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Abstract

When area-wise sample sizes are small, the direct estimators of area-specific parameters based
only on the samples within each area are unstable. Hence, we need to “borrow strength”
across related areas to produce reliable indirect (model-based) estimators of the area-specific
parameters, which is known as small area estimation (SAE). Typically, regression models
with random effects (mixed models) are used and various mixed methods for SAE have been
developed so far. However, most existing models are not flexible enough to capture complex
characteristics of data, which might lead to inefficient model-based estimators. This thesis
develops several mixed modeling approaches for SAE to overcome the problem.

Chapter 1 briefly explains backgrounds and motivations of the works given in the subse-
quent chapters. Chapter 2 and 3 propose the use of a parametric family of transformations
for response values of observed data. Chapter 4 deals with conditional mean squared errors
for risk evaluation of model-based estimators. Chapter 5 develops a small area model with
heteroscedastic variances expressed as a function of covariates. Chapter 6 proposes a method
for shrinkage estimation of area means as well as sampling variances. Chapter 7 and 8 develop
mixed models with uncertain random effects whose distribution is expressed as a mixture of
one point distribution and a continuous distribution.
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Chapter 1

Introduction

Small area estimation (SAE) deals with the problem of producing reliable estimates of area-
specific parameters. Direct estimates based only on the area-specific sample data are not
suitable when the sample size is not large. Hence, we need to “borrow strength” across
related areas to produce reliable indirect (model-based) estimates for small areas. In SAE,
mixed models have been widely used for variety purposes. For comprehensive overviews and
appraisals of models and methods for SAE, see Pfeffermann (2013) and Rao and Molina
(2015).

The mixed models for SAE can be divided into two major parts, area-level models and unit-
level models. In area-level models, the Fay-Heriot (FH) model (Fay and Herriot, 1979) is most
famous and extensively used as the standard tool for SAE of continuous valued parameters.
When observed values are count or binary, generalized linear mixed models (Jiang, 2006) or
models based on natural exponential family with conjugate priors (Ghosh and Maiti, 2004)
are useful alternatives. On the other hand, for unit-level data, the nested error regression
(NER) model (Battese et al, 1988) is widely used. In these models, random effects play an
crucial roles representing the difference between small areas, and the prediction (estimation)
of random effects is a key to SAE. Although these mixed models generally perform well and
are easy to fit, these models may produce inefficient and biased small area estimates when
data does not satisfy assumptions in these models. To overcome this problem, this thesis
proposes alternative mixed modeling approaches for SAE.

Chapter 2 addresses the problem of transforming response values in the FH model. In
many applications, response values take positive values (e.g. income, consumption) and the
distribution is often skewed while the response values in the FH model are assumed to be
normal. This inconsistency could cause a considerable bias in the resulting small area estima-
tor. Hence, we propose the use of a parametric family of transformations and generalize the
results obtained in the FH model. We derive the empirical best predictor of the small area
parameter and a second-order unbiased estimator of the mean squared error of the predictor
based on parametric bootstrap. We assess the approach via simulations and an application
to survey of family income and expenditure (SFIE) in Japan. This chapter comes from the
paper of Sugasawa and Kubokawa (2015) and Sugasawa and Kubokawa (2017b).

Chapter 3 deals with the problem of estimating finite population parameters based on
partially observed units. Concerning this problem, Molina and Rao (2010) suggested an
empirical best prediction approach based on the NER model. Molina and Rao (2010) applied

9



10 CHAPTER 1. INTRODUCTION

their method to estimating area-specific poverty indicators based on unit level income data.
Since the income data is skewed, Molina and Rao (2010) used log-transformation before fitting
the NER model. However, if the log-transformation is misspecified, the predicted values
from the empirical best prediction method are not reliable. Hence, similarly to Chapter
2, we suggest the use of a parametric family of transformations for flexible prediction of a
finite population parameter. We sketch a simple estimating method of the model parameters
including transformation parameters, and derive transformed empirical best predictors. We
compare the proposed method with the method by Molina and Rao (2010) through simulations
and an application to synthetic income data in Spanish provinces. This chapter comes from
the paper of Sugasawa and Kubokawa (2017d).

Chapter 4 discusses a new risk measure for small area estimators, conditional mean squared
errors (CMSE). Traditionally, for measuring the variability of small area estimators, (uncon-
ditional) mean squared errors (MSE) have been used. However, as discussed in Booth and
Hobert (1998), Datta et al. (2011a), CMSE is more preferable than MSE in the context of
small area estimation. Until now, it has been revealed that CMSE and MSE are asymptot-
ically equivalent in small area models based on normal distributions while the difference is
not negligible under non-normality. We investigate CMSE in the models based on natural
exponential family with quadratic variance function developed by Ghosh and Maiti (2004).
We also derive a second-order unbiased estimator of CMSE and show the difference between
CMSE and MSE through applications to stomach cancer data and infant mortality data. The
result in this chapter was published in Sugasawa and Kubokawa (2016).

Chapter 5 deals with a problem regarding heteroscedastic variances in the NER model.
While the NER model assumes that all units are homoscedastic, Jiang and Nguyen (2012)
demonstrated that such a structure is restrictive in practice and may produce inefficient
estimates. To solve this problem, we propose a heteroscedastic NER model in which the
heteroscedastic variances are represented by smooth parametric functions of covariates. We
propose a moment method for estimating model parameters and derive an empirical best linear
unbiased predictor of the small area parameter. We assess the approach via simulations and
an application to posted land price data. This chapter comes from the paper of Sugasawa
and Kubokawa (2017a).

Chapter 6 tackles the problem of estimating sampling variances in the FH model. In
the conventional FH model, the sampling variance of the direct estimator is assumed to be
known while the estimated sampling variances are used in practice. However, it has been
recognized that the model-based estimator could produce poor estimates when the estimated
sampling variances are unstable. We propose a hierarchical model which produces shrinkage
estimators of means as well as variances. We sketch an efficient computational method relying
on Markov Chain Monte Carlo (MCMC) and evaluate the proposed model through simulations
and empirical studies of SFIE data and famous crop data. This chapter comes from the paper
of Sugasawa et al. (2017a).

Chapter 7 proposes the use of the uncertain random effect whose distribution is expressed
as a mixture distribution of normal and a point mass on 0, in the NER model. Datta and
Mandal (2015) showed that the use of uncertain random effects can substantially improve
the estimation accuracy of the model-based estimators. However, their method is restrict to
the Fay-Herriot model. We consider using the ideal of uncertain random effects in the NER
model. We develop a MCMC method based on Gibbs sampling for computing small area
estimators as well as estimates of model parameters. We compare the proposed method with
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the traditional NER model via simulations and an application to posted land price data. This
chapter comes from the paper of Sugasawa and Kubokawa (2017c).

Chapter 8 deals with the uncertainty of random effects in the context of models based on
natural exponential family (Ghosh and Maiti, 2004). We suggest a mixture prior of the conju-
gate prior and a point mass. Due to the conjugacy of the prior, an Expectation-Maximization
(EM) algorithm for estimating model parameters can be easily implemented. Then, we pro-
pose an empirical uncertain Bayes estimator and also provide a second order unbiased esti-
mator of CMSE for risk evaluation. The performances of the proposed method are evaluated
via simulations and applications to historical mortality data and poverty data in Spain. The
content in this chapter comes from Sugasawa et al. (2017b).





Chapter 2

Transforming Responce Values in
Fay-Herriot Model

2.1 Introduction

The basic random effect model for area-level data is the Fay-Herriot (FH) model (Fay and
Herriot, 1979). Let θi be the small area mean (or total) in the ith area and let yi denotes the
direct estimator of θi. The FH model is defined as

yi = θi + εi, θi = x
t
iβ + vi, i = 1, . . . ,m, (2.1)

where xi and β are p-dimensional vectors of covariates and regression coefficients, respectively,
and vi and εi are mutually independent and distributed as vi ∼ N(0, A) for unknown variance
parameter A and εi ∼ N(0, Di) for known sampling variance Di. The known variance Di

is typically obtained by smoothing the sampling variance and then treating the smoothed
estimates as the trueDi (Rao and Molina 2015). Under squared error loss, the Bayes estimator
of θi is obtained as

θ̃i = γiyi + (1− γi)x
t
iβ,

where γi = A/(A + Di). It is observed that the Bayes estimator θ̃i is the weighted linear
combination of the direct estimator yi and the synthetic estimator xtiβ. Since the model
parameters β and A are unknown, we estimate them from the data {(yi,xi), i = 1, . . . ,m}.
The generalized least squares estimator is typically used for β while several methods, including
the (restricted) maximum likelihood estimator, are used for estimating A.

In the Fay-Herriot (FH) model (2.1), it is assumed that yi ∼ N(xtiβ, A+Di), namely the
response variable (direct estimator) yi is normally distributed. However, we often encounter
positive-valued data (e.g. income, expense), which have skewed distributions and non-linear
relationships with covariates. For such a data set, the traditional FH model with a linear
structure between direct estimates and covariates and normally distributed error terms is
not clearly appropriate. A common approach is using the log-transformed direct estimators
and apply the FH model (e.g. Slud and Maiti, 2006). However, the log-transformation
is not always appropriate and it may produce inefficient and biased prediction when the
log-transformation is misspecified. Thus, a more natural approach to tackle this issue is
using a parametric family of transformations which enables us to flexibly select a reasonable

13
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transformation based on data. A famous family is the Box-Cox transformation (Box and
Cox, 1964), but it is well-known that the Box-Cox transformation suffers from the truncation
problem, which leads to inconsistency of the maximum likelihood estimator of λ, and the
inverse transformation can not be defined on whole real line, so that we can not drive a back-
transformed predictors in the original scale. Thus the use of the Box-Cox transformation in the
context of small area estimation is not desirable. Instead of the Box-Cox transformation, Yang
(2006) suggested a novel family of transformations called the dual power (DP) transformation

hλ(x) =

{
(2λ)−1(xλ − x−λ) λ > 0

log x λ = 0,

which can be seen as the average of two Box-Cox transformations. The main advantage of
the DPT is that its range is the whole real line for all λ ≥ 0, and it does not suffer from
the truncation problem. Hence, the use of the DP transformation in the FH model seems
an attractive approach for estimating positive valued small area parameters. This chapter
introduces a new transformation approach to the FH model with the DP transformation. In
Section 2.2, we describe the proposed model and provide methods for parameter estimation
and computing small are estimators. A second-order unbiased estimator of mean square errors
(MSE) of small area estimators are derived for measuring the variability of small area estima-
tors. In Sections 2.3 and 2.4, we present some simulation studies and empirical applications,
respectively. The technical details are given in Section 2.5.

2.2 Transformed Fay-Herriot Model

2.2.1 Model setup and best predictor

We consider the following parametric transformed Fay-Herriot (PTFH) model for area-level
data:

hλ(yi) = x
t
iβ + vi + εi, i = 1, . . . ,m (2.2)

where vi ∼ N(0, A), εi ∼ N(0, Di) for known Di’s, β and xi are p-dimensional vectors
of regression coefficients and covariates, respectively. The unknown models parameters are
denoted by ϕ = (βt, A, λ)t and we aim to estimate (predict) µi = h−1

λ (θi) with θi = x
t
iβ+ vi.

Note that when λ = 0, the model (2.2) reduces to the log-transformed Fay-Herriot model
studied by Slud and Maiti (2006).

It is well known that the best predictor of θi under the squared error loss is given by

θ̃i = γihλ(yi) + (1− γi)x
t
iβ, (2.3)

where γi = A/(A + Di). Hence, one possible way to predict µi is using the simple back-

transformed predictor µ̃
(S)
i = h−1

λ (θ̃i). However, µ̃
(S)
i is not suitable for predicting µi, because

µ̃
(S)
i has a non-ignorable bias for predicting µi, namely E[µ̃

(S)
i −µi] ̸= 0 even when m is large.

On the other hand, Slud and Maiti (2006) considered the bias corrected predictor of F (θi) for
a general function F (·), which leads to the following form:

µ̃
(SM)
i =

E[h−1
λ (θi)]

E[h−1
λ (θ̃i)]

hλ(θ̃i) =
E[µi]

E[µ̃
(S)
i ]

µ̃
(S)
i .
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It clearly holds that E[µ̃
(SM)
i − µi] = 0, that is, µ̃

(SM)
i is an unbiased predictor of µi while it

does not necessarily minimize the squared error loss. We here use the conditional expectation
µ̃i = E[h−1

λ (θi)|yi] with known ϕ as a predictor of µi, which minimizes the squared error loss.

Since θi|yi ∼ N(θ̃i, σ
2
i ) with θ̃i given in (3.5) and σ2i = ADi/(A+Di) under the model (2.2),

the conditional expectation µ̃i can be expressed as

µ̃i ≡ µ̃i(yi;ϕ) =

∫ ∞

−∞
h−1
λ (t)ϕ(t; θ̃i, σ

2
i )dt, (2.4)

where ϕ(·; a, b) denotes the density function of N(a, b). It should be noted that µ̃i = µ̃
(SM)
i

when λ = 0, namely h−1
λ (x) = exp(x). However, µ̃i and µ̃

(SM)
i are not necessarily identical

when λ > 0.

Since the model parameters ϕ is unknown in practice, we estimate them by maximizing
the marginal likelihood function, and the details are given in the next section. Let ϕ̂ be the
corresponding estimator of ϕ. Then, replacing ϕ with ϕ̂ in (2.4) leads to the empirical form
of µ̃i:

µ̂i ≡ µ̃(yi; ϕ̂) =

∫ ∞

−∞
h−1

λ̂
(t)ϕ(t; θ̂i, σ̂

2
i )dt,

which is known as empirical best predictor (EBP). Note that µ̂i is no longer the conditional
expectation but µ̂i converges to µ̃i as m → ∞ under some regularity conditions. Since µ̂i
cannot be obtained in an analytical form, we rely on numerical techniques for computing µ̂i.
A typical method is the Monte Carlo integration by generating a large numbers of random
samples from (θ̂i, σ̂

2
i ). However, we here use Gaussian-Hermite quadrature which is known to

be more accurate than the Monte Carlo integration.

2.2.2 Estimation of model parameters

Under normality assumption of vi and εi, it follows that hλ(yi) ∼ N(xtiβ, A + Di) and
hλ(yi), i = 1, . . . ,m are mutually independent. Then, the maximum likelihood estimator
ϕ̂ of ϕ is defined as the maximizer of L(ϕ), where

L(ϕ) = −
m∑
i=1

log(A+Di)−
m∑
i=1

{
hλ(yi)− xtiβ

}2
A+Di

+ 2

m∑
i=1

log
(
yλ−1
i + y−λ−1

i

)
. (2.5)

Note that the third term in (2.5) comes from the Jacobian of the transformation. When λ is
given, maximizing (2.5) with respect to β and A coincides to maximizing the log-likelihood
function of the classical Fay-Herriot model. Hence, the value of profile likelihood function
of λ is easily computed, so that we may estimate λ by grid search over a specified region or
golden section method (Brent, 1973). Though the parameter space of λ is [0,∞), it would be
sufficient to consider the space [0, λm] for moderately large λm.

For asymptotic properties of the estimator ϕ̂, we assume the following conditions.

Assumption 2.1.

1. There exist D and D independent to m such that D ≤ Di ≤ D for i = 1, . . . ,m.

2. maxi=1,...,m x
t
i(
∑m

j=1 xjx
t
j)

−1xi = O(m−1).
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These conditions are usually assumed in the context of small area estimation, see Datta
and Lahiri (2000) and Butar and Lahiri (2003). Under these conditions, we have the following
lemma.

Lemma 2.1. Under Assumption 2.1, as m → ∞,
√
m(ϕ̂ − ϕ) asymptotically follows the

multivariate normal distribution N(0,V (ϕ)) with a covariance matrix V (ϕ), and it holds
E[ϕ̂− ϕ] = m−1b(ϕ) + o(m−1) with a smooth function b(ϕ).

The asymptotic normality of ϕ̂ immediately follows from Sugasawa and Kubokawa (2015).
Moreover, from the proof of Theorem 1 in Lohr and Rao (2009), the bias b(ϕ) can be expressed
by partial derivatives of L(ϕ) given in (2.5), so that the latter statement in Lemma 8.1 follows.

Other estimators of A are the restricted maximum likelihood estimator (Jiang, 1996), the
Prasad-Rao estimator (Prasad and Rao, 1990), the Fay-Herriot estimator (Fay and Herriot,
1979) and the adjusted maximum likelihood estimator (Li and Lahiri, 2010). These methods
can be easily implemented and their asymptotic properties are discussed in Sugasawa and
Kubokawa (2015). However, for simplicity, we do not treat these estimators in this paper.

2.2.3 Mean squared error of the empirical best predictor

In small area estimation, mean squared errors (MSEs) of small area estimators are used for
risk evaluation, and their importance has been addressed in many papers including Lahiri and
Rao (1995) and Datta et al. (2005). Following this convention, we evaluate the MSE of the
empirical best predictor µ̂i. To begin with, we note that the MSE can be decomposed as

MSEi ≡ E[(µ̂i − µi)
2] = E[(µ̃i − µi)

2] + E[(µ̂i − µ̃i)
2]

≡ g1i(ϕ) + g2i(ϕ),

because µ̃i = E[µi|yi] is the conditional expectation. In what follows, we use the explicit
notation µ̃i(yi,ϕ) instead of µ̃i if necessary. The first term g1i(ϕ) is expressed as

g1i(ϕ) = E
[{
µ̃i(x

t
iβ + vi + εi,ϕ)− h−1

λ (xtiβ + vi)
}2]

,

which has no analytical expression. The direct Monte Carlo integration by generating ran-
dom samples of vi and εi requires a large computational burden because we need another
Monte Carlo integration for computing µ̃i for each sample (vi, εi). However, as shown in the
Appendix, it turns out to have the following more simple expression of g1i(ϕ):

g1i(ϕ) = E
[
{h−1

λ (xtiβ + z1)}2 − h−1
λ (xtiβ + c1iz1 + c2iz2)h

−1
λ (xtiβ + c1iz1 − c2iz2)

]
, (2.6)

where z1, z2 ∼ N(0, A), c1i =
√

(1 + ai)/2, and c2i =
√

(1− ai)/2 for ai = A/(A + Di).
Hence, g1i(ϕ) can be easily calculated by generating a large number of random samples of z1
and z2. On the other hand, the second term g2i(ϕ) can be evaluated as the following lemma,
where the proof is given in the Appendix.

Lemma 2.2. Under Assumption 2.1, it holds

g2i(ϕ) =
1

m
tr

{
V (ϕ)E

[
∂µ̃i
∂ϕ

∂µ̃i

∂ϕt

]}
+ o(m−1).
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Since the MSE depends on unknown parameter ϕ, we need to estimate it for practical
use. To this end, we obtain a second-order unbiased estimator of the MSE. Here, an estimator
B̂ is called second order unbiased if E[B̂] = B + o(m−1). From lemma 2.2, it follows that
g2i(ϕ) = m−1c1(ϕ) + o(m−1) with the smooth function c1(ϕ), thereby the plug-in estimator
g2i(ϕ̂) is second-order unbiased. However, the plug-in estimator g1i(ϕ̂) has a second-order bias
since g1i(ϕ) = O(1), so that we need to correct the bias. Hence, we propose the parametric
bootstrap method to correct the bias of g1i(ϕ̂) and computing g2i(ϕ̂). The procedure is given
in the following.

Parametric bootstrap method for the MSE estimation

1. Generate bootstrap samples y∗i from the estimated model;

h
λ̂
(y∗i ) = x

t
iβ̂ + v∗i + ε∗i , i = 1, . . . ,m, (2.7)

where ε∗i and v∗i are generated from N(0, Di) and N(0, Â), respectively

2. Based on (y∗i ,xi), i = 1, . . . ,m, compute the maximum likelihood estimate ϕ̂
∗
and the

predicted values of µ̂i = µ̃i(yi, ϕ̂) and µ̂
∗
i = µ̃i(yi, ϕ̂

∗
).

3. Derive the bootstrap estimates of g1i and g2i via

gbc1i (ϕ̂) = 2g1i(ϕ̂)− E∗
[
g1i(ϕ̂

∗
)
]
, g∗2i(ϕ̂) = E∗

[
(µ̂∗i − µ̂i)

2
]

where µ̂∗i = h−1

λ̂
(xtiβ̂ + v∗i ) and E

∗[·] denotes the expectation with respect to the boot-

strap samples generated from (2.7). The second-order unbiased estimator of the MSE
based on the parametric bootstrap is given by

M̂SEi = gbc1i (ϕ̂) + g∗2i(ϕ̂). (2.8)

The resulting MSE estimator (2.8) is second-order unbiased as shown in the following theorem,
which is proved in the Appendix.

Theorem 2.1. Let M̂SEi be the parametric bootstrap MSE estimator given in (2.8). Then,
under Assumption 2.1, we have

E
[
M̂SEi

]
= MSEi + o(m−1),

where the expectation is taken with respect to yi’s following the model (2.2).

In (2.8), the bias correction of g1i(ϕ̂) is carried out via using the additive form gbc1i (ϕ̂) =

2g1i(ϕ̂) − E∗[g1i(ϕ̂
∗
)], where E∗ denotes the expectation with respect to bootstrap samples.

Hall and Maiti (2006a) suggested other bias-correcting methods including a multiplicative bias

correcting method of the form g1i(ϕ̂)
2/E∗[g1i(ϕ̂

∗
)]. The multiplicative form for bias correction

can avoid negative estimates of the MSE while the additive form for bias correction gives
negative estimates of the MSE with a positive probability. Although those bias corrections
give second-order unbiased estimates of g1i(ϕ), in this paper, we use the additive-type bias
correction, because it has been frequently used in the literatures (e.g. Butar and Lahiri, 2003).
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2.3 Simulation Studies

2.3.1 Evaluation of prediction errors

We evaluated prediction errors of the proposed PTFH model and some existing models. As
a data generating process, we considered the following PTFH model:

hλ(yi) = β0 + β1xi + vi + εi, i = 1, . . . , 30, (2.9)

where vi ∼ N(0, A), εi ∼ N(0, Di) with β0 = 1, β1 = 1 and A = 1.5. For λ, we treated
the four cases λ = 0.1, 0.4, 0.7 and 1.0. The covariates xi were initially generated from the
uniform distribution on (0, 4) and fixed in simulation runs. Concerning sampling variance Di,
we divided 30 areas into 5 groups (from G1 to G5), and areas within the same group have the
same Di value. The Di-pattern we considered was (0.2, 0.4, 0.6, 0.8, 1.0). The true small area
parameters are µi = h−1

λ (β0 + β1xi + vi).
For comparison, we considered the log-transformed FH (log-FH) model and the traditional

Fay-Herriot (FH) model, which are described as

log-FH: log yi = β0 + β1xi + vi + εi

FH: yi = β0 + β1xi + vi + εi.

It is noted that the data generating process (2.9) get close to log-FH as λ gets smaller.
Since we do not known the true Di in practice, we computed the estimates of µi with esti-

mated Di as investigated in Bell (2008). To this end, we generated the auxiliary observation
zik from the model:

hλ(zik) = εik, i = 1, . . . , 30, k = 1, . . . , 10, (2.10)

where εij ∼ N(0, Di). In applying log-FH and FH, we computed the estimates of Di as the
sampling variances of {log zi1, . . . , log zi10} and {zi1, . . . , zi10}, respectively. Then we com-
puted the estimates of µi using EBLUP in FH and the bias-corrected estimator used in Slud
and Maiti (2006) in log-FH, where the model parameters β0, β1 and A are estimated via the
maximum likelihood method. For fitting PTFH, we first define

Di ≡ Di(λ) =
1

9

10∑
k=1

{
hλ(zik)− hλ(z)i

}2
, hλ(z)i =

1

10

10∑
k=1

hλ(zik),

so that we regard Di as a function of λ and replace Di with Di(λ) in (2.5). Since Di(λ) can be
immediately computed under the given λ, we can maximize the profile likelihood function of
λ in the similar manner to that presented in Section 2.2.2. Once the estimate λ̂ is computed,
Di can be calculated as Di(λ̂).

Based on R = 10000 simulation runs, we computed the coefficient of variation (CV) and
the absolute relative bias (ARB), defined as

CVi =

√√√√ 1

R

R∑
r=1

(
µ̂
(r)
i − µ

(r)
i

)2
µ
(r)2
i

and ARBi =

∣∣∣∣ 1R
R∑
r=1

µ̂
(r)
i − µ

(r)
i

µ
(r)
i

∣∣∣∣,
where µ

(r)
i is the true value and µ̂(r) is the estimated value from PTFH, log-FH or FH, in the

rth iteration. Table 8.1 shows the percent CV and ARB averaged within the same groups
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for each case of λ. For comparison, we also show the results for PTFH with true Di values,
denoted by PTFH-t in Table 8.1.

From Table 8.1, we can observe that difference CV or ARB between PTFH-t and PTFH
tends to be large when λ is small and Di is large while tow methods perform similarly when
λ is large or Di is small. Moreover, it is revealed that the larger Di would lead to larger CV
and ARB values in all the methods. Concerning comparison among PTFH, log-FH and FH,
it can be seen that PTFH performs better than FH except for λ = 0.9, and PTFH performs
better than log-FH except for λ = 0.1. Moreover, the differences between PTFH and log-FH
in λ = 0.1 get larger as Di gets larger. Regarding PTFH-t, it performs best in most cases.
However, it is observed that log-FH and FH produce more accurate estimates than PTFH-t
in some cases.

We next investigated the prediction errors when the true distribution of vi is not normal.
Here, we considered a t-distribution with 5 degrees of freedom for vi, where the variance is
scaled to A, and the other settings for the data generation are the same as (2.9). Under the
scenario, we again computed the values of CV and ARB of the four methods based on 10000
simulation runs, and the results are reported in Table 2.2. It is observed that the simulated
RMSE values in Table 2.2 are larger than those in Table 8.1 due to misspecification of the
distribution of vi. However, relationships of CV and ARB among three methods are similar
to Table 8.1.

2.3.2 Finite sample performance of the MSE estimator

We next investigated a finite sample performance of the MSE estimator (2.8). Following Datta
et al. (2005), we considered the following data generating process without covariates:

hλ(yi) = µ+ vi + εi, i = 1, . . . , 30,

with µ = 0, vi ∼ N(0, A) with A = 1 and εi ∼ N(0, Di). As a value of λ, we considered the
three cases λ = 0.2, 0.6, 1.0. For setting of Di, we divided Di’s into five groups G1, . . . , G5,
where Di’s were the same values over the same group, and the following three patterns of Di’s
were considered:

(a) 0.3, 0.4, 0.5, 0.6, 0.7, (b) 0.2, 0.4, 0.5, 0.6, 2.0, (c) 0.1, 0.4, 0.5, 0.6, 4.0.

Based on R1 = 5000 simulation runs, we calculated the simulated values of the MSE as

MSEi =
1

R1

R1∑
r=1

(µ̂
(r)
i − µ

(r)
i )2, µ

(r)
i = h−1

λ (β0 + v
(r)
i )

where µ̂
(r)
i and v

(r)
i are the predicted value and the realized value of vi in the r-th iteration.

Then based on R2 = 2000 simulation runs, we calculated the relative bias (RB) and the
coefficient of variation (CV) defined as

RBi =
1

R2

R2∑
r=1

(
M̂SEi

(r)
−MSEi

)
/MSEi,

CV2
i =

1

R2

R2∑
r=1

(
M̂SEi

(r)
−MSEi

)2

/MSE2
i .
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Table 2.1: Simulated percent coefficient of variation (CV) and absolute relative biases (ARB)
of the parametric transformed Fay-Herriot with use of true Di (PTFH-t) and estimated Di

(PTFH), the log-transformed Fay-Herriot (log-FH) model, and the Fay-Herriot (FH) model
under λ = 0.1, 0.4, 0.7 and 1.0.

CV ARB

method 0.1 0.4 0.7 1.0 0.1 0.4 0.7 1.0

G1 PTFH-t 46.49 33.28 23.49 17.95 13.67 6.89 3.69 2.43

PTFH 47.46 32.90 23.12 17.53 13.97 6.89 3.51 2.21

log-FH 47.11 35.34 28.63 23.57 13.16 4.18 3.85 2.39

FH 50.24 32.94 22.84 16.87 9.74 3.82 1.78 1.13

G2 PTFH-t 63.92 47.64 37.09 31.61 20.20 11.85 8.13 6.69

PTFH 66.32 47.84 36.92 31.38 21.28 12.24 8.31 6.74

log-FH 66.79 53.25 46.70 41.76 22.25 15.14 13.96 13.86

FH 82.25 52.67 38.61 31.11 19.95 9.16 6.27 5.98

G3 PTFH-t 75.92 59.42 48.51 40.60 25.67 16.79 12.85 9.59

PTFH 79.86 60.35 48.22 40.35 27.67 17.74 13.15 9.67

log-FH 77.70 60.99 53.25 47.15 26.56 15.97 13.04 11.30

FH 116.09 74.04 53.70 40.88 30.55 17.10 11.77 9.25

G4 PTFH-t 86.92 67.82 53.66 44.73 32.29 20.84 14.11 10.82

PTFH 92.97 69.13 53.38 43.83 35.12 22.13 14.43 10.63

log-FH 86.81 65.36 53.46 46.36 30.88 14.42 8.29 8.94

FH 156.12 91.68 61.04 45.61 45.29 25.10 15.15 11.25

G5 PTFH-t 92.90 72.74 59.86 49.86 33.87 22.99 17.30 13.04

PTFH 101.81 75.26 60.39 49.54 37.62 24.73 18.07 13.24

log-FH 95.91 71.73 61.69 53.58 34.91 20.57 15.30 12.87

FH 198.30 112.23 73.57 53.02 57.58 31.04 19.05 13.93

For calculation of the MSE estimates in each iteration, we used 100 bootstrap replication for
the MSE estimator and 10000 Monte Carlo samples for computing g1i. We also investigated
the performance of the MSE estimator when we used the estimated sampling variances instead
of known Di. To this end, similarly to the previous section, we generated the auxiliary
observation from (2.10), and calculate Di’s using these data in each simulation run. Based
on the same number of simulation runs, we computed the values of RB and CV. Table 2.3
and Table 2.4 show the maximum, mean and minimum values of RB and CV within the
same group. In both tables, the simulated values of RB and CV of the MSE estimator with
estimated Di are given in the parenthesis. It is seen that the proposed MSE estimator with
known Di provides reasonable estimated values in almost all cases in terms of both RB and
CV. On the other hand, the MSE estimator with estimated Di performs worse than the MSE
estimator with known Di since the former estimator is affected by the variability of estimating
Di. Moreover, it is observed that performances of both MSE estimators get better in the order
of Pattern (a), (b) and (c).
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Table 2.2: Simulated percentage coefficient of variation (CV) and percentage absolute relative
biases (ARB) of the parametric transformed Fay-Herriot with use of true Di (PTFH-t) and
estimated Di (PTFH), the log-transformed Fay-Herriot (log-FH) model, and the Fay-Herriot
(FH) model under λ = 0.1, 0.4, 0.7 and 1.0, when the distribution of vi is a t-distribution with
5 degrees of freedom.

CV ARB

method 0.1 0.4 0.7 1.0 0.1 0.4 0.7 1.0

G1 PTFH-t 47.19 39.58 34.16 28.94 14.10 9.77 7.31 5.43

PTFH 48.42 39.84 34.40 28.34 14.70 10.07 7.38 5.18

log-FH 48.09 41.08 39.98 35.31 14.00 8.14 4.95 5.65

FH 51.54 41.09 33.00 27.84 10.26 6.92 5.18 4.28

G2 PTFH-t 66.06 53.12 41.12 35.83 21.41 14.08 8.99 6.92

PTFH 68.38 53.52 40.86 35.18 22.59 14.78 9.10 6.80

log-FH 67.79 56.17 46.04 43.20 21.84 13.32 7.32 6.73

FH 83.45 58.51 41.73 34.32 21.03 12.63 7.67 6.18

G3 PTFH-t 79.92 62.21 49.91 42.61 25.50 16.81 10.91 8.69

PTFH 83.75 62.26 47.41 41.62 27.39 17.60 11.05 8.66

log-FH 83.53 65.45 55.47 52.08 27.40 18.20 12.93 13.22

FH 121.91 73.92 50.11 41.05 31.49 17.11 10.35 8.25

G4 PTFH-t 89.82 78.86 61.81 53.21 30.06 21.02 15.63 12.03

PTFH 98.67 75.36 59.27 51.18 32.81 22.26 15.83 12.01

log-FH 99.13 81.96 62.46 57.54 31.16 19.98 13.48 11.01

FH 155.72 108.51 65.22 52.10 44.14 25.07 15.96 12.80

G5 PTFH-t 104.87 86.53 77.05 71.23 34.72 26.73 22.00 17.04

PTFH 123.97 86.69 74.22 64.63 38.87 28.84 22.83 17.06

log-FH 120.17 87.54 75.41 67.96 34.96 22.70 15.61 11.36

FH 224.09 128.60 87.85 69.25 61.85 40.85 29.11 21.47

2.4 Application to Survey Data in Japan

We consider an application of the proposed method together with some existing methods to
the data from the Survey of Family Income and Expenditure (SFIE) in Japan. Especially,
we used the data on the spending item ‘Health’ and ‘Education’ in the survey in 2014. For
the spending item ‘Health’ and ‘Education’, the annual average spending data at each capital
city of 47 prefectures are available. The estimates are both unreliable since the sample sizes
are around 50 for most prefectures. As a covariate, we used data from the National Survey
of Family Income and Expenditure (NSFIE) for 47 prefectures. Since NSFIE is based on
much larger sample than SFIE, the reported values are more reliable, but this survey has
been implemented every five years. Although the joint bivariate modeling of the two items
‘Health’ and ‘Education’ would be preferable as proposed in Benavent and Morales (2016),
we here consider applying univariate models separately to each item for simplicity. In what
follows, yi and xi denote the direct estimate (scaled by 1000) from SFIE and the covariate
(reliable estimate) from NSFIE, respectively, on the item ‘Health’ or ‘Education’. For each
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Table 2.3: The percentage RB values of the MSE estimator with known Di and unknown Di

(Parenthesis) in each group.

Pattern (a) Pattern (b) Pattern (c)

λ 0.2 0.6 1.0 0.2 0.6 1.0 0.2 0.6 1.0

max G1 6.3 17.9 19.5 3.9 7.3 9.0 7.2 1.3 2.7

(28.1) (44.3) (51.4) (98.4) (80.8) (82.6) (113.5) (47.1) (44.1)

G2 4.9 15.1 17.2 4.4 4.4 5.3 4.1 −3.6 −4.9

(44.6) (69.2) (78.8) (46.4) (107.2) (99.8) (37.3) (29.8) (20.8)

G3 12.5 10.4 14.6 −2.8 3.3 4.6 −3.4 −4.1 −5.0

(32.9) (40.8) (47.0) (24.2) (12.5) (10.6) (11.3) (37.5) (29.7)

G4 6.4 12.6 17.6 −2.6 6.7 8.9 −5.0 −4.5 −4.8

(33.8) (28.3) (40.2) (12.1) (8.8) (8.0) (16.1) (84.4) (75.7)

G5 8.7 12.4 16.3 −1.5 2.8 6.1 −5.3 −4.2 −1.6

(15.9) (39.1) (52.1) (6.2) (43.9) (43.6) (4.6) (26.0) (19.5)

mean G1 2.5 7.4 8.6 −1.9 1.4 2.6 −2.7 −3.3 −3.1

(22.4) (31.4) (36.9) (33.5) (32.3) (33.9) (47.6) (27.7) (27.0)

G2 −1.0 7.8 9.8 −3.4 −2.0 −2.0 −6.0 −5.9 −7.3

(21.9) (33.4) (39.9) (15.5) (21.5) (18.8) (20.2) (4.8) (−0.6)

G3 5.2 1.9 5.2 −6.3 −1.7 −0.4 −6.1 −8.4 −9.1

(17.7) (21.1) (28.7) (11.2) (3.6) (2.4) (−0.1) (10.4) (4.6)

G4 3.3 6.4 9.9 −8.0 −0.4 1.5 −7.4 −7.5 −7.9

(20.4) (17.7) (26.9) (2.2) (−2.8) (−2.2) (−5.3) (15.6) (10.9)

G5 1.4 5.7 9.9 −6.0 −0.2 2.4 −7.0 −6.8 −6.4

(11.1) (22.1) (32.8) (−3.0) (6.4) (7.2) (−6.8) (−1.2) (−4.4)

min G1 −4.9 −3.2 −2.4 −6.9 −5.2 −4.5 −8.5 −6.9 −6.6

(17.2) (15.0) (20.2) (13.7) (16.1) (17.3) (21.5) (17.1) (17.0)

G2 −5.8 −0.9 2.8 −7.5 −7.0 −7.5 −9.6 −7.8 −9.9

(11.5) (14.2) (18.6) (2.7) (−2.7) (−4.7) (8.1) (−5.2) (−8.8)

G3 0.9 −8.2 −6.7 −8.7 −6.6 −6.5 −10.3 −10.4 −11.3

(7.0) (13.2) (19.4) (−5.0) (−4.4) (−4.7) (−7.3) (−9.4) (−13.2)

G4 −1.9 −3.0 −0.2 −11.9 −5.8 −3.9 −9.1 −11.2 −11.9

(10.0) (6.9) (14.1) (−7.0) (−11.6) (−9.5) (−12.6) (−16.1) (−18.2)

G5 −3.4 −6.4 −2.4 −7.9 −5.4 −2.8 −8.5 −9.3 −9.8

(6.4) (−0.6) (8.8) (−7.3) (−10.4) (−9.7) (−16.1) (−18.4) (−20.0)

survey data, we applied the PTFH model:

hλ(yi) = β0 + β1 log xi + vi + εi, i = 1, . . . , 47,

where vi ∼ N(0, A), εi ∼ N(0, Di) and β0, β1, A and λ are model parameters. For comparison,
we also applied the log-FH model corresponding λ = 0 in the above model, and the classical
Fay-Herriot model. The model parameters were estimated by the maximum likelihood method
in all models. For computing Di in each model, we used the past data for consecutive eight
years from 2006 to 2013, which are denoted by zit for t = 1, . . . , 8. In the FH and log-FH
models, we simply calculated the sampling variance of {zi1, . . . , zi8} and {log zi1, . . . , log zi8},
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Table 2.4: The CV values of the MSE estimator with knownDi and unknownDi (Parenthesis)
in each group.

Pattern (a) Pattern (b) Pattern (c)

λ 0.2 0.6 1.0 0.2 0.6 1.0 0.2 0.6 1.0

max G1 1.15 1.03 1.14 0.78 0.60 0.66 0.77 0.62 0.67

(2.72) (1.65) (1.96) (2.13) (1.78) (1.89) (2.01) (1.19) (1.29)

G2 1.17 1.33 1.50 0.55 0.73 0.71 0.54 0.50 0.54

(2.25) (2.50) (3.42) (1.20) (2.44) (2.49) (0.91) (0.84) (0.82)

G3 2.25 0.98 1.16 0.59 0.87 1.00 0.52 0.46 0.53

(1.34) (1.80) (2.16) (0.88) (1.02) (1.1) (0.68) (0.98) (0.97)

G4 1.02 1.26 1.54 0.46 0.84 0.98 0.51 0.50 0.57

(1.44) (1.40) (2.08) (0.70) (0.94) (1.06) (0.66) (1.72) (1.70)

G5 0.72 1.01 1.23 0.67 0.73 0.88 0.47 0.66 0.77

(1.10) (1.59) (2.21) (0.91) (1.60) (1.87) (0.56) (0.90) (0.91)

mean G1 0.99 0.74 0.82 0.51 0.50 0.55 0.45 0.41 0.43

(1.05) (1.33) (1.57) (1.07) (1.07) (1.15) (1.10) (0.86) (0.90)

G2 0.78 0.91 1.06 0.46 0.56 0.63 0.40 0.42 0.47

(1.23) (1.46) (1.83) (0.80) (1.05) (1.11) (0.73) (0.66) (0.68)

G3 1.02 0.86 1.03 0.46 0.61 0.71 0.42 0.41 0.45

(1.08) (1.27) (1.60) (0.76) (0.81) (0.88) (0.60) (0.70) (0.72)

G4 0.75 0.93 1.13 0.43 0.66 0.78 0.41 0.44 0.50

(1.10) (1.24) (1.65) (0.64) (0.80) (0.89) (0.56) (0.85) (0.87)

G5 0.71 0.92 1.12 0.52 0.66 0.77 0.41 0.49 0.56

(0.99) (1.36) (1.83) (0.70) (0.94) (1.05) (0.53) (0.69) (0.72)

min G1 0.61 0.58 0.65 0.37 0.41 0.45 0.35 0.35 0.36

(0.95) (0.93) (1.12) (0.69) (0.86) (0.91) (0.71) (0.73) (0.76)

G2 0.57 0.73 0.86 0.39 0.49 0.56 0.34 0.39 0.41

(0.89) (1.10) (1.28) (0.64) (0.75) (0.80) (0.57) (0.58) (0.59)

G3 0.63 0.79 0.88 0.40 0.52 0.60 0.37 0.39 0.43

(0.95) (1.11) (1.35) (0.61) (0.72) (0.80) (0.54) (0.55) (0.58)

G4 0.66 0.81 0.99 0.41 0.59 0.69 0.37 0.42 0.45

(0.97) (1.07) (1.33) (0.61) (0.69) (0.76) (0.49) (0.55) (0.59)

G5 0.68 0.80 1.00 0.43 0.58 0.69 0.38 0.42 0.47

(0.92) (1.06) (1.40) (0.59) (0.74) (0.83) (0.50) (0.55) (0.59)

respectively. In the PTFH model, similarly to Section 5.4.1, we first maximize (2.5) with
Di = Di(λ) and let Di = Di(λ̂).

