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Abstract 
 

Neurons and Synapses are a building block of signal processing and computation in neuronal 
cell’s networks. In the endeavor of making the computing process ever faster and efficient, 
leading technology firms and laboratories are now directing their resources towards a novel form 
of computing architecture which takes inspiration from the brain, the most efficient computing 
machine known till date. Low power silicon neuron and synaptic circuits capable of emulating 
the dynamics of their biological counterparts will form the hardware basis of this new 
architecture. The work in this thesis contributes to the endeavor of developing bio-physically 
realistic analog silicon neuronal networks, focusing on two aspects. The first section presents the 
concept and simulation results of a pseudo-five-bit, low power silicon synapse circuit capable of 
emulating both excitatory (NMDA/AMPA type) and inhibitory (GABA type) responses. The 
postsynaptic current generated in this circuit is proportional to the difference between the 
postsynaptic membrane potential and a tunable synaptic reversal potential. The latter section of 
this thesis presents the experimental results of a qualitatively modeled, ultralow power, three-
variable silicon neuron circuit capable of replicating the rich repertoire of spiking neuronal 
responses observed in biological neurons. 
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1 

Introduction 

Since its inception, a driving force in the field of computing has been the desire 

to arrive at a computational system that could process information faster than or at least 

at par with the brain. The seminal paper [1] “A logical calculus of ideas immanent in 

nervous activity” by McCulloch and Walter Pitts published in 1943 presents a vastly 

oversimplified model of the biological brain, treating neurons as all or none firing logic 

units. Even decades ago brain-inspired computing was under the radar of then imminent 

scientists like Alan Turing and von Neumann who laid the very foundation of the wide 

prevalent computing architecture today. Over the years experiments in the neuroscience 

community provided new insights into the functioning of the brain as well as revealing 

messy and complex analog processing in the neurons. Though the McCulloch-Pitts 

neuron model had little resemblance to the actual biological neuron, their work laid the 

foundation for the neural network approach to machine learning. 

 

1.1 Research Motivation and Direction 

The prevalent architecture in the computing systems today is known as the von 

Neumann architecture. Though highly efficient in performing abstract tasks like 

arithmetic calculations, it is computationally expensive in performing real time tasks 

like video or audio processing, which brain performs with ease and efficiency. 

Comparison of von- Neumann architecture to the human brain highlights the significant 

differences in the organizational structure, power requirements, and processing 

capabilities between the two. Neuromorphic Computing has emerged recently as a 

complementary architecture to von Neumann system. It is an interdisciplinary approach 

to computing taking inspiration from biology, physics, mathematics, computer science 

and electronic engineering to design artificial neural systems, such as vision systems, 

auditory processors and autonomous robots, whose physical architecture and design 

principles are based on those of biological nervous systems [2]. These systems are 

notable for being highly connected and parallel, consuming low-power, and collocating 

memory and processing. While fascinating on their own, the low bandwidth between 

CPU and memory in the von Neumann architecture, and the nearing end of the Moore’s 

Law have acted as a catalyst and provided additional momentum to the research domain 

of Neuromorphic computing. This new architecture also appears to be the most 

promising platform for the implementation of machine learning algorithms in the future. 
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In the field of neuroscience, computer simulations have become indispensable in the 

study of cortical networks providing insights into activity dynamics that cannot be 

measured or calculated analytically. These simulations can be very time consuming and 

even the leading supercomputers aren’t capable of obtaining real-time performance 

when running simulations large enough to assimilate multiple cortical regions [3].  

The term Neuromorphic was coined by Carver Mead who first noted that 

exponential current-voltage relationship of a MOSFET (Metal oxide semiconductor 

field effect transistor) in the sub-threshold region of operation was strikingly similar to 

that of the neuronal ion channels in the nervous systems [4]. Silicon neurons and 

synapses form the basic building blocks of this novel computing architecture, these 

microcircuits are specially designed to solve the dynamical activity of biological 

neurons and synapses and can be highly accelerated compared to biological time if 

desired. These circuits can be implemented in analog, digital or mixed signal platforms. 

Though most silicon neuronal circuits have used conventional MOSFET as the basic 

circuit element, new devices such as Memristors, CBRAM, Atomic switches and Spin 

devices are also becoming popular. In this work, we have used MOSFET as the basic 

circuit element in the design of silicon synapses owing to the stability and reliability of 

well-established CMOS foundry acquired over decades of refinement.  

 

1.2 Biological Computing Machinery 

Our major source of inspiration, the human brain, requires about 20 watts of 

power and performs extremely complex computations and tasks on that small power 

budget. This section provides a very basic overview of the operation of biological 

neurons and synapses which forms the basic computational machinery of the brain. In 

the brain, the axons of the nerve cell end eventually in a nerve terminal closely 

connected to another neuron forming synaptic knobs. These Synapses are highly  

 

Fig. 1.1: Representation of a biological neuronal cell with some of its parts labeled [5]. 
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specialized structures that, by means of complex chemical reactions, allow neurons to 

transmit signals to other neurons. Fig. 1.1 shows the diagram of a neuronal cell. Their 

membranes have active ionic channels which help sustain the electrical activity of the 

neuron through the movement of ionic currents. These active conductances are usually 

sensitive to either the trans-membrane potential or the concentration of a specific ion. 

Major players are sodium (Na
+
), potassium (K

+
), calcium (Ca

2+
), and chloride (Cl

-
). 

Concentration and electrical gradients lead to movement of ions across the membrane. 

An equilibrium potential is reached when the currents due to these two gradients 

counterbalance each other and the net current is zero. This state of equilibrium is 

referred to as the resting state of the neuron and potential within the cell membrane with 

respect to extracellular medium is typically referred to as the resting membrane 

potential. The rest state is stable but if these concentration or voltage changes by a large 

enough amount, a voltage pulse is generated at the axon hillock, a specialized region of 

the soma that connects to the axon. This pulse, called a 'spike' or 'action potential,' is 

propagated along the cell's axon and activates synaptic connections with other neurons 

as it reaches the pre-synaptic terminals. On reaching the pre-synaptic terminal, the 

action potential triggers the influx of Ca
2+ 

ions into the synaptic knob, which leads to 

the release of neurotransmitters into the synaptic cleft (An extra-cellular space that 

separates the pre-synaptic and post-synaptic membranes). Depending on the type of 

neurotransmitter released and the receptors channels in the post-synaptic terminal, the 

response of the post-synaptic neuron can be either excitatory or inhibitory “i.e.” the 

post-synaptic current can charge or discharge the membrane. In the cortex AMPA and 

NMDA receptors are excitatory and GABA receptors are inhibitory. The post-synaptic 

currents produce a change in the post-synaptic potential and when this potential exceeds 

a threshold at the cell body of the neuron, the neuron generates an action potential. 

 

1.3 Silicon Neurons 

Silicon neuron (SiN) circuits are complementary metal oxide semiconductor 

(CMOS), very large-scale integration (VLSI) circuits that emulate the 

electrophysiological properties of biological neurons. The emulation uses the same 

organizational technique as traditional digital numerical simulations of biological 

neurons. Depending on the complexity and degree of emulation, different types of 

neuron circuits can be implemented, ranging from implementations of biologically 

plausible models (explicitly model the types of behavior that are seen in biological 

neural systems) like the Hodgkin- Huxley model, the Morris-Lecar model to 

biologically inspired models such as the Izhikevick model to simple integrate-and-fire 
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(I&F) neuron models. Depending upon the application, a trade-off has to be made 

between the implementation cost (in terms of resources and energy) and the biological 

closeness of the model. For instance, in a bio-hybrid application, it is of paramount 

importance that biologically plausible models are chosen. Table 1.1 below categorizes 

various neuron models proposed over the years.  

 

Table 1.1: Simple categorization of contemporary Neuronal models. 

Categories Model Names Comments 

Conductance-Based 

Model 

a) Hodgkin-Huxley, 

b) Morris-Lecar etc 

These models are biologically 

plausible and are computationally 

expensive to implement. 

Phenomenological 

Models 

a)Fitzhugh-Nagumo, 

b)Adaptive Exponential 

Integrate and Fire, 

c)Izhikevich Model etc. 

Biologically Inspired models, 

widespread in use, and are 

computationally efficient. 

Qualitative Model Three variable Silicon 

Neuron Circuit [6] 

Biologically plausible dynamics 

and computationally efficient. 

Simple Model a) Leaky Integrate and 

fire Model 

b) McCulloch-Pitts 

Model 

Highly simplistic models used 

mostly in artificial neural 

networks for machine learning at 

present. 

 

Just like conductance based models, qualitative neuronal models do not ignore 

the spike generation mechanism, “i.e.” they model the type of behavior seen in the 

biological neural system in a biologically plausible way and not by resetting of variables 

as done in many phenomenological models. These models describe the dynamical 

structure of the neuronal activities by relatively simple polynomial based equation [7]. 

By appropriate configuration of its parameters, this model supports multiple classes of 

neuronal activities including the Class I and II in the Hodgkin classification, the regular 

spiking, low threshold spiking the square wave bursting and the elliptic bursting by 

appropriate configuration of its parameters. In this work, a part of the dissertation is 

devoted to the task of configuring appropriate parameters to reproduce the above 

mentioned neuronal activities in a qualitatively modeled three variable ultralow-power 

analog silicon neuron circuit.  
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1.4 Silicon Synapses 

Synapses are a building block of signal processing and computation in both 

artificial and biological neuronal cell’s networks. Emulating synaptic dynamics for 

every synapse in a huge neuronal network can be tedious using software simulations, 

but VLSI based neuromorphic hardware circuits can emulate them precisely in real time. 

Silicon synaptic circuits convert input spikes into post-synaptic currents that get 

integrated at the membrane capacitance of the post -synaptic neuron. Over the years a 

wide range of synaptic circuits has been proposed by researchers in the neuromorphic 

community. The highlight of this work is devoted to the design proposal of a new low 

power silicon synaptic circuit. 

 

1.5 Structure of this thesis 

This work has two major sections, the first section deals with the design and 

simulation results of a proposed synaptic circuit and in the second section experimental 

results of parameter tuning of a Silicon Neuron circuit are presented. In the next chapter, 

we look at various analog synaptic circuits proposed over the years. Chapter 3 describes 

the methodology, tools, and techniques used in the design of the synaptic circuit as well 

as the task of Parameter Tuning. Chapter 4 introduces and describes in detail the 

proposed synaptic circuit and presents the simulation results. In Chapter 5 a brief review 

of contemporary analog Silicon Neuron circuits is presented and Chapter 6 deals with 

the detailed description of a three-variable ultralow-power analog silicon neuron circuit 

(neuron circuit used in this work). The experimental results of parameter tuning for this 

circuit are shown in Chapter 7. Chapter 8 concludes this work by providing an 

architectural glimpse of the top level of the fabricated chip consisting of 128 synaptic 

circuits and a single neuron circuit, along with a detailed comparison of the proposed 

synaptic circuit with contemporary synaptic circuits and the planned future work for 

Analog Silicon Neuronal Networks.  
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2 

Previous Research 

This chapter briefly looks at the analog silicon synaptic circuits proposed over the 

last two decades. The circuits proposed earlier implemented synaptic events as pulse 

based events and were not concerned with the exact dynamics of synaptic currents. 

Experiments in the neuroscience community have demonstrated that the exact dynamics 

of neurotransmitter release mechanism plays an important role in long and short term 

synaptic learning; taking these findings into account the contemporary synaptic circuits 

have been designed to mimic the temporal dynamics the currents in biological synapses. 

In essence, all the circuits discussed below generate post synaptic currents acting on the 

targeted neuron in response to pre synaptic pulses. The structure of this chapter is 

inspired by a survey of analog synaptic circuits done by Bartolozzi et al. [8], with a few 

additional important synaptic circuits included. 

 

2.1  Primitive Circuits  

2.1.1 Pulse Current-Source Synapse Circuit 

One of the earliest proposed synaptic circuits [4]; it translated synaptic events 

into pulsed currents with configurable amplitudes. Its circuit diagram is shown in Fig. 

2.1 (a). An input pulse at the gate of transistor M1 turns it on and pulls the source of 

transistor M2 to Vdd, activating it in the saturation region of operation generates a 

pulsed output current lasting the duration of the input pulse and whose amplitude can be 

controlled by the voltage Vw applied at the gate of transistor M2. The synaptic current 

Isyn can be expressed as follows: 

 

 
 

Fig. 2.1: (a) Pulse Current-Source Synapse Circuit (b) Reset and Discharge Synapse Circuit 
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              Isyn = Ioe

−k

UT
(Vw−Vdd)

, 
 

(2.1) 

 

where 𝑉𝑑𝑑 is the power supply voltage, 𝐼𝑜 is the leakage current of the PMOS device, 

k is the sub-threshold slope factor, and 𝑈𝑇 the thermal voltage. Input pulse results in a 

sudden change in the post-synaptic membrane potential proportional to Isyn ∗ ∆t , 

where ∆t is the pulse width of the input spike. 

 

2.1.2 Reset and Discharge Synapse Circuit 

This circuit [9] consisting of three transistors and a capacitor served as an 

improvement (in terms of coming close to biological response) over the pulse current 

source circuit, wherein the duration of the input pulse was extended in the synaptic 

output current by means of an configurable exponential decay. Fig. 2.1(b) shows its 

schematic diagram. An input pulse at the gate of M1, pulls the node Vsyn (at Vdd) down 

to Vw and when the pulse is removed, M1 turns off and the transistor M2 which acts as a 

constant current source linearly charges the node Vsyn back to Vdd. The node’s sudden 

jump to Vw and a linear rise in voltage back to Vdd applied at the gate of transistor M3, 

generates an exponential current given by: 

 
               𝐼𝑠𝑦𝑛(𝑡) = 𝐼𝑜𝑒

−𝑘

𝑈𝑇
(𝑉𝑤−𝑉𝑑𝑑)

 .  𝑒
−𝑡

𝜏
 
,   

 

(2.2) 

and the time constant of the synaptic current is given by 𝜏 =
𝑘𝐼𝜏

𝑈𝑇𝐶𝑠𝑦𝑛
 . 

Although this synaptic circuit produces an excitatory post-synaptic current (EPSC) 

that lasts longer than the duration of an input pulse and decays exponentially with time, 

it sums non- linearly the contribution of all input spikes. If an input spike arrives while 

Vsyn  is still charging back to Vdd , its voltage will be reset back to Vw  thus the 

remaining charge contribution from the last spike will be eliminated. 

