
Single-step Dimension Reduction for High-dimensional Data Analysis

with Application in Reinforcement Learning

（高次元データ解析のためのシングルステップ次元削減と

その強化学習への応用）

by

Tangkaratt Voot

タンカラッ ト ブッ ト

A Doctor Thesis

博士論文

Submitted to

the Graduate School of the University of Tokyo

on 9 December 2016

in Partial Fulfillment of the Requirements

for the Degree of Doctor of Information Science and Technology

in Computer Science

Thesis Supervisor: Masashi Sugiyama 杉山将

Professor of Computer Science

ABSTRACT

Machine learning has become an important field due to the necessity of analyzing complex

data. Machine learning is categorized into three paradigms: supervised learning, unsupervised

learning, and reinforcement learning. Supervised and unsupervised learning have a long his-

tory and they have been extensively studied in the machine learning literature. However,

they still have a weakness when they are applied to high-dimensional problems. Reinforce-

ment learning has also been studied for decades, but its study has been rather limited and

it has more room for improvement. In this dissertation, we firstly propose a dimension re-

duction method to mitigate the high dimensionality limitation in supervised and unsupervised

learning. Secondly, we propose a dimension reduction method for the conditional density

estimation problem. Then, we propose a model-based reinforcement learning method which

does not rely on strong assumptions unlike existing methods, and we subsequently improve

its performance by utilizing our dimension reduction method. Finally, we propose a contex-

tual reinforcement learning method that effectively learns from high-dimensional contexts by

utilizing the idea of dimension reduction.

In the first part of this dissertation, we focus on developing two single-step dimension re-

duction methods. Dimension reduction is a standard tool in machine learning and many meth-

ods were proposed in literature. However, existing methods are sensitive to outliers which

are common phenomena in practice. To solve this problem, we propose a dimension reduc-

tion method based on the maximization of quadratic mutual information (QMI) which is a

robust statistical dependence measure. Solving this maximization problem requires an accu-

rate estimate of the derivative of QMI. A common approach first estimates QMI from data

and then computes the derivatives of the estimated QMI. However, this multi-step approach is

not appropriate since the derivative of an accurate QMI estimator is not necessarily an accu-

rate estimator of the derivative of QMI. Instead, we propose to directly estimate the derivative

of QMI in a single-step manner without estimating QMI itself. Experimental evaluations on

high-dimensional regression problems show that our single-step QMI-based dimension reduc-

tion method works better and is more robust against outliers than existing methods.

While our QMI-based dimension reduction method is useful for both supervised and unsu-

pervised learning problems, it may not be the optimal method for a supervised learning prob-

lem called conditional density estimation. Conditional density estimation aims to estimate a

conditional probability density of output given input, and is highly useful for analyzing a rela-

tionship between input and output. However, accurately estimating a conditional density from

high-dimensional input is challenging. Moreover, a multi-step approach which first performs

dimension reduction and then performs conditional density estimation is not always appropri-

ate. To solve this problem, we propose the least-squares conditional entropy (LSCE) method

which simultaneously performs non-parametric conditional density estimation and dimension

reduction in an integrated manner. Experimental evaluations on high-dimensional conditional

density estimation problems show that LSCE estimates conditional densities more accurately

than methods based on the multi-step approach.

In the second part of this dissertation, we focus on utilizing dimension reduction in high-

dimensional reinforcement learning problems. The goal of reinforcement learning is to learn

an optimal policy which controls an agent to receive the maximum cumulative rewards.

Among reinforcement learning methods, policy gradient methods are widely applicable. How-

ever, accurately estimating policy gradients requires a large amount of data. The model-based

approach can cope with this issue by first estimating a transition model from data and then

using the model to accurately estimate policy gradients. An advantage of the model-based ap-

proach over the model-free approach is that once the transition model is accurately estimated,

the agent does not need to collect more data to learn an optimal policy. Moreover, when the

budget for collecting data is limited, the model-based approach does not need to determine

the sampling schedule, unlike the model-free approach. However, the state-of-the-art method

for transition model estimation is based on the strong assumption that the transition dynamics

can be accurately modeled by the Gaussian distribution. To avoid assuming such a strong

assumption, we propose a model-based policy gradient method which uses the least-squares

conditional density estimation (LSCDE) method to estimate a transition model. LSCDE is

an existing non-parametric conditional density estimation method and it can asymptotically

estimate any conditional density. We evaluate our proposed method through experiments on

benchmark problems and a simulated humanoid robot control problem, and show that our

model-based policy gradient method gives better performance than existing methods when

the amount of data is limited.

However, LSCDE still requires a relatively large amount of data in high-dimensional rein-

forcement learning problems. To mitigate this limitation, we propose to improve our model-

based policy gradient method by estimating a transition model using our LSCE method. Ex-

perimental evaluations on benchmark control problems and a real humanoid robot control

problem show that our model-based policy gradient method with LSCE gives the best perfor-

mance among compared methods.

Although our model-based reinforcement learning method with single-step dimension re-

duction works well for standard reinforcement learning, it may not be an appropriate method

for contextual reinforcement learning. In contextual reinforcement learning, an agent requires

to learn different optimal policies for different contexts of a problem. Contextual reinforce-

ment learning is challenging especially when contexts have high dimensionality. To overcome

this challenge, we propose a contextual reinforcement learning method where our key idea is

to learn a low-rank representation of a model of the cumulative rewards. We show that learning

the low-rank representation actually corresponds to a single-step approach to simultaneously

performing dimension reduction for model learning. We evaluate our method on a benchmark

problem and robot ball hitting problems based on camera images. The experimental results

show that our method gives the best performance among compared methods.

In this dissertation, we have proposed five methods that overcome the weaknesses of exist-

ing machine learning methods in high-dimensional problems. Based on our empirical evalua-

tions on both benchmark and real-world problems, we conclude that our methods successfully

overcome the above mentioned weaknesses of existing machine learning methods.

Contents

1 Introduction 1

1.1 Machine Learning . 1

1.2 High-dimensional Data Analysis . 5

1.2.1 Linear Dimension Reduction 6

1.2.2 Non-linear Dimension Reduction and Deep Learning 7

1.3 Single-step Approach to Linear Dimension Reduction 9

1.4 Contributions . 9

1.4.1 Development of Single-step Dimension Reduction Methods . 10

1.4.2 Applications of Single-step Dimension Reduction in Rein-

forcement Learning . 11

1.5 Organization . 12

2 Background of Linear Dimension Reduction 14

2.1 Linear Dimension Reduction . 15

2.2 Unsupervised Linear Dimension Reduction 17

2.2.1 Principal Component Analysis 17

2.2.2 Locality Preserving Projection 18

2.3 Supervised Linear Dimension Reduction 20

2.3.1 Linear Discriminant Analysis 20

2.3.2 Sliced Inverse Regression 21

2.3.3 Methods based on Gradients of Conditional Density functions 22

2.3.4 Minimum Average Variance Estimation based on the Condi-

tional Density Functions . 24

2.4 Dimension Reduction based on Statistical Dependence 25

2.4.1 Dimension Reduction and Statistical Dependence 25

2.4.2 Pearson Correlation Coefficient 26

2.4.3 Conditional Covariance Operator on Reproducing Kernel

Hilbert Spaces . 26

2.4.4 Mutual Information . 27

2.4.5 Squared-loss Mutual Information 29

2.4.6 Quadratic Mutual Information 29

2.5 Non-linearized Linear Dimension Reduction 30

2.6 Summary of Dimension Reduction 32

3 Dimension Reduction via Single-step Estimation of the Derivative of

Quadratic Mutual Information 33

3.1 Introduction . 33

3.2 Quadratic Mutual Information for Dimension Reduction 34

3.2.1 Quadratic Mutual Information 35

iv

3.2.2 Estimation method based on Density Estimation 36

3.2.3 Least-Squares Quadratic Mutual Information 36

3.2.4 Multi-step Supervised Linear Dimension Reduction 38

3.3 Derivative of Quadratic Mutual Information 39

3.3.1 Single-step Estimation of the Derivative of Quadratic Mutual

Information . 39

3.3.2 Existing Approaches to Estimate the Derivative of the Density

Difference . 40

3.3.3 Direct Estimation of the Derivative of the Density Difference . 41

3.3.4 Basis Function Design . 43

3.3.5 Model Selection by Cross-Validation 43

3.4 Supervised Linear Dimension Reduction via Derivative Estimator . . 44

3.4.1 Gradient Ascent . 44

3.4.2 Quadratic Mutual Information Approximation via Derivative

Estimator . 45

3.4.3 Fixed-Point Iteration . 46

3.5 Experiment . 47

3.5.1 Illustrative Experiment . 47

3.5.2 Artificial Data . 50

3.5.3 Benchmark Data . 54

3.6 Further Extension: Estimation of Higher Order Derivatives of

Quadratic Mutual Information . 60

3.7 Conclusion . 65

4 Single-step Dimension Reduction for Conditional Density Estimation 66

4.1 Introduction . 66

4.2 Conditional Density Estimation . 67

4.2.1 Problem Formulation . 68

4.2.2 Existing Methods . 68

4.2.3 Multi-step Dimension Reduction for Conditional Density Es-

timation . 70

4.3 Least-Squares Conditional Entropy 70

4.3.1 Squared-loss Conditional Entropy and conditional Indepen-

dence . 71

4.3.2 Estimating Squared-loss Conditional Entropy 73

4.3.3 Supervised Linear Dimension Reduction with Squared-loss

Conditional Entropy . 74

4.3.4 Conditional Density Estimation with Squared-loss Condi-

tional Entropy . 76

4.3.5 Model Selection by Cross-Validation 76

4.3.6 Basis Function Design . 77

4.4 Experiment . 78

4.4.1 Illustration . 78

4.4.2 Artificial Data . 79

4.4.3 Benchmark Data . 80

4.4.4 Humanoid Robot . 85

4.4.5 Computer Art . 86

4.5 Conclusion . 86

v

5 Background of Reinforcement Learning 88

5.1 Markov Decision Processes . 88

5.2 Policy Iteration . 91

5.2.1 State Value Function and State-Action Value Function 91

5.2.2 Policy Iteration Framework 92

5.2.3 Q-Learning . 94

5.2.4 Least-Squares Policy Iteration 95

5.2.5 Summary of Policy Iteration 97

5.3 Direct Policy Search . 97

5.3.1 Policy Gradient . 97

5.3.2 Policy Gradient with Parameter-based Exploration 100

5.3.3 Expectation-Maximization 102

5.3.4 Information-Theoretic Approach 104

5.3.5 Summary of Direct Policy Search 107

5.4 Model-based Reinforcement Learning 108

5.4.1 Learning the Environment Model 108

5.4.2 Locally Weighted Linear Regression 109

5.4.3 Gaussian Process Regression 110

5.4.4 Summary of Model-based Reinforcement Learning 111

6 Model-based Policy Gradient with Parameter-based Exploration 113

6.1 Introduction . 113

6.2 Transition Model Estimation via Least-Squares Conditional Density

Estimation . 115

6.3 Policy Learning Framework . 116

6.4 Experiment . 117

6.4.1 Continuous Chainwalk . 117

6.4.2 Humanoid Robot Control . 123

6.5 Conclusion . 128

7 Dimension Reduction for Model-based Policy Gradient with Parameter-

based Exploration 130

7.1 Introduction . 130

7.2 Existing Approach to Dimension Reduction in Reinforcement Learning131

7.2.1 Feature Selection in Factored Markov Decision Process 131

7.2.2 Supervised Dimension Reduction in Reinforcement Learning 132

7.3 Model-based PGPE with Single-step Dimension Reduction 132

7.3.1 Learning Framework . 132

7.3.2 Imitation Learning . 133

7.4 Experiment . 136

7.4.1 Continuous Chainwalk . 136

7.4.2 Cartpole Balancing . 142

7.4.3 Humanoid Robot Control . 146

7.5 Conclusion . 149

8 Contextual Policy Search with Single-step Dimension Reduction 153

8.1 Introduction . 153

8.2 Contextual Policy Search . 154

8.2.1 Problem Formulation . 154

vi

8.2.2 Related Work . 157

8.3 Contextual Model-based Relative Entropy Stochastic Search 157

8.3.1 Learning the Search Distribution 158

8.3.2 Dual Function Evaluation via the Quadratic Model 160

8.3.3 Learning the Quadratic Model 162

8.3.4 Dimension Reduction and Low-Rank Representation 162

8.3.5 Learning a Low-Rank Matrix with Nuclear Norm Regulariza-

tion . 163

8.4 Experiment . 166

8.4.1 Quadratic Cost Function Optimization 166

8.4.2 Ball Hitting with a 2-DoF Robot Arm 167

8.4.3 Ball Hitting with a 6-DoF Robot Arm 169

8.5 Conclusion . 170

9 Conclusion and Future Work 171

9.1 Conclusion . 171

9.2 Future Work . 172

vii

Chapter 1

Introduction

Machine learning has recently become a popular topic due to its ability to analyze

complex data. However, existing machine learning methods still have some limita-

tions especially when data has high dimensionality. In this dissertation, we develop

machine learning methods that overcome these limitations. In particular, we focus on

developing and utilizing dimension reduction to overcome the high-dimensional data

limitation.

In this chapter, we firstly describe fundamental concepts of machine learning and

issues of learning from high-dimensional data. Then, we give an overview of our

contributions and the organization of this dissertation.

1.1 Machine Learning

Informally, the goal of machine learning is to construct machines that automatically

learn to solve problems from data. Machine learning can be regarded as an inter-

section between computer science and statistics (Mitchell, 2006). While computer

science designs methods that solve problems, machine learning designs methods that

automatically learn to solve problems from data. On the other hand, statistics and

machine learning are more closely related as they both emphasize on inferring con-

clusions from data. However, machine learning focuses more on further utilizing

these inferred conclusions to solve problems.

More formally, machine learning is concerned with problems of learning some

target function from data such that the function satisfies a certain performance cri-

terion. Machine learning can be categorized into supervised learning, unsupervised

learning, and reinforcement learning depending on the types of target function, data

and performance criteria. We briefly introduce these three learning paradigms below.

• Supervised learning

Supervised learning is a learning paradigm that learns from an input-output

data. This input-output data is represented as a set of paired data points:

{(x1,y1), . . . , (xN ,yN)}, (1.1)

where x is input, y is output, and (xn,yn) denotes the n-th data point. The goal

of supervised learning is to learn a function representing a relationship from in-

put to output. For example, regression learns a function that maps from input

to real-valued output, while classification learns a function that maps from in-

put to categorical output. Supervised learning is considered the most mature

1

paradigm of machine learning with many successful applications including text

classification (Joachims, 1998), face detection (Viola and Jones, 2004), spam

filtering (Zhang et al., 2004; Tretyakov, 2004), and ranking in information re-

trieval (Liu, 2009). Supervised learning is illustrated in Figure 1.1(a).

• Unsupervised learning

Unsupervised learning is a learning paradigm that learns from input-only data

and is opposite to supervised learning. This input-only data is represented as a

set of data points:

{x1, . . . ,xN}. (1.2)

The goal of unsupervised learning is to learn interesting structures in data. Since

the true interesting structures in data is often unknown, the target function in un-

supervised learning depends mostly on what structure is considered interesting

to users. For example, clustering learns a function that assigns a cluster label

to each data point, while unsupervised dimension reduction learns a function

that reduce dimensionality of data. Unsupervised learning are used in appli-

cations such as image segmentation (Friedman and Russell, 1997) and fraud

analysis (Hilas and Mastorocostas, 2008). Unsupervised learning is illustrated

in Figure 1.1(b).

• Reinforcement learning

Reinforcement learning considers the sequential decision making problem

where at each time step an agent observes an environment’s state and chooses

an action to observe a reward and a next state. The goal of this problem is to

find an optimal sequence of actions such that the cumulative reward is max-

imized. Reinforcement learning solves this problem by learning an optimal

policy function which maps a state to an action such that the cumulative re-

ward is maximized. This policy is typically learned from data represented as a

sequence of a state, an action, a reward, and a next state:

(s1,a1, r1, s2,a2, . . . ,aT , rT , sT+1), (1.3)

where s denotes a state, a denotes an action, r denotes a reward, and sub-

script denotes the time step. Learning from this data is different from learning

in supervised learning because this data does not tell us what are optimal ac-

tions. Moreover, an action does not only determine the immediate reward, it

also determines what will be the next state which subsequently affects the next

optimal action. Reinforcement learning has been applied to many problems that

involve sequential decision making. These applications include but not limited

to robotics (Mahadevan and Connell, 1992; Schaal and Atkeson, 1994; Ng. and

Jordan, 2000; Kober et al., 2013a), games (Tesauro, 1995; Mnih et al., 2015;

Silver et al., 2016), job scheduling (Zhang and Dietterich, 1995), and tax col-

lection (Abe et al., 2010). Reinforcement learning is illustrated in Figure 1.1(c).

In machine learning, a performance criterion is often evaluated based on unob-

served data that is not used for learning. This means that well performed machine

learning methods need to generalize their learning to unobserved data. Methods that

perform well on observed data but perform poorly on unobserved data are said to have

2

(a) Supervised learning: An unknown supervisor assigns corresponding output yi to each

input data point xi. Then, supervised learning methods use the input-output data to learn a

relationship from input to output that is intended by the supervisor.

(b) Unsupervised learning: Input data points are generated with regarded to some hidden

structures. Then, unsupervised learning methods use the input-only data to learn a hidden

structure of interest.

(c) Reinforcement learning: Data is collected through sequential interaction between an agent

and an environment. The agent uses its policy to choose actions at depends on observed states

st. The environment response with immediate rewards rt and next states st+1. The sequence

of a state, an action, a reward, and a next state is the data used by reinforcement learning to

learn a new policy. The process is repeated until an optimal policy is obtained.

Figure 1.1: Illustrations of typical processes of the three paradigms of machine learn-

ing: supervised learning, unsupervised learning, and reinforcement learning.

an overfitting issue. Avoiding overfitting is important when using machine learning

methods.

Machine learning research has a long history1. However, it is only until recently

that machine learning has gained a noticeable popularity and become an important

tool in both academic and industrial. We argue that this is because problems that

we want to solve nowadays are very sophisticated and complex to the point where

traditional methods cannot solve them well. On the other hand, machine learning

offers data-driven methods that allow these problems to be solved relatively well when

1The exact origin of machine learning research is debatable since machine learning includes and

combines elements from both statistics and computer science. The least squares regression (a super-

vised learning method) has been used by mathematicians since the 18th century (Stigler, 1981). The

concept of a learning machine was later implemented and demonstrated by a checker program (Samuel,

1959), but the learning approach is very different from machine learning nowadays which heavily uti-

lizes statistics and mathematics.

3

(a) Traditional approach: Human experts design a controller and evaluate it on the robot.

Then, the experts adjust the controller based on the evaluation results. This trial and error

process is repeated until the experts satisfy with the evaluation results.

(b) Machine learning approach: A reinforcement learning method collects data using a con-

troller. Then the controller is improved based on the collected data. This learning process is

repeated until an optimal controller is learned.

Figure 1.2: Comparison between a traditional approach and a machine learning ap-

proach for obtaining a task solving robot controller. The traditional approach is not

appropriate without experts with domain knowledge.

compared to traditional non data-driven methods.

As an example, let us consider a problem of controlling a robot to perform a

task. A traditional approach to solve this problem is to let human experts manually

design a robot controller (see Figure 1.2). However, designing a robot controller

requires thorough knowledge about the robot’s tasks and dynamics. This knowledge is

typically unavailable for complex tasks with high uncertainty, or for robots with many

degrees of freedom or with tendon-driven bodies. In contrast, reinforcement learning

allows robots to automatically learn to solve the task and it has been showing great

successes in doing so (Schaal and Atkeson, 1994; Rombokas et al., 2012; Kormushev

et al., 2013; Kober et al., 2013b; Sugimoto et al., 2016).

4

(a) One-dimensional space (b) Two-dimensional space (c) Three-dimensional space

Figure 1.3: Illustration of the curse of dimensionality. The goal is to learn a func-

tion that assigns data points with correct shade of color. The circle points represent

training data points and the triangle points represent test data points. Figure 1.3(a):

In low-dimensional space, training data points are dense and the learned function

can generalize well to test data points. Figure 1.3(b) and Figure 1.3(c): In high-

dimensional space, training data points are sparsely distributed and there are many

empty regions with no training data points. In this case, the learned function poorly

generalizes to test data points that lie on these empty regions.

Despite its recent successes, many machine learning methods perform very

poorly when data has high dimensionality. This is mainly because analyzing high-

dimensional data is a very challenging task, as explained in the next section.

1.2 High-dimensional Data Analysis

Like a human learns from experiences, a machine learns from data. Data is a col-

lection of data points where each data point is described by the value of its features.

Machine learning methods learn target functions by analyzing relationships between

data points based on features. Since learning is based on features, it is intuitive to

think that we can learn better from data with more features. However, this is only par-

tially true, and in fact many machine learning methods perform very poorly when the

number of features is more than necessary. There are many reasons that can explain

this behavior. Below, we explain two typical reasons.

Features form a feature space where each data point is represented as a point in

this space. In low-dimensional feature space formed by a small number of features,

both observed and unobserved data points tend to be densely distributed and located

in closed proximities. In this scenario, the learned functions can generalize well to

unobserved data since both observed and unobserved data are similar. On the other

hand, observed data points in high-dimensional space are sparsely distributed and

there are many “empty” regions with no data points. This is problematic since we

need to generalize target functions to these empty regions based on observed data

points that are located far away. For this reason, many machine learning methods

have an overfitting issue when data has high dimensionality. This issue is illustrated

in Figure 1.3.

Another explanation for the poor behavior can be given as follows. Many ma-

chine learning methods rely on the distance between two data points to learn target

functions. If data points are sparsely distributed, the notion of the distance is less

informative since all pairs of data points have a large distance. In other words, for

5

distance-based machine learning methods we may say that sparsely distributed data

points do not contain enough information about the underlying problem. For this rea-

son, these machine learning methods often perform poorly even when evaluated on

observed data.

While there are many reasons to explain the poor behavior of machine learning

methods for high-dimensional data, we commonly describe these reasons together as

the curse of dimensionality. Originally, this term was used in the domain of dynamic

programming to refer to a scenario where the computational complexity of dynamic

programming methods increases exponentially as the dimensionality of the state vari-

able increases (Bellman, 1957a, 1961). However, it is used nowadays in many do-

mains including machine learning to refer to scenarios where difficulties of problems

sharply increase as the dimensionality of involving variables increases. In machine

learning, this “difficulty” is related to both accuracy of the learned function as well as

the computational complexity of machine learning methods.

Despite the presence of the curse of dimensionality, it is still of great interest

to learn from high-dimensional data since most problems that we wish to solve by

machine learning involve high-dimensional data. Among many approaches that were

proposed in literature, linear dimension reduction and non-linear dimension reduction

and deep learning are considered the most popular approaches to mitigate the curse

of dimensionality.

1.2.1 Linear Dimension Reduction

Linear dimension reduction has been considered by many as a standard approach for

high-dimensional data analysis (Fodor, 2002; Cunningham and Ghahramani, 2015).

Linear dimension reduction aims to find a linear transformation function that trans-

forms the original set of features into a smaller set of features such that information

in the original set of features is preserved.

Linear dimension reduction is commonly separated into feature extraction and

feature selection. The feature extraction approach finds a new set of features where

each new feature is a linear combination of the original features. This linear combi-

nation is often represented by a transformation matrix. On the other hand, the feature

selection approach finds the best subset of the original features and uses this subset

as the new set of features. The difference between the two approaches is illustrated

in Figure 1.4. In many settings, feature selection can be regarded as an instance of

feature extraction, i.e., a transformation matrix in feature selection is a submatrix

of a permutation matrix. Therefore in this dissertation, unless specified otherwise

dimension reduction will be discussed from the standpoint of the feature extraction

approach.

Linear dimension reduction is simple to use and has high interpretability. For

instance, many linear dimension reduction methods learn an orthogonal transforma-

tion matrix. In such a case, these methods can be understood as methods that learn

a subspace of the original feature space (Fodor, 2002; Cunningham and Ghahramani,

2015). Example of subspace learning methods are principal component analysis (Jol-

liffe, 1986) and sliced inverse regression (Li, 1991). This high interpretability is also

the main reason that makes linear dimension reduction popular.

6

Figure 1.4: A comparison between the feature selection and feature extraction ap-

proaches. Assume that features 1, 5, and 7 as well as their linear combinations are

informative. Feature selection selects subset of the original features as new features.

In contrast, feature extraction computes new features by a linear combination of the

original features.

1.2.2 Non-linear Dimension Reduction and Deep Learning

Non-linear dimension reduction aims to find a non-linear transformation function that

transforms the original set of features into a new set of features. Non-linear dimen-

sion reduction methods can be categorized into non-linearized linear methods and

manifold learning methods.

Non-linearized linear methods refers to methods that apply the non-linear trans-

formation to data and then perform linear dimension reduction. Applying non-linear

transformation to data is a common technique in machine learning that allows us to

use linear learning methods to analyze non-linear relationships in data. An example of

non-linearized linear method is kernel principal component analysis (Schölkopf et al.,

1998) which is regarded as performing principal component analysis (Jolliffe, 1986)

on non-linearly transformed data. Non-linearized linear methods will be explained in

more details in Chapter 2.

In contrast, manifold learning methods learn a non-linear manifold embedded in

the original feature space such that data points lie on this manifold. The key idea

of many manifold learning methods is to find a non-linear manifold that preserves

distance between data points (Tenenbaum et al., 2000; Roweis and Saul, 2000; Silva

and Tenenbaum, 2003; Belkin and Niyogi, 2003; Lee and Verleysen, 2007). These

manifold learning methods are highly useful for finding a meaningful visualization of

high-dimensional data.

A popular learning approach that is closely related to non-linear dimension re-

duction is the deep learning approach. Deep learning refers to learning a function

modelled by a deep neural network (Bengio, 2009) (see Figure 1.5). Deep neural

network is a computational model aims to simulate computation in human brains. In

a deep neural network, each computation unit called a neuron takes some input val-

ues from other neurons and outputs some value to other neurons. These neurons are

grouped together into layers. Computation in the network is done in a layer-by-layer

7

Figure 1.5: An example of a deep neural network. Computation is done from the

bottom layer to the top layer. Each neuron computes its output using its weightw and

its activation function f . In this example, the output y is computed by applying the

function f to a linear combination of the weight x and the inputw.

basis from the bottom layer to the top layer where outputs from neurons in a lower

layer become inputs of neurons in an upper layer. The computation in each neuron is

determined by its activation function and weights of its input connections. In general,

the number of neurons, the number of layers, and activation functions are fixed, while

the weights are learned such that the network accurately represents the target function.

The computation in each neuron can be regarded as passing a combination of

weighted inputs through an activation function to construct new inputs for an upper

layer. By considering inputs as features, deep learning is regarded as progressively

and automatically learning more informative features such that features at the top

layer are the most informative for computing function output. This progressive fea-

ture learning closely resembles non-linear dimension reduction which learns a man-

ifold embedding of feature space (Bengio et al., 2013). This is the key characteris-

tic that makes deep learning popular in applications involving high-dimensional data

such as image data (Hinton et al., 2006; Krizhevsky et al., 2012), natural language

data (Collobert and Weston, 2008), and speech data (Yu et al., 2012).

Transformation function in non-linear dimension reduction including deep learn-

ing is much more complex than a transformation matrix in linear dimension reduction.

For this reason, non-linear dimension reduction is often considered more powerful

than linear dimension reduction. However, non-linear dimension reduction has two

limitations. Firstly, analyzing the behavior of non-linear transformation function is

not a trivial task due to their high complexity. For example, a deep neural network

for image classification problems may contain up to half a million neurons and more

than millions of weights (Krizhevsky et al., 2012). Analyzing this network to explain

how it behaves is near impossible without some anticipated behaviors in mind. This

“black box” behavior makes deep learning sometimes considered to be untrustwor-

thy in applications such as medical analysis where explanations of results are equally

important as accuracies of results (Castelvecchi, 2016). In contrast, as mentioned ear-

lier, most linear dimension reduction methods can be understood much more easily as

8

learning a subspace of the feature space (Fodor, 2002; Cunningham and Ghahramani,

2015).

Secondly, due to the fact that the amount of data required for learning a model of

functions is proportion to the complexity of the model (Vapnik, 1998; Hastie et al.,

2001), highly complex non-linear transformation functions such as deep neural net-

works require an extremely large amount of data to be learned. In domains such as

image classification and information retrieval, data can be collected without much ef-

fort and we have seen many successful applications of non-linear dimension reduction

in these domains. However, in other domains such as robotics, data is a limited re-

source and collecting data requires effort and careful considerations. For this reason,

non-linear dimension reduction may not be suitable for such domains. Nonetheless,

with enough data it also works well in these domains (Watter et al., 2015a; Lillicrap

et al., 2015). Other domains in which data is a limited resource are domain that in-

volves rare events such as medical diagnostics (Au et al., 2010) and hardware fault

prediction (Murray et al., 2005).

1.3 Single-step Approach to Linear Dimension Reduction

As discussed in the previous section, linear dimension reduction is a promising ap-

proach for mitigating the curse of dimensionality. Furthermore, linear dimension re-

duction is a popular topic and there are many linear dimension reduction methods in

literature.

However, naively using existing linear dimension reduction methods often in-

volves a multi-step approach. In a multi-step approach, one learns some interme-

diate functions and then uses these intermediate functions to learn another function.

These intermediate functions are usually learned based on performance criteria that

are different from the performance criterion of the latter function. This is not prefer-

able since good performances of these intermediate functions do not always imply a

good performance of the latter function. This situation is sometimes described via the

Vapnik’s Principle (Vapnik, 1998):

“When solving a problem of interest, one should not solve a more general

problem as an intermediate step.”

— Vladimir N. Vapnik, Statistical Learning Theory, 1998.

An alternative to a multi-step approach is to learn the latter function directly. We

refer to this approach as a single-step approach. A single-step approach is often more

preferable since the function is learned directly using an appropriate performance cri-

terion. However, it should be noted that a single-step approach is not always the best

approach in practice since some problems can be solved more conveniently by learn-

ing intermediate functions. An example of such a case is the model-based reinforce-

ment learning approach which learns a model of the environment as an intermediate

function. Nonetheless, in this dissertation we claim and show that for linear dimen-

sion reduction a single-step approach is more preferable than a multi-step approach.

1.4 Contributions

This dissertation contributes to developing and utilizing single-step dimension reduc-

tion to solve high-dimensional machine learning problems especially reinforcement

9

learning problems. Our contributions can be separated into two parts: development

of single-step dimension reduction methods and applications of single-step dimension

reduction to reinforcement learning.

Note that even though our contributions are originally linear dimension reduction

methods, they can be straightforwardly extended to non-linear dimension reduction

methods as well by using the non-linearization approach.

1.4.1 Development of Single-step Dimension Reduction Methods

Although many linear dimension reduction methods were proposed, existing methods

still have issues. The first issue occurs when they are applied to data contaminated by

outliers, and the second issue occurs when they are applied for the conditional den-

sity estimation problem. In this first part, our contributions are two linear dimension

reduction methods that separately overcome these issues.

Data from real-world problems may posses some undesired property. One of these

properties is the contamination by outliers. Outliers are erroneous and unreliable data

points that are significantly different from other data points. Outliers are unreliable, do

not contain correct information about the problem, and therefore should not be used

for learning. However, existing linear dimension reduction methods are sensitive to

outliers which makes them performing poorly in the presence of outliers. This issue

can be overcome by maximizing the quadratic mutual information (QMI) (Principe

et al., 2000) which is a statistical dependence measure that is robust against outliers.

Maximizing QMI requires an estimate of the derivative of QMI. However, existing

approaches estimate these derivatives using a multi-step approach which firstly es-

timates QMI from data and then computes derivatives of the estimated QMI. This

approach is not appropriate since an accurately estimated QMI does not always imply

that its derivatives are accurately estimated derivatives of QMI. To solve this problem,

we propose a single-step method that directly estimates the derivatives of QMI from

data, and then we use this method for QMI-based linear dimension reduction. Exper-

imental evaluations on regression problems show that our single-step method is more

robust against outliers and performs better than compared methods.

In our second contribution, we focus on a supervised learning problem called con-

ditional density estimation. The goal of conditional density estimation is to learn a

probability density of output given input. Conditional density estimation is a chal-

lenging problem especially when input has high dimensionality. However, naively

performing linear dimension reduction before conditional density estimation results in

a multi-step procedure where an error from the former dimension reduction step may

be magnified by the latter conditional density estimation step. To solve this prob-

lem, we propose to use the squared-loss conditional entropy and develop a method

called least-squares conditional entropy (LSCE). Unlike existing methods, LSCE is

a single-step method that simultaneously performs non-parametric conditional den-

sity estimation and linear dimension reduction in an integrated manner. Experimental

evaluations on high-dimensional data including data from a simulated humanoid robot

shows that LSCE performs better than methods based on the multi-step approach.

Note that a part of the second contribution was included in the Master’s thesis

submitted to the Department of Computer Science, Graduate School of Information

Science and Engineering, Tokyo Institute of Technology, for graduation in March

2014. The contribution in this dissertation contains substantially improved contents

that are published in the Neural Computation journal in January 2015.

10

1.4.2 Applications of Single-step Dimension Reduction in Reinforcement

Learning

In this second part, we focus our attention on utilizing single-step linear dimension

reduction for solving high-dimensional reinforcement learning problems. However,

existing reinforcement learning methods still have an issue even for low-dimensional

problems. Our third contribution in this dissertation is a model-based reinforcement

learning method that overcomes this issue. However, the practicability of this method

is still limited to low-dimensional problems. This limitation is overcome in our fourth

contributions by using LSCE to perform dimension reduction. As our fifth con-

tribution, we consider the contextual reinforcement learning setting and propose a

method that utilizes single-step dimension reduction to effectively learn from high-

dimensional contexts.

Reinforcement learning learns an optimal policy by iteratively updating the cur-

rent policy based on data. In the standard setting, data is collected at each iteration

by an agent. However, when the amount of available data is limited, we need to de-

cide before learning how many data points the agent needs to collect at each iteration.

Determining this sampling schedule is a difficult task since it should be determined

based on the final performances, but the final performances can only be obtained

after learning. This sampling schedule issue can be overcome by using the model-

based approach which learns a model of the environment using the available data

and then uses the model to generate artificial data for policy update. In this way,

the agent no longer needs to determine the sampling schedule and it can generate a

huge amount of artificial data for accurate policy update. However, existing model

learning methods rely on strong assumptions about the environment and they may

perform poorly when these assumptions are violated. Our idea to overcome this weak-

ness is to learn the model by least-squares conditional density estimation (LSCDE)

(Sugiyama et al., 2010). LSCDE is a non-parametric conditional density estimation

method and can asymptotically learn any conditional density function without requir-

ing strong assumptions. We combine LSCDE with a reinforcement learning method

and propose the model-based policy gradient with parameter-based exploration (M-

PGPE) method. Experimental evaluations on benchmark problems and a simulated

humanoid robot control problem shows that M-PGPE gives better performance than

existing methods when the amount of available data is limited.

Although LSCDE can asymptotically learn any model without any strong assump-

tions, it still requires a prohibitively large amount of data when the environment in-

volves high-dimensional states and actions. To overcome this limitation, we propose

to use our LSCE method to learn a model. As mentioned above, LSCE is a single-step

method that simultaneously performs non-parametric conditional density estimation

and dimension reduction. Experimental evaluations on benchmark problems and real

humanoid robot control problems show that our proposed M-PGPE with LSCE gives

the best performance among compared methods.

Our fifth contribution is a method for high-dimensional contextual reinforcement

learning problems. Unlike standard reinforcement learning, contextual reinforcement

learning assumes that the environment is determined by observable variables called

contexts and the goal is to find optimal policies that yield the maximum cumulative re-

wards for different contexts. This is very challenging especially for high-dimensional

contexts such as camera images. We firstly develop a contextual reinforcement learn-

ing method where the key procedure is to learn a locally quadratic model of the cumu-

11

Figure 1.6: The dissertation is organized into nine chapters.

lative rewards. Learning this quadratic model is a high-dimensional regression prob-

lem. Instead of naively performing dimension reduction before learning the model,

we propose to learn a low-rank representation of the model. We show that learning the

low-rank representation can be regarded as a single-step approach that simultaneously

performs dimension reduction and regression. We evaluate the proposed method on a

benchmark problem and robot ball hitting problems based on camera images. Experi-

mental results show that the proposed method with low-rank representation performs

better than methods that explicitly perform dimension reduction before model learn-

ing.

1.5 Organization

This dissertation consists of nine chapters, as shown in Figure 1.6. In this chapter, we

have given the introduction and overview of this dissertation. The remaining chapters

are organized as follows.

Chapters 2, 3, and 4 are concerned with the first part; development of single-step

dimension reduction methods. Chapter 2 covers the background of linear dimension

reduction. We cover the supervised linear dimension reduction problem and the un-

supervised linear dimension reduction problem in two separated sections. In both

sections, we mathematically formulate the problems first and then discuss existing

methods and their weaknesses. Then we cover a linear dimension reduction approach

based on dependence maximization which is applicable to both supervised and unsu-

12

pervised scenarios.

Chapter 3 covers our first contribution to the single-step dimension reduction

based on derivatives of quadratic mutual information (QMI). We firstly discuss prop-

erties of QMI and how to use QMI for dimension reduction. Next, we present

our single-step method called least-squares quadratic mutual information derivative

(LSQMID) which directly learns the derivative of QMI from data. At the same time,

we also present the fix-point iteration approach that efficiently uses LSQMID for di-

mension reduction. We then present our experimental evaluations and close the chap-

ter with conclusion.

Chapter 4 covers our second contribution to the single-step method for conditional

density estimation and dimension reduction. We firstly discuss the conditional density

estimation problem and an issue of naively using dimension reduction for the prob-

lem. We then present the squared-loss conditional entropy (SCE) and our approach

called least-squares conditional entropy (LSCE) that uses SCE for conditional density

estimation and dimension reduction. Then, experimental evaluations and conclusion

are presented.

Chapters 5, 6, 7, and 8 are concerned with the second part; applications of single-

step dimension reduction in reinforcement learning. Chapter 5 covers the background

of reinforcement learning. We mathematically formulate the reinforcement learning

problem and describe methods to solve the problem. We categorize these methods

based on two categorizations. They are either categorized into value iteration and

direct policy search depending on how they learn an optimal policy, or categorized

into model-free and model-based depending on whether they learn a model of the

environment or not.

Chapter 6 covers our third contribution to the model-based policy gradient with

parameter-based exploration (M-PGPE) method. We focus our presentation on the

transition model estimation problem which is the key step of our method and re-

view least-squares conditional density estimation. Then, we present the learning

framework of our M-PGPE method that combines a direct policy search method with

LSCDE. Lastly, we demonstrate the performance of M-PGPE through experiments on

a benchmark problem and a simulated humanoid robot control problem and conclude

the chapter.

Chapter 7 covers our fourth contribution on improving the performance of M-

PGPE in high-dimensional problems by using LSCE. We start by discussing existing

approaches to performing dimension reduction in reinforcement learning. Then we

present an improved learning framework that combines M-PGPE, LSCE, and imita-

tion learning together. Finally, we demonstrate its usefulness through experiments on

a benchmark problem and a real humanoid robot control problem and conclude the

chapter.

Chapter 8 covers our fifth contribution to contextual reinforcement learning for

high-dimensional contexts. We firstly motivate and formulate the contextual rein-

forcement learning problem. Then, we present our method which consists of the

policy learning part and the model learning part. Next, we present our experimental

evaluations on high-dimensional contextual reinforcement learning problems includ-

ing robot ball hitting problems based on camera images, and lastly we conclude the

chapter.

Chapter 9 is the final chapter where we conclude the dissertation and discuss future

directions along the line of our research.

13

Chapter 2

Background of Linear Dimension Reduction

This chapter gives a background of linear dimension reduction. After we introduce

linear dimension reduction and its problem formulation, we review some of existing

supervised and unsupervised linear dimension reduction methods. Next, we introduce

a linear dimension reduction framework based on statistical dependence that is appli-

cable to both supervised and unsupervised settings. Then we discuss related work

on non-linear dimension reduction via non-linear transformation of data. Lastly, we

close this chapter by briefly introducing our two contributions on single-step dimen-

sion reduction methods.

Notations: We use the following mathematical notations. A scalar-valued quantity

is denoted by a normal letter, e.g., x. A vector-valued quantity is denoted by a bold

letter, e.g., x, and its i-th entry is denoted by a normal letter with superscript, e.g., x(i).

All vectors are column vectors unless specified otherwise. A matrix-valued quantity

is denoted by a bold capital letter, e.g.,X , and its (i, j)-th entry is denoted by a capital

letter with subscript, e.g., X(i,j). The transpose of a matrixX is denoted byX⊤. The

trace of a matrix X is denoted by tr [X]. A set of real numbers is denoted by R.

The Euclidean norm or ℓ2 norm of a d-dimensional vector is denoted by ‖ · ‖2 and is

defined by

‖x‖2 =

√√√√
d∑

i=1

(x(i))2. (2.1)

For brevity, we may sometimes omit the subscript and denote the Euclidean norm by

‖ · ‖. The Frobenius norm of a d1-by-d2 matrix is denoted by ‖ · ‖Fro and is defined by

‖X‖Fro =
√

tr
[
X⊤X

]

=

√√√√
d1∑

i=1

d2∑

j=1

(X(i,j))2. (2.2)

The inner product of two vectors in Euclidean space is denoted by 〈·, ·〉 and is defined

by

〈x1,x2〉 = x⊤
1 x2. (2.3)

We assume that random variables have the following domains: x ∈ X ⊆ Rdx ,

y ∈ Y ⊆ Rdy , and z ∈ Z ⊆ Rdz . We also assume that input only data points

14

are random variables drawn independently and identically distributed (i.i.d.) from a

probability distribution with density function p(x):

{x1, . . . ,xN} = {xi}Ni=1
i.i.d.∼ p(x), (2.4)

and input-output data points are random variables drawn i.i.d. from a joint probability

distribution with density function p(x,y):

{(x1,y1), . . . , (xN ,yN)} = {(xi,yi)}Ni=1
i.i.d.∼ p(x,y). (2.5)

The expectation of f(x) over a density p(x) is defined and denoted as

Ep(x) [f(x)] =

∫
f(x)p(x)dx. (2.6)

The domain of the integration is assumed to be the whole support of the variable

unless specified otherwise. This expectation can be approximated using the i.i.d. data

points {xi}Ni=1 and this approximation is given by

Ep(x) [f(x)] ≈
1

N

N∑

i=1

f(xi). (2.7)

The conditional expectation of f(y) over a conditional density p(y|x) is defined and

denoted as

Ep(y|x) [f(y)] =

∫
f(y)p(y|x)dy. (2.8)

When there is no ambiguity, we may omit the subscript and only use the symbol E [·].
We also use a matrixX ∈ Rdx×N to represent data points {xi}Ni=1:

X =
[
x1 | x2 | . . . | xN

]
=



x
(1)
1 · · · x

(1)
N

...
. . .

...

x
(dx)
1 · · · x

(dx)
N


 , (2.9)

where the rows correspond to features and columns correspond to data points. We

assume that data is centered so that it has zero empirical mean. Under this assumption,

the data covariance matrix is estimated from data by

cov(X) =
1

N
XX⊤. (2.10)

2.1 Linear Dimension Reduction

Linear dimension reduction transforms the original set of features into a set of low-

dimensional features by a transformation matrix denoted by W . More specifically,

given a transformation matrixW ∈ Rdz×dx and a data point x with dx features,

x =
[
x(1), . . . , x(dx)

]⊤
, (2.11)

a new data point z with dz(< dx) features is obtained by

z =Wx, (2.12)

15

Figure 2.1: Linear dimension reduction by a transformation matrix W ∈ R2×3. The

original data points x (red points) in three dimensional feature space is orthogonally

projected onto a two-dimensional subspace spanned by rows of W . The new data

points z (green points) now lie in a two-dimensional feature space.

where each new feature is given by

z(i) = −→w⊤
i x

=
dx∑

j=1

W(i,j)x
(j), (2.13)

where −→w i denotes the i-th row of W . Linear dimension reduction is illustrated in

Figure 2.1.

The goal of linear dimension reduction is to learn W from data such that the new

features preserve information contained in the original features. This problem can be

mathematically formulated as an optimization problem,

min
W∈W

J (W), (2.14)

where the objective function J (W) is a function that corresponds to the amount of

information loss after feature transformation byW . That is, we want to findW which

gives the least amount of information loss. The setW determines the domain of W

and is often defined as a subset of dz-by-dx matrices. This optimization problem is

the key problem of linear dimension reduction and we can derive many well-known

linear dimension reduction methods by changing J (W) andW accordingly.

Although any subset of dz-by-dx matrices can be used forW , it is common to use

a set ofW satisfyingWW⊤ = Idz . That is, the setW is defined as

W = {W ∈ Rdz×dx |WW⊤ = Idz}, (2.15)

where Idz denotes the dz-by-dz identity matrix. This set is also called the Stiefel

manifold (Stiefel, 1935; Edelman et al., 1998; Absil et al., 2008) and is denoted by

Sdx
dz

. An optimization problem over this set can be written as

min
W∈Sdx

dz

J (W), (2.16)

16

or equivalently as a constrained optimization problem

min
W∈Rdz×dx

J (W)

subject to WW⊤ = Idz . (2.17)

Most of linear dimension reduction methods that are considered in this dissertation

solve an optimization problem in Equation (2.17). In literature, such a constrained

optimization problem is popular since the linear transformation is equivalent to an

orthogonal projection (see Figure 2.1) which is highly useful for data visualiza-

tion (Cunningham and Ghahramani, 2015).

The objective functionJ (W) depends on the given data and we can generally cat-

egorize linear dimension reduction methods into unsupervised and supervised meth-

ods depending on the type of the data. In the following sections, we give an overview

of unsupervised and supervised linear dimension reduction in details.

2.2 Unsupervised Linear Dimension Reduction

Unsupervised linear dimension reduction refers to linear dimension reduction that

learns the matrixW from input-only data {xi}Ni=1 such that the low-dimensional data

z = Wx preserves information contained in the original data x. We emphasize

that this ‘information’ that we wish to preserve is not mathematically defined and

different methods define this information in different ways. In the followings, we

briefly review two important unsupervised linear dimension reduction methods in the

machine learning literature.

2.2.1 Principal Component Analysis

The principal component analysis (PCA) method (Jolliffe, 1986) is considered as the

most well-known unsupervised linear dimension reduction method. PCA is com-

monly described as a dimension reduction method that projects dx-dimensional data

onto dz orthogonal directions with maximum variances. These orthogonal directions

are obtained by computing eigendecomposition of the data covariance matrix and se-

lects dz eigenvectors associated with the dz largest eigenvalues. Below, we review

PCA in another viewpoint where it aims to minimize the reconstruction error.

Firstly, we consider an objective function defined as

J (W) =
N∑

i=1

‖xi −W⊤Wxi‖22

= ‖X −W⊤WX‖2Fro. (2.18)

The quantity xi −W⊤Wxi corresponds to the difference between a data point xi

and a reconstructed data point W⊤Wxi obtained by orthogonal projection of W .

Therefore, solving an optimization problem

min
W∈Rdz×dx

‖X −W⊤WX‖2Fro
subject to WW⊤ = Idz , (2.19)

17

gives a solution which minimizes the reconstruction error in the least-squares sense.

By using the definition of the Frobenius norm, the above objective function can be

rewritten into

‖X −W⊤WX‖2Fro = tr
[(
X −W⊤WX

)⊤ (
X −W⊤WX

)]

= tr
[
X⊤X −X⊤W⊤WX

]

= tr
[
X⊤X −WXX⊤W⊤] . (2.20)

The term X⊤X can be omit from the objective function since it is a constant with

respect to (w.r.t.) the matrix W . Thus, the optimization problem is reduced to

max
W∈Rdz×dx

tr
[
WXX⊤W⊤]

subject to WW⊤ = Idz . (2.21)

It is known that an optimization problem in this form can be solved by computing

an eigendecomposition of the matrix XX⊤ and choosing dz eigenvectors associated

with the dz largest eigenvalues (Fukunaga, 1990). Given a dx-by-dx square matrix

XX⊤, the eigendecomposition seeks for a set of eigenvectors {vi}dxi=1 and a set of

eigenvalues {λi}dxi=1 such that

XX⊤vi = λivi. (2.22)

It should be noted that the eigenvectors are always orthogonal to each other, and thus

the orthogonal constraint is always satisfied by using eigenvectors for a solution W .

We also emphasize that W obtained via eigendecomposition is always the global

solution that yields the optimal objective value subject to the constraint.

While PCA is simple and computationally efficient, it also has many limitations.

Among these limitations, one severe limitation is that PCA assumes that the maximum

variance directions are the most informative. This is generally not true when data

possesses a cluster structure or multi-modal structure. In other words, PCA tries

to preserve the global structure of data and ignore local structure such as a cluster

structure.

Many extensions of PCA have been proposed to alleviate its limitations (Bishop,

2006; Mollah et al., 2010; Candès et al., 2011). For example, local PCA (Mollah et al.,

2010) alleviates the cluster structure issue by locally performing PCA on each cluster.

However, these extensions do not completely mitigate the limitations of PCA and

they also have their own drawbacks, e.g., local PCA requires an appropriate number

of cluster. Next, we review an unsupervised linear dimension reduction method that

aims to preserve the local structure of data and is considered as an alternative to PCA.

2.2.2 Locality Preserving Projection

In contrast to PCA which preserves the global structure of data, locality preserving

projection (LPP) (He and Niyogi, 2003) preserves the local structure of data. The goal

of LPP is to find a matrixW which preserves similarity between data points, and this

goal can be achieved by minimizing the following objective function:

J (W) =

N∑

i,j=1

S(i,j)‖Wxi −Wxj‖22, (2.23)

18

where 0 ≤ S(i,j) ≤ 1 denotes a similarity between data points xi and xj . The similar-

ity is computed such that S(i,j) has a high value if xi and xj are similar and has a low

value if they are dissimilar. This similarity allows LPP to focus on the local structure

in data as follows. If xi and xj are similar, then low-dimensional data points Wxi

and Wxj should be similar as well since S(i,j) has high value. On the other hand, if

xi and xj are dissimilar, thenWxi andWxj can be either similar or dissimilar since

S(i,j) has a low value. This objective function can be rewritten into a matrix form:

J (W) =

N∑

i,j=1

S(i,j)‖Wxi −Wxj‖22

=

N∑

i,j=1

S(i,j)(Wxi −Wxj)
⊤(Wxi −Wxj)

=
N∑

i=1

x⊤
i W

⊤Wxi(
N∑

j=1

S(i,j))−
N∑

i,j=1

x⊤
i W

⊤WxjS(i,j)

= tr
[
WXDX⊤W⊤]− tr

[
WXSX⊤W⊤]

= tr
[
WXLX⊤W⊤] , (2.24)

where S is an N-by-N matrix whose its (i, j)-th entry is the similarity S(i,j),D is an

N-by-N diagonal matrix with its diagonal entries correspond to D(i,i) =
∑N

j=1 S(i,j),

and L = D − S. To prevent arbitrary scaling and an uninformative minimizer such

as a zero matrix, a normalization term is included into the objective function as

J (W) = tr
[(
WXDX⊤W⊤)−1 (

WXLX⊤W⊤)] , (2.25)

where (WXDX⊤W⊤)−1 is the normalization term.

Unlike PCA, LPP does not require thatWW⊤ = Idz . The optimization problem

of LPP is an unconstrained optimization problem over a set of dz-by-dx matrices:

min
W∈Rdz×dx

tr
[(
WXDX⊤W⊤)−1 (

WXLX⊤W⊤)] . (2.26)

The solution of an optimization problem in this form is obtained by solving a gen-

eralized eigenvalue problem (Fukunaga, 1990). In a generalized eigenvalue problem,

given two dx-by-dx square matrices XLX⊤ and XDX⊤, we seek for a set of gen-

eralized eigenvectors {vi}dxi=1 and a set of generalized eigenvalues {λi}dxi=1 such that

XLX⊤vi = λiXDX
⊤vi. (2.27)

Unlike eigenvectors, these generalized eigenvectors are not necessarily orthonormal

to each other. Instead, they are C-orthonormal (Bai et al., 2000), i.e., v⊤i Cvi = 1
and v⊤

i Cvj = 0 for i 6= j. Note thatC =XDX⊤ in LPP. The solutionW consists

of dz generalized eigenvectors associated with dz smallest generalized eigenvalues

λi. Similarly to eigendecomposition,W obtained by solving generalized eigenvalue

problem is always the global solution.

The main advantage of LPP is that it preserves pairwise structure of data which

is very beneficial since many machine learning methods rely on pairwise relationship

between data points. However, the performance and solution of LPP depend heavily

19

on the similarity measure used for computing S. While any similarity measure can

be used, the two most popular ones are the squared exponential measure defined as

S(i,j) = exp

(
−‖xi − xj‖22

2σ2

)
, (2.28)

and the k-nearest neighbor measure defined as

S(i,j) =

{
1, if xj belongs to the k closest neighbor of xi,

0, otherwise.
(2.29)

Unfortunately, there is no systematic approach to determine which measure is better

due to the unsupervised nature of the problem. Moreover, these measures contain

tuning parameters, namely σ and k, which need to be appropriately determined. For

this reason, dimension reduction via LPP can be subjective and may not be reliable.

As reviewed above, PCA considers information as the global structure of data

while LPP considers information as the local structure of data. These two methods

are regarded as the classical unsupervised linear dimension reduction methods. Later

in Section 2.4, we will show that we can alternatively consider information as an

amount of statistical dependence between data.

2.3 Supervised Linear Dimension Reduction

Supervised linear dimension reduction methods learn a matrix W from input-output

data {(xi,yi)}Ni=1 such that z = Wx preserves information in x about y. Simi-

larly to unsupervised dimension reduction, this ‘information’ is not mathematically

defined. In the followings, we firstly review a classical supervised linear dimension

reduction method for classification setting. Then, we review supervised linear di-

mension reduction methods in the sufficient dimension reduction framework which

information is defined based on statistical dependence.

2.3.1 Linear Discriminant Analysis

Fisher discriminant analysis (FDA) (Fisher, 1936; Fukunaga, 1990) is a classical su-

pervised dimension reduction method for classification. Classification is a supervised

learning problem where output y ∈ {1, . . . , c} is a discrete variable called a class la-

bel and the goal is to learn a function f(x) called a classifier that assigns x a correct

class label. The main idea of FDA is to find a matrix W such that low-dimensional

data points from the same class are closed to each other, and data points from dif-

ferent classes are far from each other. This goal can be achieved by minimizing the

following objective function:

J (W) = tr

[(
WS(b)W⊤

)−1 (
WS(w)W⊤

)]
, (2.30)

where S(w) ∈ Rdx×dx denotes the within-class scatter matrix and S(b) ∈ Rdx×dx

denotes the between-class scatter matrix. The within-class scatter is defined by

S(w) =

c∑

m=1

∑

i:yi=m

(xi − µm)(xi − µm)
⊤, (2.31)

20

where
∑

i:yi=m denotes summation of data points xi in class m and µm =
1

Nm

∑
i:yi=m xi denotes the mean of Nm data points in class m. The between-class

scatter is defined by

S(b) =

c∑

m=1

(µm − µ)(µm − µ)⊤, (2.32)

where µ = 1
N

∑N
i=1 xi denotes the mean of all data points. Intuitively, this means that

FDA finds a matrixW which minimizes the distance from data points to their class’s

center, and maximizes the distance between their classes’ center. In other words, FDA

aims to preserve class separability of data.

