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Chapter 1 

Introduction 



We study emergence and dynamics of codes by constructing abstract models in computers. A 

term code is defined as a set of rules which restrict the usages and interpretations of symbols 

in communication and expressions. A code of a system is organized either by a supervisor or 

by the system itself spontaneously. We are interested in the case of self-organization, a code 

emerging from interactions among agents. Two characteristic self-organized codes, linguistic 

code and genetic code, will be discussed thoroughly in the thesis. 

Codes are often studied from the view points of both syntactic and semantic. The former 

studies connections among symbols and the latter does relations between each symbol and its 

referent. However, a code in a system must be organized for the system to work in practical 

situations. Thus, we must study organization or evolution of codes from pragmatic viewpoint, 

that is interpretations of and responses to information in practical situations. If we consider 

pragmatic case, the syntactic and semantic aspect of a code cannot be separately treated. 

Namely, we face with a problem of syntax and semantics mixture . 

If many agents communicate, other problems may occur. One's interpretations of information 

may run counter to that of others. Code has to be fluctuating temporally by the actions of the 

agents. We see paradoxical nature of code, syntax and semantics mixture and openness of code. 

Nowadays we often communicate through computer networks. Here we know that a sender 

and a receiver of messages share a common code to exchange the messages. The code used 

in computer networks is prescribed in a static way. It is a mere agreement at the syntactic 

level. We encode a message on symbols and decode symbols to get a message by following the 

prescribed code. This syntactic level of code was first studied by Shannon and Weaver [91]. 

They discussed its efficiency and capacity under noisy environment. 

A lot of grammatical and lexical knowledge is input to computer systems in order to process 

natural language. The knowledge is taken as a code in natural language - the grammatical 

knowledge constitutes a code at the syntactic level and the lexical knowledge constitutes a 

code at the semantic level. However, processing natural language by computers turn out to 

be a very difficult issue. Usages and meanings of words in practical situations are not decided 

completely by given grammatical and lexical knowledge. Context dependency with synonymy 

and polysemy makes processing natural language be difficult. Mixture of syntax and semantics 

can be often seen. For example, Chomsky said that an active sentence can be transformed into 

a passive sentence without changing the meaning. But transformation between the active and 

passive sentences changes the meaning in practical situations. Interpretations and impressions 



become different for listeners. Moreover, we notice that creation of new words and phrases is 

more important characteristics of natural language. Such innovative nature of language cannot 

be brought about by mere grammatical and lexical knowledge. 

As Wittgenstein said [106], rules in natural language can not be determined in advance. In 

practical communication, we just speak. A code does not exist from the beginning. Indeed, 

there is an arbitrariness to some degrees in usages of words or interpretations of information. 

The arbitrariness in a system undergoes restrictions by validities peculiar to the system . We 

can say anything, yet scarcely do we speak extraordinary ways in practical conversations. Hence 

we have smooth conversations . Thus we feel the existence of a tacit linguistic code. We can 

refer to a code only after conversations. It may change, however, after new conversations . For 

example, peculiar expressions or trend words are often created in a certain community, without 

mutual confirmation. Linguistic codes can only be described after events, and they dynamically 

change. What we must ask is how to understand and model the emergence and dynamics of 

the linguistic code. 

Similarities between sentences in natural language and genetic sequences in genomes are 

often discussed (e.g. [81, 26 , 95]). In the genetic systems, each codon is related with amino 

acid. Even if we know the relationships completely, we cannot understand how proteins act 

in real situations. Relations between genotype and phenotype constitute a genetic code in a 

pragmatic level (see Fig. 1.1). We cannot prescribe the code at this level as the linguistic code. 

Phenotype varies from individual to individual even with the same gene (incomplete penetrance). 

T he phenotype can a lso vary through interactions with other genes and environmental factors 

(variable expressivity). Genetic codes have to be studied t hrough the pragmatic levels. 

genotype ·· 

, ...................... ......................................... ............... , 
codons -- _,.. amino acids ~ -• phynotype 

correspondence between 
symbols and referents 

pragmatic level 

Figure 1.1: Relations between each codon and amino acid is correspondence between each sym­
bol and its referent . It must be considered thro ugh relations between genotype and phenotype. 
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There is a general agreement that the genetic systems utilize the universal code over all 

creatures. Recently, different correspondences between codons and amino acids are found ex­

perimentally (e.g. [5, 62]). The fact conceives us that the genetic code can have dynamics as 

well as genetic code at t he pragmatic level [89]. 

If systems with different code come to interact with, mixture of codes wi ll be revealed. It 

causes interferences and conflicts between codes. And it may bring about dynamics of code. 

For the linguistic examples, there are many different local and social dialects to coexist. In 

early st ages of language acquisition process, children may have different codes from ad ults'. 

Children learn to modify their code, however, to incorporate into adults' in the course of de­

velopment. Mixture of codes can be an innovative source for a new code. Examples of new 

codes can be seen in pidgin and creole languages. Pidgins a re new languages which are invented 

for communication with each other, when more than two languages contact . Creoles are devel­

oped languages from pidgins by lex ical and grammatical extensions to smoothly communicate 

with each other and to naturally express one's thought . Developments of child 's language and 

pidgin/ creole languages will be discussed in §2.1.2. 

There might be mixture of codes in genetic systems. Suppose t hat a gene is interpreted as 

"produce a protein X" . But, according to a different code , it is interpreted as "produce a protein 

Y". If the protein Y inhibits the protein X, these two codes generate contradiction. When a 

procaryotic cell and mitochondria fuse to form a eucaryotic cell, such mixture of codes can 

happen. One side of code will be driven away, or a new code will be invented. 

Even within a single code, contradiction can be induced. Suppose that a protein X translates 

a gene to "protein Y which inhibits X". Such code induces a logical contradiction. By the 

logical contrad iction the code can be improved. We refer to such nature of code as openness. 

It is related with a proposition "A = ~A" or a sentence "This sentence is not valid." Such 

inconsistency in code can result in oscillating dynamics as Spencer Brown has first pointed 

out [ll]. 

The mixture and openness of codes are inevitable characteristics of what is defined as a code. 

We wil l propose a language game in communication network to study emergence and dynam­

ics of linguistic code. A network consists of simple symbol processing agents with individual 

grammars. Agents speak and accept words in terms of their own grammars. We are interested 

in organizing codes in network through communication amo ng agents. In other words, whether 

a specified usage of words can be selected in the network is our main concern . As we have 
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discussed, it is impossible to determine rules of the game or individual grammars in advance. 

However, we can study the global dynamics of code in the communication network of individual 

grammars. 

We assume in our language game that the more various words an agent can recognize or 

speak, the more the agent can score. Because recognizing words is related with the capability of 

information processing. How variety of words and computational ability of individual grammars 

change will also be discussed in detail. 

We will sec an emergence of groups with particular usages of words. It can be taken as 

an emergence of community code. We will also see evolution of computational ability. Two 

remarkable evolutionary processes will be observed. One is a module type evolution, the other 

one is a loop forming evolution. Mixture of codes, which originates in conflicts between two 

groups, disturbs smooth evolution to higher computational ability. Evolution of computational 

ability shows punctuated equilibria: emergence of higher computational ability agents follows 

by the community code. 

As for the study of genetic code, we will propose a network model of machines and tapes. 

One primitive role of genetic code is replication. As von 1eumann pointed out [102], self­

reproduction requires separation of machine and its description tape due to self-referential 

problem. A system must observe itself to self-reproduce. If a system is unstable against its 

observation, self-reproduction is impossible. By introducing a stable description tape, von 

Neumann constructed a self-reproducing system in two dimensional cell automata. To study 

genetic code through a pragmatic level, we will discuss how the machines and tapes behave in 

the network for self-reproduction, and how the tapes are interpreted by the machines. 

We introduce circular binary strings as description tapes, and machines as decoders and 

products of the tapes. Machines can only be reproduced by being read its description tape. 

We will see evolution from a minimal self-replicating network to a large complex network . To 

stably sustain the large network, a core network should appear. In the core network, each one 

of machines is produced by other machines. Not only each population of machine and tape but 

also network topology oscillate in the course of time . We will see the oscillation will be induced 

by openness of code. 



Chapter 2 

Evolution of Grammar Systems 
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2 .1 Introdu ction 

2.1.1 Language as an Evolutionary System in Ensemble Structures 

Linguistic expressions look quite complex but look far from random. Therefore we feel that 

there exists a linguistic code. It is said that a grammar of a given language decides a structure 

of expressions. A grammar constitutes a part of the code. It is determined in part by the 

community which uses it . It is also commonly assumed that one has to have internal knowl­

edge of one's language when one can derive and recognize appropriately structured expressions. 

Internal knowledge varies from person to person. We henceforth will refer to individual inter· 

nal knowledge as an individual grammar. An individual grammar can undergo changes under 

physical and cultural environment and in its interaction with other grammars. 

Language reflects historical factors such as evolutionary paths and growing processes, as 

shown in the next subsection. Therefore language can be treated as an evolving system. For 

these reasons, we have to discuss how a grammar evolves in an ensemble of individual grammars 

and how its complexity evolves. 

It is often assumed that the complexity of language is mere reflectio n of the complexity in 

the world we li ve in, just as the complexity of living systems is said to be the reflection of their 

complex environments. But language is a highly autonomous system, with its ow n evolutionary 

dynamics. 

MacLennan [72] has studied communication among simple rule agents. Agents exchange 

information about the local env ironments in which they live by emitting signals to each other. 

F ixed signals serve as names of objects which an agent enco unters in its environment . Different 

names may correspond to the same object, resulting in the emergence of synonymous. Complex 

naming of objects reflects the complexity of the external environment. In Werner and Dyer's 

model [1 03], diversity of language is attributed to spatial inhomogeneity of the environment 

where agents live. 

However, we believe that even without complex space or information, grammars can evolve 

and diversify by intrinsic mechanism. In general, evolving systems, such as evolut ionary games 

[71, 50], Tierra world [84, 85], network of tapes and machines [52, 51] which is studied in the 

next chapter, constitute notable examples of evolutionary mechanisms. Each example has its 

own diversifying mechanisms such as host-parasite dynamics and self-referential paradox. If 

linguistic expressions are not mere labels of external objects, communication helps to develop 
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grammar structures 1 . 

We usc our language not just to describe entities and states of affairs in the external world 

but also to express our own thoughts. Language must be complex enough to express complex 

thoughts or concepts. On the other hand, language is used not only in order to communicate 

with others (cxo-languagc) , but also to construct one's "internal models" (endo-language) . We 

regard grammar systems as representations of internal models. Exo-language also reconstructs 

internal models of both speakers and listeners. Language influences thought and vice versa; 

complex thoughts make language complex and complex language is conducive to the formula­

tion of complex thoughts. To make false statements gives impetus to complex language: speaker 

must produce complicated expressions or encipher sentences to make it difficult for others to 

understand them. Listeners must recognize such complex expressions to correctly receive infor­

mation. Communication therefore can be thought of as a source of rich grammar structures. 

To study languages in evolutionary and network context, we consider a simple language game. 

Each player has his own grammar and communicates with each other by sending sentences. 

Player takes turns to speak and listen to the sentences. Each player's advantage is counted by 

what kind of sentences he speaks, how fast he recognizes sentences of the other and how one's 

sentences are recognized by other players. A player who get lower scores has to change their 

grammar and the grammars of players with higher scores are likely to be hereditary. 

According to N. Chomsky [16], the computational ability of symbolic grammar is categorized 

into four classes: 

type 0 phrase structure grammar 

typ e 1 context sensitive grammar 

ty p e 2 context free grammar 

ty p e 3 regular grammar. 

The higher a grammar is ranked in the hierarchy, the larger a set of words it can generate. To 

take a simple example, a word set, 

(2.1) 

can not be derived by a regular grammar (type 3) but can be derived by a context free grammar 

(type 2) and by any grammar higher in the hierarchy. Here a symbol xy is a concatenation 

1Since our model ha.s no external environments, naming of external objects lies outs ide the scope of this paper. 
But we will show that the diversificat ion of words and grammars still occur. 
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of symbols x and y and x" represents n times concatenation of symbol x . Hence a set (2.1) 

includes all strings beginning with any non-zero number of Os followed by an equal number of 

1s. 

Evolution of grammar will be discussed as a process of escalation in the hierarchy. From 

a practical point of view, we have to take finite lengths of words and finite derivation steps 

into account. If we deal only with a finite set of words, e.g. {On1niN :?: n;::: 1}, Chomsky's 

hierarchical relationship does not a lways hold. In computation theory, there are no upper bounds 

to how much t ime can be put into deriving words and no ensemble structure is considered at all. 

We need to figure out what kind of grammar has a practical ability to derive and accept words 

in finite time steps. The computational ability of a symbolic grammar and hierarchy should 

be studied within an ensemble . Chomsky [17] said that regular grammars are not suitable for 

modeling the grammars of natural languages. Vie assume that the primitive structure of a 

grammar is a regular grammar and will see how it develop into higher grammars. 

In the next subsection, we will review examples of evolution of complexity in linguistic sys­

tems. 

2.1.2 Evolution of Linguistic Complexity 

Evolution of language wou ld be divided to two problems. One is the emergence of language, 

the other is evolution of linguistic complexity. The former is too complicated problem. To 

understand it we must investigate many subjects as well as linguistics. By the fact that the 

evolution of brain especially asymmetry of hemisphere is needed to deal with complex and 

abstract information, we must develop peleoneurology as well as conventional brain science 

[69, 34]. Since to utter vowels in a loud voice and articulated consonants need developments 

of vocal tract and facial muscle [69], we have to know the evolutionary path by paleobiological 

studies. It is said that evolution of stone tools is related with the evolution of language [70] . 

Teaching complex processes of making tools, e.g. Neanderthal's, seems impossible without 

language [34,4]. Language represents its own culture. Hence archaeological evidences should be 

examined. Communication is shown to be specific not only to human society but also to many 

other living things . There seems to be symbolic behaviors in some animals [64,40]. 

On the other hand, development of lexical and grammatical complexity after establishment 

of language provides different but interesting subjects to study. Historical linguistics, child's 

acquisition of language and pidgin and creole languages are the examples [19]. 
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Pidgin languages are the best examples of inventing new codes induced by mixture of codes . 

They are new languages when two or more languages fuse [99]. They are not mother tongues 

of speakers of pidgins. They have their own first language. For example, when superstratum 

language spoken by European overseers met substratum languages spoken by African slaves on 

Caribbean plantations, a relatively simpler new language was invented in order to communicate 

with people from other areas [108 , 29]. 