In the PTFH model, we have λ̂ = 0.59 in “Education” and λ̂ = 0.86 in “Health”. More-
over, based on based on 1000 parametric bootstrap samples, we obtained 95% confidence
intervals of λ, (0.20, 1.16) in “Education” and (0.18, 1.99) in “Health”, which indicate the log-
transformation might not be appropriate. In Figure 2.1, we present the estimated regression
lines of the three models, noting that y = h−1

λ̂
(β̂0 + β̂1x) in PTFH, and y = exp(β̂0 + β̂1x) in

log-FH. From the figure, it is observed that all the regression lines are similar. For assessing
the suitability of normality assumptions of error terms, we computed the standardized resid-
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uals: ei = ri/
√
Â+Di, where ri is the estimates of vi + εi, so that ri = h

λ̂
(yi) − β̂0 − β̂1xi

in PTFH, ri = log yi − β̂0 − β̂1xi in log-FH and ri = yi − β̂0 − β̂1xi in FH, noting that ei
asymptotically follows the standard normal distribution if the model specification is correct.
In Figure 2.2, we give the estimated density of ei in each model, which does not strongly
supports the normality assumption of three models, but all the estimated densities are close
to symmetric. Hence, the normality assumption might be plausible. In fact, we calculated
the p-value of the Kolmogorov-Smirnov test for normality of ei, presented in Table 2.5, and
found that the normality assumption was not rejected in the three models in both items.
Moreover, in Table 2.5, we provide AICs based on the maximum marginal likelihood for the
three models. It can be seen that AICs of PTFH and log-FH are similar and smaller that
that of FH in “Education” while that of PTFH is the smallest in “Health”.

For investigation of goodness-of-fit of the PTFH model, we set zi = h
λ̂
(yi) and wi = log xi,

and applied the penalized spline model used in Opsomer et al. (2008):

zi = β0 +

p∑
ℓ=1

βℓw
ℓ
i +

K∑
ℓ=1

γℓ(wi − κℓ)
p
+ + vi + εi, i = 1, . . . ,m, (2.11)

where vi ∼ (0, A), εi ∼ N(0, Di) and (γ1, . . . , γK)t ∼ N(0, αIK), (x)
p
+ denotes the function

xpI(x > 0), and κ1 < · · · < κK is a set of fixed knots which determine the flexibility of
splines. We set K = 20 and took κ1 and κK as 10% and 90% quantiles of wi, respectively,
and set κ2, . . . , κK−1 at regular interval. For the degree of splines, we considered three cases:
p = 1, 2, 3. We estimated model parameters β0, . . . , βp, A and α by the maximum likelihood
method. In Figure 2.3, we present the estimated regression lines of three penalized spline
models (p = 1, 2, 3) as well as that of PTFH, which shows that the linear parametric structure
in the PTFH model seems plausible and PTFH would fit well in both items.

Finally, we computed the MSE estimates of the small area estimators for the three models.
In the PTFH model, we used the estimator given in Theorem 2.1 with 1000 bootstrap samples
and 5000 Monte Carlo samples of vi and εi for numerical evaluation of g1i. For the MSE
estimates in the log-FH and FH models, we used the estimator given in Slud and Maiti (2006)
and Datta and Lahiri (2000), respectively. We report the small area estimates and MSE
estimates in seven prefectures around Tokyo in Table 2.6. It can be seen that log-FH and FH
produce relatively similar estimates of area means while the estimates from PTFH are not
similar to those models. Regarding MSE estimates, we can observe that the values in PTFH
are smaller than the other two models, but we cannot directly compare these results since
each MSE estimates are calculated based on the different sampling variances Di.

Table 2.5: AIC and p-value of Kolmogorov-Smirnov (KS) test for normality of standardized
residuals.

AIC p-value of KS test

Data PTFH log-FH FH PTFH log-FH FH

Education 313.1 312.9 314.5 0.577 0.469 0.848

Health 172.9 180.7 183.4 0.519 0.440 0.375
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Figure 2.1: The scatter plots of (xi, yi) with estimated regression lines in the parametric
transformed Fay-Herriot (PTFH) model, the log-transformed Fay-Herriot (log-FH) model
and the classical Fay-Herriot (FH) model.
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Figure 2.2: The estimated density of standardized residuals in the parametric transformed
Fay-Herriot (PTFH) model, the log-transformed Fay-Herriot (log-FH) model and the classical
Fay-Herriot (FH) model.
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Figure 2.3: The scatter plots of (log xi, hλ̂(yi)) with estimated regression lines in the para-
metric transformed Fay-Herriot (PTFH) model and the nonparametric (NP) model based on
the penalized spline with three orders (p = 1, 2, 3).

Table 2.6: The small area estimates and the root of MSE (RMSE) estimates in seven pre-
fectures around Tokyo from four models, the parametric transformed Fay-Herriot (PTFH)
model, the log-transformed Fay-Herriot (log-FH) model and the classical Fay-Herriot (FH)
model.

Estimates RMSE

Data Prefecture DE PTFH log-FH FH PTFH log-FH FH

Ibaraki 21.97 21.80 21.54 21.44 1.12 1.99 1.95

Tochigi 21.88 21.63 21.21 21.30 1.65 2.41 2.10

Gunma 14.12 14.76 15.49 15.17 2.74 3.68 2.93

Education Saitama 32.61 27.41 23.81 22.78 4.49 4.68 4.83

Chiba 21.55 20.92 20.19 20.08 3.31 3.90 3.87

Tokyo 22.04 21.84 21.55 21.06 1.73 2.16 3.12

Kanagawa 22.32 21.87 21.32 20.86 2.37 2.93 3.34

Ibaraki 10.35 10.37 10.67 10.70 0.25 0.83 0.85

Tochigi 11.76 11.71 11.34 11.33 0.61 1.08 1.08

Gunma 8.74 8.88 10.00 10.12 0.51 1.23 1.25

Health Saitama 11.13 11.13 11.21 11.22 0.19 0.77 0.79

Chiba 12.81 12.64 11.64 11.64 0.60 1.06 1.07

Tokyo 13.80 13.73 12.66 12.53 0.18 0.79 0.85

Kanagawa 14.50 14.45 13.55 13.61 0.10 0.63 0.62

2.5 Technical Issues

2.5.1 Derivation of (2.6)

Note that E[(µ̃i − µi)
2] = E[µ2i ]− E[µ̃2i ]. From (2.4), it follows that

E[µ̃2i ] =

∫∫∫
R3

h−1
λ (s)h−1

λ (t)ϕ(s; θ̃i(u), σ
2
i )ϕ(t; θ̃i(u), σ

2
i )ϕ(u;x

t
iβ, A+Di)dsdtdu,
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where θ̃i(u) = aiu + (1 − ai)x
t
iβ with ai = A/(A + Di). Let S and T be random variables

mutually independently distributed asN(θ̃i(U), σ2i ) under given U = u, and let U be a random
variable distributed as N(xtiβ, A+Di). The marginal distribution of the vector (S, T )t is

N2

((
xtiβ
xtiβ

)
, A

(
1 ai
ai 1

))
.

Then, we have E[µ̃2i ] = E[h−1
λ (S)h−1

λ (T )], where the expectation is taken with respect to the
marginal distribution of (S, T )t. Introducing random variables z1 and z2 mutually indepen-
dently distributed asN(0, A), we can express S = xtiβ+c1iz1+c2iz2 and T = xtiβ+c1iz1−c2iz2,
thereby we obtain the expression

E[µ̃2i ] = E[h−1
λ (xtiβ + c1iz1 + c2iz2)h

−1
λ (xtiβ + c1iz1 − c2iz2)].

Since E[µ2i ] can be expressed as E[µ2i ] = E[{h−1
λ (xtiβ + z1)}2], we obtain (2.6).

2.5.2 Proof of Lemma 2.2

For notational simplicity, we define µ̃i(ϕ) = ∂µ̃i/∂ϕ and µ̃i(ϕϕ) = ∂2µ̃i/∂ϕ∂ϕ
t. Expanding µ̂i

around µ̃i, we get

µ̂i − µ̃i = µ̃ti(ϕ)(ϕ̂− ϕ) + 1

2
(ϕ̂− ϕ)tµ̃i(ϕϕ)(yi;ϕ

∗)(ϕ̂− ϕ),

where ϕ∗ is on the line connecting ϕ and ϕ̂. Then, it holds that

g2i(ϕ) = E
[
(ϕ̂− ϕ)tµ̃i(ϕ)µ̃

t
i(ϕ)(ϕ̂− ϕ)

]
+R1 +

1

4
R2,

whereR1 = E[µ̃ti(ϕ)(ϕ̂−ϕ)(ϕ̂−ϕ)
tµ̃i(ϕϕ)(yi;ϕ

∗)(ϕ̂−ϕ)] andR2 = E[{(ϕ̂−ϕ)tµ̃i(ϕϕ)(yi;ϕ
∗)(ϕ̂−

ϕ)}]. We first show that R1 = o(m−1) and R2 = o(m−1). We only prove R1 = o(m−1)
since the evaluation of R2 is quite similar. In what follows, we define ∂2µ̃∗i /∂ϕk∂ϕℓ =
∂2µ̃i(yi;ϕ

∗)/∂ϕk∂ϕℓ. It follows that

R1 =

p+2∑
j=1

p+2∑
k=1

p+2∑
ℓ=1

E

[(
∂µ̃i
∂ϕj

)(
∂2µ̃∗i
∂ϕk∂ϕℓ

)
(ϕ̂j − ϕj)(ϕ̂k − ϕk)(ϕ̂ℓ − ϕℓ)

]

≡
p+2∑
j=1

p+2∑
k=1

p+2∑
ℓ=1

U1jkℓ,

and

|U1jkl| ≤ E

[∣∣∣∣ (∂µ̃i∂ϕj

)(
∂2µ̃∗i
∂ϕk∂ϕℓ

) ∣∣∣∣4
] 1

4

E

[∣∣∣(ϕ̂j − ϕj)(ϕ̂k − ϕk)(ϕ̂ℓ − ϕℓ)
∣∣∣ 43] 3

4

≤ E

[∣∣∣∣∂µ̃i∂ϕj

∣∣∣∣8
] 1

8

E

[∣∣∣∣ ∂2µ̃∗i
∂ϕk∂ϕℓ

∣∣∣∣8
] 1

8 ∏
a∈{j,k,ℓ}

E

[∣∣∣ϕ̂a − ϕa

∣∣∣4] 1
4
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from Hölder’s inequality. From the asymptotic normality of ϕ̂ given in Lemma 8.1, it follows
E[|ϕ̂− ϕ|r] = O(m−r/2) for arbitrary r > 0. Then, we have

∏
a∈{j,k,ℓ}

E

[∣∣∣ϕ̂a − ϕa

∣∣∣4]1/4 = o(m−1).

Noting that

∂h−1
λ (x)

∂λ
≡ ∂

∂λ

(
λx+

√
1 + λ2x2

)1/λ
=
h−1
λ (x)

λ

{
x√

1 + λ2x2
− 1

λ
log(λx+

√
1 + λ2x2)

}
,

the straightforward calculation shows that

µ̃i(λ) =

∫ ∞

−∞

(
∂h−1

λ (t)

∂λ

)
ϕ(t; θ̃i, σ

2
i )dt+

∫ ∞

−∞
h−1
λ (t)

(
∂ϕ(t; θ̃i, σ

2
i )

∂λ

)
dt

=
1

λ
E

 θih
−1
λ (θi)√

1 + λ2θ2i

∣∣∣yi
− 1

λ2
E

[
h−1
λ (θi) log(λθi +

√
1 + λ2θ2i )

∣∣∣yi]

+
1

Di

(
∂hλ(yi)

∂λ

)
E
[
(θi − θ̃i)h

−1
λ (θi)

∣∣∣yi]
≡ E[f1(θi)|yi] + E[f2(θi)|yi] + E[f3(θi, yi)|yi],

where
∂hλ(yi)

∂λ
=

log x

λ
xλ −

(
log x+

1

λ

)
hλ(x).

Note that

E
[{

E[f(θi, yi)|yi]
}a]

≤ E [E[f(θi, yi)
a|yi]] = E[f(θi, yi)

a]

for a > 0 from Jensen’s inequality. Since E[f1(θi)
a] < ∞, E[f2(θi)

a] < ∞, E[f3(θi, yi)
a] < ∞

for a > 0, it follows that

E

[∣∣∣∣∂µ̃i∂λ

∣∣∣∣8
]
<∞.

Similarly, we have

µ̃i(β) =
Dixi

(A+Di)σ2i
E
[
(θi − θ̃i)h

−1
λ (θi)

∣∣∣yi]
µ̃i(A) =

D2
i

2σ4i (A+Di)2
E
[{

(θi − θ̃i)
2 − σ

5/2
i

}
h−1
λ (θi)

∣∣∣yi] ,
which leads to

E

[∣∣∣∣ ∂µ̃i∂ϕk

∣∣∣∣8
]
<∞,
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for k = 1, . . . , p + 1. Moreover, straightforward but considerable calculations shows that
E
[
|∂2µ̃∗i /∂ϕk∂ϕℓ|8

]
< ∞. Hence, we have R1 = o(m−1). A quite similar evaluation shows

that R2 = o(m−1), which leads to

g2i(ϕ) = E
[
(ϕ̂− ϕ)tµ̃i(ϕ)µ̃

t
i(ϕ)(ϕ̂− ϕ)

]
+ o(m−1).

Finally, using the similar argument given in the proof of Theorem 3 in Kubokawa et al. (2016),
we have

E
[
(ϕ̂− ϕ)tµ̃i(ϕ)µ̃

t
i(ϕ)(ϕ̂− ϕ)

]
= tr

(
E
[
µ̃i(ϕ)µ̃

t
i(ϕ)

]
E[(ϕ̂− ϕ)(ϕ̂− ϕ)t]

)
+ o(m−1)

=
1

m
tr
{
V (ϕ)E

[
µ̃i(ϕ)µ̃

t
i(ϕ)

]}
+ o(m−1),

which completes the proof.

2.5.3 Proof of Theorem 2.1

Taylor series expansion of g1i(ϕ̂) around ϕ gives

E[g1i(ϕ̂)] = g1i(ϕ) +
∂g1i(ϕ)

∂ϕt
E[ϕ̂− ϕ] + 1

2
tr

(
∂2g1i(ϕ)

∂ϕ∂ϕt
E[(ϕ̂− ϕ)(ϕ̂− ϕ)t]

)
+R3,

where

R3 =
1

6

p+2∑
j=1

p+2∑
k=1

p+2∑
ℓ=1

∂3g1i(ϕ)

∂ϕj∂ϕk∂ϕℓ

∣∣∣∣
ϕ=ϕ∗

(ϕ̂j − ϕj)(ϕ̂k − ϕk)(ϕ̂ℓ − ϕℓ).

Since E[(ϕ̂j −ϕj)(ϕ̂k−ϕk)(ϕ̂ℓ−ϕℓ)] = o(m−1), it holds that E[R3] = o(m−1). Moreover, from
Lemma 8.1, we have

E[g1i(ϕ̂)− g1i(ϕ)] =
1

m

∂g1i(ϕ)

∂ϕt
b(ϕ) +

1

2m
tr

(
∂2g1i(ϕ)

∂ϕ∂ϕt
V (ϕ)

)
+ o(m−1),

thereby, we have E[g1i(ϕ̂) − g1i(ϕ)] = m−1c2(ϕ) + o(m−1) with the smooth function c2(ϕ).
Hence, from Lemma 2.2 and Butar and Lahiri (2003), we obtain the second order unbiasedness
of (2.8).





Chapter 3

Adaptively Transformed Mixed
Model Prediction

3.1 Introduction

We consider a finite population partitioned m areas and each area has Ni populations for
i = 1, . . . ,m. Let Yij be the characteristics of jth individuals in ith area. We are interested
in the area mean:

µi =
1

Ni

Ni∑
j=1

T (Yij), (3.1)

where T is a known (user-specified) function. For example, in poverty mapping, we often use
Tα(x) = {(z − x)/z}αI(x < z) known as FGT poverty measure (Foster et al., 1984). In this
case, µi represents poverty rate (α = 0), poverty gap (α = 1) and poverty severity (α = 2)
in ith area. If we could observed all the units Yij , we could calculate the true value of µi.
However, in practice, we can only observe ni(< Ni) units in each area. Since the sample size
ni is small compared with Ni, the direct estimator of µi based only on the sampled data:

µ̂Di =
1

ni

ni∑
j=1

T (yij)

has a large variance and produces an inaccurate estimate. In most applications, some covari-
ates xij associated with Yij are available for sampled as well as non-sampled units. Under
the setting, Molina and Rao (2010) proposed an empirical best prediction (EBP) method for
µi using the nested error regression model:

Yij = x
t
ijβ + vi + εij , j = 1, . . . , Ni, i = 1, . . . ,m, (3.2)

where xij and β are p-dimensional vectors of covariates and regression coefficients, vi is the
area-specific effect which follows N(0, τ2) and εij is a sampling error distributed as N(0, σ2).
The model parameters are estimated from the sampled data ys = {yij , j = 1, . . . , ni, i =
1, . . . ,m}. Under the model (3.2), the conditional distribution of Yij , j = ni+1, . . . , Ni given
ys is

Yij |ys ∼ N

(
xtijβ +

niτ
2

σ2 + niτ2
(ȳi − x̄tiβ),

σ2τ2

σ2 + niτ2

)
, j = ni + 1, . . . , Ni. (3.3)

31



32 CHAPTER 3. ADAPTIVELY TRANSFORMED MIXED MODEL PREDICTION

Then the best predictor of µi can be obtained as the conditional expectation E[µi|yi] which
has the form

µ̃i = E[µi|yi] =
1

Ni


ni∑
j=1

T (yij) +

Ni∑
j=ni+1

E[T (Yij)|yi]

 .

Though the expectation E[T (Yij)|ys] cannot be expressed in a closed form for general function
T (·), it can be easily computed via Monte Calro integration by generating large number of
random samples from the conditional distribution (3.3). The empirical best predictor µ̂i is
obtained by replacing unknown model parameters in µ̃i with some estimator. Molina and Rao
(2010) demonstrated that the empirical best predictor performs quite well compared with the
direct estimator as well as ELL method (Elbers et al., 2003), the standard method for poverty
mapping used in World Bank.

The key assumption of the EBP method is the normality of the unit sample yij , which
enables us to obtain the simple expression of the conditional distribution (3.3). However,
when yi is positive valued and its distribution is far from normality, the EBP method could
be inefficient and biased. In Molina and Rao (2010), transformed variable H(yij) with some
known function H(·) instead of yij is used in the nested error model (3.2). The selection
of the transformation H(·) is an important issue since the misspecification of H(·) leads
to inconsistency of the EBP method. To overcome the difficulty, in this chapter, we use the
parametric family of transformations for yij and estimate the transformation parameter as well
as the model parameters in (3.2) from the sampled data. In Section 3.2, we propose the nested
error regression model with parametrically transformed response values, and an estimating
method for the model parameters. Then we suggest the flexibly transformed empirical best
predictor (FTEBP) of µi. For measuring the variability of FTEBP, we propose an empirical
Bayes confidence interval of µi. In Section 3.4, we present some simulation studies and an
example of the proposed method.

3.2 Adaptively Transformed Mixed Model Prediction

3.2.1 Transformed best predictor

Let Hλ(·) be a family of transformations with parameter λ. The transformation parameter
λ might be multidimensional, but we treat λ as a scalar parameter for notational simplicity.
The assumptions and specific choices of Hλ(·) will be discussed in the subsequent section. We
assume that the transformed variable Hλ(yij) follows the nested error regression model:

Hλ(Yij) = x
t
ijβ + vi + εij , j = 1, . . . , Ni, i = 1, . . . ,m, (3.4)

where xij and β are p-dimensional vectors of covariates and regression coefficients, vi and
εij are an area-specific effect and a sampling error, respectively. Here we assume that vi
and εij are mutually independent and distributed as vi ∼ N(0, τ2) and εij ∼ N(0, σ2) with
unknown two variance parameters τ2 and σ2. It is worth noting that, owing to the area effect
vi, the units in the same area are mutually correlated while the units in the different area are
independent. Specifically, from (3.4), it holds Cor(Hλ(Yij),Hλ(Yik)) = (τ2 + σ2)−1τ2, j ̸= k,
thereby the units in the same area are mutually correlated and the degree of correlation is
determined by the ratio τ2/σ2. From the normality assumptions of vi and εij , it follows
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that Hλ(Yij) ∼ N(xtijβ, τ
2 + σ2). Thus, the transformation parameter λ can be chosen to

make the transformed data Hλ(yij) close to normality. We define ϕ = (βt, τ2, σ2, λ)t, as the
vector of unknown model parameters in (3.4). The estimation procedure will be given in the
subsequent section.

Let ys = {yij , j = 1, . . . , ni, i = 1, . . . ,m} be the sampled data. From the model (3.4),
we have Hλ(Yij)|ys ∼ N(θij , s

2
i + σ2), j = ni + 1, . . . , Ni, where

θij = x
t
ijβ +

τ2

σ2 + niτ2

ni∑
j=1

(Hλ(yij)− xtijβ), si =

√
σ2τ2

σ2 + niτ2
. (3.5)

Hence, the best predictor of µi given in (3.1) can be obtained as

µ̃i(ys;ϕ) ≡ E[µi|ys] =
1

Ni


ni∑
j=1

T (yij) +

Ni∑
j=ni+1

E[T ◦H−1
λ (uij)]

 , (3.6)

where the expectation is taken with respect to uij ∼ N(θij , s
2
i + σ2), and T ◦ H−1

λ (·) is the
composite function of T (·) and H−1

λ , the inverse function of Hλ(·). Although the expectation
E[T ◦H−1

λ (uij)] does not have a closed form in general, it can be easily computed via the Monte
Carlo integration. We call the best predictor (3.6) adaptively transformed best predictor
(ATBP).

3.2.2 Estimation of structural parameters

We here consider estimating the unknown model parameters ϕ in (3.4) based on the marginal
likelihood function. Noting that the log-marginal likelihood function of ϕ is given by

L(ϕ) = −1

2

m∑
i=1

log |Σi| −
1

2

m∑
i=1

{Hλ(yi)−Xiβ}tΣ−1
i {Hλ(yi)−Xiβ}

− 1

2

m∑
i=1

ni log 2π +

m∑
i=1

ni∑
j=1

logH ′
λ(yij),

(3.7)

where (Σi)kℓ = τ2+σ2I(k = ℓ), Hλ(yi) = (Hλ(yi1), . . . ,Hλ(yini))
t, Xi = (xti1, . . . ,x

t
ini

)t, and
H ′
λ(·) denotes the derivative of Hλ(·). The maximum likelihood estimator of ϕ can be defined

as the maximizer of L(ϕ).
For maximizing the likelihood function L(ϕ), we first note that the profile likelihood

function of λ can be expressed as

PL(λ) = ML(λ) +

m∑
i=1

ni∑
j=1

logH ′
λ(yij), (3.8)

where ML(λ) is the maximum likelihood of the nested error regression model with response
values Hλ(yij) and covariate vectors xij , which can be efficiently carried out by using well-
developed numerical method (e.g. Molina and Marhuenda, 2015). Using the ease of the point
evaluation of the profile likelihood PL(λ), we can obtain the maximizer of PL(λ) by using,
for example, the golden section method (Brent et al., 1973). Once we obtain the estimator λ̂,
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we get the estimators of other parameters by applying the nested error regression model to
the data set {H

λ̂
(yij),xij}.

For estimating the two variance parameters τ2 and σ2, the restricted maximum likelihood
(RML) method (Jiang, 1996) might be more attractive than the maximum likelihood method.
To implement the RML estimation, the first three terms in (3.7) need to be changed to the
restricted maximum likelihood, but the transformation parameter λ can be easily estimated in
the same manner as the maximum likelihood method based on the profile likelihood function.
However, in this paper, we consider only the maximum likelihood estimator for simplicity.

3.2.3 Class of transformations

We here consider the concrete choice of the family of transformations Hλ(·). To begin with,
we give some conditions to be satisfied by the transformations.

Assumption 3.1. (Class of transformations)

1. Hλ is a differentiable and monotone function, and the range of Hλ is R for all λ.

2. For fixed x, Hλ(x) as the function of λ is differentiable.

3. The function |∂Hλ(w)/∂λ|, |∂2Hλ(w)/∂λ
2| and |∂2 logH ′

λ(w)/∂λ
2| with w = H−1

λ (x)
are bounded from the upper by C1{exp(C2x)+exp(−C2x)} with some constants C1, C2 >
0.

The first condition is crucial in this context. If the range of Hλ is not R, but some subset
A ⊂ R, the inverse function H−1

λ cannot be defined on R \ A, which causes problems in
computing the best predictor (3.6). When the observations are positive valued, the Box-Cox
(BC) transformation (Box and Cox, 1964), Hλ(x) = λ−1(xλ−1) for λ ̸= 0 andH0(x) = log(x),
is widely used. However, it is known that the range of BC transformation is truncated and not
whole real line, so that the BC transformation cannot be used in this context. An alternative
transformation, called dual power (DP) transformation, has been suggested by Yang (2006):

HDP
λ (x) =

xλ − x−λ

2λ
, x > 0, λ > 0, (3.9)

where limλ→0H
DP
λ (x) = log x. It can be seen as the mean of two BC transformations, and

it is easy to confirm that the range of DPT is R, so that DPT can be used as a parametric
family including log-transformation in this context. The expression of the inverse function is
required in computing the transformed best predictor (3.6), and the Jacobian is also needed
for computing the profile likelihood function (3.8). These are given by

H
DP(−1)
λ (x) =

(
λx+

√
1 + λ2x2

)1/λ
and

dHDP
λ (x)

dx
=

1

2
(xλ−1 + x−λ−1).

In the context of small area estimation, the DP transformation was used in Sugasawa and
Kubokawa (2017) in the Fay-Herriot model. The original DP transformation (3.9) can be
used when the response variables are positive. When response variables are real valued, one
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may use the shifted-DP transformation of the form Hλ,c(x) = {(x+c)λ−(x+c)−λ}/2λ, where
c ∈ (min(yij) + ε,∞) with specified small ε > 0.

Another attractive transformation is the sinh-arcsinh (SS) transformation suggested in
Jones and Pewsey (2009) in the context of distribution theory, which has the form

HSS
a,b(x) = sinh(b sinh−1(x)− a), x ∈ (−∞,∞), a ∈ (−∞,∞), b ∈ (0,∞) (3.10)

where sinh(x) = (ex − e−x)/2 is the hyperbolic sine function, sinh−1(x) = log(x+
√
x2 + 1),

and two transformation parameter a and b control skewness and tail heaviness, respectively.
The inverse transformation and the Jacobian are obtained as

H
SS(−1)
a,b (x) = sinh(b−1 sinh−1(x) + a), and

dHSS
a,b(x)

dx
= b

√
1 +HSS

a,b(x)
2

1 + x2
.

These transformations will be used and compared in the application presented in Section
3.4.3.

3.2.4 Large sample properties

We here consider the large sample properties of the estimator of structural parameters. To
this end, we assume the following condition:

Assumption 3.2. (Assumptions under large m)

1. The true parameter vector ϕ0 is an interior point of the parameter space Φ.

2. 0 < mini=1,...,mNi ≤ maxi=1,...,mNi <∞.

3. The elements of Xi are uniformly bounded and Xt
iXi is positive definite.

4. m−1
∑m

i=1X
t
iΣ

−1
i Xi converges to a positive definite matrix as m→ ∞.

Since the asymptotic variance and covariance matrix of MLE can be derived from the
Fisher information matrix, we first provide the Fisher information matrix in the following
Theorem, where the proof is given in Appendix.

Theorem 3.1. We define the Fisher information Iϕkϕj = −E[∂2L(ϕ)/∂ϕk∂ϕj ], then it follows
that

Iτ2τ2 =
1

2

m∑
i=1

(1tni
Σ−1
i 1ni)

2, Iτ2σ2 =
1

2

m∑
i=1

1tni
Σ−2
i 1ni , Iσ2σ2 =

1

2

m∑
i=1

tr(Σ−2
i ),

Iββ =
m∑
i=1

Xt
iΣ

−1
i Xi, Iβτ2 = Iβσ2 = 0, Iλσ2 = −

m∑
i=1

E
[
ztiΣ

−2
i H

(1)
λ (yi)

]
,

Iλβ = −
m∑
i=1

Xt
iΣ

−1
i E

[
H

(1)
λ (yi)

]
, Iλτ2 = −

m∑
i=1

E
[
ztiΣ

−1
i 1ni1

t
ni
Σ−1
i H

(1)
λ (yi)

]
,

Iλλ =
m∑
i=1

E
[
H

(1)
λ (yi)

tΣ−1
i H

(1)
λ (yi)

]
+

m∑
i=1

E
[
ztiΣ

−1
i H

(2)
λ (yi)

]
−

m∑
i=1

ni∑
j=1

E

[
∂2

∂λ2
logH ′

λ(yij)

]
,
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where H
(k)
λ (yi) = ∂kHλ(yi)/∂λ

k for k = 1, 2, zi = Hλ(yi) − Xiβ, and E[·] denotes the
expectation with respect to yij’s following the model (3.4). Then, under Assumptions 3.1 and

3.2, the maximum likelihood estimator ϕ̂ is asymptotically distributed as ϕ̂ ∼ N(ϕ, I−1
ϕ ).

From Theorem 3.1, it is observed that the information matrix of (βt, τ2, σ2) does not
depend on the transformation parameter λ, and their expressions are the same as those of
the traditional nested error regression models. While the two variance parameters τ2 and
σ2 are orthogonal to β in the sense that Iβτ2 = Iβσ2 = 0, the transformation parameter
λ is not orthogonal to the others. The expectations appeared in the Fisher matrix is not
analytically tractable, but it can be easily estimated by replacing the expectation with its
sample counterpart. In the case that λ is multidimensional, the extension of Theorem 3.1

is straightforward. The expressions of H
(k)
λ (yi) and ∂2 logH ′

λ(yij)/∂λ
2 could be analytically

complicated and require tedious algebraic calculations. In such a case, the numerical derivative
can be useful since we need to compute only the point values of the derivatives.

3.3 Empirical Bayes confidence intervals

3.3.1 Asymptotically valid confidence intervals

Measuring the variability of the transformed empirical best predictor µ̂i is an important issue
in practice. Traditionally, the mean squared error (MSE) of µ̂i has been used, and several
methods ranging from analytical method (Prasad and Rao, 1990) to numerical methods (Hall
and Maiti, 2006a) have been considered. On the other hand, an empirical Bayes confidence in-
terval of µi is more preferable since it can provide distributional information than MSE though
construction of the confidence interval is generally difficult. Here, we derive an asymptotically
valid empirical Bayes confidence interval of µi.

The key to the confidence interval is the conditional distribution of µi given yi. Noting
that Cov(Hλ(Yij),Hλ(Yik)|yi) = Var(vi|yi) = s2i for j ̸= k, it follows that

(Hλ(Yi,ni+1), . . . , Hλ(YiNi))
t|yi ∼ N((θi,ni+1, . . . , θiNi)

t, s2i1Ni−ni1
t
Ni−ni

+ σ2INi−ni),

namely, the each component has the expression

Hλ(Yij)|yi = θij + sizi + σwij , j = ni + 1, . . . , Ni,

where zi and wij are mutually independent standard normal random variables, and θij and
si are defined in (3.5). Then the posterior distribution of µi can be expressed as

µi|yi
d
=

1

Ni


ni∑
j=1

T (yij) +

Ni∑
j=ni+1

T ◦H−1
λ (θij + sizi + σwij)

 , (3.11)

which is a complex function of standard normal random variables zi and wij . However, random
samples from the conditional distribution (3.11) can be easily simulated.

We define Qa(yi,ϕ) as the lower 100a% quantile point of the posterior distribution of µi
with the true ϕ, which satisfies P(µi ≤ Qa(yi,ϕ)|yi) = a. Hence, the Bayes confidence interval
of µi with nominal level 1 − α is obtained as Iα = (Qα/2(yi,ϕ), Q1−α/2(yi,ϕ)), which holds
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that P(µi ∈ Iα) = 1− α. However, the interval Iα depends on the unknown parameter ϕ, so
that the feasible version of Iα is obtained by replacing ϕ with its estimator ϕ̂, namely

INα = (Qα/2(yi, ϕ̂), Q1−α/2(yi, ϕ̂)), (3.12)

which we call naive empirical Bayes confidence interval of µi. The two quantiles appeared in
(3.12) can be computed by generating a large number of random samples from the conditional
distribution (3.11). Owing to the asymptotic properties of ϕ̂, the coverage probability of the
naive interval (3.12) converges to the nominal level as the number of areas m tends to infinity
as shown in the following theorem proved in Appendix.

Theorem 3.2. Under Assumptions 3.1 and 3.2, it holds P(µi ∈ INα ) = 1− α+O(m−1).

3.3.2 Bootstrap calibrated intervals

As shown in Theorem 3.2, the coverage error of the naive interval (3.12) is of order m−1,
which is not necessarily negligible when m is not sufficiently large. Since the number of m is
usually moderate in practice, the calibrated intervals with higher accuracy would be valuable.
Following Chatterjee, et al. (2008), Hall and Maiti (2006a), we construct a second order
corrected empirical Bayes confidence interval ICα satisfying P (µi ∈ ICα ) = 1− α+ o(m−1).

To begin with, we define the bootstrap estimator of the coverage probability of the naive
interval. Let Y ∗

ij be the parametric bootstrap samples generated from the estimated model

(3.4) with ϕ = ϕ̂, and y∗i = {Y ∗
ij , j = 1, . . . , ni}. Moreover, let µ∗i be the bootstrap version of

µi based on Y ∗
ij ’s. Since the coverage probability is P(Qa/2(yi, ϕ̂) ≤ µi ≤ Q1−a/2(yi, ϕ̂)), its

parametric bootstrap estimator can be defined as

CP(a) = E∗
[
I
{
Qa/2(y

∗
i , ϕ̂

∗
) ≤ µ∗i ≤ Q1−a/2(y

∗
i , ϕ̂

∗
)
}]

,

where the expectation is taken with respect to the bootstrap samples Y ∗
ij ’s. Based on the

coverage probability, we define the calibrated nominal level a∗ as the solution of the equation
CP(a∗) = 1 − α, which can be solved by the bisectional method (Brent, 1973). Then, the
calibrated interval is given by

ICα = (Qa∗/2(yi, ϕ̂), Q1−a∗/2(yi, ϕ̂)), (3.13)

which has second order accuracy as shown in the following theorem proved in Appendix.

Theorem 3.3. Under Assumptions 3.1 and 3.2, it holds P(µi ∈ ICα ) = 1− α+ o(m−1).
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3.4 Numerical Studies

3.4.1 Evaluation of prediction errors

We first evaluate the prediction errors of the proposed predictors together with some existing
methods. To this end, we considered the following data generating processes:

(A) (2λ)−1(Y λ
ij − Y −λ

ij ) = β0 + β1Xij + vi + εij , vi ∼ N(0, τ2), εij ∼ N(0, σ2)

(B) (2λ)−1(Y λ
ij − Y −λ

ij ) = β0 + β1Xij + vi + εij , vi ∼ t5(0, τ
2), εij ∼ t5(0, σ

2)

(C) Yij = exp(β0 + β1Xij)viεij , vi ∼ Γ(1/τ2, 1/τ2), εij ∼ Γ(1/σ2, 1/σ2)

(D) Yij = 0.2 exp(Uij) + 0.8U2
ij , Uij = β0 + β1Xij + vi + εij ,

vi ∼ N(0, τ2), εij ∼ N(0, σ2),

where i = 1, . . . ,m, j = 1, . . . , N , β0 = −1, β1 = 3, τ = 0.3, σ = 0.7, and Xij were initially
generated from U(1, 2) and fixed through simulation experiments. In model (i) and (ii), we
considered three values for λ, λ = 0, 0.2 and 0.4. In this study, we set N = 200 and m = 25,
and we focus on estimating the ratio of the observation with values under z, namely

µi =
1

N

N∑
j=1

I(Yij < z), i = 1, . . . ,m, (3.14)

where z is defined as 0.6 times median of Yij ’s.
Concerning the area sample sizes, we divided m = 25 areas into five groups with equal

number of areas, and we set the same number of ni within the same groups. The group
pattern of ni we considered was (20, 40, 60, 80, 100). Among the generated Yi1, . . . , YiN , we
used first ni observations yi1(= Yi1), . . . , yini(= Yini) as the sampled data. Then, based on the
sampled data yij ’s and covariates Xij ’s, we computed the predicted value of µi based on the
four methods: the proposed flexible transformed empirical best prediction (ATP) method with
DP transformation (3.9), the transformed empirical best prediction (TP) method proposed by
Molina and Rao (2010) with log-transformation, the empirical best prediction (EBP) method
by directly applying the nested error regression model to the non-transformed observation yij ,
and the direct estimator (DE) given by

µ̂Di =
1

ni

ni∑
j=1

I(yij < z), i = 1, . . . ,m.

It should be noted that the TP method is correctly specified in scenario (A) with λ = 0
while the ATP method is overfitting in this case. In the other cases in scenario (A), the ATP
method uses the same model as the data generating model. Scenario (B) is similar to (A),
but the distribution of error terms have the t-distribution. In scenario (C) and (D), the data
generation models do not coincides with any methods.

To compare the performances of the four methods, we computed the square root of mean
squared error (RMSE) defined as

RMSEi =

√√√√ 1

R

R∑
r=1

(
µ̂
(r)
i − µ

(r)
i

)2
,
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whereR = 2000 in this study, µ̂
(r)
i and µ

(r)
i are the estimated and true values of µi, respectively,

in the rth iteration. The obtained values of RMSEs are averaged over the same groups and
the results are reported in Table 8.1.

From Table 8.1, we can observe that the proposed method provides better estimates than
three existing methods in almost all cases. As mentioned in the above, ATP method is
overfitting in scenario (A) with λ = 0 while TP method is correctly specified. However, the
results show that the performances between ATP and TP are almost the same, which might
indicate that the MSE inflation due to overfilling is not serious. The similar observation can
be done in scenario (B) with λ = 0. On the other hand, in the other cases, the proposed ATP
method can improve the estimation accuracy of TP method as well as EBP and DE methods,
by adaptively estimating the transformation parameter from the data.

3.4.2 Finite sample evaluation of empirical Bayes confidence intervals

We next evaluate the finite sample performances of the empirical Bayes confidence intervals
given in Section 3.3. To this end, we considered the following data generating process for
population variables Yij :

(2λ)−1(Y λ
ij − Y −λ

ij ) = β0 + β1Xij + vi + εij , vi ∼ N(0, τ2), εij ∼ N(0, σ2),

where j = 1, . . . , N and i = 1, . . . ,m with N = 200. We set the true parameter values
λ = 0.3, β0 = −1, β1 = 3, τ = 0.3, σ = 0.7, and Xij were initially generated from the uniform
distribution on (1, 2), which were fixed through simulation runs. We focused on the same
population parameter given in (3.14).

Among the generated Yi1, . . . , YiN , the first n = 50 observations Yi1, . . . , Yin were used
as the sampled data yi1, . . . , yin. Then, based on yij ’s and Xij ’s, we computed two types pf
confidence intervals for µi, naive confidence interval (3.12) and bootstrap calibrated confidence
interval (3.13), which are denoted by NCI and BCI, respectively. To evaluate the performances
of two confidence intervals, based on R = 1000 simulation runs, we computed the empirical
coverage probability (CP) and the average length of confidence interval (AL), which are
defined as

CPi =
1

R

R∑
r=1

I(µ
(r)
i ∈ CI

(r)
i ) and ALi =

1

R

R∑
r=1

|CI(r)i |,

where µ
(r)
i is the true value and CI

(r)
i is NCI or BCI in the rth iteration. In Figure, we show

the obtained CP and AL in each area for two cases m = 20 and m = 30. Concerning CP, the
naive method tends to produce shorter confidence intervals, so that the coverage probability
is smaller than the nominal level for all areas, which is more serious in case m = 20 than
m = 30. This comes from the accuracy of NCI presented in Theorem 3.2, which mentions that
the coverage accuracy of NCI is O(m−1). On the other hand, bootstrap method can improve
the drawbacks of the naive method, and provides reasonable CP around the nominal level
under both m = 20 and m = 30. The results clearly support the theoretical property given
in Theorem 3.3 presenting BCI is second order accurate. Since undervaluation of estimation
risk may produce serious problems in practice, we should use the bootstrap method when the
number of areas is not large.
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Table 3.1: The group-wise averaged values of simulated square root of mean squared errors
(RMSE) for four methods, proposed adaptively transformed prediction (ATP) method, Molina
and Rao’s transformed prediction (TP) method, empirical best prediction (EBP) method
without any data transformations, and direct estimator (DE) for eight scenarios. All the
values in the table are multiplied by 100.

