑙 ≥ 2, there is no nomination rule 𝜑:𝔇 → 𝔛̅𝑙 that satisfies NU.  

If 𝔇 = 𝔑𝐴𝐵 and 𝑙 = 1, a nomination rule 𝜑:𝔇 → 𝔛̅𝑙 satisfies IMP, AB, and NU if and only if it is 

𝜑1.  

If 𝔇 = 𝔑 and 𝑙 ≥ 3, there is no nomination rule 𝜑:𝔇 → 𝔛 that satisfies NU.  

If 𝔇 = 𝔑 and 𝑙 = 2, a nomination rule 𝜑:𝔇 → 𝔛̅𝑙 satisfies IMP, AB, and NU if and only if it is 𝜑1. 

If 𝔇 = 𝔑 and 𝑙 = 1, a nomination rule 𝜑:𝔇 → 𝔛̅𝑙 satisfies IMP, AB, 2CN, WPU, and NU if and 

only if it is 𝜑1.  

If 𝔇 = 𝔑𝑘 and 𝑙 ≥ 𝑘 + 2, there is no nomination rule 𝜑:𝔇 → 𝔛̅𝑙 that satisfies NU.  

A nomination rule 𝜑:𝔑𝑘 → 𝔛̅𝑙 where 𝑙 ≤ 𝑘 + 1 satisfies IMP, AB, 2CN, NU, and WM if and only 

if it is the threshold-𝑚 rule, where 𝑥 is an integer such that 
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1 ≤ 𝑥 ≤ ⌈
𝑛𝑘 − (𝑙 − 1)(𝑛 − 1)

𝑛 − 𝑙 + 1
⌉ (= ⌈

𝑛(𝑘 + 1 − 𝑙) + 𝑙 − 1

𝑛 − 𝑙 + 1
⌉) 

 

Remark on (𝕹𝒌, 𝖃̅𝒍), 𝒍 ≤ 𝒌 + 𝟏. Let us briefly evaluate the right-hand side of the inequality we 

obtain for (𝔑𝑘, 𝔛̅𝑙), 𝑙 ≤ 𝑘 + 1. To see the numerator, we have 𝑘 + 1− 𝑙 ≥ 0 and 𝑙 − 1 ≥ 0 by 

1 ≤ 𝑙 ≤ 𝑘 + 1. The equalities hold if 𝑙 = 𝑘 + 1 and 𝑙 = 1, respectively. Because 𝑘 ≥ 1, these 

conditions do not hold at the same time, which means that at least one is strictly positive. Thus, we 

have  

𝑛(𝑘 + 1 − 𝑙) + 𝑙 − 1

𝑛 − 𝑙 + 1
> 0. 

This implies for all 1 ≤ 𝑘 ≤ 𝑛 − 2 and 1 ≤ 𝑙 ≤ 𝑘 + 1,  

⌈
𝑛(𝑘 + 1 − 𝑙) + 𝑙 − 1

𝑛 − 𝑙 + 1
⌉ ≥ 1. 

Thus, we know that 𝜑1 is the nomination rule that satisfies IMP, AB, 2CN, WM, and NU for all 

(𝔑𝑘, 𝔛̅𝑙), 1 ≤ 𝑘 ≤ 𝑛 − 2 and 1 ≤ 𝑙 ≤ 𝑘 + 1. Furthermore, if 𝑙 < 𝑘, then it is also easy to see that 

⌈
𝑛(𝑘 + 1 − 𝑙) + 𝑙 − 1

𝑛 − 𝑙 + 1
⌉ ≥ 2. 

This means that 𝜑2 is also well-defined and satisfies the five axioms.  

 

Proposition 13: The Codomain 𝖃𝒍  

Let 𝔛 = 𝔛𝑙(1 ≤ 𝑙 ≤ 𝑛 − 1).  

If 𝔇 = 𝔑𝑠𝑒𝑙𝑓, a nomination rule 𝜑:𝔇 → 𝔛𝑙 satisfies IMP and AB if and only if it is the constant rule 

𝑐𝑜𝑛𝑋 for some 𝑋 ∈ 𝔛𝑙.  

If 𝔇 = 𝔑𝐴𝐵, there is no nomination rule 𝜑:𝔇 → 𝔛𝑙 that satisfies WPU. Furthermore, there is no 

nomination rule that satisfies IMP, AB, and NU.  

If 𝔇 = 𝔑 , there is no nomination rule 𝜑:𝔇 → 𝔛𝑙  that satisfies WPU. If 𝑙 ≤ 𝑛 − 2 , there is no 

nomination rule that satisfies IMP, AB, and NU. If 𝑙 = 𝑛 − 1, a nomination rule 𝜑:𝔇 → 𝔛𝑙 satisfies 

IMP, AB, and NU if and only if it is 𝜑−𝑖
1 :𝔑 → 𝔛𝑙 (for some 𝑖 ∈ 𝑁̅) defined for any ballot profile 

𝒩 ∈ 𝔑, 𝜑−𝑖
1 (𝒩) = 𝜑1(𝒩) ∖ {𝑖}. 

 

If 𝔇 = 𝔑𝑘 and 𝑙 < 𝑘, there is no nomination rule that satisfies WPU.  

Let 𝔇 = 𝔑𝑘  and 𝑙 = 𝑘 . If 𝑛 = 3 , there is no nomination rule 𝜑:𝔇 → 𝔛𝑙  that satisfies IMP and 

WPU. If 𝑛 ≥ 4 , there is a nomination rule that satisfies IMP and WPU. However, there is no 

nomination rule 𝜑:𝔇 → 𝔛𝑙 that satisfies IMP, AB, and WPU.  

If 𝔇 = 𝔑𝑘 and 𝑙 > 𝑘, there is a nomination rule that satisfies IMP, AB, and WPU (but we cannot 

further impose 2CN).  
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Table 5. (Im)Possibilities of Nomination Rules in Various Settings 

Dom∖Codomain 𝔛𝑙 𝔛̅𝑙 𝔛𝑙 𝔛̅(= 𝔛̅1) 

𝔑 
IMP and AB⇔

Const. 

𝑙 ≥ 3: NU⇒

None.  

 

𝑙 = 2: IMP, AB, 

and NU⇔𝜑1. 

𝑙 = 1: IMP, AB, 

2CN, NU, and 

WPU⇔𝜑1. 

WPU⇒None.  

 

𝑙 ≤ 𝑛 − 2: IMP, 

AB, and NU⇒

None.  

𝑙 = 𝑛 − 1: IMP, 

AB, and NU⇔

𝜑−𝑖
1 .  

IMP, AB, 2CN, 

NU, and WPU⇔

𝜑1 

𝔑𝑠𝑒𝑙𝑓 
IMP and AB⇔

Const. 

IMP and AB⇔

Const. 

  

IMP and AB⇔

Const. 

 

IMP and AB⇔

Const.  

 

𝔑𝐴𝐵 
IMP and AB⇔

Const. 

𝑙 ≥ 2: NU⇒

None.  

 

𝑙 = 1: IMP, AB, 

and NU⇔𝜑1.  

WPU⇒None.  

IMP, AB, and 

NU⇒None.  

  

IMP, AB, and 

NU⇔𝜑1.  

𝔑𝑘 
IMP and AB⇔

Const. 

𝑙 ≥ 𝑘 + 2: NU⇒

None.  

𝑙 ≤ 𝑘 + 1: IMP, 

AB, 2CN, NU, 

and WM⇔some 

threshold. 

  

𝑙 < 𝑘: WPU⇒

None.  

𝑙 = 𝑘 and 𝑛 =

3: IMP and WPU

⇒None.  

𝑙 = 𝑘 and 𝑛 ≥

4: IMP and 

WPU. 

IMP, AB, and 

WPU⇒None.  

𝑙 > 𝑘: IMP, AB, 

and WPU.  

IMP, AB, 2CN, 

NU, and WM⇔

𝜑1, 𝜑2, … , 𝜑𝑘. 

 

Proposition 12 and Proposition 13 are the results from the cases where the possible number 

of winners is bounded from below or above, respectively. Although these look complicated, we can 

see that the impossibility shown in Proposition 9 is relieved by substituting WPU for PU. Indeed, in 
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some of the settings, such as (𝔑𝑘, 𝔛̅𝑙) (𝑙 ≤ 𝑘 + 1), we can see that the threshold rule satisfies many 

normative axioms. Because 𝔛̅ = 𝔛̅1 by definition, we have the following situation.  

 

Corollary 7: The Codomain 𝖃 = 𝖃̅   

Let 𝔛 = 𝔛̅(= 𝔛̅1).  

If 𝔇 = 𝔑, a nomination rule 𝜑:𝔇 → 𝔛 satisfies IMP, AB, 2CN, NU, and WPU if and only if it is 

𝜑1.  

If 𝔇 = 𝔑self, there is no nomination rule 𝜑:𝔇 → 𝔛 that satisfies IMP and NU. A nomination rule 

𝜑:𝔇 → 𝔛 satisfies I and AB if and only if it is constant.  

If 𝔇 = 𝔑𝐴𝐵, a nomination rule 𝜑:𝔇 → 𝔛 satisfies IMP, AB, and NU if and only if it is 𝜑1 

If 𝔇 = 𝔑𝑘, a nomination rule 𝜑:𝔇 → 𝔛 satisfies IMP, AB, 2CN, NU, and WM if and only if it is 

the threshold-𝑥 rule for some 𝑥 ∈ {1,2,… , 𝑘}.  

 

Proof of Corollary 7  

For 𝔇 = 𝔑,𝔑𝑠𝑒𝑙𝑓, 𝔑𝐴𝐵, the corollary is obvious from Proposition 12.  

For 𝔇 = 𝔑𝑘, the case of 𝑙 = 1 ≤ 𝑘 + 2 in Proposition 12 can be applied. We need only check the 

upper bound of the threshold. When 𝑙 = 1, we have the following:  

⌈
𝑛𝑘 − (𝑙 − 1)(𝑛 − 1)

𝑛 − 𝑙 + 1
⌉ = ⌈

𝑛𝑘

𝑛 + 1
⌉ = ⌈𝑘 −

𝑘

𝑛 + 1
⌉ = 𝑘. 

The final equality is given by 0 <
𝑘

𝑛+1
< 1. ■  

Table 5 is an aggregation of the preceding results.  

 

 Some comments can be made on the comparative results. First, let us examine the table row-

by-row. This comparison is expected to provide a lesson on the choice of domain when a society is 

given a fixed codomain 𝔛. Take, for example, the domains of 𝔑 and 𝔑𝑠𝑒𝑙𝑓and recall that they differ 

only in whether they allow self-approval on the ballots. Let us compare rows 𝔑 and 𝔑𝑠𝑒𝑙𝑓, first 

comparing (𝔑,𝔛𝑙)  and (𝔑𝑠𝑒𝑙𝑓, 𝔛𝑙) , then (𝔑, 𝔛̅𝑙)  and (𝔑𝑠𝑒𝑙𝑓 , 𝔛̅𝑙) , and finally (𝔑,𝔛𝑙)  and 

(𝔑𝑠𝑒𝑙𝑓, 𝔛𝑙). Then, although we cannot find a difference in the first comparison, we find that 𝔑 works 

better than 𝔑𝑠𝑒𝑙𝑓 for the given pair of normative axioms. In the second comparison, if the value of 𝑙 

is sufficiently large, both domains fail to generate nomination rules that satisfy NU. When 𝑙 is small, 

however, we can find for 𝔇 = 𝔑 many nomination rules that satisfy IMP and NU as well as the other 

axioms, while we cannot for 𝔇 = 𝔑𝑠𝑒𝑙𝑓 . A similar comparison with the codomain 𝔛 = 𝔛̅𝑙  also 

suggests that the performance of 𝔑 is at least as good as 𝔑𝑠𝑒𝑙𝑓 for all 𝑙 (and indeed the former 

seems better in some 𝑙, i.e., 𝑙 = 𝑛 − 1). Note that I do not intend to imply that the results in the table 

fully describe the advantages and disadvantages of each domain, nor do I say that the comparison 
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entirely determines the relative normative ranking of each domain. However, I conclude that the 

comparison has some importance for when we face a domain choice problem in terms of the axiomatic 

possibility. If the domains are evaluated with respect to the proposed axioms, this table shows that the 

acceptance of self-inclusion (𝔑𝑠𝑒𝑙𝑓) or the acceptance of abstention (𝔑𝐴𝐵) will not improve the 

situation over the normal domain 𝔑.  

Next, let us review the table column-by-column. This corresponds with the situation where a 

society is, for some reason, given the domain and is seeking a good codomain. Thus, this view is close 

to Tamura and Ohseto (2014), who study the escape routes from the impossibility by expanding the 

codomain 𝔛1 to 𝔛̅. The result shows that the codomain of 𝔛̅𝑙 when 𝑙 = 1 (in the right column 𝔛̅) 

works as well as any other codomain. This is very intuitive because 𝔛̅ is the largest codomain of all.  

The second note concerns the axiomatic property of the threshold rule. The threshold rule, if 

properly defined on a certain setting (𝔇,𝔛) where 𝔇 ≠ 𝔑𝑠𝑒𝑙𝑓, surely satisfies IMP and AB because 

one cannot change one’s own score and thus one cannot change the possibility of winning oneself 

(IMP), and the winners are determined through scores (AB). It is also clear that it satisfies 2CN, WPU, 

and NU29 if the value of the threshold is between one and the maximum score 𝑀𝔇. It also satisfies 

the axioms of ND and NE (no exclusion). Recall that the well-known AV method defined on (𝔑, 𝔛̅), 

(𝔑𝑠𝑒𝑙𝑓, 𝔛̅) , and (𝔑𝐴𝐵, 𝔛̅)  also satisfies all these axioms. In this sense, the basic structure of the 

threshold rule has many things in common with AV. The difference between them is the axiom of 

IMP—the robustness against manipulation. 

 

4.4 Discussion 

My main contribution in the previous section is shown in Table 5 (Proposition 11, Proposition 12, 

and Proposition 13), which systematically shows the extent of the possibilities in a variety of 

settings, the domain and codomain pairs, and the possible strategies to weaken the impossibility 

results. The most positive result among these is the characterization of the threshold rule for those 

settings as (𝔑, 𝔛̅1), (𝔑, 𝔛̅2), (𝔑𝑘, 𝔛̅1),… , (𝔑𝑘, 𝔛̅𝑘+1) by the combination of IMP, AB, 2CN, NU, 

and either WPU or WM. Indeed, I show that the threshold rule satisfies other normative axioms 

referred to in previous studies, such as ND or NE. To conclude the chapter, I give here several 

comments as well as some extra theorems related mainly to the threshold rule.  

 

(1) Manipulability by More Than one Person  

Let us consider the codomain 𝔛 = 𝔛̅, which allows as many winners as possible except the empty set. 

The setting (𝔑𝑠𝑒𝑙𝑓, 𝔛̅) is quite often studied in relation to AV, although in endogenous nominating 

environments I showed that (𝔑𝑠𝑒𝑙𝑓, 𝔛̅) and (𝔑𝐴𝐵, 𝔛̅) are less promising than (𝔑, 𝔛̅). Tamura and 

Ohseto (2014) show that the use of (𝔑1, 𝔛̅) is effective in relieving the impossibility. In all these 

                                                         
29 Recall that my definition of 𝔑𝐴𝐵 ensures that there is at least one individual who has a positive score.  
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settings except (𝔑𝑠𝑒𝑙𝑓, 𝔛̅), we have seen that the threshold rule can be characterized with some of 

IMP, AB, 2CN, NU, WPU, and WM. A strong concern, however, regarding the threshold-1 rule, 𝜑1, 

would be the (extreme) simplicity of its winning condition. Because any voter can win simply by 

obtaining one approval from the others, this rule might be weak against collusion. For example, 

suppose two individuals, 𝑖 and 𝑗, promise in advance to approve each other. Then 𝜑1 will choose 

both 𝑖 and 𝑗, even if they fail to get any support from the individuals in 𝑁̅ ∖ {𝑖, 𝑗}. Because IMP 

guarantees that such mutual approvals between two individuals do not cause them to lose their chance 

of winning, this type of collusion could be understood as a weakly dominant strategy for all voters. 

My purpose here is to impose a measure of robustness against this type of collusion; I will first define 

this robustness against collusion. 

 

Definition 24  

A nomination rule 𝜑:𝔇 → 𝔛 satisfies weak 2CP (2-person collusion-proof) if and only if for any 

distinct individuals 𝑖, 𝑗 ∈ 𝑁̅  and for any ballot profile 𝒩 = (𝑁𝑖, 𝑁𝑗, 𝑁−𝑖,𝑗) ∈ 𝔇  and 𝒩′ =

(𝑁𝑖
′, 𝑁𝑗

′,𝑁−𝑖,𝑗) ∈ 𝔇, if 𝑖 ∉ 𝜑(𝒩) and 𝑗 ∉ 𝜑(𝒩′), then 𝑖 ∉ 𝜑(𝒩′) or 𝑗 ∉ 𝜑(𝒩′). 

 

In other words, two individuals, 𝑖 and 𝑗, will not be better off by forming a two-person coalition. 

This axiom is weak in the sense that it only excludes the possibility of rules under which two persons 

can be strictly better off at some profile. The following result provides a basic limit for the design of 

weak 2CP and Impartial nomination rules.  

 

Proposition 14: Collusion Proof  

Let 𝔛 = 𝔛̅.  

[1] Let 𝔇 = 𝔑,𝔑𝑠𝑒𝑙𝑓,𝔑𝐴𝐵 , 𝔑𝑘 (2 ≤ 𝑘 ≤ 𝑛 − 3) and 𝑛 ≥ 4. There is no nomination rule of the 

setting (𝔇,𝔛) that satisfies IMP, AB, ND, and weak 2CP.  

[2] Let 𝔇 = 𝔑𝑘 (𝑘 = 1) and 𝑛 ≥ 4. Then, a nomination rule 𝜑:𝔇 → 𝔛̅ exists that satisfies IMP, 

AB, ND, and weak 2CP. However, there is no nomination rule that satisfies IMP, AB, NU, and weak 

2CP.  

[3] Let 𝔇 = 𝔑𝑘 (𝑘 = 𝑛 − 2). In this case, the threshold-1 rule 𝜑1 satisfies all of IMP, AB, 2CN, 

NU, WPU, ND, and weak 2CP. 

 

Under the axioms IMP and AB, [1] says that we cannot expect ND and weak 2CP at the 

same time, and [2] shows that the domain of 𝔑1 is promising, but has the limitation that we cannot 

have NU and weak 2CP as well as IMP and AB. Interestingly, there is a strong possibility in the 

threshold-1 rule, 𝜑1, in [3]: 𝔇 = 𝔑𝑛−2. The reason 𝜑1 satisfies weak 2CP in this setting can be 

described as follows. According to the definition, a nomination rule can fail to satisfy weak 2CP only 
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if there is a ballot profile where two individuals, 𝑖, 𝑗 ∈ 𝑁̅ for example, have a score of zero. 

However, 𝔑𝑛−2 does not allow that kind of situation. Consider a score profile 𝑠 = (𝑠1, … , 𝑠𝑛) ∈

{0,1,… , 𝑛 − 1}𝑛, where 𝑠1 = ⋯ = 𝑠𝑛−2 = 𝑛 − 1 (and 𝑠𝑛−1 = 𝑘, and 𝑠𝑛 = 0, for example). 

Because 𝑠1, … , 𝑠𝑛−2 is maximal at this score profile, we cannot assign more to the first 𝑛 − 2 

individuals. This means that the sum of the scores of any two individuals must be at least 𝑘. 

Therefore, if 𝑘 is almost as large as 𝑛, we cannot have two individuals with a score of zero. 30  

 

(2) Relative Ranking Among the Candidates 

My characterization results show the high performance of the threshold rule in terms of IMP and 

other classical axioms such as anonymity, neutrality, or unanimity. The threshold rule, by definition, 

determines the winner not by the relative score, but by the absolute score of each individual. As a 

result, the threshold rule can often yield a much larger number of winners compared with other 

familiar nomination rules like AV. And it also follows that the rule can choose someone who has the 

lowest number of approvals from the others. Let me discuss this using an example. Consider a 

society of 10 individuals 𝑁̅ = {1,2,… ,10} and a ballot profile 𝒩 = (𝑁1, … , 𝑁10) ∈ 𝔑 as 

𝑁1 = {2,3,… ,10} 

𝑁2 = {3,4,… ,10} 

𝑁3 = {4,5… ,10} 

… 

𝑁9 = {10} 

𝑁10 = {1} 

At this ballot profile, each individual gets a score of at least 1, and so 𝜑1(𝒩) =

{1,2,3,4,5,6,7,8,9,10}, while 𝜑𝐴𝑉 = {10} and 𝜑𝑃 = {9,10}. Furthermore, calculation of the scores 

in the above ballot profile 𝒩 shows that individual 10 earns the maximum score 9, individual 9 

earns 8, and so on. Thus, the relative ranking of scores is as follows: 

9 = 𝑠10(𝒩) > 𝑠9(𝒩) > ⋯ > s2(𝒩) = 𝑠1(𝒩) = 1. 

Although the scores differ greatly, each individual is not distinguished in the eyes of the threshold-1 

rule. The threshold rule is, in this sense, does not discern the relative ranking of the scores. Note that 

these properties can be problematic for certain contexts, such as the determination of prize-winners. 

Based on this observation, I consider the existence of nomination rules such that (1) the number of 

the winners is restricted, and (2) the rule excludes those who have bad score rankings. To state the 

latter formally, let me define a term.  

  

                                                         
30 This argument does not fully succeed if 𝑘 ≤ 1 ⇔ 𝑛 = 3. For complete proof, see the Appendix. 
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Definition 25 

For any individual 𝑖 ∈ 𝑁̅ and ballot profile 𝒩 ∈ 𝔇, I define the score ranking of 𝑖 at 𝒩 as 

𝑟𝑖(𝒩), where  

𝑟𝑖(𝒩) ≔ |{𝑗 ∈ 𝑁̅│𝑠𝑗(𝒩) > 𝑠𝑖(𝒩)}| + 1 

Thus, if 𝑠𝑖(𝒩) is the largest among 𝑠1(𝒩), 𝑠2(𝒩),… , 𝑠𝑛(𝒩), then 𝑟𝑖(𝒩) = 1. If there is just one 

individual 𝑗 ≠ 𝑖 such that 𝑠𝑗(𝒩) > 𝑠𝑖(𝒩), then we have 𝑟𝑖(𝒩) = 2, and so on.  

 

Definition 2631 

Let 𝜑:𝔑 → 𝔛𝑙 be a nomination rule and let 𝑟 ∈ {1,2,… , 𝑛}. I say 𝜑 has rank 𝑟 if and only if  

𝑟 ≤ 𝑟𝑖(𝒩) for all 𝒩 ∈ 𝔇 and 𝑖 ∈ 𝜑(𝒩) 

 

In words, a nomination rule 𝜑 is said to have rank 𝑟 if its winners 𝜑(⋅) are always in the top 𝑟𝑡ℎ 

ranking of scores. Let us calculate the rank in the previous example 𝒩. According to the definition 

of 𝑟𝑖(𝒩), we can see that 

𝑟10(𝒩) = 1 

𝑟9(𝒩) = 2 

𝑟8(𝒩) = 3 

… 

𝑟3(𝒩) = 8 

𝑟2(𝒩) = 𝑟1(𝒩) = 9 

Thus, a nomination rule of rank 𝑟 = 3, for example, must choose the winner from {8,9,10}, whose 

ranking is equal to or less than 3, or 𝑟𝑖(⋅) ≤ 3. 1,2 ∈ 𝜑1(𝒩), and so we can say that the rank of 

𝜑1 is 9 or larger in the society of 10 individuals. On the other hand, it is clear that 𝜑𝐴𝑉:𝔑 → 𝔛1 

(with some tie-breaking rule) has rank 1, though it is not impartial. A natural question arises: is there 

a rank-based impartial nomination rule? However, the following proposition gives a negative result 

on the setting (𝔑,𝔛𝑙).  

 

Proposition 15 

Let 𝑛 ≥ 3, 1 ≤ 𝑙 ≤ 𝑛 − 1, and 𝔇 = 𝔑,𝔑𝑠𝑒𝑙𝑓, 𝔑𝐴𝐵. There is no impartial nomination rule 𝜑:𝔇 →

𝔛𝑙 that has rank 𝑛 − 1.  

 

Proposition 15 says that under the setting (𝔑, 𝔛𝑙), the concepts of rank and impartiality are entirely 

incompatible. Although the formal proof is a little complicated, we can easily see that no impartial 

                                                         
31 The reader might wonder about the looseness of this definition, for if a nomination rule 𝜑 has rank 𝑟 ∈
{1,2,… , 𝑛 − 1}, then it must be that the rule also has rank 𝑟 + 1, 𝑟 + 2, … , 𝑛. This ambiguity can be omitted by 

adding the extra condition of “𝑟 = 𝑟𝑖(𝒩) for some 𝒩 ∈ 𝔇 and 𝑖 ∈ 𝜑(𝒩)” for the definition of rank. For the sake 

of simplicity I omit the uniqueness because it is unnecessary for stating the result of Proposition 15.  
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nomination rule on the setting (𝔑,𝔛𝑙) has rank less than 𝑛 − 2. To demonstrate this, consider a 

ballot profile 𝒞1 = (𝐶1
1, … , 𝐶𝑛

1) ∈ 𝔑. 𝜙 ∉ 𝔛𝑙, and so there is a winner 𝑖 ∈ 𝜑(𝒞1). Now consider a 

ballot profile 𝒩 ∈ 𝔑 as 

𝑁𝑖 = 𝑁̅ ∖ {𝑖} 

𝑁𝑗 = 𝐶𝑗
1 for all 𝑗 ∈ 𝑁̅ ∖ {𝑖}. 

IMP demands 𝑖 ∈ 𝜑(𝒩). However, because 𝑠𝑖(𝒩) = 𝑠𝑖+1̅̅ ̅̅ ̅(𝒩) = 1 < 𝑠𝜇(𝒩) = 2 for all 𝜇 ∈ 𝑁̅ ∖

{𝑖, 𝑖 + 1̅̅ ̅̅ ̅̅ }, the score ranking of individual 𝑖 at this ballot profile 𝒩 is such that 𝑟𝑖(𝒩) = 𝑛 − 1. 

Thus, we cannot avoid choosing a winner at 𝑛 − 1 (or more). The proposition says that there exists 

a ballot profile for which the impartial nomination rule chooses the individual with the worst score 

ranking.  
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5 Conclusion 

In this dissertation, I study the infinite regress problem in collective decision making. I give here 

a brief summary of each chapter and some additional comments.  

In Chapter 2, I introduced the notion of (weak/strong) convergence, which I regard as a 

basic solution concept for the infinite regress of procedural choice, and studied its basic 

performance on a menu of three scoring rules. Specifically, Theorem 4 states that a large society 

with the menu {plurality (P), Borda (B), anti-plurality (A)} can almost always find a strong 

convergence unless it is in a trivial deadlock. Further regress has no effective meaning in each 

case, and so an interpretation of the theorems in the chapter is as follows: the infinite regress 

problem degenerates in such a society and, moreover, for the menu {P, B, A} and for a set of three 

alternatives 𝑋 , its probability of convergence (98.2%  under IC and 98.8%  under IAC) is 

shown to be much higher than that of stability (84.49% under IC and 84.10% under IAC). 

Although trivial deadlock gives no specific answers to the problem of infinite regress, the 

probability calculation shows the positive effect of considering my convergence notion. 

The results in Chapter 2 show that trivial deadlock can happen, with a small but positive 

probability for a large society with the menu {P, B, A}. This problem motivates my analysis in 

Chapter 3, which focuses on finding a menu of voting rules with which a society can always find 

convergence: in my words, menus with the weak/strong convergent property and asymptotically 

weak/strong convergent property. In the first part of Chapter 3, I investigate the possibility of each 

property. Specifically, I question if there exists a menu of voting rules that have the strong 

convergent property, the strongest of the four, and find the answer to be yes (Theorem 7). Such a 

menu completely releases any society (of any finite size) from the troublesome infinite regress 

problem.  

One problem concerning Theorem 7 might be that the proposed menu is made up of 

somewhat technical (and not intuitive) voting rules. In the latter part of Chapter 3, therefore, I 

consider how the convergent property can be obtained for a given menu that does not already 

have this property such as {P, B, A}. My Theorem 8 shows that the expanded menu {P, B, A, φ} 

has the asymptotically weak convergent property. This means that a society with the menu 

{P, B, A} can acquire the convergent property without abandoning any of P, B, or A. The society 

has only to add an extra voting rule as an alternative rule. Indeed, such expansion is shown to be 

possible for many cases (Theorem 9).  

To sum up, I find two answers to the question of how to find a convergence. One answer 

is to equip the society with the menu proposed in Theorem 7. The other, oriented toward a large 

society, is to expand the menu in the way shown in Theorem 9.  

 Having discussed the frequency and the mechanism of the convergence phenomenon, I 

will add some comments about it. My first comment is on how convergence works in a real 
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situation using the example introduced in Chapter 2. Let me show it again here: 

- The society is 𝑁 = {1,2,… ,14} 

- The set of alternatives is 𝑋 = {𝑎, 𝑏, 𝑐}.  

- The level-0 preference profile 𝐿0 is 𝐿1−10
0 : 𝑎𝑏𝑐 and 𝐿11−14

0 : 𝑏𝑐𝑎.  

Although the outcomes of the first-level SCRs are not the same (𝑓𝑃(𝐿
0) = 𝑓𝐵(𝐿

0) = 𝑎  and 

𝑓𝐴(𝐿
0) = 𝑏), the profile 𝐿0 strongly converges to {𝑎}. This means that  

- If the level-1  preference profile 𝐿1  is, for instance, 𝐿1−4
1 : 𝑃𝐵𝐴 , 𝐿5−10

1 : 𝐵𝑃𝐴 , and 

𝐿11−14
1 : 𝐴𝑃𝐵, then any level-2 SCR in the menu ultimately results in {𝑎}.  

- No matter what other CI profiles are examined, they do not weakly converge to 

{𝑏}, {𝑐}, {𝑎, 𝑏}, {𝑏, 𝑐}, {𝑐, 𝑎},  or {𝑎, 𝑏, 𝑐}.  

In the process of finding the convergence, we need to take an appropriate sequence of CI profiles. 

The fact that 𝐿0  strongly converges to {𝑎}  does not claim that if each 𝑖 ∈ 𝑁  reports their 

consequential meta preferences independently, then 𝐿0 necessarily converges at some level. It is 

of course possible that such non-systematic reports never reach convergence. Rather, the fact that 

𝐿0 strongly converges to {𝑎} means that if 𝐿0 converges, the outcome couldn’t be other than 

{𝑎}. So, in one sense, the society faces two options: to accept the outcome of strong convergence 

or to get into the entangled infinite regress without finding an answer. In other words, if everyone 

agreed to the process in which the authority picked up appropriate voters’ meta-level preferences 

from the submitted level-0 preference profile (i.e. if the authority were admitted to manipulate 

only the indifference part of the consequentially-induced weak preference profile), then the 

convergence could be found. In this sense, once accepted, the notion of convergence tells us the 

possible outcome that could be reached from the submitted level-0 preference profile. Thus, each 

individual has only to submit their preferences over the original set 𝑋  just as required in an 

ordinary voting procedure.  

 As my second comment, I would like to state the mechanism of convergence with 

respect to a formal description of the infinite regress problem in procedural choice. Gratton (2009) 

formally states that an infinite regress argument is made up of two propositions: the regress 

formula, a universal proposition that can be endlessly instantiated, and the triggering statement.32 

Borrowing from Gratton, an example of two such propositions is: “every intelligent act is 

preceded by an intelligent act” (regress formula) and “act 1 is intelligent” (triggering statement). 

With the repeated use of the regress formula, we have that “act 1 is preceded by act 2”, “act 2 is 

preceded by act 3”, and so on. Using his words, the infinite regress of procedural choice can be 

described by two propositions “for all level 𝑘 ∈ ℕ, a level-𝑘 voting procedure is shown to be 

legitimate if it is selected by a level-(𝑘 + 1) legitimate voting procedure” (regress formula) and 

                                                         
32 Technically speaking, Gratton provides some hypothesis for the condition that such argument is truly an infinite 

regress argument in the subsequent argument.  
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“we (hope to) show that a level-𝑘∗  voting rule 𝑓  is legitimate”. At first glance, this pair of 

propositions demonstrates an infinite regress. However, according to Chapters 2 and 3, the regress 

get degenerated within finite levels, if we restrict our attention to a set of a few voting rules, say 

{P, B, A}, and if we have good reasons to regard the voters as consequentialist. Indeed, Corollary 

1 and Theorem 4 state that the probability of convergence is quite high (when there are three 

alternatives). We humans cannot verify the infinitely long process of justification, but 

convergence says that no matter which rule in a higher level is selected, its ultimate outcome is 

uniquely determined within finite steps, the proof of which I have shown. Indeed, in the profile 

𝐿0 upon which I based my argument in the previous paragraph, I find such a phenomenon at level 

1. The convergence is thus a phenomenon that solves the infinite regress within finite levels of 

arguments.  

 Subsequently, in Chapter 4, I discuss the axiomatic design of nomination rules:  

𝜑: (𝑁1, 𝑁2, … , 𝑁𝑛) ↦ 𝜑(𝑁1, 𝑁2 , … ,𝑁𝑛) ⊆ 𝑁̅. 

When each individual is a candidate as well as a voter and they want to be chosen themselves, 

then voters may be inclined to cast ballots that can make themselves better off. Impartiality (IMP), 

invented by Holzman and Moulin (2013), is an axiom of nomination rules that demands that each 

individual cannot change his or her own result even by manipulating his or her ballot. My analysis 

in Chapter 4 aims to find some escape routes from Holzman and Moulin’s impossibility by 

considering various typical domains and codomains of the nomination rules. I first specify the 

common structure of nomination rules under various settings (Lemma 7), and then I investigate 

the design possibility of nomination rules for each setting (Proposition 11, Proposition 12, 

Proposition 13, and Table 5). The results indicate that the threshold rule works well in many 

settings in terms of IMP, anonymity, neutrality, and unanimity. In other words, we can acquire 

impartiality and satisfy other popular axioms by using the objective score of each individual (i.e., 

whether they reach a set threshold) instead of the relative score (i.e., who gets the highest score, 

as in AV).  

 As I suggest at the beginning of Chapter 4, the axiomatic study is oriented to the 

determination of the society 𝑁 (i.e., who should have the right to vote) before the procedural 

choice is made. In environmental issues, for instance, the boundary of the effects of a decision is 

sometimes vague, and hence there may sometimes be no ex ante answer for the question of whose 

opinions should be reflected in the decision-making. The framework of nomination rules can be 

applied to such cases if we interpret 𝑁𝑖 as the set of individuals who 𝑖 ∈ 𝑁̅ thinks should have 

the right to vote and 𝜑 as the aggregation rule for people’s ballot profiles (𝑁1, 𝑁2, … , 𝑁𝑛). From 

his premise of Procedural Autonomy, Dietrich (2005) derives anonymity (precisely speaking, 

anonymous procedural submission), neutrality, and monotonicity as the basic axioms that should 

be satisfied by the manner of procedural choice. Indeed, if the determination of the society is 



71 
 

made before the procedural choice is made (and therefore, there are no persons or alternatives that 

have some kind of dominance over others) consideration of anonymity and neutrality is largely 

noncontroversial because their very demand is that each individual and alternative must be treated 

equally. Monotonicity (or unanimity as a weaker axiom) is also natural to impose because the 

determination of a society is supposed to reflect individuals’ opinions properly. IMP is a rather 

empirical, but also rational, axiom that demands that each individual can record his or her true 

opinion without fearing ruling him- or herself out from the determined society. Therefore, the 

threshold rule, which I show satisfies these axioms in various domain-codomain settings, can be 

regarded as the most appropriate way of determining a society. 

 To conclude, the dissertation consists of two main parts: Chapters 2 and 3 (the first part) 

and Chapter 4 (the second part). The first part studies the question of “how to determine how to 

choose based on people’s preferences” while the second part studies the question of “how to 

determine who should form the society.” In each part, I provide answers for each of the “how” 

and “who” problems with some underlying assumptions. Although these two problems comprise 

the essential parts of procedural choice, there are additional  components of the issue of 

procedural choice that are of interest, such as the choice of the decision problem itself (Kesting 

& Lindstädt, 2004). For example, considering the whole process of choosing a constitution could 

be an interesting future study.  
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Appendix 

Probability of Trivial Deadlock Under the 56 Menus 

When 𝑛 → ∞ , |𝑋| = 3 , IAC, the probability of trivial deadlock can be calculated in the way 

described by Diss et al. (2012). Here I show the probability of trivial deadlock under the 56 menus 

cited in Theorem 6. Figure 6 shows the result. The horizontal axis shows the 56 menus, numbered  

from 1 to 56 as described in Table 6, and the vertical axis shows the probability of deadlock. Note 

that each of the 56 menus yields at most a probability of 0.035 = 3.5% of trivial deadlock (the 

highest is actually 3.35648%  in the menu {𝑓𝑃, 𝑓𝐴, 𝑓𝐻} ; Data number 2 ). In other words, the 

probability of weak convergence is at least 100% − 3.5% = 96.5% in all menus.  

 

Figure 6. Probability of trivial deadlock under the 𝟓𝟔 menus when |𝑿| = 𝟑. 

 

The specific ingredients in and probability of each menu is shown in Table 6 below.  
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Table 6. Specific Values for Each Menu; Data Numbers 1–28 (continued on next page) 

 

  

Data number Prob of trivial deadlock

1 plurality anti-plurality Borda 1/84

2 plurality anti-plurality Hare 29/864

3 plurality anti-plurality Nanson 5/432

4 plurality anti-plurality Coomb 43/1728

5 plurality anti-plurality Maximin 5/432

6 plurality anti-plurality Black 199/17280

7 plurality Borda Hare 115/6912

8 plurality Borda Nanson 1/432

9 plurality Borda Coomb 1/192

10 plurality Borda Maximin 1/432

11 plurality Borda Black 1/864

12 plurality Hare Nanson 25/1728

13 plurality Hare Coomb 131/6912

14 plurality Hare Maximin 25/1728

15 plurality Hare Black 115/6912

16 plurality Nanson Coomb 7/1728

17 plurality Nanson Maximin 0

18 plurality Nanson Black 1/864

19 plurality Coomb Maximin 7/1728

20 plurality Coomb Black 7/1728

21 plurality Maximin Black 1/864

22 anti-plurality Borda Hare 241/16128

23 anti-plurality Borda Nanson 67/12096

24 anti-plurality Borda Coomb 17/1512

25 anti-plurality Borda Maximin 67/12096

26 anti-plurality Borda Black 181/60480

27 anti-plurality Hare Nanson 11/864

28 anti-plurality Hare Coomb 185/6912

Menu
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Table 6: Specific Values for Each Menu; Data Numbers 29–56 (continued from previous page)  

 

  

29 anti-plurality Hare Maximin 11/864

30 anti-plurality Hare Black 413/34560

31 anti-plurality Nanson Coomb 25/1728

32 anti-plurality Nanson Maximin 0

33 anti-plurality Nanson Black 11/4320

34 anti-plurality Coomb Maximin 25/1728

35 anti-plurality Coomb Black 113/8640

36 anti-plurality Maximin Black 11/4320

37 Borda Hare Nanson 23/6912

38 Borda Hare Coomb 23/3456

39 Borda Hare Maximin 23/6912

40 Borda Hare Black 0

41 Borda Nanson Coomb 1/864

42 Borda Nanson Maximin 0

43 Borda Nanson Black 0

44 Borda Coomb Maximin 1/864

45 Borda Coomb Black 0

46 Borda Maximin Black 0

47 Hare Nanson Coomb 31/6912

48 Hare Nanson Maximin 0

49 Hare Nanson Black 23/6912

50 Hare Coomb Maximin 31/6912

51 Hare Coomb Black 23/3456

52 Hare Maximin Black 23/6912

53 Nanson Coomb Maximin 0

54 Nanson Coomb Black 1/864

55 Nanson Maximin Black 0

56 Coomb Maximin Black 1/864
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Proof of Proposition 1 

Suppose 𝐿0  is in a trivial deadlock under the menu 𝐹 = {𝑓1, 𝑓2, … , 𝑓𝑚} . I show the following 

statement to be true:  

For all 𝑘 ≥ 2 and for all sequence 𝐿0, 𝐿1, … , 𝐿𝑘−1 of CI profiles to level 𝑘, the class of 

each 𝑓1
𝑘, 𝑓2

𝑘, … , 𝑓𝑚
𝑘 with respect to 𝐿0, 𝐿1, … , 𝐿𝑘−1 is a distinct singleton. 

(Note that the proposition is straightforward once this statement is proven.) I prove the statement by 

an induction on 𝑘 ≥ 2 . For 𝑘 = 2 , the statement is straightforward from the definition of trivial 

deadlock. Let 𝑘0 ≥ 2 and suppose that the statement holds until 𝑘 ≤ 𝑘0. Take any sequence of CI 

profiles 𝐿0, 𝐿1, … , 𝐿𝑘0−1. By the assumption of the induction, each 𝑓1
𝑘0, 𝑓2

𝑘0 , … , 𝑓𝑚
𝑘0 is assumed to 

result in a distinct singleton. This can be denoted as  

𝑓𝑝
𝑘0(𝐿𝑘0−1) = {𝑓𝜎(𝑝)

𝑘0−1}  for all 𝑝 ∈ {1,2,… ,𝑚}. 

Now, 𝜎: {1,2,… ,𝑚} → {1,2,… ,𝑚} defined in this way is clearly a bijection. By the assumption of 

the induction again, each SCR in 𝐹1, 𝐹2, … , 𝐹𝑘0 yields a singleton at the given profile. Hence, their 

classes are also singleton subsets of 𝑋. Take any 𝑓𝑝
𝑘0, 𝑓𝑞

𝑘0 ∈ 𝐹𝑘0 and denote their classes as {𝑥} and 

{𝑦}, respectively (𝑥, 𝑦 ∈ 𝑋). By the definition of a CI profile, we have that for all 𝑖 ∈ 𝑁, and for all 

𝐿𝑘0 ∈ ℒ[𝐿0, 𝐿1, … , 𝐿𝑘0−1],  

𝑓𝑝
𝑘0𝐿𝑖

𝑘0𝑓𝑞
𝑘0 

⇔ {𝑥}𝑒𝑖(𝐿𝑖
0){𝑦} 

⇔ 𝑥𝐿𝑖
0𝑦 (∵ Extension rule). 

Therefore, the level-𝑘0 CI profile 𝐿𝑘0  is uniquely determined. Moreover, it is clear that the classes 

of 𝑓𝜎(𝑝)
𝑘0−1 and 𝑓𝜎(𝑞)

𝑘0−1 are also {𝑥} and {𝑦}, respectively. Similarly, we have that  

𝑓𝜎(𝑝)
𝑘0−1𝐿𝑖

𝑘0−1𝑓𝜎(𝑞)
𝑘0−1 ⇔ 𝑥𝐿𝑖

0𝑦. 

In summary, we have that 𝑓𝑝
𝑘0𝐿𝑖

𝑘0𝑓𝑞
𝑘0 ⇔ 𝑓𝜎(𝑝)

𝑘0−1𝐿𝑖
𝑘0−1𝑓𝜎(𝑞)

𝑘0−1. 𝑓𝑝
𝑘0 and 𝑓𝑞

𝑘0 are arbitrary elements in 

𝐹𝑘0 , and so this logical equivalence implies that 𝐿𝑘0 is a permutated profile from 𝐿𝑘0−1 by 𝜎. 

Because of the neutrality of the menu, we have that 𝑓𝑟
𝑘0+1(𝐿𝑘0) = {𝑓𝜎(𝑟)

𝑘0 } for all 𝑟 ∈ {1,2,… ,𝑚}. 

𝜎 is a bijection, and so this guarantees the statement when 𝑘 = 𝑘0 + 1. ■ 

 

Proof of Lemma 2  

Suppose 𝑛𝛼 ∈ ℕ.  

[Under IC] All the alternatives are treated symmetrically in IC, and so each voter prefers 𝑥 to 𝑦 with 

probability 
1

2
 (and 𝑦 to 𝑥 with probability 

1

2
). Therefore, we have:  

𝑃(𝛼) = (
𝑛
𝑛𝛼
)(
1

2
)
𝑛𝛼

(
1

2
)
𝑛(1−𝛼)

= (
𝑛
𝑛𝛼
)(
1

2
)
𝑛

. 

Because the proofs are similar, I show the proof only for even 𝑛. Let 𝑛 = 2𝑝 (𝑝 ∈ ℕ). Because of 
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the property of combination, we can evaluate this as follows:  

𝑃(𝛼) ≤ 𝑃 (
1

2
) = (

2𝑝
𝑝
)(
1

2
)
2𝑝

=
(2𝑝)!

𝑝! 𝑝!
(
1

2
)
2𝑝

. 

Using Stirling’s approximation, we can evaluate the right-hand side as 

lim
𝑝→∞

(⇔𝑛→∞)

(2𝑝)!

𝑝! 𝑝!
(
1

2
)
2𝑝

= lim
𝑝→∞

√2𝜋 ⋅ 2𝑘 (
2𝑝
𝑒
)
2𝑝

(√2𝜋𝑝(
𝑝
𝑒
)
𝑝
)
2 (

1

2
)
2𝑝

= lim
𝑝→∞

1

√𝜋𝑛
= 0. 

[Under IAC] Let 𝑎 = #{𝑖 ∈ 𝑁│𝑥𝐿𝑖
0𝑦} = 𝑛𝛼 and 𝑏 = 𝑛 − 𝑎. The probability is described as: 

𝑃(𝛼) = (𝑎 +
|𝑋|!

2
− 1

𝑎
) ⋅ (𝑏 +

|𝑋|!

2
− 1

𝑏

) (
𝑎 + 𝑏 + |𝑋|! − 1

𝑎 + 𝑏
)⁄ . 