Romaine reported some examples of simplification, reduction , restructuring and mixture of 

lexicon and grammar found in the pidginization processes [87]. Bickerton classified grammatical 

morphemes to two groups with respect to their robustness [10]. Ones are easily reconstructed 

morphemes if they are lost, e.g. tense, aspect, modality forms, question words, and irrea lis 

complementizer. The others are hardly reconstructed morphemes if they are lost, e.g. gender 

agreement, number agreement and most prepositions. The former can give a primitive form of 

grammar. The evolution from grammar with the former type to more complex one including 

the latter type would have proceeded. 

Creole languages are stabilized and extended ones from pidgins. Different from pidgins They 

arc the mother tongues of speakers. Creolization usually proceeds through several generations. 

A good example is Tok pisin. Creole languages may approach to their superstratum languages 

after creolization, if the superstratum languages have large effects to the creoles - for example, 

when the superstratum language is used for education or broadcast. The approaching process 

from a creole to its superstratum language is referred to as decreolization. Languages between 

them are called post-creole continuum [99]. Pidginization, creolization and decreolization dy­

namics is illustrated schematically in Fig. 2.1. 

Creolization can occur from any degrees of pidginization [87] . There are languages called 

"radical creoles". A radical creole is formed in one generation in a society where some pidgin 

languages are spoken. It is different from any languages previously spoken in the society. 

An example is Hawaii creole. Bickerton found that radical creoles have similar characters in 

common even though many of them are geographically separated. For example, they show 

simple morphologies, often no morphology at all. Three particles expressing anterior, irrealis, 

progressive used as auxiliary verbs are another example of the common character [9] . It is 

very suggestive, since we can imagine that language evolves in an invariant fashion. Bickerton 

argued that when children are exposed only insufficient model for acquisition, an innate syntactic 

structure arises. He called it "bioprogram" and asserted it was a candidate for the primitive 
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jargon 

limited pidgin 

stabilization! 

stable pidgin 

extension ! 

extended pidgin 

substratum language(s) 

/ 
limited contact 

superstratum 
language 

post-creole continuum 

Figure 2.1: pidginization, creolization and decreolization processes 

syntax at the emergence of language. 

Creoles share some characters with children's language. For example, children often use verbs 

without inflection. Another example is the fact that they often do not exchange auxiliary verb 

and the subject word in an interrogative sentence - e.g. "Where I can put it?" . Such sentence 

is normal in most creoles. Distinction between state and process is another example. In creoles, 

the progressive particle is by no means used with process verbs as "love" or "like". Children 

acquire this distinction very early. They scarcely say as "I am liking her". 

Let us see development of children's language. 

At first, children can utter only a word, which is called one word stage. They can recognize 

adult's syntactic structure, although they cannot speak syntactic structured sentences. It can 

be said that they have a passive grammar system [80] . At the two word stage, there is no 

unstressed morpheme as prepositions or auxiliary verbs [1]. Sentences in this stage called "tele­

graphic speech" [12]. Two main words are extracted from adult's sentences and are combined 

maintaining their word order in the adult's sentences. 

Thereafter, children begin to use some morphemes . Brown reported learning process of 14 

grammatical morphemes in English [12]. Present progressive, plural and locative prepositions 

are mastered in early stages of development . Contractible copula and contractible auxiliary 
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are, on the other hand, acquired at last stages. Although the order is not held always in 

other language, acquisition order of several morphemes suggests a principle: simple rules are 

used at first and then complex rules are used in rough ways. To understand this acquisition 

order, several notions of complexity are proposed - semantic complexity (e.g. [13]), derivational 

complexity (e .g. [13,32, 15]), formal complexity (e.g. [94]), and conceptual complexity (e.g. [18]) 

(see also Andersen's paper [1]) . 

Overregularizations have been reported in the course of acquisition of language by cross­

linguistic studies [27, 93, 8, 7]. Children typically acquire inflections through the following steps: 

at first, no inflection; then infrequent and appropriate use of both regular and irregular inflec­

tions, e.g. walk-walked, go-went; next, overregularized form - irregular words arc inflected as 

regular words, e.g. "goed" for a past tense of "go"; at last, completely correct usc. Pinker 

interpreted these facts as follows [79]. Children, at first, do not catch a rule of inflection. They 

only memorize words. Afterword they learn the rule for regular inflections and wrongly apply to 

irregular words. Thereafter, they acquire whole inflection rules. These facts show that children 

can generalize underlying rules from finite input and extend from simple to complex rules. 

SENTENCE 

~ 
NOUN (PHRASE) VERB PHRASE 

A 
VEI B NOUN I (PHRASE I 

Cathy built house 

Figure 2.2: A hierarchical structure of a child's sentence 

The next stage of development is the emergence of hierarchical structure of sentences. When 

children speak a sentence, they often say a part of the sentence at first, e.g. they speak a verb 

phrase, then speak the whole sentence. For example, they say "built house" immediately before 

speaking "Cathy built house." This fact suggests that their utterances are constructed as in 

Fig. 2.2. Beside, there is a fact that they never breathe in noun phrase . They seem to regard a 
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noun phrase as a unit. It also suggests that their sentences are hierarchically structured. 

In this subsection, we have looked that there arc facts showing evolution of linguistic com­

plexity t hrough developments of pidgin and creole languages and children's language acquisition 

processes . T hey exhibi t conspicuous evidences of dynamical codes. These dynamics are partly 

induced by mixture of codes - superstratum and substratum languages in the pidginization, 

and adults' and children's languages in the language acquisition processes. 

2.1.3 Organization of this Chapter 

Sections in t his chapter are organized as follows . T heory of formal language and the Chomsky 

hiera rchy are introduced in §2.2. A model of a language game and evolutionary dynamics are 

defined in §2.3. Detailed analysis of evolution of those grammar systems is presented in §2.4. 

Developing an ensemble sharing several words, we call it an ensemble with a common set of 

words (ECW), is found to be crucial for mai ntaining diversity of grammar structures . After 

establishment of an ensemble structure, each grammar system is likely to become complex again. 

An ECW is discussed in §2.5. A simulation of t he model exhibiting a stepwise evolution over 

several eras will be reported in §2.6. Some other observations will be reported in §2.7. Several 

implications of ECW and evolution of grammar systems will be discussed in §2 .8. 
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2.2 Basic of Formal Languages 

2.2.1 Word and Language 

A finite non-void set of symbols is called alphabet and is denoted by V. The finite strings of 

symbols are called words over V. The set of all words over Vis denoted by V'. The length of 

a word w is the number of symbols of w and is denoted by lwl. An arbitrary set of words is 

called language and is denoted by L. 

Any language L is associated with several generative grammar systems G, which is charac­

terized by a set of rules and symbols. By preparing relevant rules and symbols, at least one 

generative grammar can generate the whole words belonging to the given language L [46[. 

2.2.2 Generative Grammar 

A generative grammar G is an ordered four-tuple (VN, Vr, F, 5). Symbols Vr and VN are disjoint 

finite alphabet, called terminal and nonterminal symbols, respectively. A symbol 5 E VN is an 

initial symbol. And a symbol F is finite set of ordered pair (a, (3) . Here, a and (3 is word over 

(VN U VT)' and a contains at least one symbol from VN . The elements (a, (3) in Fare called 

rewriting rules and will be written in the form 

a-> (3. (2.2) 

2.2.3 Derivation and Acceptance 

Rewriting rules arc used to derive new words from given ones. If the left-hand of a rule is equal 

to a part of a word, the part is replaced by the right-hand of that rule. 

Given a grammar G = (VN, Vr, F, 5) and two words X, Y E (VN U Vr )', we say that Y zs 

derivable fmm X in one step and we denote it 

X*Y, (2 .3) 

iff there are words P1 and P2 in (VN U lfr )' and a rewriti ng rule a -> (3 in F such that 

X= P1aP2 andY= P1 f3P2 . 

Given a grammar G = (VN, llr, F, 5) and two words X, Y E (\fN U VT)', we say that Y is 

derivable from X and we denote it 

X~Y, (2.4) 
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iff X= YorthereissomewordXo, XJ , X2,·· · ,Xk(k ::0: 0) in (VNUVr)* and X 0 = X,Xk = Y 

and Xi+ I is derivable from X; in one step (0 ~ i ~ k- 1), i.e. 

(2.5) 

When no nonterminal symbols are left in the derived word , a derivation process terminates . 

If a word X is derived by a grammar G, we say that a word X is acce7Jtable by G. 

2.2.4 T he Chom sky H ierarchy of Grammars 

We can classify the generative grammars with respect to a set of rewriting rules. The classifi­

cation below has been introduced by N. Chomsky [16]. 

A generative grammar G = (VN, Vr, F, 5) is said to be of type i if it satisfies the corresponding 

restrictions in this list [86] : 

i = 0 No restrictions, called phrase structure grammar. 

i = 1 Every rewriting rule in F has form Q1AQ2---> Q1PQ2, with Q1, Q2 and Pin (Vn U Vr)*, 

A E VN , and P =ft.\, except possibly for the ruleS--->.\, which may occur in F, in which 

case S does not occur on the right-hand sides of the rules. Where .\ is an empty word 

which contains no symbols. This grammar types are called context sensitive grammar. 

i = 2 Every rule in F has a form A ---> P, where A E VN and P E (VN U Vr)*. This type 

grammars are called context free grammar. 

i = 3 Every rule in F has a form either A---> PB or A---> P, where A, BE VN and P E v.;. 
This type of grammar is called regulaT grammar. 

A language is said to be of type i if it is generated by a type i grammar. T he classes of each 

type languages are related by the inclusions as follows: 

regu lar c context free C context sensitive C phrase structure. (2.6) 
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2.3 Modeling 

2.3.1 Agent with Generative grammar 

We define a communicative agent with generative grammar as follows: 

G; = ({ S ,A,B}, {0,1},F;,5) (2 .7) 

All agents have the same sets of non terminal and terminal symbols, and are identified by index 

i . A symbol F; is a set of rewriting rules peculiar to each agent. The rewriting rules are written 

in the form a --> f3 as above mentioned. Here, the left-hand of any rule , denoted by a, is a 

symbol over 1/N . The type of grammar which an agent can have is either a context free grammar 

or regular grammar. The right-hand of rule, denoted by (3, is a finite string of symbols over 

VN U Vr. The same symbol should not be included in a and beta to forbid a self loop. In this 

paper, we use Os and 1s for a lphabets so that words become bit strings. 

2.3. 2 Communication 

Agents communicate with each other by trying speaking and recognizing words in terms of its 

own grarrunar. 

All agents derive words using their own rewriting rules . To derive a word a leftmost symbol 

equal to left-hand side of a rewriting rule is rewritten by a right-hand of the rule. Derivation 

always starts from an initial symbol 5. If there are more than two fitting rules in an agent's 

rule set, the agent selects one rule randomly. When no nonterminal symbols are left in the 

derived word, a derivation process terminates. And the derived word is spoken to all agents. 

An agent fails to speak a word when (i) the derivation does not terminate within 60 rewri ting 

steps or (ii) there is no applicable rule in its rule set. The maximum length of a word is M 

here. The words longer t han M are truncated after the .i\1/-th symbol and then are spoken to. 

The possible number of words (Nau) is limited to zM+i - 2, and a full set of words speakable 

by an agent G; is denoted by L,p(G;). 

For example, an agent which rules are S --> A , A --> B and A --> 01 can derive only { 01}. This 

agent always rewri tes the initial symbol S to A via a rule S --> A . Then there are two rules to 

be applied, A --> B and A --> 01. One rule is selected randomly from these two rules. If A --> 01 

is selected the word become 01 which doesn 't consist of any nonterminal symbols and are not 

rewritten any further. Then he speaks the word "01" to all agents. On the other hand , if the 

rule A --> B is adopted , the derived word is B. Since there is no rule to rewrite, this agent fails . 
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Agents try to recognize words by applying their own rule in the opposite direction. If an agent 

can rewrite a given word back to the symbol S within 500 rewriting steps, we say that the agent 

can recogn ize the word. Detailed algorithm for recognition process arc explained in Appendix. 

The language recognized by a age nt G; is denoted Lccc(G;). Note that the inclusion relationship 

(i.e. L,p(G;) ;:> Lccc(G;)) ho lds, because of the truncation and limitation of rewriting steps. 

In the above example, the agent can understand only a word "01" by writing back it to the 

symbolS as 

01 =?A=? S (2.8) 

It cannot recognize any other word since the agent does not have applicable rules as non-terminal 

symbol --> terminal symbols except for A --> 01. 

2.3.3 La ng uage Game 

We set a language game in a network consisting of P agents. Each agent takes turns to speak a 

word and it is given to all the agents. Then every agent including the speaker tries to recognize 

it . Each time step consists of R rounds. For each round, every agent has an opportunity to 

speak. 

Each agent is ranked by three different scores: 

1. s peaking How long and how rare words an agent speaks. 

2. r ecog niz ing How long words and how quickly an agent recognizes. 

3. b eing recognized How long words wh ich an agent speaks are recognized. 

A word spoken by t he 1-th agent to t he m-th agent at a ro und c is denoted by t he symbol 

Wtm(c). The scores for 1-th agent at a round c is computed as fo llows: 

For computing a score of speaking, it is given by, 

for speaking a word Wtm(c) 
for failing to speak any word , 

(2.9) 

Where t?·end is defined as the frequency of the word spoken in the last 10 t ime steps. An agent 

gets a higher value of p;P(c) when it speaks longer words and/or less frequent words. 

17 



For computing a score of recognizing, it is given by, 

{ 

lwkl(c)l 
rJ;1c(c) = -s- , 

-lwkt(c)l , 

for recognizing a word spoken by the k-th agent 
in s rewriting steps 

for not recogn izing a word spoken by the k-th agent 

A quick recognition of a long word provides a higher value of pJ;f(c). 

For computing being recognized score, it is given by, 

{
~ br , _ p ' 

Ptm(c)- _ lwlm(c)l 
p , 

if the spoken word is recognized by the m-th agent 

if the spoken word isn't recognized by the m-th agent 

Agents recognizing each other makes a value of rZI high. 

(2.10) 

(2.11) 

The total score for the 1-th agent in a time step is an average of a weighted sum of three 

scores over R rounds: 

(2. 12) 

where Tsp, Tree and Tbr are the respective weighting coefficients. For example, if rbr is given a 

positive value, those who can be recognized by more agents get scores more. But if the value is 

given negative, being recognized is no more favorable. 

2.3.4 Evolutionary Dynamics 

In each time step, new agents are produced. They inherit a rule set from the ir parents with a 

slight change. The change of rule set is defined by the following three processes: 

adding mutation A new rule is added, which is transfered from parents by modifying ran­

dom ly selected rule. 

replacing mutation A randomly selected rule is replaced with a modified rule . 

d e leting mutation A randomly selected rule is deleted. 