Area sample size ni
Scenario Method 20 40 60 80 100

ATP 3.65 2.68 2.19 1.86 1.62
(A) λ = 0 TP 3.64 2.68 2.18 1.85 1.62

EBP 5.09 4.09 3.34 2.83 2.24
DE 7.77 4.44 5.08 2.47 2.22

ATP 3.58 2.65 2.17 1.83 1.59
(A) λ = 0.2 TP 3.74 2.80 2.31 1.95 1.68

EBP 4.89 4.05 3.29 2.92 2.25
DE 7.55 4.39 4.91 2.43 2.20

ATP 3.36 2.53 2.07 1.77 1.51
(A) λ = 0.4 TP 3.90 3.03 2.52 2.16 1.79

EBP 3.78 3.02 2.47 2.16 1.74
DE 6.99 4.26 4.51 2.34 2.09

ATP 4.58 3.33 2.81 2.31 2.01
(B) λ = 0 TP 4.58 3.33 2.80 2.31 2.01

EBP 8.92 7.38 6.10 5.76 4.47
DE 8.74 6.37 5.79 3.75 2.60

ATP 4.33 3.42 2.85 2.28 1.95
(B) λ = 0.2 TP 4.56 3.61 3.03 2.45 2.09

EBP 6.23 5.08 4.52 3.50 3.01
DE 8.24 6.45 5.73 3.64 2.58

ATP 4.13 3.25 2.70 2.19 1.93
(B) λ = 0.4 TP 4.73 3.88 3.23 2.71 2.30

EBP 4.68 3.72 3.22 2.61 2.26
DE 7.82 5.93 5.33 3.46 2.56

ATP 4.90 3.63 2.96 2.41 2.17
(C) TP 5.02 3.69 3.03 2.47 2.20

EBP 6.78 5.74 4.36 3.27 3.11
DE 8.67 5.31 4.16 4.07 3.05

ATP 4.54 3.44 2.98 2.53 2.03
(D) TP 5.05 4.04 3.48 2.97 2.36

EBP 5.25 4.20 3.38 2.90 2.32
DE 9.85 5.76 4.74 3.60 3.45

3.4.3 Example: poverty mapping in Spain

We applied the proposed method to estimation of poverty indicators in Spanish provinces,
using the synthetic income data available in sae package (Molina and Marhuenda, 2015) in R
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Figure 3.1: Simulated coverage probability (CP) and average length (AL) of two confidence
intervals, naive confidence interval (NCI) and bootstrap calibrated confidence interval (BCI)
for m = 20 (upper) and m = 30 (lower).

language, in which the equalized annual net income are given. The similar data set was used
in Molina and Rao (2010) and Molina et al. (2014). As auxiliary variables, we considered
the indicators of the five quinquennial groupings of the variable age, the indicator of having
Spanish nationality, the indicators of the three levels of the variable education level, and the
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Figure 3.2: QQ-plots of standardized residuals in four models.

indicators of the three categories of the variable employment, with categories unemployed,
employed and inactive. For each auxiliary variable, one of the categories was considered as
base reference, omitting the corresponding indicator and then including an intercept in the
model. The poverty measures we focused on were the FGT poverty measures (Foster et al.,
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1984):

T (x) =

(
x− z

z

)α
I(x < z),

where z is a fixed poverty line, and it corresponds to poverty incidence or head count ratio
(α = 0), poverty gap (α = 1) and poverty severalty (α = 2). In this example, we focused on
poverty ratio (α = 0), and we set z as the 0.6 times the median of incomes. Let Eij be the
income of jth individual in ith area. Such data are available for m = 52 areas and the sample
sizes are are ranging from 20 to 1420. Since the small portion of Eij take negative values, we
assume the nested error regression model with shifted-DPT:

SDP: (2λ)−1
{
(Eij + c)λ − (Eij + c)−λ

}
= xtijβ + vi + εij , (3.15)

noting that the model has two transformation parameters λ and c. We also considered two
submodel of (3.15). In both models, we set c = c∗ ≡ min(Eij) + 1 to ensure that Eij + c∗

is positive for all (i, j). The first submodel is denied by putting c = c∗ in (3.15), which is
referred to SDP-s. The second sub-model is the shifted-log transformation model:

SL: log(Eij + c∗) = xtijβ + vi + εij , (3.16)

which has no longer parameters and was used in Molina and Rao (2010). Finally, we also
applied the model with sinh-arcsinh transformation presented in Section 3.2.3:

SS: sinh(b sinh−1(Eij)− a) = xtijβ + vi + εij , (3.17)

which has two transformation parameter a and b.

By maximizing the profile likelihood function of transformation parameters, we obtained
as follows:

(SDP) λ̂ = 0.090 (1.99× 10−3), ĉ = 4319 (170.69)

(SDP-s) λ̂ = 0.290 (8.18× 10−4)

(SS) â = −0.584 (8.06× 10−4), b̂ = 0.463 (1.55× 10−6),

where the values in the parentheses are the corresponding standard errors calculated from the
Fisher information matrix given in Theorem 3.1. From the above result, it can be observed
that the approximate 95% confidence intervals of the transformation parameter λ in SDP and
SDP-s are bounded from 0, which means that the log-transformed model would be inappro-
priate. Moreover, we computed AIC and BIC based on the maximum marginal likelihood,
and the results are given in Table 3.2 in which the values scaled by the number of sampled
units (N = 17199) are reported. The results show that the SDP fits the best among the
four models in terms of both AIC and BIC while the SL model fits the worst. Hence, the
use of parametric transformation can improve AIC and BIC in this application. To see the
fitting of the models in terms of normality assumption of the error terms, we computed the
standardized residuals defined as

rij =
Ĥ(yij)− xtijβ̂√

τ̂2 + σ̂2
, j = 1, . . . , ni, i = 1, . . . ,m,
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where Ĥ is the estimated transformation function, noting that rij ’s asymptotically follow the
standard normal distributions if the assumed model is correctly specified. In Figure 3.2, we
shows QQ-plots of rij ’s of the four models. We can observe that the normality assumptions in
the three models with parametric transformations, SDP, SDP-s and SS, seem plausible from
Figure 3.2. However, the QQ-plot for SL shows that the distribution of standardized residuals
is skewed and the normality assumption would not be appropriate.

Finally, we calculated the estimated values of the poverty rates µi from the direct estimator
(DE), and four model based methods. For computing the empirical best predictor of µi, we
used 100 random samples for Monte Carlo integration. The obtained values are given in Table
3.3 with the empirical Bayes confidence intervals of µi. It can be seen that the direct estimator
produces quite different estimates of µi from the model based methods in Avila and Sevilla.
We can also observe that SL method tend to produce larger estimates than the other model
based methods. However, from AIC and BIC values and QQ-plot in Figure 3.2, the validity
of SL method is highly doubtful in this case, so that the predicted values given in Table 3.3
would not be reliable. As shown in Table 3.3, the use of different transformation function
leads to significantly different predicted values of µi. Hence, it would be valuable to select
an adequate transformation function by estimating transformation parameters based on the
sampled data.

Table 3.2: AIC and BIC of four models. The values are scaled by the number of sampled
units (N = 17199).

SDP SDP-s SS SL

AIC 20.2241 20.2260 20.2415 20.2883
BIC 20.2305 20.2318 20.2478 20.2937

Table 3.3: Estimated percent poverty rates from the direct estimator (DE) and four model
based methods in five provinces. The empirical Bayes confidence intervals are given in the
parenthesis.

area ni DE SDP SDP-s SS SL

Avila 58 8.62 17.81 18.16 18.47 18.58
(12.33, 23.85) (12.71, 23.65) (13.97, 25.28) (14.36, 24.19)

Tarragona 134 29.17 26.08 26.39 26.59 28.07
(24.17, 28.34) (24.30, 28.21) (24.42 ,28.34) (25.96, 30.42)

Santander 434 29.31 32.43 33.06 33.03 35.91
(28.51, 36.00) (30.19, 35.80) (30.37, 35.95) (32.41, 39.02)

Sevilla 482 5.00 25.57 26.26 26.22 27.31
(23.63, 28.47) (23.72 ,28.46) (23.89, 29.29) (24.88, 29.76)

Oviedo 803 33.33 36.67 37.26 37.80 40.69
(29.98, 42.72) (32.55, 42.62) (31.33, 43.96) (34.65, 46.66)
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3.5 Technical Issues

3.5.1 Proof of Theorem 3.1

From the likelihood function (3.7), its first order derivatives are given by

∂L

∂β
=

m∑
i=1

Xt
iΣ

−1
i zi,

∂L

∂τ2
= −1

2

m∑
i=1

1tni
Σ−1
i 1ni −

1

2

m∑
i=1

ztiΣ
−1
i 1ni1

t
ni
Σ−1
i zi

∂L

∂σ2
= −1

2

m∑
i=1

tr(Σ−1
i )− 1

2

m∑
i=1

ztiΣ
−2
i zi,

∂L

∂λ
= −

m∑
i=1

ztiΣ
−1
i H

(1)
λ (yi) +

m∑
i=1

ni∑
j=1

∂

∂λ
logH ′

λ(yij),

where zi = Hλ(yi)−Xiβ. Since E[zi] = 0, it follows that E[∂2L/∂β∂τ2] = E[∂2L/∂β∂σ2] =
0. The other elements of the Fisher information can be obtained by a straightforward calcu-
lation. Moreover, under Assumptions 3.1 and 3.2, the each element of the Fisher information
matrix is finite, so that the asymptotic normality of ϕ̂ follows.

3.5.2 Proof of Theorem 3.2

Let ϕ0 is the true values of parameters. It suffices to show that P (µi ≤ Qa(yi, ϕ̂)) = a +
O(m−1) for a ∈ (0, 1). We first note that It holds that

P (µi ≤ Qa(yi, ϕ̂)) = E[P (µi ≤ Qa(yi, ϕ̂)|ys)] = E[F (Qa(yi, ϕ̂); yi,ϕ0)],

where F (·; yi,ϕ0) is a distribution function of µi given yi. LetG(yi, ϕ̂,ϕ0) = F (Qa(yi, ϕ̂); yi,ϕ0),
noting that 0 ≤ G(yi, ϕ̂,ϕ0) ≤ 1 and G(yi,ϕ0,ϕ0) = a. The Taylor expansion of G(yi, ϕ̂,ϕ0)
shows that

G(yi, ϕ̂,ϕ0) = G(yi,ϕ0,ϕ0) +
∑
j

Gϕj (yi,ϕ,ϕ0)
∣∣
ϕ=ϕ0

(ϕ̂j − ϕj)

+
1

2

∑
j,k

Gϕjϕk(yi,ϕ,ϕ0)
∣∣
ϕ=ϕ0

(ϕ̂j − ϕj)(ϕ̂k − ϕk)

+
1

6

∑
j,k,ℓ

Gϕjϕkϕℓ(yi,ϕ,ϕ0)
∣∣
ϕ=ϕ∗(ϕ̂j − ϕj)(ϕ̂k − ϕk)(ϕ̂ℓ − ϕℓ),

where ϕ∗ is on the line connecting ϕ̂ and ϕ0. Then, it follows that

P (µi ≤ Qa(yi, ϕ̂)) = E[G(yi, ϕ̂,ϕ0)] = a+R1 +
1

2
R2 +

1

6
R3,

where

R1 = E
[
Gϕ(yi,ϕ,ϕ0)

∣∣
ϕ=ϕ0

(ϕ̂− ϕ0)
]

R2 =
∑
j,k

E
[
Gϕjϕk(yi,ϕ,ϕ0)

∣∣
ϕ=ϕ0

(ϕ̂j − ϕj)(ϕ̂k − ϕk)
]

R3 =
∑
j,k,ℓ

E
[
Gϕjϕkϕℓ(yi,ϕ,ϕ0)

∣∣
ϕ=ϕ∗(ϕ̂j − ϕj)(ϕ̂k − ϕk)(ϕ̂ℓ − ϕℓ)

]
.
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Using the Cauchy-Schwarz inequality, we have

E
[
Gϕjϕk(yi,ϕ,ϕ0)

∣∣
ϕ=ϕ0

(ϕ̂j − ϕj)(ϕ̂k − ϕk)
]

≤
{
E[(ϕ̂j − ϕj)

4]
} 1

4
{
E[(ϕ̂k − ϕk)

4]
} 1

4

√
E
[
Gϕjϕk(yi,ϕ,ϕ0)

2
∣∣
ϕ=ϕ0

]
.

From the asymptotic normality of ϕ̂ given in Theorem 3.1, it holds that E[|ϕ̂k − ϕk|r] =
O(m−r/2). Moreover, since 0 ≤ G(yi,ϕ,ϕ0) ≤ 1 and ϕ0 is an interior point, it holds
|G(yi,ϕ1,ϕ0) − G(yi,ϕ2,ϕ0)| ≤ 2 for all ϕ1,ϕ2 ∈ Nϕ0

with Nϕ0
= {ϕ; ∥ϕ − ϕ0∥ ≤ ε},

thereby the partial derivatives of G(yi,ϕ,ϕ0) at ϕ = ϕ0 are bounded. Then, we obtain
R2 = O(m−1). Using the similar evaluation, we can show that R3 = O(m−1). Regarding R1,
it is noted that

E
[
Gϕ(yi,ϕ,ϕ0)

∣∣
ϕ=ϕ0

(ϕ̂− ϕ0)
]
= E

[
Gϕ(yi,ϕ,ϕ0)E[ϕ̂− ϕ0|yi]

]
.

From Lohr and Rao (2009), it holds E[ϕ̂− ϕ0|yi] = m−1bϕ − I−1
ϕ ∂Li(yi,ϕ0)/∂ϕ+ op(m

−1),

where
∑m

i=1 Li(yi,ϕ0) ≡ L(ϕ) and bϕ = limm→∞mE[ϕ̂ − ϕ0] is the asymptotic bias of ϕ̂.
Hence, we have

E
[
Gϕ(yi,ϕ,ϕ0)E[ϕ̂− ϕ0|yi]

]
=

1

m
E [Gϕ(yi,ϕ,ϕ0)] bϕ − E

[
Gϕ(yi,ϕ,ϕ0)I

−1
ϕ

∂

∂ϕ
Li(yi;ϕ0)

]
+ o(m−1),

which is O(m−1). Therefore, the proof is completed.

3.5.3 Proof of Theorem 3.3

From the proof of Theorem 3.2, we have

Fa(ϕ0) ≡ P (µi ≤ Qa(yi, ϕ̂)) = a+
c(a,ϕ0)

m
+ o(m−1),

where c(a,ϕ) is a smooth function of a and ϕ. Let a∗ and â∗ be satisfying Fa∗(ϕ0) = a and
Fâ∗(ϕ̂) = a, respectively. Then, it holds â∗ − a∗ = o(1) since ϕ̂ − ϕ = o(1). From the above
expansion, we have

â∗ − a∗ = − 1

m

{
c(â∗, ϕ̂)− c(a∗,ϕ0)

}
+ o(m−1),

so that â∗ − a∗ = op(m
−1). Hence, it follows that

P (µi ≤ Qâ∗(yi, ϕ̂)) = P (µi ≤ Qa∗(yi, ϕ̂)) + o(m−1) = a+ o(m−1),

which completes the proof.
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3.5.4 Checking assumptions of transformations

We here check the assumption 3 in Assumption 3.1 for the dual power (DP) transformation
(3.9) and sinh-arcsinh (SS) transformation (3.10).

(DP transformation) We first note that H−1
λ (x) = O(x1/λ) as x → ∞. By putting

x = −t for t > 0, we have

H−1
λ (x) = (

√
1 + λ2t2 − λt)1/λ =

1

(
√
1 + λ2t2 + λt)1/λ

= O(t−1/λ)

as t→ ∞. A straightforward calculation shows that

∂Hλ(x)

∂λ
=
xλ log x+ x−λ log x

2λ
+
xλ − x−λ

2λ2
,

thereby, it follows that∣∣∣∣∂Hλ

∂λ
(H−1

λ (x))

∣∣∣∣ = O(|x| log |x|) +O(|x|−1 log |x|) +O(|x|) +O(|x|−1) = O(|x| log |x|)

as |x| → ∞. Moreover, since

∂2Hλ(x)

∂λ2
=
xλ(log x)2 − x−λ(log x)2

2λ
− xλ − x−λ

λ3
,

the similar evaluation leads to
∣∣∂2Hλ(w)/∂λ

2
∣∣ = O(|x|(log |x|)2) as |x| → ∞. Regarding

∂2 logH ′
λ(x)/∂λ

2, it holds that∣∣∣∣∂2 logH ′
λ(w)

∂λ2

∣∣∣∣ = ∣∣∣∣ 4(logw)2

w2(wλ−1 + w−λ−1)2

∣∣∣∣ = O((log |x|)2|x|2)

as |x| → ∞, so that the DP transformation satisfies the assumption. When the loca-
tion parameter is used, namely, Hλ,c(x) = {(x + c)λ − (x + c)−λ}/2λ, it is noted that
∂kHλ,c(x)/∂c

k = ∂kHλ,c(x)/∂x
k, so that the quite similar evaluation shows that the shifted-

DP transformation also satisfies the assumption.

(SS transformation) It follows that

∂Ha,b(x)

∂a
= − cosh(b sinh−1(x)− a),

∂Ha,b(x)

∂b
= cosh(b sinh−1(x)− a) sinh−1(x).

Note that sinh−1(x) = O(log |x|) as |x| → ∞, so that H−1
a,b (x) = O(exp(b−1 log |x|)) =

O(|x|1/b). Then, we have

∂Ha,b

∂a
(H−1

a,b (x)) = O(exp(b log |x|1/b)) = O(|x|),

∂Ha,b

∂b
(H−1

a,b (x)) = O(exp(b log |x|1/b) log |x|1/b) = O(|x| log |x|),

as |x| → ∞. Moreover, it holds that

∂2Ha,b(x)

∂2a
= sinh(b sinh−1(x)− a),

∂2Ha,b(x)

∂2b
= sinh(b sinh−1(x)− a){sinh−1(x)}2

∂2Ha,b(x)

∂a∂b
= − sinh(b sinh−1(x)− a) sinh−1(x),



48 CHAPTER 3. ADAPTIVELY TRANSFORMED MIXED MODEL PREDICTION

thereby the similar evaluation shows that ∂2Ha,b(x)/∂
2a = O(|x|), ∂2Ha,b(x)/∂

2b = O(|x|(log |x|)2)
and ∂2Ha,b(x)/∂a∂b = O(|x| log |x|) as |x| → ∞. On the other hand, a straightforward calcu-
lation shows that

∂

∂a
logH ′

a,b(x) =
Ha,b(x)

1 +Ha,b(x)2
∂Ha,b(x)

∂a
,

∂

∂b
logH ′

a,b(x) =
1

b
+

Ha,b(x)

1 +Ha,b(x)2
∂Ha,b(x)

∂b
,

which are bounded by the function ∂Ha,b(x)/∂a and ∂Ha,b(x)/∂b, respectively. A straight-
forward calculations show that the second partial derivatives of logH ′

a,b(x) are bounded by
polynomial functions of the second partial derivatives of Ha,b(x) and Ha,b(x), thereby the
assumption is satisfied.



Chapter 4

Conditional Mean Squared Errors
in Mixed Models

4.1 Introduction

Traditionally, the (unconditional) mean squared errors (MSE) have been used for assessing the
variability of model based estimators. However, it is criticized that the unconditional MSE do
not give us appropriate estimation errors, since it is an integrated measure. Booth and Hobert
(1998) suggested the conditional MSE (CMSE) given the data of the small area of interest, and
Datta et al. (2011a) and Torabi and Rao (2013) derived second-order unbiased estimators of
the conditional MSE in the Fay-Herriot model and nested error regression model, respectively.
As pointed out in both papers, the difference between the conditional and unconditional
MSEs is small in the model based on normal distribution since it appears in the second-
order terms. On the other hand, in the generalized linear mixed models, Booth and Hobert
(1998) showed that the difference is significant for distributions far from normality in the
sense that the difference is appeared in the first-order. Although the generalized linear mixed
models are useful for analyzing count data in small area estimation, it is computationally
hard to derive the small area estimator and to evaluate their conditional MSEs, because
the marginal likelihood and the small area estimator in the generalized linear mixed model
cannot be expressed in closed forms. In fact, we need relatively high dimensional numerical
integration to evaluate the conditional MSEs. Another point is the assumption that sample
sizes of small areas are large, under which the Laplace approximation can be used to get
asymptotically unbiased estimators of the conditional MSEs. However, this assumption is
against the situation in small area estimation with small samples sizes.

An alternative model is the mixed model based on the natural exponential families with
quadratic variance functions (NEF-QVF) developed in Ghosh and Maiti (2004). The NEF-
QVF models include the Fay-Herriot model as well as Poisson-gamma and binomial-beta
models, which are extensively used in a variety of applications. The practical advantage
compared with generalized linear mixed models is that the Bayes estimator of the small area
parameter is the weighed average of a sample mean and a prior mean, so that the estimator
is easy to compute without any numerical techniques. However, there has been no literatures
concerned with the CMSEs in the NEF-QVF model in spite of their importance. Hence, in
this paper, we investigate the CMSE of the mixed models based on the NEF-QVF, and derive

49
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the second-order unbiased estimator of CMSE for practical use.
In Section 4.2, we first provide general strategies of deriving a second order unbiased

estimator of CMSE based on the parametric bootstrap and an analytical method based on
Taylor expansion. Then, in Section 4.3, we investigate the properties of CMSEs in NEF-QVF
mixed models and derive a second order unbiased estimator of CMSEs using the results in 4.2.
In Section 4.4, we studies the numerical properties of the CMSE estimator through simulation
and empirical studies. All the technical proofs are given in Section 4.5

4.2 Conditional MSE in General Mixed Models

Let yi be a direct estimate of small area parameter θi for i = 1, . . . ,m. In this paper, we treat
both continuous and discrete cases for yi and θi. We consider the following two stage genera
mixed model:

yi|(θi,ϕ) ∼ f(yi|θi,ϕ), θi|ϕ ∼ π(θi|ϕ) i = 1, . . . ,m,

where ϕ is a q-dimensional vector of unknown parameters. In the continuous case, the
marginal density function of yi for given ϕ and the conditional (or posterior) density function
of θi given yi are given by

mπ(yi|ϕ) =
∫
f(yi|θi,ϕ)π(θi|ϕ)dθi

π(θi|yi,ϕ) =f(yi|θi,ϕ)π(θi|ϕ)/mπ(yi|ϕ)

and we use the same notations in the discrete case. Then, for i = 1, . . . ,m, we consider the
problem of estimating (predicting) a scalar quantity µi(θi,ϕ) of each small area.

For generic estimator µ̂i, the risk of the estimator is evaluated the unconditional and
conditional MSEs, described as

MSEi =E
[{
µ̂i − µi(θi,ϕ)

}2]
,

CMSEi =E
[{
µ̂i − µi(θi,ϕ)

}2|yi].
Since y1, . . . , ym are independent, the best predictor of µi(θi,ϕ) in terms of the two kinds of
MSEs are the conditional expectation given by

µ̃i ≡ µ̃i(yi,ϕ) = E [µi(θi,ϕ)|yi] ,

which corresponds to the Bayes estimator of µi. However, the hyperparameter ϕ is unknown
and µ̃i is infeasible, we need to estimate ϕ from observations y1, . . . , ym. Substituting an
estimator ϕ̂ into µ̃i(yi,ϕ), we obtain an empirical Bayes (EB) estimator µ̂i ≡ µ̃i(yi, ϕ̂).

For risk evaluation of an empirical Bayes estimator, we here focus on asymptotic evalua-
tions of the CMSE. To this end, we assume the following conditions on the estimator ϕ̂ and
the Bayes estimator µ̃i(yi,ϕ) for large m:

Assumption 4.1.

(i) The dimension q of ϕ is bounded and the estimator ϕ̂ satisfies that (ϕ̂−ϕ)|yi = Op(m
−1/2),

E[ϕ̂− ϕ|yi] = Op(m
−1) and Var(ϕ̂|yi) = Op(m

−1) for i = 1, . . . ,m.
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(ii) For i = 1, . . . ,m, µi(θi,ϕ) = Op(1), µ̂i(yi,ϕ) = Op(1), and the variances Var(µi(θi,ϕ)|yi)
and Var(µ̃i(yi,ϕ)) exist.

(iii) The estimator µ̃i(yi,ϕ) is continuously differentiable with respect to ϕj , j = 1, . . . , q, and
satisfies

∂µ̃i(yi,ϕ)

∂ϕj
= Op(1), E

[∣∣∣∣∂µ̃i(yi,ϕ)∂ϕj

∣∣∣∣∣∣∣yi] <∞.

Under Assumption 4.1, we get a second-order approximation of CMSE of µ̂i. Let

T1i(yi,ϕ) =Var(µi(θi,ϕ)|yi),

T2i(yi,ϕ) =E
[{

(ϕ̂− ϕ)t∂µ̃i(yi,ϕ)
∂ϕ

}2∣∣∣yi],
where T1i(yi,ϕ) is the conditional or posterior variance of µi(θi,ϕ). It is noted that T1i(yi,ϕ) =
Op(1) and T2i(yi,ϕ) = Op(m

−1) under Assumption 4.1.

Theorem 4.1. Under Assumption 4.1, the CMSE of the empirical Bayes estimator µ̂i is
approximated as

CMSEi = T1i(yi,ϕ) + T2i(yi,ϕ) + op(m
−1).

Proof. Since E[µi − µ̃i|yi] = 0, it is observed that

CMSEi = E[(µi − µ̃i + µ̃i − µ̂i)
2|yi] = E[(µi − µ̃i)

2|yi] + E[(µ̂i − µ̃i)
2|yi], (4.1)

and that E[(µi − µ̃i)
2|yi] = Var(µi|yi) = T1i(yi,ϕ). It is noted that

µ̂i = µ̃i +
{∂µ̃i(yi,ϕ∗)

∂ϕ

}t
(ϕ̂− ϕ),

where ϕ∗ is between ϕ and ϕ̂. Since (ϕ̂− ϕ) | yi = Op(m
−1/2), we obtain

E[(µ̂i − µ̃i)
2|yi] = E

[{
(ϕ̂− ϕ)t∂µ̂i(yi,ϕ)

∂ϕ

}2∣∣∣yi]+ op(m
−1),

which shows Theorem 4.1. □

We next derive second order unbiased estimators of T1 and T2, which result in a second
order unbiased estimator of CMSE. As seen from Theorem 4.1, the order of T2i(yi,ϕ) is
Op(m

−1), so that we can estimate T2i(yi,ϕ) by the plug-in estimator T2i(yi, ϕ̂) unbiasedly up

to second order. For estimation of T1i(yi,ϕ), the naive estimator T1i(yi, ϕ̂) has a second order
bias because T1i(yi,ϕ) = Op(1). It is observed that

E[T1i(yi, ϕ̂)|yi] = T1i(yi,ϕ) + T11i(yi,ϕ) + T12i(yi,ϕ) + op(m
−1), (4.2)

where

T11i(yi,ϕ) =
{∂T1i(yi,ϕ)

∂ϕ

}t
E[(ϕ̂− ϕ)|yi]
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and

T12i(yi,ϕ) =
1

2
tr
[{∂2T1i(yi,ϕ)

∂ϕ∂ϕt

}
E
[
(ϕ̂− ϕ)(ϕ̂− ϕ)t|yi

]]
.

It is noted that T11i(yi,ϕ) = Op(m
−1) and T12i(yi,ϕ) = Op(m

−1) under Assumption 4.1.

[Analytical method] It follows from (4.2) that a second order unbiased estimator of CMSE
is given by

ĈMSEi = T1i(yi, ϕ̂)− T11i(yi, ϕ̂)− T12i(yi, ϕ̂) + T2i(yi, ϕ̂). (4.3)

Theorem 4.2. Under Assumption 4.1, the estimator (4.3) is a second-order unbiased esti-
mator of CMSE in the sense that

E
[
ĈMSEi|yi

]
= CMSEi + op(m

−1).

As explained in Section 4.3, in the mixed model based on NEF-QVF, we can provide
analytical expressions for T11i and T12i, whereby we obtain a second order unbiased estimator
in a closed form. In general, however, it is hard to get analytical expressions for T11i and
T12i. In this case, as given below, the parametric bootstrap method helps us provide a feasible
second order unbiased estimator of CMSE.

[Parametric bootstrap method] Since yi is fixed, a bootstrap sample is generated from

y∗j |(θ∗j , ϕ̂) ∼ f(y∗j |θ∗j , ϕ̂) j ̸= i, j = 1, . . . ,m,

where θ∗j ’s are mutually independently distributed as θ∗j |ϕ̂ ∼ π(θ∗j |ϕ̂). Noting that yi is fixed,

we construct the estimator ϕ̂
∗
(i) from the bootstrap sample

y∗1, . . . , y
∗
i−1, yi, y

∗
i+1, . . . , y

∗
m

with the same technique as used to obtain the estimator ϕ̂. Let E∗ [·|yi] be the expectation
with regard to the bootstrap sample. A second order unbiased estimator of T1i(yi,ϕ) is given
by

T 1i(yi, ϕ̂) = 2T1i(yi, ϕ̂)− E∗

[
T1i(yi, ϕ̂

∗
(i))|yi

]
.

Then, it can be verified that E[T 1i(yi, ϕ̂)|yi] = T1i(yi,ϕ) + op(m
−1). In fact, from (4.2), it is

noted that
E[T1i(yi, ϕ̂)|yi] = T1i(yi,ϕ) + di(yi,ϕ) + op(m

−1),

where di(yi,ϕ) = T11i(yi,ϕ)+T12i(yi,ϕ). This implies that E∗

[
T1i(yi, ϕ̂

∗
(i))|yi

]
= T1i(yi, ϕ̂)+

di(yi, ϕ̂) + op(m
−1). Since di(yi,ϕ) is continuous in ϕ and di(yi,ϕ) = Op(m

−1), one gets

E[T 1i(yi, ϕ̂)|yi] = T1i(yi,ϕ) + op(m
−1).

For T2i(yi,ϕ), from (4.1), it is estimated via parametric bootstrap method as

T ∗
2i(yi, ϕ̂) = E∗[{µ̃i(yi, ϕ̂∗

(i))− µ̃i(yi, ϕ̂)}2
∣∣yi].

It is noted that the estimator T ∗
2i(yi, ϕ̂) is always available although an analytical expression

of T2i(yi,ϕ) is not necessarily available. Combining the above results yields the estimator

ĈMSE
∗
i = T 1i(yi, ϕ̂) + T ∗

2i(yi, ϕ̂). (4.4)
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Theorem 4.3. Under Assumption 4.1, the estimator (4.4) is a second-order unbiased esti-
mator of CMSE in the sense that

E[ĈMSE
∗
i |yi] = CMSEi + op(m

−1).

4.3 Applications to NEF-QVF

We now consider the mixed models based on natural exponential families with quadratic vari-
ance functions (NEF-QVF). The NEF-QVF mixed models in context of small area estimation
were proposed by Ghosh and Maiti (2004), in which a second order unbiased estimator of
the unconditional MSE was used for qualify the risk of an empirical Bayes estimator. As
mentioned before, the CMSE is more preferable than the MSE as a risk measure in the con-
text of small area estimation, we here apply the results in the previous section to provide a
second-order approximation and its unbiased estimator for the CMSE.

4.3.1 Empirical Bayes estimator in NEF-QVF

Let y1, . . . , ym be mutually independent random variables where the conditional distribution of
yi given θi and the marginal distribution of θi belong to the the following natural exponential
families:

yi|θi ∼f(yi|θi) = exp[ni(θiyi − ψ(θi)) + c(yi, ni)],

θi|ν,mi ∼π(θi|ν,mi) = exp[ν(miθi − ψ(θi))]C(ν,mi),
(4.5)

where ni is a known scalar parameter and ν is an unknown scalar hyperparameter. Let
y = (y1, . . . , ym)

t and ϕ = (θ1, . . . , θm)
t. The function f(yi|θi) is the regular one-parameter

exponential family and the function π(θi|ν,mi) is the conjugate prior distribution. Define µi
by

µi = E[yi|θi] = ψ′(θi),

which is the conditional expectation of yi given θi, where ψ
′(x) = dψ(x)/dx. Assume that

ψ′′(θi) = Q(µi) for ψ
′′(x) = d2ψ(x)/dx2, namely,

Var(yi|θi) =
ψ′′(θi)

ni
=
Q(µi)

ni
,

where Q(x) = v0 + v1x + v2x
2 for known constants v0, v1 and v2 which are not simulta-

neously zero. This means that given θi, the conditional variance Var(yi|θi) is a quadratic
function of the conditional expectation E[yi|θi]. This is the natural exponential family with
the quadratic variance function (NEF-QVF) studied by Morris (1982, 1983). Similarly, the
mean and variance of the prior distribution are given by

E[µi|mi, ν] = mi, Var(µi|mi, ν) =
Qi(mi)

ν − v2
.

In our settings, we consider the link given by

mi = ψ′(xtiβ), i = 1, . . . ,m,
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where xi is a p×1 vector of explanatory variables and β is a p×1 unknown common vector of
regression coefficients. Then, the unknown parameters ϕ in the previous section correspond
to ϕt = (βt, ν). The joint probability density (or mass) function of (yi, θi) can be expressed
as

f(yi|θi)π(θi|ν,mi) = π(θi|yi, ν)fπ(yi|ν,mi),

where π(θi|yi, ν) is the conditional (or posterior) density function of θi given yi, and fπ(yi|ν,mi)
is the marginal density function of yi. These density (or mass) functions are written as

π(θi|yi, ν,mi) = exp[(ni + ν)(µ̃iθi − ψ(θi))]C(ni + ν, µ̃i),

fπ(yi|ν,mi) =
C(ν,mi)

C(ni + ν, µ̃i)
exp[c(yi, ni)],

(4.6)

where µ̃i is the posterior expectation of µi, namely, µ̃i = E[µi|yi;ϕ], given by

µ̃i ≡ µ̃i(yi,ϕ) =
niyi + νmi

ni + ν
, (4.7)

which corresponds to the Bayes estimator of µi in the Bayesian context when ν and mi are
known. As shown in Ghosh and Maiti (2008),

E[yi] = mi, Var(yi) = Qi(mi)ϕi, Cov(yi, µi) = Qi(mi)/(ν − v2),

for ϕi = (1 + ν/ni)/(ν − v2). Using these observations, Ghosh and Maiti (2008) showed that
the Bayes estimator µ̃i given in (4.7) is the best linear unbiased predictor of µi under the
squared loss.

Concerning the estimation of unknown hyperparameter ϕ, Ghosh and Maiti (2004) sug-
gested the use of the optimal estimating equations developed in Godambe and Thompson
(1989). Let gi = (g1i, g2i)

t for g1i = yi −mi and g2i = (yi −mi)
2 − ϕiQi(mi). Moreover, let

Dt
i =Qi(mi)

(
xi Q′

i(mi)ϕixi
0 −(1 + v2/ni)(ν − v2)

−2

)
, Σi ≡ Cov(gi) =

(
µ2i µ3i
µ3i µ4i − µ22i

)
,

and |Σi| = µ4iµ2i − µ32i − µ23i, where µri = E[(yi −mi)
r], r = 1, 2, . . ., and exact expressions

of µ2i, µ3i and µ4i are given below. Then, Ghosh and Maiti (2008) derived the estimating
equations of the form

∑m
i=1D

t
iΣ

−1
i gi = 0, which are written as

m∑
i=1

1

|Σi|

[
{µ4i − µ22i − µ3iϕiQ

′
i(mi)}g1i + {µ2iϕiQ′

i(mi)− µ3i}g2i
]
Qi(mi)xi = 0,

m∑
i=1

1

|Σi|
{µ2ig2i − µ3ig1i}Qi(mi)(1 + v2/ni)(ν − v2)

−2 = 0.

(4.8)

The resulting estimator of ϕ is here called the GT-estimator and denoted by ϕ̂GT. The
equations can be solved numerically. In our numerical investigation, we used the optim

function in ‘R’ to solve the estimating equations by minimizing the sums of squares of the
estimating functions. The exact moments µri = E[(yi −mi)

r], r = 1, 2, 3, 4, are obtain from
Theorem 1 of Ghosh and Maiti (2004) as

µ2i =
Q(mi)(ν/ni + 1)

ν − v2
, µ3i =

Q(mi)Q
′(mi)(ν/ni + 1)(ν/ni + 2)

(ν − v2)(ν − 2v2)
,
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and

µ4i =(di + 1)(2di + 1)(3di + 1)E[(µi −mi)
4] +

6

ni
Q′
i(mi)(di + 1)(2di + 1)E[(µi −mi)

3]

+
di + 1

n2i

[
7{Q′(mi)}2 + 2ni(4di + 3)Q(mi)

]
E[(µi −mi)

2]

+
1

n3i
Q(mi)

[
ni(2di + 3)Q(mi) + {Q′(mi)}2

]
,

for di = v2/ni. The expressions of the moments of µi are obtained given in Kubokawa et al.
(2014) as E[(µi −mi)

2] = Q(mi)/(ν − v2), E[(µi −mi)
3] = 2Q(mi)Q

′(mi)/(ν − v2)(ν − 2v2)
and

E
[
(µi −mi)

4
]
=

3Q(mi)
[
(ν − v2)Q(mi) + 2 {Q′(mi)}2

]
(ν − v2)(ν − 2v2)(ν − 3v2)

.

Using these expressions, the estimating equation (4.8) is completed.

An alternative method for estimating ϕ is the maximum likelihood (ML) estimator. Since
a closed expression of the marginal distribution of y is given in (4.6) in the NEF-QVF mixed
model, the ML estimator of ϕ is defined as

ϕ̂ML = argmaxϕ

{
m∑
i=1

log
C(ν,mi)

C(ni + ν, µ̃i(yi,ϕ))

}
.

When the parameter ϕ is estimated by the GT-estimator ϕ̂ = ϕ̂GT or the ML-estimator
ϕ̂ = ϕ̂ML, we can construct the estimator m̂i = ψ′(xtiβ̂) of mi. Substituting m̂i and ν̂ into
(4.7), we finally get the empirical Bayes estimator of µi:

µ̂i ≡ µ̃i(yi, ϕ̂) =
niyi + ν̂m̂i

ni + ν̂
. (4.9)

4.3.2 Evaluation of the CMSE

Our interest is evaluating the CMSE of µ̂i given in (4.9). Since the second-order approximation
of the CMSE is given in Theorem 4.1, we need to evaluate the first and second order terms
T1i(yi,ϕ) and T2i(yi,ϕ) in the CMSE. For the first order term, it is easy to see that

T1i(yi,ϕ) = Var(µi(θi,ϕ)|yi) =
Q(µ̂i(yi,ϕ))

ni + ν − v2
, i = 1, . . . ,m, (4.10)

which is Op(1). For the second order term, unfortunately, we do not have an analytical

expression of T2i(yi,ϕ) when we use the ML-estimator ϕ̂ML for ϕ̂. But, the parametric
bootstrap method given in Theorem 4.3 enables us to obtain a second order unbiased estimator
of the CMSE. When the GT-estimator ϕ̂GT is used for ϕ, on the other hand, we can derive an
analytical expression of T2i(yi,ϕ), which yields closed forms of the second-order approximation
of the CMSE and the asymptotically unbiased estimator of the CMSE. Thus, in the rest of
this subsection, we focus on derivation of analytical expressions for the CMSE when the
GT-estimator ϕ̂GT is used for ϕ.
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We begin by giving a stochastic expansion and conditional moments of ϕ̂GT which is the
solution of the estimating equations (4.8). We use the following notations:

sm =
m∑
i=1

Dt
iΣ

−1
i gi, U(ϕ) =

m∑
i=1

Dt
iΣ

−1
i Di (= Cov(sm)),

b(yi,ϕ) = U(ϕ)−1
{
Dt
iΣ

−1
i gi + a1(ϕ) +

1

2
a2(ϕ)

}
,

where the detailed forms of a1(ϕ) and a2(ϕ) are given in (4.18) and (4.17) in Section 4.5. It
is noted that sm = Op(m

1/2) and U(ϕ) = O(m). The following lemma is useful for evaluating
the conditional MSE, where the proof is given in Section 4.5.

Lemma 4.1. Let ϕ̂GT be the solution of estimating equations in (4.8). Then it holds

(ϕ̂GT − ϕ)|yi = U(ϕ)−1sm + op(m
−1/2),

E[(ϕ̂GT − ϕ)(ϕ̂GT − ϕ)t|yi] = U(ϕ)−1 + op(m
−1),

E[ϕ̂GT − ϕ|yi] = b(yi,ϕ) + op(m
−1).

(4.11)

Lemma 4.1 means that the second-order approximations of the conditional covariance ma-
trix E[(ϕ̂GT−ϕ)(ϕ̂GT−ϕ)t|yi] does not depend on yi, and it coincides with the unconditional
results given in Ghosh and Maiti (2004). On the other hand, the second order approximation
of the conditional bias E[ϕ̂GT − ϕ|yi] depends on yi. It is noted that Lemma 4.1 shows that
the estimator ϕ̂GT satisfies Assumption 4.1.

We now derive analytical expressions T2i(yi,ϕ) in Theorem 4.1. In the following theorem,
we can evaluate T2i(yi,ϕ) as

T2i(yi,ϕ) = tr
[
P i(yi,ϕ)U(ϕ)−1

]
, (4.12)

which is Op(m
−1), where

P i(yi,ϕ) = (ni + ν)−2

(
ν2Q(mi)

2xix
t
i −niν(ni + ν)−1Q(mi)g1ixi

−niν(ni + ν)−1Q(mi)g1ix
t
i n2i (ni + ν)−2g21i

)
.

Theorem 4.4. The CMSE of µ̃i(yi, ϕ̂GT) can be approximated up to Op(m
−1) as

CMSEi = T1i(yi,ϕ) + T2i(yi,ϕ) + op(m
−1), (4.13)

where T1i(yi,ϕ) and T2i(yi,ϕ) are given in (4.10) and (4.12), respectively.

