


( 

Sequential Decision Making in Biological Systems: 
The Role of Nonlinear Dynamical Phenomena in 
Working Memory and Reinforcement Learning in 

Long-Term Memory 

(~~~~~A~~~~~~~~:~~~-~~-% 
,;f -1 -r ~ -) ~ ~1)ti!fiJ ~ -:I~JtJi §ct~-e~5~1t:~~ ~1)tilfiJ) 

1997 {f. 3 jJ 

~* :k¥: tti:t ::t ft1iJf~f4 
~:I!J)Gf4¥:W~ ~:I!J)G/ .AT .b.f.it¥:;% 



Abstract 

Sequential decision making is a fundamental tas k for any biological systems. A 

decision made at a time in sequentia l decision making has an immediate as well as 

long-term consequences. Both consequences, hence, shou ld be considered to opt imize 

seq uential decisions. This thesis in vest igates the role of two diffe rent kinds of memory 

systems, working memory and long-term memory, in sequent ia l decision making. The 

important di fference between t hese systems is t hat working memory stores inform ilt ion 

as neural act ivit ies, whereas long-term memory stores it as synaptic st rengt h. 

F irst , to invest igate a role of working memory in sequential dec ision making, the dy­

namics of neural act ivities is examined . The long-term maintenance and quick transition 

of neural act ivities is proposed as cru cia l in sequentia l dec ision making. Suc h property 

can be found in near saddle- node bifurcation dynamics. In simu lat ions of foraging tasks, 

the proposed dynamics emerges in recurrent networks that cont rol the movement of a 

creature as a function al necess ity for survi val in non-stat ionary environments. 

Secondly, the fun ct ions of the loops of basal ganglia, a subsystem for one of the 

long- term memory sys tems, are invest igated in sequential decision making in relation to 

reinforcement learning. The hypothesis is given for the functions of the loops and the 

performance of the model based on t he hypothesis is examined in compar ison with the 

experiment by Hikosaka and hi s colleagues. The model rep licates t heir data in several 

aspects and predicts the monkeys' behav ior in cond ition that is not experimenta lly tested 

yet . 

Finally, the findings of a bove studies a re summari zed, followed by the discussion of 

their limitat ions an d fu t ure works. 
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Chapter 1 

INTRODUCTION 

Sequenti a l decision making is a fundamental task that a ny bio logical systems confront 

in in teraction with t he environment. It is important to note t hat a decision made at 

a time in sequential decision making has immediate as well as long-term consequences. 

Therefore, both consequences should be taken into account to optimize sequential de­

cisions. This poin t of considering bot h consequences is a fundamental problem t hat is 

found in any sequential decision making tasks. This problem is know n as temporal c1·cdit 

assignm ent problem [23, 72] . Adaptability of biological systems, including t he case of 

sequentia l decision making, is cent ra l to their intelligent behav iors, and occurs a t mul ­

t iple time scales from subseconds to life- long t ime a nd t he resulting ada ptat ion is a lso 

preserved over different time periods. T his capability is supported by multi ple memory 

sys tems. 



1.1 Working memory and the long-term memory 

for sequential decision making 

Basic fun ct ional components of any memory systems arc loading, stor ing (or maintain­

ing) an d retr iev ing. ln theory, it is possible to make any memory system adaptive by 

changing any of these components if such changing fits well with the aim of the adap­

tation . T he difficul ty of changing each of these compo nents, ho wever, va ries, depending 

upon type of a memory system, or the way of set ting these components in a memory 

system. 

One of the oldest and most widely accepted distinction of memory sys tems is the 

distinction between the short-term memory (STM), or work ing memory, and the long­

term memory (LTM) [68, 77] . Th is d ist inct ion corresponds with two di ffc rC' nt ways of 

maintaining information in memory: one active and the other latent [18, 66, 82]. An 

active memory storage, or the STM, maintains in formation as neural act ivities, or firing 

in neurons , so that the informat ion can be sto red only for re lat ively a short time. In 

contrast, a la tent memory storage, or t he LTM, embeds informat ion in phys iological 

parameters such as synapt ic st rength in which the information can be preserved for a 

long time [64, 66, 82]. This difference imposes di fferent const raints on the adaptability 

between the STM a nd the LTM in sequent ial decis ion making. 

Because neu ral activ ity by itself stands for sto red informat ion at a time in the STM, 

act ive in puts a re easil y confused with stored information. In order to resolve temporal 

credit assignment problem in the STM, therefore, it is very important to investigate 

how such neural act ivities t hat stand for the sto red information and the active inputs 

are maintained. The ftrst half of t hi s thesis focuses on this issue. It is investigated 

how active neural firings , activated by different input sources, shou ld be maintained and 

2 



stopped fro m a viewpoin t of dynamical systems. 13y jumping up to the proposal mad(' in 

Chapte r 2, it is di scussed that t he long-term maintenance and quick transition of neural 

act ivities are important in t he STiV! for sequent ial decision making. Sin ce it is somewhat 

confusing to have a term such as "long-term maintenance in short term memory (ST ~I )" . 

work ing memory will, by a slight abuse of terms , subst itu te for the ST~I throughout 

t hi s thesis in the following chapters. T he relationship between t he ST ~I and working 

memory is bricAy di scussed in Chapte r 2, and the defin ition o f working memory in thi s 

thesis is also stated in Chapter 2. 

The res t of the thes is is devoted to in vest igat ing the fun ct ions of the basa l ganglia and 

related em-tical areas in sequen ti a l decision making in relat ion to rci nforccnwnt learn­

ing. Learning by reinforcement signals is very common and fund amental for sequent ia l 

decision making in biological systems because the informat ion of a correct output given 

an input is not a lways avai lable. There is a framework of rei nfo rcement learning in 

machine learning to learn optimal sequent ia l decisions that maximi ze rewards from the 

environment . The fr amework of reinforcement learning fits well wit h t he characteri s­

tic of the LTM in tha t it prov ides a scheme to cha nge sy naptic weights t ha t a rc the 

carrier of sto red information in the LTM. The basal ganglia with related cort ical areas 

has been long known to be in vo lved in sequenti a l motor cont rol a nd has recently been 

recogn ized as being in volved in sequenti a l decision making. This study is a lso a natural 

extension of the recent hypothes is of Jl ouk et a!. [31] that reinfo rcement learning is a 

major function of the basal ganglia. In thi s study, an emphas is is made on t he relat ion­

ships of severa l fun ct ional loops of the basal gang li a for sequentia l decision mak ing. A 

model with a co ncrete a lgorithm is provided, based on the scheme. The performance 

of t he model is closely compared wit h recent experimental findings of Ili kosaka and his 

co lleagues [25,2 7,29,44,45], 

3 



1.2 Methodology 

The methodology used th roughou t t his thesis relies heavily on computer simulation. 

Artificial neu ral network techniques a re employed for the in vestigat ion of t he iss ues 

rai sed in t hi s thesis. Specifically recu rrent networks have been employed in Clutptcr 2 

and reinforcement learn ing has been employed in Chapter 7. For the genera l rev iew of 

art ifi cial neu ral network techniques, see [23, 24]. 

1.3 Overview by Chapters 

T his thesis is com posed as follows. 

In Chapter 2, the ro le of wo rking memory for sequential decision mak ing, or goal­

directed behav iors, is in vest igated . A specifi c requirement of working memory is pro­

posed for sequential decision making from a view of dyn amical systems. To embody 

the requirement , a mathematical analys is of a sigmoidal uni t in a recur rent network is 

provided. lt is shown through simula tions of foraging tasks by use of evolutionary pro­

gramming that the proposed requirement can emerge in recur rent networks that control 

the movement of a creature as a. functional necess ity for survi val in non -stat ionary en-

vironments. 

Chapter 3, 4, 5, 6 and 7 are devoted to in vest igate the fun ctions of t he loops of 

the basal gang lia in seq uential deci sion making. In Chapter 3, we briefly sum marize 

the inputs, outputs, and internuclear structure of the basal ganglia and several basal 

ganglia-thalamocortical loops. In Chapter 4, the framework of reinforcement learning is 

rev iewed, followed by the summary of computat ional models of the basal ganglia by other 

researchers based on this fr amework. In Chapter 5, first, the experimental paradigm de­

veloped by Hikosakaand hi s co lleagues, and the ir behavioral findings [25,27,29,44,45] are 
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summari zed. Second , neurophysiological findings on the st ri atum, the prcsuppl<'mentary 

mo tor a rea, a nd the supplementary motor a rea arc di scussed, including neurophys io log­

ical findings of Hikosaka laborato ry. These behavioral and neurophys io logica l findin gs 

form t he bas is for the hypot hes is in the next chapte r. In Chapter 6, computat ional 

elements of t he function s of t he basal ganglia loops in sequentia l decis ion makings arc, 

first, hypothes ized . Based on these com putationa l clements, a general fra mework of the 

acq uisition a nd retrieval processes in execution is, then , proposed. Third , a model im­

plementing an a lgorithm based on t he general framework is expl a ined. In Chapte r 7, the 

performance of the model is closely examined with t he ex per imenta l data of llikosaka 

and hi s colleagues. His shown that t he performance of simu lat ion of the model captures 

well t he characterist ics of their exper imental data in several aspects and predicts the 

behavior of t he monkeys in conditions tha t have not been experimentally tested yet . 

Finall y, t he findings of above studies are summari zed , and t heir limi tat ions and future 

work a re di scussed in Chapter 8. 
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Chapter 2 

NONLINEAR DYNAMICAL 

PHENOMENA IN WORKING 

MEMORY 

2.1 Introduction 

In th is chapter , t he dynamical characteri st ics of working memory for sequent ia l decision 

making are d iscussed . 

Before going into the detail s, it may be worth mentioning the general deonition of 

working memory in relat ion to the short-term memory (STM) along with the definit ion 

of working memory in th is stud y. In t he psychological li terature, t he STM is considered 

as reg istering a nd retaining incoming information in a highly access ible fo rm for a short 

period of time after the input [77]. The STM is traditionally dist inguished from t he 

sensory information sto rage in that while the the sensory information sto re is considered 

as mainta ining a rather accurate and complete pictu re of sensory inputs for a very short 

time period, which is shorter than t hat of the STM, the STM retains the immediate 
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in ierpreiai ion of evenis noi ifi ed by ihose sensory in puis [36] . \\"orking memory is pro­

posed as i he exiended concept of the STM and Baddeley [5] defines working memory 

as '·a brain system that provides temporary sto rage and man ipulat ion of information 

necessary for such complex cogni t ive tasks as la nguage comprehension, lea rning , and 

reasoning." An important feature of working memory, or the STM, is th a t it act ively 

stores information. ln t his study, t he te rm, working memory, refers to a mechan ism 

that stores information by neural act ivit ies, and t hat selects which informat ion should 

be stored based on t he currently stored informat ion a nd the current sensory inputs. 

As stated in Chap ter 1, neural act ivity is required for load ing, storing (main tai ning) 

and retri ev ing in work ing memory. There are two broad classes of models proposed 

for working memory from a viewpoint of (artifi cial ) neural network comm unity [82]. In 

one, ra pid tem porally-coo rdinated change of synaptic strength maintains neural aciiv­

ities in working memory [57] . In the other , recirculating neural activities by recurrent 

connect ions serve for t he main tenance of neural act ivities in work ing memory [81, 82]. 

In the latter scheme, which is in vest igated in t hi s stud y, it is di scussed that fi xed point 

at tracto rs play a role in short-term memory from a view of dynam ical system [81, 82] . 

Th is view roots in that when t here are fi xed point attracto rs, neural activ ity pattern 

that is close to one of the fixed poin t a ttractors at an initia l time converges to and 

stays with the pattern defined by the fixed poin t attractor in time. By t hi s phenomen a, 

neural acti vities can be temporally sustained ni cely as seen in ex perimenial resu lts of 

work ing memory [18] as well as modeling works [82]. In add ition , fixed att ractors can 

provide the robustness of neural act ivities in working memory against noise [4 J ,82] . The 

characterist ic of t he robustness is importa nt for working memory. Both of inputs and 

stored ent ity in working memory are neu ral activities so that stored information wou ld 

be easily interfered by inputs without such robu stness. 
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\\.hen we consider t he ro le of work ing memory in sequC'nl ia l dec ision making. however, 

it is not enough only to require such character ist ics. In seq uC'nt ia l dec ision making, a 

sensory information such as s ignaling t he ex istence of a prey at a time evokes a goa l. 

Presumabl y, the informat ion will be tempora rily stored in wo rking memory and guide t hC' 

animals to achieve the goal. fl owever, it is not a lways t rue that the sto red info rmat ion 

leads t he animals to t he goal, pa rt icul arly in a dynamicall y cha nging wo rl d, because 

t he environment may cha nge while the a nimals pursue t he goal. In such a case, t he 

informat ion, stored in the working memory to set a goal, should bC' d iscarded after a 

while. In ot her cases, another information, whi ch signa ls a poss ibly bette r goal, may 

come to the animals while t he pre-set sequence is performed to ac hieve t he pre-set 

goal. When, then, should the pre-set goal be still pursued o r di scarded to set anothe r 

goal, g iven such a no t her information? While it is important to have the robustness 

of stored neura l act ivit ies in wo rking memory, it is a lso important for another neura l 

act ivit ies to be eas ily loaded wi thout being compounded with t he pre-stored info rmation, 

if the former is more benefi cia l to be stored than the latte r. In other wo rds, neura l 

act ivities in working memory should have the dynamics of long-t erm maintenance and 

quick transition. It is essential to consider these requirements for the dynam ics of working 

memory in sequent ia l decision making. 

In the following sect ions, first, the dynamics of a network of sigmoid a l units with 

self-connections will be ana lyzed. It is shown t hat both long- te rm main te nance a nd 

quick transit ion can be achieved when the system parameters a re ncar a "saddle-node 

bifurca t ion" poin t . T hen, it will be tested if such a. dyna mical mecha nism can actua ll y 

be helpful for a. goa l-seeking behav ior of an autonomous agent in simul at ions of a for­

aging task simila r to t he one used in Nolfi eta.!. [50] . After o pt imi zing neura l networks 

t ha t control the movement of the agents by evolu t ionary progra mming, near saddle-

8 



node bifurcation behavior is robustly found under conditions that demand efficient usc 

of working memory. The result indicates that ncar sadd le-nod<' bifurcation behavior can 

emerge in the course o f evolution as a necessity fo r survival in non-stationary environ­

ments. P reliminary results for this study is reported in Nakahara and Doya [49]. 

2.2 Near Saddle-Node Bifurcation B ehavior 

vVhen a pulse- li ke input is given to a linear dynamical system, the ri sing and falling 

phases of the response have the same time constant. This mean s that long-tnm main­

tenance a nd qu ick trans it ion cannot be simultaneously achieved by linear dynamics. 

T herefore, it is essent ial to cons ider a nonlinear dynamical mechanism t.o meet these 

two demands. 

2.2.1 Dynamics of a self-recurrent unit 

First , we consider the dynamics of a single sigmoidal un it with the self-connection weight 

a and the bias b in a recurrent network as in the d iscrete state transit ion framework . 

y(t + 1) 

F(x) 

F(ay(t) +b), 

1 + exp(-x)' 

(2 .1) 

(2.2) 

where l denotes the time and y denotes the output of a sigmoidal unit , which is 

considered as neural activity. 

The parameters (a, b) determine the qual itative behavior of the sys tem such as the 

number of fixed points and their stabilities. As we change the parameters, the qualitative 

behavior of the system may suddenly change. This is referred to as "bifurcation " [20]. 
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One typical example is a "saddle-node bifurcation" in which a pair of fixed points, one 

stable and one unstab le, emerges. 

For example, as the bias b is inc reased in Equation (2. 1. ), the number of fixed points 

changes from one (Figure 2.1A), two (B), three (C), two (D), a nd then back to one (not 

shown). A saddle node bifurcation occurs when the state transition curve y(L + l) 

F(ay(t) +b) is tangent to y(t + 1) = y(t), as in the case of Figure 2.l Band D. 

Let y· be th is point of tangency. We have the following condition for saddle-node 

bifurcation . 