The modification ways a rc following; 

1. Replacing a symbol of the left-hand of the rule with the other nonterminal symbol. 

2. Replacing a symbol in the right-hand of the rule with the other nonterminal or terminal 

symbol. 
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3. Inserting a symbol in the right-hand side of the rule. 

4. Deleting a symbol from the right-hand of the rule. 

Adding mutation is applied to agents within t he rate madd, if their scores exceed the average 

score. Replacing and deleting mutations are applied to all the agents within the rate of m,ep 

and mdch respectively. The same number of the least scored agents as new agents is removed 

from a network so that the total number of agents is kept constant. 
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2.4 Algorithmic Evolution 

In this paper, a network consists of 10 agents (P = 10) and each agent tries to speak 10 

times in each time step (R = 10). The score of language game is computed under the fixed 

parameters: Tsp = 3.0, '"'"" = 1.0 and Tbc = -2.0. Note that agents which can speak less 

acceptable words are benefited for a negative value of rbc· It is expected that a variety of the 

words spoken in a population will increase. All the mutation rates are set at equal value 0.04 

(madd = mcep = ffidel = 0.04) . The maximum length of a word is limited to 6 (M = 6), therefore 

the number of possible words Nau is 126. 

Init ially, all agents assumed to have the simplest grammar, i.e. a single rule with one symbol 

in the both hand side. They are classified as type 3 grammars due to Chomsky's classification. 

At least, either a rule S-->0 or a rule S-->1 should be included in order to derive a word. 

We find that evolution of grammar system is accelerated by the characteristic factors , one is 

a module-type evolution and the other one is a loop forming evolution. Computational abi lity 

of agents is measu red by the ratio of recognizable words to the total number of possible words, 

i.e. 
. l b.1. N(L,ec(G;)) 

computatwna a 1 1ty = , 
Nail 

(2.13) 

where N(Lcec(G;)) is the number of words which can be recognized by the agent G; . Fig. 2.3 

represents the example of evolution of t he computational ability from the init ial network. The 

computational ability, as well as the number of t he d istinct words spoken in the netwo rk, we 

call a variety of words, evolves in the course time. 

A tree that displays the derivation path of a given word is called a derivation tree of the 

word. We put all possible derivation tree of a grammar system in a directed, connected graph. 

A structure of the graph expresses the algorithm of the grammar. Algorithmic evolution can 

be seen in the topological changes of t his graph. 

2.4. 1 E volut ion during t he Early S tage 

It is shown in Fig. 2.3 that computational abilities of agents slowly evolve during initial 200 time 

steps . In Fig. 2.4 (a)~(c) the corresponding grammar systems are depicted in graph diagram. 

The initia l agent has a weakest ability, having a direct derivation ru le S-->0 (Fig. 2.4(a)). The 

agent can increase the ability by the process of the adding mutation. Add ing the ru le S-->1 to 

the in itial graph generates a branch structure (Fig. 2.4(b)). Further, the multi branch structure 
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Figure 2.3: Time step v.s. N(Lrec(G;))/Nall· Each line connects one agent to oneself or its 
offsprings . It branches off by the mutations. A line terminates when the corresponding agent is 
removed. These lines show upward trend. In initial 200 time step, computational ability grad­
ually increases. After that, transitions to higher computational agent are frequently observed. 
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will evolve (Fig. 2.4(c)). 

2.4.2 Module-Type Evolution 

We find in Fig. 2.3 that an agent with t he remarkably high abili ty(> 0.1) appears at time step 

192. The change of grammar at this t ime step is sketched in Fig. 2.4(d). An acquired rule 

A --> 00 can double the size of acceptable words. Every intermediate word containing a symbol 

A can be rewritten by the rule A --> 00. In the sense that one common rule is used by many 

different words to make new words, we call the key rule a module rule. Evolutionary processes 

driven by the emergent module rule arc called module-type evolutions. 

2.4 .3 Emergence of Loop Structure 

Grammar systems can evolve by an a lternative evolutionary process, that is, loop structures are 

formed in a grammar system. Fig. 2.3 shows that a new agent with more powerful grammar 

appears the population a round time step 310. The new agent has a loop structure in its grammar 

system (sec Fig. 2.4(e)). A loop structu re can derive a potentia lly infinite numbers of words 

recursively. A grammar with a loop structure is categorized as a type 2 grammar or higher one 

in C homsky's hierarchy. 
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Figure 2.4: The examples of grammar structure are shown by graph diagrams: (a) a sequential 
structure, (b) a branch structure and (c) a multi branch structure. In the (d) an example of 
module-type evolution is shown . Acquiring a rule A -> 00, a grammar without bifurcation 
(upper tree) is evo lved into one with bifurcated branches (lower tree) . An example of grammar 
having a loop structure is schematized in (e). Asterisk stands for any symbols. With this 
grammar, new agent can rewrite words *A* into *B* and vise versa. Words derived from such 
grammar can not represented in a tree form. 
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2.5 Ensemble with a Common Set of Words 

An upper structure, which is named an ensemble with a common set of words (ECW), emerges 

in the population of agents. An ECW consists of agents which can speak and recognize a 

common set of words. The other agents which can' t speak or recognize the common set of 

words a rc less benefited than those belonging to the ECW. 

When there exists an ECW, even an agent of a high ability in a population will die out. For 

example, a new agent evolved by a module-type evolution dies out at time steps 192 and 310 in 

Fig. 2.3. Agents will be removed from the network nevertheless they have a power grammar. 

At t ime step 403 an agent with the highest computational abi li ty in the popu lation is dies 

out (see Fig. 2.3). Agents taking too much rewriting steps to recognize very frequent words are 

likely to decrease their fitness . We indicate this fact by Table 2. 1. The rewriting steps needed 

to recognize the well spoken words are shown in this table. 

Agents which cannot recognize frequent words in the population wi ll be removed in order. 

An agent GJoG (agent with ID 306) , which has the second highest ability in the populat ion, 

is removed first at time step 400. An agent G3o2 which cannot recognize a word "10" is next 

agent to be removed. At the next time an agent G307 which cannot recognize a word "0001" 

is removed. An agent G276 wh ich has the highest computational ability in the population is 

removed at time step 403,as it cannot recognize the word "00" . To stay in the ensemble, where 

a word "00" is the most commonly spoken, each agent should speak and recognize t he word 

quickly. An ability to speak a kind of words quickly should be balanced with an ability to speak 

many but long words. 

Numbers in bold font in Table. 2.1 represent first two larger rewriting steps to understand 

t he words in the leftmost column. It is clear from this table that it takes much more time for 

agents G 30s and G21s to recogn ize severa l words. To take more rewriting steps to recognize 

commonly spoken words of t he majority is disadvantageous for t he agents G3os and G276· If 

a group containing agents G3o6 and G275 constituted the majority, the words as "001011" or 

"010101" would be t he commonly spoken words. In such cases, agents GJoG and G21s will take 

advantageous. 

Fig. 2.5 shows the phylogeny of agents existing at time step 400. It shows that the gro up 

consists of the agents G 276 and G3os and t hat of the other agents forms t he different lines. They 

form two different ECWs. The agents in the major ECW have lower computational ability 

than those in the minor ECW consisting of G216 and G306· Two ECWs conflict to survive in 
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Table 2.1: This table shows rewriting steps to recognize some words (t he left most column) 
spoken at time step 400. Simulation parameters are r 5 p = 3.0, r,., = l.Oand1·b, = -2.0. In 
the seco nd column, the trend of each word (frequency of words in the last 10 time steps) is 
written. Numerals in the first row are ID of each agent at t ime step 400 in order that the earlier 
a agent is removed the lefter it is located. If the agent can't recognize the word , no numerals is 
indicated. Bold numerals represent the first two longest steps to recognize the left most word. 

I word I t rend II 306 302 307 276 305 301 299 294 290 284 I 
001001 30 121 185 121 145 133 121 
011001 20 157 423 166 214 190 157 
11100 16 52 245 46 58 52 52 

11 14 7 12 7 7 

110 12 13 32 14 14 

00110 26 53 57 62 48 43 54 49 53 
110010 11 174 147 121 202 160 147 

00 69 3 3 3 3 3 3 3 3 3 
10 57 7 5 7 5 5 5 5 5 

011010 24 431 210 164 431 120 180 166 251 209 164 
001010 31 233 134 124 236 106 106 116 161 141 124 

1110 24 125 45 27 122 60 60 24 29 27 27 

01110 9 122 91 69 192 55 76 66 83 75 69 
00101 25 91 65 58 91 52 49 57 66 63 58 

111 30 53 21 13 52 24 24 13 13 13 13 
0001 78 20 19 20 21 16 18 18 18 17 

001011 14 401 404 
010101 10 190 193 
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the network. Those in the major ECW behave cooperatively as the result by speaking and 

recogniz ing a common set of words and get higher scores. At last all age nt in the minor ECW 

is removed from the network . In t his way t he evolution toward t he high com putational ability 

is suppressed by establishing ECWs. 

F igure 2.5: This picture represents t he phylogeny of agents at time step 400 (in oval boxes) from 
common ancestor (G22s). A number represents ID of each agent. A line is drawn from parent 
agent (lower) to its offsprings (upper). Two genetic series are bifurcated from the common root 
(G22s), the agents G3os and G216 and t hat of t he other agents. They arc forming different ECW. 
The agent G306 and G276 ar-c both contained in the left series. 

Fig. 2.6 displays a situation of spreading out an ensemble in network. A high trend peak 

moves from low number of agents which recognize some words to high number of agents with 

time step going on. The broken arrow in this figure indicates this movement . It implies that new 

agents belonging ECWs come into existence and at last t he ECWs dominate whole network. 

After removing agents G306 and G216 from a network, an ECW spread to whole network 

as shown in Fig. 2.6. Then agents come to compete with each other within the same ECW. 

Proportional to the number of rewriting steps to recognize the commonly spoken words, the 

agents are removed from the network. In the ECW, a new agent with the high computational 

ability will then emerge through a lgorithmic evolution. 
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trend • the number of words 

Figure 2.6: time step v.s. the number of agents which can recognize some words v.s. trend 
times the number of the words which each number of agents can recognize : We can see that an 
ECW spread out in network. This graph has a peak at time step 396 and the number of agents 
5, where some words which 5 agents can recognize are spoken many times. After that this peak 
moves to higher number of agents in the course of time. That is to say, agents speaking the 
words increase. Increase of trend of particular words seems reasonable to say that agents in 
some ensembles increase. At last all of agents can speak and recognize such words. amely, 
some ensembles have dominated whole network. The broken arrow indicates the movement of 
the peak. 
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2.6 Punctuated Equilibrium 

We have seen that our system shows rapid algorithmic evolution in the grammar systems in 

certain stages . Since, algorithmic evolution is suppressed by forming ECW, rapid algorithmic 

evolution follows the quasi-equi librium stages. Temporal evolution of amounts of handling in­

formation therefore shows punctuated equilibrium phenomena (Fig. 2.7). Handling information 

defined below is sensitive to the formation of ECW. 

20.0 

10.0 

500 1000 
time step 

Figure 2. 7: time step v.s. the average handling information (see the definition in the text): 
In the first 700 time steps, stepwise evolution can be observed. The stepwise changes reflect 
alternate evolution of ECW and the algorithmic evolution. 

The handling in formation of the 1-th agent is defined as the follows, 

n P P 

fl = R~2 L L lw);f(c- 1)1 L lwf,'::'(c)l 
c= l k= I 1n=l 

if X= 0 
if x > 0 and the word which spoken by the 

i-th agent is recognized by the j-th agent 
otherwise . 
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Information contents of a word is simply given by the length of a word . The initial amount of 

handling information, i.e. lw;j(O)I, is defined as 1. 

If an agent gets high value of ft. which suggests that the agent can recognize words spoken 

by others and its speaking words are recognized by other agents . When some ECWs conflict 

with the other ECWs, the averaged handling information in a population , 

p !I 
(fz) = 2:_ p , 

p= l 

(2.16) 

does not increase. After some ECWs occupy the whole network , long and new words will he 

spoken and recognized again by agents. Punctuated equilibrium phenomena in the amount of 

(h) is explained by the scenario. 

29 



-

2. 7 Results of Other Simulations 

2.7.1 Minimal Almighty 

We can make a minimal almighty agent. It is an agent which can speak and recognize all possible 

words with the least number of rules. For example , a minimal almighty agent has the rules such 

as: 

S __,A, A--> SS,S __, O,S __, 1 (2 .17) 

This grammar is categorized as a type 2 grammar. It recognizes and speaks all the words 

very quickly. However, it tends to speak a low variety of words because of random adoption 

from plural fitting rules. A minimal almighty agent cannot invade into the system composed of 

ECW because it can speak lower variety of words . In the case of Tccc = 1.0, Tsp = Tb, = 0.0, an 

almighty agent can evolve , since low variety of speaking words has no disadvantage for its fitness. 

An example of evolution of computational ability when an almighty agent emerges is shown in 

Fig. 2.8. Mutants not only from the almighty agent but also ancestors of almighty agent have 

much lower computational abi li ty than its parent as shown in this figure. The fragility of the 

almighty 's grammar suggests that the rules in almighty agent strongly interact with each other. 