With a simple calculation, this is shown to converge to zero as 𝑛 = 𝑎 + 𝑏 → ∞. ■ 

 

Proof of Lemma 3 

Assume that 𝐹 = {𝑔1, … , 𝑔𝑝, ℎ1, … , ℎ𝑞}  and 𝐿0, 𝐿1, … , 𝐿𝑘−1  satisfy the given condition. Let 𝐴 =

{1,2,… , 𝑎} = {𝑖 ∈ 𝑁│𝑥𝐿𝑖
0𝑦}. If 𝑞 = 0, the lemma is obvious. So, we assume 𝑝 ≥ 𝑞 > 0. It follows 

that 0 < |𝐴| = 𝑎 < 𝑛 (if 𝑎 = 0, e.g., no level-1 SCR chooses {𝑥}, which contradicts 𝑝 > 0). 𝑛 ≥

𝑚, and so we have 𝑎 ≥ (𝑛 2⁄ ) ≥ (𝑚 2⁄ ) ≥ 𝑞. Let 𝐿𝑘 ∈ ℒ(𝐹𝑘)𝑛 be defined as follows:  

𝐿𝑖
𝑘: 𝑔1

𝑘, 𝑔2
𝑘, … , 𝑔𝑝

𝑘, ℎ1
𝑘, ℎ2

𝑘, … , ℎ𝑖−1
𝑘 , ℎ𝑖+1

𝑘 , … , ℎ𝑞
𝑘, ℎ𝑖

𝑘 for all 1 ≤ 𝑖 ≤ 𝑞.

𝐿𝑖
𝑘: 𝑔1

𝑘, 𝑔2
𝑘, … , 𝑔𝑝

𝑘, ℎ1
𝑘, ℎ2

𝑘, … , ℎ𝑞
𝑘 for all 𝑞 + 1 ≤ 𝑖 ≤ 𝑎.

𝐿𝑖
𝑘: ℎ1

𝑘, ℎ2
𝑘, … , ℎ𝑞

𝑘, 𝑔1
𝑘, 𝑔2

𝑘, … , 𝑔𝑝
𝑘 for all 𝑖 ∈ 𝑁 ∖ 𝐴.

 

In words, this is a level-𝑘 profile where everyone (except the first 𝑞 individuals) orders {𝑔1
𝑘, … , 𝑔𝑝

𝑘} 

and {ℎ1
𝑘, … , ℎ𝑞

𝑘}  lexicographically. Clearly, we have 𝐿𝑘 ∈ ℒ𝑘[𝐿0, … , 𝐿𝑘−1] . Take any 𝑓𝑘+1: [1 =

𝑠1, 𝑠2, … , 𝑠𝑚 = 0] ∈ 𝐹𝑘+1  and consider the scores evaluated by this 𝑓𝑘+1 . Note that ℎ1
𝑘  has the 

largest score among ℎ1
𝑘, … , ℎ𝑞

𝑘. We have: 

𝑠(𝑔1
𝑘) − 𝑠(ℎ1

𝑘) = {𝑎 + (𝑛 − 𝑎)𝑠𝑞+1} − {𝑛 − 𝑎 + (𝑎 − 1)𝑠𝑝+1}

≥ 2𝑎 − 𝑛 + (𝑛 − 𝑎)𝑠𝑞+1 − (𝑎 − 1)𝑠𝑞+1 (∵ 𝑝 ≥ 𝑞 ⇒ 𝑠𝑞+1 ≥ 𝑠𝑝+1)

= (2𝑎 − 𝑛)(1 − 𝑠𝑞+1) + 𝑠𝑞+1 > 0 (∵ 2𝑎 > 𝑛 and 0 ≤ 𝑠𝑞+1 ≤ 1).

 

This holds for any 𝑓𝑘+1 ∈ 𝐹𝑘+1, and so the profile weak convergences to {𝑥}. ■ 

 

Proof of Lemma 4 

Let 𝐴 = {1,2,… , 𝑎} = {𝑖 ∈ 𝑁│𝑥𝐿𝑖
0𝑦} , 𝐺 ≔ {𝑔│𝐶𝑔 = {𝑥}} = {𝑔1

𝑘, … , 𝑔𝑝
𝑘}  (𝑝 = |𝐺|)  and 𝐻 ≔

{ℎ│𝐶ℎ = {𝑦}} = {ℎ1
𝑘, … , ℎ𝑞

𝑘} (𝑞 = |𝐻|). With Lemma 3, we have only to consider 0 < 𝑎 < 𝑛 − 𝑎 

and 𝑝 > 𝑞 > 0  (i.e., (𝑝, 𝑞) = (2,1)  if 𝑚 = 3  or (𝑝, 𝑞) = (3,1)  if 𝑚 = 4) . Because the proofs 

are similar, I show only the proof for the latter, 𝑚 = 4. We can check that for all 𝐿𝑘 ∈ ℒ𝑘[𝐿0, … , 𝐿𝑘−1], 
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𝑓𝐸1(𝐿
𝑘) ⊆ 𝐻 and the scores (at 𝐿𝑘) satisfy:  

𝑆 ≔ 𝑠𝐵(𝑔1
𝑘) + 𝑠𝐵(𝑔2

𝑘) + 𝑠𝐵(𝑔3
𝑘) = 𝑎(𝑠1 + 𝑠2 + 𝑠3) + (𝑛 − 𝑎)(𝑠2 + 𝑠3 + 𝑠4) = 𝑛 + 𝑎. 

Let 𝑝1, … , 𝑝6  be preferences over 𝐺  such that 𝑝1: 𝑔1
𝑘𝑔2

𝑘𝑔3
𝑘 , 𝑝2: 𝑔3

𝑘𝑔2
𝑘𝑔1

𝑘 , 𝑝3: 𝑔3
𝑘𝑔1

𝑘𝑔2
𝑘 , 

𝑝4: 𝑔2
𝑘𝑔1

𝑘𝑔3
𝑘, 𝑝5: 𝑔1

𝑘𝑔3
𝑘𝑔2

𝑘, and 𝑝6: 𝑔2
𝑘𝑔3

𝑘𝑔1
𝑘. We construct 𝐿𝑘 ∈ ℒ𝑘[𝐿0,… , 𝐿𝑘−1] as follows: if 𝑖 ≡ 𝑗 

(mod 6)  then 𝐿𝑖
𝑘│𝐺 = 𝑝𝑗  (𝑗 = 1,2,… ,6) , and 𝑔𝜇

𝑘𝐿𝑖
𝑘ℎ1

𝑘 (𝜇 = 1,2,3) ⇔ 𝑖 ≤ 𝑎 . Because of the 

symmetry, we obtain that 𝑠𝐵(𝑔𝑗
𝑘: 𝐿𝑘) − 𝑆 3⁄ ∈ {−1 3⁄ , 0, 1 3⁄ } (𝑗 = 1,2,3). Hence:  

𝐷(𝐿𝑘) ≔ 𝑠𝐵(ℎ1
𝑘: 𝐿𝑘) − max{𝑠𝐵(𝑔1

𝑘: 𝐿𝑘), 𝑠𝐵(𝑔2
𝑘: 𝐿𝑘), 𝑠𝐵(𝑔3

𝑘: 𝐿𝑘)} ≥
2

3
(𝑛 − 2𝑎) −

1

3
. 

𝑛 − 2𝑎 ≥ 1, and so we have 𝐷(𝐿𝑘) > 0.  

(1) In the case of 𝑛 − 2𝑎 ≥ 2 , we have 𝐷(𝐿𝑘) ≥ 1 . Suppose {𝑔, ℎ1
𝑘} ∈ 𝑓𝐸𝑗′

(𝐿𝑘)  for some 𝑔 ∈ 𝐺 

and 𝑗′ = 2,3. Let 𝑗 be the smallest such 𝑗′. 𝑠𝑗(ℎ1
𝑘) = 𝑛 − 𝑎 < 𝑛, and so there exists 𝑖𝑔 ∈ 𝑁 whose 

𝐿𝑖𝑔
𝑘  assign zero points to 𝑔 and one point to 𝑔′ ∈ 𝐺 ∖ {𝑔}. Now let 𝐿′𝑘 be a profile where 𝑖𝑔 swaps 

𝑔 and 𝑔′. Then we have 𝑠𝑗(𝑔: 𝐿
′𝑘) > 𝑠𝑗(𝑔: 𝐿

𝑘) = 𝑠𝑗(ℎ1
𝑘: 𝐿𝑘) > 𝑠𝑗(ℎ1

𝑘: 𝐿′𝑘). Therefore, 𝑓𝐸𝑗(𝐿
′𝑘) =

{𝑔} ⊆ 𝐺. The change in Borda score of 𝑔1
𝑘, 𝑔2

𝑘, 𝑔3
𝑘 is at most 2 3⁄ , and so we still have 𝐷(𝐿′𝑘) ≥

1 − (2 3⁄ ) > 0.  

(2) In the case of 𝑛 − 2𝑎 = 1, because 𝑛 is odd, we can write 𝑛 = 6𝜇 + 𝜈, where 𝜇 ∈ ℕ ∪ {0} and 

𝜈 = 1,3,5. Note that the swap of 𝐿𝑖
𝑘│𝐺 and 𝐿𝑗

𝑘│𝐺 for any 𝑖, 𝑗 ∈ 𝑁 does not affect 𝑠1(⋅) and 𝑠𝐵(⋅). 

If 𝑛 = 6𝜇 + 1  (𝜇 ≥ 1  because 𝑛 ≥ 𝑚 = 4 ), let (ℒ(1))
𝑛
∈ ℒ𝑘[𝐿0,… , 𝐿𝑘−1]  be defined as: 1 ≤

𝑖 ≤ 𝜇 ⇒ 𝐿(1)𝑖
𝑘
: 𝑝3 , 𝜇 + 1 ≤ 𝑖 ≤ 2𝜇 ⇒ 𝐿(1)𝑖

𝑘
: 𝑝4 , 2𝜇 + 1 ≤ 𝑖 ≤ 3𝜇 ⇒ 𝐿(1)𝑖

𝑘
: 𝑝5 , 3𝜇 + 1 ≤ 𝑖 ≤

4𝜇 ⇒ 𝐿(1)𝑖
𝑘
: 𝑝1 , 4𝜇 + 1 ≤ 𝑖 ≤ 5𝜇 ⇒ 𝐿(1)𝑖

𝑘
: 𝑝2 , 5𝜇 + 1 ≤ 𝑖 ≤ 6𝜇 ⇒ 𝐿(1)𝑖

𝑘
: 𝑝6 , and 𝑖 = 6𝜇 + 1 ⇒

𝐿(1)𝑖
𝑘
: 𝑝1 . Then we have 𝑠3 (𝑔1

𝑘: 𝐿(1)
𝑘
) ≥ 𝑠2 (𝑔1

𝑘: 𝐿(1)
𝑘
) = 3𝜇 + 2 > 3𝜇 + 1 = 𝑠2 (ℎ1

𝑘: 𝐿(1)
𝑘
) =

𝑠3 (ℎ1
𝑘: 𝐿(1)

𝑘
). It follows that 𝑓𝐸2

𝑘+1 (𝐿(1)
𝑘
) ⊆ 𝐺 and 𝑓𝐸3

𝑘+1 (𝐿(1)
𝑘
) ⊆ 𝐺. For the other cases of 𝑛 =

6𝜇 + 3  and 𝑛 = 6𝜇 + 5 , the following 𝐿(2)
𝑘
  (𝑔3

𝑘  wins) and 𝐿(3)
𝑘
  (𝑔1

𝑘  wins), respectively, give 

the corresponding inequalities.  

𝐿(2)
𝑘
  is defined as: 1 ≤ 𝑖 ≤ 𝜇 ⇒ 𝑝4 , 𝜇 + 1 ≤ 𝑖 ≤ 2𝜇 ⇒ 𝑝5 , 2𝜇 + 1 ≤ 𝑖 ≤ 3𝜇 ⇒ 𝑝6 , 𝑖 = 3𝜇 +

1 ⇒ 𝑝1 , 3𝜇 + 2 ≤ 𝑖 ≤ 4𝜇 + 1 ⇒ 𝑝1 , 4𝜇 + 2 ≤ 𝑖 ≤ 5𝜇 + 1 ⇒ 𝑝2 , 5𝜇 + 2 ≤ 𝑖 ≤ 6𝜇 + 1 ⇒ 𝑝3 , 

𝑖 = 6𝜇 + 2 ⇒ 𝑝2, and 𝑖 = 6𝜇 + 3 ⇒ 𝑝3.  

𝐿(3)
𝑘
  is defined as: 1 ≤ 𝑖 ≤ 𝜇 ⇒ 𝑝2 , 𝜇 + 1 ≤ 𝑖 ≤ 2𝜇 ⇒ 𝑝3 , 2𝜇 + 1 ≤ 𝑖 ≤ 3𝜇 ⇒ 𝑝4 , 𝑖 = 3𝜇 +

1 ⇒ 𝑝3 , 𝑖 = 3𝜇 + 2 ⇒ 𝑝4 , 3𝜇 + 3 ≤ 𝑖 ≤ 4𝜇 + 2 ⇒ 𝑝1 , 4𝜇 + 3 ≤ 𝑖 ≤ 5𝜇 + 2 ⇒ 𝑝5 , 5𝜇 + 3 ≤

𝑖 ≤ 6𝜇 + 2 ⇒ 𝑝6, 𝑖 = 6𝜇 + 3 ⇒ 𝑝1, and 𝑖 = 6𝜇 + 4 ⇒ 𝑝2, and 𝑖 = 6𝜇 + 5 ⇒ 𝑝5.  

In either case above, at least 2 level-(𝑘 + 1) SCRs have class {𝑥} and the other two have 

either {𝑥} or {𝑦}. So, we can apply Lemma 3 to get the weak convergence. ■ 
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Proof of Lemma 5 

Let 𝐴 = {1,2,… , 𝑎} = {𝑖 ∈ 𝑁│𝑥𝐿𝑖
0𝑦}. Assume that both 𝑎 and 𝑛 − 𝑎 are odd. (The cases where at 

least one of them is even can be similarly, and more simply, proven.) Note that the fact that 𝐶𝑔1𝑘 =
{𝑥} 

and 𝐶𝑔3𝑘 =
{𝑦} guarantees that 𝑎 > 0 and 𝑛 − 𝑎 > 0.  

Let 𝐿𝑘 ∈ ℒ(𝐹𝑘)𝑛 be such that 𝑔1
𝑘𝐿𝑖
𝑘𝑔2

𝑘𝐿𝑖
𝑘𝑔3

𝑘 for all 𝑖: 1 ≤ 𝑖 ≤
𝑎

2
+
1

2
, 𝑔2

𝑘𝐿𝑖
𝑘𝑔1

𝑘𝐿𝑖
𝑘𝑔3

𝑘 for all 𝑖: 1 ≤

𝑖 ≤
𝑎

2
−
1

2
 , 𝑔3

𝑘𝐿𝑖
𝑘𝑔2

𝑘𝐿𝑖
𝑘𝑔1

𝑘  for all 𝑖: 1 ≤ 𝑖 ≤
𝑛−𝑎

2
−
1

2
 , and 𝑔3

𝑘𝐿𝑖
𝑘𝑔1

𝑘𝐿𝑖
𝑘𝑔2

𝑘  for all 𝑖: 1 ≤ 𝑖 ≤
𝑛−𝑎

2
+
1

2
 . 

Clearly, 𝐿𝑘 ∈ ℒ𝑘[𝐿0, 𝐿1, … , 𝐿𝑘−1]. We have also that: 

|𝑠(𝑔1
𝑘) − 𝑠(𝑔2

𝑘)| = |(1 − 𝑠) − 𝑠| = |1 − 2𝑠|. 

The assumption of 0 ≤ 𝑠 ≤ 1 indicates that this absolute value is at most one. ■ 

 

Proof of Theorem 3 

As I stated in section 2.4, the probability of a tied outcome is negligible as 𝑛 → ∞. So, we can consider 

the case where every level-1 SCR chooses a singleton subset of 𝑋. If 𝑓1
1(𝐿0) = 𝑓2

1(𝐿0) = 𝑓3(𝐿
0), 

weak convergence is straightforward. If each 𝑓1
1(𝐿0), 𝑓2

1(𝐿0), 𝑓3
1(𝐿0) is a distinct singleton, 𝐿0 is in 

trivial deadlock. Therefore, the only nontrivial case is that in which two level-1 SCRs choose {𝑥} 

and the other one chooses {𝑦}, where 𝑥, 𝑦 ∈ 𝑋.  

Let 𝐴 = {𝑖 ∈ 𝑁│𝑥𝐿𝑖𝑦}  and 𝛼 ≔ |𝐴| 𝑛⁄  . Let us label them as 𝑔1
1(𝐿0) = 𝑔2

1(𝐿0) = {𝑥}  and 

𝑔3
1(𝐿0) = {𝑦}, where 𝐹1 = {𝑔1

1, 𝑔2
1, 𝑔3

1}. Due to Lemma 3, we need only consider 𝛼 < 1 2⁄ . Take any 

𝑓: [1, 𝑠, 0] ∈ 𝐹2. With Lemma 5, we have the following: 

𝑠(𝑔3
1: 𝐿1) = 𝑛 − |𝐴|, max

𝐿1∈ℒ[𝐿0]
𝑠(𝑔1

1: 𝐿1) = |𝐴| + 𝑠(𝑛 − |𝐴|) 

min
𝐿1∈ℒ[𝐿0]

max{{𝑠(𝑔1
1: 𝐿1), 𝑠(𝑔2

2: 𝐿1)}} ≤
1

2
{|𝐴|(1+ 𝑠) + (𝑛 − |𝐴|)𝑠} +

1

2
. 

Therefore, 𝑓 can choose {𝑔1
1} (or {𝑔2

1}) if and only if:  

|𝐴| + 𝑠(𝑛 − |𝐴|) > 𝑛 − |𝐴| ⇔ 𝑠 >
𝑛 − 2|𝐴|

𝑛 − |𝐴|
=
1 − 2𝛼

1 − 𝛼
= 𝜑(𝛼). 

Also, 𝑓 can choose {𝑔3
1} if: 

1

2
{|𝐴|(1+ 𝑠) + (𝑛 − |𝐴|)𝑠} +

1

2
< 𝑛 − |𝐴| 

⇔ 𝑠 < 2 −
3|𝐴|

𝑛
−
1

𝑛
= 2 − 3𝛼 −

1

𝑛
(→ 2− 3α = 𝜓(𝛼) as 𝑛 → ∞). 

If 𝛼 < 1 3⁄ , we have 𝜓(𝛼) > 1. Thus, any scoring SCR 𝑓: [1, 𝑠, 0] can choose {𝑔3
1}. If 1 3⁄ < 𝛼 <

1 2⁄  , we have three cases. (Note that events such as 𝛼 = 1 3⁄   or 𝜓(𝛼) − 1 𝑛⁄ < s < 𝜓(𝛼)  are 

negligible because of Lemma 2.) 

1) The case of 𝑠3 ≥ 𝜑(1 3⁄ ) = 1 2⁄  . In this case, each 𝑓1
2, 𝑓2

2, 𝑓3
3  can exclude 𝑔3

1  for any 𝛼 ∈

(1/3,1/2).  
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2) The case of 𝑠3 < 𝜑(1 3⁄ ) and 𝑠2 ≤ 𝜓(𝜑
−1(𝑠3)). Note that the event 𝛼 = 𝜑−1(𝑠3) is negligible 

because of Lemma 2. In this case, if 1 3⁄ < 𝛼 < 𝜑−1(𝑠3), we have 𝜓(𝛼) > 𝑠2, which implies that 

𝐿1 ∈ ℒ1[𝐿0] exists such that 𝑓2
2(𝐿1) = 𝑓3

2(𝐿1) = {𝑔3
1} and 𝑓1

2(𝐿0) is either {𝑔1
1} or {𝑔3

1}. In either 

case, 𝐿0 is shown to weakly converge to {𝑦}. If 𝜑−1(𝑠3) < 𝛼 < 1 2⁄ , 𝐿1 ∈ ℒ[𝐿0] exists such that 

𝑓1
2(𝐿1) = 𝑓2

2(𝐿1) = 𝑓3
2(𝐿1) = {𝑔1

1}.  

3) The case of 𝑠3 < 𝜑(1 3⁄ ) and 𝑠2 > 𝜓(𝜑
−1(𝑠3)). In this case, an interval of 𝛼 (with a positive 

Lebesgue measure) exists where 𝑓1
1 and 𝑓2

1 necessarily choose {𝑔1
1} or {𝑔2

1} and 𝑓3
2 necessarily 

chooses {𝑔3
1}. If 𝛼 is in this interval, we cannot solve the regress, because inductively we can show 

for all 𝑘 ≥ 3 that 𝑓1
𝑘(𝐿𝑘−1) and 𝑓2

𝑘(𝐿𝑘−1) are either {𝑓1
𝑘−1} or {𝑓2

𝑘−1} and 𝑓3
𝑘(𝐿𝑘−1) = {𝑓3

𝑘−1}. 

■ 

 

Proof of Corollary 1 

Under IC, trivial deadlock corresponds with cases 1, 2, 9, 10, 11, and 27 in Diss and Merlin (2010). 

Their Table 7 (p. 302) shows that each probability is 0.00299346. Therefore, 𝑝𝐷 = 0.00299346×

6 ≒ 1.8%. Under IAC, on the other hand, trivial deadlock corresponds with the cases 1, 2, 9, 10, 11, 

and 27 in Diss et al. (2012). Their Table 9 (p. 62) shows that each probability is 1 504⁄ . Therefore, 

𝑝𝐷 = (1 504⁄ )×6 ≒ 1.2%. ■ 

 

Proof of Theorem 4 

The only nontrivial case is 𝑓1
1(𝐿0) = 𝑓2

1(𝐿0) = {𝑥} and 𝑓3
1(𝐿0) = {𝑦}, where 𝐹1 = {𝑓1

1, 𝑓2
1, 𝑓3

1} for 

distinct 𝑥, 𝑦 ∈ 𝑋. Let 𝐴 = {𝑖 ∈ 𝑁│𝑥𝐿𝑖
0𝑦} = {1,2,… , 𝑎}. I show that 𝐿0 strongly converges unless 𝛼 

takes several specific values. The case of 𝛼 > 2 3⁄   or 𝛼 < 1 3⁄   is straightforward. Because the 

proofs are similar, I show only the proof for 1 3⁄ < 𝛼 < 1 2⁄ . To prove the uniqueness of convergence 

to {𝑦}, I inductively show that for any level 𝑘 ≥ 2, 𝑓𝑘 ∈ 𝐹𝑘 exists whose class is {𝑦}. For 𝑘 = 2, 

it follows that 𝑓𝑃
2(𝐿1) = {𝑓3

1}. Assume that the statement holds until 𝑘 − 1(≥ 2) and 𝐶𝑔1𝑘−1 =
{𝑦}. 

For the other two rules 𝑔2
𝑘 and 𝑔3

𝑘, the class is either {𝑥}, {𝑥, 𝑦}, or {𝑦}. Because 𝑔2
𝑘−1 and 𝑔3

𝑘−1 

are symmetric, there are six possible cases on the combination of (𝐶𝑔1𝑘−1 , 𝐶𝑔2𝑘−1 , 𝐶𝑔3𝑘−1) : Case 1: 

({𝑦}, {𝑥}, {𝑥}), Case 2: ({𝑦}, {𝑥}, {𝑥, 𝑦}), Case 3: ({𝑦}, {𝑥}, {𝑦}), Case 4: ({𝑦}, {𝑥, 𝑦}, {𝑥, 𝑦}), Case 5: 

({𝑦}, {𝑥, 𝑦}, {𝑦}), and Case 6: ({𝑦}, {𝑦}, {𝑦}). For each case, I show that at least one of 𝑓𝑃
𝑘, 𝑓𝐵

𝑘, 𝑓𝐴
𝑘 has 

class {𝑦} . For cases 1, 3, and 6, this is obvious. For case 2, ℒ𝑘−1[𝐿0, … , 𝐿𝑘−2]  is a singleton: 

𝐿𝑖
𝑘−1: 𝑓3

𝑘−1𝑓2
𝑘−1𝑓1

𝑘−1 for all 𝑖 ∈ 𝐴 and 𝐿𝑖
𝑘−1: 𝑓1

𝑘−1𝑓3
𝑘−1𝑓2

𝑘−1 for all 𝑖 ∉ 𝐴. Because 𝑎 < 𝑛 2⁄ , we 

have 𝑓𝑃
𝑘(𝐿𝑘−1) = {𝑓1

𝑘−1}, which means 𝐶𝑓𝑃𝑘
= {𝑦}. Case 4 is similarly shown. For case 5, we have 

𝑓𝐴
𝑘(𝐿𝑘−1) ⊆ {𝑓1

𝑘−1, 𝑓3
𝑘−1} for all 𝐿𝑘−1 ∈ ℒ𝑘−1[𝐿0,… , 𝐿𝑘−1]. ■ 
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Proof of Theorem 5 

Take a profile 𝐿0 ∈ ℒ(𝑋)𝑛 that is not in trivial deadlock. Because of the remark just after 

Proposition 1, 𝑓𝑃∗(𝐿
0), 𝑓𝑋∗(𝐿

0), 𝑓𝐴∗(𝐿
0) cannot be three distinct singletons. If all three coincide with 

each other, strong convergence is straightforward. Otherwise, we have that: 

{𝑓𝑃∗(𝐿
0), 𝑓𝑋∗(𝐿

0), 𝑓𝐴∗(𝐿
0)} = {{𝑥}, {𝑦}} 

for some distinct 𝑥, 𝑦 ∈ 𝑋. Without loss of generality, 𝑓, 𝑔 ∈ 𝐹1 choose {𝑥} and ℎ chooses {𝑦}. 

We assume 𝑛 is odd, and so we have 𝑎 ≔ #{𝑖 ∈ 𝑁│𝑥𝐿𝑖
0𝑦} ≠ #{𝑖 ∈ 𝑁│𝑦𝐿𝑖

0𝑥}. The rest of the 

proof, i.e., to check Weak Convergence and Uniqueness, can be done in the same way as in the proof 

of Theorem 4. ■ 

 

Proof of Lemma 6 

Given a menu 𝐹 and a sequence of CI profiles 𝐿0, … , 𝐿𝑘−1 which satisfy the stated conditions, 

let 

𝐹𝑥 ≔ {𝑓 ∈ 𝐹│𝐶𝑓[𝐿
0, 𝐿1, … , 𝐿𝑘−1] = {𝑥}} , 

𝐹𝑦 ≔ {𝑓 ∈ 𝐹│𝐶[𝑓: 𝐿0, 𝐿1, … , 𝐿𝑘−1] = {𝑦}}, 

and let 𝛼 ≔ |𝐹𝑥| and 𝛽 ≔ |𝐹𝑦|. We label the elements as 𝐹𝑥 = {𝑔1, 𝑔2, … , 𝑔𝛼} and 𝐹𝑦 =

{ℎ1, ℎ2, … , ℎ𝛽}. Also 𝑁𝑥 = {𝑖 ∈ 𝑁│𝑥𝐿𝑖
0𝑦}, 𝑁𝑦 = {𝑖 ∈ 𝑁│𝑦𝐿𝑖

0𝑥}, 𝑛𝑥 = |𝑁𝑥|, and 𝑛𝑦 = |𝑁𝑦|. 

Since 𝛼 + 𝛽 = 3, we have two possible cases: (a) (𝛼, 𝛽) = (2,1) and (b) (𝛼, 𝛽) = (1,2). 

 

(a) The case of (𝜶, 𝜷) = (𝟐, 𝟏).  

Define 𝐿𝑘 ∈ ℒ𝑘[𝐿0, … , 𝐿𝑘−1] as follows.  

𝐿𝑖
𝑘: {
𝑔1, 𝑔2, ℎ1 𝑖𝑓 𝑖 ∈ 𝑁𝑥
ℎ1, 𝑔1, 𝑔2 𝑖𝑓 𝑖 ∈ 𝑁𝑦 .

 

It is easy to see that every 𝑓 ∈ ℱ chooses a subset of {𝑔1, 𝑔2}. So, 𝐿0 weakly converges to 

{𝑥}.  

(b) The case of (𝜶, 𝜷) = (𝟏, 𝟐). 

Define 𝐿𝑘 ∈ ℒ𝑘[𝐿0, 𝐿1, … , 𝐿𝑘−1] as follows. 

𝐿𝑖
𝑘:

{
 
 

 
 
𝑔1, ℎ1, ℎ2 𝑓𝑜𝑟 (𝑛𝑦 + 1) individuals in 𝑁𝑥

𝑔1, ℎ2, ℎ1 𝑓𝑜𝑟 𝑛𝑥 − (𝑛𝑦 + 1) individuals in 𝑁𝑥

ℎ1, ℎ2, 𝑔1 𝑓𝑜𝑟 ⌊
𝑛

2
⌋ − (𝑛𝑦 + 1) individuals in 𝑁𝑦

ℎ2, ℎ1, 𝑔1 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑜𝑡ℎ𝑒𝑟 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠.

 

Intuitively, 𝐿𝑘 is a profile such that the score of 𝑔1 is the largest and the scores of ℎ1 and ℎ2 

are the smallest. First, it is easy to see that each level-(𝑘 + 1) 𝑓𝑃, 𝑓𝐻 , 𝑓C, 𝑓𝐵𝑙 , 𝑓𝑀 chooses {𝑔1}. 
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 Consider 𝑓𝐵. For simplicity, we denote by 𝑠(𝑓) the score of 𝑓 ∈ 𝐹𝑘 evaluated by 

𝑓𝐵. Since each 𝑖 ∈ 𝑁𝑥  ranks 𝑔1 at the first position and each 𝑖 ∈ 𝑁𝑦 ranks it at the third, we 

have 𝑠(𝑔1) = 𝑛𝑥. Since ⌊
𝑛

2
⌋ individuals rank ℎ1 above ℎ2 and 𝑛 − ⌊

𝑛

2
⌋ = ⌈

𝑛

2
⌉ individuals 

rank ℎ2 above ℎ1, we have 𝑠(ℎ2) ≥ 𝑠(ℎ1). Furthermore,  

𝑠(ℎ2) =
1

2
[{𝑛𝑥 − (𝑛𝑦 + 1)} + {⌊

𝑛

2
⌋ − (𝑛𝑦 + 1)}] + (2𝑛𝑦 + 1 − ⌊

𝑛

2
⌋)

=
1

2
𝑛𝑥 + 𝑛𝑦 −

1

2
⋅ ⌊
𝑛

2
⌋

≤
1

2
𝑛𝑥 + 𝑛𝑦 −

1

2
⋅ 𝑛𝑦  (∵ ⌊

𝑛

2
⌋ ≥ 𝑛𝑦)

< 𝑛𝑥 = 𝑠(𝑔1) (∵ 𝑛𝑥 > 𝑛𝑦).

 

Therefore, 𝑓𝐵
𝑘+1(𝐿𝑘) = {𝑔1}. It is straightforward to check that 𝑓𝑁

𝑘+1(𝐿𝑘) = {𝑔1}. 

 Finally, consider 𝑓𝐴. Since 𝑛𝑦 individuals rank 𝑔1 at the third position and 

(𝑛𝑦 + 1) individuals rank ℎ2 at the third, it follows that 𝑓𝐴
𝑘+1(𝐿𝑘) ⊆ {𝑔1, ℎ1}. Recall that 

each 𝑓 ∈ ℱ ∖ {𝑓𝐴} chooses {𝑔1} at 𝐿𝑘. If 𝑓𝐴
𝑘+1(𝐿𝑘) = {𝑔1}, this implies that 𝐿0 weakly 

converges to {𝑥}. If 𝑓𝐴
𝑘+1(𝐿𝑘) = {ℎ1}, we can apply the case (a) to the CI sequence 

𝐿0, 𝐿1, … , 𝐿𝑘 (instead of the sequence 𝐿0, 𝐿1, … , 𝐿𝑘−1) to find the convergence. Suppose 

𝑓𝐴
𝑘+1(𝐿𝑘) = {𝑔1, ℎ1}. Then, it follows that  

𝑛𝑥 − (𝑛𝑦 + 1) = 𝑛𝑥. 

This implies that 𝑛𝑥 = 2𝑛𝑦 + 1. Then, let 𝑀𝑘 ∈ ℒ𝑘[𝐿0, 𝐿1, … , 𝐿𝑘−1] as 

𝑀𝑖
𝑘:

{
 
 

 
 
𝑔1, ℎ1, ℎ2 𝑓𝑜𝑟 (𝑛𝑦 + 2) individuals in 𝑁𝑥

𝑔1, ℎ2, ℎ1 𝑓𝑜𝑟 (𝑛𝑦 − 1) individuals in 𝑁𝑥

ℎ1, ℎ2, 𝑔1 𝑓𝑜𝑟 ⌊
𝑛

2
⌋ − (𝑛𝑦 + 2) individuals in 𝑁𝑦

ℎ2, ℎ1, 𝑔1 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑜𝑡ℎ𝑒𝑟 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠.

 

In a similar way, we can check that 𝑓𝑃, 𝑓𝐻 , 𝑓C, 𝑓𝐵𝑙 , 𝑓𝑀 , 𝑓𝐵 , 𝑓𝑁 chooses {𝑔1} at 𝑀𝑘. Also, we 

have 𝑓𝐴
𝑘+1(𝑀𝑘) = {ℎ1}. So, we can apply the case (a) to the CI sequence 𝐿0, 𝐿1, … ,𝑀𝑘 to find 

the convergence. ■ 

 

Proof of Theorem 6 

Let 𝑓1, 𝑓2, 𝑓3  be distinct SCRs among 𝑓𝑃 , 𝑓𝐵 , 𝑓𝐴, 𝑓𝐻 , 𝑓𝑁, 𝑓𝐶 , 𝑓𝑀, 𝑓𝐵𝑙 . When 𝑛 → ∞  under IAC, it is 

easy to see that the probability of tied outcomes by some of 𝑓1
1, 𝑓2

2, 𝑓3
1  is negligible. So, we can 

discuss only 𝐿0 ∈ ℒ(𝑋)𝑛  such that each 𝑓1
1(𝐿0), 𝑓2

1(𝐿0), 𝑓3
1(𝐿0)  is a singleton. Let ℱ =

{𝑓𝑃, 𝑓𝐵𝑜, 𝑓𝐴, 𝑓𝐻 , 𝑓𝑁, 𝑓𝐶 , 𝑓𝑀, 𝑓𝐵𝑙}.  

 

(1) The Case of |{𝒇𝟏(𝑳
𝟎), 𝒇𝟐(𝑳

𝟎), 𝒇𝟑(𝑳
𝟎)}| = 𝟐 

Let {𝑓1(𝐿
0), 𝑓2(𝐿

0), 𝑓3(𝐿
0)} = {𝑥, 𝑦}. When 𝑛 → ∞, the probability of the event  
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#{𝑖 ∈ 𝑁│𝑥𝐿𝑖
0𝑦} ≤ #{𝑖 ∈ 𝑁│𝑦𝐿𝑖

0𝑥} + 2𝑚 

is negligible. Hence, we can apply Lemma 6 to derive weak convergence.  

 

(2) The Case of |{𝒇𝟏(𝑳
𝟎), 𝒇𝟐(𝑳

𝟎), 𝒇𝟑(𝑳
𝟎)}| = 𝟑 

In this case, level-1  CI profile 𝐿1  is uniquely determined. It is also straightforward that the 

probability of tied outcomes by some of the level- 2  SCRs is negligible. If 

|{𝑓1
2(𝐿1), 𝑓2

2(𝐿1), 𝑓3
2(𝐿1)}| = 2, we can apply Lemma 6 again to derive weak convergence. I next show 

that |{𝑓1
2(𝐿1), 𝑓2

2(𝐿1), 𝑓3
2(𝐿1)}|  cannot be 3 if the menu 𝐹  is one of the stated menus in the 

proposition. Suppose to the contrary that it is 3. Note that  

ℒ(𝐹1) = {𝑓1𝑓2𝑓3, 𝑓1𝑓3𝑓2, 𝑓2𝑓1𝑓3, 𝑓2𝑓3𝑓1, 𝑓3𝑓1𝑓2, 𝑓3𝑓2𝑓1}. 

Let 𝑛𝑗   be the number of individuals who have 𝑗th  preference. For example, 𝑛1  and 𝑛4  are the 

numbers of individuals whose level-1 CI preferences are 𝑓1𝑓2𝑓3 and 𝑓3𝑓1𝑓2, respectively.  

From now on, the proof is similar for the ten menus in the proposition. Let us prove the case 

of 𝐹 = {𝑓𝐵, 𝑓𝐻, 𝑓𝐵𝑙} . Without loss of generality, we can assume 𝑓𝐵
2(𝐿1) = 𝑓1 , 𝑓𝐻

2(𝐿1) = 𝑓2 , and 

𝑓𝐵𝑙
2 (𝐿1) = 𝑓3. With 𝑛1, … , 𝑛6, we can rephrase these conditions as follows:  

𝑓𝐵𝑜
2 (𝐿1) = 𝑓1

1: {
𝑛1 + 2𝑛2 +𝑛5 > 𝑛3 + 2𝑛4 + 𝑛6
2𝑛1 + 𝑛2 +𝑛3 > 𝑛4 + 𝑛5 + 2𝑛6

 

𝑓𝐻
2(𝐿1) = 𝑓2

1:

{
  
 

  
 {

𝑛3 + 𝑛4 > 𝑛1 + 𝑛2
𝑛5 + 𝑛6 > 𝑛1 + 𝑛2

𝑛1 + 𝑛3 + 𝑛4 > 𝑛2 + 𝑛5 +𝑛6
or

{
𝑛1 + 𝑛2 > 𝑛5 + 𝑛6
𝑛3 +𝑛4 > 𝑛5 + 𝑛6

𝑛1 + 𝑛2 + 𝑛5 < 𝑛3 + 𝑛4 +𝑛6

 

𝑓𝐵𝑙
2 (𝐿1) = 𝑓3

1:  

{
 
 
 
 
 

 
 
 
 
 
(𝑛4 + 𝑛5 + 𝑛6 > 𝑛1 + 𝑛2 + 𝑛3 and 𝑛2 + 𝑛5 + 𝑛6 > 𝑛1 + 𝑛3 + 𝑛4)

or

[
 
 
 
 
 
 
 
 
(𝑛3 + 𝑛4 + 𝑛6 > 𝑛1 + 𝑛2 + 𝑛5 or 𝑛4 + 𝑛5 + 𝑛6 > 𝑛1 + 𝑛2 + 𝑛3)

and
(𝑛1 + 𝑛2 + 𝑛5 > 𝑛3 + 𝑛4 + 𝑛6 or 𝑛2 +𝑛5 + 𝑛6 > 𝑛1 + 𝑛3 +𝑛4) 

and
(𝑛1 + 𝑛2 + 𝑛3 > 𝑛4 + 𝑛5 + 𝑛6 or 𝑛1 + 𝑛3 + 𝑛4 > 𝑛2 + 𝑛5 + 𝑛6)

and
𝑛4 + 𝑛5 + 2𝑛6 > 2𝑛1 + 𝑛2 + 𝑛3

and
𝑛2 + 2𝑛5 + 𝑛6 > 𝑛1 + 2𝑛3 + 𝑛4 ]

 
 
 
 
 
 
 
 

 

With elementary verification 33 , we can see that there is no non-negative integer solution 

(𝑛1, 𝑛2, … , 𝑛6) for this system of inequalities. ■ 

 

                                                         
33 For actual verification, I used the function "FindInstance" in the software Mathematica.  
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Proof of Theorem 7 

I provide extra notation in (0), and then prove for three distinct cases (1), (2), and (3).  

(0) Extra Notation 

Let 𝐹 = {𝑓1, 𝑓2, 𝑓3} be a menu of SCFs such that:  

𝑓1: plurality rule where ties are broken in favor of individual 1,  

𝑓2: anti-plurality rule where ties are broken in favor of individual 1, and 

𝑓3: for all set 𝐴 and 𝐿 = (𝐿1, 𝐿2, … , 𝐿𝑛) ∈ ℒ(𝐴)
𝑛, 𝑓3(𝐿) is  

⋅ the greatest element for 𝐿1 among 𝑓𝑃(𝐿) if |𝑓𝑃(𝐿)| ≥ 2,  

⋅ 𝑓1(𝐿) if plurality score of some alternative is greater than 𝑛 2⁄ , and 

⋅ 𝑓2(𝐿) otherwise.  

I show that this set 𝐹  satisfies the required conditions (to confirm neutrality and difference is 

straightforward) and has the strong convergent property.  

Take any 𝐿0 ∈ ℒ(𝑋)𝑛. Note that 𝑓3(𝐿
0) is either 𝑓1(𝐿

0) or 𝑓2(𝐿
0). If 𝑓1(𝐿

0) = 𝑓2(𝐿
0), 

strong convergence is straightforward. Assume 𝑓1(𝐿
0) ≠ 𝑓2(𝐿

0) . We can label 𝐹1 = {𝑔1, 𝑔2, 𝑔3} , 

where 𝑔1(𝐿
0) = 𝑔2(𝐿

0) = 𝑥 and 𝑔3(𝐿
0) = 𝑦. Let 𝑁𝑥 ≔ {𝑖 ∈ 𝑁│𝑥𝐿𝑖

0𝑦} and 𝑁𝑦 ≔ {𝑖 ∈ 𝑁│𝑦𝐿𝑖
0𝑥}. 

I denote their cardinalities as 𝑛𝑥 = |𝑁𝑥| and 𝑛𝑦 = |𝑁𝑦|. Note that we have 𝑁 = 𝑁𝑥 ∪ 𝑁𝑦 and 𝑛 =

𝑛𝑥 + 𝑛𝑦.  

 

(1) The Case of 𝒏𝒙 > 𝒏𝒚 

I show that 𝐿0 strongly converges to {𝑥}. To prove this, we need to show two things:  

Weak convergence: 𝐿0 weakly converges to {𝑥}, and  

Uniqueness: 𝐿0 does not weakly converge to other 𝐶′ ≠ {𝑥}.  

We prove them one by one.  

 

Weak convergence: Take 𝐿1 ∈ ℒ[𝐿0] such that:  

𝐿𝑖
1: 𝑔1, 𝑔2, 𝑔3 for all 𝑖 ∈ 𝑁𝑥.

𝐿𝑖
1: 𝑔3, 𝑔1, 𝑔2 for all 𝑖 ∈ 𝑁𝑦.

 

𝑛𝑥 > 𝑛𝑦, and so it follows that 𝑓1
2(𝐿1) = 𝑓2

2(𝐿1) = 𝑓3
2(𝐿2) ⊆ {𝑔1, 𝑔2}. This means that 𝐿0 weakly 

converges to {𝑥}.  

 

Uniqueness: I inductively prove the following proposition, which implies that 𝐿0 does not weakly 

converge to 𝐶′ ≠ {𝑥}.  

 

Proposition: Assume the conditions in (0) and 𝑛𝑥 > 𝑛𝑦. For all 𝑘 ∈ ℕ, and for all sequences of CI 

profiles to level (𝑘 − 1) 𝐿0, 𝐿1, … , 𝐿𝑘−1, there exists 𝑓 ∈ 𝐹𝑘 such that 𝐶[𝑓: 𝐿0, 𝐿1, … , 𝐿𝑘−1] = {𝑥}.  

 



88 
 

Proof of the Proposition:  

If 𝑘 = 1, the proposition is straightforward from the assumption. Suppose the statement holds for 

𝑘 = 1,2,… , 𝑘0 − 1 (𝑘0 ∈ ℕ). Take any sequence of CI profiles 𝐿0, 𝐿1, … , 𝐿𝑘0−1.  

(a) If every 𝑓1
𝑘0, 𝑓2

𝑘0, 𝑓3
𝑘0 has class {𝑥}, the proposition is straightforward.  

(b) Suppose two of 𝑓1
𝑘0, 𝑓2

𝑘0, 𝑓3
𝑘0, denoted ℎ1

𝑘0 and ℎ2
𝑘0, have class {𝑥} and the other one, 

denoted ℎ3
𝑘0, has class {𝑦}. For all 𝐿𝑘0 ∈ ℒ[𝐿0, 𝐿1, … , 𝐿𝑘0−1], individuals in 𝑁𝑦 rank ℎ1

𝑘0 or ℎ2
𝑘0 

at the worst, while individuals in 𝑁𝑥  rank ℎ3
𝑘0  at the worst. 𝑛𝑥 > 𝑛𝑦 , and so it follows that 

𝑓2
𝑘0+1(𝐿𝑘0) ⊆ {ℎ1

𝑘0, ℎ2
𝑘0}.  

(c) Suppose one of 𝑓1
𝑘0 , 𝑓2

𝑘0, 𝑓3
𝑘0, denoted ℎ1

𝑘0, has class {𝑥} and the other two, denoted 

ℎ2
𝑘0  and ℎ3

𝑘0 , have class {𝑦} . For any 𝐿𝑘0 ∈ ℒ[𝐿0, 𝐿1, … , 𝐿𝑘0−1] , individuals in 𝑁𝑦  rank ℎ2
𝑘0  or 

ℎ3
𝑘0  at the top while individuals in 𝑁𝑥  rank ℎ1

𝑘0  at the top. 𝑛𝑥 > 𝑛𝑦 , and so it follows that 

𝑓1
𝑘0+1(𝐿𝑘0) = ℎ1

𝑘0.  

 

(2) The Case of 𝒏𝒙 < 𝒏𝒚 

In this case, 𝐿0 strongly converges to {𝑦}.  

Weak convergence: Consider the same 𝐿1 ∈ ℒ[𝐿0]  defined in (1). 𝑛𝑦 > 𝑛𝑥 , and so we have 

𝑓1
2(𝐿1) = 𝑔3  and 𝑓3

2(𝐿1) = 𝑔3 . If 𝑓2
2(𝐿1) = 𝑔3 , weak convergence is straightforward. Otherwise, 

without loss of generality, we can assume 𝑓2
2(𝐿1) = 𝑔1. Let us take 𝐿2 ∈ ℒ[𝐿0, 𝐿1] as follows:  

𝐿𝑖
2: 𝑓2, 𝑓1, 𝑓3 for all 𝑖 ∈ 𝑁𝑥.

