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Chapter 1

Introduction

Machine Translation (MT), is to translate a natural language to another using
programs without manual work. Earliest systems about MT can be traced
from 1950s, and had been developed a lot in 1980s (Hutchins, 1994). In re-
cent years, with the quick growing of computer industry, MT has seen rapid
developments.

Statistical Machine Translation (SMT), had been the main approach of
MT for a long time. Unlike traditional approaches like Rule-based Machine
Translation(RBMT), the construction of a SMT system does not require lin-
guistic specialists, instead, a large bilingual dataset containing translation
pairs between the source language and target language (usually called cor-
pus) is important to the translation ability of the system.

However, in about 2014, researches about Neural Machine Translation
(NMT) came in to sight. Based on recent researches of neural networks using
latest achievements in biology field, NMT quickly gathered attentions from
researchers. NMT systems are end-to-end, with simpler construction than
SMT systems.

Vital achievements of NMT researches including the Encoder-Decoder
model (Cho et al., 2014), Long Short-Term Memory (LSTM) model (Sutskever,
Vinyals, and Le, 2014) attention-based model (Bahdanau, Cho, and Bengio,
2014) and local attention-based model (Luong, Pham, and Manning, 2015).
In 2016, Google released its online translation service using NMT(Wu et al.,
2016), which showed appreciable translation ability compared to its conven-
tional Phrase-based Machine Translation service, drawing attention exten-
sively even in public.

However, the performance of NMT models depends greatly on the do-
main of data. When applied to topics or domains that are not included in the
training data, the NMT system tends to perform poorly. It is not easy to ob-
tain a bilingual corpus in a given specialized domain with a sufficiently large
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size. Thus, to achieve good translation ability in specialized domain, a pro-
cess called domain adaptation is usually conducted, which utilizes a smaller
dataset in the target domain and a model trained in the source domain in
advance. A conventional method of NMT domain adaptation named fine-
tuning, which uses a relatively small corpus in the target domain to conduct
retraining on an existing NMT model, has been proved to be effective in this
scenario (Luong and Manning, 2015).

The effect of fine-tuning is greatly related to the size and quality of the
dataset for retraining. When given limited data in the target domain, fine-
tuning cannot always bring satisfying results. This study aims to explore
methods of editing and generating data in the specialized domain for fine-
tuning, in order to improve the performance of adapted NMT models.

This thesis is structured as follows. In Chapter 2, we list the related work
to our study. Chapter 3 proposes methods of data editing. Chapter 4 pro-
poses methods of data generation using bilingual dictionary. Chapter 5 gives
discussion about the proposed methods and Chapter 6 gives a conclusion.
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Chapter 2

Related Work

Domain adaptation is a concept in the field of machine learning, which refers
to the process to make a model well trained in one domain available in an-
other domain. For example, when a great amount of labeled data in domain
A are available but no or less labeled data in domain B are available, it is easy
to train a model using the labeled data to give predictions in domain A, but
not the same with domain B. The research called domain adaptation aims to
adapt the model to make it able to give good predictions in domain B. The
domain A here is called the source domain, and domain B is called the target
domain.

The main approach of domain adaptation in NMT is fine-tuning, which
conducts retraining on a well trained model in the source domain using a
relatively small dataset in the target domain.

An early try of adapting written language to spoken language of English-
German language pair was conducted (Luong and Manning, 2015). A dataset
containing 4.5 million sentence pairs in English-German was first used to
train a NMT model. Fine-tuning was then conducted by retraining the model
with a dataset in the spoken language domain containing 200 thousand sen-
tence pairs. As a result, the model fine-tuned gave a +5.2 BLEU score over
the original one. The experiment showed the effect of fine-tuning. However,
the dataset used for fine-tuning had a considerable size, which is not easily
to reach in some situations.

Furthermore, a method named mixed fine-tuning was proposed to solve
the issue of over-fitting (Chu, Dabre, and Kurohashi, 2017), which refers to
the phenomenon that a fine-tuned model becomes badly-performing in do-
mains other than the target domain. In this study, experiments showed that
creating fine-tuning data as a mixture of data in the target domain and source
domain performed well on both domains.

Facing the situation that specialized domain lacks organized bilingual
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corpus, data generation for NMT training or fine-tuning is considered a mean-
ingful research topic. As is easier to find domain-specific dictionaries than
preparing bilingual corpora in the target domain, using dictionaries to gen-
erate corpora is considerable. The use of bilingual dictionaries to generate
a pseudo bilingual corpus is discussed (Zhang and Zong, 2016). The gen-
eration method proposed in this study used statistical machine translation
(SMT) to create the outputs in the target language, which is considered to
cost a lot. Besides, there is not always a SMT model which performs well
enough in the target domain.
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Chapter 3

Tuning Data Editing

The size of training data is believed to be one of the most influential factors
in the process of NMT. Notice that we are often talking about the size of a real
dataset, informing it is a simple random sample of a corpus. In the situation
of fine-tuning towards a specific domain, it is difficult to obtain new data
to enrich the NMT model with the vocabulary and expressions in the target
domain, which means that the real size of data is limited.

However, we cannot assert that the original form and structure of a dataset
always lead to the best training result. In this chapter, we tried to explore if
specific types of editing on the tuning data can help improve the effect of
fine-tuning.

3.1 Simple Repetition

A preliminary try was first made to identify whether a simple repetition
works.

3.1.1 Method

Two types of simple repetition were considered.

• by-sentence:
Repeat each sentence data just after itself for both sides of bilingual
data.

• by-data:
Repeat all the sentences at the end of the file for both sides of bilingual
data.
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TABLE 3.1: The settings of Amazon EC2 instance used in this
paper.

Settings Value

Instance type p2.xlarge
AMI ID Deep Learning AMI (Ubuntu) Version 6.0 (ami-d2c759aa)
Virtual CPU number 4
Memory (GiB) 61
Volume size (GiB) 100

3.1.2 Experiments

Environment

We deployed our experiment environment on Amazon Elastic Compute Cloud
(Amazon EC2). Amazon EC2 is a web service that provides compute capacity
in the cloud. By choosing an instance with GPU support, we were able to
conduct GPU calculation, which greatly increased the speed of training and
translation. The detailed information of the instance used in this paper is
listed in Table 3.1.

We used OpenNMT library (Klein et al., 2017) to conduct our experi-
ments.