2.7.2 Score of Being Recognized 

We have three parameters in the definition of total score (see eq. 2.12). Here, we will see the 

effect of the parameter Tbc· If it is given positive value , a tendency to recognize each other will 

be encouraged. But if it is given negative , the opposite tendency begins to spread. We display, 

how it depends on the parameter Tbc · If rb, is larger than 4.0, both the variety of word spoken 

and the average handling informat ion are suppressed. Since agents gets higher score by speaking 

and recognizing the same and short words. If rb, becomes less than -3.0, the average handling 

information will go down (Fig. 2.9 b)) since it reflects the degree of being recognized . Variety, 

on the other hand , is kept middle level in the range Tbc < -3.0 (Fig. 2.9 a)). In such range, 

agents make higher score by speaking less frequent and less recognizable words . It maintains 

variety of words in the middle level even when Tb, is less than -3.0. In earlier stages (time 

step < 1500), simulation with rb, = -2.0 has shown quick evolut ion. However it is saturated 

at Tb, = 0.0 and below (time step ~ 1500). We conclude that a slight negative value of Tbc 

accelerates the evolution at the highest speed. 
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Figure 2.8: An example of emerge nce of almighty agent. Time step v.s. N(L,ec(Gi))/Nall· 
Each line connects one agent to oneself or its offsprings. It branches off by the mutations. A 
line terminates when the corresponding agent is removed. Coefficient for each score is Tree = 
1.0, r 5 p = ,.b, = 0.0. An a lmighty agent emerges at time step = 634 (t he arrow indicates). 
Almost mutants from bot h almighty agent and a lmighty's ancestor have very low computational 
abili ty. 
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r_br 

Figure 2.9 : a)variety of words spoken and b)the average handling informat ion vs rbn coefficient 
of score of being recognized, at several time steps. The other parameter values are rsp = 3.0 
and ,.,ec = 1.0. T he number attached to each line represents time step. a) In lower range of t he 
parameter (rb, :<:; -3.0) variety shows middle level, in mid way of the parameter ( -3.0 :<:; rb, :<:; 
2.0) it has high variety and in t he higher range it shows low level. h) For each range < fL > 
shows low, high and qui te low level, respectively. 
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2.8 Discussions 

In the present study, we have shown two types of evolutionary dynamics. One is a module-type 

evolution. What it means for a rule to be a module is that it can be uti lized by other rules in a 

grammar to generate nearly twice as many words as before. The number of recognizable word 

rapidly increases when this module emerges in a grammar. The other type is a loop forming 

evolution. A grammar equipped with a loop structure can derive recursively many words. A 

grammar with a loop structure cannot be represented in a tree shape. Thus the grammar system 

climbs up Chomsky's hierarchy from type 3 to type 2 by acquiring loops. Hence we call such 

a loop forming evolut ion an algorithmic evolution. We consider two significant evolutionary 

processes in natural language as possible correspondents of our evolutionary dynamics. 

In natural language, there is a process called affixation, whereby a group of letters is added 

to a word to produce another word. Affixes added to the heads of words are called prefixes; 

un-, mis- , pre- are examples in English. Ones added to the ends of words are called suffixes; 

-ful, -less, -ish are such examples. The module-type evolution we have found in our simulation 

can be related with word formation processes involving affixes. The module rules are used to 

produce new words by attaching themselves to other words. They indeed behave as affixes . 

The other kind of process produces nested sentences. Complex sentences, phrases within 

phrases and clauses within clauses are such examples. For example, "A man with a colorful 

umbrella who is walking over there will be a candidate of the political party which suffered a 

setback." This sentence can be decomposed into four independent simple sentences without 

any nesting: "A man has a colorful umbrella. He is walking over there. He will be a candidate 

of a poli tical party. The party suffered a setback." This nested structure is a very important 

feature of natural language to prod uce rich and complex sentences. If nat ural language were 

only required to serves as a mere signaling tool, complex syntactic structures might not have 

evolved. In order to produce nested sentences, a complex grammar is likely to appear. 

An ECW (ensemble with a common set of words) is characterized by a shared set of words. 

Individual grammars comprising an ECW are rest ricted to deriving words free ly. A particular 

usage of words in an ECW emerges. Thus a code is organized. In order to speak and recognize 

sharing words quickly, it is advantageous to have their words as single rules (i .e. S ---> words), 

and to combine several rules of non terminal symbols on their right hand sides (e .g. A---> OBS) to 

speak/ recognize other words. This can be regarded as double articu lation in natural language. 

Because a sentence consists of words and a word consists of symbols, we can have infini te 
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sentences with finite symbols. The double articulation also constitutes one of the most important 

features of natural language. Such structure is good for recognizing frequently spoken words 

quickly and speakin g many longer words . When we only count a recognizing score in a language 

game, almighty agents appear and a variety of words is suppressed, since such structure as double 

articulation is not likely to develop. 

In biological systems ranging from ants' society to human society, social laws and norms 

develop . Essential problem in a development of norms is how such ordered upper structures 

evo lve from local interactions [60, 98[. It is suggested that homeochaos or the edge of chaos is 

formed to establish cooperation [58, 110]. In the iterated prisoner's dilemma game, the Tit For 

Tat strategy is formed in cooperative societies [2] . Once such a social structure appears, it in 

turn restricts local dynamics. A recursive loop between global structures and local structures 

cont inues endlessly. Taylor described such a recursive relationship as "LOCAL to GLOBAL 

back to LOCAL, inter-level feedback loops" [98] . This is stressed as evidence of "emergence", 

which is one of the central concerns in art ificial life studies [98, 63]. 

We here propose "children's play" as an example of such emergent phenomena. Children 

sometimes change rules of a game while playing it. The rules dictate how the player is to behave 

and how new rules emerge from children's play successively. Such dynamics of children's play is 

like the dynamics of linguistic code. It is reported from sociolinguistics st udies (e.g. [92]) that 

in general linguistic communities, social dialects are frequently observed. They are language 

variations which are used only in particular social classes or in different groups based on various 

social variables, such as social classes, education levels, occupations and age groups. Peculiar 

usages emerge from co nversatio ns in a small group. Once they are established, they constrain 

the variety of words. It is said that group words such as social dialects are likely to emerge 

when a group consists of about 8 members [92] . 

Within our language game, an ECW produces dialects, irrespective of individual grammars. 

We have used a term net-grammar to refer to the way an ECW produces dialects and restricts 

the potential computational ability of individual grammars in the proceeding paper [41]. We can 

say from our study that a code has restrictive force to individuals sharing the code. Linguistic 

codes can be a so urce of social codes. 

Our language game favors the following agents: speak long and infrequent words; recognize 

long words quickly; speak words which are not recognized by other agents. These conditions 

force players to try to produce more expressions . As a result, diversity of words and complexity 
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of grammar get enhanced. Such a tendency of players is valid through the whole situation, 

a tendency to speak/recognize a common set of words emerges in an ECW. Agents trying to 

speak the same words is tantamount to trying to communicate with each other. This is what we 

believe to be one of the main purposes of language. Conflicts between enhancing expressivity 

and establishing li nguistic code result in punctuated equilibria in communicating information. 

Agents in our game arc in a dilemma. They try to speak words which others cannot recognize, 

but at the same time, to recognize what others say based on the same grammar. This dilemma 

somehow resembles imitation games proposed by Suzuki and Kaneko [96, 59]. It was a simple 

model for mutually mimicking birds . In their papers a bird with a complex song was stronger 

whe n it came to defending its territory, s ince complex songs were difficult for other birds to 

imitate. But at the same t ime, a bird imitated other birds' song by the same mechanism. A 

song is a time series generated by a logistic map. Evolution of a bird's song was achieved by 

mutating the parameter of logistic map. They observed evolution of a song towards the edge 

between the periodic window and chaos, that is, birds singing songs of marginal stability seemed 

stronger. 

Crutchfield has shown that complexity of automata which has accepted time serieses of dy­

namical mappings has been the highest at the onset of chaos [23, 22]. In his model, input to 

automata was quantized time serieses of maps. By replacing this input by output of other 

automata, there may be a similarity to our model. Ensemble of Crutchfield's automata may 

give rise to complexity by language game. 

Algorithmic evolution and restriction by an ECW causes punctuated equilibria even in lan­

guage systems. It is brought about by two factors, modification of grammars and network 

structures. Punctuated equilibrium in genetic systems has been produced by genetic fusion 

operators, which combine genes with module genes [53]. (Note that the module rules which 

we define in the present study are different from the module species used by Ikegami and 

Kaneko [53]. The module species were frequently utilized as fusion partners by many other 

species. The module rules, in contrast, are used to speak or recognize many words within a sin­

gle agent.) By crossover operators different schemata can evolve in parallel, being combined into 

a better fitness [45] . Consequently, intermittent patterns will appear if crossover is introduced 

as genetic operator. There are no module agent or parallel evolutions in the present study, 

as we do not incorporate such operators as fusion or crossover that combine one's grammar 

with others'. But rules in a grammar have epistasis, that is, they interact with each other to 
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produce words, a slight modification of a rule may cause large changes in the ability to speak 

and recognize words and thus the algorithmic evolution can occur. 

If agents given randomly generated words, the variety of words produced according to gram­

mars exhibits no punctuated equilibrium, it almost linearly increases, because agents cannot 

form an ensemble structure. 

36 



--

Chapter 3 

Coevolution of Tapes and Machines 
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~----~--~------------------------------------------------.. ~ 
3.1 Introduction 

3.1. 1 Evolu t io n of Genetic Code 

Biological code in molecular levels are called the genetic code. It carries genetic information 

which can be passed from a generation to a generation or from cell to cell for self-reproduction. 

The genetic code is composed of 64 codon tr iplets assigned to specific amino acids or stop 

commands (Table 3.1). 

Table 3.1: Universal genetic code: Each of 61 codon triplet is assigned to a specific amino 
acid and the other 3 are stop codons that terminate the synthesis of a protein molecule. The 
great portion of biological systems have same code system with this universal code. But some 
exceptions are found. The abbreviations referring amino acids are the followings: Ala= Alanine, 
Arg = Arginine, Asn = Asparagine, Asp = Aspartic acid , Cys = Cysteine, Gin = Glutamine, 
Glu = Glutamic acid, Gly = Glycine, His= Histidine, Ile =Isoleucine, Leu= Leucine, Lys = 
Lysine , Met = Methionine, Phe = Phenylalanine, Pro = Proline, Ser = Serine, Thr = Threonine, 
'I\·p = 'I\·yptophan, Tyr = Tyrosine, Val = Valine. 

Codon Amino acid Codon Amino acid Codon Amino acid Codon Amino acid 
uuu Phe ucu Ser UAU Tyr UGU Cys 
uuc Phe ucc Ser UAC Tyr UGC Cys 

UA Leu UCA Ser UAA stop UGA stop 
UUG Leu UCG Ser UAG stop UGG Trp 
cuu Leu ccu Pro CAU His CGU Arg 
cue Leu CCC Pro CAC His CGC Arg 
CUA Leu CCA Pro CAA Gin CGA Arg 
CUG Leu CCG Pro CAG Gln CGG Arg 
AUU Ile ACU Thr AAU Asn AGU Ser 
AUC Ile ACC Thr AAC Asn AGC Ser 
AUA Ile ACA T hr AAA Lys AGA Arg 
AUG Met ACG T hr AAG Lys AGG Arg 
GUU Val GCU Ala GAU Asp GGU Gly 
GUC Val GCC Ala GAC Asp GGC Gly 
GUA Val GCA Ala GAA Glu GGA Gly 
GUG Val GCG Ala GAG Glu GGG Gly 

The evolution of the genetic code is one of the major subjects in the origins of life. Numerous 

attempts have been made to make clear how the code had evolved (for example [21, 107, 65 , 73, 

105 , 6]). Here we are interested in how sequences of codons are interpreted to proteins and how 
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the proteins act to serve self-reproduction. 

The code in Table 3.1 was thought to be universal. But exceptions were found in human 

mitochondria [5] and in nuclear code [62]. These facts suggest that the genetic code is not 

frozen from the early stage of life. Evolution of biological systems in t heir forms and functions 

is accompanied by evolution of t he genetic codes. Biases of the GC content in genome are 

related wit h changes of the genetic code. In eubacteria, the variation of the mean GC content 

is relevant tob variations in phylogeny [47,48]. It suggests that there exist directional mutation 

pressures. The directional mutation may be caused by internal factors such as errors in the 

reproduction of DNA [89] . (Osawa et al reviewed the evidences of evolution of genetic code and 

directional mutation pressure in [78].) 

A code is to present ways to interpret ymbols. The genetic code directs the way to synthesize 

proteins from DNAs. Because the genetic code is not established by somebody but autonomously 

organized, it is essential to discuss evolutionary paths of the code for self-reproduction as co­

evolu tionary processes of information sequences and their decoders. 

3.1.2 Problem s in Se lf-r eproduction 

Origin of life is often attributed to the emergence of self-reproductive properties. Therefore 

the genetic code must be organized to serve self-reproduction. John von Neumann first has 

proposed an automaton model for the self-reproduction problem [102]. In his abstract modeli ng, 

the fundamental problem in reproduction is that to copy something we first have to observe the 

object, however, the observation in some cases disturbs the object. 

In addition to the problem of observation and copying, the self-referential problem known 

as Richard's problem occurs for self-copying. A self-reproducing automaton should interfere 

with itself for replication of itself. T his generates a sel f-referential paradox [42]. To avoid 

the difficulty, von Neumann separated a machi ne from its description tape as well as proteins 

and RNAs/DNAs. In Neumann's model, he defined a tape as a pattern of stationary states. 

Without external disturbances, the replication scenario is perfect. But external noise causes 

error actions, replication can become unstable. 

Another problem is caused in the case that many machines come to interact. A description 

tape can be read by distinct machines in different manners. Several different machines can be 

produced from a tape. A machine disturbing reproduction of other machines may be produce. 

We propose the additional problem of self-replication, as is also stressed by Neumann himself. 
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~--------------------------------------------------.... 
It is evolvability, that is, how to evolve more complex or functional machines from simple self­

replicating mach ines. Random update of automaton states brings mutation into Neumann 's 

automaton model. If mutation occurs in a machine itself, a machine may change its function. 

But such mutation should not be copied onto the next generation. If mutation occurs in a tape, 

it wi ll be copied onto t he next generation. 

How to encode machines on tapes and how to acquire stability and evolvability of them in 

ensemble of tapes and mach ines under noisy environment will be discussed here. 

3.1.3 Difficulties for Evolution of Stable Autocatalytic Networks 

Eigen and Schuster have tried to elucidate the origin of genetic code based on their hypercycle 

model [24]. But they didn't discuss evolution from simple autocatalytic systems to a higher 

order hypercycle. Here we study evolu tion of genetic code as evolution of stable autocatalytic 

networks of machines and their description tapes. 

Several drawbacks of hypercycle model a rc known. In a hypercyclic loop all connectivity 

among pairs of replicator and enzyme must be exactly equal. All couplings in a hypercycle 

are restricted to homogeneous in this sense. Niesert, Harnash and Bresch has pointed out the 

following three processes breaking down an hypercycle by problems of stability [76]. (1) If a 

selfish replicator emerges by accident, the minimal replication loop takes over the whole loop. 

A selfish replicator makes an enzyme not to help the replication of the sequence at next position 

in the loop but to help the reproduction of the replicator itself. (2) There is a danger of short 

circuit catastrophe. A short cut loop can appear when a mutant catalyze a sequence fart her than 

normal one. Loops with large and short loops sharing partial components cannot be sustained. 

The whole hypercycle always contracts to t he shorter circui t. (3) A large hypercycle dilutes 

each component in the system. T herefore the large a hypercycle becomes, the more possible 

that concentrations of components go down to zero by fluctuation. A hypercycle collapses if a 

crit ical component is lost. 