Proof. From Theorem 4.1, it is sufficient to calculate T2i, which is written as

E
[{

(ϕ̂GT − ϕ)t∂µ̃i(yi,ϕ)
∂ϕ

}2∣∣∣yi] = trE
[(∂µ̃i
∂ϕ

)(∂µ̃i
∂ϕ

)t
(ϕ̂GT − ϕ)(ϕ̂GT − ϕ)t

∣∣∣yi]
= tr

[(∂µ̃i
∂ϕ

)(∂µ̃i
∂ϕ

)t
E
[
(ϕ̂GT − ϕ)(ϕ̂GT − ϕ)t

∣∣yi]].
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It is noted from (4.7) that

∂µ̃i(yi,ϕ)

∂ϕ
=

(
ν(ni + ν)−1Q(mi)xi
−ni(ni + ν)−2g1i

)
.

Then from Lemma 4.1, the last formula can be approximated as

tr
[
P i(yi,ϕ)U(ϕ)−1

]
+ op(m

−1),

which completes the proof. □

Taking the expectation of CMSEi with respect to yi, one gets the unconditional MSE
given in Theorem 1 of Ghosh and Maiti (2004) with δi = n−1

i . In fact,

T1i(ϕ) ≡E[T1i(yi,ϕ)] =
ν

(ni + ν)(ν − v2)
Q(mi),

T2i(ϕ) ≡E[T2i(yi,ϕ)]

=(ni + ν)−2tr
[( ν2Q(mi)

2xix
t
i 0

0t ni(ni + ν)−1Q(mi)(ν − v2)
−1

)
U(ϕ)−1

]
.

Corollary 4.1. The unconditional MSE of µ̃i(yi, ϕ̂GT) is approximated as

MSEi = T1i(ϕ) + T2i(ϕ) + o(m−1).

It is interesting to investigate the difference between the approximations of the CMSE and
the MSE. When the underlying distribution of yi is a normal distribution, we have Q(x) = 1,
or v0 = 1 and v1 = v2 = 0, so that T1i(yi,ϕ) = 1/(ni + ν) = T1i(ϕ), namely the leading term
in the CMSE is identical to that in the MSE. Thus, the difference between the CMSE and the
MSE appears in the second-order term with Op(m

−1). When v1 or v2 is not zero, however,
the leading term T1i(yi,ϕ) in the CMSE is a function of yi and it is not equal to the leading
term T1i(ϕ) in the MSE. Thus, for distributions far from the normality, the difference between
the CMSE and the MSE is significant even when m is large. This tells us about the remark
that one cannot replace the conditional MSE given yi with the corresponding unconditional
MSE except for the normal distribution. Some examples including the Poisson and binomial
distributions are presented in Section 4.3.3.

We next derive an analytical form of a second-order unbiased estimator for the CMSE. To
this end, we define

r(yi,ϕ) ≡
∂T1i
∂ϕ

=
( ν(ni + ν)−1λiQ

′(µ̂i)Q(mi)xi
−λ2iQ(µ̂i)− λini(ni + ν)−2Q′(µ̂i)g1i

)
,

R(yi,ϕ) ≡
∂2T1i

∂ϕ∂ϕt
=
( T 11

1i T 12
1i

(T 12
1i )

t T 22
1i

)
,



58 CHAPTER 4. CONDITIONAL MEAN SQUARED ERRORS IN MIXED MODELS

where λi = (ni + ν − v2)
−1, and

T 11
1i = (ni + ν)−2νxix

t
iλiQ(mi)

{
2v2νQ(mi) +Q′(µ̃i)Q

′(mi)(ni + ν)
}
,

T 12
1i =

∂2T1i
∂β∂ν

= Q(mi)λi(ni + ν)−2
[
Q′(µ̃i) {ni − ν(ni + ν)λi} − 2v2niνg1i(ni + ν)−1

]
xi,

T 22
1i =

∂2T1i
∂ν2

= 2λ3iQ(µ̃i) + 2λ2ini(ni + ν)−2Q′(µ̃i)g1i

+ 2λini(ni + ν)−4g1i
{
(ni + ν)Q′(µ̂i) + niv2g1i

}
.

Using (4.11) in Lemma 4.1, we obtain the analytical expressions of T11i and T12i appeared in
(4.2) as

T11i(yi,ϕ) =r(yi,ϕ)
tb(yi,ϕ), T12i(yi,ϕ) =

1

2
tr
[
R(yi,ϕ)U(ϕ)−1

]
,

thereby the estimator ĈMSEi given in (4.3) is expressed as

ĈMSEi =T1i(yi, ϕ̂GT) + T2i(yi, ϕ̂GT)− r(yi, ϕ̂GT)
tb(yi, ϕ̂GT)−

1

2
tr
[
R(yi, ϕ̂GT)U(ϕ̂GT)

−1
]
.

(4.14)

Theorem 4.5. The estimator (4.14) is a second-order unbiased estimator, namely,

E[ĈMSEi | yi] = CMSEi + op(m
−1).

4.3.3 Some useful examples

We here give representative examples of the NEF-QVF mixed models (4.5) and investigate
some properties of the CMSE.

[1] Fay-Herriot model. The Fay-Herriot model suggested in Fay and Herriot (1979) is
an area-level model extensively used in small area estimation. The model is described as

yi = x
t
iβ + vi + εi, i = 1, . . . ,m,

wherem is the number of small areas, and vi’s and εi’s are mutually independently distributed
random errors such that vi ∼ N(0, A) and εi ∼ N(0, Di). The notations in (4.5) correspond
to ni = D−1

i , v0 = 1, v1 = v2 = 0, µi = θi, ν = A−1 and ψ(θi) = θ2i /2. In this case, the
estimating equations in (4.8) reduce to

m∑
i=1

(A+Di)
−1xiyi =

m∑
i=1

(A+Di)
−1xix

t
iβ,

m∑
i=1

(A+Di)
−2(yi − xtiβ)2 =

m∑
i=1

(A+Di)
−1,

which coincide with the likelihood equations for the maximum likelihood estimators of β
and A, namely ϕ̂ML = ϕ̂GT in Fay-Herriot model. The terms T1i(yi,ϕ) and T2i(yi,ϕ) in
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approximation (8.13) of the CMSE are written as

T1i(yi,ϕ) =
ADi

A+Di

T2i(yi,ϕ) =
Di

(A+Di)2
xti

( m∑
j=1

xjx
t
j

A+Dj

)−1
xj +

D2
i (yi − xtiβ)2

(A+Dj)4

( m∑
j=1

1

2(A+Dj)2

)−1
,

which were given in Datta et al. (2011a). In the Fay-Herriot model, T1i(yi,ϕ) = ADi/(A+Di) =
T1i(ϕ), namely, the leading terms in the conditional and unconditional MSEs are identical,
and the difference is appeared in the term of order O(m−1), which is negligible for large m.

[2] Poisson-gamma model. Let z1, . . . , zm be mutually independent random variables
having

zi|λi ∼ Po(niλi) and λi ∼ Γ(νmi, 1/ν)

where λ1, . . . , λm are mutually independent, Po(λ) denotes the Poisson distribution with mean
λ, and Γ(a, b) denotes the gamma distribution with shape parameter a and scale parameter
b. Let yi = zi/ni and lnmi = xtiβ for i = 1, . . . ,m. Then, the notations in (4.5) correspond
to v1 = 1, v0 = v2 = 0, µi = λi = exp(θi), and ψ(θi) = exp(θi). The posterior distribution of
λi is Γ(νmi + niyi, (ni + ν)−1) or Γ((ni + ν)µ̂i, (ni + ν)−1). Then we have

T1i(yi,ϕ) =
µ̂(yi,ϕ)

ni + ν
=
niyi + νmi

(ni + ν)2
,

which increases in yi. Thus, the difference between the conditional and unconditional MSEs
increases in yi. When a large value of yi is observed, it should be remarked that the conditional
MSE of the empirical Bayes estimator given yi is larger than the unconditional (or integrated)
MSE. Hence, it is meaningful to provide practitioners with the information on the conditional
MSE as well as the unconditional MSE.

For the Poisson-gamma mixture model, the marginal distribution of yi (marginal likeli-
hood) is the negative binomial distribution given by

f(yi;ϕ) =
Γ(niyi + νmi)

Γ(niyi + 1)Γ(νmi)

(
ni

ni + ν

)niyi ( ν

ni + ν

)νmi

,

where Γ(·) denotes a gamma function. Thus it is noted that the maximum likelihood estimator
can be obtained by maximizing

∑m
i=1 log f(yi|ϕ).

[3] Binomial-beta model. Let z1, . . . , zm be mutually independent random variables having

zi|pi ∼ Bin(ni, pi) and pi ∼ B(νmi, ν(1−mi)),

where p1, . . . , pm are mutually independent, Bin(n, p) denotes the binomial distribution and
B(a, b) denotes the beta distribution. Let yi = zi/ni and mi = exp(xtiβ)/{1 + exp(xtiβ)} for
i = 1, . . . ,m. Then the notations in (4.5) correspond to v0 = 0, v1 = 1 and v2 = −1, µi =
pi = exp(θi)/{1 + exp(θi)} and ψ(θi) = ln(1 + exp(θi)). The posterior distribution of pi is
B(νmi + niyi, ni(1− yi) + ν(1−mi)) or B((ni + ν)µ̂i, (ni + ν)(1− µ̂i)), so that T1i(yi,ϕ) is
written as

T1i(yi,ϕ) =
µ̂i(yi,ϕ){1− µ̂i(yi,ϕ)}

ni + ν + 1
,
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which is a quadratic and concave function of yi. Since 0 < µ̂(yi,ϕ) < 1, T1i(yi,ϕ) is al-
ways positive and attains the maximum when µ̂i = 1/2 or yi = (ni + ν)/2ni − νmi/ni, and
T1i(yi,ϕ) = 0 when µ̂i = 0 or 1. Thus, the value of T1i(yi,ϕ) is relatively small when yi is
close to 0 or 1. When yi is around 1/2, the value of T1i(yi,ϕ) tends to be larger. When a
value around 1/2 is observed for yi, it should be remarked that the conditional MSE of the
EB given yi is larger than the unconditional (or integrated) MSE.

In the binomial-beta mixture model, the marginal likelihood function is not a familiar
form, but proportional to

L(ϕ) ∝
m∏
i=1

B(νmi + niyi, ni(1− yi) + ν(1−mi))

B(νmi, ν(1−mi))
,

where B(·, ·) is a beta function.

4.4 Numerical Studies

4.4.1 Comparison of CMSE and MSE

We first investigated how different CMSE is from the unconditional MSE. Since the major
difference between them appears in the leading terms, namely the terms with order Op(1) in
the CMSE and MSE, we define the ratio of the leading terms in CMSE and MSE as

Ratio1 = T1i(yi,ϕ)/E[T1i(yi,ϕ)],

which is a function of yi and ϕ. We considered the case m = 10, ν = 1, xtiβ = µ = 0 and
ni = 10 for i = 1, . . . ,m. Then, the curves of the functions Ratio1 are illustrated Figure
4.1 for the three mixed models: the Fay-Herriot, Poisson-gamma and binomial-beta models.
As mentioned before, in the Fay-Herriot model, Ratio1 = 1 since T1i(yi,ϕ) = E [T1i(yi,ϕ)].
For the Poisson-gamma and binomial-beta mixture models, Figure 4.1 tells us about the
interesting features of their leading terms in the CMSE, namely, the ratio is an increasing
function of yi for the Poisson-gamma mixture model, and a concave and quadratic function
of yi for the binomial-beta mixture model.

We next investigated the corresponding ratios based on the second-order approximations
of the CMSE and MSE. Let us define Ratio2 by

Ratio2 = {T1i(yi,ϕ) + T2i(yi,ϕ)}/E[T1i(yi,ϕ) + T2i(yi,ϕ)].

Since the second order terms depend on m, we treated three cases m = 10, 15 and 20 with
xtiβ = µ and n1 = · · · = nm = 5. We used ϕ̂GT for estimation of ϕ. The performances of
Ratio2 are illustrated in Figure 4.2 for the three mixed models, where the values of (µ, ν)
are (0, 1) for the Fay-Herriot model, (exp(2), 1) for the Poisson-gamma mixture model, and
(exp(1.5)/{1 + exp(1.5)}, 1) for the binomial-beta mixture models. Figure 4.2 demonstrates
that the second-order terms for the three mixed models do not contribute so much to Ratio2
or the conditional MSE.
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Figure 4.1: Ratio of the leading terms in CMSE and MSE for the Fay-Herriot model, the
binomial-beta model, and the Poisson-gamma model.
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Figure 4.2: Ratio of the leading terms in CMSE and MSE for the Fay-Herriot model, the
binomial-beta model, and the Poisson-gamma mixture Model.

4.4.2 Finite performances of the CMSE estimators

We next investigated the finite performances of the second order unbiased estimator of CMSE.
We used the Poisson-gamma model and the binomial-beta model with m = 25, ni = 10 and
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ν = 15. For simplicity, we considered the case without covariates and set β1 = 0. Since the
conditional MSE depends on the observation, we first obtained the α-quantile point, denoted
by y1(α), of the distribution of y1 for α = 0.05, 0.25, 0.5, 0.75 and 0.95. For the Poisson-gamma
mixture model, the marginal distribution of y1 is the negative binomial distribution and y1(α)
corresponds to the α-quantile of the negative binomial distribution. For the binomial-beta
mixture model, the marginal distribution of y1 is not a familiar distribution, so that we
generated a large number of random samples of y1 and computed the quantiles.

For computing the true values of CMSE, we generated random samples yi for i = 2, . . . ,m,

computed estimates ϕ̂ from the simulated data {y1(α), y
(r)
2 , . . . , y

(r)
m }, and calculated the em-

pirical Bayes estimates µ̂1 in the 1st area. These procedures were repeated for R1 = 10, 000
times to get the true CMSE value in the 1st area under given y1(α):

CMSE1 = T11(y1(α),ϕ) +
1

R1

R1∑
r=1

{
µ̂
(r)
1 − µ̃1(y1(α),ϕ)

}2
,

where µ̂
(r)
1 is the empirical Bayes estimates in rth simulation run. For estimating ϕ, we

considered both the GT-estimator and the ML estimator.
Through the same manner as described above, we generate another simulated sample with

size R2 = 2, 000 and calculate the CMSE estimate ĈMSE1. Then, we computed the relative
bias (RB) and coefficients of variation (CV) for the CMSE estimator:

RB =
R−1

2

∑R2
r=1 ĈMSE

(r)

1 − CMSE1

CMSE1
,

CV =

{
1

R2

R2∑
r=1

(
ĈMSE

(r)

1 − CMSE1

)2}1/2/
CMSE1,

where ĈMSE
(r)

1 is the CMSE estimate in the rth replication.
For α = 0.05, 0.25, 0.50, 0.75 and 0.95, we report the value of y1(α), CMSE1, RB and

CV in both cases in which we used GT-estimator and ML-estimator for ϕ, in Table 4.1 for
the two mixed models. It is noted that the values of CMSE1 are multiplied by 100. Table
4.1 demonstrates that the CMSE estimator with the GT-estimator performs well for various
values of y1(α) in both models. Concerning the CMSE estimator with the ML-estimator, it

is biased than GT, but the CVML is smaller than CVGT. The true value of CMSEi has
a general trend increasing in y1(α) in the Poisson-gamma model, which coincides with the
analytical property discussed the previous section. In the binomial-beta mixture model, the
true values of CMSEi are similar for five α. Altogether, we can conclude that the CMSE
estimators with both GT and ML perform well in this setting.

4.4.3 Example: stomach cancer mortality data

We applied the proposed method to the Stomach Cancer Mortality Data and the Infant
Mortality Data Before World War II in Japan. The data set consists of the observed number
of mortality zi and its expected number ni of stomach cancer for women who lived in the ith
city or town in Saitama prefecture, Japan, for five years from 1995 to 1999. Such area-level
data (zi, ni), i = 1, . . . ,m, are available for m = 92 cities and towns, and the total number of
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Table 4.1: Values of CMSE1, relative bias (RB) and coefficient of variation (CV) of the CMSE
estimator for the five conditioning values in the Poisson-gamma and binomial-beta models.

α y1(α) CMSEGT
1 RBGT CVGT CMSEML

1 RBML CVML

0.05 0.40 4.10 0.09 0.73 3.92 −0.14 0.20

0.25 0.70 3.80 0.02 0.53 3.97 −0.30 0.36

Poisson-gamma 0.50 1.00 4.24 −0.03 0.68 4.31 −0.36 0.41

0.75 1.30 4.90 0.05 0.71 5.05 −0.30 0.37

0.95 1.70 6.16 0.06 0.66 6.45 −0.04 0.22

0.05 0.10 1.18 −0.10 0.30 1.25 −0.05 0.15

0.25 0.30 1.07 0.03 0.47 1.10 −0.24 0.30

Binomial-beta 0.50 0.40 1.03 0.07 0.56 1.05 −0.32 0.37

0.75 0.50 1.03 0.06 0.60 1.03 −0.34 0.39

0.95 0.70 1.06 −0.02 0.51 1.10 −0.23 0.30

mortality in the whole region is L = 3953. The expected numbers are adjusted by age on the
basis of the population so that L =

∑m
i=1 zi =

∑m
i=1 ni.

For z1, . . . , zm, we used the Poisson-gamma model discussed in Section 4.3.3, namely
zi|λi ∼ Po(niλi) and λi ∼ Γ(νmi, 1/ν). Since data of mortality rate of stomach cancer
for men are also available, we can use them as a covariate. Let xi be a log-transformed
mortality rate for men for i-th area. Then, we treat the regression model lnmi = β0 + xiβ1
for i = 1, . . . ,m. The unknown parameters ϕt = (β0, β1, ν)

t are estimated as the roots of
the estimating equations in (4.8). Their estimates are β0 = −7.77 × 10−3, β1 = 0.157 and
ν = 158.

To illustrate the difference between CMSE and MSE, we use the percentage relative dif-
ference (RD) defined by

RDi = 100× (ĈMSEi − M̂SEi)/M̂SEi.

When RDi is positive, ĈMSEi is larger than M̂SEi. In Figure 4.3, the plots of the values
(M̂SEi, ĈMSEi) multiplied by 1, 000 and the values of (yi,RDi) for i = 1, . . . ,m are given in
the left and right figures, respectively, where yi = zi/ni is the standard mortality rate (SMR).

From Figure 4.3, it is revealed that the values of ĈMSEi are larger than those of M̂SEi for
some areas, and that the relative differences RDi have great variability, which comes from
non-normality of distribution as discussed in Section 4.4.1.

Table 4.2 reports the values of ni, yi, EBi, ĈMSEi, M̂SEi and RDi for ten selected mu-
nicipalities in Saitama prefecture, where the values of M̂SEi and ĈMSEi are multiplied by
1, 000. It is noted that Kumagaya has the maximum RD value and Yoshida has the minimum
RD value in our result. The values of RD tell us about important information that the given
empirical Bayes estimate has a different prediction error from the usual unconditional MSE.
For instance, in Yoshida, the estimate of the CMSE is 8.631, while that of the unconditional
MSE is 18.858, and the resulting RD is −54. This means that the unconditional MSE over-
estimates the CMSE. On the other hand, in Kumagaya, the estimate of the CMSE is 7.384,
while that of the unconditional MSE is 5.819, and the resulting RD is 27. This means that
the unconditional MSE under-estimates the CMSE. Remember that the CMSE is a function
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of both yi and ni increasing for yi and decreasing for ni in the Poisson-gamma model, while
the unconditional MSE does not depend on yi and decreases for ni. Thus, the CMSE is not
always small in areas with small ni such as Yoshida and Naguri, and the unconditional MSE
may over-estimates the CMSE. On the contrary, in area with large ni such as Kumagaya, the
unconditional MSE may under-estimates the CMSE, which leads to a serious situation in real
application.
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Figure 4.3: Scatter plot of (M̂SEi, ĈMSEi) (left) and that of (yi,RDi) (right) for stomach
cancer mortality data.

4.4.4 Example: infant mortality data

We next handle the historical data of the Infant Mortality Data Before World War II. The
data set consists of the observed number of infant mortality zi and the number of birth
ni in the i-th city or town in Ishikawa prefecture, Japan, before World War II. Such area-
level data are available for m = 211 cities, towns and villages, and the total number of
infant mortality in the whole region is L = 4252. It is noted that the infant mortality rates
yi = zi/ni before World War II are not small and distributed around 0.2. Thus, we here apply
the data to the binomial-beta model rather than the Poisson-gamma model. For z1, . . . , zm,
zi|pi and pi have the distributions zi|pi ∼ Bin(ni, pi) and pi ∼ B(νmi, ν(1 − mi)), where
mi = exp(β)/(1 + exp(β)) for i = 1, . . . ,m, since we do not have any covariates. Thus, the
unknown parameters are ϕ = (β, ν)t and their estimates are β = −1.57, namely mi = 0.171,
and ν = 102.

The plots of the values (M̂SEi, ĈMSEi) multiplied by 1, 000 and the values of (yi,RDi)
for i = 1, . . . ,m are given in the left and right figures of Figure 4.4, respectively. Figure 4.4
suggests that the values of the relative difference RD increases in yi. This is because the
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Table 4.2: Values of expected mortality ni, SMR yi, empirical Bayes estimates EBi, CMSE
estimate ĈMSEi, unconditional MSE estimate M̂SEi and relative difference RDi for 10 selected
areas in Saitama prefecture.

Area ni yi EBi ĈMSEi M̂SEi RDi

Kawagoe 192.1 1.077 1.058 3.892 3.855 1

Kumagaya 102.7 1.324 1.194 7.384 5.819 27

Hatagaya 35.2 1.307 1.114 9.556 9.054 6

Asaka 52.5 1.124 1.031 7.600 7.736 −2

Sakado 51.6 1.298 1.131 8.903 7.933 12

Ooi 20.7 0.867 1.003 9.202 10.720 −14

Naguri 3.6 1.394 0.934 9.435 14.839 −36

Yoshida 6.5 0.771 0.863 8.631 18.858 −54

Kamisato 18.3 1.364 1.066 10.164 9.690 5

Miyashiro 20.1 1.194 1.051 9.516 9.784 −3

leading Op(1) term is an increasing function of yi for fixed ni since yi is between 0 and 0.5,
as investigated in Section 4.4.1. It is observed from Figure 4.4 that the unconditional MSE
under-estimates the CMSE in most areas. This gives us a warning message on the empirical
Bayes estimates in each area since the unconditional MSE underestimates the estimation error
of the empirical Bayes estimate based on given area data. Table 4.3 reports the values of ni,
yi, EBi, ĈMSEi, M̂SEi and RDi for fifteen selected municipalities in Ishikawa prefecture,
where the values of M̂SEi and ĈMSEi are multiplied by 1, 000. It is noted that Area 175
has the maximum RD value and Area 46 has the minimum RD value in our result. For
Area 176, the observed mortality rate yi = 0.400 is much shrunken to EBi = 0.216 by the
empirical Bayes estimator since the number of birth is quite small as given by ni = 25. The
unconditional MSE is estimated by 1.216, but the relative difference is RDi = 62, and the
estimate of CMSE is 1.964, which is higher than the MSE estimate. This suggests that it
should be good to provide estimates of CMSE as well as estimates of MSE.

4.5 Technical Issues

4.5.1 Proof of Lemma 4.1

For notational simplicity, we put Ri = Dt
iΣ

−1
i and we use U as U(ϕ). Using the results in

Ghosh and Maiti (2004), we immediately have ϕ̂ − ϕ = U−1sm + op(m
−1/2), which implies

that

E
[
(ϕ̂− ϕ)(ϕ̂− ϕ)t|yi

]
= U−1E

[
sms

t
m|yi

]
U−1 + op(m

−1),
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Figure 4.4: Scatter plot of (M̂SEi, ĈMSEi) (left) and that of (yi,RDi) (right) for infant
mortality data.

Table 4.3: Values of expected mortality ni, SMR yi, empirical Bayes estimates EBi, CMSE
estimate ĈMSEi, unconditional MSE estimate M̂SEi and relative difference RDi for 15 selected
areas in Ishikawa prefecture.

Area ni yi EBi ĈMSEi M̂SEi RDi

1 4146 0.139 0.139 0.033 0.033 0

19 56 0.250 0.199 1.386 0.966 43

23 55 0.164 0.168 1.152 0.973 18

46 197 0.091 0.119 0.416 0.494 −16

71 84 0.060 0.121 0.698 0.814 −14

79 87 0.069 0.124 0.703 0.800 −13

86 101 0.079 0.125 0.658 0.742 −11

96 194 0.119 0.137 0.480 0.499 −4

98 208 0.250 0.224 0.771 0.476 62

112 94 0.160 0.166 0.894 0.770 16

158 173 0.185 0.180 0.685 0.539 27

162 57 0.333 0.229 1.646 0.960 71

175 119 0.294 0.237 1.190 0.678 75

176 25 0.400 0.216 1.964 1.216 62

179 245 0.229 0.212 0.642 0.423 52
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where

E
[
sms

t
m|yi

]
=

m∑
j=1

E
[
Rjgjg

t
jR

t
j |yi
]
=

m∑
j ̸=i

E
[
Rjgjg

t
jR

t
j

]
+Rigig

t
iR

t
i

= U +Ri(gig
t
i −Σi)R

t
i,

since gj depends only on yj of Y and y1, . . . , ym are mutually independent. Since U = O(m)
and Ri(gig

t
i −Σi)R

t
i = Op(1), we have E

[
sms

t
m|yi

]
= U +Op(1), so that

E
[
(ϕ̂− ϕ)(ϕ̂− ϕ)t|yi

]
= U−1 + op(m

−1).

Next, we evaluate asymptotically the conditional bias of ϕ̂, i.e. E[ϕ̂ − ϕ|yi]. Expanding the
equation (4.8) up to second order, we have

ϕ̂− ϕ =
(
−∂sm
∂ϕ

)−1(
sm +

1

2
t+ op(1)

)
,

where
∂sm

∂ϕt
=

m∑
j=1

(∂Rj

∂ϕt

) (
Ip ⊗ gj

)
+

m∑
j=1

Rj

(∂gj
∂ϕt

)
,

noting that ∂sm/∂ϕ
t = −U + op(m), and

t = colℓ

{
(ϕ̂− ϕ)t

(
∂2Smℓ

∂ϕ∂ϕt

)
(ϕ̂− ϕ)

}
,

for sm = (Sm1, . . . , Smq) with q = p + 1. It noted that Smk = Rikgi for k = 1, . . . , q, where
Rik is the k-th row vector of Ri. The notation colℓ {aℓ} for scalars aℓ’s, ℓ = 1, . . . , n is defined
by

colℓ {aℓ} = (a1, a2, . . . , an)
t.

Let W = ∂sm/∂ϕ
t − (−U), then we have(

−∂sm
∂ϕ

)−1
= −U−1 −U−1WU−1 + op(m

−3/2).

Therefore, it follows that

ϕ̂− ϕ =
{
U−1 +U−1WU−1 + op(m

−3/2)
}{

sm +
1

2
t+ op(1)

}
= U−1sm +

1

2
U−1t+U−1WU−1sm + op(m

−1),

whereby

E[ϕ̂− ϕ|yi] = U−1Rigi +
1

2
U−1E [t|yi] +U−1E

[
WU−1sm|yi

]
. (4.15)
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For the second term in (4.15), note that

E [t|yi] = colℓ

{
E

[
(ϕ̂− ϕ)t

(
∂2Smℓ

∂ϕ∂ϕt

)
(ϕ̂− ϕ)

∣∣∣∣yi]}
= colℓ

{
tr
{( ∂2Smℓ

∂ϕ∂ϕt

)
E

[
(ϕ̂− ϕ)t(ϕ̂− ϕ)

∣∣∣∣yi]}}
= colℓ

{
tr
(
E
[ ∂2Smℓ
∂ϕ∂ϕt

]
U−1

)}
+ op(1) ≡ a2(ϕ) + op(1).

The straightforward calculation shows that

∂2Smℓ

∂ϕ∂ϕt
=

m∑
i=1

{(
∂2Riℓ

∂ϕ∂ϕt

)
(Ip ⊗ gi) + 2

∂Riℓ

∂ϕ

∂gi
∂ϕt

+ (Ip ⊗Riℓ)

(
∂2gi
∂ϕt∂ϕ

)}
,

so that

E

[
∂2Smℓ

∂ϕ∂ϕt

]
=

m∑
i=1

{
2

(
∂Riℓ

∂ϕ

)
Di + (Ip ⊗Riℓ)E

(
∂2gi
∂ϕt∂ϕ

)}
.

Since
∂gi
∂ϕt

= 2Q(mi)(yi −mi)
( 0t 0
xti 0

)
−Di, (4.16)

we obtain

∂2gi
∂ϕt∂ϕ

=
( 2xiQ(mi) {Q′(mi)(yi −mi)−Q(mi)}

0

)
⊗
( 0t 0
xti 0

)
− ∂Di

∂ϕ
,

whereby

Zi ≡ E

(
∂2gi
∂ϕ∂ϕt

)
=
( −2xiQ(mi)

2

0

)
⊗
( 0 xi

0 0

)
− ∂Di

∂ϕ
.

Then we have

a2(ϕ) = colℓ

{
tr
(
U−1

m∑
i=1

{
2
(∂Riℓ

∂ϕ

)
Di + (Iq ⊗Riℓ)Zi

})}
. (4.17)

For the evaluation of the third term in (4.15), we get

U−1E
[
WU−1sm|yi

]
= U−1E

[
WU−1sm

]
+ op(m

−1),

and

E
[
WU−1sm

]
= E

[(
∂sm

∂ϕt

)
U−1sm

]
=

m∑
i=1

(
∂Ri

∂ϕt

)
E
[
(Ip ⊗ gi)U−1Rigi

]
+

m∑
i=1

RiE

[(
∂gi
∂ϕt

)
U−1Rigi

]
.

Using the expression (4.16), we finally have

a1(ϕ) ≡ E
[
WU−1sm

]
=

m∑
i=1

(
∂Ri

∂ϕt

)
vec(DiU

−1) + 2

m∑
i=1

RiQ(mi)
( 0t 0
xti 0

)
U−1Ri

( µ2i
µ3i

)
,

(4.18)

which completes the proof. □
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4.5.2 Numerical evaluation of partial derivatives.

The analytical expression of ∂Ri/∂ϕ
t and ∂Di/∂ϕ are complex and not practical. However,

the values of these derivatives at some value ϕ0 can be easily calculated. Let zm be a positive
number depending on m, then the value of ∂Ri/∂ϕk, k = 1, . . . , k at ϕ = ϕ0 is evaluated as

∂Ri

∂ϕk
(ϕ∗

0) ≡ (2zm)
−1 {Ri(ϕ0 + zmek)−Ri(ϕ0 − zmek)} ,

where ek is a vector of 0’s other than k-th element is 1. Since the difference between ∂Ri/∂ϕk
and ∂Ri/∂ϕ

∗
k at ϕ = ϕ0 is O(zm), the choice zm = o(m−1) does not affect the second-order

unbiasedness of the CMSE estimator established in Theorem 4.5. In numerical studies given
in this paper, we choose zm = m−5/4 satisfying zm = o(m−1). The partial derivative ∂Di/∂ϕ
can be numerically evaluated in the same way.





Chapter 5

Heteroscedastic Nested Error
Regression Models

5.1 Introduction

5.1.1 Nested error regression model

In some applications, unit level data can be available. For such a case, Battese et al. (1988)
suggested the nested error regression (NER) model described as

yij = x
t
ijβ + vi + εij , i = 1, . . . ,m, j = 1, . . . , ni, (5.1)

where yij is the observed response value, xij is a vector of associated covariates, ni is the
area sample size which is typically small, vi and εij are the random effect and sampling error.
Here it is assumed that vi and εij are mutually independent and they hold E[vi] = E[εij ] = 0,
Var(vi) = τ2 and Var(εij) = σ2, noting that the normality is often added for these variables.
The model (5.1) can be regarded as the random intercept model in the general linear mixed
model, and the model (5.1) is also useful in biological experiments and econometric analysis.
The typical purpose in (5.1) is the estimating (predicting) area-specific quantity µi = c

t
iβ+vi,

and it is well-known that the best linear predictor (BLP) has the form

µ̃i ≡ µ̃i(yi,ϕ) = c
t
iβ +

niτ
2

niτ2 + σ2
(ȳi − x̄tiβ), (5.2)

where ȳi = n−1
i

∑ni
j=1 yij and x̄i = n−1

i

∑ni
j=1 xij are the sample means in the ith area, and

ϕ = (βt, τ2, σ2)t is the model parameters in (5.1). To use the BLP in practice, we need to
estimate the unknown parameter ϕ from the data, and several estimator including maximum
likelihood estimator and the moment estimator have been suggested. Then the empirical
best linear unbiased predictor (EBLUP) is obtained as µ̂i = µ̃i(yi, ϕ̂). Typically, it holds
µ̂i − µ̃i → 0 as m→ ∞ if ϕ̂ is a consistent estimator of ϕ.

From (5.1), it follows that Var(yij) = τ2 + σ2, which means that the variances of the
observations are equal over all areas. Though Battese et al. (1988) applied the NER model to
crop data in Iowa counties, Jiang and Nguyen (2012) illustrated that the within-area sample
variances change dramatically from small-area to small-area for the data. This motivate us
to extend the traditional NER model to cases with heteroscedastic variances.

71
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5.1.2 Unstructured heteroscedastic variances

Jiang and Nguyen (2012) proposed the heteroscedastic nested error regression (HNER) model
by assuming vi ∼ N(0, λσ2i ) and εij ∼ N(0, σ2i ) in (5.1). In their model, the number of
parameters diverges as m → ∞, namely Neyman-Scott problem is occurred. However, they
showed that the maximum likelihood estimators of λ and β obtained as the minimizer of the
negative profile log-likelihood function without irrelevant constants Q(β, λ) given by

Q(β, λ) =

m∑
i=1

{
ni log(s

2
i ) + log(1 + niλ)

}
,

with

s2i =
1

ni


ni∑
j=1

(yij − xtijβ)2 −
λ

1 + niλ
(ȳi − x̄tiβ)2

 ,

are consistent as m → ∞ although heteroscedastic variances σ2i are inconsistent. They also
pointed out that BLP given in (5.2) can be rewritten as

µ̃i = c
t
iβ +

niλ

1 + niλ
(ȳi − x̄tiβ),

which are free from σ2i . Therefore, EBLUP is asymptotically equivalent to BLP as m → ∞
even though σ2i is inconsistent.

For measuring uncertainty of EBLUP, the mean squared errors (MSE) are often used in
small area estimation, which is defined as MSEi = E

[
(µ̂i − µi)

2
]
. In the model by Jiang and

Nguyen (2012), it was shown that

E
[
(µ̃i − µi)

2
]
=

λσ2i
1 + niλ

,

Which depends on σ2i . Hence, the asymptotically valid MSE estimator cannot be obtained
under unstructured heteroscedastic variances.

5.1.3 Random heteroscedastic variances

To overcome the inconsistency of the estimating heteroscedastic variances σ2i , Kubokawa et
al. (2016) suggested the following hierarchical random dispersion structure:

vi ∼ N(0, λσ2i ), εij ∼ N(0, σ2i ), σ−2
i ∼ Γ(τ1/2, τ2/2),

where τ1 and τ2 are unknown parameters to characterize the randomness of heteroscedastic
variances σ2i . Therefore the model parameters are β, λ and two dispersion parameter τ1 and
τ2. Under the setting, they showed that BLP of µi is identical to that of Jiang and Nguyen
(2012). Due to the conjugacy of the inverse gamma distribution, the marginal distribution of
yi is obtained in the closed form. Hence, they considered the maximum likelihood estimation
by maximizing the following function:

Q(β, λ, τ1, τ2) = mτ1 log τ2 + 2

m∑
i=1

log Γ

(
ni + τ1

2

)
− 2m log Γ

(τ1
2

)
−

m∑
i=1

log(1 + niλ)−
m∑
i=1

(ni + τ1) log(Ri + τ2),



5.1. INTRODUCTION 73

where

Ri =

ni∑
j=1

(yij − xtijβ)2 −
n2iλ

1 + niλ
(ȳi − x̄tiβ)2.

They also proved that the maximum likelihood estimators are consistent, so that EBLUP is
asymptotically valid and consistent MSE estimator can be constructed. However, in simula-
tion studies, it has been revealed that the finite sample performances of the estimator of τ1, τ2
tend to be unstable.

5.1.4 Heteroscedastic variances with variance functions

While these two heteroscedastic variance models are useful, the serious drawback of the two
models is that both require normality assumption for random effects and error terms, which
are not necessary satisfied in real application. Hence, the purpose of this paper is to address
the issue of relaxing assumptions of classical normal NER models toward two directions:
heteroscedasticity of variances and non-normality of underlying distributions.

In real data analysis, we often encounter the situation where the sampling variance Var(εij)
is affected by the covariate xij . In such case, the variance function is a useful tool for
describing its relationship. Variance function estimation has been studied in the literature in
the framework of heteroscedastic nonparametric regression. For example, see Hall and Carroll
(1989), Muller and Stadtmuller (1987) and Ruppert et al. (1997). Thus, in this paper, we
propose the use of the technique to introduce the heteroscedastic variances into the NERmodel
without assuming normality of underlying distributions. The variance structure we consider
is Var(yij) = τ2+σ2ij , namely, the setup means that the sampling error εij has heteroscedastic

variance Var(εij) = σ2ij . Then we suggest the variance function model given by σ2ij = σ2(ztijγ),
where the details are explained in Section 5.2. In terms of modeling the heteroscedastic
variances with covariates, the generalized linear mixed models (Jiang, 2006) are also the
useful tool. The small area models using generalized linear mixed models are investigated in
Ghosh et al. (1998). However, the generalized linear mixed model requires strong parametric
assumption compared to the heteroscedastic model without assuming underlying distributions
proposed in this paper. Hence, the generalized linear mixed model seems still restrictive while
it is an attractive method for modeling heteroscedasticity in variances.

In this paper, we propose flexible and tractable HNER models without assuming normality
for either vi nor εij . The advantage of the proposed model is that the MSE of the EB or
EBLUP and its unbiased estimator are derived analytically in closed forms up to second-order
without assuming normality for vi and εij . Most estimators of the MSE have been given
by numerical methods such as Jackknife and bootstrap methods except for Lahiri and Rao
(1995), who provided an analytical second-order unbiased estimator of the MSE in the Fay-
Heriot model. Hall and Maiti (2006b) developed a moment matching bootstrap method for
nonparametric estimation of MSE in nested error regression models. The suggested method
is actually convenient but it requires bootstrap replication and has computational burden. In
this paper, without assuming the normality, we derive a closed expression for a second-order
unbiased estimator of the MSE using second-order biases and variances of estimators of the
model parameters. Thus our MSE estimator does not require any resampling method and is
convenient in practical use. Also our MSE estimator can be regarded as a generalization of
the robust MSE estimator given in Lahiri and Rao (1995).
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In Section 5.2, we describe the proposed HNER model with variance functions, and provide
the moment method for estimating model parameters without assuming normality for both
random effects and error terms. We also derive some asymptotic properties of the proposed
estimator. In Section 5.3, we consider the problem of predicting µi, and derive BLP and
EBLUP. Moreover, a second order unbiased estimator of MSE is constructed in the analytical
way. We then present some numerical studies and an application to real data set in Section
5.4. All technical proofs are given in Section 5.5.

5.2 HNER Models with Variance Functions

5.2.1 Model settings

Suppose that there are m small clusters, and let (yi1,xi1), . . . , (yini ,xini) be the pairs of ni
observations from the i-th cluster, where xij is a p-dimensional known vector of covariates.
We consider the heteroscedastic nested error regression model

yij = x
t
ijβ + vi + εij , j = 1, . . . , ni, i = 1, . . . ,m, (5.3)

where β is a p-dimensional unknown vector of regression coefficients, and vi and εij are
mutually independent random variables with mean zero and variances Var(vi) = τ2 and
Var(εij) = σ2ij , which are denoted by

vi ∼ (0, τ2) and εij ∼ (0, σ2ij). (5.4)

It is noted that no specific distributions are assumed for vi and εij . It is assumed that the
heteroscedastic variance σ2ij of εij is given by

σ2ij = σ2(ztijγ), i = 1, . . . ,m, (5.5)

where zij is a q-dimensional known vector given for each cluster, and γ is a q-dimensional
unknown vector. The variance function σ2(·) is a known (user specified) function whose
range is nonnegative. Some examples of the variance function are given below. The model
parameters are β, τ2 and γ, and the total number of the model parameters is p+ q + 1.

Let yi = (yi1, . . . , yini)
t, Xi = (xi1, . . . ,xini)

t and ϵi = (εi1, . . . , εini)
t. Then the model

(5.3) is expressed in a vector form as

yi =Xiβ + vi1ni + ϵi, i = 1, . . . ,m,

where 1n is an n× 1 vector with all elements equal to one, and the covariance matrix of ϵi is

Σi = Var(yi) = τ2Jni +W i,

for Jni = 1ni1
′
ni

and W i = diag(σ2i1, . . . , σ
2
ini

). It is noted that the inverse of Σi is expressed
as

Σ−1
i =W−1

i

(
Ini −

τ2JniW
−1
i

1 + τ2
∑ni

j=1 σ
−2
ij

)
,

where W−1
i = diag(σ−2

i1 , . . . , σ
−2
ini

). Further, let y = (yt1, . . . ,y
t
m)

t, X = (Xt
1, . . . ,X

t
m)

t,
ϵ = (ϵt1, . . . , ϵ

t
m)

t and v = (v11
t
n1
, . . . , vm1

t
nm

)t. Then, the matricidal form of (5.3) is written
as y =Xβ+v+ϵ, where Var(y) = Σ = block diag(Σ1, . . . ,Σm). Now we give three examples
of the variance function σ2(ztijγ) in (5.5).
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(a) In the case that the dispersion of the sampling error is proportional to the mean, it is
reasonable to put zij = x(s)ij and σ

2(xt(s)ijγ) = (xt(s)ijγ)
2 for a sub-vector x(s)ij of the

covariate xij . For identifiability of γ, we restrict γ1 > 0.