OpenNMT is an open source (MIT) initiative for NMT and neural se-
quence modeling. Besides the basic function of neural model training and
translation, it provides us with a retraining feature, which allows training a
model on incremental data. We use this function to conduct fine-tuning on a
trained base model.

It has 3 main implementations including OpenNMT-lua (a.k.a. Open-
NMT), OpenNMT-py, and OpenNMT-tf. In this paper, we used OpenNMT-
lua library to conduct all the experiments.

Data Preparation

We used NTCIR Patent Machine Translation (NTCIR PatentMT) (English - Japanese,
3.0M sentence pairs) as the training data for the base model. It is composed
with patents in different fields and classified by the International Classifica-
tion of Patents for Inventions, shown in Table 3.2.

The whole corpus of PatentMT was used as the source domain (here-
inafter called "out-of-domain") data in this experiment.
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TABLE 3.2: The section titles of International Classification of
Patents for Inventions

A. Human Necessities
B. Performing Operations; Transporting
C. Chemistry; Metallurgy
D. Textiles; Paper
E. Fixed Constructions
F. Mechanical Engineering; Lighting; Heating; Weapons; Blasting
G. Physics
H. Electricity

TABLE 3.3: The name definitions of models and descriptions
about the data they used for fine-tuning in the experiment of

simple repetition.

Name Description

0. original 100 sentence pairs randomly selected from Kusuri-no-Shiori.
1. by-sentence Each sentence in data 0 is repeated just after itself.
2. by-data All sentences in data 0 are repeated at the end of the file.

For target domain (hereinafter called "in-domain") data, we used Kusuri-
no-Shiori, a drug information database in which each document describes
the effects and precautions of a drug. Since it contains a great number of
words and expressions that do not exist in the PatentMT, we consider that it
is suitable as an in-domain dataset.

We randomly selected 100 translation pairs from Kusuri-no-Shiori as the
in-domain data for fine-tuning.

By the 2 types of simple repetition shown in Figure 3.1, we obtained 2
more datasets. Each dataset was used in the experiment to train a NMT
model. The name definitions of models and descriptions about the data they
used for fine-tuning are listed in Table 3.3.

For test data, we randomly selected 50 translation pairs from Kusuri-no-
Shiori.

Furthermore, before training, we conducted some pre-processes for all the
data we would use in the experiments. We used KyTea to do word segmen-
tation for all the Japanese data. For English data, we transferred all letters to
lower-case and isolated punctuations, which made them to behave as words.

We are not going to repeat these pre-processes in the following sections
and chapters in this paper, but all the data are processed in this way before
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TABLE 3.4: Important parameters used in base model training
in the experiment of simple repetition. Parameters listed are

defined in the documentation of OpenNMT library.

Parameter Value

model_type seq2seq
layers 2
encoder_type rnn
rnn_size 500
rnn_type LSTM
attention global
global_attention general
learning_rate 1
end_epoch 13

TABLE 3.5: Important parameters used in fine-tuning in the ex-
periment of simple repetition. Parameters listed are defined in

the documentation of OpenNMT library.

Parameter Value

learning_rate 1
end_epoch 10
shuffle false
sort false
update_vocab none

used used for training and fine-tuning.

Training of Base Model

We conducted a new session of training using the out-of-domain data. Ta-
ble 3.4 lists important parameters used for the training. After training for
13 epochs, we obtained an English-Japanese model with a perplexity of 3.17.
This is used as the out-of-domain base model in the following experiments.

Fine-tuning

We conducted re-training on the base model using 3 pre-processed datasets.
Parameters used for fine-tuning are listed in Table 3.5. Some parameters are
omitted because they cannot be changed when continuing a training on a
NMT model, so that they are the same as listed in Table 3.4.
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TABLE 3.6: BLEU scores for models tuned by in-domain data
with simple repetition.The models are named as described in

Table 3.3

Model Score

0. original 28.45
1. by-sentence 27.58
2. by-data 28.04

Results

We conducted translation to the test data using the models obtained above.
BLEU (Papineni et al., 2002) was used to calculate a score which shows the
similarity between translation results and reference file.

The BLEU scores of translation results for the models are listed in Ta-
ble 3.6. The models are named as described in Table 3.3.

It was shown from the results that simple repetition gave an unsatisfy-
ing performing. The model ‘by-sentence’ performed the worst, showing that
feeding the same sentences for several times together does not improve train-
ing.

3.2 Partial Repetition

Besides simple repetition, a method of partial repetition was considered.
Since the performance of NMT basically decreases as the length of sentences
increases, we hypothesize that decomposing sentences into clauses, words
and noun phrases in the tuning data will help improve the score of in-domain
translation. By adding these decomposition products into the tuning data,
we can also expect an increase of its size, although it is not the real size.

Method

Manual decomposing was conducted in this work. Since we used Japanese-
English as the language pair in this work, decomposing sentences into clauses
by punctuations seemed difficult due to the great difference between the
word order and sentence composition of the two languages. Thus, we ba-
sically chose some of the field-specific words and noun phrases that can be
easily recognized in both English and Japanese data.
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FIGURE 3.1: Examples in Japanese data for 4 types of align-
ments concerning adding the decomposed sentences into the
original tuning data. Sentences appearing in the original data

are underlined.

Concerning adding the decomposed sentences (hereinafter called the ‘re-
peating parts’) into the tuning data, we considered 4 types of alignments.

• whole-part, mixed:
All repeating parts of one original sentence are added right after it.

• part-whole, mixed:
All repeating parts of one original sentence are added right before it.

• whole-part, separated:
All repeating parts are added after all the original data.

• part-whole, separated:
All repeating parts are added before all the original data.

Examples in Japanese data for 4 types of alignments are shown in Figure 3.1.
Corresponding processes are taken on the English side.

The experiments were conducted with all the 4 ways mentioned above.
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TABLE 3.7: Important parameters used in fine-tuning in the ex-
periment of partial repetition. Parameters listed are defined in

the documentation of OpenNMT library.

Parameter Value

learning_rate 1
end_epoch 10
shuffle false
sort false
update_vocab none

3.2.1 Experiments

Data Preparation

We conducted partial repetition on the same in-domain data which was used
in the experiments of simple repetition. By decomposing the sentences into
clauses, words and noun phrases, we expanded the data from 100 to 250
translation pairs in the 4 ways of alignment mentioned above. For test data,
we have randomly selected 250 translation pairs from Kusuri-no-Shiori and
divided them into 5 sets (50 translation pairs per set).