F(ay· +b) 

dF(ay +b) I 
dy y=y• 

y" 

These equat ions can be so lved, by not ing F'(x) = F(x)(.J - F'(x)) , as 

a 

b 

y·(l - y•) 
1 

p - ' (y")- ay· = p- ' (y")- --
1- y· 

(2 .3) 

(2 .4) 

(2.5) 

(2.6) 

By changing the fixed point value y· between 0 and 1, we can plot a curve in the 

parameter space (a, b) on which sadd le-node bifurcat ion occurs, as show n in Figure 2.2. 

T he system has on ly one stable fixed po int when t he pa rameters arc outside t he cusp 

(A) and th ree fixed points inside the cusp (C). A pair of stab le and unstable fixed points 

emerges or d isappears when the parameters pass across the cusp- like curve (B and D). 

An interesting behavior can be found when the parameters are just outside the cusp, 

as shown in Figure 2.3 (center). The system has only one fixed point near y = 0, but 

once the unit is act ivated (y ~ 1), because the trajectory "bounces" in the narrow 

channel between y(t + 1) = y(t) and the sigmoid activat ion curve, the unit stays "on" 

for many t ime steps and then goes back to the fixed point qu ickly. Such a mechanism 
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Figure 2 .1 

y ( t+l ) CASE A y(ttl ) 
CASE B 

/ 
/ 

0 . 8 / 0 . 8 / 
/ / 

0 . 6 / 0 . 6 / 
/ / 

/ / 
0 .< / o .• / 

/ / 

0 . 2 
/ 

0 . 2 
/ 

/ / 
/ / 

0 . 2 0 .< 0 . 6 0 . 8 
1 y( t ) 

0 . 2 0 .< 0 . 6 0 . 8 
l y ( t ) 

y(Ul) CASE c y (L+l) CASE D 

/ / 
/ / 0 . 8 / 0 . 8 

/ 
/ / 

0 . 6 / 0 . 6 / 
/ / 

/ 
0 .< / o.• / 

/ / 
/ 

0 . 2 / 0 .2 

0 . 2 0 .< 0 . 6 0 . 8 
1 y( t ) 

0 . 2 0 .< 0 . 6 0 . 8 
1 y ( t. ) 

Pigure 2.1: State t ransit ion diagrams of the self-recurrent unit for four di fferent cases. 

A: one fixed point near y = 0. B: a saddle-node bifurcat ion at y = 0.9. C: three 

fi xed points . D: another sadd le- node bifurcation at y = 0.1. In each g raph, a solid circle 

stands for a stable fixed point , an empty ci rcle for an unstable fi xed point , and an empty 

circle with a solid one in side for a saddle fixed point. 
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Figure 2.2 

Figure 2.2 : The bifurcat ion set in the parameter space of the self-recurrent unit. Saddle­

node bifurcat ion is seen on the cusp-shaped curve. There are th ree fixed points inside 

and one fixed point outs ide the cusp. 

12 



may be useful in sat isfy ing the requ irements of the dynamics in working memory for 

seq uent ial decision making: long-te rm maintenance and quick transition. 

2.2.2 Network of self-recurrent units 

Next, the dynamics of a network of the above self-recurrent units is examined. 

y;(t + l) = F[ay;(t) + b + L c;1 y1 (t) + d,x;(t)], 
j,j:f;i 

(2.7) 

where a is the self connection weight, b is the bias, C;j is the lateral connection weight, 

d; is the input connection weight, and x;(t) is the external inpu t. The effect of the sum 

of the lateral and external inputs 

tt; = L CijYj + d;Xj 

j,j#i 

is equ ivalent to the change in the bias, which s lides the sigmoid curve in the state 

transition diagram hori zo ntally without changing the slope. Therefore, we can analyze 

the behaviors of a multiple of units based on the single- unit behavior discussed above. 

For example, let us consider a case in wh ich a saddle-node bifurcat ion occurs at y 1 = 

0.9. From equation (2.6), the parameters for this case is a = 1.1.11 and b = b1 ~ -7.80 . 

As we increase b whi le keeping a constant, the system first has three fixed points as in 

Figure 2.1 C and then the lower two fixed points merge together at y = l -y 1 = 0.1 with 

the bias b2 ~ -3.31, which forms another saddle-node bifurcation seen as in Figure 2.1 

D. 

Let the bias b0 = -7.90 so that the unit is near sadd le-node bifurcation when there 

is no lateral or external inputs. If the input sum exceeds the threshold( OJ, i.e. tt; > 0 = 

b2- bo ~ 4.59, the lower fixed point at y = 0.1 disappears and the state jumps up to 

the upper fixed point ncar y = 1, quickly turning the unit "on" (Figure 2.3 left). As we 
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Figure 2.3 

y (t + l ) y(t~ll y ( t+l ) ·rc· ·r,.·~7 · ·r"J· 
lt:__ .ld_ lJ)_ 

, .•.•.• . ';f ( t ) " .•.•• ,ylt l / •. -y (t.) 

y ( t ) y ( t ) y(t ) 

:'j\ 
t)~ 

, , ,.Iime ( t) 

.L 
, , , ,;rime (t ) 

Figure 2.3: Temporal responses of self-recurrent units. Center: near sadd le-node bifur-

cation with a = ll.llll , b = - 7.9. Left: increased bias b = - 3.0. Right: decreased bi as 

b = - 9.0. 
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saw above. \\"hen the input is removed, the state slays ncar y = 0.9 for many time steps 

(Figure 2.3 center) . 

[[ there are inhibi to ry late ra l connect ions, the activation of the unit i ra ises thf' 

threshold for other units k # i as 0' = () - CkiYi, making it more difficult for other units 

to turn "on" . On the other hand , the time course of the act ivated unit i is a ffected 

very li ttle with the sub-threshold input to other units 1.: because t heir act ivity is kept 

low (Yk < 0.1 ). When there is a st rong inpu t to unit k t hat exceeds t he th reshold 

0', however , t he unit is turned '·on" and sends an inhibi to ry input to unit i, which is 

equ ivalent to a decrease in the bias . As a result , the act ivat io n o f thr unit i quickly goes 

down (Figure 2.3 right). 

2.3 Evolution to near bifurcation dynamics 

In the above section , we have theoretically shown the potent ia l usefulness o f near saddle­

node bifurcation behav ior for sat isfy ing the demands of the dynam ics in working memory 

for sequential decision making. We furth er hypo thes ize that such behav ior is indeed 

useful in animal behav io rs and can be found in the course of learning and evolution of 

the neural system. 

To test our hy pothes is, we simulated a forag ing task in which a creature seeks food 

111 a grid-like world (Figure 2.4 ), similar to Nolfi et a !. 's [50]. Our purpose in this 

simulat ion is to sec whether near bifurcat ion dynam ics discussed in t he previous sect ion 

can actually improve creatures' performance in a no n-stationary environment where 

selection and memory of sensory inpu t is necessary. Evolutionary programming [16] was 

used to optimize the recurrent network that cont rols the movement of the creat ure. 

F igure 2.4 shows an example of the grid-like world . There were a ce rtain number of 
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Figure 2.4 

Food is "invisible" 

\ Creature 
r~ ll 

~ 
I 

I 

[I 
~~ 

I 

Food is "visible" 

Figure 2.4: The foraging task in a grid-like world. Note that the shown example is not 

a 20 x 20 but a 10 x 10 grid-world. 
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food items in fixed positions which turned ,·isible or in,·isible in a stochast ic fashion, as 

determined by a two-state Markov system. A creature got the food when it reached the 

food , whether it was visible or in visible. When a food item was eaten, it was removed 

from that position and a new food item was placed randoml y. The size of the wo rl d was 

20x20 and both ends were connected as a torus. The amount of food a cre~tture found 

in a certain time period was the measure of its performance. 

2.3.1 The creature 

A creature had five visual sensors, each of which detected food with in a particular 45-

degree sector( Figure 2.5, top). The act ivat ion of each sensory unit was given by 

1 
X;= L ­

j Tj 

where r; was the distance to the j -th food item that was visible within the sector at a 

time. 

At each time step, the creature executed one of three motor commands: L: turn left 

(45 degrees), C: step forward , and R: turn righ t (F igure 2.5, middle). The action of the 

creature was controlled by a two layer neural network (Figure 2.5, bottom) . 

The dynam ics of each of five units in visual layer was given by 

y;(t + 1) = F(ay;(t) + b + L c;;Y;(t) + dx;( t)) 
j,j#i 

(2 .8) 

where y;(t) was the output of the visual unit at timet, a was the self connect ion weight , 

b was the bias, c;; was the cross connection weight, d was the input connection weight, 

and x;(t) was the external sensory input. Note that the self-connection a, the bias band 

the input weight d were the same for all units. 

Each of t hree units in motor layer coded the probability of taking one of the three 
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Figure 2.5 

Sensory Input: \ 
\ 

loodinvlslble \ 

0 \ 
Input= 1/r, + 1/r, 

r; :"dislance" ....-r
1 

............... 

'"""''"~~ L~ 
Creature 

I 
I 

Each unit in visual layer receives inputs 
from a certain angle(45 degree). 

Actions : 

,f: 

* 
~/ 
I ' '- ~/ 

Creature 

Three action s: 

Network Structure: 

l 

45 degrees turn left 
one step forward 
45 degrees turn right 

c R 

Motor layer 

Visual layer 

Figure 2.5: A creature's sensory input (Top) motor systcm( Middle) and network archi-

tectu re(Bottom). 
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motor commands (L, C, ll). Their output Zk was gi\'en by 

ek + Lfk;y,( l) , 

exp(vk(t)) 

L 1exp(v1(t))' 

(2.9) 

(2.10) 

where ek was the bias and fki was the feedforward connection wC'ight. Note that adding 

a uniform bias ek to all the units did not affect the output because of the normalization 

in equation (2.10). In order to avoid the redundancy. we fixed the bias of the center unit 

as e2 = 0. 

In general, t he t ime step of the internal operation of the netwo rk can be d ifferent from 

that of the external world. We chose two steps of inte rnal tim<' l, which co rrespo nded to 

one step of extern a.l timeT, i.e. 1' = 21. Th is allowed a n ind irect cfl'ect of sensory input 

through the lateral connection to be uti li zed in taking the next action. In addition, 

the activation pattern in visual layer was shifted when the creature made a turn, which 

should give the proper mapping between the working memory and sensory input at the 

next external time step. 

2.3.2 The world 

The cha racter ist ics of the wor ld were deter m ined by two sets of parameters: the food 

density and t he parameters of the Markov trans it ion mat ri x. We fixed the food density 

0.03, i.e. t here were 12 food items random ly distr ibuted in the 20x20 grid world. 

At each world time step, each food item took one of two states "on" and .. off'' (visible 

and inv isible) as g iven by a Markov system 

( 
P0 rr(T + I) l = ( 
Pon(T+ l ) (1 - Po) 

Po 
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where Pon (T) and P0 rr(T ) were t he probabilities that the food item was on a nd off at 

timeT, respectively. Note that the stat ionary dist ribution (P0 rr, Pa n) is g iven by 

- 1 - Pt 
p ff = -,-,-----,-----'-;-:-----,-

0 (1 -po)+( 1 - pt) 
and P. - J -po 

on-(l-po)+(l-pt)" 

Refer to Figure 2.6 to sec points in t he parameter space (p0 , p1) of t he J\ larkov transit ion 

mat ri x that were used in the simulat ion. 

2.3 .3 Evolut ionary p rogramming 

For the sake of simplicity, we put sy mmetric constraints on the con nect ion weights as 

follows . 

0 Ct c2 0 0 

0 0 C3 0 0 

(: 
h 0 0 0 l { C;j } = C,t Cs 0 Cs C,t {f;j } = h J, h 0 

0 0 CJ 0 0 0 0 ! 2 f t 

0 0 c2 Ct 0 

The bias for the motor uni ts was a lso sy mmetric (eL, ec, en) = (e, 0, e) . Therefore, each 

creature's network was characteri zed by the thirteen parameters (a, b, c1, •.. , c5 , d, e, f 1, ••• , f,1). 

A population of 60 creatures was tes ted on each generat ion. The performance was 

measured by t he number of pieces of the food a creature obtained in T = 400 t ime 

steps. Each of t he top twenty scoring creatures produced three offsprings; one iden-

tical copy of the parameters of the parent's and two copies of these parameters with 

a Gauss ian flu ctuation ~ N (0, 1.52 ). T hese t hree offsprings of each of the top twenty 

scoring creatures(3 x 20 = 60) , thus , become t he next gene ration, their performance was 

then measured , and it cont inued. In preliminary experiments, we generated the initial 

populat ion with random pa rameters whose range was [-10.0, 10.0] except for the inpu t 
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connect ion weight d. whose range was [1.0, 6.0]. Under most condition s, the population 

converged to a li mited ra nge of the parameter space after evolut ion. Therefore, in t he 

simulat ions below, a sma ll er ra nge of initia l para meters was used in o rde r to speed up 

convergence(See Appendix A). In t hi s paper, the resul t a fte r 100 generat ions is reported . 

2.4 Results 

2.4.1 Creatures' performance 

The performa nce of the creature a fter evolution under different environ menta l pa ra me­

ters (p0 , pi) is shown in Figure 2.6 . The radius of t he outer circle rep resents t he number 

of food items taken by the creature. Generally speaking, t he performance was lower as 

p0 (proba bili ty of food staying o ff ) was increased and as p1 (proba bility of food staying 

on) was decreased. Note t hat t he performance was different even among t he sets of t he 

environmen tal parameters (p0 ,p 1), which belong to the same stat ionary dist ribu t ion. 

To examine if t he recu rrent connect ions in t he creatures really cont ribu ted to t he 

improvement in t he performance, we tes ted the performance or reedforward network 

organisms, which was given by omi t ting the recurrent connections of t he creatures, in 

other words, by keeping a = c, ' .. . , Cs = 0. The performance o r t hi s given reed fo rward 

networks were al so opt imized by evolutionary programming. Note th at we did not t ry 

to obtain the opt imized feedforward net wo rk among any poss ible feed fo rward networks, 

for example, feedfor ward network wit h hidden layers, bu t rather tested t he performance 

of t he given feedfo rward networks in order to see if recu rrent connect ions had a role in 

improv ing the crea t ure's performance or not. T he rad ius of t he g ray d isc in Figure 2.6 

represents t he food taken with the feedforward network after evo lu t ion. Performa nce 

in the feedforward case was a lways lower than that in the recurrent case fo r each set 
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Figure 2.6 

pO 

Figure 2.6 : T he performance of the creat ures after 100 generations. Points in the 

parameter space (p0 ,p1), which are used for simu lations, are A = (0 .75,0.75), B = 

(0.5, 0.5) , C = (0. 125 , 0.125) , D = (0.875, 0.75) , E = (0.562, 0. 125), F = (0.875, 0.5) , 

G = (0.781,0.125), 11 = (0.888,0 .2), and I = (0.875, 0.125). At each point , the outer 

circle represents the performance in the recurrent case and the inner disc represents in 

the feedforward case. Oblique lines represent the parameters for the same stat ionary 

distributions: Pon (t) = 1/2, Pon(t ) = l / 3, P011 (t ) = 1/5, and P0 n(l) = 1/8. 
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of en,·ironmenlal parameters. The difference was more markcd as Jlo (probabili ty of 

food stay ing in visible) was increased and as p1 (probability of food slaying visible) was 

decreased. 

2.4.2 Convergence to near-bifurcation region 

The self-connect ion and bias parameters of top ten scoring creatu res under d ifferent 

environmenta l parameters a re shown in Figure 2.7. 

When either p0 was small or p 1 was la rge, the value of t he self-connect ion a was almost 

zero , as shown in Figu re 2.7 for t he .f\[a rkov parameter sett ing of D = (0.875, 0.75). 

Convergence to the reg ion of the parameters (a, b) similar to that of D was seen a lso in 

the case of A = (0. 75, 0.75), B = (0.5, 0.5), and C = (0 . 125, 0.125). 

As p0 was in creased a nd p1 was decreased, , in other wo rds, as t he environment 

became more severe, meaning that t he probability of food items keeping visible gets 

small and the probabili ty of food items keeping in vis ible gets la rge, the convergence to 

a region in the vicinity of the sadd le-node bifurcation boundary, which is called near 

saddle-node b ifurcat ion reg ion in t his study, became more prominent. Examples of such 

network parameters (a , b) are shown in Figure 2.7 F , 1-1 , a nd I. Note that p0 were a lmost 

constant in Figure 2.7 D, F , 11 , and l. It is clearly seen that the pa rameters found 

after evolution lie just underneat h t he saddle- node bifurcation cu rve. This was most 

prominent in the case of I, where p 1 was the smallest. 

