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Abstract

This thesis discusses several issues in multilingual frame-based computational lexi-
cography from the combined perspectives of frame semantics and distributional se-
mantics. The case study under consideration is three posture verbs (sit, lie, stand)
in English, and their counterparts in Russian and Japanese.

The first issue in frame-based accounts of these verbs concerns representation of
aspectual classes and inchoativity /causativity. 1 develop an alternative model that
can be implemented in the current Berkeley FrameNet architecture, but that is less
subject to inconsistencies and is better equipped to deal with multilingual data. It
is also more inference-friendly and thus would be more useful from the point of view
of applications of FrameNets in Natural Language Processing.

Since implementing this model would require too large a number of frame-to-frame
relations, I explore the possibilities of identifying verb classes with supervised ma-
chine learning over simple bag-of-words vector space models. I successfully recover
Russian imperfective /perfective verbs, including some that are not registered in cur-
rent dictionaries. I also demonstrate the possibility of identifying pairs of Japanese
intransitive/transitive verbs with word analogies.

I further consider the problem of representing selectional preferences in a frame-
based lexical resource, and I argue against the current Berkeley FrameNet model in
which semantic types of frame elements are represented as independent ontological
categories such as “sentients” or “physical objects”. On the basis of data on individual
variation in acceptability judgements on subjects of posture verbs, I propose a model
based on extensions from the anthropocentric prototype. I further outline what
semantic constraints define extensions of this prototype.

I consider an alternative approach to modeling selectional preferences, namely super-
vised classification over word vectors. In a series of experiments I show that a more
linguistically informed training dataset can yield up to 50% increase in accuracy of
such classification over the commonly used approach with random and unbalanced
samples.

I conclude with a discussion of several theoretical issues in both frame semantics and
distributional semantics, and potential venues for their collaboration. I also address
the question of universality of frames. I argue that frames defined on the basis of
one language are not a valid semantic interlingua, and may not even hold for all
the speakers of the same language. Still, it is theoretically possible to construct an
interlingual frame database if we take a more typological approach from the outset,
integrating data from as many languages as possible.
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Chapter 1

Introduction

1.1 Computational lexicography: past and
present

Computational lexicography is one of the most actively developed fields of linguistics.
Due to the fast development of technology and the pace of news in an increasingly
global society, a lot more speakers are interacting than ever before. This means that
language changes fast: new terms, memes, and slogans are born every second and
travel at lightning speed. For the first time in history linguists have the means to
observe the speech of so many people so soon after its production.

All this new data comes in unprecedented amounts and new formats, including both
written and spoken language. The digital era even removes the constraints imposed
by the linear structure and limited space of paper dictionaries. However, the lexico-
graphic toolbox has to adapt to the challenge.

In addition to the pressure of enormous volumes of new data, there is increasing
peer pressure from other branches of knowledge. Linguistics, philosophy, psychology,
and computer science are all working to produce more accurate models of meaning,
potentially changing the very basis of lexicography.

Among numerous competing semantic theories that could make important contribu-
tions, this study focuses on two that come from completely different directions: frame
semantics (F'S) and distributional semantics (DS).

FS is so far the only theory in cognitive linguistics that has sparked off a large
lexicographic project — the Berkeley FrameNet! (BFN) (C. F. Baker, Fillmore, &
Lowe, 1998) and its numerous branches in other languages. The basic idea of FS
is that the meanings of language units arise from the knowledge of the situations
in which they are used, and can only be defined with respect to such situations.
Frame, or “scene”, is used to refer to both background knowledge not evoked by
linguistic units (cognitive frames) and background knowledge evoked by linguistic
units (linguistic frames). For example, the words “blackboard” and “teacher” are
parts of the same linguistic frame (School) because they name the parts of the same
block of experience. BFN is a resource for linguistic frames.

!The BFN data presented in this dissertation comes from BFN 1.6.
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On the other hand, DS views meanings as something emerging from word distribu-
tions. Even without any syntactic or semantic annotation of the source corpora this
approach goes surprisingly far, capturing many relations which frame semanticists
would consider their province.For example, Mikolov, Yih, and Zweig (2013) have
shown that word embeddings capture many “encyclopedic” relations between pairs of
words, such as countries and capitals: given France and Paris, it is possible to use
vector arithmetic to find that the capital of Japan is Tokyo.

Unlike FS, DS derives its representation automatically, and is suitable for dealing
with the flood of new linguistic data. Therefore it would be practically useful for
FS to incorporate findings of DS. But this project also explores other possibilities of
interaction between these two approaches to semantics that could help them both to
move forward.

1.2 Objectives of the study

This study is motivated by the need to bring closer the fields of frame-based computa-
tional lexicography (as represented by the FrameNets community) and Natural Lan-
guage Processing (NLP). The latter is typically performed by computer scientists with
limited linguistic skills; the resources they create automatically or semi-automatically
tend to be large-scale and produced quickly, but often lacking in quality. The for-
mer is typically performed by professional linguists with limited programming skills;
they create lexicographic resources through a lot of manual annotation and quali-
tative analysis, which bounds such projects to be relatively small-scale and slow in
production.

Berkeley FrameNet (BFN) is almost the only corpus project in cognitive linguistics,
but it still does not compare even with traditional dictionaries because such coverage
is not their goal. This prevents BFN from being as useful as it could be for various
teaching and NLP applications.

The quality /quantity balance in the creation of language resources is a general prob-
lem pertaining not only to frame-based computational lexicography (FBCL). How-
ever, in this study I show that in case of FBCL, the “linguistic” workflow also masks
several deeper methodological issues, stemming from the fact that FS, like any theory
of semantics, has not yet come up with a unified account of language. FBCL cur-
rently focuses on the phenomena that it can best account for, using a relatively small
dataset in combination with a cherry-picking approach to selecting data, and leaving
out a wide range of linguistic phenomena (especially highly schematic linguistic units
such as prepositions). This results in inconsistencies in practical analysis and a lack
of systematicity in defining top-level frames (Osswald & Van Valin Jr, 2014).

In scope of this study I focus on three questions that are not unproblematic for the
current FrameNets:

e establishing correspondences across languages,
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e consistent representation of such features of verbal semantics as aspect and
inchoative-causative alternation at the level of the “abstract” and “lexical”
frames,

e providing a frame-based account for selectional constraints on the frame ele-
ments (FEs).

As a test case for cross-lingual FBCL I investigate posture verbs in English, Russian
and Japanese, showing that a satisfactory account of the above issues would require
a considerable revision of the current BFN architecture. I further show that DS
methodology can help to supplement them, and in a way that would be beneficial to
both approaches in both practical and theoretical perspective.

1.3 Approaches to multilingual frame-based lexi-
cography

Before we can start, it is important to define the scope of this study. “Computational
lexicography” in this work is understood in a very broad sense of creating resources
that explicitly encode meanings of linguistic units and/or relations between them.
Furthermore, following the construction grammar vein, I do not limit contemporary
computational lexicography to lexical units (LUs), and consider resources such as
Constructicons also lexicographic.

“Multilingual frame-based lexicography” at the moment is more of a research program
than an ongoing project. At the moment, the only multilingual FrameNet in existence
is the Kicktionary, a small FrameNet for the soccer domain (Schmidt, 2009). A bigger
multilingual FrameNet is being planned in Berkeley?.

However, “multilinguality” can also mean simply “multilinguality of language data
refers to the existence of such resources for more than one language” (Lonneker-
Rodman, 2007, p.3). In this sense FBCL is already multilingual, since there already
are French, Spanish, Japanese and other FrameNets. Most of them follow the so-called
“expand” approach, in which “a resource for one language, which is regarded as stable
at that time, is transferred to another language” (Lonneker-Rodman, 2007, p.6). The
role of the “stable” resource to be mapped to other languages usually falls to the
English BFN. One hypothesis is that BFN frames can serve as semantic interlingua
and, once all the resources are more or less complete, they could eventually be inter-
linked, with special transfer rules for cases of partial matches (Boas, 2009).

For a number of reasons, “expand” approach is more practical than the “merge” ap-
proach, in which resources for different languages are developed independently and
then linked. However, starting from the English frame database creates a bias towards
the English conceptualization scheme. In this dissertation I argue for an alternative
to “expanding” and “merging”: designing a frame database on the basis of data from

?Miriam Petruck, MetaNet tutorial at the conference of Association for Computational Linguistic
(ACL 2016), http://acl2016.0org/index.php?article_id=61
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all target languages simultaneously, as it was done in Kicktionary. While this ap-
proach is more laborious at the initial stage, it is the only way to make sure that all
necessary distinctions are taken into account, and it can be helped by the growing
body of cross-linguistic data. In the scope of this dissertation I demonstrate how
integrating data from English, Russian and Japanese can provide a more accurate
frame-based account of posture verbs in these languages.

This study does not offer a complete methodology for developing a multilingual frame-
based resource, but it shows that taking into account multilingual data significantly
improves consistency of the database and highlights subtle distinctions that would
be easy to miss in a monolingual resource. Furthermore, it demonstrates the possi-
bility of leveraging DS tools for at least parts of the task that would otherwise be
gargantuan.

1.4 Posture verbs as a test case for multilingual
semantic resource

Posture verbs are a lexical group that has been shown to vary greatly across languages
both grammatically and semantically (Ameka & Levinson, 2007; Newman, 2002b).
The dimensions of variation discussed in this study include their aspectual properties,
their patterns of lexicalization across languages, and their selectional constraints.

This study uses posture verb data from three languages of different families: English,
Russian and Japanese. The “core” posture verbs in English are sit, lie and stand; their
equivalents in Russian are sidet’, lezhat” and stoyat’, and in Japanese - suwaru, tatsu
and yoko-ni naru. I also consider some dialectal variants of these verbs and their
derivatives.

The main focus is on two dimensions of semantic variation in posture verbs: aspect
and possibility of using them for indicating location of objects. Posture verbs also
have numerous metaphorical extensions, such as lie as ‘“rest”, stand as “tolerate”, sit
as “conduct a meeting”, etc.; but these extensions are not the focus of this study.

The first challenge concerns the fact that posture verbs, like other verbs, may cor-
respond between languages in terms of describing the same situation, but they may
vary with respect to the temporal “profile” of the posture events. For instance, in
English the verb sit is aspectually polysemous, as it has both stative and dynamic
meaning. Consider (1.1):

(1.1) T sat on the chair®.

(1.1) could mean either “I sat myself down on the chair” or “I was sitting on a chair
(and didn’t move)” (Newman, 2002b, p. 4). In other languages the posture verbs may

3The examples cited in this study come from bilingual dictionaries, other studies, and corpora,
including BEN (C. F. Baker et al., 1998), BNC (“The British National Corpus, Version 3 (BNC XML
Edition),” 2007), RNC (the Russian National Corpus, (Apresjan et al., 2006)), and BCCWJ (the
Balanced Corpus of Written Japanese, (Maekawa, 2008)). Where no reference is given, the examples
are provided by the author.
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have other aspectual properties, lexicalized or expressed with constructions. Account-
ing for such variation cross-linguistically is part of the general problem with provid-
ing a unified account of lexical and syntactic constructions, and integrating “verbal”
frames with the general representation of event structure in cross-linguistically valid
and consistent manner.

The second challenge is that languages differ with respect to whether verbs that
indicate human posture can also be used for indicating location of objects (Viberg,
2013). When they do, they retain their original spatial characteristics to various
extent, and they also vary with respect to which objects they are compatible with.
For example, in English the verb sit is often used to indicate location of an object,
irrespective of its spatial orientation (1.2), but lie or stand are more tied to the spatial
context.

(1.2) The cup sat on the desk.

In Russian, on the other hand, it is possible to combine a posture verb with “cup”,
but it would have to “stand” rather than “sit”. As for Japanese, it normally does
not allow for any such combinations. In both cases, the restrictions are motivated
by certain properties of the real-world entities that are denoted by the arguments of
posture verbs, and, as such, should be accounted for by FS.

Finally, one more challenge posed by the posture verbs concerns the very nature
of multilingual FBCL. The primary tenet of FS is that meanings are relativized to
scenes; if scenes come from experience, they can be expected to vary from society to
society, and even from person to person. Even something as basic as sitting is different
for Japanese culture, where sitting on the floor is typical, and American culture, where
it is less so. The actual sitting posture also differs in these two situations, ranging
from extremely stiff and formal seiza pose to comfortable sinking in a huge sofa. Does
that mean that English and Japanese have different sitting frames? If so, how do we
establish the correspondence, and what does this mean for FBCL? In scope of this
work I will consider this issue only briefly, but it needs to be kept in mind in the
general perspective of multilingual FBCL.

1.5 Dissertation outline

This work generally takes a problem-driven approach. I start with the BFN perspec-
tive on the above issues, and identify where the current proposals can be improved. I
further look for solutions in the collaboration between FS and DS. The contribution
of this dissertation lies not only in the particular proposals I develop, but also in this
workflow which I show to be mutually beneficial to both approaches to semantics,
both practically and theoretically.

The overall structure of the dissertation is as follows.

Chapter 2 provides a historical overview of how FS was developed. I review some
of the original ideas that Charles Fillmore brought forward in the 1970s, and their
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current FrameNet incarnation. I also survey the current NLP applications that use
FrameNets, and provide a brief introduction to distributional semantics.

Chapter 3 presents a practical test of the “expand” approach in the current FrameNets.
The frames developed by BFN team for English posture verbs are projected onto
Russian and Japanese data. This attempt suggests the necessity for a more consistent
treatment of aspectual classes and the overarching event structure scenario, of which I
present an alternative model. I also propose a basic mechanism for establishing cross-
lingual correspondences in cases when in one language a frame is evoked lexically,
and in another - by a complex expression.

Chapter 4 describes how distributional semantic models can be used to automatically
induce verb classes relevant to event structure representation (which would help to
ensure consistency of frame-to-frame relations in a multilingual FrameNet). I conduct
two experiments on perfective/imperfective verbs in Russian and transitive/intransi-
tive verbs in Japanese, with two different methods of retrieving verb classes both of
which achieve over 90% accuracy on my test data. I show that such work would be
mutually beneficial for both BFN and DS: the former can solve its practical tasks,
and the latter gets to experiment with a wide range of linguistic relations, some of
which correspond to unusual mathematical properties of the vector space.

Chapter 5 examines the current account of selectional preferences in BFN, showing
that ontological semantic types cannot accommodate posture verb data (particularly
not in cross-lingual perspective). I argue in favor of a prototype-based account,
on the basis of the evidence of cross-lingual and individual variation in acceptability
judgements for subjects of posture verbs. For this study I conducted a survey that was
completed by 72 native speakers of English, Russian and Japanese (24 per language).

Chapter 6 explores the possibility of modeling selectional preferences of English pos-
ture verbs with supervised classification over word vectors. In this approach, the ob-
jective is to train a classifier in such a way that the probabilities it assigns to different
potential arguments of posture verbs approximate human acceptability judgements.
I show that supervised machine learning opens new avenues for the linguists, who
can now experimentally study generalizations over word vectors produced by various
training sets. In scope of this project I explored the effect of balanced subsampling of
positive and negative training examples, and also the effect of introducing counter-
examples. While the resulting models are limited in several ways, with a good training
set it is possible to distinguish between, e.g., things that can and cannot stand with
80-90% accuracy.

Chapter 7 puts the findings of this study in the context of the problem of developing
a unified semantic theory. I discuss the internal limitations of both FS and DS,
and what could be expected of their collaboration. I also consider the problem of
universality of frames, and the challenges of multilingual FBCL.

Chapter 8 concludes this study with discussion of its theoretical implications for F'S
and DS, its limitations, and suggestions for future work.
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1.6 Summary

Of all the different theories in cognitive semantics, F'S is the only theory applied to a
large-scale computational lexicographic project: the family of FrameNets for various
languages. Frame-based descriptions of vocabulary attempt to link lexical knowledge
to world knowledge, rather than simply establish paradigmatic links between words
such as synonymy or antonymy. This allows the linguist to avoid being trapped in
words, and offers a very attractive platform for semantic analysis.

However, with the current FBCL methodology the FrameNets are making slow
progress, and there are also a few methodological challenges. This project focuses
on three such challenges: frame-based establishment of interlingual correspondences,
consistency in linking lexical and abstract frames, and modeling of selectional con-
straints. I conduct a detailed case study of the above issues with the posture verb
data from three languages from different families: English, Russian and Japanese.
This lexical group has been shown to exhibit considerable cross-linguistic variation
in terms of their selectional constraints, and their aspectual classes also offer a good
test case for linking lexical frames with more abstract event structure templates.

I suggest that both of these issues can be tackled more efficiently if FS makes use
of the methodology offered by DS, and I develop specific proposals about how this
can be achieved. But the collaboration between FS and DS is by no means limited
to the areas I investigate, and I hope that this work will show to both communities
how fruitful such collaboration can be, in both theoretical and practical terms.

In order to reuse the data that has been already created by numerous FrameNets
and make my contributions easy to incorporate, I aim to maintain as much compat-
ibility with the current BFN architecture as possible. However, in chapters 5 and
6 I discuss alternative approaches to selectional preferences that are not possible to
implement in the current FrameNets. In general, this study is not a part of the cur-
rent FrameNets, but rather an alternative view of the future of both FS and DS. The
current FrameNets are only one implementation of FS, and, as this theory continues
to be developed in the work of many non-FN linguists, alternative implementations
are bound to follow.






Chapter 2

Frames approach to semantic
analysis

I will start with a brief review of the origin of FS in the early works of Fillmore, and
then look at its current state in the FrameNet family of lexicographic projects and
construction grammar. Sections 2.2 - 2.3 will look at early Al frame-based represen-
tations and modern NLP applications that make use of F'S resources. Section 2.4 will
provide an (extremely) brief overview of DS and distributional meaning models.

2.1 Frame semantics in cognitive linguistics

2.1.1 “Semantics of understanding”

Fillmore’s F'S can be seen as a development of his case grammar theory, both having
the notion of “valence” as core. However, his 1970s works also show that it was rooted
in dissatisfaction with feature-based or truth-conditional approaches (Fillmore, 1975).
He was aiming at a “richer” semantics, and a semantics geared towards understanding
rather than generating “valid” sentences.

Fillmore’s basic idea was that understanding an utterance is only possible on con-
dition of possessing the cognitive schema, parts of which the speaker has profiled
by the words he used. At first he used the term “schema’” to refer to “any coherent
individuatable perception, memory, experience, action, or object” (Fillmore, 1977, p.
84). He considered frames as a linguistic rather than cognitive phenomenon: they
are the “specific lexico-grammatical provisions in a given language for naming and
describing the categories and relations found in schemata.” (Fillmore, 1977, p. 127)

From the perspective of NLP, another important feature of this early version of
FS was that it focused on the process of understanding language, including all the
implicit information that goes beyond what is stated explicitly. Fillmore distinguished
between “evoked” and “invoked” frames, describing it in the following way:

A frame is invoked when the interpreter, in trying to make sense of a text
segment, is able to assign it an interpretation by situating its content in a
pattern that is known independently of the text. A frame is evoked by the
text if some linguistic form or pattern is conventionally associated with the
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frame in question. For example, the sentence “We never open our presents
until the morning” makes no mention of Christmas, yet interpreters who
share certain cultural experiences, would immediately (in the terminology
suggested here) invoke a Christmas context; replace the simple noun presents
with Christmas presents and we have introduced a word which evokes that
same context (Fillmore, 1985, p. 232).

This was a major step forward from semantic theories that were only dealing with
the linguistic units explicitly present in a given context, because it put semantics in
the “general knowledge” pool rather than some specialized linguistic ability. It is this
feature of FS that accounts for much of its current success in Al and NLP: it offers
access to commonsense reasoning.