Fine-tuning

We conducted re-training on the base model trained in the experiments of
simple repetition using 4 in-domain datasets with partial repetition and the
original in-domain dataset without repetition. Parameters used for fine-tuning
are listed in Table 3.7.

Results

We conducted translation to 5 test datasets and original tuning data (whole
sentences only, 100 translation pairs) using the models obtained above. The
BLEU scores of translation results for the models are listed in Table 3.8.

As shown in Table 3.8, for the tuning data, model 3 marked the best score
of 69.0 BLEU points with a substantial improvement by +10.2 BLEU points,
and all the other models also improved the scores by over +6 BLEU points.
For the test data, the adapted models performed better than baseline in 4
datasets out of 5, and the combined test dataset showed improvements of
+0.8 ~ +1.68 BLEU points. This result shows that partial repetition of original
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TABLE 3.8: BLEU scores for models tuned by in-domain data
with partial repetition in 4 types of alignments. ’Tuning’ col-
umn contains the scores of translation on the original tuning
data. ’Test All’ column is the average of the ’Test1’ ~ ’Test5’

column.

Models Tuning Test1 Test2 Test3 Test4 Test5 Test All
0. whole 58.8 37.7 32.1 23.2 25.1 21.2 27.86
1. whole-part, mixed 67.9 40.0 31.5 27.3 26.9 22.0 29.54
2. part-whole, mixed 65.9 42.3 30.9 25.6 24.3 20.8 28.78
3. whole-part, separated 69.0 42.4 28.2 27.9 24.1 23.3 29.18
4. part-whole, separated 65.4 40.6 30.0 27.1 25.2 20.4 28.66

tuning data is effective in improving the adaptation when the size of tuning
data is limited.

3.2.2 Discussion

The difference among the scores of the 5 test datasets is probably due to the
different similarity between them and the tuning data. As we are concerned
with the effect of domain adaptation, we consider that the scores of tuning
data set themselves count the most, and test datasets which are translated
relatively well count more than others. Thus, Model 3 is considered the best,
followed by Model 1. As Model 1 ~ 4 actually contain the same data with dif-
ferent orders among translation pairs, this order may have a large influence
on the learning effect. Hence, we investigate a second technique as reorder-
ing of the tuning data before the fine-tuning process.

3.3 Reordering

As mentioned above, Model 3 (whole-part, separated) produced the best re-
sult, followed by Model 1 (whole-part, mixed). The two models here have
a common order in which the original translation pairs are used before the
partial repeated translation pairs. Therefore, we may well suppose that to
sort the training data in a descending order of the text length may bring an
improvement to fine-tuning effect. To check this hypothesis, we conducted
the following experiments.

Method

We conducted sorting both in ascending order and descending order for the
tuning data. We chose the source language side as the representative of the
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bilingual data. The following pseudo codes show how we conducted the
process.

Pseudo Codes 1
Parallel sorting on the bilingual data by the length of source sentences.

Input: sourceData: List, targetData: List, isDescending: Boolean
Output: sourceDataSorted: List, targetDataSorted: List

1: size← sourceData.GetSize()
2: data← new List
3: for i = 0→ size− 1 do
4: data[i]← new Array{sourceData[i], targetData[i]}
5: end for
6: data.SortBy(element[0].CountBlank()), isDescending)
7: for i = 0→ size− 1 do
8: sourceDataSorted[i]← data[i][0]
9: targetDataSorted[i]← data[i][1]

10: end for
11: return sourceDataSorted, targetDataSorted

3.3.1 Experiments

Data Preparation

We sorted the data prepared for the experiment of partial repetition in both
descending and ascending order by the length of the Japanese side of the
translation pairs. Furthermore, we did the same process to the original tun-
ing data.

For testing, we used the same data as in the experiment of partial repeti-
tion.

Fine-tuning

We trained 4 NMT models using the whole-part data (sorted in descending/ascending
orders) and the whole data (sorted in descending/ascending orders) on the
same out-of-domain base model for 10 epochs each. The other parameters
were set the same as Table 3.7.

Results

Tests with the same test datasets were conducted on the newly trained mod-
els. The results are shown in Table 2. For comparison, a part of the results
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TABLE 3.9: BLEU scores for models tuned by in-domain data
with partial repetition and reordering. ’Tuning’ column con-
tains the scores of translation on the original tuning data. ’Test

All’ column is the average of the ’Test1’ ~ ’Test5’ columns.

Models Tuning Test1 Test2 Test3 Test4 Test5 Test All
0. whole 58.8 37.7 32.1 23.2 25.1 21.2 27.86
1. whole-part, mixed 67.9 40.0 31.5 27.3 26.9 22.0 29.54
2. part-whole, mixed 65.9 42.3 30.9 25.6 24.3 20.8 28.78
3. whole-part, separated 69.0 42.4 28.2 27.9 24.1 23.3 29.18
4. part-whole, separated 65.4 40.6 30.0 27.1 25.2 20.4 28.66
5. whole-part, descending 65.4 38.0 34.3 26.0 26.9 22.1 29.46
6. whole-part, ascending 69.0 42.8 35.5 29.6 27.9 23.2 31.80
7. whole, descending 65.4 38.1 36.5 27.9 28.3 21.8 30.52
8. whole, ascending 65.4 40 34.8 27.6 26.6 23.9 30.58

(Model 0 and Model 3) from the experiment of partial repetition are also in-
cluded in Table 2.

For Model 7 and Model 8, we can see an improvement of +6.6 BLEU
points for tuning data, and over +2.5 BLEU points for the combined test data,
which shows that no matter whether the data are sorted in descending or as-
cending order, reordering results in improvements. The two orders are not
very different in the results, as scores of combined test data are quite similar.

For Model 5 and Model 6, comparing with the best performing Model 3
tuned by repeated data in the former experiment, we can recognize improve-
ments up to +2.62 BLEU points for the test data. However, the scores for
tuning data itself do not always go over the one with relatively random or-
der. In details, Model 6, which is tuned by data in ascending order, performs
better than Model 3 in all the test datasets, but Model 5 does not always do.
Also, Model 6 performs the best among all the models in 3 test datasets out of
5, and overall, gets 31.80 BLEU points on the combined test data, which turns
out to be the highest score. According to this result, Model 6 was considered
to be the best model among the experiments conducted in this chapter.