𝐿𝑖
2: 𝑓1, 𝑓3, 𝑓2 for all 𝑖 ∈ 𝑁𝑦.

 

It follows that 𝑓1
3(𝐿2) = 𝑓2

3(𝐿2) = 𝑓3
3(𝐿2) = 𝑓1.  

 

Uniqueness: The proof can be made in the same way as in (1).  

 

(3) The Case of 𝒏𝒙 = 𝒏𝒚 

Uniqueness proof can be shown as in (1), and so I show only the proof of weak convergence.  

(a) Suppose 𝑥𝐿1
0𝑦 . In this case, 𝐿0  strongly converges to {𝑥} . Consider the same 𝐿1 ∈

ℒ[𝐿0] as in (1). 𝑓𝑃(𝐿
1) = {𝑔1, 𝑔3} and 𝑔1𝐿𝑖

1𝑔3, and so we have 𝑓1(𝐿
1) = 𝑔1. It also follows that 

𝑓2(𝐿
1) = 𝑓3(𝐿

1) = 𝑔1.  

(b) Suppose 𝑦𝐿1
0𝑥. In this case, 𝐿0 strongly converges to {𝑦}. Consider the same 𝐿1 ∈ ℒ[𝐿0] as in 

(1). It follows that 𝑓1(𝐿
0) = 𝑓3(𝐿

0) = 𝑔3 and 𝑓2(𝐿
0) = 𝑔1. Consider 𝐿2 ∈ ℒ[𝐿0, 𝐿1] that we used in 

(2). Now, we have 𝑓1
3(𝐿2) = 𝑓2

3(𝐿2) = 𝑓3
3(𝐿2) = 𝑓1

2. This completes the proof. ■ 

 

Proof of Theorem 8 

The probability of tied outcomes at level−1 SCRs can be negligible, and so we can expect that each 

𝑓𝑃
1(𝐿0), 𝑓𝐵

1(𝐿0), 𝑓𝐴
1(𝐿0),𝜑1(𝐿0) is a singleton. If |𝐹1(𝐿0)| ≤ 2, we can apply Lemma 6 to guarantee 
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the weak convergence. Because of the definition of 𝜑, we know that 𝜑(𝐿0) ⊆ 𝑓𝑃
1(𝐿0) ∪ 𝑓𝐵

1(𝐿0) ∪

𝑓𝐴
1(𝐿0). So, we can assume |𝐹1(𝐿0)| = 3. Let 𝐹1 = {𝑔1

1, 𝑔2
1, 𝑔3

1, 𝑔4
1}. Without loss of generality, we 

can assume 𝑔1
1(𝐿0) = 𝑔2

1(𝐿0) = {𝑥1}, 𝑔3
1(𝐿0) = {𝑥2}, and 𝑔4

1(𝐿0) = {𝑥3}.  

 Let 𝐿1 ∈ ℒ1[𝐿0] be such that everyone ranks 𝑔1
1 above 𝑔2

1. Note that the probability of 

tied outcomes by some of 𝑓𝑃
2, 𝑓𝐵

2, 𝑓𝐴
2, 𝜑2  can be also negligible. So, we can expect that 

𝑓𝑃
2(𝐿1), 𝑓𝐵

2(𝐿1), 𝑓𝐴
2(𝐿1),𝜑2(𝐿1)  are also singletons. It is simple to see that there are six types of 

preference in 𝐿1 . Let 𝑛1, … , 𝑛6  be the number of individuals who have each specific type of 

preference as follows:  

𝑛1 individuals: 𝑔1
1, 𝑔2

1, 𝑔3
1, 𝑔4

1 

𝑛2 individuals: 𝑔1
1, 𝑔2

1, 𝑔3
1, 𝑔4

1 

𝑛3 individuals: 𝑔3
1, 𝑔1

1, 𝑔2
1, 𝑔4

1 

𝑛4 individuals: 𝑔3
1, 𝑔4

1, 𝑔1
1, 𝑔2

1 

𝑛5 individuals: 𝑔4
1, 𝑔1

1, 𝑔2
1, 𝑔3

1 

𝑛6 individuals: 𝑔4
1, 𝑔3

1, 𝑔1
1, 𝑔2

1, 

where 𝑛 = 𝑛1 + 𝑛2 + 𝑛3 + 𝑛4 + 𝑛5 +𝑛6 . Note also that if |𝐹2(𝐿1)| ≤ 2 , then Lemma 6 again 

guarantees the weak convergence. So, we assume that |𝐹2(𝐿1)| = 3. At this time, 𝜑2(𝐿1) is either 

𝑓𝑃
2(𝐿1) or 𝑓𝐵

2(𝐿1). We can also expect 𝑛𝑖 > 0 for 𝑖 = 1,2,3,4,5,6 when 𝑛 → ∞, and so we have 

that 𝑓𝐴
2(𝐿1) = {𝑔1

1}. Now, we have only two possibilities:  

(1) 𝑓𝐵
2(𝐿1) = 𝜑2(𝐿1) = {𝑔3

1}, 𝑓𝑃
2(𝐿1) = {𝑔4

1}, and 𝑓𝐴
2(𝐿1) = {𝑔1

1}, or 

(2) 𝑓𝐵
2(𝐿1) = {𝑔3

1}, 𝑓𝐵
2(𝐿1) = 𝜑2(𝐿1) = {𝑔4

1}, and 𝑓𝐴
2(𝐿1) = {𝑔1

1}.  

 

(1) The case of 𝑓𝐵
2(𝐿1) = 𝜑2(𝐿1) = {𝑔3

1}, 𝑓𝑃
2(𝐿1) = {𝑔4

1}, and 𝑓𝐴
2(𝐿1) = {𝑔1

1}. 

Let 𝐿2 ∈ (ℒ(𝐹2))
𝑛
 be as follows:  

𝑛1 individuals: 𝑓𝐴
2, 𝑓𝐵

2, 𝜑2, 𝑓𝑃
2. 

𝑛2 individuals: 𝑓𝐴
2, 𝑓𝑃

2, 𝑓𝐵
2, 𝜑2. 

𝑛3 individuals: 𝑓𝐵
2, 𝜑2, 𝑓𝐴

2, 𝑓𝑃
2. 

𝑛4 individuals: 𝑓𝐵
2, 𝜑2, 𝑓𝑃

2, 𝑓𝐴
2. 

𝑛5 individuals: 𝑓𝑃
2, 𝑓𝐴

2, 𝑓𝐵
2, 𝜑2. 

𝑛6 individuals: 𝑓𝑃
2, 𝑓𝐵

2, 𝜑2, 𝑓𝐴
2. 

Clearly, we have 𝐿2 ∈ ℒ2[𝐿0, 𝐿1].  

𝑛1, … , 𝑛6  are positive, and so we obtain that 𝑓𝐴
3(𝐿2) = {𝑓𝐵

2} . 𝑓𝑃
2(𝐿1) = {𝑔4

1} , and so the plurality 

score of 𝑔4
1 is greater than those of 𝑔1

1 and 𝑔3
1:  

{
𝑛5 + 𝑛6 > 𝑛1 +𝑛2.
𝑛5 + 𝑛6 > 𝑛3 + 𝑛4.

 

This also shows that the plurality score of 𝑓𝑃
2 is greater than those of 𝑓𝐴

2 and 𝑓𝐵
2 at 𝐿2. Hence, we 

have that 𝑓𝑃
3(𝐿2) = {𝑓𝑃

2}. Next, we show that 𝑓𝐵
3(𝐿2) = {𝑓𝐵

2}.  
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Because 𝑓𝐵
2(𝐿1) = {𝑔3

1}, the Borda scores at 𝐿1 are as follows:  

𝑠𝐵(𝑔3
1) > 𝑠𝐵(𝑔1

1) ⇔ 𝑛3 + 𝑛4 +
2

3
𝑛6 +

1

3
𝑛1 > 𝑛1 + 𝑛2 +

2

3
(𝑛3 + 𝑛5) +

1

3
(𝑛4 + 𝑛6). 

𝑠𝐵(𝑔3
1) > 𝑠𝐵(𝑔4

1) ⇔ 𝑛3 + 𝑛4 +
2

3
𝑛6 +

1

3
𝑛1 > 𝑛5 + 𝑛6 +

2

3
𝑛4 +

1

3
𝑛2. 

At 𝐿2, we have: 

𝑠𝐵(𝑓𝑃
2) = 𝑛5 + 𝑛6 +

2

3
𝑛2 +

1

3
𝑛4.

𝑠𝐵(𝑓𝐵
2) = 𝑛3 + 𝑛4 +

2

3
(𝑛1 + 𝑛6) +

1

3
(𝑛2 + 𝑛5).

𝑠𝐵(𝑓𝐴
2) = 𝑛1 + 𝑛2 +

2

3
𝑛5 +

1

3
𝑛3.

𝑠𝐵(𝜑
2) < 𝑠𝐵(𝑓𝐵

2).

 

These equations show that 𝑠𝐵(𝑓𝐵
2) > max{𝑠𝐵(𝑓𝑃

2), 𝑠𝐵(𝑓𝐴
2), 𝑠𝐵(𝜑

2)}.  

 

(2) The case of 𝑓𝐵
2(𝐿1) = {𝑔3

1}, 𝑓𝑃
2(𝐿1) = 𝜑(𝐿1) = {𝑔4

1}, and 𝑓𝐴
2(𝐿1) = {𝑔1

1}. 

𝑓𝐵
2(𝐿1) = {𝑔3

1}, and so the score of 𝑔3
1 at 𝐿1 is strictly greater than those of 𝑔1

1 and 𝑔4
1. Formally, 

we have that:  

 

𝑛3 + 𝑛4 +
2

3
𝑛6 +

1

3
𝑛1 > 𝑛1 + 𝑛2 +

2

3
(𝑛3 + 𝑛5) +

1

3
(𝑛4 +𝑛6). 

𝑛3 + 𝑛4 +
2

3
𝑛6 +

1

3
𝑛1 > 𝑛5 +𝑛6 +

2

3
𝑛4 +

1

3
𝑛2. 

(3)    

Let 𝐿2 ∈ ℒ2[𝐿0, 𝐿1] be such that: 

𝑛1 individuals: 𝑓𝐴
2, 𝑓𝐵

2, 𝑓𝑃
2, 𝜑2. 

𝑛2 individuals: 𝑓𝐴
2, 𝑓𝑃

2, 𝜑2, 𝑓𝐵
2. 

𝑛3 individuals: 𝑓𝐵
2, 𝑓𝐴

2, 𝑓𝑃
2, 𝜑2. 

𝑛4 individuals: 𝑓𝐵
2, 𝑓𝑃

2, 𝜑2, 𝑓𝐴
2. 

𝑛5 individuals: 𝑓𝑃
2, 𝜑2, 𝑓𝐴

2, 𝑓𝐵
2. 

𝑛6 individuals: 𝑓𝑃
2, 𝜑2, 𝑓𝐵

2, 𝑓𝐴
2. 

In words, this is a consequentially induced preference where everyone ranks 𝑓𝑃
2 above 𝜑2. Similar 

to (1), we can check that 𝑓𝑃
3(𝐿2) = 𝑓𝐴

3(𝐿2) = {𝑓𝑃
2} . Furthermore, the scores of 𝑓𝐴

2, 𝑓𝑃
2, 𝑓𝐵

2, 𝜑2 

evaluated by 𝑓𝐵
3 are as follows:  

𝑠𝐵(𝑓𝐴
2) = 𝑛1 + 𝑛2 +

2

3
𝑛3 +

1

3
𝑛5. 

𝑠𝐵(𝑓𝐵
2) = 𝑛3 + 𝑛4 +

2

3
𝑛1 +

1

3
𝑛6. 

𝑠𝐵(𝑓𝑃
2) = 𝑛5 + 𝑛6 +

2

3
(𝑛2 +𝑛4) +

1

3
(𝑛1 + 𝑛3). 
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With (1) we have that 𝑠𝐵(𝑓𝐵
2) > 𝑠𝐵(𝑓𝐴

2). Note that ties between 𝑓𝐵
2, 𝑓𝑃

2 occur only if  

𝑛3 + 𝑛4 +
2

3
𝑛1 +

1

3
𝑛6 = 𝑛5 + 𝑛6 +

2

3
(𝑛2 + 𝑛4) +

1

3
(𝑛1 + 𝑛3). 

This event can be negligible as 𝑛 → ∞. ■ 

 

Proof of Theorem 9 

Let 𝐹 = {𝑓1, 𝑓2, … , 𝑓𝑀}  be a menu of 𝑀 ≥ 3  concave scoring rules. Define 𝐸 = {𝐸1, 𝐸2, … , 𝐸𝜇} 

and 𝐶 = {𝑐𝑓,𝑗│𝑓 ∈ 𝐸 ∪ 𝐶 and 𝑗 = 1,2, … , 𝑟}, where 𝑐𝑓,𝑗 is a voting rule such that 

𝑐𝑓,𝑗(𝐿: 𝑋) ≔ {
𝐺(𝐿1, 𝑋) if |{𝑖 ∈ 𝑁│𝐿𝑖 = 𝐿1}| = 𝑗, 𝑎𝑛𝑑

𝑓(𝐿: 𝑋) otherwise.
 

The probability of the event |{𝑖 ∈ 𝑁│𝐿𝑖 = 𝐿1}| = 𝑗  is negligible as 𝑛 → ∞ , and so each 

𝑐𝑓,1, 𝑐𝑓,2, … , 𝑐𝑓,𝑟 is asymptotically the same as 𝑓. In this sense, 𝐶 is a set of pseudo-copies of the 

elements in 𝐹 ∪ 𝐸. We show that 𝐺 ≔ 𝐹 ∪ 𝐸 ∪ 𝐶 has the asymptotically weak convergent property 

for 𝜇 and 𝑟 such that 𝑟 ≥ 𝜇 ≫ 𝑀. The proof is made up of several steps.  

 

Step 1: To Prove the Following Statement 

Let 𝑘 ≥ 1. Let 𝐿0, 𝐿1, … , 𝐿𝑘−1 be a sequence of CI profiles to level (𝑘 − 1). Suppose:  

(1) {𝐶𝑔[𝐿
0, 𝐿1, … , 𝐿𝑘−1]│𝑔 ∈ 𝐺𝑘} = {{𝑦1}, {𝑦2},… , {𝑦𝑚}},  

(2) 𝑐𝑓,𝑗(𝐿
𝑘−1) = 𝑓(𝐿𝑘−1) for all 𝑓 ∈ 𝐹 ∪ 𝐸 and 𝑗 = 1,2, … , 𝑟, and 

(3) {𝑗∗} = argmax
𝑗∈{1,2,…,𝑚}

|𝑈𝑗|, where for all 𝑗 = 1,2, … ,𝑚,  

𝑈𝑗 ≔ {𝑖 ∈ 𝑁│𝑦𝑗𝐿𝑖
0𝑦 for all 𝑦 ∈ {𝑦1, 𝑦2, … , 𝑦𝑚}}. 

Then there exists 𝐿𝑘 ∈ ℒ𝑘[𝐿0, 𝐿1, … , 𝐿𝑘−1] such that  

𝐶𝐸𝑒𝑘+1[𝐿
0,… , 𝐿𝑘−1, 𝐿𝑘] = {𝑦𝑗∗} for all 𝐸𝑒

𝑘+1 ∈ 𝐸𝑘+1. 

 

Proof of the Statement 

For each 𝑗 = 1,2,… ,𝑚, let us define some extra notation: let 𝑢𝑗 ≔ |𝑈𝑗| be the cardinality of each 

𝑈𝑗. Let 𝐺𝑗 ≔ {𝑔 ∈ 𝐺𝑘│𝐶𝑔[𝐿
0, … , 𝐿𝑘−1] = {𝑦𝑗}} be the set of level-𝑘 voting rules whose class is 𝑦𝑗 

and let 𝑏𝑗 ≔ |𝐺𝑗| be the cardinality of 𝐺𝑗 . We label each element of 𝐺𝑗  as 

𝐺𝑗 = {𝑔𝑗,1, 𝑔𝑗,2, … , 𝑔𝑗,𝑏𝑗}. 

Without loss of generality, we can assume 𝑗∗ = 1. Next, we define a profile 𝐿𝑘 = (𝐿1
𝑘, 𝐿2

𝑘 , … , 𝐿𝑛
𝑘 ) ∈

(ℒ(𝐺𝑘))
𝑛

 through five steps:  
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(a) Preferences on 𝐺𝑗∗(= 𝐺1).  

For all 𝑖 ∈ 𝑁, let 

𝐿𝑖
𝑘│𝐺𝑗∗: 𝑔𝑗∗,1, 𝑔𝑗∗,2, … , 𝑔𝑗∗,𝑏𝑗∗ . 

 

(b) Re-Label Individuals 

There are 𝑚!  possible preferences over {𝑦1, 𝑦2, … , 𝑦𝑚} . Suppose we array them in lexicographic 

order (in terms of the subscripts) and denote them as the 1st, 2nd, … , (𝑚!)th preferences. For example, 

the 1st preference is 𝑦1, 𝑦2, … , 𝑦𝑚−1, 𝑦𝑚, the second is 𝑦1, 𝑦2, … , 𝑦𝑚 , 𝑦𝑚−1, and the (𝑚!)th (last) 

one is 𝑦𝑚 , 𝑦𝑚−1, … , 𝑦1. For each 𝑗 = 1,2,… ,𝑚, let 𝑁𝑗 denote the set of individuals who have the 

𝑗th preference over {𝑦1, 𝑦2, … , 𝑦𝑚}. Let 𝑛𝑗 = |𝑁𝑗| be its cardinality. Let us re-label individuals as 

follows: 𝑁1 = {𝑖1, 𝑖2, … , 𝑖𝑛1}. For each 𝑗 ∈ {2,3,… ,𝑚}, let  

𝑁𝑗 = {𝑖𝑛1+𝑛2+⋯+𝑛𝑗−1+1, 𝑖𝑛1+𝑛2+⋯+𝑛𝑗−1+2,… , 𝑖𝑛1+𝑛2+⋯+𝑛𝑗−1+𝑛𝑗}. 

Note that 𝑁1,𝑁2, … , 𝑁𝑚! gives a partition of 𝑁.  

 

(c) Define Permutations on 𝐺𝑗 .  

For each 𝑗 = 2,3,… ,𝑚, let 𝜎𝑗: 𝐺𝑗 → 𝐺𝑗  be a permutation on 𝐺𝑗  such that  

𝜎𝑗(𝑔𝑗,𝑝) = {
𝑔𝑗,𝑝+1 if 1 ≤ 𝑝 < 𝑏𝑗 , 𝑎𝑛𝑑

𝑔𝑗,1 if 𝑝 = 𝑏𝑗.
 

As usual, we denote 𝜎𝑗
𝑞
= 𝜎𝑗 ∘ 𝜎𝑗 ∘ ⋯∘ 𝜎𝑗  (𝑞 times) for each positive integer 𝑞. We interpret 𝜎𝑗

0 as 

the identity. 

 

(d) Preferences on 𝐺𝑗 ≠ 𝐺𝑗∗.  

For each 𝑝 = 1,2,… , 𝑛 and 𝑗 = 2,3, … ,𝑚, let 

𝐿𝑖𝑝
𝑘 │𝐺𝑗 : 𝜎𝑗

𝑝−1
(𝑔𝑗,1), 𝜎𝑗

𝑝−1
(𝑔𝑗,2),… , 𝜎𝑗

𝑝−1
(𝑔𝑗,𝑏𝑗). 

 

(e) Preferences Between 𝐺𝑗  and 𝐺𝑗′ .  

For all distinct 𝑗, 𝑗′ ∈ {1,2,… ,𝑚}, 𝑔 ∈ 𝐺𝑗 , and 𝑔′ ∈ 𝐺𝑗′, let  

𝑔𝐿𝑖
𝑘𝑔′ ⇔ 𝑦𝑗𝐿𝑖

0𝑦𝑗′. 

 

Now, let us confirm that 𝐸1
𝑘+1(𝐿𝑘),𝐸2

𝑘+1(𝐿𝑘),⋯ , 𝐸𝜇
𝑘+1(𝐿𝑘) ⊆ 𝐺1

𝑘 . Condition (2) demands that each 

𝑏1, 𝑏2, … , 𝑏𝑟 is at least as large as 1 + 𝑟, because at least one element in 𝐹 ∪ 𝐸 has class 𝑦𝑗 and 𝑟 

copies yield the same outcome as theirs. Recall that we assumed 𝜇 ≤ 𝑟. 𝐸𝑒 (1 ≤ 𝑒 ≤ 𝜇) looks only 

at the first, second, …, 𝑒th  position in the preference profile, and so it follows that voters in 𝑈𝑗 

assign positive scores only to elements in 𝐺𝑗
𝑘 at 𝐿𝑘. Therefore, we have that for all 𝑗 = 1,2,… ,𝑚 
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and 𝑔𝑗 ∈ 𝐺𝑗 ,  

𝑠(𝑔𝑗) ≤ 𝑢𝑗. 

It is straightforward from (a) that 𝑠(𝑔1,1) = 𝑢1. 𝑢1 is, by definition, the largest among 𝑢1, 𝑢2, … , 𝑢𝑚, 

and so we have 

𝑠(𝑔1,1) = 𝑢1 > max
𝑗≠1,𝑔𝑗∈𝐺𝑗

𝑠(𝑔𝑗). 

This completes the proof of step 1.  

 

In general, the proof process above determines the way we design 𝐿𝑘 in the face of 𝐿0, 𝐿1, … , 𝐿𝑘−1 

under conditions (1), (2), and (3). From now on, I denote by 𝐿∗𝑘 such a profile 𝐿𝑘.  

 

Step 2: Asymptotic Consequence of step 1 

Let us define the effective number (of alternatives) {𝑚𝑘}𝑘=0,1,…,|𝐺|  inductively. Intuitively, 𝑚𝑘 

represents the number of classes at level 𝑘.  

First, let 𝑚0 ≔ |𝑋|. When 𝑛 → ∞, the probability of a tied outcome by some SCR in 𝐺 is 

negligible. Hence, we accept that condition (1) holds when 𝑘 = 1. In a similar way, we can check that 

conditions (2) and (3) also hold when 𝑘 = 1 as 𝑛 → ∞. Hence, we can infer that 𝐿∗1 is well-defined. 

Suppose 𝐿∗𝑘 is well-defined for 𝑘 = 0,1,… , 𝑘̅. Again, we can infer that the probability that any of 

the conditions (1), (2), or (3) breaks is negligible as 𝑛 → ∞. Therefore, inductively we can say that if 

𝑘̅ is finite, we can design 𝐿0, 𝐿1, … , 𝐿𝑘̅ so that each condition (1), (2), and (3) holds till level 𝑘̅.  

Now, let 𝑚𝑘  be the value of 𝑚  determined at level 𝑘 = 1,2, … , 𝑘̅ . Clearly, the sequence 

𝑚0,𝑚1, … ,𝑚|𝐺|  is decreasing, i.e., 𝑀 = 𝑚0 ≥ 𝑚1 ≥ 𝑚2 ≥ ⋯ ≥ 𝑚|𝐺| ≥ 1  and 𝑚1 ≤ |𝐺| . If 

𝑚|𝐺| = 1 , it directly means convergence. Suppose 𝑚|𝐺| ≥ 2 . It follows that |𝐺|  integers 

𝑚1, … ,𝑚|𝐺| are between 2 and |𝐺|. Therefore, there exists 𝑘1 ∈ {1,2,… , |𝐺|} such that 𝑚𝑘1−1 =

𝑚𝑘1.  

 

Step 3: Classes of Level-𝒌𝟏 Voting Rules 

For simplicity, let 𝑘 = 𝑘1 and 𝑚 = 𝑚𝑘 throughout this step. Based on the discussion in step 2, we 

have that: 

(1’) {𝐶𝑔[𝐿
0, 𝐿∗1, … , 𝐿∗𝑘−1]│𝑔 ∈ 𝐺𝑘} = {{𝑧1}, {𝑧2},… , {𝑧𝑚}}, 

(2’) 𝑐𝑓,𝑗(𝐿
∗𝑘−1) = 𝑓(𝐿∗𝑘−1) for all 𝑓 ∈ 𝐹 ∪ 𝐸 and 𝑗 = 1,2,… , 𝑟, and 

(3’) {|𝑇𝑗∗|} = argmax{|𝑇1|, |𝑇2|,… , |𝑇𝑚|}, where for all 𝑗 = 1,2, … ,𝑚,  

𝑇𝑗 ≔ {𝑖 ∈ 𝑁│𝑧𝑗𝐿𝑖
0𝑧 for all 𝑧 ∈ {𝑧1, 𝑧2, … , 𝑧𝑚}}. 

For each 𝑗 = 1,2,… ,𝑚 , let 𝐺𝑗
𝑘 ≔ {𝑔 ∈ 𝐺𝑘│𝐶𝑔[𝐿

0, 𝐿∗1, … , 𝐿∗𝑘−1] = {𝑧𝑗}}  and 𝑎𝑗 ≔ |𝐺𝑗| . We also 
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denote by 𝑡𝑗  the cardinality of 𝑇𝑗 . Without loss of generality, we can assume again that |𝑇1| >

|𝑇2|,… , |𝑇𝑚|. Furthermore, step 1 shows that the elements in 𝐸 and its copies are all in 𝐺1
𝑘. Therefore, 

we have 𝑎1 ≥ 𝜇(1 + 𝑟) and 𝑎2, … , 𝑎𝑚 ≤ 𝑀(1 + 𝑟).  

Take arbitrary concave score assignments [𝑠1
|𝐺|, 𝑠2

|𝐺|, … , 𝑠|𝐺|
|𝐺|
] and calculate the score of each 𝑔 ∈ 𝐺𝑘 

evaluated by this 𝑓 at 𝐿∗𝑘. For simplicity, we write 𝑠𝑗 instead of 𝑠𝑗
𝑚 (𝑗 = 1,2,… ,𝑚) throughout 

this step.  

First, we consider the score of 𝑔1,1
𝑘 . Note that voters in |𝑇1| rank 𝑔1,1

𝑘  at the first position 

and the other voters rank 𝑔1,1
𝑘  at least at the (𝑎2 + 𝑎3 +⋯+ 𝑎𝑚 + 1)

th position. Hence, we have 

that  

𝑠(𝑔1,1
𝑘 ) ≥ 𝑠1 ⋅ |𝑇1| +∑𝑠𝑎2+𝑎3+⋯+𝑎𝑚+1 ⋅ |𝑇𝑗|

𝑚

𝑗=2

. 

Take any 𝑔𝜆 ∈ 𝐺𝜆
𝑘 (2 ≤ 𝜆 ≤ 𝑚) and let us evaluate its score 𝑠(𝑔𝜆

𝑘). Because of the recipe for 𝐿∗𝑘, 

we can infer that the scores of the elements in 𝐺𝜆
𝑘 do not vary much from each other. Indeed, we have 

the following proposition.  

 

Proposition. Take any 𝑗 ∈ {2,3,… ,𝑚}  and 𝑔, 𝑔′ ∈ 𝐺𝑗
𝑘 . Then we have |𝑠(𝑔) − 𝑠(𝑔′)| ≤ |𝐺|!  at 

𝐿∗𝑘.  

Proof. Let us introduce some extra notation. For any 𝐴 ⊆ 𝑁 and ℎ ∈ 𝐺𝑘 , let 𝑠(𝑔:𝐴) be the score 

of ℎ from 𝐴. Formally,  

𝑠(ℎ: 𝐴) = ∑𝑠𝑥 ⋅ 𝑅𝑥(ℎ:𝐴)

|𝐺|

𝑥=1

 

Here, we denote by 𝑅𝑥(ℎ: 𝐴) the number of individuals in 𝐴 who rank ℎ at the 𝑥th position. With 

this notion, we can develop the score of 𝑔 as follows:  

𝑠(ℎ) =∑𝑠(ℎ:𝑁𝑗)

𝑚!

𝑗=1

. 

Because of this equation (and 𝑚 ≤ |𝐺|), we have only to prove the following: that for each 𝑝 =

1,2,… ,𝑚! , |𝑠(𝑔: 𝑁𝑝) − 𝑠(𝑔
′: 𝑁𝑝)| ≤ |𝐺| . Take any 𝑁𝑝 ∈ {𝑁1,𝑁2, 𝑁3,… ,𝑁𝑚!} . Dividing 𝑛𝑝  by 

|𝐺𝑗|, we have 

𝑛𝑝 = 𝛼|𝐺𝑗| + 𝛽 

where 𝛼 ∈ ℕ ∪ {0} and 0 ≤ 𝛽 < |𝐺𝑗|. For simplicity, let 𝑣𝑗 ≔ 𝑛1 + 𝑛2 +⋯+ 𝑛𝑗−1. First, look at 

individuals 𝐼 ≔ {𝑖𝑣𝑗+1, 𝑖𝑣𝑗+2,⋯ , 𝑖𝑣𝑗+𝛼|𝐺𝑗|}. Recall that their level-𝑘 CI preferences are the same over 

𝐺𝑘 ∖ 𝐺𝑗
𝑘 and  
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𝐿𝑖𝑣𝑗+1
𝑘 │𝐺𝑗

𝑘: 𝜎𝑗
(𝑖𝑣𝑗+1)−1(𝑔𝑗,1), 𝜎𝑗

(𝑖𝑣𝑗+1)−1(𝑔𝑗,2),… , 𝜎𝑗
(𝑖𝑣𝑗+1)−1 (𝑔𝑗,𝑎𝑗) 

𝐿𝑖𝑣𝑗+2
𝑘 │𝐺𝑗

𝑘: 𝜎𝑗
(𝑖𝑣𝑗+2)−1(𝑔𝑗,1), 𝜎𝑗

(𝑖𝑣𝑗+2)−1(𝑔𝑗,2),… , 𝜎𝑗
(𝑖𝑣𝑗+2)−1 (𝑔𝑗,𝑎𝑗) 

⋮ 

𝐿𝑖
𝑣𝑗+𝛼|𝐺𝑗|

𝑘 │𝐺𝑗
𝑘: 𝜎𝑗

(𝑖𝑣𝑗+𝛼|𝐺𝑗|)−1(𝑔𝑗,1), 𝜎𝑗
(𝑖𝑣𝑗+𝛼|𝐺𝑗|)−1(𝑔𝑗,2),… , 𝜎𝑗

(𝑖𝑣𝑗+𝛼|𝐺𝑗|)−1 (𝑔𝑗,𝑎𝑗). 

Because 𝜎𝑗
|𝐺| = 𝜎𝑗

0 (identity), we can see the symmetry between elements, i.e., each element 𝑔 ∈ 𝐺𝑗  

appears at each rank with exactly the same frequency. Hence, we have 

𝑠(𝑔: 𝐼) = 𝑠(𝑔′: 𝐼). 

Therefore,  

|𝑠(𝑔: 𝑁𝑝) − 𝑠(𝑔
′: 𝑁𝑝)| = |{𝑠(𝑔: 𝐼) + 𝑠(𝑔:𝑁𝑝 ∖ 𝐼)} − {𝑠(𝑔

′: 𝐼) + 𝑠(𝑔′: 𝑁𝑝 ∖ 𝐼)}|

= |𝑠(𝑔:𝑁𝑝 ∖ 𝐼) − 𝑠(𝑔
′: 𝑁𝑝 ∖ 𝐼)|.

 

For any individual 𝑖 ∈ 𝑁 and any ℎ, ℎ′ ∈ 𝐺𝑗 , we have (by the definition of a scoring rule): 

|𝑠(ℎ, {𝑖}) − 𝑠(ℎ′, {𝑖})| ≤ 1. 

Using this, we have 

|𝑠(𝑔:𝑁𝑝 ∖ 𝐼) − 𝑠(𝑔
′: 𝑁𝑝 ∖ 𝐼)| ≤ ∑ |𝑠(𝑔: {𝑖}) − 𝑠(𝑔′: {𝑖})|

𝑖∈𝑁𝑝∖𝐼

≤ |𝑁𝑝 ∖ 𝐼|

= 𝛽 < |𝐺𝑗|.

 

This completes the proof of the proposition. ■ 

 

For each 𝑗 ≠ 𝜆, voters in 𝑇𝑗 rank 𝑔𝜆 at the 𝑎𝑗 + 1
th or lower position, because such voters rank 

the elements of 𝐺𝑗
𝑘 at the 1st, 2nd,… , 𝑎𝑗

th positions. On the other hand, voters in 𝑇𝜆 rank 𝑔𝜆
𝑘 at the 

1st or lower position. Therefore, we can evaluate 𝑠(𝑔𝜆
𝑘) as follows:  

𝑠(𝑔𝜆
𝑘) <

1

𝑎𝜆
{(𝑠1 + 𝑠2 +⋯+ 𝑠𝑎𝜆) ⋅ |𝑇𝜆| +∑(𝑠𝑎𝑗+1 + 𝑠𝑎𝑗+2 +⋯+ 𝑠𝑎𝑗+𝑎𝜆) ⋅ |𝑇𝑗|

𝑚

𝑗≠𝜆

} + |𝐺|!. 

For each 𝑤1, 𝑤2 ∈ ℕ such that 𝑤1 < 𝑤2, we write for simplicity 

𝑎𝑝~𝑞 = 𝑎𝑝 + 𝑎𝑝+1 +⋯+ 𝑎𝑞 . 

𝑠𝑝~𝑞 = 𝑠𝑝 + 𝑠𝑝+1 +⋯+ 𝑠𝑝+𝑞 . 

Now the difference between 𝑠(𝑔1,1
𝑘 ) and 𝑠(𝑔𝜆

𝑘) can be evaluated as follows:  
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𝑠(𝑔1,1
𝑘 ) − 𝑠(𝑔𝜆

𝑘) > (𝑠1 −
𝑠(𝑎1+1)~(𝑎1+𝑎𝜆)

𝑎𝜆
) ⋅ |𝑇1| + (𝑠𝑎2~𝑚+1 −

𝑠1~𝑎𝜆
𝑎𝜆

) ⋅ |𝑇𝜆|

+{∑ (𝑠𝑎2~𝑚+1 −
𝑠(𝑎𝑗+1)~(𝑎𝑗+𝑎𝜆)

𝑎𝜆
) ⋅ |𝑇𝑗|

𝑚

𝑗≠1,𝜆

}− |𝐺|!.
 

 

Recall that |𝑇1| is assumed to be the largest among |𝑇1|, |𝑇2|,… , |𝑇𝑚|. Note also that the coefficients 

of |𝑇𝜆|  and |𝑇𝑗|  for 𝑗 ≠ 1, 𝜆  are non-positive, because 𝑠1, 𝑠2, …  is, by definition, a decreasing 

sequence. Therefore, we have that 

𝑠(𝑔1,1
𝑘 ) − 𝑠(𝑔𝜆

𝑘) > (𝑠1 −
𝑠(𝑎1+1)~(𝑎1+𝑎𝜆)

𝑎𝜆
) ⋅ |𝑇1| + (𝑠𝑎2~𝑚+1 −

𝑠1~𝑎𝜆
𝑎𝜆

) ⋅ |𝑇1|

 +{∑ (𝑠𝑎2~𝑚+1 −
𝑠(𝑎𝑗+1)~(𝑎𝑗+𝑎𝜆)

𝑎𝜆
) ⋅ |𝑇1|

𝑚

𝑗≠1,𝜆

}− |𝐺|!

≥  (𝑠1 −
𝑠(𝑎1+1)~(𝑎1+𝑎𝜆)

𝑎𝜆
+ 𝑠𝑎2~𝑚+1 −

𝑠1~𝑎𝜆
𝑎𝜆

+ ∑ (𝑠𝑎2~𝑚+1 −
𝑠(𝑎𝑗+1)~(𝑎𝑗+𝑎𝜆)

𝑎𝜆
)

𝑚

𝑗≠1,𝜆

−
|𝐺|!

|𝑇1|
) ⋅ |𝑇1|.

 

 

In the next step, I show that the right-hand side is non-negative for any concave score assignment 

[𝑠1, 𝑠2, … , 𝑠|𝐺|]. Once that is shown, the proof of Theorem 9 is complete, because 𝑠(𝑔1,1
𝑘 ) − 𝑠(𝑔𝜆

𝑘) >

0 (for any concave score assignment) implies that any concave voting rule in 𝐺𝑘+1 would choose a 

subset of 𝐺1
𝑘. This means convergence to {𝑥1} at level (𝑘 + 1).  

 

Step 4: Prove the Inequality 

Let 𝐻(𝑠1, 𝑠2, … , 𝑠|𝐺|) be the coefficient part of |𝑇1| in the last inequality, i.e.,  

𝐻(𝑠1, 𝑠2, … , 𝑠|𝐺|)

≔ 𝑠1 −
𝑠(𝑎1+1)~(𝑎1+𝑎𝜆)

𝑎𝜆
+ 𝑠𝑎2~𝑚+1 −

𝑠1~𝑎𝜆
𝑎𝜆

+ ∑ (𝑠𝑎2~𝑚+1 −
𝑠(𝑎𝑗+1)~(𝑎𝑗+𝑎𝜆)

𝑎𝜆
)

𝑚

𝑗≠1,𝜆

−
|𝐺|!

|𝑇1|
. 

I will show that 𝐻(𝑠1, 𝑠2, … , 𝑠|𝐺|) ≥ 0 for all [𝑠1, 𝑠2, … , 𝑠|𝐺|] ∈ 𝒞|𝐺|. To show this, let 𝑡 ≔ 𝑠𝑎2~𝑚+1. 

Let 𝒟𝑡 ⊆ 𝒞|𝐺| be the set of score assignments in 𝒞|𝐺| such that 𝑠𝑎2~𝑚+1 = 𝑡. Because of Proposition 

2, we have  

𝒞|𝐺| = ⋃ 𝒟𝑡
𝑠𝑎2~𝑚+1
𝐵 ≤𝑡≤1

. 

We also define:  
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𝐻̃𝑡(𝑠1, 𝑠2, … , 𝑠𝑎2~𝑚 , 𝑠𝑎2~𝑚+2,… , 𝑠|𝐺|)

≔ 𝐻(𝑠1, 𝑠2, … , 𝑠𝑎2~𝑚 , 𝑡, 𝑠𝑎2~𝑚+2, … , 𝑠|𝐺|) 

= 1 + (𝑚 − 1)𝑡 −
𝑠𝑎1+1~𝑎1+𝑎𝜆

𝑎𝜆
−
𝑠1~𝑎𝜆
𝑎𝜆

− ∑ (
𝑠𝑎𝑗+1~𝑎𝑗+𝑎𝜆

𝑎𝜆
)

𝑚

𝑗≠1,𝜆

−
|𝐺|

|𝑇𝑗|
. 

(4)    

 

In words, 𝐻̃𝑡 is a (|𝐺| − 1)-variable function that is generated from 𝐻 by regarding 𝑠𝑎2~𝑚+1 = 𝑡 

as a fixed parameter. For simplicity, we write this combination of |𝐺| − 1 elements as [𝑠𝑗]𝑗≠𝑎2~𝑚+1
.  

Let  

𝑙1(𝑥) = −
1 − 𝑡

𝑎2~𝑚
(𝑥 − 1) + 1 

be the equation of the straight line passing through (1,1)  and (𝑎2~𝑚 + 1, 𝑡) . Let 𝑒1 ≔ 𝑠𝑎2~𝑚 −

𝑙1(𝑎2~𝑚)(> 0), and define 

𝑙2(𝑥) ≔ −(𝑠𝑎2~𝑚 − 𝑡)(𝑥 − 𝑎2~𝑚 − 1) + 𝑡 

as the equation of the straight line passing through (𝑎2~𝑚, 𝑠𝑎2~𝑚+1) and (𝑎2~𝑚 + 1, 𝑡). Because of 

the concavity of (𝑠1, 𝑠2, … , 𝑠|𝐺|), we have that 𝑠𝑥 ≤ 𝑙2(𝑥) for all 1 ≤ 𝑥 ≤ 𝑎2~𝑚.  

Let  

𝑒2 ≔ max
𝑥∈[1,𝑎2~𝑚]

{min{𝑙2(𝑥), 1} − 𝑙1(𝑥)}. 

Because of concavity, we have that 𝑠𝑥 ≤ 𝑙2(𝑥) for all 𝑎1 + 1 ≤ 𝑥 ≤ 𝑎1 + 𝑎𝜆.  

Next, consider [𝑠𝑗
∗]
𝑗≠𝑎2~𝑚+1

∈ 𝒟𝑡 such that  

𝑠𝑥
∗ ≔ {

𝑙1(𝑥) if 𝑥 ≠ |𝐺|.
0 if 𝑥 = |𝐺|.

 

It is straightforward to check that this [𝑠𝑗
∗]
𝑗≠𝑎2~𝑚+1

 is in 𝒟𝑡. Let  

𝑒3 ≔ 𝑠𝑎1+𝜉
∗ − 𝑙2(𝑎𝜉 + 1) (𝜉 = 1,2, … , 𝑎𝜆). 

Then we have  

𝑒3 ≥
𝑎1 + 1 − (𝑎2~𝑚 + 1)

𝑎2~𝑚 + 1 − 𝑥𝑒
⋅ 𝑒2 ≥

𝑎1 − 𝑎2~𝑚
𝑎2~𝑚

⋅ 𝑒2. 

When 𝑎1 ≫ 𝑎2~𝑚, we have 𝑒3 ≥ (𝑚− 1) ⋅ 𝑒2. This means that the middle three terms in equation 

(4) :  

−
𝑠𝑎1+1~𝑎1+𝑎𝜆

𝑎𝜆
−
𝑠1~𝑎𝜆
𝑎𝜆

− ∑ (
𝑠𝑎𝑗+1~𝑎𝑗+𝑎𝜆

𝑎𝜆
)

𝑚

𝑗≠1,𝜆

 

have their minimum value at [𝑠𝑗
∗]
𝑗≠𝑎2~𝑚+1

 and therefore, 𝐻̃𝑡 has its minimum value when all the 
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𝑠1, 𝑠2, … , 𝑠|𝐺| are on 𝑙1(𝑥). Let 𝑠|𝐺|
∗ = 0. 𝑠1

∗, 𝑠2
∗, … , 𝑠|𝐺|−1

∗  is a sequence of numbers with common 

difference, and so we have:  

𝐻(𝑠1
∗, … , 𝑠|𝐺|

∗ ) = 1 + (𝑚 − 1)𝑡 −
𝑠𝑎1+1~𝑎1+𝑎𝜆
∗

𝑎𝜆
−
𝑠1~𝑎𝜆
∗

𝑎𝜆
− ∑ (

𝑠𝑎𝑗+1~𝑎𝑗+𝑎𝜆
∗

𝑎𝜆
)

𝑚

𝑗≠1,𝜆

−
|𝐺|!

|𝑇1|

= 1 + (𝑚 − 1)𝑡 − ℎ (𝑎1 +
1 + 𝑎𝜆
2

) − ℎ (
1 + 𝑎𝜆
2

) − ∑ ℎ(𝑎𝑗 +
1 + 𝑎𝜆
2

)

𝑚

𝑗≠1,𝜆

−
|𝐺|!

|𝑇1|

= (1 − 𝑡) [1 −𝑚+
𝑎1 + (∑ 𝑎𝑗

𝑚
𝑗≠1,𝜆 ) +

𝑚
2
(𝑎𝜆 − 1)

𝑎2~𝑚
] −

|𝐺|!

|𝑇1|
.

 

If 𝑡 = 1, the proof of 𝐻(𝑠1
∗, … , 𝑠|𝐺|

∗ ) > 0 is trivial. Suppose 𝑡 < 1. Then, if 𝑎1 is sufficiently large, 

the equation denoted by [⋯ ] can be large enough to make 𝐻(𝑠1
∗, … , 𝑠|𝐺|

∗ ) positive. ■ 

 

Proof of Corollary 2 

Let us first confirm that 𝑝𝛼 defined above is actually a scoring rule. To see this, we need to check 

that 𝑠1
𝑚 = 1, 𝑠𝑚

𝑚 = 0, and that 𝑠1
𝑚 , 𝑠2

𝑚 , … , 𝑠𝑚
𝑚 is decreasing.  

𝑠1
𝑚 = 1 − (

1 − 1

𝑚 − 1
)
𝛼

= 1, and 

𝑠𝑚
𝑚 = 1 − (

𝑚 − 1

𝑚 − 1
)
α

= 0. 

Let 

ℎ(𝑥) ≔ 1 − (
𝑥 − 1

𝑚− 1
)
𝛼

. 

This function is clearly decreasing, and so we have 𝑠1
𝑚 = ℎ(1), 𝑠2

𝑚 = ℎ(2),… , 𝑠𝑚
𝑚 = ℎ(𝑚) is also 

decreasing.  

Next, we show that 𝑝𝛼 is concave. By taking the second derivative of ℎ(𝑥), we have  

ℎ′′(𝑥) = −
𝛼(𝛼 − 1)

(𝑚 − 1)𝛼
(𝑥 − 1)𝛼−2 ≤ 0. 

This shows that is ℎ(𝑥) concave. Therefore, 𝑝𝛼 is concave. ■ 

 

Proof of Proposition 5 

It will be sufficient to show a proof for (3) 𝜑𝑃, because the other cases are straightforward.  

 WPU and NU: It is obvious that 𝜑𝑃 satisfies WPU; I will show that 𝜑𝑃 also satisfies NU. 

Take any 𝑖 ∈ 𝑁̅ and 𝒩 ∈ 𝔑 such that 𝑠𝑖(𝒩) = 0. Because abstention is not allowed, there must be 

an individual 𝜇 ∈ 𝑁̅ that has a score of at least two. Hence, we can say that 𝑖 ∉ 𝐹𝒩 ∪ 𝑆𝒩, which 

implies 𝑖 ∉ 𝜑𝑃(𝒩).  