Consider (2.3), another Fillmore’s example:

(2.3) My dad wasted most of the morning on the bus.
(Fillmore, 1985, p. 230-231)

We understand a lot more from this sentence than what it actually says - that the
addressee is probably not a member of speaker’s family, that the speaker has a good
relationship with his father, that something was probably wrong with the bus, that
“morning” here denotes “working hours” rather than “dawn-till-noon” sense. Fillmore
suggested that understanding a text consists of “giving it a maximally rich interpre-
tation, an interpretation which draws everything out of the text that it can”. One can
argue that in actual communication the addressees do not always draw all possible
information (e.g. because they are tired, uninterested, distracted, or uncooperative),
but this approach is still very fruitful from the practical perspective of NLP - and it
maintains a lot of cognitive plausibility.

This goal of maximally rich interpretation led Fillmore to abandon the distinction
between “encyclopedic” and “linguistic” knowledge (Fillmore, 1985, p.233). It is the
extra-linguistic nature of frames, their being “grounded” in reality that accounts for
much of the appeal of FS.

2.1.2 The onset of frame-based lexicography

In subsequent Fillmore’s work in the early 1990s there is a lot of discussion of corpora
and new computational lexicons. Fillmore argued for the use of corpora, and warned
about necessity of careful qualitative analysis of this data, calling himself “an armchair
linguist who refuses to give up his old ways but who finds profit in being a consumer
of some of the resources that corpus linguists have created” (Fillmore, 1992, p.35).

Fillmore’s work on Risk with B.T Atkins (a lexicographic adviser at Oxford Univer-
sity press at that time) demonstrated the possibility of using a large corpus database
to gather data about frame elements (FEs) and their syntactic realizations, and the
benefit of this approach to lexicography: frame-based analysis would enable lexicog-
raphers to distinguish subtle differences that are best described ‘“not necessarily in
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terms of lexical semantic differences as such, but as differences in the manner of syn-
tactic realization of the elements of their common frame” (Fillmore & Atkins, 1992,
p.101).

Further examination of Risk in dictionaries and corpora databases led Fillmore to
conclude that “the classical printed dictionary format is too restricted, in both length
and dimension, to present an intelligible and truthful statement of the way the word
risk is used” (Fillmore & Atkins, 1994, p.350). They showed that frame-based anal-
ysis required that the user of the new dictionary is not confined to a linear list of
senses, and that corpus would need to be a part of the dictionary.

While the earlier papers discuss how frame-based analysis may be useful for lexico-
graphic work, the Risk papers presented FS as an independent approach to building
dictionaries of a new kind. Fillmore and Atkins envisaged that “an on-line frame
semantics dictionary would be more than simply a multi-accessed print dictionary,
though at the minimum it would certainly be that. The rich and flexible description
underlying the lexical database, including the tagged and parsed corpus integral to
it, would give the user a new kind of resource, one which would not only provide
detailed and comprehensible answers to questions regarding word usage, synonymy,
and antonymy, but would also be equipped to suggest various ways of expressing a
complex concept: a true 'active’ or ’encoding’ dictionary.” (Fillmore & Atkins, 1994,
p.376).

2.1.3 Berkeley FrameNet

The development of Berkeley FrameNet (BFN) started almost twenty years ago (C. F.
Baker et al., 1998). Its initial goal was “efficiently capturing human insights into se-
mantic structure” in order to produce a frame-semantic lexicon for English. It aimed
to cover general vocabulary in 13 semantic domains (including “Time”, “Body”, “Emo-
tion”, and “Transaction”). The project included three modules: the lexicon (descrip-
tions of lexemes and their syntactic patterns), the frame database, and the example
sentences, manually picked from the British National Corpus and annotated.

The second stage of the project introduced frame-to-frame relations and semantic
types, as well as richer grammatical annotation which aims to be theory-neutral
(Fillmore, 2007, p.158). An elaborate system was developed to deal with different
kinds of mismatches between syntax and semantics, such as syntactic elements with-
out an assigned semantic role, non-expressed semantic elements, semantic elements
matching with several syntactic elements, support verbs, etc. (Fillmore, 2007).

As of 03.08.2016, BFN 1.5 contains 13542 LUs in 1223 frames, with about 202236
annotated sets (including full-text annotation). Release 1.6 is being prepared. Tech-
nically BFN is an SQL database, with data releases available in XML format. It is
also integrated into some third-party NLP systems such as Natural Language Pro-
cessing Toolkit!.

'http:www.nltk.org/howto/framenet.html
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Figure 2.1 presents the much-quoted Commercial transaction scenario as an ex-
ample of a frame entry in BFN. The position of this scenario in the overall frame
network can be viewed in FrameGrapher, a BFN tool for visualizing frame-to-frame
relations (Figure 2.2).

As shown in Figure 2.1, for each frame BFN provides an informal definition and a
set of frame elements (FEs), divided into “core”, “peripheral” and “extra-thematic”.
“Core” and “peripheral” FEs are frame-specific, even if their names happen to be
shared between frames, while “extra-thematic” FEs are not frame-specific. Each FE
is also provided with an informal definition and sometimes with example sentences.

All of this information can be viewed on the BFN website in “frame reports”.

Frame entries also contain the lists of frames that are related to the target frame. In
case of Commercial transaction only three such relations are present, but they place
this frame in the wider frame network, as shown in Figure 2.2. There are currently
8 frame-to-frame relations: generalization relations (Inherits, Using, Perspective on),
event structure relations (Precedes and Subframe), and systematic relations (Inchoat-
e of, Causative_ of) (Fillmore & Baker, 2010, p. 329-330), plus a See_ also relation.
Additionally, a new BFN relation for marking source and target frames in cognitive
metaphors has just been introduced to enable markup of metaphors independently
from the MetaNet project?. All of these relations are directed or assymmetrical, i.e.
one of the frames in the relation is a “head” of the other. Inheritance relation is the
chief mechanism for conceptual content to be transferred from frame to frame, and
it entails that the child frames must also inherit the FEs of the parent frame.

BFN represents polysemy by attributing different lexical units (LUs) to different
frames. LUs may consist of single words of multi-word units (MWUs). Figure 2.3
presents an example of a lexical entry for transaction, a noun evoking the above
Commercial_transaction frame (it is currently the only LU in this frame). For each
entry there is an informal definition. BFN aims to provide all lexical entries with
example sentences that have annotations of both syntactic and semantic elements.
The idea is that once the database is big enough, the combined annotations of FEs
and their syntactic realizations will provide insights into the interface of syntax and
semantics. For each lexical entry there are also tables of valence patterns. However,
since BFN is work-in-progress, many such annotations have been initiated, but not
actually completed. In Figure 2.3, only 2 out of 5 example sentences have annotations
of the syntactic realizations of FEs (and only one such per sentence).

Some FEs are associated with semantic types, which are used “to record information
that is not representable in our frame and FE hierarchies”. They indicate “the basic
typing of fillers of FE”, such as “Sentient” for the COGNIZER FE. They are propa-
gated to the FEs of child frame, irrespective of the type of frame-to-frame relation,
but are said to be independent of the frame network per se, “since FEs which are
arbitrarily far away according to the frame hierarchy, such as the EXPERIENCER of
Perception_body and the PERPETRATOR of the PIRACY frame, are often marked
as the same semantic type (in this case, Sentient). BFN currently uses very broad
ontological classes to denote semantic types, and it is said to be “desirable” to also

Miriam Petruck, MetaNet tutorial at the conference of Association for Computational Linguistic
(ACL 2016), http://acl2016.0org/index.php?article_id=61
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Commercial_transaction

Definition: These are words that describe basic commercial transactions involv-
ing a BUYER and a SELLER who exchange MONEY and GOODS. The individual

words vary in the frame element realization patterns. For example, the typical
patterns for the verbs buy and sell are: BUYER buys GOODS from the SELLER
for MONEY. SELLER sells GOODS to the BUYER for MONEY.

| Buyer HiS| [aoney $20] transaction [ge., with Amazon.com| [ges for a new
TV] had been very smooth.

Core FEs:
BUYER [Byr|: The BUYER wants the GOODS and offers MONEY to a SELLER in

exchange for them.

GooDs [Gds|: The FE Goobs is anything (including labor or time, for example)
which is exchanged for MONEY in a transaction.

MONEY [Mny|: MONEY is the thing given in exchange for GOODS in a transaction.

SELLER [Slr|: The SELLER has possession of the GOoDS and exchanges them for
MONEY from a BUYER.

Non-Core FEs: ' . . .
MEANS [Mns|: The means by which a commercial transaction occurs. Semantic

Type: State of affairs
RATE [Rate]: Price or payment per unit of GOODS.

UNIT [Unit]: The Unit of measure of the GOODS according to which the exchange
value of the Goods (or services) is set. Generally, it occurs in a by-PP.

Frame-frame Relations:
Inherits from: Reciprocality
Is Inherited by:

Perspective on:

Is Perspectivized in:

Uses:

Is Used by:
Subframe of: Commerce_scenario
Has Subframe(s): Commerce_goods-transfer, Commerce_money-transfer

Precedes:
Is Preceded by:

Is Inchoative of:
Is Causative of:

See also:
Lexical Units: transaction.n

FIGURE 2.1: Commercial_transaction in BFN: definition and FEs.
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FIGURE 2.2: Commercial transaction in the BFN frame network.
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transaction.n

Frame: Commercial transaction
Definition: COD: an instance of buying or selling.
Frame Elements and Their Syntactic Realizations

The Frame Elements for this word sense are (with realizations):

Frame Element Number Annotated Realization(s)

BUYER (5) INI.— (4), Poss.Gen (1)
GooDs (5) INI.- (4), PP[of].Dep (1)
MONEY (5) INI.—- (5)

SELLER (5) INI.— (5)

Valence Patterns:

These FEs occur in the following syntactic patterns:

Number Annotated Patterns

5 TOTAL BUYER GoODS MONEY SELLER
(3) INT — INI — INT - INI -
(1) INT - PP|of] Dep INI -  INI -
(1) Poss Gen INI - INT- INI-

However, reports of transactions [g,.gs of various dual-use material| is publicly
known. INT INT INI

There were rumors in 2003 of Burmese plans to purchase ballistic missiles from

North Korea, but it is unclear whether any transactions have been completed.
INT INT INT INT

QN : Has the transaction taken place? INT INT INT INT

However, reports of transactions [, of various dual-use materiall PPJof] Dep 1S
publicly known. INT INI INI

But why might potential buyers of financial assets delay [puyer their|poss gen
transactions and instead hold their wealth in a perfectly liquid form with a
zero or low yield, e.g. cash or current account deposits? INI INI INI

FIGURE 2.3: Transaction.n: an example of a lexical entry in BFN.

classify them with WordNet categories (Ruppenhofer, Ellsworth, Petruck, Johnson,
& Scheffezyk, 2006, p. 79-90).

BFN proceeds frame-by-frame and creates all the LUs for a given frame before moving
onto the next one. The general criteria for attributing lexemes to the same frame
include shared aspectual profiles, sets of arguments, their types and relations between
them, and the same denotation (Ruppenhofer et al., 2006, p. 9-14), although the
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authors admit that not all of these criteria are applied consistently.

BFN seems to be decreasingly “cognitive” in its goals. FS came about as the study
of how conceptual structures are associated with language units (Fillmore & Baker,
2010, p. 313-314). BFN frames are linguistic frames, that is, frames evoked by lin-
guistic expressions, and their selection is guided by linguistic criteria rather than
psychological evidence. The BFN homepage currently defines® frame as simply “a
description of a type of event, relation, or entity and the participants in it.”

In this study the term frame (marked graphically as Frame) refers to the FS unit of
description, and conceptual structures are referred to as “cognitive frames”, for the
lack of better term. I will focus on the former, but overall there are many impor-
tant questions about the cognitive aspects of FrameNets that need answers. To my
knowledge, there have been no attempts to give the overall linguistic workflow of BFN
(or any other cognitive linguistic project) a psychological footing, i.e. require that
any posited linguistic distinction is grounded in psycholinguistic evidence. For exam-
ple, BFN does not distinguish between synonyms and antonyms, creating frames like
Agree_or_refuse_to_act, but it is not clear whether this decision is psychologically
warranted.

2.1.4 The Constructicon

Fillmore believed that “not only words and fixed phrases, but also vari-
ous kinds of grammatical features and syntactic patterns presuppose particular
structured understandings of cultural institutions, beliefs about the world, shared
experiences, standard or familiar ways of doing things and ways of seeing things”
(Fillmore, 1985, p.231). As such, they should all be analyzable in terms of frames,
and Construction Grammar (CG, e.g. A.E. Goldberg, 1995) offers a framework for
doing that. CG is the earliest constructional approach to grammar, and there is
a quickly growing family of construction grammars, including Sign-based Construc-
tion Grammar (I. A. Sag, Boas, & Kay, 2012), Embodied Construction Grammar
(Feldman, Dodge, & Bryant, 2015), and others.

The main tenet of CG is that all linguistic units are treated as pairings of meaning and
form, whether they would be considered lexical or syntactic in structural linguistics.
This necessitates providing meanings even for very abstract syntactic phenomena,
such as ellipsis or predication, but it also makes CG perfectly suited for work on
the syntax-semantics interface. Like Langacker’s cognitive grammar, CG rejects the
Chomskian autonomy of syntax, as “lexicon is not neatly differentiated from the rest
of grammar” (A. E. Goldberg, 1995, p. 4).

BFN now has a Constructicon, i.e. a part of the frame database dedicated to construc-
tions. But BFN Constructicon differs from the above-mentioned grammar theories
in that it is is not a theory but rather a collection of grammatical constructions. It
aims to catalogue constructions in a way “compatible with the development of full
grammar of the language” (Fillmore, Lee-Goldman, & Rhomieux, 2012, p. 310), but it

Shttps://framenet.icsi.berkeley.edu/fndrupal/about
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does not aim to develop a full-fledged syntactic theory. As of 25.08.2016, it included
77 constructions®.

Figure 2.4 shows an example of a Constructicon entry in BFN. Similarly to the frame
reports exemplified in Figure 2.1, there is an informal definition of the construction.
It is followed by a list of its components (CEs, construct elements) that is headed by a
CEE (constructicon evoking element), and it includes annotated example sentences.

Degree so

The construction is evoked by the CEE so. So is an adverbial modifier of a
SCALAR_PREDICATE (usually an adjective or adverb), indicating the degree to
which a particular ITEM has a property. In particular, this construction states
that the Item has that property to an extent greater than some contextual stan-
dard. This property it retains from the use of bare adjectives, in contrast with
comparative constructions, which replace the contextual standard). The extent
to which the ITEM has the property is minimally bound by the RESULT CLAUSE.
Out of context and with no RESULT CLAUSE it may be impossible to tell the
exact degree indicated by the construction.

CEE (cee): The word so.
ITEM(ite): The ITEM has a scalar property to a particular extent.

RESULT CLAUSE (res): The RESULT CLAUSE gives an indication of the extent
to which the SCALAR _PREDICATE holds of the ITEM. It takes the form of a finite
clause (marked by that or not), or a non-finite verb phrase marked with as (as
to make it hard to read.

The external argument of a (so) as to... clause may be identified with the ITEM
(that theory so complicated as to be incomprehensible), but sometines is not, as in
that theory is so complicated as to render it useless for our purposes, in which it
is (roughly) the degree of complicatedness which renders the theory useless, not
the theory per se.

SCALAR_PREDICATE (sca): The Scalar predicate is modified by the DE-
GREE__MARKER. It may be inherently scalar, or construed as such.

ex.: I could never [y, rise] [we SO| [seo high] [es that T would forget about my
loved ones|.

ex.: It was not comparable to cycling, in fact [;. it] was [.e SO| [scq different] [,
that comparison was a nonsense|.

ex.: That movie is so [s, Canadian]| that it’s not even a parody anymore.

FIGURE 2.4: Degree so: an example of a construction entry in BFN
Constructicon.

Constructicon, like FN itself, currently pursues the cherry-picking approach, and fo-
cuses on constructions that have been discussed in literature. It is probably this
general lexicographic agenda that directs the project to constructions with more tan-
gible content. Some construction grammarians try to find the semantic commonalities

*As displayed at http://sato.fm.senshu-u.ac.jp/frameSQL/cxn/CxNeng/cxn00/21colorTag/
index.html.
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even among abstract constructions like “Subject Auxiliary Inversion”, but Fillmore
et al. (2012) tentatively call them “meaningless” “while a ‘metagrammar’ of English
might find some motivating concept that underlies uses of this pattern, the actual
work of building the FrameNet Constructicon is proceeding under an assumption of

the legitimacy of semantically null constructions.” (Fillmore et al., 2012, p.325).

The “lexicographic” focus of the BFN Constructicon implies also that currently there
are no attempts to account for sentence meanings by specifying how different parts
of a complex linguistic expression combine in a single unit. The Constructicon lists
different constructions, and at the moment they are simply represented as different
layers of annotation. No claims are made about deriving complete interpretation of
sentences from this annotation. According to Hasegawa, Lee-Goldman, and Fillmore
(2014, p.197), “since FrameNet itself is a lexicographic resource, it does not provide
a complete account of frame semantics.”

However, this situation might change in the future releases. Fillmore and Baker
(2010, p.339) state that “future FrameNet activities will be moving into the semantics
of grammar, both general and abstract (negation, tense, aspect) and phraseological
(constructions and syntactic idioms), making it possible in principle to test methods
of integrating lexical meanings and grammatical meanings into a complete account of
the language-based interpretations of texts.” This dissertation makes a contribution
towards this goal with regards to aspectual meanings (chapter 3).

2.2 Frame semantics in Artificial Intelligence

While Fillmore was working on the early versions of FS in the 1970s, similar ideas
were put forward in Al, although with focus on information rather than language.
Minsky (1974, p. 2) defined a frame as “a data-structure for representing a stereotyped
situation”. Schank’s theory of conceptual dependencies also focused on representation
of procedural knowledge, with scripts defined as “standartized generalized episodes”
(Schank & Abelson, 1977, p. 19).

In the 1970s, a group of computer scientists including Terry Winograd were regularly
visiting Berkeley to meet with Fillmore and Lakoff (Lakoff, 2014). They later pre-
sented a “frame-based” knowledge representation language KL-ONE. This approach
to frames is different from the current FrameNet in that it is not a static relational
database, but an active system for deducing information from known information.
For example, CLASSIC, one of later languages in the KL-ONE family (Brachman,
McGuinness, Patel-Schneider, Resnick, & Borgida, 1991), creates a self-organizing
taxonomy which changes dynamically as new frames are added.

The early script-based AI approaches were one of the first attempts to tackle the
problem of commonsense reasoning. Later it was mostly considered in the context of
building knowledge bases with various relations between entities. One of the best-
known examples of that approach is Cyc®, the open-source release of which became

Shttp://www.cyc.com/
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one of the sources of FreeBase®, which in its turn became the Google Knowledge
Graph” that we all use every day.

While the early script-based approaches were not successful, the knowledge bases are
not perfect either; they typically aim at automatic extraction of relations tuples from
large masses of texts (such as IsA(Lincoln, president)), and reduce the actual task of,
e.g., question answering, with matching input to database entries. The commonsense
reasoning still remains the Holy Grail of Al, and is unlikely to be tackled by any one
discipline alone.

Interestingly, one specific type of commonsense reasoning came to be known as the
Frame Problem (Hayes, 1971): it is the problem of an AI agent being unable to
tell which components of a situation are affected by an event, and which of the
consequences are important and worth noticing. For example, if a child kicks a ball,
the dog will run after the ball, but this event actually has many other consequences:
the friction will cause wear on both ball and the floor, there may be some noise or
even a broken window, the ball will no longer be visible where it was visible only
a moment ago, etc. Some of these consequences are more likely to be noticed by a
spectator than others, but it is not clear how to predict - which ones.

From the point of view of Fillmore’s F'S, it is possible to model all these consequences
through various scenarios, but it remains to be demonstrated how they can be linked
together in a single event, and how the attention selects which ones are to be “ac-
tivated”. The Frame Problem is interesting not only for AI experts, but also for
linguists and psychologists, and solving it requires collaboration between all these
fields.