 

2.2  Linear Charge and Discharge Synapse Circuit 

This circuit [10] with an added transistor, four transistors in total along with a 

capacitor generates exponentially rising and falling synaptic currents with different time 

constants. Fig. 2.2 (a) shows its schematic diagram. An input pulse at the gate of 

transistor M1, discharges the node Vsyn down from Vdd to a new value which depends 

on the value of voltage Vw applied at the gate of transistor M2, which being activated in 

saturation draws in a constant current. This linear discharge of the node Vsyn applied at 

the gate of the transistor M4 generates an exponentially rising current for the duration of 
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the input pulse, when the pulse turns off, the node Vsyn recharges back to Vdd through 

M3 controlled by Vt, leading to the exponentially decaying current through the transistor 

M4. 𝜏 =
𝑈𝑇𝐶𝑠𝑦𝑛

𝑘(𝐼𝑤−𝐼𝜏)
 and 𝜏 =

𝑈𝑇𝐶𝑠𝑦𝑛

𝑘𝐼𝜏
 give the time constant of the charging and 

discharging phase of the synaptic current respectively. This circuit doesn’t function as 

an exact linear integrator and for arbitrarily high frequency of input synaptic pulses Vsyn 

decreases all the way to zero, and Isyn reaches its maximum value, “i.e.” the circuit’s 

steady state response doesn’t encode the input frequency. 

 

2.3  Current Mirror Integrator Synapse Circuit 

This circuit is very similar to the charge and discharge synapse circuit but has very 

different response. Fig. 2.2(b) shows its schematic diagram. The difference is that the 

transistor controlling the discharging profile of the synaptic current is diode connected. 

The steady state output current encodes the spiking frequency and has a saturating non 

linearity with maximum amplitude depending on circuit parameters. Due to the diode 

connected nature of the transistor controlling the discharging profile of the synaptic 

current, the profile is not exponential as in biological synapses but has a 1/t profile. 

Detailed derivation and description of this circuit is given by Hynna et al. [11]. 

 

2.4  Log Domain Integrator Synapse Circuit 

This circuit [12] is another variant of the charge and discharge synapse circuit with 

the advantage that it is a linear integrator without any approximation. Fig 2.3(a) shows 

its schematic diagram, note that the transistor M2 has its source and body shorted and is 

free of body effect. This configuration leads to the current Iw being inversely 

proportional to Isyn. The expression for synaptic current is described by the following 

equation: 

 

Fig. 2.2: (a) Linear Charge & Discharge Synapse Circuit (b) Current Mirror Integrator Synapse 

Circuit 
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Fig. 2.3: (a) Log Domain Integrator Synapse Circuit (b) Differential Pair Integrator Synapse Circuit 

 

    

𝐼𝑠𝑦𝑛(𝑡) = {

𝐼0𝐼𝑤0

𝐼𝜏
(1 − exp (−

𝑡 − 𝑡𝑖
−

𝜏
)) + 𝐼𝑠𝑦𝑛

− exp (−
𝑡 − 𝑡𝑖

−

𝜏
)   

𝐼𝑠𝑦𝑛
+ exp (−

𝑡 − 𝑡𝑖
−

𝜏
)                                       

 

 

(2.3) 

Where I0 is the leakage current and Iw0 is the current flowing through M2 in the 

initial condition, when Vsyn = Vdd,  ti
− is the time at which the ith input spike arrives, 

ti
+ the time at which it ends, Isyn

−  the initial condition at ti
−, Isyn

+  the initial condition at 

ti
+ and τ =

UTCsyn

kIτ
. This circuit unlike the ones discussed above has linear filtering 

properties and the same circuit can summate the contributions of spikes potentially 

arriving from different sources in a linear way. A disadvantage in the implementation of 

this circuit is that it might require additional pulse extender circuits, to extend the width 

of the input synaptic pulse so as to inject strong enough charge in the membrane 

capacitance of the post-synaptic neuron. 

 

2.5  Differential Pair Integrator Synapse Circuit 

This circuit adds on to the capability of the log domain integrator synaptic circuit, 

removing the need of adding pulse extender modules. Fig. 2.3(b) shows the schematic 

diagram of this circuit comprising of four NMOS device forming the input and tail 

stages of a differential pair, two PMOS device and a capacitor. Detailed analysis of this 

circuit is presented by Bartolozzi et al. [8]. The differential pair configuration by its 

inherent nature provides the capability to additionally control the charge drawn out of 

the capacitor Csyn during the charge phase. The expression synaptic current is described 

by the following equation: 
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𝐼𝑠𝑦𝑛(𝑡) = {

𝐼𝑔𝑎𝑖𝑛𝐼𝑤0

𝐼𝜏
(1 − exp (−

𝑡−𝑡𝑖
−

𝜏
)) + 𝐼𝑠𝑦𝑛

− exp (−
𝑡−𝑡𝑖

−

𝜏
)   

𝐼𝑠𝑦𝑛
+ exp (−

𝑡−𝑡𝑖
−

𝜏
)                                       

, 

 

(2.3) 

 

where the term 𝐼𝑔𝑎𝑖𝑛=𝐼𝑜𝑒
−𝑘

𝑈𝑇
(𝑉𝑡ℎ𝑟−𝑉𝑑𝑑)

   represents a virtual p-type subthreshold current 

unreferenced to any PMOS device in the circuit. Thus the voltage Vthr acts an additional 

control parameter to configure the strength of the synaptic current acting on the post 

-synaptic neuron. 

 

2.6  Floating Gate Synapse Circuit 

These circuits use floating gate technology in the CMOS process, utilizing the 

non-volatile memory storage, electron tunneling and hot electron injection mechanisms 

to configure the voltage (memory) on a floating gate. Non-volatility of analog memory 

and bidirectional update capability gives these devices significant edge over all the 

silicon synapse circuits proposed till date in terms of implementable density of circuits. 

Fig. 2.4 shows a block diagram representation conveying the operating principle of this 

synaptic circuit [13]. It consists of a triangle waveform generator modeling the 

pre-synaptic computation, a MOSFET transistor which operating in the subthreshold 

region converts this triangular waveform into an exponentially rising and decaying 

 

Fig. 2.4: Schematic Representation of floating gate synapse circuit. The shaded portion comprises of 

pre-synaptic computation block which outputs a triangular waveform for an input pulse. 
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synaptic current, and a floating-gate to model the strength of the resulting connection.  

 

2.7  Programmable weights using on-chip DAC 

There are many provisions to implement the synaptic weights crucial for learning is 

any neuronal network. Floating gate transistors offer a solution, another way is to 

implement spike burst encoding scheme where an input spike generates multiple spikes 

which are transmitted to the input stage of a synapse. Wang et al. [14] proposed a 

programmable five-bit synaptic weight circuit where the weights are set by an on-chip 

DAC. The address of the synapse whose weight is to be updated is fed into the DAC 

along with the desired value which is then sets the weight of the targeted synapse. The 

synapse is then simulated after a delay set to the maximum settling time of the DAC. 

The DAC circuit is based on the MOS current division technique proposed by Barranco 

et al.[15]. The DAC circuit is also used for mismatch compensation while implementing 

the synaptic weights.  

 

2.8  Discussion 

Synaptic circuits take up the major real estate of a chip and efficient design in terms 

of improving synaptic density without compromising on the temporal dynamics of post 

synaptic currents is an important aspect in the implementation of large scale neuronal 

networks. Synaptic circuits discussed in this chapter have their own perks and pitfalls. 

For instance, floating gate synapses offer high synaptic density but require high power 

supplies, the programmable on chip DAC though precise in terms of their weight 

implementation demand significant layout area. Based on the implementation, the type 

of neuronal network where the synaptic circuit will be used or the types of neuron 

circuit they would interact with a careful trade-off has to be made with respect to energy 

consumption, layout real estate and the precise biological replication. In the Chapter 4 

of this work a new silicon synapse circuit is proposed and its comparison with the 

contemporary circuits discussed in this chapter is presented in the chapter 8, the 

concluding chapter of this work. 
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3 

Methodology 

In this chapter we look at the models, techniques and tools used in the design 

process of the synaptic circuit as well as the method of phase plane analysis of nonlinear 

dynamical systems which proves indispensable in the task parameter tuning as well as 

design of silicon neuron circuit. In the first section we look at the synaptic circuit and 

the second section is devoted to the brief review of phase plane and bifurcation analysis 

used in parameter tuning of the neuron circuit. 

 

3.1 Synaptic Circuit 

3.1.1 Chosen Synaptic Model 

Even though there is a staggering diversity of synapse morphologies and types 

in the brain, the fundamental process of synaptic transmission is generally the same. A 

pre-synaptic membrane potential depolarization, typically caused by the arrival of an 

action potential, triggers the release of neurotransmitters, which then binds to receptors 

that, in turn, generate a response in the postsynaptic neuron. A framework to describe 

the neurotransmitter kinetics of the synapse was proposed by Destexhe et al. [16]. 

Kinetic models are inherently flexible in their level of detail, ranging from the most 

detailed and biophysically realistic gating models to highly simplified representations. 

Using this approach, one can synthesize equations for a complete description of the 

synaptic transmission process. Following the analysis discussed in Ref.14, the fraction 

of bound receptors r in the post synaptic neuron is described by 

 
           

dr

dt
= α[T](1 − r) − βr , 

 

(3.1) 

here α and β are the forward and backward rate constants for transmitter binding, 

respectively. Modeling T as a short pulse, the dynamics of r can be described by a 

first-order differential equation which results in an exponential solution. 

On one hand implementing a highly detailed model incorporating the dynamics 

of various ionic species and neurotransmitter molecules involved in the process of 

synaptic transmission is computationally expensive and on the other hand modeling 

synaptic events as pulses, neglecting their temporal dynamics can degrade the learning 

behavior of neuronal networks. In our work (like many of the earlier works) we chose a 

computationally efficient model which doesn’t concern itself with the dynamics of the 

specific ionic species and neurotransmitter molecules but preserves the exponential 
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temporal dynamics of the synaptic current observed in the biological synapse. A simple 

RC circuit is used to model the first order dynamics of the receptors binding in the post 

synaptic neuron. It has also been observed that the synaptic current in addition to being 

dependent on the ionic concentration is also dependent on the potential difference 

between the post synaptic potential and the synaptic reversal potential. Now making a 

highly simplistic assumption that the bound receptors, r directly gates the opening of an 

associated ion channel, the total conductance through all channels of the synapse is r 

multiplied by the maximal conductance of the synapse 𝑔𝑠𝑦𝑛. The synaptic current is 

then given by: 

        𝐼𝑠𝑦𝑛(𝑡) = 𝑔𝑠𝑦𝑛 ∗ 𝑟(𝑡) ∗ (𝑉𝑠𝑦𝑛(𝑡) − 𝐸𝑠𝑦𝑛) , (3.2) 

 

Here 𝑉𝑠𝑦𝑛 is the post-synaptic potential and 𝐸𝑠𝑦𝑛 is the synaptic reversal potential. 

 

3.1.2 Energy Considerations 

One of the most crucial metric to be taken into account in the design of 

neuromorphic circuits is power consumption. Also unlike artificial neural 

networks(ANN) where all the neurons take part in the firing process according to a 

relatively simple sigmoid activation function, in Silicon Neural Networks only specific 

neurons fire at one particular time, hence it is important not just to minimize the 

dynamic power consumption but also static power consumption of the circuits. Most of 

the previously designed circuits have not reported the value of static power 

consumption in their design.  

The proposed synaptic circuit was designed to be connected to the silicon 

neuron circuit [6] described in detail in Chapter 6. The scale of synaptic current in our 

circuit was designed so as to interact with this silicon neuron circuit, whose membrane 

capacitance is about 900fF. Since the membrane capacitance of the biological neuronal 

cells is about several hundreds of picofarads and the scale of synaptic currents is about 

several hundreds of picoamperes, the synaptic current scale of our silicon synapse 

circuit is set to about 10pA in line with the value of our membrane capacitance. This 

range is far smaller than that in other silicon synapse circuits discussed in the previous 

chapter.
1
  

 

 

 

                                                   

1 Refer the concluding chapter for comparison.  
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3.1.3 Typical Synaptic Responses 

There are two main classes of synapses: Electrical synapses and chemical 

synapses. An electrical synapse is a mechanical and electrically conductive link between 

two neighboring neurons that is formed at a narrow gap between the pre- and 

postsynaptic neurons known as a gap junction. Compared to chemical synapses, 

electrical synapses conduct nerve impulses faster, but, unlike chemical synapses, they 

lack gain—the signal in the postsynaptic neuron is the same or smaller than that of the 

pre-synaptic neuron. Our synaptic circuit describes the modeling of chemical synapse 

and not the electrical synapse. In a chemical synapse, the pre-synaptic and post-synaptic 

membranes are separated by extracellular space called a synaptic cleft. The arrival of a 

pre-synaptic action potential triggers the influx of Ca2+, which then leads to the release 

of neuro-transmitter into the synaptic cleft. These neurotransmitter molecules (e.g., 

AMPA, GABA) bind to receptors on the post-synaptic side. These receptors consist of 

membrane channels with two major classes: ionic ligand-gated membrane channels such 

as AMPA channels with ions like Na+ and K+ and ionic ligand gated and voltage-gated 

channels such as NMDA channels. These channels can be excitatory or inhibitory, that 

is the post-synaptic current can either charge or discharge the membrane. The typical 

receptors in the cortex are AMPA and NMDA receptors which are excitatory and GABA 

receptors which are inhibitory (Fig. 3.1). The post-synaptic currents produce a change in 

 

Fig. 3.1: Best fits of detailed kinetic models to averaged postsynaptic currents obtained from 

whole-cell recordings.  (A) AMPA mediated current, (B)NMDA mediated current (C) GABAA 

mediated current (D) GABAB mediated current [16]. 

https://en.wikipedia.org/wiki/Conductor_(material)
https://en.wikipedia.org/wiki/Neuron
https://en.wikipedia.org/wiki/Gap_junction
https://en.wikipedia.org/wiki/Chemical_synapse
https://en.wikipedia.org/wiki/Nerve_impulse
https://en.wikipedia.org/wiki/Gain_(electronics)
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the post-synaptic potential and when this potential exceeds a threshold at the cell body 

of the neuron, the neuron generates an action potential. AMPA receptors mediate the 

proto-typical fast excitatory synaptic currents in the brain. Their kinetics may be 

extremely rapid with rise and decay time constants of a couple of millisecond. NMDA 

receptors mediate synaptic currents that are substantially slower than AMPA currents 

with larger decay time constants of about 150ms to 200ms. Most fast inhibitory 

postsynaptic potentials (IPSP,) are mediated by 𝐺𝐴𝐵𝐴𝐴 receptors in the central nervous 

system. 

 

3.2 Parameter Tuning: Silicon Neuron 

3.2.1 Qualitative Modeling 

The spiking activity in the neuronal cells is mediated by ionic currents. Over the 

years many neuronal models have been proposed. A biologically plausible and good 

neuron model doesn’t just imply accurate modeling of these ionic currents, so as to fire 

spikes but to reproduce all the neuro-computational features observed in the neuronal 

cells, such as co-existence of resting and spiking states, frequency adaptations, spike 

latencies, sub-threshold oscillations, rebound spikes, etc. Bifurcation analysis of the 

neuronal cells can provide significant insights into these neuro-computational properties. 

Even if the implemented neuron model doesn’t replicate the exact ionic currents 

observed in the neuronal cells but undergoes the right bifurcations then one can be 

confident that the implemented model is biologically plausible. The complexity of 

accurately modeling the ionic conductance models like the Hodgkin- Huxley model has 

prompted the development of qualitative neuron models, which retain the core 

mathematical structures of the complex ionic conductance models but are described by 

differential equations with reduced number of variables and low dimensional 

polynomials.  