 IMP: Take any individual 𝑖 ∈ 𝑁̅ and ballot profiles 𝒩 = (𝑁𝑖, 𝑁−𝑖),𝒩
′ = (𝑁𝑖

′, 𝑁−𝑖) ∈ 𝔑. 
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1) The Case of 𝒊 ∈ 𝑭𝓝. It follows that 𝑖 ∈ 𝜑𝑃(𝒩), and we will show 𝑖 ∈ 𝜑𝑃(𝒩
′). Note 

that for all 𝑗 ∈ 𝑁̅, 𝑠𝑗(𝒩
′) ≤ 𝑠𝑗(𝒩) + 1, where the equality holds only if 𝑗 ∈ 𝑁𝑖

′. So, we have either 

𝑖 ∈ 𝐹𝒩′  or [𝑖 ∈ 𝑆𝒩′ and 𝐹𝒩′ ⊆ 𝑁𝑖
′]. Thus, 𝑖 ∈ 𝜑𝑃(𝒩

′).  

2) The Case of 𝒊 ∉ 𝑭𝓝. Let us first consider the case of 𝑖 ∈ 𝜑𝑃(𝒩). It follows that 𝑖 ∈ 𝑆𝒩 

and 𝐹𝒩 ⊆ 𝑁𝑖 . These statements show that for any 𝑗 ∈ 𝑁̅ , 𝑠𝑗(𝒩
′) ≤ 𝑠𝐹𝒩(𝒩) = 𝑠𝑖(𝒩) + 1 =

𝑠𝑖(𝒩
′) + 1. Indeed, 𝑠𝑗(𝒩

′) = 𝑠𝐹𝒩(𝒩) holds only if 𝑗 ∈ 𝑁𝑖
′. Thus, we have again either 𝑖 ∈ 𝐹𝒩′ 

or [𝑖 ∈ 𝑆𝒩′ and 𝐹𝒩′ ⊆ 𝑁𝑖
′], either of which implies 𝑖 ∈ 𝜑𝑃(𝒩

′). 

  Next, consider the case of 𝑖 ∉ 𝜑𝑃(𝒩). I will show that 𝑖 ∉ 𝜑𝑃(𝒩
′). Because 𝑖 ∉ 𝜑𝑃(𝒩), 

there is an individual 𝑗 ∈ 𝑁̅ ∖ {𝑖} such that either (a) 𝑠𝑗(𝒩) ≥ 𝑠𝑖(𝒩) + 2 or (b) 𝑠𝑗(𝒩) = 𝑠𝑖(𝒩) +

1 and 𝑗 ∉ 𝑁𝑖
′. In the case of (a), it is clear that 𝑠𝑗(𝒩

′) ≥ 𝑠𝑗(𝒩) − 1 ≥ 𝑠𝑖(𝒩) + 1 = 𝑠𝑖(𝒩
′) + 1, 

where 𝑠𝑗(𝒩
′) = 𝑠𝑗(𝒩) − 1 holds only if 𝑗 ∉ 𝑁𝑖

′. So, we have 𝑖 ∉ 𝜑𝑃(𝒩
′). In the case of (b), we 

have 𝑠𝑗(𝒩
′) ≥ 𝑠𝑗(𝒩) = 𝑠𝑖(𝒩

′) + 1 = 𝑠𝑖(𝒩) + 1, where the equality in the first inequality holds 

only if 𝑗 ∉ 𝑁𝑖
′. Again, we can say that 𝑖 ∉ 𝜑𝑃(𝒩

′).  

 Non-2CN: Here I will use a counterexample. Consider a ballot profile 𝒩 = (𝑁1,… ,𝑁𝑛) ∈

𝔑1 ⊆ 𝔑 (the following proof holds for both settings (𝔑, 𝔛̅) and (𝔑1, 𝔛̅)) as follows: 

𝑁1 = {3},𝑁2 = {1}, and 

𝑁𝑖 = {𝑖 + 1̅̅ ̅̅ ̅̅ } for all 𝑖 ∈ 𝑁̅ ∖ {1,2}. 

Then we have 𝑠1(𝒩) = 2 , 𝑠2(𝒩) = 0 , 𝑠3(𝒩) = ⋯ = 𝑠𝑛(𝒩) = 1 , 𝐹𝒩 = {1}  and 𝑆𝒩 = 𝑁̅ ∖

{1,3}. Furthermore, we have 𝜑𝑃(𝒩) = {1,2, 𝑛}. Now consider a transposed ballot profile 𝒩σ, where 

𝜎 = (2,3). In this case we have 𝐹𝒩𝜎 = {1} and 𝑆𝒩𝜎 = 𝑁̅ ∖ {1,2}. Because 1 ∉ 𝑁3, we have 3 ∉

𝜑𝑃(𝒩
𝜎), whereas 2CN demands that 3 ∈ 𝜑𝑃(𝒩

𝜎).  

AB: It follows from Theorems 1 and 2 of Tamura and Ohseto (2014) that 𝜑𝑃 does not 

satisfy AB under (𝔑1, 𝔛̅) if 𝑛 ≥ 4. In fact, we can generalize their result as follows: 

1) 𝜑𝑃 satisfies AB if 𝑛 = 3 both under (𝔑, 𝔛̅) and (𝔑1, 𝔛̅). 

2) 𝜑𝑃 satisfies AB if 𝑛 ≥ 4 both under (𝔑, 𝔛̅) and (𝔑1, 𝔛̅). 

Note that the following proof applies for both settings. 

 1) If 𝒏 = 𝟑, 𝝋𝑷 satisfies AB. Take any two ballot profiles 𝒩,ℳ ∈ 𝔑 such that 𝑠(𝒩) =

𝑠(ℳ). I will show that 𝜑(𝒩) = 𝜑(ℳ). Let 𝑡 ≔ #{𝑖 ∈ 𝑁̅│𝑠𝑖(𝒩) = 𝑠𝑖(ℳ) = 2}.  

a) The case of 𝑡 = 3. We have 𝜑𝑃(𝒩) = 𝜑𝑃(ℳ) = 𝑁̅, because 𝐹𝒩 = 𝐹ℳ = 𝑁̅.  

b) The case of 𝑡 = 2. Suppose 𝑠𝑖(𝒩) = 𝑠𝑗(𝒩) = 2 > 𝑠𝑘(𝒩). Because 𝐹𝒩 = 𝐹ℳ = {𝑖, 𝑗}, 

we have {𝑖, 𝑗} ⊆ 𝐹𝒩 ∩ 𝐹ℳ . Furthermore, 𝑠𝑖(𝒩) = 𝑠𝑗(𝒩) = 2  implies (𝐹𝒩 = 𝐹ℳ =){𝑖, 𝑗} ⊆

𝑁𝑘,𝑀𝑘 , so whether 𝑘  is in 𝜑𝑃(𝒩)  is determined thoroughly by 𝑘  belonging to 𝑆𝒩  and 𝑆ℳ , 

which is also entirely determined by the score profile. Thus, we have 𝜑𝑃(𝒩) = 𝜑𝑃(ℳ).  

c) The case of 𝑡 = 1. Suppose 2 = 𝑠𝑖(𝒩) > 𝑠𝑗(𝒩) ≥ 𝑠𝑘(𝒩). Then 𝑠𝑖(𝒩) = 𝑠𝑖(ℳ) = 2 

implies 𝑖 ∈ 𝑁𝑗 ∩ 𝑁𝑘 ∩𝑀𝑗 ∩𝑀𝑘. Recall that in ∑ 𝑠𝑙 ≥
𝑛
𝑙=1 𝑛, there are only two possibilities for the 

value of the score profile: (𝑠𝑖, 𝑠𝑗 , 𝑠𝑘) = (2,1,1) and (𝑠𝑖, 𝑠𝑗 , 𝑠𝑘) = (2,1,0). If (𝑠𝑖, 𝑠𝑗, 𝑠𝑘) = (2,1,1), 
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it follows that {𝑗, 𝑘} ⊆ 𝑆𝒩 ∩ 𝑆ℳ  and we have {𝑗, 𝑘} ⊆ 𝜑𝑃(𝒩) ∩ 𝜑𝑃(ℳ) . On the other hand, if 

(𝑠𝑖, 𝑠𝑗, 𝑠𝑘) = (2,1,0), we have 𝑆𝒩 = 𝑆ℳ = {𝑗} and therefore 𝑗 ∈ 𝜑𝑃(𝒩) ∩ 𝜑𝑃(ℳ). In either case, 

𝑘 ∉ 𝜑𝑃(𝒩) ∪ 𝜑𝑃(ℳ).  

d) The case of 𝑡 = 0 . Because ∑ 𝑠𝑙 ≥
𝑛
𝑙=1 𝑛 , the only possible score profile is 𝑠(𝒩) =

𝑠(ℳ) = (1,1,1). Because 𝐹𝒩 = 𝐹ℳ = 𝑁̅, we have 𝜑𝑃(𝒩) = 𝜑𝑃(ℳ) = 𝑁̅.  

 In all four of these cases, I have shown that 𝜑𝑃(𝒩) = 𝜑𝑃(ℳ) . Because 𝒩,ℳ  are 

arbitrary ballot profiles with the same score profile, this means that 𝜑𝑃 satisfies AB if 𝑛 = 3.  

2) If 𝒏 ≥ 𝟒, 𝝋𝑷 does not satisfy AB. I will provide a counterexample. Consider two ballot 

profiles 𝒩 = (𝑁1, … , 𝑁𝑛),ℳ = (𝑀1,… ,𝑀𝑛) ∈ 𝔑
1 ⊆ 𝔑 as follows: 

𝑁1 = {3},𝑁2 = {1} 

𝑁𝑖 = {𝑖 + 1̅̅ ̅̅ ̅̅ } for all 𝑖 ∈ 𝑁̅ ∖ {1,2} 

and 

𝑀1 = {3},𝑀2 = {4},𝑀3 = {1} 

𝑀𝑖 = {𝑖 + 1̅̅ ̅̅ ̅̅ } for all 𝑖 ∈ 𝑁̅ 

Because we have 𝑠(𝒩) = 𝑠(ℳ) = (2,0,1,1,… ), AB demands that 𝜑𝑃(𝒩) = 𝜑𝑃(ℳ). However, we 

can check that 3 ∉ 𝜑𝑃(𝒩) and 3 ∈ 𝜑𝑃(ℳ). This shows that 𝜑𝑃 does not satisfy AB if 𝑛 ≥ 4. ■ 

 

Proof of Lemma 7 

Case 1: 𝕯 = 𝕹𝒌. To prove case 1, we provide two lemmas.  

Lemma 12. Let 𝜙 ≠ 𝔛 ⊆ 𝔓(𝑁̅) ∖ {𝜙} and 𝜑:𝔑𝑘 → 𝔛 be a nomination rule that satisfies IMP and 

AB. For any distinct individuals 𝑖, 𝛼, 𝛽 ∈ 𝑁̅ and for any ballot profile 𝒩 ∈ 𝔑𝑘 such that 𝑖 ∈ 𝑁𝛽, 

and 𝑖 ∉ 𝑁𝛼, there is a ballot profile 𝒩′ ∈ 𝔑𝑘 such that 𝒩 ~𝑖 𝒩
′, 𝑖 ∈ 𝑁𝛼

′ , 𝑖 ∉ 𝑁𝛽
′ , and 𝑖 ∈ 𝑁𝛾 ⇔

𝑖 ∈ 𝑁𝛾
′  for all 𝛾 ∈ 𝑁̅ ∖ {𝑖, 𝛼, 𝛽}.  

Proof of Lemma 12. If there is an individual 𝜇 ∈ 𝑁̅ ∖ {𝑖, 𝛼, 𝛽} such that 𝜇 ∈ 𝑁𝛼 and 𝜇 ∉ 𝑁𝛽, then 

let 𝒩′ = (𝑁1
′,… , 𝑁𝑛

′) ∈ 𝔑𝑘 be such that:  

𝑁𝛼
′ = (𝑁𝛼 ∪ {𝑖}) ∖ {𝜇}, 

𝑁𝛽
′ = (𝑁𝛽 ∪ {𝜇}) ∖ {𝑖}, 𝑎𝑛𝑑 

𝑁𝛾
′ = 𝑁𝛾 for all 𝛾 ∈ 𝑁̅ ∖ {𝛼, 𝛽}. 

Because 𝑠(𝒩) = 𝑠(𝒩′), AB demands 𝒩 ~𝑖 𝒩
′. Therefore, because we also have 𝑖 ∈ 𝑁𝛼

′ , 𝑖 ∉

𝑁𝛽
′ , and 𝑁𝛾

′ = 𝑁𝛾 for all 𝛾 ∈ 𝑁̅ ∖ {𝛼, 𝛽}, the lemma holds.  

Suppose there is no such individual 𝜇. Then for any 𝜇 ∈ 𝑁̅ ∖ {𝑖, 𝛼, 𝛽}, 𝜇 ∈ 𝑁𝛼 implies 

𝜇 ∈ 𝑁𝛽. It follows that 𝑁𝛼 ∖ {𝑖, 𝛼, 𝛽} ⊆ 𝑁𝛽 ∖ {𝑖, 𝛼, 𝛽}. Because we also have |𝑁𝛼| = |𝑁𝛽|, it follows 

that |𝑁𝛼 ∩ {𝑖, 𝛼, 𝛽}| ≥ |𝑁𝛽 ∩ {𝑖, 𝛼, 𝛽}|. Recall that we have 𝑁𝛼 ∩ {𝑖, 𝛼} = 𝜙 and 𝑖 ∈ 𝑁𝛽 by the 

assumptions. Therefore, we can say that 𝑁𝛼 ∩ {𝑖, 𝛼, 𝛽} = {𝛽} and 𝑁𝛽 ∩ {𝑖, 𝛼, 𝛽} = {𝑖}.  

Because 1 ≤ 𝑘 ≤ 𝑛 − 2, 𝑖’s ballot 𝑀𝑖 ∈ 𝔑𝑖
𝑘 exists such that 𝛼 ∈ 𝑀𝑖 and 𝑏 ∉ 𝑀𝑖. Let 

us define ℳ = (𝑀𝑖,𝑀−𝑖) ∈ 𝔑
𝑘 as 𝑀−𝑖 = 𝑁−𝑖. IMP demands 𝒩 ~𝑖 ℳ. Note that we have 𝑀𝛼 ∩
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{𝑖, 𝛼, 𝛽} = {𝛽}, 𝑀𝛽 ∩ {𝑖, 𝛼, 𝛽} = {𝑖}, and 𝑀𝑖 ∩ {𝑖, 𝛼, 𝛽} = {𝛼}. Therefore, we can construct ℳ′ =

(𝑀1
′ , … ,𝑀𝑛

′ ) ∈ 𝔑𝑘 as follows: 

𝑀𝑖
′ = (𝑀𝑖 ∪ {𝛽}) ∖ {𝛼}, 

𝑀𝛼
′ = (𝑀𝛼 ∪ {𝑖}) ∖ {𝛽}, 

𝑀𝛽
′ = (𝑀𝛽 ∪ {𝛼}) ∖ {𝑖}, 𝑎𝑛𝑑 

𝑀𝛾
′ = 𝑀𝛾 = 𝑁𝛾 for all 𝛾 ∈ 𝑁̅ ∖ {𝑖, 𝛼, 𝛽}. 

By AB, we have ℳ ~i ℳ
′. It is clear that ℳ′ has the necessary properties. ■ 

 

 

Lemma 13.  

Let 𝜙 ≠ 𝔛 ⊆ 𝔓(𝑁̅) ∖ {𝜙} and 𝜑:𝔑𝑘 → 𝔛 be a nomination rule that satisfies IMP and AB. Take any 

individual 𝑖 ∈ 𝑁̅ and a ballot profile 𝒩 = (𝑁1, … , 𝑁𝑛) ∈ 𝔑
𝑘. For any 𝜇, 𝜆, 𝜈 ∈ {1,2,… , 𝑛 − 1}, if 

𝑖 + 𝜆̅̅ ̅̅ ̅̅ ∉ 𝑁𝑖+𝜇̅̅ ̅̅ ̅ and 𝑖 + 𝜈̅̅ ̅̅ ̅̅ ∈ 𝑁𝑖+𝜇̅̅ ̅̅ ̅, then we have 𝒩 ~𝑖 𝒩
′ = (𝑁𝑖+𝜇̅̅ ̅̅ ̅

′ ,𝑁−𝑖+𝜇̅̅ ̅̅ ̅
′ ), where 𝑁𝑖+𝜇̅̅ ̅̅ ̅

′ = (𝑁𝑖+𝜇̅̅ ̅̅ ̅ ∪

{𝑖 + 𝜆̅̅ ̅̅ ̅̅ }) ∖ {𝑖 + 𝜈̅̅ ̅̅ ̅̅ }.  

 

Proof of Lemma 13. Take any 𝑖 ∈ 𝑁̅ , 𝒩 ∈ 𝔑𝑘  and integers 𝜇, 𝜆, 𝜈 ∈ {1,2,… , 𝑛 − 1}  such that 

𝑖 + 𝜆̅̅ ̅̅ ̅̅ ∉ 𝑁𝑖+𝜇̅̅ ̅̅ ̅   and 𝑖 + 𝜈̅̅ ̅̅ ̅̅ ∈ 𝑁𝑖+𝜇̅̅ ̅̅ ̅ . Because 1 ≤ 𝑘 ≤ 𝑛 − 2 , 𝑖 ’s ballot 𝑀𝑖 ∈ 𝔑𝑖
𝑘  exists such that 

𝑖 + 𝜆̅̅ ̅̅ ̅̅ ∈ 𝑀𝑖  and 𝑖 + 𝜈̅̅ ̅̅ ̅̅ ∉ 𝑀𝑖 . Let ℳ = (𝑀𝑖, 𝑀−𝑖) ∈ 𝔑
𝑘  be such that 𝑀−𝑖 = 𝑁−𝑖 . IMP demands 

𝒩 ~𝑖 ℳ. Define ℳ′ = (𝑀1
′ , … ,𝑀𝑛

′ ) ∈ 𝔑𝑘 as follows: 

𝑀𝑖
′ = (𝑀𝑖 ∪ {𝑖 + 𝜈̅̅ ̅̅ ̅̅ }) ∖ {𝑖 + 𝜆̅̅ ̅̅ ̅̅ }. 

𝑀𝑖+𝜇̅̅ ̅̅ ̅
′ = (𝑀𝑖+𝜇̅̅ ̅̅ ̅ ∪ {𝑖 + 𝜆̅̅ ̅̅ ̅̅ }) ∖ {𝑖 + 𝜈̅̅ ̅̅ ̅̅ }. 

𝑀𝑥
′ = 𝑀𝑥 for all 𝑥 ∈ 𝑁̅ ∖ {𝑖, 𝑖 + 𝜇̅̅ ̅̅ ̅̅ }. 

By AB, we have ℳ ~𝑖 ℳ
′ . Finally, let us define ℳ′′ = (𝑀𝑖

′′,𝑀−𝑖
′′ ) ∈ 𝔑𝑘  as 𝑀𝑖

′′ = 𝑁𝑖
′′  and 

𝑀−𝑖
′′ = 𝑁−𝑖

′′ . IMP demands ℳ′ ~i ℳ
′′. Clearly, ℳ′′ has all the properties required for 𝒩′. ■ 

 

 Proof of Case 1: 𝔇 = 𝔑𝑘 (Lemma 7). Suppose a nomination rule 𝜑:𝔑𝑘 → 𝔛 satisfies IMP and 

AB. Fix any 𝑖 ∈ 𝑁̅  through the proof. Let us partition the ballot profile domains 𝔑𝑘  to 

𝔐0,𝔐1, … ,𝔐𝑛−1, where: 

𝔑𝑘 = 𝔐0 ∪𝔐1 ∪ …∪𝔐𝑛−1, 𝑎𝑛𝑑 

𝔐𝑑 = {𝒩 ∈ 𝔑𝑘│𝑠𝑖(𝒩) = 𝑑}. 

In words, 𝔐𝑑  is the set of ballot profiles where individual 𝑖  gets score 𝑑 . For any 𝑑 ∈

{0,1,… , 𝑛 − 1}, we define a ballot profile ℳ𝑑 = (𝑀1
𝑑, … ,𝑀𝑛

𝑑) ∈ 𝔐𝑑 as follows: 

𝑀𝑖
𝑑 = {𝑖 + 1̅̅ ̅̅ ̅̅ , … , 𝑖 + 𝑘̅̅ ̅̅ ̅̅ }. 

𝑀𝑖+𝜇̅̅ ̅̅ ̅
𝑑 = {𝑖, 𝑖 + 1̅̅ ̅̅ ̅̅ , … , 𝑖 + 𝑘̅̅ ̅̅ ̅̅ } ∖ {𝑖 + 𝜇̅̅ ̅̅ ̅̅ } if 1 ≤ 𝜇 ≤ min{𝑑, 𝑘 + 1}. 

𝑀𝑖+𝜇̅̅ ̅̅ ̅
𝑑 = {𝑖 + 1̅̅ ̅̅ ̅̅ , … , 𝑖 + 𝑘 + 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ } ∖ {𝑖 + 𝜇̅̅ ̅̅ ̅̅ } if 𝑑 < 𝜇 ≤ 𝑘 + 1. 

𝑀𝑖+𝜇̅̅ ̅̅ ̅
𝑑 = {𝑖, 𝑖 + 1̅̅ ̅̅ ̅̅ , … , 𝑖 + 𝑘 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ } if 𝑘 + 1 < 𝜇 ≤ 𝑑. 
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𝑀𝑖+𝜇̅̅ ̅̅ ̅
𝑑 = {𝑖 + 1̅̅ ̅̅ ̅̅ , … , 𝑖 + 𝑘̅̅ ̅̅ ̅̅ } ifmax{𝑑, 𝑘 + 1} < 𝜇 ≤ 𝑛 − 1. 

In words, this is a ballot profile where individuals’ approvals are shifted toward 

𝑖, 𝑖 + 1̅̅ ̅̅ ̅̅ , … , 𝑖 + 𝑘̅̅ ̅̅ ̅̅ , 𝑖 + 𝑘 + 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  without changing 𝑖’s score. Note that for any 𝑑 ∈ {0,1,… , 𝑛 − 1}, ℳ𝑑 

is uniquely determined and ℳ𝑑 ∈ 𝔐𝑑. I show that for any 𝑑 and 𝒩 ∈𝔐𝑑, we have 𝒩 ~𝑖 ℳ
𝑑. 

Showing this completes the proof because 𝒩,𝒩′ ∈ 𝔐𝑑  implies 𝒩 ~𝑖 ℳ
𝑑  and 𝒩′ ~𝑖 ℳ

𝑑 , 

thus 𝒩 ~𝑖 𝒩
′.  

  Take any 𝑑 ∈ {0,1,… , 𝑛 − 1}  and 𝒩 ∈𝔐𝑑 . With the repetition of the procedure in 

Lemma 12, we obtain 𝒩1 ∈ 𝔑𝑘 such that 𝒩 ~𝑖 𝒩
1 and only the individuals in {𝑖 + 𝑥̅̅ ̅̅ ̅̅ │1 ≤ 𝑥 ≤

𝑑}  approve 𝑖 . Next, 𝒩2 ∈ 𝔐𝑑  is defined as 𝑁𝑖
2 = {𝑖 + 1̅̅ ̅̅ ̅̅ , … , 𝑖 + 𝑘̅̅ ̅̅ ̅̅ }  and 𝑁−𝑖

2 = 𝑁−𝑖
1  . IMP 

demands 𝒩1 ~𝑖 𝒩
2. Starting from 𝒩2, we sequentially transform 𝑁𝑖+𝜇̅̅ ̅̅ ̅

2  to 𝑀𝑖+𝜇̅̅ ̅̅ ̅
𝑑  for each 𝜇 =

1,2,… , 𝑛 − 1 as follows: 

𝒩2 = (𝑀𝑖
𝑑, 𝑁𝑖+1̅̅ ̅̅ ̅

2 , 𝑁𝑖+2̅̅ ̅̅ ̅
2 , 𝑁𝑖+3̅̅ ̅̅ ̅

2 … ,𝑁𝑖+𝑛−1̅̅ ̅̅ ̅̅ ̅̅ ̅
2 ). 

Next, (𝑀𝑖
𝑑, 𝑀𝑖+1̅̅ ̅̅ ̅

𝑑 , 𝑁𝑖+2̅̅ ̅̅ ̅
2 , 𝑁𝑖+3̅̅ ̅̅ ̅

2 … ,𝑁𝑖+𝑛−1̅̅ ̅̅ ̅̅ ̅̅ ̅
2 ). 

Next, (𝑀𝑖
𝑑, 𝑀𝑖+1̅̅ ̅̅ ̅

𝑑 ,𝑀𝑖+2̅̅ ̅̅ ̅
𝑑 ,𝑁𝑖+3̅̅ ̅̅ ̅

2 … ,𝑁𝑖+𝑛−1̅̅ ̅̅ ̅̅ ̅̅ ̅
2 ). 

⋮ 

Finally, (𝑀𝑖
𝑑,𝑀𝑖+1̅̅ ̅̅ ̅

𝑑 ,𝑀𝑖+2̅̅ ̅̅ ̅
𝑑 ,𝑀𝑖+3̅̅ ̅̅ ̅

𝑑 … ,𝑀𝑖+𝑛−1̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑑 ) = ℳ𝑑. 

Because we have 𝑖 ∈ 𝑁𝑥
2 ⇔ 𝑖 ∈ 𝑀𝑥

𝑑 for all 𝑥 ∈ 𝑁̅ ∖ {𝑖}, the only difference between 𝑁𝑥
2 and 𝑀𝑥

2 

is on individuals other than 𝑖. Recall that Lemma 13 states that the substitution of the approval toward 

𝑖 + 𝜈̅̅ ̅̅ ̅̅ ∈ 𝑁̅ ∖ {𝑖}  with that toward 𝑖 + 𝜆̅̅ ̅̅ ̅̅   in someone’s ballot retains 𝑖 -equivalence. Therefore, the 

above procedure from 𝑁𝑥
2 to 𝑀𝑥

𝑑 maintains 𝑖-equivalence. Hence, we have 𝒩2 ~𝑖 ℳ
𝑑. ■ 

 

Case 2: 𝕯 = 𝕹. For the proof of case 2, we provide another lemma.  

Lemma 14. Let 𝜙 ≠ 𝔛 ⊆ 𝔓(𝑁̅) ∖ {𝜙} and 𝜑:𝔑 → 𝔛 be a nomination rule that satisfies IMP and 

AB. Fix any individual 𝑖 ∈ 𝑁̅. For any ballot profile 𝒩 ∈ 𝔑, if there is an individual 𝑗 ∈ 𝑁̅ such 

that |𝑁𝑗| ≥ 2 , then, for any 𝑎 ∈ 𝑁𝑗 ∖ {𝑖} , we have that 𝒩′ = (𝑁𝑗
′, 𝑁−𝑗

′ ) ∈ 𝔑  and 𝒩  are 𝑖 -

equivalent, where 𝑁𝑗
′ = 𝑁𝑗 ∖ {𝑎}.  

 

Proof of Lemma 14. If 𝑗 = 𝑖, the lemma is obvious by IMP. Suppose 𝑗 ≠ 𝑖 and |𝑁𝑗| ≥ 2 at 𝒩 ∈

𝔑. Take 𝑎 ∈ 𝑁𝑗 ∖ {𝑖}. Let ℳ ∈ 𝔑 as 𝑀𝑖 = {𝑗} and 𝑀−𝑖 = 𝑁−𝑖. Then we have 𝑎 ∉ 𝑁𝑖 and 𝑎 ∈

𝑁𝑗 and can define ℳ′ ∈ 𝔑 as 𝑀𝑖
′ = 𝑀𝑖 ∪ {𝜇}, 𝑀𝑗

′ = 𝑀𝑗 ∖ {𝜇}, and 𝑀𝑥
′ = 𝑀𝑥 for all 𝑥 ∈ 𝑁̅ ∖

{𝑖, 𝑗}. Because 𝑠(ℳ) = 𝑠(ℳ′), we have ℳ ~𝑖 ℳ
′. Furthermore, let ℳ′′ ∈ 𝔑 as 𝑀𝑖

′′ = 𝑁𝑖 and 

𝑀−𝑖
′′ = 𝑀−𝑖

′ . IMP demands ℳ′ ~𝑖 ℳ
′′. Therefore, ℳ′′ satisfies the required property. ■ 

  

Proof of Case 2: 𝔇 = 𝔑. Take any 𝒩1,𝒩2 ∈ 𝔑 such that 𝑠𝑖(𝒩
1) = 𝑠𝑖(𝒩

2). For each of these, 

we can iterate the procedure in Lemma 14 until everyone’s ballot becomes a singleton. Let ℒ1, ℒ2 

be the final outputs of 𝒩1 and 𝒩2, respectively. Then, we have 𝒩1 ~𝑖 ℒ
1, 𝒩2 ~𝑖 ℒ

2, and 
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ℒ1, ℒ2 ∈ 𝔑1 ⊆ 𝔑. Because 𝑠(ℒ1) = 𝑠(ℒ2), case 1 shows that ℒ1~𝑖 ℒ
2. Hence, we determine that 

𝒩1 ~𝑖 𝒩
2. ■ 

 

Case 3: 𝕹 = 𝕹𝒔𝒆𝒍𝒇. 

Lemma 15. Let 𝜙 ≠ 𝔛 ⊆ 𝔓(𝑁̅) ∖ {𝜙} and 𝜑:𝔑𝑠𝑒𝑙𝑓 → 𝔛 be a nomination rule that satisfies IMP and 

AB. For all 𝑖 ∈ 𝑁̅  and 𝒩 ∈ 𝔑𝑠𝑒𝑙𝑓 , if 𝑗 ∈ 𝑁̅ ∖ {𝑖}  exists such that 𝑗 ∈ 𝑁𝑗 , then there is a ballot 

profile 𝒩′ ∈ 𝔑𝑠𝑒𝑙𝑓 such that 𝒩 ~𝑖 𝒩
′, 𝑠𝑖(𝒩) = 𝑠𝑖(𝒩

′), 𝑗 ∉ 𝑁𝑗
′, and 𝑁𝑥 = 𝑁𝑥

′ for all 𝑥 ∈ 𝑁̅ ∖

{𝑗}.  

Proof of Lemma 15. Assume 𝑗 ∈ 𝑁𝑗  for some 𝑗 ∈ 𝑁̅ ∖ {𝑖} . Take any 𝜇 ∈ 𝑁̅ ∖ {𝑖, 𝑗} . Let ℳ =

(𝑀𝑖, 𝑀−𝑖) ∈ 𝔑
𝑠𝑒𝑙𝑓 , where 𝑀𝑖 = {𝜇}  and 𝑀−𝑖 = 𝑁−𝑖 . Then IMP demands 𝒩 ~𝑖 ℳ . Let us 

consider two cases, (a) and (b).  

 a) The case of 𝜇 ∈ 𝑀𝑗. Let ℳ′ = (𝑀1
′ , … ,𝑀𝑛

′ ) ∈ 𝔑𝑠𝑒𝑙𝑓 such that 𝑀𝑖
′ = 𝑀𝑖 ∪ {𝑗}, 𝑀𝑗

′ =

𝑀𝑗 ∖ {𝑗}, and 𝑀𝜈
′ = 𝑀𝜈 for all 𝜈 ∈ 𝑁̅ ∖ {𝑖, 𝑗}. Note that the assumption of 𝜇 ∈ 𝑀𝑗 guarantees that 

𝑀𝑗
′ ≠ 𝜙. By AB, we have ℳ ~𝑖 ℳ

′. Let ℳ′′ ∈ 𝔑𝑠𝑒𝑙𝑓 because 𝑀𝑖
′′ = 𝑁𝑖 and 𝑀−𝑖

′′ = 𝑀−𝑖
′ . IMP 

demands ℳ′ ~𝑖 ℳ
′′. Clearly, this ballot profile ℳ′′ satisfies the required properties.  

b) The case of 𝜇 ∉ 𝑀𝑗. Let ℳ′′′ = (𝑀1
′′′,… ,𝑀𝑛

′′′) ∈ 𝔑𝑠𝑒𝑙𝑓 such that 𝑀𝑖
′′′ = (𝑀𝑖 ∪ {𝑗}) ∖

{𝜇}, 𝑀𝑗
′′ = (𝑀𝑗 ∪ {𝜇}) ∖ {𝑗}, and 𝑀𝜈

′′ = 𝑀𝜈 for all 𝜈 ∈ 𝑁̅ ∖ {𝑖, 𝑗}. AB implies ℳ ~𝑖 ℳ
′′′. Let 

ℳ′′′′ = (𝑀𝑖
′′′′,𝑀−𝑖

′′′′) ∈ 𝔑𝑠𝑒𝑙𝑓 because 𝑀𝑖
′′′′ = 𝑁𝑖 and 𝑀−𝑖

′′′′ = 𝑀−𝑖
′′′. IMP demands 

ℳ′′′ ~𝑖 ℳ
′′′′. Clearly, this ballot profile ℳ′′′′ satisfies the required properties. ■ 

 

Proof of Case 3: 𝔇 = 𝔑𝑠𝑒𝑙𝑓. Take any individual 𝑖 ∈ 𝑁̅ and ballot profiles 𝒩1,𝒩2 ∈ 𝔑𝑠𝑒𝑙𝑓 such 

that 𝑠𝑖(𝒩
1) = 𝑠𝑖(𝒩

2). The iteration of the procedure in Lemma 15 for each of 𝒩1,𝒩2 will give 

ℳ1,ℳ2 ∈ 𝔑𝑠𝑒𝑙𝑓 such that:  

𝑗 ∉ 𝑀𝑗
1 and 𝑗 ∉ 𝑀𝑗

2 for all 𝑗 ≠ 𝑖,  

𝑠𝑖(ℳ
1) = 𝑠𝑖(ℳ

2), and  

𝒩1 ~𝑖 ℳ
1 and 𝒩2 ~𝑖 ℳ

2.⋅ 

If 𝑖 ∉ 𝑀𝑖
1 and 𝑖 ∉ 𝑀𝑖

2, we have ℳ1,ℳ2 ∈ 𝔑. Then it follows from case 2 that 

ℳ1 ~𝑖 ℳ
2 and the proof is done. Therefore, without loss of generality we can focus on two cases: 

1) 𝑖 ∈ 𝑀𝑖
1 and 𝑖 ∉ 𝑀𝑖

2, and 2) 𝑖 ∈ 𝑀𝑖
1 ∩𝑀𝑖

2. Note that in either case it is enough to prove the 𝑖-

equivalence of ℳ1 and ℳ2.  

1) The case of 𝑖 ∈ 𝑀𝑖
1 and 𝑖 ∉ 𝑀𝑖

2. Because 𝑠𝑖(ℳ
1) = 𝑠𝑖(ℳ

2), 𝑗 ∈ 𝑁̅ ∖ {𝑖} exists such 

that 𝑖 ∉ 𝑀𝑗
1. Take an individual 𝜇 ∈ 𝑀𝑗

1. Note that 𝑙 ≠ 𝑗. Let us define ℳ3 = (𝑀𝑖
3,𝑀−𝑖

3 ) ∈ 𝔑𝑠𝑒𝑙𝑓 

as 𝑀𝑖
3 = {𝑖} and 𝑀−𝑖

3 = 𝑀−𝑖
1 . IMP demands ℳ1 ~𝑖 ℳ

3. Note that we have 𝑖 ∈ 𝑀𝑖
3, 𝜇 ∉ 𝑀𝑖

3, 

𝑖 ∉ 𝑀𝑗
3, and 𝜇 ∈ 𝑀𝑗

3. We define ℳ4 ∈ 𝔑𝑠𝑒𝑙𝑓 as follows: 

𝑀𝑖
4 = (𝑀𝑖

3 ∪ {𝜇}) ∖ {𝑖}, 

𝑀𝑗
4 = (𝑀𝑗

3 ∪ {𝑖}) ∖ {𝜇}, and 
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𝑀𝑥
4 = 𝑀𝑥

3 for all 𝑥 ∈ 𝑁̅ ∖ {𝑖, 𝑗}. 

AB demands ℳ3 ~𝑖 ℳ
4. Note that no one makes a self-approval at ℳ4, so we have ℳ2,ℳ4 ∈

𝔑. Furthermore, we have 𝑠𝑖(ℳ
4) = (= 𝑠𝑖(ℳ

3) = 𝑠𝑖(ℳ
1) =)𝑠𝑖(ℳ

2). Case 2 shows that 

ℳ4 ~𝑖 ℳ
2, which means that ℳ1 ~𝑖 ℳ

2.  

2) The case of 𝑖 ∈ 𝑀𝑖
1 ∩𝑀𝑖

2. Let us define ballot profiles 𝒦1,𝒦2 ∈ 𝔑𝑠𝑒𝑙𝑓 as follows: 

𝐾𝑖
1 = (𝑀𝑖

1 ∪ {𝑖 + 1̅̅ ̅̅ ̅̅ }) ∖ {𝑖},𝐾−𝑖
1 = 𝑀−𝑖

1 , and 

𝐾𝑖
2 = (𝑀𝑖

2 ∪ {𝑖 + 1̅̅ ̅̅ ̅̅ }) ∖ {𝑖}, 𝐾−𝑖
2 = 𝑀−𝑖

2 . 

IMP demands ℳ1 ~𝑖 𝒦
1 and ℳ2 ~𝑖 𝒦

2. Note that 𝒦1,𝒦2 ∈ 𝔑. Because 𝑠𝑖(𝒦
1) =

𝑠𝑖(ℳ
1) − 1 = 𝑠𝑖(ℳ

2) − 1 = 𝑠𝑖(𝒦
2), case 2 shows 𝒦1 ~𝑖 𝒦

2, which yields ℳ1 ~𝑖 ℳ
2. ■ 

 

Case 4: 𝕹 = 𝕹𝑨𝑩. I will first provide a lemma.  

Lemma 16. Let 𝜑:𝔑𝐴𝐵 → 𝔛 be a nomination rule that satisfies IMP and AB. For all 𝑖 ∈ 𝑁̅ and 𝒩 ∈

𝔑𝑠𝑒𝑙𝑓 , if 𝑗 ∈ 𝑁̅  exists such that 𝑁𝑗 = 𝜙 , then there is a ballot profile 𝒩′ ∈ 𝔑𝐴𝐵  such that 

𝒩 ~𝑖 𝒩
′, 𝑠𝑖(𝒩) = 𝑠𝑖(𝒩

′), 𝑁𝑗
′ ≠ 𝜙, and 𝑁𝑥 = 𝑁𝑥

′ for all 𝑥 ∈ 𝑁̅ ∖ {𝑗}. 

Proof of Lemma 16. The case of 𝑗 = 𝑖 is straightforward from IMP. Assume 𝑗 ≠ 𝑖 and take any 

𝒩 ∈ 𝔑𝐴𝐵. Because 𝑛 ≥ 3, 𝜇 ∈ 𝑁̅ ∖ {𝑖, 𝑗} exists. Let us consider ℳ ∈ 𝔑𝐴𝐵, where 𝑀𝑖 = {𝜇, 𝑗} 

and 𝑀−𝑖 = 𝑁−𝑖. IMP implies 𝒩 ~𝑖 ℳ. Then consider a ballot profile ℳ′ = (𝑀1
′ ,… ,𝑀𝑛

′ ) ∈ 𝔑𝐴𝐵 

as follows: 

𝑀𝑖
′ = 𝑀𝑖 ∖ {𝜇}, 

𝑀𝑗
′ = {𝜇}, and  

𝑀𝜈
′ = 𝑀𝜈 for all 𝜈 ∈ 𝑁̅ ∖ {𝑖, 𝑗}. 

Because 𝑠(ℳ) = 𝑠(ℳ′), AB implies ℳ ~𝑖 ℳ
′. Finally, let us define ℳ′′ = (𝑀𝑖

′′,𝑀−𝑖
′′ ) ∈ 𝔑𝐴𝐵, 

where 𝑀𝑖
′′ = 𝑁𝑖 and 𝑀−𝑖

′′ = 𝑀−𝑖
′ . IMP implies ℳ′ ~𝑖 ℳ

′′. Clearly, ℳ′′ has the required 

properties. ■ 

Proof of Case 4: 𝔑 = 𝔑𝐴𝐵. Take any individual 𝑖 ∈ 𝑁̅ and ballot profiles 𝒩1,𝒩2 ∈ 𝔑𝐴𝐵 such 

that 𝑑 ≔ 𝑠𝑖(𝒩
1) = 𝑠𝑖(𝒩

2). By iterating the procedure in Lemma 16 from 𝒩1,𝒩2 until there is 

no abstention, we obtain 𝒦1,𝒦2 ⊆ 𝔑𝐴𝐵 such that 𝒩1 ~𝑖 𝒦
1, 𝒩2 ~𝑖 𝒦

2, and 𝒦1,𝒦2 ∈ 𝔑. 

Because the procedure does not change 𝑖’s score, we have 𝑠𝑖(𝒦
1) = 𝑠𝑖(𝒦

2) = 𝑑. By case 2, we 

have 𝒦1 ~𝑖 𝒦
2, which implies 𝒩1 ~𝑖 𝒩

2. ■ 

 

Proof of Lemma 8 

Case 1: 𝕯 = 𝕹𝒌 . Let 𝕋  be the right-hand side of the equality in the lemma. Because 

𝕊[𝔑𝑘] ⊆ 𝕋 is obvious, I will show 𝕋 ⊆ 𝕊[𝔑𝑘]. Take any 𝑠 = (𝑠1, … , 𝑠𝑛) ∈ 𝕋. I show that 𝒩 ∈ 𝔑𝑘 

exists such that 𝑠(𝒩) = 𝑠.  
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I define a class of sets of sets, called assignments, as follows. For any 𝑖 ∈ 𝑁̅, a set of sets 

𝒩𝑖 = (𝑁1
𝑖, … ,𝑁𝑛

𝑖) is called an assignment (from 1) until 𝑖 (with respect to 𝑠 = (𝑠1, … , 𝑠𝑛)) if and 

only if:  

𝑁𝑗
𝑖 ⊆ 𝑁̅ ∖ {𝑖} for all 𝑗 ∈ 𝑁̅, 

|𝑁𝑗
𝑖| ≤ 𝑘 for all 𝑗 ∈ 𝑁̅, 

𝑠𝑗(𝒩
𝑖) = 𝑠𝑖  for all 𝑗 ≤ 𝑖, and 

𝑠𝑗(𝒩
𝑖) = 0 for all 𝑗 > 𝑖. 

With a slight abuse of notation, I define 𝑠𝑗(𝒩
𝑖) ≔ |{𝜇 ∈ 𝑁̅│𝑗 ∈ 𝑁𝜇

𝑖}| and also 𝑠(𝒩𝑖) =

(𝑠1(𝒩
𝑖),… , 𝑠𝑛(𝒩

𝑖)). I denote by ℑ𝑖 the set of all assignments until 𝑖. Note that an assignment 

until 𝑖, 𝒩𝑖 ∈ ℑ𝑖, expresses a way to take 𝑠1 individuals from 𝑁̅ ∖ {1} so that they approve 

individual 1 in their ballots, 𝑠2 individuals from 𝑁̅ ∖ {2} so that they can approve individual 2 

in their ballots, …, and 𝑠𝑖 individuals so that they can approve individual 𝑖 in their ballots. Note 

also that if there is an assignment until 𝑛, and 𝒩𝑛 = (𝑁1
𝑛, … ,𝑁𝑛

𝑛) ∈ ℑ𝑛, then 𝒩𝑛 is an element in 

𝔑𝑘 such that 𝑠(𝒩𝑛) = 𝑠. This can be easily shown as we can see by definition the following: 

∑|𝑁𝑗
𝑛|

𝑛

𝑗=1

=∑𝑠𝜇(𝒩
𝑛)

𝑛

𝜇=1

=∑𝑠𝜇

𝑛

𝜇=1

= 𝑛𝑘. 

The last equation is given by 𝑠 ∈ 𝕋. Because |𝑁𝑗
𝑛| ≤ 𝑘 for all 𝑗 ∈ 𝑁̅, we have |𝑁1

𝑛| =

|𝑁2
𝑛| = ⋯ = |𝑁𝑛

𝑛| = 𝑘. Furthermore, 𝑁𝑗
𝑛 ⊆ 𝑁̅ ∖ {𝑗} is also guaranteed by the definition. Therefore, 

we have 𝒩𝑛 ∈ 𝔑𝑘. It is also clear that 𝑠(𝒩𝑗) = 𝑠. Thus, the proof is completed if we show ℑ𝑛 ≠

𝜙. Indeed, I show that ℑ𝑖 ≠ 𝜙 for all 𝑖 = 1,2, … , 𝑛 by an induction on 𝑖. For any 𝑖 ∈ 𝑁̅ and 

𝒩𝑖 ∈ ℑ𝑖, let us denote by 𝐹(𝒩𝑖) the set of individuals who have already been fully assigned—i.e., 

𝐹(𝒩𝑖) = {𝑗 ∈ 𝑁̅│|𝑁𝑗
𝑖| = 𝑘}. For any 𝜇 ∈ 𝑁̅, I denote by 𝐹−𝜇(𝒩𝑖) the set of individuals among 

𝑁̅ ∖ {𝜇}, that is, 𝐹−𝜇(𝒩𝑖) = {𝑗 ∈ 𝑁̅ ∖ {𝜇}│|𝑁𝑗
𝑖| = 𝑘}. 

Let us begin the induction. We first check that ℑ1 ≠ 𝜙. Because 0 ≤ 𝑠1 ≤ 𝑛 − 1, we have 

2,3,… , 𝑠1 + 1 ∈ 𝑁̅ ∖ {1}. Therefore, let 𝒩1 = (𝑁1
1,… ,𝑁𝑛

1) be such that:  

𝑁𝑗
1 = {1} if 2 ≤ 𝑗 ≤ 𝑠𝑖 + 1, and 

𝑁𝑗
1 = 𝜙 if 𝑗 = 1 or 𝑗 > 𝑠𝑖 + 1. 

Clearly, this makes an assignment until 1. So, we have ℑ1 ≠ 𝜙.  