FDA does not require thatWW⊤ = Idz and it solves an unconstrained optimiza-

tion problem

min
W∈Rdz×dx

tr

[(
WS(b)W⊤

)−1 (
WS(w)W⊤

)]
. (2.33)

Similarly to LPP, the solution to this optimization problem is obtained by solving a

generalized eigenvalue problem of matrices S(w) and S(b), and then choosing dz gen-

eralized eigenvectors associated with dz smallest generalized eigenvalues (Fukunaga,

1990).

FDA is a popular dimension reduction method for classification and it has been

studied for more than decades. Many researchers have proposed methods that ex-

tend and improve LDA in many directions. These methods include but not limited

to local LDA (Sugiyama, 2007), semi-supervised LDA (Sugiyama et al., 2008; Yang

et al., 2009), probabilistic LDA (Ioffe, 2006; Zhang and Yeung, 2009), and regular-

ized LDA (Friedman, 1989; Zhang et al., 2010). However, the main limitation of these

LDA-based methods is that they are only applicable to classification where output y
is a categorical variable.

Next, we consider methods in the framework of sufficient dimension reduction (Li,

1991; Cook and Ni, 2005) which is applicable to non-categorical output as well.

2.3.2 Sliced Inverse Regression

Sliced inverse regression (SIR) (Li, 1991) is a pioneer method of sufficient dimen-

sion reduction (Li, 1991; Cook and Ni, 2005). Sufficient dimension reduction is a

supervised linear dimension reduction framework where the goal is to find a matrix

W ∈ {W |WW⊤ = Idz} which satisfies the equality

p(y|x) = p(y|Wx). (2.34)

This equality is also equivalent to the conditional independence:

(y ⊥⊥ x)|Wx, (2.35)

where ⊥⊥ denotes statistical independence between two random variables. This con-

ditional independence implies that givenWx, input x and output y are not related to

each other. Therefore, we can use Wx instead of x to describe y without losing any

information.

21

In general, output can be any quantity including a real-valued vector. However,

the procedure of SIR is only applicable when output is a real-valued scalar. The key

principal of SIR lies on the following equality:

E[c⊤x|Wx] = a0 +

dz∑

i=1

ai
−→w⊤

i x. (2.36)

The importance of this equality is that if the equality holds for any c ∈ Rdx and some

constants a0, a1, . . . , adz , then the inverse regression function E[x|y] lies on the space

spanned by W which satisfies Equation (2.34). Based on this fact, SIR estimatesW

as follows. First, the range of y is sliced into H slices and E[x|y] is estimated as the

mean of x for each slice of y. That is, data {(xi, yi)}Ni=1 is firstly split into H disjoint

subsets based on the value of yi and the mean of x is computed using {xi}Nh

i=1 in each

set:

{(xi, yi ∈ D1)}N1
i=1 → E[x|y ∈ D1] ≈

1

N1

N1∑

i=1

xi = x̄1,

{(xi, yi ∈ D2)}N2
i=1 → E[x|y ∈ D2] ≈

1

N2

N2∑

i=1

xi = x̄2,

...

{(xi, yi ∈ DH)}NH

i=1 → E[x|y ∈ DH] ≈
1

NH

NH∑

i=1

xi = x̄H , (2.37)

where E[x|y ∈ Dh] denotes inverse regression for the h-th slice. Note that each mean

x̄h is a dx-dimensional vector. Next, the covariance matrix of the mean is estimated

by

Σ =
1

N

H∑

h=1

Nhx̄hx̄
⊤
h . (2.38)

Finally, SIR computes an eigendecomposition of Σ and chooses dz eigenvectors as-

sociated with the dz largest eigenvalues as the matrixW .

SIR has been extensively studied and has been extended in many directions includ-

ing localized SIR (Wu et al., 2008) and regularized SIR (Zhong et al., 2005; Bernard-

Michel et al., 2009). A similar idea to SIR is also adopted in sliced average variance

estimation (Cook, 2000) and directional regression (Li and Wang, 2007) where the

inverse regression function is replaced by inverse variance functions.

Methods based on inverse regression are simple and computationally efficient.

However, they typically require the input distribution to be elliptically symmetric dis-

tribution such as the Gaussian distribution. This requirement is very restrictive and

thus the practical usefulness of inverse regression-based methods is quite limited.

2.3.3 Methods based on Gradients of Conditional Density functions

Another approach to sufficient dimension reduction is based on gradients of condi-

tional density functions. We firstly describe the fundamental idea of this approach

below.

22

Let z =Wx, then from the equality p(y|x) = p(y|z) in Equation (2.34) we can

verify an important relationship between the matrix W and gradients of conditional

density p(y|x) as follows:

∂p(y|x)
∂x

=
∂p(y|z)

∂x

=
∂z

∂x

∂p(y|z)
∂z

=W⊤∂p(y|z)
∂z

, (2.39)

where we used the chain-rule and the fact that ∂z
∂x

= W⊤. By left-multiplying both

side withW , we can also see that

W
∂p(y|x)

∂x
=

∂p(y|z)
∂z

, (2.40)

where on the right hand-sided we have WW⊤ = Idz . Equation (2.39) suggests that

we may learn the matrix W by minimizing an error between
∂p(y|x)

∂x
and W⊤ ∂p(y|z)

∂z
.

In particular, we minimize the sum of the squared error:

J (W) =

N∑

i=1

∥∥∥∥
∂p(y|xi)

∂x
−W⊤∂p(y|zi)

∂z

∥∥∥∥
2

2

=
N∑

i=1

∥∥∥∥
∂p(y|xi)

∂x
−W⊤W

∂p(y|xi)

∂x

∥∥∥∥
2

2

=
∥∥M −W⊤WM

∥∥2
Fro

, (2.41)

where M is a dx-by-N matrix whose its (i, j)-th entry is the partial derivative of

p(y|x) w.r.t. x(i) evaluated at data point xj , i.e., M(i,j) =
∂p(y|xj)

∂x(i) . Then, the matrix

W can be obtained by solving the following optimization problem:

min
W∈Rdz×dx

∥∥M −W⊤WM
∥∥2
Fro

subject to WW⊤ = Idz . (2.42)

Interestingly, this optimization problem highly resembles the optimization problem

of PCA in Equation (2.19). Likewise, the solution to this optimization problem is

obtained by computing eigendecomposition of the matrix MM⊤ and choosing dz
eigenvectors associated with the largest dz eigenvalues.

As we have shown, sufficient dimension reduction can be performed using the

gradients of the conditional density function. However, these gradients are often un-

known and need to be estimated from data. The main focus of gradient-based suffi-

cient dimension reduction methods is to accurately estimate the gradients from data.

These methods include but not limited to average derivative estimates (Samarov,

1993), outer product of gradient based on the conditional density functions (Xia,

2007), gradient-based kernel dimension reduction (Fukumizu and Leng, 2012), and

least-squares logarithmic conditional density gradients (Sasaki et al., 2015b). While

these methods have their own advantages and disadvantages, they have one common

disadvantage when compared with other sufficient dimension reduction approach.

That is, the gradient estimation for
∂p(y|x)

∂x
needs to be done in the high-dimensional

space of x which makes accurate estimation very challenging.

23

2.3.4 Minimum Average Variance Estimation based on the Conditional Density

Functions

Minimum average variance estimation based on the conditional density functions

(dMAVE) (Xia, 2007) is a sufficient dimension reduction method that is not based

on inverse functions or gradients of conditional density functions. Instead, dMAVE

finds a matrix W which yields an accurate non-parametric estimation of the condi-

tional density p(y|z).
dMAVE estimates the conditional density p(y|z) based on the following model:

Hb(ỹ − y) = mb(z, y) + εb(y|z), (2.43)

where Hb denotes a symmetric kernel function with bandwidth b > 0, mb(z, y) de-

notes a conditional expectation of Hb(ỹ − y) given z, and εb(y|z) = Hb(ỹ − y) −
E [Hb(ỹ − y)|z] with E [εb(y|z)] = 0. An important property of this model is that

mb(z, y) → p(y|z) when b → 0 as n → ∞. This means that an estimator mb(z, y)
asymptotically converges to p(y|z). Then, dMAVE estimates mb(z, y) by a local

linear smoother (Fan et al., 1996). More specifically, a local linear smoother of

mb(zi, yk) is given by

mb(zi, yk) ≈ mb(zj, yk) +
∂mb(zj , yk)

∂z
(zi − zj)

= ajk + b
⊤
jkW (xi − xj), (2.44)

where zj is an arbitrary point close to zi, and ajk ∈ R and bjk ∈ Rdz are parameters.

This local linear smoother can also be regarded as the first order Taylor approxima-

tion. Based on this local linear smoother and the relation to the conditional density

above, dMAVE solves the following optimization problem:

min
W ,ajk ,bjk

1

n3

n∑

j,k=1

ρ(xj , yk)

n∑

i=1

[
Hb(yi − yk)− ajk − b⊤jkW (xi − xj)

]2
Kh(xi,xj)

subject to WW⊤ = Idz , (2.45)

where Kh is a symmetric kernel function for x with bandwidth h > 0. The function

ρ(x, y) is a trimming function which is evaluated as zero when the densities of x or

y are lower than some threshold. A solution to this minimization problem is obtained

by alternatively solving quadratic programming problems forW , and (ajk, bjk) until

convergence.

dMAVE does not require any assumption on the data distribution unlike inverse

regression based methods. Moreover, the estimation is done in low-dimensional space

of z unlike gradient-based methods. However, performance and solution of dMAVE

depends on the choice of the kernel bandwidth and trimming threshold, and so far

there is no systematic method to choose these tuning parameters. In practice, dMAVE

uses a bandwidth selection method based on the normal-reference rule of the non-

parametric conditional density estimation (Silverman, 1986; Fan et al., 1996), and a

fixed trimming threshold. Although this model selection strategy works reasonably

well in general, it does not always guarantee good performance.

Unlike linear dimension reduction methods we introduced so far, dMAVE does

not compute eigendecomposition or solve generalized eigenvalue problem to obtain

the matrix W . Instead, it iteratively solves quadratic programming problems until

24

convergence. However, the optimization problem in Equaation (2.45) is non-convex

and a solution obtained by this approach can be a local solution. dMAVE allevi-

ates this issue by using a gradient-based sufficient dimension reduction method called

dOPG (Xia, 2007) to learn an initial solution. Thus, dMAVE may not perform well if

dOPG fails to provide a good initial solution.

Another disadvantage of dMAVE is that the provided learning procedure and the-

oretical analysis are established only for a real-value scalar output y. For this reason,

the applicability of dMAVE to vector-valued output is currently unclear.

2.4 Dimension Reduction based on Statistical Dependence

Linear dimension reduction methods that we reviewed above consider different defi-

nition of information that the matrixW needs to preserve. For unsupervised methods,

PCA defines information as the global structure of data and LPP defines information

as the local structure of data. For supervised methods, LDA defines information as the

class separability of data and sufficient dimension reduction defines information as an

amount of statistical dependence. In this section, we firstly show that statistical de-

pendence can also be used for unsupervised scenarios as well. Then, we overview five

approaches that were used to evaluate statistical dependence for dimension reduction.

2.4.1 Dimension Reduction and Statistical Dependence

Two random variables x and y are statistically independent if and only if

p(x,y) = p(x)p(y). (2.46)

Assume that we have an additional random variable z, then x and y are statistically

independent given z if and only if

p(x,y|z) = p(x|z)p(y|z). (2.47)

This conditional independence is also denoted by

(x ⊥⊥ y)|z. (2.48)

In the sufficient dimension reduction framework, the variables x, y, and z are

input, output, and low-dimensional data, respectively. In this case, the conditional

independence implies that given z, input x and output y are not related and we may

use z instead of x to describe y. Now, let us assume that the variable y is an identical

copy of x denoted by x̃, i.e., y = x̃. In this case, the conditional independence

(x ⊥⊥ x̃)|z, (2.49)

implies that given z, the input x and its copy x̃ are statistically independent and not

related. This means that z contains all necessary information that can describe x and

we can use z instead of x without losing any information. This suggests that we may

perform unsupervised linear dimension reduction by finding a matrix W such that

z =Wx satisfies the conditional independence in Equation (2.49).

As we have shown, both supervised and unsupervised linear dimension reduction

can be performed based on statistical dependence. The remaining question is how

to estimate statistical dependence of random variables from data. Below, we review

approaches that estimate statistical dependence from data.

25

2.4.2 Pearson Correlation Coefficient

A classical statistical dependence measure is the Pearson correlation coeffi-

cient (PCC) (Galton, 1886; Pearson, 1895). PCC between two scalar random vari-

ables z and y is defined as

PCC(Z, Y) =
Ep(z,y)

[
(z − Ep(z)[z])(y − Ep(y)[y])

]
√

Ep(z)

[
(z − Ep(z)[z])2

]√
Ep(y)

[
(y − Ep(y)[y])2

]

=
cov(z, y)√

var(z)
√

var(y)
, (2.50)

where cov(z, y) = Ep(z,y)

[
(z − Ep(z)[z])(y − Ep(y)[y])

]
denotes the covariance be-

tween z and y, and var(z) = Ep(z)

[
(z − Ep(z)[z])

2
]

denotes the variance of z. An

estimated PCC can be obtained by estimating the covariance and the variances from

data and substitute them into Equation (2.50).

The value of PCC lies between −1 and 1 and it can be used to evaluate linear

dependency between z and y where the absolute value of PCC determines the amount

of dependency. More specifically, if z and y are independent then PCC(Z, Y) is zero.

However, it should be noted that the reverse is not necessarily true, i.e., PCC(Z, Y) =
0 does not imply that z and y are independent. The value PCC(Z, Y) > 0 implies

that z and y has positive linear dependency where z increases as y increases. On the

other hand, the value PCC(Z, Y) < 0 imples that z and y has negative dependency

where z decreases as y increases and vice versa. The main limitation of PCC is that it

can only detect linear dependency between random variables. In practice, data often

has non-linear dependency and thus PCC is not sufficient.

2.4.3 Conditional Covariance Operator on Reproducing Kernel Hilbert Spaces

Reproducing kernel Hilbert space (RKHS) (Aronszajn, 1950) is a very important

mathematics tool in machine learning. Firstly, we give an overview of RKHS and

then describe its relation to statistical independence.

Roughly speaking, an RKHS is a space of real-valued functions equipped with an

inner product where there exists a function which has the reproducing property. We

use HZ to denote a space of real-valued functions on a set Z equipped with an inner

product 〈·, ·〉HZ
. That is, f ∈ HZ , f : Z → R, and 〈·, ·〉HZ

: HZ ×HZ → R. Then,

the spaceHZ is an RKHS if there exists a reproducing kernel kZ : Z×Z → R which

satisfies the reproducing property:

〈f, kZ(·, z)〉HZ
= f(z), (2.51)

where z ∈ Z , and kZ(·, z) ∈ HZ . We also use HY to denote an RKHS on a set Y
with a kernel kY .

Researchers have shown that statistical dependence can be evaluated through op-

erations between RKHSs on random variables (Bach and Jordan, 2003; Fukumizu

et al., 2004; Gretton et al., 2005; Fukumizu et al., 2009). More specifically, given

HY and HZ , the cross-covariance operator ΣYZ : HZ → HY satisfies the following

equality for all f ∈ HZ and g ∈ HY :

〈g,ΣYZf〉HY
= Ep(z,y) [f(z)g(y)]− Ep(z) [f(z)]Ep(y) [g(y)] . (2.52)

26

Next, the conditional covariance operator ΣYY|Z is defined using cross-covariance

operators by

ΣYY|Z = ΣYY − ΣYZΣ
−1
ZZΣZY , (2.53)

where it is assumed that the inverse operator Σ−1
ZZ exists. This conditional covari-

ance operator is related to the conditional independence through the following two

relations (Fukumizu et al., 2004, 2009):

ΣYY|Z ≥ ΣYY|X , (2.54)

and

ΣYY|Z = ΣYY|X ⇐⇒ (x ⊥⊥ y)|z, (2.55)

where the inequality refers to the partial order of self-adjoint operators. These rela-

tions mean that the conditional independence in Equation (2.48) can be achieved by

minimizing ΣYY|Z in the sense of the partial order of self-adjoint operators.

There are two dimension reduction methods that utilize the conditional covariance

operator. The first method is kernel dimension reduction (KDR) (Fukumizu et al.,

2004) which is a supervised linear dimension reduction method that minimizes an

empirical estimator of the trace of ΣYY|Z to find the matrix W . That is, KDR solves

the following optimization problem:

max
W∈Rdz×dx

tr
[
KY (KZ + λIN)

−1]

subject to WW⊤ = Idz , (2.56)

where KZ and KY denotes centered Gram matrices (Schölkopf et al., 1998; Bach

and Jordan, 2002) with kernels kZ and kY , respectively. The second method extends

KDR to unsupervised dimension reduction and is called unsupervised kernel dimen-

sion reduction (Wang et al., 2010). In essence, this method replaces output y with

an identical copy of input x and then perform KDR. It also proposes an extension of

KDR to non-linear dimension reduction by applying a non-linear transformation to

data first and then applying KDR. This non-linearization will be explained in details

in Section 2.5.

The main advantage of using the conditional covariance operator is that the op-

erator can detect non-linear dependency. However, using this operator requires us

to define the kernels and their parameters. Unfortunately, there seems to be no jus-

tifiable model selection method to choose these parameters so far (Fukumizu et al.,

2009). Moreover, Equation (2.56) is a non-convex optimization problem and an iter-

ative procedure that were used in KDR and its unsupervised extension may result in

a local solution.

2.4.4 Mutual Information

Mutual information (MI) is a well-known statistical dependence measure that have

been widely used in many applications (Cover and Thomas, 1991). Mutual informa-

tion between random variables z and y is defined as

MI(Z,Y) =

∫∫
p(z,y) log

p(z,y)

p(z)p(y)
dzdy. (2.57)

27

The important properties of MI are that it is always non-negative and MI(Z, Y) is

zero if and only if z and y are statistically independent, i.e., p(z,y) = p(z)p(y).
In statistics, a divergence refers to a ’pseudo’ measure of distance for two proba-

bility distributions and it also plays an important role in machine learning. MI(Z, Y)
is equivalent to the Kullback-Leibler (KL) divergence (Kullback and Leibler, 1951)

from p(z,y) to p(z)p(y) where the KL divergence from p(z) to q(z) is defined as

KL(p‖q) =
∫

p(z) log
p(z)

q(z)
dz. (2.58)

Note that a divergence is not strictly a distance since it is not required to be symmetric,

e.g., KL(p‖q) 6= KL(q‖p). Interestingly, the KL divergence can be regarded as an

instance of two divergence classes. The first divergence class is the f -divergence (Ali

and Silvey, 1966; Csiszár, 1967). The f -divergence from p(z) to q(z) is defined as

Df(p‖q) =
∫

q(z)f

(
p(z)

q(z)

)
dz, (2.59)

where f is a convex function such that f(0) = 1. The KL divergence corresponds to

the f -divergence with f(t) = t log t. The second divergence class that the KL diver-

gence belongs to is the density power divergence (Basu et al., 1998) and is defined

as

DPα(p‖q) =
∫ (

p(z)1+α −
(
1 +

1

α

)
p(z)q(z)α +

1

α
q(z)1+α

)
dz, (2.60)

where α > 0 is the parameter of the divergence. The KL divergence corresponds to

the density power divergence with α→ 0 in the limit.

We can verify that MI is related to the conditional independence and can be used

for dimension reduction as follows. Given random variables x, y, and z = Wx we

can verify that

MI(X,Y)−MI(Z,Y) =

∫∫
p(x,y) log

p(x,y)

p(x)p(y)
dxdy

−
∫∫

p(z,y) log
p(z,y)

p(z)p(y)
dzdy

=

∫∫
p(x,y) log

p(y|x)
p(y|z)dxdy

≥ 0, (2.61)

where the inequality follows from Jensen’s inequality (Jensen, 1906). We can see

that the equality holds if and only if p(y|x) = p(y|z). This implies that the condi-

tional independence is achieved when MI(X,Y) = MI(Z,Y). Since MI(X,Y) is

always larger than MI(Z,Y), dimension reduction can be performed by maximizing

MI(Z,Y):

max
W∈Rdz×dx

MI(Z,Y)

subject to WW⊤ = Idz . (2.62)

MI is a well-known tool and many researchers have used MI in various data anal-

ysis problems including dimension reduction (Cover and Thomas, 1991; Peng et al.,

28

2005; Brown, 2009; Faivishevsky and Goldberger, 2012) and clustering (Agakov and

Barber, 2005; Gomes et al., 2010; Romano et al., 2014). The main appeal of MI is

that is can detect non-linear dependency. Moreover, an efficient method to estimate

MI(Z,Y) from data is also available (Paninski, 2003; Kraskov et al., 2004; Suzuki

et al., 2008; Pál et al., 2010; Gao et al., 2015). For these reasons, dimension reduction

based on maximizing MI seems to be an appealing approach.

However, MI is not always the optimal choice for measuring statistical depen-

dence because it is not robust against outliers. An intuitive explanation is that

MI(Z,Y) contains the log function and the density ratio
p(z,y)

p(z)p(y)
. In the presence

of outliers, the value of logarithm can be highly sharp near zero, and density ratio can

be highly fluctuated and diverge to infinity. Thus, the value of MI tends to be unstable

and unreliable in the presence of outliers.

2.4.5 Squared-loss Mutual Information

Squared-loss mutual information (SMI) is a statistical dependence measure between

random variables. SMI between z and y is defined as

SMI(Z,Y) =

∫∫
p(z)p(y)

(
p(z,y)

p(z)p(y)
− 1

)2

dzdy. (2.63)

SMI is always non-negative and SMI(Z, Y) is zero if and only if z and y are statis-

tically independent. These properties are identical to those of MI and they suggest

us that dimension reduction may be performed based on SMI. In fact, SMI is also an

f -divergence from p(z,y) to p(z)p(y), where the function f(t) = (t−1)2 is applied.

The f -divergence with f(t) = (t − 1)2 is called the Pearson divergence (Pearson,

1900).

The least-squares dimension reduction (LSDR) (Suzuki and Sugiyama, 2013)

method performs supervised linear dimension reduction by maximizing SMI:

max
W∈Rdz×dx

SMI(Z,Y)

subject to WW⊤ = Idz . (2.64)

Since SMI is unknown in practice, LSDR estimates it from data. In particular,

SMI(Z,Y) is estimated by least-squares mutual information (LSMI) (Suzuki et al.,

2009), which directly estimates the density ratio
p(z,y)

p(z)p(y)
without performing any den-

sity estimation. Although an extension of LSDR to unsupervised linear dimension

reduction is not yet explored, we may straightforwardly do so by replacing y with an

identical copy of x.

SMI can detect non-linear dependency similarly to MI. However, SMI does not

contain the logarithm function and tends to be more robust against outliers than MI.

However, SMI still contains the density ratio which makes an accurate estimation of

SMI challenging in the presence of outliers.

2.4.6 Quadratic Mutual Information

Quadratic mutual information (QMI) is another statistical dependence measure be-

tween random variables (Principe et al., 2000). QMI between z and y is defined as

QMI(Z,Y) =

∫∫
(p(z,y)− p(z)p(y))2 dzdy. (2.65)

29

QMI is always non-negative and QMI(Z,Y) is zero if and only if z and y are statis-

tically independent. Again, these properties are identical to those of MI and thus we

may use QMI for dimension reduction.

QMI(Z,Y) is an L2 distance from p(z,y) to p(z)p(y). The L2 distance can

also be regarded as the density power divergence in Equation (2.60) where α = 1.

As discussed in Basu et al. (1998), the parameter α controls the robustness against

outliers of the divergence where a large value of α indicates high robustness. This

means that QMI which is the density power divergence with α = 1 is more robust

against outliers than MI which is the density power divergence with α→ 0.

While comparison between robustness against outliers of QMI and SMI based on

their divergence classes is currently unexplored, we may assume that QMI is more

robust than SMI. The reason is that unlike SMI, QMI does not contain the density

ratio and thus it suffers less from outliers.

QMI has been used for both supervised linear dimension reduction (Principe

et al., 2000; Torkkola, 2003) and unsupervised linear dimension reduction (Sainui

and Sugiyama, 2014). These methods perform linear dimension reduction by solving

the following optimization problem:

max
W∈Rdz×dx

QMI(Z,Y)

subject to WW⊤ = Idz , (2.66)

where QMI(Z,Y) is estimated by either kernel density estimation (KDE) (Silverman,

1986) or least-squares quadratic mutual information (LSQMI) (Sainui and Sugiyama,

2013). It was shown that these QMI-based dimension reduction methods work well

in the presence of outliers when compared with other dimension reduction methods.

2.5 Non-linearized Linear Dimension Reduction

Dimension reduction methods that we introduced so far in this chapter are linear

dimension reduction methods which learn a matrix W that transforms x to z by

z =Wx. In other words, the transformation z =Wx is linear w.r.t. the variable x.

Assume that we non-linearly transform x to φ(x) where φ : Rdx → Rdφ is a

non-linear function. Then, the transformation z = Wφ(x) is non-linear w.r.t. the

variable x and can be regarded as non-linear dimension reduction. The function φ is

often called a feature map since it maps data points from the original feature space to

a new feature space (Bishop, 2006). Applying a non-linear feature map to data is the

idea that is commonly used to extend linear learning methods to non-linear learning

methods (Bishop, 2006; Murphy, 2012).

The approach described above can be used to extend linear dimension reduction

we have described in this chapter to non-linear dimension reduction (Lee and Ver-

leysen, 2007; Cunningham and Ghahramani, 2015). However, the main concern of

such an approach is that we need to choose an appropriate feature map φ(x). In gen-

eral, a highly complex feature map allows us to better preserve information in data.

However, such a feature map often results in a high-dimensional φ(x) whose dimen-

sionality can be much higher than the dimensionality of the original data x. Since

the computation time of dimension reduction methods increases as the dimensional-

ity of data increases, using a highly complex feature map is often computationally

inefficient and is not preferable in practice.

30

However, for linear dimension reduction methods that deal with data points only

through the inner product, we may use a highly complex feature map without sacrific-

ing much computational efficiency. More specifically, given a feature map φ and two

data points x1,x2 ∈ X , the theorem of reproducing kernel Hilbert space (Aronszajn,

1950) states that there exists a reproducing positive definite kernel k : X × X → R

such that

k(x1,x2) = 〈φ(x1), φ(x2)〉H . (2.67)

Note that we implicitly assume that H is a reproducing kernel Hilbert space on X
and that φ ∈ H. Equation (2.67) shows that we can evaluate the kernel between two

data points instead of evaluating the inner product between feature maps of two data

points. This is advantageous since evaluating kernels is often computationally more

efficient than evaluating very high-dimensional feature maps.

As an example, we briefly review the kernel principal component analysis

(KPCA) (Schölkopf et al., 1997) method as follows. As discussed previously, the

essential step of PCA is to compute the eigendecomposition of a matrixXX⊤ where

X ∈ Rdx×N is a data matrix. Now, let us assume that we instead perform PCA with a

matrix ΦΦ⊤ where Φ ∈ Rdφ×N is a new data matrix. That is, we find dz eigenvectors

associated with dz largest eigenvalues such that

ΦΦ⊤vi = λivi, (2.68)

where vi and λi is the eigenvector and the eigenvalue, respectively. These eigenvec-

tors can be used to represent the original data. However, computing eigendecomposi-

tion of the matrix ΦΦ⊤ is computationally expensive when dφ is large.

KPCA avoids explicitly computing eigendecomposition of a high-dimensional

matrix ΦΦ⊤ by instead computing eigendecomposition of the Gram matrix K ∈
RN×N which is a symmetric matrix consists of kernels between data points:

K(i,j) = k(xi,xj). (2.69)

The kernel is equivalent to the inner product between feature maps of two data points

and thus the Gram matrix can be represented using the matrix Φ by

K = Φ⊤Φ. (2.70)

It was shown that the matrices Φ⊤Φ and ΦΦ⊤ have the same eigenvalues (Schölkopf

et al., 1997). Indeed, suppose that an eigenvector ui ofK = Φ⊤Φ satisfies

Φ⊤Φui = λiui. (2.71)

Then, left-multiplying both side of Equation (2.71) with Φ gives

ΦΦ⊤Φui = λiΦui. (2.72)

By comparing Equation (2.72) with Equation (2.68), we can see that

vi = Φui. (2.73)

Thus, the desired eigenvectors {vi}dzi=1 can be obtained from the eigenvectors {ui}dzi=1.

Since the matrix K has dimensionality equal to the number of data points which is

31

Figure 2.2: Dimension reduction is commonly used as a pre-processing tool for sub-

sequent machine learning methods.

often much smaller than the dimensionality of the feature map, computing eigende-

composition of K is computationally more efficient than computing eigendecompo-

sition of ΦΦ⊤. Note that we may need to normalize the eigenvectors {Φui}dzi=1 to

ensure that they have unit norm.

Kernels allow us to efficiently perform non-linear dimension reduction based on

linear methods. However, the performance of such an approach depends on the choice

of the kernel or its corresponding feature map. For kernels, the Gaussian kernel is the

most commonly used:

k(xi,xj) = exp

(
−‖xi − xj‖22

2σ2

)
. (2.74)

Interestingly, the corresponding feature map of the Gaussian kernel has infinite dimen-

sionality. While the Gaussian kernel was shown to work well, it contains the tuning

parameter σ which is called the kernel bandwidth. In practice, this kernel bandwidth is

often fixed or chosen by model selection procedure such as cross-validation (Cawley

and Talbot, 2007; Murphy, 2012).

2.6 Summary of Dimension Reduction

In this chapter we formulated the linear dimension reduction problem and introduced

existing linear dimension reduction methods for both unsupervised and supervised

scenarios. Then, we showed that both unsupervised and supervise linear dimension

reduction can be performed by maximizing a statistical dependence measure. Among

statistical dependence measures that we introduced, quadratic mutual information

(QMI) is highly attractive due to its robustness against outliers. However, as we will

show in the next chapter, an existing approach which utilize QMI for dimension re-

duction involves a multi-step approach and is not appropriate. In the next chapter,

we present our first contribution which overcomes the multi-step issue of QMI-based

dimension reduction.

Although dimension reduction is useful by itself for finding important features of

data, the most common usage of dimension reduction is to use it as a pre-processing

tool before applying machine learning methods. That is, high-dimensional data is

processed by a dimension reduction method to obtain a low-dimensional data and

then the low-dimensional data is used by a subsequent machine learning method to

solve the target problem (see Figure 2.2). However, this naive two-step approach is

not always appropriate when the target problem is the conditional density estimation

problem. This issue will be overcome in Chapter 4 where we will present our second

contribution in this dissertation.

32

Chapter 3

Dimension Reduction via Single-step

Estimation of the Derivative of Quadratic

Mutual Information

In this chapter, we describe our first contribution on dimension reduction based on the

single-step estimation of the derivative of quadratic mutual information.

3.1 Introduction

As introduced in Chapter 1, machine learning methods often perform poorly when

data has high dimensionality due to the curse of dimensionality (Bishop, 2006). An

attractive approach to mitigate this issue is to perform linear dimension reduction on

data. The goal of linear dimension reduction is to find a low-dimensional subspace

of the feature space such that the projected data preserves maximal information in

the original data. Then, a subsequent learning method can use the low-dimensional

projection of data with a minimal loss of information.

Among many approaches to perform linear dimension reduction, the dependence

maximization approach is highly attractive since it is applicable to both unsupervised

and supervised scenarios. For unsupervised linear dimension reduction, this approach

finds a subspace which maximizes a statistical dependence measure between pro-

jected input and an identical copy of input. For supervised linear dimension reduction,

this approach finds a subspace which maximizes a statistical dependence measure be-

tween projected input and output. Although our proposed method in this chapter is

developed from the viewpoint of supervised linear dimension reduction, i.e., a sta-

tistical dependence between projected input and output is maximized, the proposed

method can be straightforwardly applied to the unsupervised linear dimension reduc-

tion as well.

For dimension reduction methods based on statistical dependence maximiza-

tion, the choice of statistical dependence measures heavily affects their performance.

Moreover, these statistical dependence measures are often unknown and need to be

estimated from data. The most well-known and popular statistical dependence mea-

sure is the mutual information (MI) (Cover and Thomas, 1991). MI is well-studied

and many methods were proposed to estimate MI from data (Paninski, 2003; Kraskov

et al., 2004; Suzuki et al., 2008; Pál et al., 2010; Gao et al., 2015). A notable method

is the maximum likelihood MI (MLMI) (Suzuki et al., 2008), which does not require

any assumption on the data distribution and can perform model selection via cross-

validation. For these reasons, MLMI seems to be an appealing tool for dimensionn re-

33

duction based on statistical dependence maximization. However, MI is defined based

on the Kullback-Leibler divergence (Kullback and Leibler, 1951), which is known to

be sensitive to outliers (Basu et al., 1998). Hence, MI is not an appropriate tool when

it is applied on data containing outliers.

Quadratic MI (QMI) is a variant of MI (Principe et al., 2000). Unlike MI, QMI is

defined based on the L2 distance. A notable advantage of the L2 distance over the KL

divergence is that the L2 distance is more robust against outliers (Basu et al., 1998).

Moreover, a computationally efficient method to estimate QMI from data, called least-

squares QMI (LSQMI) (Sainui and Sugiyama, 2013), was proposed recently. LSQMI

does not require any assumption on the data distribution and it can perform model

selection via cross-validation. For these reasons, developing a dimension reduction

method based on LSQMI is more promising.

An existing approach to use LSQMI for supervised linear dimension reduction

is to firstly estimate QMI between projected input and output by LSQMI, then it-

eratively search for a subspace which maximizes the estimated QMI by a nonlinear

optimization method such as gradient ascent. However, the essential quantity of this

subspace search is the derivative of QMI w.r.t. the subspace, not QMI itself. Thus,

LSQMI may not be an appropriate tool for developing a supervised linear dimension

reduction method since the derivative of an accurate QMI estimator is not necessarily

an accurate estimator of the derivative of QMI.

To cope with the above problem, in this chapter, we propose a novel method to

directly estimate the derivative of QMI without estimating QMI itself. The proposed

method has the following advantageous properties: it does not require any assumption

on the data distribution, the estimator can be computed analytically, and the tuning

parameters can be objectively chosen by cross-validation. We show through exper-

iments that the proposed single-step estimator of the derivative of QMI is more ac-

curate than the derivative of the LSQMI estimator. Then, we develop a fixed-point

iteration which efficiently uses the proposed estimator to perform supervised linear

dimension reduction. Finally, we demonstrate the usefulness of the proposed dimen-

sion reduction method through experiments and show that the proposed method is

more robust against outliers than existing methods.

The organization of this chapter is as follows. We firstly reintroduce QMI and

review existing QMI estimation methods in Section 3.2. Then, we describe the details

of our proposed single-step derivative of QMI estimator in Section 3.3. Next, in Sec-

tion 3.4 we develop a supervised dimension reduction method based on the proposed

derivative estimator. The experimental results are given in Section 3.5. A further ex-

tension of the proposed derivative estimator is presented in Section 3.6. Finally, the

conclusion of this chapter is given in Section 3.7.

3.2 Quadratic Mutual Information for Dimension Reduction

In this section, we briefly reintroduce quadratic mutual information and review ex-

isting methods to estimate it from data. Then, we discuss the issue of an existing

multi-step approach to utilize QMI for dimension reduction.

34

3.2.1 Quadratic Mutual Information

Quadratic mutual information (QMI) is a measure of statistical dependence between

random variables (Principe et al., 2000), and is defined for two random variables z

and y as

QMI(Z,Y) =
1

2

∫∫
(p(z,y)− p(z)p(y))2 dzdy. (3.1)

QMI(Z,Y) is always non-negative and equals to zero if and only if z and y are

statistically independent, i.e., p(z,y) = p(z)p(y). Such a property of QMI is similar

to that of the ordinary mutual information (MI), which is defined as

MI(Z, Y) =

∫∫
p(z,y) log

(
p(z,y)

p(z)p(y)

)
dzdy. (3.2)

The essential difference between QMI and MI is the discrepancy measure.

QMI(Z,Y) is the L2 distance between p(z,y) and p(z)p(y), while MI(Z, Y) is

the Kullback-Leibler (KL) divergence (Kullback and Leibler, 1951).

MI has been studied and applied to many data analysis tasks (Cover and Thomas,

1991). Moreover, an efficient method to estimate MI from data is also available

(Paninski, 2003; Kraskov et al., 2004; Suzuki et al., 2008; Pál et al., 2010; Gao et al.,

2015). However, MI is not always the optimal choice for measuring statistical de-

pendence because it is not robust against outliers. An intuitive explanation is that MI

contains the log function and the density ratio: the value of logarithm can be highly

sharp near zero, and density ratio can be highly fluctuated and diverge to infinity.

Thus, the value of MI tends to be unstable and unreliable in the presence of outliers.

In contrast, QMI does not contain the log function and the density ratio, and thus QMI

should be more robust against outliers than MI.

Another explanation of the robustness of QMI and MI can be understood based

on their discrepancy measures. Both L2 distance (QMI) and KL divergence (MI) can

be regarded as members of a more general divergence class called the density power

divergence (Basu et al., 1998):

DPα(p‖q) =
∫ (

p(x)1+α −
(
1 +

1

α

)
p(x)q(x)α +

1

α
q(x)1+α

)
dx, (3.3)

where α > 0. Based on this divergence class, the L2 distance and the KL divergence

can be obtained by setting α = 1 and α→ 0, respectively. As discussed in Basu et al.

(1998), the parameter α controls the robustness against outliers of the divergence,

where a large value of α indicates high robustness. This means that the L2 distance

(α = 1) is more robust against outliers than the KL divergence (α→ 0).

In dimension reduction, robustness against outliers is an important requirement

because outliers often make dimension reduction methods work poorly. Thus, de-

veloping a supervised linear dimension reduction method based on QMI is attractive

since QMI is robust against outliers. This QMI-based supervised linear dimension re-

duction method is performed by finding a matrixW which maximizes QMI(Z,Y):

max
W∈Rdz×dx

QMI(Z,Y)

subject to WW⊤ = Idz . (3.4)

35

d The motivation is that, if QMI(Z,Y) is maximized then z and y are maximally

dependent on each other, and thus we may disregard x with a minimal loss of infor-

mation about y.

Since QMI(Z,Y) is typically unknown, it needs to be estimated from data. Be-

low, we review existing QMI estimation methods and then discuss a weakness of

performing supervised linear dimension reduction based on these QMI estimators.

3.2.2 Estimation method based on Density Estimation

Expanding Equation (3.1) allows us to express QMI(Z,Y) as

QMI(Z,Y) =
1

2

∫∫ (
p(z,y)2 − 2p(z,y)p(z)p(y) + p(z)2p(y)2

)
dzdy. (3.5)

A naive approach to estimate QMI(Z,Y) is to separately estimate the unknown den-

sities p(z,y), p(z), and p(y) by density estimation methods such as kernel density

estimation (KDE) (Silverman, 1986), and then plug the estimates into Equation (3.5).

Following this approach, the KDE-based QMI estimator has been studied and ap-

plied to many problems such as feature extraction for classification (Torkkola, 2003;

Principe et al., 2000), blind source separation (Principe et al., 2000), and image regis-

tration (Atif et al., 2003). Although this density estimation based approach was shown

to work well, accurately estimating densities for high-dimensional data is known to

be one of the most challenging tasks (Vapnik, 1998). Moreover, the densities con-

tained in Equation (3.5) are estimated independently without regarding the accuracy

of the QMI estimator. Thus, even if each density is accurately estimated, the QMI

estimator obtained from these density estimates does not necessarily give an accurate

QMI. An approach to mitigate this problem is to consider density estimators whose

combination minimizes the estimation error of QMI. Although this approach shows

better performance than the independent density estimation approach, it still performs

poorly in high-dimensional problems (Sugiyama et al., 2013).

3.2.3 Least-Squares Quadratic Mutual Information

To avoid the separate density estimation, an alternative method called least-squares

QMI (LSQMI) (Sainui and Sugiyama, 2013) was proposed. Below, we briefly review

the LSQMI method.

First, notice that QMI(Z,Y) can be expressed in terms of the density difference

as

QMI(Z,Y) =
1

2

∫∫
f(z,y)2dzdy, (3.6)

where

f(z,y) = p(z,y)− p(z)p(y). (3.7)

The key idea of LSQMI is to directly estimate the density difference f(z,y) without

going through any density estimation by the procedure of the least-squares density

difference (Sugiyama et al., 2013). Letting d(z,y) be a model of the density differ-

ence, LSQMI learns d(z,y) so that it is fitted to the true density difference under the

squared loss:

1

2

∫∫
(d(z,y)− f(z,y))2 dzdy. (3.8)

36

By expanding the integrand, we obtain

1

2

∫∫
d(z,y)2dzdy −

∫∫
d(z,y)f(z,y)dzdy +

1

2

∫∫
f(z,y)2dzdy. (3.9)

Since the last term is a constant w.r.t. the model d(z,y), we omit it and obtain the

following criterion:

1

2

∫∫
d(z,y)2dzdy −

∫∫
d(z,y)f(z,y)dzdy. (3.10)

Then, the density difference estimator d̂(z,y) is obtained as the solution of the fol-

lowing minimization problem:

d̂ = argmin
d

[
1

2

∫∫
d(z,y)2dzdy −

∫∫
d(z,y)f(z,y)dzdy

]
. (3.11)

The solution of the minimization problem in Equation (3.11) depends on the

choice of the model d(z,y). LSQMI employs the following linear-in-parameter

model

d(z,y) = α⊤ψ(z,y), (3.12)

where α is a parameter vector and ψ(z,y) is a basis function vector. For this model,

finding the solution of Equation (3.11) is equivalent to solving

min
α

[
1

2
α⊤Dα−α⊤q

]
, (3.13)

where

D =

∫∫
ψ(z,y)ψ(z,y)⊤dzdy, (3.14)

q =

∫∫
ψ(z,y)f(z,y)dzdy

=

∫∫
ψ(z,y)p(z,y)dzdy −

∫∫
ψ(z,y)p(z)p(y)dzdy. (3.15)

By approximating the expectation over the densities p(z,y), p(z), and p(y) with

sample averages, we obtain the following empirical minimization problem

min
α

[
1

2
α⊤Dα−α⊤q̂

]
, (3.16)

where q̂ is the sample approximation of Equation (3.15):

q̂ =
1

N

N∑

i=1

ψ(zi,yi)−
1

N2

N∑

i,j=1

ψ(zi,yj). (3.17)

By including the ℓ2 regularization term, we obtain

α̂ = argmin
α

[
1

2
α⊤Dα−α⊤q̂ +

λ

2
α⊤α

]
, (3.18)

37

where λ ≥ 0 is the regularization parameter. Then, the solution is obtained analyti-

cally as

α̂ = (D + λI)−1
q̂. (3.19)

Therefore, the density difference estimator is obtained as

d̂(z,y) = α̂⊤
ψ(z,y). (3.20)

Finally, QMI estimator is obtained by substituting the density difference estimator

into Equation (3.6). A direct substitution yields two possible QMI estimators:

Q̂MI(Z,Y) =
1

2
α̂

⊤
q̂, (3.21)

Q̂MI(Z,Y) =
1

2
α̂

⊤
Dα̂. (3.22)

However, it was shown in Sugiyama et al. (2013) that a linear combination of the two

estimators defined as

Q̂MI(Z,Y) = α̂⊤
q̂ − 1

2
α̂

⊤
Dα̂, (3.23)

provides smaller bias and is a more appropriate QMI estimator.

As shown above, LSQMI avoids multi-step density estimation by directly esti-

mating the density difference contained in QMI. It was shown that such direct es-

timation procedure tends to be more accurate than multi-step estimation (Sugiyama

et al., 2013). Moreover, LSQMI is able to objectively choose the tuning parame-

ter contained in the basis function ψ(z,y) and the regularization parameter λ based

on cross-validation. This property allows LSQMI to solve challenging tasks such as

clustering (Sainui and Sugiyama, 2013) and unsupervised linear dimension reduction

(Sainui and Sugiyama, 2014) in an objective way.

3.2.4 Multi-step Supervised Linear Dimension Reduction

Given an efficient QMI estimation method such as LSQMI, supervised linear dimen-

sion reduction can be performed by solving the following optimization problem:

max
W∈Rdz×dx

Q̂MI(WX,Y)

subject to WW⊤ = Idz , (3.24)

where Q̂MI(WX,Y) is defined as an QMI estimator learned from data

{(Wxi,yi)}Ni=1. A straightforward approach to find a local maximizer in Equa-

tion (3.24) is to iteratively update a matrixW by gradient ascent:

W ←W + t
∂Q̂MI(WX,Y)

∂W
, (3.25)

where t > 0 denotes the step size. This update rule means that the essential point

of the QMI-based supervised linear dimension reduction method is not the accuracy

of the QMI estimator, but the accuracy of the estimator of the derivative of the QMI.

Thus, the existing multi-step approach which first estimates QMI and then compute

the derivatives of the QMI estimator is not necessarily appropriate since an accurate

estimator of QMI does not necessarily mean that its derivative is an accurate estima-

tor of the derivative of QMI. Next, we describe our proposed single-step estimation

method which overcomes this issue.

38

3.3 Derivative of Quadratic Mutual Information

To cope with the weakness of the QMI estimation methods when performing super-

vised linear dimension reduction, we propose to directly estimate the derivative of

QMI in a single-step manner without estimating QMI itself.

3.3.1 Single-step Estimation of the Derivative of Quadratic Mutual Informa-

tion

Let z = Wx, then from Equation (3.6), the derivative of the QMI(Z,Y) w.r.t. the

(ℓ, ℓ′)-th element ofW can be expressed by1

∂QMI(W)

∂Wℓ,ℓ′
=

∂

∂Wℓ,ℓ′

(
1

2

∫∫
f(z,y)2dzdy

)

=

∫∫
f(z,y)

∂f(z,y)

∂Wℓ,ℓ′
dzdy

=

∫∫
f(z,y)

∂f(z,y)

∂z

⊤ ∂z

∂Wℓ,ℓ′
dzdy

=

∫∫
p(z,y)

∂f(z,y)

∂z

⊤ ∂z

∂Wℓ,ℓ′
dzdy

−
∫∫

p(z)p(y)
∂f(z,y)

∂z

⊤ ∂z

∂Wℓ,ℓ′
dzdy, (3.26)

where in the second line we assume that the order of the derivative and the integration

is interchangeable. By approximating the expectations over the densities p(z,y),
p(z), and p(y) with sample averages, we obtain an approximation of the derivative of

QMI as

∂̂QMI(W)

∂Wℓ,ℓ′
=

1

N

N∑

i=1

∂f(zi,yi)

∂z

⊤ ∂zi

∂Wℓ,ℓ′
− 1

N2

N∑

i,j=1

∂f(zi,yj)

∂z

⊤
∂zi

∂Wℓ,ℓ′
. (3.27)

Note that since z(ℓ) =
∑dx

ℓ′=1Wℓ,ℓ′x
(ℓ′), we have that ∂z

∂Wℓ,ℓ′
is the dz-dimensional vec-

tor with zero everywhere except at the ℓ-th dimension which has value x(ℓ′). Hence,

Equation (3.27) can be simplified as

∂̂QMI(W)

∂Wℓ,ℓ′
=

1

N

N∑

i=1

∂f(zi,yi)

∂z(ℓ)
x
(ℓ′)
i − 1

N2

N∑

i,j=1

∂f(zi,yj)

∂z(ℓ)
x
(ℓ′)
i . (3.28)

This means that the derivative of QMI(Z,Y) w.r.t.W can be obtained once we know

the derivatives of the density difference w.r.t. z(ℓ) for all ℓ ∈ {1, . . . , dz}. However,

these derivatives are often unknown and need to be estimated from data. Below, we

first discuss existing approaches and their drawbacks. Then we propose our approach

which can overcome the drawbacks.

1Throughout this section, we use QMI(W) instead of QMI(Z,Y) when we consider its derivative

for notational convenience. However, they still represent the QMI between random variables z =Wx

and y.

39

3.3.2 Existing Approaches to Estimate the Derivative of the Density Difference

Our current goal is to obtain the derivative of the density difference w.r.t. z(ℓ) which

can be rewritten as

∂f(z,y)

∂z(ℓ)
=

∂p(z,y)

∂z(ℓ)
− ∂p(z)

∂z(ℓ)
p(y). (3.29)

All terms in Equation (3.29) are unknown in practice and need to be estimated from

data. There are three existing approaches to estimate them.

(A) Density estimation

Separately estimate the densities p(z,y), p(z), and p(y) by, e.g., kernel density

estimation. Then estimate the right-hand side of Equation (3.29) as

∂p̂(z,y)

∂z(ℓ)
− ∂p̂(z)

∂z(ℓ)
p̂(y), (3.30)

where p̂(z,y), p̂(z), and p̂(y) denote the estimated densities.

(B) Density derivative estimation

Estimate the density p(y) by e.g., kernel density estimation. Next, separately

estimate the densities derivative
∂p(z,y)

∂z(ℓ)
and

∂p(z)

∂z(ℓ)
by e.g., the method of mean

integrated square error for derivatives (Sasaki et al., 2015a), which can estimate

the density derivative without estimating the density itself. Then estimate the

right-hand side of Equation (3.29) as

∂̂p(z,y)

∂z(ℓ)
− ∂̂p(z)

∂z(ℓ)
p̂(y), (3.31)

where p̂(y) denotes the estimated density, and
∂̂p(z,y)

∂z(ℓ)
and

∂̂p(z)

∂z(ℓ)
denote the (di-

rectly) estimated density derivatives.

(C) Density difference estimation

Estimate the density difference f(z,y) by e.g., least-squares density differ-

ence (Sugiyama et al., 2013), which can estimate the density difference without

estimating the densities themselves. Then estimate the left-hand side of Equa-

tion (3.29) as

∂f̂ (z,y)

∂z(ℓ)
, (3.32)

where f̂(z,y) denotes the (directly) estimated density difference.

The problem of approaches (A) and (B) is that they involve multiple estimation

steps where some quantities are estimated first and then they are plugged into Equa-

tion (3.29). Such multiple-step methods are not appropriate since each estimated

quantity is obtained without regarding the others and the succeeding plug-in step

using these estimates can magnify the estimation error contained in each estimated

quantity.

On the other hand, approach (C) seems more promising than the previous two

approaches since there is only one estimated quantity f(z,y). However, it is still

not the optimal approach due to the fact that an accurate estimator of the density

difference does not necessarily mean that its derivative is an accurate estimator of the

derivative of the density difference.

To avoid the above drawbacks, we propose a new approach which directly esti-

mates the derivative of the density difference.

40

3.3.3 Direct Estimation of the Derivative of the Density Difference

We propose to estimate the derivative of the density difference w.r.t. z(ℓ) using a model

gℓ(z,y):

∂f(z,y)

∂z(ℓ)
≈ gℓ(z,y). (3.33)

The model gℓ(z,y) is learned so that it is fitted to its corresponding derivative under

the squared error:

1

2

∫∫ (
gℓ(z,y)−

∂f(z,y)

∂z(ℓ)

)2

dzdy. (3.34)

By expanding the square, we obtain

1

2

∫∫
gℓ(z,y)

2dzdy −
∫∫

gℓ(z,y)
∂f(z,y)

∂z(ℓ)
dzdy +

1

2

∫∫ (
∂f(z,y)

∂z(ℓ)

)2

dzdy.

(3.35)

Since the last term is a constant w.r.t. the model gℓ(z,y), we omit it and obtain the

following criterion:

1

2

∫∫
gℓ(z,y)

2dzdy −
∫∫

gℓ(z,y)
∂f(z,y)

∂z(ℓ)
dzdy. (3.36)

The second term is intractable due to the unknown derivative of the density difference.

To make this term tractable, we use integration by parts (Kasube, 1983) to obtain the

following:

∫∫
[gℓ(z,y)f(z,y)]

z(ℓ)=∞
z(ℓ)=−∞ dz\z(ℓ)dy

=

∫∫
f(z,y)

∂gℓ(z,y)

∂z(ℓ)
dzdy +

∫∫
gℓ(z,y)

∂f(z,y)

∂z(ℓ)
dzdy, (3.37)

where
∫
·dz\z(ℓ) denotes an integration over z except for the ℓ-th element. Here, we

require

[gℓ(z,y)f(z,y)]
z(ℓ)=∞
z(ℓ)=−∞ = 0, (3.38)

which is a mild assumption since the tails of the density difference p(z,y)−p(z)p(y)
often vanish when z(ℓ) approaches infinity. Applying the assumption to the left-hand

side of Equation (3.37) allows us to express Equation (3.36) as

1

2

∫∫
gℓ(z,y)

2dzdy +

∫∫
f(z,y)

∂gℓ(z,y)

∂z(ℓ)
dzdy. (3.39)

Then, the estimator ĝℓ(z,y) is obtained as a solution of the following minimization

problem:

ĝℓ = argmin
gℓ

[
1

2

∫∫
gℓ(z,y)

2dzdy +

∫∫
f(z,y)

∂gℓ(z,y)

∂z(ℓ)
dzdy

]
. (3.40)

41

The solution of Equation (3.40) depends on the choice of the model. Let us employ

the following linear-in-parameter model as gℓ(z,y):

gℓ(z,y) = θ
⊤
ℓ ϕℓ(z,y), (3.41)

where θℓ is a parameter vector and ϕℓ(z,y) is a basis function vector whose prac-

tical choice will be discussed later in detail. For this model, finding the solution of

Equation (3.40) is equivalent to solving

min
θℓ

[
1

2
θ⊤ℓ Hℓθℓ + θ

⊤
ℓ hℓ

]
, (3.42)

where we define

Hℓ =

∫∫
ϕℓ(z,y)ϕℓ(z,y)

⊤dzdy, (3.43)

hℓ =

∫∫
f(z,y)

∂ϕℓ(z,y)

∂z(ℓ)
dzdy

=

∫∫
p(z,y)

∂ϕℓ(z,y)

∂z(ℓ)
dzdy −

∫∫
p(z)p(y)

∂ϕℓ(z,y)

∂z(ℓ)
dzdy. (3.44)

By approximating the expectation over the densities p(z,y), p(z), and p(y) with

sample averages, we obtain the following empirical minimization problem:

min
θℓ

[
1

2
θ⊤ℓ Hℓθℓ + θ

⊤
ℓ ĥℓ

]
, (3.45)

where ĥℓ is the sample approximation of Equation (3.44):

ĥℓ =
1

N

N∑

i=1

∂ϕℓ(zi,yi)

∂z(ℓ)
− 1

N2

N∑

i,j=1

∂ϕℓ(zi,yj)

∂z(ℓ)
. (3.46)

By including the ℓ2 regularization term to control the model complexity, we obtain

θ̂ℓ = argmin
θℓ

[
1

2
θ⊤ℓ Hℓθℓ + θ

⊤
ℓ ĥℓ +

λℓ

2
θ⊤ℓ θℓ

]
, (3.47)

where λℓ ≥ 0 denotes the regularization parameter. This minimization problem is

convex w.r.t. the parameter θℓ, and the solution can be obtained analytically as

θ̂ℓ = − (Hℓ + λℓI)
−1
ĥℓ, (3.48)

where I denotes the identity matrix. Finally, the estimator of the derivative of the den-

sity difference is obtained by substituting the solution into the model Equation (3.41)

as

ĝℓ(z,y) = θ̂
⊤
ℓ ϕℓ(z,y). (3.49)

Using this solution, an estimator of the derivative of QMI can be directly obtained

by substituting Equation (3.49) into Equation (3.28) as

∂̂QMI(W)

∂Wℓ,ℓ′
=

1

N

N∑

i=1

θ̂
⊤
ℓ ϕℓ(zi,yi)x

(ℓ′)
i − 1

N2

N∑

i,j=1

θ̂
⊤
ℓ ϕℓ(zi,yj)x

(ℓ′)
i . (3.50)

We call this method the least-squares QMI derivative (LSQMID).