 The neuron model used in this work is a qualitative model and can be described 

by the following differential equation: 

 
𝐶𝑣

𝑑𝑣

𝑑𝑡
= 𝑓𝑣(𝑣) − 𝑔𝑣(𝑣) + 𝐼𝑎𝑣 − 𝑟𝑛(𝑛) − 𝑟𝑞(𝑞) + 𝐼𝑠𝑡𝑖𝑚 

 

(3.3) 

 
𝐶𝑛

𝑑𝑛

𝑑𝑡
= 𝑓𝑛(𝑣) − 𝑔𝑛(𝑣) + 𝐼𝑎𝑛 − 𝑟𝑛(𝑛) 

 

(3.4) 

 
𝐶𝑞

𝑑𝑞

𝑑𝑡
= 𝑓𝑞(𝑣) + 𝐼𝑎𝑞 − 𝑟𝑞(𝑞) 

 

(3.5) 
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Here v represents the membrane potential, n variable models the fast dynamics, 

and q variable represents the slow dynamics modeling slower ionic currents such as the 

calcium currents and the potassium currents that modulate the dynamics of the spike 

generation system. Detailed discussion of this model is provided in Chapter 6. 

 

3.2.2 Phase Plane Analysis  

Analyzing the evolution systems represented by non-linear differential can be an 

exacting exercise. The phase plane method is a graphical method that simplifies the 

analysis of such equations (for lower dimensional systems) by potting their vector fields 

in a space called the phase space.  Let us consider a general two dimensional system 

representative a simple qualitative neuron model: 

 
𝐶𝑣

𝑑𝑣

𝑑𝑡
= 𝑓1(𝑣, 𝑛) + 𝐼𝑠𝑡𝑖𝑚 

 

(3.6) 

 𝑑𝑛

𝑑𝑡
= 𝑓2(𝑣, 𝑛) 

 

(3.7) 

 

Fig. 3.2: Phase plane plot of a simple two dimensional qualitative neuron model. Red trace 

represents the v nullcline and green trace the n nullcline. 

 

Fig. 3.3: Phase Plane plot depicting limit cycle appearing as a result SNIC bifurcation.   
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Fig. 3.4: Phase Plane plot depicting limit cycle appearing as a result of Hopf bifurcation .   

 

By assigning appropriate functions and parameters, this system is capable of 

replicating a wide variety of spiking behavior with just two variables. Variable v 

represents the membrane potential; variable n represents abstracted ionic activity, 𝐼𝑠𝑡𝑖𝑚 

is an applied stimulus current, and𝐶𝑣 is the membrane capacitance. Fig. 3.2 shows the 

phase plane where the variables v and n are plotted against each other.  The figure also 

contains two lines representing the v and n nullclines. Nullclines are a set of those 

points in the phase plane where the rate of change of the variable (represented by that 

nullcline) becomes zero. Simply stated v nullcline is represented by 
𝑑𝑣

𝑑𝑡
= 0 and the n 

nullcline is represented by 
𝑑𝑛

𝑑𝑡
= 0. These lines partition the phase plane into four 

regions each with different direction of vector fields. The intersection of v and n 

nullclines correspond to an equilibrium point. The number and location of equilibriums 

might be difficult to infer via analysis of Eqn. 3.6 and 3.7, but it is a trivial geometrical 

exercise once the nullclines are determined. Using this method one can graphically 

determine the existence of limit cycles (periodic spiking) in the system. These nullclines 

can be easily plotted using any mathematically equipped software tool. From the 

nullcline equation it is evident that function 𝑓1(𝑣, 𝑛) represents the shape of v nullcline 

and function 𝑓2(𝑣, 𝑛)the shape of n nullcline. Performing voltage clamp experiments it 

has been observed that shape of the v nullcline modeling the membrane potential of the 

neuronal cells is of inverted N shape while that of the n nullcline is sigmoid in shape as 

shown in the figure (Rising phase of sigmoid shown).  

 

https://en.wikipedia.org/wiki/Limit_cycle
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3.2.3 Overview of Bifurcations 

Neuronal models can be excitable for some values of parameters, and fire spikes 

periodically for other values. These two types of dynamics correspond to a stable 

equilibrium and a limit cycle attractor, respectively. When the parameters change, the 

models can exhibit a bifurcation – a transition from one qualitative type of dynamics to 

another. Transition can occur from any one state to another either resting to spiking 

(transition from equilibrium) or spiking to resting (transition from limit cycle). A neuron 

is said to be excitable when it is near a bifurcation.  

 Let’s consider two different parameter configurations of the 2- dimensional 

model described by Eqn. 3.6 and 3.7. In the first case let the variable n model a high 

threshold potassium current and in the second case let the variable n model a low 

threshold potassium current. The respective phase portraits are shown in Fig. 3.2 and 

Fig. 3.4 (Notice the difference in the position of n nullcline). In the first case we notice 

three intersections of the v and n nullcline of which the left most one denoted by “A” is 

a stable node, “B” a saddle point and “C” an unstable focus. As the stimulus current Istim 

is increased, the v nullcline moves up, saddle and node point come close to each other. 

At this stage application of a small depolarizing input will lead to an action potential, 

‘i.e.’ the neuron is excitable. If the stimulus current is increased further, the saddle and 

the node point coalesce and cease to exist, that is the stable equilibrium is lost and the 

system moves from resting state to spiking state, if the point C gives rise to a stable 

limit cycle (Fig. 3.3). This type of bifurcation is called Saddle Node on an Invariant 

Circle bifurcation (SNIC) and is a characteristic of Class 1 oscillatory behavior. One can 

never be sure of the type of the equilibrium by just looking at the phase portrait and the 

stability or instability of these equilibriums can only be determined algebraically using 

techniques from non-linear dynamics described in detail in any mathematical textbook 

dealing with the subject. 

 Coming to Fig. 3.4, we see that only one intersection of nullclines exists. As 

the stimulus current is increased, this equilibrium loses stability by Hopf (subcritical or 

supercritical) bifurcation and the system gives rise to a stable limit cycle. We will look 

at these and some more bifurcation in detail in chapter 7, where the experimental results 

of parameter tuning are presented. Observing these bifurcation mechanism in neuronal 

cells and developing a mathematical model in a computationally efficient manner 

(approximating the detailed behavior of ionic conductances and currents in a biological 

neuron) replicating the exact bifurcation mechanism lies at the core of designing a 

biologically plausible model capable of implementing bio hybrid systems in the future. 
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3.3 Tools & Technology used 

The design of the synaptic circuit was done using the Analog Design 

Environment module in the Cadence design tool. All the circuit simulations were 

performed using Spectre software. The technology node used for circuit fabrication was 

250nm in the TSMC foundry. 250nm technology node was chosen as majority of the 

circuits are analog in nature and thus are prone to fabrication mismatch, the effect is 

even more amplified as they have been designed to function in the sub-threshold region 

of operation. Mismatch effects increase as we go down the technology node.  

 National Instruments Data Acquisition System was configured using various 

data acquisition modules to make experimental measurements as well as complete the 

task of parameter tuning in the Silicon Neuron Circuit.  
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4 

Proposed Synaptic Circuit  

The proposed synaptic circuit consists of three main stages, the input stage, the 

integrator and the transconductance amplifier. Fig. 4.1 below shows the block diagram 

of the synaptic circuit. 

 

4.1 The Input Stage 

The input stage of the proposed circuit is functionally similar to log domain 

integrator synapse circuit proposed by Merolla et al.[12] with roles of PMOS and 

NMOS interchanged. Fig.4.2 shows the circuit diagram of the input stage. An input 

pulse of width 2ms is applied at the gate terminal of the PMOS transistor M1 which acts 

as a switch. The source of this transistor is connected to the terminal VddInt, an internal 

power supply voltage for the input stage whose value is kept around 500mV. The drain 

of this transistor is connected to the source of transistor M2 which along with the 

inverter I0 together provide the necessary charge to be injected during the rising and 

falling phase of the input pulse so as to avoid the distortion of the current waveform at 

the switching points of the input pulse due to the effect parasitic capacitors inherent in 

the Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) device. Transistors 

M3, M5, M7, and M9 act as switches and determine the state of corresponding branches 

shown in the figure. These branches are for implementing synaptic weights discussed 

later. Let’s assume only the branch consisting M3 is turned ON leaving M5, M7, and 

M9 in the OFF state. An input pulse at the gate of transistor  

 

Fig. 4.1: Block Diagram of the proposed synaptic Circuit. 
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Fig. 4.2: Circuit diagram of the input stage. Dimensions of the transistors: M4=0.3758*(w/l), 

M6=w/l, M8= 2*(w/l) and M10=4*(w/l). 

 

M1 pulls the drain terminal of NMOS M4 to VddInt and current that flows through the 

device is given by (ignoring the short channel effect) 

 

Iw = Iwoe
(k∗sVw−Vsyn)

UT  

 

(4.1) 

where Iw0 represents the leakage current, sVw is the voltage applied to the gate of M4 

and Vsyn represents the source voltage of the transistor M4. If other branches in the input 

stage are turned ON, then we will have additional current flowing into the node Vsyn. 

These transistors always turn ON in the saturation region of operation (as Vsyn is always 

4UT below VddInt ) and thus act as constant current source. 

 

4.2 The Integrator 

This current flowing into the node Vsyn is then integrated by the RC network 

formed by capacitor Csyn and the NMOS transistors M11 and M12 (Fig. 4.3). In the 

present design we have shorted the gates of M11 and M12, hence they act as a single 

transistor. Fig. 4.4 shows the I-V relationship of the NMOS transistor in this process. 

From the curve we can observe that the transistor acts as a linear resistor only within the 

first 25mV. Theoretically one would assume that the transistor should act as a linear 

resistor in the entire linear range (‘i.e.’ below approximately 100mV of Drain Source 

voltage) but that is not the case. In our design we make use of the saturation region of 

the I-V relationship of the transistor, where it acts as a constant current source/sink. 

During the charging phase, i.e. when the pulse is applied at the gate terminal of 

the transistor M1 in the input stage, these transistors (M11 and M12) are not in 

saturation region of operation as Vsyn is initially 0V. Thus during the charging phase the  
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Fig. 4.3: Circuit diagram of (a) the integrator circuit (b) Transconductance amplifier circuit. Nets 

sVt0 and sVt1 are shorted and connected to a common node Vτ. Tail transistor M14 is three times 

wider than M13. 

 

Fig. 4.4: I-V relationship of a NMOS in tsmc 250nm process. X-axis is Vds and y-axis is Ids. Zoomed 

in image shows that I-V relationship in the supposedly linear region of operation is highly non linear. 

 

capacitor Csyn is charged by a constant current source, and the voltage Vsyn rises linearly 

to the maximum possible value depending on the number of branches of input stage that 

are turned ON. When the input pulse turns off, the gate of the transistor M1 goes high, 

the current Iw shuts off and the capacitor begins to discharge linearly through the 

transistors M11-M12. When these transistors are saturated the current Iτ is given by 

 
𝐼𝜏 = 𝐼𝜏𝑜𝑒

(𝑘𝑉𝜏)

𝑈𝑇  

 

(4.2) 
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here Iτ0 represents the leakage current of the NMOS transistors, Vτ applied to the gate of 

the transistors M11 and M12 controls the time constant of the synaptic circuit. Higher 

the value faster is the response. 

 The second section of the circuit consisting of the inverter INV1 and NMOS 

transistors M13 to M17 constitutes the configuration of the tail transistor of the 

transconductance amplifier (Fig. 4.3(b)), with the provision to draw 4x times the current 

with the bit nWx4 turned ON. Transistors M15 and M17 act as switches; controlled by 

the bit nWx4. The width of M16 is three times that of M13 and M14 is a dummy 

transistor which is of the same dimensions as M16 to match the leakage current flowing 

through M16 when its switch M17 is not activated. This provision to add 4x times the 

current is to increase the dynamic range of the synaptic weights, discussed in a later 

section of this chapter. 

 

4.3 The Transconductance Amplifier 

The final stage of the synaptic circuit consists of a transconductance amplifier 

(Fig. 4.3(b)) instead of a single transistor (as in almost all the previous and existing 

version of synaptic circuits discussed in chapter 2) to implement the conductance based 

equation derived in chapter 3. A transconductance amplifier consisting of a differential 

pair along with a current mirror inherently sinks or sources current proportional to the 

voltage difference applied at its input terminals. Fig 4.5 shows its typical I-V 

relationship. Comparing it with the I-V relationship of a MOSFET (Fig 4.4), we see that 

linear dependence of current across a large voltage range is possible in the former case, 

whereas in the latter this linearity is limited to about 25mV. Using a transconductance 

 

 

Fig. 4.5: Typical Current –Voltage relationship of a transconductance amplifier. Here Vmem=700m. 
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amplifier as the final stage makes synaptic current proportional to the difference 

between the membrane potential Vmem applied at the gate of transistor M19 and a 

tunable synaptic reversal potential Esyn applied at the gate terminal of transistor M18. 

Note that the gate of the transistor M19 is connected to its drain. Voltage Vsyn is fed into 

the tail transistor of the transconductance amplifier (M13 and M16), discussed in the 

previous section. Let us assume for now that M16 is turned OFF, that is to say nWx4 is 

pulled to 1Volt. With M13 as the tail transistor, the transconductance amplifier generates 

a current proportional to the difference of the voltage applied at the inputs of the 

differential pair (Esyn-Vmem). The generated current Isyn is given by: 

 
Isyn = Ioe

(kVsyn−sVref)

UT
∗tanh(

k

2UT
(Esyn−Vmem))

 

 

(4.3) 

The source of the tail transistors is connected to sVref (around 20 mV), instead 

of zero volts so as to minimize the leakage current when Vsyn is set to zero during the 

inactive state of the synapse circuit. This configuration also turns off the tail transistor 

as soon as possible during the discharging phase when the transistors M11-M12 come 

out of saturation. By differentiating Eq. (4.3) we get 

 
           

dIsyn

dt
= Isyn ∗

k

UT
∗

dVsyn

dt
, 

 

(4.4) 

and the dynamics of the node Vsynis given by 

 
          Csyn ∗

dVsyn

dt
= (Iw − Iτ), 

 

(4.5) 

combining Eq. (4.4) and Eq. (4.5), we get 

 
          

Csyn

Iτ
∗

UT

k
∗

dIsyn

dt
+ Isyn =

Isyn∗Iw

Iτ
 , 

 

(4.6) 

 

In the log domain integrator synapse described in Ref. 11, the right-hand side 

of Eq. (4.6) comes out to be a constant due to the inverse relation between Iw and Isyn. 

This is not exactly true in our circuit due to the body effect of the NMOS transistor M4, 

but to avoid complexity in our analysis we neglect the body effect and approximate the 

dynamics of our circuit as that of the log domain integrator. By this Eq. (4.6) reduces to 

the equation of a first order low pass filter and its response to a spike arriving at ti
− and 

ending at ti
+during the charging phase is given by 

 
          Isyn(t) = Iconst (1 − exp (−

t−ti
−

τ
)), 

 

(4.7) 

and during the discharge phase 
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          Isyn(t) = Isyn

+ exp (−
t−ti

+

τ
), 

 

(4.8) 

where Iconst is the constant term on the right-hand side of Eq. (9),𝐼𝑠𝑦𝑛
+  is the initial 

condition at ti
+ and τ is the time constant given by 

 
𝛕 =

𝐂𝐬𝐲𝐧∗𝐔𝐓

𝐤∗𝐈𝛕
 .  