(b) Consider the case that m clusters are decomposed into q homogeneous groups S1, . . . , Sq
with {1, . . . ,m} = S1 ∪ . . . ∪ Sq. Then, we put

zij =
(
1{i∈S1}, . . . , 1{i∈Sq}

)t
,

which implies that
σ2ij = γ2t for i ∈ St.

Note that Var(yij) = τ2 + γ2t for i ∈ St. Thus, the models assumes that the m clusters
are divided into known q groups with their variance are equal over the same groups.
Jiang and Nguyen (2012) used a similar setting and argued that the unbiased estimator
of the heteroscedastic variance is consistent when |Sk| → ∞, k = 1, . . . , q as m → ∞,
where |Sk| denotes the number of elements in Sk.

(c) Log linear functions of variance were treated in Cook and Weisberg (1983) and others.
That is, log σ2ij is a linear function, and σ2ij is written as σ2(ztijγ) = exp(ztijγ). Similarly
to (a), we put zij = x(s)ij .

For the above two cases (a) and (b), we have σ2(x) = x2, while the case (c) corresponds
to log{σ2(x)} = x. In simulation and empirical studies in Section 8.4, we use the log-linear
variance model. As given in the subsequent section, we show consistency and asymptotic
expression of estimators for γ as well as β and τ2.

5.2.2 Estimation

We here provide estimators of the model parameters β, τ2 and γ. When values of γ and τ2

are given, the vector β of regression coefficients is estimated by the generalized least squares
(GLS) estimator

β̃ = β̃(τ2,γ) = (XtΣ−1X)−1XtΣ−1y =

(
m∑
i=1

Xt
iΣ

−1
i Xi

)−1 m∑
i=1

Xt
iΣ

−1
i yi. (5.6)

This is not a feasible form since γ and τ2 are unknown. When estimators τ̂2 and γ̂ are used
for τ2 and γ, we get the feasible estimator β̂ = β̃(τ̂2, γ̂) by replacing τ2 and γ in β̃ with their
estimators.

Concerning estimation of τ2, we use the second moment of observations yij ’s. From model
(5.3), it is seen that

E
[
(yij − xtijβ)2

]
= τ2 + σ2(ztijγ). (5.7)

Based on the ordinary least squares (OLS) estimator β̂OLS = (XtX)−1Xty, a moment esti-
mator of τ2 is given by

τ̂2 =
1

N

m∑
i=1

ni∑
j=1

{
(yij − xtijβ̂OLS)

2 − σ2(ztijγ)
}
, (5.8)
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with substituting estimator γ̂ into γ, where N =
∑m

i=1 ni.
For estimation of γ, we consider the within difference in each cluster. Let ȳi be the sample

mean in the i-th cluster, namely ȳi = n−1
i

∑ni
j=1 yij . It is noted that for ε̄i = n−1

i

∑ni
j=1 εij ,

yij − ȳi = (xij − x̄i)tβ + (εij − ε̄i),

which dose not include the term of vi. Then it is seen that

E
[{
yij − ȳi − (xij − x̄i)tβ

}2]
=
(
1− 2n−1

i

)
σ2(ztijγ) + n−2

i

ni∑
h=1

σ2(z′ihγ),

which motivates us to estimate γ by solving the following estimating equation given by

1

N

m∑
i=1

ni∑
j=1

[{
yij − ȳi − (xij − x̄i)tβ̂OLS

}2
−
(
1− 2n−1

i

)
σ2(ztijγ)− n−2

i

ni∑
h=1

σ2(ztihγ)

]
zij = 0,

which is equivalent to

1

N

m∑
i=1

ni∑
j=1

[{
yij − ȳi − (xij − x̄i)tβ̂OLS

}2
zij − σ2(ztijγ)(zij − 2n−1

i zij + n−1
i z̄i)

]
= 0 (5.9)

where z̄i = n−1
i

∑ni
j=1 zij . It is noted that, in the homoscedastic case with σ2(ztijγ) = δ2,

the estimators of δ2 and τ2 reduce to the estimators identical to the Prasad-Rao estimator
(Prasad and Rao, 1990) up to the constant factor.

Note that the function given in the left side of (5.9) does not depend on β and τ2 and
the estimator of τ2 does not depend on β but on γ. These suggest the simple algorithm for
calculating the estimates of the model parameters: We first obtain the estimate γ̂ of γ by
solving (5.9), and then we get the estimate τ̂2 from (5.8) with γ = γ̂. Finally we have the
GLS estimate β̂ with substituting γ̂ and τ̂2 in (5.6).

5.2.3 Large sample properties

In this section, we provide large sample properties of the estimators given in the previous
subsection when the number of clusters m goes to infinity, but ni’s are still bounded. To
establish asymptotic results, we assume the following conditions under m→ ∞.

Assumption 5.1.

(A1) There exist bounded values n and n such that n ≤ ni ≤ n for i = 1, . . . ,m. The
dimensions p and q are bounded, namely p, q = O(1). The number of clusters with one
observation, namely ni = 1, is bounded.

(A2) The variance function σ2(·) is twice differentiable and its derivatives are denoted by
(σ2)(1)(·) and (σ2)(2)(·), respectively.

(A3) The following matrices converge to non-singular matrices:

m−1
m∑
i=1

ni∑
j=1

zijz
t
ij , m−1

m∑
i=1

ni∑
j=1

(σ2)(a1)(ztijγ)zijz
t
ij , m−1XtΣa2X

for a1 = 1, 2 and a2 = −1, 0, 1.



5.2. HNER MODELS WITH VARIANCE FUNCTIONS 77

(A4) E[|vi|8+c] <∞ and E[|εij |8+c] <∞ for 0 < c < 1.

(A5) For all i and j, there exist 0 < c1, c1 < ∞ and bounded values c2, c2 such that c1 <

σ2(ztijγ) < c1 and c2 < (σ2)(k)(ztijγ) < c2 with k = 1, 2 on the neighborhood of the true
values.

The conditions (A1) and (A3) are the standard assumptions in small area estimation. The
condition (A2) is also non-restrictive, and the typical variance functions σ2(x) = x2 and
σ2(x) = expx obviously satisfy the assumption. The moment condition (A4) is used for
deriving second-order approximation of MSE of the EBLUP discussed in Section 5.3, and it
is satisfied by many continuous distributions, including normal, shifted gamma, Laplace and
t-distribution with degrees of freedom larger than 9. The three examples given in Section
5.2.1 satisfy the condition (A5).

In what follows, we use the notations

σ2ij ≡ σ2(ztijγ), σ2ij(k) ≡ (σ2)(k)(ztijγ), k = 1, 2

for simplicity. To derive asymptotic approximations of the estimators, we use the following
notations in the i-th cluster:

u1i =
m

N

ni∑
j=1

{
(yij − xtijβ)2 − σ2ij − τ2

}
, (5.10)

u2i =
m

N

ni∑
j=1

[{
yij − ȳi − (xij − x̄i)tβ

}2
zij − σ2ij(zij − 2n−1

i zij + n−1
i z̄i)

]
, (5.11)

with

T 1(γ) =

m∑
k=1

nk∑
h=1

σ2kh(1)zkh, T 2(γ) =

 m∑
k=1

nk∑
j=1

σ2kh(1)(zkh − 2n−1
k zkh + n−1

k z̄k)z
′
kh

−1

.

(5.12)

Note that T 1(γ) = O(m) and T 2(γ) = O(m−1) under Assumption 5.1. Then we obtain the
asymptotically linear expression of the estimators.

Theorem 5.1. Let ϕ̂ = (β̂
′
, γ̂ ′, τ̂2)t be the estimator of ϕ = (βt,γt, τ2)t. Under Assumption

5.1, it holds that ϕ̂− ϕ = Op(m
−1/2) with the asymptotically linear expression

ϕ̂− ϕ =
1

m

m∑
i=1

((ψβ
i )
t, (ψγ

i )
t, ψτi )

t + op(m
−1/2),

where

ψβ
i = m

(
XtΣ−1X

)−1
XiΣ

−1
i (yi −Xiβ), ψγ

i = NT 2(γ)u2i, ψτi = u1i − T 1(γ)
tT 2(γ)u2i.
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From Theorem 5.1, it follows that m1/2(ϕ̂−ϕ) has an asymptotically normal distribution
with mean vector 0 and covariance matrix mΩ, where Ω is a (p+ q+ 1)× (p+ q+ 1) matrix
partitioned as

mΩ ≡

 mΩββ mΩβγ mΩβτ

mΩ′
βγ mΩγγ mΩγτ

mΩ′
βτ mΩ′

γτ mΩττ

 = lim
m→∞

1

m

m∑
i=1

 E[ψβ
i ψ

βt

i ] E[ψβ
i ψ

γt

i ] E[ψβ
i ψ

τ
i ]

E[ψγ
i ψ

βt

i ] E[ψγ
i ψ

γt

i ] E[ψγ
i ψ

τ
i ]

E[ψτi ψ
βt

i ] E[ψτi ψ
γt

i ] E[ψτi ψ
τ
i ]

 .

It is noticed that E[u1i(yij − xtijβ)] = 0 and E[u2i(yij − xtijβ)] = 0 when yij are normally

distributed. In such a case, it follows Ωβγ = 0 and Ωβτ = 0, namely β and ϕ = (γt, τ2)t are
asymptotically orthogonal. However, since we do not assume the normality for observations
yij ’s, β and ϕ are not necessarily orthogonal.

The asymptotic covariance matrix mΩ or Ω can be easily estimated from samples. For

example, mΩββ = limm→∞m−1
∑m

i=1E[ψβ
i ψ

βt

i ] can be estimated by

mΩ̂ββ =
1

m

m∑
i=1

ψ̂β
i ψ̂

βt

i ,

where ψ̂β
i is obtained by replacing unknown parameters ϕ in ψβ

i with estimates ϕ̂. It is noted
that the accuracy of estimation is given by

Ω̂ββ = Ωββ + op(m
−1),

from Theorem 5.1 and Ω = O(m−1). The estimator Ω̂ will be used to get the estimators of
mean squared errors of predictors in Section 5.3.

We next provide the asymptotic properties of conditional covariance matrix given in the
following corollary where the proof is given in Section 5.5.

Corollary 5.1. Under Assumption 5.1, for i = 1, . . . ,m, it follows that

E
(
(ϕ̂− ϕ)(ϕ̂− ϕ)t

∣∣∣yi) = Ω+ c(yi)o(m
−1), (5.13)

where c(yi) is the fourth-order function of yi, so that E|c(yi)| <∞ under Assumption 5.1.

This property is used for estimation and evaluating the mean squared errors of EBLUP
discussed in the subsequent section. Moreover, in the evaluation of the mean squared er-
rors of EBLUP and the derivation of its estimators, we need to obtain the conditional and
unconditional asymptotic biases of the estimators ϕ̂.

Let b
(i)
β (yi), b

(i)
γ (yi) and b

(i)
τ (yi) be the second-order conditional asymptotic biases defined

as

E[β̂ − β|yi] =b
(i)
β (yi) + op(m

−1), E[γ̂ − γ|yi] = b
(i)
γ (yi) + op(m

−1),

E[τ̂2 − τ2|yi] = b(i)τ (yi) + op(m
−1).
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In the following theorem, we provide the analytical expressions of b
(i)
β (yi), b

(i)
γ (yi) and b

(i)
τ (yi).

Define bβ, bγ and bτ by

bβ =
(
XtΣ−1X

)−1
{ q∑
s=1

m∑
k=1

Xt
kΣ

−1
k W i(s)Σ

−1
k Xk (Ωβ∗γs −Ωβγs)

+
m∑
k=1

Xt
kΣ

−1
k Jnk

Σ−1
k Xk(Ωβ∗τ −Ωβτ )

}

bγ = T 2(γ)

[
2

m∑
k=1

col
{
tr
(
EkZkrEkXk

[
V OLSX

t
k − (XtX)−1Xt

kΣk

])}
r

−
m∑
k=1

nk∑
j=1

zkjσ
2
kj(2)(zkj − 2n−1

k zkj + n−1
k z̄k)

tΩγγzkj

]
,

(5.14)

and

bτ = − 1

N

m∑
k=1

nk∑
j=1

σ2kj(1)z
t
kjbγ −

2

N

m∑
k=1

tr
{
(XtX)−1Xt

kΣkXk

}
− 1

2N

m∑
k=1

nk∑
j=1

σ2kj(2)z
t
kjΩγγzkj +

1

N

m∑
k=1

tr
(
Xt

kXkV OLS

)
,

where Ek = Ink
− n−1

k Jnk
, V OLS = (XtX)−1XtΣX(XtX)−1, Zkr = diag(zk1r, . . . , zknkr)

for r-th element zkjr of zkj , Ωβ∗a for a ∈ {τ, γ1, . . . , γq} and W i(s) are defined in the proof
of Theorem 5.2, and col{ar}r denotes a q-dimensional vector (a1, . . . , aq)

t. It is noted that
bβ, bγ , bτ are of order O(m−1). Now we provide the second-order approximation to the con-
ditional asymptotic bias.

Theorem 5.2. Under Assumption 5.1, we have

b
(i)
β (yi) =

(
XtΣ−1X

)−1
Xt

iΣ
−1
i (yi −Xiβ) + bβ, b

(i)
γ (yi) = T 2(γ)u2i + bγ

b(i)τ (yi) = m−1u1i −m−1T 1(γ)
tT 2(γ)u2i + bτ ,

(5.15)

where b
(i)
β (yi), b

(i)
γ (yi) and b

(i)
τ (yi) are of order Op(m

−1), and u1i and u2i are given in (5.10)
and (5.11), respectively.

From the above theorem, we immediately obtain the unconditional asymptotic bias of the
estimators ϕ̂ by taking expectation with respect to yi given in the following Corollary.

Corollary 5.2. Under Assumption 5.1, it holds that

E[ϕ̂− ϕ] = (btβ, b
t
γ , bτ )

t + o(m−1),

where bβ, bγ and bτ are given in (5.14).
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5.3 Prediction and Risk Evaluation

5.3.1 Empirical predictor

We now consider the prediction of
µi = c

t
iβ + vi,

where ci is a known (user specified) vector and vi is the random effect in model (5.3). The
typical choice of ci is ci = x̄i which corresponds to the prediction of mean of the i-th cluster.
A predictor µ̃(yi) of µi is evaluated in terms of the MSE E[(µ̃(yi)−µi)2]. In the general forms
of µ̃(yi), the minimizer (best predictor) of the MSE cannot be obtain without a distributional
assumption for vi and εij . Thus we focus on the class of linear and unbiased predictors, and
the best linear unbiased predictor (BLUP) of µi in terms of the MSE is given by

µ̃i = c
t
iβ + 1tni

Σ−1
i (yi −Xiβ).

This can be simplified as

µ̃i = c
t
iβ +

ni∑
j=1

λij
(
yij − xtijβ

)
,

where λij = τ2σ−2
ij η

−1
i for ηi = 1 + τ2

∑ni
h=1 σ

−2
ih . In the case of homogeneous variances,

namely σ2ij = δ2, it is confirmed that the BLP reduces to µ̃i = ctiβ + λi
(
ȳi − x̄tiβ

)
with

λi = niτ
2(δ2+niτ

2)−1. The BLUP is not feasible since it depends on unknown parameters β,
γ and τ2. Plugging the estimators into µ̃i, we get the empirical best linear unbiased predictor
(EBLUP)

µ̂i = c
t
iβ̂ +

ni∑
j=1

λ̂ij

(
yij − xtijβ̂

)
, λ̂ij = τ̂2σ̂−2

ij η̂
−1
i (5.16)

for η̂−1
i = 1 + τ̂2

∑ni
h=1 σ̂

−2
ih . In the subsequent section, we consider the mean squared errors

(MSE) of EBLUP (5.16) without any distributional assumptions for vi and εij .

5.3.2 Second-order approximation to MSE

To evaluate uncertainty of EBLUP given by (5.16), we evaluate the MSE defined as MSEi(ϕ) =
E
[
(µ̂i − µi)

2
]
for ϕ = (γt, τ2)t. The MSE is decomposed as

MSEi(ϕ) = E
[
(µ̂i − µ̃i + µ̃i − µi)

2
]

= E
[
(µ̃i − µi)

2
]
+ E

[
(µ̂i − µ̃i)

2
]
+ 2E [(µ̂i − µ̃i)(µ̃i − µi)] .

From the expression of µ̃i, we have

µ̃i − µi =

 ni∑
j=1

λij − 1

 vi +

ni∑
j=1

λijεij ,

which leads to

R1i(ϕ) ≡ E
[
(µ̃i − µi)

2
]
=

 ni∑
j=1

λij − 1

2

τ2 +

ni∑
j=1

λ2ijσ
2
ij = τ2η−1

i . (5.17)
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For the second term, however, we cannot obtain an exact expression, so that we derive
the approximation up to O(m−1). Using the Taylor series expansion, we have

µ̂i − µ̃i =

(
∂µ̃i
∂ϕ

)t
(ϕ̂− ϕ) + 1

2
(ϕ̂− ϕ)t

(
∂2µ̃i

∂ϕ∂ϕt

∣∣∣
ϕ=ϕ∗

)
(ϕ̂− ϕ), (5.18)

where ϕ∗ is on the line between ϕ and ϕ̂. The straightforward calculation shows that

∂µ̃i
∂β

= ci −
ni∑
j=1

λijxij ,
∂µ̃i
∂γ

= η−2
i

ni∑
j=1

σ−2
ij δij(yij − x

t
ijβ),

∂µ̃i
∂τ2

= η−2
i

ni∑
j=1

σ−2
ij (yij − xtijβ),

(5.19)

where

δij = τ4
ni∑
h=1

σ−4
ih σ

2
ih(1)zih − τ2ηiσ

−2
ij σ

2
ij(1)zij .

Then each element in ∂2µ̃i/∂ϕ∂ϕ
t is a linear function of yi. Hence under Assumption 5.1,

using the similar arguments given in Lahiri and Rao (1995), we can show that

E
[
(µ̂i − µ̃i)

2
]
= R2i(ϕ) + o(m−1), (5.20)

where the detailed proof is given in Section 5.5, and

R2i(ϕ) =η
−4
i τ2

 ni∑
j=1

σ−2
ij δij

t

Ωγγ

 ni∑
j=1

σ−2
ij δij

+ η−4
i

ni∑
j=1

σ−2
ij δ

t
ijΩγγδij

+ 2η−3
i

ni∑
j=1

σ−2
ij δ

t
ijΩγτ + η−3

i

ni∑
j=1

σ−2
ij Ωττ +

ci − ni∑
j=1

λijxij

t

Ωββ

ci − ni∑
j=1

λijxij

 ,

(5.21)

which is of order O(m−1). All the evaluations of the residual terms appeared in this paper
can be done by the similar manner, and detailed proofs will be omitted in what follows.

We next evaluate the cross term E [(µ̂i − µ̃i)(µ̃i − µi)]. This term vanishes under the
normality assumptions for vi and εij , but in general, it cannot be neglected. As in the case
of R2i, we obtain an approximation of E [(µ̂i − µ̃i)(µ̃i − µi)] up to O(m−1). Noting that

µ̃i − µi =

 ni∑
j=1

λij − 1

 vi +

ni∑
j=1

λijεij ≡ wi,

and using the expansion (5.18), we obtain

E [(µ̂i − µ̃i)(µ̃i − µi)] = E

[(
∂µ̃i
∂ϕ

)t
(ϕ̂− ϕ)wi

]
+

1

2
E

[
(ϕ̂− ϕ)t

(
∂2µ̃i

∂ϕ∂ϕt

∣∣∣
ϕ=ϕ∗

)
(ϕ̂− ϕ)wi

]
.

Using the expression of (5.19) and Corollary 5.1, the straightforward calculation (whose details
are given in Section 5.5) shows that

R32i(ϕ) ≡
1

2
E

[
(ϕ̂− ϕ)t

(
∂2µ̃i

∂ϕ∂ϕt

∣∣∣
ϕ=ϕ∗

)
(ϕ̂− ϕ)wi

]
= o(m−1),
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under Assumption 5.1. Moreover, from Theorem 5.2, we obtain

E

[(
∂µ̃i
∂ϕ

)t
(ϕ̂− ϕ)wi

]
= R31i(ϕ,κ) + o(m−1),

for

R31i(ϕ,κ) = η−2
i

ni∑
j=1

σ−2
ij δ

t
ij

(
m∑
k=1

nk∑
h=1

σ2kh(1)zkhz
t
kh

)−1

M2ij(ϕ,κ)

+m−1η−2
i

ni∑
j=1

σ−2
ij

{
M1ij(ϕ,κ)− T 1(γ)

tT 2(γ)M2ij(ϕ,κ)

}
,

(5.22)

where

M1ij(ϕ,κ) = mN−1τ2η−1
i

{
niτ

2(3− κv) + σ2ij(κε − 3)
}

M2ij(ϕ,κ) = mN−1τ2η−1
i n−2

i (ni − 1)2(κε − 3)σ2ijzij ,

and κv, κε are defined as E(v4i ) = κvτ
4 and E(ε4ij) = κεσ

4
ij , respectively, and κ = (κv, κε)

t.
The derivation of the expression of R31i(ϕ,κ) is also given in Section 5.5. From the expression
(5.22), it holds that R31i(ϕ,κ) = O(m−1).

Under the normality assumption of vi and εij , we immediately obtain M1ij = 0 and
M2ij = 0 since κ = (3, 3)t. This leads to R31 = 0, which means that the cross term does
not appear in the second-order approximated MSE, that is our result is consistent to the
well-known result.

Now, we summarize the result for the second-order approximation of the MSE.

Theorem 5.3. Under Assumption 5.1, the second-order approximation of the MSE is given
by

MSEi(ϕ) = R1i(ϕ) +R2i(ϕ) + 2R31i(ϕ,κ) + o(m−1),

where R1i(ϕ), R2i(ϕ) and R31i(ϕ,κ) are given in (5.17), (5.21) and (5.22), respectively, and
R1i(ϕ) = O(1), R2i(ϕ) = O(m−1) and R31i(ϕ,κ) = O(m−1).

The approximated MSE given in Theorem 5.3 depends on unknown parameters. Thus,
in the subsequent section, we derive the second-order unbiased estimator of the MSE by the
analytical and the matching bootstrap methods.

5.3.3 Analytical estimator of the MSE

We first derive the analytical second-order unbiased estimator of the MSE. From Theorem 5.3,
R2i(ϕ) is O(m−1), so that it can be estimated by the plug-in estimator R2i(ϕ̂) with second-
order accuracy, namely E[R2i(ϕ̂)] = R2i(ϕ)+o(m

−1). For R31i(ϕ,κ) with order O(m−1), if a
consistent estimator κ̂ is available for κ, this term can be estimated by the plug-in estimator
with second-order unbiasedness. To this end, we construct a consistent estimator of κ using
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the expression of fourth moment of observations. The straightforward calculation shows that

E

 ni∑
j=1

{
yij − ȳi − (xij − x̄i)tβ

}4
= κεn

−4
i (ni − 1)(ni − 2)(n2i − ni − 1)

 ni∑
j=1

σ4ij

+ 3n−3
i (2ni − 3)


 ni∑
j=1

σ2ij

2

−
ni∑
j=1

σ4ij

 ,

whereby we can estimate κε by

κ̂ε =
1

N∗

m∑
i=1

 ni∑
j=1

{
yij − ȳi − (xij − x̄i)tβ̂

}4
− 3n−3

i (2ni − 3)


 ni∑
j=1

σ2ij

2

−
ni∑
j=1

σ4ij


 ,

(5.23)

where N∗ = n−4
i (ni − 1)(ni − 2)(n2i − ni − 1)

∑ni
j=1 σ

4
ij and β̂ is the feasible GLS estimator of

β. For κv, it is observed that

E
[(
yij − xtijβ

)4]
= τ4κv + 6τ2σ2ij + κεσ

4
ij ,

which leads to the estimator of κv given by

κ̂v =
1

Nτ̂4

m∑
i=1

ni∑
j=1

{(
yij − xtijβ̂OLS

)4
− 6τ̂2σ̂2ij − κ̂εσ̂

4
ij

}
. (5.24)

From Theorem 5.1, it immediately follows that the estimators given in (5.23) and (5.24) are
consistent. Using these estimators, we can estimate R31i by R31i(ϕ̂, κ̂) with second-order
accuracy.

Finally, we consider the second-order unbiased estimation of R1i. The situation is different
than before since R1i = O(1), which means that the plug-in estimator R1i(ϕ̂) has the second-
order bias with O(m−1). Thus we need to obtain the second-order bias of R1i(ϕ̂) and correct
them. By the Taylor series expansion, we have

R1i(ϕ̂) = R1i(ϕ) +

(
∂R1i(ϕ)

∂ϕt

)
(ϕ̂− ϕ) + 1

2
(ϕ− ϕ)t

(
∂2R1i(ϕ)

∂ϕ∂ϕt

)
(ϕ̂− ϕ) + op(∥ϕ̂− ϕ∥2).

Then, the second-order bias of R1i(ϕ̂) is expressed as

E[R1i(ϕ̂)]−R1i(ϕ)

=

(
∂R1i(ϕ)

∂ϕt

)
E[ϕ̂− ϕ] + 1

2
tr

{(
∂2R1i(ϕ)

∂ϕ∂ϕt

)
E
[
(ϕ̂− ϕ)(ϕ̂− ϕ)t

]}
+ o(m−1)

=

(
∂R1i(ϕ)

∂ϕt

)
bϕ +

1

2
tr

{(
∂2R1i(ϕ)

∂ϕ∂ϕt

)
Ωϕ

}
+ o(m−1),



84 CHAPTER 5. HETEROSCEDASTIC NESTED ERROR REGRESSION MODELS

where Ωϕ is the sub-matrix of Ω with respect to ϕ, and bϕ is the second-order bias of ϕ̂ given
in Corollary 5.2. The straightforward calculation shows that

∂R1i(ϕ)

∂τ2
= η−2

i ,
∂R1i(ϕ)

∂γ
= −τ2η−2

i ηi(1),
∂2R1i(ϕ)

∂τ2∂τ2
= 2τ−2(η−3

i − η−2
i ),

∂2R1i(ϕ)

∂γ∂τ2
= −2η−3

i ηi(1),
∂2R1i(ϕ)

∂γ∂γt
= τ2η−3

i (2ηi(1)η
t
i(1) − ηiηi(2)),

where

ηi(1) ≡
∂ηi
∂γ

= −τ2
ni∑
j=1

σ−4
ij σ

2
ij(1)zij , ηi(2) ≡

∂2ηi
∂γ∂γt

= τ2
ni∑
j=1

(
2σ−2

ij σ
4
ij(1) − σ2ij(2)

)
σ−4
ij zijz

t
ij .

Therefore, we obtain the expression of the second-order bias given by

Bi(ϕ) =− τ2η−2
i η

t
i(1)bγ + η−2

i bτ − 2η−3
i η

t
i(1)Ωγτ + τ−2(η−3

i − η−2
i )Ωττ

+ τ2η−3
i

{
ηti(1)Ωγγηi(1) −

1

2
ηitr

(
ηi(2)Ωγγ

)}
,

(5.25)

with Bi(ϕ) = O(m−1). Noting that Bi(ϕ) can be estimated by Bi(ϕ̂) with E[Bi(ϕ̂)] =
Bi(ϕ) + o(m−1) from Theorem 5.1, we propose the bias corrected estimator of R1i given by

R̂1i(ϕ̂)
bc = R1i(ϕ̂)−Bi(ϕ̂),

which is second-order unbiased estimator of R1i, namely

E[R̂1i(ϕ̂)
bc] = R1i(ϕ) + o(m−1).

Now, we summarize the result for the second-order unbiased estimator of MSE in the following
theorem.

Theorem 5.4. Under Assumption 5.1, the second-order unbiased estimator of MSEi is given
by

M̂SEi = R̂1i(ϕ̂)
bc +R2i(ϕ̂) + 2R31i(ϕ̂, κ̂),

that is, E
[
M̂SEi

]
= MSEi + o(m−1).

It is remarked that the proposed estimator of MSE does not require any resampling meth-
ods such as bootstrap. This means that the analytical estimator can be easily implemented
and has less computational burden compared to bootstrap. Moreover, we do not assume
normality of vi and εij in the derivation of the MSE estimator as in Lahiri and Rao (1995).
Thus the proposed MSE estimator is expected to have a robustness property, which will be
investigated in the simulation studies.

5.4 Numerical Studies

5.4.1 Model based simulation

We first compare the performances of EBLUP obtained from the proposed HNER with vari-
ance functions (HNERVF) with several existing models in terms of simulated mean squared er-
rors (MSE). We consider the conventional nested error regression (NER) model, heteroscedas-
tic NER model given by Jiang and Nguyen (2012) referred as JN, and the heteroscedastic NER
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with random dispersions (HNERRD) proposed in Kubokawa et al. (2016). In applying the
NER model, we use the unbiased estimator for variance components given in Prasad and Rao
(1990) to calculate EBLUP. Further, we also consider the following log-link gamma mixed
(GM) models as the competitor from the generalized linear mixed models, which also al-
lows heteroscedasticity for the variances as the quadratic function of means. We used glmer

function in lme4 package in ‘R’ to apply the GM model.

In this simulation study, we set m = 20 and ni = 8 in all cases, and we compute the
simulated MSE in 10 scenarios denoted by S1, . . . ,S10. The simulated MSE for some area-
specific parameter µi is define as

MSEi =
1

R

R∑
r=1

(µ̂
(r)
i − µ

(r)
i )2, (5.26)

where R = 5000 is the number of simulation runs, µ̂
(r)
i is the predicted value from some models

and µ
(r)
i is the true values in the r-th iteration. In all scenarios, we generate covariates xij ’s

from the uniform distribution on (0, 1), which are fixed in simulation runs. From S1 to S3,
we consider the heteroscedastic model with area-level heteroscedastic variances given by

S1 ∼ S3 : yij = β0 + β1xij + vi + εij , vi ∼ (0, τ2), εij ∼ (0, σ2i ), µi = β0 + vi,

where σ2i = exp(0.8− zi) and (β0, β1, τ) = (1, 0.5, 1.2). We generate zi’s from uniform distri-
bution on (−1, 1), which are fixed in simulation runs. The scenarios S1, S2 and S3 correspond
to the cases where the distributions of both vi and εij are normal, t with 6 degrees of freedom,
and chi-squared with 5 degrees of freedom, respectively, noting that both t-distribution and
chi-squared distribution are scaled and located to meet the specified means and variances.
For S4, we consider the homoscedastic model given by

S4 : yij = β0 + β1xij + vi + εij , vi ∼ N(0, τ2), εij ∼ N(0, σ2), µi = β0 + vi,

with (β0, β1, τ, σ) = (1, 0.5, 1.2, 1.5). In S5 and S6, we use the heteroscedastic model with
unit-level heteroscedastic variances given by

S5, S6 : yij = β0 + β1xij + vi + εij , vi ∼ N(0, τ2), εij ∼ N(0, σ2ij), µi = β0 + vi,

where σ2ij = exp(0.8 − zij) in S5 and σ2ij ∼ Γ(5, 5/ exp(0.8 − zij)) in S6. For S7 and S8, we
consider the mixed model of the form

S7, S8 : yij = exp(β0 + β1xij + vi)εij , µi = exp(β0 + vi),

where vi ∼ N(0, τ2), εij ∼ Γ(3, 3) and (β0, β1, τ) = (0.5, 1, 0.3) in S7, and vi ∼ t6(0, τ
2),

εij ∼ SLN(1, σ2), and (β0, β1, τ, σ) = (1.2, 0.6, 0.4, 0.4) in S8, noting that t6(a, b) denotes the
t-distribution with 6 degrees of freedom with mean a and variance b and SLN(a, b) denotes
the scaled log-normal distribution with mean a and variance b. Hence, S7 corresponds to the
gamma mixed model with log-link function and S8 corresponds to its misspecified version.
Finally, S9 to S10 are the mixed models defined as

S9 : yij = (β0 + β1xij + vi)
2εij , vi ∼ N(0, τ2), εij ∼ SLN(1, σ2), µi = (β0 + vi)

2
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with (β0, β1, τ, σ) = (1, 0.6, 1.5, 0.5), and

S10 : yij = {exp(β0+β1xij)+vi}εij , vi ∼ N(0, τ2), εij ∼ SLN(1, σ2), µi = exp(β0)+vi,

with (β0, β1, τ, σ) = (1, 0.3, 1.2, 0.5). It is noted that both S9 and S10 are also heteroscedastic
model in the sense that Var(yij) depends on xij .

Under the 10 scenarios described above, we compute the simulated MSE values of pre-
dictors from five methods (HNERVF, HNERRD, NER, JN and GM) in each area. Since
we can apply GM only to the data with positive yij ’s, the MSE values of GM model are
calculated from S7 to S10. In Table 8.1, we show the mean, max and min values of MSE
over all areas for each model and scenario. From S1 to S3, it is observed that HNERVF
performs better than the other models, and NER model performs worst since the true model
is heteroscedastic. In S4, NER model performs best among four models since NER model is
the true model and other HNER models are overfitted. It is also interesting to point out that
the inefficiency of the prediction of JN is more serious than that of HNERVF and HNERRD.
As in S5 and S6, the heteroscedastic variances are unit-level, the amount of improvement of
HNERVF over other models gets greater. The scenario S7 corresponds to GM model, so that
it is reasonable that MSE of GM is smallest among five models. The scenario S8 is not GM
model but it is still close to GM model, in which GM model works well compared to the other
models. However, once GM is seriously misspecified as in S9 and S10, GM does not work very
much because of its somewhat strong parametric assumption. From S8 to S10, all models
are misspecified, but HNERVF model works well compared to other models. Therefore, it is
natural that HNERVF performs best when HNERVF is the true model, but even in case that
HNERVF is misspecified, HNERVF also works reasonably well owing to its flexible structure
of the model.

5.4.2 Finite sample performances of the MSE estimator

We next investigate the finite sample performances of the MSE estimators given in Theorem
5.4. To this end, we consider the data generating process given by

yij = β0 + β1xij + vi + εij , vi ∼ (0, τ2), εij ∼ (0, exp(γ0 + γ1zij))

with β0 = 1, β1 = 0.8, τ = 1.2, γ0 = 1 and γ1 = −0.4. Moreover, we equally divided m = 20
areas into 5 groups (G = 1, . . . , 5), so that each group has 4 areas and the areas in the same
group has the same sample size nG = G+3. Following Hall and Maiti (2006b), we consider five
patterns of distributions of vi and εij , that is , M1: vi and εij are both normally distributed,
M2: vi and εij are both scaled t-distribution with degrees of freedom 6, M3: vi and εij are
both scaled and located χ5 distribution, M4: vi are εij are scaled and located χ5 and −χ5

distribution, respectively, and M5: vi are εij are both logistic distribution. The simulated
values of the MSE are obtained from (5.26) based on R = 10000 simulation runs. Then, based
on R = 5000 simulation runs, we calculate the relative bias (RB) and coefficient of variation
(CV) of MSE estimators given by

RBi =
1

R

R∑
r=1

M̂SE
(r)

i −MSEi
MSEi

, CV2
i =

1

R

R∑
r=1

M̂SE
(r)

i −MSEi
MSEi

2
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Table 5.1: Simulated Values of MSE for Various Scenarios and Models

model S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

HNERVF 0.368 0.370 0.371 0.311 0.280 0.293 0.269 0.619 0.198 0.376
HNERRD 0.383 0.383 0.387 0.310 0.341 0.379 0.285 0.641 0.259 0.369

mean NER 0.398 0.405 0.410 0.307 0.342 0.384 0.375 0.726 0.220 0.384
JN 0.386 0.392 0.396 0.324 0.357 0.392 0.292 0.684 0.318 0.385
GM — — — — — — 0.130 0.451 0.231 0.396

HNERVF 0.598 0.633 0.569 0.340 0.354 0.469 0.342 1.511 0.299 0.435
HNERRD 0.630 0.634 0.603 0.342 0.424 0.523 0.405 1.603 0.415 0.419

max NER 0.642 0.639 0.596 0.339 0.423 0.526 0.518 1.992 0.336 0.439
JN 0.634 0.643 0.618 0.372 0.445 0.545 0.426 1.834 0.532 0.441
GM — — — — — — 0.149 0.970 0.372 0.473

HNERVF 0.138 0.145 0.150 0.272 0.202 0.196 0.205 0.398 0.142 0.297
HNERRD 0.156 0.157 0.166 0.272 0.254 0.255 0.219 0.408 0.142 0.302

min NER 0.173 0.177 0.202 0.269 0.256 0.256 0.286 0.442 0.152 0.305
JN 0.157 0.160 0.166 0.288 0.273 0.256 0.220 0.414 0.168 0.314
GM — — — — — — 0.104 0.335 0.168 0.309

where M̂SE
(r)

i is the MSE estimator in the r-th iteration. In Table 5.2, we report mean and
median values of RBi and CVi in each group. For comparison, results for the naive MSE
estimator, without any bias correction, are reported in Table 5.2 as RBN. The naive MSE
estimator is the plug-in estimator of the asymptotic MSE (5.17), namely it is obtained by
replacing τ2 and γ in formula (5.17) by τ̂2 and γ̂, respectively. In Table 5.2, the relative
bias is small, less than 10% in many cases. When the underlying distributions leave from
normality, the MSE estimator still provides small relative bias although it has higher coefficient
of variation. The naive MSE estimator is more biased than the analytical MSE estimator in
all groups and models, so that the bias correction in MSE estimator is successful.

5.4.3 Real data application

We now apply the HNERVF model together with HNERRD, NER, JN and GM models
considered in the simulation study in Section 5.4.1 to the data which originates from the
posted land price (PLP) data along the Keikyu train line in 2001. This train line connects
the suburbs in the Kanagawa prefecture to the Tokyo metropolitan area. Those who live in
the suburbs in the Kanagawa prefecture take this line to work or study in Tokyo everyday, so
that it is expected that the land price depends on the distance from Tokyo. The PLP data
are available for 52 stations on the Keikyu train line, and we consider each station as a small
area, namely, m = 52. For the i-th station, data of ni land spots are available, where ni varies
around 4 and some areas have only one observation.

For j = 1, . . . , ni, yij denotes the scaled value of the PLP (Yen/10000) for the unit meter
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Table 5.2: The Mean Values of Percentage Relative Bias (RB) and Coefficient of Variation
(CV) of MSE Estimator and Relative Bias of Naive MSE Estimator (RBN) in Each Group.

Group Measure M1 M2 M3 M4 M5

RB -8.72 -12.50 -10.86 -11.51 -11.81
G1 CV 17.48 23.60 23.47 23.40 21.24

RBN -12.67 -13.74 -13.10 -13.57 -13.39

RB -7.61 -9.72 -10.58 -10.57 -7.27
G2 CV 17.52 23.24 22.70 23.03 20.31

RBN -10.16 -12.66 -11.48 -11.33 -10.54

RB -7.89 -8.39 -7.65 -8.92 -6.34
G3 CV 19.85 26.05 24.66 25.37 22.94

RBN -9.31 -9.43 -8.70 -9.86 -7.58

RB -6.52 -4.74 -4.96 -5.65 -4.27
G4 CV 22.02 28.37 26.93 27.68 24.98

RBN -10.83 -7.68 -7.98 -6.52 -6.42

squares of the j-th spot, Ti is the time to take from the nearby station i to the Tokyo station
around 8:30 in the morning, Dij is the value of geographical distance from the spot j to
the station i and FARij denotes the floor-area ratio, or ratio of building volume to lot area
of the spot j. The three covariates FARij , Ti and Dij are also scaled by 100,10 and 1000,
respectively. This data set is treated in Kubokawa et al. (2016), where they pointed out that
the heteroscedasticity seem to be appropriate from boxplots of some areas and Bartlett test for
testing homoscedastic variance. They used the PLP data with log-transformed observations,
namely log yij , but we use yij in this study since the results are easier to interpret than the
results from log yij . In the left panel of Figure 7.1, we show the plot of the pairs (Dij , eij),
where eij is OLS residuals defined as

eij = yij − (β̂0,OLS + FARij β̂1,OLS + Tiβ̂2,OLS +Dij β̂3,OLS).

The figure indicates that the residuals are more variable for small Dij than for large Dij , and
the variances are exponentially decreasing with respect to Dij . Thus we apply the HNERVF
model with the exponential variance function given by

yij = β0 + FARijβ1 + Tiβ2 +Dijβ3 + vi + εij , (5.27)

where vi ∼ (0, τ2) and εij ∼ (0, exp(γ0 + γ1Dij)). To compare the results, we also apply
HNERRD, NER, JN and GM models to the PLP data with the same covariates. In applying
NER model, we regard it as the submodel of HNERVF by putting γ1 = 0 and use the same
estimating method with HNERVF. The estimated regression coefficients from five models are
given in the Table 5.3. We first note that the conditional expectation of the GM model
is exp(β0 + FARijβ1 + Tiβ2 + Dijβ3 + vi), while that of other models has the liner form
β0 + FARijβ1 + Tiβ2 +Dijβ3 + vi. Hence the scale of the estimated coefficients of GM are
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different from those of other models. However, the signs of estimated coefficients are the same
over all models. The resulting signs are intuitively natural since the PLP is expected to be
decreasing as the distance between the spot and the nearest station gets large or the nearest
station gets distant from Tokyo station. Moreover, in HNERVF model, the estimated value
of γ1 is γ̂1 = −1.82, which is consistent to the observation from the left panel of Figure 7.1.
Using the result of Theorem 5.1, the asymptotic standard error of γ̂1 is 0.492, so that γ1 seems
significant.