42

3.3.4 Basis Function Design

As basis function ϕℓ(z,y), we propose to use

ϕℓ(z,y) =
[
ϕ
(1)
ℓ (z,y), · · · , ϕ(b)

ℓ (z,y)
]⊤

, (3.51)

where b ≤ N . First, let us define the k-th Gaussian function as

φ
(k)
ℓ (z,y) = exp

(
−‖z − uk‖2 + ‖y − vk‖2

2σ2
ℓ

)
, (3.52)

where uk and vk denote Gaussian centers chosen randomly from the data

{(zi,yi)}Ni=1, and σℓ denotes the Gaussian width. We may use different Gaussian

widths for z and y, but this approach significantly increases the computation time for

model selection which will be discussed in Section 3.3.5. In our implementation, we

standardize each dimension of x and y to have unit variance and zero mean, and then

use the common Gaussian width for both z and y. We also set b = min(N, 200) in

the experiments.

Based on the above Gaussian function, we propose to use the following function

as the k-th basis for the ℓ-th model of the derivative of the density difference:

ϕ
(k)
ℓ (z,y) =

∂φ
(k)
ℓ (z,y)

∂z(ℓ)

= − 1

σ2
ℓ

(z(ℓ) − u
(ℓ)
k)φ

(k)
ℓ (z,y). (3.53)

This function is the derivative of the k-th Gaussian basis function w.r.t. z(ℓ). A benefit

of this basis function design is that the integral appeared in Hℓ can be computed

analytically. Through a simple calculation, we obtain the (k, k′)-th element of Hℓ as

follows:

H
(k,k′)
ℓ =

1

σ4
ℓ

(
√
πσℓ)

dz+dy exp

(
−‖uk − uk′‖2 − ‖vk − vk′‖2

4σ2
ℓ

)
(3.54)

×
(
u
(ℓ)
k u

(ℓ)
k′ −

(u
(ℓ)
k + u

(ℓ)
k′)

2

2
+ (

u
(ℓ)
k + u

(ℓ)
k′

2
)2 +

σ2
ℓ

2

)
. (3.55)

As will be discussed in Section 3.4, this basis function choice has further benefits

when we develop a linear supervised dimension reduction method.

3.3.5 Model Selection by Cross-Validation

The practical performance of the LSQMID method depends on the choice of the Gaus-

sian width σℓ and the regularization parameter λℓ included in the estimator ĝℓ(z,y).
These tuning parameters can be objectively chosen by the K-fold cross-validation

(CV) procedure which is described below.

1. Divide the training data D = {(xi,yi)}Ni=1 into K disjoint subsets {Dj}Kj=1

with approximately the same size. In the experiments, we choose K = 5.

2. For each candidate M = (σ̃ℓ, λ̃ℓ) and each subsetDj , compute a solution θ̂ℓ,M,\j
by Equation (3.48) with the candidate M and data from D\Dj (i.e., all data

points except data points in Dj).

43

3. Compute the CV score of each candidate pair M by

CVℓ(M) =
1

K

K∑

j=1

[
1

2
θ̂
⊤
ℓ,M,\jHℓ,M θ̂ℓ,M,\j + θ̂

⊤
ℓ,M,\jĥℓ,M,j

]
, (3.56)

where ĥℓ,M,j denotes ĥℓ computed from the candidate M and data in Dj .

4. Choose the tuning parameter pair such that it minimizes the CV score as

(σ̂ℓ, λ̂ℓ) = argmin
M

CVℓ(M). (3.57)

3.4 Supervised Linear Dimension Reduction via Derivative Esti-

mator

In this section, we propose a linear supervised dimension reduction method based on

the proposed LSQMID estimator.

3.4.1 Gradient Ascent

Recall that our goal in supervised dimension reduction is to find the matrixW ∗:

max
W∈Rdz×dx

QMI(Z,Y)

subject to WW⊤ = Idz . (3.58)

A straightforward approach to find a solution of Equation (3.58) using the proposed

method is to perform gradient ascent as

W ←W + t
∂̂QMI(W)

∂W
, (3.59)

where t > 0 denotes the step size. It is known that choosing a good step size is a

difficult task in practice (Nocedal and Wright, 2006). Line search is an algorithm to

choose a good step size by finding a step size which satisfies certain conditions such

as the Armijo rule (Armijo, 1966). However, these conditions often require access

to the objective value QMI(W) which is unavailable in our current setup since the

QMI derivative is directly estimated without estimating QMI. Thus, if we want to per-

form line search, QMI needs to be estimated separately. However, this is problematic

since the estimation of the derivative of the QMI and the estimation of the QMI are

performed independently without regard to the other, and thus they may not be consis-

tent. For example, the gradient
∂̂QMI(W)

∂W
,which is supposed to be an ascent direction,

may be regarded as a descent direction on the surface of the estimated QMI. For such

a case, the step size chosen by any line search algorithm is unreliable and the resulting

W may not be a good solution.

Below, we consider two approaches which can cope with this problem.

44

3.4.2 Quadratic Mutual Information Approximation via Derivative Estimator

To avoid separate QMI estimation, we consider an approximated QMI which is ob-

tained as a by-product of the proposed method. Recall that the proposed method

models the derivative of the density difference as

∂f(z,y)

∂z(ℓ)
≈ gℓ(z,y)

= θ⊤ℓ ϕℓ(z,y)

= θ⊤ℓ
∂φℓ(z,y)

∂z(ℓ)

=
∂
(
θ⊤ℓ φℓ(z,y)

)

∂z(ℓ)
. (3.60)

This means that the density difference can be approximated by

f̃ℓ(z,y) = θ̂
⊤
ℓ φℓ(z,y) + cℓ, (3.61)

where cℓ is an unknown quantity which is a constant w.r.t. z(ℓ).
In a special case where dz = 1, we can use Equation (3.61) to obtain a proper

approximator of QMI(Z,Y) in a similar fashion to the LSQMI method. To verify

this, let us substitute Equation (3.61) into one of the f(z,y) in Equation (3.6) to obtain

Q̃MI(Z,Y) =
1

2

∫∫
f(z,y)f̃(z,y)dzdy

=
1

2

∫∫
f(z,y)

(
θ̂
⊤
φ(z,y) + c

)
dzdy

=
1

2

∫∫
f(z,y)θ̂

⊤
φ(z,y)dzdy +

1

2

∫∫
f(z,y)cdzdy

=
1

2

∫∫
f(z,y)θ̂

⊤
φ(z,y)dzdy, (3.62)

where the last line follows from
∫∫

f(z,y)cdzdy =

∫∫
p(z,y)cdzdy −

∫∫
p(z)p(y)cdzdy (3.63)

= 0. (3.64)

By approximating the expectation with sample averages, we obtain a QMI approxi-

mator as

Q̃MI(Z,Y) =
1

2N

N∑

i=1

θ̂
⊤
φ(zi,yi)−

1

2N2

N∑

i,j=1

θ̂
⊤
φ(zi,yj). (3.65)

The main advantage of using Q̃MI(Z,Y) is that it is obtained from the derivative

estimation, and thus should be consistent with the estimated derivative. This allows

us to perform line search for the gradient ascent in a consistent manner. However,

such an approximation is unavailable when dz > 1. Next, we consider an alternative

optimization strategy which does not require an access to the QMI value.

45

3.4.3 Fixed-Point Iteration

To avoid the problem of choosing the step size which requires an access to the

QMI value, we propose to use a fixed-point iteration for finding a solution of Equa-

tion (3.58). Note that from the first order optimality condition, a solution W ∗ is a

stationary point which satisfies

∂QMI(W ∗)

∂W
= 0dz,dx , (3.66)

where 0dz,dx denotes dz-by-dx zero matrix. By using the proposed basis function in

Equation (3.53), Equation (3.50) can be expressed as

∂̂QMI(W)

∂Wℓ,ℓ′
=

1

σ2
ℓ

(
F

(ℓ,ℓ′)
1 − F

(ℓ,ℓ′)
2 −Wℓ,ℓ′F

(ℓ,ℓ′)
3

)
, (3.67)

where we define

F
(ℓ,ℓ′)
1 = θ̂

⊤
ℓ

(
u(ℓ) ⊙

(
1

N

N∑

i=1

φℓ(zi,yi)x
(ℓ′)
i − 1

N2

N∑

i,j=1

φℓ(zi,yj)x
(ℓ′)
i

))
,

F
(ℓ,ℓ′)
2 =

dx∑

m6=ℓ′

Wℓ,mθ̂
⊤
ℓ

(
1

N

N∑

i=1

φℓ(zi,yi)x
(m)
i x

(ℓ′)
i −

1

N2

N∑

i,j=1

φℓ(zi,yj)x
(m)
i x

(ℓ′)
i

)
,

F
(ℓ,ℓ′)
3 = θ̂

⊤
ℓ

(
1

N

N∑

i=1

φℓ(zi,yi)(x
(ℓ′)
i)2 − 1

N2

N∑

i,j=1

φℓ(zi,yj)(x
(ℓ′)
i)2

)
, (3.68)

with u(ℓ) be the column vector of length b consisting of the ℓ-th dimension over all uk

and the symbol⊙ represents the element-wise vector product. Then, an approximated

solution may be obtained by finding Wℓ,ℓ′ for all (ℓ, ℓ′) such that the left-hand side of

Equation (3.67) is zero. This optimization strategy results in a fixed-point iteration

for each dimension ofW :

Wℓ,ℓ′ ←
F

(ℓ,ℓ′)
1 − F

(ℓ,ℓ′)
2

F
(ℓ,ℓ′)
3

. (3.69)

Finally, we orthonormalize the solution after each iteration as

W ←
(
WW⊤)− 1

2 W . (3.70)

In practice, we perform this orthonormalization only every several iterations for com-

putational efficiency.

There is a relation between the fixed point iteration and gradient method. By

substituting Equation (3.67) into Equation (3.69), we obtain

Wℓ,ℓ′ ←Wℓ,ℓ′ +
σ2
ℓ

F
(ℓ,ℓ′)
3

∂̂QMI(W)

∂Wℓ,ℓ′
. (3.71)

This means that the fixed point update step is a gradient method with an adaptive

stepsize 1/F
(ℓ,ℓ′)
3 . Thus, if F

(ℓ,ℓ′)
3 is always positive, then the fixed point iteration

will converge to a local maxima. However, unfortunately there is no guarantee that

46

F
(ℓ,ℓ′)
3 is always positive in our formulation. Indeed, in our numerical experiments,

F
(ℓ,ℓ′)
3 sometimes took a negative value. A heuristic remedy would be to update the

matrix W only when F
(ℓ,ℓ′)
3 is positive. However, this approach did not work well in

our preliminary experiments, so we decided not to modify anything. We will further

investigate this issue in the future work.

The optimization problem in Equation (3.58) is non-convex and may have saddle

points and local solutions. To avoid obtaining a saddle point or a poor local solu-

tion, we perform the optimization starting from several initial guesses and choose the

solution which gives the maximum estimated QMI as the final solution.

3.5 Experiment

In this section, we demonstrate the usefulness of the proposed method through exper-

iments.

3.5.1 Illustrative Experiment

Firstly, we perform the following experiment to illustrate the behavior of the proposed

method in terms of the QMI derivative estimation. Let N (µ,Σ) denote the Gaussian

distribution with mean µ and covariance Σ. Then, for ǫ ∼ N (0, 0.152), we generate

a dataset {(xi, yi)}Ni=1 and a matrixW as follows:

x ∼ N (02, I2),

y = (x(1))2 + ǫ,

W =
[
cos θ sin θ

]
,

where 02 denotes the zero vector of length 2. Thus we have z = x(1) cos θ+x(2) sin θ.

The goal is to estimate

∂QMI(Z,Y)

∂θ
=

∂QMI(Z,Y)

∂W

∂W

∂θ
(3.72)

at different value of θ. Note that QMI(Z,Y) is maximized at θ = 0, i.e., W =[
1 0

]
.

Figure 3.1(a) shows the averaged value over 20 trials of the estimated QMI(Z,Y)
by LSQMI. The vertical axis indicates the value of the estimated QMI and the hori-

zontal axis indicates the value of θ ∈
[
−π

2
, π
2

]
. We use N = 3000 and N = 100 for

estimating QMI and denote the results by LSQMI(3000) and LSQMI(100), respec-

tively. We perform cross validation at θ = 0 and use the chosen tuning parameters for

all values of θ. The result shows that LSQMI accurately estimates QMI(Z,Y) when

the data size is large. However, when the data size is small, the estimated QMI(Z,Y)
has high fluctuation.

Figure 3.1(b) shows the averaged value over 20 trials of the derivative of

QMI(Z,Y) w.r.t. θ computed by LSQMI(3000), LSQMI(100), and the proposed

method with N = 100 which is denoted by LSQMID(100). For the proposed method,

we perform cross validation at θ = 0 and use the chosen tuning parameters for all

values of θ. The result shows that LSQMID(100) gives a smoother estimate than

LSQMI(100) which has high fluctuation. To further explain the cause of the fluc-

tuation of LSQMI(100), we plot experiment results of 4 trials in Figure 3.2, where

47

θ

-π/2 -π/4 0 π/4 π/2

Q
M

I

0

0.04

0.08

0.12
LSQMI(100)
LSQMI(3000)

(a) The averaged estimated QMI.

θ

-π/2 -π/4 0 π/4 π/2

D
er

iv
at

iv
es

 Q
M

I

-0.3

-0.15

0

0.15

0.3
LSQMID(100)
LSQMI(100)
LSQMI(3000)

(b) The averaged estimated derivative of QMI.

Figure 3.1: The mean and standard error of the estimated QMI(Z,Y) and the esti-

mated derivative of QMI(Z,Y) w.r.t. θ over 20 trials.

the left column corresponds to the value of the estimated QMI(Z,Y) while the right

column corresponds to the value of the estimated derivative of QMI(Z,Y) w.r.t. θ.

These results show that for LSQMI(100), a small fluctuation in the estimated QMI

can cause a large fluctuation in the estimated derivative of QMI. On the other hand,

LSQMID directly estimates the derivative of QMI and thus does not suffer from this

problem.

Next, we investigate the behavior of the proposed method when the target dimen-

sionality dz increases. For ǫ ∼ N (0, 0.152), we generate dataset {(xi, yi)}ni=1 as

follows:

x ∼ N (020, I20),

y =
dz∑

i=1

(x(i))2 + ǫ.

The goal is to estimate
∂QMI(WX,Y)

∂W
at different values ofW . The estimated derivative

∂̂QMI(W)
∂W

is evaluated by the mean squared error defined as

MSE =
1

K

K∑

k=1

∥∥∥∥∥
∂̂QMI(W k)

∂W
− ∂QMI∗(W k)

∂W

∥∥∥∥∥

2

Frobenius

, (3.73)

where
∂QMI∗(W)

∂W
denotes the derivative of QMI estimated by LSQMI with sample size

n = 3000. The matrices {W k}Kk=1 with K = 500 are generated randomly such that

W kW
⊤
k = Idz .

Figure 3.3 shows the mean and standard error over 10 trials of the mean squared

error on sample sizes n ∈ {200, 300, 400, 500} and target dimensionalities dz ∈
{3, 5, 10}. The results show that for dz = 3 and dz = 5 LSQMID gives much more

accurate estimated derivatives that that of LSQMI, especially when the sample sizes

are small.

For dz = 10, LSQMID performs better only when the sample size is small. When

the sample size increases, the improvement of LSQMI is better than that of LSQMID

and LSQMI eventually outperforms LSQMID. The main reason behind this phenom-

ena is that derivative estimation is very challenging when the target dimensionality

48

θ

-π/2 -π/4 0 π/4 π/2

Q
M

I

0

0.05

0.1

0.15
LSQMI(100)
LSQMI(3000)

θ

-π/2 -π/4 0 π/4 π/2

Q
M

I

0

0.05

0.1

0.15
LSQMI(100)
LSQMI(3000)

θ

-π/2 -π/4 0 π/4 π/2

Q
M

I

0

0.05

0.1

0.15
LSQMI(100)
LSQMI(3000)

θ

-π/2 -π/4 0 π/4 π/2

Q
M

I

0

0.05

0.1

0.15
LSQMI(100)
LSQMI(3000)

(a) The estimated QMI.

θ

-π/2 -π/4 0 π/4 π/2

D
er

iv
at

iv
es

 Q
M

I

-0.5

-0.25

0

0.25

0.5
LSQMID(100)
LSQMI(100)
LSQMI(3000)

θ

-π/2 -π/4 0 π/4 π/2

D
er

iv
at

iv
es

 Q
M

I

-0.5

-0.25

0

0.25

0.5
LSQMID(100)
LSQMI(100)
LSQMI(3000)

θ

-π/2 -π/4 0 π/4 π/2

D
er

iv
at

iv
es

 Q
M

I

-0.5

-0.25

0

0.25

0.5
LSQMID(100)
LSQMI(100)
LSQMI(3000)

θ

-π/2 -π/4 0 π/4 π/2

D
er

iv
at

iv
es

 Q
M

I

-0.5

-0.25

0

0.25

0.5
LSQMID(100)
LSQMI(100)
LSQMI(3000)

(b) The estimated derivative of QMI.

Figure 3.2: Examples of the estimated QMI and the estimated derivative of QMI.

The left column shows the estimated QMI(Z,Y), and the right column shows the

estimated derivative of QMI(Z,Y) w.r.t. θ. Each row indicates each trial.

49

200 300 400 500
Sample size

0

0.005

0.01

0.015

0.02

M
S

E

LSQMID
LSQMI

(a) MSE when dz = 3

200 300 400 500
Sample size

0

2

4

6

M
S

E

×10 -6

LSQMID
LSQMI

(b) MSE when dz = 5

200 300 400 500
Sample size

0.8

1

1.2

1.4

M
S

E

×10 -14

LSQMID
LSQMI

(c) MSE when dz = 10

Figure 3.3: The mean and standard error of the mean squared error (MSE) of the

estimated QMI derivatives over 10 trials on different sample sizes and different di-

mensionalities.

dz is large, and LSQMID would require a much larger number of samples in order to

accurately estimate these derivatives.

3.5.2 Artificial Data

Next, we evaluate the usefulness of the proposed method in linear supervised dimen-

sion reduction using artificial datasets.

Setup

Firstly, let U(a, b) denote the uniform distribution over an interval [a, b], Γ(a, b) de-

note the gamma distribution with shape parameter a and scale parameter b, and

Laplace(a, b) denote the Laplace distribution with mean a and scale parameter b.
Then we consider datasets with the output dimensionality dy = 1, and the optimal

matrixW opt ∈ Rdz×dx (including their rotations) as follows:

50

Dataset A: For ǫ ∼ Γ(0.25, 0.25), we use

x ∼ N (0dx , Idx),

y = exp(−(x
(1) + x(2))2

0.5
) + ǫ,

W opt =
[

1√
2

1√
2

0 · · · 0
]
.

Dataset B: For ǫ ∼ Γ(0.25, 0.5) and i ∈ {1, . . . , dx}, we use

x(i) ∼ U(−1, 1),

y =
1√
2
x(1)x(2) − ǫ,

W opt =

[
1 0 0 · · · 0
0 1 0 · · · 0

]
.

Dataset C: For ǫ ∼ N (0, 0.25) and i ∈ {1, . . . , dx}, we use

x(i) ∼ Γ(0.25, 0.5),

y =
√
x(1) +

√
2x(2) + ǫ,

W opt =

[
1 0 0 · · · 0
0 1 0 · · · 0

]
.

Dataset D: For ǫ ∼ N (0, 0.25) and i ∈ {1, . . . , dx}, we use

x(i) ∼ Laplace(0, 0.5),

y = sinc(
x(1)π

2
) + x(2)ǫ,

W opt =

[
1 0 0 · · · 0
0 1 0 · · · 0

]
.

For the datasets A, B, and C, ǫ is an additive noise, while for the datasets D, ǫ is a mul-

tiplicative noise. Figure 3.4 shows the plot of these datasets (after standardization).

Note the presence of outliers in the datasets.

To estimateW from {(xi, yi)}Ni=1, we execute the following methods:

LSQMID: The proposed method. Linear supervised dimension reduction is per-

formed by maximizing QMI(Z,Y) where the derivative of QMI(Z,Y) is es-

timated by the proposed method. The solution Ŵ is obtained by fixed-point

iteration2.

LSQMI: Linear supervised dimension reduction is performed by maximizing

QMI(Z,Y) where QMI(Z,Y) is estimated by LSQMI and the derivative of

QMI(Z,Y) w.r.t.W is computed from the QMI estimator. The solution Ŵ is

obtained by gradient ascent with linesearch over the Grassmann manifold3.

2Our code is publicly available: www.ms.k.u-tokyo.ac.jp/software.html\#LSQMID
3We use the manifold optimization toolbox (Boumal et al., 2014) to perform the optimization.

51

5

x(2)

0
-55

x(1)

0
-5

2

4

6

-2

0

y

(a) Dataset A with N = 200

-2

x(2)

0
2-2

x(1)

02
-4

2

-2

0

y

(b) Dataset B with N = 400

-4

-2

-20

0y

10

2

4

x (1)

0

x (2)

0
20 -10

(c) Dataset C with N = 500

-5

x(2)

0
5-5

x(1)

05

0

5

10

-5

y

(d) Dataset D with N = 500

Figure 3.4: Artificial datasets.

LSDR (Suzuki and Sugiyama, 2013): Linear supervised dimension reduction is

performed by maximizing SMI(Z, Y). The solution Ŵ is obtained by gradient

ascent with linesearch over the Grassmann manifold4.

LSCE: Linear supervised dimension reduction is performed by minimizing a

squared loss variant of conditional entropy. The solution Ŵ is obtained by

gradient descent with linesearch over the Grassmann manifold. This method

is our second contribution in this dissertation and its details will be given in

Chapter 4.

dMAVE (Xia, 2007): Linear supervised dimension reduction is performed by min-

imizing an error of the local linear smoother of the conditional density p(y|z).
The solution Ŵ is obtained by solving quadratic programming problems5.

KDR (Fukumizu et al., 2004): Linear supervised dimension reduction is performed

by minimizing the trace of the conditional covariance operator ΣY Y |Z . The

solution Ŵ is obtained by gradient descent with linesearch over the Stiefel

manifold6.

4We use the code: www.ms.k.u-tokyo.ac.jp/software.html\#LSDR
5We use the code: www.stat.nus.edu.sg/˜staxyc/
6We use the code: www.ism.ac.jp/˜fukumizu/software.html

52

We set the number of basis functions to b = min(200, N). For LSQMID, LSQMI,

LSDR, and LSCE, we randomly generate 10 orthonormal matrices and use them as

the initial solutions. For dMAVE, we use a solution obtained by dOPG (Xia, 2007) as

the initial solution. For KDR, we consider two approaches for obtaining the initial so-

lutions. KDR (gKDR) uses a solution obtained by gKDR (Fukumizu and Leng, 2012)

as the initial solution. KDR (Random) uses 10 randomly generated orthonormal ma-

trices as the initial solutions and chooses a solution with the minimum objective value

as the final solution. We also compare these methods with a randomly generated or-

thonormal matrix. The obtained solution Ŵ is evaluated by the dimension reduction

error defined as

ErrorDR = ‖W⊤
optW opt − Ŵ

⊤
Ŵ ‖Frobenius, (3.74)

where ‖ · ‖Frobenius denotes the Frobenius norm of a matrix. This dimension reduction

error is invariant to rotation within the subspace, i.e., an error of Ŵ is the same as

that ofAŴ whereA is a dz-by-dz orthogonal matrix.

Results on Different Data Sizes

We firstly evaluate the methods on different data sizes. Table 3.1 shows the mean and

standard error over 50 trials of the dimension reduction error with different data sizes

where the input dimensionality is fixed to dx = 5. The randomly generated matrices

are uninformative and give large error. LSQMID works very well for datasets A, C,

and D, but it works quite poorly for dataset B when compared with other methods.

However, LSQMID gives the most informative results for dataset C where outliers

are in the input domain. These results demonstrate the weakness of existing methods

in terms of robustness against outliers.

On the other hand, LSQMI tends to be unstable and works poorly, except for

dataset D when the data size is large. Note that LSQMI is comparable to the best

method (in term of the mean error) in dataset A due to its unstable behavior. The

cause of this unstability could be the high fluctuation of the derivative of QMI by

LSQMI, as shown previously in the illustrative experiment.

The two variants of KDR work quite well on datasets A, B, and D. However,

KDR (gKDR) is quite unstable for dataset A when the data size is small which can be

seen by its relatively large standard errors. In contrast, KDR (Random) gives much

more stable results. This implies that gKDR might provide a poor initial solution to

KDR in some trials, which makes KDR fail to find a good solution. On the other

hand, dMAVE works quite poorly overall which might be because its model selection

strategy is not suitable for these datasets.

Table 3.2 shows the mean and standard error over 50 trials of the computation time

on different data sizes7. All methods take longer time as the number of data increases.

The results also show that LSQMID is computationally more demanding than other

methods except LSQMI and KDR (Random). dMAVE and KDR (gKDR) is compu-

tationally very efficient because they do not perform cross-validation for parameter

tuning and they do not restart optimization with many initial solutions8. On the other

7The computation time is measured using MATLAB R© on 2.10 GHz 8 cores processor with 128 GB

memory.
8gKDR performs cross-validation based on the regression error to choose its tuning parameter

(Fukumizu and Leng, 2012). However, gKDR is not an iterative method and the computation time

of KDR (gKDR) is mostly dominated by KDR.

53

hand, LSQMID, LSQMI, LSDR, and LSCE perform cross-validation and restart op-

timization with 10 initial solutions. Despite these similarities, LSQMID is computa-

tionally more demanding than LSDR and LSCE for two reasons. Firstly, LSQMID

performs orthonormalization while LSDR and LSCE utilize manifold optimization. It

is known that manifold optimization tends to be computationally more efficient than

orthonormalization (Absil et al., 2008). Secondly, LSQMID estimates the derivative

of QMI w.r.t. W by dz estimators for dz derivatives of the density difference, while

LSDR and LSCE estimate a single quantity.

LSQMI is computationally the most inefficient even though it also utilizes man-

ifold optimization and estimates a single quantity. The reason could be that back-

tracking linesearch parameters that we used for the toolbox (Boumal et al., 2014) are

not suitable for LSQMI which results in many backtracking steps per iteration. We

believe that the computation time of LSQMI can be improved with a more proper

backtracking linesearch parameter tuning.

KDR (Random) also utilizes manifold optimization and estimates a single quan-

tity. However, it takes longer computation time than LSQMID for datasets B, C and

D when N = 500. The reason is that, KDR inverts a N-by-N matrix while LSQMID

inverts dz number of b-by-b matrices (see Equation (3.48)). Thus, when N is much

larger than b and dz is small, inverting a single N-by-N matrix can take much longer

time than inverting dz number of b-by-b matrices.

Results on Different Input Dimensionalities

Next, we evaluate the methods on different input dimensionalities. Table 3.3 shows

the mean and standard error over 50 trials of the dimension reduction error with differ-

ent input dimensionalities where the data size is fixed. We use N = 200 for datasets

A, and use N = 400 for datasets B, C and D. The randomly generated matrices are

uninformative and give large error. All methods perform best on low input dimen-

sionalities. For all datasets, LSQMID works well overall except when dx = 15. For

dataset C, only LSQMID and LSQMI gives informative result.

Table 3.4 shows the mean and standard error over 50 trials of the computation

time on different input dimensionalities. All methods take longer time as the dimen-

sionality increases. However, dMAVE has the largest relative increment among all

methods, i.e., it takes approximately three times longer when dx increases from 10 to

15.

3.5.3 Benchmark Data

Finally, we evaluate the usefulness of the proposed method on benchmark datasets.

In the following experiments, we consider linear supervised dimension reduction for

classification and regression tasks.

Classification

We firstly evaluate the proposed method on a classification task. We consider the

‘Wine’ dataset from the UCI repository (Bache and Lichman, 2013). The input vari-

ables x have dimensionality dx = 13 and the output variable y determines one of the

three classes. We standardize the input so that it has zero mean and unit variance. The

54

Table 3.1: Mean and standard error of the dimension reduction error over 50 trials for artificial datasets on different data sizes with input dimen-

sionality dx = 5. The best method in terms of the mean error and comparable methods according to the paired t-test at the significance level 5% are

specified by bold face.

Dataset N LSQMID LSQMI LSDR LSCE dMAVE KDR (gKDR) KDR (Random) Random

A

50 0.464(0.080) 0.990(0.066) 0.149(0.013) 0.652(0.083) 0.233(0.033) 0.418(0.071) 0.190(0.044) 1.304(0.016)
100 0.111(0.024) 0.473(0.077) 0.070(0.005) 0.160(0.044) 0.127(0.008) 0.124(0.035) 0.075(0.006) 1.304(0.016)
150 0.059(0.005) 0.165(0.044) 0.058(0.004) 0.054(0.005) 0.095(0.005) 0.056(0.004) 0.056(0.004) 1.304(0.016)
200 0.045(0.004) 0.072(0.027) 0.046(0.004) 0.052(0.009) 0.080(0.005) 0.047(0.004) 0.047(0.004) 1.304(0.016)
250 0.040(0.003) 0.070(0.027) 0.041(0.003) 0.041(0.004) 0.070(0.004) 0.045(0.004) 0.045(0.004) 1.304(0.016)

B

100 0.362(0.037) 1.290(0.057) 0.370(0.032) 0.226(0.022) 0.248(0.016) 0.421(0.042) 0.433(0.042) 1.465(0.028)
200 0.221(0.022) 0.700(0.081) 0.196(0.007) 0.116(0.008) 0.155(0.009) 0.168(0.010) 0.168(0.010) 1.465(0.028)
300 0.103(0.008) 0.359(0.066) 0.138(0.005) 0.075(0.003) 0.109(0.004) 0.122(0.006) 0.122(0.006) 1.465(0.028)
400 0.081(0.005) 0.111(0.009) 0.128(0.004) 0.080(0.006) 0.104(0.005) 0.089(0.005) 0.089(0.005) 1.465(0.028)
500 0.081(0.004) 0.130(0.021) 0.114(0.004) 0.069(0.006) 0.075(0.003) 0.068(0.004) 0.068(0.004) 1.465(0.028)

C

100 1.108(0.069) 1.316(0.057) 1.371(0.024) 1.240(0.039) 1.164(0.036) 1.437(0.023) 1.395(0.023) 1.465(0.028)
200 0.819(0.092) 1.086(0.089) 1.336(0.026) 1.205(0.043) 1.015(0.054) 1.325(0.020) 1.358(0.019) 1.465(0.028)
300 0.333(0.061) 0.618(0.081) 1.346(0.029) 1.120(0.048) 0.981(0.047) 1.271(0.024) 1.279(0.026) 1.465(0.028)
400 0.224(0.054) 0.404(0.080) 1.327(0.028) 1.133(0.044) 0.863(0.056) 1.198(0.033) 1.250(0.023) 1.465(0.028)
500 0.267(0.069) 0.461(0.087) 1.347(0.027) 1.084(0.050) 0.756(0.054) 1.215(0.032) 1.217(0.020) 1.465(0.028)

D

100 0.602(0.070) 1.033(0.070) 0.706(0.055) 0.630(0.059) 0.877(0.056) 0.610(0.046) 0.466(0.036) 1.465(0.028)
200 0.401(0.049) 0.569(0.064) 0.408(0.037) 0.338(0.028) 0.630(0.057) 0.371(0.026) 0.338(0.028) 1.465(0.028)
300 0.274(0.040) 0.334(0.043) 0.276(0.021) 0.293(0.030) 0.453(0.045) 0.266(0.021) 0.263(0.020) 1.465(0.028)
400 0.216(0.035) 0.176(0.016) 0.223(0.013) 0.214(0.018) 0.324(0.043) 0.252(0.013) 0.238(0.013) 1.465(0.028)
500 0.137(0.013) 0.151(0.013) 0.191(0.012) 0.218(0.018) 0.258(0.028) 0.205(0.012) 0.195(0.012) 1.465(0.028)

5
5

Table 3.2: Mean and standard error of the computation time in seconds over 50 trials for artificial datasets on different data sizes with input

dimensionality dx = 5.

Dataset N LSQMID LSQMI LSDR LSCE dMAVE KDR (gKDR) KDR (Random)

A

50 9.429(0.057) 34.110(0.591) 6.174(0.120) 7.305(0.099) 0.094(0.002) 0.395(0.016) 4.231(0.079)
100 27.814(0.274) 92.052(1.738) 14.150(0.227) 21.928(0.323) 0.360(0.013) 1.292(0.050) 16.573(0.490)
150 59.452(1.064) 124.585(2.866) 21.368(0.354) 36.561(0.498) 0.583(0.012) 2.064(0.038) 32.998(0.190)
200 93.544(1.900) 181.314(3.732) 30.290(0.473) 53.591(0.733) 0.895(0.024) 3.895(0.123) 56.161(0.644)
250 89.871(1.923) 174.112(3.526) 31.211(0.615) 56.277(0.749) 1.197(0.022) 4.915(0.082) 72.194(0.220)

B

100 49.036(0.429) 154.616(3.053) 12.783(0.246) 18.447(0.200) 0.363(0.012) 1.210(0.026) 13.001(0.150)
200 145.692(2.185) 300.697(6.914) 24.349(0.432) 46.142(0.514) 0.852(0.018) 3.624(0.094) 38.819(0.287)
300 168.623(3.047) 251.485(5.868) 26.052(0.469) 47.725(0.531) 1.735(0.032) 7.823(0.127) 86.127(0.798)
400 183.009(2.868) 231.134(6.435) 28.021(0.430) 46.014(0.503) 2.681(0.055) 13.670(0.209) 144.049(0.332)
500 203.555(3.401) 223.437(5.363) 30.299(0.523) 48.906(0.538) 4.130(0.094) 24.843(0.321) 241.030(0.592)

C

100 49.381(0.287) 155.790(2.051) 13.448(0.198) 16.040(0.167) 0.320(0.002) 1.060(0.008) 11.186(0.061)
200 132.830(0.152) 358.054(7.186) 29.940(0.474) 43.118(0.600) 0.812(0.011) 3.667(0.026) 38.001(0.253)
300 148.501(0.210) 331.875(6.626) 32.432(0.627) 38.933(0.448) 1.591(0.013) 6.766(0.045) 74.014(0.454)
400 169.348(0.375) 343.421(7.810) 36.026(0.672) 40.473(0.483) 2.450(0.016) 13.352(0.070) 140.416(0.343)
500 186.787(0.357) 352.525(8.282) 39.465(0.813) 45.053(0.552) 3.806(0.032) 22.837(0.126) 240.166(0.707)

D

100 48.305(0.372) 153.212(3.692) 15.120(0.342) 18.610(0.231) 0.392(0.015) 1.283(0.048) 18.654(0.457)
200 161.487(2.647) 322.414(6.317) 32.599(0.605) 47.629(0.679) 0.920(0.020) 3.856(0.098) 52.280(0.430)
300 181.158(2.660) 271.453(6.801) 36.607(0.663) 49.746(0.685) 1.792(0.035) 7.559(0.099) 102.684(0.256)
400 202.340(3.286) 259.462(5.090) 40.922(0.732) 50.476(0.671) 2.880(0.078) 13.556(0.229) 157.811(0.571)
500 222.527(3.043) 261.036(5.512) 46.453(0.882) 54.916(0.804) 4.456(0.120) 23.930(0.302) 276.041(2.123)

5
6

Table 3.3: Mean and standard error of the dimension reduction error over 50 trials for artificial datasets on different input dimensionalities with fixed

data sizes; N = 200 for Datasets A, and N = 400 for Datasets B, C and D. The best method in terms of the mean error and comparable methods

according to the paired t-test at the significance level 5% are specified by bold face.

Dataset dx LSQMID LSQMI LSDR LSCE dMAVE KDR (gKDR) KDR (Random) Random

A

3 0.045(0.004) 0.046(0.005) 0.047(0.004) 0.045(0.004) 0.076(0.005) 0.047(0.004) 0.047(0.004) 1.182(0.034)
5 0.045(0.004) 0.072(0.027) 0.046(0.004) 0.052(0.009) 0.080(0.005) 0.047(0.004) 0.047(0.004) 1.304(0.016)
8 0.060(0.005) 0.321(0.068) 0.054(0.004) 0.540(0.082) 0.100(0.004) 0.057(0.004) 0.057(0.004) 1.341(0.011)
10 0.055(0.004) 0.597(0.086) 0.056(0.004) 0.883(0.083) 0.116(0.004) 0.061(0.003) 0.061(0.003) 1.355(0.009)
15 0.151(0.037) 0.885(0.088) 0.061(0.004) 1.253(0.050) 0.136(0.005) 0.456(0.084) 0.069(0.004) 1.376(0.007)

B

3 0.039(0.003) 0.049(0.006) 0.062(0.004) 0.038(0.003) 0.053(0.003) 0.058(0.004) 0.058(0.004) 1.062(0.043)
5 0.081(0.005) 0.111(0.009) 0.128(0.004) 0.080(0.006) 0.104(0.005) 0.089(0.005) 0.089(0.005) 1.465(0.028)
8 0.143(0.007) 0.784(0.100) 0.163(0.006) 0.120(0.012) 0.139(0.004) 0.137(0.004) 0.137(0.004) 1.702(0.021)
10 0.201(0.025) 1.065(0.103) 0.180(0.004) 0.155(0.013) 0.168(0.005) 0.179(0.007) 0.179(0.007) 1.771(0.017)
15 0.368(0.046) 1.682(0.053) 0.227(0.006) 0.172(0.008) 0.207(0.004) 0.227(0.006) 0.226(0.006) 1.853(0.012)

C

3 0.212(0.054) 0.219(0.065) 1.187(0.055) 0.695(0.071) 0.577(0.062) 0.946(0.043) 0.963(0.037) 1.062(0.043)
5 0.224(0.054) 0.404(0.080) 1.327(0.028) 1.133(0.044) 0.863(0.056) 1.198(0.033) 1.250(0.023) 1.465(0.028)
8 0.589(0.087) 0.746(0.094) 1.391(0.013) 1.204(0.037) 1.086(0.047) 1.259(0.029) 1.279(0.020) 1.702(0.021)
10 0.765(0.088) 0.829(0.089) 1.404(0.009) 1.328(0.022) 1.227(0.031) 1.295(0.023) 1.313(0.021) 1.771(0.017)
15 1.308(0.068) 1.095(0.073) 1.426(0.010) 1.399(0.012) 1.360(0.019) 1.362(0.014) 1.315(0.022) 1.853(0.012)

D

3 0.067(0.010) 0.069(0.010) 0.131(0.012) 0.095(0.011) 0.317(0.049) 0.129(0.013) 0.124(0.012) 1.062(0.043)
5 0.216(0.035) 0.176(0.016) 0.223(0.013) 0.214(0.018) 0.324(0.043) 0.252(0.013) 0.238(0.013) 1.465(0.028)
8 0.343(0.036) 0.727(0.071) 0.314(0.023) 0.348(0.033) 0.380(0.030) 0.356(0.020) 0.345(0.018) 1.702(0.021)
10 0.473(0.049) 0.809(0.063) 0.387(0.020) 0.484(0.034) 0.605(0.061) 0.484(0.036) 0.420(0.022) 1.771(0.017)
15 0.689(0.049) 1.400(0.063) 0.616(0.040) 0.757(0.044) 0.936(0.056) 0.632(0.035) 0.558(0.018) 1.853(0.012)

5
7

Table 3.4: Mean and standard error of the computation time in seconds over 50 trials for artificial datasets on different input dimensionalities with

fixed data sizes; N = 200 for Datasets A, and N = 400 for Datasets B, C and D.

Dataset dx LSQMID LSQMI LSDR LSCE dMAVE KDR (gKDR) KDR (Random)

A

3 87.730(1.582) 116.106(2.398) 21.621(0.517) 44.211(0.551) 0.412(0.009) 3.539(0.090) 41.643(0.627)
5 93.544(1.900) 181.314(3.732) 30.290(0.473) 53.591(0.733) 0.895(0.024) 3.895(0.123) 56.161(0.644)
8 95.935(1.649) 308.600(5.879) 36.921(0.690) 47.501(0.711) 2.147(0.034) 3.793(0.093) 54.826(0.605)
10 88.833(1.398) 363.697(6.154) 40.374(0.602) 50.793(0.641) 3.335(0.043) 3.695(0.085) 63.552(0.706)
15 109.637(1.437) 476.093(3.908) 48.330(0.756) 59.981(1.006) 12.079(0.261) 4.350(0.111) 70.260(0.741)

B

3 169.567(2.992) 106.728(1.305) 29.736(0.499) 48.965(0.704) 1.254(0.025) 13.023(0.237) 137.888(1.222)
5 183.009(2.868) 231.134(6.435) 28.021(0.430) 46.014(0.503) 2.681(0.055) 13.670(0.209) 144.049(0.332)
8 205.578(3.333) 438.931(7.086) 36.879(0.659) 52.329(0.698) 6.704(0.159) 16.084(0.308) 154.936(0.421)
10 220.762(3.240) 499.952(6.730) 43.026(0.821) 57.738(0.727) 10.746(0.249) 17.482(0.319) 161.003(0.446)
15 263.757(3.493) 577.488(3.999) 61.165(1.145) 72.184(0.993) 31.961(0.747) 21.231(0.360) 188.233(0.408)

C

3 154.131(0.343) 92.523(1.908) 25.316(0.478) 43.993(0.635) 1.230(0.011) 11.587(0.073) 124.230(0.498)
5 169.348(0.375) 343.421(7.810) 36.026(0.672) 40.473(0.483) 2.450(0.016) 13.352(0.070) 140.416(0.343)
8 191.035(0.345) 500.047(4.296) 50.586(0.708) 47.681(0.606) 6.112(0.044) 15.460(0.081) 158.438(0.479)
10 208.191(0.615) 529.924(2.915) 56.769(0.689) 48.858(0.621) 9.749(0.068) 15.328(0.094) 162.992(0.593)
15 250.683(0.865) 570.572(1.730) 74.443(0.774) 55.368(0.682) 28.005(0.072) 18.953(0.089) 192.165(0.457)

D

3 186.339(2.808) 108.504(2.145) 37.751(0.687) 55.153(0.787) 1.333(0.032) 12.895(0.174) 149.617(0.489)
5 202.340(3.286) 259.462(5.090) 40.922(0.732) 50.476(0.671) 2.880(0.078) 13.556(0.229) 157.811(0.571)
8 226.080(2.683) 471.307(6.142) 55.825(1.108) 59.997(0.878) 6.873(0.140) 16.407(0.178) 176.396(0.405)
10 242.822(2.923) 540.447(5.618) 64.376(0.967) 65.743(1.044) 11.472(0.269) 17.919(0.212) 191.839(0.575)
15 275.041(3.748) 594.448(3.833) 88.215(1.650) 81.971(1.304) 32.900(0.722) 20.652(0.322) 219.071(0.640)

5
8

Table 3.5: Mean and standard error of the misclassification rate over 20 trials for the

‘Wine’ dataset with different target dimensionalities. The best method in terms of the

mean error and comparable methods according to the paired t-test at the significance

level 5% are specified by bold face.

dz LSQMID LSQMI LSDR dMAVE KDR (Random) PCA

1 23.33(10.82) 31.54(4.71) 8.59(3.09) 15.77(5.08) 8.53(2.70) 15.38(3.25)
2 3.27(1.21) 24.81(5.94) 4.94(2.25) 3.33(1.46) 3.14(1.64) 3.65(2.05)
3 2.95(2.00) 19.87(7.09) 6.03(3.14) 3.33(2.01) 3.53(1.66) 3.53(1.60)
4 3.53(3.65) 21.03(10.75) 6.09(3.58) 3.59(2.55) 3.40(2.01) 3.59(2.02)

dataset contains 178 samples. We randomly choose ntr = 100 samples for training

purposes, and use the rest nte = 78 for testing purposes. We execute linear super-

vised dimension reduction methods and principal component analysis (PCA) (Jolliffe,

1986) with target dimensionality dz = {1, 2, 3, 4} to obtain solutions Ŵ . Then, we

train a support vector machine classifier (SVM)9 (Cortes and Vapnik, 1995). The

performance of a classifier f(Ŵx) is evaluated by the misclassification rate for test

samples:

100

nte

nte∑

i=1

I(f(Ŵxi) 6= yi), (3.75)

where I(a) denotes the indicator function which equals to 1 when the expression a is

true and equals to 0 otherwise.

The misclassification rate in Table 3.5 shows that LSQMID performs very well

for this dataset when dz ∈ {2, 3, 4} and it gives the lowest misclassification rate when

dz = 3. In contrast, LSQMI performs very poorly and is also highly unstable as

can be seen by a relatively large standard error. We expect that this is because the

sample size is quite small which makes the performance of LSQMI relatively poor, as

demonstrated in our previous experiments.

Figure 3.5 shows data points projected by Ŵ with dz = 2. We can see that

all methods except LSQMI give good projections and we can easily distinguish data

points between classes in the new data spaces. In contrast, for LSQMI many data

points from one class (denoted by purple color) cannot be distinguished from the

other two classes in the new data spaces.

Regression

Next, we evaluate the proposed method on regression task using datasets from the

UCI repository. To make the tasks more challenging, we append the original input

x with noise features of dimensionality 5. More specifically, for the original input

x with dimensionality dx, we consider the augmented input x̃ with dimensionality

dx̃ = dx + 5 as

x̃ =
[
x⊤, γ1, γ2, γ3, γ4, γ5

]⊤
,

where γi ∼ Γ(1, 2) for i ∈ {1, . . . , 5}. Then we use the paired data {(x̃i, yi)}Ni=1 to

perform experiments. We randomly choose Ntr data points for training purposes, and

use the rest Nte = N−Ntr for testing purposes. We execute the supervised dimension

9We use the LibSVM implementation by Chang and Lin (2011).

59

reduction methods with target dimensionality dz ∈ {1, 2, 3, 4} to obtain solutions Ŵ .

Then we use a kernel ridge regressor and a k-nearest neighbor regressor to evaluate

the performance. The performance of a regressor f(Ŵ x̃) is measured by the root

mean squared error (RMSE) for test data points:

RMSE =

√√√√ 1

Nte

Nte∑

i=1

(
yi − f(Ŵ x̃i)

)2
. (3.76)

We use a kernel ridge regressor with the Gaussian kernel where the Gaussian width

and the regularization parameter are chosen by 5-fold cross-validation. Table 3.6

shows the RMSE averaged over 30 trials. LSQMID performs well overall for all

datasets. LSQMI also performs well for the ‘Fertility’ and ‘Bike’ datasets where it

outperforms LSQMID in terms of the mean error. However, LSQMI does not work

for the other datasets. LSCE and dMAVE perform well only on some datasets, and

LSDR, KDR (gKDR), and KDR (Random) perform poorly on these datasets.

Next, we use a k-nearest neighbor regressor where k ∈ {1, . . . , 10} is chosen by

5-fold cross validation. Table 3.7 shows the RMSE averaged over 30 trials. It shows

that the k-nearest neighbor regressor gives smaller RMSEs than the kernel ridge re-

gressor, except for the ‘Fertility’ dataset. This is perhaps because k-nearest neighbor

tends to work well when the data has low dimensionality. The results between linear

supervised dimension reduction methods are quite similar to those of the kernel ridge

regressor, with the exception that LSDR and dMAVE also perform well on the ‘Bike’

dataset.

These results show that LSQMID works well as a linear supervised dimension

reduction method for both kernel ridge regressor and k-nearest neighbor regressor.

3.6 Further Extension: Estimation of Higher Order Derivatives

of Quadratic Mutual Information

We have shown that the (first order) derivative of QMI can be estimated once we know

the (first order) derivative of the density difference, and we proposed a least-squares

estimator to directly estimate the (first order) derivative of the density difference from

data. Below, we further show that a higher order derivative of QMI can also be esti-

mated in a similar manner.

From an approximation of the derivative of QMI in Eq.(3.28), the k-th order

derivative of QMI w.r.t. Wℓ1,ℓ
′
1
, . . . ,Wℓk,ℓ

′
k

can be obtained from data as

∂̂kQMI(W)

∂Wℓ1,ℓ
′
1
. . . ∂Wℓk ,ℓ

′
k

=
1

N

N∑

i=1

∂kf(zi,yi)

∂z(ℓ1) . . . ∂z(ℓk)

(
k′∏

m=1

x
(ℓ′m)
i

)

− 1

N2

N∑

i,j=1

∂kf(zi,yj)

∂z(ℓ1) . . . ∂z(ℓk)

(
k′∏

m=1

x
(ℓ′m)
i

)
. (3.77)

This means that the k-th order derivative of QMI w.r.t. Wℓ1,ℓ
′
1
, . . . ,Wℓk,ℓ

′
k

can

be obtained once we know the k-th order derivative of the density difference

w.r.t. z(ℓ1), . . . , z(ℓk). A least-squares estimator for this derivative can be obtained

60

-3 -2 -1 0 1 2 3 4

z(1)

-3

-2

-1

0

1

2

3
z(2

)

(a) LSQMID

-3 -2 -1 0 1 2 3

z(1)

-3

-2

-1

0

1

2

z(2
)

(b) LSQMI

-3 -2 -1 0 1 2 3

z(1)

-3

-2

-1

0

1

2

3

4

z(2
)

(c) LSDR

-4 -3 -2 -1 0 1 2 3

z(1)

-2

-1

0

1

2

3

z(2
)

(d) dMAVE

-4 -2 0 2 4 6

z(1)

-4

-3

-2

-1

0

1

2

3

4

z(2
)

(e) KDR (Random)

-5 0 5

z(1)

-4

-3

-2

-1

0

1

2

3

4

z(2
)

(f) PCA

Figure 3.5: Data points of the ‘wine’ dataset after projection by each linear dimension

reduction method. Data points from the same class are indicated by the same color.

61

Table 3.6: Mean and standard error of the root mean squared error over 30 trials for benchmark datasets using kernel ridge regressor. The best

method in terms of the mean error and comparable methods according to the paired t-test at the significance level 5% are specified by bold face.

Dataset Ntr dx̃ dz LSQMID LSQMI LSDR LSCE dMAVE KDR (gKDR) KDR (Random)

Fertility 50 14

1 1.215(0.049) 1.092(0.043) 1.315(0.043) 1.185(0.050) 1.321(0.063) 1.116(0.050) 1.174(0.047)
2 1.051(0.045) 1.029(0.043) 1.199(0.031) 1.080(0.047) 1.340(0.052) 1.104(0.044) 1.247(0.049)
3 1.052(0.044) 1.038(0.047) 1.104(0.044) 1.091(0.041) 1.288(0.048) 1.121(0.043) 1.231(0.037)
4 1.046(0.042) 1.026(0.042) 1.092(0.039) 1.083(0.044) 1.271(0.033) 1.146(0.044) 1.202(0.035)

Yacht 100 11

1 0.120(0.005) 0.546(0.042) 0.180(0.012) 0.718(0.051) 0.213(0.017) 0.124(0.007) 0.124(0.007)
2 0.154(0.011) 0.675(0.047) 0.344(0.023) 0.275(0.013) 0.224(0.014) 0.278(0.033) 0.248(0.012)
3 0.314(0.024) 0.690(0.037) 0.425(0.018) 0.319(0.017) 0.265(0.013) 0.353(0.028) 0.318(0.015)
4 0.413(0.021) 0.732(0.043) 0.494(0.015) 0.355(0.013) 0.352(0.017) 0.399(0.012) 0.400(0.015)

Concrete 200 13

1 0.621(0.013) 0.606(0.014) 0.606(0.008) 0.604(0.009) 0.582(0.006) 0.791(0.030) 0.637(0.012)
2 0.568(0.010) 0.591(0.009) 0.568(0.010) 0.567(0.011) 0.529(0.009) 0.614(0.025) 0.541(0.014)
3 0.557(0.009) 0.579(0.011) 0.576(0.012) 0.571(0.010) 0.539(0.007) 0.579(0.016) 0.558(0.012)
4 0.545(0.012) 0.667(0.025) 0.568(0.010) 0.577(0.010) 0.540(0.008) 0.571(0.014) 0.583(0.014)

Breast-cancer 200 15

1 0.447(0.011) 0.523(0.018) 0.442(0.010) 0.453(0.016) 0.375(0.007) 0.447(0.012) 0.465(0.014)
2 0.435(0.010) 0.473(0.012) 0.437(0.009) 0.437(0.011) 0.420(0.012) 0.454(0.014) 0.440(0.011)
3 0.376(0.004) 0.462(0.010) 0.431(0.007) 0.438(0.009) 0.426(0.008) 0.430(0.007) 0.430(0.009)
4 0.377(0.005) 0.419(0.008) 0.436(0.007) 0.425(0.012) 0.426(0.011) 0.433(0.007) 0.435(0.009)

Bike 300 19

1 0.043(0.011) 0.070(0.019) 0.016(0.001) 0.015(0.004) 0.139(0.051) 0.513(0.059) 0.194(0.005)
2 0.036(0.005) 0.035(0.003) 0.049(0.002) 0.031(0.005) 0.081(0.007) 0.291(0.050) 0.086(0.006)
3 0.037(0.005) 0.032(0.003) 0.065(0.002) 0.043(0.005) 0.086(0.008) 0.243(0.037) 0.090(0.006)
4 0.060(0.006) 0.051(0.007) 0.077(0.002) 0.045(0.005) 0.071(0.005) 0.213(0.029) 0.074(0.006)

6
2

Table 3.7: Mean and standard error of the root mean squared error over 30 trials for benchmark datasets using k-nearest neighbour regressor. The

best method in terms of the mean error and comparable methods according to the paired t-test at the significance level 5% are specified by bold face.