2.3 Frame semantics in Natural Language Pro-
cessing

Natural Language Processing (NLP) is a cross-disciplinary research area involving
linguists, computer scientists, and experts in Al. It broadly focuses on computer
interpretation and generation of human language, typically viewed through the lens
of smaller “tasks” or applications, such as question answering, text summarization,
semantic parsing, part-of-speech tagging, sentiment analysis, etc.

BFN attracted attention of NLP specialists from its very beginning. Its past co-
investigators include D. Jurafsky (question answering), J.Mark Gawron (machine
translation), and S. Narayanan (information extraction). This interest is not dying
off: as of 09.10.2015, searching for “FrameNet” in the electronic library of Association
for Computing Machinery brings up 982 hits. To give a few examples, BFN is being
used as the “golden standard” of semantic annotation (Chambers & Jurafsky, 2009),
as a training dataset for classifiers (Riaz & Girju, 2014), or as a source of heuristic
rules for discovering relations in texts (Aharon, Szpektor, & Dagan, 2010). As of now,
most of these approaches are “symbolic” in the sense that they rely on text patterns

Shttps://developers.google.com/freebase/
"https://www.google.com/intl/es419/insidesearch/features/search/knowledge.html
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and lexicographic resources, but there already is at least one proposal that attempts
to boost the traditional semantic parsing with word embeddings (Y.-N. Chen, Wang,
& Rudnicky, 2014).

BFN is not only a source for many NLP applications, but also a recipient. There
already exist several automatic frame-semantic parsers including Shalmaneser (Erk
& Pado, 2006) and SEMAFOR (Das, Schneider, Chen, & Smith, 2010). There is a
wide range of proposals for using FrameNet data for cross-lingual transfer (Annesi
& Basili, 2010; B. Chen & Fung, 2004; Kim, Hahm, & Choi, n.d.; Pad6 & Lapata,
2005), semantic role generalization (Matsubayashi, Okazaki, & ’ichi Tsujii, 2009)
and for linking FrameNet to other resources such as Wikipedia (Tonelli & Giuliano,
2009), WordNet (Burchardt, Erk, & Frank, 2005), VerbNet (M. Palmer, Bonial, &
McCarthy, 2014), among others.

However, this is not to say that there is nothing left to do. By far the most frequent
“complaint” by NLP researchers that use BFN is its low coverage (Kaisser & Webber,
2007; A. Palmer & Sporleder, 2010). For example, in the experiments of Wang,
McAllester, Bansal, and Gimpel (2015), only 50% of target vocabulary could be
mapped to the correct frames using BFN. This explains the numerous proposals for
its automatic extensions, such as the system by Rastogi and Van Durme (2014).
Other general complaints that have been voiced include the lack of formalization
(Chang, Narayanan, & Petruck, 2002) and missing annotations (and with them —
syntactic patterns) (Litkowski, 2010, p. 303).

Concerning more task-specific issues, by now there is a rather long list. While no
resource can ever hope to cater to the needs of all applications, it is interesting to
see what tasks called for what features in the context of future developments of BFN
and other FS-based resources.

e paraphrasing task: FrameNet is a powerful tool for linguistic analysis of para-
phrases (Hasegawa, Lee-Goldman, Ohara, Ellsworth, & Fillmore, 2012), but
Ellsworth and Janin (2007, p. 148) found that lumping synonyms and antonyms
in the same frame leads to contradictory paraphrases;

e semantic role labeling task: lack of selectional restrictions limits BFN’s utility
for disambiguating polysemous words (Ovchinnikova et al., 2014);

e semantic role labeling task: the grammatical annotations of BFN are not com-
patible with dependency parsers (Fiirstenau & Lapata, 2012);

e implicit semantic role labeling task: absence of annotations for antecedents of
definite null instantiations limits BFN’s usefulness as training data (Feizabadi
& Pado, 2015, p.41);

e question answering task: lack of annotations of peripheral adjuncts prevents
FrameNet from handling “When” or “Where” questions, and it is considerably
outperformed by PropBank (Kaisser & Webber, 2007, p. 46);

e cvent identification task: problems with frame-to-frame relations, particularly
with causative/inchoative distinction, interfere with identification of complex
events (Chambers & Jurafsky, 2009, p. 608);
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Many of the issues mentioned above stem from the fact that BFN was designed
and intended to be a lexicographic project rather than, e.g., an inference-friendly
resource. Some of the distinctions it makes (e.g. “Uses” frame-to-frame relation)
could be unnecessary in a particular NLP application, and some that it needs (e.g.
antonymy) would be missing.

It goes without saying that the design of any research project is governed by its goals,
and it is impossible to encompass everything. It is also true that many of the tasks
mentioned above were established after BEFN appeared. However, now there is a niche
for a resource that would “fit the bill” of such NLP applications.

The above “laundry list” brings up the question of what kind of frame-semantic re-
source could accommodate more practical concerns of NLP applications than BFN
does. In this thesis, I am focusing on the features that would make FBCL more use-
ful to inference-driven NLP applications, and I would argue that consistent frame-
to-frame relations, distinction between synonymy and antonymy, and support for
selectional preferences are essential for this.

And, of course, the biggest concern with BFN and FBCL in general is its limited
coverage. Since development of frames requires so much time and resources, it is
essential that NLP, in its turn, helps FN to develop ways of automatic or at least
semi-automatic induction of frames and frame-to-frame relations. By this I mean not
just ways to extend the current database with more synonyms or translations, but
ways to further develop it, identifying new frames, examples and relations.

2.4 Distributional semantics: a very brief intro-
duction®

2.4.1 Building vector space models

DS, like FS, is currently not a full-fledged semantic theory, but rather an approach
to representing and working with meaning based on word distributions in corpora.
Conceptually it is based on the so-called distributional hypothesis, which considers
“meaning as a function of distribution” (Harris, 1954, p. 155). Another famous quo-
tation is “You shall know the word by the company it keeps!” (Firth, 1957, p. 10),
i.e. by the context it appears in. For example, the word croissant is more likely
to be found in the context of words like sweet, butter, or breakfast than with words
like megabytes, cylinders or decibel. Following Wittgenstein’s “meaning is use” slo-
gan, some researchers suggest that “the representation that captures much of how
words are used in natural context will capture much of what we mean by meaning”
(Landauer & Dumais, 1997, p. 218).

8A part of material in this section has been published: Drozd, Gladkova, and Matsuoka (2015a, ©
2015 IEEE), Gladkova and Drozd (2016, (©) 2016 ACL). For a general overview of the field, see Erk
(2012), P. D. Turney and Pantel (2010). The author’s last name changed from “Gladkova” to “Rogers”
in April 2017.
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Although distributional models originated in the middle of the 20th century, their
utility was limited by how much data could be processed. The bigger the source
corpus, the more information the resulting model has. The “national” corpora of the
BNC type that started appearing in the 1990s contain roughly 100 million tokens,
which allows for a much larger vocabulary than the early 1-million word corpora like
Brown. But, according to Zipf’s law, most words will still occur only a few times,
and in case of a BNC-sized corpus there will be many relatively frequent and useful
words for which we will simply not have enough distributional information (e.g. the
word beetroot occurs 35 times in BNC). When building distributed representations,
words occurring under 100 or even 1000 times are typically discarded. Thus to cover
words beyond the top-frequent ones we need to process corpora containing billions of
words. Only very recently this became possible with consumer-grade computers.

In vector space models (VSMs), every word is represented as a vector in multi-
dimensional space. In the simplest case, each dimension of a vector is a possible
context where the corresponding word can occur. Based on the size and type of
context, vector space models can be classified into document-based, window-based,
or syntax-based. There also are various combinations of different types of context
via vector concatenation or combining several vectors in second/third-order tensors.
Each of these models can be further specified by various parameters, including the
size of the window and penalty for the larger distance to the target word inside the
window (triangular, Gaussian, etc. (Lund & Burgess, 1996)). It is also important
whether the words appearing before and after the target word are counted together
or independently.

From the point of view of how VSMs are constructed, they can be divided into
count-based and neural-net based, or explicit vs implicit models. While the term
“word embeddings” was initially applied only to the latter kind, it is now often used
to refer to both, and this is how it is used in this work, interchangeably with (vector
space) models.

Count-based models start with building co-occurrence matrices, where each row rep-
resents a word, and each column - a context in which it occurs. These matrices are
very sparse, and also suffer from bias by total corpus frequency (as frequent words
will be more frequent in any context). A typical workflow for constructing a count-
based model involves some kind of normalizing the frequencies, such as Pointwise
Mutual Information (PMI) (Church & Hanks, 1990). PMI quantifies the discrepancy
between probability of the coincidence of two random variables, given their joint
distribution and their individual distributions, and assuming their independence:

pmi(c,t) = log (()p()t) log ((Ch;)

Sparse vectors are very large, since the number of dimensions is basically defined
by the number of possible contexts. For example, a 1.2 billion token corpus yields
2 million possible contexts of words with frequency above 5, but the resulting co-
occurrence matrix has only 0.5 billion non-zero elements (0.02% sparsity) and could
be stored in about 2 Gb of memory space in compressed sparse row format (Drozd
et al., 2015a). This kind of data can already be used in practical applications, but
usually some kind of dimensionality reduction technique is used, such as Principal
Component Analysis or Singular Value Decomposition (SVD).
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SVD is a factorization of an m X n real or complex matrix M in a form M = UXV*
(Golub & Van Loan, 1996), where U is m x m real or complex unitary matrix, > is
m X n rectangular diagonal matrix with non-negative real numbers on the diagonal,
and V* (the conjugate transpose of V, or simply the transpose of V if V is real) is
n x n real or complex unitary matrix. The diagonal entries o; of ¥ are known as the
singular values of M and are typically sorted in descending order. The matrices U
and V contain left-singular vectors and right-singular vectors of M respectively.

Essentially what dimensionality reduction techniques do is trying to identify which
“raw” dimensions are similar, and can be unified with the least loss of the information.
This improves computational efficiency and also mitigates the effect of random noise
in the data. The positive effect of dimensionality reduction has been reported in
many applications that use vector space models (Bullinaria & Levy, 2012; Landauer
& Dumais, 1997; Rapp, 2003). However, the downside is that the resulting space is
no longer “transparent”, in the sense that we can no longer directly interpret what
each of the numbers means. It also means that different vector space models are no
longer directly comparable: even with the same number of reduced dimensions in
different models each of the dimensions is likely to stand for something different.

With implicit word embeddings, the number of dimensions is set from the begin-
ning, and they are never “transparent”. Such models map words (or other types of
linguistic units) to vectors in a low dimensional space directly, without counting the
co-occurrences (Pennington, Socher, & Manning, 2014). A prominent subclass of
implicit VSMs is based on artificial neural networks, which are trained to correctly
predict words in a given context. Thus conceptually this approach is also rooted in
the distributional hypothesis.

Neural word embeddings recently attracted much attention after Mikolov, Sutskever,
Chen, Corrado, and Dean (2013) showed that the vectors obtained by this method
capture “linguistic regularities”, i.e. that certain semantic or syntactic relations be-
tween the words correspond to linear offset between word vectors (to be discussed in
detail in section 4.2.1). However, Levy and Goldberg later showed that popular neural
word embeddings exhibit much of the same properties as the traditional count-based
models (O. Levy, Goldberg, & Ramat-Gan, 2014), and that they essentially perform
implicit co-occurrence matrix factorization (O. Levy & Goldberg, 2014b). They also
behave similarly in many practical tasks, including word analogies (Gladkova, Drozd,
& Matsuoka, 2016).

2.4.2 Distributional meaning representations

Distributional representations of words have the advantage of being inherently
“fuzzy”, which brings them closer to the connectionist models than to the neat lists
of features in symbolic approaches (Lenci, 2008, p. 12). Unlike traditional binary
semantic features, the dimensions of an embedding are very fine-grained, they take
on continuous rather than discrete values, and each of them may represent a weak
signal that works in ensemble with others (Boleda & Erk, 2015, p. 2), perhaps in
complex patterns.
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10 random words: emergency, bluff, buffet, horn, human, 10 felines: cat, lion, tiger, leopard, cougar, cheetah, lynx,
like, american, pretend, tongue, green bobcat, panther, puma

FIGURE 2.5: Heatmap histogram of 10 random words and 10 co-
hyponyms in GloVe ((©) 2016 ACL)

Figure 2.5 (Gladkova & Drozd, 2016) is a simple visualization of the overlay of dimen-
sions for 10 random words and 10 co-hyponyms in 300-dimensional GloVe(Pennington
et al., 2014) embedding’. The columns of this diagram correspond to the values of
300 dimensions. The more words have similar values on a given dimension, the darker
is the corresponding column.

Figure 2.5 shows that the randomly selected words do not have much in common
distributionally: the overlay on most dimensions remains close to zero. However,
for felines many features are shared — although it is not clear that they would all be
interpretable. We could hypothesize about them (“animal”? “nounhood”? “catness”?),
but GloVe clearly shows more feline features than we could find in dictionaries or
elicit from human subjects. Perhaps there is a dimension (or a group of dimensions)
created by the co-occurrences with words like jump, stretch, hunt, and purr - some
“feline behavior” category not to be found in any linguistic resource.

Thus the way meaning is represented in word embeddings is both tempting for its
cognitive plausibility, and puzzling in the sense that we do not really know yet how
to work with this. There are proposals for mapping individual dimensions onto the
familar linguistic features; for example, Tsvetkov, Faruqui, Ling, Lample, and Dyer
(2015) propose to align dimensions of word embeddings with WordNet supersenses.
But inherently any such attempt will be an attempt to convert the fuzzy and con-
tinuous into the known (from theoretical linguistics) and discrete. It would be both
limited, since it necessarily involves information loss, and limiting, since it essentially
brings the new model down to the old ones. So perhaps a more productive approach
would be to focus on finding new ways to work with distributed representations.

9Unless specified otherwise, the examples cited in this section are derived from 2 word embed-
dings: GloVe (Pennington et al., 2014) and SVD, trained at 300 dimensions, window size 10. GloVe
parameters: 100 iterations, xy.x= 100, a = 3/4. The SVD (Singular Vector Decomposition) model
was built with Pointwise Mutual Information (PMI), a = 1. The 5B web-corpus combines Wikipedia
(1.8B tokens), Araneum Anglicum Maius (1.2B) (Benko, 2014) and ukWaC (2B) (Baroni, Bernardini,
Ferraresi, & Zanchetta, 2009).
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Of course, the simile between vector meaning representations in distributional se-
mantics and patterns of neural activation also has its limits. We do not know at
this point how exactly the human brain encodes meaning, but it is probably not the
same matrix factorization process that is used in word embeddings. Also, needless
to say, human brains and word embedding models have very different inputs (a web-
corpus, even if it is very big, versus years of speech and perceptual experience). Thus
the current word embeddings cannot be reasonably expected to arrive at exactly the
same conceptualization schemes that humans have.

However, NLP keeps creating increasingly sophisticated models, and it is now possi-
ble to “ground” them in visual data in addition to texts (Bergsma & Goebel, 2011;
Shutova, Tandon, & de Melo, 2015). There is also ongoing research on “plugging” dis-
tributional representations into a system for grammatical /logical parsing that would
act as compositionality module (Lewis & Steedman, 2014), or combining multiple lay-
ers of neural networks in an end-to-end dialogue system, where some of these layers
would be processing the output from others (Sukhbaatar, Weston, & Fergus, 2015).
But success in any such endeavor would require better “distributional linguistics” than
what we have at the moment.

2.5 Summary

In this chapter I provided an overview of FS in cognitive linguistics, from its early
days into its current implementation in FrameNet projects. FrameNets are still unique
among cognitive linguistic theories in its combining cognitive plausibility with relative
NLP-friendliness (although lexicographic focus of FrameNets does not necessarily
meet all the demands of the NLP community). Most importantly, its main focus -
script-like structures in human experience - have immediate practical value in many
applications, which should stimulate its faster development.

Frames have played an important role in the early days of AI, and currently
FrameNets are often used for such NLP applications as inferencing and reconstructing
event chains, although these applications no longer aim at being a general common-
reasoning system. However, the current applications are still limited both practically
and theoretically. Further success of FrameNets depends on whether it will be able
to adapt to the new demands of these fields.

On the other hand, the development of computer architecture made it possible for
distributional semantics to offer vector space models that do capture a lot of linguistic
information. However, the theoretical framework and practical tools for working
with distributed meaning representations require much future collaboration between
linguists and computer scientists. This project aims to build one of the many bridges
necessary for the two communities, by showing in what ways DS and FS can be
mutually beneficial.
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Chapter 4

Discovering verb classes in
untagged corporal

In section 2.3 I briefly described a range of NLP applications that make use of
FrameNets, and are potentially useful for them. The current proposals that are
relevant for frame-based lexicography include:

e extension of FrameNet through dictionaries such as WordNet (Johansson &
Nugues, 2007);

e automatic or semi-automatic mapping of English frames to vocabularies of other
languages (Fung & Chen, 2004; Hartmann, Gurevych, & Lap, 2013; Tonelli,
2010);

e induction of new frames (Green, Dorr, & Resnik, 2004);

e automatic labeling of semantic roles (Coppola, Gangemi, Gliozzo, Picca, &
Presutti, 2009; Das et al., 2010; Kshirsagar et al., 2015), also cross-lingually
(Johannsen, Alonso, & Sggaard, 2015, 81.6).

In addition to these frame-specific tasks, there are other, more general, NLP appli-
cations that could also be of considerable use in lexicography. For example, existing
word sense disambiguation tools could be adapted to grouping corpus concordances
by types of context, which would ease picking examples of use for different word
senses and getting some idea about their distribution. It goes without saying that
the output of such applications will be noisy — but it would still ease exploratory
research.

'A large part of the work presented in this section was done in collaboration with Dr. Drozd of
Global Scientific Information and Computing Center in Tokyo Institute of Technology. The contribu-
tions of the author consist in designing experiments, preparing data sets, evaluation and analysis of
resulting data. Dr. Drozd provided early access to the in-development infrastructure for high perfor-
mance natural language processing tools (work done in the scope of JSR CREST EBD project), mainly
co-occurrence extraction infrastructure from very large corpora (Drozd & Matsuoka, 2014), helped to
adjust it to the needs of the current research project, and run the machine-learning experiments. He
is also the author of the LRCos technique employed in the second case study (Drozd & Matsuoka,
2016). Our joint research is presented in the following publications: Drozd et al. (2015a, © 2015
IEEE, DOI 10.1109/DSDIS.2015.30), Drozd, Gladkova, and Matsuoka (2015b, (©) 2015 ACM, DOI
10.1145/2835857.2835858), Gladkova et al. (2016, CC BY 4.0, ACL), Drozd, Gladkova, and Matsuoka
(2016, CC BY 4.0, ACL), and Gladkova and Drozd (2016, CC BY 4.0, ACL).



58 Chapter 4. Discovering verb classes in untagged corpora

Since this thesis argues in favor of closer collaboration between FS and DS, it is im-
portant to show the FS community the recent advances in issues that are considered
more “core” FS. Many techniques proposed for exracting semantic relations (Lepage
& Goh, 2009; Pantel & Pennacchiotti, 2006; Szumlanski & Gomez, 2010) could be
adapted for discovery of FEs. However, in this dissertation I focused on event struc-
ture and therefore — on more abstract, morphosyntactic phenomena. The reason for
this choice is that the current generation of FrameNets tend to focus on the lexical
frames, and there is much work to be done on the abstract frames that could en-
sure consistency of the lexical frames with respect to event structure. Furthermore,
aspectual classes and inchoativity /causativity are also semantic phenomena, and in
the construction grammar framework they should be accounted for in FS terms, the
same way as lexical constructions.