We here consider to estimate the and price of a spot with floor-area ratio 100% and
distance from 1000m from from the station i, namely µi = β0 + β1 + β2Ti + β3 + vi of
HNERVF, HNERRD, NER and JN models, and µi = exp(β0 + β1 + β2Ti + β3 + vi) of GM
model. In Figure 5.2, we provide the predicted values of µi of each model. From the figure, we
can observe that all five models provides relatively similar predicted values, and the predicted
values tend to decrease with respect to the area index. This comes from the effect of Ti since
Ti increase as the area index increases.

We finally calculate the mean squared errors (MSE) of predictors. In JN model, the con-
sistent estimator of MSE cannot be obtained without any knowledge of grouping of areas
(stations) as shown in Jiang and Nguyen (2012). For GM models, the second-order unbiased
estimator of MSE is hard to obtain. Thus, we here consider the MSE estimator of HNERVF,
HNERRD and NER models. We use the analytical estimator given in Theorem 5.4 for HN-
ERVF and NER, and the parametric bootstrap MSE estimator developed in Kubokawa et
al. (2016) is used for HNERRD with 1000 bootstrap replication. We found that the esti-
mated MSE of HNERRD model is greater than 700 for all areas, while the estimated MSE of
HNERVF and NER models are smaller than 20. The estimated value of shape parameter in
dispersion (gamma) distribution in HNERRD is close to 2, which may inflate the MSE val-
ues. The estimated values of square root of MSE (RMSE) of HNERVF and NER models are
given in the right panel of Figure 5.1. It is revealed that the estimated RMSE of HNERVF
is smaller than that of NER in many areas. In particular, this is true in 37 areas among
52 areas. Especially, in the latter areas, it is observed that the amount of improvement is
relatively large.

Table 5.3: The Estimated Regression Coefficients in Each Model

model β0 β1 β2 β3

HNERVF 42.31 2.81 -3.56 -0.661
HNERRD 37.72 3.88 -3.24 -0.960

NER 33.35 6.58 -3.18 -0.832
JN 37.01 3.41 -2.59 -3.19
GM 3.63 0.168 -0.122 -0.039
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Figure 5.1: Scatter plot of OLS residuals against distance Dij (left) and estimated square
root of MSE (RMSE) in the HNERVF and NER models (right).
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5.5. TECHNICAL ISSUES 91

5.5 Technical Issues

5.5.1 Proof of Theorem 5.1

Since y1, . . . ,ym are mutually independent, the consistency of γ̂ follows from the standard
argument, so that τ̂2 and β̂ are also consistent. In what follows, we derive the asymptotic
expressions of the estimators.

First we consider the asymptotic approximation of τ̂2 − τ2. From (5.8), we obtain

τ̂2 − τ2 =
1

N

m∑
i=1

ni∑
j=1

{
(yij − xtijβ̂OLS)

2 − σ̂2ij

}
− τ2

=
1

N

m∑
i=1

ni∑
j=1

{
(yij − xtijβ)2 − σ2ij

}
− τ2 − 1

N

m∑
i=1

ni∑
j=1

σ2ij(1)z
t
ij(γ̂ − γ)

− 2

N

m∑
i=1

ni∑
j=1

(yij − xtijβ)xtij(β̂OLS − β) + op(γ̂ − γ) + op(β̂OLS − β)

=
1

m

m∑
i=1

u1i −
1

N

m∑
i=1

ni∑
j=1

σ2ij(1)z
t
ij(γ̂ − γ) + op(m

−1/2) + op(γ̂ − γ), (5.28)

where u1i = mN−1
∑ni

j=1

{
(yij − xtijβ)2 − σ2ij

}
− τ2 and we used the fact that β̂OLS − β =

Op(m
−1/2) and N−1

∑m
i=1

∑ni
j=1(yij − xtijβ)xij = Op(m

−1/2) from the central limit theorem.

For the asymptotic expansion of γ̂, remember that the estimator γ̂ is given as the solution
of the estimating equation

1

N

m∑
i=1

ni∑
j=1

[{
yij − ȳi − (xij − x̄i)tβ̂OLS

}2
zij − σ2ij(zij − 2n−1

i zij + n−1
i z̄i)

]
= 0

Using Taylor expansions, we have

0 =
1

m

∑
i=1

u2i −
2

N

m∑
i=1

ni∑
j=1

{
yij − ȳi − (xij − x̄i)tβ

}
zij(xij − x̄i)t(β̂OLS − β)

− 1

N

m∑
i=1

ni∑
j=1

σ2ij(1)(zij − 2n−1
i zij + n−1

i z̄i)z
t
ij(γ̂ − γ) + op(γ̂ − γ) + op(m

−1/2),

where

u2i = mN−1
ni∑
j=1

[{
yij − ȳi − (xij − x̄i)tβ

}2
zij − σ2ij(zij − 2n−1

i zij + n−1
i z̄i)

]
.

From the central limit theorem, it follows that

1

N

m∑
i=1

ni∑
j=1

{
yij − ȳi − (xij − x̄i)tβ

}
zij(xij − x̄i)t = Op(m

−1/2),
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so that the second terms in the expansion formula is op(m
−1/2). Then we get

γ̂ − γ =
N

m

 m∑
i=1

ni∑
j=1

σ2ij(1)(zij − 2n−1
i zij + n−1

i z̄i)z
t
ij

−1
m∑
i=1

u2i + op(γ̂ − γ) + op(m
−1/2).

Under Assumption 5.1, we have

m∑
i=1

ni∑
j=1

σ2ij(1)(zij − 2n−1
i zij + n−1

i z̄i)z
t
ij = O(m).

From the independence of y1, . . . ,ym and the fact E(u2i) = 0, we can use the central limit
theorem to show that the leading term in the expansion of γ̂ − γ is Op(m

−1/2). Thus,

γ̂ − γ =
N

m

 m∑
i=1

ni∑
j=1

σ2ij(1)(zij − 2n−1
i zij + n−1

i z̄i)z
t
ij

−1
m∑
i=1

u2i + op(m
−1/2).

Using the approximation of γ̂−γ and γ̂−γ = Op(m
−1/2), we get the asymptotic expression

of τ̂2 − τ2 from (5.28), which establishes the result for τ̂2 and γ̂.
Finally we consider the asymptotic expansion of β̂ − β. From the expression in (5.6), it

follows that

β̂ − β = β̃ − β +

q∑
s=1

(
∂

∂γs
β̃

)t
(γ̂s − γ) +

(
∂

∂τ2
β̃

)t
(τ̂2 − τ2) + op(γ̂ − γ) + op(τ̂

2 − τ2).

Since
∂

∂τ2
Σi = Jni ,

∂

∂γs
Σi =W i(s), s = 1, . . . , q,

for W i(s) = diag(σ2i1(1)zi1s, . . . , σ
2
ini(1)

zinis), we have

∂

∂τ2
β̃ =

(
XtΣ−1X

)−1

(
m∑
i=1

Xt
iΣ

−1
i JniΣ

−1
i Xi

)(
β̃
∗
τ − β̃

)
,

∂

∂γs
β̃ =

(
XtΣ−1X

)−1

(
m∑
i=1

Xt
iΣ

−1
i W i(s)Σ

−1
i Xi

)(
β̃
∗
γs − β̃

)
, s = 1 . . . , q,

(5.29)

where

β̃
∗
τ =

(
m∑
i=1

Xt
iΣ

−1
i JniΣ

−1
i Xi

)−1 m∑
i=1

Xt
iΣ

−1
i JniΣ

−1
i yi,

β̃
∗
γs =

(
m∑
i=1

Xt
iΣ

−1
i W i(s)Σ

−1
i Xi

)−1 m∑
i=1

Xt
iΣ

−1
i W i(s)Σ

−1
i yi, s = 1, . . . , q.

Under Assumption 5.1, we have β̃
∗
a−β = Op(m

−1/2) for a ∈ {τ, γ1, . . . , γq}, whereby β̃
∗
−β̃ =

Op(m
−1/2). Since γ̂ − γ = Op(m

−1/2) and τ̂2 − τ2 = Op(m
−1/2) as shown above, we get

β̂ − β =
(
XtΣ−1X

)−1
m∑
i=1

XiΣ
−1(yi −Xiβ) + op(m

−1/2),

which completes the proof.
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5.5.2 Proof of Corollary 5.1

Let ϕ = (ϕ1, . . . , ϕp+q+1)
t = (βt,γt, τ2)t. Note that ψϕki , k = 1, . . . , p+ q+1 does not depend

on y1, . . . ,yi−1,yi+1, . . . ,ym and that y1, . . . ,ym are mutually independent. Then,

1

m2
E

 m∑
j=1

ψϕkj

 m∑
j=1

ψϕlj

∣∣∣∣yi
 =

1

m2

m∑
j=1,j ̸=i

E
[
ψϕkj ψϕlj

]
+

1

m2
ψϕki ψϕli

= Ωkl +
1

m2

{
ψϕki ψϕli − E

[
ψϕki ψϕli

]}
,

where Ωkl is the (k, l)-element of Ω and we used the fact that E[ψϕkj |yi] = E[ψϕkj ] = 0 for

j ̸= i. Hence, we get the result from the asymptotic approximation of ϕ̂ given in Theorem
5.1.

5.5.3 Proof of Theorem 5.2.

We begin by deriving the conditional asymptotic bias of γ̂. Let γ̃ be the solution of the
equation

F (γ;β) ≡ 1

N

m∑
i=1

ni∑
j=1

[{
yij − ȳi − (xij − x̄i)tβ

}2
zij − σ2ij(zij − 2n−1

i zij + n−1
i z̄i)

]
= 0

with σ2ij = σ2(ztijγ). For notational simplicity, we use F instead of F (γ;β) without any
confusion and Fr, r = 1, . . . , q denotes the r-th component of F , namely F = (F1, . . . , Fq)

t.
Define the derivatives F (a) and Fh(ab) by

F (a) =
∂F

∂at
, Fr(ab) =

∂2Fr

∂a∂bt
.

It is noted that Fh(βγ) = 0. Expanding F (γ̂; β̂OLS) = 0, we obtain

0 = F + F (γ)(γ̂ − γ) + F (β)(β̂OLS − β) +
1

2
t1 +

1

2
t2 + op(m

−1),

where ts = (ts1, . . . , tsq), s = 1, 2 for

t1r = (γ̂ − γ)tFr(γγ)(γ̂ − γ), t2r = (β̂OLS − β)tFr(ββ)(β̂OLS − β).

It is also noted that

F (γ) = − 1

m

m∑
k=1

nk∑
j=1

σ2kj(1)(zkj − 2n−1
k zkj + n−1

k z̄k)z
t
kj

F (β) = − 2

N

m∑
k=1

nk∑
j=1

{
ykj − ȳk − (xkj − x̄k)tβ

}
zij(xkj − x̄k)t,

so that F (γ) is non-stochastic. Thus we have

E[γ̂ − γ|yi] = −(F (γ))
−1

{
E[F (γ;β)|yi] + E

[
F (β)(β̂OLS − β)

∣∣∣yi]+ 1

2
E[t1|yi] +

1

2
E[t2|yi]

}
+ op(m

−1).
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In what follows, we shall evaluate the each term in the parenthesis in the above expression.
For the first term, since y1, . . . ,ym are mutually independent and E(u2i) = 0, we have

E[F (γ;β)|yi] =
1

m
u2i.

For evaluation of the second term, we define Zkr = diag(zk1r, . . . , zknkr), where zkjr denotes
the r-th element of zkj . Then it follows that

E
[
F r(β)(β̂OLS − β)

∣∣∣yi] = − 2

N

m∑
k=1

E

[
(yk −Xkβ)

tEkZkrEkXk(β̂OLS − β)
∣∣∣∣yi]

= − 2

N

m∑
k=1,k ̸=i

E
[
(yk −Xkβ)

tEkZkrEkXk(β̂OLS − β)
∣∣∣yi]− 2

N
(yi −Xiβ)

tEiZirEiXiE
[
β̂OLS − β

∣∣∣yi] .
Noting that it holds for ℓ = 1, . . . ,m and k ̸= i

E
[
(yℓ −Xℓβ)(yk −Xkβ)

t
∣∣∣yi] = 1{ℓ=k}Σk, E[β̂OLS − β|yi] =

(
XtX

)−1
Xt

i(yi −Xiβ),

we have

E

[
(yk −Xkβ)

tEkZkrEkXk(β̂OLS − β)
∣∣∣∣yi]

=
m∑
ℓ=1

tr
{
EkZkrEkXk(X

tX)−1Xt
kE
[
(yℓ −Xℓβ)(yk −Xkβ)

t
∣∣∣yi]}

= tr
{
(XtX)−1Xt

kΣkEkZkrEkXk

}
,

which is O(m−1) and

1

N
(yi −Xiβ)

tEkZkrEkXkE
[
β̂OLS − β

∣∣∣yi] = op(m
−1).

Thus, we get

E
[
F r(β)(β̂OLS − β)

∣∣∣yi] = − 2

m

m∑
k=1

nk∑
j=1

tr
{
(XtX)−1Xt

kΣkEkZkrEkXk

}
+ op(m

−1), (5.30)

where the leading term is O(m−1). For the third and forth terms, note that

Fr(γγ) = − 1

N

m∑
k=1

nk∑
j=1

σ2kj(2)(zkj−2n−1
k zkj+n

−1
k z̄k)z

t
kjzkjr Fr(ββ) =

2

N

m∑
k=1

Xt
kEkZkrEkXk,

which are non-stochastic. Then for h = 1, . . . , q,

E[t1r|yi] = − 1

N

m∑
k=1

nk∑
j=1

zkjrσ
2
kj(2)(zkj − 2n−1

k zkj + n−1
k z̄k)

tΩγγzkj + op(m
−1),

E[t2r|yi] =
2

N

m∑
k=1

tr
(
Xt

kEkZkrEkXkV OLS

)
+ op(m

−1),



5.5. TECHNICAL ISSUES 95

for V OLS = (XtX)−1XtΣX(XtX)−1, where we used Corollary 5.1 and

E
[
(β̂OLS − β)(β̂OLS − β)t

∣∣yi] = V OLS + op(m
−1), (5.31)

which follows from the similar argument to the proof of Corollary 5.1. Thus we obtain

E[t1|yi] = − 1

N

m∑
k=1

nk∑
j=1

zkjσ
2
kj(2)(zkj − 2n−1

k zkj + n−1
k z̄k)

tΩγγzkj + op(m
−1),

E[t2|yi] =
2

N

m∑
k=1

{
tr
(
Xt

kEkZkrEkXkV OLS

)}
r
+ op(m

−1),

where {ar}r denotes the q-dimensional vector (a1, . . . , aq). Therefore, we have established the
result for γ̂ in (5.15).

We next derive the result for τ̂2. Let

τ̃2 =
1

N

m∑
k=1

(yk −Xkβ)
t(yk −Xkβ)−

nk∑
j=1

σ2kj

 .

Using the Taylor series expansion, we have

τ̂2 = τ̃2 +
∂τ̃2

∂γ
(γ̂ − γ) + 1

2
(γ̂ − γ)t

(
∂2τ̃2

∂γ∂γt

)
(γ̂ − γ)

+
∂τ̃2

∂β
(β̂OLS − β) +

1

2
(β̂OLS − β)t

(
∂2τ̃2

∂β∂βt

)
(β̂OLS − β) + op(m

−1),

where we used the fact that ∂2τ̃2/∂γ∂βt = 0. The straight calculation shows that

∂τ̃2

∂γ
= − 1

N

m∑
k=1

nk∑
j=1

σ2kj(1)zkj ,
∂2τ̃2

∂γ∂γt
= − 1

N

m∑
k=1

nk∑
j=1

σ2kj(2)zkjz
t
kj ,

∂2τ̃2

∂β∂βt
=

2

N

m∑
k=1

Xt
iXi,

which are non-stochastic. Thus we obtain

E[τ̂2 − τ2|yi] = E[τ̃2 − τ2|yi] +
(
∂τ̃2

∂γ

)t
E [γ̂ − γ|yi] +

1

2
tr

{(
∂2τ̃2

∂γ∂γt

)
E
[
(γ̂ − γ)(γ̂ − γ)t

∣∣yi]}
+E

[(
∂τ̃2

∂β

)t
(β̂OLS − β)

∣∣∣∣yi
]
+

1

2
tr

{(
∂2τ̃2

∂β∂βt

)
E
[
(β̂OLS − β)(β̂OLS − β)t

∣∣yi]}+ op(m
−1)

≡ Bτ1(yi) +Bτ2(yi) +Bτ3(yi) +Bτ4(yi) +Bτ5(yi) + op(m
−1).

From the expression of τ̃2, it holds that

Bτ1(yi) =
1

N

m∑
k=1,k ̸=i

nkτ
2 +

1

N

(yi −Xiβ)
t(yi −Xiβ)−

ni∑
j=1

σ2ij

− τ2

=
(
1− ni

N

)
τ2 +

1

m
u1i +

ni
N
τ2 − τ2 =

1

m
u1i,
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for u1i defined in (5.10). Also, we immediately have

Bτ2(yi) = − 1

N

m∑
k=1

nk∑
j=1

σ2kj(1)z
t
kjb

(i)
γ (yi)

For evaluation of Bτ4(yi), note that

∂τ̃2

∂β
= − 2

N

m∑
k=1

Xt
k(yk −Xkβ).

Similarly to (5.30), we get

Bτ4(yi) = − 2

N

m∑
k=1

E

[
(yk −Xkβ)

tXk(β̂OLS − β)
∣∣∣∣yi]

= − 2

N

m∑
k=1

tr
{
(XtX)−1Xt

kΣkXk

}
+ op(m

−1).

Moreover, Corollary 5.1 and (5.31) enable us to obtain the expression of Bτ3(yi) and Bτ5(yi),
whereby we get

b(i)τ (yi) = m−1u1i −
1

N

m∑
k=1

nk∑
j=1

σ2kj(1)z
t
kj

{
b(i)γ (yi)− bγ

}
+ bτ ,

which completes the proof for τ̂2 in (5.15).
We finally derive the result for β̂. By the Taylor series expansion,

β̂ − β = β̃ − β +

q∑
s=1

(
∂

∂γs
β̃

)
(γ̂s − γ) +

(
∂

∂τ2
β̃

)
(τ̂2 − τ2) + op(m

−1),

since (
∂β̃

∂ϕ

)t
(ϕ̂− ϕ)(ϕ̂− ϕ)t

(
∂β̃

∂ϕ

)
= op(m

−1),

from ∂β̃/∂ϕ = Op(m
−1/2) as shown in the proof of Theorem 5.1. From (5.29), we have

q∑
s=1

(
∂

∂γs
β̃

)
(γ̂s − γs)

=
(
XtΣ−1X

)−1
q∑
s=1

(
m∑
k=1

Xt
iΣ

−1
i W i(s)Σ

−1
i Xi

){(
β̃
∗
γs − β

)
(γ̂s − γs)− (β̃ − β)(γ̂s − γs)

}
,

and(
∂

∂τ2
β̃

)
(τ̂2 − τ2)

=
(
XtΣ−1X

)−1

(
m∑
k=1

Xt
kΣ

−1
k Jnk

Σ−1
k Xk

){
(β̃

∗
τ − β)(τ̂2 − τ2)− (β̃ − β)(τ̂2 − τ2)

}
.
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Let Ωβ∗γs = E[(β̃
∗
γs −β)(γ̂s−γs)] and Ωβ∗τ = E[(β̃

∗
τ −β)(τ̂ − τ)]. Then it can be shown that

E[(β̃
∗
τ − β)(τ̂ − τ)|yi] = Ωβ∗γs + op(m

−1), E[(β̃
∗
γs − β)(γ̂s − γs)|yi] = Ωβ∗τ + op(m

−1),

which can be proved by the same arguments as in Corollary 5.1. Thus from Corollary 5.1 and
the fact that

E
[
β̃ − β|yi

]
=
(
XtΣ−1X

)−1
Xt

iΣ
−1
i (yi −Xiβ),

we obtain the result for β̂ in (5.15).

5.5.4 Proof of (5.20).

From the expansion of µ̂i, we have

E
[
(µ̂i − µ̃i)

2
]
= E

{(∂µ̃i
∂ϕ

)t
(ϕ̂− ϕ)

}2
+

1

2
U1 +

1

4
U2,

where

U1 = E

[(
∂µ̃i
∂ϕ

)t
(ϕ̂− ϕ)(ϕ̂− ϕ)t

(
∂2µ̃i

∂ϕ∂ϕt

∣∣∣
ϕ=ϕ∗

)
(ϕ̂− ϕ)

]

U2 = E

[{
(ϕ̂− ϕ)t

(
∂2µ̃i

∂ϕ∂ϕt

∣∣∣
ϕ=ϕ∗

)
(ϕ̂− ϕ)

}2
]
.

It is noted that

U1 =

p+q+1∑
j=1

p+q+1∑
k=1

p+q+1∑
ℓ=1

E

[(
∂µ̃i
∂ϕj

)(
∂2µ̃i
∂ϕk∂ϕℓ

∣∣∣
ϕ=ϕ∗

)
(ϕ̂j − ϕj)(ϕ̂k − ϕk)(ϕ̂ℓ − ϕℓ)

]

≡
p+q+1∑
j=1

p+q+1∑
k=1

p+q+1∑
ℓ=1

U1jkℓ,

and

|U1jkl| ≤ E

[∣∣∣∣ (∂µ̃i∂ϕj

)(
∂2µ̃i
∂ϕk∂ϕℓ

∣∣∣
ϕ=ϕ∗

) ∣∣∣∣∣∣∣(ϕ̂j − ϕj)(ϕ̂k − ϕk)(ϕ̂ℓ − ϕℓ)
∣∣∣]

≤ E

[∣∣∣∣ (∂µ̃i∂ϕj

)(
∂2µ̃i
∂ϕk∂ϕℓ

∣∣∣
ϕ=ϕ∗

) ∣∣∣∣4
]1/4

E

[∣∣∣(ϕ̂j − ϕj)(ϕ̂k − ϕk)(ϕ̂ℓ − ϕℓ)
∣∣∣4/3]3/4 (5.32)

using Holder’s inequality. Since both ∂µ̃i/∂ϕj and ∂
2µ̃i/∂ϕk∂ϕℓ are linear functions of yi, the

first term of (5.32) is finite under Assumption 5.1. Moreover, from Theorem 5.1, it follows√
m|ϕ̂j − ϕj | ≤ C(y) for some quadratic function of y, so that the second term in (5.32) is

also finite. Hence, we have U1 = o(m−1). Similarly, we also obtain U2 = o(m−1). Therefore,
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using Corollary 5.1, we have

E
[
(µ̂i − µ̃i)

2
]
= E

{(∂µ̃i
∂ϕ

)t
(ϕ̂− ϕ)

}2
+ o(m−1)

= tr

{
E

[(
∂µ̃i
∂ϕ

)(
∂µ̃i
∂ϕ

)t
E
(
(ϕ̂− ϕ)(ϕ̂− ϕ)t

∣∣∣yi)
]}

+ o(m−1)

= tr

{
E

[(
∂µ̃i
∂ϕ

)(
∂µ̃i
∂ϕ

)t
Ω+

(
∂µ̃i
∂ϕ

)(
∂µ̃i
∂ϕ

)t
c(yi)o(m

−1)

]}
+ o(m−1)

= tr

{
E

[(
∂µ̃i
∂ϕ

)(
∂µ̃i
∂ϕ

)t]
Ω

}
+ o(m−1)

since c(yi) is fourth-order function of yi and ∂µ̃i/∂ϕ is a linear function of yi, which completes
the proof.

5.5.5 Derivation of R31i(ϕ,κ).

Since yi given vi, ϵi is non-stochastic, we have

E

[(
∂µ̃i
∂ϕ

)t
(ϕ̂− ϕ)wi

]

= E

[
E

[(
∂µ̃i
∂ϕ

)t
(ϕ̂− ϕ)wi

∣∣∣∣vi, ϵi
]]

= E

[
E(ϕ̂− ϕ|yi)t

(
∂µ̃i
∂ϕ

)
wi

]
= E

[
b
(i)
β (yi)

t

(
∂µ̃i
∂β

)
wi

]
+ E

[
b
(i)
γ (yi)

t

(
∂µ̃i
∂γ

)
wi

]
+E

[
b(i)τ (yi)

(
∂µ̃i
∂τ

)
wi

]
+ o(m−1)

≡ R31i(ϕ) + o(m−1).

It is noted that E(wi) = 0 and

E
[
(yij − xtijβ)wi

]
= E [(vi + εij)wi] =

 ni∑
j=1

λij − 1

 τ2 +

ni∑
j=1

λijσ
2
ij = 0. (5.33)

Using the expression (5.15) and (5.19), it follows that

E

[
b
(i)
β (yi)

t

(
∂µ̃i
∂β

)
wi

]
=

ci − ni∑
j=1

λijxij

t (
XtΣ−1X

)−1
Xt

iΣ
−1
i E

[
(yi −Xiβ)wi

]
= 0

E

[
b
(i)
γ (yi)

t

(
∂µ̃i
∂γ

)
wi

]
= η−2

i

ni∑
j=1

σ−2
ij δ

t
ij

(
m∑
k=1

nk∑
h=1

σ2kh(1)zkhz
t
kh

)−1

M2ij(ϕ,κ)

E

[
b(i)τ (yi)

(
∂µ̃i
∂τ

)
wi

]
= m−1η−2

i

ni∑
j=1

σ−2
ij

{
M1ij(ϕ,κ)− T 1(γ)

tT 2(γ)M2ij(ϕ,κ)

}
,
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where

M2ij(ϕ,κ) = E
[
u2i(yij − xtijβ)wi

]
, M1ij(ϕ,κ) = E

[
u1i(yij − xtijβ)wi

]
.

To evaluateM1ij andM2ij , we first prove the following result for fixed j, k, ℓ ∈ {1, . . . , ni}.

E
[
(vi + εij)(vi + εik)(vi + εiℓ)wi

]
= τ2η−1

i

[
τ2(3− κv) + κεσ

2
ij1{j=k=ℓ} + σ2ij(1{j=k ̸=ℓ} − 1{j=k})

+ σ2ij(1{j=ℓ ̸=k} − 1{j=ℓ}) + σ2ik(1{k=ℓ ̸=j} − 1{k=ℓ})

]
.

(5.34)

To show (5.34), we note that the left side can be rewritten as

−η−1
i E [(vi + εij)(vi + εik)(vi + εiℓ)vi] +

ni∑
h=1

λihE [(vi + εij)(vi + εik)(vi + εiℓ)εih] (5.35)

from the definition of wi. Using the fact that εi1, . . . , εini and vi are independent, the first
term in (5.35) is calculated as

E
[
v4i + (εijεik + εijεiℓ + εikεiℓ)v

2
i

]
= κvτ

4 + τ2
(
σ2ij1{j=k} + σ2ij1{j=ℓ} + σ2ik1{k=ℓ}

)
.

Moreover, we have

E [(vi + εij)(vi + εik)(vi + εiℓ)εih] = E
[
εih(εij + εiℓ + εik)v

2
i + εijεikεiℓεih

]
= τ2σ2ih

(
1{h=j} + 1{h=k} + 1{h=ℓ}

)
+ κεσ

4
ih1{j=k=ℓ=h}

+ σ2ih
(
σ2ij1{j=k ̸=ℓ=h} + σ2ij1{j=ℓ ̸=k=h} + σ2ik1{j=h̸=k=ℓ}

)
,

whereby the second term in (5.35) can be calculated as

τ2η−1
i

[
3τ2 + κεσ

2
ij1{j=k=ℓ} + σ2ij1{j=k ̸=ℓ} + σ2ij1{j=ℓ ̸=k} + σ2ik1{k=ℓ ̸=j}

]
,

where we used the expression λih = τ2η−1
i σ−2

ih . Then we established the result (5.34). From
(5.34), we immediately have

ni∑
ℓ=1

E
[
(vi + εij)(vi + εik)(vi + εiℓ)wi

]
= τ2η−1

i

[
niτ

2(3− κv) + σ2ij(κε − 3)1{j=k}
]

= E
[
(vi + εij)(vi + εik)

2wi
]
.

Now, we return to the evaluation of M1ij and M2ij . It follows that

M1ij(ϕ,κ) =
m

N

ni∑
h=1

E
[
(yih − xtihβ)2(yij − xtijβ)wi

]
= mN−1η−1

i τ2
{
niτ

2(3− κv) + σ2ij(κε − 3)
}
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and

M2ij(ϕ,κ) =
m

N

ni∑
h=1

zihE
[
{vi + εih − (vi + ε̄i)}2(vi + εij)wi

]
=
m

N

ni∑
h=1

zih

{
E
[
(vi + εih)

2(vi + εij)wi
]
− 2n−1

i

ni∑
k=1

E [(vi + εij)(vi + εik)(vi + εih)wi]

+ n−2
i

ni∑
k=1

ni∑
ℓ=1

E [(vi + εij)(vi + εik)(vi + εiℓ)wi]

}
.

Using the identity given in (5.34), we have

M2ij(ϕ,κ) = mN−1τ2η−1
i

ni∑
h=1

zih

{
σ2ij(κε − 3)(1{j=h} − 2n−1

i 1{j=h} + n−2
i )
}

= mN−1τ2η−1
i n−2

i (ni − 1)2(κε − 3)σ2ijzij ,

which completes the result in (5.22).

5.5.6 Evaluation of R32i(ϕ).

Since yi given vi and ϵi is non-stochastic, we have

R32i(ϕ) =
1

2
E

[
(ϕ̂− ϕ)t

(
∂2µ̃i

∂ϕ∂ϕt

∣∣∣
ϕ=ϕ∗

)
(ϕ̂− ϕ)wi

]
=

1

2
E

[
E

[
(ϕ̂− ϕ)t

(
∂2µ̃i

∂ϕ∂ϕt

∣∣∣
ϕ=ϕ∗

)
(ϕ̂− ϕ)wi

∣∣∣∣vi, ϵi]]
=

1

2
tr

{
ΩE

[(
∂2µ̃i

∂ϕ∂ϕt

∣∣∣
ϕ=ϕ∗

)
wi

]}
+ o(m−1)E

[
tr

{
c(yi)

(
∂2µ̃i

∂ϕ∂ϕt

∣∣∣
ϕ=ϕ∗

)}
wi

]
,

where we used Corollary 5.1 in the last equation. Note that

∂2µ̃i

∂ϕ∂ϕt

∣∣∣
ϕ=ϕ∗

=
∂2µ̃i

∂ϕ∂ϕt
+

p+q+1∑
k=1

(ϕ∗k − ϕk)

(
∂3µ̃i

∂ϕ∂ϕt∂ϕk

∣∣∣
ϕk=ϕ

∗∗
k

)
, (5.36)

where ϕ∗∗k is an intermediate value between ϕ∗k and ϕk. Further note that the third order
partial derivatives of µ̃i is a linear function of yi, so that the second term of R32i is o(m

−1).
Similarly, it follows that

E

[(
∂2µ̃i

∂ϕ∂ϕt

∣∣∣
ϕ=ϕ∗

)
wi

]
= E

[(
∂2µ̃i

∂ϕ∂ϕt

)
wi

]
+ o(1) = o(1),

since the second order partial derivatives of µ̃i is a linear function of yij−xtijβ and the identity

(5.33). Therefore, we finally get R32i(ϕ) = o(m−1).



Chapter 6

Shrinking Both Means and
Variances

6.1 Introduction

In the Fay-Herriot model (2.1), it is conventionally assumed that the sampling variancesDi are
known. In practice, however, the sampling variances are often estimated in various ways, and
the small area estimators are provided by replacing the known variances with their estimators.
This means that the small area estimators derived in the Fay-Herriot model involve substantial
errors which come from estimation of variance, and we need to evaluate the estimation errors.
To this end, several approaches are developed in the small area literature, for example, Arora
and Lahiri (1997), You and Chapman (2006), and Wang and Fuller (2003).

You and Chapman (2006) proposed the modified Fay-Herriot model taking the estimated
sampling variance into the Fay-Herriot model. To describe their model, suppose that there
are m small areas, and let (Xi, S

2
i ) be a pair of direct survey estimates of mean and variance

in the i-th small area for i = 1, . . . ,m. Let zi = (zi1, . . . , zip)
t be a vector of p covariates

available at the estimation stage. Then the Fay-Herriot model can be modified as

Xi|θi, σ2i ∼ N(θi, σ
2
i ), θi ∼ N(ztiβ, τ

2)

S2
i |σ2i ∼ Γ

(
ni − 1

2
,
ni − 1

2σ2i

)
, σ2i ∼ π(σ2i )

(6.1)

where (Xi, S
2
i , θi, σ

2
i ), i = 1, . . . ,m, are mutually independent and Γ(a, b) denotes the gamma

distribution with density proportional to xα−1 exp(−βx), x > 0. Here, ni is the sample size
for a simple random sample in the i-th area, β = (β1, . . . , βp)

t is the p×1 vector of regression
coefficients. In the framework of (6.1), You and Chapman (2006) suggested the hierarchical
Bayesian approach by setting prior distributions:

π(β) ∝ 1, σ2i ∼ IG(ai, bi), i = 1, . . . ,m, τ2 ∼ IG(a0, b0),

where IG(a, b) is the inverse Gamma density function with density proportional to x−α−1 exp(−β/x),
x > 0, and ai, bi (i = 0, . . . ,m) are chosen to be very small known constants, so that the prior
distributions on σ2i and τ2 are close to the uniform distribution. However, the nearly uniform
prior distribution for σ2i does not produce shrinkage estimation of the sampling variances.

101
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On the other hand, recently, Maiti et al. (2014) proposed the empirical Bayes approach
for (6.1), namely

Xi|θi, σ2i ∼ N(θi, σ
2
i ), θi ∼ N(ztiβ, τ

2)

S2
i |σ2i ∼ Γ

(
ni − 1

2
,
ni − 1

2σ2i

)
, σ2i ∼ IG(α, γ),

(6.2)

where β, τ2, α and γ are unknown parameters. They estimated model parameters β and τ2

as well as α and γ from the (marginal) likelihood function. However, the marginal likelihood
function cannot be obtained in a closed form and they developed the EM algorithm for
getting estimates of the model parameters. Also we found through the simulation study that
the estimates of (γ, α) tend to be unstable. Moreover, the analytical expression of the Bayes
estimator of θi is hard to obtain since the posterior distribution of θi is no longer a normal
distribution but an unfamiliar distribution. Thus, it is worth developing much easier yet
practical method shrinking both means and variances in small area estimation.

These observations motivate us to propose the Bayesian approach for small area models
shrinking both mean and variances. To achieve this, we assume the uniform prior distributions
on τ2 and β, namely π(β, τ2) ∝ 1, and the following structure is introduced for σ2i :

σ2i ∼ IG(ai, biγ), i = 1, . . . ,m, π(γ) ∝ 1,

where ai and bi are constants specified by users. A suggestion for the choice of ai and bi is
given in the end of Section 6.2.1. In these settings, the full conditional posterior distributions
are all familiar forms that enable us to easily draw the samples via the Markov chain Monte
Carlo technique, in particular the Gibbs sampler as discussed in Section 6.2. Using these
posterior samples, we obtain the point estimates of the parameter of interest θi by the simple
average of posterior samples. Moreover, the prediction intervals are easily constructed from
quantiles of posterior samples compared to the empirical Bayes confidence intervals given in
Dass et al. (2012) and Hwang et al. (2009). In Section 6.2.2, we also consider the alternative
formulation of the true variance σ2i in each area with use of covariate information, namely
σ2i is structured as σ2i ∼ IG(ai, biγ exp(w

t
iη)) for some vector of covariates wi and unknown

regression vector of coefficients η. In this paper, we also develop a Bayesian method for this
model and prove the posterior propriety and finiteness of the posterior variances when we use
the improper priors for unknown parameters.

This chapter is organized as follows: In Section 6.2, the full Bayesian model alternative to
Maiti et al. (2014) and You and Chapman (2006) is proposed. The full conditional distribution
is described, and the Gibbs sampling for MCMC is given. As a theoretical main result, under
a mild sufficient condition, we prove that the resulting posterior distribution is proper and
the model parameters have finite variances. In Section 6.3, we carry out simulation studies to
compare the suggested methods with the models by Maiti et al. (2014) and You and Chapman
(2006). As real data analysis, we apply our methods to two real data sets, the SFIE data in
Japan and the famous corn crop data, in Section 6.4. The proofs of the main theorem are
given in Section 6.5.
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6.2 Bayesian models shrinking both means and variances

6.2.1 Model settings and Bayesian inferences

We propose Bayesian multi-stage small area model shrinking both means and variances de-
scribed as

Xi|θi, σ2i ∼ N(θi, σ
2
i ), θi|β, τ2 ∼ N(ztiβ, τ

2),

S2
i |σ2i ∼ Γ

(
ni − 1

2
,
ni − 1

2σ2i

)
, σ2i |γ ∼ IG(ai, biγ)

π(β, τ2, γ) = 1,

(6.3)

where (Xi, S
2
i , θi, σ

2
i ), i = 1, . . . ,m, are conditionally independent given (β, τ2, γ). Here, ai, bi

are positive and known (user specified) constants. The choice of ai and bi is not concerned
with the propriety of the posterior distributions given in Theorem 6.1 as far as ai and bi
are positive. The practical choice of these constants is discussed later. Note that the model
for S2

i in (6.3) means that (ni − 1)S2
i /σ

2
i given σ2i follows a chi-square distribution with

(ni − 1) degrees of freedom. This setting is appropriate under simple random sampling, but
for complex sampling design, the degrees of freedom needs to be determined carefully as
discussed in Maples et al. (2009).

We now consider the posterior distribution and investigate its properties. We denote
D = {Xi, S

2
i , zi}i=1,...,m, the set of all observed data, for notational simplicity. From the

formulation (6.3), the posterior density is given by

π(θ1, . . . , θm, σ
2
1, . . . , σ

2
m,β, τ

2, γ|D)

∝ (τ2)−m/2
m∏
i=1

γai(σ2i )
−ni/2−ai−1 exp

{
−(Xi − θi)

2 + (ni − 1)S2
i + 2biγ

2σ2i
− (θi − ztiβ)2

2τ2

}
.

(6.4)

We state our main result, which provides a sufficient condition for the propriety of the posterior
distribution. To this end, we define Z = (z1, . . . , zm).

Theorem 6.1. (a) The marginal posterior density π(β, τ2, γ|D) is proper if m > p + 2,
ni > 1 and rank(Z) = p.
(b) The model parameters β, τ2 and γ have finite posterior variances if m > p + 6, ni > 1
and rank(Z) = p.

Part (a) of Theorem 6.1 says that the marginal posterior densities of the small area means
are proper and part (b) establishes a sufficient condition for obtaining finite measures of
uncertainty for the model parameters. We note that the sufficient condition given in Theorem
6.1 is the same as the condition given in Arima et al. (2015) except for ni > 1, where they
suggested Bayesian estimators for small area models with measurement errors in covariates.
The proof of Theorem 6.1 is deferred to Section 6.5.

Since the posterior distribution in (6.4) cannot be obtained in a closed form, we rely on
the Markov chain Monte Carlo technique, in particular the Gibbs sampler, in order to draw
samples from the posterior distribution. This requires generating samples from the full con-
ditional distributions of each of (θ1, . . . , θm, σ

2
1, . . . , σ

2
m,β, τ

2) given the remaining parameters
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and the data D. From the expression given in (6.4), the full conditional distributions are
given by

θi|β, τ2,σ2,ϕ(−i), γ,D ∼ N

(
τ2Xi + σ2i z

t
iβ

τ2 + σ2i
,
τ2σ2i
τ2 + σ2i

)
, i = 1, . . . ,m

σ2i |β, τ2,σ2
(−i),ϕ, γ,D ∼ IG

(
ni
2

+ ai,
1

2
(Xi − θi)

2 +
1

2
(ni − 1)S2

i + biγ

)
, i = 1, . . . ,m

β|τ2,σ2,ϕ, γ,D ∼ Np

(
(ZtZ)−1Ztϕ, τ2(ZtZ)−1

)
,

τ2|β,σ2,ϕ, γ,D ∼ IG

(
m

2
− 1,

1

2
(ϕ−Zβ)t(ϕ−Zβ)

)
,

γ|β, τ2,σ2,ϕ, D ∼ Γ

(
m∑
i=1

ai + 1,
m∑
i=1

bi
σ2i

)
,

(6.5)

where σ2 = (σ21, . . . , σ
2
m)

t, ϕ = (θ1, . . . , θm)
t, and the suffix (−i) denotes the vector without

the i-th component. Fortunately, the full conditional distributions for every parameter are
familiar distributions allowing us to easily implement the Gibbs sampling.

In closing of this section, we give a suggestion for the choice of ai and bi. For fixed value
of γ, it is noted that

Var(Xi) = E[Var(Xi|θi)] + Var(E[Xi|θi]) = E[σ2i ] =
bi

ai − 1
γ.