2.4.3 Dynamics of activation 

We analyzed the dynamics of t he network that co nverged to the near sadd le-node 

bifurcat ion region in case of I in Figure 2. 7. Figure 2.8 shows the network dynami cs of 

the top-scoring creature. It is clearly seen that the unit in visual layer, especially the 
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Figure 2.7 
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Figure 2.7: The con vergence o[ t he network parameter (a , b) wit h d ifferent environmen-

ta l parameters (p0 , pl) of the Markov transit ion matri x. Top ten scoring creat ure's net-

work parameters are plotted in the bifurcation diagram. (Left :top ) D = (0.875, 0.7.5). 

(Right :top) F = (0.875 , 0.5 ). (Left: bottom) If = (0.888, 0. 2) . (Right : bot tom ) I = 

(0.875 , 0.125). 
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Figure 2.8 

I\ A A j .b 

I~ 
I\ A 

1 ..... -. A ,., /'. 

I ~ A A I , 

C ... 

Figure 2.8: Examples of the creat ure's act ivat ion dynam ics in t he simu lated environment, 

I = (0.875, 0.125) . y1 t hrough y5 ind icate outputs in visual laye r. L, C, and R indicate 

outputs in motor layer, correspond ing to each of motor commands, "turn left", "step 

forward" and "turn right" respect ively. DoLLed li nes of un its in visual layer represent the 

external input . Arrowheads at the Lop of each visual uni t indicate that the activation of 

units in visual layer is shifted according to the creature's turn. Dots at the Lop of each 

motor unit show that t he co rresponding motor command is chosen at that Lime. Large 

dots on the horizontal axis of C show t hat the food is obtained at that Lime. 
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.. center·· unit y3, functioned as a source of working memory. \\"hen enough input came 

into a non~ ce nter uni t, e.g . y2 at T = 40, it quickly tu rned on a nd y3 was immediately 

suppressed. The act ivation of y2 in visual layer was propagated into units in motor 

layer so that the creature made a left turn. According to ou r ass umption , then, the 

activation of y2 was shifted to y3 and it remained act ive for several time steps. It should 

be emphasized that the near bifurcation behavior of the unit y3 rea li zed the l ong~ term 

maintenance and quick transition with the help of interact ion with other uni ts. 

It was sometimes observed that the dynamics of the visua l layer units did not reali ze 

near saddle~ node bifurcat ion behavior. This is partly beca use the fun ct ion of working 

memory could be realized not on ly in visual laye r but a lso in motor la.ye r. With a large 

nega.t ive bias e in motor la.ycr, the choice of motor comnmnd could be st rongly biased 

as "center", that is, "step forward " . In th is case, once a. creat ure would detect the food 

far a.wa.y a.nd ma.ke a. turn towards the food , a creature would not have to remember 

the direct ion of food. [n other words, without the long~term ma.in tena.ncc of memory in 

visua.l la.yer , a creature cou ld usc its body direction a.s the working memory using the 

fact tha.t the defau lt choice of motor command was to go straight a.hea.d . 

2.5 Discussion 

Fixed point a.ttra.ctors ma.y pla.y a. role in working memory a.nd ca.n g ive the robustness 

to working memory a.ga.inst noise. lt is not enough , however, only to req uire working 

memory to maintain informat ion , or to ha.ve such robustness, when working memory 

is considered in re lat ion to sequen ti a l decision ma.king, or goa. l ~ direcled behaviors. It is 

importa nt to consider the dynamics of neural activities in working memory for sequen tial 

decision making a.nd , in this st ud y, the characteri st ics of long~tcrm ma.intena.nce a.nd 
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quick transition is proposed as cruc i ~l. Such dynamics can allow biological systems to 

stay fo cused on a goa l, even if it isn't currently visib le, and also to be able to switch 

quickly to another goal if the new one is likely to be more va lu abiC' or if the pre-set goa l 

turns out to be not a good one after a while. It is very difficult to obtain such dynamics 

in linear dynamics in general. 

We mathematically analyzed the dynamical character ist ics of a self- recurrent sig­

moida l unit with a bias. It was shown that both long-term maintenance and quick 

transition can be realized near a sadd le-node bifurcation. The behavior of a network of 

such recurrent units can be analyzed by considering inputs as the change in t he bias. 

Near sadd le- node bifurcat ion behavior can be cons ide red as a candidate o f the dynamics 

in working memory for sequenti a l dec ision making. 

By the simulat ion of food-forag ing tas ks, we tested our hypothesis , whi ch posits t hat 

the dynamics of long-term maintenance and quick transit ion in wo rking memory is im­

portant and valua ble in sequent ial decis ion making. Ne ura l networks that cont rolled 

the sequential decisions of creatures in t he tasks were opt imized thro ugh evo lutionary 

programming. It was shown that the performance of the creatures was lower as the 

probability (Po ) of food stay ing in visible was increased and a.s the proba bility (p!) of 

food staying visible was decreased , regard less of whether the environmental parameters 

(po ,p, ) belonged to the same stat ion a ry di st ribution. In compari son of the performance 

of the feed forward networks t hat was given by omitting recurrent connections, the perfor­

mance of the recurrent network was a lways better than the feed forward ones. Therefore, 

it can be concluded that t he recurrent connect ions contr ibu ted to the improvement in 

the performance of creatu res. In other words, a memory provided by recurrent connec­

t ions played a. role in t he creatu re's per formance, alt hough it is yet unclear whether the 

recurrent nature of connect ions or just add itiona l number of connections have criti cally 
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contribu ted to the performance. 

The convergence of the self-con nect ion and bias of neural network organisms to the 

near sadd le-node bifurcation region did not occur under a ll conditions of tested en­

vironmental parameters. However, the convergence became more prominent as the 

environment became more severe, that is, as the probability (p0 ) of the food slaying 

inv isible was increased and as the probability (p 1 ) of the food staying visible was de­

creased . It should be noted that the convergence of neural network organism to the near 

saddle-node bifurcation region was not direct ly des igned in the s imulation , but emerged 

indirectly in the opt imization process of evolutionary programming in interaction of the 

given non-stationary environment. The difference of the performance between the re­

cu rrent networks and the aforementioned feedfo rward networks became more prominent 

as the probability of the food staying in visible was in creased and as the probability o f 

the food staying visible was dec reased . By examining the actual dynamics of neural 

network in t he task, whose parameters of the self-connect ion and bias converged to the 

near sadd le- node bi furcation region , it was shown that there tru ly ex isted the long-term 

maintenance and quick tran sition in the network dynam ics. These results may imply 

that near saddle-node bifurcation behavior helped a creature's sur vival pa rticu la rly as 

t he environment became severe, and furth er that th is dy namics in working memory may 

be an emergent fun ct ional property in evolving neural systems t hat enables them to d<'al 

with a dynamicall y varying world such as the non-s tationary environment as given in 

the simulation of this study. 

In this study, the long-term maintenance and quick transition is regarded as crucial 

requ irement of the dynamics in working memory for sequent ial decision making, or 

goal-directed behaviors. This requ irement is in troduced by cons idering two opposing 

demands such that information should be stored against noise as well as t he sto red 
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informat ion should be quickly disca rded in some cases so that ot her better information 

can be loaded quickly without being confused with the pre-sto red information. In this 

view, working memory is concerned not only with maintaining informat ion but a lso with 

select ing which informat ion shou ld be loaded. If t here a re other ways to deal wit h t hese 

two opposing demands, t he lo ng- term maintenance and quick tran sition may not be 

necessarily required in working memory. T he case slated in t he sect ion 2.4.3 is such an 

example, in which t he dynam ics of the visual layer units did not r('a li zc ncar saddle-node 

bifurcation behav ior. In thi s case, t he motor layer with the st rong bias of "step forward " 

let a creature use its body direct io n as mainta ining information, that is, t he direction 

to a food item. 

Limitat ions and futu re works o f thi s study will be di scussed in C hapter 8. 
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Chapter 3 

BASAL GANGLIA IN RELATION 

TO SEQUENTIAL DECISION 

MAKING 

The role of working memory in seq uent ia l decision making is in vest igated in the previous 

chapter, specifically focusing on the dynamics of neural activity in working memory. In 

the long-term memory (LTM), information is stored by phys iological para meters such 

as synaptic strength. The maintenance of the information in the LTM, therefore, is 

more stable than in working memory and informat ion in the LTM plays an important 

role in sequential decision making. In the rest of the thesis, the fun ct ions of the basal 

ganglia and related cortical areas for sequent ial decision making are investigated. The 

aim of this chapter is to provide accounts for this study as well as the brief review of 

the basal ganglia and its loops with the cerebral cortex . The overview of th is chapter 

and following chapters is given in the en d of Sect ion 3.1. 

There are a variety of conceived classifications of the LTM systems. One cl assificatio n 

includes semantic memory, declarative memory, and proceduml memory as part of the 
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LTi\1 memory from a psychological point of view [77]. Among t hC'se. for example, the 

procedural memory system is referred to an action system: "'its operations a re expressed 

in behav ior , independent ly of any cogn ition. Skillful performance of perceptual-motor 

tas ks and conditioning of simple st imulus-response connect ions a rc examples of tasks 

that depend heav ily on the procedural memory" by Tulving ( 199 1,pl2 .) [77] . Very 

simi la rl y but not ident ically, skills and habits in one classification ar<' termed in Squire 

eta!. (1993, p471.) [68] as: 

Skills are proced ures (motor, perceptual, and cognit i1·e) for operat ing in 

the world; habits are di spos ition s a nd tendencies that are specifi c to a set 

of stimuli and that guide behavior. Under some ci rcumsta nces, skill s a nd 

hab its can be acqu ired in the absence of awareness of wl1<1t has been lear ned 

and independently of long-term declarat ive memory for the spec ifi c episodes 

in which learning occurred. However, many skill-like tasks are a lso amenable 

to declarative learning st rategies. 

Thus, whi le the classificat ion of long-term memory systems provides us with the 

ground for furth er invest igation , the di st inction of classifiers, as well as the cor respon­

dence of behaviors wit h these submemory systems, are st ill un der the in vest igation and 

dispute. In addition , little is yet known a bout the correspondence of these submemory 

systems with underly ing neural mecha ni sms in particu la r from a. computat ional view­

point. Furthermore, the term of sequenti a l decision making in general is a broad term 

and includes a variety of our daily activ ities such as play ing chess, playing the piano, 

and writing a Ph.D. thes is. 

Therefore, the strategy taken in th is thes is is to in vest igate the functions of a specifi c 

subsys tem of underly ing neural mecha ni sms for one of the LTM systems in a specifi c 

type of sequential dec ision making. In th is study, the funct ions of the basal ganglia 
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and related cortical areas are exam ined for ski ll s. one of sequ<'ntial deci sion makings, in 

relation to reinforcement learning. Roughly speaking . skills arc composed of sequentia l 

movements to so lve frequently experi enced tasks and are acquired in a long run. Note 

that, in the learn ing of such sk ill s, learning by reinforcement signal is ve ry common 

because information for a desired output given an input is not always avai lable. T he 

basal gangli a can be cons idered as in vo lved in reinforcement learning of such skills [31]. 

3.1 Introduction 

This sect ion aims to state t he purpose of this study as well as the ground for issues in ves­

tigated in terms of the LTM in the fol lowing chapters. For this purpose, the behavioral , 

neuroscientific, and computational accounts are provided below in their order. 

Behavioral Accounts 

Skills are composed of learned sequent ial movements. For example, to swing forehand 

in playing tennis, a player should move hi s body to an appropriate place in he lp of his 

perceptual system that follows a trajectory of a coming baiL While moving hi s body to 

a place, he should prepare to hit the ball and start to swing a racket at an app ropriate 

timing, in help of his perception of the balL To play well, each of joint movements should 

be coord inated well with each other and with a trajectory of a coming baiL If he were 

a novice, the coordination of his perceptual , cogn iti ve, motor system may not work well 

to play yet. After hitting the ball, the player can see how wel l or bad his current play 

was. Using this informat ion , the player tries next play. By repeating these processes 

many times in a day and/or across days, the player develops his ski ll s and becomes an 

expert player. 
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Elements of t hi s kind of processes can be schematica ll y cou nted as fo llows: 

1. Multiple lime scales in the development of skills: Skill s a rc eventua ll y developed 

by its occasional bu t frequent ex periences in a long run. Yet , its improve ment 

occu rs at a multiple t ime scales: relat ively short (in a day in the above exalllple) 

and relat ively long (across days). 

2. 1/ierarchical nature and context-dependency: Some parts of sequent ia l movements 

can be transferred to another sequent ia l movement . For example, parts o f the 

skill in t hrowing a baseball can be of help for learning the se rve at te nni s. At the 

same t ime, there could be in terference between such parts as wel l. Thus, there is 

a hiera rchica l nature in acq ui sit ion and execut ion of skill s . Thi s a lso means that 

the appropriateness of the retrieval of a part from the long-term memory depends 

on the context, or what a skill is being performed and what a goal is being aimed 

by th is skill. 

3. Continuity between acquisition and retrieval in execution: Skills are improved over 

a long t ime. The acq ui sition process gradua lly occurs in t he execut ion process , 

for example, during playing tennis. At the same time, in t he execution process, 

the learned informat ion in the LTM shou ld be ret ri eved to use. In addit ion, what 

aspects of skill s to be focused should be different , depending upon what has been 

a lready acquired , that is, t he information in LTM. Thus, t he acqu isitio n and re­

trieval can not be isolated in the execution process. 

4. Learning type: Learn ing of skills is often a type of learning by ninfo rcemcnl sig­

nals: a learner gets a signal, which is a scalar , to tell how good or bad s/he did 

but not the signal to te ll what was actua lly supposed to do . In the framework of 

art ifi cia l neural network , the type of learning by reinforcement signa l is call ed ,-e-
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inf o7'ccmentleaming. If a learner wo uld rccei,·e the signa l to tell what was actua lly 

supposed to do , which is usually a vecto r re presentat ion in t he framework, il is 

called supen;ised learning. Reinforcement lea rning ( RL ) is pa rt icul a rl y importa nt 

in terms of sequential decision making, because it often ha ppens t hat a learne r 

can 't have a ty pe of signa ls of the supervised learning in pa rti cular in ea rl y stage 

of learning , a nd further because there a re t he te mpora l credi t ass ignment pro blem 

so that it is often the case in whi ch reinforcemen t sig nal s arc a t most available a t 

each time when a learner makes a decision. As t he learner ex peri ences t he world , 

the learner accumulates knowledge a bout wha t is supposed to do, and then , it 

becomes poss ible in theo ry to have a ty pe of supervised learning. In ad di t ion, it 

would be des irable to sto re strategies of ce rtain sequenti a l decision making th a t 

a re often required in the LTM and then it a llows the learner to cha ll enge more 

complex problems. 

llikosaka a nd his colleagues developed a new ex perimenta l pa radigm to examine se­

quent ia l decisio n making [25]. Their ex perimental paradigm fit s we ll wit h behav iora l 

requirements stated a bove in t he investigation of sequenti a l decision making, or sequen­

t ia l movements. In addition , their expe riments include blocking specifi c por t ions o f the 

brain so tha t they present in teresting clues to in vest igate behav iors wi t h underl ying 

neura l mecha ni sm. 

Neuroscientific Accounts 

T he basal gangli a has long been known as being in volved in motor control [33]. T he 

basal gangli a is a lso know n to have a role in cog ni t ive fu nct io ns accord ing to stud ies on 

the brain di seases such as Parkin son 's and Hun t ington di seases [54]. l t is no w widely 
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accepted that the basal ganglia is im·oh·ed in a wide variety of beha,·ioral functions. 

including cognit ive, motor, and motivational function s [4]. A striking characteristic of 

the basal gangli a is that the basal ganglia receives tl1<' projections from almost tl1<' en­

tire cortex and t hen projects back to a wide range of the frontal cortex via thalamus. 