  Now let 𝑖 ∈ {1,2,… , 𝑛 − 1} and suppose none of ℑ1, ℑ2, … , ℑ𝑖 is empty. I will show 

ℑ𝑖+1 ≠ 𝜙 with several steps. Suppose to the contrary that ℑ𝑖+1 = 𝜙. Because ℑ𝑖 ≠ 𝜙, we can take 

an assignment 𝒩𝑖 = (𝑁1
𝑖, … ,𝑁𝑛

𝑖) ∈ ℑ𝑖 that has the minimal |𝐹−(𝑖+1)( )| among ℑ𝑖, as follows: 

𝒩𝑖 ∈ argmin
ℳ𝑖∈ℑ𝑖

|𝐹−(𝑖+1)(ℳ𝑖)|. 

(1) To show that |𝑭−(𝒊+𝟏)(𝓝𝒊)| ≥ 𝒏− 𝒔𝒊+𝟏. Because we assumed that ℑ𝑖+1 = 𝜙, we 

cannot construct an assignment until 𝑖 + 1 on the basis of 𝒩𝑖. This means that we cannot take 
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𝑠𝑖+1 distinct sets among 𝑁1
𝑖, … , 𝑁𝑖

𝑖, 𝑁𝑖+2
𝑖 ,… ,𝑁𝑛

𝑖  that have cardinality less than 𝑘. Therefore, we 

have the following: 

|(𝑁̅ ∖ {𝑖 + 1}) ∖ 𝐹−(𝑖+1)(𝒩𝑖)| < 𝑠𝑖+1. 

This is equivalent to  

|𝐹−(𝑖+1)(𝒩𝑖)| ≥ 𝑛 − 1 − 𝑠𝑖+1 + 1 = 𝑛 − 𝑠𝑖+1. 

Because 𝑛 − 𝑠𝑖+1 > 0, the above inequality shows 𝐹−(𝑖+1)(𝒩𝑖) ≠ 𝜙.  

 (2) To show that |𝑵𝝁
𝒊 | ∈ {𝒌 − 𝟏, 𝒌} for all 𝝁 ∈ 𝑵̅. Suppose to the contrary that 𝜈 ∈ 𝑁̅ 

exists such that |𝑁𝜈
𝑖| ≤ 𝑘 − 2. Because 𝐹−(𝑖+1)(𝒩𝑖) ≠ 𝜙, 𝜆 ∈ 𝐹−(𝑖+1)(𝒩) exists (i.e., 𝜆 ∈ 𝑁̅ ∖

{𝑖}) such that |𝑁𝜆
𝑖| = 𝑘. Because |𝑁𝜈

𝑖| ≤ 𝑘 − 2 and |𝑁𝜆
𝑖| = 𝑘, 𝛼 ∈ 𝑁̅ ∖ {𝜈, 𝜆} exists such that 𝛼 ∈

𝑁𝜆
𝑖 and 𝛼 ∉ 𝑁𝜈

𝑖. Now, we define another assignment until 𝑖, denoted by ℳ𝑖 = (𝑀1
𝑖 , … ,𝑀𝑛

𝑖 ) ∈ ℑ𝑖,  

as 𝑀𝜆
𝑖 = 𝑁𝜆

𝑖 ∖ {𝛼}, 𝑀𝜈
𝑖 = 𝑁𝜈

𝑖 ∪ {𝛼}, and 𝑀𝛾
𝑖 = 𝑁𝛾

𝑖  for all 𝛾 ∈ 𝑁̅ ∖ {𝜆, 𝜈}. It is clear that ℳ𝑖 ∈ ℑ𝑖. 

Furthermore, we have the following: 

𝐹−(𝑖+1)(𝒩𝑖) ∖ {𝜆, 𝜈} = 𝐹−(𝑖+1)(ℳ𝑖) ∖ {𝜆, 𝜈}, 

𝜆 ∈ 𝐹−(𝑖+1)(𝒩𝑖) and 𝜆 ∉ 𝐹−(𝑖+1)(ℳ𝑖), and 

𝜈 ∉ 𝐹−(𝑖+1)(𝒩𝑖) and 𝜈 ∉ 𝐹−(𝑖+1)(ℳ𝑖). 

Therefore, we have  

|𝐹−(𝑖+1)(𝒩𝑖)| > |𝐹−(𝑖+1)(ℳ𝑖)|. 

This is in contradiction to the way 𝒩𝑖 is defined.  

  (3) To show that |𝑵𝒊+𝟏
𝒊 | = 𝒌. Assume to the contrary that |𝑁𝑖+1

𝑖 | ≤ 𝑘 − 1. By (2), this is 

equivalent to assuming |𝑁𝑖+1
𝑖 | = 𝑘 − 1. By (1), 𝜆 ∈ 𝐹−(𝑖+1)(𝒩𝑖) exists. Because we have 𝑖 + 1 ∉

𝑁𝜆
𝑖 (recall that the supporters of 𝑖 + 1 are not yet assigned at the assignment until 𝑖), it follows that 

𝛽 ∈ 𝑁̅ ∖ {𝑖, 𝜆} exists such that 𝛽 ∈ 𝑁𝜆
𝑖 and 𝛽 ∉ 𝑁𝑖+1

𝑖 . Again, we define another assignment until 𝑖, 

𝒦𝑖 = (𝐾1
𝑖, … ,𝐾𝑛

𝑖 ) ∈ ℑ𝑖 as 𝐾𝜆
𝑖 = 𝑁𝜆

𝑖 ∖ {𝛽}, 𝐾𝑖+1
𝑖 = 𝑁𝑖+1

𝑖 ∪ {𝛽}, and 𝐾𝛾
𝑖 = 𝑁𝛾

𝑖 for all 𝛾 ∈ 𝑁̅ ∖

{𝜆, 𝑖 + 1}. Clearly, 𝒦𝑖 is also an assignment until 𝑖. Furthermore, because 𝛽 gets out of 

𝐹−(𝑖+1)(𝒦𝑖), we have the following: 

|𝐹−(𝑖+1)(𝒩𝑖)| > |𝐹−(𝑖+1)(𝒦𝑖)|. 

This is in contradiction to the way 𝒩𝑖 is defined.  

  (4) To complete the induction. Now, recall that we have assumed ℑ𝑖+1 = 𝜙 and 

achieved (1), (2) and (3). If we derive a contradiction from these expressions, it follows that ℑ𝑖+1 ≠

𝜙, which completes the induction. By (1), (2), and (3), we know that |𝑁𝑖+1
𝑖 | = 𝑘, at least (𝑛 − 𝑠𝑖+1) 

sets among 𝑁1
𝑖, … ,𝑁𝑖

𝑖, 𝑁𝑖+2
𝑖 , … , 𝑁𝑛

𝑖  have cardinality 𝑘, and the rest of the sets have cardinality of at 

least 𝑘 − 1. Therefore, the sum of the cardinalities satisfies the following: 

∑|𝑁𝑗
𝑖|

𝑛

𝑗=1

≥ 𝑘 + (𝑛 − 𝑠𝑖+1)𝑘 + (𝑠𝑖+1 − 1)(𝑘 − 1) = 𝑛𝑘 − 𝑠𝑖+1 + 1. 

The definition of the assignments demands that the left-hand side is 
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∑|𝑁𝑗
𝑖|

𝑛

𝑗=1

=∑𝑠𝑗

𝑖

𝑗=1

. 

Thus, we have 

∑𝑠𝑗

𝑖

𝑗=1

= 𝑛𝑘 − 𝑠𝑖+1 + 1. 

This implies  

∑𝑠𝑗

𝑛

𝑗=1

=∑𝑠𝑗

𝑖

𝑗=1

+ 𝑠𝑖+1 + ∑ 𝑠𝑗

𝑛

𝑗=𝑖+2

 

   = 𝑛𝑘 − 𝑠𝑖+1 + 1+ 𝑠𝑖+1 + ∑ 𝑠𝑗

𝑛

𝑗=𝑖+2

 

   ≥ 𝑛𝑘 + 1. 

On the other hand, because 𝑠 ∈ 𝕋, the sum must be exactly 𝑛𝑘. This contradiction completes the 

proof. ■ 

 Case 2: 𝕯 = 𝕹 . Let 𝕋  be the right-hand side of the equality in Lemma 8. Because 

𝕊[𝔑] ⊆ 𝕋 is obvious, I show 𝕋 ⊆ 𝕊[𝔑]. First, I provide another lemma.  

 

Lemma 17.  

Let 𝕋 = {(𝑠1,… , 𝑠𝑛) ∈ {0,1,… , 𝑛 − 1}
𝑛│∑ 𝑠𝑖

𝑛
𝑖=1 ≥ 𝑛} . For any 𝑠′ = (𝑠1

′ , … , 𝑠𝑛
′ ) ∈ 𝕊[𝔑]  and an 

individual 𝑖 ∈ 𝑁̅ , if 𝑠 = (𝑠1, … , 𝑠𝑛)  defined as 𝑠𝑖 = 𝑠𝑖
′ − 1  and 𝑠𝑗 = 𝑠𝑗

′  for all 𝑗 ∈ 𝑁̅ ∖ {𝑖}  is in 

𝕋, then 𝑠 ∈ 𝕊[𝔑].  

 

Proof of Lemma 17. Take any 𝑠′ ∈ 𝕊[𝔑] and 𝑠 ∈ 𝕋 that satisfy the given conditions. Note that 

𝑠 ∈ 𝕋 implies that 𝑠𝑖
′ ≥ 1 and ∑ 𝑠𝜇

′𝑛
𝜇=1 ≥ 𝑛 + 1. Because 𝑠′ ∈ 𝕊[𝔑], we can take a ballot profile 

𝒩′ = (𝑁1
′,… ,𝑁𝑛

′) ∈ 𝔑 such that 𝑠(𝒩′) = 𝑠′. Because 𝑠𝑖
′ ≥ 1, there is an individual 𝑗 ∈ 𝑁̅ ∖ {𝑖} 

such that 𝑖 ∈ 𝑁𝑗
′. 

 If |𝑁𝑗
′| ≥ 2 , then it follows that 𝑁𝑗

′ ∖ {𝑖} ∈ 𝔑𝑗 . Clearly, the 𝑛 -tuple (𝑁1
′,… , 𝑁𝑗−1

′ , 𝑁𝑗
′ ∖

{𝑖},𝑁𝑗+1
′ … ,𝑁𝑛

′) makes a ballot profile in 𝔑 whose score profile is 𝑠.  

Assume |𝑁𝑗
′| = 1. Because ∑ 𝑠𝜇

′𝑛
𝜇=1 ≥ 𝑛 + 1 and |𝑁𝜇

′| ≥ 1 for all 𝜇 ∈ 𝑁̅, it follows that  

𝜆 ∈ 𝑁̅ ∖ {𝑗} exists such that |𝑁𝜆
′| ≥ 2. If 𝑖 ∈ 𝑁𝜆

′, the 𝑛-tuple of (𝑁1
′,… ,𝑁𝜆−1

′ , 𝑁𝜆
′ ∖ {𝑖},𝑁𝜆+1

′ , … , 𝑁𝑛
′) 

makes the ballot profile in 𝔑  whose score profile is 𝑠 . Otherwise (i.e., if 𝑖 ∉ 𝑁𝜆
′ ) there is an 

individual 𝜈 ∈ 𝑁̅ ∖ {𝑖, 𝑗, 𝜆}  such that 𝜈 ∈ 𝑁𝜆
′ . Now we can construct a ballot profile 𝒩′′ ∈ 𝔑  as 

𝑁𝑗
′′ = 𝑁𝑗

′ ∪ {𝜈} , 𝑁𝜆
′′ = 𝑁𝜆

′ ∖ {𝜈} , and 𝑁𝛾
′′ = 𝑁𝛾

′  for all 𝛾 ∈ 𝑁̅ ∖ {𝑗, 𝜆} . We have |𝑁𝑗
′′| ≥ 2 . So, the 
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𝑛-tuple (𝑁1
′′, … , 𝑁𝑗−1

′′ , 𝑁𝑗
′′ ∖ {𝑖},𝑁𝑗+1

′′ , … , 𝑁𝑛
′′) makes a ballot profile in 𝔑 whose score profile is 𝑠. 

■ 

 Let me begin the proof of case 2: 𝔇 = 𝔑. Take any 𝑠 ∈ 𝕋. It follows from the definition of 

𝕋  that for any 𝑛 -tuple 𝑡 ∈ {0,1,… , 𝑛 − 1}𝑛  such that 𝑠𝑖 ≤ 𝑡𝑖  for all 𝑖 ∈ 𝑁̅ , we have 𝑡 ∈ 𝕋 . 

Therefore, there is a sequence 𝑡0, 𝑡1, … , 𝑡𝑚 ∈ 𝕋 such that:  

1. 𝑡𝑖
0 = 𝑛 − 1 for all 𝑖 ∈ 𝑁̅, 

2. 𝑡𝑚 = 𝑠, and 

3. for any 𝑝 ∈ {0,1,… ,𝑚 − 1}, there is one and only one individual 𝑖 ∈ 𝑁̅ such that 𝑠𝑖
𝑝
=

𝑠𝑖
𝑝+1

+ 1 and 𝑠𝑗
𝑝+1

= 𝑠𝑗
𝑝

 for all 𝑗 ∈ 𝑁̅ ∖ {𝑖}.  

Lemma 17 enables us to prove that 𝑡𝑚 ∈ 𝕊[𝔑] inductively along with this sequence. For 

𝑡0, we know 𝒞𝑛−1 ∈ 𝔑 and 𝑠(𝒞𝑛−1) = 𝑡0. If 𝑡𝑝 ∈ 𝕊[𝔑], we can apply Lemma 17 to obtain 𝑡𝑝+1 ∈

𝕊[𝔑], because 𝑡𝑝+1 ∈ 𝕋. ■ 

Case 3: 𝕯 = 𝕹𝒔𝒆𝒍𝒇. Let 𝕋 be the right-hand side of the equality in the lemma. Because 

𝕊[𝔑𝑠𝑒𝑙𝑓] ⊆ 𝕋 is obvious, I will show 𝕋 ⊆ 𝕊[𝔑𝑠𝑒𝑙𝑓]. For any 𝑠 ∈ 𝕋, let 𝑀(𝑠) = #{𝑖 ∈ 𝑁̅│𝑠𝑖 = 𝑛} 

be the number of individuals whose score is 𝑛 at 𝑠. Take any 𝑠 ∈ 𝕋. I will show that 𝑠 ∈ 𝕊[𝔑𝑠𝑒𝑙𝑓].  

If 𝑀(𝑠) = 𝜙, from case 2 we have 𝑠 ∈ 𝕊[𝔑]. Because 𝕊[𝔑] ⊆ 𝕊[𝔑𝑠𝑒𝑙𝑓], it follows that 𝑠 ∈

𝕊[𝔑𝑠𝑒𝑙𝑓].  

If 𝑠 = (0,… ,0, 𝑛, 0, … ,0), (i.e., only one individual 𝑖 gets score 𝑛 and all the others get 

scores of zero, then a ballot profile 𝒩 = ({𝑖}, {𝑖},… , {𝑖})  corresponds with 𝑠 . Otherwise, (i.e., if 

𝑀(𝑠) ≠ 𝜙 and at least two individuals get positive scores) let 𝑠′ = (𝑠1
′ , … , 𝑠𝑛

′ ) such that:  

𝑠𝑖
′ = 𝑛 − 1 for all 𝑖 ∈ 𝑀(𝑠), and 

𝑠𝑖
′ = 𝑠𝑖 for all 𝑖 ∈ 𝑁̅ ∖ 𝑀(𝑠). 

Because the sum of 𝑠1
′ , … , 𝑠𝑛

′  is at least 𝑛 and each 𝑠1
′ , … , 𝑠𝑛

′  is in {0,1,… , 𝑛 − 1}, case 2 shows 

𝑠′ ∈ 𝕊[𝔑] . So, there is a ballot profile 𝒩 ∈ 𝔑  such that 𝑠(𝒩) = 𝑠′ . Let 𝒩′ ∈ 𝔑𝑠𝑒𝑙𝑓  such that 

𝑁𝑖
′ = 𝑁𝑖 ∪𝑀(𝑠)  for all 𝑖 ∈ 𝑁̅ . Clearly, we have 𝑠(𝒩′) = 𝑠  and therefore, this makes a required 

ballot profile. ■  

Case 4: 𝕯 = 𝕹𝑨𝑩 . Let 𝕋  be the right-hand side of the equality in Lemma 8. Because 

𝕊[𝔑𝐴𝐵] ⊆ 𝕋 is obvious from the definition of the domain 𝔑𝐴𝐵, I will show 𝕋 ⊆ 𝕊[𝔑𝐴𝐵].  

Take any element 𝑠 = (𝑠1, … , 𝑠𝑛) ∈ 𝕋 . Let us directly construct a ballot profile 𝒩 =

(𝑁1, … , 𝑁𝑛) ∈ 𝔑
𝐴𝐵  as for all 𝑖 ∈ 𝑁̅  and 𝑎 ∈ {1,2,… , 𝑛 − 1} , 𝑖 + 𝑎̅̅ ̅̅ ̅̅ ∈ 𝑁𝑖 ⇔ 𝑎 ≤ 𝑠𝑖+𝑎̅̅ ̅̅ ̅ . In words, 

this is a ballot profile where any 𝑗 ∈ 𝑁̅ is approved by the preceding 𝑠𝑗 individuals. Then, it is easy 

to see that 𝒩 defined in this way is actually a ballot profile in 𝒩𝐴𝐵 and its score profile is 𝑠(𝒩) =

𝑠. ■ 

 

Proof of Lemma 9 

As the first step toward a proof of Lemma 9, I provide the following lemma.  
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Lemma 18. Let 𝔛 = 𝔛𝑙, 𝔛̅𝑙, 𝔛𝑙. Let 𝜑:𝔇 → 𝔛 be a nomination rule that satisfies IMP, AB and 2CN. 

For any ballot profile 𝒩 ∈ 𝔇 and for any individuals 𝑖, 𝑗 ∈ 𝑁̅, if 0 ≤ 𝑠𝑖(𝒩) = 𝑠𝑗(𝒩) ≤ 𝑀𝔇 − 1, 

then 𝑖 ∈ 𝜑(𝒩) ⇔ 𝑗 ∈ 𝜑(𝒩).  

 

Proof of Lemma 18. First, let us consider the case of 𝑠𝑖(𝒩) = 𝑠𝑗(𝒩) = 0. In this case it is clear that 

𝑖 ∉ 𝑁𝑗 and 𝑗 ∉ 𝑁𝑖. Thus, it follows that 𝒩σ ∈ 𝔇, where 𝜎 = (𝑖, 𝑗) is the transposition over 𝑖, 𝑗. By 

2CN, we have 𝑖 ∈ 𝜑(𝒩) ⇔ 𝑗 ∈ 𝜑(𝒩𝜎). Because 𝑠𝑖(𝒩) = 𝑠𝑖(𝒩
𝜎) = 0 and 𝑠𝑗(𝒩) = 𝑠𝑗(𝒩

𝜎) =

0, Lemma 7 demands that 𝑖 ∈ 𝜑(𝒩) ⇔ 𝑖 ∈ 𝜑(𝒩𝜎) and 𝑗 ∈ 𝜑(𝒩) ⇔ 𝑗 ∈ 𝜑(𝒩𝜎). Therefore, we 

have 𝑖 ∈ 𝜑(𝒩) ⇔ 𝑗 ∈ 𝜑(𝒩). From here I focus only on the case of 0 ≤ 𝑠𝑖(𝒩) = 𝑠𝑗(𝒩) ≤ 𝑀𝔇 −

1.  

Case 1: 𝕯 = 𝕹,𝕹𝑨𝑩, 𝕹𝒔𝒆𝒍𝒇. Take any 𝒩 ∈ 𝔇 and two distinct individuals 𝑖, 𝑗 ∈ 𝑁̅ such 

that 1 ≤ 𝑚 ≔ 𝑠𝑖(𝒩) = 𝑠𝑗(𝒩) ≤ 𝑀𝔇 − 1. Because 1 ≤ 𝑚 ≤ 𝑀𝔇 − 1, it is easy to find a ballot 

profile 𝒩′ ∈ 𝔇 such that 𝑗 ∉ 𝑁𝑖
′, 𝑖 ∉ 𝑁𝑗

′, and 𝑠𝑖(𝒩
′) = 𝑠𝑗(𝒩

′) = 𝑚. Lemma 7 demands that 

𝒩 ~𝑖 𝒩
′ and 𝒩 ~𝑗 𝒩

′. Because 𝑖 ∉ 𝑁𝑗
′ and 𝑗 ∉ 𝑁𝑖

′, there is a transposed ballot profile 𝒩′′ =

(𝒩′)𝜎, where 𝜎 = (𝑖, 𝑗). Because 𝑠(𝒩′) = 𝑠(𝒩′′), AB demands 𝜑(𝒩′) = 𝜑(𝒩′′), while 2CN 

demands 𝑖 ∈ 𝜑(𝒩′) ⇔ 𝑗 ∈ 𝜑(𝒩′′). Therefore, we obtain 𝑖 ∈ 𝜑(𝒩′) ⇔ 𝑗 ∈ 𝜑(𝒩′), and thus, 𝑖 ∈

𝜑(𝒩) ⇔ 𝑗 ∈ 𝜑(𝒩).  

 Case 2: 𝕯 = 𝕹𝒌. Take any 𝑖, 𝑗 ∈ 𝑁̅ and 𝒩 ∈ 𝔑𝑘 such that 1 ≤ 𝑚 ≔ 𝑠𝑖(𝒩) =

𝑠𝑗(𝒩) ≤ 𝑛 − 2.  

1) The case of 𝑖 ∉ 𝑁𝑗 and 𝑗 ∉ 𝑁𝑖. This proof is essentially the same as for case 1.  

2) The case of 𝑖 ∉ 𝑁𝑗 and 𝑗 ∈ 𝑁𝑖. Because |𝑁𝑖| = 𝑘 ≤ 𝑛 − 2 and 𝑗 ∈ 𝑁𝑖, there is an 

individual 𝜂 ∈ 𝑁̅ ∖ {𝑖, 𝑗} such that 𝜂 ∉ 𝑁𝑖. Consider a ballot profile ℳ = (𝑀𝑖, 𝑀−𝑖) ∈ 𝔑
𝑘, where 

𝑀𝑖 = (𝑁𝑖 ∪ {𝜂}) ∖ {𝑗} and 𝑀−𝑖 = 𝑁−𝑖. Note that 𝑠𝑖(𝒩) = 𝑠𝑗(𝒩) = 𝑠𝑖(ℳ) = 𝑚, but 𝑠𝑗(ℳ) =

𝑚 − 1. Then, IMP demands that 𝑖 ∈ 𝜑(𝒩) ⇔ 𝑖 ∈ 𝜑(ℳ). Because 𝑖 ∉ ℳ𝑗 and 𝑗 ∉ 𝑀𝑖, we can 

consider the transposed ballot profile ℳ𝜎, where 𝜎 = (𝑖, 𝑗). 2CN demands that 𝑖 ∈ 𝜑(ℳ) ⇔ 𝑗 ∈

𝜑(ℳ𝜎). Because 𝑠𝑗(ℳ
𝜎) = 𝑠𝑗(𝒩) = 𝑚, Lemma 7 implies that 𝑗 ∈ 𝜑(ℳ𝜎) ⇔ 𝑗 ∈ 𝜑(𝒩). 

Therefore, we have 𝑖 ∈ 𝜑(𝒩) ⇔ 𝑗 ∈ 𝜑(𝒩).  

3) The case of 𝑖 ∈ 𝑁𝑗 and 𝑗 ∉ 𝑁𝑖. This case is essentially the same as 2), above.  

4) The case of 𝑖 ∈ 𝑁𝑗 and 𝑗 ∈ 𝑁𝑖 where a) 𝑘 ≥ 2 and b) 𝑘 = 1. 

a) 𝑘 ≥ 2. Note that |𝑁𝜖| = 𝑘 ≥ 2. Because 1 ≤ 𝑠𝑖(𝒩) ≤ 𝑛 − 2 and 𝑖 ∈ 𝑁𝑗, 𝜖 ∈ 𝑁̅ ∖

{𝑖, 𝑗} exists such that 𝑖 ∉ 𝑁𝜖. Therefore, 𝜆 ∈ 𝑁̅ ∖ {𝑖, 𝑗, 𝜖} exists such that 𝜆 ∈ 𝑁𝜖. By the 

assumption that 𝑘 ≤ 𝑛 − 2, there are at least 𝑘 individuals other than 𝑖, 𝑗. This and 𝑖 ∈ 𝑁𝑗 imply 

that 𝜇 ∈ 𝑁̅ ∖ {𝑖, 𝑗} exists such that 𝜇 ∉ 𝑁𝑗. So, the following 𝒩1 makes a ballot profile in 𝔑𝑘:  

𝑁𝑗
1 = (𝑁𝑗 ∪ {𝜇}) ∖ {𝑖}, 

𝑁𝜖
1 = (𝑁𝜖 ∪ {𝑖}) ∖ {𝜆}, and 
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𝑁𝜈
1 = 𝑁𝜈 for all 𝜈 ∈ 𝑁̅ ∖ {𝑗, 𝜖}. 

Note that 𝑠𝑖(𝒩) = 𝑠𝑖(𝒩
1) = 𝑠𝑗(𝒩) = 𝑠𝑗(𝒩

1) = 𝑚. So, Lemma 7 shows 𝒩 ~𝑖 𝒩
1 and 

𝒩 ~𝑗 𝒩
1. Furthermore, because 1 ≤ 𝑚 = 𝑠𝑖(𝒩

1) = 𝑠𝑗(𝒩
1) ≤ 𝑛 − 2 and 𝑖 ∉ 𝑁𝑗

1, we can apply 

the approach from 2), above, to 𝒩1 to obtain 𝑖 ∈ 𝜑(𝒩1) ⇔ 𝑗 ∈ 𝜑(𝒩1). Therefore, we have 𝑖 ∈

𝜑(𝒩) ⇔ 𝑗 ∈ 𝜑(𝒩).  

b) 𝑘 = 1. If 𝑥 ∈ 𝑁̅ ∖ {𝑖, 𝑗} exists such that 𝑁𝑥 ∩ {𝑖, 𝑗} = 𝜙, let 𝑁𝑥 = {𝑦} and consider a 

ballot profile 𝒩2 = (𝑁1
2, … , 𝑁𝑛

2) ∈ 𝔑1 as follows: 

𝑁𝑗
2 = {𝑦},𝑁𝑥

2 = {𝑖}, and 

𝑁𝑧
2 = 𝑁𝑧 for all 𝑧 ∈ 𝑁̅ ∖ {𝑗, 𝑥}. 

Then, we have 𝑠𝑖(𝒩) = 𝑠𝑖(𝒩
1) = 𝑠𝑗(𝒩) = 𝑠𝑗(𝒩

1) = 𝑚. So, Lemma 7 shows 

𝒩 ~𝑖 𝒩
2 and 𝒩 ~𝑗 𝒩

2. Again, we can apply the approach from 2) to obtain 𝑖 ∈ 𝜑(𝒩2) ⇔

𝑗 ∈ 𝜑(𝒩2). Hence, 𝑖 ∈ 𝜑(𝒩) ⇔ 𝑗 ∈ 𝜑(𝒩). 

Suppose there is no 𝑥 ∈ 𝑁̅ ∖ {𝑖, 𝑗} such that 𝑁𝑥 ∩ {𝑖, 𝑗} = 𝜙. Then it follows that every 

𝜖 ∈ 𝑁̅ ∖ {𝑖, 𝑗} casts a ballot of either 𝑁𝜖 = {𝑖} or 𝑁𝜖 = {𝑗}. Let 𝐼 = {𝜖 ∈ 𝑁̅ ∖ {𝑖, 𝑗}│𝑁𝜖 = {𝑖}} and 

𝐽 = {𝜖 ∈ 𝑁̅ ∖ {𝑖, 𝑗}│𝑁𝜖 = {𝑗}}. Note that the triplet of {𝑖, 𝑗}, 𝐼, 𝐽 gives a partition of 𝑁̅. Because 

𝑠𝑖(𝒩) = 𝑠𝑗(𝒩) and 𝑛 ≥ 3, we have |𝐼| = |𝐽| ≥ 1. Take 𝑏 ∈ 𝐽 and 𝑐 ∈ 𝐼. Let 𝒩3 ∈ 𝔑1 be such 

that:  

𝑁𝑖
3 = {𝑐},𝑁𝑗

3 = {𝑏},𝑁𝑏
3 = {𝑖}, and 

𝑁𝜇
3 = 𝑁𝜇 for all 𝜇 ∈ 𝑁̅ ∖ {𝑖, 𝑗, 𝑏}. 

Because 𝑠𝑖(𝒩) = 𝑠𝑖(𝒩
3) = 𝑚, we have 𝒩 ~𝑖 𝒩

3 according to Lemma 7. Furthermore, because 

𝑖 ∉ 𝑁𝑗
3 and 𝑗 ∉ 𝑁𝑖

3, we can construct a transposed ballot profile 𝒩4 = (𝒩3)𝜎 ∈ 𝔑1, where 𝜎 =

(𝑖, 𝑗). Then, 2CN demands that 𝑖 ∈ 𝜑(𝒩3) ⇔ 𝑗 ∈ 𝜑(𝒩4). Because 𝑠𝑗(𝒩) = 𝑠𝑗(𝒩
4) = 𝑚, 

Lemma 7 gives 𝒩 ~𝑗 𝒩
4. Therefore, we obtain 𝑖 ∈ 𝜑(𝒩) ⇔ 𝑗 ∈ 𝜑(𝒩). ■ 

 

Take any 𝑖 ∈ 𝑁̅ and 𝒩 ∈ 𝔇. Suppose 𝑖 ∈ 𝜑(𝒩) and 0 ≤ 𝑠𝑖(𝒩) = 𝑑 ≤ 𝑀𝔇 − 1. We will show 

that for all 𝑗 ∈ 𝑁̅ and 𝒩′ ∈ 𝔇, if 𝑠𝑗(𝒩
′) = 𝑑, then 𝑗 ∈ 𝜑(𝒩′). Note that the case of 𝑗 = 𝑖 is 

straightforward from Lemma 7, therefore, in this proof I assume 𝑗 ≠ 𝑖. Note also that, drawing from 

Lemma 7, we can prove this statement simply by finding a ballot profile 𝒩𝑗 ∈ 𝔇 such that 

𝑠𝑗(𝒩
𝑗) = 𝑑 and 𝑗 ∈ 𝜑(𝒩𝑗).  

1) The Case of 𝕯 = 𝕹,𝕹𝒔𝒆𝒍𝒇, 𝕹𝑨𝑩, or [𝕯 = 𝕹𝒌 𝒂𝒏𝒅 𝟎 ≤ 𝒏𝒌− 𝟐𝒅 ≤

(𝒏− 𝟐)(𝒏 − 𝟏)]. In this case, there uniquely exists a pair of integers (𝑝, 𝑞) ∈ ℤ2 such that 

𝑛𝑘 − 2𝑑 = 𝑝(𝑛 − 1) + 𝑞, 

0 ≤ 𝑝 ≤ 𝑛 − 2, and 

0 ≤ 𝑞 ≤ 𝑛 − 2. 
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Note that 𝑞 > 0 holds only if 𝑝 < 𝑛 − 2. Labelling the individuals other than 𝑖, 𝑗 as 𝑁̅ ∖ {𝑖, 𝑗} =

{𝑎1, … , 𝑎𝑛−2}(≠ 𝜙), I consider an 𝑛-tuple of integers 𝑠1 = (𝑠1
1, … , 𝑠𝑛

1) ∈ {0,1,… , 𝑛 − 1}𝑛 as 

follows: 

𝑠𝑖
1 = 𝑠𝑗

1 = 𝑑. 𝑠𝑎𝜇
1 = 𝑛 − 1 for all 1 ≤ 𝜇 ≤ 𝑝. 

𝑠𝑎𝑝+1
1  = 𝑞. 

𝑠𝑎𝜇
1 = 0 for all 𝜇 ≥ 𝑝 + 2. 

By the definition of 𝑝 and 𝑞, the sum of these integers is exactly 𝑛𝑘. Therefore, according to 

Lemma 8, 𝒩1 ∈ 𝔇(= 𝔑,𝔑𝑠𝑒𝑙𝑓, 𝔑𝐴𝐵, 𝔑𝑘) exists such that 𝑠(𝒩1) = 𝑠1. Note that we have 

𝑠𝑖(𝒩
1) = 𝑠𝑗(𝒩

2) = 𝑑. Therefore, we can apply Lemma 18 to obtain 𝑖 ∈ 𝜑(𝒩) ⇔ 𝑗 ∈ 𝜑(𝒩1). 

Lemma 7 and 𝑠𝑖(𝒩) = 𝑠𝑖(𝒩
1) = 𝑑 imply 𝒩 ~𝑖 𝒩

1. Because we have assumed 𝑖 ∈ 𝜑(𝒩), we 

obtain 𝑗 ∈ 𝜑(𝒩1), where 𝑠𝑗(𝒩
1) = 𝑑0. 

2) The Case of 𝕯 = 𝕹𝒌 and 𝒏𝒌 − 𝟐𝒅 < 𝟎 ⇔ 𝒏𝒌 < 𝟐𝒅. Because we have assumed 𝑛 >

𝑑, this case occurs only if 𝑘 < 2, which means 𝑘 = 1. Let us label the individuals as 𝑁̅ ∖ {𝑖, 𝑗} =

{𝑎1, … , 𝑎𝑛−2}. Consider an 𝑛-tuple of integers 𝑠3 = (𝑠1
3, … , 𝑠𝑛

3) as follows: 

𝑠𝑖
3 = 𝑑 

𝑠𝑗
3 = 𝑛 − 𝑑 − 2 

𝑠𝑎1
3 = 2 

𝑠𝑎
3 = 0 for all 𝑎 ∈ 𝑁̅ ∖ {𝑖, 𝑗, 𝑎1} 

Note that the assumption of 𝑑 ≤ 𝑛 − 2 yields 𝑛 − 𝑑 − 2 ≥ 0. So, we can say 𝑠3 ∈

{0,1,… , 𝑛 − 1}𝑛. Now, let us consider a ballot profile 𝒩3 ∈ 𝔑𝑘 as follows: 

𝑁𝑖
3 = 𝑁𝑗

3 = {𝑎1}. 

𝑁𝑎𝜇
3 = {𝑖} for all 𝜇 ∈ {𝑎1, 𝑎2,… , 𝑎𝑑0}. 

𝑁𝜇
3 = {𝑗} for all 𝜇 ∈ 𝑁̅ ∖ {𝑖, 𝑗, 𝑎1, … , 𝑎𝑑0}. 

It is clear that 𝑠(𝒩3) = 𝑠3. Because we have 𝑠𝑖(𝒩
3) = 𝑑 = 𝑠𝑖(𝒩

3) and 𝑖 ∈ 𝜑(𝒩3), Lemma 7 

implies 𝑖 ∈ 𝜑(𝒩3). Furthermore, because 𝑖 ∉ 𝑁𝑗
3 and 𝑗 ∉ 𝑁𝑖

3, we can consider a transposed ballot 

profile 𝒩4 = (𝒩3)𝜎, where 𝜎 = (𝑖, 𝑗). Then, 2CN yields 𝑗 ∈ 𝜑(𝒩4), because we already have 

𝑖 ∈ 𝜑(𝒩3). Because 𝑠𝑗(𝒩
4) = 𝑠𝑖(𝒩

3) = 𝑑, this completes the proof of case 2).  

3) The Case of (𝒏 − 𝟐)(𝒏 − 𝟏) < 𝒏𝒌 − 𝟐𝒅. By focusing on the constraint, we have the 

following: 

2𝑑 < 𝑛𝑘 − (𝑛 − 2)(𝑛 − 1) = −𝑛{𝑛 − (𝑘 + 3)} − 2. 

In order for the right-hand side to be positive, it is necessary that 𝑛 − (𝑘 + 3) < 0, or equivalently 

𝑛 − 2 ≤ 𝑘. Because we assumed 𝑘 ≤ 𝑛 − 2, we obtain 𝑘 = 𝑛 − 2. We label the individuals as 𝑁̅ ∖

{𝑖, 𝑗} = {𝑎1,… , 𝑎𝑛−2} and consider an 𝑛-tuple of integers 𝑠5 = (𝑠1
5, … , 𝑠𝑛

5) ∈ {0,1,… , 𝑛 − 1}𝑛 as 

follows: 

𝑠𝑎1
5 = … = 𝑠𝑎𝑛−2

5 = 𝑛 − 1. 

𝑠𝑖
5 = 𝑑, 𝑠𝑗

5 = 𝑛 − 2 − 𝑑. 
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Note that the sum of these integers is 𝑛𝑘. Therefore, according to Lemma 8, 𝒩5 ∈ 𝔑𝑘 exists such 

that 𝑠(𝒩5) = 𝑠5. Furthermore, because |𝑁𝑗
5| = |𝑁𝑖

5| = 𝑘 = 𝑛 − 2 and 𝑠𝑎1(𝒩
5) = ⋯ =

𝑠𝑎𝑛−2(𝒩
5) = 𝑛 − 1, we have 𝑁𝑗

5 = 𝑁𝑖
5 = {𝑎1, 𝑎2, … , 𝑎𝑛−2}. This implies 𝑖 ∉ 𝑁𝑗

5 and 𝑗 ∉ 𝑁𝑖
5. 

Thus, there is a transposed ballot profile 𝒩6 = (𝒩5)𝜎, where 𝜎 = (𝑖, 𝑗). 2CN demands that 𝑖 ∈

𝜑(𝒩5) ⇔ 𝑗 ∈ 𝜑(𝒩6). Because 𝑠𝑖(𝒩
5) = 𝑠𝑖(𝒩

0) = 𝑑, Lemma 7 demands 𝑖 ∈ 𝜑(𝒩5). 

Therefore, we have 𝑗 ∈ 𝜑(𝒩6), where 𝑠𝑗(𝒩
6) = 𝑑. 

 

Proof of Lemma 11 

Take any 𝑖 ∈ 𝑁̅ and 𝒩0 ∈ 𝔇. Assume 𝑖 ∈ 𝜑(𝒩0) and let 𝑑0 ≔ 𝑠𝑖(𝒩
0). Let 𝛷(𝑑) be 

a proposition saying that for all 𝑗 ∈ 𝑁̅ and 𝒩 ∈ 𝔇, [𝑠𝑗(𝒩) = 𝑑 ⇒ 𝑗 ∈ 𝜑(𝒩)]. We will show the 

propositions 𝛷(𝑑0),𝛷(𝑑0 + 1),… , 𝛷(𝑑),… , 𝛷(𝑀𝔇) with an induction on 𝑑. Note that 𝛷(𝑑0) is 

already shown in Lemma 9. Note also that, drawing from Lemma 7, we can prove 𝛷(𝑑) simply by 

finding for each 𝑗 ∈ 𝑁̅ a ballot profile 𝒩𝑗 ∈ 𝔇 such that 𝑠𝑗(𝒩) = 𝑑 and 𝑗 ∈ 𝜑(𝒩𝑗).  

Assume 𝛷(𝑑0),𝛷(𝑑0 + 1), … , 𝛷(𝑑) holds, where 𝑑0 ≤ 𝑑 ≤ 𝑀𝔇 − 1. Take any 𝑗 ∈ 𝑁̅ 

and we will find 𝒩 ∈ 𝔇 such that 𝑗 ∈ 𝜑(𝒩) and 𝑠𝑗(𝒩) = 𝑑 + 1. Let 𝑡 ∈ {0,1,… , 𝑛 − 1}𝑛 be 

such that:  

𝑡𝑗 = 𝑑, 

𝑡𝜇 = 𝑛 − 1 for all 𝜇 = 𝑗 + 𝜈̅̅ ̅̅ ̅̅ , 1 ≤ 𝜈 ≤ 𝑘 − 1, 

𝑡𝑗+𝑘̅̅ ̅̅ ̅̅ = 𝑛 − 1 − 𝑑, 

𝑡𝑗+𝑘+1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝑘, and 

𝑡𝜇 = 0 for all 𝜇 = 𝑗 + 𝜈̅̅ ̅̅ ̅̅ , 𝑘 + 2 ≤ 𝜈 ≤ 𝑛 − 1. 

Then, it is clear that ∑ 𝑡𝑖 = 𝑛𝑘𝑖 . So, according to Lemma 8, ℳ ∈ 𝔇 exists such that 𝑠(ℳ) = 𝑡. 

Because 𝑠𝑗(ℳ) = 𝑑 ≤ 𝑀𝔇 − 1, 𝜆 ∈ 𝑁̅ exists such that 𝑗 ∉ 𝑀𝜆, 𝑗 ∈ 𝑁̅ if 𝔇 = 𝔑𝑠𝑒𝑙𝑓, and 𝑗 ∈ 𝑁̅ ∖

{𝑗} otherwise. Take 𝜂 ∈ 𝑀𝜆 and consider ℳ′ = (𝑀1
′ , … ,𝑀𝑛

′ ) ∈ 𝔇, where:  

𝑀𝜆
′ = (𝑀𝜆 ∪ {𝑗}) ∖ {𝜂}, and 

𝑀−𝜆
′ = 𝑀−𝜆. 

Then WM shows that 𝑗 ∈ 𝜑(ℳ′), where 𝑠𝑗(ℳ
′) = 𝑑 + 1. Because 𝑗 ∈ 𝑁̅ was arbitrary, this 

argument shows 𝛷(𝑑 + 1). So, the induction shows 𝛷(𝑑0),𝛷(𝑑0 + 1), … ,𝛷(𝑀𝔇). ■ 

 

Proof of Proposition 9 

Let 𝔇 = 𝔑,𝔑self, 𝔑𝐴𝐵,𝔑𝑘 and 𝔛 = 𝔛𝑙, 𝔛̅𝑙, 𝔛𝑙, where 1 ≤ 𝑘 ≤ 𝑛 − 2 and 1 ≤ 𝑙 ≤ 𝑛 −

1. Suppose 𝜑:𝔇 → 𝔛 is a nomination rule that satisfies IMP, AB, and PU. Take two distinct 

individuals 𝑖, 𝑗 ∈ 𝑁̅ and label the others as 𝑁̅ ∖ {𝑖, 𝑗} = {𝑎1,… , 𝑎𝑛−2}. Let us define an 𝑛-tuple of 

integers 𝑠 = (𝑠1, … , 𝑠𝑛) as follows: 

𝑠𝑖 = 𝑛 − 1, 

𝑠𝑗 = 𝑘, 
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𝑠𝑎1 = ⋯ = 𝑠𝑎𝑛−1−𝑘 = 𝑘 − 1, and 

𝑠𝜇 = 𝑘 for all 𝜇 ∈ 𝑁̅ ∖ {𝑖, 𝑗, 𝑎1, … , 𝑎𝑛−1−𝑘}. 

Note that 𝑛 − 1− 𝑘 ≥ 0 is derived from 𝑘 ≤ 𝑛 − 2. Clearly, the sum of these integers is 

exactly 𝑛𝑘. So, by Lemma 8, there is a ballot profile 𝒩 ∈ 𝔇 such that 𝑠(𝒩) = 𝑠. Because 

𝑠𝑖(𝒩) = 𝑛 − 1 > 𝑠𝑗(𝒩), PU demands 𝑗 ∉ 𝜑(𝒩). According to Lemma 7, we get 𝑗 ∉ 𝜑(𝒞𝑘), 

while 𝒞𝑘 ∈ 𝔇. Because 𝑗 was an arbitrary individual, this implies 𝜑(𝒞𝑘) = 𝜙. This contradicts 

the condition of 𝜙 ∉ 𝔛. ■ 

 

Proof of Proposition 10 

Proof of Proposition 10-[1]. It is clear that the constant rule, 𝑐𝑜𝑛𝑁̅:𝔇 → 𝔛, satisfies IMP and AB. ■ 

Proof of Proposition 10-[2]. 

1) The Case of 𝕹,𝕹𝒔𝒆𝒍𝒇, 𝕹𝑨𝑩. Let 𝔛 = 𝔛l, 𝔛̅l. Note that 𝒞n−1 ∈ 𝔇. Although |φ(𝒞n−1)| ≤ l, PU 

(or alternatively WPU) demands φ(𝒞n−1) = N̅. This contradiction proves the impossibility.  

Next, consider the case of 𝔛 = 𝔛̅𝑙. Suppose to the contrary that 𝜑:𝔇 → 𝔛 satisfies IMP 

and PU. Because 𝒞𝑛−2 ∈ 𝔇  and 𝜙 ∉ 𝔛 , 𝑖 ∈ 𝑁̅  exists such that 𝑖 ∈ 𝜑(𝒞𝑛−2) . Note that 𝑖 − 1̅̅ ̅̅ ̅̅ ∉

𝐶𝑖
𝑛−2  and 𝑖 + 1̅̅ ̅̅ ̅̅ ∈ 𝐶𝑖

𝑛−2 . Let us consider 𝒩 ∈ 𝔇  as 𝑁𝑖 = (𝐶𝑖
𝑛−2 ∪ {𝑖 − 1̅̅ ̅̅ ̅̅ }) ∖ {𝑖 + 1̅̅ ̅̅ ̅̅ }  and 𝑁−𝑖 =

𝐶−𝑖
𝑛−2. IMP demands 𝑖 ∈ 𝜑(𝒩), but PU demands 𝜑(𝒩) = {𝑖 − 1̅̅ ̅̅ ̅̅ }. This is a contradiction. ■ 

2) The Case of 𝕯 = 𝕹𝒌 and 𝖃 = 𝖃𝒍, 𝒌 = 𝟏 and 𝒍 = 𝟏. Suppose first that 𝑛 = 3. I will show that 

there is no nomination rule 𝜑:𝔑1 → 𝔛1  that satisfies IMP and PU. Consider the 1 -cyclic ballot 

profile 𝒞1 ∈ 𝔑1 and take individual 𝑖 ∈ 𝜑(𝒞1). Note that 𝑖 + 1̅̅ ̅̅ ̅̅ ∈ 𝐶𝑖
1 and 𝑖 − 1̅̅ ̅̅ ̅̅ ∉ 𝐶𝑖

1. Consider a 

ballot profile 𝒩 ∈ 𝔑1  as 𝑁𝑖
1 = {𝑖 − 1̅̅ ̅̅ ̅̅ }  and 𝑁−𝑖 = 𝐶−𝑖

1  . IMP demands 𝑖 ∈ 𝜑(𝒩) , while PU 

demands 𝜑(𝒩) = {𝑖 − 1̅̅ ̅̅ ̅̅ }. This is a contradiction.  