 

     (4.9) 

During the discharge phase, a small current flows out of the Vsyn node back into 

the synaptic input stage. This happens due to the current drawn by parasitic capacitance 

(source-bulk) of the NMOS transistors M4, M6, M8, and M10 which is comparable to Iτ 

for higher values of time constant (100ms to 200ms), and in this range to calculate the 

time constant this additional current flowing out of the Vsyn node must be added to Iτ in 

Eq. (4.9). 

 

4.4 Pseudo five-bit synaptic weights. 

Wang et al. [14] proposed a programmable five-bit synaptic weight circuit 

discussed in chapter 2, where the weights are set by an on-chip DAC. Because the 

number of synaptic circuits in silicon neuronal networks is very large, their footprint 

size has to be minimized. An on-chip DAC equipped with calibration can implement the 

synaptic weights accurately but it consumes a lot of area, we propose a more compact 

circuit whose resolution is almost five-bit and consumes less area. Going back to the 

input stage (Fig.4.2) the four branches consisting of transistors M3 to M10, with the 

NMOS transistors sized appropriately provide 4 bit of synaptic weight. The fifth bit is 

represented by node nWx4 (Fig.4.3) which when active turns ON the switch M17 and 

incorporates transistor M16 along with M13 as the tail device thus providing four times 

increase in the magnitude of synaptic current. Table 4.1 below lists down the synaptic 

weights given by the five-bit input, nWa, nW0, nW1, nW2, and nWx4. We call it pseudo 

five-bit as the total number of weight values we get are 27 instead of 32. In our circuit, 

instead of using 32 transistors to realize full five-bit, we used seven full-sized transistors 

for M6, M8 and M10 and one half size transistor for M4. This shrinks not only the 

footprint of these transistors but also that of M2 by reducing the charge injection 

phenomenon. Fig. 4.6 displays the dynamic range of synaptic weights. For the first 

sixteen weight values (bit nWx4 is OFF) the delta change in synaptic current for single 

bit change in the synaptic weight is smaller when compared with higher weight values 

(bit nWx4 is active) where the delta change in synaptic current is larger. Though no 

learning mechanism has been implemented in the circuit yet, having two different delta 

current values for single bit change in synaptic weights might prove useful in the 
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implementation of learning mechanisms like Spike Timing Dependent Plasticity 

(STDP). 

 

4.5 Current to voltage convertor 

The maximum current value of our circuit is designed to be around 10pA. This 

current value though appropriate to interact with the desired neuron circuit is too small 

to be measured experimentally. Hence we use an on chip current to voltage convertor to 

have a voltage output that can be measured experimentally. We use a transconductance 

amplifier in the unity gain configuration with cascoded output shown in Fig. 4.7 as the 

resistor. 

Table 4.1.  Pseudo five-bit synaptic weights. 

nWx4 nW2 nW1 nW0 nWa Weight 

Value 

0 0 0 0 0 0 

0 0 0 0 1 1 

0 0 0 1 0 2 

0 0 0 1 1 3 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 

0 1 1 1 0 14 

0 1 1 1 1 15 

1 0 1 0 1 16 

1 0 1 1 0 17 

1 0 1 1 1 18 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 

1 1 1 1 0 25 

1 1 1 1 1 26 
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Fig. 4.6: Dynamic Range of the synaptic weights 

 

 

Fig. 4.7: Horizontal Resistor circuit implemented using a transconductance amplifier with cascaded 

output 

 

4.6 Test Element Group Description 

To measure the synaptic response of the circuit, a test element group consisting 

of 16 synaptic circuits, a current to voltage convertor, an operational amplifier, register 

arrays (for storing the values of synaptic weights) and a spike address decoder was 

designed. Register arrays were designed to implement 80bits, five weight bits for each 

synaptic circuit. Spike address decoder takes in the address of a particular synaptic 
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circuit as input and can activate that synaptic circuit by transmitting a pulse to its input 

stage when desired. These are not run by any clock but are event driven. To address 16 

synaptic circuits in the Test Element Group we used a 4 to 16 decoder one for each 

circuit’s input stage.  

Outputs of all the individual synaptic circuits are connected to the current to 

voltage convertor described in the previous section. This voltage is then fed to an 

operational amplifier which can be measured off chip. Fig. 4.8shows the schematic 

representation of this TEG and Fig. 4.9 shows a block diagram representation of the 16 

synaptic circuits, the spike address decoder and the register array. 

 

Fig. 4.8: Schematic diagram of the Test Element Group  

       

Fig. 4.9: Block diagram representation of the synaptic circuits, the spike address decoder and the 

register array. 
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4.7 Simulation Results 

In this section we look at simulation results of the synaptic circuit configured to 

replicate various types of currents found in biological synapses. First we look at the 

results of a single synaptic module and then the Test element group. Fig. 4.10 shows the   

 

Fig. 4.10: Schematic diagram of the synaptic circuit, the three blocks represent the input stage, the 

integrator and the transconductance amplifier. 

 

Fig. 4.11: (a) Linearly rising and falling voltage waveform at the Vsynnode. (b) Synaptic current with 

Esyn=600m (c) Synaptic current with Esyn=800m. 
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Fig. 4.12: Synaptic currents (pA) emulating the response of (a) AMPA (b) NMDA (c) GABAA (d) 

GABAB neurotransmitters. sVw was set to 80mV for NMDA and GABAb mode and to 110mV for 

AMPA and GABAa mode.  

 

schematic diagram of the synaptic circuit detailing the input and output ports, without 

the device details. Fig. 4.11 shows the voltage profile at the node Vsyn and the synaptic 

current response for two different values of synaptic reversal potential. There is offset in 

the value of the leakage current observed in the inhibitory setting, “i.e.” if Esyn=600m, 

the leakage current is around 28.6fA and if Esyn=800m, this value is about -464.139fA. 

This offset will be compensated by silicon neuron circuit’s parameters. Positive value of 

synaptic current in the figures implies that the current flows into the synaptic module or 

the current is sourced out of the neuron, that is to say it acts as a depolarizing stimulus 

to the neuron (see chapter 7 for explanation of depolarizing and hyperpolarizing inputs 

for the neuron circuit used in this work.) Fig. 4.12 shows the waveform of the synaptic 

currents emulating the response of various neurotransmitters, by configuring the 

parameters Vt of the circuit, time constant of the current profile can be configured from 

250ms to about 2ms. Fig. 4.13 shows the plot of synaptic currents over the dynamic 

range of synaptic weights described in Table 4.1. 
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Fig. 4.13: Synaptic current output over the dynamic range of the synaptic weights. Notice that the 

increase in the value of current is uniform till 2 pA and above which change in current value is 

higher due to the bit nWx4 being active. 

   
Fig. 4.14: Isyn represents the current flowing into synaptic module and Vout represents the voltage 

output of the buffer placed next to Current to Voltage converter (Fig.4.8). 
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Table4.2: Parameter configuration for the response shown in Fig. 4.15. 

Circuit # Weight Spike Timing(ms) sVw, sVt, Esyn 

Synaptic_Circuit_0 0x10 60 80mV,10mV,600mV 

Synaptic_Circuit_1 0x01 100 80mV,10mV, 800mV 

Synaptic_Circuit_2 0x02 140 110mV, 110mV, 600mV 

Synaptic_Circuit_3 0x04 180 110mV, 110mV, 800mV 

Synaptic_Circuit_8 0x03 65 80mV,10mV,600mV 

Synaptic_Circuit_9 0x1F 105 80mV,10mV, 800mV 

Synaptic_Circuit_10 0x00 145 110mV, 110mV, 600mV 

Synaptic_Circuit_11 0x0C 185 110mV, 110mV, 800mV 

 

 

Fig. 4.15: Isyn represents the current flowing into synaptic module and Vout represents the voltage 

output of the buffer placed next to Current to Voltage converter (Fig.4.8). 

 

The static power consumption of our circuit was less than 2pW. To process an 

input spike the dynamic energy consumption was calculated to be about 500fJ. This 

value was arrived at by subtracting the value of static energy dissipated from the total 

energy consumed to process an input spike, with the circuit configured to peak current 

value of 3pA and time constant of 200ms. For the maximum current of 10pA and 
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maximum time constant of 200ms, this value was calculated to be about 1.5pJ. Fig.4.14 

shows the response of the test element group module, for a particular set of 

configuration of the synaptic weights and the parameters of the circuit. In this 

configuration all the 16 synaptic circuits were configured to have maximum weight and 

the spikes from the address decoder were sent only to two synaptic circuits, Synaptic 

circuit_1 and Synaptic circuit_5 (Fig. 4.9) at 100ms and 120ms respectively, in both 

cases Esyn was set at 800mV. Note that the value of leakage current has now increased to 

about 3.5pA (this is due to the combined effect of 16 circuits). Fig.4.14 shows the 

response of the test element group module, for a particular set of configuration of the 

synaptic weights and the parameters of the circuit, and Fig. 4.15 shows the response for 

the configuration described in the Table 4.2. Circuits not listed in the table were not 

activated for plotting this response “i.e.” no input pulse was directed at their input stage. 

The resistance of the current to voltage converter can be controlled using the parameter 

Vcivb (Fig. 4.7 and Fig. 4.8). The voltage scale of the plot in Fig. 4.14 and Fig. 4.15 can 

be improved by increasing the resistance of the I-V convertor but this has a deleterious 

effect on the profile of the synaptic current due to the low impedance of the final stage 

of the synaptic circuit. This issue doesn’t arrive when the synaptic circuit is connected 

to the neuron circuit, which would be the case in general.  
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5 

Review of Silicon Neuron Circuits 

Detailed conductance-based neuron models can reproduce electrophysiological 

measurements to a high degree of accuracy, but because of their intrinsic complexity 

these models are computationally expensive to implement. Due to this, simple 

phenomenological spiking neuron models are highly popular for studies of neural 

coding, memory, and network dynamics. In this chapter we have a brief look at the 

VLSI implementation of a few of these models. 

 

5.1 A VLSI Implementation of Adaptive Exponential Integrate & Fire 

Neuronal Model. 

Adaptive Exponential Integrate & Fire Neuronal Model (AdEx) comes under 

the cadre of non-linear integrate and fire neuron models, quadratic integrate and fire 

neuron model being another important model in this category. The circuit [17] discussed 

here was implemented in the FACETS and BrainscaleS project. In generalized 

integrate-and-fire models, spikes are generated whenever the membrane 

potential crosses some threshold from below. The moment of threshold crossing defines 

the firing time. The shape of the action potential is rather stereotyped with very little 

change from one spike to the next and the down swing of the action potential is replaced 

by an algorithmic reset of the membrane potential to a new value each time the 

membrane potential crosses the threshold. Information if any represented by the exact 

shape of the action potential is lost in these models.  

 AdEx model can be described by the following two differential equations for 

the membrane voltage V and the adaptation variable w: 

 
-𝐶𝑚

𝑑𝑉

𝑑𝑡
= 𝑔𝑙(𝑣 − 𝐸𝑙) − 𝑔𝑙∆𝑡𝑒

𝑣−𝑣𝑡
∆𝑡 + 𝑔𝑒(𝑡)(𝑣 − 𝐸𝑒) + 𝑔𝑖(𝑡)(𝑣 − 𝐸𝑖) + 𝑤 − 𝐼𝑖𝑛 

 

(5.1) 

 
-𝑇𝑤

𝑑𝑤

𝑑𝑡
= 𝑤 − 𝑎(𝑣 − 𝐸𝑙)    

 

(5.2) 

 

And the reset condition, “i.e.” if the membrane voltage crosses a certain threshold 

voltage, is given by: vvreset and ww+b. Cm gl ge and gi represent the membrane 

capacitance, the leakage conductance and the conductances for excitatory and inhibitory 

synaptic inputs, 𝑔𝑒  and 𝑔𝑖 also depend on time and the inputs from other neurons. El, 

Ei and Ee are the leakage reversal potential and the synaptic reversal potentials. The  
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Fig. 5.1: Block diagram of AdEx neuron circuit [17]. 

 

parameters 𝑣𝑡 and ∆𝑡 are the effective threshold potential and the sharpness parameter. 

𝑇𝑤 is the time constant of the adaptation variable and a is called adaptation parameter. 

The parameter b is jump of the spike triggered adaptation. Adaptation is characterized 

by two parameters: a couples adaptation to the voltage and is the source of subthreshold 

adaptation. Spike-triggered adaptation is controlled by a combination of a and b. The 

choice of a and b largely determines the firing patterns of the neuron.  

The Fig. 5.1 below shows the block diagram representation of AdEx neuron 

circuit. SynIn are synaptic input circuits. The Leak sub-block implements the leakage 

term of equation 3.1 using an operational transconductance amplifier (OTA). The 

adaptation block can again be implemented by an OTA in the follower integration 

configuration. To implement the exponential term of equation 3.1, a MOSFET 

connected as a diode is used. A simplified version of the circuit is shown in Fig. 5.2. 

The gate source voltage of M1 is: 

 
                 VGS =

R1

R2
(v − vt)                                        

 

(5.3) 

 

Operating the NMOS device in the subthreshold region results in a current 

exponentially dependent on v following Eq. 3.1 where ∆𝑡 can be adjusted via the 

resistors R1 and R2. AdEx neuron circuit discussed above is capable of directly 

reproducing various firing pattern of the theoretical AdEx model by adjusting the 

parameters in the model to suitable values. It is neither optimized to be low power nor 
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Fig. 5.2 : Simplified schematic of the exponential circuit [17]. 

 

small in size. An interesting feature of this model is that it is designed to work on an 

accelerated timescale (10
5 

times faster than biological real time) thus allowing 

experiments that are not feasible due to long duration of numerical simulation in the 

biological time scale.  

 

5.2 A Bio-physically Inspired Silicon Neuron 

This neuron circuit [18] emulates the behavior of voltage gated sodium and 

potassium channel found in biological neurons to generate an action potential. The 

response of sodium channel is emulated using a tunable band-pass circuit. The 

tunability provides the flexibility to place poles as desired to match the speed of 

biological sodium channel.       

           

Fig. 5.3: Simplified block diagram of the neuron circuit. With proper parameter configuration 

physical similarities between biology and device physics preserves the non-linearity observed in 

biological channels. 
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Response of potassium channel is emulated using a low pass filter circuit. Fig. 5.3 

shows a representative block diagram of this circuit, exact circuit details and results can 

be found in [18]. 