Dataset Ntr dx̃ dz LSQMID LSQMI LSDR LSCE dMAVE KDR (gKDR) KDR (Random)

Fertility 50 14

1 1.875(0.154) 1.467(0.103) 2.330(0.146) 1.451(0.124) 2.162(0.149) 1.367(0.117) 1.440(0.121)
2 1.581(0.107) 1.387(0.100) 1.998(0.107) 1.344(0.102) 2.206(0.120) 1.407(0.130) 1.718(0.140)
3 1.517(0.119) 1.383(0.103) 1.794(0.117) 1.661(0.149) 1.953(0.140) 1.439(0.102) 1.677(0.126)
4 1.546(0.100) 1.236(0.091) 1.842(0.139) 1.696(0.126) 1.759(0.105) 1.575(0.124) 1.655(0.115)

Yacht 100 11

1 0.020(0.002) 0.368(0.049) 0.031(0.003) 0.629(0.077) 0.040(0.005) 0.019(0.002) 0.018(0.002)
2 0.026(0.003) 0.510(0.078) 0.194(0.022) 0.147(0.011) 0.101(0.011) 0.201(0.029) 0.191(0.017)
3 0.171(0.021) 0.577(0.048) 0.311(0.022) 0.257(0.020) 0.186(0.014) 0.319(0.026) 0.337(0.024)
4 0.369(0.031) 0.674(0.066) 0.422(0.025) 0.344(0.026) 0.324(0.023) 0.437(0.025) 0.459(0.034)

Concrete 200 13

1 0.411(0.019) 0.391(0.017) 0.379(0.009) 0.382(0.010) 0.356(0.007) 0.669(0.048) 0.428(0.016)
2 0.343(0.010) 0.369(0.009) 0.345(0.009) 0.349(0.013) 0.307(0.010) 0.404(0.033) 0.316(0.019)
3 0.356(0.012) 0.373(0.013) 0.375(0.012) 0.381(0.012) 0.347(0.010) 0.401(0.018) 0.388(0.014)
4 0.369(0.012) 0.525(0.034) 0.398(0.013) 0.397(0.014) 0.382(0.012) 0.440(0.014) 0.448(0.015)

Breast-cancer 200 15

1 0.203(0.009) 0.279(0.019) 0.209(0.010) 0.233(0.019) 0.139(0.006) 0.224(0.013) 0.234(0.015)
2 0.199(0.010) 0.236(0.012) 0.198(0.011) 0.221(0.017) 0.190(0.011) 0.215(0.013) 0.208(0.011)
3 0.145(0.005) 0.218(0.011) 0.180(0.008) 0.202(0.012) 0.197(0.010) 0.195(0.010) 0.197(0.011)
4 0.140(0.004) 0.179(0.008) 0.187(0.008) 0.194(0.014) 0.193(0.011) 0.189(0.011) 0.187(0.010)

Bike 300 19

1 0.007(0.004) 0.016(0.006) 0.001(0.000) 0.001(0.000) 0.104(0.052) 0.390(0.075) 0.042(0.002)
2 0.006(0.001) 0.005(0.001) 0.006(0.001) 0.007(0.002) 0.006(0.001) 0.167(0.051) 0.018(0.001)
3 0.008(0.002) 0.007(0.002) 0.009(0.001) 0.011(0.001) 0.009(0.001) 0.123(0.035) 0.037(0.001)
4 0.018(0.003) 0.019(0.003) 0.019(0.002) 0.019(0.002) 0.014(0.001) 0.107(0.019) 0.055(0.002)

6
3

as follows. Let gℓ,k(z,y) be a model of the k-th order derivatives of the density dif-

ference, i.e.,

gℓ,k(z,y) ≈
∂kf(z,y)

∂z(ℓ1) . . . ∂z(ℓk)
. (3.78)

A least-squares estimator minimizes the following squared loss:

1

2

∫∫ (
gℓ,k(z,y)−

∂kf(z,y)

∂z(ℓ1) . . . ∂z(ℓk)

)2

dzdy. (3.79)

By expanding the square and ignoring the constant term, we obtain

1

2

∫∫
gℓ,k(z,y)

2dzdy −
∫∫

gℓ,k(z,y)
∂kf(z,y)

∂z(ℓ1) . . . ∂z(ℓk)
dzdy. (3.80)

Under the mild assumption, applying the integration by parts for k times yields

∫∫
gℓ,k(z,y)

∂kf(z,y)

∂z(ℓ1) . . . ∂z(ℓk)
dzdy = (−1)k

∫∫
f(z,y)

∂kgℓ,k(z,y)

∂z(ℓ1) . . . ∂z(ℓk)
dzdy.

(3.81)

Then, the estimator gℓ,k(z,y) is obtained as a solution of the following minimization

problem:

min
gℓ,k

[
1

2

∫∫
gℓ,k(z,y)

2dzdy − (−1)k
∫∫

f(z,y)
∂kgℓ,k(z,y)

∂z(ℓ1) . . . ∂z(ℓk)
dzdy

]
. (3.82)

For a linear-in-parameter model gℓ,k(z,y) = θ
⊤
ℓ,kϕℓ,k(z,y), the parameter θ̂ℓ,k which

minimizes a regularized empirical minimization problem can be obtained analytically

as

θ̂ℓ,k = (−1)k (Hℓ,k + λℓ,kI)
−1
ĥℓ,k, (3.83)

where λℓ,k ≥ 0 denotes the regularization parameter and

Hℓ,k =

∫∫
ϕℓ,k(z,y)ϕℓ,k(z,y)

⊤dzdy, (3.84)

ĥℓ,k =
1

N

N∑

i=1

∂kϕℓ,k(zi,yi)

∂z(ℓ1) . . . ∂z(ℓk)
− 1

N2

N∑

i,j=1

∂kϕℓ,k(zi,yj)

∂z(ℓ1) . . . ∂z(ℓk)
. (3.85)

Finally, an estimator of the k-th order derivative of the density difference is given by

ĝℓ,k(z,y) = θ̂
⊤
ℓ,kϕℓ,k(z,y). (3.86)

Substituting this estimator to the k-th order of the derivative of QMI in Eq.(3.77)

yields

∂̂kQMI(W)

∂Wℓ1,ℓ
′
1
. . . ∂Wℓk ,ℓ

′
k

=
1

N

N∑

i=1

θ̂
⊤
ℓ,kϕℓ,k(zi,yi)

(
k′∏

m=1

x
(ℓ′m)
i

)

− 1

N2

N∑

i,j=1

θ̂
⊤
ℓ,kϕℓ,k(zi,yj)

(
k′∏

m=1

x
(ℓ′m)
i

)
. (3.87)

64

We may also use the k-th order derivative of the Gaussian function as the basis

function. In such a case, the Gaussian width and the regularization parameter can be

objective chosen by the K-fold cross-validation procedure in Section 3.3.5 where the

score of each candidate pair M is

CV(M) =
1

K

K∑

j=1

[
1

2
θ̂
⊤
ℓ,k,M,\jHℓ,k,M θ̂ℓ,k,M,\j + θ̂

⊤
ℓ,k,M,\jĥℓ,k,M,j

]
. (3.88)

It should be noted that we implicitly assume that the density difference is at least

k times differentiable for estimating the k-th order derivatives of the density differ-

ence. Moreover, we also implicitly assume that the derivatives are smooth and can be

accurately estimated by a linear combination of smooth basis functions such as the

derivatives of the Gaussian function.

3.7 Conclusion

In this chapter, we proposed a novel linear supervised dimension reduction method

based on maximization of quadratic mutual information (QMI). Our key idea was to

directly estimate the derivative of QMI in a single-step manner without estimating

QMI itself. We firstly developed a method to directly estimate the derivative of QMI,

and then developed fixed-point iteration which efficiently uses the derivative estima-

tor to find a maximizer of QMI. In addition to the robustness against outliers thanks

to the property of QMI, the proposed method is widely applicable because it does not

require any assumption on the data distribution and tuning parameters can be objec-

tively chosen via cross-validation. The experiment results on artificial and benchmark

datasets showed that the proposed method is promising.

The proposed method seems to be computationally expensive. The main reason

for this inefficiency is that we restart the optimization with several initial guesses

in order to avoid obtaining a poor local solution. Our future work includes a com-

putationally more efficient approach to obtain a better solution; exploring geodesic

convexity (Udriste, 1994) would also be an interesting direction.

The experimental results on the artificial datasets showed that the performance of

LSQMI, which aims at maximizing an estimated QMI, decreases significantly when

the input dimensionality increases. Our single-step method significantly improves the

performance of the QMI-based supervised dimension reduction approach by directly

estimating the derivative of QMI. On the other hand, the performance of LSDR, which

aims at maximizing an estimated SMI, does not affect much when the input dimen-

sionality increases. Hence, by the same analogy, it is intuitive to say that a single-step

supervised dimension reduction method based on direct estimation of the derivative

of SMI would work even better than LSDR. Developing a single-step method which

directly estimates the derivative of SMI will be our future work.

In this chapter, we proposed the single-step QMI-based linear dimension reduction

method and describe its procedure for supervised linear dimension reduction setting.

However, it is straightforward to apply our proposed method to unsupervised linear

dimension reduction setting by replacing the output y with an identical copy of input

x. Our future work includes investigating the performance of the proposed method

in unsupervised linear dimension reduction setting. Nonetheless, we expect that the

performance of our single-step method would be better than existing methods based

on multi-step approaches

65

Chapter 4

Single-step Dimension Reduction for

Conditional Density Estimation

This chapter presents our second contribution on a single-step dimension reduction

method for conditional density estimation. We firstly introduce the conditional den-

sity estimation problem and briefly review existing methods. Then, we present our

single-step dimension reduction method. Lastly, we present experimental evaluations

and conclude the chapter.

4.1 Introduction

Analyzing input-output relationship from input-output data is one of most important

problem in supervised learning. The most common approach is regression, which

estimates the conditional mean of output y given input x, i.e., regression estimates

Ep(y|x) [y]. However, just analyzing the conditional mean is not informative enough

when the conditional probability density function p(y|x) possesses multimodality,

asymmetry, or heteroscedasticity (i.e., input-dependent variance). In such cases, it

would be more appropriate to estimate the conditional density p(y|x) itself. (see

Figure 4.3).

−2 0 2 4
−5

0

5

x

y

Data
p(y|x)
E[y]

Figure 4.1: Illustration of bi-modal data. The conditional mean (green line) poorly

capture information in the data.

66

The most naive approach to solve the conditional density estimation problem

would be ǫ-neighbor kernel density estimation (ǫ-KDE), which performs standard

KDE along y only with nearby data points in the input domain. However, ǫ-KDE

do not work well when input has high dimensionality because the number of nearby

data points is too few. To avoid this issue, KDE may be applied twice to estimate

p(x,y) and p(x) separately and the estimated densities may be plugged into the de-

composed form p(y|x) = p(x,y)/p(x) to estimate the conditional density. How-

ever, this approach is not reliable since taking the ratio of two estimated densities

significantly magnifies the estimation error. To overcome this issue, an approach to

directly estimating the density ratio p(y|x) = p(x,y)/p(x) without separate estima-

tion of densities p(x,y) and p(x) has been explored (Sugiyama et al., 2010). This

method, called least-squares conditional density estimation (LSCDE), does not re-

quire a strong assumption about the conditional density and it was proved to possess

the optimal non-parametric learning rate in the mini-max sense. Moreover, its so-

lution can also be efficiently and analytically computed. Nevertheless, estimating

conditional densities when input has high dimensionality is still challenging due to

the curse of dimensionality.

The curse of dimensionality can be mitigated by pre-processing data with super-

vised linear dimension reduction before performing conditional density estimation.

However, such a multi-step approach is not optimal because dimension reduction in

the former step is performed without regard to conditional density estimation in the

latter step, and estimation error incurred in the dimension reduction step can be mag-

nified in the conditional density estimation step.

In this chapter, we overcome the issue of the multi-step approach. More specif-

ically, we propose a single-step dimension reduction method which performs both

supervised linear dimension reduction and conditional density estimation under a uni-

fied objective. Our key idea is to formulate supervised linear dimension reduction in

terms of the squared-loss conditional entropy which includes the conditional density

in its definition. Optimizing this squared-loss conditional entropy means that super-

vised linear dimension reduction is performed simultaneously with conditional den-

sity estimation. Therefore, when supervised linear dimension reduction is completed,

the final conditional density estimator has already been obtained without requiring an

additional conditional density estimation step.

The organization of this chapter are as follows. In Section 4.2, we firstly formulate

the conditional density estimation problem and review existing methods. Next, in

Section 4.3 we present the squared-loss conditional entropy and our method which is

called least-squares conditional entropy (LSCE). Then, in Section 4.4 we demonstrate

its usefulness through experiments on benchmark data, humanoid robot data, and

computer art data. Finally, we conclude this chapter in Section 4.5.

4.2 Conditional Density Estimation

This section formulates the conditional density estimation problem and review exist-

ing methods.

67

4.2.1 Problem Formulation

The goal of conditional density estimation is to estimate the conditional probability

density function p(y|x) from input-output data {(xi,yi)}Ni=1 which are drawn i.i.d.

from a joint probability distribution with density function p(x,y). In this chapter, we

assume that a parametric form of the conditional density function p(y|x) is unknown.

Therefore, we do not consider parametric conditional density estimation methods such

as Gaussian process (Rasmussen and Williams, 2006) in this chapter.

We also assume that the input x can be decomposed into an informative com-

ponent z and an informative component z⊥. We further assume that there exists an

orthogonal matrix
[
W⊤,W⊤

⊥
]

such that z =Wx and z⊥ =W⊥x. We emphasize

that this informative component satisfies the conditional independent:

(y ⊥⊥ x)|z. (4.1)

4.2.2 Existing Methods

In this section, we review existing (non-parametric) conditional density estimation

methods.

ǫ-Neighbor Kernel Density Estimation

The ǫ-neighbor kernel density estimation (ǫ-KDE) is a simple method for estimating

a conditional density function from data. Given a test input point x̃, ǫ-KDE performs

KDE using a subset of training output data points whose their associated input data

points are located near x̃. More specifically, an estimated conditional density of a

given test input point x̃ is computed in ǫ-KDE as

p̂(y|x̃) = 1

|Ix̃,ǫ|
∑

i∈Ix̃,ǫ

K(y − yi), (4.2)

where Ix̃,ǫ is a set of data indexes such that ‖x̃ − xi‖ ≤ ǫ. The function K(·) is a

kernel function which is a positive real-valued function that is integrated to one:

∫
K(u)du = 1. (4.3)

Note that the kernel function in the context of kernel density estiation is defined quite

differently from the kernel in the context of reproducing kernel Hilbert space (Aron-

szajn, 1950) which we introduced in Chapter 2. Among many kernel functions, the

most commonly used kernel function is the Gaussian kernel which is defined as

K(y − ỹ) = 1

σ
√
2π

exp

(
−(y − ỹ)

⊤(y − ỹ))
2σ2

)
. (4.4)

The distance threshold ǫ and the tuning parameters contained in the kernel, e.g., the

Gaussian width σ, can be chosen by cross-validation.

The main appeal of ǫ-KDE is that it is very simple and easy to use. However,

ǫ-KDE tends to perform very poorly when input has high dimensionality because the

number of nearby data points within the ǫ distance is usually too few.

68

Ratio of Kernel Density Estimators

The conditional density function can also be estimated based on a ratio of two density

functions. Firstly, notice that the conditional density function p(y|x) can be expressed

as a ratio of two (unconditional) density functions, i.e.,

p(y|x) = p(x,y)

p(x)
. (4.5)

Based on this fact, a conditional density estimator can be obtained by

p̂(y|x) = p̂(x,y)

p̂(x)
, (4.6)

where p̂(x,y) and p̂(x) are an estimated joint density function and an estimated

marginal density function, respectively. In the ratio of kernel density estimators

method, the estimated joint and marginal density functions are separately obtained

by KDE and they are given by

p̂(x,y) =
1

N

N∑

i=1

K(x− xi)H(y − yi) (4.7)

p̂(x) =
1

N

N∑

i=1

K(x− xi), (4.8)

where K(·) and H(·) are kernel functions which may be the Gaussian kernel defined

in Equation (4.4). Similarly to the ǫ-KDE method, the tuning parameters in the kernel

functions K(·) and H(·) can be chosen by cross-validation.

The important step of this approach is to compute the ratio between the estimated

densities p̂(x,y) and p̂(x). In general, computing such a ratio is not preferable since

estimation errors of the two estimated densities can be significantly magnified. For

this reason, this approach is usually unreliable except when the two estimated densi-

ties are very accurate.

Least-Squares Conditional Density Estimation

To avoid computing the ratio of two estimated density functions, the least-squares

conditional density estimation (LSCDE) method (Sugiyama et al., 2010) was pro-

posed. The key idea of LSCDE is to directly estimate the density ratio p(x,y)/p(x)
from data. More specifically, LSCDE learn a conditional density estimator p̂(y|x)
such that it minimizes the following squared error:

1

2

∫∫
(p̂(y|x)− p(y|x))2 p(x)dxdy. (4.9)

The solution of LSCDE depends on the model of the conditional density estimator

p̂(y|x). A practical choice is the linear-in-parameter-model:

p̂(y|x) = α⊤ϕ(x,y), (4.10)

whereα ∈ Rb is a vector parameter to be learned andϕ(x,y) ∈ Rb is a basis function

vector. For this model, the parameter vector which minimizes the squared error can

69

be computed in a closed form. More details of LSCDE will be explained in Chapter 6

where we utilize LSCDE in our contribution on a model-based reinforcement learning

method.

The main advantage of LSCDE is that the conditional density estimator p̂(y|x)
can be obtained in a closed form when a linear-in-parameter model is used as a

model of the estimator. Moreover, it was proved that LSCDE achieve the optimal

non-parametric asymptotic convergence rate (Sugiyama et al., 2010).

4.2.3 Multi-step Dimension Reduction for Conditional Density Estimation

Although LSCDE possesses many desirable properties, it still suffers from the curse

of dimensionality and may perform poorly when input has high dimensionality. A

common approach to mitigate this issue is to pre-process the input x by a super-

vised linear dimension reduction method before performing LSCDE. For example,

we may use any supervised linear dimension reduction methods that we introduced

in Chapter 2 or our proposed LSQMID method in Chapter 3 to firstly transform input

x into new input z = Wx, and then apply LSCDE on the new input-output data

{(zi,yi)}Ni=1.

Although this multi-step approach is a common practice, it it not an appropriate

approach for the following reason. Typically, the former dimension reduction step

is performed independently without regarding the accuracy of the latter conditional

density estimation step. In an ideal case, supervised linear dimension reduction could

find an optimal transformation matrix W such that the new input z = Wx satisfies

the conditional independence:

(y ⊥⊥ x)|z, (4.11)

or equivalently

p(y|x) = p(y|z). (4.12)

In this ideal case, the latter conditional density estimation step can use the new input

z without any loss of information. In practice, however, the transformation matrixW

often contains estimation error and is quite different from the optimal transformation

matrix that satisfies the conditional independence. In this case, the learned conditional

density estimator p̂(y|z) would be inaccurate and quite different from the conditional

density p(y|x).
A simple idea to avoid the issue of the multi-step approach is to perform linear

dimension reduction while also considering an accuracy of the conditional density

estimator. In the next section, we show that this idea can be mathematically formalize

by using the definition of squared-loss conditional entropy.

4.3 Least-Squares Conditional Entropy

In this section, we present our single-step method that overcomes the issue of multi-

step approach. Our key idea is to minimizes the squared-loss conditional entropy in

order to obtain both transformation matrix W and the conditional density estimator

p̂(y|Wx). Below, we firstly introduce the squared-loss conditional entropy and ex-

plain its relation to the conditional independence. Then, we show that it can be utilized

as a unified objective for both supervised linear dimension reduction and conditional

density estimation.

70

4.3.1 Squared-loss Conditional Entropy and conditional Independence

Let us consider a squared-loss variant of conditional entropy named squared-loss con-

ditional entropy (SCE):

SCE(Y |Z) = −1
2

∫∫ (
p(y|z)− 1

)2
p(z)dzdy. (4.13)

By expanding the squared term in Equation (4.13), we obtain

SCE(Y |Z) = −1
2

∫∫ (
p(y|z)2p(z) + p(y|z)p(z)− 1

2
p(z)

)
dzdy

= −1
2

∫∫
p(y|z)2p(z)dzdy + 1− 1

2

∫
dy

= S̃CE(Y |Z) + 1− 1

2

∫
dy, (4.14)

where S̃CE(Y |Z) is defined as

S̃CE(Y |Z) = −1
2

∫∫
p(y|z)2p(z)dzdy. (4.15)

Then we have the following theorem which forms the basis of our proposed method:

Theorem 1.

S̃CE(Y |Z)− S̃CE(Y |X) =
1

2

∫∫ (
p(z⊥,y|z)

p(z⊥|z)p(y|z)
− 1

)2

p(y|z)2p(x)dxdy

≥ 0. (4.16)

The above theorem can be proved as follows. Firstly, we can see that S̃CE(Y |Z)

and S̃CE(Y |X) have the following relation:

S̃CE(Y |Z)− S̃CE(Y |X) =
1

2

∫∫
p(y|x)2p(x)dydx− 1

2

∫∫
p(y|z)2p(z)dzdy

=
1

2

∫∫
p(y|x)2p(x)dxdy +

1

2

∫∫
p(y|z)2p(z)dzdy

−
∫∫

p(y|z)2p(z)dzdy. (4.17)

Let p(x) = p(z, z⊥), p(x,y) = p(z, z⊥,y), and dx = dzdz⊥. Then the final term

can be expressed as
∫∫

p(y|z)2p(z)dzdy =

∫∫
p(z,y)

p(z)

p(z,y)

p(z)
p(z)dzdy

=

∫∫
p(z,y)

p(z)
p(z,y)dzdy

=

∫∫
p(z,y)

p(z)
p(z⊥|z,y)p(z,y)dzdz⊥dy

=

∫∫
p(z,y)

p(z)
p(z, z⊥,y)dzdz⊥dy

=

∫∫
p(z,y)

p(z)
p(x,y)dxdy

=

∫∫
p(y|z)p(y|x)p(x)dxdy. (4.18)

71

Therefore,

S̃CE(Y |Z)− S̃CE(Y |X) =
1

2

∫∫
p(y|x)2p(x)dxdy +

1

2

∫∫
p(y|z)2p(z)dzdy

−
∫∫

p(y|z)p(y|x)p(x)dxdy

=
1

2

∫∫
(p(y|x)− p(y|z))2 p(x)dxdy. (4.19)

We can also express p(y|x) in term of p(y|z) as

p(y|x) = p(x,y)

p(x)

=
p(x,y)

p(x)

p(z,y)

p(z,y)

=
p(x,y)p(z,y)

p(z⊥|z)p(z)p(y|z)p(z)

=
p(z, z⊥,y)p(z,y)

p(z⊥|z)p(z)p(y|z)p(z)

=
p(z⊥,y|z)p(z,y)
p(z⊥|z)p(y|z)p(z)

=
p(z⊥,y|z)

p(z⊥|z)p(y|z)
p(y|z). (4.20)

Finally, we obtain

S̃CE(Y |Z)− S̃CE(Y |X) =
1

2

∫∫
(p(y|x)− p(y|z))2 p(x)dxdy

=
1

2

∫∫ (
p(z⊥,y|z)

p(z⊥|z)p(y|z)
p(y|z)− p(y|z)

)2

p(x)dxdy

=
1

2

∫∫ (
p(z⊥,y|z)

p(z⊥|z)p(y|z)
− 1

)2

p(y|z)2p(x)dxdy

≥ 0, (4.21)

which concludes the proof.

The importance of the above theorem is that it shows that S̃CE(Y |Z) ≥
S̃CE(Y |X), and that the equality holds if and only if

p(z⊥,y|z) = p(z⊥|z)p(y|z). (4.22)

This is equivalent to the conditional independence in Equation (4.11), and there-

fore supervised linear dimensionality reduction can be performed by minimizing

S̃CE(Y |Z) with respect toW :

min
W∈Rdz×dx

S̃CE(Y |Z)

subject to WW⊤ = Idz . (4.23)

72

Since p(y|z) = p(z,y)/p(z), SCE(Y |Z) is equivalent to the negative Pear-

son divergence (Pearson, 1900) from p(z,y) to p(z), which is a member of the f -

divergence class (Ali and Silvey, 1966; Csiszár, 1967) with the squared-loss function.

On the other hand, ordinary conditional entropy (CE), defined by

CE(Y |Z) = −
∫∫

p(z,y) log p(y|z)dzdy, (4.24)

is the negative Kullback-Leibler (KL) divergence (Kullback and Leibler, 1951) from

p(z,y) to p(z). This analogy is similar to the case of the squared-loss mutual in-

formation (SMI) and the mutual information (MI) which we introduced in Chapter 2

where SMI is an instance of the Pearson divergence and MI is an instance of the KL

divergence. As we have discussed earlier in Chapter 2, the Pearson divergence is more

appealing than the KL divergence since it is more robust against outliers than the KL

divergence.

Next, we propose our approach to estimate the unknown SCE. Then, we show that

our SCE estimation is related to performing conditional density estimation.

4.3.2 Estimating Squared-loss Conditional Entropy

Since S̃CE(Y |Z) in Equation (4.23) is unknown in practice, we estimate it using

input-output data {(zi,yi) | zi =Wxi}Ni=1.

The trivial inequality (a− b)2/2 ≥ 0 yields a2/2 ≥ ab− b2/2, and thus we have

a2

2
= max

b

[
ab− b2

2

]
. (4.25)

If we set a = p(y|z), we have

p(y|z)2
2

≥ max
b

[
p(y|z)b(z,y)− b(z,y)2

2

]
. (4.26)

If we multiply both sides of the above inequality with −p(z), and integrated over z

and y, we have

S̃CE(Y |Z) ≤ min
b

∫∫ [
b(z,y)2p(z)

2
− b(z,y)p(z,y)

]
dzdy, (4.27)

where minimization with respect to b is now performed as a function of z and y.

Now, let us consider a linear-in-parameter model for the function b:

b(z,y) = α⊤ϕ(z,y), (4.28)

where α ∈ Rb is a parameter vector to be learned and ϕ(z,y) ∈ Rb is a basis

function vector. If the expectations over densities p(z) and p(z,y) are approximated

by samples averages and the ℓ2-regularizer λα⊤α/2 (λ ≥ 0) is included, the above

minimization problem yields

α̂ = argmin
α

[
1

2
α⊤Ĝα− ĥ⊤

α+
λ

2
α⊤α

]
, (4.29)

73

where

Ĝ =
1

N

N∑

i=1

Φ̄(zi),

ĥ =
1

N

N∑

i=1

ϕ(zi,yi),

Φ̄(z) =

∫
ϕ(z,y)ϕ(z,y)⊤dy. (4.30)

The solution α̂ is analytically given by

α̂ =
(
Ĝ+ λI

)−1

ĥ, (4.31)

which yields b̂(z,y) = α̂
⊤
ϕ(z,y). Then, from Equation (4.27), an estimator of

S̃CE(Y |Z) is obtained analytically as

ŜCE(Y |Z) =
1

2
α̂

⊤
Ĝα̂− ĥ⊤

α̂. (4.32)

We call this method least-squares conditional entropy (LSCE).

4.3.3 Supervised Linear Dimension Reduction with Squared-loss Conditional

Entropy

Our current goal is to find a transformation matrix W which maximizes our SCE

estimator:

min
W∈Rdz×dx

ŜCE(Y |Z)

subject to WW⊤ = Idz . (4.33)

This optimization problem may be solved by performing gradient descent to obtain

intermediate solutions and then projecting the intermediate solution so that they sat-

isfies the constraint WW⊤ = Idz . However, performing such a projection can be

computationally expensive. An alternative approach is to perform optimization on

matrix manifold. Firstly, as we discussed in Chapter 2, the optimization problem in

Equation (4.33) is the same as the following optimization problem:

min
W∈Sdx

dz

ŜCE(Y |Z), (4.34)

where Sdx
dz

is the Stiefel manifold (Stiefel, 1935; Edelman et al., 1998; Absil et al.,

2008) defined as

Sdx
dz

= {W ∈ Rdz×dx |WW⊤ = Idz}. (4.35)

This optimization problem can be solved by performing gradient descent on the man-

ifold.

It can also be noticed that rotations within the subspace are not important in linear

dimension reduction. More specifically, rotations within the subspace do not change

74

Figure 4.2: Illustration of rotation within subspace. Linear dimension reduction finds

a transformation matrixW and linearly project data onto the subspace spanned by the

rows of W . As can be seen, rotation within the subspace does not alter the positions

of the projected data points (the green points).

orthogonal projection of the data points (see Figure 4.2). Therefore, instead of consid-

ering the optimization problem over the Stiefel manifold Sdx
dz

, we may instead consider

an optimization problem over the Grassman manifold Gdx
dz

defined as

Gdxdz = {W ∈ Rdz×dx|WW⊤ = Idz}/ ∼, (4.36)

where ∼ represents the equivalence relation: W and W̃ are written as W ∼ W̃ if

their rows span the same subspace. Performing the optimization over the Grassmann

manifold is more computationally efficient since updates which rotates the subspace

within itself are not considered.

Based on the Grassmann manifold, we aim to solve the following optimization

problem:

min
W∈Gdx

dz

ŜCE(Y |Z). (4.37)

We propose to solve this optimization by performing gradient descent on the Grass-

mann manifold. Firstly, the (l, l′)-th entry of the gradient of ŜCE(Y |Z) w.r.t. W is

given by

∂ŜCE

∂Wl,l′
= α̂⊤ ∂Ĝ

∂Wl,l′

(
3

2
α̂− β̂

)
+

∂ĥ
⊤

∂Wl,l′
(β̂ − 2α̂), (4.38)

where β̂ =
(
Ĝ+ λI

)−1

Ĝα̂. In the Euclidean space, the above gradient gives the

steepest direction. However, on a manifold, the natural gradient (Amari, 1998) gives

the steepest direction. The natural gradient ∇ŜCE(W) at W is the projection of

the ordinary gradient ∂ŜCE
∂Wl,l′

to the tangent space of Gdx

dz
at W . If the tangent space is

equipped with the canonical metric 〈W ,W ′〉 = 1
2
tr(W⊤W ′), the natural gradient is

given as follows (Edelman et al., 1998):

∇ŜCE =
∂ŜCE

∂W
− ∂ŜCE

∂W
W⊤W =

∂ŜCE

∂W
W⊤

⊥W⊥, (4.39)

75

whereW⊥ is a (dx − dz)× dx matrix such that
[
W⊤,W⊤

⊥
]

is an orthogonal matrix.

Then, the geodesic from W to the direction of the natural gradient ∇ŜCE over Gdx

dz

can be expressed using t ∈ R as

W t =
[
Idz

Odz,(dx−dz)

]
× exp

(
−t
[

Odz,dz

∂ŜCE
∂W

W⊤
⊥

−W⊥
∂ŜCE
∂W

⊤
Odx−dz,dx−dz

])[
W

W⊥

]
,

(4.40)

where “exp” for a matrix denotes the matrix exponential andOd,d′ denotes the d× d′

zero matrix. Note that the derivative ∂tW t at t = 0 coincides with the natural gradient

∇ŜCE (Edelman et al., 1998). Thus, line search along the geodesic in the natural

gradient direction is equivalent to finding the minimizer from {W t | t ≥ 0}.
Once W is updated, SCE is re-estimated with the new W and gradient descent

is performed again. This entire procedure is repeated until W converges. It should

be noted that the optimization problem in Equation (4.37) is non-convex. To avoid

obtaining a poor local solution, the gradient descent procedure is executed 20 times

with randomly chosen initial solutions and the one achieving the smallest value of

ŜCE is chosen.

4.3.4 Conditional Density Estimation with Squared-loss Conditional Entropy

Next, we show that an estimated SCE can be used to obtain a conditional density

estimator. Firstly, it can be seen that the maximum of Equation (4.25) is attained at b =
a and a = p(y|z). Thus, the optimal b(z,y) is actually the conditional density p(y|z)
itself. Therefore, α̂

⊤
ϕ(z,y) obtained by LSCE is a conditional density estimator. In

order to make sure that the estimator α̂
⊤
ϕ(z,y) is a proper conditional density, we

may post-process the solution and normalized the estimator as

p̂(y|z = z̃) =
α̃

⊤
ϕ(z̃,y)∫

α̃
⊤
ϕ(z̃,y′)dy′

, (4.41)

where α̃ = max (α̂, 0) and the maximum operator is applied in an element-wise man-

ner. Interestingly, the conditional density estimator obtained by LSCE is equivalent

to the conditional density estimator obtained by LSCDE when the linear-in-parameter

model and data {(zi,yi)}Ni=1 are used for LSCDE. Thus, this implies that the condi-

tional density estimator obtained by LSCE may also achieve the same optimal con-

vergence rate of the LSCDE solution (Sugiyama et al., 2010).

4.3.5 Model Selection by Cross-Validation

The accuracy of the SCE estimator in Equation (4.32) depends on the choice of mod-

els, i.e., the basis functionϕ(z,y) and the regularization parameter λ. The parameters

of the basis function and the regularization parameter can be objectively selected by

cross-validation as follows:

1. The training dataset S = {(xi,yi)}Ni=1 is divided into K disjoint subsets

{Sj}Kj=1 with (approximately) the same size.

2. For each model M in the candidate set,

76

(a) For j = 1, . . . , K,

i. For model M , the LSCE solution b̂(M,j) is computed from S\Sj (i.e.,

all samples except Sj).
ii. Evaluate the upper bound of S̃CE obtained by b̂(M,j) using the hold-

out data Sj:

CVj(M) =
1

2|Sj|
∑

z∈Sj

∫
b̂(M,j)(z,y)2dy − 1

|Sj |
∑

(z,y)∈Sj

b̂(M,j)(z,y),

(4.42)

where |Sj| denotes the cardinality of Sj .
(b) The average score is computed as

CV(M) =
1

K

K∑

j=1

CVj(M). (4.43)

3. The model that minimizes the average score is chosen:

M̂ = argmin
M

CV(M). (4.44)

4. For the chosen model M̂ , the LSCE solution b̂ is computed from all samples S
and the approximator ŜCE(Y |Z) is computed.

In the experiments, we use K = 5.

4.3.6 Basis Function Design

For the basis function, we use the following Gaussian function for the k-th dimension

of ϕ(z,y):

ϕk(z,y) = exp

(
−‖z − uk‖2 + ‖y − vk‖2

2σ2

)
, (4.45)

where (uk, vk) denotes the k-th Gaussian center located at (zk,yk). When the sample

size N is too large, we may use only a subset of samples as Gaussian centers. The

Gaussian bandwidth σ is chosen by cross-validation as we explained previously. We

may use different bandwidths for z and y, but this will increase the computation time

for model selection. In our implementation, we normalize each element of z and y to

have the unit variance in advance and then use the common bandwidth for z and y.

A notable advantage of using the Gaussian function is that the integral over y

appeared in Φ̄(z) (see Equation (4.30)) can be computed analytically as

Φ̄k,k′(z) = (
√
πσ)dy exp

(
−2‖z − uk‖2 + 2‖z − uk′‖2 + ‖vk − vk′‖2

4σ2

)
. (4.46)

Similarly, the normalization term in Equation (4.41) can also be computed analytically

as
∫
α̃

⊤
ϕ(z,y)dy = (

√
2πσ)dy

∑

k

α̃k exp

(
−‖z − uk‖2

2σ2

)
. (4.47)

77

4.4 Experiment

In this section, we experimentally investigate the practical usefulness of the proposed

method. We consider the following supervised linear dimension reduction schemes:

None: No dimension reduction is performed.

dMAVE: The density-minimum average variance estimation method where super-

vised linear dimension reduction is performed through local linear estimation

for the conditional density1 (Xia, 2007).

BDR: The Bayesian dimension reduction method where the conditional density is

modeled by a Gaussian mixture model and supervised linear dimension reduc-

tion is performed by sampling from the prior distribution of low-dimensional

input2 (Reich et al., 2011).

LSDR: Supervised linear dimension reduction is performed by maximizing an SMI

estimator using natural gradients over the Grassmann manifold (Suzuki and

Sugiyama, 2013).

LSCE (proposed): Supervised linear dimension reduction is performed by mini-

mizing the proposed LSCE using natural gradients over the Grassmann mani-

fold.

True (reference) The “true” subspace is used (only for artificial data).

After supervised linear dimension reduction, we execute the following conditional

density estimation methods:

ǫ-KDE: ǫ-neighbor kernel density estimation, where ǫ is chosen by least-squares

cross-validation.

LSCDE: Least-squares conditional density estimation (Sugiyama et al., 2010).

Note that the proposed method, which is the combination of LSCE and LSCDE, does

not explicitly require the post-LSCDE step because LSCDE is already executed inside

LSCE, as we have shown in Section 4.3.4. Since the dMAVE and BDR methods

are applicable only to univariate output, they are not included in experiments with

multivariate output data.

4.4.1 Illustration

First, we illustrate the behavior of the plain LSCDE (None/LSCDE) and the proposed

method (LSCE/LSCDE). The datasets illustrated in Figure 4.3 have dx = 5, dy = 1,

and dz = 1. The first dimension of input x and output y of the samples are plotted

in the graphs, and other 4 dimensions of x are just standard normal noise. The re-

sults show that the plain LSCDE does not perform well due to the irrelevant noise

dimensions of x, while the proposed method gives much better estimates.

1We use the program code provided by the author.
2We use the program code available at “http://www4.stat.ncsu.edu/˜reich/code/

BayesSDR.R”.

78

−1 −0.5 0 0.5 1 1.5
−3

−2

−1

0

1

2

3

x
(1)

y

Data
Truth
None/LSCDE
LSCE/LSCDE

(a) Illustrative data

2 3 4 5 6 7
−2

0

2

4

6

x
(1)

y

Data
None/LSCDE
LSCE/LSCDE

(b) Bone mineral density

3 4 5 6 7 8
0

1

2

3

4

5

6

x
(1)

y
Data
None/LSCDE
LSCE/LSCDE

(c) Old faithful geyser

Figure 4.3: Examples of conditional density estimation by plain LSCDE

(None/LSCDE) and the proposed method (LSCE/LSCDE).

4.4.2 Artificial Data

Next, we compare the proposed method with the existing dimension reduction meth-

ods on conditional density estimation by LSCDE in artificial data.

For dx = 5, dy = 1, x ∼ N (x|0, I5), and ǫ ∼ N (ǫ|0, 0.252), where N (·|µ,Σ)
denotes the normal distribution with mean µ and covariance matrix Σ, we consider

the following artificial datasets:

(a) dz = 2 and y = (x(1))2 + (x(2))2 + ǫ.

(b) dz = 1 and y = x(2) + (x(2))2 + (x(2))3 + ǫ.

(c) dz = 1 and y =

{
(x(1))2 + ǫ with 0.85 probability,

2ǫ− 4 with 0.15 probability.

The first row of Figure 4.4 shows the dimensionality reduction error between true

W ∗ and its estimate Ŵ for different sample size N , measured by

ErrorDR = ‖Ŵ⊤
Ŵ −W ∗⊤W ∗‖Frobenius, (4.48)

where ‖ ·‖Frobenius denotes the Frobenius norm. All methods perform similarly for the

dataset (a), and the dMAVE and BDR methods outperform LSCE and LSDR when

N = 50.

In the dataset (b), LSDR does not work well compare to other methods especially

when N ≥ 250. To explain this behavior, we plot the histograms of {y}400i=1 in the left

79

column of Figure 4.5. They show that the profile of the histogram (which is a sample

approximation of p(y)) in the dataset (b) is much sharper than that in the dataset (a).

This sharp p(y) suggests that the density ratio
p(z,y)

p(z)p(y)
would be highly non-smooth

and is hard to approximate. Thus, LSDR, which estimates the density ratio
p(z,y)

p(z)p(y)
,

would perform poorly in the dataset (b). On the other hand,other methods are based on

the conditional density p(y|z) where p(y) is not included. Therefore, the conditional

density p(y|z) would be smoother than the density ratio
p(z,y)

p(z)p(y)
and is easier to be

estimated.

For the dataset (c), we consider the situation where the output y contain outliers

which are not related to x. The data profile of dataset (c) in the right column of

Figure 4.5 illustrates such a situation. The result on dataset (c) shows that the pro-

posed LSCE method is robust against outliers and gives the best subspace estimation

accuracy, while the BDR method performs unreliably with large standard errors.

The right column of Figure 4.4 plots the conditional density estimation error be-

tween true p(y|x) and its estimate p̂(y|x), evaluated by the squared-loss:

ErrorCDE =
1

2N ′

N ′∑

i=1

∫
p̂(y|x̃i)

2dy − 1

N ′

N ′∑

i=1

p̂(ỹi|x̃i), (4.49)

where {(x̃i, ỹi)}N
′

i=1 is a set of test samples that have not been used for training. We set

N ′ = 1000. For the dataset (a) and (c), all methods with dimension reduction perform

equally well, which are much better than no dimension reduction (None/LSCDE) and

are comparable to the method with the true subspace (True/LSCDE). For the dataset

(b), all method except LSDR/LSCDE perform well overall and comparable to the

method with the true subspace.

4.4.3 Benchmark Data

Next, we use the UCI benchmark datasets (Bache and Lichman, 2013). We randomly

select N samples from each dataset for training, and the rest are used to measure the

conditional density estimation error in the test phase. Since the dimensionality of the

subspace dz is unknown, we chose it by cross-validation. More specifically, 5-fold

cross-validation is performed for each combination of the dimension reduction and

conditional density estimation methods to choose subspace dimensionality dz such

that the conditional density estimation error is minimized. Note that tuning param-

eters λ and σ are also chosen based on cross-validation for each method. Since the

conditional density estimation error is equivalent to SCE, choosing the subspace di-

mensionalities by the conditional density estimation error in LSCE is equivalent to

choosing subspace dimensionality which gives the minimum SCE value.

The results of univariate output benchmark datasets averaged over 10 runs are

summarized in Table 4.1, showing that LSCDE tends to outperform ǫ-KDE and

the proposed LSCE/LSCDE method works well overall. Both LSDR/LSCDE and

dMAVE/LSCDE methods also perform well in all datasets, while BDR/LSCDE does

not work well in the datasets containing outliers such as “Red Wine”, “White Wine”,

and “Forest Fires”. Table 4.2 describes the subspace dimensionalities chosen by cross-

validation averaged over 10 runs. It shows that all dimensionality reduction methods

reduce the input dimension significantly, especially for “Yacht”, “Red Wine”, and

“White Wine” where the best method always chooses dz = 1 in all runs.

80

50 100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

1

Sample size n

E
rr

o
r D

R

dMAVE
BDR
LSDR
LSCE

50 100 150 200 250 300 350 400
−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

Sample size n

E
rr

o
r C

D
E

None/LSCDE
dMAVE/LSCDE
LSDR/LSCDE

True/LSCDE
BDR/LSCDE
LSCE/LSCDE

(a) Artificial data 1

50 100 150 200 250 300 350 400
0

0.05

0.1

0.15

0.2

Sample size n

E
rr

o
r D

R

dMAVE
BDR
LSDR
LSCE

50 100 150 200 250 300 350 400
2.5

2

1.5

1

0.5

0

0.5

1

Sample size n

E
rr
o
r C
D
E

None/LSCDE
dMAVE/LSCDE
LSDR/LSCDE

True/LSCDE
BDR/LSCDE
LSCE/LSCDE

(b) Artificial data 2

50 100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

Sample size n

E
rr

o
r D

R

dMAVE
BDR
LSDR
LSCE

50 100 150 200 250 300 350 400
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

Sample size n

E
rr

o
r C

D
E

None/LSCDE
dMAVE/LSCDE
LSDR/LSCDE

True/LSCDE
BDR/LSCDE
LSCE/LSCDE

(c) Artificial data 3

Figure 4.4: Left column: The mean and standard error of the dimensionality reduction

error over 20 runs. Right column: The mean and standard error of the conditional

density estimation error over 20 runs.

The result of multivariate output “Stock” and “Energy” benchmark datasets are

summarized in Table 4.3, showing that the proposed LSCE/LSCDE method also

works well for multivariate output datasets and significantly outperforms methods

without dimensionality reduction. Table 4.4 describes the subspace dimensionalities

selected by cross-validation, showing that LSDR/LSCDE tends to more aggressively

reduce the dimensionality than LSCE/LSCDE.

81

−2 0 2 4 6
0

10

20

30

40

y

F
re

q
u

e
n

c
y

−5
0

5
−5

0
5

−2

0

2

4

6

x
(1)x

(2)

y

(a) Artificial data 1

−5 0 5 10
0

50

100

150

200

y

F
re

q
u

e
n

c
y

−4 −2 0 2 4
−5

0

5

10

x
(2)

y

(b) Artificial data 2

−10 −5 0 5 10 15
0

20

40

60

80

100

y

F
re

q
u

e
n

c
y

−4 −2 0 2 4
−10

−5

0

5

10

15

x
(1)

y

(c) Artificial data 3

Figure 4.5: Left column: Example histograms of {yi}400i=1 on the artificial datasets.

Right column: Example data plot of relevant features ofx against y when N = 400 on

the artificial datasets. The left distribution in the histogram of dataset (c) is regarded

as outliers.

82

Table 4.1: Mean and standard error of the conditional density estimation error over 10 runs for univariate output datasets. The best method in term

of the mean error and comparable methods according to the two-sample paired t-test at the significance level 5% are specified by bold face.

Dataset
LSCE LSDR dMAVE BDR No reduction

LSCDE ǫ-KDE LSCDE ǫ-KDE LSCDE ǫ-KDE LSCDE ǫ-KDE LSCDE ǫ-KDE

Servo −2.95(.17) −3.03(.14) −2.69(.18) −2.95(.11) −3.13(.13) −3.17(.10) −2.96(.10) −2.95(.12) −2.62(.09) −2.72(.06)
Yacht −6.46(.02) −6.30(.14) −5.63(.26) −5.47(.29) −6.25(.06) −5.97(.12) −6.45(.04) −6.05(.18) −1.72(.04) −2.95(.02)

Auto MPG −1.80(.04) −1.75(.05) −1.85(.04) −1.77(.05) −1.98(.04) −1.97(.04) −1.91(.04) −1.84(.05) −1.75(.04) −1.46(.04)
Concrete −1.37(.03) −1.18(.06) −1.30(.03) −1.18(.04) −1.42(.06) −1.15(.05) −1.37(.04) −1.10(.04) −1.11(.02) −0.80(.03)

Physicochem −1.19(.01) −0.99(.02) −1.20(.01) −0.97(.02) −1.17(.01) −0.93(.02) −1.13(.02) −0.96(.02) −1.19(.01) −0.91(.01)
Red Wine −2.85(.02) −1.95(.17) −2.82(.03) −1.93(.17) −2.82(.02) −1.93(.20) −2.66(.03) −2.18(.14) −2.03(.02) −1.13(.04)

White Wine −2.31(.01) −2.47(.15) −2.35(.02) −2.60(.12) −2.17(.01) −2.65(.20) −1.97(.02) −1.91(.02) −2.06(.01) −1.89(.01)
Forest Fires −7.18(.02) −6.91(.03) −6.93(.04) −6.96(.02) −7.10(.03) −6.93(.04) −7.08(.03) −6.97(.01) −3.40(.07) −6.96(.02)

Housing −1.72(.09) −1.58(.08) −1.91(.05) −1.62(.08) −1.76(.11) −1.50(.13) −1.86(.09) −1.74(.03) −1.41(.05) −1.13(.01)

Table 4.2: Mean and standard error of the chosen subspace dimensionality over 10 runs for univariate output datasets.

Data set (dx, dy) N
LSCE LSDR dMAVE BDR

LSCDE ǫ-KDE LSCDE ǫ-KDE LSCDE ǫ-KDE LSCDE ǫ-KDE

Servo (4, 1) 50 1.6(0.27) 2.4(0.40) 2.2(0.33) 1.6(0.31) 1.5(0.22) 1.5(0.31) 1.2(0.13) 2.0(0.37)
Yacht (6, 1) 80 1.0(0) 1.0(0) 1.0(0) 1.0(0) 1.2(0.13) 1.0(0) 1.0(0) 1.0(0)

Auto MPG (7, 1) 100 3.2(0.66) 1.3(0.15) 2.1(0.67) 1.1(0.10) 1.5(0.22) 1.0(0) 1.4(0.16) 1.2(0.13)
Concrete (8, 1) 300 1.0(0) 1.0(0) 1.2(0.13) 1.0(0) 1.7(0.15) 1.0(0) 2.3(0.21) 1.0(0)

Physicochem (9, 1) 500 6.5(0.58) 1.9(0.28) 6.6(0.58) 2.6(0.86) 7.5(0.48) 5.0(1.33) 2.6(0.16) 1.7(0.26)
Red Wine (11, 1) 300 1.0(0) 1.3(0.15) 1.2(0.20) 1.0(0) 1.0(0) 1.1(0.10) 1.5(0.22) 1.0(0)

White Wine (11, 1) 400 1.2(0.13) 1.0(0) 1.4(0.31) 1.0(0) 1.8(0.70) 1.0(0) 3.1(0.23) 2.7(0.30)
Forest Fires (12, 1) 100 1.2(0.20) 4.4(0.87) 1.4(0.22) 5.6(1.25) 1.5(0.27) 5.2(1.31) 1.2(0.20) 2.8(0.33)

Housing (13, 1) 100 3.9(0.74) 1.9(0.80) 2.0(0.39) 1.3(0.15) 3.0(0.77) 1.2(0.13) 1.6(0.22) 1.0(0)

8
3

Table 4.3: Mean and standard error of the conditional density estimation error over 10 runs for multivariate output datasets. The best method in term

of the mean error and comparable methods according to the two-sample paired t-test at the significance level 5% are specified by bold face.

Dataset
LSCE LSDR No reduction

Scale
LSCDE ǫ-KDE LSCDE ǫ-KDE LSCDE ǫ-KDE

Stock −8.37(0.53) −9.75(0.37) −9.42(0.50) −10.27(0.33) −7.35(0.13) −9.25(0.14) ×1
Energy −7.13(0.04) −4.18(0.22) −6.04(0.47) −3.41(0.49) −2.12(0.06) −1.95(0.14) ×10
2 Joints −10.49(0.86) −7.50(0.54) −8.00(0.84) −7.44(0.60) −3.95(0.13) −3.65(0.14) ×1
4 Joints −2.81(0.21) −1.73(0.14) −2.06(0.25) −1.38(0.16) −0.83(0.03) −0.75(0.01) ×10
9 Joints −8.37(0.83) −2.44(0.17) −9.74(0.63) −2.37(0.51) −1.60(0.36) −0.89(0.02) ×100

Sumi-e 1 −9.96(1.60) −1.49(0.78) −6.00(1.28) 1.24(1.99) −5.98(0.80) −0.17(0.44) ×10
Sumi-e 2 −16.83(1.70) −2.22(0.97) −9.54(1.31) −3.12(0.75) −7.69(0.62) −0.66(0.13) ×10
Sumi-e 3 −24.92(1.92) −6.61(1.25) −18.0(2.61) −4.47(0.68) −8.98(0.66) −1.45(0.43) ×10

Table 4.4: Mean and standard error of the chosen subspace dimensionality over 10 runs for multivariate output datasets.

Data set (dx, dy) N
LSCE LSDR

LSCDE ǫ-KDE LSCDE ǫ-KDE

Stock (7, 2) 100 3.2(0.83) 2.1(0.59) 2.1(0.60) 2.7(0.67)
Energy (8, 2) 200 5.9(0.10) 3.9(0.80) 2.1(0.10) 2.0(0.30)
2 Joints (6, 4) 100 2.9(0.31) 2.7(0.21) 2.5(0.31) 2.0(0)
4 Joints (12, 8) 200 5.2(0.68) 6.2(0.63) 5.4(0.67) 4.6(0.43)
9 Joints (27, 18) 500 13.8(1.28) 15.3(0.94) 11.4(0.75) 13.2(1.02)

Sumi-e 1 (9, 6) 200 5.3(0.72) 2.9(0.85) 4.5(0.45) 3.2(0.76)
Sumi-e 2 (9, 6) 250 4.2(0.55) 4.4(0.85) 4.6(0.87) 2.5(0.78)
Sumi-e 3 (9, 6) 300 3.6(0.50) 2.7(0.76) 2.6(0.40) 1.6(0.27)

8
4

Figure 4.6: Simulator of the upper-body part of the humanoid robot CB-i.

4.4.4 Humanoid Robot

We evaluate the performance of the proposed method on humanoid robot transition

estimation. We use a simulator of the upper-body part of the humanoid robot CB-i

(Cheng et al., 2007) (see Figure 4.6). The robot has 9 controllable joints: shoulder

pitch, shoulder roll, elbow pitch of the right arm, shoulder pitch, shoulder roll, elbow

pitch of the left arm, waist yaw, torso roll, and torso pitch joints.

Posture of the robot is described by 18-dimensional real-valued state vector s,

which corresponds to the angle and angular velocity of each joint in radians and ra-

dians per seconds, respectively. We can control the robot by sending the action com-

mand a to the system. The action command a is a 9-dimensional real-valued vector,

which corresponds to the target angle of each joint. When the robot is currently at

state s and receives action a, the physical control system of the simulator calculates

the amount of torques to be applied to each joint. These torques are calculated by the

proportional-derivative (PD) controller as

τi = Kpi(ai − si)−Kdi ṡi, (4.50)

where si, ṡi, and ai denote the current angle, the current angular velocity, and the

received target angle of the i-th joint, respectively. Kpi and Kdi denote the position

and velocity gains for the i-th joint, respectively. We set Kpi = 2000 and Kdi = 100
for all joints except that Kpi = 200 and Kdi = 10 for the elbow pitch joints. After the

torques are applied to the joints, the physical control system update the state of the

robot to s′.
In the experiment, we randomly choose the action vector a and simulate a noisy

control system by adding a bimodal Gaussian noise vector. More specifically, the

action ai of the i-th joint is first drawn from uniform distribution on [si − 0.087, si +
0.087]. The drawn action is then contaminated by Gaussian noise with mean 0 and

standard deviation 0.034 with probability 0.6 and Gaussian noise with mean -0.087

and standard deviation 0.034 with probability 0.4. By repeatedly control the robot

N times, we obtain the transition samples {(sj,aj, s
′
j)}Nj=1. Our goal is to learn the

system dynamic as a transition probability p(s′|s,a) from these samples. Thus, as the

conditional density estimation problem, the state-action pair (s⊤,a⊤)⊤ is regarded as

input variable x, while the next state s′ is regarded as output variable y. Later in

85

Figure 4.7: Three actions of the brush, which is modeled as the footprint on a paper

canvas.

Chapter 6, we will show that an estimated of the transition probability is highly useful

in model-based reinforcement learning (Sutton and Barto, 1998).

We consider three scenarios: Using only 2 joints (right shoulder pitch and right

elbow pitch), only 4 joints (in addition, right shoulder roll and waist yaw), and all 9

joints. Thus, dx = 6 and dy = 4 for the 2-joint case, dx = 12 and dy = 8 for the 4-

joint case, and dx = 27 and dy = 18 for the 9-joint case. We generate 500, 1000, and

1500 transition samples for the 2-joint, 4-joint, and 9-joint cases. We then randomly

choose N = 100, 200, and 500 samples for training, and use the rest for evaluating

the test error. The results are summarized also in Table 4.3, showing that the proposed

method performs well for the all three cases. Table 4.4 describes the dimensionalities

selected by cross-validation, showing that the humanoid robot’s transition is highly

redundant.

4.4.5 Computer Art

Finally, we consider the transition estimation problem in sumi-e style brush drawings

for non-photorealistic rendering (Xie et al., 2012). Our aim is to learn the brush

dynamics as state transition probability p(s′|s,a) from the real artists’ stroke-drawing

samples.

From a video of real brush strokes, we extract footprints and identify correspond-

ing 3-dimensional actions (see Figure 4.7). The state vector consists of six measure-

ments: the angle of the velocity vector and the heading direction of the footprint

relative to the medial axis of the drawing shape, the ratio of the offset distance from

the center of the footprint to the nearest point on the medial axis over the radius of

the footprint, the relative curvatures of the nearest current point and the next point on

the medial axis, and the binary signal of the reverse driving or not. Thus, the state

transition probability p(s′|s,a) has 9-dimensional input and 6-dimensional output.

We collect 722 transition samples in total. We randomly choose N = 200, 250, and

300 for training and use the rest for testing.

The estimation results summarized at the bottom of Table 4.3 and Table 4.4. These

tables show that there exists a low-dimensional dimension reduction subspace and the

proposed method can successfully find it.

4.5 Conclusion

In this chapter, we proposed a single-step dimension reduction method for conditional

density estimation. Our key idea is to perform supervised linear dimension reduction

86

by minimizing the square-loss conditional entropy (SCE) which contains conditional

density in its formulation. By minimizing SCE, dimension reduction and conditional

density estimation are carried out simultaneously in an integrated manner.

The effectiveness of LSCE in conditional density estimation can be understood

from the upper-bound minimization in LSCE (see Equation (4.27)) which is equiva-

lent to the minimization of the squared error (see Equation (4.9)). This implies that

LSCE learns the conditional density p̂(y|z) and the matrix W such that they jointly

minimize the squared error.

We have shown that SCE and the squared-loss mutual information (SMI) are simi-

lar but different in that the output density is included in the denominator of the density

ratio in SMI. This means that estimation of SMI is hard when the output density is

fluctuated, while the proposed method using SCE does not suffer from this problem.

The proposed method is also robust against outliers since minimization of the Pearson

divergence automatically weights down effects of outlier points. Moreover, the pro-

posed method is applicable to multivariate output data, which is not straightforward

to handle in other dimensionality reduction methods based on conditional probability

density. However, it should be noted that SCE is less robust against outliers when

compared with quadratic mutual information, as we experimentally showed in Chap-

ter 3.