This chapter explores how DS could help FBCL in ensuring consistency of frame-to-
frame relations in the database. In chapter 3 I argued that a multilingual FrameNet
would require a more systematic and detailed representation of event structure. Such
a model relies on systematic relations between lexical frames and the abstract event
structure representation, which would enable inferencing and connecting events into
event chains. This means that we need to be able to automatically induce large
paradigmatic word classes that should all have the same relations to top-level frames,
since establishing such relations manually would require too much effort.

For instance, the event model proposed in chapter 3 includes (1) the distinction
between verbs that profile the finishing point of an event and those that do not, and
(2) the distinction between causative and inchoative verbs. Accordingly, this chapter
presents two case studies: automatic discovery of Russian imperfective/perfective
verbs, and Japanese transitive/intransitive verbs.

4.1 Case study 1: imperfective/perfective verbs in
Russian

4.1.1 Existing proposals for automatic induction of aspectual
classes

It has long been shown that part-of-speech classes can be induced automatically
from distributional data by clustering (Schiitze, 1993). However, what would be
needed for a multilingual FrameNet is more granular semantico-syntactic relations
that correspond to aspectual distinctions.

There are many studies showing that very fine distinctions between classes of verbs
can be made on the basis of annotated corpora. Rooth, Riezler, Prescher, Carroll, and
Beil (1999) obtained 35 semantic classes partially overlapping with Levin’s classes by
estimation-maximization clustering of 1.3 million verb-noun pairs from BNC. Steven-
son, Merlo, Kariaeva, and Whitehouse (1999) automatically induced 3 lexical classes
of English verbs (unergatives, unaccusatives and object-drops) from a 65-million word
corpus, on the basis of information about diatheses alternations. They experimented



4.1. Case study 1: imperfective/perfective verbs in Russian 59

with both decision-tree-based and neural-networks-based methods to achieve 55-78%
accuracy.

Siegel and McKeown (2000) classified English verbs into 4 classes of states and events
on the basis of 14 parser-coded grammatical context features in 2 copora (fiction
and medical). 3 supervised learning methods were compared: decision tree, genetic
programming’s function trees, and log-linear regression (93.9%, 91.2% and 86.7%
accuracy respectively).

A series of experiments by Schulte Im Walde explored a wide range of verb classifi-
cation techniques. 153 English verbs were grouped into 30 Levin’s classes with unsu-
pervised hierarchical clustering, with an accuracy of 61%. The verbs were described
by distributions over subcategorization frames, extracted from syntactic parses and
combined with WordNet classes as selectional preferences for the frame arguments
(Im Walde, 2000). The same subcategorization frame approach was applied to k-
means-based unsupervised clustering of German verbs on a 35-million word corpus.
A follow-up study indicated that the clustering works better with the same data and
parameters when applied to a smaller number of verbs and classes (Im Walde, 2006).

A further experiment (Im Walde, Hying, Scheible, & Schmid, 2008) explored verb
classification on the basis of their selectional preferences. Similarly to Rooth et
al. (1999), the authors used the soft-clustering approach with the Expectation-
Maximisation (EM) algorithm; but it is combined with the Minimum Description
Length principle to induce WordNet-based selectional preferences for arguments
within subcategorisation frames. This experiment ran on 5 million tuples (verbs
and their arguments) extracted from BNC which yielded ‘semantically interpretable’
clusters.

Impressive results were also obtained with unsupervised clustering of Finnish verbs
based on a self-organizing map (Lagus & Airola, 2005). 600 verbs were successfully
grouped into semantically interpretable classes on the basis of their behavior in a
syntactically parsed corpus containing 13.6-million tokens; the authors experiment
with different context widths and conclude that they do not significantly affect the
performance of the model when there is enough data.

The successful model by Siegel and McKeown (2000) was later extended by Friedrich
and Palmer (2014), who use the arguments and modifiers of verbs to predict their
being stative, dynamic, or both stative and dynamic. Among the most recent pro-
posals in the same vein is the work by Falk and Martin (2016) who attempt to tackle
aspectual variability in French on the basis of features encoded in the valency lexicon.

All of these projects use comparatively small corpora (the biggest is the 100-million-
word BNC used by Im Walde et al. (2008)), and they all rely on linguistic features of
verbs encoded in morphosyntactic annotation, or on noun-verb tuples extracted from
a corpus, or some external linguistic resource. To our knowledge, no attempt has
been made to induce aspectual classes from an unparsed corpus. However, a study
on verb class disambiguation using untagged corpora (J. Li & Brew, 2007) shows that
although absence of hand-tagged data decreases performance of the disambiguator,
it still achieves comparable performance (average accuracy of 58-64% versus 64-69%
for the classifier trained with hand-tagged data).



60 Chapter 4. Discovering verb classes in untagged corpora

Thus the challenge in this chapter is to show that fine-grained semantico-
morphological word classes can be induced even from “raw” text data (i.e. plain text
corpora that only underwent tokenization), without recourse to syntactic parsers,
lemmatizers or part-of-speech taggers. There are two reasons for this approach.
First, induction of fine-grained semantico-syntactic classes from purely distributional
data would lend strong support to distributional hypothesis, which enables a wide ar-
ray of distributional, knowledge-poor methods in language processing. Second, tools
such as part-of-speech taggers or syntactic parsers vary in accuracy and may not be
available for a given language.

For the above reasons, this thesis explores the possibilities of bag-of-words word em-
beddings that are created on the basis of raw text corpora. However, I am not at
all suggesting that symbolic, pattern-based approaches should be abandoned. In
some cases distributional and symbolic approaches yield even better results together
(see section 4.2.4.2). In other cases the distributional approaches cannot yet com-
pete with rule-based tools. For example, there are currently no highly accurate and
purely distributional syntactic parsers — making the existing rule-based parsers the
obvious choice for projects that simply need a tool to work on some other linguistic
phenomenon (as I will do in discussing selectional preferences in chapter 6).

The first case I will consider is imperfective-perfective distinction in Russian verbs.
The reason for this choice is that Russian is a morphologically rich language, which
presents a particular challenge for word embeddings and cosine similarity-based tasks.
Basically the problem is that with more morphological forms per word the distribu-
tional semantic space becomes populated with more highly related words, which
makes the margin of error very thin. Also with more word forms per word there are
fewer contexts in which each of them is observed, which means that the vectors for
individual word forms are going to be less informative. This effect could halve the
accuracy of a system that performs well on English (Drozd et al., 2016).

4.1.2 Methodology: machine learning on distributed repre-
sentations

4.1.2.1 Classification with machine learning

“Machine learning” is an umbrella term for algorithms that can discover patterns in
data and make predictions on new data. This can be done with some labeled data
being provided (“supervised machine learning”), without any labeled data (“unsu-
pervised machine learning”), or with some combination of the two (“semi-supervised
machine learning”). For example, a machine learning algorithm could be taught to
predict whether an email is spam or not based on such information as the sender,
subject keywords, certain textual features, etc. In the supervised paradigm, the al-
gorithm would be “told” that several emails are spam, and then it would attempt
to discover other emails similar to the ones it “knows” to be spam by some shared
features.

Machine learning is widely used in a variety of tasks including clustering (e.g. auto-
matic classification of emails into folders) and regression modeling (e.g. discovering
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the relationship between variables such as house size and price). One of the most
frequently used applications of machine learning is classification. In a supervised
classification paradigm, the algorithm is provided with a set of classes and examples
of items belonging to these classes. Then it attempts to attribute new items to these
classes by their similarity to known items.

In this chapter, the task is to automatically discover verbs in a large untagged corpus
of Russian while distinguishing between their two aspectual classes. We will accom-
plish this with supervised learning on the basis of a manually constructed training
dataset (compiled from Russian dictionaries and grammatical reference materials).

The algorithm that will be used in this section (and also in section 4.2 and chapter 6)
is logistic regression, one of the most popular machine learning algorithms. Logistic
regression is often used for classification, because it can predict the probability of the
item being in one class or another based on its features. It is possible to do binary or
multinomial classification, i.e. classification into 2 or more classes. The predictions
are made via logistic function. The overall formula for calculating the probability
that x belongs to a given class is as follows (James, Witten, Hastie, & Tibshirani,
2013, p.134):

R eBO‘i’le
pX) = (4.1)
1 + ePotbrz

In this formula, e is the Euler’s constant, and 5, and [3; are regression coefficients
that essentially delineate the classes. The circumflexes (p) indicate that these are
estimated values, found through a process of maximum likelihood estimation to best
fit the training data (i.e. the data points for which the correct classes are known).

The benefit of using supervised learning with word vectors as opposed to knowledge-
based methods of working with corpora is primarily that we can leverage latent dis-
tributional information. The vector space models such as count-based SVD models
or GloVe represent vocabulary differently from dictionaries: each word is character-
ized in terms of hundreds of distributional features simultaneously. If distributional
hypothesis is correct, linguistic phenomena such as verb classes or selectional prefer-
ences are encoded somewhere among these dimensions. If so, then supervised learning
algorithms such as logistic regression should be able to discover these linguistic struc-
tures despite noise, i.e. hundreds of distriutional features that are irrelevant for a
given phenomenon.

It could be argued that conceptually, supervised machine learning is not so differ-
ent from using a parser or tagger, since in both cases there is an external, non-
distributional source of knowledge. However, there is a big difference in the extent of
such external knowledge: to provide only examples of the target classes (which the
classifier will then learn on the basis of purely distributional features), or to transform
the whole corpus, essentially providing more information for each word in it.

For NLP tasks, the difference in the amount of handcrafted resources that are neces-
sary can make a big difference. In many cases it is much more feasible to construct a
dataset for supervised learning than obtaining a high-quality annotated corpus. For
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instance, many approaches for aspectual verb classification reviewed in section 4.1.1
relied on English treebanks - but such resources may be unavailable for other lan-
guages in sufficient quantity. For example, Russian has a lot of syntactic homonymy,
and the Russian National Corpus currently has only 516,852 disambiguated® sen-
tences — less than 6 million tokens.

There is also a crucial difference at the level at which the external knowledge is
used. In case of aspectual verb classification, most prior work reviewed in section
4.1.1 used parsers to provide their systems with knowledge of all syntactic structures
in which a given verb participated. In doing so, the researcher essentially decides
a priori what distributional information is relevant, and should be used for verb
classification. The proposed approach delegates this function to machine learning,
and enables the classification on the basis of numerous, seemingly unrelated criteria
that are not known beforehand. This approach could lead to unexpected discoveries,
as opposed to entirely theory-driven testing of one hypothesis at a time.

4.1.2.2 Corpora and models

In scope of this project we experimented with 3 corpora listed in Table 4.1.

TABLE 4.1: Corpora used for automatic classification of imperfective/
perfective verbs in Russian ((©) 2015 IEEE)

Corpus Tokens Unique tokens
Russian Wikipedia 274M 3.5M
Araneum Russicum Maius 1.2B 4.6M
Self-published fiction corpus 1.2B 5.6M
Combined corpus 2.6B 10M

The Wikipedia corpus consists of the Russian Wikipedia dump from 2015.06.033.
Araneum Russicum Maius 14.04 is compiled by SpiderLing web crawler; the texts
were stripped of html markup and deduplicated (Benko, 2014). The corpus is dis-
tributed with morphological annotation by TreeTagger, which we did not use. In
all three corpora we replaced all occurrences of ‘¢’ with ‘e’: although the correct
spellings of many words include letter ‘€’, it is commonly misspelled as ‘e’, which
leads to hundreds of alternative spellings.

The self-published fiction corpus (SPFC) is assembled from texts published at http:
//www.proza.ru. This is the biggest Russian portal for aspiring writers; it now has
over 5 million texts by over 220 thousand authors, the earliest publication date being
2002. Self-published fiction is a particularly interesting genre for lexicographic goals,
since new fiction by a variety of writers is likely to contain many novel words that
could not be obtained from existing dictionaries.

http://www.ruscorpora.ru/corpora-stat.html/
SPlain text was extracted with wikiextractor tool v.2.55, (https://github.com/attardi/
wikiextractor).
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As described in section 2.4, the distributed representations of words can be built “ex-
plicitly”, on the base of co-occurrence counts from corpora, or “implicitly” with meth-
ods based on neural nets. This project uses an “explicit” or count-based model, since
the two approaches were shown to be mathematically similar (O. Levy & Goldberg,
2014b), but count-based models have the advantage of having more interpretable
parameters.

The window size was set to 2 (both left and right contexts, i.e. before and after the
target word), since this context size showed best results in our pilot studies. The
sparse co-occurrence matrix contained PMI-weighted corpus frequencies, which helps
to deal with bias by total corpus frequency. It was then reduced to 1000 dimensions
with SVD technique. Only words occurring at least 10 times were included in the
model vocabulary. The same procedure was applied to the combined corpus, which
was a simple concatenation of the other three corpora.

4.1.2.3 Dataset

Our task could be formulated as a binary classification task: deciding whether a
given verb is perfective or imperfective. However, in addition to discovering verbs,
we also need to filter out words of other grammatical categories. Thus our classifier
distinguishes between three* classes - perfective verbs, imperfective verbs, and “other”
lexical units. For each of these classes we will need to provide hand-picked examples,
on which the classifier will be trained.

As mentioned in section 3.2.1, the basic aspectual distinction in Russian is between
perfective and imperfective verbs. Most verbs have both versions. They can be
formed with such morphological patterns as (a) perfectivization of imperfective verbs
with a prefix (e.g. delat’ - sdelat’ “to be doing - to have done”), (b) imperfectivization
of a prefixed or root perfective verb with a suffix (zabyt’ - zabyvat’, “to forget - to be
forgetting”), and (c) full or partial suppletion (brat’ - vzyat’ “to be taking - to have
taken”) (Shvedova et al., 1980, p. 583). Imperfectivization is very productive, and it
is possible to form imperfective verbs for most perfective verbs denoting change of
state. Since there are numerous morphological patterns, it is not feasible to apply a
method based on orthographic patterns, such as proposed by (Soricut & Och, 2015)°.

The accuracy of supervised classifiers relies on the quality of training data. The
dataset this study uses was created on the basis of several Russian dictionaries (Ha-
gen, 2014; Lyashevskaya & Sharov, 2009; Yevgenjeva, 1999) and grammatical refer-
ence materials (Shvedova et al., 1980).

We proceeded from a list of words in their dictionary forms which were taken from
frequency lists compiled on the basis of RNC (Lyashevskaya & Sharov, 2009). We

“We also conducted pilot studies with classifying all words into just 2 classes (perfective and
imperfective verbs), and with separate classes for every part of speech. With the same classifier
parameters and the same data set, both these approaches yielded more noisy results than classification
with 2 target classes and 1 “noise” class.

"However, the method proposed by Soricut and Och (2015) would be helpful for automatic induction
of smaller Russian aspectual subclasses that are formed by regular affixation patterns, several of which
were discussed in section 3.2.1
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aimed to include 100 examples for each morphological group that the classifier should
be able to recognize’: 100 perfective verbs, 100 imperfective verbs, and up to 100
words for 11 other Russian morphological categories in the “other” class. Since some
classes (e.g. conjunctions and particles) generally have fewer than 100 lemmas, in
the end the “other” category contained 858 words (pronouns, adjectives, adverbs,
numerals, nouns, prepositions, particles, interjections, and conjunctions).

Next, the lists of words in all 3 classes were expanded with all morphological forms for
each word, taken from a widely used self-published morphological dictionary (Hagen,
2014). Adjectives, nouns, pronouns, numerals, and verbs have rich paradigms in
Russian; this is especially true of verbs which in our dataset are merged with their
transgressive and present participle forms, which inherit the aspectual class of the
source word. Because of these forms and their own morphological forms, the overall
quantity of word forms in the training data is comparable across the three classes:
3995 perfective verbs; 4890 imperfective verbs; 4751 “other” words (despite the fact
that the verb classes have only 100 lemmas, and the “other” class contains over 800
lemmas). The reason why perfective verbs have fewer word forms than imperfective
verbs is the asymmetry in their paradigms; for example, perfective verbs lack the
present tense.

The lemmas for all word classes in this dataset are listed in the appendix A.

4.1.3 Evaluation
4.1.3.1 Effect of word frequency and corpus genre

The Achilles’ heel of distributional methods is that they require a lot of occurrences
for all target words. According to Zipf’s law, even in a very large corpus most words
inevitably occur only a few times, and thus they are unlikely to yield informative
representations. This means that the accuracy of classification depends on whether
the target words are frequent enough in a given corpus.

The frequencies of words in our dataset in the three corpora are presented in Figure
4.1. As expected, the bigger corpora (Araneum and SPFC) contain more words that
are included in the dataset than does Wikipedia. SPFC and Araneum are overall
comparable, although SPFC has a slight advantage in almost all frequency ranges.
Most words in the dataset have frequency above 100 in these corpora. Both SPFC
and Araneum should therefore yield informative vectors for roughly 13 out of 14
thousand words in the dataset.

However, in addition to frequency, another important factor is the quality and genre of
the corpus. Web-corpora such as Araneum are large and relatively easy to collect by
crawling the web, but they often contain commercials, meaningless advertisements,

6 Another pilot study estimated performance with 200 frequent verbs in each class in the training
dataset, but we found no improvement over 100 verbs. The optimal amount of training data depends
on the task, but it often requires even fewer than 100 positive examples. In a subsequent experiment
on analogy-based identification of Russian morphological paradigms we showed that the performance
of classifier saturates at roughly 30 examples (Drozd et al., 2016); see also chapter 6 for effect of
training set size in “leaning” selectional preferences.
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FIGURE 4.1: Frequency of words in the training dataset in corpora

duplicate texts, etc. Also, the quality of the text itself is often inferior (incorrect
spelling, grammatical mistakes, incomplete sentences), which leads to a more noisy
distributed representation. Wikipedia, while it is of higher quality than an average
web corpus, also often includes lists of phrases rather than complete sentences due to
its genre. In addition, web-corpora have to be “cleaned up” (determining languages
and encodings of individual pages, deduplicating text, removing html markup and
irrelevant elements such as forms and banners, etc). In long text-processing pipelines
each of these steps can potentially introduce even more noise, but with corpora of
such scale it is no longer feasible to check all the resulting texts manually.

Figure 4.2 shows the results of a pilot test with word vectors from all three corpora,
and also their combination. The words in the dataset were classified with logistic
regression’, as described in section 4.1.2.1.

Since the labeled dataset is not very big, it is important to make sure that the results
are reliable and can be reproduced with a different dataset. For this we performed
10-fold cross-validation®: a procedure in which the labeled dataset is randomly split
in 10 parts, 1 of which is used for testing, and 9 — for training. The procedure is
repeated 10 times, so that each part of the split dataset is once used for evaluation,
and the average accuracy is computed. This procedure is repeated for each corpus
and their combination. If a given word was not present in a given corpus, it was not
included in the test.

The data in Figure 4.2 shows that the classification is the least successful on the word
vectors created from the Wikipedia corpus. This could be attributed to the smaller
corpus because the two other corpora (Araneum and SPFC) are comparable in size.

"We have also experimented with k-Nearest Neighbors (k-NN) algorithm. This is one of the simplest
machine learning algorithms; it uses instance-based approach, basically comparing every item to be
classified with every item in the training set to discover which elements of the training set are the
most similar. In our test the performance of k-NN algorithm was inferior to that of logistic regression
by 5-6%, and it was also much slower. Therefore for subsequent tests we relied on logistic regression.

8Cross-validation was performed with the cross_val_score function of skikit module, http:
//scikit-learn.org/stable/modules/cross_validation.html
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FIGURE 4.2: Average accuracy of detecting imperfective /perfective verbs
from the annotated data set on 10-fold cross-validation
(© 2015 IEEE)

However, SPFC yields slightly better results than Araneum, and the performance
of the combined corpus is not significantly better than performance of SPFC alone.
We interpret this as evidence of higher quality of fiction texts as compared to the
noisier web-crawl data, and also as evidence for existence of a certain threshold (for a
given genre and quality level of texts, and for a given task), after which considerable
increase in corpus size does not yield considerable gains in accuracy. Thus for the
subsequent tests we will use only SPFC.