The resting potential of this circuit is determined by the interplay of these two 

modules and is tuned using circuit parameters, the circuit must be carefully tuned as the 

range of values the resting potential can take to successfully generate an action potential 

is pretty limited. A successive implementation of this circuit [13] implements similar 

neuron circuit using floating gate transistors, so that the parameters of the circuit can be 

controlled using non-volatile memory instead of configuring it externally. The only 

disadvantage was implementing the circuit using floating gate technology made tuning 

the circuit a bit difficult, and due to variation is the value of gain from the original 

circuit the spike response deviated from the ideal spike behavior. 

 

5.3 Differential Pair Integrator Neuron Circuit 

The silicon neuron circuit implements a model of the adaptive exponential 

Integrate-and-Fire (I&F) neuron. This is the neuron circuit used in the ROLLS 

neuromorphic processor [19]. Fig. 5.4 shows its schematic diagram. Each block is 

labeled according to their functionality. NMDA voltage gating mechanism is 

implemented by NMDA block. Na+ block mimics the activation and inactivation 

dynamics of the Na+ channel, responsible for spike generation; K+ block models 

relatively slow potassium conductance responsible for resetting the neuron and 

 

 
Fig. 5.4: Schematic representation of DPI neuron implementing Adaptive Exponential Integrate and 

Fire neuron Model with various blocks labeled [19]. 
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implementing the refractory period. AHP block models the effect of slow currents like 

calcium current to implement spike frequency adaptation; Leak block implements the 

leakage conductance of the neuron circuit. This circuit is capable of replicating wide 

variety of neuro-computational responses including spike adaptation and bursting 

phenomenon. 

 

5.4 Discussion 

Over the years many neuron circuits have been proposed. The three Silicon neuron 

circuits we looked at in this chapter have been used in implementation of large scale 

neuronal networks in major projects and laboratories across the globe (5.1 FACETS 

Project, 5.2 Georgia Institute of Technology, 5.3 Institute of Neuroinformatics). Other 

analog silicon neuron circuits include implementation of Izhikevich model. The circuit 

[20] implementation utilizes two first order log domain filters as the building blocks. 

Another neuron model [21] suitable for low power implementation uses tangent 

hyperbolic function generator to implement the N-shaped nullcline typical of faster 

variable in conductance based model, a current mode log domain filter to implement the 

sigmoid nullcline characteristic of the slower variable. All the circuits discussed above 

have similarity to the spiking behavior of biological neurons but are not biologically 

realistic like the conductance based models. That is to say all these circuits implement 

phenomenological model and attain their neuro-computational properties by resetting of 

variables. All the spikes are modeled as similar events with no variation. In the next 

chapter we look at a qualitatively modeled three variable silicon neuron circuit which is 

has biologically realistic dynamics, and doesn’t use any resetting of variable to obtain a 

variety of spiking behavior. 
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6 

Silicon Neuron Circuit 

This chapter provides a detailed introduction of the silicon neuron circuit [6] 

used in this work. As discussed briefly in chapter 3, this circuit is based upon a 

qualitative model implemented using a set of non linear differential equations. The 

circuit was designed in tsmc250nm CMOS process. The elemental devices in a CMOS 

process are NMOS and PMOS transistors. Owing to its physical construction, the 

PMOS devices have much smaller value of leakage current than the NMOS 

counterparts and in a Silicon Neuronal Network, all the neurons are not active all the 

time hence it is of considerable importance to reduce the static power consumption of 

the neuronal circuits. Hence the majority of blocks in this circuit have been designed 

using a PMOS transistor. Vdd value of 1 Volts is used by all the modules forming the 

neuron circuit, the resting membrane potential of which is around 700mV and the 

spiking activity happens in the opposite direction with respect to biological neurons. 

This fundamental difference between the spiking activity of this silicon neuron and the 

biological neuron is demonstrated more clearly in the Fig. 6.1 below. 

 This neuron model is biologically realistic in terms of its dynamics, similar to 

the conductance based neuron models. It doesn’t require any resetting of variables, or 

 

  

Fig. 6.1: Action potential in the Biological Neurons (left) [22] vs. this Silicon Neuron (right) 
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fixed threshold value as is done in AdEx, Izhikevich and other phenomenological 

models. Information if any encoded in the shape of the action potential will be 

preserved in this model. 

 

6.1 Circuit Description 

The neuron model based on which this circuit is designed is described by the 

following set of non-linear differential equations: 

 
𝐶𝑣

𝑑𝑣

𝑑𝑡
= 𝑓𝑣(𝑣) − 𝑔𝑣(𝑣) + 𝐼𝑎𝑣 − 𝑟𝑛(𝑛) − 𝑟𝑞(𝑞) + 𝐼𝑠𝑡𝑖𝑚 

 

(6.1) 

 
𝐶𝑛

𝑑𝑛

𝑑𝑡
= 𝑓𝑛(𝑣) − 𝑔𝑛(𝑣) + 𝐼𝑎𝑛 − 𝑟𝑛(𝑛) 

 

(6.2) 

 
𝐶𝑞

𝑑𝑞

𝑑𝑡
= 𝑓𝑞(𝑣) + 𝐼𝑎𝑞 − 𝑟𝑞(𝑞) 

 

(6.3) 

 

The variables v, n, and q represent the membrane potential, the fast dynamics 

and the slow dynamics respectively. Cv, Cn and Cq are the capacitance values of the 

capacitors used to realize the appropriate timescale of the variables they represent. Iav, 

Ian, and Iaq are constant current sources implemented using wide scale operational  

 

 

Fig. 6.2: Block diagram representation of the Silicon Neuron circuit [6] 
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transconductance amplifier, and Istim is an externally applied stimulus current. Function 

fx(v)represents sigmoidal current-voltage characteristics of the transconductance 

amplifier circuits, functions gx(v), rx(q)and rx(n) (x = v, n)also represent a sigmoidal 

relationship but are obtained using a PMOS transistors in cascode configuration and this 

sigmoid has a shallower slope when compared to fx(v) sigmoid generator. A block 

diagram of the neuron circuit is shown in the Fig.6.2. The three sub-blocks represent the 

three equation of the model. There is also a voltage clamp circuit and a few switches to 

plot the nullclines and observe the bifurcation dynamics of the circuit. We now look at 

all these circuits in detail now. 

 

fx(v) 

This block is implemented using a transconductance circuit shown in Fig. 6.3.It 

comprises of a tail transistor (M1) followed by a two branches in a differential input 

configuration. If Vin is equal to Vdlt, the current flowing through the tail transistor will be 

divided equally between both the branches, but if Vin is farther from Vdlt with respect to 

Vdd, then the branch consisting of transistor M3 and M5 will carry a larger current than 

the branch consisting of transistor M2 and M4.The current flowing through the branch 

M3 and M5 is then mirrored (M5 is diode connected) and the same amount of current 

Iout is drawn from the output node (connected to Cv). At the output node two additional 

parallel branches with control switches (Enx1 and Enx2) are provided with transistors 

twice the dimension of the first branch to boost the value of output current if  

 

 

Fig. 6.3: Circuit diagram of the transconductance module fx(v); a sigmoid current generator. 

desired. The ideal model of this block is described by the following equation: 
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              𝑓𝑥(𝑣) =
𝑀𝑥

1+𝑒
−

𝑘
𝑈𝑇

(𝑉𝑖𝑛−𝑉𝑑𝑙𝑡)
 ,  

(6.4) 

where k, UT , and I0 are the capacitive-coupling ratio, the thermal voltage, and the 

current scaling parameter of the PMOS transistors respectively. This block is operated 

as a current sink. Mx depends on the value of current flowing through the tail transistor 

M1, controlled by voltage Vb and is given by: 

 
𝑀𝑥 = 𝐼0𝑒

−
𝑘

𝑈𝑇
(𝑉𝑏−𝑉𝑑𝑑)

 
 

(6.5) 

 

gx(v) 

This block also generates a sigmoidal current curve but a shallower one than 

that of the function 𝑓𝑥(𝑣). Fig. 6.4 (a) shows its schematic diagram comprising of 

PMOS transistors in cascode configuration along with source degeneration provided by 

transistor M1.Vinis applied at the gate of transistor M2 and Vm at the gate of M3. 

Consider Vin raising from zero to one volts, near zero volts M2 acts as a short circuit and 

current flowing through the circuit is controlled solely by Vm but as the voltage Vin 

increases, its resistance increases (in the linear region). This doesn’t affect the current 

value till the point where resistance of M2 becomes greater than that of M3 and the 

current begins to fall, thus acting as a sigmoidal current generator. Source degeneration 

provided by M1 provides additional headroom before the current is completely shut off 

thus flattening out the V-I characteristics of the transistor. This module is ideally 

 

 

Fig. 6.4: Circuit diagrams of cascaded transistors transconductance module for (a) gv(v) and gn(v) 

described by the following equation: 
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         𝑔𝑥(𝑣) = 𝐼0√
𝑅𝑥20𝑒

𝑘
𝑈𝑇

𝑣𝑚

1+𝑅𝑥21𝑒
−

𝑘
𝑈𝑇

(𝑣−𝑣𝑚)
. 

 

(6.6) 

 

The variables Rx20 and Rx21 are used to change the v offset of gx(v). When 

bSW0 is high (2.5V) M6 is turned OFF and M7 is ON, this implies M4 acts as a diode 

connected MOS in parallel with M1 increasing the current range, similarly if bSW1 is 

high M5 is added in parallel to M2 thus reducing its resistance and shifting the sigmoid 

curve a bit to the right. The value of Rx20 and Rx21 is equal to 4 in the above mentioned 

configuration. While implementing this function in the v block, the shaded portion of 

the diagram (Fig. 6.4(b)) is not implemented and the value of Rx20 and Rx21 is equal to 2. 

As stated earlier, the square root appearing in the function𝑔𝑥(𝑣) impliesthat the 

sigmoid curve for this function is shallower than that of 𝑓𝑥(𝑣). 

 

ry(y) 

The function of this block can be considered to be analogous to that of the 

leakage current in the conductance models. In the differential equation describing the 

dynamics of the membrane potential the terms rn(n) and rq(q) represent something 

analogous to the feedback from n and q blocks respectively, “i.e.” the effect of the 

dynamics of the variable n and q on v. Fig. 6.5 shows the schematic diagram of this 

block. It is functionally equivalent to the gx(v) block generating a sigmoid current. It is 

evident from the circuit configuration that the last two branches carry equal current 

(assuming the relevant transistors are well matched), one of those branch sources the 

current into Cv and the other into Cy (y=n,q), thus replicating analogously the leakage 

dynamics of the variable y to influence the membrane potential (v). It’s described by the 

following equation: 

 

          𝑟𝑦(𝑦) = 𝐼0√ 𝑒

𝑘
𝑈𝑇

𝑣𝑚

1+𝑒
−

𝑘
𝑈𝑇

(𝑦−𝑣𝑚)
, 

 

(6.7) 

 

where all the terms carry their usual meaning. 
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Fig. 6.5: Circuit diagrams of cascoded transistors transconductance module for (a) ry(y) with 

(y=n ,q). 

 

6.2 Nullcline Mode: Voltage Clamp Implementation 

The voltage clamp technique pioneered by Hodgkin and Huxley described in 

their seminal work [23] with the squid giant axon, provides insight into the impact of 

the membrane potential on the ionic conductance and currents in the cell. This method 

basically involves driving the membrane potential v of the neuronal cell to a desired 

value Vcv by inserting a metallic conductor into the cell, and forcing a current 

proportional to the difference between v and Vcv using a voltage clamp circuit. This 

injected current equals the total current generated by ionic conductance channels in the 

cell membrane as the voltage is fixed to a constant value by the clamp circuit. The 

transient and steady state responses of this current helps to develop a mathematical 

model that conceptualizes and represents the dynamics of the physical ionic channels 

into variables of the model. Observing the steady state response, the activation functions 

or nullclines of variables (representing the biophysical ionic channels) can be plotted.  

 In the silicon neuron circuit, similar voltage clamp functionality is provided 

(see Fig.6.2) and is used to plot the nullclines. While in this configuration switch SW1 

is connected to the output terminal of the clamp circuit and switch SW2 is connected to 

Vcq fixed at one volt, thus disabling the rv(q) circuit within the v-block. Applying a 

voltage at the Vcv terminal of the clamp circuit drives its other input terminal v to 

become equal to Vcv. And in this process the current drawn by the circuits fx(v), gx(v) 

and Iax is analogous to the current generated due to ionic conductance in the biological 

neuronal cells. Plotting the steady state relationship between the forced voltage and the 
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steady state current value sourced (sinked) from (into) capacitor Cv (represented by the 

voltage VcVn_out) provides the v nullcline, given by the equation: 

 

 𝑓𝑣(𝑣) − 𝑔𝑣(𝑣) + 𝐼𝑎𝑣 − 𝑟𝑛(𝑛) − 𝑟𝑞(𝑞) + 𝐼𝑠𝑡𝑖𝑚 =0 (6.8) 

 

Similarly plotting the steady state relationship between the forced voltage Vcv 

and the steady state current value sourced (sinked) from (into) capacitor Cn and Cq 

represented by the voltages n and q provides the n-nullcline and the q-nullcline 

respectively, given by the equations below: 

 

 𝑓𝑛(𝑣) − 𝑔𝑛(𝑣) + 𝐼𝑎𝑛 − 𝑟𝑛(𝑛) =0 (6.9) 

 𝑓𝑞(𝑣) + 𝐼𝑎𝑞 − 𝑟𝑞(𝑞) = 0 (6.10) 

 

All the three nullclines for the neuron circuit configured in Regular Spiking 

mode are plotted in Fig. 6.6. The provision for plotting these nullclines is invaluable and 

greatly simplifies the task of tuning the parameters of neuron circuit to reproduce 

desired dynamics, as seen in the next chapter. 

 

 
Fig. 6.6: v-nullcline (pink), n-nullcline (blue)and q-nullcline (green) of the neuron circuit configured 

in Regular Spiking mode.vnullcline has the reverse N shape, q and n nullcline have sigmoidal shape. 
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6.3 Bifurcation Mode 

A brief overview of the phenomenon of bifurcation was provided in chapter 3. 

Insight into the various types of bifurcations a neuron undergoes and implementing the 

same bifurcation behavior while developing the mathematical model of the neuron 

inherently makes the model a biologically plausible one. Bifurcation analysis also helps 

classify neurons into various categories based on their class of Oscillation or 

classification into integrators and resonators with either monostable or bistable activity 

[24] providing insights into various neuro-computational properties of the neuron . 

Bifurcations are usually observed by providing a ramp or a series of step stimulus to the 

neuron (type of stimulus is important and can lead to different bifurcation behavior, 

especially in bi-stable systems) and observing the spiking behavior of the neuron. A 

detailed explanation of bifurcation mechanisms can be found in any mathematics 

textbook dealing with analysis of non-linear dynamical systems [24] [25] [26]. 