3.3.2 Discussion

In the experiment of partial repetition, we added repeated parts of sentences
to the data before fine-tuning. Basically, this process proved to work well no
matter where the partial data were inserted. However, though not strongly,
inserting the partial data after the whole sentences worked better. As NMT
systems tend to remember recently provided data better, we assumed that
learning shorter instances later helps the system remember words and phrases
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in the relevant field, where these words or phrases are unique and typical, or
rarely appear in other domains, resulting in a better adaptation effect.

We further supposed from this result that if we sort the data in the de-
scending order by the length of sentences, we may obtain a better result as
most of short, domain-typical words and phrases are learned later. How-
ever, the results did not seem to support this hypothesis. The ascending
order showed a better result when the reordering process is conducted to
the partially repeated data, which contains more short texts than the original
one. Considering the human learning process, it is natural to learn words
and phrases first, followed by longer sentences containing them. By sorting
the data by sentence length in ascending order, the NMT system may better
’understand’ (precisely encode) the long sentences as it has already learned
from their constituents. This explanation is contradictory with the one we
have given to the last experiment, however, the difference between scores in
that experiment is rather subtle, and the supposed tendency does not show
strong reproducibility.

Furthermore, it is not ignorable that the reordering process also seemed
effective for original data, which seldom involve instance sets with whole-
part relationships. In this situation, the reordering process does not induce
learning from part to whole, as is mentioned above. Instead, it simply places
the same or similar sentences together. However, in the following experi-
ments, it was proved that this conclusion is not reproducible.
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Chapter 4

Tuning Data Generation

In Chapter 3, we proposed methods to edit in-domain data in order to im-
prove fine-tuning effect. However, these methods cannot increase the real
size of the dataset, which reflects the richness of language. Thus, in this
Chapter, we considered methods to generate data for fine-tuning using in-
domain bilingual dictionary, which is easier to obtain than in-domain bilin-
gual corpus.

4.1 Experiment: Synonym Replacement

Assume that we have obtained a bilingual dictionary that contains a great
number of words in the target domain. As low performance of NMT in spe-
cialized domains is usually due to domain-specific words unknown to the
NMT model, domain-adaptation task is mainly about the domain-specific
words. Thus, we can expect that an in-domain dictionary (hereinafter IDD)
works partly like a bilingual corpus. However, it cannot be used as tun-
ing data without augmentation, otherwise the length of the output of NMT
model will be limited in only several words.

To augment the dictionary, it is simple to think about importing the words
in the dictionary to sentences from other data. Thus, an extra dataset is
needed for this method. we will refer to it as a generation origin corpus
(hereinafter GOC). A GOC can be out-of-domain or in-domain. If it is out-
of-domain, this method generates data without any in-domain data, which
means a very low adaptation cost. If it is in-domain, we can still expect the
generation improve the fine-tuning effect. Experiments were conducted us-
ing both in-domain data and out-of-domain data as the GOC.
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FIGURE 4.1: An example of synonym replacement in English-
Japanese translation.

4.1.1 Similarity Evaluation

As for importing the entries of in-domain dictionary to the sentences from
GOC, we considered that replacing them with synonyms may work well.
If the replacement takes place between words with the same part of speech
and similar meaning, NMT model may be able to learn the domain-specific
words from the generated sentences without decreasing its translation ability
for other sentences.

To evaluate the similarity of two words, we have adopted Word2VecMikolov
et al., 2013 to create words embeddings. The models of Word2Vec evaluates
the similarity of two words by calculating the distance of two vectors repre-
senting the words surrounding them in the given corpora.

Given the source part of an entry in the IDD, a list of words that is similar
to it using Word2Vec can be obtained. By setting a threshold of similarity or
giving a maximum number of the candidates, the candidates for the words
to be replaced by the source part of the entry can be determined. In the
following part of this Chapter, we will refer to the source part of an entry
of the IDD as an source-entry, and the candidate determined in this step as
a source-candidate. Similarly, target-entry and target-candidate are referred to
as the ones in the target part. Figure 4.1 shows an example of replacement
among the four words mentioned in English-Japanese translation.
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4.1.2 Pairing and Generation

In this step, we searched the source part of the GOC for each source-candidate.
When a sentence containing a source-candidate was found, we next checked
if its translation (the target sentence in the same translation pair) contained a
target-candidate that was given according to the source-candidate by a com-
mon bilingual dictionary or a translation tool. If so, a new sentence pair
was generated by replacing source-candidate with source-entry, and target-
candidate target source-entry. The number of generated sentence pairs was
counted, so that the process stops when the count reaches the upper limit
given as a parameter.

The overall process is described in the following pseudo codes.

Pseudo Codes 2 Pairing and replacement between entries of the IDD and
their synonyms in GOC.

Input: IDD: List, GOC: List, maxCountPerEntry: Integer
Output: dataGenerated: List

1: dataGenerated← new List
2: for entryPair ∈ IDD do
3: sourceCandidateList←Word2Vec.GetSynonyms(entryPair.source)
4: for sourceCandidate ∈ sourceCandidateList do
5: count← 0
6: sourceCandidate.target← Translate(sourceCandidate)
7: for sentencePair ∈ GOC do
8: if sentencePair.source contains sourceCandidate and

sentencePair.target contains sourceCandidate.target then
9: sentencePairGen.source←

sentencePair.source.Replace(sourceCandidate, entryPair.source)
10: sentencePairGen.target←

sentencePair.target.Replace(sourceCandidate.target, entryPair.target)
11: dataGenerated adds sentencePairGen
12: count← count + 1
13: end if
14: if count == maxCountPerEntry then
15: break
16: end if
17: end for
18: end for
19: end for
20: return dataGenerated
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TABLE 4.1: The settings the environment for generation exper-
iment in this Chapter.

Settings Value

Python Version 2.7.12
genism Version 3.0.1
Google Cloud Translate Version 1.3.0

4.1.3 Experiment

We conducted experiments of data generation as described above, and fine-
tuning using the generated data on an out-of-domain NMT model as well as
translation tests.

Environment

We chose genismRehurek and Sojka, 2010, a Python library for topic model-
ing, as an implementation of Word2Vec.

The detailed information of the environment for generation experiment
in this Chapter is listed in Table 4.1.