4.1.3.2 Performance on corpus data

In this step we evaluate the possibility of accurately detecting verbs in the untagged
corpus data while simultaneously classifying them into perfective and imperfective
verbs. Based on results of our pilot tests, we use vector space built from our best-
performing SPFC corpus (1.2 billion words, no lemmatization, morphological or syn-
tactic parsing). The entire labeled dataset described in section 4.1.2.3 is used as
training data. After training, the classifier makes a decision for each of the remain-
ing words in the corpus vocabulary, and outputs the class to which this word is
attributed, together with the probability of this decision being correct.

For evaluation we randomly chose 100 words in each of 3 classes in 3 ranges of
confidence (0.9 - 1.0, 0.8 - 0.9, 0.7 - 0.8), excluding verbs in the training set, and
manually checked the accuracy of predictions. Table 4.2 presents the results of this
evaluation.

The precision reported in Table 4.2 is calculated as “true positives / (true positives
+ false positives)”. Consider the case of imperfective verbs. Given a sample of
300 words (100 predicted perfectives, imperfectives and “others”), we consider how
many imperfectives in this sample were classified correctly (true positives), and how
many were classified as imperfective verbs incorrectly (false positives). The classifier
achieves over 90% precision in the confidence range 0.9 - 1.0 for both aspectual
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TABLE 4.2: Accuracy of detecting imperfective /perfective Russian verbs
in untagged corpora ((©) 2015 IEEE)

(A) Imperfective verbs (B) Perfective verbs
Confidence 0.9-1 0.8-0.9 0.7-0.8 Confidence 0.9-1 0.8-0.9 0.7-0.8
Precision 0.9 0.59 0.34 Precision 091  0.75 0.67
Recall 0.98  0.93 0.89 Recall 0.99  0.89 0.89

classes. This result is comparable to the previous work which used small, syntactically
annotated corpora.

Table 4.2 also reports recall, calculated as “true positives / (true positives + false
negatives)”. For example, in the case of imperfective verbs, false negatives are the
imperfective verbs that were incorrectly attributed to some other class. Thus recall
indicates for a given sample the ratio of the verbs of a given class that were classified
correctly to the verbs of the target class that were found in the sample. In this
experiment, recall stays above 80% even in the lower ranges of confidence, which
indicates that we are not missing verbs.

The analysis of mistakes shows that lower precision values for lower ranges of confi-
dence are explained by “other” words being increasingly misclassified as verbs. This
could be improved by adjusting the training set. However, it is interesting that the
cases of verbs classified into the wrong verb class are very rare. For example, in the
random sample of 300 words in the confidence range 0.7 - 0.8 there were 31 wrong
predictions for perfective and 62 for imperfective verbs (non-verbs classified as verbs),
but only 6 cases of verbs attributed to the wrong verb class.

4.1.3.3 Discovering new verbs

In this experiment we check the accuracy of classifier as a tool for discovering novel
lexemes not yet included in dictionaries, while simultaneously classifying them into
perfective and imperfective verbs. This application of distributional semantics is of
immediate interest to lexicography.

However, it is not easy to automatically select lists of new words that are not yet
included in dictionaries by just checking the corpus word list against dictionaries.
First, a lot of words not present in dictionaries are likely to be “noise” data, such as
artifacts of incorrect encoding, brand names, etc. Second, dictionaries only list the
infinitives of verbs, but a novel word could be used in a corpus in a different mor-
phological form. The former problem is partially resolved with filtering out words
that contain non-cyrillic characters, but the second would require a more sophisti-
cated morphological module than is currently available for Russian. Thus, in this
evaluation, we are limited to dictionary forms of verbs.
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To get an estimate of how much linguistically interesting material can be obtained
in this way, we selected words that the classifier trained on the entire dataset recog-
nized as verbs at the confidence interval of 0.9 - 1.0. This procedure yielded 49326
imperfective and 28208 perfective verbs. It is possible to do the same to all of the
classifier output, although there would be more noise: as novel words typically have
low frequencies, their vectors can be expected to be built with less information and
thus be more difficult to classify correctly.

These lists are still far from clean: there are proper nouns, misspelled words, words
from close cyrillic-based languages such as Ukrainian, words accidentally split in parts
while typing, etc. Random samples from such data contain about 40-60% noise.
Further filters can be applied to deal with it, such as othography checking. However,
sometimes in fiction words are also misspelled or hyphenated incorrectly for stylistic
reasons, so any such filtering would depend on the goals of a particular linguistic
project. For example, SPFC corpus has tokens of strojs’ - a typical army command
to make a line. This verb is less frequently used in forms other than imperative, and
this particular usage is a deliberate misspelling which reflects a likely pronunciation
by a sergeant.

Transliteration Class  Translation

schekotnut’ perf. “to give someone a bit of a tickle”

ofanatet’ perf. “to become obsessive fanatic of something”

skreativit’ perf. “to use some artistic skill on some task, as opposed
to creating “real”, more traditional art”

ostogramit’sya perf.  “to drink a hundred milliliters [of vodka|” (a double
shot in the US, quadruple shot in the UK)

istselovyvat’ perf.  “to be in the process of fully covering someone/some-
thing with kisses”

skhrumkat’ perf. “to eat something entirely, munching away at it like
a rabbit eating a carrot”

povoyevat’ perf. “to casually go to war, to have a bit of a war

otsmyslit’ perf. “to consider thoroughly and interpret, literally “to
mean [smth| out”

podhvalivat’ imperf. “to only contribute flattery during conversation”

istinstvovat’ imperf. “to speak like you are delivering the revealed wisdom
to the world”

gurmanit’ imperf. “to go gourmet, to have fine food”
otatarit’ imperf. “to make somebody/something Tatar”
otgavkivat’sya’ imperf. “to quarrel”, literally “to be barking off at somebody”

TABLE 4.3: Examples of new imperfective and perfective verbs in Rus-
sian self-published fiction (©) 2015 IEEE)

For our purposes we used a simple filter of verb dictionary forms by three frequent
endings (-uTh, -aTh, -Thes1), which left us with 3729 putative imperfective and 2269
perfective verbs not registered in the hunspell dictionary (“Russian Hunspell Dictio-
nary |[GNU Lesser GPL],” 2013) and 4-volume Russian academic dictionary (Yev-
genjeva, 1999). We estimated accuracy by manually checking 50 verbs classified as
perfective and imperfective at confidence range above 0.9. For both perfective and
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imperfective verbs, 45 out of 50 were classified correctly, which is consistent with our
general classifier performance evaluation (Table 4.2). However, we must note that
a considerable portion of these verbs (23 out of 100) were misspellings and dialectal
spellings rather than novel verbs.

Still, such lists provide a wealth of linguistically interesting data, some examples of
which are provided in Table 4.3. Some of these verbs are more widely used than the
others, but all are easy for native speakers to produce and understand when occasion
calls for such complex concepts.

Thus case study 1 showed that it is possible to use word embeddings derived from
“raw” text corpora to learn high-quality representations of aspectual classes, even in
a morphologically rich language like Russian. In FBCL context this technique would
be useful for establishing systematic frame-to-frame relations between lexical and
abstract frames that serve as aspectual templates. Furthermore, this technique is
generally useful for lexicography, since with a high-quality corpus it enables quick
and large-scale discovery of novel lexemes of a particular class.

4.2 Case study 2: intransitive/transitive verbs in
Japanese

This section extends the study on Russian imperfective /perfective verbs in several di-
rections. First, I consider Japanese, a typologically different language, and a different
linguistic relation: intransitive vs transitive verbs (e.g. ochiru “to drop” (self-motion),
and otosu “to drop” (something)).

Second, this experiment also poses a more challenging task: automatic discovery not
only of classes of verbs, but also of pairs of verbs holding the same relation. If the
distinction between causative and inchoative frames is to be set via inheritance from
the top-level event structure, as I proposed in section 3.3, then it would be helpful to
be able to not only automatically identify large groups of verbs, but also to search
for corresponding verbs that differ by event structure, but that should belong to the
same scenario.

4.2.1 Word analogies in distributional semantics: success
stories and limitations

As described in section 2.4, in distributional semantics words are represented as
vectors, and thus any relations between word vectors need to be determined mathe-
matically. In geometrical terms, the most intuitive measure of ‘“relatedness” is how
close the vectors are in space, usually measured as cosine of the angle between them.
This creates many possibilities for comparing words by distance — but, unfortunately,
cosine similarity alone does not provide any means to distinguish between different
types of linguistic relations (as will be discussed in section 7.2).
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One of the possibilities to pick a specific relation is through proportional analogies of
the a:b::c:d kind. Analogies have also been long rejected in generative linguistics as an
explanation for language acquisition through discovery, although now they are making
a comeback (Itkonen, 2005, p.67-75), and there are several theoretical issues that will
be discussed in section 4.2.4.1. But for now, let us consider them as a tool that may
be imperfect, but that has long and successfully used in NLP for a variety of semantic
tasks, including word sense disambiguation (Federici, Montemagni, & Pirrelli, 1997),
detecting different semantic relations such as synonymy and antonymy (P. D. Turney,
2008), and ConceptNet relations and selectional preferences (Herdagdelen & Baroni,
2009).

In the current NLP discussion, analogical reasoning is understood as any “linguis-
tic regularities” between pairs of words that correspond to regular mathematical
relations. They are not limited to semantic phenomena, and just as well used for
morphological analysis (Lavallée & Langlais, 2010; Soricut & Och, 2015). There
are also proposals that utilize analogies as a single mechanism for detection of both
morphological and semantic features (Lepage & Goh, 2009).

The current analogy boom in NLP started when Mikolov, Sutskever, et al. (2013,
p. 4) showed that several linguistic relations can be modeled in word embeddings as

T
linear offset between word vectors. For example, the result of calculation madrid -
9

spain + france gives a point in vector space that is close to paris

Figure 4.3 provides a visualization of such relations for countries and capitals in the
same GloVe model that I had used for illustration in section 2.4. In this visualization,
multi-dimensional vectors are reduced to two dimensions with PCA (principal com-
ponents analysis) technique. The resulting pairs of countries and capitals are mostly
aligned.

This is an impressive result, given that it was obtained from merely a large volume of
“raw” text data. It lends strong support to the idea of the close relationship between
word distributions and their meanings.

Mikolov referred to this phenomenon as “linguistic regularities”, a term now used to
refer to any “similarities between pairs of words” (O. Levy et al., 2014). However,
his study was intended as a demonstration of the possibility of discovering pairwise
relations, and not of the extent to which it is possible. The datasets that were used
to test how well word analogies can be solved with word embeddings only included
a certain type of relations (semantic-only: SAT (P. Turney, Littman, Bigham, &
Shnayder, 2003), SemEval2012-Task2 (Jurgens, Turney, Mohammad, & Holyoak,
2012), morphology-only: MSR (Mikolov, Yih, & Zweig, 2013)). The tasks in the
SAT and SemEval2012-Task datasets were also different: solving a multiple-choice
test in the former, and determining prototypicality of a relation in the latter.

Mikolov, Chen, Corrado, and Dean (2013) developed a new dataset that came to
be known as the Google analogy test. It contains 9 morphological and 5 semantic
categories, with 20-70 unique word pairs per category which are combined in all
possible ways to yield 8,869 semantic and 10,675 syntactic questions. This set became

9 All vocabulary in vector space models is typically lowercased.
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FIGURE 4.3: Linear relations between countries and capitals in GloVe

the de-facto standard for evaluating word embeddings, the assumption being that a
greater number of linguistic relations corresponding to linear relations between word
vectors is an indicator of the quality of the model.

However, the Google test set certainly does not show the full range of linguistic
relations, and it is extremely unbalanced. With an unbalanced set, and potentially
high variation in performance for different relations, it is important to consider results
for individual relations, and not only the average of the whole test, as it is usually
done. However, O. Levy et al. (2014) were among very few researchers who did that.
They found that accuracy varied between 10.5% and 99.4%. Furthermore, merely
looking at the structure of the test reveals that much success in the semantic part
can be attributed to the fact that two out of five semantic categories explored the
same capital:country relation and together constitute 56.7% of all semantic questions.
This shows that a model may be more successful with some relations but not others,
and more comprehensive tests are needed to show what it can and cannot do.

To investigate the extent of the “linguistic regularity” phenomenon I developed BATS,
a bigger, balanced dataset (Gladkova et al., 2016) that included 10 relations for
each of four types: inflectional and derivational morphology, and lexicographic and
encyclopedic semantics. Each relation is represented with 50 unique word pairs,
which yields 2480 questions (99,200 in total). A major feature of BATS that makes it
distinct from MSR and Google test sets is that morphological categories are sampled
to reduce homonymy. For example, for verb present tense the Google set includes
pairs like walk:walks, which could be both verbs and nouns. It is impossible to
completely eliminate homonymy, as a big corpus will have some creative uses for
almost any word, but I excluded all words attributed to more than one part-of-speech
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in WordNet (Fellbaum, 1998).

Evaluation on a count-based and neural-net-based models revealed that both of them
show the same pattern of “easy” and “difficult” relations, with most of the new test set
being difficult. The GloVe model that boasted 80.4% accuracy on the Google test set,
achieved only 28.5% on BATS. Inflectional morphology and a part of encyclopedic
relations achieved over 50% accuracy, but derivational morphology and lexicographic
relations were very unsuccessful, most of them not achieving even 15%.

I interpreted these results as indicating that success of word analogies in vector
space models depends on target words being frequent collocates (as are countries
and capitals, particularly in the Wikipedia corpus that most studies use), or sharing
many contexts. For example, the most successful lexicographic relation was binary
antonymy: words in pairs like up and down both collocate with, e.g., go and be.

However, the fact that a simple bag-of-words model trained on “raw” text word em-
bedding was able to achieve even 2% accuracy when the task was to find the correct
answer out of all vocabulary which contained over 300,000 words (i.e. the random
baseline would score 0.000003%), is still impressive. Furthermore, the margin of error
was very thin. For example, in the person:occupation category the nearest neighbor
of the hypothetical answer vector was Depp:screenwriter with similarity 0.36, which
only slightly beat the correct answer Depp:actor (0.35). This indicates that word em-
beddings do in fact encode a lot of linguistic information, and better results should
be achievable with more sophisticated methods.

4.2.2 Methodology: word analogies as a lexicographic tool
for discovering pairwise relations

4.2.2.1 Pair-based vs set-based methods

As mentioned above, Mikolov, Chen, et al. (2013) were the first to demonstrate the
possibility of capturing relations between words as the offset of their vectors. Given
an analogy a:a’ :: b:l/ (ais to @’ as b is to '), the answer to the question “a is to a’
as b is to 7”7 is represented by hidden vector ¥', calculated as:

V = argmax gey(cos(b',b—a+d)) (4.2)

Here V is the vocabulary excluding word vectors a,a’ and b and cos is the cosine
similarity distance, which is currently the de-facto standard way of measuring distance
between word vectors: w- v
cos(u,v) = ——— (4.3)
’ [lull[[ol]

This method will be referred to as 3CosAdd. Vylomova, Rimmel, Cohn, and Bald-
win (2016) use it for learning word analogies with spectral clustering and Support
Vector Machines (SVM).
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An alternative pair-based method was introduced by O. Levy et al. (2014) who pro-
pose to calculate the hidden vector as

V' = argmazxycy (cos(b' —b,d’ — a)). (4.4)

They report that this method produces more accurate results for some categories. Its
essence is that it accounts for &’ —b and a’ —a to share the same direction and discards
lengths of these vectors. However, tests on BATS showed it to be consistently inferior
to the other methods (Drozd et al., 2016), and it will not be considered in this study.

Linzen (2016a) reports results of experiments with 6 more functions, including re-
versing the relation, returning simply the nearest neighbor of the ¥ word, and the
word most similar to both o’ and ¥’. None of these functions outperformed 3CosAdd
consistently. Reversal was beneficial for some relations, but it is only applicable to
symmetrical one-on-one relations. Crucially, when the words a, a’ and b are not ex-
cluded from the set of possible candidates, the performance drops to zeroes, and the
closest neighbors of singular nouns tend to be their plural forms (detected with 70%
accuracy as the nearest neighbors of the b word).

The vector offset approach relies on a single pair of words, which makes it sensitive to
noise and word idiosyncrasies, such as differences in polysemy networks. Consider the
above king:queen example: depending on the corpus, there may be more differences
in their vectors than just masculinity /femininity. queen is also a musical group, and
therefore appears in many contexts in which king does not appear.

The alternative is to learn the relation from a set of example pairs. The “naive”
baseline would be a simple average of the offset between every pair of vectors in the
training set:

b = argmaz yey(cos(V',b+ avg_offset)) (4.5)

Method (4.5) will be referred to as 3CosAvg. In this formula a and b represent words
from source and target classes, and avg offset is defined as:

avg_offset = (4.6)

D ino @ _ Do @i
m

n

Last but not the least, Drozd and Matsuoka (2016) proposed an alternative approach
to discovering linguistic relations with analogies which I will refer to as LRCos. This
method defines the analogy task in a different way to the above approaches. Suppose
that we have a set of word pairs for which we know that the same relation holds
between them, such as shown in Table 4.4:

Source Target
France Paris
Japan Tokyo
China Beijing

TABLE 4.4: Example analogy pairs set: capitals
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In this set the right-hand-side and left-hand-side elements represent coherent groups
of words - in this example, “countries” and “capitals”. We shall refer to the left-hand-
side of such analogies as the “source class”, and to the right-hand-side - as “target
class”. Then the question “what is related to France as Tokyo is related to Japan?”
can be reformulated as “what word belongs to the same class as T'okyo and is the
closest to France?”.

To answer this question Drozd and Matsuoka (2016) suggested training a binary
classifier (in this case, logistic regression described in section 4.1.2.1) to predict if
the word belongs to the target class. The source words along with random samples
from the dictionary are used as negative training samples for the target words. Then
the probability of a word being the correct answer for a given analogy problem is
calculated by combining (in this study, multiplying) the probability of this word
belonging to the target class, and its similarity with the vector a measured using
angular distance.

b = argmax b/eV(P (¥ etarget_class) * COS(b/, b)) (47)

Theoretically combining similarity to the target class with proximity to a source
vector enables further optimization through different weighting schemes, but so far
our tests did not show significant gains over simple multiplication (Drozd et al., 2016).

4.2.2.2 Experiment set-up: corpus, models, and the dataset

This experiment uses lemmatized and non-lemmatized versions of BCCWJ
(Maekawa, 2008), the Balanced Corpus of Contemporary Written Japanese. This
corpus is much smaller than the corpora used in the Russian case study in section
4.1, and lemmatization could considerably improve results by increasing amount of
information that was available for constructing individual word vectors. However,
with a sufficiently large corpus of Japanese it should be possible to achieve the same
results with text that was only tokenized (although that in itself is not a trivial task
for Japanese).

The VSM was based on Singular Value Decomposition, with Pointwise Mutual In-
formation (PMI), parameter a = 0.7, 1000 dimensions. The lemmatized corpus con-
tained 83,637,171 tokens, amounting to 2,483,231 unique words. After filtering out
words occurring less than 100 times, the total vocabulary size constituted 33,007
words. For the tokenization-only corpus the total vocabulary constituted 83,887,562
words with 2,702,345 unique words, 35,940 of which occurred over 100 times.

Using this corpus, 6 models were built: window sizes 2-4 for both lemmatized and
non-lemmatized version. This work was performed with the co-occurrence extraction
kernel by Drozd et al. (2015b).
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The dataset!? for testing the accuracy of detecting Japanese transitive and intransitive
verbs contained 159 verb pairs in the dictionary form, written with the Chinese
character rather than hiragana!!. The full test in shown in Appendix B.