 

 The silicon neuronal circuit used in this work has been configured with 

mechanism to observe the bifurcation behavior of the circuit. In the bifurcation mode, 

the switch SW1 (Fig. 6.2) is connected to the n node, and SW2 is connected to Vcq 

which is swept in a relevant voltage range to inject desired stimulus current into the 

capacitor Cv through the block rv(q). Observing and measuring the spiking behavior of 

the neuronal circuit, “i.e.” the node v while performing this experiment provides the  

 

Fig. 6.7: Application of Piece wise linear depolarizing input shows Saddle Node on an invariant 

circle bifurcation with the system moving from resting state to spiking state (Limit cycle). 
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details of the bifurcation dynamics taking place in the circuit. Fig. 6.7 shows an 

experimentally plotted figure describing the Saddle Node on an Invariant Circle 

bifurcation. The red and the blue arrow pointing in opposite direction imply that the 

sweep was bidirectional. Simulating the circuit in bifurcation mode using Spectre will 

also plot the spiking frequency, experimentally it is observed in scope. 

 

6.4 Experimental Setup 

The Fig. 6.8 below shows the block diagram of the experimental setup used to 

make measurements from the neuron circuit and Fig.6.9 shows the Neuron Chip fitted 

in the PCB. The setup consists of the Neuron chip on a PCB, National Instruments 

PXI-1044 

 

Fig. 6.8: Block diagram of the experimental setup used in this experiment 

        

Fig. 6.9: The neuron chip numbered 1, fixed on to the PCB with incoming signals through HDMI 

cables at the periphery and BNC cables throughout the PCB.  
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equipped with data acquisition modules, a Computer, an Oscilloscope, power supplies 

and a temperature maintenance unit to make sure the neuron circuit is operated at 

around 27 Degrees Celsius (as it is highly susceptible to temperature changes as small 

as 1 degree Celsius).A software interface using the TCP/IP protocol is used between the 

client PC and the server PC with various data acquisition modules. The HDMI cables 

from the PXI system to the PCB provide digital and analog inputs signals to the neuron 

chip, the values of these signals are set through a GUI running in the Client PC. 

 

This chapter provided a detailed overview of the neuronal circuit used in this 

work, and in the next chapter we look the experimental results displaying myriads of 

neuronal behavior with the circuit tuned to appropriate parameter values. 
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7  

Parameter Tuning 

7.1 Parameters of the Silicon Neuron 

 

The preceding chapter explained the architecture as well as the specific circuit 

level details of the Silicon Neuron Circuit used in this work. This circuit is capable of 

replicating a wide variety of neuronal responses provided its parameters are configured 

appropriately. Parameter configuration implies setting up appropriate values of input 

voltages to be applied to the circuit elements so as to obtain the desired response. 

Variegated responses observed in biological neurons come about as a result of 

interaction between various ionic currents involved. While developing a biologically 

plausible model, these currents are modeled using biophysically meaningful 

conductance variables with well-defined activation function. Voltage clamp 

experiments can be used to determine these activation functions, at least in the cases 

where the currents involved have very different time scales. That is to say, in essence 

the response of the model can be controlled by configuring the activation functions of 

various conductance variables with respect to each other. Parameters are the specific 

variables in these activation functions that inherently determine the shape and the nature 

of these functions.  

The silicon neuron circuit is based upon a qualitative model with three 

variables (described in previous chapters), and the activation functions discussed above 

are nothing but the nullclines of these variables. Thus in essence the task of parameter 

tuning- that is to assign appropriate voltages to the circuit elements controlling the 

activation function of the variables v, n and q to reproduce desired response - reduces to 

generating appropriate nullclines for these variables, replicating the activation function 

of the analogous conductance variables in the biological models. The provision to plot 

these nullclines along with the well-established link between the neuro-computational 

properties and the graphical representation of the nullclines significantly simplifies the 

mammoth task of tuning a very high dimensional parameter vector, as is the case in this 

neuron circuit. In the upcoming sections the experimental results are presented and 

described in detail for each of the following type of responses: Fast Spiking Class1, Fast 

Spiking Class2, Regular Spiking, Low Threshold Spiking, Elliptic Bursting and Square 

Wave Bursting. The parameters along with their description are provided at the endnote 

of this chapter, along with the specific parameter values for each spiking configuration. 
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Fig.7.1: A PMOS based wide range operational transconductance amplifier provides the 

stimulus current. Istim0_gVdlt=500mV. The OTA sinks (sources) in (out) current from the 

capacitor Cv, if Istim0_gVin is less (greater) than 500mV. Stimulus current is depolarizing 

when current is sinked into OTA and hyperpolarizing when the current is sourced out. The 

value of Istim is proportional to (Vdd-Istim0_dVb). 

 

7.2 Stimulus Description 

A neuron generally fires an action potential when simulated with a depolarizing 

stimulus current, the source of which primarily are the pre synaptic neurons as well as 

stimulus current applied externally for experiments. In this section the reader is 

reminded of the nature of depolarizing stimulus for the neuron circuit used in this work 

-“i.e.” the current flowing out of the membrane capacitance acts as a depolarizing input 

-and a brief description of the circuit providing this stimulus is presented. 

 Fig. 7.1 describes and shows the framework of the stimulus circuit-a PMOS 

based wide range operational transconductance amplifier whose output connected to the 

membrane capacitor Cv. Table 7.1 clarifies the nature of depolarizing and 

hyperpolarizing stimulus with specific examples. 

Table 7.1.  Stimulus description 

Stimulus Type Istim0_gVdlt Istim0_gVin Istim0_dVb 

Depolarizing 500mV 480mV 700mV 

Hyperpolarizing 500mV 520mV 700mV 

More depolarizing 500mV 480mV 650mV 

 

Stimulus in Bifurcation Mode 

As described in the previous chapter, the neuron circuit is equipped with the 

functionality to experimentally plot the bifurcation diagrams. To plot these diagrams the 
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current is sourced in and out of the Cv node in a piecewise linear fashion by either the 

stimulus generator described above or through the block rv(q). The red and blue arrow 

in the plots (plotted in each section) signifies the direction of the sweep. Table 7.2 lists 

down the stimulus used for each class. 

Table 7.2 Bifurcation Mode Stimulus Source  

Spiking Mode Stimulus source/ parameter   Sweep Range(approx.) 

Fast Spiking (Class1 and 2) Stimulus generator/Istim0_gVin 0.52V     0.3V 

Regular Spiking, Low 

Threshold Spiking, Square 

Wave Bursting, Elliptic 

Bursting 

rv(q)/Vcq(rqq_gVin1ex) 1V     0.7V 

 

7.3 Fast Spiking: Class 1 

A depolarizing pulse stimulus applied to a neuron might lead to it firing an action 

potential if the stimulus is strong enough. On the other hand, a strong enough constant 

(depolarizing) current input leads to the neuron firing a series of action potential. A 

spiking behavior of a neuron is classified as Class 1, if action potentials of arbitrarily 

low frequency can be generated in response to the strength of the applied current and 

the strength of the input is encoded in the frequency of the neuron’s firing. Class 2 

neurons are incapable of this encoding. 

 Fig. 7.2 shows the experimentally plotted v and the n nullclines, (the q block is 

turned off as it pays no role in generating the desired response) with the neuron circuit 

configured in Fast Spiking Class 1 Mode. To realize this, the parameters of the neuron 

circuit were configured so as to obtain the nullclines shape and position (and hence the 

bifurcation behavior) typical to the Class 1 behavior. In terms of activation functions 

and time scale of the currents, the hyperpolarizing potassium current (with reference to 

INap+K Model) analogous to the variable n in this model is configured as a slow as well 

as a high threshold current. In the resting state of the neuron, the v and the n nullclines 

have three intersections A (node), B (saddle) and C (Fig. 7.2). On application of a 

constant amplitude depolarizing input, the v- nullcline shifts down leading to the 

disappearance of the resting state (saddle point “B” and node “A” coalesce and vanish) 

leaving a single equilibrium C, which sustains the limit cycle. Fig. 7.3 shows the above 

description graphically in the experimentally plotted bifurcation diagram. Plotted in the 

bifurcation diagram mode of the circuit, the x-axis corresponds to Istim0_gVin of the 

stimulus generator which is swept from 520mV to 420mV and back. The resting state is  
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Fig. 7.2: v-nullcline (pink) and n-nullcline (blue) of the neuron circuit configured in Fast Spiking 

Class1 mode. A is the resting node of the B is the saddle point and C is the third intersection which 

sustains a limit cycle once the resting state “A” disappears via Saddle node on a invariant circle limit 

cycle. 

 

Fig. 7.3: Bifurcation Diagram of the neuron circuit in Fast Spiking Class 1 mode exhibiting Saddle 

Node on an invariant circle bifurcation. Double sided sweep doesn’t show any hysteresis behavior 

indicating monostablity. 
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around 670mV, with the depolarizing input applied, saddle node on an invariant circle 

bifurcation takes place around 495mV, where the resting state disappears and the limit 

cycle is generated. The sweep was done in both the direction and the voltage variable 

retraces it path without any hysteresis behavior –implying only a single stable state 

exists at a particular time. During the spiking state we see that the highest point of the 

limit cycle goes above the resting state (A), this occurs because the time constant of the 

variable n is relatively high. This behavior is analogous to the slow inactivation of 

hyperpolarizing potassium current in INa,p+K Model. Fig. 7.4 shows the experimental 

spiking behavior of the neuron circuit in Fast Spiking 

 

 

Fig. 7.4: Spiking Response of Neuron circuit in Fast Spiking Class 1 mode for different value of the 

constant depolarizing stimulus input Istim0_gVin, labeled as Vin in the figure. Iav_dVb=0.75V. 
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Class 1 mode for various values of constant amplitude depolarizing inputs. The results 

show that the strength of the stimulus is encoded as the frequency of spiking. From the 

perspective of the phase plane analysis, further the v nullcline is from the n nullcline, 

higher is the frequency of spiking. 

 

Important Considerations for Parameter Tuning 

 Fast Spiking Class 1 behavior corresponds to the resting state disappearing via 

Saddle node on invariant circle bifurcation. 

 The n nullcline must have a high threshold of activation, so that the v and n 

nullclines have three intersections and the parameters must be adjusted so that n 

variable has a high enough time constant to enable after-hyperpolarizations. 

 These are mono-stable integrators, hence there can only be a single stable state 

for any particular vector. 

 

7.2 Fast Spiking Class 2. 

A neuron’s spiking response is classified as class 2; if action potentials are 

generated in a certain frequency range relatively insensitive to the strength of the 

applied current. Fig. 7.5 shows the v and n nullclines of the neuron circuit configured in 

Fast Spiking Class 2 mode, the q block is again kept turned off as it plays no role in 

generating the desired response. In contrast to class 1 configuration, the nullclines now 

intersect only at a single point that is to say n variable has been configured to have a 

lower activation threshold. On application of a constant depolarizing input, the v- 

nullcline shifts down leading to the disappearance of the resting node (A) to an unstable 

focus and jumping to already existent large amplitude limit cycle, through a subcritical 

Andronov-Hopf bifurcation. The resting state of the excitable neuron in this 

configuration is a stable focus and hence it exhibits subthreshold oscillations. Fig. 7.6 

shows the bifurcation diagram of the neuron circuit configured in fast Spiking Class 2 

mode. The x-axis corresponds to Istim0_gVin of the stimulus generator which is swept 

from 520mV to 470mV and back. The resting state (close to excitation) is around 

670mV, at around Istim0_gVin =490mV subcritical Andronov-Hopf bifurcation takes 

place where the resting state, the stable focus “A” disappears and the new state of the 

system moves to an already existing limit cycle (which had appeared earlier due to fold 

limit cycle  
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Fig. 7.5: v-nullcline (pink) and n-nullcline (blue) of the neuron circuit configured in Fast Spiking 

Class2 mode. “A” is a stable focus if the neuron is excitable. 

 

 

Fig. 7.6: Fast Spiking Class 2 Bifurcation Plot. Double sided sweep shows hysteresis behavior 

indicating bistability of resting and spiking states. 
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Fig. 7.7: Spiking Response of Neuron circuit configured in Fast Spiking Class 2 mode for different 

value of the constant depolarizing stimulus input Istim0_gVin, labelled as Vin in the figure. Spiking 

frequency isn’t dependent on the strength of the stimulus. Iav_dVb=0.7V. 

 

bifurcation, explained further in the elliptic bursting section of this chapter). 

Bidirectional sweep shows hysteresis behavior, implying bi-stability in the shaded 

region, where both the spiking state and the resting state exist at the same time for the 

same parameter vector and the direction of approach determines the exact state of the 

system in that region. Fig. 7.7 shows the spiking behavior of the neuron to constant 

depolarizing input; notice how the spiking frequency is insensitive to changes in the 

value of the depolarizing stimulus, the amplitude of the limit cycle does increase a bit 

with higher depolarization also evident in the bifurcation plot. 
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Important Considerations for Parameter Tuning 

 Class 2 oscillations correspond to the resting state disappearing via subcritical 

Andronov-Hopf bifurcation (in the above configuration) or supercritical 

Andronov-Hopf bifurcation or the Saddle node bifurcation. 

 The n nullcline must have a low threshold of activation, so that the v and n 

nullclines have a single intersection and the parameters must be adjusted so that 

n variable has a high enough time constant to enable after-hyperpolarizations. 

 

7.3 Regular Spiking 

The presence of slow currents can modulate the spiking frequency of series 

action potentials, generating a train of spikes with progressively increasing interspike 

intervals. This phenomenon is referred to as spike frequency adaptation and is a 

prominent feature of Regular Spiking neurons. This behavior of increasing inter-spike 

interval can be reasoned away by adding a slowly activating resonant hyperpolarizing 

current (slowly activating potassium current or slowly inactivating sodium current) to a 

Class 1 excitable system. To replicate this response in the silicon neuron circuit, we 

activate the q-block configured with the properties of a resonant hyperpolarizing current 

acting on v. 

 Fig. 7.8 displays the v (pink), n (blue), and the q (green) nullclines of the 

neuronal circuit configured in this mode. On applying constant amplitude depolarizing 

input the v nullcline moves down giving rise to a limit cycle through a saddle node on 

an invariant circle bifurcation- similar to Fast Spiking Class 1 configuration. During the 

resting state which is around v= 660mV, the value of the q variable is very high close to 

1 Volts (as evident from the nullclines) but when the system starts to spike due to 

depolarizing stimulus, the value of the q variable decreases ever so slowly (due to a very 

large value of time constant configured for it), this reduction in the value of q leads to 

current being sourced into the membrane capacitor Cv through the rv(q) block thus 

acting as a slow resonating hyperpolarizing current, which has the effect of bringing the 

v nullcline closer to the n nullcline and thus leading to a reduction in spike frequency 

over time (remember farther the v nullcline is from the n nullcline, higher is the 

frequency of spiking).The steady state frequency of spiking comes about as the 

interplay of interacting currents (the depolarizing input current, the fast spiking 

sub-system and the slow hyperpolarizing current) reaches equilibrium Fig. 7.9 shows 

the bifurcation diagram of the circuit in regular spiking mode. The x- axis in this figure 

is Vcq- voltage applied at input terminal of the block rv(q)- is swept bi-directionally 

from1 Volts to 700mV and the bifurcation observed is Saddle-Node on a invariant circle 



58 

 

 

Fig. 7.8: v-nullcline (pink), n-nullcline (blue) and q-nullcline(green) of the neuron circuit configured 

in Regular Spiking mode. Fast subsystem exhibit Class 1oscillations. 