Data Preparation

Same with Chapter 3, we used NTCIR Patent MT as bilingual data to con-
duct experiments. According to the International Classification codes of the
patents (shown in Table 3.2), we divided the data into several parts, in which
the patents are classified into specialized domains. We chose the part PHYSICS
as the out-of-domain corpus (1.03M sentence pairs), because it has the largest
size. We then trained the base model using the out-of-domain model us-
ing the same settings in Table 3.4 in the previous experiments as conducted
translation tests using it on the test data in all the other parts of the corpus.
According to the result shown in Table 4.2, we chose the part TEXTILES; PA-
PER as the in-domain data (6898 sentence pairs) because it has a rather small
size and low score, which indicated that the difference between it and the
out-of-domain was apparent.

From the in-domain data, we have randomly selected 100 sentence pairs
as test data and the rest as tuning data to avoid duplication.

For the in-domain dictionary, a translation test was first conducted on the
in-domain test data using base model to highlight words that are expected
to be domain-specific as they were basically not successfully translated and
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TABLE 4.2: The result of translation tests and size of all the parts
of NTCIR Patent MT using model trained on part G.

Field BLEU Training Size / MiB

A. Human Necessities 31.19 11.3
B. Performing Operations; Transporting 30.44 61.9
C. Chemistry; Metallurgy 29.92 8.5
D. Textiles; Paper 29.68 1.5
E. Fixed Constructions 28.66 1.5
F. Mechanical Engineering; Lighting; Heating; Weapons; Blasting 30.29 30.8
G. Physics 37.07 234.2
H. Electricity 34.45 139.6

replaced with a <unk> token. We then picked out a list of 38 word pairs as
the in-domain dictionary (English - Japanese) for the following experiments.

Data Generation

The genism model was trained on the default English corpus. For out-of-
domain translation, we used Google Cloud Translation API.

Based on the method described above, we conducted the experiment of
data generation. Experimental settings are listed in Table 4.3. Both out-of-
domain data and in-domain data were used as the GOC in the experiments
for comparison.

Table 4.4 shows the basic information of the generation result. Accord-
ing to the table, 8 words in 38 are not included in the vocabulary of trained
Word2Vec model, which certainly means they were not successfully put into
the generated data. Besides, generations with some words failed because no
candidates of them were found in the GOC, or their translations were not
found in the corresponding sentences.

Training of Base Model

We conducted a new session of training using the out-of-domain data. Ta-
ble 4.5 lists important parameters used for the training.

After training, we have obtained an English-Japanese model on the PHYSICS
domain with a perplexity of 2.41. This is used as the out-of-domain base
model in the following experiments.
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TABLE 4.3: Experimental settings for data generation by the
program described above based on Word2Vec.

Word2Vec Settings Value

Training data size 97,657 KiB

Minimum count of appearance to be valid 5

Window 10

Other Settings Value

Number of candidates per entry 20

Maximum number of sentences per candidate 10

TABLE 4.4: Summary of generation result using an out-of-
domain corpus and an in-domain corpus as the generation orig-

inal corpus(GOC).

From out-of-domain From in-domain

Total of entries 38 38

Out-of-vocabulary (OOV) 8 8

Failure (except OOV) 4 6

Total of generated sentences 2315 788

TABLE 4.5: Important parameters used in base model training
in the experiment of tuning data generation. Parameters listed

are defined in the documentation of OpenNMT library.

Parameter Value

model_type seq2seq
layers 2
encoder_type rnn
rnn_size 500
rnn_type LSTM
attention global
global_attention general
learning_rate 1
end_epoch 13
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TABLE 4.6: Important parameters used in fine-tuning in the ex-
periment of tuning data generation. Parameters listed are de-

fined in the documentation of OpenNMT library.

Parameter Value

learning_rate 1
end_epoch 10
shuffle true
sort false
update_vocab merge

Fine-tuning

We then used the in-domain data and generated data to conduct fine-tuning
on the base NMT model. Besides, mix data of in-domain data and generated
data, as well as a generated data without replacement were also used for
analysis.

Table 4.6 lists important parameters used for the training. Different from
the experiments in Chapter 3, ‘shuffle’ were set to ’true’ (default) and ‘up-
date_vocab’ was set to ‘merge’ to improve learning of unknown words.

Results

Translation tests of the in-domain test data were then conducted with all the
models trained before.

Data composition of the models and their BLEU scores, as the results
of translation tests, are listed in Table 4.7. Model ‘base’ is the base model.
Model ‘orig’ is tuned by the data generated from the in-domain data. Model
‘out’ is tuned by the data generated from the out-of-domain data. Model ‘in-
noreplace’ is tuned by the data generated by a same process with Model ‘in’,
just without the step of replacement. Model ‘orig’ is tuned by the whole
in-domain data (conventional method of fine-tuning). Model ‘in+orig’ is
tuned by a mix of in-domain data and the data used for Model ‘orig’. Model
‘out+orig’ is tuned by a mix of in-domain data and the data used for Model
‘out’.

In Table 4.7, the last column shows the scores of models on a part of the
test data. In the test(dict) data, we have removed all sentences that do not
contain any of the entries in the IDD. In this way, the score on this test data
emphasized the effect of fine-tuning process, where we aimed to utilize the
IDD and let the model learn the entries.
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TABLE 4.7: Data composition of the tuned models and their
BLEU Scores on in-domain test data and a part of the test
data which all sentences include at least 1 entry in the IDD.
Model ‘base’ is the base model. Model ‘orig’ is tuned by the
data generated from the in-domain data. Model ‘out’ is tuned
by the data generated from the out-of-domain data. Model
‘in-noreplace’ is tuned by the data generated by a same pro-
cess with Model ‘in’, just without the step of replacement.
Model ‘orig’ is tuned by the whole in-domain data (conven-
tional method of fine-tuning). Model ‘in+orig’ is tuned by a mix
of in-domain data and the data used for Model ‘orig’. Model
‘out+orig’ is tuned by a mix of in-domain data and the data

used for Model ‘out’.

Models data generated from in-domain data size test score test(dict) score
base 0kB 31.10 27.73

in in-domain 154kB 25.66 24.14
out out-of-domain 475kB 26.17 24.46

in-noreplace part 154kB 24.60 22.31
orig all 1,229kB 39.54 37.41

in+orig in-domain all 1,355kB 39.93 38.66
out+orig out-of-domain all 1,676kB 38.57 37.09

For model ‘orig’ and ‘out’, all scores turned to be lower than the base
model. This was probably due to the small size of generated data compared
to the in-domain test data. However, by comparing model ‘orig’ and ‘in-
noreplace’, we can find that the process of replacement brought an improve-
ment of +1.83 BLEU points on the test(dict) data as the two sets of tuning
data were nearly the same except for the replacement of words. Moreover,
we found that model ‘orig’ and ‘out’ succeeded in translating sentences with
the words learned from the IDD through the data generation and fine-tuning
process.