In this chapter, the effectiveness of the proposed method was demonstrated

through extensive experiments including humanoid robot and computer art data. Later

in Chapter 7, we will further utilize the proposed method for model-based reinforce-

ment learning.

87

Chapter 5

Background of Reinforcement Learning

This chapter gives a background of reinforcement learning. We firstly introduce the

Markov decision process which is a standard formulation of reinforcement learning.

Then, we review approaches and methods that solve reinforcement learning problems.

5.1 Markov Decision Processes

As briefly introduced in Chapter 1, reinforcement learning is concerned with the se-

quential decision making problem that involves an agent and an unknown environ-

ment. This problem is commonly formulated as a discrete-time Markov decision pro-

cess (MDP) (Bellman, 1957b; Puterman, 1994). An MDP is described by a quintuple

{S, A, p(s′|s,a), p1(s), r(s,a, s′)}. (5.1)

The set S ⊆ Rds denotes the set of states s and is called the state space. The set

A ⊆ Rda denotes the set of actions a and is called the action space. The transition

probability density function p(s′|s,a) determines the probability density of the agent

observing a new state s′ after it chooses an action a in a current state s. The initial

state probability density function p1(s) determines the probability density that the

agent initially observes state s. The reward function r(s,a, s′) determines a reward

the agent observes after it chooses an action a in a state s and observes a next state

s′. The environment is comprised of the transition probability density, the initial state

density, and the reward function.

The policy π is an important component of the agent. It is a mapping from state

to action and it controls how the agent chooses an action in a given state. The policy

can be a deterministic policy which gives the same action for the same state, i.e.,

a = π(s), or it can be a stochastic policy which gives a probability density over

actions in a given state, i.e., a ∼ π(a|s) Although the deterministic policy behaves

differently from the stochastic policy, it can be represented by the stochastic policy

using the Dirac delta function:

π(a|s) = δ(a− π(s)) (5.2)

where the Dirac delta function δ is defined as

δ(x) =

{
∞, if x = 0,

0 if x 6= 0
(5.3)

88

Figure 5.1: An illustration of an MDP governing its process. At the first time step

t = 1 the agent observes the initial state s1 ∼ p1(s) (not shown in this illustration).

Then at each time step t, the agent in the state st chooses an action at using its

policy π. This action changes the state according to the transition probability density

p(s′|st,at). Then, the agent observes the next state st+1 and an immediate reward

rt = r(st,at, st+1). Finally, the time step increases by 1 and the process is repeated

until the final time step T is reached.

Note that δ(a, b) = ∞ is used for real-valued action space to ensure that the identity∫
π(a|s)da = 1 holds1. This means that any action drawn from the stochastic policy

π(a|s) = δ(a, π(s)) is always equivalent to the action obtained by the deterministic

policy π(s).
An MDP governs its process in a sequential manner as follows. Initially at time

step t = 1, an agent observes an initial state s1 ∼ p1(s). At time step t, the agent

uses a policy π to choose an action at depending on the current state st. The action at

causes the environment to change the state from st to st+1 according to the transition

probability density, i.e., st+1 ∼ p(s′|st,at). Then, the agent observes the new state

st+1 and an immediate reward rt = r(st,at, st+1). Finally, the above decision making

step is repeated with time step increased as t← t+1. The process terminates when the

final time step T is reached. This process is illustrated in Figure 5.1. The important

property of MDP is that the next state st+1 only depends on the current state st and

the chosen action at, and does not depend on past states and actions. This property is

called the first order Markov chain property.

The final time step T can be either infinite or finite. An MDP with T = ∞ is

called an infinite horizon MDP and an MDP with finite T is called a finite horizon

MDP or an episodic MDP. While both infinite horizon MDP and finite horizon MDP

have been studied by many researchers (Bellman, 1957b; Puterman, 1994; Bertsekas

and Tsitsiklis, 1996; Sutton and Barto, 1998), finite horizon MDP is considered more

popular for real-world applications. This is mainly because in real-world applications,

an execute time of an agent is often fixed or limited. For this reason, in this dissertation

we only focus on an episodic MDP. A trajectory of length T is defined as a sequence

of a state, an action, a reward, and a next state:

τ = (s1,a1, r1, s2,a2, . . . ,aT , rT , sT+1) . (5.4)

The probability of obtaining a trajectory τ depends on the policy, the transition prob-

ability density, and the initial state probability density. The trajectory probability

density function is given by

p(τ ; π) = p(s1)

T∏

t=1

p(st+1|st,at)π(at|st), (5.5)

1For discrete action space, we can define δ(x) = 1 if x = 0 to have the same interpretation.

89

where we use p(τ ; π) to emphasize the dependency on π. Given a trajectory τ , we

can define a discounted cumulative reward or a return by

R(τ) =
T∑

t=1

γt−1rt, (5.6)

where the discount factor 0 ≤ γ ≤ 1 determines the importance of future rewards

relative to early rewards. More specifically, if γ = 1 then there is no discount and

rewards at all time steps are equally important. On the other hand, the return only

depends on the first immediate reward r1 when γ = 0 where we define 00 = 1. Then,

given a policy π, its expected return is defined as

R(π) = Ep(τ ;π) [R(τ)]

=

∫
R(τ)p(τ ; π)dτ . (5.7)

The goal of solving an MDP is to find an optimal policy π∗ which maximizes the

expected return.

Methods to solve MDPs have been studied for decades since MDPs were formally

introduced. A traditional approach to solve this problem is based on dynamic pro-

gramming (Bellman, 1957a). However, the dynamic programming approach has two

major limitations which make it unsuitable for real-world problems. Firstly, dynamic

programming is a computation method that requires the complete knowledge about

the environment. In real-world problems, the complete knowledge about the environ-

ment is usually unavailable, especially for the transition probability density function.

The second limitation of dynamic programming is the curse of dimensionality. As we

introduced earlier in Chapter 1, the curse of dimensionality in the context of dynamic

programming refers to a scenario where the computational complexity of dynamic

programming increases exponentially as the dimensionality of states increases. Real-

world problems often involve high-dimensional states and thus dynamic programming

is impractical.

Reinforcement learning is a modern approach to find an optimal policy in MDPs.

Reinforcement learning methods learn an optimal policy using data that the agent

collects by interacting with the environment. Learning from data is the main char-

acteristic of reinforcement learning that distinguishes it from traditional approaches

which need a complete knowledge about the environment and do not rely on data.

There are two criteria that categorize reinforcement learning methods. The first

criterion categorizes reinforcement learning methods into policy iteration methods

and direct policy search methods depending on how an optimal policy is learned. The

second criterion categorizes reinforcement learning methods into model-free methods

and model-based methods depending on whether they learn a model of the environ-

ment or not.

In the following sections, we firstly give an overview of the policy iteration and di-

rect policy search approaches from the model-free reinforcement learning viewpoint.

Then, we explain the idea of model-based reinforcement learning and review methods

for learning a model of the environment.

90

5.2 Policy Iteration

Policy iteration refers to reinforcement learning methods that firstly learn a value

function from data and then derive an optimal policy based on the learned value func-

tion. There are two types of value functions; state value function and state-action

value function. In this section, we firstly explain these value functions and show that

they can be used to obtain an optimal policy. Then, we review two policy iteration

methods that use different approaches to learn the value functions.

5.2.1 State Value Function and State-Action Value Function

The state value function V π(s) determines the goodness of a policy π in state s. It

is mathematically defined as the expected return obtained after following π starting

from s:

V π(s) = Eπ(a|s)p(s′|s,a)

[
T∑

t=1

γt−1r(st,at, st+1)|s1 = s
]
. (5.8)

The expectation Eπ(a|s)p(s′|s,a) denotes the conditional expectation of actions at and

states st+1 where at are drawn from π(a|st), st+1 are drawn from p(s′|st,at) and

s1 = s. The state value function V π(s) admits a recursive relation called the Bellman

equation:

V π(s) = Eπ(a|s)p(s′|s,a) [r(s,a, s
′) + γV π(s′)] . (5.9)

That is, the value of a state s can be computed from the expected reward and the

(discounted) expected value of the next states. Since an optimal policy maximizes

the expected return, it also maximizes the state value function of every state as well.

More specifically, the state value function of an optimal policy π∗ is the optimal state

value function and is defined as

V ∗(s) = max
π

V π(s). (5.10)

The recursive relation of the optimal state value function is called the Bellman opti-

mality equation:

V ∗(s) = max
π

Eπ(a|s)p(s′|s,a) [r(s,a, s
′) + γV ∗(s′)] . (5.11)

We can see that once the optimal state value function V ∗ is learned, an optimal policy

can be obtained as the maximizer of the right-hand side of the Bellman optimality

equation.

An alternative to the state value function is the state-action value function

Qπ(s,a) which determines the expected return obtained after choosing an action a in

state s and then following π afterwards:

Qπ(s,a) = Eπ(a|s)p(s′|s,a)

[
T∑

t=1

γt−1r(st,at, st+1)|s1 = s,a1 = a

]
. (5.12)

The state-action value function also admits the Bellman equation:

Qπ(s,a) = Ep(s′|s,a)
[
r(s,a, s′) + γEπ(a′|s′) [Q

π(s′,a′)]
]

= r(s,a) + γEπ(a′|s′)p(s′|s,a) [Q
π(s′,a′)] , (5.13)

91

where r(s,a) = Ep(s′|s,a) [r(s,a, s
′)] denotes an expected immediate reward. The

state-action value function of an optimal policy is defined as

Q∗(s,a) = max
π

Qπ(s,a), (5.14)

and its Bellman optimality equation is

Q∗(s,a) = r(s,a) + γEπ(a|s)p(s′|s,a)

[
max
a′

Q∗(s′,a′)
]
, (5.15)

Given the optimal state-action value function Q∗, a deterministic optimal policy in

state s which gives the maximum expected return can be obtained as

π∗(s) = argmax
a

Q∗(s,a). (5.16)

In general, the agent requires some amount of stochastic behavior in order to ex-

plore the state space and find better policies. To obtain a stochastic policy from a

deterministic policy π(s), a simple approach is to employ the Guassian distribution

with π(s) as the mean, i.e.,

π(a|s) = 1√
|2πΣ|

exp

(
−1
2
(a− π(s))⊤Σ−1(a− π(s))

)
, (5.17)

where the matrix Σ is a covariance matrix and |Σ| denotes the determinant of Σ.

A more sophisticated approach to obtain a stochastic policy from the optimal state-

action value function is to assign high probabilities to actions with high state-action

values. For instance, the Gibbs softmax distribution gives the following stochastic

policy:

π(a|s) = exp(Q∗(s,a)/τ)∫
exp(Q∗(s,a)/τ)da

, (5.18)

where the parameter τ > 0 controls the amount of stochasticity.

Both of the state value function and the state-action value function can be used

to obtain an optimal policy. However, using the state-action value function is more

convenient since Equation (5.16) does not involve an expectation. In the remainder,

we focus on policy iteration based on the state-action value function and simply refer

to the state-action value function as the value function.

5.2.2 Policy Iteration Framework

We have shown that the optimal (state-action) value function is useful for obtaining

an optimal policy. A natural question that follows is how can we learn the optimal

value function from data. This question is answered in the policy iteration framework

by alternately performing the policy evaluation step and the policy improvement step.

Given an arbitrary initial policy π, the policy evaluation step learns the value function

Qπ(s,a) based on data. Then after the policy evaluation step, the policy improvement

step greedily computes a new policy π′ based on the learned value function Qπ(s,a),
i.e., π′(s) = argmaxaQ

π(s,a). These two steps are alternately performed until

the value function and the policy converge. Figure 5.2 illustrates the policy iteration

framework.

92

Figure 5.2: An illustration of the policy iteration framework. Starting from an arbi-

trary initial policy π, the policy evaluation step learns the value function of π from

data. Then the policy improvement step computes the new policy from the learned

value function. The procedure is repeated until convergence.

For policy iteration in MDPs with discrete action space, the policy improvement

theorem (Bertsekas and Tsitsiklis, 1996) guarantees that the new policy π′ from the

policy improvement step indeed improves the current policy π. This improvement is

expressed by an inequality

Qπ(s, π′(s)) ≥ V π(s), ∀s ∈ S. (5.19)

The theorem also holds true for a stochastic policy π(a|s) where Qπ(s, π′(s)) is

defined as the expected state-action value over the policy (Sutton and Barto, 1998),

i.e.,

Qπ(s, π′(s)) =
∑

a∈A
π′(a|s)Qπ(s,a). (5.20)

This inequality means that in state s, choosing an action using π′ always gives ex-

pected return no less than that of choosing an action using π. Thus, the policy in state

s should change from π to π′. Moreover, the inequality also implies that

V π′

(s) ≥ V π(s), ∀s ∈ S. (5.21)

Then, by using the definition of the optimal policy in Equation (5.10), we can see

that the equality in Equation (5.21) only holds when π is already the optimal policy

π∗. Thus, policy iteration is guaranteed to converge to the optimal policy. How-

ever, it should be emphasized that the theorem guarantees the convergence to the

optimal policy only when the action space is discrete and the true value function is

used. In the case of continuous action space, the policy improvement step may not

improve value functions (Bertsekas and Tsitsiklis, 1996). In the case of learned value

functions, policy iteration may not converge to the optimal policy, but it will con-

verge to a near optimal policy when approximation errors of the value functions are

bounded (Lagoudakis and Parr, 2003).

An important concern in policy iteration is the policy evaluation step. That is,

how to learn the value function Qπ(s,a) from data collected by a policy π. Next, we

review two policy iteration methods that use two different approach to learn the value

function.

93

5.2.3 Q-Learning

Q-learning (Watkins and Dayan, 1992) is one of the most well-known and popular

policy iteration methods. Here, we review the simplest form of Q-learning called a

one-step Q-learning which updates the value function for every one-step state transi-

tions. A one-step state transition is simply a pair of a state, an action, a reward, and a

next state that the agent observes, i.e.,

(st,at, r(st,at, st+1), st+1) . (5.22)

The main idea of Q-learning lies in the Bellman equation in Equation (5.13). Based

on the Bellman equation, Q-learning updates the value function by

Qπ(st,at)← Qπ(st,at) + α
(
r(st,at) + γmax

a
Qπ(st+1,a)−Qπ(st,at)

)
,

(5.23)

where 0 < α < 1 denotes the step size. The difference term inside the parenthesis,

r(st,at) + γmax
a

Qπ(st+1,a)−Qπ(st,at), (5.24)

is called the temporal difference and is directly related to the Bellman equation.

The temporal difference determines the amount of error between the estimate of

the expected return r(st,at) + γmaxa Q
π(st+1,a), and the current value function

Qπ(st,at). This update rule can also be understood as an instance of gradient-based

update (Sutton and Barto, 1998).

It was shown that Q-learning converges to the optimal value function if every state-

action pairs are visited for an infinite amount of times (Watkins and Dayan, 1992;

Tsitsiklis, 1994; Jaakkola et al., 1994; Bertsekas and Tsitsiklis, 1996). However, such

a scenario is most probable only when state and action spaces are discrete. For con-

tinuous state and action spaces, we cannot even guarantee that the agent will visit the

exactly same state again. Moreover, the update rule in Equation (5.23) requires us to

store the value of every possible state-action pair. Such an exact representation of the

value function is inapplicable for continuous state and action spaces.

A common approach to tackle continuous state and action spaces in Q-learning is

to approximate the value function by a model Q̂:

Qπ(s,a) ≈ Q̂π(s,a; θ), (5.25)

where θ is an adjustable parameter of the model. An example is the linear-in-

parameter model:

Q̂π(s,a; θ) = θ⊤ϕ(s,a), (5.26)

where θ ∈ Rb is the parameter vector and ϕ(s,a) ∈ Rb is the basis function vector.

For Q-learning with function approximation, the update rule for the value function

becomes an update rule for the parameter θ and is given by

θ ← θ + α
(
r(st,at) + γmax

a
Q̂π(st+1,a; θ)− Q̂π(st,at; θ)

)
∇θQ̂

π(st,at; θ).

(5.27)

94

However, Q-learning with function approximation is not guaranteed to converge, and

most of the convergence guarantees are provided only for the linear-in-parameter

model under certain conditions (Tsitsiklis and Roy, 1997; Tadić, 2001).

Q-learning is a simple method and researchers have proposed many of its ex-

tension such as Q-learning for multi-agent systems (Tan, 1993; Tesauro, 2003) and

Bayesian Q-learning (Dearden et al., 1998). Among these Q-learning-based methods,

deep Q-network (DQN) (Mnih et al., 2015) is perhaps one of the most successful Q-

learning-based methods so far. The main idea of DQN is to model the value function

by a deep neural network (Bengio, 2009). As we have briefly discussed in Chapter 1,

a deep neural network is a complex structure consisting of multiple layers and it can

handle complex and high-dimensional data very well. This allows DQN to solve a

highly challenging task of learning to play video games from raw pixel images (Mnih

et al., 2015). However, DQN requires a lot of data and network engineering to achieve

the desired results.

5.2.4 Least-Squares Policy Iteration

In Q-learning, the value function is updated iteratively where the amount of update

depends on the choice of step size α. In contrast, least-squares policy iteration

(LSPI) (Lagoudakis and Parr, 2003) computes the value function in a closed form.

Below, we briefly review a variant of LSPI called LSPI based on Bellman residual

minimizing approximation.

The main idea of LSPI based on Bellman residual minimizing approximation lies

on the Bellman equation in Equation (5.13) which can be rearranged into

r(s,a) = Qπ(s,a)− γEπ(a′|s′)p(s|s,a) [Q
π(s′,a′)] . (5.28)

The error between the left-hand side and the right-hand side is called the Bellman

residual. In LSPI based on Bellman residual minimizing approximation, the value

function is learned such that the Bellman residual is minimized.

Firstly, the value function is modeled by the linear-in-parameter model:

Q̂π(s,a; θ) = θ⊤ϕ(s,a), (5.29)

where θ ∈ Rb is the parameter vector and ϕ(s,a) ∈ Rb is the basis function vector.

By substituting this model into the above residual, we obtain

r(s,a) = θ⊤ϕ(s,a)− γEπ(a′|s′)p(s′|s,a)
[
θ⊤ϕ(s′,a′)

]

= θ⊤ψ(s,a), (5.30)

where the basis function ψ(s,a) is defined as

ψ(s,a) = ϕ(s,a)− γEπ(a′|s′)p(s′|s,a) [ϕ(s
′,a′)] . (5.31)

Given data {(st,at, r(st,at), st+1)}Nt=1, the parameter θ is learned by minimizing the

sum of squared Bellman residuals:

N∑

t=1

(
r(st,at)− θ⊤ψ̂(st,at)

)2
. (5.32)

95

The vector ψ̂(s,a) is an approximation of ψ(s,a) based on data, i.e.,

ψ̂(st,at) = ϕ(st,at)−
γ

N ′

∑

s′∈{(st,at)→s′}
Eπ(a′|s′) [ϕ(s

′,a′)] , (5.33)

where the set {(st,at) → s′} is a set of states s′ observed after choosing action

at in state st, and N ′ denotes the cardinality of the set {(st,at) → s′}. Since the

current policy π is known, the expectation over π(a′|s′) can be trivially computed

or approximated. The sum of squared Bellman residuals in Equation (5.32) can be

compactly represented in a matrix form as

‖r −Ψθ‖22, (5.34)

where r is an N-dimensional vector and Ψ is an N-by-b matrix defined respectively

as

r =
[
r(s1,a1), . . . , r(sN ,aN)

]⊤
, (5.35)

and

Ψ =
[
ψ̂(s1,a1), . . . , ψ̂(sN ,aN)

]⊤
. (5.36)

The parameter θ∗ which minimizes the sum of squared Bellman residuals can be

computed analytically as

θ∗ =
(
Ψ⊤Ψ

)−1
Ψ⊤r. (5.37)

Finally, the learned value function is obtained by substituting θ∗ into the linear-in-

parameter model.

Another variant of LSPI is called LSPI based on least-squares fixed-point approx-

imation (Lagoudakis and Parr, 2003). In this variant, the value function is learned

such that it is a fixed point of the Bellman operator (Bertsekas and Tsitsiklis, 1996).

Here, we only give its solution without describing the complete details. The learned

parameter θ∗ of LSPI based on least-squares fixed-point approximation is given by

θ∗ =
(
Φ⊤Ψ

)−1
Φ⊤r, (5.38)

where Φ is an N-by-b matrix defined as

Φ =
[
ϕ(s1,a1), . . . ,ϕ(sN ,aN)

]⊤
. (5.39)

The advantage of LSPI over Q-learning is that the valued function is learned based

on many transitions which makes the learned value function of LSPI tends to be more

accurate overall (Lagoudakis and Parr, 2003). Moreover, LSPI computes the value

function in a closed form and does not need to determine the step size unlike Q-

learning. However, LSPI requires inversion of the matrix Ψ⊤Ψ which can be time

consuming.

96

5.2.5 Summary of Policy Iteration

In this section, we have introduced the policy iteration approach which obtains an

optimal policy based on learned value functions. While policy iteration was shown to

work well and has many theoretical guarantees, they have two major disadvantages.

Firstly, a small change in value functions may cause a large change in the policy. This

phenomena is not preferable in domains such as robotics where stability of the agent’s

behavior is important. Secondly, the policy improvement step is often done by finding

a maximizer of the state-action value function. For a low-dimensional discrete action

space, the maximizer can be found by running through all possible value of actions.

However, for a high-dimensional discrete action space or a continuous action space,

running through all possible value of actions is improbable and we often require a

non-linear optimization method to find a maximizer which can be time consuming.

Moreover, the obtained maximizer might be a local maximizer and it will not guaran-

tee that the new policy improves the current policy.

5.3 Direct Policy Search

The direct policy search approach directly finds an optimal policy π∗(a|s) which

maximizes the expected return:

max
π

∫
R(τ)p(τ ; π)dτ , (5.40)

without relying on value functions. Instead of finding the optimal policy in the space

of functions, we often assume a parameterized policy with an adjustable parameter θ,

i.e.,

π(a|s; θ). (5.41)

We further assume that there exists an optimal policy parameter θ∗ such that

π∗(a|s) = π(a|s; θ∗). That is, the optimal policy is obtained by finding the opti-

mal policy parameter:

θ∗ = argmax
θ

∫
R(τ)p(τ ; θ)dτ , (5.42)

where the trajectory density p(τ ; θ) now depends on θ. In this section, we review

four common direct policy search approaches.

5.3.1 Policy Gradient

A common approach to find a maximizer of a function is the gradient ascent

method (Nocedal and Wright, 2006). Direct policy search methods that are based on

gradient ascent are called policy gradient methods. Firstly, let us denote the expected

return by

J (θ) =
∫

R(τ)p(τ ; θ)dτ . (5.43)

The gradient of J (θ) is denoted and given by

∇θJ (θ) = ∇θ

∫
R(τ)p(τ ; θ)dτ . (5.44)

97

Based on the gradient ascent method, we may obtain the optimal policy parameter by

iteratively updating a policy parameter using the gradient, i.e.,

θ ← θ + α∇θJ (θ), (5.45)

where α > 0 denotes the step size. Since the expected return and its gradient are

unknown, we need to estimate either of them from data. Below, we firstly review

a classical policy gradient method called REINFORCE (Williams, 1992) which esti-

mates the gradient from data.

The gradient of the expected return can be expressed as

∇θJ (θ) = ∇θ

(∫
R(τ)p(τ ; θ)dτ

)

=

∫
R(τ)∇θp(τ ; θ)dτ

=

∫
R(τ)p(τ ; θ)∇θ log p(τ ; θ)dτ , (5.46)

where in the last line we use the fact that ∇θp(τ ; θ) = p(τ ; θ)∇θ log p(τ ; θ). Here

we implicitly assume that the order of integration and differentiation is interchange-

able. The gradient of the logarithm of the trajectory density is given by

∇θ log p(τ ; θ) = ∇θ log

(
p1(s)

T∏

t=1

p(st+1|st,at)π(at|st; θ)
)

= ∇θ log p1(s) +

T∑

t=1

∇θ log p(st+1|st,at) +

T∑

t=1

∇θ log π(at|st; θ)

=
T∑

t=1

∇θ log π(at|st; θ). (5.47)

We can see that∇θ log p(τ ; θ) does not depend on the unknown transition probability

density function p(s′|s,a). Combining Equation (5.46) and Equation (5.47) together

gives us

∇θJ (θ) =
∫

R(τ)p(τ ; θ)

T∑

t=1

∇θ log π(at|st; θ)dτ . (5.48)

The expectation in the gradient can be approximated from N trajectory data {τ i}Ni=1

where each τ n is a trajectory with length T given by

τ n = (s1,n,a1,n, r1,n, s2,n, . . . , rT,n, sT+1,n) . (5.49)

The gradient estimate is then computed by

∇̂θJ (θ) =
1

N

N∑

n=1

R(τ n)
T∑

t=1

∇θ log π(at,n|st,n; θ). (5.50)

Finally, the policy parameter is updated by the gradient ascent rule based on the gra-

dient estimate:

θ ← θ + α∇̂θJ (θ). (5.51)

98

It should be noted that the derivation in Equation (5.47) is only possible for a

stochastic policy π(a|s; θ). For a deterministic policy π(s; θ), we instead have

∇θ log p(τ ; θ) = ∇θ log

(
p1(s)

T∏

t=1

p(st+1|st, π(st; θ))
)

=

T∑

t=1

∇θ log p(st+1|st, π(st; θ)). (5.52)

Computing this gradient requires knowledge about the transition probability density

p(s′|s,a) which is unknown. Also note that Equation (5.47) implicitly implies that

the logarithm of the policy is differentiable, i.e., ∇θ log π(a|s; θ) exists. Thus, this

approach is not applicable to some policy functions such as those defined by the Dirac

delta function δ in Equation (5.2). Nonetheless, the term ∇θ log π(a|s; θ) can be

trivially computed for many stochastic policy functions. A commonly used policy

function is the Gaussian policy with linear-in-parameter mean, i.e.,

π(a(i)|s; θi) =
1√
2πσi

exp

(
− 1

2σ2
i

(a(i) −w⊤
i ϕ(s))

2

)
, (5.53)

where ϕ(s) is a basis function and θi = (wi, σi) are the policy parameters to be

learned for the i-th dimension of the action. The gradient w.r.t. wi and σi of the

logarithm of the Gaussian policy are simply given by

∇wi
log π(a|s; θ) = a(i) −w⊤

i ϕ(s)

σ2
i

ϕ(s), (5.54)

∇σi
log π(a|s; θ) = (a(i) −w⊤

i ϕ(s))
2 − σ2

i

σ3
i

. (5.55)

REINFORCE is considered by many researchers as the standard policy gradient

method. It is very simple and very easy to implement. However, it was shown that

the variance of gradient estimates of REINFORCE increases as the trajectory length

T increases and this high variance tends to slow down the convergence (Peters and

Schaal, 2006).

Fortunately, the variance of gradient estimates can be reduced by using the base-

line subtraction technique (Williams, 1992). Firstly, from Equation (5.46) we can see

that subtracting the return R(τ) by a scalar b which is a constant w.r.t. θ does not

change the gradient, i.e.,

∇(baseline)
θ J (θ) = ∇θ

(∫
(R(τ)− b)p(τ ; θ)dτ

)

= ∇θ

(∫
R(τ)p(τ ; θ)dτ

)
− b∇θ

(∫
p(τ ; θ)dτ

)

= ∇θJ (θ)− b∇θ1

= ∇θJ (θ). (5.56)

Thus, the baseline b can be any scalar as long as it is a constant w.r.t. θ. The opti-

mal choice of a baseline is the baseline that minimizes the variance of gradient esti-

mates (Peters and Schaal, 2006) and it is given by

b∗ =

∑N
n=1R(τ n)‖

∑T
t=1∇θ log π(at,n|st,n; θ)‖22∑N

n=1 ‖
∑T

t=1∇θ log π(at,n|st,n; θ)‖22
. (5.57)

99

(a) Trajectories of REINFORCE (b) Trajectories of PGPE

Figure 5.3: Comparison between trajectories of REINFORCE and PGPE. In REIN-

FORCE, even from the same initial state s1, there can be many possible trajectories

due to the randomness of the stochastic policy π(a|s; θ). In contrast, PGPE uses

deterministic policy π(s; θ) and there is a smaller number of possible trajectories.

Then, the gradient estimates with optimal baseline subtraction is simply given by

∇̂(baseline)
θ J (θ) = 1

N

N∑

n=1

(R(τ n)− b∗)
T∑

t=1

∇θ log π(at,n|st,n; θ). (5.58)

It was shown that the optimal baseline subtraction significantly improves the perfor-

mance of REINFORCE (Peters and Schaal, 2006). However, even with the optimal

baseline, gradient estimates in REINFORCE may still have relatively high variance.

5.3.2 Policy Gradient with Parameter-based Exploration

The main reason that makes the gradient estimate of REINFORCE to have high vari-

ance is the randomness caused by the stochastic policy. Since actions are chosen

randomly at every time steps, there are many trajectories that can be obtained by a

single policy π(a|s). This situation is illustrated in Figure 5.3(a). To overcome this

issue, policy gradient with parameter-based exploration (PGPE) (Sehnke et al., 2010)

was proposed.

The main idea of PGPE is to choose actions by a deterministic policy parame-

terized by a policy parameter θ. For example, we may employ a linear-in-parameter

policy,

a = π(s; θ) = θ⊤ϕ(s). (5.59)

Then, PGPE treats θ as a random variable and aims to learn a probability density of

θ denoted by

p(θ;ρ), (5.60)

where ρ is the parameter to be learned. In this setting, the expected return can be

expressed as a function of ρ as

J (ρ) =
∫∫

R(τ)p(τ |θ)p(θ;ρ)dτdθ. (5.61)

100

Note that we denote the trajectory density by a conditional density p(τ |θ) instead of

p(τ ; θ) since we treat θ as a random variable. The gradient w.r.t. ρ of this expected

return is given by

∇ρJ (ρ) = ∇ρ

(∫∫
R(τ)p(τ |θ)p(θ;ρ)dτdθ

)

=

∫∫
R(τ)p(τ |θ)∇ρp(θ;ρ)dτdθ

=

∫∫
R(τ)p(τ |θ)p(θ;ρ)∇ρ log p(θ;ρ)dτdθ, (5.62)

where in the last line we use the fact that ∇ρp(θ;ρ) = p(θ;ρ)∇ρ log p(θ;ρ).
The data for estimating the gradient is collected as follows. For each trajectory

τ n, we firstly draw a policy parameter θn ∼ p(θ;ρ) and then use a deterministic

policy π(s; θn) to select every action in the trajectory (see Figure 5.3(b)). This data

collection process is repeated for N times to obtain data {(θn, R(τ n))}Nn=1. Then, the

gradient is estimated from the data by

∇̂ρJ (ρ) =
1

N

N∑

n=1

R(τ n)∇ρ log p(θn;ρ). (5.63)

Finally, the parameter ρ is updated by the gradient ascent rule,

ρ← ρ + α∇̂ρJ (ρ). (5.64)

Similarly to REINFORCE, we may apply the baseline subtraction technique to

reduce the variance of gradient estimates in PGPE. It is trivial to verify that subtracting

the return with a baseline b does not change the gradient, i.e.,

∇(baseline)
ρ J (ρ) = ∇ρ

(∫∫
(R(τ)− b)p(τ |θ)p(θ;ρ)dτdθ

)

= ∇ρ

(∫∫
R(τ)p(τ |θ)p(θ;ρ)dτdθ

)
− b∇ρ1

= ∇ρJ (ρ), (5.65)

where b is a constant w.r.t. ρ. The optimal baseline which minimizes the variance of

gradient estimates in PGPE is given as follows (Zhao et al., 2012):

b∗ =

∑N

n=1R(τ n)‖∇ρ log p(θn;ρ)‖22∑N

n=1 ‖∇ρ log p(θn;ρ)‖22
. (5.66)

Using this optimal baseline, the gradient estimate is given by

∇̂(baseline)
ρ J (ρ) = 1

N

N∑

n=1

(R(τ n)− b∗)∇ρ log p(θn;ρ). (5.67)

The computation of the gradient estimates depends on the choice of p(θ;ρ). A

common choice is to use the Gaussian distribution for each dimension of θ, i.e.,

p(θ(i);ρi) =
1√
2πσ

exp

(
− 1

2τ 2i
(θ(i) − ηi)

2

)
, (5.68)

101

where ρi = (ηi, τi) are the parameters to be learned for the i-th dimension of θ. The

gradients w.r.t. ηi and τi of the logarithm of the Gaussian distribution are given by

∇ηi log p(θ;ρ) =
θ(i) − ηi

τ 2i
, (5.69)

∇τi log p(θ;ρ) =
(θ(i) − ηi)

2 − σ2
i

τ 3i
. (5.70)

Using a deterministic policy to choose actions is advantageous since it removes

randomness in the actions. Moreover, it was shown theoretically that the variance of

the gradient estimates of PGPE does not increase with the trajectory length T (Zhao

et al., 2012), unlike in the case of REINFORCE. Moreover, since the gradient esti-

mation does not depend on the form of π(s; θ), we may use any function for π(s; θ)
including non-differentiable functions.

PGPE was shown to work very well when compared with other policy gradi-

ent methods such as REINFORCE (Sehnke et al., 2010; Zhao et al., 2012). How-

ever, using PGPE in practice have two important issues. Firstly, the convergence of

PGPE heavily depends on the step size α which is nontrivial to be determined in

practice (Nocedal and Wright, 2006). Secondly, accurately estimating the gradients

require quite a large amount of data to be collected. In practical domains such as

robotics, data is a limited resource and collecting data from the agent can be expen-

sive and need careful considerations. Although the sample reuse technique was shown

to significantly improve data efficientcy of PGPE (Zhao et al., 2013; Sugimoto et al.,

2016), it still needs quite a lot of data for complex problems with many parameters to

be learned.

In the followings subsections, we review two direct policy search approaches that

are not based on gradient ascent and thus do not have the step size issue.

5.3.3 Expectation-Maximization

Expectation-maximization (Dempster et al., 1977) is an approach to find a maximum

likelihood estimate of a parameter. The general idea of EM is to alternately compute

the expectation of a log-likelihood function using the current parameter, and then find

a new parameter which maximizes the expected log-likelihood function. The former

step is called the E-step or the expectation step, and the latter step is called the M-step

or the maximization step. In this subsection, we review an application of EM in direct

policy search.

For simplicity, we assume the same policy model as that in PGPE. This means

that the policy is a deterministic policy parameterized by θ and the goal is to learn a

parameter ρ of the probability density p(θ|ρ) such that the expected return,

J (ρ) =
∫∫

R(τ)p(τ |θ)p(θ;ρ)dτdθ, (5.71)

is maximized. By assuming that R(τ) ≥ 0, the logarithm of the expected return is

given by

logJ (ρ) = log

∫∫
R(τ)p(τ |θ)p(θ;ρ)dτdθ. (5.72)

102

Figure 5.4: A typical behavior of EM-based approach. The black curve denotes the

logarithm of the expected return. The green curves denote lower-bounds of the log-

arithm of the expected return evaluated at points ρ̃. In the E-step, EM computes the

lower bound at the current parameter, e.g., ρ̃1 at the red point. In the M-step, EM

finds a maximizer of the lower-bound, e.g., ρ̃2 at the blue point. Then, the parameter

is updated to be the maximizer of the lower-bound and the process is repeated.

Then, by applying the Jensen inequality (Jensen, 1906), we obtain a lower-bound of

the logarithm of the expected return as

logJ (ρ) ≥ 1

J (ρ̃)

∫∫
p(θ; ρ̃)R(τ)p(τ |θ) log

(
p(θ;ρ)

p(θ; ρ̃)

)
dτdθ + logJ (ρ̃),

(5.73)

where ρ̃ is the current parameter. This inequality suggests that the quantity in the left-

hand side can be obtained by maximizing the lower-bound in the right-hand side w.r.t.

ρ. By ignoring terms independent of ρ in the right-hand side, we obtain an M-step,

ρ← argmax
ρ

∫∫
p(θ; ρ̃)R(τ)p(τ |θ) log p(θ;ρ)dτdθ. (5.74)

This M-step also guarantees that the expected return is improved (Peters and Schaal,

2007; Hachiya et al., 2011a), i.e.,

J (ρ) ≥ J (ρ̃). (5.75)

In the E-step, the expectation in Equation (5.74) is approximated from data. By using

data {(θn, R(θn))}Nn=1 collected with parameter ρ̃, the E-step and the M-step can be

collectively expressed via an update rule,

ρ← argmax
ρ

1

N

N∑

n=1

R(τ n) log p(θn;ρ). (5.76)

Figure 5.4 illustrates the behavior of the EM-based direct policy search.

The update rule of the EM-based approach mainly depends on the form of p(θ;ρ).
The density p(θ;ρ) is often chosen so that the maximizer can be computed in a closed

form. For example, Kober and Peters (2011) proposed to use the Gaussian distribution

and derived an update rule which closely resembles a weighted least-squares solution

of a regression problem that can be efficiently computed in a closed form.

103

While we only introduce the EM-based approach for learning the parameter ρ of

p(θ;ρ), there also exists EM-based approaches which learn the policy parameter θ

directly (Dayan and Hinton, 1997; Peters and Schaal, 2007; Hachiya et al., 2011a). In

such settings, the same derivation and interpretation of the EM-based approach that

we presented here can be applied as well.

The main advantage of EM-based methods is that we do not need to choose the

step size for the update rule, provided that the maximizer in Equation (5.76) can be

computed in a closed form. However, the major issue of EM-based methods is that the

amount of update can be very large as can be seen from the illustration in Figure 5.4,

where the distance from red point to the blue point is quite large. In domains involving

physical systems such as robotics, a large amount of updates between iterations is not

preferred since they can cause instability to physical systems (Deisenroth et al., 2013).

5.3.4 Information-Theoretic Approach

The principal idea of the information-theoretic approach for direct policy search is

to stay close to data (Peters et al., 2010; Deisenroth et al., 2013). More specifically,

probability distributions of data between consecutive policy updates should not be

too different. Since data is collected through a policy, this implies that the new policy

should not be too different from the current policy as well. Below, we review an

information-theoretic direct policy search method that is based on the relative entropy

policy search (REPS) framework (Peters et al., 2010).

We assume a similar policy model as those in PGPE and the EM-based approach

with slight changes in notation. Here, the aim is to find a probability density function

p(θ) which maximizes the expected return,

∫
R(θ)p(θ)dθ. (5.77)

This problem setting can be made equivalent to those in PGPE and the EM-based ap-

proach by setting R(θ) =
∫
R(τ)p(τ |θ)dτ and finding a parameter ρ of the density

function p(θ;ρ).
The REPS framework implements the idea of the information-theoretic approach

by upper-bounding the Kullback-Leibler (KL) divergence (Kullback and Leibler,

1951). As previously introduced in Chapter 2, a divergence is a pseudo-distance

between two probability distributions and the KL-divergence from p(θ) to q(θ) is

defined as

KL(p(θ)‖q(θ)) =
∫

p(θ) log
p(θ)

q(θ)
dθ. (5.78)

The KL-divergence is also known as the relative entropy. Based on the KL-

divergence, each update iteration of REPS solves the following optimization problem:

max
p

∫
R(θ)p(θ)dθ

subject to KL(p(θ)‖q(θ)) ≤ ǫ,∫
p(θ)dθ = 1, (5.79)

104

where q(θ) is the current density function. The important characteristic of this op-

timization problem is that the KL-divergence between two consecutive density func-

tions are upper-bounded by ǫ. Thus, the amount of update between two consecutive

iterations will not be too large, provided that the upper-bound ǫ is appropriately cho-

sen.

The REPS framework solves the constrained optimization problem in Equa-

tion (5.79) by the method of Lagrange multipliers (Falk, 1967; Boyd and Vanden-

berghe, 2004). The method of Lagrange multipliers is an important tool in mathe-

matics and machine learning for solving general constrained optimization problems.

We briefly describe the main idea of the method of Lagrange multipliers as follows.

Assume that our goal is to solve a generic constrained optimization problem:

max
x

f(x)

subject to gi(x) ≥ 0, for i = 1, . . . , m,

hj(x) = 0, for j = 1, . . . , n, (5.80)

where f(x) is the function to be maximized, gi(x) ≥ 0 are inequality constraints, and

hj(x) = 0 are equality constraints. This constrained optimization can be reformu-

lated into an equivalent unconstrained optimization problem by using the Lagrange

multipliers {λi}mi=1, λi ≥ 0 for the inequality constraints and {νi}ni=1 for the equality

constraints. More specifically, Equation (5.80) is equivalent to the following opti-

mization problem,

max
x

min
{λi}mi=1≥0,{νj}nj=1

[
f(x) +

m∑

i=1

λigi(x) +
n∑

j=1

νjhj(x)

]
. (5.81)

To verify that they are equivalent, we can firstly check the fact that

min
λi≥0

λigi(x) =

{
0 if gi(x) ≥ 0,

−∞ otherwise.
(5.82)

This is because if the constraint is satisfies, i.e., gi(x) ≥ 0, then we can set λi = 0
to achieve the minimum of 0. On the other hand, if the constraint is violated, i.e.,

gi(x) < 0, then we can set λi = ∞ to achieve the minimum of −∞. The same

interpretation also apply to the equality constraint. Thus, the optimization problem

in Equation (5.81) is reduced to maxx f(x) when the constraints are satisfied and it

does not have a solution when the constraints are violated. Therefore, the optimiza-

tion problems in Equation (5.80) and Equation (5.81) are equivalent. The objective

function in Equation (5.81) is called the Lagrangian:

L(x,λ,ν) = f(x) +

m∑

i=1

λigi(x) +

n∑

j=1

νjhj(x), (5.83)

where we abuse the notation and represent {λi}mi=1 with λ and {νi}ni=1 with ν . Next,

it can be easily verified that every function satisfies the min-max inequality (Boyd and

Vandenberghe, 2004), i.e.,

max
x

min
λ≥0,ν

L(x,λ,ν) ≤ min
λ≥0,ν

max
x
L(x,λ,ν). (5.84)

105

The left-hand side of the inequality is equivalent to the original optimization prob-

lem in Equation (5.80) and is called the primal problem. The right-hand side of the

inequality is called the dual problem and the function maxx L(x,λ,ν) is called the

dual function. This dual function is an upper-bound of the primal problem, and the

method of Lagrange multipliers aims to find the Lagrange multipliers λ ≥ 0 and ν

which minimize this upper-bound. Under certain conditions such as convexity of the

functions, the bound is tight and solutions of the primal and dual problems are equiv-

alent (Boyd and Vandenberghe, 2004). However, such conditions may not hold and

there will be a gap between the two problems. In such a case, the obtained solution

via the method of Lagrange multipliers is only an approximate solution.

By using the method of Lagrange multipliers introduced above, the REPS frame-

work computes the new density function p(θ) as

p(θ) ∝ q(θ) exp

(
R(θ)

η

)
, (5.85)

where the normalization term is omitted and η is the Lagrange multiplier correspond-

ing to the KL-divergence upper-bound. This multiplier is obtained by minimizing the

dual function:

g(η) = ηǫ+ η log

∫
q(θ) exp

(
R(θ)

η

)
dθ. (5.86)

The expectation in the dual function can be approximated from data {(θi, R(θi))}Ni=1

as

ĝ(η) = ηǫ+ η log
1

N

N∑

i=1

exp

(
R(θi)

η

)
. (5.87)

Although the new density function p(θ) can be computed by Equation (5.85), it is only

defined on the data points θi where we already know their returns R(θi) and it may not

be useful in practice. To obtain a more practical solution, REPS performs a maximum

likelihood estimation to determine a parameter ρ of a parameterized density p(θ;ρ)
such that p(θ;ρ) matches the solution p(θ) in Equation (5.85). More specifically, the

parameter ρ is obtained by the weighted maximum log-likelihood estimation,

max
ρ

1

N

N∑

i=1

exp

(
R(θi)

η

)
log p(θi;ρ). (5.88)

At each update iteration in the REPS framework, the dual function ĝ(η) is minimized

to obtain the multiplier η. Then, the new parameterized density function p(θ;ρ) is

obtained by the weight maximum log-likelihood estimation. Interestingly, this max-

imum likelihood estimation closely resembles the update rule of the EM-based ap-

proach in Equation (5.76).

The information-theoretic direct policy search method that we reviewed above is

an instance of the REPS framework applied to the problem setting in Equation (5.77).

The REPS framework has been applied to many settings of direct policy search. The

most important instance of REPS would be the step-based REPS (Peters et al., 2010)

which aims to learn a parameter θ of the policy π(a|s; θ). This is in fact the same

problem setting that we introduced for REINFORCE. Another important instance of

106

REPS is the contextual REPS (Deisenroth et al., 2013) which aims to solve the di-

rect contextual policy search problem where the transition probability and the reward

function are determined by observable variables called contexts.

It was experimentally shown that the REPS framework yields very stable policy

updates and tends to perform better than competitive methods. However, the frame-

work has two critical drawbacks. Firstly, it has a tuning parameter, namely the KL-

upper bound ǫ, which needs to be appropriately chosen. Secondly, the REPS frame-

work relies on the method of Lagrange multipliers to find a solution in each update

iteration. However, as we have shown, the method of Lagrange multipliers requires us

to find a minimizer of the dual function. Solving this sub-optimization problem often

relies on a non-linear optimization method such as the gradient descent method or the

Newton’s method (Nocedal and Wright, 2006), which can be time consuming. More-

over, real-world problems rarely satisfy the conditions to achieve min-max equality in

Equation (5.81). Thus, the solutions obtained by the method of Lagrange multipliers

are not necessarily good solutions in principal.

5.3.5 Summary of Direct Policy Search

In direct policy search, an optimal policy parameter (or its distribution) is optimized so

that the expected return is maximized. An important advantage of this approach over

the policy iteration approach is that it is naturally applicable to continuous state and

action spaces. Moreover, actions can be computed trivially from a policy parameter,

unlike the policy iteration approach which requires finding a maximizer of a value

function. For these reasons, direct policy search is usually more preferable in domains

involving continuous state and actions spaces.

The direct policy search methods we reviewed above use data to estimate some

quantities, e.g., policy gradient methods estimate gradients of the expected return

from data. In general, accurately estimating these quantities often require a large

amount of data. However, collecting data in practical domains such as robotics is

often expensive and collecting a large amount of data is considered impractical. This

data efficiency is in fact an important evaluation in reinforcement learning. That is,

the practical usefulness of a reinforcement learning method often depends on how

much data the method requires in order to achieve a desirable performance.

There are generally two approaches to improve data efficiency of direct policy

search methods. The first approach is the sample reuse approach which reuses data

collected in previous update iterations to estimate a quantity in the current iteration.

Direct policy search methods with sample reuse were shown to perform better than

methods without sample reuse (Peshkin and Shelton, 2002; Hachiya et al., 2011b;

Zhao et al., 2013). However, even with sample reuse these methods still have a lim-

itation when the budget for collecting data is limited. This is because they need to

determine the sampling schedule, i.e., how many data points the agent needs to col-

lect in each iteration. This sampling schedule heavily affects the performance of these

methods but unfortunately they cannot determine this schedule before hand.

The second approach which improves data efficiency of direct policy search is the

model-based approach, which is explained in the next section below.

107

5.4 Model-based Reinforcement Learning

The reinforcement learning methods that we have reviewed so far use the collected

data in the policy learning directly by, e.g., approximating the involved expecta-

tions using the collected data. This class of reinforcement learning methods is called

model-free reinforcement learning. Another class of reinforcement learning methods

is model-based reinforcement learning which uses the collected data to firstly learn

about unknown environment. In this section, we focus on model-based reinforcement

learning.

5.4.1 Learning the Environment Model

As introduced earlier in this chapter, the environment consists of the transition prob-

ability density function p(s′|s,a), the reward function r(s,a, s′), and the initial state

probability density function p1(s). In model-free reinforcement learning, the agent

interacts with the environment to collect data {τ n}Nn=1 and then directly uses this data

to update the policy by e.g., approximating the involved expectations using the col-

lected data. Now, let us assume that the agent knows the transition probability density,

the reward function, and the initial state probability density. In such a case, the agent

does not need to interact with the environment to collect any data since it can use its

knowledge about the environment to learn the optimal policy by, e.g., generating data

by itself.

Unfortunately, the above situation is too unrealistic since in practice we rarely

have exact knowledge about the environment. However, it suggests the idea that once

an accurate model of the environment is obtained, the agent can instead rely on the

model to learn the optimal policy. This is the main idea behind model-based reinforce-

ment learning which uses the collected data to firstly learn a model of the environment

and then learn an optimal policy based on the model. More specifically, model-based

reinforcement learning methods learn all of the unknown transition probability den-

sity p(s′|s,a), the reward function r(s,a, s′), and the initial state probability density

p1(s). In many settings, however, the reward function and the initial state probability

density are determined by users and are considered known. Thus, most model-based

reinforcement learning methods focus on learning a model of the transition probabil-

ity density and this model is often called the transition model.

There are two approaches to use the model. The first approach is the simulation-

based approach which generates artificial data from the model and then uses model-

free reinforcement learning methods to learn an optimal policy from this artificial

data. The second approach is the integrated approach where the model is an essential

part of policy learning and the policy is learned without any data generation. There

is no clear answer which approach is the best approach for using the model. Exper-

imental evaluations showed that the integrated approach tends to perform better than

the simulation-based approach (Deisenroth and Rasmussen, 2011). However, the in-

tegrated approach requires strong assumptions about the transition probability density

function and the reward function and may not be widely applicable.

The choice of using model-free or model-based reinforcement learning mostly

depends on the problems and there is no clear justification to choose between them.

However, in many cases, the model-based approach is more preferable when the bud-

get for data collection is limited or when the transition probability density can be

learned accurately from a small amount of data.

108

The important concern of model-based reinforcement learning is how to learn the

(transition) model from data. Below, we introduce approaches that were commonly

used to learn the transition model. We assume that the trajectory data {τ n}Nn=1 is con-

verted into transition data {(si,ai, s
′
i)}Mi=1 where M = N × T is the total number of

observed transitions. Note that while we only focus on learning the transition model,

these approaches can be straightforwardly applied to learning the reward model as

well.

5.4.2 Locally Weighted Linear Regression

The problem of learning a transition model p̂(s′|s,a) from data {(si,ai, s
′
i)}Mi=1 is

in fact a supervised learning problem where (s,a) is the input and s′ is the output.

Instead of learning a model of the conditional probability density p̂(s′|s,a), we may

only learn a model that accurately predicts the expected value of s′ given (s,a). This

learning problem is called regression and is the central problem in supervised learn-

ing. More specifically, regression aims to find a function f(s,a) such that

s′ = f(s,a) + ǫ, (5.89)

where ǫ is independent noise with zero mean and finite variance. In regression we

often assume a scalar output. For vector-valued output, we may learn multiple re-

gression models where each model corresponds to a dimension of the output, i.e.,

s(j)
′
= fj(s,a) + ǫj . The index j is omitted in the remainder of this section for

notational convenience and we only consider learning a model with a scalar output

s′. Below, we review a regression method called locally weighted linear regression

(LWR) (Cleveland and Devlin, 1988; Atkeson et al., 1997) which is widely used for

learning the transition model.

For notational convenience, we denote the input (s,a) by a vector x ∈ Rdx and

the transition probability p(s′|s,a) by p(s′|x) where dx = ds + da. Linear regres-

sion (Hastie et al., 2001; Bishop, 2006; Murphy, 2012) is the simplest form of regres-

sion which assumes that the function f is linear in both input and parameter, i.e.,

f(x;β) = β⊤x, (5.90)

where β ∈ Rdx is a parameter vector to be learned. The parameter is often learned by

minimizing the sum of squared errors,

min
β

M∑

i=1

(
β⊤xi − s′i

)2
. (5.91)

The solution is obtained in a closed form as

β̂ =
(
XX⊤)−1

X−→s ′, (5.92)

whereX is a dx-by-M data matrix and −→s ′ is an M-dimensional vector of the output

s′. Then, given a new input x̃, the predicted output ŝ
′
is given by

ŝ′ = β̂
⊤
x̃. (5.93)

The main issue of linear regression is that the model is globally linear and this

is strongly restrictive. To overcome this issue, locally weighted linear regression

109

(LWR) (Cleveland and Devlin, 1988; Atkeson et al., 1997) was proposed. In LWR,

each pair of input points is associated with the weight that determines similarity be-

tween the two points. The commonly used weight is the exponential weight defined

as

w(xi,xj) = exp(−1
2
(xi − xj)

⊤D (xi − xj)), (5.94)

where D is a tuning parameter matrix. Unlike linear regression, LWR does not com-

pute the parameter β during training. Instead, given a new input x̃, LWR finds a

parameter β of the linear model by solving the following optimization problem:

min
β

M∑

i=1

w(xi, x̃)
(
β⊤xi − s′i

)2
. (5.95)

This means that the influence of a data point (xi, s
′
i) for the estimated parameter β̂

depends on the similarity between xi and x̃. Thus, the LWR model is linear only on

the local region where the new input x̃ is located. The solution can be computed in a

closed form as

β̂ =
(
XWX⊤)−1

XW−→s ′, (5.96)

where W is an M-by-M matrix whose its (i, j)-th entry is the weight w(xi,xj).
Finally, the predicted output ŝ′ is given by

ŝ′ = β̂
⊤
x̃. (5.97)

LWR is a popular transition model learning method for many model-based rein-

forcement learning methods (Schaal and Atkeson, 1994; Schneider, 1996; Atkeson

et al., 1997; Schaal et al., 2000). It was applied to learn the value functions in model-

free reinforcement learning as well (Boyan and Moore, 1994; Neumann and Peters,

2008). However, the important issue of LWR is that it does not consider the un-

certainty of the transition probability. More specifically, regression only learns the

conditional mean of the transition probability and does not take into account the ran-

domness of the transition probability. Next, we introduce a method that learns the

actual transition probability.

5.4.3 Gaussian Process Regression

Gaussian process regression (GP) (Rasmussen and Williams, 2006) is another method

that is widely used in model-based reinforcement learning. Unlike LWR, GP aims to

learn the transition probability density function as a conditional density function and

not just the conditional mean function. Below, we briefly review GP for transition

model learning.

The important assumption of GP is the assumption that the transition probability

is Gaussian, i.e.,

p(s′|x) = N (s′|m(x), σ(x)), (5.98)

where m(x) and σ(x) denote the mean and the variance, respectively. The goal of

GP is to estimate the mean m(x̃) and the variance σ(x̃) of the output s′ for the new

110

input x̃ from data {(xi, s
′
i)}Mi=1. These estimated mean and variance are given by

m(x̃) = k⊤ (K + λIM)−1−→s ′, (5.99)

σ(x̃) = k(x̃, x̃)− k⊤ (K + λIM)−1
k, (5.100)

respectively where λ is a tuning parameter corresponding to the standard deviation of

the independent noise in data (Rasmussen and Williams, 2006). The vector k is an

M-dimensional vector and K is an M ×M matrix defined as

k =
[
k(x1, x̃), . . . , k(xM , x̃)

]⊤
, (5.101)

K =



k(x1,x1) . . . k(xM ,x1)

...
. . .

...

k(x1,xM) . . . k(xM ,xM)


 . (5.102)

The function k(xi,xj) denotes the covariance function which defines similarity be-

tween input points xi and xj . The important requirement of the covariance function

is that the matrix K needs to be positive semi-definite, i.e., a⊤Ka ≥ 0 for any M-

dimensional vector a. A common choice of the covariance function is the squared

exponential function defined as

k(xi,xj) = exp(−1
2
(xi − xj)

⊤D (xi − xj)), (5.103)

whereD is a tuning parameter matrix. Note that this covariance function is the same

as the exponential weight in Equation (5.94) for LWR. The tuning parameterD and λ
are usually determined by evidence maximization (Rasmussen and Williams, 2006).