This convergence leads many researchers to be in trigued by its functional roles and to 

regard the basal gang li a as functioning action selection process as well as its acquisi­

tion. However, it has not been much known about its actual computation yet from a 

computational viewpoin t. 

lt is conceived that there are at least four basal gangl ia-thalamocorti cal circuits [:3]. 

Among them, the motor, ocu lomotor, and dorsolateral prefrontal circuits are of intcrest 

in this study. Even t hough a multiple of circuits arc conceived in re la.tion to the basal 

ganglia, the functional relationship among these circu its has not been invcstiga.tcd much 

from a. computat ional viewpoint . One of the purposes of this study is to provide a. 

computat ional accou nt on the functional relat ionship among these circuits in terms of 

sequential decision making. Because of the characterist ics of connect ions from and to 

the basal ganglia, the function s of the basal gangli a should not be considered in isolation . 

Among the motor , oculomotor, and dorsolateral prefrontal circuits, the motor circuit 

is particularly interesting to us in terms of sequent ial decision mak ing, that is, sequent ial 

movements. It should be noted that both of the basal gangl ia and the cerebellum are the 

major constituents of two important subcort ical loops of the motor system (Figure 3.1). 

While the loop of the cerebellum is closed o nl y with motor cort ical areas, the loops of 

the basal gangli a. arc connected not only with motor cort ical areas but also with frontal 

cortical areas, which are cons idered as involved in higher order, or cogn itive aspects, of 

motor movements. Thus, the cerebellum is more directly related to motor movements 

per se such as transforming Cartes ian representations of external objects to kinematic 
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Figure 3.1 

Dorsolateral prefrontal 
area (DLPF) 

Presuppliment:uy motor area {pre·SMA) 

Supplimcnta ry motor area (SMA) 

Premotor area (PMC) 

Primary motor area (Ml ) 

Figure 3.1: Two major subco rt ical loops o f t he motor system: the loop of t he basal gan-

gli a and the loop of the cerebell um. Some co rt ical a reas a re indicated as well. Ada pted 

from 
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representations, whereas the basal gang li a is more invol ved in rognit i1·e aspects of motor 

movements [33] . In t hi s study, the computat ions that are supposed to be more related 

to the ce rebellum a rc omitted, which enables us to focu s t he fun ct ions in relation to the 

basal ganglia-t halamocorti cal loops. 

Among the cort ical areas included In t he motor circuit , the supplementa ry motor 

area (S~ IA ) and the presupplcmentary motor a rea (pre-S l\IA ), which has been rccently 

di ssociated from the SMA [39,4 0], are of particular interest (P igurc 3. 1 ). His becausc the 

SMA has been known to be important in programming motor sequen ces [33 , 74]. Since 

the di ssociation of the pre-S MA from t he SMA has been proposed recently, there remain 

much to be inves tigated in terms of t he dirfcrence of t heir fun ct ions. Shima ct a l. [67], 

however , ha ve shown very recently in their experi ment that the prc-S MA is in volved in 

error co rrecting activity. Hikosaka and hi s co ll eagues have a lso very recen tl y shown in 

their experiment that the pre-SMA is in vo lved in the acqu isit ion process in t he early stage 

of learning in their task (Miyash ita et a l. [46 ,47],!Iikosaka et, al. [28],Sakai et a l [56]). 

Hence, from a computational viewpoint , it is very interest ing and importa nt to identify 

their functional roles in relat ion to those of t he basal gangl ia. 

Furthermore, Schu ltz and hi s colleagues recent ly sho wed in their exper iments [42, 

43,58 63] that the respon se of dopamine neurons in the su bstantia nigra pars com pacta 

in the basal ganglia shifts from primary reward to condi t ioned stimuli that pred ict 

reward as t he condi t ioning establishes. This natu re of responses of dopamine neurons is 

particular ly interest ing from a computational viewpoint. Because it may provide a clue 

to invest igate the learning process of sequential movements in t he basal gang li a, a long 

with the framework of reinforcement learning in machine learning (and a rtifi cia l neu ra l 
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networks). 

Computational Accounts 

As di scussed in behav ioral accounts , a type of learning by reinfo rcement signal s 

is common and fundamental in sequential dec ision making of bio logica l systems. A 

framework of reinforcement lea rning in machine learn ing can provide a basis for such 

learning [6, 7 1, 75]. 

Along with experimental findings of Schultz and hi s co lleagues [12,43.58 63], 11 ouk 

et al. [3 1] a nd others (e.g . Barto [7]) have recen tly hypothesized that dopamine JH'U ­

rons may encode tempora l difference error in the framework of reinforcement learni ng. 

Although their hypothes is is a good start ing poin t, the detailed co rrespondence of the 

circuitry of the basal gang lia and its computat ion of re inforcement learning still remains 

to be inves tigated in particular in terms of sequential deci sion making. These models 

lack the close comparison of the performance of their model with the actual behaviora l 

data. Doya [14 , 15] in vest igated t he in tegrat ion of function s between the basal gangl ia 

and the cerebellum with an emphasis on the motor control. Bern s et a l. [1 0] proposed a 

compet ition scheme for the act ion selection in the basal gangli a in relation to reinforce­

ment learning with an emphasis on the dorso lateral prefrontal circuit. Their mod I lacks 

a close compari son of t he performance of their model with the behavioral data in te rms 

of the sequential movements. In contrast with these computational models stated above, 

the compu tational model proposed later in th is study rather focuses on the interact ion 

of the basal ganglia-thalamocortical loops in terms of the behav ioral aspects of the skill s, 

discussed before, rather t han on the function s of the specific loop or o n the functions of 

motor cont rol by itself. 

The exper imental paradigm of Hikosaka a nd hi s colleagues [25,27- 29,37,38,44 47 ,55, 
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56] is rather complex among currently available experiments for the in vestigation of the 

acquisition , storage, and retrieval of sequent ial movements, along ll'ith the compari son 

of behaviora l results with underlying neural mechanisms. T hus, the close examination 

of the model with their findings will prov ide unique opportunity in the investigation of 

unde rlying neural mechanisms in sequential movements from a. computationa l viewpoint. 

The overview of t he rest of this chapter and following chapters is as follows. In the 

rest of t hi s chapter, the basal gangl ia , t he basal gangli a-tha lamocort ical loops with re­

lated cort ical areas, and the pro fil e o f neural act ivities o f dopamine neurons a rc br icny 

reviewed. In the next chapter, Chapter 4, the framework of reinforcement learn ing is 

brieAy summari zed, followed by the discussion of computational models of the basal 

gangli a and related portions of the brain based on this framework. In Chapter 5, the 

experimental paradigm of Hikosaka and hi s coll eagues is ex pla ined a nd the behavioral 

findings in their exper iments are first examined. We, then , closely examine neurophysio­

logical findings of the basal gangli a and related portions o f t he brain, incl ud ing findings 

of Hi kosaka and hi s co lleagues. In Chapter 6, based on rev iews and d iscuss ions in these 

above chapters, the elements of functions of the basal-ganglia thalamocortical loops for 

sequential decision making is first hy pothes ized. A genera l fram ework of the acquisit ion 

and retrieval processes in execution , then , is proposed. At last, a model implement ing 

an a lgorithm based on the general fr amework is provided. In Chapter 7, t he simulation 

with t he model is employed. The performance of the model is investigated in compari son 

with experimental findings of Hikosaka. and his co lleagues [25 ,27- 29,37,38,44 ·47,55,56]. 

T hi s enables us to invest igate the function s of the basal gangli a and re lated cortical 

areas in sequential decision making in close comparison with the behavioral data. 
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IL 

3.2 The basal ganglia consists of five nuclei 

The basal ganglia cons ists of five large subcort ical nuclei: caudate nucleus (C D), puta­

men (Pt) , globus pallidus (GP), subthalamic nucleus (ST N), and substan tia nigra (SN) 

(See Figure 3.2). The globus pallidus is divided into two parts: t he intcmal segment 

and the external segment. The su bstantia nigra is divided into tll'o parts: substant ia 

nigra pars ret iculata and substantia nigra pars compacta. The in tcmal segment of the 

globus pallidus (G Pi) and the substantia nigra pars reticulata (SNr) ca n be considered 

as a single st ructure because of the striking similarities in cyto logy, connect ivity, a nd 

fun ct ion of the GPi and SNr [33] . The ca udate nucleus a nd putamen arc composed 

throughout of identical cell types and arc fu sed anter iorly [33]. Toget her tlw C D and Pt 

are ca lled the striatum. 

3.3 Inputs to the basal ganglia 

Almost a ll of the afferent connect ions to the basal ganglia terminate in the striatum. The 

str iatum receives input from two major sources outs ide t he basal ganglia: the ce rebral 

co rtex and the intra lamina r nu clei of the t ha lamus [33] . The corticos triate project ion 

consists of t he most important input to t he basal ganglia. H shou ld be noted that the 

co rti cost ri a te project ion contains fibers from the entire cerebral cortcx :moto1·, senso1·y, 

association, and limbic areas. All these project ions are topograph ically organized as well 

as project ions from the in tralaminar nuclei of the thalamus [69] . The STN also receives 

the projections from the prefrontal, premotor, and motor cortical a reas [4]. 
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Figure 3 .2 

Basal ganglia 

Caudate nucleus 

Globus pallidus 
External segment 
Internal segment 

Substantia nigra 

Figure 3.2: This coronal sect ion shows the basal gangli a in re la tion to sur rounding 

st ruct ures. Adapted from Kandel with modificat ions. 
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3.4 Outputs from t he basal gang lia 

The major outputs of the basal ganglia projects from the GPi and SNr to three nuclei in 

the thalamus: the ventmllateml nuclei, the ventral anterior nuclei, and the mediodorsal 

nuclei [33]. The SNr projects to the intermediate layer of the superior colliculus (SC'). 

The GPi has an additional projection to the centromcdian nucleus of the thalamus [33]. 

The portions of the thalamus receiving inputs from the basal ganglia project to the 

prefrontal (PF), premolar (PMC), supplementary (SMA), presupplcmcntary (pre-S ~ lA ), 

and motor (Ml) cortex [33]. 

3.5 Internuclear connections In the basal ganglia 

The circuitry of the basal ganglia is schematically shown in Figure 3.3. There arc 

conceived two major pathways through the basal ganglia: direct and indirecl pathways [4, 

33]. The direct pathway is the project ion from the striatum to the G Pi and S r, which 

then projects back to the thalamus. The indirect pathway is the project ion from the 

striatum through the GPe then STN to GP i and SNr. 

The output from t he basal ganglia, or the GP i and SNr, is mediated by t he inhib itory 

connection to t he thalamus. Inhi biting th is output works to disinhibit t he output of the 

thalamus to the cortex, which excites the cortical act ivities and results in behavioral 

movements. Thus, the direct pathway is regarded to facilitate movements by inhibitory 

connection from the striatum to the G Pi and SNr. In contrast, the indirect pathway 

is considered to decrease the excitation in the cortex because the connections from the 

striatum to the GPe work to suppress the inhibition by the GPc on the STN, which has 

the excitory connection to the GPi and SNr [33]. 

Dopamine neurons in the SNc projects primari ly to the striatum, both of the CD 
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Figure 3.3 

Globus pallidus 
external segment 

Subthalamic 
nucleus 

Dopamine 
Striatum 

(acetylcholine) W'/////N///U///HINI//1'1/I/1'/1~ 

~ I r---...IJL-----, 

t;I.I//1////1/HN/F//I//1//FI////I'Ifl/ Substantia nigra 
~ t ~ pars compac a 
't/ 

Globus pallidus 1 Substantia nigra 
internal segment 1 pars reticulata 

Excitory 

ll.fllllll/111/llll Inhibitory 

Pigu re 3.3: Schematic diag ra m of the in tern uclear connect ions in the basal ganglia, 

which is modifi ed from t he diag ra m in Kandel ct a l. (1991 p653) [33). T he gray arrow 

stands for t he inhibi tory connect ions, whereas t he black arrow stands for the cxcitory 

connect ions. 
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and Pt. The loss of dopami ne neu rons arc known to contribute to the symptoms of 

Parkinson's di sease [33]. As exam ined in detai l later. the do pamine neu rons a rc regarded 

to con tri bute to reinforcement learning th at occurs in the basal ga ngli a- th a la mocort ica l 

loops. 

3.6 Loops in relation to the basal ganglia 

A strik ing characterist ic of t he basal gangli a is t ha t it has t he project ions from a lmost 

the ent ire co rtex . The influence of these project ions goes back to most co rti cal a reas 

of t he fronta l cortex t hrough t he th a lamus [4, 33] (Seeo Figure 3.1) . T hough it is yet 

to in vest igate for a fu ll un dersta nding of fun ctional roles of these connect ions, the re are 

conceived a t leas t fou r or fi ve circuits on these " basal gang lia- th a lamocortica l" loops [4, 

33] . Among t hem, we briefl y rev iew t hree circui ts : t he m otor circui t, t he oculomolo1· 

circui t, and t he dm·solateml]n·ej?-ontal circui t. 

3.6.1 Motor circuit 

Motor circui t is important in the stud y of t his t hes is because thi s circui t is much in vo lved 

in bot h of acqu isit ion and execut ion of sequenti a l movements. In the motor circui t, mos t 

of t he projections to the basal ga nglia origin a te from the primary motor co rtex (M I ), the 

premotor a rea (P MC) , the supp lementa ry motor area (SMA ), a nd the presupplementary 

motor a rea (pre-SMA ). There a re a lso the projections from t he primary somatosensory 

cortex (S l ) and from the somatosensory associat ion cortex [4] . T hese project ions prin ­

cipa lly termina te in the putamen (P t), in pa rt icula r the bulk of the putamen, apart from 

its most rost ra l and caudoventra l extensions [4]. Then thro ugh t he th a lamus, t hese pro­

jections in the motor circuit a re proj ected back primarily to the SMA and PM C, and to 
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~!1. The S~ lA, PI\!C, and i\ 11 arc reciprocally interconnected with each other. 

Among motor corti cal a reas, many cell s of i\11 are known to be closely related to spe­

cific muscular movements and to the degree of force exerted by the muscles [33]. Though 

it is st ill under extensive di scuss ion , one of the prominent view on t he re lat ionshi p be­

tween t he SMA and the PM C is the t heory that the SMA takes part in self-initiated 

or internally-guided movement whereas the PMC is in vo lved in movements t ri ggered by 

sensory inputs [73]. Among six ev idences of supporting thi s hypothes is in Tanji [73], it 

is noteworthy t hat (1) major subcort ical inputs to t he SMA via the t halamus arc from 

the basal gang lia, whereas the PI\!C receives predominant inpu ts from the cc rcbdlum; 

(2) As corticocortical inputs, t he PM C receives visual informat ion from t he parietal and 

prefrontal cortex, whereas the SMA receives primarily somatosensory informat ion from 

the parietal cortex, and limbic inputs from the cingulate cortex; (3) The patients wit h 

the lesion including the SMA had difficulties in performing sequential limb movements 

without externa l guidance by sensory information ; (4) Roland eta!. [52] has shown th a t 

when the subjects are asked to rehearse finger sequential movements, the blood fl ow 

increased locall y in the SMA, not the P _1C, whereas when the subjects performed t hese 

movements, the blood flood increased in both of the SMA and PM C. In addition to 

evidences li sted above, Ha lsband et al. [21] found that the SMA is much related to the 

retrieval of correct movement or motor sequence from memory. Thus, it can be consid­

ered that the SMA is primarily in volved in in ternally-generated sequent ia l movements, 

whereas PMC is primarily involved in movements triggered by sensory inputs. 

Note that it is recently proposed that the rostral part of t he SMA is termed as 

the presupplementary motor a rea (pre-SMA ), whereas the caudal part is redefined as 

the SMA proper, according to different physiological and anatomical characteristics of 

neurons between t hese areas [40], though some controversy st ill remains as to the exact 

45 



boundaries of the S~IA [i3]. \Ve follow this terminology through the entire tlwsis. For a 

detailed discussion, see Tanji [73], Luppino et al. [:39], and Bates and Goldman-Rakic [8]. 