 

 

 

Fig. 7.9: Regular Spiking Bifurcation Plot. Double sided sweep doesn’t show any hysteresis 

behavior evident of a subsystem exhibiting Class 1 oscillations. 
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Fig. 7.10: Spiking action of the neuron circuit configured in regular spiking mode. At the onset of 

the depolarizing stimulus, resting state at around 660mV loses stability and system moves into 

spiking state with q variable modulating the spiking frequency. 

 

bifurcation around Vcq =850mV. Just a reminder that in the bifurcation mode with the q 

–block turned on the feedback from q to v is disconnected with the input of rv(q) 

connected to Vcq. Fig. 7.10 show the spiking behavior of the circuit in RS mode for a 

depolarizing input. 

 

Important Considerations for Parameter Tuning: 

 Regular spiking neurons are the major class of spiking neurons in the neo-cortex 
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[24] and exhibit Class 1 oscillations, hence while tuning the v and the n nullcline 

“i.e.” the fast spiking subsystem, all the consideration for tuning of a Class 1 

system must be taken into account. 

 They exhibit Spike frequency adaptation- increase in the subsequent inter spike 

periods. To achieve this adaptation behavior the q nullcline must be properly 

configured, so that the when in fast subsystem is quiescent the value of q 

variable is high and in the region of the phase plane where the spiking activity of 

the fast sub-system takes place the value of q variable reduces drastically with a 

sharp turn in the q nullcline. The high time constant configured for q variable 

leads to a slow decrease in value of q over time. 

 

7.4 Low Threshold Spiking 

Low threshold spiking neurons behave similar to regular spiking neuron, in the 

sense that they exhibit spiking frequency adaptation to depolarizing input. The 

distinguishing characteristic of this category of neurons is the phenomenon of rebound 

bursting, which refers to the onset of spiking behavior in response to the removal of a 

hyperpolarizing input. Another differentiating feature is onset of a phasic spike in 

response to a weak depolarizing input [24].  

Fig. 7.8 displays the v (pink), n (blue), and the q (green) nullclines of the 

neuronal circuit configured in LTS mode. Response to a constant amplitude 

depolarizing input is very similar to that of the Regular Spiking neuron described above 

and plotted in Fig. 7.13. On applying a constant amplitude hyperpolarizing input, the v 

nullcline moves up, the resting membrane potential increases, this causes the voltage on 

the node Cq, represented by the variable q to increase. In the absence of any input, the 

value of q in the resting state is configured to be around 600mV, as evident from the 

nullclines below. The increase in the value of v causes the value of the variable q to 

increase, and thus decrease the amount of current sourced by rv(q) block into the 

membrane capacitor Cv, the voltage of which is represented by the variable v. Now 

when the hyperpolarizing input is suddenly removed, the voltage at the v node decreases 

suddenly and the v nullcline moves down crossing the n nullcline, because the 

additional current provided the block rv(q) before the application of hyperpolarizing 

input is now absent and thus spiking behavior is observed till the q variable slowly 

discharges to its previous value so as to source the necessary current to bring the neuron 

back to its resting state. Fig. 7.12 show the bifurcation diagram plotted with circuit 

configured in LTS mode. Fig. 7.14 displays the response of a hyperpolarizing input 

pulse described above. Fig. 7.15 shows additional rebound responses for the same  
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Fig. 7.11: v-nullcline (pink), n-nullcline (blue) and q-nullcline (green) of the neuron circuit 

configured in LTS mode. 

 

.  

Fig. 7.12: Bifurcation plot of neuron configured in LTS mode. No hysteresis behavior is observed. 
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Fig. 7.13: Spiking action of the neuron circuit configured in LTS mode for a constant amplitude 

depolarizing input. Slow spike frequency adaptation is observed. Response of variable v, n and q 

plotted. 

 

hyperpolarizing stimulus, configured to generate different number of spikes on the 

removal of the stimulus; this is done by configuring the parameters of the q block 

modifying the q nullcline. Fig. 7.16 show a phasic spike in response to a weak 

depolarizing stimulus 

 

Important Considerations for Parameter Tuning: 

 Rebound bursting in response to the removal of a hyperpolarizing stimulus and 

spike frequency adaptation for depolarizing input is the signature feature of a 



63 

 

low threshold spiking neuron.  

 To implement the additional functionality of rebound bursting along with spike 

frequency adaptation of a regular spiking mode, the q nullcline has to be  

 

Fig. 7.14: Spiking action of the neuron circuit configured in LTS mode after the removal of a 

constant amplitude hyperpolarizing input. 

 

modified such that it increases gradually in the right half of the phase plane (Compare 

the q nullcline in the regular spiking mode and the low threshold spiking mode). The 

sharp turn in q nullcline to the left of the resting state facilitates spike frequency 

adaptation for depolarizing inputs and the gradual increase on the right of the resting 

state facilitates the phenomenon of rebound bursting. 
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Fig. 7.15: Response of the neuron circuit configured in LTS mode to the removal of a constant 

amplitude hyperpolarizing input. The number of spikes can be controlled by manipulating the 

parameter fq_vdlt. 
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Fig. 7.16: Response of the neuron circuit configured in LTS mode to a weak depolarizing input, a 

phasic spike. 
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7.5 Elliptic Bursting 

Bursting refers to a phenomenon where a neuron fires a series of spikes 

(minimum two spikes) followed by a period of quiescence. Interplay of currents in a fast 

spiking sub-system modulated by a slow current gives rise to bursting phenomenon. In a 

three variable model- which is the minimum number of variables required to generate a 

bursting pattern – the bi-stability of spiking and resting states is a prerequisite for 

bursting. We came across this co-existence of resting and spiking states in the case of 

the neuron circuit configured in Fast Spiking Class 2 mode, undergoing subcritical 

Andronov-Hopf bifurcation. 

Addition of a slow hyperpolarizing resonating current to a fast subsystem 

which exhibits a coexistence of resting and spiking states and described by two 

variables can lead to bursting phenomenon as follows. Let’s consider the system 

exhibiting Class 2 oscillations described in an earlier section of this chapter and add a 

slow hyperpolarizing resonating current with a high activation threshold. The activation 

function (or the nullcline) of this new current should be configured in such a way that 

when the neuron is in the resting state, a decreasing & very small amount of 

hyperpolarizing current flows into the neuron and when the neuron is in the spiking 

state, an increasing & relatively large value of hyperpolarizing current flows into it. This 

configuration along with the slow nature of this current gives rise to a bursting pattern,  

 

Fig. 7.23: v-nullcline (pink), n-nullcline (blue)and q-nullcline (green) of the neuron circuit 

configured in Elliptic Bursting mode. Fast subsystem is Class 2 excitable. 
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Fig. 7.24: Elliptic Bursting bifurcation plot. Point A corresponds to fold limit cycle bifurcation and 

point B corresponds to sub-critical Andronov-Hopf bifurcation. 

 

where in its spiking state a large amount of this slowly activating current brings the 

system to rest after a few spikes, and in the resting state a reduction in the amount of 

this current moves the neuron to spiking state again. Thus we observe two qualitative 

changes in the response of the neuron, one from resting to spiking and the other from 

spiking to resting, that is to say we observe two different types of bifurcations, 

bifurcation of limit cycle (spiking to resting state) and bifurcation of equilibrium 

(resting to spiking state). We will now look at the specific bifurcation in detail in the 

case of an elliptic burster. 

 Fig. 7.23 shows the v (pink), n (blue) and q (green) nullclines of the neuron 

circuit configured in the Elliptic bursting mode. The fast subsystem (v, n) is configured 

to generate Class 2 oscillatory behavior and the third variable q is configured  

as the slow hyperpolarizing resonant current described above. To explain the sequence 

of events in the burst pattern let’s begin the analysis from the spiking state of the system, 

repetitive spiking leads to a slow reduction (due to its high time constant) in the value of 

the q variable which in turn sources current into the capacitor Cv through the block rv(q) 

raising the value of v variable -in the phase plane this would have the effect of v 

nullcline moving upwards. Intersection point of the nullclines now turns from an 

unstable focus to a stable one but the limit cycle still exists, as the voltage reduces 
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further and the v nullcline moves further up, the limit cycle disappears via fold limit 

cycle bifurcation and the state of the system moves to the stable focus that had appeared 

earlier. Now this value of the variable v, around the resting state drives the q variable 

slowly back to its steady state value close to 1 volt in effect reducing the current being 

sourced out of the rv(q) block into Cv leading the voltage at the v node to decrease-v 

nullcline slowly moves downwards, at some point in this downward movement a limit 

cycle comes into existence by fold limit cycle bifurcation, but the as the equilibrium at 

the intersection of the nullcline still exists and the neuron circuit stays in that state. As 

the v nullcline moves further down, the equilibrium loses its stability by subcritical 

 

Fig. 7.25: Response of the neuron circuit configured in Elliptic bursting mode. 
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Andronov-Hopf bifurcation and, the state of the system moves into the limit cycle that 

came into existence earlier. This cycle of spiking and quiescence - fold and Hopf 

bifurcation - enabled by the slow modulating effect of the q variable sustains the elliptic 

bursting pattern. Bifurcation diagram is plotted Fig. 7.24 and the spiking pattern of the 

three variables is plotted in Fig. 7.25 

 

Important Considerations for Parameter Tuning 

 The fast subsystem in elliptic bursting mode exhibits class 2 oscillations and 

loses stability through subcritical Andronov-Hopf bifurcation, hence while 

tuning the v and the n nullcline all the consideration for tuning of a Fast Spiking 

Class 2 system must be taken into account. 

 The q nullcline must be configured so as to facilitate cyclic transition between 

spiking and resting states. The value of q variable in the resting state of the fast 

subsystem must by high and increasing whereas in the spiking state it must be 

low and decreasing as evident in the nullclines. 

 

7.6 Square Wave Bursting 

A burster wherein the disappearance of the resting state occurs via saddle node 

bifurcation and the spiking state via saddle homoclinic bifurcation is said to be a square 

wave type. This pattern has been observed in neurons located in the pre-Botzinger 

complex [27] -a region that is associated with generating rhythm for breathing, the 

insulin producing pancreatic β cell [28] and in the Leech Heart Interneuron [29]. 

 Fig. 7.26 depicts the configuration of v, n and q nullclines. In the fast 

subsystem the n nullcline is configured to have a high threshold of activation -just like a 

fast spiking Class 1 system- but its time constant is configured to be small when 

compared with respect to the Class 1 system discussed in an earlier section of this 

chapter. This is analogous to having a fast potassium current with a high threshold of 

activation in INa,p+K model. The configuration of the q nullcline is similar to that in 

elliptic bursting configuration, wherein at the resting state the current being sourced 

from rv(q) in the capacitor Cv is small and decreasing and in the spiking state the current 

is large and increasing- in the former case the v-nullcline moves down and in the latter 

case it moves up. The transition from resting to spiking state takes place via Saddle 

Node bifurcation and the transition from spiking to resting state occurs via Saddle 

Homoclinic bifurcation. In the resting state when the v nullcline is moving down, the 

limit cycle is generated before the saddle and the node coalesce destroying the 

equilibrium, that is there is a bistabilty of spiking and resting state. The same is true 
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Fig. 7.26: v-nullcline (pink), n-nullcline (blue)and q-nullcline (green) of the neuron circuit 

configured in Square Wave Bursting mode. 

 

Fig. 7.27: Square Wave Bursting bifurcation plot. Point A corresponds to saddle homoclinic 

bifurcation and point B corresponds to saddle node bifurcation. 
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Fig. 7.28: Response of the neuron circuit configured in Square WaveBursting mode. 

 

when the state of the system moves from spiking to resting; the stable node is generated 

before the limit cycle disappears through homoclinic bifurcation. Fig. 7.27 depicts the 

bifurcation diagram and Fig. 7.28 depicts the bursting behavior. 

 

Important Considerations for Parameter Tuning 

 The fast subsystem in square wave bursting mode exhibits bistability of spiking 

and resting states. This can be arrived at by drastically reducing the time 

constant of the n variable in the circuit configured in Fast Spiking Class 1 mode 

to the point that bistability of spiking and resting states is observed. 

 The q nullcline must be configured so as to facilitate cyclic transition between 
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spiking and resting states. The value of q variable in the resting state of the fast 

subsystem must by high and increasing whereas in the spiking state it must be 

low and decreasing as evident in the nullclines. 

 The region in the phase plane close to saddle homoclinic bifurcation is prone to 

noise resulting in irregular bursting pattern [30], the slope of the q nullcline must 

be made very steep in this region so that system doesn’t spend much time in the 

proximity of this noise prone region. 

 

The burst pattern arrived at in the experimental results can be improved even further, 

on observing closely one can see variations in the spike amplitude during the burst as 

well as the slightly higher depression value of the membrane potential during the 

quiescent stage. These two aspects of the waveform will be improved in the future. 

 

7.7 Discussion 

The rich spiking response of the neuron circuit presented in this chapter was 

arrived at by manually tuning its parameters. All the responses are biologically 

plausible; there is no reset of variables involved as in most phenomenological models, 

making this neuron circuit ideally suited to be implemented in bio hybrid applications. 

The nullcline mode and the bifurcation diagram mode in the neuron circuit prove 

invaluable in the task of parameter tuning to obtain the desired response. The response 

of the neuron circuit in Square Wave Bursting mode will be improved in the future.  
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EndNotes: 

Parameter of the Silicon Neuron Circuit: 

Parameter 

Name 

Description 

fvv_gVdlt Configures the turning point of the sigmoid curve in fv(v).  

fvv_dVb Controls the current drawn by fv(v). 

fvv_bEn Enables fv(v) module. 

fvv_bEnx1 Enables switches for drawing additional current in fv(v) module. 

fvv_bEnx2 Enables switches for drawing additional current in fv(v) module. 

gvv_dVm Bias voltage of the cascoded sigmoid circuit in gv(v) module. 

Iav_gVin Controls the current drawn by Iav(v). 

Iav_dVb Controls the current drawn by Iav(v). 

fnv_gVdlt Configures the turning point of the sigmoid curve in fn(v). 

fnv_dVb Controls the current drawn by fn(v). 

fnv_bEn Enables fn(v) module. 

fnv_bEnx1 Enables switches for drawing additional current in fn(v) module. 

fnv_bEnx2 Enables switches for drawing additional current in fn(v) module. 

gnv_dVm Bias voltage of the cascoded sigmoid circuit in gn(v) module. 

gnv_bR20 Adjust v offset of gn(v) 

gnv_bR21 Adjust v offset of gn(v) 

Ian_gVin Controls the current drawn by Ian(v). 

Ian_dVb Controls the current drawn by Ian(v). 

rnn_dVm0 Bias voltage of the cascoded sigmoid circuit in rn(x) module (x=v,n). 

fqv_gVdlt Configures the turning point of the sigmoid curve in fq(v).  

fqv_dVb Controls the current drawn by fq(v). 

fqv_bEn Enables fq(v) module. 

Iaq_gVin Controls the current drawn by Iaq(v). 

Iaq_dVb Controls the current drawn by Iaq(v). 

rqq_dVm0 Bias voltage of the cascoded sigmoid circuit in rq(x) module (x=v,n). 