GP has been applied to many model-based reinforcement learning methods with

good successes (Deisenroth and Rasmussen, 2011; Kupcsik et al., 2013; Ko et al.,

2007). However, the important issue of GP is that the transition probability p(s′|x)
is assumed to be Gaussian. This Gaussian assumption can be easily violated in real-

world problems and GP would not be an appropriate method in such problems.

5.4.4 Summary of Model-based Reinforcement Learning

Model-based reinforcement learning was experimentally shown to be more data effi-

cient than the model-free counterpart for both policy iteration methods (Sutton, 1990;

Rasmussen and Kuss, 2003) and direct policy search methods (Wang and Dietterich,

2003; Deisenroth and Rasmussen, 2011; Kupcsik et al., 2013). An intuitive explana-

tion is that once the transition model is learned, model-based methods do not need

to collect more data in order to get more information. In contrast, model-free meth-

ods need to collect more data to get more information. For this reason, model-based

methods are very attractive in domains where data efficiency is of primary concern.

While model-based methods are attractive, many researchers often avoid using

them because they often suffer from model bias. More specifically, model-based

methods learn an optimal policy based on the transition model and they implicitly

assume that the transition model accurately represents the transition probability. In

a case where the transition model is inaccurate, the learned policy will perform very

poorly even though it is regarded as an optimal policy for the transition model. Thus,

the success of model-based methods heavily depend on the accuracy of the transition

111

model. However, learning an accurate model is a challenging problem especially for

high-dimensional state and action spaces.

The main focus of our contributions in the following sections is to develop model-

based reinforcement learning methods which accurately learn a transition model even

when the state and action spaces are high-dimensional.

112

Chapter 6

Model-based Policy Gradient with

Parameter-based Exploration

In this chapter, we present our third contribution on a model-based policy gradi-

ent with parameter-based exploration method. Firstly, we briefly reintroduce rein-

forcement learning and the policy gradient with parameter-based exploration method.

Then, we focus on the transition model estimation problem and review the least-

squares conditional density estimation method. Next, we present our method that

uses LSCDE to improve data efficiency of the policy gradient with parameter-based

exploration method. Lastly, we present our experimental results on benchmark and

simulated humanoid robot problems, and then conclude this chapter.

6.1 Introduction

Reinforcement learning aims to learn an optimal policy which controls an agent to

achieve maximum cumulative rewards. Reinforcement learning methods can be cat-

egorized into policy iteration methods and directly policy search methods. Policy

iteration methods learn an optimal policy based on value functions which represents

expected cumulative reward from a given state and a given policy. Policy iteration

methods alternately estimate value functions and improve policy until convergence.

However, accurately estimating value functions in continuous state and action spaces

is highly challenging. Moreover, a small change in value functions may cause a large

change in policy, and this is not preferable in many domains where agent’s stable

behaviors are desired.

In direct policy search methods, a policy is optimized directly so that it achieve

the maximum cumulative rewards. Among many direct policy search methods, pol-

icy gradient methods are simple and widely applicable. The most well-known policy

gradient method is REINFORCE (Williams, 1992) which estimates the gradient of

the expected return using data. However, it was shown that the variance of gradient

estimates in REINFORCE increases with the trajectory length and can be very large

which results in unreliable policy improvement (Peters and Schaal, 2006). A more re-

cent policy gradient method is the policy gradient with parameter-based exploration

(PGPE) (Sehnke et al., 2010). It was shown that the variance of gradient estimates in

PGPE does not increase with the trajectory length (Zhao et al., 2012) which makes the

policy improvement in PGPE tend to be more stable than that in REINFORCE. This

property makes PGPE an attractive policy gradient method. However, PGPE is orig-

inally a model-free method where the collected data is used to estimate the gradient

113

of the expected return. In order to accurately estimate the gradient, the agent needs

to collect a large amount of data in each iteration which makes PGPE not suitable in

domains where a large amount of data is difficult to be obtained.

The importance weight PGPE (IW-PGPE) method (Zhao et al., 2013) was pro-

posed to improve data efficiency of PGPE. The key idea of IW-PGPE is to reuse data

from previous iterations to estimate gradient in the current iteration. Since naively

reusing the data can cause bias in the gradient estimate, IW-PGPE corrects this bias

by applying the importance weight technique. It was experimentally shown that IW-

PGPE uses data more efficiently than PGPE. However, IW-PGPE is still a model-free

method and requires collecting new data at each iteration to efficiently improve the

policy.

Differently from the previous work by Zhao et al. (2013), we adopt the model-

based reinforcement learning to improve data efficiency of PGPE. More specifically,

our contribution is a model-based extension of PGPE called model-based PGPE (M-

PGPE). Unlike model-free PGPE, M-PGPE uses the collected data to firstly learn a

transition model. Then, it uses the transition model to generate a large amount of

data for gradient estimation. There are two significant advantages of M-PGPE when

compared with model-free PGPE. Firstly, given a fixed budget for data collection,

we are not required to determine the sampling schedule in advance for M-PGPE.

More specifically, we do not need to determine how many trajectories are collected at

each iteration for M-PGPE since we can spend the whole budget at first to learn the

transition model.

The second advantage of M-PGPE lies in baseline subtraction. As we explain in

Chapter 5, baseline subtraction allows us to significantly reduce the variance of the

gradient estimates in PGPE. In principal, subtraction by the optimal baseline reduces

the variance without introducing the bias (see Equation (5.66)). In practice, model-

free PGPE typically estimates this optimal baseline using the same data that is used

for gradient estimation. However, this estimated optimal baseline may increase the

estimation bias since the two data are not statistically independent. On the other

hand, for M-PGPE we can simply generate two set of data and use one set of data for

gradient estimation and the other set of data for optimal baseline estimation.

An important step of M-PGPE is to learn a transition model from data. In litera-

ture, many methods were proposed and used to learn a transition model. However, as

we have reviewed in Chapter 5, regression-based methods such as locally weighted

regression (Cleveland and Devlin, 1988; Atkeson et al., 1997) do not consider the

randomness of the transition probability, and the Gaussian process (Rasmussen and

Williams, 2006) relies on a strong assumption that the transition probability can be

accurately represented by the Gaussian distribution. To overcome the limitations of

these methods, we propose to learn a transition model by the least-squares condi-

tional density estimation (LSCDE) method (Sugiyama et al., 2010). The advantage

of LSCDE over existing transition model estimation method is that LSCDE non-

parametrically estimates the transition probability and does not rely on strong as-

sumption about the transition probability. In fact, it was shown that LSCDE posses

the optimal asymptotic convergence rate, meaning that LSCDE can asymptotically

estimate any transition probability (Sugiyama et al., 2010). Moreover, the solution

of LSCDE can be efficiently computed in a closed form. Through experiments, we

demonstrate that M-PGPE with LSCDE is a promising method.

The remaining of this chapter is organized as follows. In Section 6.2, we briefly re-

call the transition model estimation problem and review the LSCDE method in details.

114

Then in Section 6.3, we describe the learning framework of our M-PGPE method.

Next, we experimentally evaluate M-PGPE in Section 6.4 and conclude this chapter

in Section 6.5.

6.2 Transition Model Estimation via Least-Squares Conditional

Density Estimation

The goal of transition model estimation is to learn a transition model p̂(s′|s,a) from

transition data {(si,ai, s
′
i)}Pi=1. This transition data can be obtained from trajectory

data {τ i}Ni=1. The transition model estimation problem is a supervised learning prob-

lem where (s,a) is input and s′ is output. For notational convenience, we denote

input (s,a) by a vector x ∈ Rdx where dx = ds + da. In this case, the transition

probability and transition model are denoted by p(s′|x) and p̂(s′|x), respectively.

We use LSCDE to learn the transition model in M-PGPE. The goal of LSCDE is

to find a transition model p̂(s′|x) which minimizes the squared error:

1

2

∫∫
(p̂(s′|x)− p(s′|x))2 p(x)dxds′. (6.1)

This squared error can be expanded as

1

2

∫∫ (
p̂(s′|x)2p(x)− 2p̂(s′|x)p(x, s′)− p(s′|x)2p(x)

)
dxds′. (6.2)

The third term of the above equation can be ignored since it is a constant w.r.t. the

transition model. The minimizer which minimizes the squared-error depends on the

form of the transition model. Let us use a linear-in-parameter model for the transition

model:

p̂(s′|x) = α⊤ϕ(x, s′), (6.3)

whereα ∈ Rb is a parameter vector to be learned andϕ(x, s′) ∈ Rb is a basis function

vector. In particular, we use the Gaussian basis function for the i-th dimension of the

basis function vector:

ϕ(i)(x, s′) = exp

(
−‖x− ui‖2

2σ2

)
exp

(
−‖s

′ − vi‖2
2σ2

)
, (6.4)

where ui and vi are the i-th Gaussian centers chosen randomly from the data and σ is

the Gaussian width. Under this model, we have the squared error:

1

2

∫∫ (
(α⊤ϕ(x, s′))2p(x)−α⊤ϕ(x, s′)p(x, s′)

)
dxds′. (6.5)

The expectations over p(x) and p(x, s′) in the squared error can be approximated

from data {(xi, s
′
i)}Pi=1. This approximation yields the following empirical squared

error:

1

2
α⊤Ĥα−α⊤ĥ, (6.6)

115

where

ĥ =
1

P

P∑

i=1

ϕ(xi, s
′
i), (6.7)

Ĥ =
1

P

P∑

i=1

Φ(xi), (6.8)

Φ(x) =

∫
ϕ(x, s′)ϕ(x, s′)⊤ds′. (6.9)

For the Guassian basis function in Equation (6.4), the (k, k′)-th entry of Φ(x) can be

computed in a closed form as

Φ(x)(k,k′) = (
√
πσ)ds exp

(
−2‖x− xk‖2 + 2‖x− xk′‖2 + ‖uk − uk′‖2

4σ2

)
.

(6.10)

To control the complexity of the model, an ℓ2 regularization term with a regular-

ization parameter λ > 0 is included in the empirical squared error in Equation (6.6)

as

1

2
α⊤Ĥα−α⊤ĥ+

λ

2
α⊤α. (6.11)

By setting the derivative w.r.t. α to zero, we obtain the following closed form solution

α̂ =
(
Ĥ + λI

)−1

ĥ. (6.12)

Then, the transition model can be obtained by plugging in the solution into the model:

p̂(s′|x) = α̂⊤
ϕ(x, s′). (6.13)

In addition, we also need to ensure that the estimator is a proper conditional density,

i.e., non-negative and integrated to one. To do so, the solution is truncated and the

transition model is normalized as

p̂(s′|x) = α̃
⊤
ϕ(x, s′)∫

α̃
⊤
ϕ(x, s′)ds′

, (6.14)

where α̃ = max(α̂, 0) is the truncated solution. For the Gaussian basis function, the

normalization term can also be computed in a closed form as

∫
α̃

⊤
ϕ(x, s′)ds′ = (

√
2πσ)ds

b∑

k=1

α̃(b) exp

(
−‖x− uk‖2

2σ2

)
. (6.15)

6.3 Policy Learning Framework

M-PGPE method is a model-based extension of PGPE where the transition model

is learned by LSCDE. The policy learning framework of M-PGPE is given by the

following steps.

116

1. Collect trajectory data {τ i}Ni=1 and convert it to transition data

{(si,ai, s
′
i)}Pi=1 = {(xi, s

′
i)}Pi=1 by, e.g., using a uniform random policy.

2. Learn a transition model p̂(s′|x) from data {(xi, s
′
i)}Pi=1 by LSCDE.

3. Initialize a parameter ρ of the the policy parameter distribution p(θ;ρ).

4. Draw policy parameters {θi}M+M ′

i=1 from p(θ;ρ).

5. Generate two set of artificial trajectory data: {τ̂ i}Mi=1 and {τ̂ i}M ′

i=1, using the

transition model p̂(s′|x) and policy parameter {θi}M+M ′

i=1 and then evaluate their

return R(τ̂).

6. Estimate the optimal baseline b∗ and gradient with baseline subtraction

∇̂(baseline)
ρ J (ρ) using two separate artificial trajectory data (see Chapter 5 for

details):

b∗ =

∑M

i=1R(τ̂ i)‖∇ρ log p(θi;ρ)‖22∑M
i=1 ‖∇ρ log p(θi;ρ)‖22

, (6.16)

∇̂(baseline)
ρ J (ρ) = 1

M ′

M ′∑

i=1

(R(τ̂ i)− b∗)∇ρ log p(θi;ρ). (6.17)

7. Update parameter ρ by gradient ascent with step size β > 0:

ρ← ρ+ β∇̂(baseline)
ρ J (ρ). (6.18)

8. Repeat Steps 4 to 7 until ρ converges.

At Step 5, the artificial trajectory data are generated by sampling sequences of

states, actions, and next states from the transition model. For the Gaussian basis

function, this sampling procedure can be done similarly to sampling from a mixture

of Gaussian distributions (Bishop, 2006). We emphasize that the number of artificial

trajectory M and M ′ can be much larger than the number of collected trajectory N .

6.4 Experiment

In this section, we demonstrate the usefulness of the proposed M-PGPE method

through experiments.

6.4.1 Continuous Chainwalk

For illustration purposes, let us first consider a simple continuous chain-walk task (see

Figure 6.1).

Setup: Let

s ∈ S = [0, 10],

a ∈ A = [−5, 5],

r(s, a, s′) =

{
1 (4 < s′ < 6),

0 (otherwise).

117

0 4 6 10

Figure 6.1: Illustration of continuous chain walk.

That is, the agent receives positive reward +1 at the center of the state space. We set

the trajectory length at T = 10, the discount factor at γ = 0.99, and the learning rate

at β = 0.1. The initial mean parameter η is set at 0 and initial deviation parameter τ
is set at 1. We use the following linear-in-parameter policy model in all the compared

methods, i.e., M-PGPE and IW-PGPE:

∀s ∈ S, a =

6∑

i=1

θi exp

(
−(s− ci)

2

2

)
,

where (c1, . . . , c6) = (0, 2, 4, 6, 8, 10). If an action determined by the above policy is

out of the action space, we pull it back to be confined in the domain. Thus, the action

space itself is independent of the current position.

As transition probability, we consider two setups:

Gaussian: The true transition probability is given by

∀st ∈ S, at ∈ A,

where ǫt is the Gaussian noise with mean 0 and standard deviation 0.3. If the

next state is out of the state space, then we project it back to the domain.

Bimodal: The true transition probability is given by

∀st ∈ S, at ∈ A, st+1 = st ± at + ǫt,

where ǫt is the Gaussian noise with mean 0 and standard deviation 0.3, and the

sign of at is randomly chosen with probability 1/2.

We compare the following three policy search methods:

M-PGPE(LSCDE): The model-based PGPE method with transition model esti-

mated by LSCDE.

M-PGPE(GP): The model-based PGPE method with transition model estimated by

GP.

IW-PGPE: The model-free PGPE method with sample reuse by importance

weighting1 (Zhao et al., 2013).

Below, we consider the situation where the budget for data collection is limited to

N = 20 trajectory data.

1We have also tested the plain PGPE method without importance weighting, but this did not perform

well in our preliminary experiments. For this reason, we decided to omit the results.

118

LSCDE VS. GP

When the transition model is learned by the M-PGPE methods, all N = 20 trajectory

data are gathered randomly in the beginning at once. More specifically, the initial

state s1 and the action a1 are chosen from the uniform distributions over S and A,

respectively. Then the next state s2 and the immediate reward r1 are obtained. Then

the action a2 is chosen from the uniform distribution over A, and the next state s3
and the immediate reward r2 are obtained. This process is repeated until we obtain

rT . This gives a trajectory data, and we repeat this data generation process N times to

obtain N trajectory data. These N = 20 trajectory data give P = 200 transition data

for transition-model learning.

In the implementation of LSCDE, the Gaussian width σ and the regularization

parameter λ are selected by cross-validation from the following candidate values:

κ ∈ {0.0316, 0.0487, 0.0750, 0.1155, 0.1778, 0.2738, 0.4217, 0.6494, 1.00},
λ ∈ {0.0010, 0.0032, 0.0100, 0.0316, 0.1000, 0.31620, 1.0000, 3.1623, 10.0000}.

Figure 6.2 and Figure 6.5 illustrate the true transition probability and its estimates

obtained by LSCDE and GP in the Gaussian and bimodal cases, respectively. Fig-

ure 6.2(b) and Figure 6.5(b) show the conditional density estimation error of the

learned transition models. The conditional density estimators are evaluated by the

squared error (without constant) computed from test data points {(xi, s
′
i)}Ntest

i=1 :

1

2Ntest

Ntest∑

i=1

∫
p̂(s′|xi)

2ds′ − 1

Ntest

Ntest∑

i=1

p̂(s′i|xi). (6.19)

In the experiments, we set Ntest = 10201. Note that Figure 6.2(b) and Figure 6.5(b)

are different in the scale of error values since a constant is ignored from the squared

error. It is also worth mentioning that the integral in the first term of Equation (6.19)

can be computed analytically for LSCDE with the Gaussian kernel model and GP.

Figure 6.2 shows that both LSCDE and GP can learn the entire profile of the true

transition probability well in the Gaussian case. The squared error of the learned

models in Figure 6.2(b) show that GP provides smaller squared error in this Gaussian

case. On the other hand, Figure 6.5 shows that LSCDE can still successfully capture

the entire profile of the true transition model well even in the bimodal case, but GP

fails to capture the bimodal structure. The squared error shown in Figure 6.5(b) further

illustrates that LSCDE estimates the transition model more accurately than GP in this

bimodal case.

Based on the transition models, we learn policies by the M-PGPE method. More

specifically, we generate M = 1000 artificial trajectory data for policy gradient esti-

mation and another M ′ = 1000 artificial trajectory data for baseline estimation from

the transition model. Then policies are updated based on these estimations. We repeat

this policy update step 100 times. For evaluating the return of a learned policy, we use

100 additional test trajectory data which are not used for policy learning. Figure 6.3

and Figure 6.6 depict the average performance of learned policies over 100 runs for

the Gaussian and bimodal cases, respectively. The results show that the GP-based

method performs very well in the Gaussian case, but LSCDE still exhibits reason-

ably good performance. In the bimodal case, on the other hand, GP performs poorly

and LSCDE gives much better policies than GP. Furthermore, the performance of GP

119

0

5

10

−5

0

5
0

5

10

sa

s
’

(a) True transition

LSCDE GP
0.25

0.3

0.35

0.4

0.45

0.5

G

(b) Squared error

0

5

10

−5

0

5
0

5

10

sa

s
’

(c) Transition estimated by LSCDE

0

5

10

−5

0

5
0

5

10

sa

s
’

(d) Transition estimated by GP

Figure 6.2: Gaussian transition probability and its estimates by LSCDE and GP. The

value argmaxs′ p(s
′|s, a) is plotted as a function of s and a.

0 20 40 60 80 100

2

4

6

8

10

Iteration

R
e

tu
rn M−PGPE(LSCDE)

M−PGPE(GP)

IW−PGPE

Figure 6.3: Averages and standard er-

rors of returns of the policies over 100
runs obtained by M-PGPE with LSCDE,

M-PGPE with GP, and IW-PGPE for

Gaussian transition.

20x1 10x2 5x4 4x5 2x10 1x20
2

2.5

3

3.5

4

Sampling schedules

R
e

tu
rn

Figure 6.4: Averages and standard er-

rors of returns obtained by IW-PGPE

over 100 runs for Gaussian transi-

tion probability with different sampling

schedules (e.g., 5 × 4 means gathering

k = 5 trajectory data 4 times).

120

drops after some iterations due to its inaccurate estimation of the bimodal transition

model.

Since GP is a Gaussian parametric method as a conditional density estimator, it

works very well if the parametric assumption is (approximately) correct (see Fig-

ure 6.2(d)). However, if the parametric model is strongly misspecified, it tends to

produce a highly biased solution (see Figure 6.5(d)). On the other hand, LSCDE is

non-parametric and thus it can flexibly approximate any conditional densities (see

Figure 6.5(c)). However, its statistical efficiency tends to be lower than parametric

approaches; nevertheless, Figure 6.2(c) shows that LSCDE still performs reasonably

well even in the Gaussian case.

Model-Based VS. Model-Free

Next, we compare the performance of M-PGPE with the model-free IW-PGPE

method.

For the IW-PGPE method, we need to determine the schedule of collecting 20
trajectory data under the fixed budget scenario. More specifically, the “sampling

schedule” indicates that a small batch of k trajectory data are gathered 20/k times

for different k values. k = 20 means that all 20 trajectory data are gathered following

the initial data-collecting policy. If k < 20, the first batch of k trajectory data are

gathered following the initial data collecting policy; then the parameter of the current

policy is updated and this is used as the data collecting policy to gather the next batch

of k trajectory data; these parameter update and data collection steps are iterated until

the sampling budget runs out.

First, we illustrate how the choice of sampling schedules affects the performance

of IW-PGPE. Figure 6.4 and Figure 6.7 show expected returns averaged over 100 runs

under the sampling schedule that a batch of k trajectory data are gathered 20/k times

for different k values. Figure 6.4 shows that the performance of IW-PGPE depends

heavily on the sampling schedule, and gathering k = 20 trajectory data at once is

shown to be the best choice in the Gaussian case. Figure 6.7 shows that gathering

k = 20 trajectory data at once is also the best choice in the bimodal case.

Although the best sampling schedule is not accessible in practice, we use this

optimal sampling schedule for IW-PGPE. Figure 6.3 and Figure 6.6 also include the

returns obtained by IW-PGPE averaged over 100 runs as functions of the policy update

iterations. These graphs show that IW-PGPE can improve the policies only in the

beginning, because all trajectory data are gathered at once in the beginning. The

performance of IW-PGPE may be further improved if it is possible to gather more

trajectory data, but this is prohibited under the fixed budget scenario. On the other

hand, return values of M-PGPE constantly increase throughout iterations, because

artificial trajectory data can be kept generated without additional sampling costs. This

illustrates a potential advantage of model-based reinforcement learning methods.

Note that, in our implementation of IW-PGPE, policy update is performed 100
times after observing each batch of trajectory data, because we empirically observed

that this performs better than the conventional way of performing policy update only

once (note that no additional sampling costs are necessary during this policy update

process). On the other hand, policies are updated only once for each batch of data in

M-PGPE, because we can gather as many data as we want without additional sampling

costs.

121

0

5

10

−5

0

5
0

5

10

sa

s
’

(a) True transition

LSCDE GP
0.03

0.04

0.05

0.06

0.07

0.08

G

(b) Squared error

0

5

10

−5

0

5
0

5

10

sa

s
’

(c) Transition estimated by LSCDE

0

5

10

−5

0

5
0

5

10

sa

s
’

(d) Transition estimated by GP

Figure 6.5: Bimodal transition probability and its estimates by LSCDE and GP. The

value argmaxs′ p(s
′|s,a) is plotted as a function of s and a.

0 20 40 60 80 100
1.6

1.8

2

2.2

2.4

2.6

2.8

Iteration

R
e

tu
rn

M−PGPE(LSCDE)
M−PGPE(GP)
IW−PGPE

Figure 6.6: Averages and standard er-

rors of returns of the policies over 100
runs obtained by M-PGPE with LSCDE,

M-PGPE with GP, and IW-PGPE for bi-

modal transition.

20x1 10x2 5x4 4x5 2x10 1x20
1.5

1.6

1.7

1.8

1.9

2

Sampling schedules

R
e

tu
rn

Figure 6.7: Averages and standard er-

rors of returns obtained by IW-PGPE

over 100 runs for bimodal transition

with different sampling schedules (e.g.,

5 × 4 means gathering k = 5 trajectory

data 4 times).

122

(a) CB-i (b) Simulator of the upper-body

Figure 6.8: Humanoid robot CB-i and its upper-body model.

6.4.2 Humanoid Robot Control

Finally, we evaluate the performance of M-PGPE on a practical control problem of

a simulated upper-body model of the humanoid robot CB-i Cheng et al. (2007) (see

Figure 6.8(a)). We use its simulator for experiments (see Figure 6.8(b)). The goal

of the control problem is to lead the end-effector of the right arm (right hand) to the

target object.

Setup

The simulator is based on the upper-body of the CB-i humanoid robot, which has 9

joints for shoulder pitch, shoulder roll, elbow pitch of the right arm, shoulder pitch,

shoulder roll, elbow pitch of the left arm, waist yaw, torso roll, and torso pitch.

At each time step, the controller receives a state vector from the system and sends

out an action vector. The state vector is 18-dimensional and real-valued, which corre-

sponds to the current angle in degree and the current angular velocity for each joint.

The action vector is 9-dimensional and real-valued, which corresponds to the target

angle of each joint in degree.

At each time step, given a state-action pair, the physical control system calculates

torques at each joint by using a proportional-derivative (PD) controller as

τi = Kpi(ai − si)−Kdi ṡi, (6.20)

where si, ṡi, and ai denote the current angle, current angular velocity, and target angle

of the ith joint, respectively. Kpi and Kdi denote the position and velocity gains for

the ith joint, respectively. In the experiments, we set Kpi = 2000 and Kdi = 100 for

all joints except the elbow pitch joints for which we set Kpi = 200 and Kdi = 10.

We simulate a noisy control system by perturbing action vectors with independent

bimodal Gaussian noise. More specifically, for each action element, we add Gaussian

noise with mean 0 and standard deviation 3 with probability 0.6, and Gaussian noise

with mean −5 and standard deviation 3 with probability 0.4.

The initial posture of the robot is fixed to be standing up straight with arms down.

The target object is located in front-above of the right hand, which is reachable by

123

using the controllable joints. The reward function at each time step is defined as

rt = exp(−10dt)− 0.000005min{ct, 1000000}, (6.21)

where dt is the distance between the right hand and the target object at time step t. ct is

the sum of control costs for each joint, i.e., ct =
∑J

i=1 τ
2
i , where J is the total number

of used joints. The coefficient 0.000005 is multiplied to keep the values of the two

terms in the same order of magnitude. Note that, for this multi-dimensional action

problem, the policy for each joint is learned independently. We set the trajectory

length at T = 100, the discount factor at γ = 0.9, and the learning rate at β =
0.1/‖∇̂ρJ (ρ)‖.

The initial mean parameter of the Gaussian prior is randomly chosen from a stan-

dard normal distribution, i.e., η0 ∼ N(0, 1). The initial deviation parameter of the

Gaussian prior is set at 1, i.e., τ0 = 1. Note that we have no prior knowledge of

the choice of the initial parameters. Choosing a good initial parameter is especially

important for IW-PGPE, since poor initialization may lead to a significant difference

between the data collection distribution and the target distribution, and thus IW-PGPE

will produce gradient estimators with large variance. On the other hand, M-PGPE

does not suffer this problem. In the implementation of LSCDE, the Gaussian width σ
and the regularization parameter λ are chosen by cross-validation from the following

candidate values:

σ, λ ∈ {0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10}. (6.22)

Experiment with 2 Joints

First, we only use 2 joints among the 9 joints, i.e., we allow only the right shoulder

pitch and right elbow pitch to be controlled, while the other joints are fixed to the

initial posture. This means that 4-dimensional states and 2-dimensional actions are

considered here. However, since the simulator calculates 18-dimensional humanoid

dynamics, the other joints can slightly move due to movements of the controlled

joints. Therefore, to some extent, the learning algorithms are evaluated in the par-

tially observable environment. Under this setup, we compare the performance of

M-PGPE(LSCDE), M-PGPE(GP), and IW-PGPE.

We suppose that the budget for data collection is limited to N = 50 trajectory data.

For the M-PGPE methods, all trajectory data are collected at first using the uniformly

random initial states and policy. More specifically, the initial state is chosen from

the uniform distribution over S. At each time step, the ith element of the action

vector, ai, is chosen from the uniform distribution on [si − 5, si + 5]. In total, we

have P = 5000 transition data for model estimation. Then, we generate M ′ = 1000
artificial trajectory data for policy gradient estimation and another M = 1000 artificial

trajectory data for baseline estimation from the learned transition model and update

the control policy based on these artificial trajectory data. For the IW-PGPE method,

we performed preliminary experiments to determine the optimal sampling schedule

(Figure 6.9), showing that collecting k = 5 trajectory data 50/k times yields the

highest average return. We use this sampling schedule for performance comparison

with the M-PGPE methods. Moreover, the policy update is performed 100 times after

observing each batch of data for the IW-PGPE method, which we confirmed to work

better than just updating the policy only once. Thus, policy updates are performed

1000 times in total under this sampling schedule. On the other hand, in M-PGPE,

124

50x1 25x2 10x5 5x10 1x50
1.5

2

2.5

3

3.5

Sampling schedules

R
e

tu
rn

Figure 6.9: Averages and standard errors of returns obtained by IW-PGPE over 10
runs for the 2-joint humanoid robot simulator for different sampling schedules (e.g.,

5× 10 means gathering k = 5 trajectory data 10 times).

0 20 40 60
0

1

2

3

4

5

R
e

tu
rn

Iteration

M−PGPE(LSCDE)
M−PGPE(GP)
IW−PGPE

0 150 300 450 600 750 1000

Iteration

Figure 6.10: Averages and standard errors of obtained returns over 10 runs for the 2-

joint humanoid robot simulator. All methods use 50 trajectory data for policy learning.

In M-PGPE(LSCDE) and M-PGPE(GP), all 50 trajectory data are gathered in the

beginning and the environment model is learned; then 2000 artificial trajectory data

are generated in each update iteration. In IW-PGPE, a batch of 5 trajectory data are

gathered for 10 iterations, which was shown to be the best sampling scheduling (see

Figure 6.9). Note that policy update is performed 100 times after observing each batch

of trajectory data, which we confirmed to perform well. The bottom horizontal axis is

for the M-PGPE methods, while the top horizontal axis is for the IW-PGPE method.

policies are updated only once for each batch of data, since no additional sampling

costs are necessary to gather data from the learned model.

The returns obtained by each method averaged over 10 runs are plotted in Fig-

ure 6.10, showing that M-PGPE(LSCDE) tends to outperform both M-PGPE(GP) and

IW-PGPE. In Figure 6.10, the IW-PGPE curve is adjusted to have the same horizontal

scale as M-PGPE. The top horizontal axis indicates the policy update iterations for

IW-PGPE, while the bottom horizontal axis indicates the policy update iterations for

M-PGPE.

Figure 6.11 shows the minimum distance and discounted control cost averaged

125

0 10 20 30 40 50 60
0

0.02

0.04

0.06

0.08

0.1

Iteration

M
in

im
u

m
 d

is
ta

n
c
e

M−PGPE(LSCDE)
M−PGPE(GP)
IW−PGPE

0 150 300 450 600 750 1000

(a) Minimum distance

0 10 20 30 40 50 60
1.2

1.4

1.6

1.8

2

2.2

2.4

Iteration

D
is

c
o
u
n
te

d
 c

o
n
tr
o
l
c
o
s
t

M PGPE(LSCDE)

M PGPE(GP)

IW PGPE

0 150 300 450 600 750 1000
x 10

5

(b) Discounted control cost

Figure 6.11: Averages and standard errors of the minimum distance and discounted

control cost over 10 runs for the 2-joint humanoid robot simulator. The bottom hor-

izontal axis is for the M-PGPE methods, while the top horizontal axis is for the IW-

PGPE method.

Figure 6.12: Example of arm reaching with 2 joints using a policy obtained by M-

PGPE at the 60th iteration (some intermediate steps are not shown here).

over 10 runs. The minimum distance plot in Figure 6.11(a) shows that the learned

policies from M-PGPE(LSCDE) and M-PGPE(GP) get closer to the target than that of

IW-PGPE, and M-PGPE(LSCDE) gets slighly closer to the target than M-PGPE(GP).

The discounted control cost in Figure 6.11(b) shows that M-PGPE(LSCDE) and M-

PGPE(GP) use smaller discounted torques than IW-PGPE to reach the target object.

Figure 6.12 illustrates an example of the reaching motion with 2 joints obtained

by M-PGPE(LSCDE) at the 60th iteration policy. This shows that the learned policy

successfully leads the right hand to the target object within only 13 steps in this noisy

control system.

Experiment with 9 Joints

Finally, we evaluate the performance of the proposed method on the reaching task

with 9 joints, i.e., all joints are allowed to move. In this experiment, we compare

learning performance between M-PGPE(LSCDE) and IW-PGPE. We do not include

M-PGPE(GP) since it is outperformed by M-PGPE(LSCDE) on the previous 2-joint

experiments, and furthermore the GP-based method requires an enormous amount of

computation time.

The experimental setup is essentially the same as the 2-joint experiments, but we

have a budget for gathering N = 1000 trajectory data for this complex and high-

126

1000x1 500x2 100x10 50x20 10x100 5x200 1x1000
−7

−6.5

−6

−5.5

−5

−4.5

Sampling schedules

R
e

tu
rn

Figure 6.13: Averages and standard errors of returns obtained by IW-PGPE over 30
runs for the 9-joint humanoid robot simulator for different sampling schedules (e.g.,

100× 10 means gathering k = 100 trajectory data 10 times).

0 200 400 600 800 1000
−8

−7

−6

−5

−4

Iteration

R
e

tu
rn

M−PGPE(LSCDE)
IW−PGPE

0 20 40 60 80 100

Figure 6.14: Averages and standard errors of obtained returns over 30 runs for the

humanoid robot simulator with 9 joints. Both methods use 1000 trajectory data for

policy learning. In M-PGPE(LSCDE), all 1000 trajectory data are gathered in the

beginning and the environment model is learned; then 2000 artificial trajectory data

are generated in each update iteration. In IW-PGPE, a batch of 1000 trajectory data are

gathered at once, which was shown to be the best scheduling (see Figure 6.13). Note

that policy update is performed 100 times after observing each batch of trajectory data.

The bottom horizontal axis is for the M-PGPE methods, while the top horizontal axis

is for the IW-PGPE method.

dimensional task. The position of the target object is moved to far left, which is

not reachable only by using 2 joints. Thus, the robot is required to move other

joints to reach the object with the right hand. Among P = 100000 transition data

points, we randomly choose 5000 transition data points for Gaussian centers for M-

PGPE(LSCDE). The sampling schedule for IW-PGPE was set at gathering 1000 tra-

jectory data at once, which is the best sampling schedule according to Figure 6.13.

The returns obtained by M-PGPE(LSCDE) and IW-PGPE averaged over 30 runs are

plotted in Figure 6.14, where the IW-PGPE curve is elongated to have the same hori-

zontal scale as M-PGPE; the top horizontal axis indicates the policy update iterations

for IW-PGPE, while the bottom horizontal axis indicates the policy update iterations

for M-PGPE. The graph shows that M-PGPE(LSCDE) tends to outperform IW-PGPE

127

0 200 400 600 800 1000
0.1

0.12

0.14

0.16

0.18

Iteration

M
in

im
u

m
 d

is
ta

n
c
e

M−PGPE(LSCDE)
IW−PGPE

0 20 40 60 80 100

(a) Minimum distance

0 200 400 600 800 1000
0.8

1

1.2

1.4

1.6

1.8

Iteration

D
is

c
o
u
n
te

d
 c

o
n
tr
o
l
c
o
s
t

M−PGPE(LSCDE)

IW−PGPE

0 20 40 60 80 100
x 10

6

(b) Discounted control cost

Figure 6.15: Averages and standard errors of the minimum distance and discounted

control cost over 30 runs for the 9-joint humanoid robot simulator. The bottom hor-

izontal axis is for the M-PGPE methods, while the top horizontal axis is for the IW-

PGPE method.

Figure 6.16: Example of arm reaching with 9 joints using a policy obtained by M-

PGPE(LSCDE) at the 1000th iteration (some intermediate steps are not shown here).

in this challenging robot control task.

Figure 6.15 shows the minimum distance and discounted control cost averaged

over 10 runs. The minimum distance plot in Figure 6.15(a) shows that the learned

policies from IW-PGPE get closer to the target object than that of M-PGPE(LSCDE),

while the discounted control cost plot in Figure 6.15(b) shows that M-PGPE(LSCDE)

uses much smaller discounted torques than IW-PGPE. Note that, as shown in Fig-

ure 6.14, the return (the weighted discounted combination of the distance and control

cost) for M-PGPE(LSCDE) is better than that for IW-PGPE, and either strongly opti-

mizing the distance or control cost depends on the choice of the balancing constant in

the definition of the reward function (see Equation (6.21)).

Figure 6.16 shows a typical example of the reaching motion with 9 joints obtained

by M-PGPE(LSCDE) at the 1000th iteration. The images show that the policy learned

by M-PGPE(LSCDE) leads the right hand to the distant object successfully within 14

steps.

6.5 Conclusion

In this chapter, we extended the model-free PGPE method to a model-based scenario,

and proposed to combine it with a conditional density estimation method called least-

128

squares conditional density estimation (LSCDE). Under the fixed sampling budget,

appropriately designing a sampling schedule is critical for the model-free IW-PGPE

method, while this is not a problem for the proposed model-based PGPE (M-PGPE)

method. Through experiments, we confirmed that an existing GP-based model esti-

mation is not as flexible as the LSCDE-based method when the transition model is

not Gaussian, and the proposed M-PGPE based on LSCDE was overall demonstrated

to be promising.

As we have demonstrated, the GP-based model estimation does not perform well

when the transition probability possess multimodality characteristic. There are many

practical situations which involve multimodality. A well-known example is the mo-

bile robot global localization, where the dynamics of the global localization is usu-

ally multimodal due to the symmetry of the environment and ambiguity of detected

features Liu et al. (2007). For example, the robot is placed somewhere in the envi-

ronment without the knowledge of its global location. After state transition, the robot

finds out that the current position is next to a door according to the information from

observations and sensors. However, if there are 2 doors in the environment, the distri-

bution of the sensed position of the robot cannot be uniquely determined in general.

Multimodality due to such ambiguity is conceivable in the many real-world problems

because of imperfect state information. On the other hand, if the robot is highly cer-

tain about its position, it would follow a unimodal distribution centered around the

true position of the robot (Fox et al., 1999).

Although LSCDE perform well as a transition model estimation method, it re-

quires a tremendous amount of data for high-dimensional problems (e.g., 100000

transition data for 9 joints humanoid robot in Section 6.4.2). In the next chapter,

we propose our contribution which improves the performance of M-PGPE in high-

dimensional problems.

129

Chapter 7

Dimension Reduction for Model-based Policy

Gradient with Parameter-based Exploration

This chapter presents our fourth contribution on utilizing single-step dimension reduc-

tion for our model-based policy gradient with parameter-based exploration method.

Firstly, we briefly reintroduce our previous method and explain how can we use di-

mension reduction to improve its performance. Then, we briefly discuss existing ap-

proach to perform dimension reduction for transition model estimation. Next, we

present our contribution which combines our least-squares conditional entropy in

Chapter 4 and our model-based policy gradient with parameter-based exploration in

Chapter 6. Lastly, we present our experimental results and conclude the chapter.

7.1 Introduction

Reinforcement learning aims to find an optimal policy using data collected by an

agent. In model-free reinforcement learning, the collected data is used to improve

the policy directly. In contrast, model-based reinforcement learning firstly learns a

transition model from collected data and then improve the policy based on the learned

transition model. It has been experimentally shown that the model-based approach

is a highly data efficient approach and is suitable for domains where collecting data

is expensive (Sutton, 1990; Rasmussen and Kuss, 2003; Wang and Dietterich, 2003;

Deisenroth and Rasmussen, 2011; Kupcsik et al., 2013).

However, learning an accurate transition model from high-dimensional data often

require a large amount of data due to the curse of dimensionality. This large amount

of data requirement may make model-based methods not as data efficient as they

should be. A common approach to mitigate the curse of dimensionality is linear

dimension reduction. However, naively applying linear dimension reduction to the

transition model estimation problem involves a multi-step procedure where the former

dimension reduction step is perform independently from the latter transition model

estimation step. This is not preferred since an estimation error from the dimension

reduction step can be magnified by the latter transition model estimation step.

To overcome the issue of the multi-step approach, we propose to use our least-

squares conditional entropy (LSCE) method which is presented in Chapter 4 to learn

the transition model. LSCE is a single-step dimension reduction method which si-

multaneously performs both supervised linear dimension reduction and conditional

density estimation. Through experiments in Chapter 4 we have shown that LSCE out-

performs multi-step combinations of dimension reduction methods and conditional

130

density estimation methods. Moreover, we also evaluated LSCE in transition data

from a simulated humanoid robot and computer art problems, and showed that LSCE

also outperforms other methods on these data as well. In this chapter, we further show

that LSCE is indeed suitable as a transition model estimation method for model-based

reinforcement learning.

This chapter is organized as follows. In Section 7.2, we briefly discuss exist-

ing dimension reduction approaches in reinforcement learning. Then, in Section 7.3

we present our proposed method which combines M-PGPE with LSCE. Section 7.4

presents the experimental evaluations of the proposed method and Section 7.5 con-

cludes this chapter.

7.2 Existing Approach to Dimension Reduction in Reinforcement

Learning

Dimension reduction is a common technique to mitigate the curse of dimensionality

in reinforcement learning. In this section, we discuss existing dimension reduction

approaches in reinforcement learning.

7.2.1 Feature Selection in Factored Markov Decision Process

The factored MDP (Boutilier et al., 1995) is a variant of MDPs formulated for high-

dimensional problems. The important characteristic of the factored MDP is its transi-

tion probability which is represented by

p(s′|s,a) =
ds∏

k=1

p(s′k|fk(s),a), (7.1)

where fk(s) denotes a subset of feature of s corresponds to the k-th state feature.

More specifically, the transition probability of the k-th state feature does not depend

on the transition probability of the other features, and only depends on the k-th subset

of state features and an action. This transition probability is commonly represented

by dynamics Bayesian networks (DBNs) (Dean and Kanazawa, 1989).

Based on the factored MDP, Kroon and Whiteson (2009) proposed a feature se-

lection method where a state feature is selected if it either directly or indirectly in-

fluences rewards. This method is an online method where feature selection and tran-

sition model estimation are performed while the agent is learning the policy. They

showed that this feature selection approach improves the performance of factored-

RMAX (Guestrin et al., 2002). However, learning the DBNs is time consuming. To

cope with this problem, Nguyen et al. (2013) proposed an extension of the factored

MDP called the situation calculus MDP and learned the transition model by logistic

regression with group lasso regularization. This approach was shown to be computa-

tionally more efficient than learning the DBNs.

These feature selection approaches were shown to perform well on high-

dimensional tasks. However, they strictly rely on the factored MDP formulation.

Thus, these methods would not be applicable when the problems cannot be formu-

lated as a factored MDP. In contrast, the proposed method does not assume specific

structures of the transition probability and is more widely applicable.

131

7.2.2 Supervised Dimension Reduction in Reinforcement Learning

Supervised linear dimension reduction was used for reinforcement learning previ-

ously. The KDR method (Fukumizu et al., 2004) was used by Morimoto et al. (2008)

to find a low-dimensional state variable which preserves reward information. More

precisely, KDR finds a matrix W such that z = Ws satisfies the conditional inde-

pendence

(
(s,a) ⊥⊥ s̃′

)
| (z,a), (7.2)

where s̃
′

denotes state features which influence rewards, i.e., rt = r(s̃t,at, s̃t+1).
Subsequently, z is used instead of s in a model-free reinforcement learning method.

This approach was shown to find a low-dimensional representation of states which is

relevant to a robot walking task. However, the weakness of this approach is that it

could not detect implicit relations between state features and rewards. For instance,

assume that s(k) influences the reward, i.e., rt = r(s
(k)
t ,at, s

(k)
t+1). Then, consider a

case where s(i) influences s(j) at the next time step, and s(j) influences s(k) at the next-

next time step. Thus, s(i), s(j), and s(k) are relevant features. However, the KDR-based

approach only chooses s(k) and s(j) as relevant features.

To cope with the above problem, Hachiya and Sugiyama (2010) proposed a feature

selection procedure which considers the return instead of the reward. Their goal is to

find a subset of state features z such that it satisfies the conditional independence

(R(s) ⊥⊥ s) | z, (7.3)

where R(st) =
∑T

t′=t γ
t′−1rt′ is the return along a trajectory from time step t onward.

In this way, the implicit relation of states and rewards is captured through the return.

The subset of state features z is obtained by maximizing a squared-loss variant of

conditional mutual information (Suzuki et al., 2009).

The two methods we discussed above have demonstrated the usefulness of dimen-

sion reduction in reinforcement learning where their goal is to find a low-dimensional

variable which compactly represents the state. However, this is quite different from

our usage of dimension reduction in this chapter which focuses on the transition model

estimation problem.

7.3 Model-based PGPE with Single-step Dimension Reduction

As we have shown in our previous contributions, M-PGPE with LSCDE is a promis-

ing model-based reinforcement learning method and LSCE is the most promising

supervised linear dimension method for transition model estimation. In this section,

we propose a model-based reinforcement learning method based on this combination.

In addition, we also propose an extension to imitation learning which is a suitable

framework for model-based reinforcement learning.

7.3.1 Learning Framework

Figure 7.1 shows a schematic diagram of the proposed model-based reinforcement

learning method. In Step 1, the agent collects a trajectory dataset {τ n}Nn=1 by using

either an uninformative random policy or an informative policy. Then the dataset

is used in Step 2 to estimate a transition model by LSCE (see Chapter 4). Note that

132

when an informative policy is used to collect the data, we can use imitation learning to

initialize a policy in an informative way. The imitation learning step for the proposed

method will be explained in Section 7.3.2.

In Step 3, the agent generates a dataset {(θm, τ̂m)}Mm=1 by the following proce-

dure. It first draws a parameter θm from the current policy parameter distribution

p(θ|ρ). This parameter is used to generate an artificial trajectory:

τ̂m = [ŝ1,a1, ŝ2, . . . ,aT , ŝT+1] , (7.4)

where ŝ1 ∼ p1(s) and at = θ
⊤
mφ(ŝt). The next state ŝt+1 is obtained from p̂(s′|Wx)

and xt =
(
ŝ
⊤
t ,a

⊤
t

)⊤
by numerically approximating the mean:

ŝt+1 =
1

K

K∑

k=1

ŝ′k, (7.5)

where ŝ′k ∼ p̂(s′|Wx =Wxt). We set K = 100 in our experiments1.

In Step 4, the dataset {(θm, τ̂m)}Mm=1 is used to update the parameter ρ by

the PGPE method. More specifically, we split the dataset into two disjoint subset

{(θm, τ̂m)}M ′

m=1 and {(θm, τ̂m)}M ′′

m=1 and then estimate the gradient and the optimal

baseline by

∇̂(baseline)
ρ J (ρ) = 1

M ′

M ′∑

i=1

(R(τ̂ i)− b∗)∇ρ log p(θi;ρ),

b∗ =

∑M ′′

i=1 R(τ̂ i)‖∇ρ log p(θi;ρ)‖22∑M ′′

i=1 ‖∇ρ log p(θi;ρ)‖22
, (7.6)

We refer to Chapter 5 for details of PGPE. Then parameter ρ is updated by

ρ← ρ+ β∇̂(baseline)
ρ J (ρ), (7.7)

where β > 0 is the step size.

Note that the number of artificial trajectory M can be much larger than the num-

ber of collected trajectory N . In our experiments, we generate M = 1000 artificial

trajectories. The first half is used to estimate the optimal baseline, and the second half

is used to estimate the gradient of the expected return, i.e., M ′ = M ′′ = 500.

For policy gradient methods such as PGPE, the choice of the initial parameter

ρ is very important. Improving a poorly chosen initial parameter hardly yields a

good policy even for a highly accurate transition model. Next, we assume that an

informative policy is used for collecting the trajectory data. This assumption allows

us to use imitation learning to informatively initialize the parameter.

7.3.2 Imitation Learning

Imitation learning is a learning framework similar to supervised learning (Schaal,

1999). The goal of imitation learning is to learn a policy which reproduces demon-

strated trajectories. Imitation learning has been widely used in robot controls where

1We set K = 1 in our previous M-PGPE method that is presented in Chapter 6. However, we

observed that for unimodal transition probability using the mean as a predicted state gives better per-

formance overall than using an individual sampled data point as a predicted state.

133

Figure 7.1: A schematic diagram of the proposed model-based reinforcement learning

method. The agent firstly collects N trajectories (Step 1) and uses the collected tra-

jectories to estimate a transition model (Step 2). Then it uses the transition model to

generate M artificial trajectories (Step 3), and use these artificial trajectories in PGPE

(Step 4).

a human expert demonstrates task-solving trajectories to the robot by, e.g., recording

joint movements of a human expert (Ijspeert et al., 2002b). A problem of imitation

learning is that the demonstrated trajectories are not always optimal, and thus the

policy mimicking the demonstrated trajectories is not necessary optimal. In such a

case, it is common to further improve the mimicked policy by reinforcement learn-

ing. From this viewpoint, imitation learning can be regarded as an approach to learn

a good initial policy for reinforcement learning.

We formulate the imitation learning problem for PGPE as follows. We assume

that N demonstrated trajectories are given as {τ n}Nn=1, where

τ n = [s1,a1, . . . ,aT , sT+1] . (7.8)

134

Figure 7.2: A schematic diagram of the proposed imitation learning step. Linear

regression (LR) is firstly used to obtain a set of estimated policy parameters {θ̂n}Nn=1,

then maximum likelihood estimation (MLE) is used to obtain the initial parameter ρ.

We assume that τ n are obtained by the deterministic policy a = θ⊤nφ(s) and thus

at = θ⊤nφ(st). We propose to estimate the policy parameter θn by minimizing the

mean squared error:

min
θn

[
1

T

T∑

t=1

‖at − θ⊤nφ(st)‖2
]
, (7.9)

where the dataset {(st,at)}Tt=1 is obtained directly from τ n. This minimization prob-

lem corresponds to linear least-squares regression with feature mapping φ. The solu-

tion to this linear regression problem is

θ̂n =
(
Φ⊤Φ

)−1
Φ⊤A, (7.10)

where the matrices Φ ∈ Rd×T and A ∈ RT×da are given by

Φ =
[
φ(s1), . . . ,φ(sT)

]
, (7.11)

A =
[
a1, . . . ,aT

]⊤
. (7.12)

PGPE assumes that θn ∼ p(θ|ρ). Therefore, given a set of estimated policy pa-

rameters {θ̂n}Nn=1, the initial parameter ρ may be estimated by maximum like-

lihood estimation. For the independent Gaussian model in Equation (5.68), i.e.,

p(θi,j|ρi,j) = N (θi,j|ηi,j, τ 2i,j), maximum log-likelihood estimation yields the empiri-

cal mean and standard deviation:

η̂i,j =
1

N

N∑

n=1

(θn)i,j , (7.13)

τ̂i,j =

√√√√ 1

N

N∑

n=1

((θn)i,j − η̂i,j)
2, (7.14)

where (θn)i,j denotes the (i, j)-th entry of θn. Figure 7.2 shows a schematic diagram

of the proposed imitation learning step.

The above formulation implies that the agent can fully observe states and actions

of the demonstrator, and that state and action descriptions of the agent and the demon-

strator are identical. This allows us to formulate imitation learning as a regression

problem. However, this assumption may not always be satisfied in practice. For such

a case, more sophisticated techniques are needed to transfer information from the

135

demonstrator to the agent (Argall et al., 2009). The choice of these techniques of-

ten depends on the tasks and is beyond the scope of this dissertation. For simplicity,

we assume the above assumptions and use linear regression to learn a policy from

demonstrated trajectories.

In addition to the initial policy, imitation learning is also beneficial to the model-

based approach since it provides task-solving trajectories for transition model estima-

tion. This allows transition model estimation to focus on learning task-relevant parts

of the transition probability. We use the imitation learning framework in the humanoid

robot experiment in Section 7.4.3.

7.4 Experiment

In this section, we demonstrate the usefulness of the proposed method through ex-

periments. We perform experiments on three control tasks: a continuous chainwalk,

cartpole balancing, and a real humanoid robot.

7.4.1 Continuous Chainwalk

First, we perform experiments on a continuous chainwalk.

Setup

The state space, action space, and reward function of a chainwalk with ds state di-

mensions are considered:

S = [0, 1]ds ,

A = [−0.4, 0.4] ,

r(s,a, s′) = exp

(
−(s

′(1) − 0.5)2

2(0.03)2

)
.

Each dimension i ∈ {1, . . . , ds} of the initial state s1 is drawn independently as

s
(i)
1 ∼

{
1
2
U(0, 0.1) + 1

2
U(0.9, 1) if i = 1,

U(0, 1) otherwise.
(7.15)

The transition dynamics is given independently for each dimension as

s
(i)
t+1 = s

(i)
t + at − g × sign(at) if i = 1,

s
(i)
t+1 ∼ U(0, 1) otherwise, (7.16)

where g ∼ Γ(0.5, 0.03). The trajectory length is T = 10 and the discount factor is

γ = 0.9. We use the linear deterministic policy model with Gaussian basis functions2:

a = θ⊤φ(s(1))

=
6∑

i=1

θi exp

(
−(s

(1) − ci)
2

2(0.1)2

)
, (7.17)

2To make the experiment simple, we use this policy model which depends only on the first dimen-

sion of the state vector and ignores the other dimensions.

136

where (c1, . . . , c6) = (0, 0.2, 0.4, 0.6, 0.8, 1). We use the independent Gaussian dis-

tribution for PGPE and initialize the mean and the standard deviation by ηi = 0 and

τi ∼ N (0, 1), respectively. The learning rate for policy update is β = 0.05

‖∇̂(baseline)
ρ J (ρ)‖ .

The transition probability only depends on the action and the first dimension of

the state vector. Thus, the irrelevant state dimensions (s(j) such that j 6= 1) can be

safely removed from transition model estimation. The optimal subspace for transition

model estimation has intrinsic dimension dz = 1 and we assume that the agent knows

this. The corresponding optimal transformation matrix is the 1-by-(ds + 1) matrix

given by

W opt = ±
[

1√
2
, 0, . . . , 0, 1√

2

]
. (7.18)

Evaluation on Different Supervised Linear Dimension Reduction methods

We firstly evaluate the performance of M-PGPE using different supervised linear di-

mension reduction methods. We consider chainwalk tasks with ds ∈ {3, 5, 8}. We

collect N = 20 trajectories using the uniform random policy at ∼ U(−0.4, 0.4), The

dataset {(xi, s
′
i)}Pi=1 with P = 200 is standardized so that it has zero mean and unit

variance. This dataset is used by the following supervised linear dimension reduction

methods:

LSCE: The matrixW and the transition model p̂(s′|Wx) are learned by minimiz-

ing an estimator of the squared-loss conditional entropy over the Grassmann

manifold. This method is used by the proposed model-based reinforcement

learning method.

KDR: The matrix W is learned by minimizing the trace of the estimated condi-

tional covariance operator over the Stiefel manifold (Fukumizu et al., 2004)3.

LSQMI: The matrixW is learned by maximizing an estimator of the quadratic mu-

tual information over the Grassmann manifold (Sainui and Sugiyama, 2014)4.

LSQMID: The matrix W is learned by maximizing quadratic mutual information

where the derivative of quadratic mutual information is estimated directly. Re-

call that this method is our first contribution which we presented in Chapter 3.

LSDR: The matrix W is learned by maximizing an estimator of the squared-

loss mutual information over the Grassmann manifold (Suzuki and Sugiyama,

2013)5.

We use the Gaussian basis function for all methods. For LSCE, LSQMI, LSQMID,

and LSDR, we restart the optimization with 10 different initial solutions and choose

the best solution according to their criteria. For KDR, we use the initial solution

provided by the gKDR method proposed by Fukumizu and Leng (2012).