The SMA and the pre-Si\ IA are reciprocally connected. While not the pre-SMA but the 

Si\IA is connected with Ml, the pre-SMA, not the SMA, is connected with the prefrontal 

cortex (around the principal sulcus) [40, 73]. 

latsuzaka et a!. [40] found that the pre-Si\IA contains a sign ifi cantly higher pro­

portion of neurons with (l) cue responses, (2) preparatory activity, and (3) time-locked 

activity to movement trigger signal rather than the SMA proper. llalsband et al. [22] 

ha,·e done the experiment in which monkeys have performed the combination o f thre<' 

simple movement as a sequence under two experimental conditions: internally-generated 

(memory-gu ided) and externally-triggered conditions. Neural act ivities in the SMA , 

pre-SMA, PMC and Ml are analyzed in relation to time periods of one trial, which arc 

classified as inslTuclion, delay, ]n·emovemenl, movement and reward periods. Their re­

sults suggest that the pre-SMA neurons were generally more active during the delay and 

premovement as compared to the movement, inst ruction and reward periods. Thus the 

pre-Si\ IA neurons are, in general, more related to the period after receiving sensory in­

puts and before starting movements. Neural activities in the pre-S M A were more related 

to the pre- movement period in the externally-triggered condition, whereas neural activ­

ities in the SMA were more related to the movement period in the internally-generated 

cond ition. 

This result seems to imply that the pre-S MA was more involved in initiating move­

ments when sequential movements were triggered by sensory inputs. In contrast, SMA 

neurons were more active in sessions of internally-generated movements whereas the 

PMC neu rons were more active in externally-triggered movements. Such preferential 

activity was rarely found in the Ml neurons. These resu lts coi ncide well with the view, 
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discussed above, such that the S~ IA is important in programming sequenlialmo,·cmenls. 

The question, then, arises with particular interest what different functional roles 

the SMA and pre-SMA have. The pre-SMA has the massive projections to the anterior 

striatum [51] and is interconnected with the dorsolateral prefrontal. As explained below, 

the pre-SMA seems much interacted with a reas in the dorsolateral prefrontal circuit. It 

is , therefore, very interesting to address the functional role of the pre-S~ IA in such 

interaction of different circuits. which will be discussed later in detail. 

3.6.2 Oculomotor circuit 

In the oculomolo1· circuit, the projections from the frontal eye fields (FEF) , the supple­

mentary eye fields (SEF), the do rso lateral prefrontal cortex, and the posterior parietal 

cortex, a ll of which are interconnected , go to the body of the caudate. Each of these 

cortical areas projects to superior colliculus (SC) [4]. The body of the caudate nucleus 

(CD) projects to the SNr and G Pi , which, then, projects back through the thalamus to 

the FEF' and SEF. The SNr has at least some projections to SC via the thalamus as 

wel l [4, 33]. It may be worth mentioning that the SEF is a small a rea separated from 

either the SMA or pre-SMA. The SEF is connected to cortical and subcortical areas 

related to oculomotor control [73]. The SEF is known to be involved in memory-guided 

saccades [12, 13]. 

3.6.3 Dorsolateral prefrontal circuit 

The dorsolateral prefrontal cortex (DLP F) locates within and around the principal sulcus 

and on the dorsal prefrontal convexity. This area projects to the dorsolateral head of 

the CD, which extends to the tail of the caudate throughout a cont inuous rostrocaudal 

expanse [4, 65] and to the rostral putamen. Posterior parietal cortex that is connected 
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with the DLPF also projects to the dorsolateral head of the CD [I]. lllany neurons in 

the DLPF exhibit the sustained activities in relation to the spatial sensory information. 

The DLPF is, thus, well known to have a short-term spatial memory characteristics [17] 

and has also been assumed to have a wider role in human cognition [4, 19]. With the 

studies of the prefrontal dysfunction and electrical recording of neuron activities, it is 

revealed that some neurons in the DLPF may code a preparatory set to respond with 

an emphasis on t he temporal order of the responses [17, 19] . The fact that incrPmental 

firing precedes only correct responses is considered as supporting an idea that neurons in 

DLPF may be part of the internalized code to guide correct res ponses [19]. In addition, 

it is experimentally shown that some neurons may monitor the outcome of goal-directed 

behavior [78]. Thus, it is very likely that the dorsolateral prefrontal circuit with the 

DLPF is involved in getting the memory of seq uences, depending upon the sensory 

information rather than the motor information. 

In summary, it can be schematically regarded that (1) the anle1·ior striatum as in 

the prej1-ontal circuit receives the mass ive projections from the DLPF, posterior parietal 

cortex, and the pre-SM A; (2) The poste1·io1· caudate (or the body of the caudate) as 

in the oculomotor circuit receives the projections from the FEF,SEF, DLPF, and the 

posterior parietal cortex; (3) The posterior putamen as in the rnolo1· circuit receives the 

projections from the PMC , Ml, SMA and Sl. 

3. 7 Striatum 

Besides the projections from several cortical areas discussed in the previous sect ions, the 

striatum a lso receives limbic inputs from at least two sources: the substantia nigra pars 
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compacta (SNc) and amygdala. These limbic inputs are known as signa ling mol ;,·at ion a I 

states. The ventral st riatum primarily receives these limbic inputs [4,59]. Even though , 

however, reward-related act ivities are more frequent in the ventral str i<tt um , such activ­

ities are also found to surprising extents in more dorsal regions as well [59]. Appa rent ly, 

both caudate and putamen appear to be in vo lved in sett ing and maintaining central 

preparatory states related to t he in terna l generation of indi vidu a l behavioral acts on the 

basis of information about the environmental situat ion [62]. 

Loosely speaking, the neura l activities in the st ri atu m resemble the activity of CP II s in 

the motor, premotor and supplementary motor area at a fir st glance. The activities arc 

usually related to directionally-select ive, and, passive and active, mo vements of indi vid ­

ual parts of the body [33]. Des pite thi s resemblance , however, neurons in t he striat um , 

for example in the putamen , a re in general tended to be select ive fo r t he direc tion of 

limb movement than for the activat ion of specifi c muscles [33]. Though ne urons in the 

striat um shows preparatory activities before the earliest muscle act ivity [5:3], neurons 

selective for movement in the striatum fire later than these in the cort ical motor a rea in 

response to visually guided t rack ing tasks [33] . With these findin gs, the st ri a tum , or the 

basal ganglia, is cons idered not to play a significant role in the initiation of stimulus­

t,·igg e,·ed movements and do not spec ify directly the muscular forces necessary for the 

execution of movement [33]. This view corresponds with the view of the relat io n between 

t he basal ganglia and the cerebellum. The basal gangli a may be in vo lved in the initiat ion 

of intenwlly generated movements because some neurons show the time-locked act ivity 

before the monkeys start the movement voluntary and stops abruptly after starting the 

movements. The same neurons do not show such an activity when the movement is 

initiated by external cue [59] . This poss ibility is consistent with the st riking inab ility to 

initiate movement (akines ia.) ex hibited by patients with Pa rkinson 's disease [33]. Some 
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of neu rons in t he striatum exh ibi t the expectation o r preparation-related acti,·ities be­

cause the increased di scharge rate cont inues until reward is delivered and stops abruptly 

thereafter [59] . 

Hence, the striatum is regarded to have an importan t role in the acquisition a nd 

execu tion of sequential movements, in particular , in terms of associat ion of sensory 

inputs with motor outputs given the reward signal of the consequence. ll owever, the 

output of the basal gang lia or t he striatum is not the motor output per se but the output 

that requires a kind of interpreter to make itsel f to be motor output. 

3.8 Dopamine ne urons in the substantia nigra p ars 

compacta 

The prolile of neural responses of dopamine (DA ) neu rons in the substantia nigra pars 

compacta (S 1c) is particularly inte rest ing for the learning process of sequential move­

ments from a computational view point. Schultz and hi s colleagues pe rformed a seri es of 

experiments with monkeys, using the delayed go- nogo task, to invest igate the profi le of 

neural respon ses of DA neurons [42 ,43,58- 63]. Their basic results a.re as fol lows (A lso 

see Figure 3.4): 

• Optimal stimulus: The optimal st imulus for activating DA neurons cons ists of a 

phasically occurring un]n·edicted food and liquid rewa1·d [63]. 

• Tmnsition of dopamine responses: As DA neurons respond to a reward -predicting 

st imulus, they stop responding to t he reward of itself [63]. 

• Un predictedness of stimuli: The responses of dopamine neurons to rewarding or 

potentially rewarding liquid arc due to the temporally unpredicted stimulus occur-
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Figure 3.4 

No task ............ 1-J. 
-1.5 -1.o -o.s ~ o.5 -0.5 ~ o.s 

Light Reward 

U 'PI!' IX$ '!:1"\ 4.:,; t•l , rt t•lnd· 
-1.5 -1 .o -o.5 ~ o.5 -o.5 ~ o s 

Task 1 

Trigger Reward 

Task2 

Figure 3.4: Responses of do pamine neurons to unpredicted primary reward a nd t he 

t ransfer of t his response to progress ively earli er reward-predi ct ing stimuli . Adap ted 

from Schu ltz [63]. All d isp lays show popu la tion h istograms obta ined by a veraging the 

norma li zed peri event time hi stg ra ms of a ll dopamine neuro ns recorded in t he indicated 

behaviora l sit uat ions, inde pende nt o f the presence of a response. (Top) Jn t he absence of 

any behaviora l task, t here was no popu la t ion response tested with a sma ll li ght , bu t an 

average res ponse to a drop of liquid delivered at a spout in fron t of the a nimal's mout h. 

( 1iddle) Response to a reward-predict ing t rigger stimulus in a spat ia l choice reaching 

tas k, bu t a bsence of response to reward deli vered during established tas k per fo rmance. 

(Bot tom ) Res ponse to an in struct ion cue preceding by a fixed interval o f 1 second t he 

reward-predicting trigger stimulu s in a n inst ructed spat ia l reachi ng task . 
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renee. A known, reward-predicting. tonic context doC's not prC'I"C'nt I)A neurons 

from responding to the rewarding liquid. The responses during learning appar­

ently occur because reward is not yet reliably predicted by a cond itioned phasic 

stimu lus. Only explicit phasic st imuli predicting the time of reward reduce these 

responses [42]. 

• Population Coding: The responses of DA neurons to these different stimuli are 

remarkably simi lar to each other. They arc phasic and occur with latenc ies of 50 

to 120 ms, last less than 200 ms. This homogeneity of neuronal nsponscs suggests 

that dopamine neurons respond in parallel as a population rather than di splaying 

differential response profi les [63]. 

• Suppressed response to er·r01·ed trials: 'vVhile the monkeys arc learning a I ask and 

if the monkeys push a correct lever, the phasic activation of DA neurons would 

occur. \~l hen th monkey pushed an incorrect lever and did not receive the reward. 

dopamine neurons exhibi t a depressed activity. [58]. 

• The events to which DA neurons respond belong to the most importa nt and salient 

external st imuli to which a subj ect needs to react in order not to miss an important 

object [63] . Salient stimuli arc unconditioned rewards and aver·sive stim1tli, con­

ditioned stimuli predicting rewards o1· punishment, and high-intensity, surprising, 

novel stimuli [63]. However, most DA neurons respond best to only a subset of 

salient st imuli, namely primm·y rewards and conditioned reward-predicting slim-

uli [63]. 

Since DA neurons discriminate between reward-predicting and nonpredictive st im­

uli as long as these two kinds of st imuli are sufficiently dissimilar to each other [63], 

and in cont rast, since dopamine neurons respond to both rewarded and unrewarded 

52 



---

stimu li ~rhen they are physically very similar [63]. there arc at least input s to DA neu­

rons from sensory information . In addition , in cont rast to neurons of amygda la that 

respond to primary rewards in well-establi shed tasks as an example , DA neurons rat her 

respond to the unexpected reward. These ev idences led to several researchers including 

Schultz et al. [63]. Houk ct a l. [31] a.nd others to cons ider DA ne uron s a.s cod ing th<' error 

signals, in pa rticular , the temporal difference e rrors in the framework of reinforcement 

learning (RL) accord ing to ll ouk et a.l. [31] and others [7, 10, 14, 15,30, 48,80] . From a. 

computational viewpoint, the monkeys can lea rn to predict stead ily the coming primary 

reward , and, as in the framework of RL, learn to perform sequenti a l movements, or se­

quential deci sion making. Note, however , that the tasks employed in the cxpcrim<'nts of 

Schultz and hi s colleagues arc rather simple tasks such as the delayed go-nogo task than 

sequences in general. In contrast , the serial button press task developed by II ikosa.ka 

and hi s colleagues is more su itable to be considered a.s one of tasks of the sequential 

decision making, which wi ll be explained in detail in Chapter 5. 

The rev iews of reinforcement learning and of the aforementioned computat ion a l mod­

els will be given in the next chapter. 
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Chapter 4 

REINFORCEMENT LEARNING 

AND COMPUTATIONAL 

MODELS OF THE BASAL 

GANGLIA 

4.1 Introduction 

A brief summary of rein forcement learning (R.L) is, first , provided in thi s chaptPr. Sec­

ondly, computat ional models of the function s of the basal ganglia based on the fr amework 

of RL are reviewed with an emphasis on the comparison to the study in this thesis . 

RL has been recently paid much attention to in machine lea rning and neural network 

communit ies because R.L has a so lid mathematical ground and can be applied to various 

complex problems [75]. The computational framework of R.L fit s well with sequent ial 

decision mak ing and provides a mathematica ll y solid means to answer the temporal 

credit assignment problem. 
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llouk cL a l. [3 1] and Barto [7] recently proposed, based on experimental findings of 

profiles of neural act ivit ies of dopamine neurons such as Schultz ct al. [6:3] and others [~2. 

43, 58- 63], that the inter-circuitry of the basal ganglia with dopamine neurons may 

perform a type o f reinforcement learning, which is known as Acto-r-Critic scheme. The 

aim of thi s chapter is to provide a concise background of reinforcement learning to 

evaluate their models. Therefore, the rev iew of RL in th is chapter is far from exhaust ive. 

For the more thorough and general rev iew of RL , re fer to 1\aclb ling et a l. [32] a nd 

Bertsekas [11 ]. The function a l model of the basal gang li a-thalamocort ical loops t hat wi ll 

be proposed in the fo llowing chapters is partly based o n the framework of reinforcement 

learning. 

4.2 Reinforcement learning and supervised learn-

mg 

There a re bas ically th ree classes of the learn ing paradigm in a rtificia l neu ra l network: un ­

supervised learning, reinforcement learn ing, and supervi sed learn ing [23]. The problems 

in the class of t he supervised learning are most in vest igated. The class of reinforcement 

learning (RL ) is brieny di scussed in contrast with t hat of superv ised learning in th is 

section . 

See Figure 4.1. In supervised learning, the neu ra l network is info rmed of the pair of 

tbe input and its correspondi ng output, which is call ed the des ired out pu t, or the target 

output. l-Ienee, t he neural network can know how different its current output given t he 

input from the des ired output in t he superv ised learning . Us ing the information of such 

difference, the learning such as the method of steepest descent can be employed in the 

supervised learning. Because neural networks treat the vector representat ion as its input 
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Figure 4.1 

Supervised Learning 

minimized 

error vector ~ 
r-------1 

I I 
input 11 output 

1 
desired output ---•1 network 1-------.o 

+ -

Reinforcement Learning maximized 

input 

t ) 
Figure 4.1: Schematic d iagram or supervised learn ing (above) and rcin[orcement learning 

(below). 
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and output in most of cases, in other words, the neural network is fed with the desired 

output as the vector in the supervised learning. In contrast. in the class of reinforcement 

learning, when the neural network produces an output given an input, the neural network 

is not informed of the desired output but , if any, only of how good/bad the output is, 

which usually takes t he form of scalar. The learning occurs in IlL by utilizing such scalar 

information. It is obvious that the learning in RL has less info rmation to improve the 

performance of t he network than in the supervised learning. 

Note that in case of sequent ial decision making, t he neural network can't be sponta­

neously informed of how good/bad its output that the network produced was becau se 

of the temporal credit assignment problem. There, therefore, needs a mechanism in 

problems of sequent ia l decision making to take the long-term consequence into account 

as well as the immediate consequence. 