The distribution of these verbs in the lemmatized and tokenized versions of the corpus
is represented in violin plots in Figure 4.4. Violin plots show the distribution of the
data and its probability density. The black horizontal lines correspond to data points,
and darker areas indicate where more data points are concentrated. Although the
shapes of the two plots are similar on the log-scale, we can see that lemmatized corpus
has far more verbs that are more frequent (between 1000 - 10,000 occurrences), which
theoretically should make the corresponding word vectors more informative.
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FIGURE 4.4: Transitive/intransitive verb dataset: frequency distribution
in BCCWJ

Figure 4.4 shows also that the lemmatized corpus contains considerably more verbs
from the dataset: 142 vs 113 transitive, 145 vs 109 intransitive. Because the test set
for the tokenization-only model is smaller, these results will be less reliable, but it is
still informative to see how the SVD model performs in this setting where it had less
training data.

4.2.3 Evaluation

In this experiment the three methods described in section 4.2.2.1 (3CosAdd, 3CosAvg,
and LRCos) were compared by accuracy with which they can detect the missing
member of an intransitive/transitive verb pair.

In case of the “classic” pair-based 3CosAdd method (4.2), all verb pairs from the
testing set that were present in the corpus were combined in all possible ways to
form “questions”; except for repeating of the same pair. As mentioned above, the
“linguistic regularities” approach assumes that proportional analogies of the a:a’ :

b:b' kind can be solved as ' ~ b - a + d (king - man + woman ~ ?queen). To

10Japanese language learner’s verb list from http://d.hatena.ne.jp/Pulin/20150214/
1423890973.

UFor example, X %: D5, £ 5: £ 5, etc.). However, the hiragana variants ( H 2D 5,
BTz %, etc.) were also included as a secondary option to be used in the test.


http://d.hatena.ne.jp/Pulin/20150214/1423890973
http://d.hatena.ne.jp/Pulin/20150214/1423890973
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transfer this approach to the Japanese pairs of transitive/ intransitive verbs, consider

—) H 7
a set of word vectors agart : agerd, atsumaru : atsumeru, atatamaru : atatameru,
From this data we can form six questions:

_ \ \ _
1. atatamaru - agard + agert ~ 7 (atatameru)

\ %
atatamaru - atsumaru + atsumeru ~ 7 (atatameru)

\

\
7
atsumaru - atatamaru + atatameru ~ 7 (atsumeru)

_ \ \ _
atsumaru - agart + agert = 7 (atsumeru)
\

agart - atsumaru + atsumeru ~ ? (agerd)

A

agard - atatamart + atatamert ~ ? (W)

Since in Japanese these verbs can be spelled with either Chinese characters (+hira-
gana endings) or simply hiragana, the procedure in this experiment is as follows: the
verbs that form the question have to be present in the corpus vocabulary with the
Chinese character spelling. But for the answer verb it was acceptable to be present in
the corpus with only the hiragana spelling, since it is an acceptable correct answer!2.
This introduced an irregularity in forming the questions for 3CosAdd method: while
there are 134 target verb pairs with Chinese character spellings present in the lem-
matized corpus, the result was 18,360 analogy questions, and for the non-lemmatized
corpus, there were 7832 questions.

The task for all methods is to find the correct answer (the missing verb) out of
the whole vocabulary in the corpus, i.e. 33,007 words for the lemmatized corpus
and 35,940 words for the non-lemmatized corpus. In case of 3CosAdd, for each of
the automatically generated questions the vector addition/subtraction is performed
according to the formula (4.2). The resulting vector is not a vector that is actually
present in the vocabulary, so the answer is found by finding the existing word vector
that is the closest to the hypothetical one.

The two set-based methods, 3CosAvg and LRCos, were evaluated in the so-called
exclude-1 scheme. Given a set of 134 pairs present in the corpus, 1 of them is
excluded, and 133 is used for obtaining the “rule” of transfer (this part differs by
the method). Then the excluded pair becomes the question, and the learned “rule”
is used to try to derive the answer. As shown in Figure 4.4, for the lemmatized
corpus 142 questions were formed in the transitive:intransitive setting, and 145 pairs
in the intransitive:transitive setting. For the tokenized corpus, it was 113 and 109,
respectively.

For 3CosAvg method (4.5), the baseline for the pair-based approach, the “rule” was
learned by averaging the difference between all pairs of word vectors except two.
Thus instead of WL - atsumart + atsumeru ~ ? atsumeru, the WL vector was
added to the average of the difference between all transitive:intransitive verb pairs,

and not to the difference between a specific pair.

12Tf more than one Chinese character spelling was possible, the first one was used to generate the
questions, but any spelling was acceptable as the answer.
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Finally, for the LRCos method (4.7), all available verb pairs except one are used to
learn the representation of the target class. All examples of intransitive verbs are used
as positive examples for training the logistic regression classifier (see section 4.1.2.1),
and the set of negative examples is formed by combining the available examples of
transitive verbs and the same amount of random words from the corpus vocabulary.
For all word vectors in the vocabulary their similarity to the source vector and their
probability of belonging to the correct target class is obtained. These two numbers
are multiplied, and the best ranking vector is considered to be the right answer.

All three methods were tested on both lemmatized and tokenized-only versions of
the corpus in both directions: searching for the transitive verb when the intransitive
verb is known, and vice versa. The results of these experiments are presented in
Figure 4.5. Two accuracy ranges are reported, Top-1 and Top-5. Top-1 condition
is shown with green color for the lemmatized corpus and blue — for the tokenized
corpus; this means that the nearest neighbor of the hypothetical answer vector was
a correct answer to the analogy problem. Top-5 condition, shown with gray color for
both corpora, indicates the accuracy when a correct answer is found among the top
five nearest neighbors of the hypothetical answer vector.

Figure 4.5 demonstrates the following facts:

e The lemmatized corpus offers consistently higher accuracy than the tokenized
corpus, despite 30% more verbs in the test. I attribute this to higher quality of
vectors that were built from more data for each verb.

e The overall pattern of results is similar in the transitive-intransitive and
intransitive-transitive directions (although not identical), which suggests a high
degree of symmetry in how Japanese transitive/intransitive verbs are encoded
in the vector space.

e In all settings LRCos method outperforms 3CosAdd and 3CosAvg, consistent
with findings for English (Drozd et al., 2016).

e Window size 3 seems to be the most beneficial for the SVD embedding in this
task, consistent with the English data for many other categories (Gladkova et
al., 2016). For the sake of comparison, these prior results for 3CosAdd and
LRCos on the 40 linguistic relations in BATS dataset are shown in Figure 4.7.

e The margin of error in solving analogies with word embeddings is small, espe-
cially when we look at data for the window size 3. While 3CosAdd and 3CosAvg
methods mostly fail to detect the correct answer as the nearest neighbor of the
hypothetical vector, they come quite close: in most cases the accuracy is nearly
doubled when we consider top-5 nearest neighbors.

The above results support the idea that DS could be useful as a tool for establishing
frame-to-frame relations relevant to event structure, or checking the consistency of
the database in this respect. However, while accuracy in the range of 60% is im-
pressive from the academic point of view (once again, the choice is made from over
30,000 options, making use only of the distributional information encoded in the word
vectors), from the point of view of practical lexicographic applications we could wish
for further improvement.
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L02:
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0.00.20.40.60.81.00.00.20.40.60.81.0
Accuracy on SVD Accuracy on GloVe

DO1:
DO02:

Encyclopedic relations

geography: capitals (Athens:Greece)
geography: languages (Peru:Spanish)
geography: UK counties (York:Yorkshire)
people: nationality (Lincoln:American)
people: occupation (Lincoln:president)
animals: the young (cat:kitten)

animals: sounds (dog:bark)

animals: shelter (fox:den)

thing:color (blood:red)

male:female (actor:actress)

cographic relations

hypernyms: animals (turtle:reptile)
hypernyms: miscellaneous (peach:fruit)
hyponyms: miscellaneous (color:white)
meronyms: substance (sea:water)
meronyms: member (player:team)
meronyms: part-whole (car:engine)
synonyms: intensity (cry:scream)
synonyms: exact (sofa:couch)
antonyms: gradable (clean:dirty)
antonyms: opposites (up:down)

Inflectional Morphology

noun sg:pl (regular) (student:students)
noun sg:pl (irregular) (wife:wives)
adjective: comparative (strong:stronger)
adjective: superlative (strong:strongest)
infinitive: 3Ps.Sg (follow:follows)
infinitive: participle (follow:following)
infinitive: past (follow:followed)
participle: 3Ps.Sg (following:follows)
participle: past (following:followed)
3Ps.Sg : past (follows:followed)

Derivational Morphology

noun-+less (home:homeless)
un+adjective (able:unable)

: adjective+ly (usual:usually)
DO04:
DO05:
DO06:
DO7:
DO08:
DO09:
D10:

over+adjective (used:overused)
adjective+ness (mad:madness)
re+verb (create:recreate)
verb+able (edit:editable)

verb+er (bake:baker)

verb+tion (continue:continuation)
verb+ment (argue:argument)

FIGURE 4.6: Performance of 3CosAdd, 3CosAvg, and LRCos methods on
40 morphological and semantic relations in English (Drozd, Gladkova,

& Matsuoka, 2016)

*The GloVe and SVD models were trained on a 5B non-lemmatized web-corpus.
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The fact that Top-5 results for all methods are better than Top-1 results suggests
that it should be possible to improve the accuracy if we provide the algorithm with
additional information for ranking the candidate answers, and the remainder of this
chapter offers suggestions on how this could be done.

4.2.4 Refining the algorithms
4.2.4.1 Pair-based or set-based?

To reiterate, LRCos performs considerably better in the task of identifying pairs of
Japanese intransitive/transitive verbs (Figure 4.5). This is hardly a surprising result,
given that LRCos makes use of more information than 3CosAdd (and even 3CosAvg,
which merely averages offsets in a set rather than using them for classification).

However, Figure 4.5 also shows that, although 3CosAdd and 3CosAvg perform worse
than LRCos, they do generally “head” in the correct direction: their Top-5 results
are comparable with what LRCos achieves in the Top-1 setting — and that without
recourse to machine learning and multiple pairs. This brings up the question of
whether both methods are in principle capturing a comparable range of semantic
information, and which one would be more promising for further development. A
data-poor method such as 3CosAdd would be much easier to scale up to real-world
applications.

Unfortunately, at present it seems that there is little to be done to further improve
3CosAdd, and machine learning techniques look more promising, despite their com-
plexity and reliance for more data. This section discusses both practical and theo-
retical reasons for this conclusion.

Among the former, a big weakness of 3CosAdd is that its “classic” implementation
relies on excluding from the pool of candidate answers the three source vectors. Ob-
viously, this would lead the method to fail if the expected answer was among the
source vectors'®. It would also create problems with frequent misspellings or alterna-
tive spellings: indeed, many mistakes of LRCos in our case of Japanese intransitive/
transitive verbs are attributed to an alternative spelling of the b vector that was not
filtered out. For example, for atsumeru : atsumaru :: agert : Tagard 3CosAdd would
return WL written with hiragana, since only the Chinese character was filtered out.
Thus, to apply 3CosAdd on a large scale for, e.g., automatically inducing morpho-
logical paradigms, we would first need to gather all data on the spelling variation —
which would be at least as laboursome as gathering training data for LRCos.

But even for completely unique word pairs without alternative spellings the exclusion
of the source vectors in 3CosAdd is masking a problem. The very formula king —
man +woman creates the impression that the semantic features of these three source
vectors can be differentiated and re-combined. However, in fact we are relying on
the cosine similarity to the product of this calculation, and, with vectors containing

13This explains the low performance on categories with non-unique target vectors, such as cate-
gory E09 thing:color in BATS 4.6. Basically, the “classic” 3CosAdd can not solve analogies such as
sugar:white :: snow:?
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hundreds of dimensions that are all equally participating in the cosine similarity, we
are not guaranteed any controlled semantic shifts.

Let us see what would really happen in case of Japanese intransitive/transitive verbs
if the source vectors were not excluded (Table 4.5). In case of vectors built with
window sizes 3 and 4, we can see that over 95% of analogy problems b + (a’ - a) land
on vector b rather than b’ (which led to a mistake in my initial 3CosAdd experiments).
The remaining mistakes fall onto a’, which has a more prominent place with window
size 2. Thus in this case a more accurate representation of the 3CosAdd method

— ) s —
would be king - man + woman = king, not queeﬁ.

TABLE 4.5: Relative frequencies of the source vectors returned as Top-
1 answers by the “honest” version of 3CosAdd (Japanese intransitive/
transitive verbs)

Corpus Window Condition a a b v
lemmatized 2 intransitive-transitive 0 20.35 79.65 0
lemmatized 2 transitive-intransitive 0 22.47 7753 0
lemmatized 3 intransitive-transitive 0 1.58 98.42 0
lemmatized 3 transitive-intransitive 0 1.27 98.73 O
lemmatized 4 intransitive-transitive 0 1.67 98.33 0
lemmatized 4 transitive-intransitive 0 1.51 98.49 0
tokenized 2 intransitive-transitive 0 23.52 76.48 0
tokenized 2 transitive-intransitive 0 39.21 60.79 0O
tokenized 3 intransitive-transitive 0 2.66 9734 0
tokenized 3 transitive-intransitive 0 3.93 96.07 0
tokenized 4 intransitive-transitive 0 3.33 96.67 0
tokenized 4 transitive-intransitive 0 4.79 95.21 O

That the b + (a’ - a) would land on b is easy to explain if the vectors ¢’ and a are so
similar that subtracting them does not result in sufficiently large a change to b. In this
case, the “classic” 3CosAdd would be yielding correct answers only in cases where b’ is
the nearest neighbor of b, disregarding vectors a and a’ entirely. This phenomenon has
been pointed out by Linzen (2016b) for English: analogies for singular:plural nouns
in English are solved with 70% accuracy by simply taking the nearest neighbor of
the b vector, irrespective of @’ — a. In the current case, the embeddings built from
the lemmatized BCCWJ corpus have 36 out of 142 intransitive verbs (in the Chinese
character spelling) as the nearest neighbors of the transitive verbs (in either spelling),
which is overall consistent with the 3CosAdd results reported in Table 4.5.

This behavior casts a serious doubt on the potential of vector arithmetic as a means
to capture semantic shifts between words. 3CosAdd method often does work, but it
works for a different reason than what we might gather from king — man + woman
formula. In the majority of cases its success results not from any composition of
semantic features, but from the structure of the neighborhood of the vector b; i.e. it
is due to the embeddding rather than the method.

It would be too simplistic to say that no “semantic shifts” are ever happening at all.
In some cases they do indeed occur. The point I would like to make here is that
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3CosAdd cannot guarantee it, because it depends too much on the cosine similarity.
It cannot guarantee that the difference between vectors a’ and a would be always
restricted to just one semantic feature, or that it would be even consistent between
different pairs that are supposed to hold the same relations. It is clear that this is

not the case if we look at the results for different combinations of word pairs in Table
4.6.

TABLE 4.6: Impact of source pairs in 3CosAdd method:
Japanese intransitive/transitive verbs

No a a b v score argmaz ey
(cos(b',b—a+a’))

1 #£F5 £H 3 ®5 FH3 0.41 FEH 3

2 e w5 ) FH 5 0.33 R 5

3 Zn5 =I5 ) FEE L 0.32 P2

4 %b 5 %9 P E s 0.38 D5

5 %5 HEs R5 FH 3 0.4 D5

6 5 SECD b ) T3 0.33 D5

7 eE B s % E) ) 0.36 END

8 [ GER B3 ) R D 0.34 END

9 BHIT % HERCE FD b ) 0.31 END

10 5 i 5 5 0.37 FET

11 EE 5 ED D ) ) 0.4 HET S

In all examples in Table 4.6 the “source” vectors a and a’ are combined with the same
b vector (W), which should result in m; but different “source” vectors are
producing different results. In lines 1-3 we are indeed getting the expected answer,
but in lines 4-6 and 7-9 we are getting different wrong vectors — which are all however
close to nord (in lines 4-6 we are in fact getting its alternative spellings with hiragana).
Lines 10-11, on the other hand, exemplify a rarer case: the difference between a and
a’ retains enough of a’ to make the result its own close neighbor, despite the addition
of b. This shows clearly that the outcome of 3CosAdd is not reliably predicted by
composition of semantic features supposedly captured by linear vector offset.

Mathematically, the unreliability of 3CosAdd could be attributed to three factors:
(1) difference between @’ and a vectors can retain more than the target semantic
feature, (2) some b vectors have “denser” neighorhoods, increasing the chance for a
mistake, and (3) some b vectors are more distant from &', which would also increase
the chance for a mistake. There is evidence to back all these factors.

Some examples demonstrating the first factor can be found in Table 4.6. It is clear
that subtracting word vectors that hold the same linguistic relation does not neces-
sarily yield the same result — and this is to be expected, as linguistic relations are not
necessarily reflected in the same way in all the contexts of all the different words that
underlie their distributional representations. As the lines 10 and 11 show (together
with data from window size 2 in Table 4.5), we cannot even expect the difference
between a and a’ to not express enough of their shared core semantics to completely
“dissolve” the b vector. It is particularly the case for intransitivity/transitivity in
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Japanese: syntactically these verb categories are mostly marked with particles wo
and ga, while their head nouns can remain the same (cp. doa ga shimaru (“the door
closes”) - doa wo shimeru (“to close the door”)). This means that the distributional
representation of this linguistic category would be expressed with very few dimensions
and be hard to discern from noise.

The second factor would be the easiest to see with data from a morphologically rich
language. Consider the singular:plural noun category in English that in our data
achieves almost 80% accuracy with the “classic” 3CosAdd (Figure 4.6). The similarly
built SVD embeddings built from a large Russian corpus (13.4B tokens) showed
less than 30% accuracy on the pairs of Russian nominative case forms contrasted
with dative, instrumental and prepositional case in singular and plural (Drozd et al.,
2016). If the embeddings tend to put morphological forms of the same word in the
same neighborhoods, having more forms per word would make such neighborhoods
denser, and 3CosAdd would have a higher chance to land on a wrong word form.

The third factor needs further investigation, but it could very well explain the overall
low performance of 3CosAdd on derivational morphological categories in English
(Figure 4.6). While morphological forms of the same word are likely to share many
contexts and thus be distributionally similar (e.g. both students and student would
be found in the close context of school), the same is not necessarily the case for
suffixes that change parts of speech of their stems (e.g. mad:madness, edit:editable).
Simply put, the words in such pairs are distributionally less similar to each other
than inflected forms of the same word, and thus 3CosAdd would need to “reach”
further from b in the distributional space. This would increase the chance of an
error, especially with the variation in (¢’ — a).

All of the above are empirical observations that indicate problems with 3CosAdd as
a method for inducing semantic shifts by analogy. To conclude the discussion, I will
also list some obvious theoretical concerns. Consider once again the famous example

P 5 5 . . . .
king - man + woman = queen. Semantically this can be interpreted in two ways:

H \ \ \ H
o (king - man) + woman = queen. The difference king - mar must encode the
“royalty” feature that can be added to woman.

P N
e king + (woman - man ) = queen. The difference between womar - mar must
.—>
encode the “femaleness” feature that can be added to king.

While vector arithmetic operations are commutative, it is not clear that so are se-

e
mantic operations. Moreover, in this particular case both womar, - man and king -

marn are interpretable; but this does not necessarily hold for other relations: agard

- shimaru + shimeru is only meaningful for agard + (shz’memlb - shimaru). At this

point we do not know whether the postulated semantic features must actually make
sense, and, if so — which of the possible interpretations is relevant.

The commutativity problem is a part of the bigger problem of mathematical inter-
pretation of semantics, which also includes the problem with symmetry of similarity
judgements — upon which analogy is based. Logically a is like b is equivalent to
b is like a, but humans do not necessarily agree with both statements to the same
degree. This problem is far from being resolved, although connectionist models have
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proposed a number of ways to simulate asymmetry through biases, saliency features,
or structural alignment (Thomas & Mareschal, 1997, p.758). There are also hybrid
symbolic-distributed models such as LISA (Hummel & Holyoak, 2003). Viability of

these solutions in a large-scale semantic model remains an empirical question.