We firstly evaluate the dimension reduction performance of each method by the

dimension reduction error:

ErrorDR = ‖W⊤W −W⊤
optW opt‖Frobenious, (7.19)

3We use the code from http://www.ism.ac.jp/˜fukumizu/software.html.
4The manifold optimization is performed by the manifold optimization toolbox (Boumal et al.,

2014).
5We use the code from http://www.ms.k.u-tokyo.ac.jp/software.html#LSDR.

137

whereW opt is the optimal transformation matrix and ‖ · ‖Frobenious denotes the Frobe-

nious norm of a matrix. Note that this dimension reduction error is invariant to rotation

within the subspace. The dimension reduction error of each method is given in Table

7.1. For ds = 3, LSDR and KDR give the best results and outperform LSCE. How-

ever, they perform quite poorly for ds = 5 and 8 when compared to LSCE. A reason

for their failure is that the transition probability is highly skewed due to the Gamma

distribution. LSDR estimates the density ratio
p(z,s′)

p(z)p(s′)
contained in SMI. This density

ratio tends to be highly fluctuated around the tails of the transition probability density,

and thus it is difficult to be estimated when the number of data is relatively small.

For the case of KDR, the heuristic parameter tuning of KDR does not work well for

the Gamma transition probability. In addition, the gKDR method may provide poor

initial solutions which make the result of KDR unstable as can be observed by the

large standard error of KDR. Both LSQMI and LSQMID seem to not work well in

these tasks.

After the dimension reduction step, we learn the transition model p̂(s′|Wx) by

LSCDE (Sugiyama et al., 2010). Note that without the dimension reduction step,

M-PGPE with LSCDE is the same as the original M-PGPE method we presented in

Chapter 6. Also note that LSCE does not need this step since the transition model

has already been obtained (see Chapter 4). To evaluate the accuracy of the transition

model, we compute the root mean square error (RMSE) which is defined by

RMSE =

√√√√ 1

Ntest

Ntest∑

i=1

(
s′

(1)
i − ŝ

(1)
i

)2
, (7.20)

where ŝ
(1)
i is obtained by Equation (7.5). The test dataset with Ntest = 500 is obtained

by executing the uniform random policy.

The RMSE of each method is also given in Table 7.1. LSCE is the best method in

this evaluation, even outperforming LSDR and KDR in terms of the mean error when

ds = 3. This result emphases the advantage of using LSCE for performing supervised

linear dimension reduction in transition model estimation. LSQMID also performs

well when ds = 3 and ds = 8, even though it performs very poorly at the dimension

reduction step. A reason for this phenomenon can be seen by its significantly large

standard errors. This implies that LSQMID is unstable and its dimension reduction

results can yield both highly accurate and highly inaccurate transition models. KDR

and LSQMI do not work well, and LSCDE without dimension reduction gives the

most inaccurate transition models.

Next, we evaluate the reinforcement learning performance of the proposed

method. The reinforcement learning performance is measured by the averaged re-

turn over 1000 trajectories. As the baseline, we use the optimal deterministic policy

which guides the agent to high reward regions:

a = sign(0.5− s(1))×max(|0.5− s(1)|, 0.4). (7.21)

Figure 7.3 shows the averaged return against update iteration and Table 7.1 shows

averaged return obtained at the 1000th update iteration. We can see that for ds = 3,

all supervised linear dimension reduction methods performs equally well, including

LSQMI and LSQMID which have very large standard errors. However, only LSCE

performs well across different state dimensions. Our previous M-PGPE method with

LSCDE performs relatively poorly. This result shows that the proposed method which

combines LSCE with M-PGPE is promising.

138

Table 7.1: Mean and standard error over 30 trials of the dimension reduction error (DR), the root mean square error (RMSE), and the averaged return

at the 1000th update iteration on the chainwalk task with different state dimensions ds. The best method in terms of the mean error and comparable

methods according to the paired t-test at the significance level 5% are specified by bold face.

Criterion ds LSCE KDR LSQMI LSQMID LSDR LSCDE

DR

3 0.383(0.013) 0.382(0.014) 0.499(0.052) 0.442(0.028) 0.359(0.006) -

5 0.419(0.012) 0.476(0.021) 0.540(0.050) 0.622(0.027) 0.467(0.021) -

8 0.569(0.033) 0.882(0.052) 1.322(0.024) 0.711(0.038) 0.795(0.030) -

RMSE

3 0.230(0.008) 0.273(0.011) 0.385(0.065) 0.281(0.037) 0.241(0.006) 0.462(0.008)

5 0.444(0.010) 0.540(0.014) 0.618(0.045) 0.539(0.016) 0.558(0.013) 0.717(0.011)

8 0.693(0.032) 0.992(0.047) 1.378(0.028) 0.761(0.040) 0.945(0.026) 0.869(0.012)

Averaged return

3 6.405(0.009) 6.406(0.006) 6.024(0.211) 6.257(0.143) 6.410(0.007) 6.079(0.066)

5 6.331(0.019) 6.241(0.034) 6.001(0.127) 5.861(0.082) 6.252(0.029) 5.546(0.064)

8 6.028(0.074) 4.976(0.247) 2.936(0.169) 5.469(0.167) 5.550(0.121) 5.261(0.025)

Table 7.2: Mean and standard error over 30 trials of the dimension reduction error (DR), the root mean square error (RMSE), and the averaged

return at the 1000th update iteration of the proposed method on the 8-dimensional chainwalk task. The number of trajectories for transition model

estimation is indicated by N . The best method in terms of the mean error and comparable methods according to the paired t-test at the significance

level 5% are specified by bold face.

Criterion N = 10 N = 20 N = 50 N = 100

DR 1.006(0.040) 0.569(0.033) 0.481(0.019) 0.448(0.007)

RMSE 1.132(0.042) 0.690(0.030) 0.597(0.014) 0.568(0.005)

Averaged return 4.330(0.225) 6.028(0.074) 6.118(0.061) 6.190(0.040)

1
3

9

0 200 400 600 800 1000
Update iteration

1

2

3

4

5

6

7

A
ve

ra
ge

d
re

tu
rn

LSCE
KDR
LSQMI

LSQMID
LSDR
LSCDE

Expert

(a) 3-dimensional chainwalk task.

0 200 400 600 800 1000
Update iteration

1

2

3

4

5

6

7

A
ve

ra
ge

d
re

tu
rn

LSCE
KDR
LSQMI

LSQMID
LSDR
LSCDE

Expert

(b) 5-dimensional chainwalk task.

0 200 400 600 800 1000
Update iteration

1

2

3

4

5

6

7

A
ve

ra
ge

d
re

tu
rn

LSCE
KDR
LSQMI

LSQMID
LSDR
LSCDE

Expert

(c) 8-dimensional chainwalk task.

Figure 7.3: Averaged return over 30 trials of the chainwalk tasks. The error bar

indicates the standard error.

140

10 20 30 40 50 60 70 80 90 100
Collected trajectories

0.4

0.6

0.8

1

D
im

en
si

on
 r

ed
uc

tio
n

er
ro

r

(a)

10 20 30 40 50 60 70 80 90 100
Collected trajectories

0.6

0.8

1

1.2

R
M

S
E

(b)

10 20 30 40 50 60 70 80 90 100
Collected trajectories

3

4

5

6

7

F
in

al
 a

ve
ra

ge
d

re
tu

rn

(c)

Figure 7.4: Performance of the proposed method on the 8-dimensional chainwalk task

in terms of (a) dimension reduction error, (b) root mean square error, and (c) averaged

return at the 1000th update iteration. The results are averaged over 30 trials and the

error bar indicates the standard error.

Evaluation on Different Numbers of Collected Trajectories

In this experiment, we evaluate the proposed method on different numbers of collected

trajectories. We consider the chainwalk task with ds = 8. Figure 7.4 and Table

7.2 show the performance of the proposed method against the number of collected

trajectories N . The performance is measured by the dimension reduction error, the

RMSE, and the averaged return at the 1000th update iteration. Figure 7.4 shows that

the performance of the proposed method in all criteria can be improved by increasing

N . However, Table 7.2 also shows that there is no significance difference in terms

of the averaged return when increasing N to be more than 20. These results suggest

that the performance of the proposed method can be improved by collecting more

trajectories. However, there is a soft threshold, e.g., N = 20, where collecting more

trajectories only slightly improves the performance.

Comparison with Model-Free Reinforcement Learning

This experiment aims to evaluate the data efficiency of the proposed method. We

compare the performance of the proposed method with an existing model-free method

called importance-weighted PGPE (IW-PGPE) (Zhao et al., 2013). IW-PGPE is an

extension of PGPE which reuses previously collected trajectories to estimate the gra-

dient and the optimal baseline. It was shown to outperform the original PGPE in

both benchmark tasks and humanoid robot control (Zhao et al., 2013; Sugimoto et al.,

2016).

We collect N ′ ∈ {1, 5, 10} trajectories at each update iteration for IW-PGPE.

The averaged return against update iteration in Figure 7.5(a) shows that the averaged

return of IW-PGPE increases as N ′ increases. Moreover, IW-PGPE with N ′ = 10
outperforms the proposed method after 1000 update iterations. However, it collects

a total of 10000 trajectories while the proposed method only collects a total of 100

trajectories.

Figure 7.5(b) shows the averaged return against collected trajectories of IW-PGPE

and the proposed method when the budget for collecting trajectories is limited to

100 trajectories. In this scenario, IW-PGPE does not perform well when compared

with the proposed method. Note that small N ′ performs better than large N ′ in this

evaluation since smallN ′ means many update iterations, e.g., 100 update iterations for

N ′ = 1. Figure 7.5(c) shows that even when IW-PGPE collects up to 500 trajectories,

it still cannot outperform the proposed method which collects only 100 trajectories.

141

These results demonstrate the advantage of the proposed model-based approach over

the model-free approach in terms of data efficiency.

7.4.2 Cartpole Balancing

Next, we evaluate the proposed method on a more challenging task of cartpole bal-

ancing. We use a similar setup as the cartpole balancing task in Zhao et al. (2012).

Setup

We formulate the cartpole balancing task as follows. The state s = [ω, ω̇, s(3), s(4)]
is a 4-dimensional vector consisting of the angle of the pole ω ∈ [0, 2π], the angular

velocity of the pole ω̇ ∈ [−3π, 3π], and 2-dimensional noise s(3), s(4) ∈ R. The action

a ∈ [−20, 20] corresponds to the force applied to the cart. The goal of the agent is to

swing the pole to the upright position and balance it. This goal can be achieved by the

reward function:

r(st,a, st+1) = cos(ωt+1). (7.22)

The initial states are randomly chosen by

ω1 ∼ U (0, 2π) , (7.23)

ω̇1 ∼ U (−3π, 3π) , (7.24)

s
(3)
1 , s

(4)
1 ∼ N (0, 1). (7.25)

The angle and angular velocity of the pole are updated by the following transition

dynamics:

ωt+1 = ωt + ω̇t+1∆t + ǫ1, (7.26)

ω̇t+1 = ω̇t +
9.8 sin(ωt)− αwℓω̇2

t sin(2ωt)/2 + 10α cos(ωt)at
4ℓ/3− αwℓ cos2(ωt)

∆t + ǫ2, (7.27)

where α = 1/W + w and ǫ1, ǫ2 ∼ N (0, 0.252). The mass of the cart is W = 8 [kg],
the mass of the pole is w = 2 [kg], and the length of the pole is ℓ = 0.5 [m]. The

update frequency is set to ∆t = 0.1 [s]. There is no transition dynamics for the noise,

i.e., s
(3)
t+1, s

(4)
t+1 ∼ N (0, 1). The trajectory length is T = 40 and the discount factor is

γ = 0.9. We use the following linear deterministic policy:

a = θ⊤φ(ω, ω̇)

=

20∑

i=1

θi exp

(
−(cos(ω)− cos(ci))

2 + (sin(ω)− sin(ci))
2 + 4(ω̇ − ċi)

2/(6π)2

8(0.5)2

)
,

(7.28)

where (ci, ċi) ∈ {0, π/2, π, 3π/2} × {−3π,−3π/2, 0, 3π/2, 3π}. PGPE uses the in-

dependent Gaussian distribution with the initial mean ηi = 0 and the initial standard

deviation τi ∼ N (0, 1). The learning rate is β = 0.05

‖∇̂(baseline)
ρ J (ρ)‖ .

The transition probability only depends on the action and the first and second di-

mensions of the state vector. The optimal subspace for transition model estimation

142

0 200 400 600 800 1000
Update iteration

1

2

3

4

5

6

7

A
ve

ra
ge

d
re

tu
rn

IW-PGPE (N'=1)
IW-PGPE (N'=5)
IW-PGPE (N'=10)

LSCE (N=100)
Expert

(a) Averaged return by model-free IW-PGPE against update iter-

ation.

0 10 20 30 40 50 60 70 80 90 100
Collected trajectories

1

2

3

4

5

6

7

A
ve

ra
ge

d
re

tu
rn

IW-PGPE (N'=1)
IW-PGPE (N'=5)
IW-PGPE (N'=10)

LSCE
Expert

(b) Averaged return by model-free IW-PGPE against collected tra-

jectories when the number of collected trajectories is limited to

100 trajectories.

0 100 200 300 400 500
Collected trajectories

1

2

3

4

5

6

7

A
ve

ra
ge

d
re

tu
rn

IW-PGPE (N'=1)
IW-PGPE (N'=5)
IW-PGPE (N'=10)

LSCE (N=100)
Expert

(c) Averaged return by model-free IW-PGPE against collected tra-

jectories when the number of collected trajectories is limited to

500 trajectories.

Figure 7.5: Averaged return over 30 trials of the 8-dimensional chainwalk task by IW-

PGPE. The error bar indicates the standard error. The number of trajectories collected

at each update iteration is indicated by N ′. The averaged return of the proposed

method at the 1000th update iteration is included for comparison.

143

0 1000 2000 3000 4000 5000
Update iteration

-1

0

1

2

3

4

A
ve

ra
ge

d
re

tu
rn

LSCE
KDR
LSQMI

LSQMID
LSDR
LSCDE

Figure 7.6: Averaged return over 30 trials of the cartpole balancing task. The error

bar indicates the standard error.

has intrinsic dimension dz = 3 and we assume that the agent knows this. The corre-

sponding optimal transformation matrix is given by any rotations of

W opt =



1 0 0 0 0
0 1 0 0 0
0 0 0 0 1


 . (7.29)

Evaluation on Different Supervised Linear Dimension Reduction methods

We collect N = 15 trajectories using the uniform random policy at = U(−20, 20).
The dataset {(xi, s

′
i)}Pi=1 with P = 600 is standardized so that it has zero mean and

unit variance. The setup of each supervised linear dimension reduction method is the

same as that in the chainwalk experiment.

Table 7.3 shows the dimension reduction error, the RMSE, and the averaged return

obtained at the 5000th update iteraion. It shows that LSCE gives the best dimension

reduction results in terms of the mean. LSQMID and LSDR are comparable to LSCE,

while KDR and LSQMI do not work well.

After the dimension reduction step, we learn the transition model by LSCDE and

compute the RMSE by a test dataset with Ntest = 900. The result in Table 7.3 shows

that LSCE and LSDR work equally well in terms of the RMSE and are consistent

with their dimension reduction performance. However, LSQMID does not work well

due to its unstable behavior despite its comparable dimension reduction performance.

KDR, LSQMI and LSCDE do not work well in this task. This suggests that LSCE and

LSDR should work equally well in the following reinforcement learning evaluation.

We evaluate the reinforcement learning performance by the averaged return over

1000 trajectories. Figure 7.6 the averaged return against update iteration and Table

7.3 shows averaged return obtained at the 5000th update iteration. The results show

that LSCE and LSDR work equally well, while both LSQMI and LSQMID perform

very poorly and are outperformed by LSCDE without dimension reduction.

144

Table 7.3: Mean and standard error over 30 trials of the dimension reduction error (DR), the root mean square error (RMSE), and the averaged return

at the 5000th update iteration on the cartpole task. The best method in terms of the mean error and comparable methods according to the paired t-test

at the significance level 5% are specified by bold face.

Criterion LSCE KDR LSQMI LSQMID LSDR LSCDE

DR 0.533(0.083) 0.774(0.032) 1.306(0.079) 0.657(0.097) 0.641(0.052) -

RMSE 1.789(0.008) 1.807(0.007) 1.894(0.011) 1.811(0.011) 1.786(0.007) 1.858(0.004)

Averaged return 3.043(0.267) 2.595(0.232) 1.537(0.313) 1.914(0.311) 2.951(0.238) 2.315(0.214)

Table 7.4: Mean and standard error over 30 trials of the dimension reduction error (DR), the root mean square error (RMSE), and the averaged return

at the 5000th update iteration of the proposed method on the cartpole task. The number of trajectories for transition model estimation is indicated

by N . The best method in terms of the mean error and comparable methods according to the paired t-test at the significance level 5% are specified

by bold face.

Criterion N = 10 N = 30 N = 60 N = 100

DR 0.789(0.080) 0.193(0.028) 0.252(0.027) 0.128(0.013)

RMSE 1.309(0.011) 1.227(0.004) 1.225(0.002) 1.223(0.003)

Averaged return 2.308(0.275) 2.864(0.267) 3.066(0.279) 3.355(0.267)

Table 7.5: Mean and standard error over 10 trials of the root mean squared error by LSCE on the humanoid robot reaching task.

dz = 2 dz = 5 dz = 7 dz = 10 dz = 12 dz = 15 dz = 17

1.097(0.093) 0.490(0.018) 0.491(0.019) 0.472(0.025) 0.454(0.021) 0.506(0.026) 0.536(0.030)

1
4

5

Evaluation on Different Numbers of Collected Trajectories

We evaluate the proposed method on different numbers of collected trajectories. Table

7.4 shows the dimension reduction error, the RMSE, and the averaged return of the

proposed method with the number of collected trajectory N ∈ {10, 30, 60, 100}. It

shows that the performance of the proposed method can be improved by collecting

more trajectories. However, there is a soft threshold, e.g., N = 60, where collecting

more trajectories only slightly improves the performance in terms of the averaged

return. These results are similar to those in the chainwalk experiment.

Comparison with Model-Free Reinforcement Learning

We compare the performance of the proposed method with IW-PGPE. We collect

N ′ ∈ {1, 5, 10} trajectories at each iteration for IW-PGPE. Figure 7.7(a) shows that

IW-PGPE does not perform well in this experiment. IW-PGPE with N ′ = 10 re-

quires 5000 update iterations or equivalently 50000 trajectories to be comparable to

the proposed method which only uses 100 trajectories. Figure 7.7(b) shows the aver-

aged return against collected trajectories of IW-PGPE when the budget for collecting

trajectories is limited to 100 trajectories. In this scenario, the policy improvement by

IW-PGPE is almost negligible when compared with the policy improvement by the

proposed method. This result emphases the advantage of the model-based approach

over the model-free approach in terms of data efficiency.

7.4.3 Humanoid Robot Control

Finally we evaluate the performance of the proposed method on a real-world control

task using the humanoid robot CB-i (Cheng et al., 2007) (see Figure 7.8(a)).

Setup

We consider a robot reaching task using 5 degrees of freedom (DoF) of the left arm.

They are the torso yaw joint, the three left shoulder joints, and the left elbow joint.

The goal of the robot is to move its left end-effector to the target object from the fixed

initial position (see Figure 7.8(b)). The trajectory length is T = 100 which equals

approximately 1 second. The reward at each time step is

rt = exp(−dt)− 0.0005min(ct, 10000), (7.30)

where dt denotes the distance between the end effector and the target object, and ct
denotes the control cost. The discount factor is set at γ = 0.999. The optimal policy

needs to reach the target object while keeping the control cost low.

We consider learning the robot transition probability in the joint space as follows.

The state is a 10-dimensional vector s =
[
ω⊤, ω̇⊤]⊤, where ω ∈ R5 denotes the joint

angles and ω̇ ∈ R5 denotes the joint angular velocities. The action is a 10-dimensional

vectora =
[
ω⊤

+, ω̇
⊤
+

]⊤
, whereω+ ∈ R5 denotes the desired joint angles and ω̇+ ∈ R5

denotes the desired joints angular velocities. Thus, the transition probability in this

joint space has 20 input dimensions and 10 output dimensions.

We use the time-dependent policy model similarly to that in Sugimoto et al. (2014,

2016). For each DoF, the target angle ω+ and the target angular velocity ω̇+ at time

146

0 1000 2000 3000 4000 5000
Update iteration

-2

-1

0

1

2

3

4

A
ve

ra
ge

d
re

tu
rn

IW-PGPE (N'=1)
IW-PGPE (N'=5)

IW-PGPE (N'=10)
LSCE (N=100)

(a) Averaged return by model-free IW-PGPE against update iteration.

0 10 30 60 100
Collected trajectories

-2

-1

0

1

2

3

4

A
ve

ra
ge

d
re

tu
rn

IW-PGPE (N'=1)
IW-PGPE (N'=5)

IW-PGPE (N'=10)
LSCE

(b) Averaged return by model-free IW-PGPE against collected trajectories.

Figure 7.7: Averaged return over 30 trials of the cartpole task by IW-PGPE. The error

bar indicates the standard error. The number of trajectories collected at each update

iteration is indicated by N ′. The averaged return of the proposed method at the 5000th

update iteration is included for comparison.

step t are determined from the augmented state s̃ = [ω, ω̇, t]⊤ by

ω+ = ω + 0.01ω̇+, (7.31)

ω̇+ =

6∑

i=1

θiφi(t), (7.32)

147

(a) Humanoid robot CB-i (b) Humanoid robot simulator SL

Figure 7.8: Humanoid robot CB-i and simulator SL. The target object is located in

front of the robot (the figure of the simulator is identical to that in Sugimoto et al.

(2014)).

where θ = [θ1, . . . , θ6]
⊤

is the policy parameter vector and

φi(t) =
exp

(
− (t−ci)

2

2σ2

)

∑6
j=1 exp

(
− (t−cj)2

2σ2

) , (7.33)

is the time-dependent normalized Gaussian basis function. The motor torque com-

mand for each joint is then computed by the proportional-derivative (PD) controller:

τ = −KP (ω − ω+)−KD(ω̇ − ω̇+), (7.34)

where KP > 0 ad KD > 0 denote the gain constants.

We use the independent Gaussian distribution for PGPE and use the learning rate

β = 0.05

‖∇̂(baseline)
ρ J (ρ)‖ . The imitation learning discussed in Section 7.3.2 is used to ini-

tialize the mean and the standard deviation of the Gaussian distribution. N demon-

strated trajectories are collected by an inverse kinematics controller as follows. For

each demonstrated trajectory, we randomly choose a position (x, y, z) = (p1, 0.7, 0.5)
around the target object where p1 ∼ U(−0.1, 0.1) (see Figure 7.8(b)). Then we use

the inverse kinematics controller to move the left end-effector to that (x, y, z) posi-

tion. Note that for this setup the demonstrator is fully observable by the agent and

they have identical state and action descriptions. Also note that the inverse kinemat-

ics controller is a suboptimal policy since it does not take into account the control cost

term in the reward function.

Evaluation on the Simulator SL

Firstly, we evaluate the proposed method on the humanoid robot simulator SL (Schaal,

2009) (see Figure 7.8(b)). The robot collects N = 20 demonstrated trajectories for

policy initialization and transition model estimation.

Since the intrinsic dimension dz is unknown, we perform the following proce-

dure to find good candidates for the intrinsic dimension. The dataset {(xi, s
′
i)}2000i=1 is

randomly split into a training dataset with 1500 data points and a validation dataset

with 500 data points. The training dataset is used to learn transition models and

the validation dataset is used to compute the RMSE. Table 7.5 shows the RMSE on

148

the validation dataset averaged over 10 trials. It shows that the intrinsic dimensions

dz ∈ {7, 10, 12} give small RMSEs and should be good candidates.

Based on the above model selection, we learn transition models with dz ∈
{7, 10, 12} using all 2000 data points. Then, we evaluate the reinforcement learning

performance by the averaged return over 10 trajectories. The averaged return against

the update iteration in Figure 7.9(a) shows that LSCE with dz = 10 gives stable im-

provement as well as the highest averaged return at the 300th update iteration. On the

other hand, the performance of LSCE with dz ∈ {7, 12} and LSCDE are quite poor

and quite unstable. Nonetheless, LSCE still outperforms LSCDE in term of the mean

averaged return. This result implies that there exists a low-dimensional subspace of

the state-action variable which can describe the transition probability of the 5-DoF

humanoid robot in the joint space. Since dz = 10 gives the best performance we may

assume that such a subspace has dimension of approximately 10.

Although the proposed method with dz = 10 gives a good performance, it still

could not outperform the expert, i.e., the inverse kinematics controller. Nonetheless,

we expect that the performance of the proposed method can be improved by collecting

more trajectories, as suggested by our previous experiments.

Comparison with Model-Free Reinforcement Learning

We compare the performance of the proposed method with IW-PGPE. The initial

policy is obtained by imitation learning identically to the proposed method. We collect

N ′ ∈ {1, 5} trajectories at each update iteration. Figure 7.9(b) shows the averaged

return against collected trajectories of IW-PGPE. IW-PGPE improves the policy as

it collects more trajectories and it eventually outperforms the proposed method and

the expert. However, IW-PGPE requires approximately 100 to 150 trajectories to be

comparable to the proposed method which only uses the 20 demonstrated trajectories.

Thus, if we assume the scenario that the budget for collecting trajectories is limited to

20 trajectories, the proposed method would be more preferable.

Evaluation on the Humanoid Robot CB-i

Lastly, we evaluate the proposed method on the real humanoid robot CB-i. The ex-

perimental setup is almost identical to that on the simulator SL, but with only N = 10
demonstrated trajectories. We only consider the proposed method with dz = 10.

Figure 7.10 shows the averaged return against the update iteration on the CB-i. The

policy improves gradually and converge to a stable policy. Figure 7.11 shows a typical

reaching trajectory obtained by the proposed method using the learned policy at the

150th update iteration.

7.5 Conclusion

The performance of model-based reinforcement learning depends on the accuracy of

the transition model. Existing transition model estimation methods tend to perform

poorly when the input has high dimensionality. In this chapter, we propose to learn

a transition model by LSCE which performs both transition model estimation and

supervised linear dimension reduction in an integrated manner. We showed through

experiments that LSCE is a promising transition model estimation method for high-

dimensional reinforcement learning problems.

149

0 50 100 150 200 250 300
Update iteration

30

40

50

60

70
A

ve
ra

ge
d

R
et

ur
n

LSCE (dz=7)
LSCE (dz=10)
LSCE (dz=12)

LSCDE
Expert

(a) Averaged return by M-PGPE with different transition models.

0 100 200 300 400 500
Collected trajectories

30

40

50

60

70

80

A
ve

ra
ge

d
R

et
ur

n

IW-PGPE (N'=1)
IW-PGPE (N'=5)
LSCE (dz=10)
Expert

(b) Averaged return by model-free IW-PGPE with different data collection scheduling. The

result of LSCE (dz = 10) at the 300th update iteration is included for comparison.

Figure 7.9: Averaged return over 10 test trajectories on the simulator SL. The error

bar indicates the standard error.

150

0 30 60 90 120 150
Update iteration

50

60

70

80

A
ve

ra
ge

d
R

et
ur

n

LSCE (dz=10)

Figure 7.10: Averaged return over 10 trajectories by the proposed method on the

humanoid robot CB-i. The error bar indicates the standard error.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7.11: A typical reaching trajectory obtained by the proposed method on the

CB-i.

We focused on the transition model estimation in a batch learning setting, i.e., all

data points are use at once for learning. On the other hand, an online learning setting is

also important since the agent may collect more trajectory data during learning. LSCE

can be straightforwardly used in such an online scenario by learning the transition

model from scratch every time a new data is observed. However, this naive usage is

computationally expensive and may not be suitable for real-world control tasks which

requires real-time operation. A computationally efficient online extension of LSCE

will be considered in our future work.

We proposed to predict the next state vector from the transition model by numeri-

cally approximating the mean of the transition model (see Equation (7.5)). Although

this prediction approach performs well in our experiments, it may not perform well

when the transition model has multi-modality. For instance, the mean of a bi-modal

151

Gaussian transition model does not give an informative prediction of the next state.

A possible approach to cope with this problem is to use the mode of the transition

model, i.e.,

ŝt+1 = argmax
s′

[p̂(s′|Wx =Wxt)] . (7.35)

However, for the LSCE transition model we need to solve

ŝt+1 = argmax
s′

[
α̃

⊤
ϕ(Wxt, s

′)∫
α̃

⊤
ϕ(Wxt, s̃′)ds̃′

]
= argmax

s′

[
α̃

⊤
ϕ(Wxt, s

′)
]
. (7.36)

For the Gaussian basis function, Equation (7.36) is a non-concave maximization prob-

lem which requires a non-linear optimization method and its solution can be a local

solution. A more efficient prediction approach will be considered in our future work.

So far, we only focused on mitigating the curse of dimensionality for transition

model estimation. However, the direct policy search approach also suffers from the

curse of dimensionality. The high dimensionality in direct policy search refers to the

high number of policy parameters, which is often a result of highly complex policy

function. In our experiments, we avoid using highly complex policy function by using

the handcrafted policy functions which rely only on small subset of feature of state.

However, these handcrafted policy functions require prior knowledge about the tasks

and are not always available. Thus, it is important to develop a policy model selection

method to choose an appropriate policy model without prior knowledge. A policy

gradient extension of the policy model selection approach proposed by Ueno et al.

(2012) would be promising.

152

Chapter 8

Contextual Policy Search with Single-step

Dimension Reduction

In this chapter, we present our fifth contribution on the contextual policy search with

single-step dimension reduction. We firstly introduce the contextual policy search

problem in Section 8.1. Then, in Section 8.2 we mathematically formulate the con-

textual policy search problem and briefly discuss existing methods and their limitation

when the context variables have high dimensionality. Next, in Section 8.3 we present

our method on the contextual policy search method with single-step dimension reduc-

tion. Lastly, we present our experimental evaluations in Section 8.4 and conclude the

chapter in Section 8.5.

8.1 Introduction

In our previous contributions on model-based reinforcement learning, we considered

a situation where an agent has to solve only one task, e.g., the robot learns a policy that

reaches an object at a fixed position. However, in practice an autonomous agent often

requires different policies for solving tasks with different contexts. For instance, in an

object hitting task the robot has to adapt his controller according to the object position,

i.e., the context. The direct policy search approach that we considered so far allows the

agent to learn a separate policy for each context. However, learning optimal policies

for many large contexts, such as in the presence of continuous context variables, is

impractical. On the other hand, direct contextual policy search approaches (Kober

et al., 2011; Neumann, 2011; da Silva et al., 2012) represent the contexts by real-

valued vectors and are able to learn a context-dependent distribution over the policy

parameters. Such a distribution can generalize across context values and therefore the

agent is able to adapt to unseen contexts.

Yet, direct policy search methods (both contextual and plain) usually require a

lot of evaluations of the objective and may converge prematurely. To alleviate these

issues, Abdolmaleki et al. (2015) recently proposed a stochastic search framework

called model-based relative entropy stochastic search (MORE). In this framework, the

new search distribution can be computed efficiently in a closed form using a learned

model of the objective function. MORE outperformed state-of-the-art methods in

stochastic optimization problems and single-context policy search problems, but its

application to contextual policy search has not been explored yet. The first part of our

contribution in this chapter is a novel contextual policy search method in the MORE

framework.

153

However, a naive extension of the original MORE would still suffer from high-

dimensional contexts. Learning from high-dimensional variables, in fact, is still an

important problem in statistics and machine learning (Hastie et al., 2001; Bishop,

2006; Murphy, 2012). Nowadays, high-dimensional data (e.g., camera images) can

often be obtained quite easily, but obtaining informative low-dimensional variables

(e.g., objects positions) is non-trivial and requires prior knowledge and/or human

guidance.

In this chapter, we propose a method to handle high-dimensional context vari-

ables by learning a low-rank representation of the objective function. We show that

learning a low-rank representation corresponds to simultaneously performing super-

vised linear dimension reduction on the context variables. Since optimization with

a rank constraint is generally NP-hard, we minimize the nuclear norm (also called

trace norm), which is a convex surrogate of the rank function (Recht et al., 2010).

This minimization allows us to learn a low-rank representation in a fully supervised

manner by just solving a convex optimization problem. We evaluate the proposed

method on a synthetic task with known ground truth and on robotic ball hitting tasks

based on camera images. The evaluation shows that the proposed method with nuclear

norm minimization outperforms the methods that naively perform principal compo-

nent analysis to reduce the dimensionality of context variables in a multi-step manner.

In the next section, we give a mathematical problem formulation of the contextual

policy search and briefly discuss related work.

8.2 Contextual Policy Search

In this section, we formulate the direct contextual policy search problem and briefly

discuss existing methods.

8.2.1 Problem Formulation

Recall that in the standard direct policy search, the goal is to find a parameter θ which

maximizes the expected return:

R(θ) =

∫
R̃(τ)p(τ |θ)dτ . (8.1)

where R̃(τ) is the return along a trajectory τ and p(τ |θ) is the trajectory density

function. Note that we use slightly different notations from those in Chapter 5 in the

remainder of this chapter. The return R̃(τ) is given by

R̃(τ) =

T∑

t=1

γt−1r(st,at, st+1), (8.2)

where r(s,a, s′) is the reward function. Also, the trajectory density function p(τ |θ)
is given by

p(τ |θ) = p1(s1)

T∏

t=1

p(st+1|st,at)π(at|st; θ), (8.3)

154

where p1(s) is the initial state density function, p(s′|s,a) is the transition probability

density function, and π(a|s; θ) is a parameterized policy function with policy param-

eter θ.

In direct contextual policy search, we assume that the reward function and the tran-

sition probability density function are determined by the context variables c. To em-

phasize dependency on c, we use r(s,a, s′; c) and p(s′|s,a; c) to denote the context-

dependent reward functions and the context-dependent transition probability density

function, respectively. Then, the expected return now depends on the context variables

as well, i.e.,

R(θ, c) =

∫
R̃(τ , c)p(τ |θ, c)dτ , (8.4)

where R̃(τ , c) denotes the context-dependent return along a trajectory τ :

R̃(τ , c) =

T∑

t=1

γt−1r(st,at, st+1; c), (8.5)

and p(τ |θ, c) denotes the context-dependent trajectory probability density:

p(τ |θ, c) = p1(s1)
T∏

t=1

p(st+1|st,at; c)π(at|st; θ). (8.6)

The goal of direct contextual policy search is to find a search distribution p(θ|c)
maximizing the expected return

∫∫
µ(c)p(θ|c)R(θ, c)dθdc, (8.7)

where µ(c) denotes the context distribution. We assume that the context dimensional-

ity dc is very large. Figure 8.1 illustrates comparison between standard policy search

and contextual policy search.

In general, the functional form of R(θ, c) is unknown since the transition proba-

bility is unknown. However, we assume that the agent can always access its value by

the following data collection process. An agent observes the context variable c ∈ Rdc

and draws a parameter θ ∈ Rdθ from a search distribution p(θ|c). Subsequently,

the agent executes a policy with the parameter θ and observes a return computed by

R(θ, c).
It is also convenient to treat the trajectory execution of the agent as a black box

system and then simplify the problem into maximizing output of a black box function.

That is, contextual policy search methods query the context variable c and the drawn

policy parameter θ to this black box, and then this black box outputs R(θ, c). In

this case, the goal of contextual policy search can be understood as finding a search

distribution p(θ|c) which maximizes the expected output of this black box. This black

box treatment is illustrated in Figure 8.2.

Note that R(θ, c) is an expected return over the trajectory distribution while the

objective function in Equation (8.7) is also an expected return over the trajectory

distribution, the context distribution, and the search distribution, i.e.,
∫∫

µ(c)p(θ|c)R(θ, c)dθdc =

∫∫∫
µ(c)p(θ|c)R̃(τ)p(τ |θ)dθdcdτ . (8.8)

155

(a) Standard policy search

(b) Contextual policy search

Figure 8.1: Comparison between standard policy search and contextual policy search.

In contextual policy search, an agent observes the context variable cwhich determines

the reward function and the transition probability of the environment. In the ball

hitting task, context variable can be camera images which encode information about

the position of the object.

Figure 8.2: A simplified contextual policy search problem. The trajectory execution

of the agent is treated as a black box system which we can query c and θ to obtain

R(θ, c).

156

To avoid confusion, in this chapter we simply refer to R(θ, c) as reward instead, and

we refer to Equation (8.7) as the expected return. We also stress that context variables

are fixed during task execution and they are drawn independently from µ(c). Thus,

context variables are different from state variables in standard policy search.

8.2.2 Related Work

In the basic direct contextual policy search framework, the agent iteratively col-

lects data {(θn, cn, R(θn, cn))}Nn=1 using a sampling distribution q(θ|c). Subse-

quently, it computes a new search distribution p(θ|c) such that the expected reward

increases or is maximized. In literature, different approaches have been used to com-

pute the new search distribution, e.g., evolutionary strategies (Hansen et al., 2003),

expectation-maximization algorithms (Kober et al., 2011), or information theoretic

approaches (Deisenroth et al., 2013).

Most of the existing direct contextual policy search methods focus on tasks with

low-dimensional context variables. To learn from high-dimensional context variables,

usually the problem of learning a low-dimensional context representation is separated

from the direct policy search by preprocessing the context space. However, unsu-

pervised linear dimension reduction techniques are insufficient in problems where

the latent representation contains distractor dimensions that do not influence the re-

ward. A prominent example is principal component analysis (PCA) (Jolliffe, 1986),

that does not take the supervisory signal into account and therefore cannot discrimi-

nate between relevant and irrelevant latent dimensions. On the other hand, supervised

linear dimension reduction techniques such as our previous contributions require a

suitable response variable. However, manually defining such variables in nontrivial

for many problems.

In the last years, non-linear dimension reduction techniques based on deep learn-

ing have gained popularity (Bengio, 2009). For instance, Watter et al. (2015b) pro-

posed a generative deep network to learn low-dimensional representations of images

in order to capture information about the system transition dynamics and allow opti-

mal control problems to be solved in low-dimensional spaces. More recently, Silver

et al. (2016) successfully trained a machine to play a high-level game of go using a

deep convolutional network. Although their work does not directly focus on dimen-

sion reduction, deep convolutional networks are known to be able to extract meaning-

ful data representations. Thus, the effect of dimension reduction is achieved.

However, deep learning approaches generally require large datasets that are dif-

ficult to obtain in real-world scenarios (e.g., robotics). Furthermore, they involve

solving non-convex optimization, which can suffer from local optima.

In this chapter, we tackle the issues raised above. First, the proposed approach

integrates supervised linear dimension reduction on the context variables by learning a

low-rank representation for the reward model. Second, the model learning problem is

formalized as a convex optimization problem and is therefore guaranteed to converge

to a global optimum.

8.3 Contextual Model-based Relative Entropy Stochastic Search

The original MORE (Abdolmaleki et al., 2015) finds a search distribution (without

context) maximizing the expected reward while upper-bounding the Kullback-Leibler

157

(KL) divergence (Kullback and Leibler, 1951) between successive search distribu-

tions and lower-bounding the entropy of the new search distribution. The KL and

the entropy bounds control the exploration-exploitation trade-off. The key insight of

MORE is to learn a reward model to efficiently compute a new search distribution

in closed form. Below, we propose our method called contextual model-based rela-

tive entropy stochastic search (C-MORE), which is a direct contextual policy search

method in the MORE framework.

8.3.1 Learning the Search Distribution

The goal of C-MORE is to find a search distribution p(θ|c) that maximizes the ex-

pected reward while upper-bounding the expected KL divergence between p(θ|c) and

q(θ|c), and lower-bounding the expected entropy of p(θ|c). Formally,

max
p

∫∫
µ(c)p(θ|c)R(θ, c)dθdc,

s.t.

∫∫
µ(c)p(θ|c) log p(θ|c)

q(θ|c)dθdc ≤ ǫ,

−
∫∫

µ(c)p(θ|c) log p(θ|c)dθdc ≥ β,
∫∫

µ(c)p(θ|c)dθdc = 1, (8.9)

where the KL upper-bound ǫ and the entropy lower-bound β are parameters specified

by the user. The former is fixed for the whole learning process. The latter is adaptively

changed according to the percentage of the relative difference between the sampling

policy’s expected entropy and the minimal entropy, as described by Abdolmaleki et al.

(2015), i.e.,

β = γ(E[H(q)]−H0) +H0, (8.10)

where E[H(q)] = −
∫∫

µ(c)q(θ|c) log q(θ|c)dθdc is the sampling policy’s expected

entropy and H0 is the minimal entropy. In the experiments, we set γ = 0.99 and

H0 = −150. The above optimization problem can be solved as follows by using the

method of Lagrange multipliers which we introduced in Chapter 5.

Firstly, we write the Lagrangian L with the Lagrange multipliers η > 0, ω > 0,

and γ, which correspond to the first, second, and third constraints, respectively:

L(p, η, ω, γ) =
∫∫

µ(c)p(θ|c)R(θ, c)dθdc

+ η

(
ǫ−

∫∫
µ(c)p(θ|c) log p(θ|c)

q(θ|c)dθdc
)

+ ω

(
−
∫∫

µ(c)p(θ|c) log p(θ|c)dθdc− β

)

+ γ

(∫∫
µ(c)p(θ|c)dθdc− 1

)
. (8.11)

Then, we maximize the Lagrangian L(p, η, ω, γ) w.r.t. the primal variable p. The

158

derivative of the Lagrangian w.r.t. p is

∂pL(p, η, ω, γ) =
∫∫

µ(c)
(
R(θ, c)− (η + ω) log p(θ|c) + η log q(θ|c)

)
dθdc

− (η + ω − γ). (8.12)

By setting this derivative to zero, we have

0 =

∫∫
µ(c)

(
R(θ, c)− (η + ω) log p(θ|c) + η log q(θ|c)

)
dθdc− (η + ω − γ)

= R(θ, c)− (η + ω) log p(θ|c) + η log q(θ|c)− (η + ω − γ). (8.13)

This gives us

log p(θ|c) = R(θ, c)

η + ω
+

η

η + ω
log q(θ|c)− η + ω − γ

η + ω
, (8.14)

p(θ|c) = q(θ|c)
η

η+ω exp

(
R(θ, c)

η + ω

)
exp

(
−η + ω − γ

η + ω

)
. (8.15)

The last exponential term in Equation (8.15) is the normalization constant for the

search distribution p(θ|c) since it does not depend on θ or c. Thus, we have

exp

(
η + ω − γ

η + ω

)
=

∫
q(θ|c) η

η+ω exp

(
R(θ, c)

η + ω

)
dθ, (8.16)

η + ω − γ = (η + ω) log

(∫
q(θ|c) η

η+ω exp

(
R(θ, c)

η + ω

)
dθ

)
. (8.17)

(The minus sign in the exponent in Equation (8.15) becomes the inverse operator and

cancels out). This normalization term will be used to derive the dual function. Next,

we substitute the term log p(θ|c) back to the Lagrangian

L(p∗, η,ω, γ)

=

∫∫
µ(c)p(θ|c)R(θ, c)dθdc

− η

(∫∫
µ(c)p(θ|c)

[
R(θ, c)

η + ω
+

η

η + ω
log q(θ|c)− η + ω − γ

η + ω

]
dθdc

)

− ω

(∫∫
µ(c)p(θ|c)

[
R(θ, c)

η + ω
+

η

η + ω
log q(θ|c)− η + ω − γ

η + ω

]
dθdc

)

+ η

∫∫
µ(c)p(θ|c) log q(θ|c)dθdc+ γ

(∫∫
µ(c)p(θ|c)dθdc− 1

)

+ ηǫ− ωβ. (8.18)

Most terms cancel out and we only have

L(p∗, η,ω, γ)

= ηǫ− ωβ − γ +

∫
µ(c) (η + ω) dc

= ηǫ− ωβ +

∫
µ(c) (η + ω − γ) dc

= ηǫ− ωβ + (η + ω)

∫
µ(c) log

(∫
q(θ|c)

η
η+ω exp

(
R(θ, c)

η + ω

)
dθ

)
dc

= g(η, ω). (8.19)

159

The Lagrange multipliers η > 0 and ω > 0 are obtained by minimizing the dual

function g(η, ω). Then, the search distribution in Equation (8.15) can be computed

using these Lagrange multipliers. However, evaluating g(η, ω) is not trivial due to the

integration over q(θ|c) η
η+ω , that cannot be approximated straightforwardly by sample

averages. Below, we describe how to solve this issue and evaluate the dual function

from data.

8.3.2 Dual Function Evaluation via the Quadratic Model

We assume that the reward function R(θ, c) can be approximated by a quadratic

model

R̂(θ, c) = θ⊤Aθ + c⊤Bc+ 2θ⊤Dc+ θ⊤r1 + c
⊤r2 + r0, (8.20)

where A ∈ Rdθ×dθ ,B ∈ Rdc×dc ,D ∈ Rdθ×dc , r1 ∈ Rdθ , r2 ∈ Rdc , and r0 ∈ R

are the model parameters. Matrices A and B are symmetric. We also assume the

sampling distribution q(θ|c) to be Gaussian of the form

q(θ|c) = N (θ|b+Kc,Q). (8.21)

Under these assumptions, the dual function and the new search distribution can be

computed as follows. Firstly, we consider the problematic term in the dual function

and the new search distribution:

q(θ|c)
η

η+ω exp

(
R(θ, c)

η + ω

)
. (8.22)

Using the Gaussian distribution q(θ|c) and replacing R(θ, c) with R̂(θ, c) yield

q(θ|c) η
η+ω exp

(
R̂(θ, c)

η + ω

)

=
1

|2πQ|
η

2(η+ω)

exp

(
− η

2(η + ω)
[θ − (b+Kc)]⊤Q−1[θ − (b+Kc)]

)

× exp

(
θ⊤Aθ + c⊤Bc + 2θ⊤Dc+ θ⊤r1 + c

⊤r2 + r0
η + ω

)

=
1

|2πQ|
η

2(η+ω)

exp

(
1

2(η + ω)

(
− ηθ⊤Q−1θ + 2ηθ⊤Q−1b+ 2ηθ⊤Q−1Kc

− ηb⊤Q−1b− 2ηb⊤Q−1Kc− ηc⊤K⊤Q−1Kc+ 2θ⊤Aθ + 2c⊤Bc

+ 4θ⊤Dc+ 2θ⊤r1 + 2c⊤r2 + 2r0

))

=
1

|2πQ|
η

2(η+ω)

exp

(
1

2(η + ω)

(
θ⊤
(
−ηQ−1 + 2A

)
θ + θ⊤

(
2ηQ−1b+ 2r1

)

+ θ⊤
(
2ηQ−1K + 4D

)
c+G

))

=
1

|2πQ|
η

2(η+ω)

exp

(
1

2(η + ω)

(
− (θ⊤Fθ − 2θ⊤f − 2θ⊤Lc)

)
+

G

2(η + ω)

)
,

(8.23)

160

where

F = ηQ−1 − 2A, (8.24)

f = ηQ−1b+ r1, (8.25)

L = ηQ−1K + 2D, (8.26)

G = −ηb⊤Q−1b− 2ηb⊤Q−1Kc− ηc⊤K⊤Q−1Kc + 2c⊤Bc+ 2c⊤r2 + 2r0.
(8.27)

Next, we “complete the square” by considering the following quadratic term

[θ − (F−1f + F−1Lc)]⊤F [θ − (F−1f + F−1Lc)]

= θ⊤Fθ − 2θ⊤f − 2θ⊤Lc+ (F−1f + F−1Lc)⊤F (F−1f + F−1Lc)

=
(
θ⊤Fθ − 2θ⊤f − 2θ⊤Lc

)
+ f⊤F−1f + 2f⊤F−1Lc+ c⊤L⊤F−1Lc.

(8.28)

Therefore, we have

q(θ|c)
η

η+ω exp

(
R̂(θ, c)

η + ω

)

=
1

|2πQ|
η

2(η+ω)

exp

(
1

2(η + ω)

(
f⊤F−1f + 2f⊤F−1Lc+ c⊤L⊤F−1Lc

− [θ − (F−1f + F−1Lc)]⊤F [θ − (F−1f + F−1Lc)]
)
+

G

2(η + ω)

)
. (8.29)

Using the above result, the inner integral term in the dual function is

∫
q(θ|c) η

η+ω exp

(
R̂(θ, c)

η + ω

)
dθ

=
|2πF−1(η + ω)| 12
|2πQ|

η
2(η+ω)

exp

(
1

2(η + ω)

(
f⊤F−1f + 2f⊤F−1Lc + c⊤L⊤F−1Lc

))

exp

(
G

2(η + ω)

)
, (8.30)

where the squared exponential term in Equation (8.29) depending on θ is “integrated

out” and becomes the inverted normalization term |2πF−1(η + ω)| 12 . Plugging this

term back to the dual function yields

g(η, ω) = ηǫ− ωβ +
1

2

(
f⊤F−1f − ηb⊤Q−1b

+ (η + ω) log |2πF−1(η + ω)| − η log |2πQ|
)

+

∫
µ(c)

(
c⊤m+

1

2
c⊤Mc

)
dc, (8.31)

where

m = L⊤F−1f − ηK⊤Q−1b, (8.32)

M = L⊤F−1L− ηK⊤Q−1K. (8.33)

161

Algorithm 1: C-MORE

Input: Parameters ǫ and β, initial distribution p(θ|c)
1 for k = 1, . . . , K do

2 for n = 1, . . . , N do

3 Observe context cn ∼ µ(c)
4 Draw parameter θn ∼ p(θ|cn)
5 Execute task with θn and receive R(θn, cn)

6 Learn the quadratic model R̂(θ, c)
7 Solve argminη>0,ω>0 g(η, ω) using Equation (8.31)

8 Set new search distribution p(θ|c) using Equation (8.34)

This dual function can be evaluated much more conveniently. Since the context dis-

tribution µ(c) is unknown, we approximate the expectation in Equation (8.31) by

sample averages. The dual function can be minimized by standard non-linear opti-

mization routines such as IPOPT (Wächter and Biegler, 2006).

Similarly to the dual function, by using Equation (8.15) and Equation (8.29) we

compute the new search distribution in closed form as

p(θ|c) ∝ q(θ|c) η
η+ω exp

(
R̂(θ, c)

η + ω

)

= N
(
θ|F−1f + F−1Lc,F−1(η + ω)

)
, (8.34)

where terms independent on θ and c are subsumed as a normalization constant. To en-

sure that the covariance F−1(η+ω) is positive definite, the matrixA of the quadratic

model is constrained to be negative definite. C-MORE is summarized in Algorithm 1.

8.3.3 Learning the Quadratic Model

The performance of C-MORE depends on the accuracy of the quadratic model. For

many problems, the reward function R(θ, c) is not quadratic and the quadratic model

is not suitable to approximate the entire reward function. However, the reward func-

tion is often smooth and it can locally be approximated by a quadratic model. There-

fore, we locally approximate the reward function by learning a new quadratic model

for each policy update. The quadratic model can be learned by regression methods

such as ridge regression1 (Bishop, 2006). However, ridge regression is prone to error

when the context is high-dimensional. Below, we address this issue by firstly showing

that performing linear dimension reduction on the context variables yields a low-rank

matrix of parameters. Secondly, we propose a nuclear norm minimization approach

to learn a low-rank matrix without explicitly performing dimension reduction.

8.3.4 Dimension Reduction and Low-Rank Representation

Linear dimension reduction learns a low-rank matrix W and projects the data onto a

lower dimensional subspace. Performing linear dimension reduction on the context

1After learning the parameters, A is enforced to be negative definite by truncating its positive

eigenvalues. Subsequently, we re-learn the remainder parameters. An alternative approach is projected

gradient descend, but it is more computationally demanding and requires step size tuning.

162

variables yields the following quadratic model

R̂(θ, c) = θ⊤Aθ + c⊤W⊤B̃Wc+ 2θ⊤D̃Wc

+ θ⊤r1 + c
⊤W⊤r̃2 + r0, (8.35)

where W ∈ Rdz×dc denotes a rank-dz matrix with dz < dc. The model parame-

ters A, B̃, D̃, r1, r̃2 and r0 can be learned by ridge regression. However, the matrix

B = W⊤B̃W is low-rank, i.e., rank(B) = dz < dc. Thus, performing linear

dimension reduction on the contexts makes B low-rank. In other words, we may

perform dimension reduction in a single-step manner by learning the quadratic model

such thatB has low-rank. Note that the rank ofD = D̃W depends on θ and is prob-

lem dependent. Hence, we do not consider the rank ofD for dimension reduction.

There are several linear dimension reduction methods that can be applied to learn

W . Principal component analysis (PCA) (Jolliffe, 1986) is a common method used

in statistics and machine learning. However, being unsupervised, it does not take the

regression targets into account, i.e., the reward. Alternative supervised techniques

such as our previous contributions do not take the regression model, i.e., the quadratic

model, into account. Moreover, performing dimension reduction before model learn-

ing is a multi-step approach and should be avoided.

On the contrary, in projection regression (Friedman and Stuetzle, 1981; Vijayaku-

mar and Schaal, 2000) the model parameters and the projection matrix are learned

simultaneously. Although this is a single-step approach, applying this approach to

the model in Equation (8.35) requires alternately optimizing for the model parameters

and the projection matrix and is computationally expensive.

In the original MORE, Bayesian dimensionality reduction (Gönen, 2013) is ap-

plied to perform linear supervised dimension reduction on θ, i.e., the algorithm con-

siders a projection Wθ. The matrix W is sampled from a prior distribution and

the algorithm learns the model parameters using weighted average over the sampled

W . However, for high-dimensionalW , this approach requires an impractically large

amount of samples W to obtain an accurate model, leading to computationally ex-

pensive updates.

Next, we propose our single-step approach to dimension reduction in this scenario.

Our key idea is to learn a low-rank representation via nuclear norm regularization.

8.3.5 Learning a Low-Rank Matrix with Nuclear Norm Regularization

The quadratic model in Equation (8.20) can be re-written as

R̂(x) = x⊤Hx, (8.36)

where the input vector x and the parameter matrixH are defined as

x =



θ

c

1


 , (8.37)

and

H =



A D 0.5r1
D⊤ B 0.5r2
0.5r⊤1 0.5r⊤2 r0


 . (8.38)

163

Note that H is symmetric since both A and B are symmetric. As discussed in the

previous section, we desire B to be low-rank. Unlike Equation (8.35), we do not

consider dimension reduction for the linear terms in c, i.e., 2θ⊤Dc and c⊤r2. Instead,

we learn H by solving the following convex optimization problem

min
H

[J (H) + λ∗‖B‖∗] ,
s.t. A is negative definite, (8.39)

where J (H) denotes the differentiable part

J (H) =
1

2N

N∑

n=1

(
x⊤
nHxn −R(θn, cn)

)2
+

λ

2
‖H‖2F, (8.40)

where λ > 0 and λ∗ > 0 are regularization parameters. The Frobenius norm ‖ · ‖F
is defined as ‖H‖F =

√
tr(HH⊤). The nuclear norm of a matrix ‖ · ‖∗ is defined

as the ℓ1-norm of its singular values . This optimization problem can be explained as

follows. The term J (H) consists of the mean squared error and the ℓ2-regularization

term. Thus, minimizing J (H) corresponds to ridge regression. Minimizing the nu-

clear norm ‖B‖∗ shrinks the singular values of B. Thus, the solution tends to have

sparse singular values and to be low-rank. The negative definite constraint further

ensures that the covariance matrix in Equation (8.34) is positive definite.