Since Xi is the sample mean, it is natural to consider Var(Xi) = O(n−1
i ). On the other hand,

the full conditional expectation of σ2i is obtained from (6.5) as

E[σ2i |Xi, θi, S
2
i ] =

(Xi − θi)
2/2 + (ni − 1)S2

i /2 + biγ

ni/2 + ai − 1

=
ni/2

ni/2 + ai − 1
σ̃2i (Xi, S

2
i ) +

ai − 1

ni/2 + ai − 1
· bi
ai − 1

γ

where

σ̃2i (Xi, S
2
i ) =

1

ni

{
(Xi − θi)

2 + (ni − 1)S2
i

}
.

Thus the full conditional expectation of σ2i is the weighted mean of σ̃2i (Xi, S
2
i ) and the prior

mean biγ/(ai − 1), and the weight for the prior mean is determined by ai. It is natural that
the posterior full conditional expectation approaches to Si for large ni. Thus it is reasonable
to choose ai as ai = O(1) for ni. These observations show that the order of ai and bi should
be ai = O(1) and bi = (n−1

i ). Hence, we suggest to use ai = 2 and bi = n−1
i as the one

reasonable choice. In the simulation and empirical studies given in the subsequent section,
we use these values for ai and bi. In empirical study, we investigate the influence of choices
of ai and bi.

6.2.2 Alternative formulation of heteroscedastic variances

We next suggest the alternative formulation of heteroscedastic variances σ2i in each area.
Remember that we assume that σ2i ∼ IG(ai, biγ) for specified ai and bi in the previous
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subsection. However, in case that we can accommodate the covariate information in the
variance modeling, more sophisticated modeling can be developed. Let wi be a vector of q
covariates in the i-th area and η is a q-dimensional vector of unknown coefficients, and we
propose the structure σ2i ∼ IG

(
ai, biγ exp(w

t
iη)
)
with typical choice ai = 2 and bi = 1/ni.

Let wi = (wi1, . . . , wiq)
t and η = (η1, . . . , ηq)

t, then we cannot assign wi1 = 1 for i = 1, . . . ,m
since we cannot identify γ and η1 in this case. To develop a Bayesian inference, we again use
the uniform prior distribution for all parameters β, τ2, γ and η, namely π(β, τ2, γ,η) ∝ 1, to
keep objectivity of inferences. Therefore, the covariate dependent version of (6.3) is given by

Xi|θi, σ2i ∼ N(θi, σ
2
i ), θi|β, τ2 ∼ N(ztiβ, τ

2),

S2
i |σ2i ∼ Γ

(
ni − 1

2
,
ni − 1

2σ2i

)
, σ2i ∼ IG

(
ai, biγ exp(w

t
iη)
)

π(β, τ2, γ,η) ∝ 1,

(6.6)

Then, the joint posterior distribution (6.4) is changed as

π(θ1, . . . , θm,σ
2
1, . . . , σ

2
m,β, τ

2, γ,η|D) ∝ (τ2)−m/2
m∏
i=1

γai exp(aiw
t
iη)(σ

2
i )

−ni/2−ai−1

× exp

{
−(Xi − θi)

2 + (ni − 1)S2
i + 2biγ exp(w

t
iη)

2σ2i
− (θi − ztiβ)2

2τ2

}
.

(6.7)

We state our second main result, which provides a sufficient condition for the propriety of
the posterior distribution given in (6.7). To this end, we define

tk = sgn

(
m∑
i=1

aiwik

)
sgn

(
m∑
i=1

niwik

)
, k = 1, . . . , q,

where sgn(x) for the real number x denotes the sign of x.

Theorem 6.2. (a) The marginal posterior density π(β, τ2, γ,η|D) is proper if m > p + 2,
ni > 1, rank(Z) = p, and tk = 1 for k = 1, . . . , q.
(b) The model parameters β, τ2, γ and η have finite posterior variances if m > p+6, ni > 1,
rank(Z) = p, and tk = 1 for k = 1, . . . , q.

The last new condition tk = 1 for k = 1, . . . , q given in both (a) and (b) means that
the two values

∑m
i=1 aiwik and

∑m
i=1 niwik have the same signs for k = 1, . . . , q, while other

conditions are the same as in Theorem 6.1. Note that the simple sufficient condition for the
last condition is wik, i = 1, . . . ,m have the same signs since ai and ni are positive.

To sample from the joint posterior distribution (6.7), we can again use the Gibbs sampling
method. Note that the full conditional distributions of θi’s, β and τ2 are the same as (6.5),
and these of σ2i and γ are obtained by replacing bi with exp(wt

iη). The full conditional
distribution of η is proportional to

π(η|σ2, γ,D) =
m∏
i=1

exp(aiw
t
iη) exp

{
−biγ exp(w

t
iη)

σ2i

}
,
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which is not a familiar form. To sample from this full conditional distribution, we use the
random-walk Metropolis-Hastings (MH) algorithm. Let η0 be the current value and we gen-
erate the proposal η∗ from Nq(η0, cIq) for specified c > 0. Then we accept the proposal η∗

with probability min{1, p(η0,η∗)}, where

p(η0,η
∗) =

m∏
i=1

exp{aiwt
i(η

∗ − η0)} exp
(
−biγ[exp(wt

iη
∗)− exp(wt

iη0)]

σ2i

)
.

6.3 Simulation studies

In this section, we compare the accuracy of the hierarchical Bayes estimator based on the
proposed full Bayesian model with the empirical Bayes estimator given by Maiti et al. (2014)
and the hierarchical model suggested in You and Chapman (2006) through simulation exper-
iments. We first generate observations for each small area from

Xij = β0 + β1zi + ui + eij , j = 1, . . . , ni, i = 1, . . . ,m,

where ui ∼ N(0, τ2) and eij ∼ N(0, niσ
2
i ). Then the random effects model for the small area

mean is

Xi = β0 + β1zi + ui + ei, i = 1, . . . ,m,

where Xi = Xi = n−1
i

∑ni
j=1Xij and ei = n−1

i

∑ni
j=1 eij . Therefore, Xi|θi ∼ N(θi, σ

2
i ), where

θi = β0 + β1zi + ui, that is θi ∼ N(β0 + β1zi, ), and ei ∼ N(0, σ2i ). The parameter of interest
is the mean θi in the i-th small area. The direct estimator of σ2i we used in simulation runs is

S2
i =

1

ni(ni − 1)

ni∑
j=1

(Xij −Xi)
2,

noting that S2
i |σ2i ∼ Γ((ni − 1)/2, (ni − 1)/2σ2i ). We generate covariate zi from the uniform

distribution on (2, 8), and set the true parameter values β0 = 0.5, β1 = 0.8 and τ2 = 1. We
consider the case m = 30 and ni = 7 for all areas. For the true values of σ2i , we consider two
cases: (i) σ2i ∼ IG(10, 5 exp(0.3zi)) and (ii) σ2i ∼ U(0.5, 5).

For simulated data, we apply four methods to get the estimator of the small area mean
θi and variance σ2i . Two of four are the proposed Bayesian models (6.3) and (6.6) referred
as STK1 and STK2, respectively. In applying these models, we put ai = 2 and bi = 1/ni as
discussed in the end of Section 6.2, and we use c = (0.2)2 in each MH step in STK2. The
third method is the hierarchical Bayesian method given by You and Chapman (2006) referred
to as YC, where we assign the uniform prior for σ2i , namely π(σ2i ) ∝ 1. For posterior sampling
in YC method, we replace the full conditional for σ2i in (6.5) with

σ2i |β, τ2,σ2
(−i),ϕ, D ∼ IG

(
ni
2
,
1

2
(Xi − θi)

2 +
1

2
(ni − 1)S2

i

)
, i = 1, . . . ,m,

and the propriety of the posterior distribution can be easily established from small modifica-
tion of the proof of Theorem 6.1. The fourth method is the empirical Bayes method given
in Maiti et al. (2014) referred to as MRS. In the three full Bayesian model, we calculate the
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estimators θ̂i and σ̂
2
i as the mean of 5000 posterior samples after 1000 iteration. For all four

estimator, we calculate the mean squared errors and the absolute biases defined as

MSE =
1

mR

m∑
i=1

R∑
r=1

(θ̂
(r)
i − θ

(r)
i )2, Bias =

1

mR

m∑
i=1

∣∣∣∣ R∑
r=1

(θ̂
(r)
i − θ

(r)
i )

∣∣∣∣,
based on R = 2000 simulation runs, where θ̂

(r)
i and θ

(r)
i are the estimated and true value in

the i-th area in the r-th iteration. Moreover, for the three Bayesian models STK1, STK2 and
YC, we compute the credible intervals of θi with probability 0.95 and 0.99, and calculated
the coverage probability (mR)−1

∑m
i=1

∑R
r=1 I(θi ∈ ĈIi(r)), where ĈIi(r) denotes the credible

interval for θi in the r-th run. The simulation results are presented in Table 7.1. For point
estimation of θi, the MSEs of θi in MRS is reasonable values, but the bias of MRS is larger
compared to other three Bayesian models. Among the full Bayesian model, it is observed that
STK1 and STK2 attain minimum values of MSE in the case (ii) and (i), respectively. The
preference of YC is worst among the four models since YC does not consider the shrinkage
estimation of σ2i in spite of small sample sizes (ni = 7). We also noted that the MSEs of σ2i
are largest in MRS in both cases, which may comes from instability of estimation of α and
γ in (6.2). Concerned with the Bayesian credible intervals, it is revealed that the suggested
two methods STK1 and STK2 almost attain the nominal levels, but YC provides smaller
coverage provabilities than the nominal levels. This is clear that this phenomena comes from
the instability of variance estimation in the YC method. Therefore, the suggested procedure
reasonably works in terms of MSE and bias of both θi and σ

2
i , and can provide an accurate

credible interval compared to the YC method.

Table 6.1: Simulation Result.

Mean (θi) Variance (σ2i ) CP
MSE Bias MSE Bias 95% 99%

(i) STK1 1.120 0.036 2.325 0.411 95.6 99.3
STK2 1.102 0.035 2.087 0.272 95.3 99.2
YC 1.275 0.038 3.894 0.120 93.2 97.6
MRS 1.149 0.410 4.442 0.451 — —

(ii) STK1 1.043 0.040 1.144 0.041 95.2 99.2
STK2 1.053 0.041 1.845 0.278 95.5 99.4
YC 1.185 0.044 2.630 0.099 93.0 97.9
MRS 1.001 0.273 2.849 0.320 — —

6.4 Real Data Analysis

6.4.1 Survey data

We apply the suggested procedures to the data in the Survey of Family Income and Expendi-
ture (SFIE) in Japan. In this study, we use the data of the spending item ‘Education’ (scaled



108 CHAPTER 6. SHRINKING BOTH MEANS AND VARIANCES

by 1000) in the survey in November 2011. The average spending at each capital city of 47
prefectures in Japan is denoted by Xi for i = 1, . . . , 47. Although the average spendings in
SFIE are reported every month, the sample sizes ni’s are around 100 for most prefectures, and
data of the item ‘Education’ have high variability. On the other hand, we have data in the
National Survey of Family Income and Expenditure (NSFIE) for 47 prefectures. Since NSFIE
is based on much larger sample than SFIE, the average spendings in NSFIE are more reliable,
but this survey has been implemented every five years. In this study, we use the data of the
item ‘Education’ of NSFIE in 2009 as a covariate, which is denoted by zi for i = 1, . . . , 47.
Then the two stage model for Xi is described as

Xi|θi, σ2i ∼ N(θi, σ
2
i ), θi|β0, β1, τ2 ∼ N(β0 + β1zi, τ

2), i = 1, . . . , 47.

As the direct estimates of σ2i , we calculate S2
i from the data of the spending ‘Education’ at

the same city every November in the past ten years. Then the model for S2
i is given by

S2
i |σ2i ∼ Γ

(
ni − 1

2
,
ni − 1

2σ2i

)
, i = 1, . . . , 47.

and the priors for σ2i are given by

(STK1) σ2i ∼ IG(ai, biγ), (STK2) σ2i ∼ IG(ai, biγ exp(ηzi)), (YC) π(σ2i ) ∝ 1.

Remember that the uniform prior for σ2i in YC model leads to the non-shrinkage posterior
estimator of σ2i , while the proper prior for σ2i in STK1 and STK2 leads to the shrinkage
estimator of σ2i toward the prior mean.

It is easy to confirm that the sufficient conditions in Theorems 6.1 and 6.2 are satisfied in
this case since the covariate zi is positive for all areas. Now, we apply the three models to
the survey data with

ai = 2 and bi = 1/ni in STK1 and STK2.

Moreover, to investigate sensitivity of the choices of ai and bi, we consider the following two
additional choices:

(s1) ai = 3, bi = 1/ni, (s2) ai = 2, bi = 1, (6.8)

where the prior mean of σ2i is γ/(2ni) and γ in (s1) and (s2), respectively. We use c = 1 for
MH step in STK2. We first calculate the point estimates of model parameters as the means of
95000 posterior samples by Gibbs sampling after 5000 iteration. The results are given in Table
6.2. The estimated values of β0, β1 and τ2 are similar for all models. For model comparison
of these models, we calculated the Deviance Information Criterion (DIC) of Spiegelhalter et
al. (2002) given by DIC = 2D(ϕ) −D(ϕ), where ϕ is the unknown model parameters, D(ϕ)
is (−2) times log-marginal likelihood function, and D(ϕ) and ϕ denote that posterior means
of D(ϕ) and ϕ, respectively. Note that ϕ = {β, τ2, γ} for STK1, ϕ = {β, τ2, γ,η} for STK2,
and ϕ = {β, τ2, σ21, . . . , σ2m} for YC. The resulting values of DIC and D(ϕ) are reported in
Table 6.2, and it is observed that YC is the most suitable model for this data set in terms of
DIC. This may come from the fact that the sample size ni in each area is around 100. Thus
the direct estimates of sampling variances are relatively accurate in this case, so that it does
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not require shrinkage estimation for variances. Comparing STK1, STK1-(s1) and STK1-(s2),
γ seems sensitive to the choice of ai and bi, since the prior means are different for each choice,
but the recommended choice attains the smaller value of DIC. The same thing can be observed
in STK2, STK2-(s1) and STK2-(s2). However, the posterior mean of θi and σ

2
i are nearly the

same among the three choices.
In the closing of this study, we compute the posterior estimates of σ2i ’s and θ

2
i ’s obtained

from three models, STK1, STK2 and YC. In Figure 6.1, we provide the scatter plots of direct
and posterior estimates of σ2i ’s and θi’s for selected 15 areas. From the left panel of Figure
6.1, the posterior estimates of σ2i are almost the same for each model in the area with small
direct estimates. On the other hand, in areas with large direct estimates of σ2i , the posterior
estimates in YC and those of STK1 or STK2 are different since STK1 and STK2 produce
shrinkage estimators for σ2i , but the difference is still small. For the scatter plot for θi given in
the right panel of Figure 6.1, it is observed that the resulting posterior estimates from three
models are similar. Thus, the suggested procedures STK1 and STK2 provide almost the same
estimates of θi, parameter of interest, as the YC method while the DIC values of STK1 and
STK2 are larger than YC. That is, both STK1 and STK2 work as well as YC in the case that
there are no need to shrink direct estimates of variances.

Table 6.2: Posterior Points Estimates and Standard Errors (Parenthesis) of Model Parameters,
and DICs in Survey Data.

β0 β1 τ2 γ η DIC

STK1 0.893 0.696 10.5 2.42× 103 — 700.4
(2.74) (0.206) (5.15) (2.57× 102) —

STK1-(s1) 0.864 0.698 10.5 3.71× 103 — 717.4
(2.76) (0.207) (5.15) (3.29× 102) —

STK1-(s2) 0.918 0.694 10.4 23.6 — 705.0
(2.77) (0.207) (5.12) (2.52) —

STK2 0.868 0.697 10.4 1.22× 103 5.47× 10−2 700.3
(2.78) (0.209) (5.17) (3.08× 102) (1.74× 10−2)

STK2-(s1) 0.878 0.697 10.4 2.69× 103 2.22× 10−2 745.3
(2.77) (0.208) (5.18) (4.07× 102) (1.08× 10−2)

STK2-(s2) 0.831 0.700 10.6 30.6 −1.68× 10−2 6651.8
(2.77) (0.208) (5.19) (10.7) (2.63× 10−2)

YC 0.913 0.698 11.0 — — 558.3
(2.74) (0.206) (5.25) — —

6.4.2 Corn data

We next illustrate our methods based on the widely studied example which was first analyzed
by Battese et al. (1988). The dataset is on corn and soybean productions in 12 Iowa counties,
and we here focus on corn data. Since the sample size of the original data is ranging from
1 to 5, we cannot use the proposed model which requires ni > 1 for the posterior propriety
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Figure 6.1: Scatter Plots of Direct and Posterior Estimates of σ2i ’s (Left) and θi’s (Right) for
Selected 15 Areas in Survey Data.

as given in Theorem 6.1. Thus, we use the modified data given in the table 6 in Dass et al.
(2012). The dataset consists of m = 8 areas with sample sizes in each area ranging from 3 to
5, and the survey data of corn (Xi) and the satellite data of both corn (z1i) and soybeans (z2i)
as the covariates are observed in each area, where Xi, z1i, z2i are scaled by 100. Note that the
sample sizes ni in each area is much smaller than that in the previous study. Similarly to the
previous study, we apply the three models STK1, STK2 with ai = 2 and bi = 1/ni and YC.
The two stage model for Xi is given by

Xi|θi, σ2i ∼ N(θi, σ
2
i ), θi|β0, β1, β2, τ2 ∼ N(β0 + β1z1i + β2z2i, τ

2), i = 1, . . . , 8.

For a covariate for variance modeling in STK2, we use only z1i, namely σ2 ∼ IG(ai, biγ exp(ηz1i)),
since the DIC values of other models with use of only z2i and both z1i and z2i are larger than
this model. Since the covariate z1i is positive for all areas, the sufficient conditions in Theorem
6.1 and 6.2 are satisfied in this case. We use c = (0.2)2 in each MH step in STK2. We again
consider two additional choices of ai and bi in (6.8). Then, based on 95000 posterior samples
after 5000 iteration, we calculate the point estimates of model parameters as the posterior
sample means and we provide the resulting values in Table 6.3 as well as DIC values. The
posterior estimates of regression coefficients β0, β1 and β2 are similar for all models, but γ
and η are different depending on the choices of ai and bi. It is also revealed that STK2 is
the most preferable model for this data set from DIC values. Among the three choices of ai
and bi, the recommended choice seems the best in terms of DIC, but the posterior mean of θi
and σ2i are almost the same among the three choices. In this case, it is interesting to point
out that both STK1 and STK2 are more preferable than YC in terms of DIC values. This is
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because the accuracy of the direct estimates of variances with small sample sizes (from 3 to
5) is suspicious and the shrinkage estimation for σ2i is needed in this case.

In the left panel of Figure 6.2, we show the scatter plots of direct and posterior estimates
of σ2i obtained from three models, STK1, STK2, and YC. The result shows that the posterior
estimates of σ2i of YC (using uniform prior on σ2i ) are considerably different from those of
STK1 or STK2, while STK1 and STK2 produce the similar posterior estimated values. It
is also observed that the posterior estimator of σ2i of STK1 and STK2 shrink the direct
estimator of σ2i toward some prior mean, but that of YC does not. In the right panel of
Figure 6.2, we show the 95% credible intervals for θi from each model. It is clear that STK1
and STK2 produce similar credible intervals and YC produces shorter credible intervals than
two methods since the length of credible intervals are affected by the posterior estimates of
σ2i . In particular, the credible interval of YC in area 1 is much shorter than that of STK1
and STK2, but the interval of YC is not reliable because of instability of variance estimation
in the YC method. Then we may misinterpret the accuracy of the resulting estimator of θi
when we use YC in this case. This phenomena is consistent to the simulation results in Table
7.1, where the credible interval in YC has smaller coverage probability than the true nominal
level. Thus the shrinking variances is the crucial strategy when ni is small like this data set.

Table 6.3: Posterior Points Estimates and Standard Errors (Parenthesis) of Model Parameters,
and DICs in Corn Data.

β0 β1 β2 τ2 γ η DIC

STK1 -1.59 0.679 0.379 0.278 0.559 — -14.45
(9.47) (1.97) (1.88) (1.25) (0.252) —

STK1-(s1) -1.42 0.643 0.347 0.279 0.884 — -14.23
(9.68) (2.02) (1.89) (1.69) (0.367) —

STK1-(s2) -1.73 0.726 0.385 0.341 0.144 — -11.76
(9.67) (2.03) (1.90) (2.63) (0.0655) —

STK2 -1.76 0.720 0.402 0.367 8.67 -0.939 -20.39
(11.0) (2.38) (2.03) (7.21) (4.77) (0.154)

STK2-(s1) -1.57 0.686 0.358 0.256 14.5 -0.961 -10.02
(9.06) (1.90) (1.77) (0.821) (7.05) (0.118)

STK2-(s2) -1.74 0.729 0.384 0.283 7.31 -1.27 -3.10
(9.53) (1.99) (1.88) (1.20) (5.56) (0.299)

YC -1.805 0.754 0.375 0.303 — — -7.33
(9.57) (1.99) (1.88) (1.11) — —
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Figure 6.2: Scatter Plots of Direct and Posterior Estimates of σ2i ’s (Left) and 95% Credible
Intervals of θi’s (Right) in Corn Data.

6.5 Proofs

6.5.1 Proof of Theorem 6.1.

We first prove part (a). Let R+ = {x ∈ R| x > 0} be the set of positive numbers. In what
follows, capital C, with and without suffix, means a generic constant. It is sufficient to prove
that ∫

Rm×R2
+

π(β, τ2, γ|D)dβdτ2dγ <∞.

Let ϕ = (θ1, . . . , θm)
t, σ2 = (σ21, . . . , σ

2
m)

t. Then we need to prove that∫
Rm×Rm

+×Rp×R2
+

π(θ1, . . . , θm, σ
2
1, . . . , σ

2
m,β, τ

2, γ|D)dϕdσ2dβdτ2dγ <∞,

where

π(θ1, . . . , θm, σ
2
1, . . . , σ

2
m,β, τ

2, γ|D)

∝ (τ2)−m/2
m∏
i=1

γai(σ2i )
−ni/2−ai−1 exp

(
−(Xi − θi)

2 + (ni − 1)S2
i + 2biγ

2σ2i
− (θi − ztiβ)2

2τ2

)
.

From expression (6.4), we first integrate with respect to σ21, . . . , σ
2
m to get

π(ϕ,β, τ2, γ|D) ∝ (τ2)−m/2 exp

(
−(ϕ−Ztβ)t(ϕ−Ztβ)

2τ2

) m∏
i=1

γaiψi(θi −Xi, γ)
−(ni/2+ai),
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where ψi(θi −Xi, γ) = (Xi − θi)
2 + (ni − 1)S2

i + 2biγ. Noting that∫
Rp

exp

(
−(θ −Zβ)t(θ −Ztβ)

2τ2

)
dβ = (τ2)p/2|ZtZ|−1/2 exp

{
− 1

2τ2
θt(Im −Z(ZtZ)−1Zt)θ

}
,

we obtain

π(θ, τ2, γ|D) ∝ (τ2)−(m−p−2)/2−1 exp

{
− 1

2τ2
θtAθ

} m∏
i=1

γaiψi(θi −Xi, γ)
−(ni/2+ai), (6.9)

for A = Im −Z(ZtZ)−1Zt. When m− p− 2 > 0 i.e. m > p+ 2, we can integrate (6.9) with
respect to τ2 to get

π(θ, γ|D) ∝
(
θtAθ

)−(m−p−2)/2
m∏
i=1

γaiψi(θi −Xi, γ)
−(ni/2+ai). (6.10)

Define Ω = {θ|θtAθ ≤ 1} ⊂ Rm. It holds that∫
Rm×R+

π(θ, γ|D)dθdγ =

∫
Ω×R+

π(θ, γ|D)dθdγ +

∫
Ωc×R+

π(θ, γ|D)dθdγ.

The second term can be evaluated as∫
Ωc×R+

π(θ, γ|D)dθdγ ≤ C

∫
Ωc×R+

m∏
i=1

γaiψi(θi −Xi, γ)
−(ni/2+ai)dθdγ

≤ C

∫
Rm×R+

m∏
i=1

γaiψi(θi −Xi, γ)
−(ni/2+ai)dθdγ

= C

∫ ∞

0

m∏
i=1

{∫ ∞

−∞
γaiψi(θi −Xi, γ)

−(ni/2+ai)dθi

}
dγ,

which corresponds to the last formula in (12), and it is finite. For evaluating the first term, we
first note that there exists a (m−p)×m matrixH1 such thatA =Ht

1H1 andH1H
t
1 = Im−p

sinceA is an idempotent matrix with rank(A) = m−p. By changing the variable as u1 =H1θ
and u2 = (um−p+1, . . . , um)

′ with ui = θi, it follows that∫
Ω×R+

π(θ, γ|D)dθdγ ≤ C ′
∫
ut
1u1≤1

(ut1u1)
−(m−p−2)/2du1

∫ ∞

0

m−p∏
i=1

γai{(ni − 1)S2
i + 2biγ}−(ni/2+ai)

×
m∏

i=m−p+1

{∫ ∞

−∞
γaiψi(ui −Xi, γ)

−(ni/2+ai)dui

}
dγ.

Moreover, it holds that∫
ut
1u1≤1

(ut1u1)
−(m−p−2)/2du1 = C ′′

∫ 1

0
r−(m−p−2)rm−p−1dr <∞,

thereby the similar evaluation shows that
∫
Ω×R+

π(θ, γ|D)dθdγ is also finite. Thus the proof

for part (a) is complete.
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For part (b), we show E(ββt|D), E((τ2)2|D) and E(γ2|D) are finite. For E((τ2)2|D), we
evaluate it in the same manner as in Part (a). Note that

(τ2)2π(θ, τ2, γ|D) ∝ (τ2)−(m−p−6)/2−1 exp

(
− 1

2τ2
θtAθ

) m∏
i=1

γaiψi(θi −Xi, γ)
−(ni/2+ai),

so that it follows, when m− p− 6 > 0, namely m > p+ 6, that

E((τ2)2|D) < C

∫
Rm×R+

m∏
i=1

γaiψi(θi −Xi, γ)
−(ni/2+ai)dθdγ <∞.

For evaluating E(ββt|D), note that∫
Rp

ββt exp

(
−(θ −Zβ)t(θ −Ztβ)

2τ2

)
dβ

= (τ2)p/2|ZtZ|−1/2 exp

(
− 1

2τ2
θtAθ

)
(ZtZ)−1

{
τ2Im +ZtθθtZ(ZtZ)−1

}
.

Integrating out it with respect to τ2, we have

E(ββt|D) ∝
∫
Rm×R+

(
θtAθ

)−(m−p−4)/2
m∏
i=1

γaiψi(θi −Xi, γ)
−(ni/2+ai)dθdγ(ZtZ)−1

+

∫
Rm×R+

(ZtZ)−1ZtθθtZ(ZtZ)−1

(θtAθ)−(m−p−2)/2

m∏
i=1

γai

ψi(θi −Xi, γ)ni/2+ai
dθdγ.

The first term can be verified to be finite by using the same arguments used to evaluate (6.10).
For the second term, it is sufficient to show that for j = 1, . . . ,m,∫

Rm×R+

θ2j

(θtAθ)−(m−p−2)/2

m∏
i=1

γai

ψi(θi −Xi, γ)ni/2+ai
dθdγ <∞. (6.11)

By the same arguments used to evaluate (6.10), the inequality (6.11) is satisfied if∫ ∞

0

{∫ ∞

−∞

γajµ2j

ψi(µj , γ)nj/2+aj
dµj

}∏
i ̸=j

{∫ ∞

−∞

γai

ψi(µi, γ)ni/2+ai−1
dµi

}
dγ <∞.

Making the transformation uj = µj/
√

(nj − 1)S2
j + 2bjγ gives∫ ∞

−∞

γajµ2j

ψi(µj , γ)nj/2+aj
dµj =

γaj

{(nj − 1)S2
i + 2bjγ}(nj−3)/2+aj

∫ ∞

−∞

u2j

(1 + u2j )
nj/2+aj

duj ,

which is finite since nj > 1. Hence, (6.11) holds if∫ ∞

0

{
(n∗ − 1)S2

∗ + 2b∗γ
}−K/2

dγ <∞,

where K = nj − 3 +
∑

i ̸=j(ni − 1) = N −m − 2. This establishes that E(ββt|D) < ∞ for

N > m+ 4. Finally, for E(γ2|D), it follows that for N > m+ 6,

E(γ2|D) < C

∫ ∞

0
γ2
{
1

2
(n∗ − 1)S2

∗ + b∗γ

}−(N−m)/2

dγ <∞,

which completes the proof for (b).
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6.5.2 Proof of Theorem 6.2.

We first prove part (a). From the proof of Theorem 6.1, it is sufficient to show that∫
R+×Rq

m∏
i=1

(
γ exp(wt

iη)
)ai {1

2
(ni − 1)S2

i + biγ exp(w
t
iη)
}−(ni/2+ai)

dγdη <∞, (6.12)

under the condition that tk = 1 for k = 1, . . . , q. Since (ni−1)S2
i and γ exp(wt

iη) are positive,
the left side in (6.12) is evaluated from the upper by

∫
R+×Rq

γA
q∏

k=1

exp(ηk)
B1k

{
C∗ + b∗γ

A+N/2+m
q∏

k=1

exp(ηk)
B1k+B2k

}−1
dγdη, (6.13)

where A =
∑m

i=1 ai, B1k =
∑m

i=1 aiwik, B2k = 2−1
∑m

i=1 niwik, b∗ =
∏m
i=1 b

−(ni/2+ai)
i , and

C∗ = 2−(A+N/2+m)
∏m
i=1{(ni − 1)S2

i }−(ni/2+ai). Thus we need to show that (6.13) is finite.
Without loss of generality, we consider the case of B1k > 0 and B2k > 0 for k = 1, . . . , q,
since the case that B1k < 0 and B2k < 0 for some k reduces to B1k > 0 and B2k > 0 by
changing the variable ηk as −ηk. From the positivity of B1k’s, there exists λ > 0 such that
B1k > 1/λ > 0 for k = 1, . . . , q, and we change the variables as ϕk = exp(ηk/λ) in (6.13) to
get

∫
Rq+1
+

f(γ,ϕ)dγdϕ, where ϕ = (ϕ1, . . . , ϕq) and

f(γ,ϕ) = λqγA
q∏

k=1

ϕλB1k−1
k

(
C∗ + b∗γ

A+N/2+m
q∏

k=1

ϕλB1k+λB2k
k

)−1
.

We decompose the integral
∫
Rq+1
+

f(γ,ϕ)dγdϕ into the 2q+1 domains γ ≤ 1 or γ ≥ 1, and

ϕk ≤ 1 or ϕk ≥ 1 for k = 1, . . . , q. Then it is sufficient to show that∫ 1

0

∫
(0,1]r×[1,∞)q−r

f(γ,ϕ)dϕdγ <∞,

∫ ∞

1

∫
(0,1]r×[1,∞)q−r

f(γ,ϕ)dϕdγ <∞, (6.14)

for fixed r = 0, . . . , q. For evaluating the former in (6.14), we define g(γ, ϕ1, . . . , ϕr) =∫
[1,∞)q−r f(γ,ϕ)dϕ. We note that g(γ, ϕ1, . . . , ϕr) is 0 when at least one among γ, ϕ1, . . . , ϕr
is 0, and g(γ, ϕ1, . . . , ϕr) <∞ for other values since

g(γ, ϕ1, . . . , ϕr) = λqγA
r∏

k=1

ϕλB1k−1
k

∫
[1,∞)q−r

q∏
k=r+1

ϕλB1k−1
k

(
C∗ +D∗

q∏
k=r+1

ϕλB1k+λB2k
k

)−1
dϕr+1 . . . dϕq

≤ λqγA
r∏

k=1

ϕλB1k−1
k D−1

∗

q∏
k=r+1

∫ ∞

1
ϕ−λB2k−1
k dϕk <∞,

for 0 < γ, ϕ1, . . . , ϕr ≤ 1, where D∗ = b∗γ
A+N/2

∏r
k=1 ϕ

λB1k+λB2k
k . Therefore, g(γ, ϕ1, . . . , ϕr)

is bounded over [0, 1]r, so that the former integral in (6.14) is finite. For the latter case of
(6.14), we can similarly show that the integral is finite since N/2 > 1, which completes the
proof for part (a).
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For part (b), we first note that it can be proved of finiteness of the posterior variances of
other parameters using the similar argument given in the proof of part (a) in Theorem 6.2.
Hence, we show E[η2k|D], k = 1, . . . , q are finite. To this end, it is sufficient to prove that∫

R+×Rq

γAη2k

q∏
ℓ=1

exp(ηℓ)
B1ℓ

{
C∗ + b∗γ

A+N/2
q∏

k=1

exp(ηk)
B1ℓ+B2ℓ

}−1
dγdη <∞,

for k = 1, . . . , q. Under the condition that B1k > 0 and B2k > 0 for k = 1, . . . , q, there exists
λ > 0 such that B1k > 3/λ and B2k > 3/λ, and we change the variables as ϕk = exp(ηk/λ)
in the left side to get

∫
Rq+1
+

fk(γ,ϕ)dγdϕ, where

fk(γ,ϕ) = λ3γA
q∏
ℓ=1

(log ϕk)
2ϕλB1ℓ−1

ℓ

{
C∗ + b∗γ

A+N/2
q∏
ℓ=1

ϕλB1ℓ+λB2ℓ
ℓ

}−1
.

We again decompose the 2q+1 domains γ ≤ 1 or γ ≥ 1, and ϕk ≤ 1 or ϕk ≥ 1 for k = 1, . . . , q.
Since λB1ℓ−1 > 2, (log ϕk)

2ϕλB1k−1
k is bounded over 0 < ϕk ≤ 1. On the other hand, it is noted

that
∫∞
1 (log ϕk)

2ϕλB1k−1
k /(C + DϕλB1k+λB2k

k )dϕk =
∫∞
0 u2 exp(λB1ku)/(C + D exp{(λB1k +

λB2k)u})du < ∞ under B2k > 0. Therefore, similar evaluation shows that the integral∫
Rq+1
+

fk(γ,ϕ)dγdϕ is finite, whereby we complete the proof for part (b).



Chapter 7

Uncertain Random Effects

7.1 Introduction

Datta et al. (2011b) suggested inference by testing the presence of random effects in general
mixed models. They pointed out that if the random effects can be dispensed with, the model
parameters and the small area means may be estimated with substantially higher accuracy.
Further, Datta and Mandal (2015) generalized the idea of preliminary testing to the uncertain
random effects in the Fay-Herriot model, which assumes that, for all i ∈ {1, . . . ,m},

yi = θi + εi, θi = x
t
iβ + uivi,

where εi ∼ N(0, Di) for known Di, vi ∼ N(0, A) and Pr(ui = 1) = p = 1 − Pr(ui = 0).
In Datta and Mandal (2015), the term uivi is called the “uncertain random effect” since
the density of uivi is expressed as a mixture of N(0, A) and a point mass at 0. Because
the distribution of the random effects is a mixture, the extent of these random effects can be
controlled and flexible prediction can be achieved. Actually, the resulting estimator (predictor)
of θi is expressed as the linear combination of the direct estimator yi and the regression
estimator xtiβ̂. The weight depends on the squared residuals (yi − xtiβ̂)2 while the weight
in the resulting estimator from the traditional Fay-Herriot model does not take the residuals
into account.

In Datta and Mandal (2015), the Bayesian method was implemented for inferences of the
small area parameters θi’s as well as the model parameters by setting the proper prior distri-
butions for p and A, namely p ∼ B(a1, a2) and A ∼ IG(a3, a4) for known (user specified) ai,
i = 1, 2, 3, 4, and the improper uniform prior for β, where B(a1, a2) and IG(a3, a4) denote the
beta and inverse gamma distribution, respectively. It was shown that the resulting posterior
distributions of all the parameters are proper under some conditions. However, Datta and
Mandal (2015) focused on the Fay–Herriot model, and their method could be restrictive in
real applications. Moreover, they used a proper (informative) prior distribution for both p
and A, and the result could be affected by the choice of hyperparameters.

In this chapter, we treat not only the uncertain random effects in more general small area
models like the NER model, but also non-informative prior distributions for model param-
eters. The NER model has been used in various applications including small area estima-
tion, biological experiments and econometric analysis. The NER model assumes that, for all
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i ∈ {1, . . . ,m} and j ∈ {1, . . . , ni},

yij = x
t
ijβ + vi + εij ,

where εij is the sampling error associated with yij and vi is a random effect in the ith area. It
is usually assumed that εij and vi are mutually independent and distributed as εij ∼ N(0, σ2)
and vi ∼ N(0, τ2), respectively. The main purpose of the NER model is to predict (estimate)
the quantity of linear combinations of β and vi, namely µi = c

t
iβ+ vi for some known vector

ci.
In this chapter, we suggest the use of the uncertain random effect in the NER model and

propose the uncertain nested error regression (UNER) model by adopting the structure

vi|ui ∼ N(0, uiτ
2) with Pr(ui = 1) = p.

For the prior on τ2, the variance of random effects, we use a distribution depending on the
ui’s, which is defined as

π(τ2|z > a) ∝ τ−1, π(τ2|z ≤ a) ∝ π∗(τ
2),

for some a > 0, where z = u1 + · · · + um and π∗(τ
2) is some proper density, so that the

prior distribution of τ2 is more non-informative than the proper prior such as an inverse
gamma distribution as used in Datta and Mandal (2015). For the other parameters β, σ2 and
p, we also assign the non-informative prior π(β, σ2, p) ∝ p−1/2(1 − p)−1/2σ−1. Hence, our
Bayesian procedure is objective. We also apply the NER model in the framework of the finite
population to predict the true finite population mean based on the partially observed data in
each population.

This article is organized as follows. In Section 7.2, we describe the details of the UNER
model and provide the full Bayesian method as well as the main theorem regarding the
propriety of the posterior distribution and the finiteness of posterior variances. The prediction
problem of finite population means using UNER is also discussed. In Section 7.3, we compare
the UNER model with the NER model through simulation and empirical studies. The proof
of the main result is given in Section 7.4.

7.2 Uncertain Nested Error Regression Models

7.2.1 Model settings and Bayes estimator

We consider the following uncertain nested error regression (UNER) model

yij = x
t
ijβ + vi + εij , j = 1, . . . , ni,

vi|(ui = 1) ∼ N(0, τ2), vi|(ui = 0) ∼ δ0(vi), i = 1, . . . ,m,
(7.1)

independently for i with Pr(ui = 1) = 1−Pr(ui = 0) = p, where xij is a q-dimensional vector
of covariates, β is a q-dimensional vector of regression coefficients, δ0(·) denotes the Dirac
measure at 0, and the εij ’s are independently and identically distributed as N(0, σ2). The
marginal density function of vi is given by

f(v) =
p√
2πτ

exp
(
− v2

2τ2

)
+ (1− p)I(v = 0),
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which is a mixture of the normal distribution N(0, τ2) and the point mass at 0. Thus the
model parameters are the regression coefficients β, the variance components σ2 and τ2, and
the mixture ratio p.

Let yi = (yi1, . . . , yini)
t be the observed vector in the ith area. Then the variance of yi is

Var(yi) = σ2Ini + pτ2Jni for Jni = 1ni1
t
ni
. If the prior probability p of ui = 1 is 0, it follows

that Var(yi) = σ2Ini , and the observations in the ith area are mutually independent. The
parameter that we want to estimate (predict) is µi = ctiβ + vi for a known vector ci. The
typical choice of ci is x̄i = (xi1 + · · · + xini)/ni in which µi corresponds to the mean of the
ith area. The posterior distribution of µi given ui and yi is

µi|ui,yi ∼ N
(
ctiβ +

niτ
2I(ui = 1)

σ2 + niτ2
(ȳi − x̄tiβ),

I(ui = 1)σ2τ2

σ2 + niτ2

)
,

where ȳi = (yi1 + · · · + yini)/ni, the sample mean of yij in the ith area. Thus the posterior
distribution of µi given yi is a mixture of the normal distribution and a point mass at ctiβ.
The resulting Bayes estimator µ̃i of µi is

µ̃i = E(µi|yi) = p̃i

{
ctiβ +

niτ
2

σ2 + niτ2
(ȳi − x̄tiβ)

}
+ (1− p̃i)c

t
iβ

= ctiβ +
niτ

2p̃i
σ2 + niτ2

(ȳi − x̄tiβ),

where p̃i is the posterior probability of ui = 1 given by

p̃i = Pr(ui = 1|yi)

= p
[
p+ (1− p)

√
σ2 + niτ2

σ2
exp

{
− n2i τ

2

2σ2(σ2 + niτ2)
(ȳi − x̄tiβ)2

}]−1
.

(7.2)

We note that p̃i increases in p and (ȳi − x̄tiβ)2. Thus, if xij is a good covariate to explain yij
in the ith area, the squared residual (ȳi − x̄tiβ)2 is expected to be small, and the posterior
probability p̃i is small as well. The posterior probability p̃i is 1 when p = 1 and p̃i converges
to 1 as (ȳi − x̄tiβ)2 goes to infinity.