4.3 The basic framework of reinforcement learning 

In the framework of RL, we deal with situations as following. There is a n agent in a 

world, which is in a state, x,, at a time, t . The agent makes an innuence on the world 

by taking an act ion, a,, at the time, l. By the action, a,, the state of the world goes 

to another state, xt+ 1 at a next time, l + 1. The agent, then , performs a next act ion, 

at+ I· The world state changes again to the next state, x,+ 2 . Thus, it continues. 'vVe can 

represent such transition by introducing the lmnsilion function, denoted by T(x,, at) 

given a state, x,, and a chosen action at the state, a,. Then, 

Xt+l = T(x, , a,) (4.1) 

In this transition process of the states and act ions, the agent sometime, say, at the 

transition of a time, t, gets an immediate, either positive or negative, reward, ,.,, such 
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as getting food , or other times gets nothing. That is, 

r1 = R(x.,a1), (4 .2) 

where R(-, ·)is the function, called1·eward function , that prO\· ides an immediate rewa rd , 

,., given a current state, x., and a chosen action , a1• 

Thus, the basic format of RL problems goes with the triplet data. set, (s., a, 1·1) (t = 

0, 1, 2, ... n- 1) and the final state, Sn with the transition function , T , and reward function, 

R'. 

Based on a choice of an action at a time, the transition of the world states changes, 

and then, rewards that the agent can obtain over the transition will be changed. The 

question to be asked in this framework is what act ion should be taken at a state. As 

discussed in Chapter 1, an action taken at a time has both of immed iate and long-term 

consequences so that choosing the action at a time that gives the agent the maximum 

immediate reward is not necessari ly the best choice. The purpose of the agent's perfor­

mance is to maximize rewards that the agent can obtain over a whole transition. To 

increase obtained rewards, the agent must solve the temporal credit ass ignment problem. 

RL provides one way to answer this question. 

In terms of the goal-d irected behaviors in sequential deci sion making, it is often 

assumed that the reward is given in the transition to the final state much higher than 

1
n can be co but for the sake of simplicity, we assume n < oo 
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that to any other state. In contrast , rewards gi1·en the transition to states other than 

the final state are assumed to signal only mughly how those states arc desirable to reach 

the final slate or in some cases assumed to signal the failure of a trial by its transition. 

By use of s uch partial information, the agent must find and learn the optimal path to 

reach the final state. 

4.4 Value function and policy 

It may be obvious to solve the temporal credit assignment problem that a basic strategy 

is to evaluate a chosen act ion not only with the "immediate" reward but also with 

rewards over a whole transition . To do so , RL ut il izes the value function. The value 

function is the function given a current state that gives the output such that a weighted 

sum of all future rewa1·ds. Let us denote the value function by V(x,) given a current 

state, x,. Then the value function can be defined as: 

or equivalent ly, 

V(x,) 
n-1 

L'lrt+k 
k=O 
n-1 

L ·-/ R(xt+k, a,+k), 
k=O 

where 1 is 0 ::; 1 ::; 1, called a d iscount factor. 

( 4.3) 

( 4.4) 

When 1 = 1, all future rewards are equall y taken into account in the value function , 

whereas, if 1 < 1, the later rewards are less weighted . The magnitude of 1 controls how 

much the long-term consequences should be taken into account in the value function. In 
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this way, the amount of the value function given a state stands the value of the state , 

which takes into account the long-term consequence which is weighted by the discount 

factor gamma . 

Note that by t he definition of the value function , the local constraint of the value 

function is given as follows: 

(4.5) 

The agent should perform an action at a state. It is, then, convenient to consider a 

function that maps a state to an action. This function is call ed /he policy. Let us denote 

the policy by u(x,) given a state, x,. Then , 

a,= u(x,) (4 .6) 

If the policy is fixed, the transition at any state is a lso lixed. Given t he fixed transi ­

t ion , it is possible, theoretically at least, to obtain the va lue given by the va lue function 

at all states. Needless to say, the action that should be taken at any state is given by 

the policy. 

lf an act ion at a state, x,+k , is changed, the transition can be changed at t he state 

and, consequently, the rewards obtained over the transition can be changed at the state 

as well. This also means that the value function of other states may be changed. The 

aim of RL is to find , at each state, an act ion that maximizes the value function of 

each state. Generally speaking, it often happens that the transition function is not yet 

known to an agent or the reward function is not yet known to an agent either. In these 

cases, the agent must explore the world at first to some degree to be able to estimate 

the transition and reward functions and to improve its performance. Along with such 

est imat ions, the agent should also seek for the optimal policy as well. Thus, one of the 
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most representative method in RL , call ed the temporal diffe rence (TO) learning. wou ld 

perform twofold of estimat ions; t he est imation of the value function g iven a policy and 

the est imation of the optimal policy among possible ones. The T O learning is discussed 

in the next sect ion. 

4.5 Temporal difference learning 

The method of the temporal difference (TD ) learning find s the optimal value function 

and the optimal policy as the age nt ex plores the wo rld , that is, as the agent co llects 

the information of the transition and reward functions, even if these funct ions are not 

available in advance. In tbi s sect ion is reviewed t he simplest ty pe of the TD learn ing, 

which is classified as TD(O) in a more generalized framework of the TO learning, called 

the T O(>.) learning [70]. 

As shown in Section 4.4, the local constraint of the value function is given as: 

Suppose that the estimated value function at the state x 1 is denoted by P (x 1), then 

the temporal differen ce (TD) error, denoted by 1'1, is defined as 

(4.7) 

With thi s TD error , for example, the method of the steepest descent can be em-

played. Suppose that the value fun ct ion is estimated by the linear function of the state, 

x,, which is in a form of a vector rep resentat ion , (x 0 , x1z, Xt3, .... xu), wit h t he weight 

vecto r,( v1 , v2 , v3 , .... v1) . The value function can be given as 

I 

P (x 1) = L V;(x,); (4.8) 
i=1 
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Given the TD er ror 1°1, the estimated value function can be updated by the method 

of the steepest descent as follows: 

i'.v; 
'fjp 

(X 1'•t-
fiv; (4.9) 

(X 7\(x,) ;, 

where i'.v; stands for change of v;. 

The TD error, r,, is also called the effective ,·einfo,·cement, whereas, in contrast, the 

immed iate reward, r,, is also called the p7'imary ,·einfo,·cement. Note that, though it is 

stated in Section 4.4 that the TD learning shou ld perform twofold of the estimations, 

the estimation of how the policy should be chosen is neglected in the above exp lanation. 

It is rather assumed in the above explanat ion that the policy is fixed. In order to obtain 

the optimal value function and the optimal policy, however, the estimation of the policy 

cannot be neg lected . As a matter of fact, the actor-critic scheme provides one way to 

do so by use of the TD learn ing, whi ch is discussed in the next sect ion. 

4.6 Actor-critic scheme 

Barto et a!. [6] have first shown the efficiency of the temporal difference learning in the 

cart-pole-balancing problem. The scheme they used in the task is called the actor-critic 

scheme shown in Figure 4.2. 

While the critic is assumed to estimate the value function , the acto r learns what 

act ion shou ld be more preferable to be taken in each state. The procedure for learning 

of the critic is based on the TD learning as explained in Section 4.5. To understand how 

to let the actor learn the optimal policy, suppose that at a state, x1 = (x,, .7: 12 , x13 , •••• xtJ), 

there are the choice of actions, { a11 , a,2 , a,3 , .... x,k}, available. Then, we define the weight 
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Figure 4 .2 

Agent state x(t) 

scalar evaluation 
I . ~-~----------------, 

effective 1 primary reinforcement r(t) I 
reinforcement 1 I 

input 
~ + l 

.I Actor I output I Environment ~ 
state x(t) ·1 (Controller) I action u(t) l (Plant) 

Figure 4.2: Diagram o[ the actor-cri t ic scheme. 
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matrix, IV, to pro,·ide the probability vector with respect to the d10ie<· of act ion s, as 

follows : 

W ={w,;} (j = l , 2, ... ,k, i=l,2, .... ,1) (4. 10) 

Let us denote the probabi li ty vector with respect to the choice of act ions by Pa,. The 

probabili ty to take an act ion, a1j, denoted by (Pa, )1 , can be. then defined as 

( ) L~- 1 Wj;(x,); 
Pa, i = k I ) 

I:j= , Li=< Wj;(x, i 
(4.11) 

When a n act ion, a,,, is taken and if the TO error, r, is obtained, t he weight mat rix , 

W, can be updated by t he fo ll ow ing rule: 

(4.12) 

Thus, if r, > 0 by choos ing an act ion, the act ion wi ll become more preferab le next 

time at the same state. Such preference will be iteratively and stochastically changed 

as the agent explores t he transit ion a nd reward fu nctions. It is proved that a fter an 

enough iterat ions wit h some cond it ions, t he cri t ic a nd acto r will converge to the optimal 

value funct ion and t he o pt imal po li cy respect ively [11]. It is wo rt h ment ioni ng t hat, 

from a view of com petit ion, each o f Wji (j = 1, 2, .. /)can be cons idered as compet ing to 

increase t he probabil ity of t he action , (a,),. It is, hence, often said t hat actors, each of 

which is Wj;, compete to each other. 

In the actor-crit ic scheme, the crit ic estimates t he value function through minimizing 

the TO erro r, r1 , and ideally, the TO e rror should apprach to 0, i.e. , r, -> 0. Suppose 

that a primary reinforcement is only given in a. fina l state of a sequence. In thi s case, in 

est imation of value funct ion a.l each state by the minimization process of the T O error 

by the cri t ic, the value of t he pri mary re inforcement a.l the final stale is propagated to 
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the preceding states of the sequence back in time gradually as t he num ber of trials of the 

sequence increases, and, needless to say, at the same time, the value function at t he final 

state is also gradually constructed. This nature of the TD error is pointed out as si milar 

to the cha racterist ics of the profile of responses of dopam ine neurons, which is a basis 

of the computat ional models of the basal ganglia ex plained in t he next S('Ct ion (Refer 

to Section 3.8 and Figure 3.4 for the ex perimental findings of responses of dopamine 

neu rons.) 

4. 7 Review on the computational models of func­

tions of the basal ganglia 

In the preceding sections, the framework of rein forcement learning was briefly rev iewed. 

As mentioned, based on the fra mework , severa l computat ional models have been pro­

posed on various aspects of the function s of the basal ganglia with the related corti cal 

areas in re lation to dopam ine (DA) neurons in the substantia nigra pars compacta (SNc). 

Among them, the models of Houk eta!. [31], Barto [7], Berns and Sejnowski [tO], Mon­

tague ct a !. [48] and Doya [14, 15] a re of part icu lar interest to t hi s study in te rms of 

sequential movements . 

Ba rto [7] provided the compar ison between the actor-criti c scheme and fun ct ion s of 

the basal ganglia. Simi larly and further, l!ouk et a!. [3 1] di scussed that DA neu rons in 

the SNc compute the temporal d ifference (TD) error with three inputs: from the direct 

pathway, the indirect pathway, and t he primary reinforcement poss ibly from latera l 

hypothalamus (See Section 3.5). The TD error , then, is propagated into the st ri atum 

from the project ion of DA neurons in SNc. Further , with the di choto my of matrix 

and st riosome in the striatum , they hypothes ized that the striosomal module worked 
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as the cri t ic and the mat ri x module as t he acto r in the actor-critic sch<'m<'. Their 

model is important in that they pointed out the similari ty belw<'en the fra m<'wo rk of 

reinforcement learning and the cha racte ri sti cs of the responses of DA neurons. Their 

model, however , remain s at the theoretical level and is not examined in com pa ri son with 

the behavioral or neuroph ys iological results . rvlontague eta!. [48] devclop<'d a theorC'lical 

framework that shows how mesencephalic OA systems. including DA neurons in the SNc, 

can encode the prediction errors between the expected amount of reward a nd t he actual 

reward , on a basis of the TO error s imila r to t he above models but providing a dC'tai led 

com parison of behaviors between their model a nd physio logica l response of DA neurons. 

The ir model shows that the framework of RL , or the TO learning, can capture well the 

characteri st ics of response of OA neu rons. 

vVise and llouk [80] and 1-Iouk a nd Wise [30] d iscussed the modular a rch itect ure 

linking the basal ganglia, the cerebellum, and the cerebral cortex with a n emphas is on the 

motor cont rol. Though the ir models referred to many neuroph ys iological ev idences and 

the detailed cha racteri st ics of types of neurons, their models remain a t the speculat ive 

level at best . Their models are not examined with the actual neural responses nor the 

behavioral data. The emphasis of their model is t he integrat ion of the basal gangli a and 

the cerebellum in motor control not at the com putat ion al level but at t he abstract level. 

Doya [14, 15] proposed the actor-tutor scheme as the model of the integ rat ion of 

functions among the basal ganglia, the cerebell um, and cerebral motor areas in terms 

of t he motor control with an em phasis on the dynamics and kinemat ics. It is hypoth­

es ized that the basal ganglia learns the value function and generates the des ired motor 

direction [14, 15], which is transformed into a motor command via the latera l part of the 

cerebellum. This motor command is used for contro l in ear ly stage of learn ing. ln hi s 

scheme, the direct cont roller can be trained by superv ised learning with the use of th is 
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motor command as t he teacher, instead of reinforcement lea rning, given some cond itions 

as descr ibed in Doya (15] . In the simulation of cart-pole sw ing up task, it is shown that 

the learning speed has been much facilitated with this model. 

Berns a nd Sejnowski (10] proposed t he model of action se lect ion in the basal gang li a 

for given cogn iti ve, or in ternal, states and sensory inputs. They posit that the in t rn a! 

segment of the globus pallid us (G Pi ) works as "winner-lose-all'', wh ich is th at t he ce ll s of 

standing the most desi rab le act ion shou ld be t urned off. This '·winner-lose-all '. process 

results in firin g target cell s of the thalamus to let the act ion o f the win ner be taken. 

To have such a mechanism in t he G Pi , the inputs from the indirecl pathway, whic h 

is discussed in Section 3.5, work to gate the com pet ition in the G Pi. The subthalami c 

nucleus (STN) receives a prominent excitatory projection from the cortex and Berns and 

Sejnowski (10] proposed t hat the function of t he indirect pathway is to inhibi t act ions 

that have recentl y been se lected . They suggested that because the STN receives the 

projections from the prefrontal cortex, t he selection process in t he GPi can be influC' nced 

by the inputs from t he indirect pathway, t hat is, the cogniti ve, or intern a l, states . Th ey 

cons ider inputs from DA neuron s in SNc to the striatum as the e rror signal of the 

temporal diffe rence learning. Their model is not examined with the behavioral data. 

Though the computational models discussed above of fun ctions of the basal gangli a 

shed ligh t on severa l important aspects of its fun ctions, to t he knowledge of the autho r, 

any of these models has not been com pared closely with actual behavioral data of se­

quential decision making as complex as t hat of 2x5 task . T he models of llouk eta!. (3 1], 

Wise and llouk (80], and Houk and Wise (30] remain at the speculative level. lvlontague 

ct a!. (48] concent rated on examining the detai led correspondence between the respo nse 

of DA neuron s a nd t he error signal of the model, which is hypothesized to be encoded 

by DA neurons. The model of Doya (14, 15] is very interest ing in terms of t he motor 
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control and can be further examined at the computational Je,·el. The modcl of Berns 

and Sejnowski [10] is concerned with the act ion selection mechanism in relation to the 

dorsolateral prefrontal circuit. In contrast to these computationa l models , t hi s study 

rather aims to investigate the function s of the basal ganglia and related c01·t ical areas 

in terms of the sequent ial decision making without getting in to details of the aspect of 

the motor control. The interaction among the basal ganglia-thalamocortical loops is of 

particular interest in relation to its functional roles in sequential decision making. 
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Chapter 5 

REVIEW ON BEHAVIORAL 

AND NEUROPHYSIOLOGICAL 

FINDINGS IN EXPERIMENTAL 

WORKS 

5.1 Introduction 

In Chapter 3, the inputs and outputs of the basal ganglia, the internuclear st ru cture 

of the basal ganglia, and some of the basal ganglia-thalamocortical loops arc brieny 

summarized. Based on anatomical and experimental ev idences, those loops of t he basal 

ganglia are considered to be heavily involved in sequen t ia l movements, in particular 

in cogn itive aspects in comparison to the other major subcort ical loop of the cerebel­

lum. It is, therefore, intriguing to ask how those loops of the basal gang lia work in 

acquis ition and execution of sequential movements from a computational viewpoin t. In 

contrast to computat ion al researches on t he function s of the cerebellum (e .g. Albus [2] , 
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1\awato [:34]), the computat ional researches on t he role of the functions of thc basal 

ganglia in seq uent ia l movements have just started recently. In Chapter <1. the frame­

work of the reinforcement learn ing and the computat ional models of the functions of the 

basal gangli a. based on thi s framework are rev iewed. Even t hough those computat ional 

models shed light on some aspects of the functions of t he basal ganglia , therC' is no 

examin at ion of t he performance of t he model in close comparison with behavioral data. 