Next, assume that 𝑛 ≥ 4 . I will show that there is a nomination rule 𝜑:𝔑1 → 𝔛1  that 

satisfies IMP and PU. Take the pivotal individual 𝑖 and denote the other individuals as 𝑁̅ ∖ {𝑖} =

{𝑎1, … , 𝑎𝑛−1}. Let us denote the following: 

𝐵𝒩 = {𝜇 ∈ 𝑁̅│𝑠𝜇
−𝑖(𝒩) ≥ 𝑛 − 2}. 

For any ballot profile 𝒩 ∈ 𝔑1, let 

𝜑(𝒩) = {
𝐵𝒩 if 𝐵𝒩 ≠ 𝜙, and
{𝑖} otherwise.

 

I will show a) 𝜑 is a nomination rule on (𝔑1, 𝔛1), b) 𝜑 satisfies IMP, and c) 𝜑 satisfies PU.  

Proof of a). Take any 𝒩 ∈ 𝔑1 . If 𝐵𝒩 = 𝜙 , it is clear that 𝜑(𝒩) = {𝑖} ∈ 𝔛1 . Suppose 

𝐵𝒩 ≠ 𝜙. I will show that 𝐵𝒩 is a singleton. Suppose to the contrary that |𝐵𝒩| ≥ 2. Then, we have  

∑𝑠𝜇(𝒩)

𝑛

𝜇=1

= |𝑁𝑖| +∑𝑠𝜇
−𝑖(𝒩)

𝑛

𝜇=1

 

      ≥ 1 + 2(𝑛 − 2) 

      = 𝑛 + (𝑛 − 3) > 𝑛. 
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The last inequality is given by 𝑛 ≥ 4. This contradicts Lemma 8.  

Proof of b). It is clear that 𝑖 is a dummy voter, i.e., his or her ballot has no effects on the 

nomination, under the rule. Take any individual 𝑗 ∈ 𝑁̅ ∖ {𝑖} and a ballot profile 𝒩 = (𝑁𝑗, 𝑁−𝑗) ∈ 𝔇. 

Because 𝑠𝑗( )  is determined without 𝑗 ’s ballot, we have 𝑗 ∈ 𝐵𝒩 ⇔ 𝑗 ∈ 𝐵𝒩′  for all 𝒩′ =

(𝑁𝑗
′, 𝑁−𝑗) ∈ 𝔇. This implies 𝑗 ∈ 𝜑(𝒩) ⇔ 𝑗 ∈ 𝜑(𝒩′).  

Proof of c). For any individual 𝑗 ∈ 𝑁̅  and supposing 𝑠𝑗(𝒩) = 𝑛 − 1 . It follows that 

𝑠𝑗
−𝑖(𝒩) ≥ 𝑛 − 2, which implies 𝑗 ∈ 𝐵𝒩. Therefore, we can derive 𝑗 ∈ 𝜑(𝒩). ■ 

3) The Case of 𝕯 = 𝕹𝒌 and 𝖃 = 𝖃𝒍, 𝒌 ≥ 𝟐 or 𝒍 ≥ 𝟐. Suppose first that 𝑘 ≥ 2 (𝑙 is arbitrary). 

Consider two 𝑛-tuples of integers 𝑠 = (𝑠1, … , 𝑠𝑛), 𝑠
′ = (𝑠1

′ , … , 𝑠𝑛
′ ) ∈ {0,1,… , 𝑛 − 1}𝑛 as follows: 

𝑠1 = 𝑠2 = ⋯ = 𝑠𝑘 = 𝑛 − 1, 

𝑠𝑘+1 = 𝑘, 

𝑠𝜇 = 0 for all 𝜇 ∈ {𝑘 + 2, 𝑘 + 3,… , 𝑛}, 

𝑠1
′ = ⋯ = 𝑠𝑘−1

′ = 𝑛 − 1, 

𝑠𝑘
′ = 𝑛 − 2, 

𝑠𝑘+1
′ = 𝑘(< 𝑛 − 1), 

𝑠𝑘+2
′ = 1, and 

𝑠𝜇
′ = 0 for all 𝜇 ∈ 𝑁̅ ∖ {1,2,… , 𝑘 + 2}. 

According to Lemma 8, 𝒩,𝒩′ ∈ 𝔑𝑘 exist such that 𝑠(𝒩) = 𝑠 and 𝑠(𝒩′) = 𝑠′. The codomain 𝔛𝑙 

demands |𝜑(𝒩)| = |𝜑(𝒩′)| = 𝑙 . However, PU demands 𝜑(𝒩) = {1,… , 𝑘}  and 𝜑(𝒩′) =

{1,… , 𝑘 − 1}. Whether 𝑘 = 𝑙 or 𝑘 ≠ 𝑙, this ends with a contradiction.  

Finally, consider the case of 𝑘 = 1 and 𝑙 ≥ 2. Then the score profile 𝑠 defined above is 

also well-defined. PU demands 𝜑(𝒩) = {1}  and 𝑙 ≥ 2  implies {1} ∉ 𝔛𝑙 . This is also a 

contradiction. ■ 

4) The Case of 𝕯 = 𝕹𝒌 and 𝖃 = 𝖃̅𝒍. I will show two things here. 

a) If 𝑘 = 𝑛 − 2 or 𝑙 ≥ 2, there is no nomination rule 𝜑:𝔇 → 𝔛 that satisfies IMP and PU.  

b) If 𝑘 ≤ 𝑛 − 3 and 𝑙 = 1, a nomination rule 𝜑:𝔇 → 𝔛 exists that satisfies IMP and PU.  

Proof of a). The impossibility for the case of 𝑘 = 𝑛 − 2 is shown as a). Let us assume that 

𝑙 ≥ 2. I will first show the following inequality: 

0 < 𝑛𝑘 − (𝑛 − 1) ≤ (𝑛 − 1)(𝑛 − 2) ⋅⋅⋅ (⋆). 

For the left-hand side, we have  

𝑛𝑘 − (𝑛 − 1) = 𝑛(𝑘 − 1) + 1 > 0. 

This inequality is given by 𝑘 ≥ 1. For the right-hand side, we have 

(𝑛 − 1)(𝑛 − 2) − {𝑛𝑘 − (𝑛 − 1)} 

= 𝑛(𝑛 − 2 − 𝑘) − 𝑛 + 2 + 𝑛 − 1 > 0. 

The inequality is given by 𝑛 ≥ 𝑘 + 2. Thus, we know that (⋆) holds. Therefore, there exist a pair of 

integers (𝑝, 𝑞) ∈ ℤ2 such that: 
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𝑛𝑘 − (𝑛 − 1) = 𝑝(𝑛 − 2) + 𝑞, and 

0 ≤ 𝑝 ≤ 𝑛 − 1 and 0 ≤ 𝑞 < 𝑛 − 2. 

Note that 𝑞 > 0  can hold only if 𝑝 < 𝑛 − 1 . With these integers, we can consider 𝒩 ∈ 𝔑𝑘  as 

follows: 

𝑠1 = 𝑛 − 1, 

𝑠𝜇 = 𝑛 − 2 for all 2 ≤ 𝜇 ≤ 𝑝 + 1, 

𝑠𝑝+2 = 𝑞, and 

𝑠𝜇 = 0 for all 𝑝 + 3 ≤ 𝜇 ≤ 𝑛. 

Then, it follows that the sum of 𝑠1, … , 𝑠𝑛 is (𝑛 − 1) + 𝑝(𝑛 − 2) + 𝑞 = 𝑛𝑘 (this holds whether 𝑞 >

0  or 𝑞 = 0 ). So, according to Lemma 8, 𝒩 ∈ 𝔑𝑘  exists such that 𝑠(𝒩) = 𝑠 . PU demands 

𝜑(𝒩) = {1} and 𝑙 ≥ 2 implies {1} ∉ 𝔛𝑙. This contradiction proves the proposition. ■ 

 Proof of b). Suppose 𝑘 ≥ 𝑛 − 3  and 𝑙 = 1 . We construct a nomination rule 𝜑:𝔑𝑘 →

𝔛̅(= 𝔛̅1) that satisfies IMP and PU. Let us define 𝜑:𝔑𝑘 → 𝔛̅ as follows:  

For all 𝒩 ∈ 𝔛̅,  

𝜑(𝒩) = {

𝐹𝒩 if 𝑠𝐹𝒩 = 𝑛 − 1,

{𝑖 ∈ 𝑁̅│(𝐹𝒩 ∖ {𝑖}) ⊆ 𝑁𝑖} if 𝑠𝐹𝒩 = 𝑛 − 2

𝑁̅.

, and 

Recall that 𝐹𝒩 is the set of individuals who have the largest scores at 𝒩, and 𝑠𝐹𝒩  denotes the score 

of the individuals in 𝐹𝒩. I will show the following:  

1. 𝜑 is a nomination rule on the setting (𝔑𝑘, 𝔛̅), and 

2. 𝜑 satisfies PU and IMP.  

1. 𝜑 is a nomination rule on the setting (𝔑𝑘, 𝔛̅). To show this, we need only to prove that 

𝜑(𝒩) ≠ 𝜙 for all 𝒩 ∈ 𝔑𝑘. Take 𝒩 ∈ 𝔑𝑘. If 𝑠𝐹𝒩 ≠ 𝑛 − 2, it is obvious that 𝜑(𝒩) ≠ 𝜙. Suppose 

𝑠𝐹𝒩 = 𝑛 − 2. Let 𝑊𝒩 ≔ {𝑖 ∈ 𝑁̅│(𝐹𝒩 ∖ {𝑖}) ⊆ 𝑁𝑖}. If |𝐹𝒩| = 1, its element clearly also belongs to 

𝑊𝒩. So, we can focus on the case of |𝐹𝒩| ≥ 2. Indeed, we can also say that |𝐹𝒩| ≤ 𝑛 − 1 as follows. 

If |𝐹𝒩| = 𝑛, the sum of individuals’ scores would be 𝑛(𝑛 − 2) > 𝑛(𝑛 − 3) ≥ 𝑛𝑘, which contradicts 

Lemma 8. So, we can conclude that 2 ≤ |𝐹𝒩| ≤ 𝑛 − 1. Let us label them as 𝐹𝒩 = {𝑖1, … , 𝑖𝑝}, where 

2 ≤ 𝑝 ≤ 𝑛 − 1. Take an individual 𝑗 ∈ 𝑁̅ ∖ 𝐹𝒩. Now, assume that 𝑊𝒩 ∩ 𝐹𝒩 = 𝜙. I will show that 

𝑗 ∈ 𝑊𝒩 . Because 𝑊𝒩 ∩ 𝐹𝒩 = 𝜙 , for any individual 𝑖 ∈ 𝐹𝒩 , there is an individual 𝑎𝑖 ∈ 𝐹𝒩 ∖ {𝑖} 

such that 𝑎𝑖 ∉ 𝑁𝑖 . If 𝑎𝑖 = 𝑎𝑖′  for some distinct 𝑖, 𝑖′ ∈ {𝑖1,… , 𝑖𝑝} , it follows that 𝑠𝑎𝑖(𝒩)(=

𝑠𝑎𝑖′
(𝒩)) ≤ 𝑁̅ ∖ {𝑎𝑖, 𝑖, 𝑖

′} ≤ 𝑛 − 3 , which contradicts 𝑎𝑖(= 𝑎𝑖′) ∈ 𝐹𝒩 . Thus, we have that 

{𝑖1, … , 𝑖𝑝} = {𝑎1,… , 𝑎𝑝}. In other words, for any individual 𝑎𝑖 ∈ 𝐹𝒩, there is an individual 𝑖 ∈ 𝐹𝒩 

such that 𝑎𝑖 ∉ 𝑁𝑖 . Because 𝑠𝐹𝒩 = 𝑛 − 2 , it follows that everyone in 𝑁̅ ∖ 𝐹𝒩  approves the whole 

𝐹𝒩. Therefore, we have 𝐹𝒩 ⊆ 𝑁𝑗, which means 𝑗 ∈ 𝑊𝒩.  
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2. 𝜑 satisfies PU and IMP. This rule clearly satisfies PU, and I show that it also satisfies IMP. 

The basic idea of the proof is similar to that of 𝜑𝑃 in Proposition 5. Note that one’s ballot does not 

impact one’s own score.  

Take any 𝑖 ∈ 𝑁̅ , 𝒩 ∈ 𝔑𝑘  and 𝒩′ = (𝑁𝑖
′, 𝑁−𝑖) ∈ 𝔑

𝑘 . If 𝑠𝑖(𝒩) = 𝑛 − 1 , then it is clear 

that 𝑖 ∈ 𝜑(𝒩) and 𝑠𝑖(𝒩
′) = 𝑛 − 1. Thus, we have 𝑖 ∈ 𝜑(𝒩′). If 𝑠𝑖(𝒩) = 𝑛 − 2 and 𝑖 ∈ 𝜑(𝒩), 

then it follows that 𝐹𝒩 ∖ {𝑖} ⊆ 𝑁𝑖. Therefore, we have 𝑠𝑗(𝒩
′) ≤ 𝑛 − 2 for all 𝑗 ∈ 𝑁̅ ∖ {𝑖}, where 

the equality holds only if 𝑗 ∈ 𝑁𝑖. Because 𝑖’s score does not change, 𝐹𝒩′ is the set of individuals 

who obtain the score of 𝑛 − 2. Thus, we have 𝐹𝒩′ ∖ {𝑖} ⊆ 𝑁𝑖
′. This implies 𝑖 ∈ 𝜑(𝒩′).  

If 𝑠𝑖(𝒩) = 𝑛 − 2  and 𝑖 ∉ 𝜑(𝒩) , it follows that 𝐹𝒩 ∖ 𝑁𝑖 ≠ 𝜙 . If 𝑁𝑖
′ ∩ (𝐹𝒩 ∖ 𝑁𝑖) ≠ 𝜙 , 

then there is an individual who obtains a score of 𝑛 − 1 at the new ballot profile 𝒩′, which implies 

𝑖 ∉ 𝜑(𝒩′). Suppose 𝑁𝑖
′ ∩ (𝐹𝒩 ∖ 𝑁𝑖) = 𝜙. Then it is clear that no one can obtain a score of 𝑛 − 1 at 

the new ballot profile 𝒩′. Furthermore, for some individual 𝑗 ∈ 𝐹𝒩 ∖ 𝑁𝑖, we have 𝑠𝑗(𝒩
′) = 𝑛 − 2. 

These facts show that 𝑗 ∈ 𝐹𝒩′ ∖ 𝑁𝑖
′. Therefore, we obtain 𝑖 ∉ 𝜑(𝒩′).  

If 𝑠𝑖(𝒩) ≤ 𝑛 − 3 and 𝑖 ∈ 𝜑(𝒩), then it follows that 𝑠𝐹𝒩 ≤ 𝑛 − 2. Furthermore, we have 

{𝜇 ∈ 𝑁̅│𝑠𝜇(𝒩) = 𝑛 − 2} ⊆ 𝑁𝑖 (whether or not the left-hand side is empty, this expression and the 

following proof hold). Therefore, we have 𝑠𝑗(𝒩
′) ≤ 𝑛 − 2 for all 𝑗 ∈ 𝑁̅ ∖ {𝑖}, where the equality 

can hold only if 𝑗 ∈ 𝑁𝑖
′. This implies that we have one of the following: 

{𝜇 ∈ 𝑁̅│𝑠𝜇(𝒩
′) ≥ 𝑛 − 2} = 𝜙, or  

𝜙 ≠ {𝜇 ∈ 𝑁̅│𝑠𝜇(𝒩
′) ≥ 𝑛 − 2} = {𝜇 ∈ 𝑁̅│𝑠𝜇(𝒩

′) = 𝑛 − 2} ⊆ 𝑁𝑖
′. 

In either case, we have 𝑖 ∈ 𝜑(𝒩′).  

  If 𝑠𝑖(𝒩) ≤ 𝑛 − 3 and 𝑖 ∉ 𝜑(𝒩′), we have one of the following: 

𝑗 ∈ 𝑁̅ ∖ {𝑖} exists such that 𝑠𝑗(𝒩) = 𝑛 − 1, or 

𝑗 ∈ 𝑁̅ ∖ {𝑖} exists such that 𝑠𝑗(𝒩) = 𝑛 − 2 and 𝑗 ∉ 𝑁𝑖. 

In either case, we also have one of the following:  

𝑝 ∈ 𝑁̅ ∖ {𝑖} exists such that 𝑠𝑝(𝒩) = 𝑛 − 1, or 

𝑝 ∈ 𝑁̅ ∖ {𝑖} exists = 𝑛 − 2 and 𝑗 ∉ 𝑁𝑖. 

In either case, we have 𝑖 ∉ 𝜑(𝒩′). ■ 

5) The Case of 𝕯 = 𝕹𝒌  and 𝖃 = 𝖃𝒍 , 𝒌 > 𝒍 . It is sufficient to find a ballot profile where 𝑘 

individuals have score 𝑛 − 1 . Let 𝑠 = (𝑠1,… , 𝑠𝑛)  be such that 𝑠1 = ⋯ = 𝑠𝑘 = 𝑛 − 1 , 𝑠𝑘+1 = 𝑘 , 

and 𝑠𝑘+2 = ⋯ = 𝑠𝑛 = 0. Because the sum of them is clearly 𝑛𝑘, Lemma 8 says that 𝑠 ∈ 𝕊[𝔑𝑘]. This 

completes the proof. ■ 

6) The Case of 𝕯 = 𝕹𝒌 and 𝖃 = 𝖃𝒍, 𝒌 = 𝒏 − 𝟐. This proof is the same as for case 1). ■ 

7) The Case of 𝕯 = 𝕹𝒌 and 𝖃 = 𝖃𝒍, 𝒌 = 𝟏. The rule we referred to in case 2) can be regarded as 

the nomination rule on the setting (𝔑1, 𝔛𝑙) for any 𝑙 ∈ {1,2,… , 𝑛 − 1}𝑛. ■ 

Proof of Proposition 10-[3]. 

1) The Case of 𝖃 = 𝖃𝒍. The reason that each of the conditions 𝑘 ≥ 2 or 𝑙 ≥ 2 yields the 
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impossibility is the same as in 3) of [2]. I will show the existence of the required nomination rule when 

𝑘 = 𝑙 = 1. Let 𝐹𝒩 be the individual in 𝐹𝒩 with the minimum index and define 𝜓𝐴𝑉:𝔑
1 → 𝔛1 as 

follows: 

𝜓𝐴𝑉(𝒩) = {
𝐹𝒩 if it is a singleton, and

{𝐹𝒩}  otherwise.
 

It is clear that 𝜓𝐴𝑉 satisfies AB. To see PU, we only need to check that the set {𝑖 ∈ 𝑁̅│𝑠𝑖(𝒩) = 𝑛 −

1} is a singleton or an empty set for all 𝒩 ∈ 𝔑1. This is shown in Lemma 8. ■ 

2) The Case of 𝖃 = 𝖃̅𝒍. Recall that we have constructed a score profile 𝑠 = (𝑠1, … , 𝑠𝑛) ∈

𝕊[𝔑𝑘] such that 𝑠1 = 𝑛 − 1 > 𝑠𝑗 for all 𝑗 ∈ 𝑁̅ ∖ {1} in 4) of [2]. At the correspondent ballot profile 

𝒩, PU demands that 𝜑(𝒩) be {1}, which contradicts 𝔛̅𝑙, where 𝑙 ≥ 2. So, the rest of the proof is 

to show the possibility when 𝑙 = 1. However, the Approval Voting 𝜑𝐴𝑉:𝔑
1 → 𝔛̅1 surely satisfies 

both axioms. ■ 

3) The Case of 𝖃 = 𝖃𝒍 . Note that the 𝑛 -tuple of integers 𝑠 = (𝑠1, … , 𝑠𝑛) , where 𝑠1 =

⋯ = 𝑠𝑘 = 𝑛 − 1 , 𝑠𝑘+1 = 𝑘 , and 𝑠𝑘+1 = ⋯ = 𝑠𝑛 = 0  makes a score profile in 𝔑𝑘 . Because a 

nomination rule that satisfies PU must choose {1,2,… , 𝑘} at the correspondent ballot profile, it is 

necessary that 𝑘 ≤ 𝑙. Indeed, if 𝑘 ≤ 𝑙 holds, we can design a nomination rule that satisfies AB and 

PU simply by modifying the rule in 1). For any ballot profile 𝒩 ∈ 𝔑𝑘, I define 𝜑(𝒩) as follows: 

𝜑(𝒩) = {
𝐹𝒩 if 𝑠𝐹𝒩 = 𝑛 − 1, and

{𝐹𝒩}  otherwise.
 

It is obvious that this rule satisfies PU and AB. ■ 

 

Proof of Proposition 11 

1) The Case of 𝕯 = 𝕹,𝕹𝒔𝒆𝒍𝒇, 𝕹𝑨𝑩. It is clear that 𝑐𝑜𝑛𝐶: 𝔇 → 𝔛𝑙 for any 𝐶 ∈ 𝔛𝑙 satisfies IMP and 

AB. Let 𝜑:𝔇 → 𝔛𝑙 be a nomination rule that satisfies IMP and AB. We show that this rule 𝜑 is the 

constant rule. Let us label the individuals as 𝜑(𝒞𝑛−1) = {𝑎1, … , 𝑎𝑙} = 𝐴  and 𝑁̅ ∖ {𝒞𝑛−1} =

{𝑏1, … , 𝑏𝑛−𝑙} = 𝐵. Because we assumed 1 ≤ 𝑙 ≤ 𝑛 − 1, each of 𝐴 and 𝐵 is not empty. Suppose to 

the contrary that 𝜑 is not constant. Then, 𝒩 ∈ 𝔇 exists such that 𝜑(𝒩) ≠ 𝐴. Because |𝜑(𝒩)| =

𝑙, this implies that 𝑏 ∈ 𝐵 ∩ 𝜑(𝒩) exists. Let 𝑑 ≔ 𝑠𝑏(𝒩). Let us consider an 𝑛-tuple of integers 

𝑠 = (𝑠1, … , 𝑠𝑛) as 𝑠𝑏 = 𝑑 and 𝑠𝑐 = 𝑛 − 1 for all 𝑐 ∈ 𝑁̅ ∖ {𝑏}. It follows that  

∑𝑠𝑖

𝑛

𝑖=1

= 𝑑 + (𝑛 − 1)(𝑛 − 1) 

    ≥ (𝑛 − 1)2 = (𝑛 −
3

2
)
2

−
5

4
+ 𝑛 

     ≥ 1 + 𝑛. 

The final inequality is given by 𝑛 ≥ 3. Therefore, according to Lemma 8, 𝒩′ ∈ 𝔇 exists such that 

𝑠(𝒩′) = 𝑠 . Because 𝑠𝑏(𝒩
′) = 𝑠𝑏(𝒩)  and 𝑠𝑎(𝒩

′) = 𝑠𝑎(𝒞
𝑛−1)  for all 𝑎 ∈ 𝐴 , Lemma 7 shows 
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{𝑏} ∪ 𝐴 ⊆ 𝜑(𝒩′), which means 1 + 𝑙 ≤ |𝜑(𝒩′)|. This is in contradiction with the codomain 𝔛𝑙. ■ 

2) The Case of 𝕯 = 𝕹𝒌. Let 𝜑:𝔑𝑘 → 𝔛𝑙 be a nomination rule that satisfies IMP and AB—I will 

prove this by dividing it into two distinct cases. The proof for the first case, if 𝑙 = 1 , is a direct 

extension of that of Holzman and Moulin's (2013) Theorem 3. However, it does not apply generally if 

𝑙 ≥ 2. So, I will tackle it in a different way. Because we have 𝒞𝑘 ∈ 𝔑𝑘, we can label the individuals 

as 𝐴 ≔ 𝜑(𝒞𝑘) = {𝑎1, … , 𝑎𝑙}  and 𝐵 ≔ 𝑁̅ ∖ 𝜑(𝒞𝑘) = {𝑏1,… , 𝑏𝑛−𝑙} . Note that 𝐴 ≠ 𝜙  and 𝐵 ≠ 𝜙 

by the assumption of 1 ≤ 𝑙 ≤ 𝑛 − 1. 

a) 𝑙 = 1. Suppose to the contrary that 𝜑 is not constant. Then there is an individual 𝑏 ∈ 𝐵 

and a ballot profile 𝒩1 ∈ 𝔇  such that 𝑏 ∈ 𝜑(𝒩1) . Let 𝑑 ≔ 𝑠𝑏(𝒩) . Consider a special class of 

score profiles 𝑆 ⊆ 𝕊[𝔑𝑘] as follows: 

𝑆 = {(𝑠1, … , 𝑠𝑛) ∈ 𝕊[𝔑
𝑘]│𝑠1 = ⋯ = 𝑠𝑙 = 𝑘 and 𝑠𝑏 = 𝑑}. 

Considering how we can assign the scores for the rest of the individual (i.e., 𝐵 ∖ {𝑏}), it follows that 

𝑆 is not empty if and only if the following inequality holds: 

0 ≤ 𝑛𝑘 − (𝑙𝑘 + 𝑑) ≤ (𝑛 − 𝑙 − 1)(𝑛 − 1). 

This is equivalent to 

(𝑛 − 𝑙)𝑘 − (𝑛 − 𝑙 − 1)(𝑛 − 1) ≤ 𝑑 ≤ (𝑛 − 𝑙)𝑘 ⋅⋅⋅ (⋆). 

Suppose (⋆) holds. Then, according to Lemma 8, we can find a ballot profile 𝒩2 ∈ 𝔑𝑘 such that 

𝑠1(𝒩
2) = ⋯ = 𝑠𝑙(𝒩

2) = 𝑘 (= 𝑠1(𝒞
𝑘) = ⋯ = 𝑠𝑙(𝒞

𝑘)) 

𝑠𝑏(𝒩
2) = 𝑑 = 𝑠𝑏(𝒩

1). 

According to Lemma 7 and given that 𝐴 ⊆ 𝜑(𝒞𝑘) and 𝑏 ∈ 𝜑(𝒩1), we have 𝐴 ∪ {𝑏} ⊆ 𝜑(𝒩2). 

However, this contradicts |𝜑(𝒩2)| = 𝑙.  

Therefore, we complete the proof if the parameters 𝑙 and 𝑘 satisfy (⋆) for any value of 

𝑑 ∈ {0,1,… , 𝑛 − 1} . The reader can easily check that if 𝑙 = 1 , (⋆)  holds for any 𝑛 ≥ 3 , 𝑘 ∈

{1,… , 𝑛 − 1} , and 𝑑 ∈ {0,1,… , 𝑛 − 1} . However, this argument does not always succeed. For 

example, if 𝑛 = 10, 𝑙 = 9, 𝑘 = 1, and 𝑑 = 2, it follows that 𝑑 = 2 > (𝑛 − 𝑙)𝑘 = (10 − 9) ⋅ 1 =

1.  

 b) 𝑙 ≥ 2. Let us introduce several notations. For any integers 𝑛1, 𝑛2 ∈ ℤ such that 𝑛1 ≤

𝑛2 , we write ⟦𝑛1, 𝑛2⟧ = {𝑛1, 𝑛1 + 1,… , 𝑛2} . With a slight abuse of terms, I write ⟦𝑛1, 𝑛2⟧  to 

represent an interval (from 𝑛1 to 𝑛2). Let 𝐼 = ⟦𝑛1, 𝑛2⟧ ⊆ ⟦0, 𝑛 − 1⟧ be an interval, and define two 

propositions 𝛷𝐴(𝐼) and 𝛷𝐵(𝐼) as follows: 

𝛷𝐴(𝐼) ⇔ For any 𝑎 ∈ 𝐴 and for any ballot profile 𝒩 ∈ 𝔑𝑘, [𝑠𝑎(𝒩) ∈ 𝐼 ⇒ 𝑎 ∈ 𝜑(𝒩)] 

𝛷𝐵(𝐼) ⇔ For any 𝑏 ∈ 𝐵 and for any ballot profile 𝒩 ∈ 𝔑𝑘, [𝑠𝑏(𝒩) ∈ 𝐼 ⇒ 𝑏 ∉ 𝜑(𝒩)] 

With this notation, I can state that my goal is to show 𝛷𝐴(⟦0, 𝑛 − 1⟧) and 𝛷𝐵(⟦0,𝑛 − 1⟧). Note that 

𝜑(𝒞𝑘) = 𝐴  implies 𝛷𝐴(⟦𝑘, 𝑘⟧)  and 𝛷𝐵(⟦𝑘, 𝑘⟧) . I will first show 𝛷𝐴(⟦𝑘 − 1, 𝑘 + 1⟧)  and 

𝛷𝐵(⟦𝑘 − 1, 𝑘 + 1⟧). I will subsequently prove it for the other intervals.  
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Step 1: To show 𝛷𝐴(⟦𝑘 − 1, 𝑘 + 1⟧)  and 𝛷𝐵(⟦𝑘 − 1, 𝑘 + 1⟧) . Because 𝑙 ≥ 2 , we can 

take any two distinct individuals 𝑖, 𝑗 ∈ 𝐴. I will show that there is a ballot profile 𝒩 ∈ 𝔑𝑘 such that 

{𝑠𝑖(𝒩), 𝑠𝑗(𝒩)} = {𝑘 − 1, 𝑘 + 1} and {𝑖, 𝑗} ⊆ 𝜑(𝒩). Because 𝑖 and 𝑗 are arbitrary elements in 𝐴, 

to find such an 𝒩 is enough to show 𝛷𝐴(⟦𝑘 − 1, 𝑘 + 1⟧).   

b-1) If 𝑖 ∈ 𝐶𝑗
𝑘  and 𝑗 ∈ 𝐶𝑖

𝑘 . If 𝑘 = 1 , 𝑖 ∈ 𝐶𝑗
𝑘  and 𝑗 ∈ 𝐶𝑖

𝑘  imply 𝑖 = 𝑗 + 1̅̅ ̅̅ ̅̅ ̅  and 𝑗 =

𝑖 + 1̅̅ ̅̅ ̅̅ . This contradicts 𝑛 ≥ 3, and so we can assume 𝑘 ≥ 2. Now, I will show 𝑖 ≠ 𝑗 + 1̅̅ ̅̅ ̅̅ ̅. Suppose to 

the contrary that 𝑖 = 𝑗 + 1̅̅ ̅̅ ̅̅ ̅ . This is equivalent to 𝑖 = 𝑗 − (𝑛 − 1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  . However, 𝑗 ∈ 𝐶𝑖
𝑘  implies 𝑖 ∈

{𝑗 − 1̅̅ ̅̅ ̅̅ ̅, 𝑗 − 2̅̅ ̅̅ ̅̅ ̅,… , 𝑗 − 𝑘̅̅ ̅̅ ̅̅ ̅}. These expressions indicate that 𝑛 − 1 ≤ 𝑘, which contradicts the assumption 

of 𝑘 ≤ 𝑛 − 2. Therefore, we can conclude that 𝑖 ≠ 𝑗 + 1̅̅ ̅̅ ̅̅ ̅. Let us now focus on the individual 𝑗 + 1̅̅ ̅̅ ̅̅ ̅. 

According to the definition, 𝐶𝑗+1̅̅ ̅̅ ̅̅
𝑘 = {𝑗 + 2̅̅ ̅̅ ̅̅ ̅, 𝑗 + 3̅̅ ̅̅ ̅̅ ̅, … , 𝑗 + 1 + 𝑘̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ } . Because 1 + 𝑘 ≤ 𝑛 − 1 , we have 

𝑗 ∉ 𝐶𝑗+1̅̅ ̅̅ ̅̅
𝑘 . On the other hand, 𝑖 ∈ 𝐶𝑗

𝑘 and 𝑖 ≠ 𝑗 + 1̅̅ ̅̅ ̅̅ ̅  imply 𝑖 ∈ 𝐶𝑗
𝑘 ∖ {𝑗 + 1̅̅ ̅̅ ̅̅ ̅} = {𝑗 + 2̅̅ ̅̅ ̅̅ ̅, … , 𝑗 + 𝑘̅̅ ̅̅ ̅̅ ̅} =

𝐶𝑗+1̅̅ ̅̅ ̅̅
𝑘 ∖ {𝑗 + 1 + 𝑘̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ } . Therefore, we can conclude that 𝑖 ∈ 𝐶𝑗+1̅̅ ̅̅ ̅̅

𝑘  . In sum, we have 𝑖 ∈ 𝐶𝑗+1̅̅ ̅̅ ̅̅
𝑘   and 𝑗 ∉

𝐶𝑗+1̅̅ ̅̅ ̅̅
𝑘 .  

Let 𝜇 = 𝑗 + 1̅̅ ̅̅ ̅̅ ̅ and consider a ballot profile 𝒩3 = (𝑁1
3,… ,𝑁𝑛

3) ∈ 𝔑𝑘 such that:  

𝑁𝜇
3 = (𝐶𝜇

𝑘 ∪ {𝑗}) ∖ {𝑖}, and 

𝑁−𝜇
3 = 𝐶−𝜇

𝑘 . 

Clearly, 𝑠𝑖(𝒩
3) = 𝑘 − 1 , 𝑠𝑗(𝒩

3) = 𝑘 + 1 , and 𝑠𝜈(𝒩
3) = 𝑠𝜈(𝒞

𝑘)  for all 𝜈 ∈ 𝑁̅ ∖ {𝑖, 𝑗} . 

Therefore, by Lemma 7, we have 𝜑(𝒞3) ∩ (𝑁̅ ∖ {𝑖, 𝑗}) = 𝜑(𝒩3) ∩ (𝑁̅ ∖ {𝑖, 𝑗}) . So, we have 

|𝜑(𝒩3) ∩ {𝑖, 𝑗}| = |𝜑(𝒞1) ∩ {𝑖, 𝑗}| = 2, which implies {𝑖, 𝑗} ⊆ 𝜑(𝒩3).  

b-2) If 𝑖 ∉ 𝐶𝑗
𝑘 and 𝑗 ∈ 𝐶𝑖

𝑘. Because 𝑠𝑖(𝒞
𝑘) = 𝑠𝑗(𝒞

𝑘), 𝜇 ∈ 𝑁̅ ∖ {𝑖, 𝑗} exists such that 𝑖 ∈

𝐶𝜇
𝑘 and 𝑗 ∉ 𝐶𝜇

𝑘. Therefore, we can consider a ballot profile 𝒩4 = (𝑁1
4, … , 𝑁𝑛

4) ∈ 𝔑𝑘 such that:  

𝑁𝜇
4 = (𝐶𝜇

𝑘 ∪ {𝑗}) ∖ {𝑖}, and 

𝑁−𝜇
4 = 𝐶−𝜇

𝑘 . 

Clearly, 𝑠𝑖(𝒩
4) = 𝑘 − 1 , 𝑠𝑗(𝒩

4) = 𝑘 + 1 , and 𝑠𝜈(𝒩
4) = 𝑠𝜈(𝒞

𝑘)  for all 𝜈 ∈ 𝑁̅ ∖ {𝑖, 𝑗} . 

Therefore, by Lemma 7, we have 𝜑(𝒞4) ∩ (𝑁̅ ∖ {𝑖, 𝑗}) = 𝜑(𝒩4) ∩ (𝑁̅ ∖ {𝑖, 𝑗}) . So, we have 

|𝜑(𝒩3) ∩ {𝑖, 𝑗}| = |𝜑(𝒞1) ∩ {𝑖, 𝑗}| = 2, which implies {𝑖, 𝑗} ⊆ 𝜑(𝒩4). 

b-3) If 𝑖 ∈ 𝐶𝑗
𝑘  and 𝑗 ∉ 𝐶𝑖

𝑘 . In this case, for the reversed 𝑘 -cyclic ballot profile ℛ𝑘 =

(𝑅1
𝑘, … , 𝑅𝑛

𝑘) ∈ 𝔑𝑘 , we have 𝑖 ∉ 𝑅𝑗
𝑘  and 𝑗 ∈ 𝑅𝑖

𝑘 . Therefore, an argument similar to that in b-2) 

ensures that there is a ballot profile 𝒩5 ∈ 𝔑𝑘  such that 𝑠𝑖(𝒩
5) = 𝑘 + 1 , 𝑠𝑗(𝒩

5) = 𝑘 − 1 , and 

{𝑖, 𝑗} ⊆ 𝜑(𝒩5).  

b-4) If 𝑖 ∉ 𝐶𝑗
𝑘 and 𝑗 ∉ 𝐶𝑖

𝑘. Let us consider the individual 𝑖 − 1̅̅ ̅̅ ̅̅ . Note that 𝑖 ∈ 𝐶𝑖−1̅̅ ̅̅ ̅
𝑘  and 

𝑖 ∉ 𝐶𝑗
𝑘 imply 𝑖 − 1̅̅ ̅̅ ̅̅ ∉ {𝑖, 𝑗}. I will show 𝑗 ∉ 𝐶𝑖−1̅̅ ̅̅ ̅

𝑘 . Because 𝑗 ∉ 𝐶𝑖
𝑘 = {𝑖 + 1̅̅ ̅̅ ̅̅ , … , 𝑖 + 𝑘̅̅ ̅̅ ̅̅ }, we can say 

𝑗 ∉ 𝐶𝑖−1̅̅ ̅̅ ̅
𝑘 ⊆ (𝐶𝑖

𝑘 ∪ {𝑖}). Therefore, we can say that 𝑗 ∉ 𝐶𝑖−1̅̅ ̅̅ ̅
𝑘  and 𝑖 ∈ 𝐶𝑖−1̅̅ ̅̅ ̅

𝑘 .  

Let 𝜇 = 𝑖 − 1̅̅ ̅̅ ̅̅  . Then, just as in b-1), we can get a ballot profile 𝒩6 ∈ 𝔑𝑘  such that 

𝑠𝑖(𝒩
6) = 𝑘 − 1, 𝑠𝑗(𝒩

6) = 𝑘 + 1, and {𝑖, 𝑗} ⊆ 𝜑(𝒩6).  

 



120 
 

The arguments in b-1) to b-4) show that we have the required ballot profile for any possible 

case. Because 𝑖  and 𝑗  were arbitrary elements in 𝐴 , we have 𝛷𝐴(⟦𝑘 − 1, 𝑘 + 1⟧)  by Lemma 7. 

Then, it is easy to show 𝛷𝐵(⟦𝑘 − 1, 𝑘 + 1⟧). Take any individual 𝑏 ∈ 𝐵. By Lemma 7, it is sufficient 

to find two ballot profiles 𝒩,𝒩′ ∈ 𝔑𝑘 where 𝑠𝑏(𝒩) = 𝑘 − 1, 𝑠𝑏(𝒩
′) = 𝑘 + 1, and 𝑏 ∉ 𝜑(𝒩) 

and 𝑏 ∉ 𝜑(𝒩′). These ballot profiles are constructed in similar ways, and so we will construct only 

𝒩. Take an element 𝑎 ∈ 𝐴 and consider an 𝑛-tuple of integers 𝑠 = (𝑠1, … , 𝑠𝑛) ∈ {0,1,… , 𝑛 − 1}
𝑛 

as follows: 

𝑠𝑎 = 𝑘 + 1, 

𝑠𝑏 = 𝑘 − 1, and 

𝑠𝑐 = 𝑘 for all 𝑐 ∈ 𝑁̅ ∖ {𝑎, 𝑏}. 

Then, with Lemma 7, we obtain 𝜑(𝒩) ∩ (𝑁̅ ∖ {𝑏}) = 𝜑(𝒞𝑘) . Because |𝜑(𝒩)| = |𝜑(𝒞𝑘)| , it 

follows that 𝑏 ∉ 𝜑(𝒩). With a similar argument on 𝒩′, we can conclude 𝛷𝐵(⟦𝑘 − 1, 𝑘 + 1⟧).  

Step 2: 𝛷𝐴(⟦0, 𝑛 − 1⟧)  and 𝛷𝐵(⟦0, 𝑛 − 1⟧) . Take any 𝑎 ∈ 𝐴  and 𝑑 ∈ ⟦0, 𝑛 − 1⟧ ∖ ⟦𝑘 −

1, 𝑘 + 1⟧, and label the other individuals as 𝐶 ≔ 𝑁̅ ∖ {𝑎} = {𝑐1, 𝑐2, … , 𝑐𝑛−1}. Consider an 𝑛-tuple of 

integers 𝑠7 = (𝑠1
7, … , 𝑠𝑛

7) ∈ {0,1,… , 𝑛 − 1}𝑛 as follows: 

𝑠𝑎
7 = 𝑑, 

𝑠𝜇
7 = 𝑘 − sgn(𝑑 − 𝑘) for all 𝜇 ∈ {𝑐1, 𝑐2, … , 𝑐|𝑑−𝑘|}

34, and 

𝑠𝜇
7 = 𝑘 for all 𝜇 ∈ {𝑐|𝑑−𝑘|+1, 𝑐|𝑑−𝑘|+2, … , 𝑐𝑛−1}. 

Then, we can calculate the sum as follows: 

∑𝑠𝜇

𝑛

𝜇=1

= 𝑑 + |𝑑 − 𝑘| ⋅ {𝑘 − sgn(𝑑 − 𝑘)} + (𝑛 − 1 − |𝑑 − 𝑘|)𝑘 = 𝑛𝑘 

Therefore, by Lemma 8, 𝒩7 ∈ 𝔑𝑘 exists such that 𝑠(𝒩7) = 𝑠7. With Lemma 7 and step 1, we have 

𝐶 ∩ 𝐴 ⊆ 𝜑(𝒩7)  and (𝐶 ∩ 𝐵) ∩ 𝜑(𝒩7) = 𝜙 . By |𝜑(𝒩7)| = 𝑙 = |𝐶 ∩ 𝐴| + 1 , we have 𝑎 ∈

𝜑(𝒩7) . Because 𝑎 ∈ 𝐴  and 𝑑 ∈ ⟦0, 𝑛 − 1⟧ ∖ ⟦𝑘 − 1, 𝑘 + 1⟧  were arbitrary, we have 𝛷𝐴(⟦0, 𝑛 −

1⟧). A similar argument for 𝑏 ∈ 𝐵 instead of 𝑎 ∈ 𝐴 derives 𝛷𝐵(⟦0, 𝑛 − 1⟧). ■ 

 

Notes on Proposition 11. I will show the necessity of each axiom in the statement.  

1) Let 𝔇 = 𝔑,𝔑𝑠𝑒𝑙𝑓, 𝔑𝐴𝐵, 𝔑𝑘. A nomination rule 𝜑:𝔇 → 𝔛𝑙 exists that satisfies IMP but is not the 

constant rule.  

The proof. Let us define a nomination rule 𝜑:𝔇 → 𝔛𝑙 as follows:  

For all 𝒩 ∈ 𝔇,  

𝜑(𝒩) = {
{1,2,… , 𝑙} if 𝑙 ∈ 𝑁1, and

{1,2,… , 𝑙 − 1, 𝑙 + 1} otherwise
 

                                                         
34 For any integer 𝑧 ∈ ℤ, we write the following:  

sgn(𝑧) = {
+1 if 𝑧 > 0
0 if 𝑧 = 0
−1 if 𝑧 < 0
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Clearly, this rule is impartial but not constant. ■ 

2) Let 𝔇 = 𝔑,𝔑𝑠𝑒𝑙𝑓, 𝔑𝐴𝐵, 𝔑𝑘. A nomination rule 𝜑:𝔇 → 𝔛𝑙 exists that satisfies AB but is not 

constant. 

The proof. Let us define 𝜑:𝔇 → 𝔛𝑙 as follows:  

For all 𝒩 ∈ 𝔇,  

𝜑(𝒩) = {
{1,2,… , 𝑙} if 𝑠𝑖(𝒩) is the largest among {𝑠𝑗(𝒩)}𝑗∈𝑁̅, and

{𝑛, 𝑛 − 1, … , 𝑛 − 𝑙 + 1} otherwise
 

Note that 𝑙 ≤ 𝑛 − 1 implies 𝑛 − 𝑙 + 1 > 1. So, this rule satisfies AB but is not constant. ■ 

 

Proof of Proposition 12 

1) The Case of 𝕯 = 𝕹𝒔𝒆𝒍𝒇. IMP and AB⇔constant. For any 𝑋 ∈ 𝔛̅𝑙, it is clear that 𝑐𝑜𝑛𝑋:𝔑
𝑠𝑒𝑙𝑓 →

𝔛̅𝑙 satisfies IMP and AB. Let 𝜑:𝔑𝑠𝑒𝑙𝑓 → 𝔛̅𝑙 be a nomination rule that satisfies IMP and AB. Take 

any individual 𝑖 ∈ 𝑁̅. I will show the following:  

For any 𝑑 ∈ {0,1,… , 𝑛 − 1} , there is a pair of ballot profiles 𝒩,𝒩′ ∈ 𝔑𝑠𝑒𝑙𝑓  such that 

𝑠𝑖(𝒩) = 𝑑, 𝑠𝑖(𝒩
′) = 𝑑 + 1, and 𝒩 ~𝑖 𝒩

′.  

If this statement is shown, Lemma 7 guarantees that 𝜑 is nothing but the constant rule, because 𝑖 ∈

𝑁̅ was arbitrary. I first show the statement for the case of 𝑑 ∈ {1,2,… , 𝑛 − 1}. In this case, we have 

𝒞𝑑 ∈ 𝔑𝑠𝑒𝑙𝑓. Let us consider a ballot profile 𝒩1 ∈ 𝔑𝑠𝑒𝑙𝑓 such that: 

𝑁𝑖
1 = 𝐶𝑖

𝑑 ∪ {𝑖}, and  

𝑁−𝑖
1 = 𝐶−𝑖

𝑑 . 