There is also the problem of impossible meaning combinations. As far as vectors are
concerned, we can subtract scarf from palace and add kangaroo, and some vector
will be the closest to the result of that calculation. But in doing so, can we say that
we are still modeling natural language semantics? In other words, 3CosAdd points
at the major challenge for DS in general: reflecting the distinction between named,
unnamed and non-existing parts of the mental lexicon. As far as unnamed entities go,
a promising approach is to think of word vectors as “points” in distributional semantic
space we need to start thinking of them as regions (Erk, 2009; Vilnis & McCallum,
2015) or densities (Jameel & Schockaert, 2016). Such an approach would bring
distributional semantic space closer to conceptual space, which can also be populated
to different degrees and “chunked” by languages in different ways. However, it will
remain to be seen whether such models are indeed more cognitively plausible and
accurate, and whether it would be possible to mathematically account for nonsensical
vector combinations via degree of “populatedness” of a region in vector space.

Thirdly, in so far as 3CosAdd approach postulates “semantic features” that can be
identified by vector subtraction and then “added” to other word vectors, it is subject
to all the standard objections to componential semantic analysis: semantic features
are not easy to define clearly, they may be defined unnecessarily (or not defined
where they are needed), they apply only to portions of vocabulary, it imposes bi-
nary oppositions that are psycholinguistically unrealistic, and they are locked within
symbolic representation of language, with no way to reach out to the real-world en-
tities (Leech, 1981, pp.117-119). While mainstream linguistic semantics has long
moved past componential analysis, it retains its intuitive appeal to many computer
scientists.

The fourth problem is that, in so far as vectors are derived from corpus data, they are
subject to limitations of the corpora, particularly in what concerns missing data (to
be discussed in more detail in section 6.2.2). Simply put, observing a phenomenon
in a corpus proves its existence in the language, but its absence does not necessarily
imply its non-acceptability. Thus, when we look for the distributional difference
between man and woman, we do not necessarily observe the full range of the relevant
difference, which perhaps could have helped to bring the 3CosAdd calculation closer
to the desired outcome. Furthermore, in condensed vectors such as SVD or in neural
word embeddings the features are also blended in a non-transparent way, which could
further obscure the selection of the relevant features. This objection applies to any
distributional method, but pair-based methods are at further disadvantage compared
to set-based methods such as LRCos since they have to rely on individual word pairs
and are more subject to word idiosyncrasies.

All the observations and arguments above suggest that, despite the intuitive appeal of
3CosAdd, there are inherent limitations to what semantic operations can be modeled
with simple arithmetic over word vectors. Thus I would argue in favor of the set-
based methods and adopting more complex algorithms to improve over simple vector
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similarity.

4.2.4.2 Enhancing machine learning with text patterns

To reiterate, LRCos is different from 3CosAdd in that it relies on supervised machine
learning to obtain the representation of the target class of words, given a set of
examples that are known to hold the target linguistic relation (in English the method
saturated at about 30 examples (Drozd et al., 2016)). This step dramatically improves
accuracy of the method by enabling more precise search only among the words that
are likely to be in the correct class. To illustrate this point, let us compare the Top-5
results for LRCos and 3CosAdd for several queries with the best-performing model
(lemmatized corpus, window size 3). Tables 4.7-4.8 list the 5 nearest neighbors of the
hypothetical answer vector for 5 random verbs.

TABLE 4.7: Nearest neighbors of the hypothetical answer vector:
3CosAdd method, lemmatized corpus.
(1) EA5- (2) % 5- (3) EE 5- (4) Hh 5- (5) Bl % 5-
EED+ WE B+ ENB 4 55+ LExD+
£ 5 N 5 kT3 EY EX P
045 HM 3 0.30 & 3 0.42 HET 5 0.45 22025 0.42 A 5
0.43 EIF 3% 027 Hlz=5 041 HE 0.31 #iJ 5 0.32 Hir 5
0.42 FH5 0.27 B 5 0.38 1% 0.30 221 3 030 @Y 2353
0.32 N3 0.26 WA 5 0.35 ©»% 0.27 # 5 030 L¥3
0.28 W 0.24 BT 0.34 EIF3 0.24 &> 0.29 FAL %
TABLE 4.8: Nearest neighbors of the hypothetical answer vector: LRCos
method, lemmatized corpus.
(1) EA3 (2) IRE 2 (3) €5 (4) #9% (5) X5
0.44 FIF5% 0.42 D3 023 FH5  037HNIS 040 DS
0.32 T3 0.38 gD 5 0.22 REDD 034 nF5 036 DTS
021 8l & EFD 034 H7=7-H3 021 LHT 023 205 024 BT 3

021 /RT3 021 HifNd 5 024 /v o953
020 3 018 E®T 023fDD

0.21 &5 0.31 B3
019 L EIF3 028 1F<7

The output of both models in Tables 4.7-4.8 make it clear that 3CosAdd and LRCos
are not doing the same thing. While 3CosAdd is biased towards the neighborhoods of
the b vector, LRCos is remarkably morphosemantically coherent: note that all of the
candidate answers are of the correct (transitive) class, and semantically close to the
source verb. This suggests that LRCos method has more potential as a lexicographic
tool.

The advantages of LRCos over 3CosAdd become even more clear when we turn to
the non-lemmatized corpus; the output for the same verbs is shown in Tables 4.9-
4.10. If the above concerns about 3CosAdd’s bias towards close neighbors of b are
grounded, then we would expect it to have more difficulty with data that has more
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morphological forms: basically lemmatization step is decreasing the morphological
diversity and the amount of vectors that are very similar to each other. But since
lemmatization takes time, is error-prone, and good lemmatizers are unavailable for
many languages, it would be desirable to have a method that can work with “raw”
textual data.

This prediction is born out: Table 4.9 shows that 3CosAdd has difficulty finding verbs
in the correct form (the dictionary form). However, LRCos method (Table 4.10)
deals with this problem gracefully: all of the nearest neighbors of the hypothetical
answer vector are verbs in dictionary form, and of the correct class. Furthermore,
the semantic coherence of the retrieved neighborhoods is also preserved.

TABLE 4.9: Nearest neighbors of the hypothetical answer vector:
3CosAdd method, non-lemmatized corpus.

(1) Eni5- (2) % 5- (3) % %- (4) #h 5 (5) P& %-
Fxs+ W& %+ EMZ4 HND+ £ED 4+
£05 N % EiF5 D £ 25
0.45 EA¥5 0.23 #&d 021 EF#KT 5 0.40 22H* 5 0.39 Fi®H %
0.44 EAD 0.23 i % 0.21 %155 0.37 227 D 0.33 BT %
0.44 EIF5 0.23 MX9 020 LT 0.35 # D 0.31 BT &5
0.41 F23% %2% DIy A 0.20 fEHIF S 0.34 2725 0.30 &
0.41 HH% 0.21 MX X 0.20 L EH 5 0.34 D5 029 Fi%x -

TABLE 4.10: Nearest neighbors of the hypothetical answer vector: LR-

Cos method, non-lemmatized corpus.

(1) £33 2 xs (3 EE> (4) #52% (5) x5

049 EIF3 028 @2 019 WETS 025 #IF5 026 DS

0.35 FTif5 01983  019HETS 024 2105 0255

0.26 EIF 0.19 %9 0.19 L EH D 0.24 HifT 5 025 HiF2

024 5 EFNIF5 0.181F<T 018 EHT S 020 &HXT 019 5T

0.24 5 017 9 018 ¥ET S 017 DB 017 /v I T3

These results suggest that the classifier included in LRCos does have potential for
improving performance on non-lemmatized corpora, and the method could be devel-
oped further for this purpose. However, while it outperforms 3CosAdd method by a
large margin, it still achieves only 60% accuracy on the current dataset, and to be
practically useful in lexicographic applications it would need to be further improved.

There are several directions which could yield further enhancements, including ex-
periments with various word embedding models and their parameters, and also with
more sophisticated machine learning algorithms. But from a practical point of view
there is an easier, and readily available solution: combining the knowledge about
linguistic relations that is derived from word distributions with clues that can be
derived from their surface forms.

In the case of morphologically related groups of words, such as Japanese intran-
sitive/transitive verbs, we already have an additional source of information. For
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instance, in solving the problem W - atatamar& + atatame?"ﬁ =7 (WL, we
already know that the answer should start with the same Chinese character as the
first word in its pair (agart), and all the information we need is already contained in
the test data. The beginning and ending sequences of characters in words have been
demonstrated to be sufficient for building a fairly detailed morphology of a language

(Soricut & Och, 2015).

To explore this possibility, I implemented LRCosP, a simple modification of LRCos
algorithm (Figure 4.7). Upon obtaining 5 nearest neighbors of the hypothetical an-
swer vector according to (4.7), I check whether any of them shares the first character
with the source word. If so, the score of this answer is multiplied by 2, which makes
it more likely to be output as the candidate answer.

This procedure could be further refined (e.g. to avoid words that contain Chinese
characters not contained in the source word, and/or to require that the answer ends
in one of the endings of Japanese verbs in their dictionary forms, such as -ru or
-u). But even in this crude form LRCosP considerably improves over LRCos. Figure
4.7 shows that in several conditions the Top-1 performance of LRCosP reaches the
Top-5 performance of LRCos, achieving roughly 80% Top-1 accuracy with lemma-
tized corpus (window size 3) in both transitive-intransitive and intransitive-transitive
settings.

Combining pattern-based search with distributional information could be seen as
“cheating”. However, it is perhaps not fair to DS to expect that it would be able to
accurately derive any linguistic paradigms merely from distributions: humans have
many more sources of information about word usage than their co-occurrences, and
they certainly are aware of similarities in the word form, which does not play any role
in constructing a word-level embedding with SVD. There are also other, morphology-
aware approaches to building word embeddings such as character-based embeddings.

Thus the current study brings up several important questions for the field in general.
What is the place of morphology word-level distributional semantic models? Ideally,
do we want a combination of character/word-level models? of character-level, word-
level, and multimodal models? If so, what roles should they all play in modeling
human linguistic knowledge?

This case study described a way of using DS methodology to solve a practical lexico-
graphic problem (automatic discovery of verbs with certain semantic features relevant
for event structure). But it also showed that in-depth investigation of a linguistic
phenomenon can yield useful insights for NLP. It is not only FS that could benefit
from the tools offered by DS, but also DS needs the tasks that FS could set, in order
to make progress in its own goals. The biggest challenge in this field is the inter-
pretation of distributed representations, as highly-dimensional space is impossible to
visualize or interpret directly. It is through discovery of linguistic properties that
align with the mathematical properties of the vector space that such interpretation
can be made. In this particular case, a practical question that arose from linguistic
inquiry highlighted major issues with pair-based methods of solving word analogies,
posing several methodological questions for the field in general.
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FIGURE 4.7: Accuracy of solving word analogies with Japanese intran-
sitive/transitive verbs: 3CosAdd, LRCos and LRCosP
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4.3 Summary

This chapter discussed one of the practical applications of distributional semantics
to the needs of frame-based computational lexicography — the automatic discovery
of semantico-morphological classes. This is essential not only for building a frame
database, but also for ensuring consistency of frame-to-frame relations, which in the
case of aspectual classes have to be established for large groups of words.

While current research on automatic induction of aspectual classes of verbs is based
on syntactically parsed corpora, the first case study showed that such classification
is also possible on the basis of raw text - even in a morphologically rich language like
Russian that presents additional difficulties for distributional methods. Based on a
relatively small dataset with a 100 “seed” words in each category, we were able to
classify perfective and imperfective verbs with over 90% accuracy in the confidence
interval 0.9-1.0.

Another lexicographic advantage of the proposed approach is that with a suitable cor-
pus (which in our experiments turned out to be fiction) it is possible to discover a lot
of newly derived words that are not yet attested in dictionaries, while simultaneously
obtaining their aspectual classification.

The second case study focused on automatic discovery of pairs of words that have the
same relation, namely Japanese intransitive/transitive verbs. I experimented with 3
methods of finding the missing members of pairs of such verbs, one of which was
further developed to achieve 80% accuracy on my dataset. Thus the case study 2
also confirms the high potential of DS methods for lexicographic purposes.

Importantly, the case study 2 highlighted several problems with pair-based methods
of solving analogies with word embeddings — their reliance on the target words being
close neighbors of the source words, their inconsistencies and necessity of deeper
linguistic grounding. This example shows that, while FS could obviously benefit
from the practical achievements of DS, such collaboration would also be useful for
DS in enabling more systematic explorations of the structure of distributed meaning
representations.

This chapter discussed two ways to discover aspectual verb classes with DS tools, and
showed two successful case studies in Russian in Japanese. However, no claims are
made with regards to these mechanisms being applicable to solving any other semantic
tasks (or even that the proposed mechanisms cannot be further improved). The very
volume of current NLP literature suggests that different linguistic relations call for
different solutions, and my own work on interaction between linguistic relations of
different types, different word embeddings and different methods of solving analogies
illustrates the same point. Nevertheless, it is hard to think of a linguistic problem to
which NLP has not already offered several solutions.



Chapter 5 "Selectional preferences across languages”, Chapter 6 "Classifying
selectional preferences”, Chapter 7 "Discussion: towards a unified
semantics”, and Chapter 8 "Conclusion" are not included in the abridged
thesis due to planned publication elsewhere.
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Appendix A

Dataset: Russian imperfective and
perfective verbs

This appendix contains the lists of words used in case study 1 described in section
4.1. The procedure for their selection is described in section 4.1.2.3.

Due to the large size of the full dataset (3995 perfective verbs; 4890 imperfective
verbs; 4751 “other” words), the lists below include only the lemmas of all words
(up to 100 per morphological class). These lists were automatically expanded with
word forms from a Russian morphological dictionary (Hagen, 2014). The present
participle forms (e.g. deaamws (“do”) - deaarowuii (“doing”)) and transgressive forms
(e.g. desamo (“d0”) - cdesas (“having done”)) are included in the verb datasets and
obtained automatically from the morphological dictionary. Any duplicate forms were
merged.

Imperfective verbs

OBITb, MOYb, TOBOPHUTH, 3HATH, XOTETb, WATH, UMEThb, BHUIETH, ITyMAaTb, KWUTb, M€JATb, CMOTDETD,
paboTarh, JaTh, IOHUMATh, CUIETH, ABIATHCH, JIOOUTh, CTOUTh, CIUTATDH, KA3aThCs, IUCATH, CTOATD,
JaBaTh, MMOMHUTD, YKJIaTh, HAXOJIUTHCS, OCTABATLCHA, UTPATDh, JIEXKATDL, CJIEJIOBATh, YUTAThH, OBIBATD,
XOJIUTH, HAUNHATD, HA3bIBATh, XOTE€ThCs, BECTH, OOSITHCH, MPOUCXOIUTH, CYIIECTBOBATH, CTAHOBUTHCSI,
CJIBIIIATH, MCIOJb30BaTh, NBITATHCH, YyBCTBOBATh, 3aHUMATHCS, IPOMOIKATh, CIyIIaTbh, OTBEYATbH,
PAaCCKa3bIBaTh, IPEACTABIATD, OPATH, CIIATH, IOMOYb, IPUXOIUTD, IIPOCUTD, CIIPAIINBATE, IPUHIMATD,
HUCKaTbh, IIPOU30HTHU, BBIXOAUTH, HUTH, IVIAJETh, €XaTb, Ha4aTbCA, BEPUTH, Jep:KaTb, I[O3BOJATDH,
YXOJIUTDb, COOMPATHCS, OTHOCUTBHCS, TPEOOBATDH, IMOJYUATb, MPOXOIUTh, COCTABJIATD, MPUXOIUTHCH,
CTapaTbCs, YMETh, IIPOBOAUTDH, HPABUTHCSH, ITOEXATD, OJ0XKUTh, BXOJIUTh, OKA3bIBATHCH, ITOKA3bIBATH,
KacaTbCsl, IeMCTBOBATH, KPUYATh, IpEJIararb, MOJYaTb, 0OEXKaTb, 1€Th, BBI3bIBATH, TOKA3ATHCS,
BBITVIAIETH, COCTOATH, BBICTYHATh, CTABUTH, BOSHUKATH

Perfective verbs

CKa3aTb, CTaTh, CJ/IeJaTh, IIOHATDH, IIONTHU, CIIPOCUTH, IIOJIyYUTh, OKA3aThCH, B3ATh, IIPUNUTH, OCTATHCH,
BBIATH, HAYATh, YBUJIETh, HATH, DEIINTD, IPOUTH, IPUHATH, HAINCATD, IOLYyMaTh, YUTH, TIOCMOTPETD,
BEPHYTbHCA, IIOABUTLCH, II0Ka3aTb, IIOCTaBUTb, CMOYb, 3aMETUTb, IIPEJCTaBUTbH, CO3/1aTb, Y3HATh,
IpruexaTb, PacCKa3aTh, 3a0bITh, IIPOBECTH, BCIOMHHUTH, OTKDPBITH, I[PUBECTH, OCTABUTH, BOWTH,
Ha3BaTh, YCIIETh, IIPEJIOXKUTD, ITOJONTH, Y/IAThCHd, YMEPETh, CECTD, CJIYIUTHCs, YCTAHOBUTD, IIOHATH,
BCTaTb, OPOCUTDH, OOBACHUTH, CHSITh, YCJIBIIIATH, CBI3aTh, TIO3BOJINThH, BHI3BATH, OTMETUTh, 3a9BUTH,
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[IOJIyIUThCsl, OCTAHOBUTBCsI, YOUTH, COTJIACUTHCSH, COOOIIUTD, IIPUHECTH, CJIY?KUATh, IIOIPOCUTH, OTIATh,
MOJTHSITHCS, BO3HUKHYTh, [MO3BOHUTH, BBIIUTH, OOHAPYKUTb, MOYYBCTBOBATH, MEPEJIATh, COCTABUTD,
OTIPEJICIIATD, YIABIOHYThCs, YEXaTh, POJUTHCA, OTKA3AThCS, 3aHITh, JI00ABUTH, TPOU3HECTH, HAIIPABUTD,
0OpaTUTHCSA, BBIOPATH, YIACTh, IEPeCcTaTh, COOPATh, MPOCTUTDH, MEPEHTH, WCIE3HYTb, OODSIBUTD,
HPUIJIACUTD, 3aKPBITh, IPUIYMATh, IIOIPOOOBATH, JJOCTUTHY Th