Figure 4.2 shows an example of successful fine-tuning, in which model
‘in’ is able to give the word ‘竹’, while the base model gives an ‘unknown’
token.

By mixing generated data and in-domain data, we trained Model ‘in+orig’
and ‘out+orig’. Model ‘in+orig’ shows a highest score of 38.66 BLEU points
on the test(dict) data, which goes over model ‘orig’ by +1.25 BLEU points.
From the result, we can recognize that adding the generated data into the in-
domain data before fine-tuning process can result in an improvement of the
fine-tuning effect. The proposed method can serve as an approach to expand
the fine-tuning data which is not large enough.
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FIGURE 4.2: An example of successful fine-tuning by generated
data. The unknown word ‘bamboo’ is recognized and success-

fully translated by the model ‘orig’ in Table 4.7.

4.1.4 Discussion

The proposed method succeeded in the situation where a set of in-domain
data is available but needs expansion. However, it did not brought improve-
ments in other situations, such as when we cannot obtain any in-domain
bilingual data.

The reason why models ‘in’ and ‘out’ performed worse than the base
model was probably the size of the tuning data. Model ‘in-noreplace’ worked
as a control experiment to examine this assumption. The tuning data of
Model ‘in-noreplace’ was actually only a selection of the in-domain data,
which brought a large improvement of +8.44 or +9.58 BLEU points after fine-
tuning (Model ‘orig’). The difference between the two sets of tuning data was
basically the size (788 compared to 6898). Thus, we suppose that increasing
the size of generated data will improve the scores obviously.

We should suppose that the in-domain dictionary contains a large number
of domain-specific words because actually such dictionaries are not difficult
to obtain. However, the dictionary we have used in the experiments was
produced non-automatically and thus is not complete with a rather small
size. A dictionary that is well produced and complete should bring better
performance.

Besides the size of the IDD, the percentage of failure in the generation
process was also not negligible. There are 3 types of failure: (1) Out-of-
Vocabulary; (2) Search failure; (3) Pairing failure.

(1) refers to the entries that are not included in the training data of Word2Vec
model, so that it cannot give a list of similar words because it has not even
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seen them. To avoid this type of failure, we could prepare larger data for the
Word2Vec model training. As we have used the test data provided by the
author, it is hopeful to solve this issue after we change to a more abundant
corpus.

(2) refers to the entries whose similar words (candidates) are not found
in the GOC. This is a difficult issue when in-domain data serve as the GOC,
as it is not easy to obtain a large set of them. In the first place, if a large set
of in-domain data is available, we would not have to do the process of data
generation.

(3) refers to the entries whose candidates are found in some sentences, but
their translations are not found in the corresponding sentences. This is also
apparent because words can be translated in different ways. When we get
a translation from a simple translation API, only 1 of the different answers
is chosen, resulting in a high probability that the target part of the sentence
pair does not contain exactly the same word. To solve this issue, a second
similar-search can be considered. Instead of the target-candidate, searching
for any word inside a similar word list given by the Word2Vec model can
increase the possibility of pairing success. Considering accuracy in this step,
the min similarity can be set in a comparatively high level. We believe these
solutions can bring a lower percentage of generation failure and thus result
in a larger size of generated data.

Since the size of IDD seemed the most important factor. We then tried to
produce a larger IDD and conduct repeating experiments using it.

4.2 Experiment: Using a Larger IDD

4.2.1 Experiment

Data Preparation

Using the same methods in the previous Section, we picked out a list of 102
word pairs as the in-domain dictionary (English - Japanese) for the following
experiments.

The GOC (out-of-domain, in-domain) used were the same as the previous
experiments. For test data, we used the whole test dataset (1000 sentences
randomly selected from the in-domain dataset) this time.
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TABLE 4.8: Data composition of the tuned models and their
BLEU Scores on in-domain test data. Model name definition is
the same as in Table 4.7. ‘List length’ is ‘numbers of candidates
per entry’ and ‘generation count’ is ‘maximum number of sen-

tences per candidate’ defined in Table 4.3.

Models list length generation count size test score
base - - 0kB 30.00
out1 20 10 1,168kB 26.20
out2 10 10 591kB 27.02
out3 10 20 1,082kB 27.48

in 20 10 320kB 27.05
in - - 1,229kB 36.51

out+orig1 20 10 2,397kB 35.43
out+orig2 10 10 1,820kB 35.76
out+orig3 10 20 2,311kB 35.89

in+orig 20 10 1,549kB 35.31

Data Generation

When generating data using the same method with the previous Section, we
changed the two parameters in Table 4.3, ‘numbers of candidates per entry’,
which is the length of synonym list given by Word2Vec for each entry of IDD,
and ‘maximum number of sentences per candidate’, which retrict too many
outputs for single replacement pair. The settings of theses parameters and
the sizes of generation results are listed together with the translation results
in Table 4.8.

Results

The base model trained in the previous experiments were used again. Pa-
rameters of fine-tuning process also remained the same as in Table 4.6.

The results are listed in Table 4.8.
Unfortunately, all the experimental models worked worse than the model

‘orig’, which indicated that adding the generated data to the in-domain data
brought bad influence to the in-domain translation tests.

The models tuned only by generation data, ‘out1’, ‘out2’, ‘out3’ and ‘in’
still performed worser than the base model, which indicated the issues we
discussed in the last Section were not solved.

The models tuned by a mixture of generated data and in-domain data,
‘out+orig1’, ‘out+orig2’, ‘out+orig3’ and ‘in+orig’ worked better than the
base model, but not as well as ‘orig’, which probably meant that the gen-
erated data were not consistent enough to act as training data.
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Furthermore, by comparing ‘out+orig1’, ‘out+orig2’ and ‘out+orig3’, we
can find out that the two parameters set here did not show apparent differ-
ence. ‘out+orig1’ performed better than ‘in+orig’, though little, showing that
it was not necessary to use a large in-domain dataset as GOC.

4.2.2 Discussion

We assumed that if we enlarge the size of IDD, we could get better results as
generated data would be enlarged accordingly. However, the results did not
support our assumption.

The experiment this time even showed worse results than the previous
one, as model ‘orig’ was the best performing model, which indicated the
generated data were worse than the original in-domain data, so that adding
them into the in-domain data made the scores decrease.