Then, IMP demands 𝒞𝑑 ~i 𝒩
1, where 𝑠𝑖(𝒞

𝑑) = 𝑑 and 𝑠𝑖(𝒩
1) = 𝑑 + 1.  

  Next, we consider the case of 𝑑 = 0. Consider a ballot profile 𝒩2 ∈ 𝔑𝑠𝑒𝑙𝑓 as 𝑁𝜇
2 = {𝜇} 

for all 𝜇 ∈ 𝑁̅ . Then, let 𝒩3 ∈ 𝔑3  be such that 𝑁𝑖
3 = {𝑖 + 1̅̅ ̅̅ ̅̅ }  and 𝑁−𝑖 

3 = 𝑁−𝑖
2  . IMP demands 

𝒩3 ~𝑖 𝒩
2, while 𝑠𝑖(𝒩

3) = 𝑑 and 𝑠𝑖(𝒩
2) = 𝑑 + 1.  

2) The Case of 𝕯 = 𝕹𝑨𝑩. 

a) Let 𝒍 ≥ 𝟐. NU⇒Impossible. Let us consider a ballot profile 𝒩4 ∈ 𝔑𝐴𝐵 as 𝑁1
4 = {2} 

and 𝑁−1
4 = 𝜙. Then, 𝑙 ≥ 2 implies that there are at least two winners. However, only individual 1 

obtains a positive score. This contradicts NU. ■ 

b) Let 𝒍 = 𝟏. IMP, AB, and NU⇔𝝋𝟏. It is clear that 𝜑1:𝔑𝐴𝐵 → 𝔛̅1 satisfies all the three 

axioms.35 Take a nomination rule 𝜑:𝔇 → 𝔛 that satisfies the three axioms and take any 𝑖 ∈ 𝑁̅. For 

NU, it is enough to show the following: for all 𝒩 ∈ 𝔑𝐴𝐵, if 𝑠𝑖(𝒩) > 0, then 𝑖 ∈ 𝜑(𝒩). By Lemma 

7, we must only find, for each integer 𝑑 ∈ {1,2,… , 𝑛 − 1} , a ballot profile 𝒩 ∈ 𝔑𝐴𝐵  such that 

𝑠𝑖(𝒩) = 𝑑 and 𝑖 ∈ 𝜑(𝒩).  

For 𝑑 ≤ 𝑛 − 2, let us consider 𝒞𝑑 ∈ 𝔑𝐴𝐵. Because 𝜙 ∉ 𝔛̅1, we have 𝜇 ∈ 𝜑(𝒞𝑑), while 

𝑠𝜇(𝒞
𝑑) = 𝑠𝑖(𝒞

𝑑). With Lemma 9, we have 𝑖 ∈ 𝜑(𝒞𝑑). Finally, consider the case of 𝑑 = 𝑛 − 1. Let 

                                                         
35 It is also easy to see that 𝜑1 is surely a well-defined nomination rule on this setting.  
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𝒩5 ∈ 𝔑 as follows: 

𝑁𝑖
5 = 𝜙, and 

𝑁𝑗
5 = {𝑖} for all 𝑗 ∈ 𝑁̅ ∖ {𝑖}. 

Because everyone except 𝑖  obtains a score of zero, NU implies (𝑁̅ ∖ {𝑖}) ∩ 𝜑(𝒩5) = 𝜙 . So, we 

have 𝑖 ∈ 𝜑(𝒩5), where 𝑠𝑖(𝒩) = 𝑛 − 1. ■ 

 

3) The Case of 𝕯 = 𝕹 and 𝒍 ≥ 𝟑. NU⇒Impossible. Take any 𝑖 ∈ 𝑁̅ and let 𝒩7 ∈ 𝔑 as 𝑁𝑖+1̅̅ ̅̅ ̅
7 =

{𝑖 + 2̅̅ ̅̅ ̅̅ }  and 𝑁𝜈
7 = {𝑖 + 1̅̅ ̅̅ ̅̅ } for all 𝜈 ∈ 𝑁̅ ∖ {𝑖 + 1̅̅ ̅̅ ̅̅ } . Because |𝜑(𝒩7)| ≥ 3 , 𝜇 ∈ 𝜑(𝒩7)  exists 

such that 𝑠𝜇(𝒩
7) = 0, contradicting NU. ■ 

4) The case of 𝕯 = 𝕹 and 𝒍 = 𝟐: IMP, AB, NU⇔𝝋𝟏.This proof can be carried out in the same 

way as b) in 2). ■ 

5) The Case of 𝕯 = 𝕹 and 𝒍 = 𝟏. It is clear that 𝜑1 satisfies the five axioms. Let 𝜑:𝔑 → 𝔛̅1 be 

a nomination rule that satisfies the five axioms. By Lemma 10, we have 𝜑(𝒞1) = ⋯ = 𝜑(𝒞𝑛−1) =

𝑁̅. With Lemma 7, this shows that any individual wins the election once they obtain positive scores. 

■ 

6) The Case of 𝕯 = 𝕹𝒌 and 𝒍 ≥ 𝒌 + 𝟐. 

Let 𝑠 = (𝑠1, … , 𝑠𝑛) ∈ {0,1,… , 𝑛 − 1}
𝑛 be such that: 

𝑠1 = ⋯ = 𝑠𝑘 = 𝑛 − 1, 

𝑠𝑘+1 = 𝑛𝑘 − (𝑛 − 1)𝑘 = 𝑘, and 

𝑠𝜇 = 0 for all 𝜇 ∈ 𝑁̅ ∖ {1,… , 𝑘 + 1}. 

Because the sum of each set of 𝑠𝑖’s is clearly 𝑛𝑘, we have from Lemma 8 that 𝑠 ∈ 𝕊[𝔑𝑘]. Because 

|𝜑(𝑠)| ≥ 𝑙 ≥ 𝑘 + 2, 𝜇 ∈ 𝑁̅ ∖ {1,… , 𝑘 + 1} exists such that 𝜇 ∈ 𝜑(𝑠). This contradicts NU. ■  

7) The Case of 𝕯 = 𝕹𝒌 and 𝒍 ≤ 𝒌 + 𝟏. From Lemma 11, it is obvious that a nomination rule 

satisfies the five axioms only if it is a threshold rule. Thus, to show the following is enough to prove 

the proposition.  

a) For any integer 𝑥 ∈ {1,2,… , ⌈
𝑛𝑘−(𝑙−1)(𝑛−1)

𝑛−𝑙+1
⌉}, the threshold-𝑥 rule 𝜑𝑥 is well defined 

as a function from 𝔑𝑘 to 𝔛̅𝑙, and it satisfies the five axioms.  

b) For any individual 𝑖 ∈ 𝑁̅ and 𝒩 ∈ 𝔑𝑘, if 𝑠𝑖(𝒩) ≥ ⌈
𝑛𝑘−(𝑙−1)(𝑛−1)

𝑛−𝑙+1
⌉ then 𝑖 ∈ 𝜑(𝒩).  

Let  

𝑑 ≔ ⌈
𝑛𝑘 − (𝑙 − 1)(𝑛 − 1)

𝑛 − 𝑙 + 1
⌉ , and 

𝜖 ≔ 𝑑 −
𝑛𝑘 − (𝑙 − 1)(𝑛 − 1)

𝑛 − 𝑙 + 1
. 

Note that we have 0 ≤ 𝜖 < 1.  
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a) Take any integer 𝑥 ∈ {1,2,… , 𝑑} and take any ballot profile 𝒩 ∈ 𝔑𝑘. Suppose to the 

contrary that {𝑖 ∈ 𝑁̅│𝑠𝑖(𝒩) ≥ 𝑥} ≤ 𝑙 − 1. Then, it follows that at least 𝑛 − (𝑙 − 1) individuals 

have a score strictly less than 𝑥. Note that 𝑥 ≤ 𝑑 implies the following: 

𝑥 ≤ ⌈
𝑛𝑘 − (𝑙 − 1)(𝑛 − 1)

𝑛 − 𝑙 + 1
⌉ 

⇔ 𝑥 − 1 ≤ ⌈
𝑛𝑘 − (𝑙 − 1)(𝑛 − 1)

𝑛 − 𝑙 + 1
⌉ − 1. 

Because 𝑥 − 1 ∈ ℕ ∪ {0}, it follows that 

0 ≤ 𝑥 − 1 <
𝑛𝑘 − (𝑙 − 1)(𝑛 − 1)

𝑛 − 𝑙 + 1
. 

Therefore, the sum of individuals’ scores can be bounded above as follows: 

∑𝑠𝑖(𝒩)

𝑛

𝑖=1

≤ (𝑛 − 𝑙 + 1)(𝑥 − 1) + (𝑙 − 1)(𝑛 − 1) 

     < (𝑛 − 𝑙 + 1)
𝑛𝑘 − (𝑙 − 1)(𝑛 − 1)

𝑛 − 𝑙 + 1
+ (𝑙 − 1)(𝑛 − 1) = 𝑛𝑘. 

This clearly contradicts Lemma 8. Thus, we determine 𝜑𝑥 is actually a function from 𝔑𝑘 to 𝔛̅𝑙.  

b) I will find a ballot profile 𝒩 ∈ 𝔑𝑘 and an individual 𝑖 ∈ 𝑁̅ such that 𝑠𝑖(𝒩) = 𝑑 and 

𝑖 ∈ 𝜑(𝒩). According to Lemma 11, this is enough to prove the proposition.  

If 𝑙 = 1, it follows that: 

𝑑 = ⌈
𝑛𝑘 − (1 − 1)(𝑛 − 1)

𝑛 − 1 + 1
⌉ = ⌈𝑘⌉ = 𝑘. 

Therefore, 𝒞𝑘 ∈ 𝔑𝑘 has the required property. Assume 𝑙 ≥ 2. Let us consider 𝑠 = (𝑠1, … , 𝑠𝑛) as 

follows:  

𝑠𝜇 = 𝑛 − 1 for all 𝜇 ∈ 𝑁̅, 1 ≤ 𝜇 ≤ 𝑙 − 2, 

𝑠𝑙−1 = 𝑛 − 1 − 𝜖(𝑛 − 𝑙 + 1), and 

𝑠𝜇 = 𝑑 for all 𝜇 ∈ {𝑙, 𝑙 + 1, … , 𝑛}. 

Indeed, I am going to check that 𝑠 = (𝑠1, … , 𝑠𝑛) ∈ 𝕊[𝔑
𝑘] . To check that 𝑠 = (𝑠1, … , 𝑠𝑛) ∈

{0,1,… , 𝑛 − 1}𝑛, it is sufficient to check that 𝑠𝑙−1 ∈ {0,1,… , 𝑛 − 1} because the others are clearly in 

the interval.  

𝑠𝑙−1 = 𝑛 − 1 − 𝜖(𝑛 − 𝑙 + 1) = 𝑛 − 1 − (𝑑 −
𝑛𝑘 − (𝑙 − 1)(𝑛 − 1)

𝑛 − 𝑙 + 1
) (𝑛 − 𝑙 + 1) 

    = 𝑛 − 1 − 𝑑(𝑛 − 𝑙 + 1) + 𝑛𝑘 − (𝑙 − 1)(𝑛 − 1). 

So, we have 𝑠𝑙−1 ∈ ℤ. Because 0 ≤ 𝜖 < 1 and 𝑛 − 𝑙 + 1 > 0, we also have the following: 

𝑛 − 1 ≥ 𝑠𝑙−1 = 𝑛 − 1 − 𝜖(𝑛 − 𝑙 + 1) ≥ 𝑛 − 1− (𝑛 − 𝑙 + 1) = 𝑙 − 2 ≥ 0. 

Therefore, we have 𝑠𝑙−1 ∈ {0,1,… , 𝑛 − 1}.  

In addition, the sum of their scores can be calculated as follows: 
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∑𝑠𝜇

𝑛

𝜇=1

= (𝑛 − 1)(𝑙 − 2) + {𝑛 − 1 − 𝜖(𝑛 − 𝑙 + 1)} + 𝑑(𝑛 − 𝑙 + 1) 

    = 𝑛𝑙 − 𝑛 − 𝑙 + 1 − 𝑘 + (𝑑 − 𝜖)(𝑛 − 𝑙 + 1) = 𝑛𝑘. 

The last equation is given by 𝜖 = 𝑑 −
𝑛𝑘−(𝑙−1)(𝑛−1)

𝑛−𝑙+1
. Therefore, Lemma 8 guarantees 𝑠 =

(𝑠1, … , 𝑠𝑛) ∈ 𝕊[𝔑
𝑘]. Because |𝜑(𝑠)| ≥ 𝑙, 𝑖 ∈ {𝑙, 𝑙 + 1,… , 𝑛} exists such that 𝑖 ∈ 𝜑(𝑠), while 

𝑠𝑖(𝒩) = 𝑠𝑖 = 𝑑. ■ 

 

Notes on Proposition 12 

I will show the logical independence of each axiom in each proposition by giving examples. Because 

in many cases it is quite easy to determine that the proposed nomination rule satisfies the axioms, I 

introduce most of the examples without proof, while I give some comments for complicated ones.  

1) Let 𝕯 = 𝕹𝒔𝒆𝒍𝒇 and 𝖃 = 𝖃̅𝒍. IMP but not AB. Take a pivotal individual 𝑖 ∈ 𝑁̅ and let 

𝜑:𝔑𝑠𝑒𝑙𝑓 → 𝔛̅𝑙 be a nomination rule such that: 

𝜑(𝒩) = {𝑖,̅ 𝑖 + 1̅̅ ̅̅ ̅̅ , … , 𝑖 + 𝑙 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅} ∪ (𝑁𝑖 ∩ {𝑖 + 𝑙̅̅ ̅̅ ̅̅ , … , 𝑖 + 𝑛 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ }). 

2) Let 𝕯 = 𝕹𝒔𝒆𝒍𝒇 and 𝖃 = 𝖃̅𝒍. AB but not IMP. Let 𝜑:𝔑𝑠𝑒𝑙𝑓 → 𝔛̅𝑙 be a nomination rule such 

that:  

𝜑(𝒩) = {1,2,… , 𝑙 − 1} ∪ {𝑖 ∈ {𝑙, 𝑙 + 1, … , 𝑛}│𝑠𝑖(𝒩) ≥ 𝑠𝑗(𝒩) for all 𝑗 ∈ {𝑙, 𝑙 + 1,… , 𝑛 − 1}} 

Note that because 𝑙 ≤ 𝑛 − 1, we have |{𝑙, 𝑙 + 1, … , 𝑛}| ≥ 2. Hence, this nomination rule is not the 

constant rule.  

3) Let 𝕯 = 𝕹𝑨𝑩 and 𝖃 = 𝖃̅𝒍, 𝒍 = 𝟏. IMP, AB, but not NU. 𝑐𝑜𝑛𝑁̅:𝔑
𝐴𝐵 → 𝔛̅1 clearly satisfies 

IMP and AB, but not NU. ■ 

4) Let 𝕯 = 𝕹𝑨𝑩 and 𝖃 = 𝖃̅𝒍, 𝒍 = 𝟏. IMP, NU, but not AB. Let 𝜑𝑃
1(𝒩):𝔑AB → 𝔛̅𝑙 be defined 

as 

𝜑(𝒩) = {
𝜑𝑃(𝒩) if 𝑠𝐹𝒩 ≥ 2, and 

𝜑1(𝒩) otherwise
 

The fact that the rule satisfies NU but not AB is obvious. I will show that it also satisfies IMP. Take 

any 𝑖 ∈ 𝑁̅ and a ballot profile 𝒩 ∈ 𝔑𝐴𝐵. If there is an individual 𝑗 ∈ 𝑁̅ such that 𝑠𝑗
−𝑖(𝒩) ≥ 2, 

then we can show that 𝜑(𝑁𝑖
′, 𝑁−𝑖) = 𝜑𝑃(𝑁𝑖

′, 𝑁−𝑖) for all 𝑁𝑖
′ ∈ 𝔑𝑖

𝐴𝐵. Thus, 𝑖 ∈ 𝜑(𝒩) ⇔ 𝑖 ∈

𝜑(𝑁𝑖
′, 𝑁−𝑖). Suppose there is no such 𝑗. Then we have either 𝑠𝑖(𝒩) = 𝑠𝑖

−𝑖(𝒩) = {1,0}. If 

𝑠𝑖(𝒩) = 0, there is no way for 𝑖 to win. Suppose 𝑠𝑖(𝒩) = 1. Then, 𝑖 wins, no matter what ballot 

he or she casts. ■ 

5) Let 𝕯 = 𝕹𝑨𝑩 and 𝖃 = 𝖃̅𝒍, 𝒍 = 𝟏. AB, NU, but not IMP. The Approval Voting rule 𝜑𝐴𝑉 

satisfies AB and NU but not IMP. ■ 



125 
 

6) Let 𝕯 = 𝕹 and 𝖃 = 𝖃̅𝒍, 𝒍 ≤ 𝟐. NU.  The threshold-1 rule 𝜑1:𝔑 → 𝔛̅𝑙 is well-defined and 

satisfies NU. ■ 

7) Let 𝕯 = 𝕹 and 𝖃 = 𝖃̅𝒍, 𝒍 = 𝟐. IMP, AB, but not NU: The constant rule 𝑐𝑜𝑛𝑁̅.  

8) Let 𝕯 = 𝕹 and 𝖃 = 𝖃̅𝒍, 𝒍 = 𝟐. IMP, NU, but not AB: The rule in 10) has these properties. 

9) Let 𝕯 = 𝕹 and 𝖃 = 𝖃̅𝒍, 𝒍 = 𝟐. AB, NU, but not IMP. 

𝜑(𝒩) = 𝐹𝒩 ∪ {𝑖 ∈ 𝑁̅│∃𝑗 ∈ 𝐹𝒩 s. t.  𝑖 ∈ 𝑁𝑗} 

10) Let 𝕯 = 𝕹 and 𝖃 = 𝖃̅𝒍, 𝒍 = 𝟏: See 4.2.2.  

11) Let 𝕯 = 𝕹𝒌 and 𝖃 = 𝖃̅𝒍, 𝒍 ≤ 𝒌 + 𝟏. IMP, AB, 2CN, NU but not WM. Take 𝑖 ∈ 𝑁̅. If 𝑙 ≤

𝑘, the nomination rule 𝜑:𝔑𝑘 → 𝔛̅𝑙 defined as follows has the required properties:  

𝜑(𝒩) = {
𝜑1(𝒩) ∖ {𝑖} if 𝑠𝑖(𝒩) = 𝑛 − 1, and

𝜑1(𝒩) otherwise
 

  If 𝑙 = 𝑘 + 1, the existence of a required nomination rule depends on 𝑛 and 𝑘. It is 

obvious that every individual wins once they obtain score of at least 𝑘 (by considering a score 

profile where the first 𝑘 − 1 individuals obtain 𝑛 − 1, the 𝑘𝑡ℎ obtains 𝑚 ∈ {𝑘, 𝑘 + 1, … , 𝑛 − 1}, 

the (𝑘 + 1)𝑡ℎ obtains score 𝑛 − 1−𝑚, and the others obtain a score of zero). Thus, if 𝑘 = 1, a 

nomination rule 𝜑:𝔑𝑘 → 𝔛̅𝑙 satisfies IMP, AB, 2CN, and NU if and only if it is the threshold-1 

rule 𝜑1. On the other hand, if 𝑛 = 10 and 𝑘 = 8, for example, it is easy to see that the following 

nomination rule has the required properties:  

𝜑(𝒩) = {𝑖 ∈ 𝑁̅│𝑠𝑖(𝒩) ≠ 2,0}. 

12) Let 𝕯 = 𝕹𝒌 and 𝖃 = 𝖃̅𝒍, 𝒍 ≤ 𝒌 + 𝟏. IMP, AB, 2CN, WM, but not NU: The constant rule 

conN̅.  

13) Let 𝕯 = 𝕹𝒌 and 𝖃 = 𝖃̅𝒍, 𝒍 ≤ 𝒌 + 𝟏. IMP, AB, NU, WM, but not 2CN. It depends. If 𝑘 ≥

2, then let 𝜑:𝔑𝑘 → 𝔛̅𝑙 be such that 

𝜑(𝒩) = {
𝜑1(𝒩) ∖ {𝑖} if 𝑠𝑖(𝒩) = 1, and

𝜑1(𝒩) otherwise
 

14) Let 𝕯 = 𝕹𝒌 and 𝖃 = 𝖃̅𝒍, 𝒍 ≤ 𝒌 + 𝟏. IMP, 2CN, NU, WM, but not AB. Let 𝜑:𝔑𝑘 → 𝔛̅𝑙 be 

such that 

𝜑(𝒩) = 𝑁𝑖 ∪ {𝑗 ∈ 𝑁̅│𝑗 ∈ ⋃ 𝑁𝜇
𝜇∈𝑁𝑖

}. 

Clearly, this has the necessary properties.  

15) Let 𝕯 = 𝕹𝒌 and 𝖃 = 𝖃̅𝒍, 𝒍 ≤ 𝒌 + 𝟏. AB, 2CN, NU, WM, but not IMP: Let us denote by 

𝑊(𝒩) the set of individuals who have the smallest score at a ballot profile 𝒩 (i.e., 𝑊(𝒩) =

{𝑖 ∈ 𝑁̅│𝑠𝑖(𝒩) ≤ 𝑠𝑗(𝒩) for all 𝑗 ∈ 𝑁̅}). Let us define a nomination rule 𝜑:𝔑𝐴𝐵 → 𝔛̅𝑙 as follows: 

For any 𝒩 ∈ 𝔑𝐴𝐵,  
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𝜑(𝒩) = {
𝑁̅ ∖ 𝑊(𝒩) if |𝑊(𝒩)| = 1, and

𝑁̅ otherwise.
 

 

Proof of Proposition 13 

1) The Case of 𝕯 = 𝕹𝒔𝒆𝒍𝒇. IMP and AB⇔Constant. This proof is the same as that of 𝔛 = 𝔛̅𝑙.  

2) The Case of 𝕯 = 𝕹𝑨𝑩. 

a) WPU ⇒ Impossibility. WPU demands 𝜑(𝒞𝑛−1) = 𝑁̅ , while 𝑁̅ ∉ 𝔛𝑙 . Thus, no 

nomination rule satisfies WPU.  

b) IMP, AB, and NU⇒Impossibility. Suppose a nomination rule 𝜑:𝔑𝐴𝐵 → 𝔛𝑙 exists that 

satisfies IMP, AB, and NU. Take any 𝑖 ∈ 𝑁̅ and consider a ballot profile 𝒩 ∈ 𝔑𝐴𝐵 as 𝑁𝑖−1 = {𝑖} 

and 𝑁𝑗 = 𝜙 for all 𝑗 ∈ 𝑁̅. Then, by NU, we have (𝑁̅ ∖ {𝑖}) ∩ 𝜑(𝒩) = 𝜙. Because 𝜙 ∉ 𝔛𝑙, we have 

𝑖 ∈ 𝜑(𝒩), while 𝑠𝑖(𝒩) = 1. Note that 𝑖 was an arbitrary individual in 𝑁̅. Therefore, with Lemma 

7, we have 𝜑(𝒩) = 𝑁̅. This contradicts the codomain of 𝔛𝑙 (𝑙 ≤ 𝑛 − 1). ■ 

3) The Case of 𝕯 = 𝕹. 

a) WPU⇒Impossibility. Because 𝒞𝑛−1 ∈ 𝔑, WPU demands 𝜑(𝒞𝑛−1) = 𝑁̅ and 𝑁̅ ∉ 𝔛𝑙. 

■ 

b) Let 𝒍 ≤ 𝒏 − 𝟐. IMP, AB, and NU⇒Impossibility. Suppose a nomination rule 𝜑:𝔑 →

𝔛𝑙 exists that satisfies IMP, AB, and NU. Because 𝑙 ≤ 𝑛 − 2, there are two distinct individuals 𝑖, 𝑗 ∈

𝑁̅ such that {𝑖, 𝑗} ∩ 𝜑(𝒞𝑛−1) = 𝜙. However, Lemma 8 says that 𝑠 = (𝑠1, … , 𝑠𝑛) ∈ 𝕊[𝔑] such that 

𝑠𝑖 = 𝑠𝑗 = 𝑛 − 1 and 𝑠𝜇 = 0 for all 𝜇 ∈ 𝑁̅ ∖ {𝑖, 𝑗}. With Lemma 7, we have 𝑖 ∉ 𝜑(𝑠) and 𝑗 ∉ 𝜑(𝑠). 

With NU, we determine that (𝑁̅ ∖ {𝑖, 𝑗}) ∩ 𝜑(𝑠) = 𝜙. Therefore, it follows that 𝜑(𝑠) = 𝜙, which 

contradicts 𝜙 ∉ 𝔛𝑙. ■ 

c) Let 𝒍 = 𝒏 − 𝟏. IMP, AB, and NU⇔𝝋−𝒊
𝟏 .It is clear that 𝜑−𝑖

1  satisfies the three axioms. 

Let 𝜑:𝔑 → 𝔛𝑙 (𝑙 = 𝑛 − 1) be a nomination rule that satisfies IMP, AB, and NU. I will show that 𝜑 

is identical to 𝜑−𝑖
1  for some 𝑖 ∈ 𝑁̅.  

Step 1: To show that 𝜑(𝒞𝑛−1) = 𝑁̅ ∖ {𝑖} for some 𝑖 ∈ 𝑁̅. I now show that |𝜑(𝒞𝑛−1)| ≥

𝑛 − 1 . Suppose to the contrary that there are two distinct individuals 𝑖, 𝑗 ∈ 𝑁̅  such that {𝑖, 𝑗} ∩

𝜑(𝒞𝑛−1) = 𝜙. Then, the same argument as in b) leads to a contradiction. Therefore, we have that 

|𝜑(𝒞𝑛−1)| ≥ 𝑛 − 1. Because the codomain is 𝔛𝑙, it follows that |𝜑(𝒞𝑛−1)| = 𝑛 − 1. Let us denote 

as {𝑖} = 𝑁̅ ∖ 𝜑(𝒞𝑛−1). This completes step 1.  

Next I am going to show that 𝜑 is identical to 𝜑−𝑖
1  for the individual 𝑖. To show this, I 

need to show the following: (e1) is shown in step 2 and (e2) will be shown in step 3. 

(e1). For any individual 𝑗 ∈ 𝑁̅ ∖ {𝑖} and for any ballot profile 𝒩 ∈ 𝔑, 𝑠𝑗(𝒩) ≥ 1 ⇔ 𝑗 ∈

𝜑(𝒩). 

(e2). For any ballot profile 𝒩 ∈ 𝔑, 𝑖 ∉ 𝜑(𝒩). 

Step 2: To show that 𝜑1(𝒩) ∖ {𝑖} ⊆ 𝜑(𝒩) . The “if” part of (e1) is obvious from NU. 
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Therefore, I will show the “only if” part. According to Lemma 7, I need only find, for each 𝑗 ∈ 𝑁̅ ∖

{𝑖}  and 𝑑 ∈ {1,2,… , 𝑛 − 1} , a ballot profile 𝒩 ∈ 𝔑  such that 𝑠𝑗(𝒩) = 𝑑  and 𝑗 ∈ 𝜑(𝒩) . Take 

any individual 𝑗 ∈ 𝑁̅ ∖ {𝑖}  and 𝑑 ∈ {1,2,… , 𝑛 − 1} . Consider a score profile 𝑠 = (𝑠1, … , 𝑠𝑛) ∈

{0,1,… , 𝑛 − 1}𝑛 as 𝑠𝑖 = 𝑛 − 1, 𝑠𝑗 = 𝑑, and 𝑠𝜇 = 0 for all 𝜇 ∈ 𝑁̅ ∖ {𝑖, 𝑗}. Because 𝑠𝑖 + 𝑠𝑗 = 𝑑 +

𝑛 − 1 ≥ 𝑛, it is certain that 𝑠 ∈ 𝕊[𝔑] by Lemma 8. Based on step 1 and Lemma 7, we obtain 𝑖 ∉

𝜑(𝑠). NU demands that (𝑁̅ ∖ {𝑖, 𝑗}) ∩ 𝜑(𝑠) = 𝜙. Because 𝜙 ∉ 𝔛𝑙, we have 𝜑(𝑠) = {𝑗}, while 𝑠𝑗 =

𝑑.  

Step 3: To show that 𝑖 ∉ 𝜑(𝒩)  for all 𝒩 ∈ 𝔑 . I show (e2) here. By Lemma 7, it is 

sufficient to find, for each 𝑑 = {0,1,… , 𝑛 − 1}, a ballot profile 𝒩 ∈ 𝔑 such that 𝑠𝑖(𝒩) = 𝑑 and 

𝑖 ∉ 𝜑(𝒩). The case of 𝑑 = 0 is straightforward from NU. Suppose 𝑑 ∈ {1,2,… , 𝑛 − 1}—we then 

have 𝒞𝑑 ∈ 𝔑. Furthermore, step 2 and Lemma 7 together show that (𝑁̅ ∖ {𝑖}) ⊆ 𝜑(𝒞𝑑). Because the 

codomain is 𝔛𝑙 and 𝑙 ≤ 𝑛 − 1, we have 𝑖 ∉ 𝜑(𝒞𝑑). ■ 

4) The Case of 𝕯 = 𝕹𝒌. 

a) Let 𝒍 < 𝒌 . WPU⇒Impossibility. Suppose a nomination rule 𝜑:𝔑 → 𝔛𝑙  exists that 

satisfies WPU. Let 𝑠 = (𝑠1, … , 𝑠𝑛)  be such that 𝑠𝜇 = 𝑛 − 1 for all 𝜇 ∈ {1,2,… , 𝑘} , 𝑠𝑘 = 𝑘 , and 

𝑠𝜇 = 0 for all 𝜇 ∈ {𝑘 + 1, 𝑘 + 2,… , 𝑛} . Because the sum of these is exactly 𝑛𝑘 , Lemma 8 

guarantees that 𝒩 ∈ 𝔑𝑘 exists such that 𝑠(𝒩) = 𝑠. WPU demands {1,2,… , 𝑘} ⊆ 𝜑(𝒩). However, 

𝑙 < 𝑘 implies {1,2,… , 𝑘} ∉ 𝔛𝑙. This is a contradiction. ■ 

b) Let 𝒍 = 𝒌 and 𝒏 = 𝟑. IMP and WPU⇒Impossibility. This case happens only if 𝑘 =

𝑙 = 1  (because we assumed 1 ≤ 𝑘 ≤ 𝑛 − 2 ). Suppose 𝜑(𝒞𝑘) = 𝜑(𝒞1) = {𝑖} . Consider 𝒩 ∈ 𝔑𝑘 

as 𝑁𝑖 = {𝑖 + 2̅̅ ̅̅ ̅̅ } and 𝑁𝜇 = 𝐶𝜇
1 for all 𝜇 ∈ 𝑁̅ ∖ {𝑖}. IMP demands 𝒞1 ~𝑖 𝒩, so we have 𝑖 ∈ 𝜑(𝒩). 

WPU demands 𝑖 + 2̅̅ ̅̅ ̅̅ ∈ 𝜑(𝒩) . Therefore, it follows {𝑖, 𝑖 + 2̅̅ ̅̅ ̅̅ } ⊆ 𝜑(𝒩) , which contradicts the 

codomain of 𝔛𝑙 = 𝔛1. ■ 

c) Let 𝒍 = 𝒌 and 𝒏 ≥ 𝟒. IMP and WPU.  I introduce two examples. The former is for 

𝑘 = 𝑙 ≤ 𝑛 − 3, while the latter is for 𝑘 = 𝑙 = 𝑛 − 2.  

c1) The case of 𝑘 = 𝑙 ≤ 𝑛 − 3. Take a pivotal individual 𝑖 ∈ 𝑁̅. For any ballot profile 𝒩 ∈

𝔑𝑘 , we define 𝑈𝒩 = {𝑗 ∈ 𝑁̅ ∖ {𝑖}│𝑗 ∈ 𝑁𝜇 for all 𝜇 ∈ 𝑁̅ ∖ {𝑖, 𝑗}}  as the set of individuals who 

obtain the maximum approvals from the individuals in 𝑁̅ ∖ {𝑖}. Therefore, we can also express 𝑈𝒩 

as follows: 

𝑈𝒩 = {𝑗 ∈ 𝑁̅ ∖ {𝑖}│𝑠𝑗
−𝑖(𝒩) = 𝑛 − 2}. 

Now, let us define a nomination rule 𝜑:𝔑𝑘 → 𝔛𝑙 as follows:  

For any ballot profile 𝒩 ∈ 𝔑𝑘,  

𝜑(𝒩) = {
𝑈𝒩 ∪ {𝑖} if |𝑈𝒩| < 𝑙, and
𝑈𝒩 otherwise.

 

Note that this rule is shown to satisfy WPU but it does not take into account all of the pivotal individual 
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𝑖’s ballots.  

To show that for any ballot profile 𝒩 ∈ 𝔑𝑘, 𝜑(𝒩) ∈ 𝔛𝑙. Take any ballot profile 𝒩 ∈ 𝔑𝑘. 

It is clear that 𝜑(𝒩) ≠ 𝜙. It is also clear that |𝜑(𝒩)| = |𝑈𝒩| + 1 ≤ 𝑙 holds whenever |𝑈𝒩| < 𝑙. 

Thus, we show that |𝜑(𝒩)| ≤ 𝑙 holds even if |𝑈𝒩| ≥ 𝑙. This is equivalent to showing that |𝑈𝒩| ≤

𝑙 for all 𝒩 ∈ 𝔑𝑘. Suppose to the contrary that |𝑈𝒩| ≥ 𝑙 + 1. Then, we have the following: 

∑ 𝑠𝑗
−𝑖(𝒩)

𝑗∈𝑁̅∖{𝑖}

≥ (𝑛 − 2)(𝑙 + 1). 

At the same time, the left-hand side is bounded above as follows: 

∑ 𝑠𝑗
−𝑖(𝒩)

𝑗∈𝑁̅∖{𝑖}

= ∑ |𝑁𝑗 ∖ {𝑖}|

𝑗∈𝑁̅∖{𝑖}

≤ ∑ 𝑘

𝑗∈𝑁̅∖{𝑖}

= (𝑛 − 1)𝑘. 

Therefore, it must be that: 

(𝑛 − 2)(𝑙 + 1) ≤ ∑ 𝑠𝑗
−𝑖(𝒩)

𝑗∈𝑁̅∖{𝑖}

≤ (𝑛 − 1)𝑘. 

However, the comparison of the right-hand side and the left-hand side gives the following: 

(𝑛 − 1)𝑘 − (𝑛 − 2)(𝑙 + 1) = −(𝑛 − 𝑙 − 2) < 0. 

The last inequality is given by 𝑙 ≤ 𝑛 − 3 ⇔ 𝑛 − 𝑙 − 3 ≥ 0. This contradiction proves that |𝑈𝒩| ≤ 𝑙.  

To show that 𝜑  satisfies IMP. Take any individual 𝑗 ∈ 𝑁̅  and 𝒩 = (𝑁𝑗, 𝑁−𝑗) ∈ 𝔑
𝑘 . I 

show that 𝑗 ∈ 𝜑(𝒩) ⇔ 𝑗 ∈ 𝜑(𝑁𝑗
′,𝑁−𝑗) for all 𝑁𝑗

′ ∈ 𝔑𝑘. If 𝑗 = 𝑖, this is obvious. So, I assume that 

𝑗 ∈ 𝑁̅ ∖ {𝑖}. Take any of 𝑗’s ballots, 𝑁𝑗
′ ∈ 𝔑𝑗 , and consider a ballot profile 𝒩′ = (𝑁𝑗

′, 𝑁−𝑗) ∈ 𝔑
𝑘. 

Note that 𝑠𝑗
−𝑖(𝒩) = 𝑠𝑗

−𝑖(𝒩′). So, we have 𝑗 ∈ 𝑈𝒩 ⇔ 𝑗 ∈ 𝑈𝒩′. According to the definition, whether 

𝑗 ∈ 𝑁̅ ∖ {𝑖} wins under the rule or not is entirely determined by whether 𝑗 belongs to 𝑈𝒩. Hence, 

we determine that 𝑗 ∈ 𝜑(𝒩) ⇔ 𝑗 ∈ 𝜑(𝒩′).  

To show that 𝜑 satisfies WPU. Take any non-pivotal individual 𝑗 ∈ 𝑁̅ ∖ {𝑖} and any ballot 

profile 𝒩 ∈ 𝔑𝑘. If 𝑠𝑗(𝒩) = 𝑛 − 1, then we have 𝑠𝑗
−𝑖(𝒩) = 𝑛 − 2, which implies 𝑗 ∈ 𝑈𝒩. So, we 

can say that 𝑗 ∈ 𝜑(𝒩).  

Let me show WPU on the pivotal individual 𝑖. Take any 𝒩 ∈ 𝔑𝑘 such that 𝑠𝑖(𝒩) = 𝑛 −

1 . Suppose to the contrary that 𝑖 ∉ 𝜑(𝒩) . It follows that |𝑈𝒩| = 𝑙  (recall that |𝑈𝒩| ≤ 𝑙 − 1 

implies 𝑖 ∈ 𝜑(𝒩)). Therefore, we can calculate the sum of individuals’ scores as follows: 

∑𝑠𝜇(𝒩)

𝑛

𝜇=1

= 𝑠𝑖(𝒩) + ∑ 𝑠𝑗(𝒩)

𝑗∈𝑁̅∖{𝑖}

 

= 𝑠𝑖(𝒩) + |𝑁𝑖| + ∑ 𝑠𝑗
−𝑖(𝒩)

𝑗∈𝑁̅∖{𝑖}

 

≥ 𝑛 − 1 + 𝑘 + (𝑛 − 2)𝑙 

= 𝑛𝑘 + 𝑛 − 𝑘 − 1 > 𝑛𝑘. 

This contradicts Lemma 8. Therefore, we obtain |𝑈𝒩| ≤ 𝑙 − 1  whenever 𝑠𝑖(𝒩) = 𝑛 − 1 , which 
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means 𝑖 ∈ 𝜑(𝒩). ■ 

c2) The case of 𝑘 = 𝑙 = 𝑛 − 2. I take a pivotal individual 𝑖 ∈ 𝑁̅ through this proof. I say 

that a ballot profile 𝒩 ∈ 𝔑𝑘 satisfies condition (⋆) if and only if:  

𝑠𝑖(𝒩)(= 𝑠𝑖
−𝑖(𝒩)) = 𝑛 − 2, and there is one (and only one) individual 𝑗 ∈ 𝑁̅ ∖ {𝑖} such 

that 𝑠𝑗
−𝑖(𝒩) = 𝑛 − 2 and 𝑠𝑙

−𝑖(𝒩) = 𝑛 − 3 for all 𝑙 ∈ 𝑁̅ ∖ {𝑖, 𝑗}. 

With this notation, let us define a nomination rule 𝜑:𝔑𝑘 → 𝔛𝑙 as for all 𝒩 ∈ 𝔑𝑘 as follows: 

𝜑(𝒩) = {
{𝜇 ∈ 𝑁̅│𝑠𝜇(𝒩) = 𝑛 − 1} ∪ {𝑖} if 𝒩 satisfies condition (⋆)

{𝜇 ∈ 𝑁̅│𝑠𝜇(𝒩) = 𝑛 − 1}.
 

I will show that this rule is well-defined and that it satisfies both IMP and WPU.  

To show that for any ballot profile 𝒩 ∈ 𝔑𝑘, 𝜑(𝒩) ≠ 𝜙. Take any 𝒩 ∈ 𝔑𝑘 and suppose 

𝜑(𝒩) = 𝜙. This can occur only if both the following hold: 

{𝜇 ∈ 𝑁̅│𝑠𝜇(𝒩) = 𝑛 − 1} = 𝜙, and 

𝒩 fails to satisfy condition (⋆). 

Now I will derive a contradiction from these statements. From the first one, it follows that:  

|{𝜇 ∈ 𝑁̅ ∖ {𝑖}│𝑠𝜇
−𝑖(𝒩) ≤ 𝑛 − 3}| ≥ 𝑘. 

(Otherwise, we cannot assign 𝑖’s ballot to 𝑁̅ ∖ {𝑖} without making someone’s score reach 𝑛 − 1.) 

Indeed, we can further say that the value of the left-hand side is exactly 𝑘. Suppose to the contrary 

that |{𝜇 ∈ 𝑁̅ ∖ {𝑖}│𝑠𝜇
−𝑖(𝒩) ≤ 𝑛 − 3}| = 𝑘 + 1(= 𝑛 − 1). Then, it follows that:  

∑𝑠𝜇
−𝑖(𝒩)

𝑛

𝜇=1

= 𝑠𝑖
−𝑖(𝒩) + ∑ 𝑠𝜇

−𝑖(𝒩)

𝜇∈𝑁̅∖{𝑖}

 

≤ 𝑛 − 2+ (𝑛 − 3)(𝑘 + 1) 

= 𝑘(𝑛 − 1) + 2(𝑛 − 𝑘) − 5 

< 𝑘(𝑛 − 1) − 1 < 𝑘(𝑛 − 1). 

However, we have also that: 

∑𝑠𝜇
−𝑖(𝒩)

𝑛

𝜇=1

= (∑𝑠𝜇(𝒩)

𝑛

𝜇=1

)− |𝑁𝑖| = 𝑛𝑘 − 𝑘 = 𝑘(𝑛 − 1). 

Clearly, this contradicts the inequality above. Thus, we can say that:  

|{𝜇 ∈ 𝑁̅ ∖ {𝑖}│𝑠𝜇
−𝑖(𝒩) ≤ 𝑛 − 3}| = 𝑘. 

Let us denote {𝜇 ∈ 𝑁̅ ∖ {𝑖}│𝑠𝜇
−𝑖(𝒩) ≤ 𝑛 − 3} = {𝑎1, … , 𝑎𝑘}  and {𝑗} = 𝑁̅ ∖

{𝑖, 𝑎1, 𝑎2,… , 𝑎𝑘} . Because 𝒩  does not satisfy the condition (⋆) , we can say that 

(𝑠𝑖
−𝑖(𝒩), 𝑠𝑗

−𝑖(𝒩)) ≠ (𝑛 − 2, 𝑛 − 2). Furthermore, because no one obtains the score of 𝑛 − 1 at the 

ballot profile 𝒩, it follows that:  
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𝑠𝑥
−𝑖(𝒩) ≤ 𝑛 − 2 for all 𝑥 ∈ {𝑖, 𝑗}, and 

𝑠𝑥
−𝑖(𝒩) < 𝑛 − 2 for some 𝑥 ∈ {𝑖, 𝑗}. 

So, we can take the sum of individuals’ scores as follows: 

∑𝑠𝜇(𝒩)

𝑛

𝜇=1

= |𝑁𝑖| + 𝑠𝑖
−𝑖(𝒩) + 𝑠𝑗

−𝑖(𝒩) +∑𝑠𝑎𝑥
−𝑖(𝒩)

𝑘

𝑥=1

 

< 𝑘 + 2(𝑛 − 2) + 𝑘(𝑛 − 3) = 𝑛𝑘. 

This contradicts Lemma 8.  

To show that for any ballot profile 𝒩 ∈ 𝔑𝑘, |𝜑(𝒩)| ≤ 𝑙. Take any 𝒩 ∈ 𝔑𝑘 and suppose 

|𝜑(𝒩)| ≥ 𝑙 + 1. I will consider two distinct cases here.  

The first case is {𝜇 ∈ 𝑁̅│𝑠𝜇(𝒩) = 𝑛 − 1} ≥ 𝑙 + 1. The sum of the scores is calculated as 

follows: 

∑𝑠𝜇(𝒩)

𝑛

𝜇=1

≥ (𝑛 − 1)(𝑙 + 1) 

     = 𝑛𝑘 + (𝑛 − 𝑙 + 1) > 𝑛𝑘. 

The last inequality is given by the assumption of 𝑘 = 𝑙 = 𝑛 − 2. This result contradicts Lemma 8.  

The second case is {𝜇 ∈ 𝑁̅│𝑠𝜇(𝒩) = 𝑛 − 1} = 𝑙  and 𝒩  satisfies condition (⋆) . 

However, it is clear from the condition (⋆)  that there is at most one individual who obtains the 

unanimous score of 𝑛 − 1. Therefore, it follows that 𝑙 = 1. With 𝑙 = 𝑛 − 2, we have 𝑛 = 3, which 

contradicts our assumption of 𝑛 ≥ 4.  

To show that 𝜑 satisfies IMP. Take any 𝜇 ∈ 𝑁̅ and ballot profiles 𝒩 = (𝑁𝜇 ,𝑁−𝜇),𝒩
′ =

(𝑁𝜇
′ , 𝑁−𝜇) ∈ 𝔑

𝑘 . If 𝜇 ∈ 𝑁̅ ∖ {𝑖} , it is easy to see that 𝑠𝜇
−𝑖(𝒩) = 𝑠𝜇

−𝑖(𝒩′) , which implies 𝜇 ∈

𝜑(𝒩) ⇔ 𝜇 ∈ 𝜑(𝒩′). Suppose 𝜇 = 𝑖. Note that 𝑖 ∈ 𝜑(𝒩) if and only if:  

𝑠𝑖(𝒩) = 𝑛 − 1, or 

𝒩 satisfies condition (⋆). 

Now, it is clear that 𝑖’s choice of 𝑁𝑖 or 𝑁𝑖
′ does not affect these statements: 

𝑠𝑖(𝒩) = 𝑠𝑖(𝒩
′), and 

𝒩 satisfies condition (⋆) ⇔ 𝒩′ satisfies condition (⋆). 

Therefore, we have 𝑖 ∈ 𝜑(𝒩) ⇔ 𝑖 ∈ 𝜑(𝒩′).  