Nor those models have in vest igated much of the functional relation ship among t he basal 

ganglia.-thalamocrt ical loops in sequenti a l movements. 

The a im of thi s chapter is twofold: to introduce in detai l the experiments of the 

Hikosaka la borato ry that have recent ly develo ped and that ar(' ve ry sui table to in vcs­

t igate the function s of the loops of the basal ganglia in sequential movements, a nd to 

discuss neurophys iological findings, including resu lts of the lli kosaka laborato ry, on the 

striatum, the presupplementary motor a rea, and the supplementary motor a rea, a ll of 

whose function s are very important for furth er in vestigation of the fun ctions of t he loo ps 

of the basal ganglia in sequential movements. The investigation of behavioral and neu­

rophysiological findings in this chapter wi ll be a basis of the hypothes is of the functions 

of the loops of the basal gangli a in the next chapter and the experimental task of the 

llikosaka laboratory will be s imulated to examine the pe rformance of the model based 

on t he hypothes is in Chapter 7. 

5.2 The serial button press task of the Hikosaka 

laboratory 

This sect ion aims to introduce t he experimental paradigm of seria l button press task, 

wh ich 1-!ikosaka and his colleagues have developed [25,29,44,45]. There is a variation in 
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their deYised se ri a l butlon press task. Among them, the most rcpresentaLi1·e one, ca ll ed 

2x5 task [25], is explained below in detail. Then, other var iations are briefly expla ined. 

A major advantage of t heir exper iments is t hat their task has a hierarchical st ructu re 

simila r to our daily learned actions and, in addition, variat ions of t he task ca n be 

generated practically as many as poss ible [25]. Thus. it can pro1•ide subjects with a 

situat ion simila r to our daily life, in which we develop and acqu ire sequent ial movements, 

or skill s, in a long run by our occasional a nd frequen t ex periences. 

In the next sect ion , their behavioral findings a nd implicat ions a rc discussed. Their 

resu lts wi ll be compared with the model of the basal ganglia proposed later in th is thesis. 

5,2.1 The 2x5 task 

The 2x5 task requires subjects, or monkeys, a sequent ia l hand movement task cons isting 

of Len butlon presses with many different variat ions [25]. The name of '2x5' o rig inates 

in that the re a re 2 st imuli in each 'set' and 5 sets in each 'hypersct', one of which is 

tested in each trial. The description of their experiment in this sect ion is quoted wit h a 

slight mod ificat ion from l-likosaka et al. [25], in which a more thorough descri pt ion can 

be found. 

Behavioral paradigm 

Figure 5.1 shows an example of the sequence of events in a single task t ri al. At the 

start of a trial , the home key was turned on. When the an ima l pressed the home key for 

500 msec, two of the 16 target LEDs were turned on simultaneously, called 'set'. The 

animal had to press the il luminated buttons in a correct (predetermined) order which 

s/he had to find out by tri a l-and-error. If successful , another pair of LEDs, a second 

set, was illuminated which t he monkey had to press again in a predetermined order. A 
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total of 5 sets were presented in a fixed order for completion of a trial. called 'hypcrs<'t '. 

Thcrcfo,·c, it should be noted that the c01·rect 01·dcr of button within a set, which displays 

the same two illuminating stimuli among the 16 taTget LEDs, may be different bcttt•cen 

diffeTent hype1·sets. 1 

When t he an imal pressed a wrong button, a ll L ED buttons wC're illuminated bricny 

with an unpleasant beep sou nd , and the trial was aborted without any reward. The 

animal then had to start again from the home key as a new tr ia l. H should be em phas izC'd 

that, in the follo wi ng analyses, a t ri a l was defined to be successful on ly when th<' animal 

completed the whole hyperset (5 sets) . 

After each successful set, however, the animal was given a liquid reward. Thr amount 

of t he reward in creased gradually from the first to the final set (from 150 to :300 ms 

of reward delivery durat ion ) so that the total amou nt of reward was maximized by 

completing a ll sets. The duration of reward delivery was inserted between sets, during 

which no st imulus was presented (inter-set interval). Such a di st ributed deli very of 

reward was necessary because, when presented a new (unexperienced) hyperset, it was 

virtual ly imposs ible for the animal to complete the whole hypersct for the initial trials. 

A major advantage of the 2x5 task is that new hyperscts can be generated practically 

as many as possible. Since the number of possible combinat ions for a set is l6P2, t he 

number of possible combinations for a hyperset is (16P2)5 , which amounts to about 

7.96 x 10 11
, a n astronomical value. There have been no ident ical hypersets among a 

total of more than 1000 hypersets used for t he two monkeys. 

1This italic sentence is inserted by the author of the thesis. 
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Figure 5.1 

2x5 task 

Home key Set 1 Set2 

c 

Set 3 Set 4 Set 5 

Correct order 

Trial 
completed 

l 
Block end 

(20 successful 
trials) 

Figure 5. 1: Procedure of 2x5 task wit h an example of a hype rsct . To complete a trial, 

a monkey has to press 10 buttons (2 buttons x 5 sets) in a cor rect (predetermined) 

order. Taken from Miyach i et a l. with a slight modification. 
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Experimental procedures 

The same hyperset was used throughout a block of experiments so that the monkey ex ­

perienced the same sequences of button press repeatedly until he completed 20 success ful 

trials, which was defined as one block of experiment; a different hypcrsct was usC'd for 

the next block. The monkey performed about 20 blocks for one day; a gi,·en hypcrscl 

was used usually only once in a daily exper iment. 

Some of t he hypersets, chosen as learned hypersets, were examined daily. During the 

period of learn ing, the monkey performed the hypersets as the daily routine. onC' block 

for each hyperset. The learned hypersets were a llocated to three g roups in terms of tlw 

hand used: for the right hand only, for the left hand on ly, a nd for both hands. A 'bot h 

hand' hyperset was examined either once a day but the hand a lternated across days or 

tw ice a day with the hand changed between the two experiments. 

In addit ion to the learned hypersets , the monkey experienced many new hype rsets, 

each of which was tried j ust once (one block). ll a lf of t he new hypersets were performed 

by the right hand; the other half were by the left hand. Thus, the monkey experienced 

roughly an equal amount of practice for each hand throughout the learn ing period. 

For two monkeys in 1-likosaka eta!. [25], each of whom is termed as PI and 130, the 

total number of the learned hypersets was 28 for monkey PJ and 14 for monkey BO. 

Note, however, that they were started at different stages of the monkey's experience of 

the 2x5 task. The total number of new hypersets was 313 for monkey PJ and 92 for 

monkey BO. T hus, among about 20 hypersets used for a dail y experiment , usually one 

or two were new hypersets while the others , which were among the learned hypersets, 

had been experienced to different degrees of learning. 

In monkey PI , some of the initially learned hypersets were removed from the daily 

menu and, a fter 1 or 6 months, were re-examined to test if the procedural memory 
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was retained after a long-te rm interruption. During the interrupted period, the monkey 

continued to learn other hypersets including new ones. 

Data analysis 

Two parameters were basically used to assess the performance of monkeys: the number of 

trials (or the number of error trials) to a criterion and the performance time. Criterio n for 

the number of trials is set as 10 successfu l trials in most of cases. This value, for exam pic, 

wou ld be 25 if the animal fail ed in 15 trials before complet ing 10 trials, and then, in this 

example, the number of error trials to criterion becomes 15. The performance tirnc as 

a measure is the time from the home key press to the second button press of the Anal 

(5th) set which was then accumulated for the ini t ia l 10 success ful trials. 

5.2.2 Variations of the experiments 

The bas ic sett ing and p rocedure is the same as 2x5 task. For fun ct ional Magnet ic 

Resonance Imaging (fMRI), the 2x l0 task was emp loyed, in which there are 2 st imuli in 

a set com posed of a 2x2 matrix display and 10 sets in a hy perset [29] . 

5.3 Behavioral findings in the 2x5 task 

In this sect ion , we summa ri ze behavioral findings of the 2x5 experiments. For more 

details of fi ndings, refer to llikosaka et al. [25], Miyashita et a l. [4.5], Miyachi et al. [44], 

and Hikosaka et al. [27]. T he implication of thei r findings contribute to the hypothesis 

of functions of the loops of the basal ganglia in sequent ial movements, proposed later in 

this thesis. The findings in relation to underlying neural mechanisms will be reviewed 

in the next sect ion , with exam inations of other experimental results . 
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Learning 

Learning in 2x5 tasks is indicated by the decrease in the number of trials to criterion and 

the decrease in the performance time. There arc observed three levels of learning [25]: 

l. short-term and sequence-select ive: indicated by improved performance for a 

particular hyperset dU!ing a block of experiment. 

2. long-te rm and sequence-selective: indicated by improved performa nce for a 

particular hypersct across days. 

3. lo ng-term and sequence-unselective: indicated by the improvement of perfor­

mance for new hypersets. 

In other words, monkeys cou ld learn, to some degree, to perform a new hypc rset 

withi n a short period (::; 5 min). In this sense, monkeys can learn each hyperset, even if 

it is new, during a block of expe1·iment. At the same t ime, the number of trials as well as 

the perform ance time for a part icular hy perset is decreased as monkeys experi ence more 

with the hyperset across days. Furthermore, by the indicat ion of not the number of 

trials but the performance time, they performed gradually bette r with more experiences 

of the 2x5 tasks, regardless of any hypersets. 

Maintenance of the learned s kills 

To examine whether the memory was retained for a long period, 1-likosaka and his 

colleagues had the monkey learn 12 hypersets sufficient ly, stopped the training, and 

retested them after 1 or 6 months. After the 1 month interruption , the performance was 

sign ificant ly better than that for new hyperscts [25]. After the 6 month interruption, 

the performance was not different from new hypersets in terms of the number of trials, 
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but was significantly better than new hypersets in terms of the performance time [:2.5] . 

Hikosaka et al. [25] suggest that this result indicates that motor memory (measurcd by 

performance time) can be retained longer than procedural memory (measured by the 

number of trials) . 

Anticipation and the coordination between perceptual and motor system 

After some sufficient learning, the saccade to the first button tended to occur before 

the target illumination ( anticipalo1·y saccade). This was true only for the hypersct that 

monkeys extens ively experienced, called learned hypersets. The likelihood of anticipa­

tory saccade increased gradually over 20-30 days of practice of the particular hyperset. 

The time cou rse was similar to the button press latency, which was the time from the set 

(target) onset to the time when the monkeys pressed the first button [45]. The nearly 

perfect performance of learned hypersets due to the extensive practice was then deterio­

rated by the use of the opposite hand . In addit ion, they found that anticipatory saccades 

became much less frequent when the opposite hand was used [45]. Miyashita et al. [45] 

suggested with these findings that the critical factor for the extensively leamed skilled 

performance was the combination of the eyes and the side of the hand that was used 

for the practice of a given sequence [45]. This suggest ion appears to indicate that the 

anticipatory saccade rely, at least to some degree, on the memory of motor movements 

as such information by the representat ion specific to each hand, for example, kinematic 

representation of joint movements of each hand . It is becau se the anticipatory saccade 

develops in the time course similar to button press latency, which is almost ident ical 

to the performance time as a measure, and because the anticipatory saccade was dete­

riorated by the use of the opposite hand. There is, however, another possibility such 

that the anticipatory saccade does not depend on the memory of motor movements but 
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on the memory of sequential sensory inputs, and the reason that the anticipatory sac­

cade was deteriorated by usc of the opposite hand is because llw temporal pattern of 

sequentia l sensory inputs a re deteriorated by use of the opposite hand that is not as 

much fam iliar to a tested part icular hypcrset as t he other hand is (flikosaka. personal 

commun icat ion). The decrease of button press latency appeared to happen in most cases 

only when t he ant icipatory saccade precedes (l\ li yas hi ta, personal communicat ion). On 

the data in Miyashita et a.!. [45], the degree of the learning meas ured by t he numb r 

of t ri a ls to criterion asymptotes faster than that measured by t he rat io of ant icipatory 

saccade. Furthermore, the degree of deterioration by use of the oppos ite hand is actua ll y 

much more in the measure of t he button press latency than that of rat io of ant ici pa­

tory saccade and that of number of trials to crite rion. Based on these cons iderations, 

it seems plausible to cons ider that the learn ing of ant icipatory saccade happens before 

that of motor movements, and that the ant icipatory saccade depends on the memory 

of the sensory inputs rather th a n that of the motor movements. In addition , it can be 

considered that a multiple of learn ing processes occur in order : measured by number of 

trials to criterion, then measu red by rat io of anticipatory saccade, and t hen by button 

press latency or actually the performance lime. 

Note t hat t he anticipatory saccade by its definition means that the monkeys cou ld 

predict t he next set and its corresponding cor rect action. Therefore, it can be said that 

in the case of learned hypcrsets, a monkey performs the act ions not just by reacting to 

the sensory input but rather by anticipating the com ing sensory input and predicti ng its 

corresponding action. The increase in the rat io of anti cipatory saccades begins even in 

the early stage, or even first few days. This suggests that the learn ing of the sequence 

wou ld start even in the early stage. 
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Context dependency of the memory r et ri eval for the teamed hype r sets 

llikosaka et a l. [27] has tested the quest ion of whether the monkeys have learned the 

extensively experienced hypersets (learned hypersets) as a whole of sequence or have 

learned on ly the correspondence of each set with each correspond ing correct act ion. To 

differentiate these, the performance of two condi t ions were compared: in one cond ition, 

the monkeys tried with t he learned hyperscts a nd in the other condition, the monkeys 

t ried with the hypersets of which all sets were the same as t he lear ned hyperscts but 

the sequence of the sets were reversed. See F igure 5.2. In add ition , they compared the 

result of the reversed hyperset conditio n wit h t hat of t he new hypersets . The rcsults 

were that (1.) in both criterion, t he number of errors cri terion and t he perfo rmance 

t ime criterion , the reversed hy perset condition was sign ificantly worse t han the lea rned 

hypersets and (2) in both cri terion, the performan ce of the reve rsed hyperscts were not 

significantly different from that of the new hypersets, whereas, as d iscussed bcfor(", t he 

performance of the learned hy persets is s ignifi cantly better th an that of bo th of t he 

reversed and new hypersets . T hese results clearl y suggest that the memory of learned 

hypersets are not merely the memory of t he correspondence of the current sensory input 

wit h its corres ponding act ion but the memory depen ding upon t he information before 

the current sensory input (the current set) , poss ibly upon t he sets before the current 

set [27]. Note t hat if the memory of the correct act ion to the coming sensory input is 

retri eved depending upon informat ion before the coming sensory input as discussed in 

case of anticipatory saccade, the resu lt of t hi s context depen dency is understandab le 

because t he memory retrieval of the cor rect action to each set docs not depend on the 

set by itself. 
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Figure 5 .2 

Normal order 

Reversed order 

Figure 5.2: (Above) An example of learned hypersets is given in the normal order; 

(below) the reversed order of the given learned hyperset a bove. 
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Summary of b ehavioral find ings in the 2x5 task 

First, all of their findings indicates the different nature of lhe memory betll'een lhe early 

and late stage of learn ing. They showed that there were three different learning processes. 

The maintenance of learned ski lls are retained remarkably longer in the measure of lhe 

performance time. The memory of learned hypersets depends on information before' lhe 

coming sensory input because the monkeys anticipate the coming set and pr<'dict it s 

corresponding correct act ion for the learned hyperscts. It can be, therefore, postulat<'CI 

that (J) the memory in the later stage of learning, that is, the memory of th<' learned 

hypersets, depends upon the memory of motor movements and (2) the memory of the 

correct action to the sensory inp ut for the learned hypersets is retrie ved in the way of not 

reacting to the sensory input but anticipating the coming sensory input and pr<'dicting 

its co rresponding action. depending upon informat ion such as the sensory in puts and 

motor outputs before the com ing sensory input. 