“Other” words

e Nouns: roj, JyegoBeK, BpeMsd, €0, KU3Hb, JIEHb, PyKa, pa3, paboTa, CJIOBO, MECTO, JIUIIO,
JPYT, TJIa3, BOIPOC, JIOM, CTOPOHA, CTpaHa, MUP, CAydail, TOJOBa, PEOCHOK, CUJIa, KOHEIl, BU/I,
cucreMa, 9acTh, TOPO/I, OTHOIIIEHUE, YKEHIIUHA, JeHbIU, 3eMJIsl, MAIlIMHA, BOJIa, OTell, IIpobJjemMa,
9Jac, mpaBo, HOra, pelreHne, IBephb, 00pa3, UCTOPHsI, BJIACTh, 3aKOH, BOiHa, OOT, TOJI0C, ThICAYAa,
KHHTAa, BO3MOKHOCTD, PE3yJIbTaT, HOUb, CTOJI, UM, 00JIaCTh, CTAThs, INCI0, KOMITAHUS, HAPO,
2KeHa, TPYIIa, pa3BUTHE, IIPOIECC, CYJI, YCJIOBHE, CPEJICTBO, HAYAJIO, CBET, 1IOPA, IyTh, JIyIIAa,
ypoBeHb, dopMa, CBdA3b, MUHYTA, VJIHUIA, BEUep, KAUeCTBO, MBICIb, J0pOra, MaTb, HefiCTBHE,
MECSIIT, TOCYIaPCTBO, SI3bIK, JI0OOBb, B3TJIsAL, MaMa, BEK, MKOJa, 11eJIb, OOIIECTBO, JeITeTbHOCTD,
opraHusanus, Ipe3uIeHT, KOMHATa, HOPAJ0K, MOMEHT, TeaTp

e Adjectives: HOBbIi, OOJIBINON, NOJKEH, TOCTEIHUN, POCCUNUCKUI, PyCCKUi, OOIIHUil, BHICOKMIA,
XOPOIINUH, TJIABHBIN, JIydInuii, MaJICHbKWI, MOJIOJION, T'OCYJIapCTBEHHDbIN, MOJIHBII, COBETCKUIA,
HACTOSIIHH, CTapBIil, pa3HbIi, HYXKHBIH, OE/IbI, COOCTBEHHBIN, YePHBIH, OCHOBHOM, TAJIEKWIA,
TOJIO0OHBIHN, CJIEAYIONINi, PABHBIN, »KUBOHN, M3BECTHBI, BOCHHDIN, BAayKHbBIHM, BEJIUKUN, TTPOCTOI,
OI'POMHBINA, MOJIUTUYECKUN, MOCKOBCKUH, T'OTOBBIA, KpAaCHDLIH, COBPEMEHHDIH, COLUAJILHDIH,
paHHU, 0COOBIi, MEJIbIi, IIJIOX0H, CHUJIBHBII, CKOPBI, KPYIHBIA, BHYTPEHHUN, SKOHOMUIECKUN,
npaBbiil, derepaabHbIil, OMU3KUI, TOXOXKUN, PAa3JIMIHBIN, HEOOXOIMMBIN, €INHCTBEHHBIN,
JIETKWH, YeJTOBEUECKUN, MeXKIyHAPOIHDBINA, [TOPOTOil, HEOOJBINOW, MECTHBIN, ObIBIIWIA,
aMEpPUKAHCKUH, MUPOKUNA, MUPOBOM, TAXKEJIbIH, BO3SMOXKHBIN, OTICIbHBIA, CPeIHUNA, KPDACUBBIA,
KOPOTKUM, CEPbE3HBIH, MHTEPECHDIH, JOOPBI, HAITMOHAJILHBIHN, JJIMHHBIH, CTPAIITHBIA, TPOIILILI,
OOINIECTBEHHBIN, IETCKUil, eIWHBIA, ONpEeIeJIeHHBIN, HU3KUN, Uy»KO, CTPAHHBINA, YUCTHIA,
MMO3HUH, CIENUAIbHBIN, HAYYHBIN, CJIOXKHBIA, pPeabHBIN, CIOCOOHBIN, MAJIBIHA, CTAPIIAN,
JIMIHBIN, CBOOOTHBIN, OOBIIHBIN, TTPEKPACHBIIT

e Adverbs: eme, yxxe, o9eHb, MOXKHO, HaJI0, HET, TOXKe, OoJiee, KOHEIHO, TaKKe, BAPYT, MOUTH,
cpasy, XOPOIIIo, CEerojHsl, COBCeM, BOODIIE, OOJIbIIE, BMECTe, HAIIPUMED, HY?KHO, OISITh, CHOBA,
HEJIb3sl, OCOOEHHO, PsJIOM, Ha3aJl, COBEPIIEHHO, 3HAYUT, [ABHO, JEWCTBUTE/bHO, HAKOHEIL,
9acTo, OBICTPO, OO, TPaBIA, WHOTJA, 9yTh, 3aTE€M, CJIAIIKOM, BIIOJIHE, IAJIee, MOXKET,
BIIpOYEM, HaBEpPHOE, MOKa, JOCTATOYHO, MEHee, KCTaTH, CHaYaJa, JOBOJILHO, OJHAYKILI, TOMOIA,
CKOpO, HauboJjee, OOBIYHO, HAJIEKO, TPYIHO, BO3MOXKHO, TOYHO, BECbMAa, JIETKO, BIEPBHIE,
BUHO, HEMHOI'O, IIPAKTHYECKU, HEOOXOJIUMO, BOBCE, pPaHO, HECMOTPs, CUJIbHO, KaryKeTcd,
M3BECTHO, JIOMa, 3aBTPa, BUIUMO, MAJIO, OJJHOBPEMEHHO, THXO0, HEJABHO, BHOBb, BIIEPEl, BUEPA,
[IOJTHOCTBIO, ILJIOXO, TIOCTOSTHHO, €J1Ba, sICHO, 0038 Te/IbHO, IIPSIMO, MEJJIEHHO, CIIOKOWHO, BCKOPE,
HEBO3MOXKHO, ITPUMEPHO, TOPa30, YK, HEOKUIAHHO, HA0DOPOT, €CTECTBEHHO

e Pronouns: Ttak, kak, rme, TaM, mMOTOM, CefiUac, TYT, TE€NEPhb, TOI/A, 3/1€Chb, IIOTOMY, BCET/a,
no4yeMy, BCE, IIOITOMY, HHUKOTJA, Kyla, KaK-TO, 3a4eM, Tyla, OTKya, CIOJIa, CTOJb, HUKAK,
KOrJla, II04YeMy-TO, TAe-TO, NHade, YTO, KOrJa-To, OTCI0Na, OTTY/a, HaBcerjaa, Hedero, Kyaa-To,
CTOJIbKO, HUKYJIA, Yero, CKOJIbKO, Be3Jie, OTTOr0, OTYEro, KOTIa-HUOy/b, HUTJIE, TJe-HUOy/b,
[O-IPYTOMY, BCIOAY, IIO-CBOEMY, HEKOIla, KaK-HUOY/b, OTKY[Ia-TO, HUYYThb, IIOBCIOIY, BOH,
Ky/a-HUOY/Ib, HUCKOJIBKO, TyT-TO, HAYEro, CKOJIb, KOe-KaK, TaK-TO, 3a9€M-TO, MHOTO, KOe-TJIe,
TYIa-CIO/Ia, OTYErO-TO, YTO-TO, CKOJbKO-HUOYIb, TOLIA-TO, IOCEMY, ITAK, KAK-HUKAK, KOTIa-
Jinb0, OTOBCIOLY, TIOYEM, JIOCEJIEe, J/IAK, e, IO-UHOMY, BCErO, 9ero-TO, CKOJIbKO-TO, IT0-HAIIEMY,
OTOMY-TO, HIOTKY/1a, II0-MOEMY, II0-BallleMy, CTOJIbKO-TO, TaM-TO, , 9TOT, KOTOPBIil, CBO, BECh,
TOT, TAKOH, ero, OAWH, caM, APYI'OH, HAIl, MO#, ee, KaKOW, UX, CaMblii, Ka>KIbIl, KaKOH-TO,
BAIll, HEKOTOPBIH, JTF000, HUKAKOI, BCAKUI, TBO, MHOI, MHOIHWil, TaHHBIA, ceil, KAKOI-HUOYIb,
HEKUi, OCTAJIBHON, MPOYNil, deil, KaKOH-m00, TAKOB, KAKOB, TAKOBOM, KO, 9ei-TO, TAKOH-TO,
39TAKUH, KOe-KaKOi, HEeMHOI'MI, TOT-TO, UXHUH, 3/IaKWil, KAKOBOI, OHBII, HUYEH, KaKOi-HUKAKOI,
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KU, 9eii-HuOyb, , s, OH, 9TO, OHA, OHM, MBI, TO, YTO, ThI, BCE, BbI, c€bsi, KTO, HUITO, ITO-
TO, HUKTO, OHO, KTO-TO, UTO-HHOY/lb, MHOTOE, IIpodYee, HEYTO, MHOTWE, KTO-HUOYIh, APyroe,
OCTAJIbHOE, OCTAJIbHBIE, KOE-UTO, HEKOTOPBIE, CBOE, ITO-IN00, Ce, KOe-KTO, KTO-JIn00, HEKTO, 9e,
HEeMHOI'ue, HeMHOroe, 1110, Cle, TO-TO, BCAKOe, IITO

Numerals: gBa, Tpu, narb, oba, UYeTbIpe, AECATb, ABAANATH, IIECTb, CTO, TPHUIIATb, CEMb,
IIBOE, COPOK, BOCEMb, MATBHIECAT, IIOJITOPa, TPOe, MATHAAIATh, NeBATh, JBEHAIATh, JIBECTH,
IIeCTbAECAT, TPUCTA, CEMbIECAT, OJUHHAMIATL, YeTBEPO, BOCEMbIECAT, BOCEMHAIIATD,
IIEBAHOCTO, MATBbCOT, IIMECTHAAIATH, CEMHA/IaTh, YeTbIPHA/aTh, TPUHAAIATH, IATEPO,
YeTbIpeCcTa,  JAeBATHAAIATh, JAEBATBCOT,  IIECTEPO, BOCEMbCOT, CEMepO,  IMIeCTbCOT,
CEeMbCOT, IIepBBIA, BTOPOH, OJWH, TpeTuil, 4YeTBEpPTbIii, IATHIA, [IECTOH, CeIbMO,
BOCbMOM, JEeBATBIH, AeCATBbIA, JABAAUATBINA, TPUALATHIA, ABEHAAUATBHIA, OIMHHAIIATHIN,
CEeMHAQ/IIATBIA, MIEeCTUICCATDIA, CEeMUNECATBIA, AeBATHANUATBHIA, IATUAECATBHIA, COPOKOBOM,
TPUHAAIATHIA, BOCEMHA/IIIATHIN, NeBAHOCTBINA, NATHAAUATHINA, BOCbMUIECATBIN, IIECTHAIATHIHA,
YeTbIPHA/IIATHII, COTBINA

Prepositions: B, ma, ¢, mo, x, u3, y, 3a, oT, 0, I, /10, IIPH, BO, CO, IO, OCJe, 6e3, depes, 00,
nepeji, MexJIy, HaJl, [Ipo, KpOMe, CPEeJH, U3-3a, KO, MPOTUB, OKOJIO, BMECTO, BOKPYT, MPEKJIE,
BO3JIe, CKBO3b, PaJid, Ojaromaps, COTJIACHO, W3-TIOJ, BPOJE, CIIYCTS, MHUMO, BJOJIb, IOMHUMO,
BHyTpPH, 000, HACUET, BHE, BKJIIOYAs, [[yT€M, OTHOCUTE/IBHO, 30, [TOCPE/IH, TI000HO, HAKAHYHE,
BOIIPEKH, MTEPEIIO, CBBIIIE, BCJICJICTBUE, HAITPOTUB, MEXK, IIOCPEJICTBOM, [TOBEPX, BBULY, BIEPE/IH,
BOJTM3M, HAJIO, MO3aJu, BbIe, 03, 6€30, BHYTpb, IOIMEPEK, CBEpX, IMpEJ, Hamomodme, OTo,
HUKe, MOJIJIe, BCJIEJI, B3aMeH, MOCEPEINHE, CPeJlb, MO0, MPEBBIIe, CPOIHU, UCKIIIOYas, C3a/IH,
MUHYC

Conjunctions: u, 4T0, HO, KaK, UJIH, €CJIU, KOTJA, YTOObI, TO, J&, 9€M, XOTd, HU, OJHAKO, ITOKA,
Jake, BeJlb, MIOCKOJIbKY, CJIOBHO, JINOO, mpudeM, OyATo, 9T0b, 3aT0, MO0, TOJIBKO, JIU, XOTh, XKeE,
pas, uTak, uHade, TOYHO, IMYyCTh, IIIOC, HEXKEJIH, TE€M, Ja0bl, KOJIU, €/IBa, €XKEJIU, TPUTOM, KOJIb,
6J1aro, MOKy/1a, aH, Wb, JAK, KaObl, KO, BCE-TAKW, POBHO, COOTBETCTBEHHO, JIUIIb

Interjections: ax, o, rocrnomu, oii, yBbI, ara, ox, 9X, yry, 9i, a, 3, a-a, Hy-Ka, ypa, MM, aii,
3-39, Thy, OuH, ei-60Ty, asIo, 370pOBO, yX, Xa-Xa-Xa, CTOI, Xa, MOJH, Or0, UIMb, HYy-HY, a-
a-a, boxke, XM, Qy, xa-xa, M-M, I'M, OpPaBO, 37pPaBCTBYiiTe, X0, M, 31pacTe, OIl, 0-0, OYyJIb-0yJib,
MapoH, MapII, M-71a, 3-3-3, aJie

Particles: ne, xxe, TosbKO, OBI, BOT, 1aXKe, HY, JIiU, HU, Jia, TPOCTO, HET, JIUIITh, UMEHHO, BeJlb,
3TO, YK, BCe-TaKW, MyCTh, XOTb, K, BCEro, OyaTO, passe, MpsSMO, BpoOIe, JydIle, JIaaHO, TO,
JaBait, MOJI, TTOXKAJIyHCTa, XOTs, eIlle, HeyKeu, 0, BOH, JaBaiiTe, XOPOIIO, TaM, CIIacu00, STKOODI,
7e, cebe, BOOOIIE-TO, CJIOBHO, YTOIHO, TOYHO, UCK/TIOUUTEIBbHO, aK, ObLITI0, KOHEYHO, ITyCKai, 1a-
J1a, HebOCh, Taku, (pOH, KaK, HET-HET, HEYXKTO, Jib, TO-TO, BaH, BCE, BO, aBOCh, OUIIb, HEBECTD,
a, HUOYIb, TaK, Ka, Koe, Ulllb, IaK, AMUHb, Jla-a, ara, OeH, ¢, He-eT, BUIIb, Ha, U, POBHO, HATE,
psM, ce, IOKa, Jia, HEM3BECTHO, UTO, Hy-C
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Appendix B

Japanese intransitive/transitive
verbs used in case study 2

LB (BHNB) LiFB(HIFB) % (79 H3) BT 57T 3)
2(btt%3) WDB(HitzhD) WED(-%5) WHD(ED?B)
£x25(boxd) HEDBH(HODD) WED(BBED) HDD(bBDHD)
WEB(HS-ED) UDD(BHSEDD) BB (DuHD) BITFB(DRITB)

LB (5MB) ZIFTB(51FB) B(0%3) #HDBH(OHDB)
HE2Z(5%2) HHB(5D5) WEB(DLED) WDDH(DLDDB)
Hbs(503) HAB(D25) W B(D6k5) HhB(D5h5)
Bx2(HXx2) Wdd(BEDD) HMEB(LLED) HDE(LEDD)
“bd(Bbd) HKAB(BAB) ILE3(2%3) HB(EDB)
s (hnd) #iIF5(013) BMEB(XLEZ) HBHHIILD D)
EhD(hEmD) ERDZ(PIhD) EE5(0A5%3) LEHd(05H5)
FE2(H7x5) EDD(17d5) HEDIDED) EDBINDD)
WS B(MERETB) WEL(DIES) A5 (£03%) HiF5(£1T5)
BED(MSED) WDL(MHDHD) RX2(x33) BED(EE?)
EDB(hD2) BABMNAD) MED(ELE2) MDB(ELDHB)
WEB(2E2) HhDDB(ED?B) Wiz 5(WE5) WHTHWPTH)
WEL(EDED) WDD(ELDD) WEL(LDED) FHE(LDDDB)
Moz bbd) MAB(KDAD) HoL( Do) Kodd(Hhod?)
THB(EA5) THH(ET5) B (H<) B2 (H1T5)
EED(IKED) EDDB(XEDD) AB(IEWB) ANB(\Wh3)
HEB(LTER) HDE(LTDHD) FRR(ODR) FhNB(DRB)
g2 - MEs(LEz) B -fHos(Ldd) ME(DEEL) BT 3HE81T3)

REL(TIEED) BEDB(TIEDD) 5 (B 5) A BEREB)
BOB(Th3) WAB(TAD) B oD) DB (D5HB)
WEBRIEED) DB (RIEDD) ELB(KBLE) HLOB(KBLHE)
WEB(ZED) RDB(ZDD) ME(LTE) s (LTHs)
EEB(ENEB) HEDB(hDD) BES(L7=hS) HxB(LIHZB)
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<(LYEL) BIB(LHZETS) WA BH(NAD) TR
HE(T<B) Hnsb(FD5) M 2(Z2%) EXT(ZXT)
ED(TTE) EDB(TTD5) BRB(DOVARD) HPT(DWRT)
’%’)(%fﬁ) BETB(ZET?) EZB(IFAB) EXT(IEPT)
Wi>(2%5) Hizxs(xsr25) (%ié( Z3) WT(ORT)
ND(72D) AMTB(12T3) ZB(HAD) HWPT(IXT)
ES (b)) ERB(BHRD) MXB(HAD) BT (HPT)
W(bBL) Mid(bbhd) HUL2(2L3) HXT(LET)
H<(’)<) 521 3) HU5(@V3) MIXT(DIFT)
(L) EIFBEEF?) WH5(Ab3) Wd(AkT)
(L) MTBET3) BE2(BE2) BIF(BIT)
EB(RE) kD3P0 3) %bB(BbB) ET(BLY)
FEL(PAEL) BDBWDADB) Mo 2(BY2) BAT(B2T)
BLWP2E) BHH(WDED5) WEB(TEZ) BITT(TIT)
Hins(shd) His(B5) RE3(0%3) RIT(2KY)
Yiha(Eha) Y5(x3) Bha(bobid) BT (HobT)
E’“j‘é(@ib‘é) fe< (K 7#X) B2 (< ND) BT (BT
5(X1F3) HL(XK) BENB(FHNNB) HTFHT)
WD R B(EFB) WL R (2X) ENB(ZIEND) EFF(ZIET)
Em;.s(ané) 5 (& 3) Hha(Zbhd) HET(IbT)
2 (BT 5) K< (<) #nz(=shnsd) #HT=BT)
Eé’bé(mlﬂhé) KU B (L 3) EhB(DZRND) EHT(DRY)
5(131F5) #H(E) BB (AN d) W RAT)
2(1EL5) BIIUL) ENB(@HBNB) KT(DOHT)
3(01F3) #L (LK) Mns(xnnd) #T(EnT)
2(®1F5) B (PL) HNd(EINhB) HT(EIT)
Bz (e3ns) e (P55) FH(DD) FTHDHDED)
Hha(bhd) EB(bD) %H5(LB) HEL(LED)
W2 (H2) WLT(H2T) BB (bhnd) I B(DITB)
mnzsmmgs) I TEERCGCED! WxB(EAB) MWT(FT)
5(Z3) AT x5 (ONE2) HWERB(ONEXB)
BDD - BHL(EDDB) WET - BET(XET) HAB(HRRD) HBE(ARD)
H2(T3) () EnsWn3) EI5(DT3)

( ) EX( ) WH(ZH D) HWHBH(IDHDB)

( ) EX ) Mx2(x2x5) BL(2X)
HIFB(21F3) AT (2HT) B5(52%) BT(527)

( ) EX( ) o @A B) BT - RT(AT)

( ) 9( ) T5(K%E3) FTFKRET)
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iﬁﬁ%(:%ﬁi‘%) AT (2 A5 MR(ES) RIET(212T)

B(eB2) EE(eBT) W< (7<) WA ()
T2(v2) M9 (2d9) B2(2) BS5T (ko)
wo(EHs) WwI(EEY) WB(~B) WET(~5T)
BA(O3) BY(OF) B (225) BOT(EEDT)
H5(ED5) HT(ZPT) 5(£%5) kb (ELb7T)
RB(2E8) RI(LET) HXB(xa3) MF(XT)
WD (br3) T (brT)

‘ ‘ HEB(1EXE2) ROWEID)

W< (52<) BHhT(S>hT)
BL(BEBL) BHIT(BELNT) BVB(HIND) BUSTO
B (b<) EhT (b B(FRAB) B(FRQ)
W5 (b3) M5T (55T WR(EAR) WET(1EAI1FT)
[5(T3) BST(T5T) > (5%85) WT(>587)
BL(EL) BAT(EDT) WM< 25 (< 725) ST (<Y

(

(2 EAL) W (EsrnY) Mba(0b2) ML(2D)



Apgendices C, D,E are not included in the abridged thesis due to planned
publication elsewhere.
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