The convexity of this optimization problem can be verified by checking the fol-

lowing conditions. First, the convexity of the mean squared error can be proven

following Boyd and Vandenberghe (2004) (page 74). Let g(t) = Ĵ (Z + tV) be

the mean squared error and Z and V are symmetric matrices. Then we have that

∇2g(t) = 1
N

∑
(x⊤

nV xn)
2 ≥ 0. Thus, the mean squared error is convex. Since the

Frobenius norm is convex, J (H) is convex as well. Second, a set of negative definite

matrices is convex since y⊤(aX+(1−a)Y)y < 0 for any negative definite matrices

X and Y , 0 ≤ a ≤ 1, and any vector y (Boyd and Vandenberghe, 2004). Third, the

nuclear norm is a convex function (Recht et al., 2010). Note that, since the gradient

∇J (H) is symmetric,H is guaranteed to be symmetric as well given that the initial

solution is also symmetric.

It is also possible to enforce the matrix H (rather than B) to be low-rank, im-

plying that both θ and c can be projected onto a common low-dimensional subspace.

However, this is often not the case, and regularizing by the nuclear norm of H did

not perform well in our experiments. We may also directly constrain rank(B) = dz
in Equation (8.39) instead of performing nuclear norm regularization. However, min-

imization problems with rank constraints are NP-hard. On the contrary, the nuclear

norm is the convex envelop of the rank function and can be optimized more effi-

ciently (Recht et al., 2010). For this reason, the nuclear norm has been a popular

surrogate to a low-rank constraint in many applications, such as matrix completion

(Candès and Tao, 2010) and multi-task learning (Pong et al., 2010).

Since the optimization problem in Equation (8.39) is convex, any convex opti-

mization method can be used (Boyd and Vandenberghe, 2004). For our experiments,

we use the accelerated proximal gradient descend (APG) (Toh and Yun, 2009). The

pseudocode of our implementation of APG for solving Equation (8.39) is given in

Algorithm 2. Note that APG requires computing the SVD of the matrix B. Since

computing the exact SVD of a high-dimensional matrix can be computationally ex-

pensive, we approximate it by randomized SVD (Halko et al., 2011).

164

Algorithm 2: APG for solving the nuclear norm minimization problem

Input: Parameters λ and λ∗, gradient step size τ , maximum number of iteration

K, initial solutionH0

1 InitializeH−1 =H0 and t−1 = t0 = 1
2 for k = 1, . . . , K do

3 Set intermediate point

Y k =Hk +
tk−1 − 1

tk
(Hk −Hk−1)

4 Do gradient descent using the differentiable term

Y + = Y k + τ∇J (Y k),

where

Y + =



A+ D+ 0.5r1+
D⊤

+ B+ 0.5r2+
0.5r⊤1+ 0.5r⊤2+ r0+




5 Shrink singular values ofB+

B∗ = U max(Σ− λ∗I, 0)V
⊤,

whereB+ = UΣV ⊤ is the SVD ofB+

6 Truncate positive eigenvalues ofA+

A∗ = P min(Λ, 0)P⊤,

whereA+ = PΛP⊤ is the eigendecomposition ofA+

7 Update solution

Hk+1 =



A∗ D+ 0.5r1+
D⊤

+ B∗ 0.5r2+
0.5r⊤1+ 0.5r⊤2+ r0+




8 Update parameter tk+1 =
1+
√

1+4(tk)2

2

9 if stopping criterion is met then

10 return

165

8.4 Experiment

We evaluate the proposed method on three problems. We start by studying C-MORE

behavior in a scenario where we know the true reward model and the true low-

dimensional context. Subsequently, we focus our attention on two simulated robotic

ball hitting tasks. In the first task, a toy 2-DoF planar robot arm has to hit a ball placed

on a plane. In the second task, a simulated 6-DoF robot arm has to hit a ball placed

in a three-dimensional space. In both cases, the robots accomplish their task by using

raw camera images as context variables. However, in the latter case we have limited

data and therefore data efficiency is of primary importance.

The evaluation is performed on three different versions of C-MORE, according

to the model learning approach: using only ridge regression (C-MORE Ridge), aided

by a low-dimensional context variables learned by PCA (C-MORE Ridge+PCA) and

aided by nuclear norm regularization (C-MORE Nuc. Norm). We also use C-REPS

(Deisenroth et al., 2013) with PCA as baseline. For the ball hitting task with 2-DoF

robot arm, we additionally evaluate C-MORE with model learned by LASSO (C-

MORE LASSO), and ridge regression with low-dimensional context variables learned

by supervised PCA (Li et al., 2016) (C-MORE Ridge+SuPCA). We also tried to pre-

process the context space with an autoencoder. However, the learned representa-

tion performed poorly, possibly due to the limited amount of data, and therefore this

method is not reported.

For each case study, first, the experiments are presented and then the results are

reported and discussed.

8.4.1 Quadratic Cost Function Optimization

In the first experiment, we want to study the performance of the algorithms in a

setup where we are able to analytically compute both the reward and the true low-

dimensional context. To this aim, we define the following problem

R(θ, c) = −(||θ − T 1c̃||2)2,
c̃ = ĨT−1

2 c, (8.41)

where T 2 ∈ Rdc×dc , dc̃ < dc, Ĩ ∈ Rdc̃×dc is a rectangular matrix with ones in its main

diagonal and zeros otherwise, c̃ is the true low-dimensional context, and T 1 ∈ Rdθ×dc̃

is to match the dimension of the true context and the parameter θ in order to compute

the reward. This setup is particularly interesting because only a subset of the observed

context influences the reward. First, the observed context c is linearly transformed by

T−1
2 . Subsequently, thanks to the matrix Ĩ, only the first dc̃ elements are kept to

compose the true context, while the remainder is treated as noise. Finally, the reward

is computed by linearly transforming the true context by T 1.

We set dc̃ = 3, dθ = 10, dc = 25, while the elements of T 1,T 2 are chosen

uniformly randomly in [0, 1]. The sampling Gaussian distribution is initialized with

random mean and covariance Q = 10, 000I. For learning, we collect 35 new data

points and keeps track of the data collected during the last 20 iterations to stabilize

the policy update. The evaluation is performed at each iteration over 1,000 contexts.

Each context element is drawn from a uniform random distribution in [−10, 10]. Since

we can generate a large amount of data in this setting, we pre-train PCA using 10,000

random context data points and fixed the dimensionality to dz = 20 (chosen by cross-

validation). The cross-validation results are given in Figure 8.3. It shows that the

166

20 40 60 80 100

−12

−10

−8

Iteration

A
v
er
a
g
e
L
o
g
-R
ew
a
rd

Figure 8.3: Average reward for the quadratic cost function problem with C-MORE

PCA using different dimensionality dz. Shaded area denotes standard deviation (re-

sults are averaged over ten trials). Results do not differ much, since PCA always fails

in reducing the dimensionality of the context variables. Clearly, the more principal

components we keep, the better results we obtain.

target dimensionality dz does not affect the result by much since every direction of

the context variables have identical variance. Clearly, the more directions we keep,

the better results we obtain by PCA.

The learning is performed for a maximum of 100 iterations. If the KL divergence

is lower than 0.1, then the learning is considered to be converged and the policy is not

updated anymore.

As shown in Figure 8.4, C-MORE Nuc. Norm clearly outperforms all the com-

petitors, learning an almost optimal policy and being the only one to converge within

the maximum number of iterations. It is also the only algorithm correctly learning the

true context dimensionality, as nuclear norm successfully regularizes B to have rank

three. On the contrary, PCA does not help C-MORE much and yields only slightly

better results than plain ridge regression. PCA cannot in fact determine task-relevant

dimensions as non-relevant dimensions have equally-high variance.

8.4.2 Ball Hitting with a 2-DoF Robot Arm

In this task, a simulated planar robot arm (Figure 8.6) has to hit a green virtual ball

placed on RGB camera images of size 32×24. The observed pixels define the context,

for a total of 2304 context variables. The ball is randomly and uniformly placed in

the robot workspace. Noise drawn from a uniform random distribution in [−30, 30]
is added to the context to simulate different light conditions. The robot controls the

joint accelerations at each time step by a linear-in-parameter controller with Gaussian

basis functions, for a total of 32 parameters θ to be learned. The reward R(θ, c)
is the negative cumulative joint accelerations plus the negative distance between the

end-effector and the ball at the final time step.

For learning, the agent collects 50 data points at each iteration and keeps data

points from the last four previous iterations. The evaluation is performed at each

iteration over 500 contexts. Pixel values are normalized in [−1, 1]. The sampling

167

C -MORE Nuc. Norm C-MORE Ridge+PCA C-MORE Ridge C-MORE LASSO C-MORE Ridge+SuPCA C-REPS PCA

20 40 60 80 100

10

0

10

Iteration

A
v
er
a
g
e
L
o
g
-R
ew
a
rd

Figure 8.4: Average reward for

the quadratic cost function problem.

Shaded area denotes standard deviation

(results are averaged over ten trials).

Only C-MORE Nuc. Norm converges

within 100 iterations to an almost opti-

mal policy.

200 400 600 800 1000

H it Rate

76%

53%

18%

11%

7%

3%

era io

A
v
er
a
g
e
R
ew
a
rd

Figure 8.5: Averaged reward for the 2-

DoF hitting task. C-REPS outperforms

C-MORE early on. However, it pre-

maturely converges to suboptimal solu-

tions, while C-MORE continues to im-

prove and soon outperforms C-REPS.

Figure 8.6: 2-DoF hitting task. The robot (blue and red lines) observes the context

which consists of a virtual green ball and the background image.

Gaussian distribution is initialized with random mean and identity covariance. For

C-MORE Nuc. Norm, C-MORE LASSO and C-MORE PCA, we perform 5-fold

cross-validation every 100 policy updates to choose the values of regularization pa-

rameter for nuclear norm, regularization parameter for ℓ1 norm, and dimension dz,

respectively. The decision is based on the mean squared error between the collected

returns and the model-predicted ones. Due to high computation time of C-MORE

SuPCA for high values of dz, we tried different values of dz ∈ {5, 7, 10} and selected

dz = 10 which gave the best result2. Similarly for C-REPS PCA, we tried different

values of dz ∈ {10, 20, 30, 40} and selected dz = 10 which gave the best result.

Figure 8.5 shows the averaged reward against the number of iterations. Once

again, C-MORE aided by nuclear norm regularization performs the best, achieving

the highest average reward. At the 1000th iteration, the learned controller hits the

ball with 76% accuracy. The rank of its learned matrixB is approximately 31, which

shows that the algorithm successfully learns a low-rank model representation. The

2SuPCA with dz = 15 took approximately 5 minutes/iteration.

168

(a) (b)

Figure 8.7: The 6-DoF robot as seen from the camera (Figure 8.7(a), bottom right)

and in simulation (Figure 8.7(b)). The goal is to control the robot to hit the green ball

according to camera images, resized to 32× 24.

model learned by LASSO performs very poorly and it is even outperformed by plain

ridge regression. However, this is unsurprising since the context variables are highly

correlated and LASSO is known to not work well for such variables. On the contrary,

preprocessing the context space through PCA still helps C-MORE (the rank of its

learned B is approximately 25), but yields poor results for C-REPS, which suffers of

premature convergence. Lastly, preprocessing the context space through SuPCA does

not seem work well. This may be due to dz, which could be too small for this task.

8.4.3 Ball Hitting with a 6-DoF Robot Arm

Similarly to the previous task, here a 6-DoF robotic arm has to hit a ball placed on a

three-dimensional space, as shown in Figure 8.7. The context is once again defined

by the vectorized pixels of RGB images of size 32 × 24, for a total of 2304 context

variables. Note that Figure 8.7(a) shows an image before we rescale it to size 32×24.

However, unlike the 2-DoF task, the ball is directly recorded by a real camera placed

near the physical robot, and it is not virtually generated on the images. Furthermore,

the robot is controlled by dynamic motor primitives (Ijspeert et al., 2002a) (DMPs),

which are non-linear dynamical systems. We use one DMP per joint, with five basis

functions per DMP. We also learn the goal attractor of the DMPs, for a total of 36

parameters θ to be learned. The reward R(θ, c) is computed as the negative cumula-

tive joint accelerations and minimum distance between the end-effector and the ball

as well.

The image dataset is collected by taking pictures with the ball placed at 50 differ-

ent positions. To increase the number of data points, we add a uniform random noise

in [−30, 30] to the context to simulate different light conditions. Therefore, although

some data points determine the same ball position, they are considered different due

to the added noise. The search distribution is initialized by imitation learning using

50 demonstration data points. For learning, the agent collects 50 data points at each

iteration and always keeps data points from the last four previous iterations.

We only evaluate C-MORE with nuclear norm and PCA since they performed well

in the previous evaluation. Figure 8.8 shows that nuclear norm again outperforms

PCA. At the 500th iteration, the robot hits the ball with 80% accuracy. Considering

that the robot is not able to hit the ball in some contexts due to physical constraints and

169

100 200 300 400 500

2

3

4

5

Iteration

A
v
er
a
g
e
R
ew
a
rd

Figure 8.8: 6-DoF hitting task results (averaged over three trials). Nuclear norm

regularization outperforms PCA, both in terms of reward and accuracy.

can achieve a maximum accuracy of 90%, this accuracy is impressive for the task. The

averaged rank of matrix B learned by the nuclear norm is approximately 25, which

shows that minimizing the nuclear norm successfully learns a low-rank matrix. For

PCA, the averaged rank ofB is approximately 30.

8.5 Conclusion

Learning with high-dimensional context variables is a challenging and prominent

problem in reinforcement learning. In this chapter, we proposed C-MORE, a novel

contextual policy search method with single-step dimension reduction. C-MORE

learns a reward model that is locally quadratic in the policy parameters and the con-

text variables. By enforcing the model representation to be low-rank, we perform

supervised linear dimension reduction in a single-step manner. Unlike existing tech-

niques relying on non-convex formulations, the nuclear norm allows us to learn the

low-rank representation by solving a convex optimization problem, thus guaranteeing

convergence to a global optimum.

The main disadvantage of the proposed method is that it demands more compu-

tation time due to the nuclear norm regularization. Although we did not encounter

severe problems in our experiments, for very large dimensional tasks this issue can

be mitigated by using more efficient optimization techniques, such as active subspace

selection (Hsieh and Olsen, 2014).

170

Chapter 9

Conclusion and Future Work

In this chapter, we conclude our contributions in this dissertation and then close this

dissertation with discussions on future research directions.

9.1 Conclusion

Machine learning has recently gain a lot of interest as a tool for solving complex prob-

lems whose traditional methods cannot solve them well. However, one of the most

prominent challenges in machine learning is to learn from high-dimensional data.

This dissertation contributes to developing and utilizing single-step dimension reduc-

tion to solve high-dimensional machine learning problems especially reinforcement

learning problems.

We presented five contributions in this dissertation and they are divided into two

parts. The first part of this dissertation focused on the development of single-step

linear dimension reduction methods. We presented two contributions in this first part

and they are summarized below.

• Dimension reduction via single-step estimation of the derivative of

quadratic mutual information

In Chapter 3, we interested in performing linear dimension reduction by max-

imizing the quadratic mutual information (QMI) which is a robust statistical

dependence measure. Unlike an existing multi-step approach, our QMI-based

linear dimension reduction method directly estimates the derivative of QMI

without estimating the QMI itself. The experimental evaluations on artificial

and benchmark data showed that the proposed method performs better than ex-

isting methods in the presence of outliers.

• Single-step dimension reduction for conditional density estimation

In Chapter 4, we focused on solving high-dimensional conditional density es-

timation problems. We proposed the least-squares conditional entropy (LSCE)

method which simultaneously performs dimension reduction and conditional

density estimation in an integrated manner. We evaluated our proposed method

on artificial data, benchmark data, humanoid robot data, and computer art data.

Experimental results showed that LSCE gives more accurate estimated condi-

tional densities than existing methods based on a multi-step approach.

The second part of this dissertation focused on utilizing single-step dimension

reduction to solve high-dimensional reinforcement learning problemss. We presented

three contributions in this second part and they are summarized below.

171

• Model-based policy gradient with parameter-based exploration

In Chapter 6, we focused on improving data efficiency of reinforcement learn-

ing. We proposed the model-based policy gradient with parameter-based ex-

ploration (M-PGPE) method which learns a transition model by least-squares

conditional density estimation (LSCDE) (Sugiyama et al., 2010). We firstly

showed through benchmark experiments that LSCDE is a more flexible method

for transition model learning than an existing method. Then, through exper-

iments on a simulated humanoid robot we showed that M-PGPE gives better

performances than existing model-free reinforcement learning methods when

the budget for collecting data is limited.

• Dimension reduction for model-based policy gradient with parameter-

based exploration

In Chapter 7, we improved the performance of M-PGPE in high-dimensional re-

inforcement learning problems by using our LSCE method to learn a transition

model. Experimental evaluations on benchmark problems and real humanoid

robot control problems showed that M-PGPE with LSCE performs better than

M-PGPE with naive multi-step combinations of LSCDE and existing dimension

reduction methods.

• Contextual Policy Search with Single-step Dimension Reduction

In Chapter 8, we focused on contextual reinforcement learning problems with

high-dimensional contexts. We proposed a novel method called contextual

model-based relative entropy stochastic search (C-MORE) which finds optimal

policies based on a learned quadratic model. Then, we proposed to learn a low-

rank representation of the model which corresponds to simultaneously perform

dimension reduction and model learning. We evaluated C-MORE on a bench-

mark problem and robot ball hitting problems based on camera images. The

results showed that our single-step approach to dimension reduction in model

learning performs better than multi-step approaches.

From the experimental evaluations, we conclude that single-step dimension reduc-

tion is a promising approach to tackle high-dimensional machine learning problems

and should be further investigated in the future.

9.2 Future Work

In this dissertation, we focused on an important issue of learning from high-

dimensional data, and we have approaches which effective alleviate this issue. How-

ever, our contributions still have rooms for improvement. Moreover, machine learning

still faces with many challenges which should be overcome in order to make machine

learning more practical.

Below, we discuss approaches which can further improve our contributions as well

as new research directions which we will be pursue in our future research.

• More applications of the direct estimation of the derivative of QMI

In Chapter 3 we focused on maximizing statistical dependence to perform di-

mension reduction. On the other hand, researchers have shown that problems

such as image registration (Atif et al., 2003; Pluim et al., 2003) and independent

component analysis (Hyvärinen and Oja, 2000; Suzuki and Sugiyama, 2011)

172

can be solved by maximizing or minimizing a statistical dependence as well.

However, existing methods solve these problems through a multi-step approach

which first estimates a statistical dependence measure from data and then com-

putes the derivative of the estimated measure in order to find a maximizer. As

we have shown, such a multi-step approach is not appropriate. In our future

work, we will utilize the QMI derivative estimation method we presented in

Chapter 3 to solve these problems. We expect that a single-step approach based

on our derivative estimation method would work better than existing multi-step

methods.

• Dimension reduction based on other divergences

Dimension reduction can be performed by maximizing a statistical dependence

measure which is defined based on a divergence of two probability distribu-

tions. In Chapter 3, we focused on developing QMI-based dimension reduc-

tion method mainly because we are interested in the robustness property of

QMI. However, in the statistics literature there are many divergences such as

the Hellinger distance (Hellinger, 1909) which have interesting properties but

their usefulness for dimension reduction has not been fully studied and demon-

strated. In our future work, we will firstly explore these divergences to study

their properties for dimension reduction and then develop dimension reduction

methods based on them.

• Direct estimation of the derivative of SCE

LSCE is a single-step method when the aim is to perform dimension reduction

for conditional density estimation. However, if the aim is only to perform di-

mension reduction, LSCE is in fact a multi-step method since it firstly estimates

SCE from data and then computes derivative of the estimated SCE. Therefore,

an ideal single-step method to perform dimension reduction for conditional den-

sity estimation via SCE is a method which directly estimates the derivatives of

SCE while simultaneously performs conditional density estimation. Investigat-

ing such a single-step method is one of our future work.

• Dimension reduction in model-free reinforcement learning

In this dissertation, we focused on model-based reinforcement learning and pro-

posed to incorporate dimension reduction into a model learning step in order to

mitigate the curse of dimensionality. On the other hand, model-free reinforce-

ment learning still suffers from the curse of dimensionality. Researchers have

shown that applying dimension reduction to model-free reinforcement learn-

ing can greatly improves the performance (Morimoto et al., 2008; Bitzer et al.,

2010; Hachiya and Sugiyama, 2010). However, existing approaches indepen-

dently perform dimension reduction and reinforcement learning, and as we have

shown in this dissertation, such a multi-step approach is not appropriate. A bet-

ter alternative would be to directly integrate dimension reduction into reinforce-

ment learning. For example, for direct policy search approach we may include

an ℓ1 regularization into the expected return in order to simultaneously perform

feature selection on the policy parameter space while learning the optimal pol-

icy parameter. We will further investigate such an integrated approach in our

future work.

We believe that these future works are worth investigating and would be beneficial to

future machine learning research.

173

References

Abdolmaleki, A., Lioutikov, R., Peters, J., Lau, N., Reis, L. P., and Neumann, G.

(2015). Model-based relative entropy stochastic search. In Advances in Neural

Information Processing Systems 28, pages 3537–3545.

Abe, N., Melville, P., Pendus, C., Reddy, C. K., Jensen, D. L., Thomas, V. P., Bennett,

J. J., Anderson, G. F., Cooley, B. R., Kowalczyk, M., Domick, M., and Gardinier,

T. (2010). Optimizing debt collections using constrained reinforcement learning.

In The 16th ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, pages 75–84.

Absil, P.-A., Mahony, R., and Sepulchre, R. (2008). Optimization Algorithms on

Matrix Manifolds. Princeton University Press, Princeton, NJ.

Agakov, F. V. and Barber, D. (2005). Kernelized infomax clustering. In Advances in

Neural Information Processing Systems 18, pages 17–24, Cambridge, MA, USA.

MIT Press.

Ali, S. M. and Silvey, S. D. (1966). A general class of coefficients of divergence of

one distribution from another. Journal of the Royal Statistical Society. Series B

(Methodological), 28(1):131–142.

Amari, S. (1998). Natural gradient works efficiently in learning. Neural Computation,

10(2):251–276.

Argall, B., Chernova, S., Veloso, M. M., and Browning, B. (2009). A survey of robot

learning from demonstration. Robotics and Autonomous Systems, 57(5):469–483.

Armijo, L. (1966). Minimization of functions having lipschitz continuous first partial

derivatives. Pacific Journal Mathematics, 16(1):1–3.

Aronszajn, N. (1950). Theory of reproducing kernels. Transactions of the American

Mathematical Society, 68(3):337–404.

Atif, J., Ripoche, X., Coussinet, C., and Osorio, A. (2003). Non rigid medical image

registration based on the maximization of quadratic mutual information. In IEEE

29th Bioengineering Conference, pages 71–72.

Atkeson, C. G., Moore, A. W., and Schaal, S. (1997). Locally weighted learning.

Artificial Intelligence Review, 11(1):11–73.

Au, T., Chin, M.-L. I., and Ma, G. (2010). Mining Rare Events Data by Sampling

and Boosting: A Case Study, pages 373–379. Springer Berlin Heidelberg, Berlin,

Heidelberg.

174

Bach, F. R. and Jordan, M. I. (2002). Kernel independent component analysis. Journal

of Machine Learning Research, 3:1–48.

Bach, F. R. and Jordan, M. I. (2003). Kernel independent component analysis. Journal

of Machine Learning Research, 3:1–48.

Bache, K. and Lichman, M. (2013). UCI machine learning repository.

Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., and van der Vorst, H. (2000). Tem-

plates for the Solution of Algebraic Eigenvalue Problems. Society for Industrial

and Applied Mathematics.

Basu, A., Harris, I. R., Hjort, N. L., and Jones, M. C. (1998). Robust and efficient

estimation by minimising a density power divergence. Biometrika, 85(3).

Belkin, M. and Niyogi, P. (2003). Laplacian eigenmaps for dimensionality reduction

and data representation. Neural Computation, 15(6):1373–1396.

Bellman, R. E. (1957a). Dynamic Programming. Princeton University Press, Prince-

ton, NJ, USA, 1 edition.

Bellman, R. E. (1957b). A markovian decision process. Journal of Mathematics and

Mechanics, 6:679–684.

Bellman, R. E. (1961). Adaptive Control Processes: A Guided Tour. Princeton Uni-

versity Press.

Bengio, Y. (2009). Learning deep architectures for AI. Foundations and Trends in

Machine Learning, 2(1):1–127.

Bengio, Y., Courville, A., and Vincent, P. (2013). Representation learning: A re-

view and new perspectives. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 35(8):1798–1828.

Bernard-Michel, C., Gardes, L., and Girard, S. (2009). Gaussian regularized sliced

inverse regression. Statistics and Computing, 19(1):85–98.

Bertsekas, D. P. and Tsitsiklis, J. N. (1996). Neuro-Dynamic Programming. Athena

Scientific, 1st edition.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Information Sci-

ence and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA.

Bitzer, S., Howard, M., and Vijayakumar, S. (2010). Using dimensionality reduc-

tion to exploit constraints in reinforcement learning. In The IEEE International

Conference on Intelligent Robotics Systems, pages 3219–3225.

Boumal, N., Mishra, B., Absil, P.-A., and Sepulchre, R. (2014). Manopt, a Matlab

toolbox for optimization on manifolds. Journal of Machine Learning Research,

15:1455–1459.

Boutilier, C., Dearden, R., and Goldszmidt, M. (1995). Exploiting structure in policy

construction. In The 14th International Joint Conference on Artificial Intelligence,

pages 1104–1113.

175

Boyan, J. A. and Moore, A. W. (1994). Generalization in reinforcement learning:

Safely approximating the value function. In Advances in Neural Information Pro-

cessing Systems 7, pages 369–376.

Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. Cambridge University

Press, New York, NY, USA.

Brown, G. (2009). A new perspective for information theoretic feature selection.

In The 12th International Conference on Artificial Intelligence and Statistics, vol-

ume 5, pages 49–56. Journal of Machine Learning Research - Proceedings Track.

Candès, E. J., Li, X., Ma, Y., and Wright, J. (2011). Robust principal component

analysis? Journal of the ACM, 58(3):11:1–11:37.

Candès, E. J. and Tao, T. (2010). The power of convex relaxation: near-optimal matrix

completion. IEEE Transactions on Information Theory, 56(5):2053–2080.

Castelvecchi, D. (2016). Can we open the black box of AI? Nature, 538(7623):20–23.

Cawley, G. C. and Talbot, N. L. C. (2007). Preventing over-fitting during model

selection via bayesian regularisation of the hyper-parameters. Journal of Machine

Learning Research, 8:841–861.

Chang, C.-C. and Lin, C.-J. (2011). LIBSVM: A library for support vector machines.

ACM Transactions on Intelligent Systems and Technology, 2:27:1–27:27. Software

available at http://www.csie.ntu.edu.tw/˜cjlin/libsvm.

Cheng, G., Hyon, S., Morimoto, J., Ude, A., Joshua, G., Colvin, G., Scroggin, W.,

and Stephen, C. J. (2007). Cb: A humanoid research platform for exploring neuro-

science. Advanced Robotics, 21(10):1097–1114.

Cleveland, W. S. and Devlin, S. J. (1988). Locally weighted regression: An approach

to regression analysis by local fitting. Journal of the American Statistical Associa-

tion, 83(403):596–610.

Collobert, R. and Weston, J. (2008). A unified architecture for natural language pro-

cessing: Deep neural networks with multitask learning. In The 25th International

Conference on Machine Learning, pages 160–167.

Cook, R. D. (2000). SAVE: a method for dimension reduction and graphics in regres-

sion. Communications in Statistics - Theory and Methods, 29(9-10):2109–2121.

Cook, R. D. and Ni, L. (2005). Sufficient dimension reduction via inverse regression.

Journal of the American Statistical Association, 100(470):410–428.

Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine Learning,

20(3):273–297.

Cover, T. M. and Thomas, J. A. (1991). Elements of Information Theory. Wiley-

Interscience, New York, NY, USA.

Csiszár, I. (1967). Information-type Measures of Difference of Probability Distribu-

tions and Indirect Observations. Studia Scientiarum Mathematicarum Hungarica,

2:299–318.

176

Cunningham, J. P. and Ghahramani, Z. (2015). Linear dimensionality reduction:

Survey, insights, and generalizations. Journal of Machine Learning Research,

16(1):2859–2900.

da Silva, B. C., Konidaris, G., and Barto, A. G. (2012). Learning parameterized skills.

In The 29th International Conference on Machine Learning.

Dayan, P. and Hinton, G. E. (1997). Using expectation-maximization for reinforce-

ment learning. Neural Comput., 9(2):271–278.

Dean, T. and Kanazawa, K. (1989). A model for reasoning about persistence and

causation. Computational Intelligence, 5(2):142–150.

Dearden, R., Friedman, N., and Russell, S. (1998). Bayesian q-learning. In Proceed-

ings of the 15th International Conference on Artificial Intelligence, pages 761–768.

Deisenroth, M. P., Neumann, G., and Peters, J. (2013). A survey on policy search for

robotics. Foundations and Trends in Robotics, 2(1-2):1–142.

Deisenroth, M. P. and Rasmussen, C. E. (2011). Pilco: A model-based and data-

efficient approach to policy search. In The 28th International Conference on Ma-

chine Learning, pages 465–472. Omnipress.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum Likelihood from

Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society.

Series B (Methodological), 39(1):1–38.

Edelman, A., Arias, T. A., and Smith, S. T. (1998). The geometry of algorithms

with orthogonality constraints. SIAM Journal on Matrix Analysis and Applications,

20(2):303–353.

Faivishevsky, L. and Goldberger, J. (2012). Dimensionality reduction based on non-

parametric mutual information. Neurocomputing, 80:31–37.

Falk, J. E. (1967). Lagrange multipliers and nonlinear programming. Journal of

Mathematical Analysis and Applications, 19(1):141 – 159.

Fan, J., Yao, Q., and Tong, H. (1996). Estimation of conditional densities and sensi-

tivity measures in nonlinear dynamical systems. Biometrika, 83(1).

Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems.

Annals of Eugenics, 7(7):179–188.

Fodor, I. (2002). A survey of dimension reduction techniques. Technical report.

Fox, D., Burgard, W., and Thrun, S. (1999). Markov localization for mobile robots in

dynamic environments. Journalof Artificial Intelligence Research, 11.

Friedman, J. H. (1989). Regularized discriminant analysis. Journal of the American

Statistical Association, 84(405):165–175.

Friedman, J. H. and Stuetzle, W. (1981). Projection pursuit regression. Journal of the

American Statistical Association, 76(376):817–823.

177

Friedman, N. and Russell, S. (1997). Image segmentation in video sequences: A prob-

abilistic approach. In The 13th Conference on Uncertainty in Artificial Intelligence,

pages 175–181.

Fukumizu, K., Bach, F. R., and Jordan, M. I. (2004). Dimensionality reduction for

supervised learning with reproducing kernel hilbert spaces. Journal of Machine

Learning Research, 5:73–99.

Fukumizu, K., Bach, F. R., and Jordan, M. I. (2009). Kernel dimension reduction in

regression. The Annals of Statistics, 37(4):1871–1905.

Fukumizu, K. and Leng, C. (2012). Gradient-based kernel method for feature extrac-

tion and variable selection. In Advances in Neural Information Processing Systems

25, pages 2123–2131.

Fukunaga, K. (1990). Introduction to Statistical Pattern Recognition (2nd Edition).

Academic Press Professional, Inc., San Diego, CA, USA.

Galton, F. (1886). Regression Towards Mediocrity in Hereditary Stature. The Journal

of the Anthropological Institute of Great Britain and Ireland, 15:246–263.

Gao, S., Steeg, G. V., and Galstyan, A. (2015). Efficient estimation of mutual infor-

mation for strongly dependent variables. In The 18th International Conference on

Artificial Intelligence and Statistics.

Gomes, R., Krause, A., and Perona, P. (2010). Discriminative clustering by regu-

larized information maximization. In Advances in Neural Information Processing

Systems 23, pages 775–783.

Gönen, M. (2013). Bayesian supervised dimensionality reduction. IEEE Transansca-

tion on Cybernetics, 43(6):2179–2189.

Gretton, A., Herbrich, R., Smola, A., Bousquet, O., and Schölkopf, B. (2005). Kernel

methods for measuring independence. Journal of Machine Learning Research,

6:2075–2129.

Guestrin, C., Patrascu, R., and Schuurmans, D. (2002). Algorithm-directed explo-

ration for model-based reinforcement learning in factored MDPs. In The 19th In-

ternational Conference on Machine Learning, pages 235–242.

Hachiya, H., Peters, J., and Sugiyama, M. (2011a). Reward-weighted regression with

sample reuse for direct policy search in reinforcement learning. Neural Computu-

tation, 23(11):2798–2832.

Hachiya, H., Peters, J., and Sugiyama, M. (2011b). Reward-weighted regression with

sample reuse for direct policy search in reinforcement learning. Neural Computa-

tion, 23(11):2798–2832.

Hachiya, H. and Sugiyama, M. (2010). Feature selection for reinforcement learning:

Evaluating implicit state-reward dependency via conditional mutual information.

In Machine Learning and Knowledge Discovery in Databases, Part I, the Euro-

pean Conference on Machine Learning and Principles and Practice of Knowledge

Discovery in Databases (ECMLPKDD), pages 474–489.

178

Halko, N., Martinsson, P., and Tropp, J. A. (2011). Finding structure with random-

ness: Probabilistic algorithms for constructing approximate matrix decompositions.

SIAM Review, 53(2):217–288.

Hansen, N., Müller, S. D., and Koumoutsakos, P. (2003). Reducing the time com-

plexity of the derandomized evolution strategy with covariance matrix adaptation

(CMA-ES). Evolutionary Computation, 11(1):1–18.

Hastie, T., Tibshirani, R., and Friedman, J. (2001). The Elements of Statistical Learn-

ing. Springer Series in Statistics. Springer New York, New York, NY, USA.

He, X. and Niyogi, P. (2003). Locality preserving projections. In Advances in Neural

Information Processing Systems 16. MIT Press.

Hellinger, E. (1909). Neue begründung der theorie quadratischer formen von un-

endlichvielen veränderlichen. Journal für die reine und angewandte Mathematik,

136:210–271.

Hilas, C. S. and Mastorocostas, P. A. (2008). An application of supervised and unsu-

pervised learning approaches to telecommunications fraud detection. Knowledge-

Based Systems, 21(7):721–726.

Hinton, G. E., Osindero, S., and Teh, Y.-W. (2006). A fast learning algorithm for deep

belief nets. Neural Computation, 18(7):1527–1554.

Hsieh, C. and Olsen, P. A. (2014). Nuclear norm minimization via active subspace

selection. In The 31st International Conference on Machine Learning, pages 575–

583.

Hyvärinen, A. and Oja, E. (2000). Independent component analysis: Algorithms and

applications. Neural Networks, 13(4-5):411–430.

Ijspeert, A. J., Nakanishi, J., and Schaal, S. (2002a). Learning attractor landscapes for

learning motor primitives. In Advances in Neural Information Processing Systems

15, pages 1523–1530.

Ijspeert, A. J., Nakanishi, J., and Schaal, S. (2002b). Movement imitation with non-

linear dynamical systems in humanoid robots. In Proceedings of the 2002 IEEE

International Conference on Robotics and Automation, ICRA, pages 1398–1403.

Ioffe, S. (2006). Probabilistic Linear Discriminant Analysis.

Jaakkola, T., Jordan, M. I., and Singh, S. P. (1994). On the convergence of stochastic

iterative dynamic programming algorithms. Neural Computation, 6(6):1185–1201.

Jensen, J. L. W. V. (1906). Sur les fonctions convexes et les inégalités entre les valeurs

moyennes. Acta Mathematica, 30(1):175–193.

Joachims, T. (1998). Text categorization with suport vector machines: Learning with

many relevant features. In The 10th European Conference on Machine Learning,

ECML ’98, pages 137–142.

Jolliffe, I. T. (1986). Principal Component Analysis. Springer Verlag.

179

Kasube, H. E. (1983). A technique for integration by parts. The American Mathemat-

ical Monthly, 90(3):pp. 210–211.

Ko, J., Klein, D. J., Fox, D., and Hähnel, D. (2007). Gaussian processes and reinforce-

ment learning for identification and control of an autonomous blimp. In 2007 IEEE

International Conference on Robotics and Automation, ICRA, pages 742–747.

Kober, J., Bagnell, J. A., and Peters, J. (2013a). Reinforcement learning in robotics:

A survey. International Journal of Robotics Research.

Kober, J., Bagnell, J. A., and Peters, J. (2013b). Reinforcement learning in robotics:

A survey. International Journal of Robotics Research, 32(11):1238–1274.

Kober, J., Oztop, E., and Peters, J. (2011). Reinforcement learning to adjust robot

movements to new situations. In The 22nd International Joint Conference on Arti-

ficial Intelligence, pages 2650–2655.

Kober, J. and Peters, J. (2011). Policy search for motor primitives in robotics. Machine

Learning, 84(1-2):171–203.

Kormushev, P., Calinon, S., and Caldwell, D. G. (2013). Reinforcement learning in

robotics: Applications and real-world challenges. Robotics, 2(3):122–148.

Kraskov, A., Stögbauer, H., and Grassberger, P. (2004). Estimating mutual informa-

tion. Physical Review E, 69:066138.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with

deep convolutional neural networks. In Advances in Neural Information Processing

Systems 25, pages 1106–1114.

Kroon, M. and Whiteson, S. (2009). Automatic feature selection for model-based

reinforcement learning in factored MDPs. In International Conference on Machine

Learning and Applications, ICMLA, pages 324–330.

Kullback, S. and Leibler, R. A. (1951). On information and sufficiency. The Annals

of Mathematical Statistics, 22(1):79–86.

Kupcsik, A. G., Deisenroth, M. P., Peters, J., and Neumann, G. (2013). Data-efficient

generalization of robot skills with contextual policy search. In The 27th AAAI

Conference on Artificial Intelligence.

Lagoudakis, M. G. and Parr, R. (2003). Least-squares policy iteration. Journal of

Machine Learning Research, 4:1107–1149.

Lee, J. A. and Verleysen, M. (2007). Nonlinear Dimensionality Reduction. Springer

Publishing Company, Incorporated, 1st edition.

Li, B. and Wang, S. (2007). On directional regression for dimension reduction. Jour-

nal of the American Statistical Association, 102:997–1008.

Li, G., Yang, D., Nobel, A. B., and Shen, H. (2016). Supervised singular value

decomposition and its asymptotic properties. Journal of Multivariate Analysis,

146:7–17.

180

Li, K.-C. (1991). Sliced inverse regression for dimension reduction. Journal of the

American Statistical Association, 86(414):316–342.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., and

Wierstra, D. (2015). Continuous control with deep reinforcement learning. CoRR,

abs/1509.02971.

Liu, T. (2009). Learning to rank for information retrieval. Foundations and Trends in

Information Retrieval, 3(3):225–331.

Liu, Z., Shi, Z., Zhao, M., and Xu, W. (2007). Mobile robots global localization using

adaptive dynamic clustered particle filters. In IEEE/RSJ International Conference

on Intelligent Robots and Systems, 2007, pages 1059–1064.

Mahadevan, S. and Connell, J. (1992). Automatic programming of behavior-based

robots using reinforcement learning. Artificial Intelligence, 55(2):311 – 365.

Mitchell, T. (2006). The discipline of machine learning. Technical Report CMU

ML-06 108.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,

Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie,

C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., , and

Hassabis, D. (2015). Human-level control through deep reinforcement learning.

Nature, 518(7540):529–533.

Mollah, M. N. H., Sultana, N., Minami, M., and Eguchi, S. (2010). Robust extraction

of local structures by the minimum beta-divergence method. Neural Networks,

23(2):226–238.

Morimoto, J., Hyon, S., Atkeson, C. G., and Cheng, G. (2008). Low-dimensional

feature extraction for humanoid locomotion using kernel dimension reduction. In

IEEE International Conference on Robotics and Automation, ICRA, pages 2711–

2716.

Murphy, K. P. (2012). Machine Learning: A Probabilistic Perspective. The MIT

Press.

Murray, J. F., Hughes, G. F., and Kreutz-Delgado, K. (2005). Machine learning meth-

ods for predicting failures in hard drives: A multiple-instance application. Journal

of Machine Learning Research, 6:783–816.

Neumann, G. (2011). Variational inference for policy search in changing situations.

In The 28th International Conference on Machine Learning, pages 817–824.

Neumann, G. and Peters, J. (2008). Fitted q-iteration by advantage weighted regres-

sion. In Advances in Neural Information Processing Systems 21, pages 1177–1184.

Ng., A. T. and Jordan, M. (2000). Pegasus: A policy search method for large mdps

and pomdps. In The 16th Conference on Uncertainty in Artificial Intelligence,

pages 406–415.

181

Nguyen, T. T., Li, Z., Silander, T., and Leong, T. (2013). Online feature selection

for model-based reinforcement learning. In The 30th International Conference on

Machine Learning, pages 498–506.

Nocedal, J. and Wright, S. J. (2006). Numerical Optimization, second edition. World

Scientific.

Pál, D., Póczos, B., and Szepesvári, C. (2010). Estimation of renyi entropy and mutual

information based on generalized nearest-neighbor graphs. In Advances in Neural

Information Processing Systems 23, pages 1849–1857.

Paninski, L. (2003). Estimation of entropy and mutual information. Neural Compu-

tation, 15(6):1191–1253.

Pearson, K. (1895). Note on regression and inheritance in the case of two parents.

Proceedings of the Royal Society of London, 58(347-352):240–242.

Pearson, K. (1900). On the criterion that a given system of deviations from the prob-

able in the case of a correlated system of variables is such that it can be reasonably

supposed to have arisen from random sampling. Philosophical Magazine Series 5,

50(302):157–175.

Peng, H., Long, F., and Ding, C. (2005). Feature selection based on mutual infor-

mation: Criteria of max-dependency, max-relevance, and min-redundancy. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 27(8):1226–1238.

Peshkin, L. and Shelton, C. R. (2002). Learning from scarce experience. In The 19th

International Conference on Machine Learning, pages 498–505.

Peters, J., Mülling, K., and Altun, Y. (2010). Relative entropy policy search. In The

24th AAAI Conference on Artificial Intelligence, pages 1607–1612.

Peters, J. and Schaal, S. (2006). Policy gradient methods for robotics. In The IEEE

International Conference on Intelligent Robotics Systems, pages 2219–2225.

Peters, J. and Schaal, S. (2007). Reinforcement learning by reward-weighted regres-

sion for operational space control. In The 24th International Conference on Ma-

chine Learning, pages 745–750.

Pluim, J. P. W., Maintz, J. B. A., and Viergever, M. A. (2003). Mutual informa-

tion based registration of medical images: A survey. IEEE Trans. Med. Imaging,

22(8):986–1004.

Pong, T. K., Tseng, P., Ji, S., and Ye, J. (2010). Trace norm regularization: Refor-

mulations, algorithms, and multi-task learning. SIAM Journal on Optimization,

20(6):3465–3489.

Principe, J. C., Xu, D., Zhao, Q., and Fisher, J. W. (2000). Learning from exam-

ples with information theoretic criteria. Journal of VLSI Signal Processing System,

26(1-2):61–77.

Puterman, M. L. (1994). Markov Decision Processes: Discrete Stochastic Dynamic

Programming. John Wiley & Sons, Inc., New York, NY, USA, 1st edition.

182

Rasmussen, C. E. and Kuss, M. (2003). Gaussian processes in reinforcement learning.

In Advances in Neural Information Processing Systems 16, pages 751–758.

Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian Processes for Machine

Learning. The MIT Press.

Recht, B., Fazel, M., and Parrilo, P. A. (2010). Guaranteed minimum-rank solutions of

linear matrix equations via nuclear norm minimization. SIAM Review, 52(3):471–

501.

Reich, B. J., Bondell, H. D., and Li, L. (2011). Sufficient dimension reduction via

bayesian mixture modeling. Biometrics, 67(3):886–895.

Romano, S., Bailey, J., Vinh, N. X., and Verspoor, K. (2014). Standardized mutual

information for clustering comparisons: One step further in adjustment for chance.

In The 31th International Conference on Machine Learning, pages 1143–1151.

Rombokas, E., Malhotra, M., Theodorou, E., Matsuoka, Y., and Todorov, E.

(2012). Tendon-driven variable impedance control using reinforcement learning.

In Robotics: Science and Systems VIII, University of Sydney, Sydney, NSW, Aus-

tralia, July 9-13, 2012.

Roweis, S. T. and Saul, L. K. (2000). Nonlinear Dimensionality Reduction by Locally

Linear Embedding. Science, 290(5500):2323–2326.

Sainui, J. and Sugiyama, M. (2013). Direct approximation of quadratic mutual infor-

mation and its application to dependence-maximization clustering. IEICE Trans-

actions on Information and Systems, 96-D(10):2282–2285.

Sainui, J. and Sugiyama, M. (2014). Unsupervised dimension reduction via least-

squares quadratic mutual information. IEICE Transactions on Information and

Systems, 97-D(10):2806–2809.

Samarov, A. M. (1993). Exploring regression structure using nonparametric func-

tional estimation. Journal of the American Statistical Association, 88(423):836–

847.

Samuel, A. L. (1959). Some studies in machine learning using the game of checkers.

IBM Journal of Research and Development, 3(3):210–229.

Sasaki, H., Noh, Y., and Sugiyama, M. (2015a). Direct density-derivative estima-

tion and its application in kl-divergence approximation. In The 18th International

Conference on Artificial Intelligence and Statistics.

Sasaki, H., Tangkaratt, V., and Sugiyama, M. (2015b). Sufficient dimension reduction

via direct estimation of the gradients of logarithmic conditional densities. In The

7th Asian Conference on Machine Learning, ACML, pages 33–48.

Schaal, S. (1999). Is imitation learning the route to humanoid robots? Trends in

Cognitive Sciences, 3(6):233–242.

Schaal, S. (2009). The sl simulation and real-time control software package. Technical

report.

183

Schaal, S. and Atkeson, C. G. (1994). Robot juggling: An implementation of

memory-based learning. 14(1):57–71.

Schaal, S., Atkeson, C. G., and Vijayakumar, S. (2000). Real-time robot learning with

locally weighted statistical learning. In The 2000 IEEE International Conference

on Robotics and Automation, pages 288–293.

Schneider, J. G. (1996). Exploiting model uncertainty estimates for safe dynamic

control learning. In Advances in Neural Information Processing Systems 9, pages

1047–1053. The MIT Press.

Schölkopf, B., Smola, A., and Müller, K.-R. (1997). Kernel principal component

analysis. Springer Berlin Heidelberg, Berlin, Heidelberg.

Schölkopf, B., Smola, A., and Müller, K.-R. (1998). Nonlinear component analysis

as a kernel eigenvalue problem. Neural Computation, 10(5):1299–1319.

Sehnke, F., Osendorfer, C., Rückstieß, T., Graves, A., Peters, J., and Schmidhuber, J.

(2010). Parameter-exploring policy gradients. Neural Networks, 23(4):551–559.

Silva, V. D. and Tenenbaum, J. B. (2003). Global versus local methods in nonlinear

dimensionality reduction. In Advances in Neural Information Processing Systems

15, pages 721–728. MIT Press.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G.,

Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S.,

Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M.,

Kavukcuoglu, K., Graepel, T., and Hassabis, D. (2016). Mastering the game of go

with deep neural networks and tree search. Nature, 529:484–503.

Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis. Lon-

don.

Stiefel, E. (1935). Richtungsfelder und fernparallelismus in n-dimensionalen man-

nigfaltigkeiten. Commentarii mathematici Helvetici, 8:305–353.

Stigler, S. M. (1981). Gauss and the invention of least squares. The Annals of Statis-

tics, 9(3):465–474.

Sugimoto, N., Tangkaratt, V., Wensveen, T., Zhao, T., Sugiyama, M., and Morimoto,

J. (2014). Efficient reuse of previous experiences in humanoid motor learning. In

14th IEEE-RAS International Conference on Humanoid Robots, pages 554–559.

Sugimoto, N., Tangkaratt, V., Wensveen, T., Zhao, T., Sugiyama, M., and Morimoto,

J. (2016). Trial and error: Using previous experiences as simulation models in

humanoid motor learning. IEEE Robot Automatation Magazine, 23(1):96–105.

Sugiyama, M. (2007). Dimensionality reduction of multimodal labeled data by local

fisher discriminant analysis. Journal of Machine Learning Research, 8:1027–1061.

Sugiyama, M., Idé, T., Nakajima, S., and Sese, J. (2008). Semi-supervised local

fisher discriminant analysis for dimensionality reduction. In Advances in Knowl-

edge Discovery and Data Mining, 12th Pacific-Asia Conference, PAKDD 2008,

pages 333–344.

184

Sugiyama, M., Kanamori, T., Suzuki, T., du Plessis, M. C., Liu, S., and Takeuchi, I.

(2013). Density-difference estimation. Neural Computation, 25(10):2734–2775.

Sugiyama, M., Takeuchi, I., Suzuki, T., Kanamori, T., Hachiya, H., and Okanohara,

D. (2010). Conditional density estimation via least-squares density ratio estimation.

In The 13th International Conference on Artificial Intelligence and Statistics, pages

781–788.

Sutton, R. S. (1990). Integrated architectures for learning, planning, and reacting

based on approximating dynamic programming. In The 7th International Confer-

ence on Machine Learning, pages 216–224.

Sutton, R. S. and Barto, A. G. (1998). Reinforcement Learning: An Introduction. MIT

Press.

Suzuki, T. and Sugiyama, M. (2011). Least-squares independent component analysis.

Neural Computation, 23(1):284–301.

Suzuki, T. and Sugiyama, M. (2013). Sufficient dimension reduction via squared-loss

mutual information estimation. Neural Computation, 25:725–758.

Suzuki, T., Sugiyama, M., Kanamori, T., and Sese, J. (2009). Mutual information

estimation reveals global associations between stimuli and biological processes.

BMC Bioinformatics, 10(S-1).

Suzuki, T., Sugiyama, M., Sese, J., and Kanamori, T. (2008). Approximating mutual

information by maximum likelihood density ratio estimation. In Third Workshop on

New Challenges for Feature Selection in Data Mining and Knowledge Discovery,

FSDM 2008, held at ECML-PKDD 2008, pages 5–20.

Tadić, V. (2001). On the convergence of temporal-difference learning with linear

function approximation. Machine Learning, 42(3):241–267.

Tan, M. (1993). Multi-agent reinforcement learning: Independent versus cooperative

agents. In The 10th International Conference on Machine Learning, pages 330–

337.

Tenenbaum, J. B., de Silva, V., and Langford, J. C. (2000). A global geometric frame-

work for nonlinear dimensionality reduction. Science, 290(5500):2319.

Tesauro, G. (1995). Temporal difference learning and td-gammon. Communications

of the ACM, 38(3):58–68.

Tesauro, G. (2003). Extending q-learning to general adaptive multi-agent systems. In

Advances in Neural Information Processing Systems 16, pages 871–878.

Toh, K. and Yun, S. (2009). An accelerated proximal gradient algorithm for nuclear

norm regularized least squares problems. In International Symposium on Mathe-

matical Programming.

Torkkola, K. (2003). Feature extraction by non-parametric mutual information maxi-

mization. Journal of Machine Learning Research, 3:1415–1438.

185

Tretyakov, K. (2004). Machine learning techniques in spam filtering. Technical report,

Institute of Computer Science, University of Tartu.

Tsitsiklis, J. N. (1994). Asynchronous stochastic approximation and q-learning. Ma-

chine Learning, 16(3):185–202.

Tsitsiklis, J. N. and Roy, B. V. (1997). An analysis of temporal-difference learning

with function approximation. IEEE Transactions on Automatic Control, 42(5):674–

690.

Udriste, C. (1994). Convex Functions and Optimization Methods on Riemannian

Manifolds. Springer Netherlands.

Ueno, T., Hayashi, K., Washio, T., and Kawahara, Y. (2012). Weighted likelihood

policy search with model selection. In Advances in Neural Information Processing

Systems 25, pages 2366–2374.

Vapnik, V. N. (1998). Statistical Learning Theory. Wiley.

Vijayakumar, S. and Schaal, S. (2000). Locally weighted projection regression: In-

cremental real time learning in high dimensional space. In The 17th International

Conference on Machine Learning, pages 1079–1086.

Viola, P. A. and Jones, M. J. (2004). Robust real-time face detection. International

Journal of Computer Vision, 57(2):137–154.

Wächter, A. and Biegler, L. T. (2006). On the implementation of an interior-point

filter line-search algorithm for large-scale nonlinear programming. Mathametical

Programming, 106(1):25–57.

Wang, M., Sha, F., and Jordan, M. I. (2010). Unsupervised kernel dimension reduc-

tion. In Advances in Neural Information Processing Systems 23, pages 2379–2387.

Wang, X. and Dietterich, T. G. (2003). Model-based policy gradient reinforcement

learning. In The 20th International Conference on Machine Learning, pages 776–

783.

Watkins, C. J. and Dayan, P. (1992). Technical note: Q-learning. Machine Learning,

8(3):279–292.

Watter, M., Springenberg, J. T., Boedecker, J., and Riedmiller, M. A. (2015a). Embed

to control: A locally linear latent dynamics model for control from raw images.

CoRR, abs/1506.07365.

Watter, M., Springenberg, J. T., Boedecker, J., and Riedmiller, M. A. (2015b). Embed

to control: A locally linear latent dynamics model for control from raw images. In

Advances in Neural Information Processing Systems 28, pages 2746–2754.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connec-

tionist reinforcement learning. Machine Learning, 8:229–256.

Wu, Q., Mukherjee, S., and Liang, F. (2008). Localized sliced inverse regression. In

Advances in Neural Information Processing Systems 21, pages 1785–1792.

186

Xia, Y. (2007). A constructive approach to the estimation of dimension reduction

directions. The Annals of Statistics, 35(6):2654–2690.

Xie, N., Hachiya, H., and Sugiyama, M. (2012). Artist agent: A reinforcement learn-

ing approach to automatic stroke generation in oriental ink painting. In The 29th

International Conference on Machine Learning, pages 153–160.

Yang, W.-Y., Liang, W., Xin, L., and Zhang, S.-W. (2009). Subspace semi-supervised

fisher discriminant analysis. Acta Automatica Sinica, 35(12):1513 – 1519.

Yu, D., Seide, F., and Li, G. (2012). Conversational speech transcription using

context-dependent deep neural networks. In The 29th International Conference

on Machine Learning.

Zhang, L., Zhu, J., and Yao, T. (2004). An evaluation of statistical spam filtering tech-

niques. ACM Transactions on Asian Language Information Processing, 3(4):243–

269.

Zhang, W. and Dietterich, T. G. (1995). A reinforcement learning approach to job-

shop scheduling. In The 14th International Joint Conference on Artificial Intelli-

gence, pages 1114–1120.

Zhang, Y. and Yeung, D. (2009). Heteroscedastic probabilistic linear discriminant

analysis with semi-supervised extension. In Machine Learning and Knowledge

Discovery in Databases, European Conference, ECML PKDD 2009, pages 602–

616.

Zhang, Z., Dai, G., Xu, C., and Jordan, M. I. (2010). Regularized discriminant analy-

sis, ridge regression and beyond. Journal of Machine Learning Research, 11:2199–

2228.

Zhao, T., Hachiya, H., Niu, G., and Sugiyama, M. (2012). Analysis and improvement

of policy gradient estimation. Neural Network, 26:118–129.

Zhao, T., Hachiya, H., Tangkaratt, V., Morimoto, J., and Sugiyama, M. (2013). Ef-

ficient sample reuse in policy gradients with parameter-based exploration. Neural

Computation, 25(6):1512–1547.

Zhong, W., Zeng, P., Ma, P., Liu, J. S., and Zhu, M. Y. (2005). RSIR: regularized

sliced inverse regression for motif discovery. Bioinformatics, 21(22):4169–4175.

187