To show that 𝜑 satisfies WPU. Because {𝜇 ∈ 𝑁̅│𝑠𝜇(𝒩) = 𝑛 − 1} ⊆ 𝜑(𝒩) for all 𝒩 ∈

𝔑𝑘, the nomination rule 𝜑 satisfies WPU. ■ 

 d) Let 𝒍 = 𝒌. IMP, AB, and WPU⇒Impossibility. Suppose a nomination rule 𝜑:𝔑𝑘 → 𝔛𝑙 

exists that satisfies the three axioms. Take any individual 𝑖 ∈ 𝑁̅ and consider an 𝑛-tuple of integers 

𝑠 = (𝑠1, 𝑠2, … , 𝑠𝑛) ∈ {0,1,… , 𝑛 − 1}
𝑛 as follows: 

𝑠𝑖 = 𝑘, 

𝑠𝜇 = 𝑛 − 1 for all 𝜇 ∈ {𝑖 + 1̅̅ ̅̅ ̅̅ , 𝑖 + 2̅̅ ̅̅ ̅̅ , … , 𝑖 + 𝑘̅̅ ̅̅ ̅̅ }, and 
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𝑠𝜇 = 0 for all 𝜇 ∈ {𝑖 + 𝑘 + 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , … , 𝑖 + 𝑛 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ }. 

Note that Lemma 8 assures us that 𝑠 ∈ 𝕊[𝔑𝑘] . Because 𝜑  satisfies WPU, it follows that 

{𝑖 + 1̅̅ ̅̅ ̅̅ , … , 𝑖 + 𝑘̅̅ ̅̅ ̅̅ } ⊆ 𝜑(𝑠) . Because |𝜑(𝑠)| ≤ 𝑙 = 𝑘 , we can further say that 𝑖 ∉ 𝜑(𝑠) =

{𝑖 + 1̅̅ ̅̅ ̅̅ , … , 𝑖 + 𝑘̅̅ ̅̅ ̅̅ }. With Lemma 7, we can say that 𝑖 ∉ 𝜑(𝒞𝑘). Because 𝑖 was arbitrary, it follows that 

𝜑(𝒞𝑘) = 𝜙, which contradicts 𝜙 ∉ 𝔛𝑙. ■ 

 e) Let 𝒍 > 𝒌. IMP, AB, and WPU. Take a pivotal individual 𝑖 ∈ 𝑁̅. Let 𝜑:𝔑k → 𝔛𝑙 as 

follows. For any ballot profile 𝒩 ∈ 𝔑𝑘,  

𝜑(𝒩) = {𝑖} ∪ {𝜇 ∈ 𝑁̅│𝑠𝜇(𝒩) = 𝑛 − 1}. 

Because we have (𝑛 − 1)𝑘 < 𝑛𝑘 < (𝑛 − 1)(𝑘 + 1), Lemma 8 shows that there is no 𝒩 ∈ 𝔑𝑘 such 

that |{𝜇 ∈ 𝑁̅│𝑠𝜇(𝒩) = 𝑛 − 1}| ≥ 𝑘 + 1 . Therefore, for all 𝒩 ∈ 𝔑𝑘 , we have 1 ≤ |{𝑖} ∪ {𝜇 ∈

𝑁̅│𝑠𝜇(𝒩) = 𝑛 − 1}| ≤ 𝑘 + 1 ≤ 𝑙. This shows that the rule is well-defined on the setting (𝔑𝑘, 𝔛𝑙). 

Furthermore, we can easily determine if this rule satisfies IMP, AB, and WPU. Note that this rule fails 

to satisfy NU. ■ 

 

Notes on Proposition 13 

1) Let 𝕯 = 𝕹𝒔𝒆𝒍𝒇 and 𝖃 = 𝖃𝒍. IMP but not AB.  

𝜑(𝒩) = {
𝑁1 ∩ {2} if it is nonempty, and
{3} otherwise.

  

2) Let 𝕯 = 𝕹𝒔𝒆𝒍𝒇 and 𝖃 = 𝖃𝒍. AB but not IMP. Let 𝜑 be the nomination rule that chooses those 

who get the highest scores among {1,2,… , 𝑙}.  

3) Let 𝕯 = 𝕹𝑨𝑩 and 𝖃 = 𝖃𝒍. IMP, AB, but not NU: The constant rule 𝑐𝑜𝑛𝑋(𝑋 ∈ 𝔛
𝑙).  

4) Let 𝕯 = 𝕹𝑨𝑩 and 𝖃 = 𝖃𝒍. IMP, NU, but not AB: The bilateral edge scan mechanism.  

5) Let 𝕯 = 𝕹𝑨𝑩 and 𝖃 = 𝖃𝒍. AB, NU, but not IMP.  

𝜑(𝒩)

= {
𝜑1(𝒩) if its cardinality is at most 𝑙

those who have the minimum index among 𝜑1(𝒩) otherwise
 

6) Let 𝕯 = 𝕹𝑨𝑩 and 𝖃 = 𝖃𝒍, where 𝒍 = 𝟏. IMP but not AB. Take a pivotal individual 𝑖 ∈ 𝑁̅ 

and define 𝜑:𝔑𝐴𝐵 → 𝔛𝑙 as follows: 

𝜑(𝒩) = {
{𝑖 + 1̅̅ ̅̅ ̅̅ }   if 𝑁𝑖 ≠ 𝜙, and

{𝑖 + 2̅̅ ̅̅ ̅̅ } otherwise.
 

7) Let 𝕯 = 𝕹 and 𝖃 = 𝖃𝒍, where 𝒍 ≤ 𝒏 − 𝟐. IMP and AB: The constant rule 𝑐𝑜𝑛𝑋  (𝑋 ∈ 𝔛
𝑙).  

8) Let 𝕯 = 𝕹 and 𝖃 = 𝖃𝒍, where 𝒍 ≤ 𝒏 − 𝟐. AB and NU: Let 𝜑 be the nomination rule that 

chooses the individual with the minimum index among 𝐹𝒩.  

9) Let 𝕯 = 𝕹 and 𝖃 = 𝖃𝒍, where 𝒍 ≤ 𝒏 − 𝟐. NU and IMP: Let 𝜑 be the nomination rule that 

chooses the individual with the minimum index among 𝑁1.  

10) Let 𝕯 = 𝕹 and 𝖃 = 𝖃𝒍, where 𝒍 = 𝒏 − 𝟏. IMP and AB, but not NU: The rule in 7).  
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11) Let 𝕯 = 𝕹 and 𝖃 = 𝖃𝒍, where 𝒍 = 𝒏 − 𝟏. IMP and NU, but not AB: The rule in 9).  

12) Let 𝕯 = 𝕹 and 𝖃 = 𝖃𝒍, where 𝒍 = 𝒏 − 𝟏. AB and NU, but not IMP: The rule in 8).  

13) Let 𝕯 = 𝕹𝒌 and 𝖃 = 𝖃𝒍, where 𝒍 = 𝒌 and 𝒏 = 𝟑. IMP: The constant rule 

𝑐𝑜𝑛𝑋 (𝑋 ∈ 𝔛
𝑙).  

14) Let 𝕯 = 𝕹𝒌 and 𝖃 = 𝖃𝒍, where 𝒍 = 𝒌 and 𝒏 = 𝟑. WPU. Note that the condition imply 

𝑙 = 𝑘 = 1. Clearly, it follows that there is at most one individual that has a score of 𝑛 − 1 = 2. 

Thus, let 

𝜑(𝒩) = {
{𝑖 ∈ 𝑁̅│𝑠𝑖(𝒩) = 2} if it is nonempty, and 

{1} otherwise.
 

15) Let 𝕯 = 𝕹𝒌 and 𝖃 = 𝖃𝒍, where 𝒍 = 𝒌 and 𝒏 ≥ 𝟒. IMP and AB: The constant rule 

𝑐𝑜𝑛𝑋 (𝑋 ∈ 𝔛
𝑙).  

16) Let 𝕯 = 𝕹𝒌 and 𝖃 = 𝖃𝒍, where 𝒍 = 𝒌 and 𝒏 ≥ 𝟒. AB and WPU. Because there are at 

most 𝑘 individuals who have the maximum score 𝑛 − 1 at any score profile, we can assign 𝜑(𝑠) 

for each score profile 𝑠 ∈ 𝕊[𝔑𝑘] so that 1 ≤ |𝜑(𝑠)| ≤ 𝑙 and {𝑖 ∈ 𝑁̅│𝑠𝑖(𝒩) = 𝑛 − 1} ⊆ 𝜑(𝑠). 

Therefore, a nomination rule meeting the requirements can be constructed.  

 

Proof of Proposition 14 

Proof of [1]. Let 𝔇 = 𝔑,𝔑𝑠𝑒𝑙𝑓, 𝔑𝐴𝐵, 𝔑𝑘 (2 ≤ 𝑘 ≤ 𝑛 − 3) and 𝔛 = 𝔛̅. Suppose a nomination rule 

𝜑:𝔇 → 𝔛̅ exists that satisfies IMP, AB, ND, and weak 2CP. Take any 𝑖 ∈ 𝑁̅. According to ND, 

there exist 𝒩 = (𝑁𝑖, 𝑁−𝑖),𝒩
′ = (𝑁𝑖

′,𝑁−𝑖) ∈ 𝔇 and 𝑗 ∈ 𝑁̅ such that 𝑗 ∈ 𝜑(𝒩) and 𝑗 ∉ 𝜑(𝒩′). 

Note that IMP demands 𝑗 ≠ 𝑖. In addition, considering Lemma 7, there are only two possible cases: 

(1) 𝑗 ∈ 𝑁𝑖 and 𝑗 ∉ 𝑁𝑖
′, and (2) 𝑗 ∉ 𝑁𝑖 and 𝑗 ∈ 𝑁𝑖

′, because otherwise it follows that 𝑠𝑗(𝒩) =

𝑠𝑗(𝒩
′), which implies 𝒩 ~𝑗 𝒩

′ by Lemma 7. Then by ND and IMP, there is also ℳ =

(𝑀𝑗,𝑀−𝑗),ℳ
′ = (𝑀𝑗

′,𝑀−𝑗) ∈ 𝔇 and 𝑙 ∈ 𝑁̅ ∖ {𝑗} such that 𝑙 ∈ 𝜑(ℳ) and 𝑙 ∉ 𝜑(ℳ′). here we 

also have only two possible cases: (a) 𝑙 ∈ 𝑀𝑗 and 𝑙 ∉ 𝑀𝑗
′, and (b) 𝑙 ∉ 𝑀𝑗 and 𝑙 ∈ 𝑀𝑗

′.  

Now there are four possibilities: (1)&(a), (1)&(b), (2)&(a), and (2)&(b). The proof is 

completed if a contradiction is derived from each of the four. I show this only for (2) and (b), 

because the other three cases can be demonstrated in a similar way. Let 𝑑𝑗 + 1 ≔ 𝑠𝑗(𝒩
′)(=

𝑠𝑗(𝒩) + 1) and 𝑑𝑙 + 1 ≔ 𝑠𝑙(ℳ
′)(= 𝑠𝑙(ℳ) + 1). Then, we have 1 ≤ 𝑑𝑗 + 1 ≤ 𝑛 − 1 and 1 ≤

𝑑𝑙 ≤ 𝑛 − 1. I label the other individuals as 𝑁̅ ∖ {𝑗, 𝑙} = {𝑎1,… , 𝑎𝑛−2}. Because 𝑛 ≥ 4, this set 𝑁̅ ∖

{𝑗, 𝑙} has at least two elements 𝑎1, 𝑎2.  

  For any 𝜇 ∈ {𝑎1, … , 𝑎𝑛−2}, there exist three subsets 𝐴𝜇
𝑘−2, 𝐴𝜇

𝑘−1, 𝐴𝜇
𝑘 ⊆ {𝑎1,… , 𝑎𝑛−2} such 

that: 

𝜇 ∉ 𝐴𝜇
𝑥 and |𝐴𝜇

𝑥| = 𝑥 (𝑥 = 𝑘 − 2, 𝑘 − 1, 𝑘). 

This is because 2 ≤ 𝑘 implies 𝑥 ≥ 0 and 𝑘 ≤ 𝑛 − 2 implies |{𝑎1, … , 𝑎𝑛−2}| = 𝑛 − 2 ≥ 𝑘 + 1 >

𝑘. Because 𝑑𝑗, 𝑑𝑙 ≤ 𝑛 − 2, we can also take two subsets 𝐽, 𝐿 ⊆ 𝑁̅ ∖ {𝑗, 𝑙} such that |𝐽| = 𝑑𝑗 and 
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|𝐿| = 𝑑𝑙. With these subsets, we can define 𝒩1 = (𝑁1
1, … ,𝑁𝑛

1) ∈ 𝔑𝑘 ⊆ 𝔑 = 𝔑𝐴𝐵 ∩𝔑𝑠𝑒𝑙𝑓 as 

follows: 

𝑁𝑗
1 = {𝑙} ∪ {𝑎𝜇: 1 ≤ 𝜇 ≤ 𝑘 − 1}, 

𝑁𝑙
1 = {𝑗} ∪ {𝑎𝜇: 1 ≤ 𝜇 ≤ 𝑘 − 1}, 

𝑁𝜇
1 = {𝑗, 𝑙} ∪ 𝐴𝜇

𝑘−2 for all 𝜇 ∈ 𝐽 ∩ 𝐿, 

𝑁𝜇
1 = {𝑗} ∪ 𝐴𝜇

𝑘−1 for all 𝜇 ∈ 𝐽 ∖ 𝐿, 

𝑁𝜇
1 = {𝑙} ∪ 𝐴𝜇

𝑘−1 for all 𝜇 ∈ 𝐿 ∖ 𝐽, and 

𝑁𝜇
1 = 𝐴𝜇

𝑘 for all 𝜇 ∈ 𝑁̅ ∖ (𝐽 ∪ 𝐿 ∪ {𝑗, 𝑙}).  

It is clear that |𝑁𝜇
1| = 𝑘 for all 𝜇 ∈ 𝑁̅. Thus, 𝒩1 is a ballot profile. Note that 𝑗 ∈ 𝑁𝑙

1 and 𝑙 ∈

𝑁𝑗
1. With Lemma 7, 𝑗 ∉ 𝜑(𝒩′) and 𝑙 ∉ 𝜑(ℳ′), we have 𝑗 ∉ 𝜑(𝒩1) and 𝑙 ∉ 𝜑(𝒩1). Because 

𝑎𝑘 ∈ {𝑎1, … , 𝑎𝑛−2} ∖ (𝑁𝑗
1 ∪ 𝑁𝑙

1), we can define a ballot profile 𝒩2 = (𝑁1
2, … ,𝑁𝑛

2) ∈ 𝔇 as follows: 

𝑁𝑗
2 = (𝑁𝑗

1 ∪ {𝑎𝑘}) ∖ {𝑙}, 

𝑁𝑙
2 = (𝑁𝑙

1 ∪ {𝑎𝑘}) ∖ {𝑗}, and 

𝑁𝜇
2 = 𝑁𝜇

1 for all 𝜇 ∈ 𝑁̅ ∖ {𝑗, 𝑙}. 

Because we have 𝑠𝑗(𝒩
2) = 𝑠𝑗(𝒩), 𝑠𝑙(𝒩

2) = 𝑠𝑙(ℳ), and Lemma 7, it follows that 𝑗 ∈ 𝜑(𝒩2) 

and 𝑙 ∈ 𝜑(𝒩2). The comparison between 𝒩1 and 𝒩2 contradicts weak 2CP. ■ 

Proof of [2]. Note that if 𝑛 = 3, we have 𝑘 = 1 ⇔ 𝑛 − 2 = 𝑘. So, the case of 𝑛 = 3 is a special 

case of [3] (below).  

a) IMP, AB, ND, and weak 2CP.  First, I propose a nomination rule that satisfies the four 

axioms. Take any 𝑖 ∈ 𝑁̅ and let:  

𝜑(𝒩) = {𝑖} ∪ {𝑗 ∈ 𝑁̅ ∖ {𝑖}│𝑠𝑗(𝒩) = 𝑛 − 1}. 

Clearly this rule has the necessary properties. Furthermore, it satisfies WPU. ■ 

b) IMP, AB, NU, and weak 2CP⇒Impossibility. 

b1) The case of |𝜑(𝒞1)| ≥ 2. Let 𝑖, 𝑗 ∈ 𝜑(𝒞1) be two distinct winners at 𝒞1. Because 

𝑛 ≥ 4, there are distinct individuals 𝛼, 𝛽 ∈ 𝑁̅ ∖ {𝑖, 𝑗}. Let us consider a score profile 𝑠 =

(𝑠1, … , 𝑠𝑛) ∈ {0,1,… , 𝑛 − 1}
𝑛 as 𝑠𝑖 = 𝑠𝑗 = 0, 𝑠𝛼 = 𝑠𝛽 = 2, and 𝑠𝛾 = 1 for all 𝛾 ∈ 𝑁̅ ∖

{𝑖, 𝑗, 𝛼, 𝛽}. With Lemma 8, 𝒩3 ∈ 𝔑𝑘 exists such that 𝑠(𝒩3) = 𝑠. Because 𝑠𝑖(𝒩
3) = 𝑠𝑗(𝒩

3) =

0, NU demands that {𝑖, 𝑗} ∩ 𝜑(𝒩3) = 𝜙. Furthermore, 𝑖 ∉ 𝑁𝑗
3 and 𝑗 ∉ 𝑁𝑖

3. Let 𝑁𝑖
3 = {𝑢} and 

𝑁𝑗
3 = {𝑣}. Let 𝒩4 ∈ 𝔑𝑘 be such that:  

𝑁𝑖
4 = (𝑁𝑖

3 ∪ {𝑗}) ∖ {𝑢}, 

𝑁𝑗
4 = (𝑁𝑗

3 ∪ {𝑖}) ∖ {𝑣}, and 

𝑁𝜇
4 = 𝑁𝜇

3 for all 𝜇 ∈ 𝑁̅ ∖ {𝑖, 𝑗}. 

Then, because 𝑠𝑖(𝒩
4) = 𝑠𝑖(𝒞

1) = 𝑠𝑗(𝒩
4) = 𝑠𝑗(𝒞

1) = 1, Lemma 7 implies that 𝑖 ∈ 𝜑(𝒩4) and 

𝑗 ∈ 𝜑(𝒩4). This contradicts weak 2CP.  

b2) The case of |𝜑(𝒞1)| = 1. Let 𝜑(𝒞1) = {𝑖}. Consider a ballot profile 𝒩5 ∈ 𝔑𝑘 as: 

𝑁𝑖−1̅̅ ̅̅ ̅
5 = (𝐶𝑖−1̅̅ ̅̅ ̅

1 ∪ {𝑖 + 1̅̅ ̅̅ ̅̅ }) ∖ {𝑖}, and 
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𝑁𝜇
5 = 𝐶𝜇

1 for all 𝜇 ∈ 𝑁̅ ∖ {𝑖 − 1̅̅ ̅̅ ̅̅ }. 

Because 𝑠𝜇(𝒞
1) = 𝑠𝜇(𝒩

5) for all 𝜇 ∈ 𝑁̅ ∖ {𝑖, 𝑖 + 1̅̅ ̅̅ ̅̅ }, Lemma 7 and 𝜑(𝒞1) = {𝑖} show that 

𝜑(𝒩5) ⊆ {𝑖, 𝑖 + 1̅̅ ̅̅ ̅̅ }. Because NU demands 𝑖 ∉ 𝜑(𝒩5), we have 𝜑(𝒩5) = {𝑖 + 1̅̅ ̅̅ ̅̅ }. With Lemma 7, 

we can see that 𝑖 loses at score 0 and wins at score 1, while 𝑖 + 1̅̅ ̅̅ ̅̅  wins at score 0 but loses at 

score 1.  

Let us consider 𝒩6 ∈ 𝔑𝑘, where 𝑁𝑖−1̅̅ ̅̅ ̅
6 = {𝑖 + 1̅̅ ̅̅ ̅̅ }, 𝑁𝑖

6 = {𝑖 + 2̅̅ ̅̅ ̅̅ }, and 𝑁𝜇
6 = 𝐶𝜇

1 for all 

𝜇 ≠ 𝑖 − 1̅̅ ̅̅ ̅̅ , 𝑖. Because 𝑠𝑖(𝒩
6) = 0 and 𝑠𝑖+1̅̅ ̅̅ ̅(𝒩6) = 𝑠𝑖+1̅̅ ̅̅ ̅(𝒞1) = 1, NU and Lemma 7 show that 

𝑖 ∉ 𝜑(𝒩6) and 𝑖 + 1̅̅ ̅̅ ̅̅ ∉ 𝜑(𝒩6). Next, let 𝒩7 ∈ 𝔑𝑘 be such that 𝑁𝑖
7 = {𝑖 + 1̅̅ ̅̅ ̅̅ }, 𝑁𝑖+1̅̅ ̅̅ ̅

7 = {𝑖}, and 

𝑁𝜇
7 = 𝑁𝜇

6 for all 𝜇 ≠ 𝑖, 𝑖 + 1̅̅ ̅̅ ̅̅ . Because 𝑠𝑖(𝒩
7) = 𝑠𝑖(𝒞

1) = 1 and 𝑠𝑖+1̅̅ ̅̅ ̅(𝒩7) = 𝑠𝑖+1̅̅ ̅̅ ̅(𝒩5) = 2, 

Lemma 7 shows that {𝑖, 𝑖 + 1̅̅ ̅̅ ̅̅ } ⊆ 𝜑(𝒩7). The comparison between 𝒩6 and 𝒩7 contradicts weak 

2CP. ■ 

Proof of [3]. It is clear that 𝜑1:𝔑𝑘 → 𝔛̅ satisfies IMP, AB, 2CN, NU, and WPU. I will show this 

for the other axioms.  

a) ND. Take any 𝑖 ∈ 𝑁̅. Let 𝑠𝑖 = ⋯ = 𝑠𝑖+𝑛−3̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝑛 − 1, 𝑠𝑖+𝑛−2̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝑘(= 𝑛 − 2), and 

𝑠𝑖+𝑛−1̅̅ ̅̅ ̅̅ ̅̅ ̅ = 0. Clearly, this makes a score profile in 𝔑𝑘, where 𝑘 = 𝑛 − 2. The individual 𝑖 can 

change the result by approving 𝑖 + 𝑛 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  instead of someone else. ■ 

b) Weak 2CP. Take a distinct 𝑖, 𝑗 ∈ 𝑁̅. The proof is complete if we can show that there is 

no 𝒩 ∈ 𝔑𝑛−2 such that 𝑠𝑖(𝒩) = 𝑠𝑗(𝒩) = 0. From the score profile 𝑠 defined above in a), this 

fact is obvious. ■ 

 

Proof of Proposition 15 

Let us assume to the contrary that there exists an impartial nomination rule, denoted 𝜑:𝔇 → 𝔛𝑙 of 

rank 𝑛 − 1. I first show the case of 𝑙 = 1, and then I will show the other case of 𝑙 ≥ 2.  

 

Proof of Proposition 15 when 𝒍 = 𝟏. 

The proof will be done with three steps. The first step is to define a special class of ballot profiles, 

denoted by 𝑉𝑚
𝑗
⊆ 𝔇, where 𝑉𝑛−1

𝑗
⊂ 𝑉𝑛−2

𝑗
⊂ ⋯ ⊂ 𝑉𝑚

𝑗
⊂ ⋯ ⊂ 𝑉1

𝑗
⊂ 𝑉0

𝑗
. In the second step, I will 

show that if there exists a nomination rule of rank 𝑛 − 1, then 𝑗 ∈ 𝜑(𝒩) holds for any ballot 

profile 𝒩 ∈ 𝑉𝑚
𝑗
, through a downward induction on 𝑚. Finally, I will derive a contradiction in the 

third step. |𝜑(⋅)| = 1, and so I often write 𝜑(⋅) = 𝑖 instead of 𝜑(⋅) = {𝑖} within this proof.  

 

Step 1: Define the Class of Ballot Profiles 𝑽𝒎
𝒋
⊂ 𝕯 for any 𝒎 ∈ {𝟎,𝟏,… , 𝒏 − 𝟏} and 𝒋 ∈ 𝑵̅ 

First, I introduce some new notation. For any individual 𝑗 ∈ 𝑁̅, I call a permutation over 𝑁̅ ∖ {𝑗} an 

(𝑛 − 1)-tuple  

𝒾 = (𝑖1, … , 𝑖𝑛−1) 
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of individuals in 𝑁̅ ∖ {𝑗}, if {𝑖1, … , 𝑖𝑛−1} = 𝑁̅ ∖ {𝑗}. When an integer 𝑚 ∈ {0,1,… , 𝑛 − 1} and a 

permutation 𝒾 over 𝑁̅ ∖ {𝑗} are given, I write  

𝒜 = (𝐴1, … , 𝐴𝑇) 

as a partition of 𝑁̅ ∖ {𝑗, 𝑖1, … , 𝑖𝑚} if there exist 𝑎𝑡 , 𝑏𝑡 ∈ 𝑁̅ ∖ {𝑗, 𝑖1, … , 𝑖𝑚} (1 ≤ 𝑡 ≤ 𝑇) such that:  

𝑎𝑡 ≤ 𝑏𝑡 (1 ≤ 𝑡 ≤ 𝑇), 

𝑎𝑡+1 = 𝑏𝑡 + 1 (1 ≤ 𝑡 ≤ 𝑇 − 1), and 

𝐴𝑡 = {𝑖𝜇 ∈ 𝑁̅ ∖ {𝑗}│𝑎𝑡 ≤ 𝜇 ≤ 𝑏𝑡} (1 ≤ 𝑡 ≤ 𝑇). 

I denote this 𝑎𝑡 and 𝑏𝑡 as the maximum index and minimum index of the set 𝐴𝑡, respectively. If 

𝑚 = 𝑛 − 1, I define 𝒜 = (𝜙) as the unique partition over 𝑁̅ ∖ {𝑗, 𝑖1, … , 𝑖𝑚}. Please note that I use 

the term “partition” with a slightly restricted meaning within this proof.  

To make this notation familiar to the reader, I will show an example. Suppose 𝑛 = 6, or 𝑁̅ =

{1,2,3,4,5,6}, and 𝑗 = 3. Then a permutation 𝒾 over 𝑁̅ ∖ {𝑗} is the way we array the individuals in 

𝑁̅ ∖ {𝑗} = {1,2,4,5,6}. For instance, 𝒾 = (𝑖1, 𝑖2, … , 𝑖𝑛−1) = (𝑖1, 𝑖2, 𝑖3, 𝑖4, 𝑖5) defined as: 

𝑖1 = 2, 𝑖2 = 4, 𝑖3 = 5, 𝑖4 = 1, and 𝑖5 = 6 

makes a permutation over 𝑁̅ ∖ {𝑗}. For this permutation and 𝑚 = 2, a partition over 𝑁̅ ∖

{𝑗, 𝑖1,… , 𝑖𝑚} = 𝑁̅ ∖ {𝑗, 𝑖1, 𝑖2} = {𝑖3, 𝑖4, 𝑖5} is how we divide the set {𝑖3, 𝑖4, 𝑖5} into pieces without 

breaking the index order. For example, the following are both partitions over 𝑁̅ ∖ {𝑗, 𝑖1, … , 𝑖𝑚}: 

𝒜 = (𝐴1, 𝐴2, 𝐴3) = ({𝑖3}, {𝑖4}, {𝑖5}) 

𝒜′ = (𝐴1, 𝐴2) = ({𝑖3}, {𝑖4, 𝑖5}). 

However,  

𝒜′′ = (𝐴1, 𝐴2) = ({𝑖3, 𝑖5}, {𝑖4}) 

is NOT a partition over 𝑁̅ ∖ {𝑗, 𝑖1, … , 𝑖𝑚}. The reason this is not a partition (in our meaning) is that 

𝑖4 is skipped in 𝐴1. So, incorporating 𝑖4 into 𝐴1 we get  

𝒜′′′ = (𝐴1) = ({𝑖3, 𝑖4, 𝑖5}) 

that is actually a partition.  

For the second partition given above, 𝒜′, the maximum and minimum indices are: 

𝑎1
′ (= the minimum index of 𝐴1

′ ) = 3, 𝑏1
′(= the maximum index of 𝐴1

′ ) = 3 

𝑎2
′ (= the minimum index of 𝐴2

′ ) = 4, 𝑏2
′(= the minimum index of 𝐴2

′ ) = 5. 

Take any individual 𝑗 ∈ 𝑁̅, a permutation 𝒾 = (𝑖1, … , 𝑖𝑛−1) over 𝑁̅ ∖ {𝑗}, and a partition 𝒜 =

(𝐴1,… , 𝐴𝑇) of 𝑁̅ ∖ {𝑗, 𝑖1, … , 𝑖𝑚} for 𝑚 ∈ {0,1,… , 𝑛 − 1}. Now, we define a ballot profile 

𝑉𝑚
𝑗[𝒾;𝒜] ∈ 𝔇. Note that this ballot profile 𝑉𝑚

𝑗[𝒾;𝒜] is made up of (𝑚 + 𝑡) “rings”. For the first 

𝑚 individuals 𝑖1, … , 𝑖𝑚, each of them and 𝑗 approves each other. For the rest of the individuals, 

each subset 𝐴𝑡 with 𝑗 makes a 1-cyclic ballot sub-profile: 𝑗 approves 𝑖𝑎𝑡, 𝑖𝑎𝑡 approves 𝑖𝑎𝑡+1, 

…, 𝑖𝑏𝑠−1 approves 𝑖𝑏𝑠, and 𝑖𝑏𝑠 approves 𝑗. Formally stated, the ballot profile 𝑉𝑚
𝑗[𝒾;𝒜] =

(𝑁1, … , 𝑁𝑛) is defined as follows: 

𝑁𝑗 = {𝑖𝜇│1 ≤ 𝜇 ≤ 𝑚} ∪ {𝑖𝑎1, … , 𝑖𝑎𝑇}, 
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𝑁𝑖𝜇 = {𝑗} if 1 ≤ 𝜇 ≤ 𝑚, 

𝑁𝑏𝑡 = {𝑗} for all 1 ≤ 𝑡 ≤ 𝑇, and 

𝑁𝑖𝜇 = {𝑖𝜇+1} for all 𝜇 ∈ 𝑁̅ ∖ ({𝑗, 𝑏1, … , 𝑏𝑡} ∪ {𝜇│1 ≤ 𝜇 ≤ 𝑚}). 

Then we define 𝑉𝑚
𝑗[𝒾] as: 

𝑉𝑚
𝑗[𝒾] ≔ {𝑉𝑚

𝑗[𝒾;𝒜]│𝒜 is a partition of {𝑖𝜇 ∈ 𝑁̅│𝑚 + 1 ≤ 𝜇 ≤ 𝑛}}. 

Furthermore, we define 𝑉𝑚
𝑗
 as: 

𝑉𝑚
𝑗
≔⋃{𝑉𝑚

𝑗[𝒾]│𝒾 is a permutation of 𝑁̅ ∖ {𝑗}}. 

 

 

Step 2: Induction on 𝒎 

I select an arbitrary individual, fixed as 𝑗 ∈ 𝑁̅ till the end of this step. I am going to show that 𝑗 is 

the winner in all of the ballot profiles in 𝑉0
𝑗
 by an induction on 𝑚 in a descending order. Thus, this 

step is made up of two parts: the first is to show the case of 𝑚 = 𝑛 − 1, and the second is to 

construct the induction.  

 

[1] The Case of 𝒎 = 𝒏− 𝟏 

I show that 𝜑(𝒩) = 𝑗 for all ballot profiles 𝒩 ∈ 𝑉𝑛−1
𝑗

. Note that there is only one ballot profile 

𝑉𝑛−1
𝑗 [𝒾] =: (𝑁1,… ,𝑁𝑛) = 𝒩 because the partition 𝒜 is uniquely (𝜙). Suppose to the contrary that 

𝜑(𝒩) = 𝑖 ≠ 𝑗. Consider a ballot profile 𝒩′ ∈ 𝔇 as 𝑁𝑖
′ = 𝑁̅ ∖ {𝑖} and 𝑁−𝑖

′ = 𝑁−𝑖. Then, IMP 

demands 𝜑(𝒩′) = 𝑖. However, 𝑖′s score ranking at 𝒩′ can be found as 𝑟𝑖(𝒩
′) = 𝑛. 

Contradiction. So, we can conclude that 𝜑(𝒩) = 𝑗.  

 

[2] Induction Part 

Take any 𝑚 ∈ {0,1,… , 𝑛 − 2}. Assume that 𝜑(𝒩) = 𝑗 for all 𝒩 ∈ 𝑉𝑚+1
𝑗
(⊆ 𝑉𝑚+2

𝑗
⊆ ⋯ ⊆ 𝑉𝑛−1

𝑗
). 

Then I will show that 𝜑(𝒩) = 𝑗 for all 𝒩 ∈ 𝑉𝑚
𝑗
 by negating the other possibilities. Take any 

permutation 𝒾 = (𝑖1,… , 𝑖𝑛−1) of 𝑁̅ ∖ {𝑗} and partition 𝒜 = (𝐴1,… , 𝐴𝑇) of {𝑖𝜇 ∈ 𝑁̅ ∖ {𝑗}│𝑚+

1 ≤ 𝜇 ≤ 𝑛}, where 𝐴𝑡 = {𝑖𝜇│𝑎𝑡 ≤ 𝜇 ≤ 𝑏𝑡} (1 ≤ 𝑡 ≤ 𝑇). 𝑚 < 𝑛 − 1, and so we have 𝑇 ≥ 1. Let 

𝒩1 = (𝑁1, … ,𝑁𝑛) ≔ 𝑉𝑚
𝑗[𝒾;𝒜]. If there exists 𝑡∗ ∈ {1,… , 𝑇} such that |𝐴𝑡∗| = 1, we can regard 

𝒩1 as an element in 𝑉𝑚+1
𝑗

 because 𝒩1 = 𝑉𝑚+1
𝑗 [𝒾1;𝒜1], where: 

𝒾1 = (𝑖1, … , 𝑖𝑚, 𝑖𝑎𝑡∗ , 𝑖𝑚+1, … , 𝑖𝑎𝑡∗−1, 𝑖𝑎𝑡∗+1,… , 𝑖𝑛−1), and 

𝒜1 = (𝐴1, … , 𝐴𝑡∗−1, 𝐴𝑡∗+1, … , 𝐴𝑇). 

So, 𝜑(𝒩𝑗) = 𝑗 is given by the assumption of the induction. Hereafter, I suppose |𝐴𝑡| = 1 for all 

𝑡 ∈ {1,…𝑇}.  
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(1) 𝒊𝟏, … , 𝒊𝒎, 𝒊𝒃𝟏 ,… , 𝒊𝒃𝒕 are not the winners at 𝓝.  

Take any 𝑖𝜇 ∈ {𝑖1, … , 𝑖𝑚 , 𝑖𝑏1 , … , 𝑖𝑏𝑡} and suppose that 𝜑(𝒩1) = 𝑖𝜇. Then consider another ballot 

profile 𝒩2 = (𝑁𝑖𝜇
2 , 𝑁−𝑖𝜇

2 ) ∈ 𝔑 as 𝑁𝑖𝜇
2 ≔ 𝑁̅ ∖ {𝑖𝜇} and 𝑁−𝑖𝜇

2 = 𝑁−𝑖𝜇
1 . IMP demands 𝜑(𝒩2) = 𝑖𝜇. 

On the other hand, the score profile is given as 𝑠𝑖𝜇(𝒩
2) = 1 < 𝑠𝑖𝜈(𝒩) for all 𝑖𝜈 ∈ 𝑁̅ ∖ {𝑖𝜇}. So, 

we have 𝑟𝑖𝜇(𝒩
2) = 𝑛. This contradicts the assumption that 𝜑 has rank 𝑛 − 1. We can conclude 

that 𝜑(𝒩1) ∉ {𝑖1,… , 𝑖𝑚, 𝑖𝑏1 , … , 𝑖𝑏𝑡}.  

 

(2) 𝒊𝒂𝟏 , … , 𝒊𝒂𝑻 are not the winners, either.  

Assume that 𝜑(𝒩1) = 𝑖𝑎𝑡 for some 𝑡 ∈ {1,… , 𝑇}. I will derive a contradiction. Let 𝒩3 ∈ 𝔇, as 

𝑁𝑖𝑡
3 = (𝑁𝑖𝑎𝑡

1 ∪ {𝑗}) ∖ {𝑖𝑎𝑡+1} and 𝑁−𝑖𝑎𝑡
3 = 𝑁−𝑖𝑎𝑡

1 . IMP demands 𝑖𝑎𝑡 = 𝜑(𝒩
3), which also means 

𝑗 ≠ 𝜑(𝒩3). Next, let us consider 𝒩4 ∈ 𝔇 such that 𝑁𝑗
4 = 𝑁𝑗

3 ∪ {𝑖𝑎𝑡} and 𝑁−𝑗
4 = 𝑁−𝑗

3 . Here, IMP 

demands 𝑗 ≠ 𝜑(𝒩4). However, we can find 𝒩4 in 𝑉𝑚+1
𝑗

. Indeed, we can check that 𝒩4 =

𝑉𝑚+1
𝑗 [𝒾4;𝒜4], where: 

𝒾4 = (𝑖1, … , 𝑖𝑚 , 𝑖𝑎𝑠, 𝑖𝑚+1, … , 𝑖𝑎𝑠−1, 𝑖𝑎𝑠+1, … , 𝑖𝑛), and 

𝒜4 = (𝐴1, … , 𝐴𝑡 ∖ {𝑖𝑎𝑡}(=:𝐴𝑡
′),… , 𝐴𝑇). 

By the assumption of the induction, we already know that 𝜑(𝑉𝑚+1
𝑗 [𝒾4;𝒜4]) = 𝑗. This contradicts 

𝜑(𝒩4) ≠ 𝑗. 𝑎𝑡 ∈ {𝑎1, … , 𝑎𝑇} was arbitrary, and so it follows that 𝜑(𝒩1) ∉ {𝑖𝑎1, 𝑖𝑎2, … , 𝑖𝑎𝑇}.  

 

(3) If 𝒋 is not the winner at 𝓜∈ 𝑽𝒎
𝒋

, there exists another ballot profile 𝓜′ = 𝑽𝒎
𝒋 [𝓲′;𝓐′] 

such that 𝓐′ has strictly smaller width of division and 𝒋 is not the winner.  

Let us denote an individual in 𝑁̅ ∖ {𝑗, 𝑖1, … , 𝑖𝑚, 𝑎1, … , 𝑎𝑇, 𝑏1, … , 𝑏𝑇} as a middle term. I will show 

that no middle term wins at 𝒩1 by constructing a sequence of ballot profiles in 𝑉𝑚
𝑗
 that satisfy a 

certain condition. For a partition 𝒜 = (𝐴1, … , 𝐴𝑇), let 𝛥(𝒜) be the width of the partition defined 

as:  

𝛥(𝒜) ≔∑|𝐴𝑡 ∖ {𝑎𝑡 , 𝑏𝑡}|

𝑇

𝑡=1

 

    = |𝑁̅ ∖ {𝑗, 𝑖1, … , 𝑖𝑚, 𝑎1,… , 𝑎𝑇, 𝑏1, … , 𝑏𝑇}|. 

So, the width simply counts the number of middle terms for a given partition 𝒜 of 𝑁̅ ∖

{𝑗, 𝑖1,… , 𝑖𝑚}.  

 Now, take any ballot profile 𝒩5 ≔ 𝑉𝑚
𝑗[𝒾5;𝒜5] ∈ 𝑉𝑚

𝑗
. I will show that if some middle term 

wins at 𝒩5, then there exists a ballot profile ℳ ∈ 𝑉𝑚
𝑗
 such that 𝛥(ℳ) < 𝛥(𝒩5) and 𝑗 ≠ 𝜑(ℳ). 

Suppose a middle term 𝑖𝜆 ∈ 𝐴𝑡 ∖ {𝑎𝑡, 𝑏𝑡}(1 ≤ 𝑡 ≤ 𝑇) wins at 𝒩5, viz. 𝜑(𝒩5) = 𝑖𝜆. Consider a 

ballot profile 𝒩6 ∈ 𝔇 as 𝑁𝑖𝜆
6 = {𝑗} and 𝑁−𝑖𝜆

6 = 𝑁−𝑖𝜆
5 . IMP demands 𝜑(𝒩6) = 𝑖𝜆. Thus, we have 
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𝑗 ≠ 𝜑(𝒩6). Consider a ballot profile 𝒩7 ∈ 𝔇 as 𝑁𝑗
7 = 𝑁𝑗

6 ∪ {𝑖𝜆+1} and 𝑁−𝑗
7 = 𝑁−𝑗

6 . In this case, 

IMP demands 𝑗 ≠ 𝜑(𝒩7). Furthermore, we can regard it as 𝒩7 = 𝑉𝑚
𝑗[𝒾5;𝒜7], where:  

𝒜7 = (𝐴1, … , 𝐴𝑡−1, {𝑖𝑎𝑡, 𝑖𝑎𝑡+1 , … , 𝑖𝜆}, {𝑖𝜆+1,… , 𝑖𝑏𝑡},𝐴𝑡+1, … , 𝐴𝑇). 

𝐴𝑡 is divided into two parts: {𝑖𝑎𝑡 , 𝑖𝑎𝑡+1 , … , 𝑖𝜆} and {𝑖𝜆+1,… , 𝑖𝑏𝑡}, and so we have 𝛥(𝒜5) > 𝛥(𝒜7). 

This is because 𝑖𝜆 is no longer a middle term in the new partition, while the other individuals keep 

the same status.  

 When a ballot profile ℳ1(= 𝒩5) ∈ 𝑉𝑚
𝑗
 is given, the argument above shows how we can 

get a new ballot profile ℳ2(= 𝒩7) ∈ 𝑉𝑚
𝑗
 where the new partition has strictly less width than the 

original and where 𝑗 ≠ 𝜑(ℳ2). Furthermore, according to (1) and (2), individuals with the 

maximum and minimum indices in the new partition cannot win at ℳ2. Thus, it follows that 

𝜑(ℳ2) is also a middle term (in the new partition). So, we can iterate the argument again to get 

ℳ3,ℳ4, …, all of which are in 𝑉𝑚
𝑗
. Let us start this iteration with ℳ1 = 𝒩1. 𝛥(𝒜1) is finite, and 

so there exists a terminating level 𝑥 and ballot profile ℳ𝑥 = 𝑉𝑚
𝑗[𝒾𝑥;𝒜𝑥] such that 𝛥(ℳ𝑥) = 0. 

The width is 0, and so there is no middle term in 𝒜𝑥. I have already shown that 𝑗 ≠ 𝜑(ℳ𝑥). By 

(1) and (2), the other individuals also lose at ℳ𝑥. This contradicts 𝜙 ∉ 𝔛. Thus, we can conclude 

that 𝜑(𝒩1) is not a middle term. This completes (3).  

 

 

The arguments in (1), (2), and (3) show that no individual other than 𝑗 wins at 𝒩1. Thus, we have 

𝜑(𝒩1) = 𝑗. The permutation 𝒾1 and the partition 𝒜1 were arbitrary, and so this shows that we 

have 𝜑(𝒩) = 𝑗 for all 𝒩 ∈ 𝑉𝑚
𝑗
.  

 

Step 3: Proof of the Proposition 

We know from the last step that for all 𝑚 ∈ {0,1,… , 𝑛 − 1}, permutation 𝒾 and partition 𝒜, 

𝜑(𝑉𝑚
𝑗[𝒾;𝒜]) = 𝑗. 𝑗 was an arbitrary individual in 𝑁̅ selected at the beginning of the proof and 

carried throughout, and so the previous sentence holds for any 𝑗 ∈ 𝑁̅. Now, take two adjacent 

individuals, say 𝑗, 𝑗 + 1̅̅ ̅̅ ̅̅ ̅ ∈ 𝑁̅. We know from the above that for ballot profiles 𝒩8,𝒩9 ∈ 𝔑 such 

that:  

𝒩8 ≔ 𝑉0
𝑗[(𝑗 + 1̅̅ ̅̅ ̅̅ ̅, 𝑗 + 2̅̅ ̅̅ ̅̅ ̅,… , 𝑗 + 𝑛 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ); (𝑁̅ ∖ {𝑗})], and  

𝒩9 ≔ 𝑉0
𝑗+1̅̅ ̅̅ ̅̅
[(𝑗 + 2̅̅ ̅̅ ̅̅ ̅, 𝑗 + 2̅̅ ̅̅ ̅̅ ̅, … , 𝑗 + 𝑛̅̅ ̅̅ ̅̅ ̅); (𝑁̅ ∖ {𝑗 + 1̅̅ ̅̅ ̅̅ ̅})], 

we obtain 𝑗 = 𝜑(𝒩8) and 𝑗 + 1̅̅ ̅̅ ̅̅ ̅ = 𝜑(𝒩9). However, we can easily check that 𝒩8 = 𝒩9 = 𝒞1, 

which directly yields a contradiction. Therefore, our first assumption that there is a nomination rule 

𝜑:𝔇 → 𝔛̅ of rank (𝑛 − 1) is false. This completes the proof of 𝑙 = 1. ■ 

 

Proof of Proposition 15 when 𝒍 ≥ 𝟐. 
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Let us assume that there exists a nomination rule 𝜑:𝔇 → 𝔛𝑙 that has rank 𝑛 − 1. Take any 

individual 𝑗 ∈ 𝑁̅, permutation 𝒾 = (𝑖1,… , 𝑖𝑛−1) over 𝑁̅ ∖ {𝑗}, and a partition 𝒜 = (𝑁̅ ∖ {𝑗}). Let 

𝒩10 ≔ 𝑉𝑚
𝑗[𝒾;𝒜]. 𝜑(𝒩10) contains at least two individuals, and so there exists an individual 𝑖𝜇 ∈

𝑁̅ ∖ {𝑗} such that 𝑖𝜇 ∈ 𝜑(𝒩
10). Let us consider a ballot profile 𝒩11 ∈ 𝔇 as 𝑁𝑖𝜇

11 = 𝑁̅ ∖ {𝑖𝜇} and 

𝑁−𝑖𝜇
11 = 𝑁−𝑖𝜇

10 . IMP demands 𝑖𝜇 ∈ 𝜑(𝒩
11). But 𝑖𝜇 has rank 𝑟𝑖𝜇(𝒩

11) = 𝑛, in contradiction to the 

rank of 𝜑. ■ 
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Materials for a presentation 
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