In order to overcome these drawbacks, Kauffman and Rasmussen have discussed several im­

provements. Kauffman has proposed possible countermeasures for above problems [61] . He 

stated that these problems could be evaded by introducing both activating and inhibiting cou­

pling. Redundancy of connections will increase stability of a catalytic system. He a lso presented 

another plan. If an enzyme can catalyze many replicators at a time, the whole system can be 

more stable. 
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Rasmussen bas conceived the emergence of autocatalytic network as self-organization in a 

random directed graph by introducing mutually catalyzing strand-pairs [83]. Although he en­

visioned the emergence of autocatalytic network , the following problem has been pointed out 

by Kauffman [6 1]: the larger the number of kinds of strand-pairs, the more difficult to find 

catalyzing pair in a graph, since each strand in Rasmussen's model only has a single pairing 

target for catalyzing. 

In spite of their improvements, the essential weak point in Eigen and Schuster's hypercycle 

is inevitable. It is the homogeneous coupling. One of the purposes here is to study how large 

autocatalytic network with inhomogeneous couplings is stabilized. 

In our study, machines and description tapes are introduced and they are influenced by 

random extemal noise. While a machine reads a tape, both probabilistic and deterministic 

change occurs on tape symbols. The probabilistic change is caused by external noise and is called 

a probabilistic mutation or a passive mutation. On the other hand, the deterministic change is 

caused by mach ine action and is named a deterministic mutation or an active mutation. We 

refer these two processes as mutat ions since a tape is rewritten into new tapes by machines 

in place of replication. As mentioned before, mutation induced by internal factors has been 

suggested in the study of real genetic code [89]. 

We see evolution of a perfect replicating network composed of a pair of a machine and a tape 

in low external noise regime. For high noise region , a complex autocatalytic network sustaining 

deterministic mutation evolves. Self-replication not as an individual but as a whole network now 

becomes important. In the other autocatalytic models [28, 24], reproduction only by machines 

or by tapes has been discussed. No machine can reproduce itself, however, without the coding 

tapes and vice versa. By considering both machines and tapes, we can discuss the evolution 

and selection of code in terms of evolution of an autocatalytic network. 

3.1.4 Organization of This Chapter 

Sections in this chapter are organized as follows. Our basic model is introduced in §3.2. Popu­

lation dynamics of machines and description tapes are introduced with the notion of active and 

passive mutation. In §3.3, evolution of a network composed of machines and tapes is discussed. 

If external noise is low, a simple pair of self-copying machine and tape is formed, where the 

active mutation is suppressed. But in the realm of high external noise, a complex network can 

emerge by sustaining high active mutation . A mechanism of forming this complex but stable 
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network is attributed to the formation of core structure. A network acquiring noise stability 

is defined as a "core network". The core network is studied in §3.4. In §3.5, classification of 

core networks will be presented. A core network consists of many autocatalytic loops. In §3.6, 

we study embedded autocatalytic loops in core networks. A network which both machines and 

tapes forming catalytic loops is found to stabilize large and complex networks. §3.8 is devoted 

to discussion of our results. Some possible connections with real biological systems will be 

discussed. 

42 



3.2 Modeling 

Our system consists of two different objects, tapes and machines. They arc simple analogues 

of the polynucleotide and polypeptide or ribosome, respectively. A tape has a bit string of a 

circular form. A machine which is an automaton like a Turing machine consists of 3 different 

parts, a head, a tail and a transition table. Each head and tail is expressed by a 4 bit string, 

whose pattern will be compared with binary patterns of tapes. A transition table consists 

of 4 mappings; (aM , aT)-+ (a'M,arr) , where aM and aT represents a current binary state of 

machine and tape. A tape and machine state will change to (a'M, arr), respectively depending 

on a current state of machine and tape . 

Introducing an ensemble of tapes and machines, we carry out the machine-tape reaction 

process as follows. 

3.2.1 Interaction of Machines and Tapes 

A machine Mi can react with a tape Tj iff the tape Tj has a head h i and tail ti of the machine 

Mi in a different site. 

Machine Mi reads a tape Tj from the first site of h i to the first site of t;. And a new 

tape written according to the transition tables of M; is produced. And then a new machine is 

produced from the new tape. The site from hi to t; will be called the reading frame. A half 

population of machine starts to read a tape with the internal state 1 and the other half does 

with the state 0. As the result, it generates a new set of machine Mk and tape T1 per each 

interaction. This process s written as a reaction equation, 

(3 .1) 

During the read/write process, both probabi listic and deterministic changes on bits of tape 

pattern arc assumed to occur. The probabilistic change is caused by external noise and is called 

a passive mutation. On the other band, the deterministic change is caused by machine action, 

and is named an act ive mutation. We call it mutation since it does not replicate a tape but 

actively rewrites it. A rewritten tape can be taken as a mis-copy of the original tape. The rate 

of passive mutation denoted by Jl.P is measured by the bit flip rate per bit. The active mutation 

per a reaction is measured by the rewriting rate per a length of reading frame when a machine 
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i reads a tape j. Namely, it is given by, 

w 
!1-Aij = Lij l 

(3.2) 

where a symbol w denotes the number of rewritten bits and L;j denotes a length where machine 

i read a tape j. Average of active mutation rate is given by, 

(3 .3) 

where, m;, t; , is the population of machine and tape, respectively. 

3.2.2 Translation of Tapes 

Not only bits of a reading frame, but every bit of tape is repeatedly picked up to construct a 

new machine from a first site of the reading frame. If a length of a tape is not enough, the 

same bit is used for coding several different part of a new machine. In the present model, we 

use a fixed length of 7-bit tapes with 16-bit machines . A first 8 bits are mapped onto head and 

tail parts in order. The next 8 bits are mapped onto a transition table. In order to cover 16 

bits by 7 bits, several bits are multiply used. This complicated mapping from bits of tape onto 

machine function is assumed to reflect the nonlinear mapping from one-dimensional DNA to 

3-dimensional protein folding structure. 

3 .2 .3 Population Dynamics 

We presume two abstract spaces of the size N for tapes and machines. A total m machines and 

t tapes distribute over the respective space. By iterating the following procedures , we simulate 

the machine/tape reacting system. 

1. Compute concentration of machines and tapes by dividing the population number of each 

object, denoted by m;, t;, respectively, by the capacity size N as following equations, 

(3.4) 

(3.5) 

where, Jt and JJ is concentration of i-th machine and j-th tape, respectively. 
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2. Make eMIT N numbers of new machines and tapes from the reaction of machine i and tape 

j. The rate of reaction hi is given by, 

(3.6) 

if the i-th machine can read the j-th tape. Otherwise it takes zero value. The reaction 

coefficients eMIT take a positive constant eM(= cT). 

3. Remove dM% of old machines and ~%of old tapes. 

4. Put the new machines and tapes back in each space. Hence the population of machine i 

and tape j of the next generation becomes, 

m; = (1- dM)m; + L /kjN, 
k+j-i 

tj = (1 - dT)tj + L !kiN. 
k+i-j 

(3.7) 

(3.8) 

It should be noted here that each machine bas its unique corresponding description tape 

but the inverse is not true. Generally each tape encodes several machines depending on 

which site the translation starts in. 

5. Taking an integer part of the above population, we obtain the actual population of the 

next generation . The machine or tape whose concentration is lower than N- 1 is removed 

from the population. Not to go beyond the total population size N, the reaction coefficient 

should satisfy the relation eM IT :::; dM IT 

3.2.4 Effect of External Noise 

Out of eMIT N new tapes, a number of tapes as well as machines, are erroneous ly generated by 

external noise. It is assumed that the rate of error depends on the reading frame. Namely, the 

rate of error replication by external noise is given by, 

(3.9) 
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where the symbol L is the length of reading frame. We use Monte Carlo methods to get the 

mutant objects. At most EcMfTN mutant populations are obtained by randomly flipping the 

bit within a reading frame. 

3.2.5 Source to Start Searching on Tapes 

Each tape has a source where an attached machine starts to search for the head and tail pattern. 

Starting from the site, patterns are searched for in the clockwise direction of a circular tape. 

When a head pattern is found, a tail pattern starts to be searched in the clockwise direction. 

T he site of source of a tape can be updated randomly when the tape is newly generated after 

an extinctio n. Note t hat every translational invariant tape has the same so urce . 
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3.3 Destabilization of a Minimal Self-replicating Loop 

About 10 randomly selected machines with 2 or 3 tapes arc prepared as the initial configuration. 

A machine without descri ption tape is unstable and smoothly removed from the system. Hence 

an in itial configuration which does not include any description tapes of the initia l machines 

will die out if there is no mutation process. External noise may produce description tapes by 

mistake. 

Even without external noise, a machine can acquire its description tape by the other machines 

as a normal product . To sustain the tape, we have to have the description tape of the machine 

which generates the tape of the first machine. In order to make it stable, a successive reproducing 

process should fo rm a closed loop; each machine on the loop reproduces a machine for the next 

position. (Refer Fig. 3.8-a).) Detailed discussion wil l be given in §3.6. 

We will see how the replicating networks evolve by changing the amount of external noise . 

Examples of temporal evolution of population of machines and tapes are shown in Fig. 3.1. 

By introducing a lower amount of external noise in a system, we see a minimal autocatalytic 

loop evo lve. In this example, a mach ine M1002 reads a tape T1 to replicate the same tape and its 

own machine. The number attached to tapes and machines are hexadecimal number converted 

from its binary representation. Many initial configurations reach this minimal autocatalytic 

system for a lower noise regime. 

A system with the minimal autocatalytic loop is said to be metastable since it remains stable 

after turning off external noise. However the minimal loop is destabilized by increasing exter­

nal noise. Translation under external noise generates many machines, most of which rewrites 

existing tapes . Increasing of parasite mach ines destabilizes the original self-replicating loop. In 

Fig. 3.1-a), a parasitic machine M1222 invades the network with its description tape T41. 

A greater variety of machines and tapes induces unstable oscillation in Fig. 3.1-b). An original 

self-replicating pair becomes unstable if too many parasitic machines attach to it. Population 

of each machine and tape show unstable oscillation in time. An oscillation of large amplit ude is 

caused by the original self-replicating loop. Other oscillations are caused by parasit ic machines 

and tapes. 

This temporal osci ll ation spontaneously crashes by exhausting the self-replicating loop. The 

system restarts by having the minimal self-replicating loop , otherwise it become extinction. 

The minimal loop shows zero active mutation as being depicted in Fig. 3.1-a). Period ically 

rising of active mutation rates arc caused by the parasite machine M1222 and the tape T41· 
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Figure 3.1: Temporal evolution of population of machines (the top row in both graphs) and tapes 
(the middle row) . The bottom row displays temporal evolution of averaged active mutation 
rates and the averaged length of the reading frame. The parameters of population dynamics 
are eMIT= dMfT = 0.6 in the infl uence of, a) lower external noise (J<p = 0.04) and b) higher 
external noise (J<p = 0.055). Both start from the same init ial states. 
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The act ive mutation rate intermittently bursts in time as shown in Fig. 3.1-b). It should 

be noted that a low rate of active mutations means that the network has more individual self­

replication; each tape is self-replicated without mutation. But a high active mutation suggests 

that many machines read tapes and producing different machines with different tapes from the 

original ones. Namely, failure of self-replication is reflected in the amplitude of active errors. 
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~--------------------------------------------.... 
3.4 Emergence of Core Network 

In the region of high external noise (J.Lp ?: 0.05), a stable structure seems to be evolved. Unstable 

oscillation in population amplitude as we see in Fig. 3.1-b) is spontaneously stabilized around 

time step 600 in Fig. 3.2. At the same time, the active mutation rate is sustained at the high 

level. 