Iax_gVdlt Controls the current drawn by Iax(v). 

Istim0_gVin Controls the current sourced or sinked by stimulus generator. 

Istim0_dVb Controls the current sourced or sinked by stimulus generator. 

Istim1_gVin Controls the current sourced or sinked by stimulus generator. 

Istim1_dVb Controls the current sourced or sinked by stimulus generator. 

Istim_gVdlt Controls the current sourced or sinked by stimulus generator. 

nvcap_LowC Configures the size of the capacitor Cv. 

nncap_LowC Configures the size of the capacitor Cn. 
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nqcap_LowC Configures the size of the capacitor Cq. 

Vforce_bEn Enables gVforce functionality. 

gVforce Nodes v, n, q pulled to this value when Vforce_bEn is active. 

VCVn_bEn Enables Voltage Clamp Circuit/ needed for Nullcline Mode 

rqq_gVin1ex The Vcq voltage in the neuron block diagram. 

VCVn_dVb Bias Voltage for voltage clamp circuit. 

VCVn_gVc Voltage applied at the non-inverting terminal of the voltage clamp circuit. 
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8 

Conclusion & Discussion 

In this chapter a broad overview of the work done is presented along with the 

plans for improvement in the design and the direction of the future work. A comparative 

data analysis unveils the advantages and disadvantages of the proposed synaptic circuit 

and other contemporary synaptic circuits. 

 

8.1 Top Level Chip Description 

The chip consists of 128 synaptic circuits along with their digital modules for 

storing weights and event-based addressing, connected to a single neuron. It also 

contains a Test Element Group described in detail in chapter 4 for off-chip measurement 

of synaptic currents and to characterize the effects of device mismatch in the synaptic 

circuits. Fig. 8.1 shows the block diagram of the chip. The synaptic circuits are arranged 

in two rows. Each row consists of 64 circuits arranged in four blocks with sixteen 

circuits in each. Each module of consisting of sixteen circuits is configured to generate 

four standard synaptic responses emulating the behavior of four neurotransmitters 

AMPA, NMDA, GABAa, and GABAb, “i.e.” four circuits for each type of response. The 

responses are configured using the parameters listed in Table 8.1. 

 

Table8.1: Parameter configuring the synaptic responses and their description. 

Parameters Description 

sVw Configures the strength of the synaptic current. 

sVt Configures the decay time constant of the synaptic current. 

Esyn Configures the excitatory or inhibitory nature of the synaptic current. 

gVcon Models the effect of dendrites as resistive wires. 

 

These parameters can be configured as desired to implement any of the 

intermediate responses too. Variable resistor implemented using a NMOS device serves 

as an interconnection point between synaptic outputs of blocks (consisting of sixteen 

synaptic circuits) in each row. The resistance of these NMOS devices is controlled using 

the parameter gVcon applied at the gate of each device. This configuration model the 

effect of dendrites as resistive wires. The neuron circuit on the right is the one described 

in Chapter 6. The dynamics of this neuron circuits are biologically realistic and hence 

while deciding the range of output current for the design of synaptic circuit we chose  
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Fig. 8.1: Chip Top Block diagram. The variable resistor implemented using NMOS devices models 

the effect of dendrites as resistive wires. 

   

Fig. 8.2: Layout Image of the chip, left region consists of the synaptic circuits and the right block 

shows the neuron circuit. 
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Fig. 8.3: Image of the fabricated Chip, Neuron circuit is located at center right and synaptic circuits 

at center left. 

 

values analogous to biological synaptic current. That is we maintained the ratio of the 

value of the membrane capacitance of the neuron to the value of its synaptic current in 

our design with reference to corresponding values in biological neuronal cells. Details 

of this analogy are discussed in Energy Considerations section of Chapter 3. Fig 8.2 

shows the image of the layout of the circuits designed in Cadence Design Suite and Fig. 

8.3 shows the image of the fabricated chip. 

 

8.2 Comparative Analysis with Contemporary Silicon Neuronal 

Circuits. 

 The central focus of our design was on minimizing the power consumption and 

sincerely emulating the biological responses. Special emphasis was laid on minimizing 

the static power consumption by configuring the leakage currents to their minimum 

possible values. While implementing large-scale Silicon Neuronal Networks, it is 

necessary to take care of static power consumption in the synaptic circuits for two main 

reasons: (a) owing to the huge number they take up maximum area in the chip (as 

evident from Fig. 8.2 & Fig. 8.3, and (b) unlike implementation in Artificial Neural 

Networks where all the synapses are activated all the time, in Silicon Neuronal Network 
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Table 8.2: Comparative analysis with other synaptic circuits 

Metrics Floating 

Gate 

synapse 

(0.35um) 

[13] 

DPI 

Synapse 

(0.18um) 

[8] [31] 

CMI Synapse. 

(0.35um)[14] 

[32]  

Proposed  

Circuit 

(0.25um) 

Energy 

Consumption 

Dynamic= 

10pJ/spike 

Dynamic = 

77fJ/spike 

(processing 

only)*  

Data not 

available  

Dynamic 

=500fJ/spike 

Static <2pW  

Weights Continuou

s weights 

(>10 bits).  

Bi stable+ 

STDP.  

5 bit (Linear). Pseudo- 5 bit. 

(Linear + 

Dynamic) 

Biological 

Closeness  

Good Good Reasonable  Good 

Miscellaneous 10,000 

synapses/

mm^2 

Ideal 

Linear 

Integrator.  

Calibration 

capability  

Low power & 

Tunable 

reversal 

potential. 

*This only provides power consumption of the synaptic input stage. 

 

only a few chosen synapses will be active at a given time. The dynamic power 

consumption of our circuit is also very low owing to the very small scale of the synaptic 

currents compared to all the contemporary synapse circuits. Another special feature of 

our circuit is that all the synaptic modules are capable of generating excitatory and 

inhibitory post-synaptic potentials without any additional circuitry. Table 8.2 presents a 

comparative analysis of synaptic circuits discussed in this work. As evident from the 

comparison, every design has its own advantages and pitfalls. Based on the available 

resources and required application a tradeoff has to be made between reliability, ease of 

configuration, speed, accuracy, density and power consumption. As mentioned earlier 

the design of the proposed synaptic circuit focused on minimizing power consumption 

and mimicking biological closeness. For instance, the transistors in the input stage of 

the proposed circuit will suffer from inherent device mismatch (efforts have been made 

in the layout to minimize it) and due to this mismatch, the value of the synaptic current 
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of the entire range of synaptic weights will not be as smooth as shown in Fig. 4.13, but 

the nature of synaptic currents in biological synapses is also stochastic in nature and one 

would not expect the values of current to increase in exact linear proportion to their 

weight. This linearity will be approximate as in our synaptic circuit. Table 8.3 a 

comparative analysis of the Silicon Neuron circuits discussed in this work 

 

Table 8.3: Comparative analysis with other synaptic circuits 

Metrics AdEX 

Neuron in 

FACETS 

[17] 

INI 

ROLLS 

[19] [31] 

Georgia Tech 

[13] [18] 

Qualitative 

Neuron [6] 

Average 

Power 

Consumption 

100uW*  884pJ @ 

30Hz 

2nW  <5nW  

Spiking 

Repertoire 

a) Tonic 

b) Adapting  

c) Bursting  

 

a) Tonic 

b) Adapting  

c) Bursting  

 

Only Tonic a) Tonic 

b) Adapting  

c) Bursting  

 

Biological 

Closeness  

Good Good Excellent  Excellent 

* at 10
4
 x biological timescale. 

 

All the neuron circuits discussed above generate biophysically realist responses. But the 

neuron circuits in FACETS [17] projects as well as in ROLLS neuromorphic processor 

[19] use a phenomenological model with the reset of a variable to achieve their 

neuro-computational properties. That is to say, information if any in the analog nature of 

the spike is lost in these phenomenological models. For instance, it has been reported 

[33] that the recall rate of the associative memory in an all to all connected network is 

higher when Class 2 neurons in Hodgkin’s classification are implemented.  

 

8.3 Current Status and Future Work 

Silicon Synapse: Circuit Design 

 We have implemented 128 pseudo 5-bit synaptic circuits connected to a single 

neuron in tsmc 250nm technology node. Control voltages sVw and 𝑠Vτ control the 
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scale and the time constant of the synaptic current respectively. Adjusting the 

parameters, our circuit is capable of generating both excitatory (AMPA/NMDA type) 

and inhibitory (GABA type) postsynaptic currents covering a wide range of time 

constants (2ms to 200ms). Also emulating the real synapse, the post-synaptic current is 

proportional to the difference between the postsynaptic membrane potential and a 

tunable synaptic reversal potential. Our synapse circuit consumes very low power; static 

power consumption of a single synapse is less than 2pW and the dynamic power 

consumption is about 500fJ/spike (Details in the Simulation Results section of Chapter 

4).  

As it is evident from the image of the Chip (Fig. 8.2) and the block diagram 

(Fig. 8.3), the synaptic circuits occupy a major portion of the chip’s real estate. Most of 

the contemporary analog synaptic circuits connect multiple input stages on a single 

integrator circuit like the Differential Pair Integrator [8]. This sharing of input stages 

significantly saves the layout real estate and enables one to put a lot more synaptic 

modules in the given area.  In the next version of this chip, we plan to follow a similar 

strategy to reduce the area occupied by a single synaptic circuit by sharing the integrator 

submodule with at least four synaptic input stages. At present each synaptic module in 

our chip employs its own integrator. The integrator circuit contains a capacitor which 

takes up a significant layout area. The input stage of our circuit (described in detail in 

Chapter 4) is carefully designed with appropriately chosen half and full size transistors 

to have a very small footprint. In the next version of the chip, 1000 synaptic circuits will 

be connected to a single neuron circuit will be implemented which comes close to the 

biological number of 1000 to 10,000 synapses connected to a single neuron. 

The proposed synaptic circuit is not configured with any learning module yet 

but has the provision of controlling the synaptic weights through bits stored in a register. 

The implementation of weight is a bit different from contemporary circuits in the sense 

that there are two different delta values the current can jump up or down to. There is no 

consensus yet regarding the required number of synaptic bits to implement learning 

efficiently. The FACETS synapse model uses a 4-bit resolution of synaptic weights, and 

this resolution was shown to be good enough for the desired benchmark. The resolution 

of synaptic weights in the proposed circuit is pseudo 5 bit. Using this model a pattern 

recognition task [34] was performed and the success rate came out to be around 64%. 

To improve the success rate we need to increase the bit resolution of our synaptic circuit. 

In the next version of the circuit, we plan to improve the bit resolution by modifying the 

input stage of the circuit. 
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Silicon Neuron: Parameter Tuning 

In this work, a three-variable qualitatively modeled silicon neuron circuit [6] 

was tuned manually to generate the following spiking responses: Fast Spiking Class 1 

and Class 2, Regular Spiking, Low Threshold Spiking, Elliptic Bursting and Square 

Wave Bursting. The experimental results of the circuit in the square wave bursting mode 

will be improved in future as discussed in the respective sections in Chapter 7. In a large 

neuronal network comprising of many neuronal and synaptic circuits, it would be 

infeasible to manually tune the parameters of all the neuron circuits for the desired 

response in the network. To achieve the implementation of large-scale neuronal 

networks using this silicon neuron circuit, automatic parameter tuning algorithms will 

be designed to generate desired spiking responses. A simplistic approach to achieve this 

would be to tune the nullclines of the circuit to resemble reference nullclines by 

choosing a select few parameters from the parameter vector. 
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10. 

Appendix 

Parameter values of the Silicon Neuron 

Parameters 

Fast 

Spiking 

Class1 

Fast 

Spiking 

Class2 

Regular 

Spiking 

Low 

Threshold 

Spiking 

Elliptic  

Bursting 

Square 

Wave 

Bursting 

fvv_gVdlt 0.58 0.57 0.58 0.58 0.569 0.589 

fvv_dVb 0.77 0.755 0.77 0.77 0.755 0.77 

fvv_bEn 1 1 1 1 1 1 

fvv_bEnx1 0 0 0 0 0 0 

fvv_bEnx2 0 0 0 0 0 0 

gvv_dVm 0.556 0.527 0.556 0.556 0.527 0.572 

Iav_gVin 0.468 0.482 0.465 0.443 0.464 0.456 

Iav_dVb 0.65 0.65 0.64 0.625 0.66 0.633 

fnv_gVdlt 0.515 0.555 0.515 0.515 0.555 0.52 

fnv_dVb 0.755 0.766 0.755 0.755 0.766 0.737 

fnv_bEn 1 1 1 1 1 1 

fnv_bEnx1 0 0 0 0 0 0 

fnv_bEnx2 0 0 0 0 0 0 

gnv_dVm 0.726 1 0.726 0.726 1 0.66 

gnv_bR20 0 1 0 0 1 0 

gnv_bR21 1 1 1 1 1 0 

Ian_gVin 0.461 0.55 0.461 0.461 0.55 0.456 

Ian_dVb 0.66 0.801 0.645 0.646 0.801 0.61 

rnn_dVm0 0.56 0.57 0.57 0.575 0.57 0.554 

fqv_gVdlt 1 1 0.52 0.73 0.573 0.663 

fqv_dVb 1 1 0.8 0.846 0.82 0.851 

fqv_bEn 0 0 1 1 1 1 

Iaq_gVin 1 0.5 0.52 0.53 0.547 0.53 

Iaq_dVb 1 1 0.77 0.8 0.74 0.673 

rqq_dVm0 1 1 0.84 0.69 0.87 0.82 

Iax_gVdlt 0.5 0.5 0.5 0.5 0.5 0.5 

Istim0_gVin 0.5 0.5 0.5 0.5 0.516 0.509 
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Istim0_dVb 0.7 0.6 0.7 0.65 0.7 0.75 

Istim1_gVin 0.5 0.5 0.5 0.5 0.5 0.5 

Istim1_dVb 1 0.7 1 1 0.7 1 

Istim_gVdlt 0.5 0.5 0.5 0.5 0.5 0.5 

nvcap_LowC 1 1 1 1 1 1 

nncap_LowC 1 1 1 1 1 1 

nqcap_LowC 1 1 1 1 1 1 

fxv_sVcasc 0.3 0.3 0.3 0.3 0.3 0.3 

Vforce_bEn 0 0 0 0 0 0 

gVforce 0 0 0 0 0 0 

VCVn_bEn 0 0 0 0 0 0 

rqq_gVin1ex 1 1 1 0.6 1 1 

rqq_bVin1exEn 0 0 0 0 0 0 

rnn_bVm0bEn 0 0 0 0 0 0 

rnn_dVm1ex 1 1 1 1 1 1 

rnn_bVm1exEn 0 0 0 0 0 0 

rqq_bVm0bEn 0 0 0 0 0 0 

rqq_dVm1ex 1 1 1 1 1 1 

rqq_bVm1exEn 0 0 0 0 0 0 

VCVn_dVb 2.1 1.8 2.1 2.1 1.8 2.1 

VCVn_gVc 2.5 2.5 2.5 2.5 2.5 2.5 

 

 