As we have obtained better results in the previous section, we consider
the newly added entries in the IDD did not work as we expected. One pos-
sible reason is the way we established the IDD. In the previous experiment,
we only chose the word that were recognized as unknown words by the base
model. However, in order to enlarge the IDD, we had to chose also some of
the domain-specialized words even if they were already recognized by the
base model. Since we were not able to obtain a suitable dictionary for exper-
iments, we had to continue research using the same IDD.

There were more things to do about raising the quality of generated data.
To define ‘good’ generated data, we believes that consistency and variety
are important. High consistency means the generated sentences make sense,
which basically focuses on the imported word. If the imported word has the
same part of speech of the replaced one, is near in meaning, the sentences
will seem consistent. Variety ensures that the data do not contain a lot of
simple repetitions, which we have proved not beneficial in Chapter 3.

To improve consistency, we may change the threshold when obtaining the
synonym list from Word2Vec model. A high threshold ensures that only the
words really similar to the entry word are given. However, it also decreases
the size of the generated data to set a higher threshold.

To improve variety, we may set up a count for each original sentence to
make sure the sentences are picked in a more dispersive way. We can main-
tain a list of counts to ensure each sentence in GOC should be picked up to
a certain times. When the count of a sentence reaches the upper limit, it will
be skipped in the following search.
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Furthermore, choosing shorter sentences in the replacement step may
bring improvements as NMT system is weak to long sentences compared to
shorter ones. Thus, a threshold of the length of original sentence to be picked
may work in the step of searching sentences for replacement. However, a
low threshold of length may also cause a lower rate of replacement success,
resulting in the size of generated data.

To apply the possible solutions listed above, we conducted further exper-
iments.

4.3 Experiment: Adjusting Generation Parameters

4.3.1 Experiment

Defining Parameters

As is discussed in the previous Section, we decided to examine if adjusting
the following parameters would improve the generation quality.

• min similarity:
The minimum value of similarity given by Word2Vec between a source-
entry and an acceptable source-candidate.

• max usage count:
The maximum times that a sentence in GOC can be used for generation.

• max length:
The maximum length of a sentence in GOC available for generation.

Generation

By adding the parameters, we revised our algorithm for generation. The
revised algorithm is described in the following pseudo codes.

By setting different values to these parameters, we conducted extra ex-
periments of generation. The values of parameters are listed together with
the translation results in Table 4.8.

Results

Experiments were conducted using the same base model, GOC (only in-
domain), parameters of fine-tuning and test data.

The results are listed in Table 4.9.



30 Chapter 4. Tuning Data Generation

Pseudo Codes 3 Pairing and replacement between entries of the IDD and
their synonyms in GOC using parameters.

Input: IDD: List, GOC: List, maxCountPerEntry: Integer,
minSimilarity: Float,
maxUsageCount: Integer, maxLength: Integer

Output: dataGenerated: List
1: dataGenerated← new List
2: GOCUsageCountDictionary← new Dictionary
3: for sentencePair ∈ GOC do
4: GOCUsageCountDictionary[sentencePair]←0
5: end for
6: for entryPair ∈ IDD do
7: sourceCandidateList←Word2Vec.GetSynonyms(entryPair.source)
8: for sourceCandidate ∈ sourceCandidateList do
9: if Word2Vec.GetSimilarity(entryPair.source, sourceCandidate)

< minSimilarity then
10: continue
11: end if
12: count← 0
13: sourceCandidate.target← Translate(sourceCandidate)
14: for sentencePair ∈ GOC do
15: if

GOCUsageCountDictionary[sentencePair] == maxUsageCount
or sentencePair.source.length>maxLength then

16: continue
17: end if
18: if sentencePair.source contains sourceCandidate and

sentencePair.target contains sourceCandidate.target then
19: sentencePairGen.source←

sentencePair.source.Replace(sourceCandidate, entryPair.source)
20: sentencePairGen.target←

sentencePair.target.Replace(sourceCandidate.target, entryPair.target)
21: dataGenerated adds sentencePairGen
22: count← count + 1
23: GOCUsageCountDictionary[sentencePair]←

GOCUsageCountDictionary[sentencePair] + 1
24: end if
25: if count == maxCountPerEntry then
26: break
27: end if
28: end for
29: end for
30: end for
31: return dataGenerated
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TABLE 4.9: BLEU Scores of models fine-tuned by mixtures of
in-domain data and generated data using different parameters.

Model name definition is the same as in Table 4.7.

Models min similarity max usage count max length size test score
base - - - 0kB 30.00
orig - - - 1,229kB 36.51

in+orig0 0 ∞ ∞ 1,549kB 35.31
in+orig1 0 ∞ 100 1,492kB 35.74
in+orig2 0 ∞ 70 1,320kB 36.00
in+orig3 0.6 ∞ ∞ 1,533kB 35.80
in+orig4 0.7 ∞ ∞ 1,412kB 35.37
in+orig5 0 1 ∞ 1,296kB 34.90
in+orig6 0 3 ∞ 1,396kB 35.45

‘in+orig0’ took no parameters of all the 3 defined above. By compar-
ing the scores of other models with ‘in+orig0’, we can find out the influence
brought by the added parameters.

‘in+orig1’ and ‘in+orig2’ took the parameter ‘max length’, which restricted
the maximum length of a sentence in GOC to be picked in the pairing step of
generation processes. we can find out that ‘in+orig2’ performed the best with
a value of 70, following by the ‘in+orig1’ model, still better than ‘in+orig0’.

‘in+orig3’ and ‘in+orig4’ took the parameter ‘min similarity’, which got
rid of source-candidates that were not really similar with the source-entry,
resulting in higher consistency of the generated data. we can find out that
‘in+orig3’ performed the best with a value of 0.6, following by the ‘in+orig4’
model nearly the same with ‘in+orig0’.

‘in+orig5’ and ‘in+orig6’ took the parameter ‘max usage count’, which
ensured each sentence in GOC would not be picked a lot of times, result-
ing in better variety of the generated data. we can find out that ‘in+orig6’
performed slightly better than ‘in+orig0’ with a value of 3. But ‘in+orig5’
performed worse, possibly because of the very small size of generated re-
sults.

4.3.2 Discussion

From the results given above, we can find out the parameters set here have
influence on the fine-tuning effect.

Unfortunately, we did not have time to conduct experiments trying more
values of the parameters or a combination of different parameters as NMT
training costs a lot of time.
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FIGURE 4.3: Inferred relationships between BLEU scores of
‘in+orig’ types of models and parameters including min sim-
ilarity, max usage count and max length considering the situ-
ation in which the generated data using the proposed method

performs better than the original in-domain data.