Population 
of Tapes 

Population 
of Machines 

T3 TS Tl 
I (I IIRJ 

~~~~~~~~~~~ 

800 

Average Reading Length <L> 

Active Mutation Ra~A< 

Figure 3.2: A spontaneous transition into a core network of a fixed point state. It displays 
temporal evolution of population of machines (the top row) and tapes (the middle row), and 
averaged active error rates and the averaged length of the reading frame (the bottom row). 
The rate of external noise is set at J.LP = 0.07. The parameters of population dynamics are 
cM/T = dMfT = 0.6. 

If we turn off external noise after time step 600, t he numbers of machines and tapes remain 

stable. But if the noise is removed before time step 600, it will back to a minimal self-replicating 

loop. We call a network which acquired an implicit stable structure a core network. 

Fig. 3.3 shows an example of temporal evolution of machines and tapes before and after 

a transition to a core network and after turning off external noise. After the transition the 

amplitude of total number of machines and tapes become less rugged than that of before the 

transition . Generally, machines disappear from the system when turning off the noise. Then a 

true core network is left in the system. 

A minimal self-replicating loop (Fig. 3.1-a)) is also an example of core net. It cannot sustain 
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Figure 3.3: Temporal evolution of dist inct numbers of machines and tapes. External noise(I'P = 
0.08) is turned off at time step 2000 after the emerge nce of a core network at t ime step llOO. 
The parameters of population dynamics are eMIT= dMfT = 0.6. 

an active mutation rate by definition. All the examples of complex core networks which appear 

at middle external noise range (0.05 :<::; !'P < 0.1) have high active mutation rates. By increasing 

the amount of external noise more, an attainable core net again loses complexity, becoming a 

minimal self-replicating loop. 

In Fig. 3.4, we depict the number of distinct machines and tapes and an active mutation rate 

of core nets as a function of external noise, which a re attained by turning off external noise 

at time step 2000. This diagram depends on the initial configuration of machines and tapes . 

Some initial configurations never attai n any core networks. However the general tendency is 

t hat complex core networks emerge in he mid range of (0.05 :<::; !'P < 0.1 ) of external noise . 

Namely, there exist upper and lower bound on external noise to evolve rich core networks. Core 

networks with a fixed point state are more attainable t han ones with oscillating states . A core 

network at external noise of 0.05 contains a rat her smaller number of machines t han the other 

core networks. It has been found t hat th is network uses more 0-rich tapes, which contain a bit 

of state 0 more than t hat of 1, in autocatalytic loops. Whereas the other core networks in a 

fixed point state use more 1-rich tapes, which contain a bit of state 1 more. 

As exemplified at a range of !'P = 0.6 in Fig. 3.4 , a core network is not necessarily a fixed 
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Figure 3.4: Temporal evolution of t he distinct numbers of machines and tapes (left figure) and 
those of active mutation rates (right figure) during time step [2500, 3000] are depicted as a 
function of external noise. The parameters of population dynamics are eMIT = dMfT = 0.6. 

point state. It may start to oscillate after turning off the noise. We call it an oscillatory core 

network. Temporal evolution of the number of machines and tapes, and !LA is described in 

Fig. 3.5. The topology of a network changes in time. Note t hat a network is called a fixed core 

net, if there is constant number of machines and tapes. Emergence of temporal oscillation of a 

network depends on the sustained network topology. 
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time step 2000, we observe oscillation of t hem. The parameters of population dy namics are 
cMf T = 0.6 , dMfT = 0.4. 
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3.5 Taxonomy of Core Networks 

As mentioned above, there are some attainable states of core networks depending on initial 

configurations of mach ines and tapes. They can be phenomenologically classified with respect 

to the dynamical states of active mutation rate . 

Roughly, there are 3 d istinguishable states - active mutation rate with zero, high constant and 

oscillating state. T he zero active mutation rate state is a minimal self-replicating network which 

contains only a pair of a machine and a tape . There arc two strong self-replicating machine-tape 

pairs, M1002 - T1 and M2004 - T1. If the latter type emerges, the system cannot develop a 

complex core network regardless of the amount of external noise. 

There exist diverse kinds of network topologies in the core networks with high constant active 

mutation rate. T hey can he divided into two grades, one with lower number of machines(~ 40) 

and the other with higher number of machines(~ 60) . 

Many cores are in dynamically oscillatory state . These are fall into four subgro ups: 1) Periodic 

oscill ation of active mutation rate with varying its machine number ranging from 50 to 110. The 

period of osc illat ion is about 20 ~ 22. 2) Quasi-periodic oscillation . The number of mach ines is 

same as that of group 1). 3) Amplitude of machine number is bounded between 80 and 110 with 

quasi-periodic oscillation . 4) Quasi periodic oscillation with a small amplit ude. The average 

machine number is roughly 110. 

These groups are also discriminated from return maps of the averaged active mutation rate. 

The typical figures are in Fig. 3.6. The width of amplitude are the same in Fig. 3.6-a) and -b) . 

We can observe frequency locking in Fig. 3.6-a). T he oscillatory core networks as depicted in 

F ig. 3.6-c) show higher and narrower oscillation in the average of active mutation rate than that 

of in F ig. 3.6-a) and -b) . The osci llat ion of the number of machines is also high and narrow. t he 

fu ll number of tapes, on the other hand, are sustained in the networks of -c), 20 tapes exist all 

the time. Fig. 3.6-d) has also high and very narrow amplitudes of both t he active mutation rate 

and the number of machines. The time series of the active mutation rate displays low frequency 

mod ulations and its power spectrum has many peaks. 
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Figure 3.6: Return map of the averaged active mutation rate ((i"A(t)) v.s. (f.LA(t+ 1))) for four 
distinguished oscillatory core networks. a) The widest ampli tude, frequency locking. Period 
of main osc illation is around 21 or 22. b) the widest amplitude, c) midd le amplit ude, d) the 
narrowest ampli tude, note that the range of this graph is different from the others. These a re 
constructed from data taken after the cutt ing off the external noise. The rate of external noise 
is a) I"P = 0.04 , b) f.LP = 0.04, c) f.LP = 0.06 and d) f"P = 0.07. The parameters of population 
dynamics are eMIT= 0.6 , dM/T = 0.4 for all graphs. 
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3.6 Embedded Autocatalytic Loops 

The embedded autocatalytic loops is an important criterion to distinguish network states. Since 

Eigen and Schuster's pioneering work [24], a notion of autocatalyticy has been known as a useful 

razor. We use this notion to dissect core networks. 

Machines to be sustained in a system shou ld possess their description tapes . Evolution from a 

simple self-replicat ing loop to complex ones are depicted in Fig. 3.7, where we express a system 

by actual machine-tape reaction graphs. In Fig. 3. 7-a), a machine M1002 copies itself by 

reading its description tape T1. This minimal self-replicating loop exemplifies Eigen-Schuster's 

autocatalytic network type. Namely, a tape is self-replicated without error. In high noise 

regime, the minimal loop is gradually destabilized by side chains. Fig. 3.7-c) and -d) show a 

successive appearance of parasitic networks. A structure obtained by subtract ing a network 

described in -c) from that in -d) gives a parasite network. This parasite network depends two 

input tapes (T3 and Ts ) on a network c). Similarly, a structure obtained by e) minus d) gives a 

hyper parasite, which depends a tape Tb on the first parasite network. Without a host network 

in -c), successive parasite networks will be ext inguished . 

A finally established core network is a combination of several loops which are autocatalytic. 

With respect to machine sets only, a closed loop is defined as a chain of k machines where a 

machine M j generates a machine Mj+I, the final machine Mk generating M 1 as schematically 

displayed in Fig. 3.8-a). 

A tape set attached to this machine loop can be divided into two sets. One is a tape set 

which need to sustain the machine loop , that is an input tape set {T}} and the other is a set 

produced by the machine loop, that is an output tape set {TJ}. Each machine reads at least 

one of the tapes in {T}} and generates one belonging to {TJ}. 

A set {T}} is prerequisite for sustaining machine loops. If this set is automatically produced 

by the corresponding machine loop, it is called an autocatalytic loop. Namely, tape set in a 

network must be satisfy the following condition for the network to be independently autocat­

alytic, 

(3 .10) 

Otherwise a network has to use the products of other loops to compensate for necessary tapes. 

It is a necessary condition for any independent autocatalytic loops that a tape set needed to 

sustain the machine loop is self-reproduced by the machine loop. 
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Figure 3. 7: Evolution from a simple self-replicating loop to a complex network is described. a) 
An initially existing a minimal self-replicating loop, where a machine M1002 replicates itself 
by reading the tape T 1. A net (a) will be successively exploited by Maoos with Ts (b)then 
by M1222 with Ta in (c) . The net which is depicted on d) is a net c) with a parasitic network 
hanging on it . This is named a parasitic net, since as a network it depends on a net c) for 
the input tapes Ts and Ta to maintain its structure. Connections in the parasite network 
are drawn by broken arrow. In a network e), a hyper-parasite (drawn a lso by broken arrows) 
hanging on a parasite net in d) is depicted . 
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As special case, the autocatalytic condition is locally satisfied , hence each tape is self­

replicated. A network of this type is called the Eigen-Schuster type (Fig. 3.8-b)). However, 

an autocatalytic condition is not locally satisfied in general. In the noisy environment, a net­

work which globally satisfies the condition will be emerge (Fig. 3.8-c)). 

In the general case of Fig. 3.8-c), not only machines but also tapes form a catalyzing loop 

structure. Hence we call the autocatalytic networks emerging in high noise regime a double loop 

network. In the low noise regime, a network can sustain its structure by Eigen-Schuster type, 

depicted in Fig. 3.8-b). For the high noise regime, in contrast, it is difficult to maintain prefect 

replication. It then switches to the double loop structure (Fig. 3.8-b)). Since Eigen-Schustcr 

type only allows replication without error, it can be called a replicating system. On the other 

hand, a double network type locally changes tapes. It can be called an editing system, as tapes 

are used by being ed ited. 

a) b) c) 

Figure 3.8 : a) A loop of machines is schematically described. A machine produces a subsequent 
machine. b) and c) are illustrations of two different types of autocatalytic loops. They are 
Eigen-Schuster type b) and the double loop type c). In Eigen-Schuster type, tapes are replicated 
without mutations. In the double loop type, both each machine and tape are converted into 
subsequent one. 

An example of core net in fixed point found in our simulation is depicted in Fig. 3.9. There 

arc five double autocatalytic loops here. Each loop is extract in Fig. 3.10. Loops of Fig. 3.10-a) 

and b) belong to the Eigen-Schuster type and a loop of d) is the double loop type, which has no 

self-replicating tape at al l. A loop of c) is also a double loop type but they have both replicating 

and ed iting reactions. 
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Figure 3.9: Embedded autocatalytic loops which are found in the core network after turning off 
external noise are depicted. We can see five independent autocatalytic loops here. Three are of 
the Eigen-Schuster type and the other two are of the double loop types . 
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Figure 3.10: 5 loops in a fixed point core network in before figure are sepa rate ly displayed. a), 
b) and c) are Eigen-Schuster type. There are both replicating and editing reaction in d) a nd e) 
consists of only editing connection. 
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Fig. 3.11-a) ~g) is examples of loops consisting of an oscillating core network. The oscillation 

is found to be the first group classified in §3 .5, active mutation rate periodically oscillates, the 

number of machines ranges from 50 to 110. The network topology changes in time. After net­

works depicted in Fig. 3.11-g), very long and many autocatalytic networks appear . The largest 

length in the loops is about 60 and the maximum number of loops attains 200. Thereafter, 

it goes back to the same loops in Fig. 3.11-a). The period of oscillation is around 22 steps. 

Though not a ll networks have same forms, it can be said to have a recursive structure. The 

recursive structure is also found in the quasi-oscillatory cases of other types 2) ~ 4) classified 

in §3.5. 

a) 
--------------------- - ------------- - -----------------------------------------------~ 

' ' ' ' ' ' 

9112 1883 

0 
p~ 

3226 700e 

0 

q 522a1J5 
3226 700e 

0 

9dd3 

?j 

Figure 3.11: These figures are examples of embedded autocatalytic loops found in a oscillatory 
core network of first type . After g), very long and many loops appear. They come back to the 
same loops in a) after about 22 time steps. 

We pick up in Fig. 3.ll loops of reaction paths which fulfi ll the autocatalytic condit ion defined 

by eq. (3.10) . Note t hat networks depicted in Fig. 3.11 are not autocatalytic loops in a strict 
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Figure 3.11 : (continued) 
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sense, because they can not hold its structure stably. 

Cores in oscillatory states change the number of autocatalytic loops. The number of Eigen­

Schuster type autocatalytic loops shows less change than t hat of double loops type. In Fig. 3.12 

we show temporal evolution of histogram of loop lengt h. 

a) b) 

60 

c) d) 

60 

Figure 3.12 : Histograms of lengt hs of autocata lytic loop change in the course of time as shown in 
these graphs. They are depicted in t he interval between time step 2400 and 2500 after external 
noise is cut at t ime step 2000. They show relatively stable oscillations than immediately after 
cutting external noise. L is the length of a loop i.e. the number of machines in an autocatalytic 
loop. Four graphs are corresponding to four categories of oscillatory core networks described in 
Fig. 3.6. 

The core nets shown in Fig. 3.12-a) and b) periodically switch their network structure from 

a network wit h few autocatalytic loops to one wit h many large loops. Fig. 3.12-c) shows many 

autocatalytic loops with length L c:= 30 ~ 40 and periodic bursts to larger loops (L = 45 ~ 61). 
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Loop length around L = 35 grows when the burst occurs. These bursts are observed in a short 

period of time. Average of the loop length is around L = 36, which differs from the other 

networks, L c= 42. The core network depicted in Fig. 3.12-d) has two L = 1 loops, five L = 3 

loops and a L = 16 loop for all time . The histogram of loop length shows small fluctuation . 

These facts suggest that the core network in Fig. 3.12-d) has a relatively stable structure similar 

to core network at fixed point state. Thus we observe that the return map of active mutation 

rate is torus with a small radius as described in Fig. 3.6-d). 

Almost all core networks consists of autocatalytic loops with inhomogeneous couplings. Ma­

chines and tapes have the different input arrows from the output arrows apparently from Fig. 3.9. 

Besides , several autocatalytic loops shares part of their reaction paths. An example is Fig. 3.10-

c) and d). They share the reaction paths M7ooe _, M 3226 -> Ms22n· Many cores are robust 

against perturbations that removes some tapes or machines from the network artificially. It is 

noted that we have introduced a machine to be able to create some different machines through 

interpretat ions of various tapes . A machine can catalyze several tapes. This redundancy con­

tributes to complex and dynamical networks with sufficient stability. 

Autocatalytic networks of double loop type are more stable than those of Eigen-Schuster type. 

For example, a loop with 16 machines of the double loop type is found in Fig. 3.12 for all t ime. 

In contrast, longer Eigen-Schuster type loops than three are not found. The stability of double 

loop network depends on the detailed topology of the network . 

A tape can serve as templates of many different machines by being differently interpreted by 

different machines. But the core network evolves code, a set of interpretations. A core network 

selects some interpretat ions from diverse interpretations. We will describe t he network from the 

viewpoint of "code" in the following section. 
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3. 7 Diversity and Dynamics of Code 

We assume an affinity between machines and tapes. The affinity is given by the condition that 

machi nes can read tapes if the head and tail patterns a rc found on tapes. Despite t his affinity, 

there is a large arbit rariness by which machine a tape is read and as which machine the tape is 

interpreted. Selection of this interpretation ways constitutes a "code" of this system. A code of 

a network consists of interpretation rules as (T i, M 1) _, M i. For example, in the autocatalytic 

loop shown in Fig. 3.10-b) , a machine M effd reads a tape T7 and interprets it as a machine 

M3226· The interpretation rule for the process is (T7, Metrd )---> Ma226 · 

We depicted fi ve a utocata lytic loops in Fig. 3.10 consisting an example of fixed point core 

network. In Fig. 3.10-a), b) and c), there is a unique interpretation rule for each tape in the 