5.4 Details of neurophysiological findings with be­

haviors m the 2x5 task and other experiments 

In this sect ion, the correspondence of behav iors with underly ing neural mechanisms in 

the basal gangl ia-thalamocort ical loops is discussed in detail with an emphasis on the 

motor circu it. 

As di scussed before, the basal ganglia has an important role in internally-generated 

sequent ial movements and the motor circuit shou ld play a significant role in it. Among 

cortical areas included in the motor circuit, the relationship of fun ctional roles of the 

SMA and pre-SMA is of part icu lar interest. While lli kosaka and his colleagues provided 

several interesting behavioral findings as discussed in the previous sect ion , they have also 
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employed a ser ies of blockade exper iments by the injection of muscimol (a G.\ 13.\ agonist) 

on several interest ing portions such as anterior/ posterior striatum. the S~lA. pre-S~ ! A, 

and others. They also tested humans by fun ctional Magnetic Resonance Imaging (f~ I HI ) 

in the 2xl0 task similar to the 2x5 task . These results can provide important clues to 

examine functional roles of the basal ganglia, the S~IA , pre-S~ lA and other areas. Ther(' 

also exist several exper imental findings not discussed yet, wh ich will be further examin('d 

in connection with the functional roles o f these portions of t he brain. In the rest of t hi s 

sect ion , these experimenta l findings are examined in correspond nee with the relat('d 

portions of the brain . 

5.4.1 Different functions in different parts of the striatum 

As discussed in Sect ion 3.7, the striatum is regarded to have an important rol<' in th(' 

acquisition and execution of sequential movements in terms of sensory inputs and its 

response that will be tra nsformed to p roduce motor outputs under the influence of 

limbic inputs, or motivational signals. Furthermore, in Section 3.6, it is pointed out 

that different parts of the st ri atum are in vo lved in different basal ganglia-thalamocort ical 

loops. The question, then, a ri ses whether different parts of the st riatum hav!" different 

functional ro les in terms of sequential movements . 

Miyachi eta!. [44] tested the performance of learned and new hypersets in the 2x5 task 

by blocking each of anter·ior- str·iatum, middle-poster·ior putamen, and middle-poster·ior· 

caudate in contrast wit h the control condition. Among these conditions, they compared 

the mean number of error trials to criterion that is a variant of one of measures they 

used as discussed in Section 5.2.1. First of all, as expected, the mean number of error 

trials is much smaller for learned hypersets than that for new hyperscts. In the condition 

of blocking the anterior st ri atum, the number of error tr ials sign ifi cantly increased for 
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new hyperscts in comparison with the control condi tion but not significantly increased 

for learned hypersets . In the cond it ion of blocking the middle-posterior putamen, the 

nu mber o f error trials signifi can tly increased for learned hypersets but not sign ifi ca nt ly 

increased fo r new hyperscts . The blockade of the middle-posterior caudate produced 

no sign ificant changes in terms of the number of error trials for learned hypcrscts and 

new hypersets . Based on t hese findings, Miyachi et a !. [44] suggested that the a ntC'rior 

str iatum contributes to the acquisition process o f new hypersets but not to the retrieval 

of memory of learned hypersets from t he long-term memory (LTM). In contrast, the 

middle-posterior putamen participates in the retrieval process. Apparently, the middle­

posterior caudate docs not specificall y cont ribu te to eithe r acqu isit ion or retrieval. Not(' 

that their results coincide with t he correspondence of different par ts of the st ri at um with 

different circuits . It is wel l known as discussed before that the anter ior striatum has 

massive projections from prefron tal and the pre-SMA and is in vo lved in the dorsolateral 

prefrontal circuit. The m iddle-posterior puta.men is in volved in the motor circuit and the 

middle-posterior caudate is in vo lved in the oculomotor circui t . It is, however, noteworthy 

that the number of error trials for the learned hypersets by the blockade of the posterior 

putamen did not become as many as that for the new hypersets in the normal cond ition, 

even though t he increase of the number of error trials by th is blockade is stat isti cally 

sign ificant in comparison with the number of er ror trials in the cont ro l condi tion fo r the 

learned hypersets . I t is, therefore, not clear to what extent the posterior putamen is 

in volved in the retr ieval process of information from the LTM. Because Miyachi eta!. [44] 

only tested with the new hypersets and the learned hypersets that have a lready been 

extensively experienced, there is a possibility such t hat the stored information of the 

learned hypersets in relat ion to the posterior putamen may be a lready transferred to 

other port ions of the brain at a lo wer level such as t he cerebellum [37] . It should be 
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interesting to employ their blockade experiment with 'half-learned' hyperscts. 

In summary, the anterior striatum is much involved in the early stage of acquisition 

process of sequent ial movements . The posterior putamen can be cons idered as involved 

in the ret rie,·al process of informat ion from the LTM, but the degree of the im·o lvcment 

is quest ioned. 

5.4.2 T he presupplementary motor area 

The pre-SMA receives inputs from t he prefrontal cortex( in and around the principal su l­

cus) and the rostral cingu late motor area [8]. In addit ion, t he pre-SMA receives modest 

projections from t he inferio r parietal lo bule [39 , 73], which is connected with dorso lat­

eral prefrontal cortex(DLP F), supplementary eye ficld(SEF), and frontal eye field ( Fl~ F) . 

The pre-SMA has reciprocal connections with the SEF as wel l and has the projections to 

the anterior st riatum. Accord ing ly, t he pre-SMA is heav ily interacted with the cort ica l 

areas involved in t he dorso latera l prefron ta l and oculomotor circu it. Fu rt hermore, t he 

pre-SMA is reciprocally connected wit h t he S1VlA as well. Thus the pre-SJV!A is a pivotal 

cort ical area to invest igate t he interaction of the basal gangl ia-thalamocortical loops. ln 

addit ion, it must be noted that t he pre-SMA is t he area part icu larly wel l connected 

with the ce rebellum. T he t ha lamic terminal fie lds of inputs from t he cerebellar nuclei 

overlap considerably with the distr ibution of thalamic neurons projecting to the pre­

S\IA, but not much with t hat project ing to t he SMA [73] . Therefore, via the thalamus, 

the pre-S MA has t he input from t he cerebellum as well. Fu rt hermore, a wide range 

of the medial frontal cortex, includ ing the pre-SMA, is known to receive the massive 

project ions from the dopamine neurons of the mesocrt ical dopaminegic system which is 

different from the nigrostr iatal dopaminegic system discussed in Section 3.8 [33, 79]. In 

short , the pre-SMA has ric h sensory, moto r, and motivational inputs from the cortical 
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and subco rti cal areas. These connect ivit ies suggest that the pre-S~ ! A may be involved 

in a kind of re inforcement learn ing. There are several experimental evidences to support 

this view. In fMRI stud y of 2x l0 task in the 2x2 mat ri x display, ll ikosaka eta!. [29] 

showed t hat the pre- SMA is pa rti cularly active for learning of new sequences, not move­

ments per se. In contrast, t he SMA proper was act ive for sequent ial mo1·ements. not 

learn ing. In addition, Shima et a!. [67] have show n that many cells of t he pre-S~ I i\ 

showed the increase of activities when monkey had to di scard motor plans, us ing the 

external cue from the environment . In the 2x5 task experiment by blocki ng the prc­

SMA, Miyashita et a!. [46, 4 7] has shown t hat the performance of the new hypcrscts 

was significantly worse in t he blockade of the pre-SMA by the number of error trials to 

criterion than that of the new hypersets in t he control condition, whe reas that of the 

learned hypersets was not different from that of the learned hypersets in t he cont ro l con­

dition. The pre-S MA , hence, is considered as much in volved in the acq uisit ion process 

of sequential movements part icularly in the ea rly stage. 

In the 2xl0 task using 2x2 mat rix d isp lay in fMRT studies [28,56], two conditions of 

sequence, that is, 'color ' and ' place' conditions, are tested. The exper imental procedu re 

is similar to t hat of the 2x5 task. The difference of 'co lor' condition lies in that the 

sensory feature of defi ning the sequence is not spatial informat ion, o r ' place' as in the 

2x5 task, but 'co lor'. 

It should be noted that in 'p lace' condition , sensory informat ion, that is, spat ia l 

information , can be tied to the sequence of hand-movements. In other words, the memory 

of sequential movements by themselves can be learned in 'p lace' condi t ion. In contrast, 

even when the subject learned t he seq uence in 'co lor' condi tion, the subject shou ld 

convert sensory informat ion , or 'co lor ' informat ion , in to spat ia l informat ion to move 

hand in each trial. In other words, it is impossible in 'color' cond it ion to form the 
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memory of sequent ial movements but possible to learn the sC'quence of co lor, that is, 

sensory inpu ts . Surprisingly, the act iYi ly transition in the pre-S ~IA is the same betii"C'en 

two cond itions. The t ransit ion of the activities in the pre-S ~! A is that, in ear ly stage , 

the act ivities a re high and are gradually deCI·cas ing till the end. Thi s suggests t hat the 

lea rning in the pre-SMA depends more on sensory in puts than on motor outputs. 

Then the question to be asked is whether t he pre-S !\IA is related e ither to the assoc i­

ation between a sensory inpu t and its corresponding respo nse, which is not transformed 

into an actual moto r output yet, or to the learn ing of such an association as in sequence. 

Sa.kai and llikosaka. [55] has tested the 2xl task with the 4x4 matrix di splay and the cue 

signa l. In their experiment, the cue sign al is illumin at ing two locat ions, either of whi ch a 

monkey sho uld push first and the 'go' signa.! is illuminating the same two locat ions with 

a different color from tha.t of the cue signal. It was observed t hat the pre-S!\ IA neural 

act ivities in creased during after-error-response com pared to after-cor rect-respon se, but 

never changed the ir phasic pattern response. They a.re remarkably different from that of 

rostral cingulate motor area (rCMA). Neu ra l activities in the rCMA ex hibi ted sustained 

act ivities between two tria.ls, one in which the monkey ma.de the mistake and the othe r 

in which the monkey made the correction of the action. This res ul t suggests, as Sakai 

and l-likosaka [55] indicated, tha t not the pre-S MA but the rCMA may be respons ible 

to keep the error signal , whereas the pre-S!\ IA is respon sible to associate sensory in ­

puts with motor outputs and to renew the association by use of t he error signal from 

the rCMA. Furthermore, it should be noted that the profile of neural activities in the 

pre-SMA in t heir experiment is remarkably similar to tha.t of Shima d a!. [67]. Given 

tha.t this 2x l task is not a sequential task, th is resu lt may suggest that the function 

of pre-SMA is related to the association aspect rather than the sequential , or temporal 

organ izat ion as pect in terms of sequential movements [55] . 
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In summary, the pre-Si\IA seems to ha1·e a dual role: (J) associating the sensory 

inputs with its co rresponding response that requires the transformation to produce the 

motor output particu lar ly in t he early stage of the acq uisit ion process of sequentinl 

movements, with an emphasis on the association aspect rather than t he aspect of the 

sequences, and (2) transforming the acq uired resu lt to somewhere else such as the SI\ IA. 

5.4 .3 The supple m e ntary m otor area 

The SMA is considered as being invo lved in interna ll y-generated scquent ialmovemenls, 

as discussed in Section 3.6. In other words , the Si\ IA can be considered as the storage 

of sequential movemen ts as one of the long-term memory ( L TM) systems . The view 

such that the SMA has its evolutiona ry origin in the hippocampus and has a limbic 

cort ical root in the anterior cingu late co rtex [73] also supports the idea that the plasticity 

in the SMA can contribute to sto re the memory of sequenti a l movements, a long with 

experimenta l ev idences such as Aizawa et al. [1]. 

The SMA and the pre-S MA has a ri ch reciprocal connect ions. As pointed out in 

Section 3.6, the pre-SMA not the SMA has the projection from the prefronta l cortex, 

whereas the SMA is richly linked with Ml and has modest inputs from the PMC [73] . 

Because it is d ifficult to consider the striatum as init iat ing such sequential movements as 

discussed in Section 3.7, the SMA may be in volved in initiat ing these movements. The 

prefrontal cortex may be in vo lved in engag ing sequent ia l movements, depending upon 

the sensory information, as di scussed in Section 3.7. Hence, it is possible for the SMA 

to be inOuenced by the prefrontal cortex via the projection from the pre-S MA . 

There, ho wever , exist some caut ions to cons ider the SMA by itself as the long­

term memory of sequentia l movements. First of a ll , it is worth noting, according to 

Tanj i (1994, p258.) [73], that " SMA neurons are act ive during the performance of the 
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same motor task. when obsen'ed 2-6 months after the training. Surprisingly, ""hen \\"C 

kept training a monkey for 12 months in the same task. no premo\·emenl acti\' ity \\"a S 

found in eithe r the left o r the right SMA."' Second ly, when the part of the S~ li\ that 

is regarded as hand part topographically in this area, ipsilaterally or contra la.tcrally, 

was blocked in the 2x5 task [46,47), the number of error trials for learned hypC'rSC'l did 

not increase sign ificant ly than that of the learned hypersets in the control condition. 

These evidences are against the view such that the SMA is the storage of sequent ial 

movements . Yet, since the motor sequence task of Tanji [73] is relatively a. simple task, 

it may be possible that the memory of their task can be transferred somewhere such 

as the PM C after overtraining. In addition, according to observat ions of ~liya s hita. 

(personal commu ni cat ion ) in he r experiment [46,47), the bilateral blockade in the SMA 

disrupted more learned hypersets. It was also observed that the blockade of the SMA 

caused monkeys to mistakenly push a different position for the second stimul us of a set, 

which is ve ry rare in the control cond ition a nd that the performance of 'half- learned' 

hypersets were more disrupted (Miya.shita, personal communicat ion ). Therefore, it is 

still possible at least to some degree to consider the SMA as the storage of the sequent ial 

movements , provided that after overtraining, the stored informat ion ca.n be transferred 

to a. lower level such as the premotor cortex (PMC), primary motor cortex (M.i) a.nd/or 

the cerebellum [37, 38] . 

It should be mentioned, in addit ion, that in the blockade of the SMA in the 2x5 task, 

the number of error trials for the new hypersets also increased sig nifi cantly than that for 

the new hypersets in the control cond ition, though the increase is less sign ificant than 

in the case of the comparison between the blockade of the pre-SM A and the control 

condition [46, 47]. This result suggests that the SMA may have a role even in the 

sequential movements for the new hypersets. One possibility is that the output of the 
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pre-S~ lA may be through the S~IA to be transformed to produce the motor output so 

that the blockade of the S~ I A in terferes the performance for new hypersets . 

In summary, the SMA may have a dual role: (!) storing the memory of seq uenti a l 

movements, provided that after overtraining, the memory is transferred to other areas, 

and (2) transforming the output of the pre-S MA as motor output. 

5.5 Summary 

The implica tions of behavioral findings of the 2x5 task and of neuroph ys iologica l findings 

on the striatum, the presupplemcntary motor a rea (prc-S MA ), a nd the supplementary 

motor area (SMA), which arc concluded in thi s chapter, arc summarized in th is S<'ction 

for readers' convenience, sacrificing the redund ancy. 

The behavioral findings of the 2x5 task indica ted the different nature of the memory 

between the early and late stage of learn ing. The memory in the late stage of learning 

depends more on the memory of motor movements than that in the early stage. The 

memory of the correct act ion to the sensory input in the late stage is ret rieved in the 

way of not reacting to the sensory input but anticipating the coming sensory input and 

predicting its corresponding action, depending upon informat ion such as the sensory 

inputs and motor outputs before the coming sensory input. 

The anterior striatum is much invol ved in the early stage of acquisition process of 

sequential movements. The posterior putamen can be considered as in volved in the 

retrieval process of in format ion in the late stage, but the degree of the in vo lvement 

is quest ioned. The pre-S MA is considered as playing a dua l role: ( l ) mapping the 

sensory inputs with its co rresponding response in the earl y stage, with an emphasis 

on the mapping aspect rathe r than the aspect of the sequences , and (2) tra nsferring 
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this acquired result to somewhere else such as the Sl\IA. The Si\ lt\ is considNcd as 

playing a dual role: (1) stor ing the memory of sequent ia l movements, provided that 

after overtraining, the memory is transferred to other areas, and (2) transforming the 

output of the p re-SMA as motor output. 
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