However, from the results, we can infer that the parameters influence the
result in a certain way. Figure 4.3 shows the inferred graphs about the pa-
rameters and BLEU scores using the ‘in+orig’ types of models. This figure
and the following discussion on the parameters are based on the situation
where ‘in+orig’ types of models perform better than ‘orig’ model, just like
what we have seen in the first experiment in this Chapter.

For min similarity, a suitable value makes the generated sentences more
consistent, resulting in higher scores finally. A very high value, such as set-
ting it to 0.9 disables most of outputs, actually doing nothing.

For max length, it is apparent that a suitable value is able to make gen-
erated sentences shorter, resulting in a better translation effect. However, to
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setting a very low value also disables most of the generation outputs.
For max usage count, setting it to 1 showed an unsatisfying result in the

experiments, but the value 3 worked well. This indicated that repetition is
not always unfavorable. Setting it to a very large value does not restrict the
repetition at all, resulting in a bad variety in the generated data though.

These parameters show a common trend that there is a peak point to make
the fine-tuning result the best. As they basically restrict outputs in different
ways, we can expect that combining all the peak point together makes a bet-
ter score than singly applying one of them.

Furthermore, concerned with the reproducibility of the trends described
above, we consider that max length and min similarity should not be influ-
enced by the domain or dataset used in NMT. Instead, language pairs may
count a lot. Thus, it is possible to establish default values of them for each
language pairs for other users of this generation method.

Besides, we consider that the best max usage count may differ according
to the dataset used. If further experiments cannot find a best value, we can
use a starting default value and a searching algorithm to find a suitable value.

Although the experiments still did not show a reproducible improvement
based on the original in-domain data, we believe there are more points to im-
prove the generation algorithm. For example, we can often recognize similar
but not exactly the same sentences in a corpus. They share most of the words
as well as the way of word arrangement, but differ in numbers or domain
specific words. For these sentences, a simple count to check if the same sen-
tence has been used is not effective in improving data variety. Thus, while
picking sentences for replacement, an extra step which checks if the sentence
is too similar to any sentences that have been picked, using Word2Vec mod-
els.
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Chapter 5

Discussion

We conducted experiments of repetition and reordering as methods of data
editing. Furthermore, we proposed a generation method using in-domain
dictionary and synonyms given by a Word2Vec model. What we want to
examine is what makes a dataset ‘good’ for fine-tuning and according to the
results of the different experiments, we are able to summarize as following.

About the appearances of repetition in the corpus for tuning, though the
size of dataset is increased, there is no new words and sentences added.

In the experiment of simple repetition, we saw a reduction on the scores
after the process. It was quite unexpected because it looked like just an in-
crease of training epoch numbers. However, partial repetition showed an
improvement on the fine-tuning effect. It is still not clear why there is ap-
parent difference between simple repetition and proposed partial repetition
methods, but we can tell that repetition is not always unfavorable.

In the last part of Chapter 4, the parameter ‘max usage count’ applied
to the experiment was also about repetition. If it is not set, or set to a large
value, the generation process tends to create a set of similar sentences when
a pairing is completed because similar sentences may occur several times in
the GOC, containing the same source-candidate, which actually act as repeti-
tions. We assumed that to set this parameter to 1 would bring the best effect,
but the results showed that a value of 3 worked better than 1. Although the
generated size counts a lot basically, and a small value makes the outputs
less, which seems to account for the reason, as we were getting results basi-
cally worse than the original in-domain data, to add nothing should be the
best. Thus, the result that the model of value 3 performed better than the
model of value 1 possibly means that repetition appeared in the generation
process brings good influence to the result.

It is widely believed that shorter sentences are more preferable than longer
ones for NMT, with a quite strong trend. In our experiments, this rule was
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shown to be right also for fine-tuning. The method of partial repetition con-
tains decompositions of long sentences, which showed good effect on fine-
tuning. Besides, in the experiment of generation, when a parameter of max
length was applied to the generation process, the scores increased. Although
We have shown the feasibility and effect of the partial repetition process, the
process costs too much because it requires manual work. In some language
pairs with similar sentence composition and ordering, we believe that it is
possible to establish automatic decomposition algorithms, such as Spanish
and Portuguese. This remains future work.

About the order of the tuning data, we have obtained results in Chapter 3
to show that sorting the data with sentence length increased the scores, no
matter in an ascending order or a descending order. We have not understand
the reason of the phenomenon.

However, the conclusion here seems to lack reproducibility. When con-
ducting the experiments in Chapter 4, we tried to sort the generated data
according to the sentence length, but both of the orders showed a very unsat-
isfying influence on the results. As the size of the data here was bigger than
the one in Chapter 3 for tens of times, we consider that the process may be
effective only for a really small dataset, which in fact lacks practicality. Since
sorting is a common step for training in many NMT toolkits, and it is believe
to prevent wasted calculation in padding shorter sentences to the longest one
in a mini-batch (Morishita et al., 2017), we consider that future work is still
needed and meaningful for this topic.
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Chapter 6

Conclusion

In this study, we have proposed several methods concerning data editing and
generation for fine-tuning in NMT.

In Chapter 3, we have discussed 2 techniques, partial repetition and re-
ordering, to conduct certain editing to the data for fine-tuning. Both of them
have shown improvements in translation of test data. The best NMT model
in the experiments (using partial repetition and ascending reordering) out-
performs the simple fine-tuning process by +3.96 BLEU points on test data,
which shows the effect of the proposed methods. Though we have conducted
the experiments by manual work, we believe that it is possible to establish
automatic algorithm for language pairs with more similar sentence order and
compositions such as Spanish-Portuguese. This remains future work.

In Chapter 4, we have discussed the proposed method to generate bilin-
gual sentence pairs for fine-tuning, using an in-domain dictionary and a set
of original bilingual data. When given an in-domain data as the GOC, the
method has proved to succeed in improving the fine-tuning effect by +1.25
BLEU points. In further experiments, though there is no results shown better
than the simple fine-tuned model, we have seen influences of the 3 parame-
ters applied to the generation process.

Considering ideal data composition for fine-tuning in NMT, we have dis-
cussed about the influences of appearance of repetition, ordering and sen-
tence length. For future work, a set of default parameters can be established
to conduct automatic editing and generation using the methods proposed in
this study.
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