loops. And the loops b) and c) share their code, since interpretation ways for T 7 and T 13 

is the same, (T7, Metrd ) _, M3226 and (T13, M3225 ) _, Ms22a· On the other hand, the 

other loops in Fig. 3.10 have more than two different ways to interpret a tape. A tape T 7 in 

d), for example, is interpreted as a machine M3226 by M7ooe and as M etrd by Mrue· The 

code in a core network composed of these five loops is shown in Table. 3.2. Both polysemy and 

synonymy are found . Polysemous tapes are T7 , T 3r, Td , T2f and Tlb · These tapes produce 

distinct machines through interpretations by d istinct machines . The tape T7, for example, is 

interpreted as either (T7, M etrd )---> M322a , (T7 , M7ooe) _, M3226 or (T7 , Mn1el---> Metrd· 

Synonymous tapes produce one machine through interpretations by distinct machines. Tapes 

for Metrd is synonymous. It is produced from three different tapes, T7, T 2r and Ts. We can 

a lso find that a tape is interpreted as one machine by distinct machines. For example, a tape 

T15 is interpreted as t he same machine M700e by the machines Ms22a and Ms66a· 

In minimal and fixed point core nets, the code cannot change even with la rge external noise. 

But for the oscillatory core network, the code can change temporally without noise. Table. 3.3 

represents an example of temporal changes of coding system in an oscillatory core network. We 

depict interpretation ways only for tape Ts in autocatalyt ic loops of the oscillatory core net 

described in Fig. 3.11 in th is table. There a re 13 interpretation rules, 9 are distinct, in the 

period of t ime t = 2408 ~ 2418. A code at one t ime can not serve replication of t he same 

co re network. Constituents of a core net increase or decrease their concentrations by reactions 

according to t he code at that time. But after a period, t he same code reconstructed. For 

example, a machine M4448 exist at time steps t = 2408 ~ 2412. But by following the code 

at t hat t ime, the machine is not produced efficient amount. At last, it disappears from a core 

67 



Table 3.2: Example of code in a core network in fixed point state are shown in this table. This 
is a code in Fig. 3.9. A machine M reads a tape T and interprets it as a machine M' There are 
polysemous tapes, T7, Tar , Td , T2r and Tlb· These tapes a re respectively interpreted as two 
different machines by two or three different machines . Synonymous tapes are a lso exist. M effd 
is produced from three tapes, T7 , T2r and Ts. A tape T15 is interpreted as the same machine 
M700e by the machines Ms22a and Ms66a· 

T M M' T M M' 
effd 

3226 
dffb 

dffb 
7 7oDe 3f bff7 

f11 e effd effd 566a 
522a 

700e d 
688d e33c 

15 
566a 566a e99d 

2f 
dffb 6eed 

1b 
e33c fbbf 

fbbf effd e99d 7ccf 

5 522a effd 13 3226 522a 
1d 6eed 688d 2b 522a f11e 

network at t = 2413. Its revival is at t = 2418. And the same interpretations with t = 2408 

appear at t = 2431 again. 

In general, diversity of code of core network in oscillatory state is higher than that of fixed 

point. It is a lso true for t he length of autocatalytic loops. The diversity of code and length 

of a n autocatalytic loop may have relevance to the stability of network. But it is not proved 

yet. Stability of autocatalytic loops can vary according to their topologies even if t hey have the 

same length. 
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Table 3.3: As an example of temporal changes of code, variable usages of tape T 5 in the 
oscillatory core networks described in Fig. 3.11 are depicted in the period t ime step from 240S 
to 241S. When a machine M reads a tape T5 , it generate a machine M'. In this example of 
core net, 13 interpretation mays of tape 5 appear. The tape is polysemously interpreted as 9 
different machines . A machine can be produced by distinct machines. For example, a machine 
Ml883 can be produced from machines M1442 , M444s or Mggg3. 

time 2408 ~ 2410 2411 2412 2413 
T M M' T M M' T M M' T M M' 

1) 1442 1SS3 1442 1SS3 5 1442 1883 5 1442 1S83 
·2y-- 4448" "i883 444S 1883 

--- "4448- -1883-
·3y-- - --- - - ---- -9-993" 1S83 
·4y-- ----- ----- ----- ------

·sy-- ----- -----
5 544a 9993 

·5y-- ---- -iiooc - 5" -522a- 600c 5 522a 
·7y-- ----- -----

5 -2224- 6oa;:· 
·sy-- ----- -----

5 8550 ellS 
·9y-- ----- -----

5 522a ellc 
"i6)-- ----- -----

5 -8-l'to - e99d-
"ii)"- ----- ----- - 5" 500a 6ii6 -
"ii)"- ----- ----- ----- ------

"i:lj"- ----- ----- ----- ------

time 2414 2415~2416 2417 2418 
T M M' T M M' T M M' T M M' 

1) 1442 1883 1442 1883 
· :~y--

----- ----- ----- ------
444S 1SS3 

·3y-- ----- ----
·4y-- ----- -----

444S 9993 
·;;y-- 544a- "9993 ----- ------ -9·9-93" 5 544a 9993 544a 
·5y - ----- ----- -5-22a- ------

600c 522a 600c 600c 5 522a 5 ·w- ----- ----- ----- ---- --
·w- ----- ----- ----- -----

S550 ellS 
·9y-- ----- ----- ----- ------

522a ellc 
"i6)-- ----- -e99d 5 

----- ------
SllO SllO e99d 

-ii )"- ----- ----- ----- ------

--- -- ----- ------"ii)"- 9ll2 "8776 9112 S770 
"i:lj"- ----- ----- ----- ------

5 ellS -,-bbd 
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3.8 Discussions 

By introducing ensemble of machines and their description tapes, we have studied self-organization 

of a stable code for self-reproduction correlated with self-organization of an autocatalytic net­

work. It is difficult to organize a stable code in general. An optimal coding of a machine may 

lead to the worse coding of the other. How to improve coding cannot be determined locally but 

should be determined in a network context. In a fixed core net, a stable code with polysemy and 

synonymy is organized. Alternation of coding driven by external noise has also been reported 

recently [44]. In their systems, a multi coding system, i.e. code with polysemous interpreta­

tions, is developed under a high noise environment. To make a stable code is to close logic 

consistently. It has succeeded in a core network in fixed point state. But for a oscillatory core 

network, its code dynamically changes. A code destabilizes itself and this results in oscillation 

of coding structure. We refer to such self-destabilizing nature of code as openness of code. 

A minimal self-replicating loop, composed of one machine and one tape, emerges under in-

11uence of external noise. When external noise is elevated, a minimal self-replicat ing loop is 

exp loited by parasitic networks. The populations of machines and tapes then begins to show 

unstable oscillation. In a realm of relatively high external noise, a system will evolve into a 

stable network against external noise spontaneously. When a network attains this state, it is 

stably sustained even after external noise is removed. We call the network acquiring such noise 

stability a "core network". The core network consists of many autocatalytic loops, being a fixed 

point or oscillatory state. 

A transition from an unstable state to a core network state is similar to what has been seen 

in a host-parasite model [54, 58]. In the host parasite model, chaotic instability is shared by 

almost all species by sustaining a high mutation rate, leading to weak high-dimensional chaos, 

termed homeochaos. In the present model, roles of host and parasite emerge spontaneously 

in a network. Interaction between host and parasite loops causes dynamic instability as well. 

The core structure suppresses the instability and as the result a high active mutation rate is 

sustained in the present model. 

We have introduced two different mutations - passive and active mutation. Taking the active 

mutation as a computation process, we propose a computational view of mutation and self­

replication. A minimal self-replicating loop has no active mutation , that is no replication errors . 

A minimal self-reproduction loop can attain without any computation. If the computation 

process offers costs, the minimal loop may be the most economic self-replication system. Such 
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autocatalytic network is stable only below some noise level. A large fixed core network, on the 

other hand , sustains a high active mutation rate in a high external noise regime. It absorbs 

external noise as active mutation of machine function. Namely, passive mutation caused by 

external noise is replaced as deterministic mutation by doing computation. The network carries 

and processes large amount of information in a core network. 

Several autocatalytic loops are embedded in a core network. These loops are divided into two 

types. One has no active mutation . Tapes are replicated locally. It corresponds to the Eigen­

Schuster's hypercycle . We call this type of network Eigen-Schuster (ES) type autocatalytic 

network. The other has a high active mutation rate. It consists of double loops of machines 

and tapes. Namely, each tape as well as machine produces a successive tape. Both entities are 

replicated as a whole, not individual. We call this type of network double loop type autocatalytic 

network. We a lso have mentioned that this type of network can be regarded as a editi ng system. 

Since tapes in the network are rewritten to templates of different machines, in contrast to tapes 

in ES type network, which are replicated without errors . 

It is thought that DNA is replicated individually and RNA is a copy of DNA in real biological 

systems. However, an example [38] may be related to our double loop autocatalytic network. 

The authors of [38] has shown that DNA of macronucleus has been generated from DNA of 

micronuclear in Oxytricha nova. DNA of micronuclear is transcribed once into RNA. Then the 

exons are completely rearranged and reversely transcribed into the DNA of macronucleus. If 

editing and reversely transcribing RNA is more stable than replicating DNA itself, an active 

mutation as ed iting will be favored in early genetic systems. 

It is said that biological system has evolved from RNA world to DNA world through RNP 

world [36, 35, 109]. RNA world consists of R NA molecules having catalytic functions as well 

as replicating function. Then it has evolved to the world including RNAs and proteins (RNP 

world). Even in such RNP world, self-reproduction is still unstable. Ed iting of RNA must 

repeatedly occur. By using more stable polynucleotide, DNA world has evolved. RNA, protein 

and DNA cooperatively work in the DNA world as in the present biological systems. 

Our modeling can correspond to the second level of real evolution (RNP world). Differenti­

at ion of ES type and double loop type in autocatalytic networks can be taken as a transition 

from RNP to DNA world. 

Autocatalytic loops in our model overcome the difficulties asserted by Niesert et al. [76]. They 

have discussed t hat an autocatalytic network become unstable either by selfish replicator, short 
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circuit or zero concentrations (see §3.1.3). And the network is destabilized by inhomogeneous 

couplings. The inhomogeneous coupling is that a tape catalyzes more (less) tapes than being 

catalyzed and the similar asymmetry exists for machine reactions. In our core network, auto­

catalytic loops with different length, even minimal loop, can coexist. Oscillatory core nets does 

not break down by the zero concentrations of component, which is Niesert's third catastrophe. 

A similar topology is recovered after a period of time. The inhomogeneous couplings are also 

permitted . Polysemy in a tape, encod ing several machines, are important to resolve there diffi­

culties . As Kauffman has discussed [61], redundancy caused by non-specific replication makes 

an autocatalytic network robust. 

The state where no subcomponents of the system are themselves self-replicating has been 

referred to as a collective reproducing state by Kauffman [61]. The emergence of such ordered 

state in his autocatalytic polymer model could also escape Niesert's catastrophes. But the 

inhomogeneous co uplings were not able to be managed. There was not a gene like substance in 

his system . However, reproduction and evolution of unstable entity requires a stable description 

of itself. 

Fontana's "algorithmic chemistry" [30,31] has shown evolution of replicating programs s imilar 

to our work. His chemical world consists of strings of variables and operators called functions. 

React ions among functions are governed by >.-calculus . A system is dominated by single self­

copying st rings in a level-0 stage, which corresponds to our minimal self-reproduction loop. By 

forbidding self-copying function, a mutually catalytic set emerges (level-1 stage) . This level-1 

stage corresponds to the fixed point core network in our model. In spite of no explicit prohibition 

of self copying, our system spontaneously attains mutual catalyticy under noisy environment. 

In Fontana's next level (level-2 stage), interconverting autocatalytic sets can be combined. 

This level corresponds to our advanced model [51], where tapes and machines are wrapped 

with in a cell. In an ensemble of the cellular systems, evolution to complex self-reproduction 

is caused not by external noise buy by influx machines from other cells . Several translations 

are performed by externa l machines from other cells . This cooperative behavior brings abou t 

diversification of core networks . 
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Chapter 4 

Conclusions and Developments 
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We define a code in a system as ways of using symbols and interpretations of information. We 

refer to successive emergence and dynamical changes of codes as evolution of code. Evolution 

of code in a communication system and a genetic system have been studied here. 

4.1 Summary and Conclusion 
- Evolution of Grammar Systems 

In Chapter 2 we have studied evolution of communicating agents in a network. To discuss 

evolution of linguistic code and grammar systems, we proposed a language game. Agents com­

municate with each other by deriving and accepting words in terms of their own generative 

grammar. They are ranked according to their communicative effectiveness. Agents which speak 

either long infrequent words, recognize long words quickly or speak words which are not recog­

nized by the other agents overpower others. Mutation of rules are introduced to update agents' 

grammar. A code in this system is characterized by particular usage of words. Evolution of 

grammar systems was discussed as evolution of computational ability in the Chomsky hierarchy. 

Computational ability of each agent 's increases as well as variety of words spoken in the course 

of time. We have found that information in communication shows a stepwise evolution, where 

equilibrium states and sudden jumps occur alternately. 

In the equilibrium states, agents communicate with common words. We call the community 

exchanging a common set of words an ECW. Different ECW is characterized by a different 

common words. When different ECWs conflict, an ECW composed of higher computational 

ability agents does not always outwit. An ECW with more number of agents wins. That is, 

ECWs suppress for individual grammar to evolve . Code of communication is discussed in terms 

of ECW. A particular usage of words determined within an ECW is a code. 

On the other hand, breaking up ECWs with evolving grammar is caused by mainly two 

remarkable mechanisms. One is a module-type evolution. An agent can enlarge a set of recog­

nizable words by acquiring a module rule . The role of modules may be corresponding to that 

of affixes in natural language. The other mechanism is a loop forming evolution. A grammar 

containing a loop structure can recursively derive words. If a grammar forms a loop, it can po­

tentially derive infinite number of words. Such grammar can derive nested sentences. Long and 

rich expressions are produced by phrases within phrases or clauses within clauses structures. A 

tree to loop structural change presents an evolution from regular to context-free grammar. 

The emergence of code and evolution of computational ability can also be seen by different 
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parameter settings. But for the extreme case, the results are very different. Variety of words 

and informat ion in communication remains very low, if abili ty for being recognized is a big 

advantage . In this case, only a code is established but it does not exhibit dynamjcs. In the 

opposite limi t, agents speak many long words but without mutual understandings. In other 

words, any code is organized in t he network. 

Let us mention different points from related works. MacLennan [72) and Oliphant [77) t hink 

that codes in communication is owing to matching between each symbol and its referent among 

agents. But we think that the meaning and indication must not be thought to be identical 

(cf. [33, 82)). We assume that codes are based on usages of phrases. Therefore evolu tion of 

diversity of words and complexity of grammars are brought about without diverse external 

world different from MacLennan 's model 1. Werner a nd Dyer [103) has discussed that diversity 

of language attributes to physical barriers. Since our model consists of only 10 agents because 

we are interested in dynamics of formation of group word or trendy word in relat ively small 

group, we cannot discuss diversity of code. However, we indicate that conflict betwee n two 

codes prevents evolution of grammar systems and it results in punctuated equi libria evolution. 

4 .2 Summary and Co nclusion 
- Coevolution of Tap es and M achines 

In Chapter 3, coevolution of tapes and machines are studied. A machine reads a tape and then 

a new tape and a new machine are produced. We have simulated an ensemble of machines 

and tapes to discuss computational aspects of mutations and translations . By introducing 

external no ise, we have investigated the role of randomness on machine's deterministic action . 

In t his model, a tape can be interpreted as distinct machines depending on machines reading t he 

tape. C hanging tape symbols by machines' deterministic actions is named "active mutation". 

Probabilistic changing under external noise is called "passive mutation". A code of replicating 

network is, t herefore, a whole set of interpretat ions of tapes by machines composing the network. 

We see the evo lution from a minimal self-repl icating network to a larger one by increasing 

external noise . If external noise is small, the minimal network is a final state of evolution . A 

minimal network consists of a stable pair of machine and tape, which a re reproduced loca lly. 

When external noise excesses a certain threshold, a spontaneous t ransit ion to a la rge stable net-

1 Our furth er research suggests that the diversification of words and complication of grammars can be allowed 
without preference for long and rare words in the definition of score function. 
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work is observed. After the transition, the network retains a self-maintaining network involving 

stable core structure, named a "core network". Core networks replicate individual tapes and 

machines globally. 

Dynamical states of the populations of tapes and machines in core networks can be fixed 

point or oscillating state. Large core networks have high active mutations. They seem to mimic 

the reaction paths which external noise have forced on. 

Stability of core networks is attributed to the combinations of embedded autocatalytic loops. 

A fixed core consists of several autocatalytic loops. In oscillatory cores, the number and topology 

of embedded a utocatalytic loops changes in the course of time. Autocatalytic loops can be 

divided into two type . One is named as Eigen-Schuster (ES) type, the other double loop type. 

Each tape in an autocatalytic loop of ES type is locally replicated. On the other hand, machines 

and tapes in that of the other type are globally replicated. The latter network has non-zero 

active mutation. Large autocatalytic networks with inhomogeneous couplings a re stabilized by 

t he latter one. 

Interpretat ions of tapes in a network can not be determined locally. It must be organize 

consistently in t he whole network . In a fixed core network , a set of interpretations are fixed. 

Thus a code for self-reproduction is organized. A network chooses one possible interpretations 

system to replicate the structure of network. Global restrictions for interpretations make a self­

consistent logic in a network. If a logic does not made consistently, we call it logical openness. 

In an oscillatory core network , a code for self-reproduction is not stable . Oscillation of code and 

network topology can be related to logical openness. A set of interpretations a re destabilized 

by itself. We refer to such self-destabilizing nature of code as openness of code . 

At last we give a brief summary of new feature in the present st udy. Our model is devel­

opment to ensemble context from Neumann's self-reproduci ng automaton [102]. And autocat­

alytic network is studied from evo lutionary point of view different from Eigen and Schuster's 

work [24]. Indeed, we show evolution from minimal loop to large and complex autocatalytic 

network. It is revealed that introducing active mutation process stabilizes complex networks 

prevailing Niesert 's catastrophes [76]. Moreover, the autocatalytic network in our study can 

have inhomogeneous couplings. Oscillation of network topology is a novel feature. 
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4.3 Further Deve lopments 

We are interested in oscillation induced by logical self-denial structure. A system with a code 

is threatened the maintenance of the code by itself. The underlying mechanisms of oscillation 

of network topology in our machines and tapes system are not clarified yet. We can say that 

oscillation of network topology can be an extension of logic oscillation, which is first discussed 

in Brownian algebra [11]. Such oscillating nature of logic can naturally occur in our model. 

We exemplify other interesting subjects to discuss from the viewpoint of evolution of code. 

o Social code 

Norms, common senses or ethics in a society govern behaviors and ways of thinking of 

members in the society. Most individuals have to obey them without intentions. They are 

spontaneously organized in a society, regulating behaviors of the constituents of societies. 

We refer such regulations in a society as social codes . Social codes cannot be determined 

in advance. Evolution of social code is a lso induced by internal dynamics and logical 

openness. 

o Self-reference code 

A self-referential paradox of laws are worth noting. There are laws to legislate the way to 

enact laws. We find a self-referential paradox, when we make laws for laws. Hofstadter 

bas introduced an interesting self-modifying game named NOMIC [43]. Players of the 

game make or modify rules of the game. Players can make some rules which forbid to 

make or modify other rules. This is an example of logical openness, since laws themselves 

destabilizes the laws. 

o Code in the immune system 

The immune system distinguishes self and non-self in our body. Codes in the immune 

system are regulations to discriminate self image from non-self image. But what is self 

or non-self cannot be determined in advance . It is distinguished by whether the immune 

system responds to antigens or not. A network model of t he immune system [55] charac­

terizes the system as the network of antibodies stimulating each other. Both internal and 

external antigens' images are restructured by the network . The self/non-self image is not 

dynamically stable. An antibody which constitutes the self image may become non-self. 

The whole system may be destroyed by some internal/ external antigen images. Selecting 
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a network structure may be considered as constructing a code of self/non-self. Therefore 

a notion of dynamical code developed in our study must be compared with the immune 

network. 

• Code for articu lation 

We at first perceive our continuous external world, then articulate it. Assigning sym­

bols comes after the articulation. Codes for articulation determine how articulate our 

continuous external world and how assign symbols. However, the dualism - the exter­

nal world is continuous and the internal world is discrete - can be criticized (e.g. [49]). 

And we may not symbolically process information in our internal world. Lakoff insists 

that a conceptual system is metaphorically structured and emphasizes the importance of 

physical experiences [67, 66]. We think that the code for articulation can be determined 

partially through communication among agents and it can vary temporally and locally 

(cf. [90, 104]). Articulating the external world and structuring internal world is remained 

as future problems. 

4.4 R emarks on Artificial Life Studies 

Langton has proposed Artificial Life studies in Ius manifesting paper [68]. He summarized the 

essential features of computer-based Artificial Life models as follows: 

• They consist of populations of simple programs or specifications. 

• There is no single program that directs all of the other programs. 

o Each program details the way in which a simple entity reacts to local situations in its 

environment, including encounters with other entities. 

• There are no rules in the system that dictate global behavior. 

• Any behavior at levels higher than the ind ividual programs is therefore emergent. 

Since both models we have reported here satisfy these features, our studies are kinds of Artificial 

Life Studies. 

Langton and other many researchers on Artificial Life say that "emergence" is the key concept 

in the field [68, 63]. Here the concept means that the appearance of global or higher level 
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structure which cannot be expected from local or lower level dynamics and interactions [3). Our 

main results, ECWs and core networks, are such emergent global structures. We showed not 

only the appearance of global structures but also dynamical changes of the global structures, 

which is our main concern - emergence and dynamics of code. Taylar stressed the feedback from 

higher level to lower level as he described "LOCAL to GLOBAL back to LOCAL inter-level 

feedback loops" [98). Dynamics, such as successive formation, collapse and oscillation, of global 

structures are induced from such inter-level interactions. 

Computation is another key term in Artificial Life studies. Some classical works has been 

devoted to treat biological systems or language as computational systems. Neumann's theory of 

self-reproducing automaton has been a pioneering work of computational treatment of biological 

system [102) . Chaitin has tried to make an information theoretical definition of life in terms of 

algorithmic complexity theory for descriptions of biological systems [14). Chomsky has opened 

the way to consider language as a computational process with derivational grammar theory [17) . 

Emmeche has divided concept of computation into four classes as [25): 

• The formal, or algorithmic, concept of computation, which has its theoretical footing in 

the notion of Universal Turing Machine . 

• An informal, intuitive, or "mathematical" concept of computation that is not bounded by 

the known limitations of formal systems. 

• A biological concept of computation. This seems to be a quasi-theoretical concept that can 

be understood in many ways: for example, as problem solving by learning and adaptability; 

as molecular processing of information in cells; or as computation by neural networks. 

• A physical concept of computation, that might be nonrepresentationalistic. The entities 

that cooperate in computational enterprises are patterns that can transmit, store, and 

modify information, but these patterns seemingly do not have to "stand for" anyt hing, as 

long as no functional constraints are imposed from a higher level. 

Our studies are relevant to an informal or a biological concept of computation. We have 

modeled each agent in our models with simple information processing unit - with derivational 

grammar systems in the study of linguistic code, and binary strings and Turing-Machine-like 

automata in the study of genetic code - as the first feature of Artificial Life models listed 

above. By this modeling we t ry to catch computational aspects of dynamics of language, 
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self-reproduction and catalytic networks. We has showed in the former study that gaining a 

loop structure, we named it algorithmic evolution, has enriched the diversity of recognizable 

words . We has indicated in the latter study that active computation as active mutation has 

permitted large a nd complex autocatalytic networks which have been able to storage larger 

information than hypercycle type autocatalytic networks . Unfortunately, the attempts have 

not been brought completion. More attention should be paid to interrelations among concepts 

of computation. 

In addition to the concept of computation, the important roles of chaos for biological systems 

and cognitive systems has been pointed out [100, 58, 54, 57]. Our concern is not only relations 

between the formal and an informal, and the formal and a biological concept of computation in 

many agents system with dynamical nonlinear interaction 2 but also roles of chaos in the system. 

In the formal computat ion and formal logic system, it is known that there is undecidability 

such as ha lt ing problem of Thring Machine or Giidel 's incompleteness theorem [37]. Such 

undecidability is induced by difference between internal and external viewpoint of the system. 

It is an interesting point to discuss how such undecidability is caused in modeled biological or 

cognitive system with constructing internal observers . 3 The importance of an internal observer 

to understand not only cognitive systems but also physical, chemical, biological system has been 

pointed out by Riisller [88], Conrad [20] and Tsuda [101, 56]. 

The aim of Artificial Life studies is said to give pictures of life-as-it-could-be [68]. Namely, 

we want to construct lifelike phenomena in artificial media such as computers, robots or bio­

materials. Whether a phenomenon is lifelike depends on the definition of life. The definition 

has been discussed for a long t ime. 

However, we cannot give a settlement to the problem. There must be gray-zone whatever 

cri teria for life is stated. There will exist phenomena which we will t hought of as a live but not 

satisfy ing these criteria, and phenomena which we will not thought of as a live but satisfying 

these criteria. Anyway, one of the most large contribu tion of Artificial Life studies is that they 

raise discussions on what it means to be alive. But, t he discussions often fall into realism or 

externalism. We are likely to think a phenomenon as lifelike if it is displayed with creature- like 

representation. Life is neither substance nor concrete state, but is a process arises from cognitive 

2 Relation between dynamical system and formal computat ion system has been studied by Moore. He proved 
that Tu ring Machine could be embedded to two d imensional piecewise Hnear map [74,75]. His work is remarkable 
result connect ing dynamical systems and computation. lt has been practically shown that dynamical systems 
can have different type undecidability from the sensitivity to initial value usually referred to as chaos. 

3 Undecidabi lity in physical system has been also studied, for example by Svozil [97]. 
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activity. We think that the process always makes unexpected behaviors - truly emergence. 

Since such emergent property through cognitive action is essential for evolution, approaching 

with the viewpoint of internal observer to constructing complex systems comes to be imperative 

[56]. To model a system with internal observer, not only creatures but also cells or molecules 

[20,39] should be treated as internal observers. The system consisting of their activities has some 

kinds of arbitrariness or undecidability, but behavior of the system has to be assigned restrictions 

by validities peculiar to the system. Cohering between internal and external viewpoint results 

in dynamics of the system. Such dynamical mechanism will be correlated with the oscillation 

of code and network topology observed in the study of network of tapes and machines. 
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Appendix 
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5.1 Algorithm for Recognition Process of a Grammar System 

For a given grammar, i.e. a set of rewriting rules, there are some algorithm to decide whether 

a given word can be accepted by the grammar, if the grammar belongs to the class of context 

free [46, 86]. In this appendix we introduce one of such algorithms which used in our language 

game. 

The basic problem in rewriting process is the undeterminisity about more than two applicable 

rules and positions to rewrite . In the derivation process, we introduced randomness to adopt a 

rule from plural applicable rules and the leftmost derivation. But in the recognition process we 

must determine without ambiguity whether a given word is involved in a language of a given 

grammar. To this end we introduce a marker to decide a position to apply a rule and test all 

possible sub-search-trees until the word is rewritten back to the initial symbol. 

At first, we transform each rule (a --+ {3) of a given grammar G to a corresponding reverse 

ru le with a marker which is denoted by #, 

f3#--+ a# (5.1) 

Second, add two rules to move the marker at the end of rule list, 

#0 --+ 0# , #1 --+ 1# . (5 .2) 

A grammar with marker G# is constructed by these transformation rules for the grammar G. 

Third, the marker is attached to the head of a given word w tested whether it is involved in the 

language of the grammar G, 

#w (5.3) 

If the given word w is acceptable by the grammar G or not is attributed to whet her the rules 

in the marked grammar G# can rewrite the marked word #w to the target word, 

S#. (5.4) 

Note that there is no undeterrninisity about the position to apply a rule in this grammar a#, 
since only one marker # can appear in a word . 

Each agent have its rules in the list form. A rewriting rule which can rewrite the word are 

searched from the top of the list. If there is an applicable rule, the marked word is rewritten by 
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the rule. No more applicable rules expect for the rules to move the marker can be found, the 

marker is moved to right by using one of the rules to move the marker. Once a word have been 

rewritten, then the rule search process is restart from the top of the list . The rewriting process 

finishes if the word is written as 5# and we know that the given word w can be accepted by 

the given grammar G. If there is no applicable rule even if the word does not coincide with 

the target word 5#, we put the written word back one rewriting step, and the search process 

is restarted from t he next rule of the last application. This recursive process is continued until 

there is no rule which is not tried. We know the given grammar G can not accept the given 

word w, if the written words have never accord with the target word in spite that all rules have 

tried . It is when the rewritten word become w#. 
We show some examples . For a grammar G with rule set, 

5 _, 0, 5 _, A1, A_, 10, A_, 15, B _,A, 5 _, 10 , 

t he corresponding grammar with marker G# consists of the following rules: 

0# _, 5#, A1# _, 5#, 10# _, A#, 15# _, A#, 

A# _, B#, 10# _, 5#, #0 _, 0#, #1 _, 1# 

A word 101 is rewritten as the following process: 

# 101 =? 1#01 =? 10#1 =? 15#1 =? A#1 =? A1# =? 5# . 

Since it can be rewritten to the target word 5#, the word 101 is acceptable by the grammar G. 

Next example is a rewriting process with putting back. A word 10 is rewritten as following 

processes: 

#10 =? 1#0 =? 10# =? A# =? B# =? x 

Since the word B# cannot be rewritten any more, denoted by =? x, we put back the word one 

step to the word A#. And then we restart the search process from the next of the last applied 

rule in the list. Namely, we begin to search the fitting rule from 10# _, 5#, since the word 

A# is rewritten by the rule A# --> B#. 

A#=? x 
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But there is not any rule in the remainders of the list. We put back again and the search process 

is restarted from the next rule of the rule which has been applied to rewrite the word 10# to 

A#, i.e. 1S# ---+ A#, then the rewriting process is restarted as, 

10# =} S#. 

Because we can attain to the target word, it is made sure that the grammar G accepts the word 

10. 

A failure process is displayed as a last example. The rewriting process of the word 00 proceeds 

as following: 

#00 =} 0#0 =} S#O =} SO# =} x 

S#O =}X 

0#0 =} 00# =}X. 
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