Moreover, the posterior variance of µi is expressed as

Vi(yi) ≡ Var(µi|yi) = Var(vi|yi)

=
n2i τ

4

(σ2 + niτ2)2
(ȳi − x̄tiβ)2p̃i(1− p̃i) +

σ2τ2p̃i
σ2 + niτ2

.
(7.3)

It is worth pointing out that in this case, the posterior variance of µi depends on the obser-
vation yi through the squared residual (ȳi− x̄tiβ)2 and the posterior probability p̃i, while the
posterior variance of the random effect in the usual nested error regression model is given
by σ2τ2(σ2 + niτ

2)−1, which does not depend on yi. This means that the uncertain random
effect enables us to take the distance between the sample mean ȳi and the synthetic estimator
x̄tiβ into the posterior variability of the parameter of interest, µi.

7.2.2 Bayesian implementation and posterior distribution

Since the marginal likelihood function of the model parameters β, σ2, τ2 and p is rather
complex, we consider objective Bayesian inference for the model parameters as well as the
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random effect vi. To this end, we rewrite the model (7.1) as

yij |vi,β, σ2 ∼ N(xtijβ + vi, σ
2), j = 1, . . . , ni, i = 1, . . . ,m

vi|ui, τ2 ∼ N(0, uiτ
2), ui|p ∼ Bin(1, p), i = 1, . . . ,m

(7.4)

independently for i, where Bin(1, p) denotes the Bernoulli distribution. To implement a full
Bayesian inference, we need to set prior distributions on the model parameters. To keep
the inference objective, we use the uniform prior distribution on β and the Jeffreys prior
distributions on σ2 and p. On the other hand, the prior distribution of τ2 should depend on
z = u1 + · · · + um, since τ

2 cannot be identified for a small value of z. Thus, for the model
parameters, we use the prior distributions

π(β, σ2, p) = p−1/2(1− p)−1/2σ−1, π(τ2|z) ∝

{
τ−1 if z > a

π∗(τ
2) if z ≤ a

(7.5)

where π∗(τ
2) = (τ2)−b1−1 exp(−b2/τ2) for known constants b1 > 3 and b2 > 0. The value

of a is chosen by the user, and this point will be discussed later. It is noted that the prior
distribution on p is proper, but the priors on β, σ2 and τ2 are improper, so that the posterior
propriety is not always guaranteed. In Theorem 7.1, we show that the posterior distribution
for the model parameters is proper under mild conditions.

We now describe the posterior distribution and investigate its properties. The set of all
observed data is denoted by D = {yi,Xi}i=1,...,m for Xi = (xi1, . . . ,xini). From the model
(7.4) with prior setup (7.5), the posterior density of the parameters (v,u,β, σ2, τ2, p) for
v = (v1, . . . , vm)

t and u = (u1, . . . , um)
t is given by

π(v,u,β, σ2, τ2, p|D)

∝(σ2)−(N+1)/2(τ2)−{z+I(z>a)}/2−(b1+1)I(z≤a)pz−1/2(1− p)m−z−1/2

×
m∏
i=1

[
exp

{
−
∑ni

j=1(yij − xtijβ − vi)
2

2σ2
− uiv

2
i

2τ2

}
δ0(vi)

1−ui
]

× exp
{
− b2
τ2
I(z ≤ a)

}
.

(7.6)

We can now state our main result about the posterior propriety and the existence of
posterior variances.

Theorem 7.1. The following statements hold true.

(a) The marginal posterior density π(β, σ2, τ2, p|D) is proper if N > q + 2 and m > a ≥ 1.

(b) The model parameters β, σ2, τ2 and p have finite posterior variances if N > q + 6 and
m > a ≥ 5.

Remember that q is the dimension of the vector of regression coefficients β, and a is
the tuning parameter of the prior for τ2. Part (a) in Theorem 7.1 says that the marginal
posterior densities of the small area means are proper and part (b) provides a sufficient
condition for obtaining finite measures of uncertainty for the model parameters. We note
that the conditions in Theorem 7.1 are similar to the conditions given in Arima et al. (2015)
and Datta and Mandal (2015). The proof of Theorem 7.1 is presented in Section 7.4.
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Since the posterior distribution in (7.6) cannot be obtained in closed form, we rely on
the Markov chain Monte Carlo technique, in particular the Gibbs sampler, in order to draw
samples from the posterior distribution. This requires generating samples from the full condi-
tional distributions for each of (v,u,β, σ2, τ2, p) given the remaining parameters and the data
D. Fortunately, the full conditional distributions can be described using familiar distributions
allowing us to easily implement the Gibbs sampling. The full conditional distributions are
given, for all i ∈ {1, . . . ,m}, by

vi|ui,β, σ2, τ2, D ∼ N
[niτ2I(ui = 1)

σ2 + niτ2
(ȳi − x̄tiβ),

σ2τ2I(ui = 1)

σ2 + niτ2

]
,

ui|β, σ2, τ2, p,D ∼ Bin(1, p̃i), p|u, D ∼ B
(
z +

1

2
,m− z +

1

2

)
,

β|u, σ2, τ2, D ∼ Np[(X
tΣ−1

u X)−1XtΣ−1
u y, (X

tΣ−1
u X)−1],

τ2|u,v, D ∼ IG
[1
2
{z − I(z > a)}+ b1I(z ≤ a),

1

2

m∑
i=1

uiv
2
i + b2I(z ≤ a)

]
,

σ2|v,β, D ∼ IG
[1
2
(N − 1),

1

2
(y −Xβ −Zv)t(y −Xβ −Zv)

]
,

(7.7)

where

z =

m∑
i=1

ui, Σu = diag(Σ1u, . . . ,Σmu)

with
Σiu = σ2Ini + uiτ

21ni1
t
ni
,

y = (yt1, . . . ,y
t
m)

t, X = (X1, . . . ,Xm), and p̃i is given in (7.2). Using these expressions of
full conditional distributions, we can easily draw posterior samples of all the variances and
parameters to make inferences, such as point estimation, prediction intervals and standard
errors, for µi = c

t
iβ + vi.

In closing of this section, we discuss the choices of a, b1 and b2 in the posterior distribution
of τ2. Remember that the prior distribution of τ2 is non-informative and improper when
z > a and informative and proper when z ≤ a. Taking this into account, we should select a
value of a as small as possible. Hence, it follows from Theorem 7.1 that a = 5 is the most
reasonable choice. On the other hand, as discussed in Datta and Mandal (2015), a reasonable
choice is b1 = V + 2 and b2 = V (V + 1) such that E(τ2|z ≤ a) = V and Var(τ2|z ≤ a) = V 2,
where V is the estimated sampling variance given by

V =
1

N −m− q

m∑
i=1

ni∑
j=1

{yij − ȳi − (xij − x̄)tβ̂OLS}2.

Here, β̂OLS is the ordinary least squared estimator of β. It should be noted that V satisfies
E(V ) = σ2.

7.2.3 Prediction in finite populations

Here, we consider the problem of predicting the means in finite populations. Assume that there
existm finite populations and the ith population consists ofNi pairs of data (Yi1,xi1), . . . , (YiNi ,xiNi).
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It is supposed that ni (< Ni) observations are sampled from the ith population. What we
want to predict is the mean of the ith finite population Ȳi = (Yi1 + · · · + YiNi)/Ni. Assume
also that the mean vector of covariates X̄i = (xi1 + · · ·+xiNi)/Ni is available, which is often
encountered in real application, see Battese et al. (1988).

Let si and ri be collections of indices of sampled and non-sampled observations in the ith
area, respectively, so that si and ri satisfy si ∩ ri = ϕ and si ∪ ri = {1, . . . Ni}. Without loss
of generality, we assume that si = {1, . . . , ni} and ri = {ni+1, . . . , Ni}. The Bayes estimator
of Ȳi under quadratic loss is given by

E(Ȳi|yi) =
1

Ni

{
niȳi(s) + (Ni − ni)E(Ȳi(r)|yi)

}
,

where

ȳi(s) =
1

ni

∑
j∈si

yij , Ȳi(r) =
1

Ni − ni

∑
j∈ri

Yij .

For evaluating the conditional expectation E(Ȳi(r)|yi), we assume that Yij is expressed, for
each j ∈ ri, by

Yij = x
t
ijβ + vi + εij ,

that is, the non-sampled observations have the same data generating structure as the sampled
ones. Then the unobserved mean Ȳi(r) is expressed as

Ȳi(r) = x̄
t
i(r)β + vi + ε̄i(r),

where

ε̄i(r) =
1

Ni − ni

∑
j∈ri

εij .

Thus the conditional distribution of Ȳi(r) given yi and ui is

Ȳi(r)|yi, ui ∼ N
[
x̄ti(r)β +

I(ui = 1)niτ
2

σ2 + niτ2
(ȳi − x̄tiβ),

I(ui = 1)σ2τ2

σ2 + niτ2
+

σ2

Ni − ni

]
, (7.8)

which yields the predictive density of Ȳi(r) given by

Ȳi(r)|yi ∼ p̃iN
[
x̄ti(r)β +

niτ
2

σ2 + niτ2
(ȳi − x̄tiβ),

σ2τ2

σ2 + niτ2
+

σ2

Ni − ni

]
+ (1− p̃i)N

[
x̄ti(r)β,

σ2

Ni − ni

]
,

where p̃i is the posterior probability of ui = 1 given in (7.2). Thus the conditional distribution
of the non-sampled data is a mixture of the two normal distributions of the predictive density,
with and without random effect. Moreover, the conditional variance Ȳi(r) given yi is calculated
as Vi(yi)+σ

2/(Ni−ni), where Vi(yi) is the posterior variance of vi given in (7.3). It is noted
that, when the true mean vector of the explanatory variables X̄i is available in each area, the
value of x̄i(r) is easily obtained by

x̄i(r) =
1

Ni − ni
(NiX̄i − nix̄i).

To implement the prediction in the finite population model, we regard the Ȳi(r)’s as latent
variables and add the sampling step from (7.8) to the Gibbs sampling given in (7.7).
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7.3 Numerical studies

7.3.1 Model-based simulations

In this simulation study, we compared the UNER model with the conventional NER model
in terms of the quality of the estimates. In applying the NER model, we used the Jeffreys
prior on (β, τ2, σ2), namely π(β, τ2, σ2) = τ−1σ−1, where it is well-known that the resulting
posterior distribution is proper; see Berger (1985). The full conditional posterior distributions
are given by

vi|β, σ2, τ2, D ∼ N
[ niτ

2

σ2 + niτ2
(ȳi − x̄tiβ),

σ2τ2

σ2 + niτ2

]
, i = 1, . . . ,m

β|τ2σ2, D ∼ Np[(X
tΣ−1X)−1XtΣ−1y, (XtΣ−1X)−1],

τ2|v, D ∼ IG
(1
2
(m− 1),

1

2

m∑
i=1

v2i

)
,

σ2|v,β, D ∼ IG
[1
2
(N − 1),

1

2
(y −Xβ −Zv)t(y −Xβ −Zv)

]
,

(7.9)

where Σ = diag(Σ1, . . . ,Σm) with Σi = σ2Ini + τ21ni1
t
ni
. We considered the following data

generating process: for all j ∈ {1, . . . , n} and i ∈ {1, . . . ,m},

yij = β0 + β1xij + vi + εij ,

where εij ∼ N(0, 1), β0 = 1, β1 = 0.5, and the xij ’s are U(1, 2) and fixed through simulation
runs. Four combinations of (n,m) were considered, namely (n,m) = (5, 20), (5, 40), (10, 20),
(10, 40). For the true distributions of vi, we considered the following four scenarios for each
choice of (n,m), viz.

S1: vi ∼ N(0, (0.7)2), S2: vi ∼ 0.3δ0(vi) + 0.7N [0, (0.7)2],

S3: vi ∼ 0.3δ0(vi) + 0.7L[0, (0.7)2], S4: vi ∼ 0.3δ0(vi) + 0.7t6[0, (0.7)
2],

where t6(a, b) and L(a, b) denote the scaled t-distribution with 6 degrees of freedom with mean
a and variance b and the scaled Laplace distribution with mean a and variance b, respectively.
Hence, UNER is misspecified in scenarios S3 and S4, and over-specified in scenario S1.

Based on R = 1000 simulation runs, we computed the mean squared errors (MSE), abso-
lute bias of µ̂i, and empirical coverage probability of the 95% credible interval of µi, which
are respectively defined as

MSE =
1

mR

R∑
r=1

m∑
i=1

(µ̂
(r)
i − µ

(r)
i )2, Bias =

1

mR

R∑
r=1

m∑
i=1

|µ̂(r)i − µ
(r)
i |

CP =
1

mR

R∑
r=1

m∑
i=1

I(µ
(r)
i ∈ CI

(r)
i )× 100,

where µ̂
(r)
i , µ

(r)
i and CI

(r)
i are the posterior mean, the true value, and the 95% credible

intervals, respectively, of µi in the rth simulation run. In each iteration of the simulation run,
we used 5000 posterior samples after 1000 initial iterations for both UNER and NER.
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Table 7.1: Simulated MSE, Bias and Coverage Probabilities (CP) of UNER and NER in
Different Scenarios.

UNER NER

(n,m) Scenario MSE Bias CP MSE Bias CP

(3, 25) S1 0.278 0.419 92.3 0.265 0.408 92.3

S2 0.165 0.308 93.6 0.176 0.320 93.4

S3 0.156 0.293 93.3 0.166 0.309 93.2

S4 0.163 0.301 93.9 0.172 0.313 93.8

(3, 50) S1 0.248 0.396 93.2 0.242 0.388 93.2

S2 0.126 0.252 94.3 0.136 0.267 94.3

S3 0.128 0.245 93.6 0.140 0.261 93.6

S4 0.130 0.258 94.6 0.140 0.272 94.3

(6, 25) S1 0.160 0.319 93.7 0.154 0.313 93.7

S2 0.088 0.215 94.1 0.098 0.235 94.1

S3 0.088 0.217 93.7 0.103 0.239 93.7

S4 0.094 0.221 93.8 0.104 0.240 93.8

(6, 50) S1 0.144 0.302 94.3 0.141 0.299 94.3

S2 0.076 0.206 94.5 0.095 0.229 94.5

S3 0.071 0.180 94.3 0.091 0.216 94.3

S4 0.077 0.191 95.1 0.088 0.216 95.1

The results are given in Table 7.1. In scenario S1, both the MSE and absolute bias of
UNER are larger than those of NER since UNER is over-specified. However, as the number
of n and m get large, the difference of these values gets small. For the other scenarios, we can
observe that UNER clearly performs better than NER in terms of MSE and absolute bias,
and the differences get larger as n and m get larger. Finally, it is observed that the coverage
probability of credible intervals are similar in UNER and NER. Hence, we can conclude that
UNER is expected to be a useful tool when m and n are moderate or large.

7.3.2 Application to PLP data in Japan

This example, primarily for illustration, we used the UNER model (7.1) and data from the
posted land price data along the Keikyu train line in 2001, which were treated in Section
5.4.3. For all j ∈ {1, . . . , ni}, let yij denote the log-transformed value of the posted land price
(Yen) per for square meter of the jth spot, Ti is the time it takes from the nearby station
i to Tokyo station around 8:30 in the morning, Dij is the geographical distance from spot j
to station i and FARij denotes the floor-area ratio, or ratio of the building volume to the
area at spot j. These values of Ti, Dij and FARij are also transformed by the logarithmic
function. We applied the following UNER model:

yij = β0 + FARijβ1 + Tiβ2 +Dijβ3 + vi + εij ,

vi|(ui = 1) ∼ N(0, τ2), vi|(ui = 0) ∼ δ0(vi),
(7.10)

where the εij ’s are independent and identically distributed as N(0, σ2). For comparison, we
also applied the conventional NER model to this data set.
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In applying the UNER model, we used the prior distribution with a = 5 and b1 = V +
2, b2 = V (V + 1) for V = 0.031 as discussed in the end of Section 7.2.2. In both models, we
generated 100000 posterior samples after 10000 iterations of Gibbs sampling given in (7.7)
and (7.9), respectively, and obtained the posterior means as well as the 95% credible intervals
of the model parameters, which are given in Table 7.2. Moreover, based on the posterior
samples, we computed the Deviance Information Criterion (DIC) suggested by Spiegelhalter
et al. (2002), which is defined as

DIC = 2D(ϕ)−D(ϕ),

where ϕ is a vector of the unknown model parameters, D(ϕ) is (−2) times the log-marginal
likelihood function, and D(ϕ) and ϕ denote the posterior means of D(ϕ) and ϕ, respectively.
Note that ϕ = {β, τ2, σ2, p} in the UNER model, and ϕ = {β, τ2, σ2} in the NER model,
which are given in Table 7.2 as well.

Table 7.2 shows that the posterior estimates and credible intervals of the regression coef-
ficients β1, . . . , β4 are similar between UNER and NER, and in both models, all the credible
intervals of the regression coefficients are bounded away from 0. On the other hand, the results
for the variance components τ2 and σ2 are different because of the effect of the parameter p.
In terms of DIC values, the UNER model seems preferable to the conventional NER model.

To see the effects of ui, we computed the posterior probabilities p̃i’s which are illustrated
in the left panel in Figure 7.1. It is apparent that the p̃i’s change dramatically from area
to area, and the p̃i’s in most areas are around 0.5, which comes from the posterior mean of
p = 0.54 as shown in Table 7.2.

We next considered estimating the land price of a spot with a floor-area ratio of 100% and
a distance of 1000m from the station i, namely

µi = β0 + FAR0β1 + Tiβ2 +D0β3 + vi,

for FAR0 = log(100) and D0 = log(1000) in base 10. Based on the posterior samples, we
calculated the point estimates µ̂i and the posterior standard errors. The results are given in
the right panel of Figure 7.1. Note that the mean of the posterior standard errors for all areas
in UNER and NER are 6.5× 10−2 and 6.8× 10−2, respectively.

We also computed the length of the prediction intervals of µi, and found that the results
are similar to standard errors. It is clear from Figure 7.1 that UNER provides better es-
timates than NER in terms of posterior standard errors in most areas. In some areas, the
posterior standard errors of UNER are larger than those of NER when correspondingly the
posterior probability p̃i is larger than 0.7 as shown in the left panel of Figure 7.1. Thus the
uncertain random effects may increase the variability of predictors compared to the conven-
tional random effects in the areas where the existence of random effect is strongly supported.
This phenomenon was pointed out by Datta and Mandal (2015) for the Fay–Herriot model.
However, taking the DIC values into account as well, the UNER model works well in this
application.

7.3.3 Design-based simulation

We next investigated the numerical performance of the small area prediction problem in the
framework of a finite population. We again used the PLP data in the Kanto region in 2001,
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Figure 7.1: Posterior Probability of ui = 1 (Left) and Standard Errors of µi (Right) in Each
Area.

Table 7.2: Posterior Means and Credible Intervals of the Model Parameters, and DIC.

β0 β1 β2 β3 σ2 τ2 p DIC

95%CI (upper) 15.16 0.24 −0.53 −0.051 0.041 0.071 0.99

UNER mean 14.55 0.17 −0.61 −0.091 0.033 0.017 0.54 512.6

95%CI (lower) 13.88 0.11 −0.69 −0.131 0.026 0.002 0.05

95%CI (upper) 15.17 0.24 −0.53 −0.050 0.20 0.117 −
NER mean 14.52 0.17 −0.61 −0.089 0.18 0.075 − 703.1

95%CI (lower) 13.88 0.10 −0.69 −0.132 0.16 0.031 −

which includes the prefectures of Tokyo, Kanagawa, Chiba and Saitama. Thus the data set
includes the PLP data along the Keikyu line used in the previous subsection. The full data
set we used is the land price data with covariates (Ti, Dij and FARij as used in the previous
study) and each data point has its unique nearest railroad station, which we regard as a small
area.

For the ith small area (i = 1, . . . ,m), there are Ni land spots. To consider all the observed
land price data in each small area in the framework of a finite population, we analyzed only
the data which belong to the small areas that have a moderately large number of data points,
namely we chose the areas i with Ni ≥ 20. Then the resulting number of finite populations is
m = 30, and the population sizes Ni’s range from 20 to 45, but most Ni’s vary around 25.

We artificially made the sampled data set and predict each finite population mean of
the land price by applying UNER. The sampling scheme is simple random sampling without
replacement in each finite population and ni data are sampled in the ith finite population.
The sample sizes ni’s are decided by some ratio 0 < π < 1 and 100π percent of the data in
each population are sampled, i.e., ni is the nearest integer to Ni × π. We considered four
choices for π, namely π = 0.3, 0.5, 0.7, 0.9. In each case, we computed the squared root mean
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squared errors for estimators of finite population means as

SMSEi =

√√√√ 1

R

R∑
r=1

(µ̂
(r)
i − µi)2,

where µ̂
(r)
i is the estimator of the finite population using UNER or NER, and R = 1000 in

this study. For both UNER and NER, we calculated µ̂
(r)
i by 5000 posterior samples after 1000

iterations using the method discussed in Section 7.2.3. In the UNER estimation, the same
form of the prior distribution as in the previous section was used, namely a = 5, b1 = V + 2
and b2 = V (V + 1) for estimated sampling error V .

To compare values of the SMSE for the two models, we then computed the ratio of SMSE
given by SMSEUNER

i /SMSENER
i , and provide their values in Figure 7.2. It is observed from

Figure 7.2 that UNER provides better estimates than NER in some areas, but worse estimates
than in several areas for the four cases of π. Moreover, it is also revealed that an improvement
of UNER over NER becomes greater as the sampling rate π gets larger.

7.4 Proof of Theorem 7.1.

Let π∗ be the right side of (7.6). For part (a), we shall show that

∑
u∈{0,1}m

∫
π∗(v,u,β, σ2, τ2, p|D)dvdβdσ2dτ2dp <∞,

namely the integral for each u is finite. We first prove for the case u = (0, . . . , 0)t. In this
case, the integral reduces to∫

(σ2)−(N+1)/2(1− p)m−1/2 exp
{
− 1

2σ2

m∑
i=1

ni∑
j=1

(yij − xtijβ)2
}
dβdσ2ddp.

Note that ∫
p−1/2(1− p)m−1/2dp = B(1/2,m+ 1/2),

where B(a, b) is a beta function. Then the integral is finite since the posterior distribution of
the usual linear regression for the Jeffreys prior is proper if the conditions given in Theorem
7.1 are satisfied.

For the integral in the case z ≥ 1, using pz−1/2(1− p)m−z−1/2 ≤ 1, it is sufficient to show
that ∫

πu(v, σ
2, τ2,β)dvdβdσ2dτ2 <∞,

for

πu(v, σ
2, τ2,β) =

{
πu1(v, σ

2, τ2,β) if z > a

πu2(v, σ
2, τ2,β) if 0 < z ≤ a

(7.11)
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Figure 7.2: Squared Root Mean Squared Errors of Estimation of Finite Population Mean.

where

πu1(v, σ
2, τ2,β) = (σ2)−(N+1)/2(τ2)−(z+1)/2

m∏
i=1

δ0(vi)
1−ui

×
m∏
i=1

[
exp

{
− 1

2σ2

ni∑
j=1

(yij − xtijβ − vi)
2 − uiv

2
i

2τ2

}]
,

and

πu2(v, σ
2, τ2,β) = (σ2)−(N+1)/2(τ2)−z/2π∗(τ

2)

m∏
i=1

δ0(vi)
1−ui

×
m∏
i=1

[
exp

{
− 1

2σ2

ni∑
j=1

(yij − xtijβ − vi)
2 − uiv

2
i

2τ2

}]
.
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To show the integrability of πu1 and πu2, we consider the case of u with u1 + · · · + um = k.
Without loss of generality, we assume that ui = 1 for i = 1, . . . , k and ui = 0 for i =
k + 1, . . . ,m. Then πu1(v, σ

2, τ2,β) can be rewritten as

πu1(v, σ
2, τ2,β)

= (σ2)−(N+1)/2(τ2)−(k+1)/2
k∏
i=1

[
exp

{
− 1

2σ2

ni∑
j=1

(yij − xtijβ − vi)
2 − v2i

2τ2

}]
×
[ m∏
i=k+1

exp
{
− 1

2σ2

ni∑
j=1

(yij − xtijβ)2
}
δ0(vi)

]
.

We define an N -dimensional vector s(v∗) = (s(1)(v∗)
t, st(2))

t as

s(1)(v∗) = ((y1 − vi1ni)
t, . . . , (yk − vk1nk

)t)t

and s(2) = (ytk+1, . . . ,y
t
m)

t for v∗ = (v1, . . . , vk)
t. Then, if N > q, we have∫

πu1(v, σ
2, τ2,β)dβ (7.12)

∝ (σ2)−(N−q−1)/2−1(τ2)−(k−1)/2−1 exp
{
− s(v∗)

tAs(v∗)

2σ2
− 1

2τ2

k∑
i=1

v2i

}
,

where A = IN −X(XtX)−1Xt. The right-hand side is integrable with respect to σ2 and τ2

since N > q + 1 and k ≥ a > 1, whereby we obtain∫
πu1(v, σ

2, τ2,β)dβdσ2dτ2 ∝ πu1(v∗)
m∏

i=k+1

δ0(vi),

where
πu1(v∗) = {s(v∗)tAs(v∗)}−(N−q−1)/2(vt∗v∗)

−(k−1)/2.

In what follows, we show that πu1(v∗) is integrable. To this end, we note that∫
Rk

πu1(v∗)dv =

∫
vt
∗v∗≤1

πu1(v∗)dv +

∫
vt
∗v∗≥1

πu1(v∗)dv,

and we evaluate the two integrals separately. For the first term, since A is idempotent and
rank(A) = N − q (> 0), there exists c(y) > 0 such that s(v∗)

tAs(v∗) > c(y) for all v∗. Then
we have ∫

vt
∗v∗≤1

πu1(v∗)dv ≤ c−(N−q−1)/2

∫
vt
∗v∗≤1

(vt∗v∗)
−(k−1)/2dv

= c−(N−q−1)/2V (Sk)

∫ 1

0
(r2)−(k−1)/2(r2)(k−1)/2dr <∞,

where V (Sk) is the volume of the unit sphere in Rk. For the second term, it follows that∫
vt
∗v∗≥1

πu1(v∗)dv =

∫
vt
∗v∗≥1

{s(v∗)tAs(v∗)}−(N−q−1)/2(vt∗v∗)
−(k−1)/2dv.
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Since s(v∗)
tAs(v∗) is a quadratic function of v∗, the integral is finite provided that N > q+2.

For the integrability of πu2 , we carry out integration with respect to β, σ2 and τ2 to get∫
πu2(v, σ

2, τ2,β)dβdσ2dτ2 ∝ πu2(v∗)

m∏
i=k+1

δ0(vi).

Since for N > q + 1,

πu2(v∗) ={s(v∗)tAs(v∗)}−(N−q−1)/2(vt∗v∗ + 2b2)
−k/2−b1

≤c−(N−q−1)/2(2b2)
−k/2−b1 ,

it follows that πu2(v∗) is integrable so long as N > q + 1. Thus the proof of part (a) is
established.

For the proof of part (b), it is sufficient to show that the posterior second moments are
finite. Since the statement for p is clear, we establish the result for β, σ2 and τ2. As in the
proof of part (a), we consider the three cases where z > a, 0 < z ≤ a and z = 0. By replacing
N + 1 in expressions of πu1, πu2 and πu3 with N + 5, it follows that E{(σ2)2|D} < ∞ when
N > q + 6.

For E(ββt|D), we first note that∫
Rq

ββt exp
[
− {s(v∗)−Xβ}t{s(v∗)−Xβ}

2σ2

]
dβ

=(σ2)q/2|XtX|−1/2 exp
{
− s(v∗)

tAs(v∗)

2σ2

}
(XtX)−1

× {σ2Iq +Xts(v∗)s(v∗)
tX(XtX)−1}

=(σ2)(q+2)/2h(X, s(v∗), σ
2)

+ (σ2)q/2h(X, s(v∗), σ
2)Xts(v∗)s(v∗)

tX(XtX)−1,

for

h(X, s(v∗), σ
2) = |XtX|−1/2 exp

{
− 1

2σ2
s(v∗)

tAs(v∗)
}
(XtX)−1.

Then it follows that∫
ββtπu1(v,β, σ

2, τ2)dvdβdσ2dτ2

∝ Iq

∫
Rk

{s(v∗)tAs(v∗)}−(N−q−3)/2(vt∗v∗)
−(k−1)/2dv

+

∫
Rk

Xts(v∗)s(v∗)
tXπu1(v∗)dv.

Since v∗v
t
∗ ≤ (vt∗v∗)Iq, the second term is finite if k > 5 for all k ≥ a, namely a > 5. The

first term is also finite whenever N > q + 4.
For the cases 0 < z ≤ a and z = 0, we can similarly show that∫

ββtπu2(v,β, σ
2, τ2)dvdβdσ2dτ2 <∞
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and ∫
ββtπu3(v,β, σ

2, τ2)dvdβdσ2dτ2 <∞

under the conditions given in Theorem 7.1.
Finally, for E{(τ2)2|D}, it follows that∫

(τ2)2πu1(v,β, σ
2, τ2)dvdβdσ2dτ2

∝
∫

(σ2)−(N−p−1)/2−1(τ2)−(k−5)/2−1

× exp
{
− s(v∗)

tAs(v∗)

2σ2
− 1

2τ2

k∑
i=1

v2i

}
dvdτ2dσ2

∝
∫

{s(v∗)tAs(v∗)}−(N−p−1)/2(vt∗v∗)
−(k−5)/2dv

which is finite provided that k > 5 for all k ≥ a, namely a > 5. In the cases 0 < z ≤ a and
z = 0, it is integrable if ∫ ∞

0
(τ2)2π∗(τ

2)dτ2 <∞,

which can be established since b1 > 3. Thus the proof of part (b) is complete.





Chapter 8

Empirical Uncertain Bayes Methods

8.1 Introduction

While Datta and Mandal (2015) proposed the uncertain random effects in the traditional
Fay-Herriot model, the model is restrictive and it cannot be used for count or binary data.
Hence, in this chapter, we focus on mixed models based on the natural exponential family as
introduced in Section 4.3. To implement the idea of uncertain random effects in this context,
we rewrite the uncertain random effect model as the hierarchical form:

yi|θi ∼ N(0, Di), θi|(si = 1) ∼ N(xtiβ, A), θi|(si = 0) = xtiβ.

This means that one of the two distributions N(xtiβ, A) and the one point distribution on xtiβ
is randomly selected for the prior distribution of θi in each area. In this paper, we naturally
extend the idea to the NEF-QVF family. Since there exist the conjugate priors for the natural
parameter θi, we introduce the uncertain prior for θi, a mixture distribution of the conjugate
prior and the one-point distribution on the synthetic mean.

For estimating area means under the model, we here develop an empirical Bayes (EB)
approach while Datta and Mandal (2015) considered a hierarchical Bayes (HB) approach.
In the normal case as considered in Datta and Mandal (2015), a full Bayesian approach is
relatively attractive since all the full conditional distribution of the model parameters as
well as the random effects have familiar forms, so that we can efficiently sample from the
posterior distribution using a Gibbs sampling. However, in the non-normal case, the posterior
distribution of the model parameters are not necessarily in familiar forms, so that we need to
rely on an inefficient sampling algorithm such as a Metropolis-Hastings algorithm. Moreover,
the HB approach requires checking prior sensitivity and monitoring the convergence of the
MCMC algorithm. As suggested in Datta and Mandal (2015), the use of non-informative
(improper) enables us to avoid subjective specification of priors, but the posterior propriety is
not straightforward under non-normal cases. On the other hand, the empirical Bayes approach
can enjoy easily computing point estimates of model parameters and Bayes estimator without
requiring prior distributions. Since one of the greatest purposes in small area estimation is
point estimation, the EB approach is more attractive in this case.

Owing to the conjugacy of the prior distribution, we can easily establish the Expectation-
Maximization (EM) algorithm for maximizing the marginal likelihood function to get the
estimates of model parameters. Using the estimator, we derive the the empirical uncertain
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Bayes (EUB) estimator of the area mean. For calibration of uncertainty of the EUB estimator,
we consider the conditional mean squared error (CMSE) and derive the second-order unbiased
estimator motivated from the work of Booth and Hobert (1998), Datta et al. (2011) and
Sugasawa and Kubokawa (2016a). As typical examples, we handle three models, namely
the Fay-Herriot model for continuous data, the Poisson-gamma and binomial-beta models for
count data. It is shown that the shrinkage property pointed out in Datta and Mandal (2015)
in the Fay-Herriot model still holds in both the Poisson-gamma and binomial-beta models.
That is, the shrinkage coefficient in the EUB estimator decreases as the yi gets close to the
synthetic mean.

This chapter is organized as follows. In Section 8.2, we provide the detailed description
of the proposed model, the EM algorithm for parameter estimation and three examples. In
Section 8.3, we derive the second order unbiased estimator of CMSE for risk evaluation of
the EUB estimator. Simulation studies and empirical applications are given in 8.4 and 8.5,
respectively.

8.2 Empirical Uncertain Bayes Methods

8.2.1 Model setup and uncertain Bayes estimator

Let y1, . . . , ym be mutually independent random variables where the conditional distribution
of yi given θi belongs to the the following natural exponential family:

yi|θi ∼ f(yi|θi) = exp{ni(θiyi − ψ(θi)) + c(yi, ni)}, (8.1)

where ni is a known scalar parameter and is not necessarily corresponding to the sample size
in the ith area. As the prior distribution of θi, we set the uncertain random structure treated
in Datta and Mandal (2015). Let s1, . . . , sm be mutually independent and identical random
variables distributed as

P (si = 1) = p, P (si = 0) = 1− p.

The prior distribution of θi is given by

θi|(si = 1) ∼ π(θi) = exp {ν(miθi − ψ(θi)) + C(ν,mi)} , θi|(si = 0) = (ψ′)−1(mi), (8.2)

where ν is an unknown scalar hyperparameter, C(ν,mi) is the normalizing constant and
ψ′(t) = dψ(t)/dt. In our settings, we consider the canonical link

mi = ψ′(xtiβ),

where xi is a q × 1 vector of explanatory variables, β is a q × 1 unknown common vector of
regression coefficients. The function f(yi|θi) is the regular one-parameter exponential family
and the function π(θi) is the conjugate prior distribution. Then the unknown parameter in
two-stage model (8.1) and (8.2) are ϕ = (βt, ν, p)t. The quantity of interest in this paper is
the conditional expectation of yi given θi, defined as

µi = E[yi|θi] = ψ′(θi),
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noting that µi|(si = 0) = mi from (8.2). For ψ′′(t) = d2ψ(t)/dt2, we assume that ψ′′(θi) =
Q(µi), namely,

Var(yi|θi) =
ψ′′(θi)

ni
=
Q(µi)

ni
,

with Q(x) = v0 + v1x+ v2x
2 for known constants v0, v1 and v2 which are not simultaneously

zero. This means that the conditional variance Var(yi|θi) is a quadratic function of the
conditional expectation E[yi|θi]. Similarly, the mean and variance of the prior distribution
given si = 1 are

E[µi|si = 1] = mi, Var(µi|si = 1) =
Q(mi)

ν − v2
.

The joint density (or mass) function of (yi, θi, si) is

g(yi, θi, si = 1) = f(yi|θi)π(θi), g(yi, θi, si = 0) = δθi((ψ
′)−1(mi))f(yi|θi),

where δθi(a) denotes the point mass at θi = a. Then the joint distribution of (yi, θi) and the
marginal distribution of yi are both mixtures of two distributions:

g(yi, θi) = pf(yi|θi)π(θi) + (1− p)δθi((ψ
′)−1(mi))f(yi|θi),

f(yi;ϕ) = pf1(yi;ϕ) + (1− p)f2(yi;ϕ),

where

f1(yi;ϕ) =

∫
f(yi|θi)π(θi)dθi, f2(yi;ϕ) = f(yi|θi = (ψ′)−1(mi)). (8.3)

Since π(θi) is the conjugate prior of θi, the marginal distribution f1(yi;ϕ) and the conditional
distribution π(θi|yi, si = 1;ϕ) can be obtain in the closed forms:

π(θi|yi, si = 1;ϕ) = exp
{
(ni + ν)(ηiθi − ψ(θi))

}
C(ni + ν, ηi),

f1(yi;ϕ) =
C(ν,mi)

C(ni + ν, ηi)
exp

{
c(yi, ni)

}
,

where

ηi ≡ ηi(yi;ϕ) =
niyi + νmi

ni + ν
.

The conditional distribution of si given yi can be obtained as

P (si = 1|yi;ϕ) =
pf1(yi,ϕ)

f(yi;ϕ)
=

p

p+ (1− p)f2(yi;ϕ)/f1(yi;ϕ)
= 1− P (si = 0|yi;ϕ).

To obtain the Bayes estimator of µi, we note that

E [µi|si, yi;ϕ] = mi +
ni

ν + ni
(yi −mi)I(si = 1), (8.4)

where I(·) is an indicator function. Hence the Bayes estimator of µi is

µ̃i(yi,ϕ) = E [µi|yi;ϕ] = E [E (µi|si, yi;ϕ) |yi;ϕ] = mi +
ni

ν + ni
(yi −mi)ri(yi,ϕ), (8.5)

where
ri(yi,ϕ) = P (si = 1|yi;ϕ) =

p

p+ (1− p)f2(yi;ϕ)/f1(yi;ϕ)
. (8.6)
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It is observed that ri(yi,ϕ) increases in p and decreases in the ratio f2(yi;ϕ)/f1(yi;ϕ). In
what follows, we use the abbreviated notations µ̃i and ri instead of µ̃i(yi,ϕ) and ri(yi,ϕ),
respectively, when there is no confusion. It is noted that the Bayes estimator (8.5) can be
expressed as

µ̃i = yi −
{
1− ni

ν + ni
ri(yi,ϕ)

}
(yi −mi),

which shrinks the direct estimator yi toward the regression (or synthetic) part mi = ψ′(xtiβ),
and the shrinkage function depends on yi through ri. On the other hand, in the classical
two-stage model as used in Ghosh and Maiti (2004), the shrinkage function does not depends
on the observation yi, which is sometimes not flexible for real data analysis. It should be
noted that ri = 1 when p = 1. Thus, the suggested method includes the classical method as
well as it has the shrinkage function adjusted by yi which arises from introducing the weight
parameter p. Moreover, when the prior is completely singular, namely p = 0, it follows ri = 0
and the resulting Bayes estimator is mi. We call the estimator (8.5) under the prior (8.2) the
uncertain Bayes estimator in order to distinguish from the conventional Bayes estimator.

8.2.2 Maximum likelihood estimation using EM algorithm

Since the uncertain Bayes estimator (8.5) depends on the unknown model parameter ϕ, we
need to estimate them for practical use. A reasonable method is the maximum likelihood
(ML) estimator which maximizes the marginal distribution of yi. Since the marginal density
is the mixture of the two distributions f(yi;ϕ) = pf1(yi;ϕ)+(1−p)f2(yi;ϕ), the ML estimator
is the maximizer of the log-likelihood function

L(ϕ) =

m∑
i=1

log {pf1(yi;ϕ) + (1− p)f2(yi;ϕ)} . (8.7)

To compute the ML estimate, we propose Expectation-Maximization (EM) algorithm (Demp-
ster, Laird and Rubin, 1977) which maximizes the objective function (8.7) iteratively and indi-
rectly. From (8.1) and (8.2), the complete log-likelihood function Lc(ϕ) given (yi, θi, si)i=1,...,m

is

Lc(ϕ) =
m∑
i=1

{ni(θiyi − ψ(θi))}+
m∑
i=1

si {ν(miθi − ψ(θi)) + C(ν,mi)}

+
m∑
i=1

{si log p+ (1− si) log(1− p)}.

In the rth iteration, we first compute the expectation of the complete log-likelihood E(r)[Lc(ϕ)]
at the E-step, where E(r) denotes the expectation with respect to the conditional distributions
(θi, si)|yi with hyperparameter values ϕ(r). Then the objective function to be maximized at
the M-step in the rth iteration is

Q(r)(ϕ) ≡ E(r)[Lc(ϕ)] =

m∑
i=1

ri(yi,ϕ
(r))
{
νmiE

(r)[θi|si = 1]− νE(r)[ψ(θi)|si = 1] + C(ν,mi)
}

+
m∑
i=1

{
ri(yi,ϕ

(r)) log p+ (1− ri(yi,ϕ
(r))) log(1− p)

}
,
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which yields the updating algorithm as

(β(r+1), ν(r+1)) = argmaxβ,ν

m∑
i=1

ri(yi,ϕ
(r))h

(r)
i (β, ν)

p(r+1) =
1

m

m∑
i=1

ri(yi,ϕ
(r)),

(8.8)

where h
(r)
i (β, ν) = νmiE

(r)[θi|si = 1] − νE(r)[ψ(θi)|si = 1] + C(ν,mi). Since the prior distri-
bution of θi given si = 1 is conjugate, the posterior distribution of θi given si = 1 belongs to
the same family as the prior distribution, and we can easily generate samples from the distri-
bution in common models as demonstrated in the subsequent section. Hence, the calculation
of two expectations E(r)[θi|si = 1] and E(r)[ψ(θi)|si = 1] given in the E-step is easy to carry
out. We summarize the EM algorithm in the following.

Algorithm 8.1 (EM algorithm). Iterative,

1. Set the initial value ϕ(0) and r = 0.

2. Compute E(r)[θi|si = 1] and E(r)[ψ(θi)|si = 1] using the current parameter value ϕ(r).

3. Update the parameter value as ϕ(r+1) based on (8.8).

4. If the difference between ϕ(r) and ϕ(r+1) is sufficiently small, then the estimate is given
by ϕ(r+1). Otherwise, set r = r + 1 and go back to Step 2.

Finally, substituting ϕ̂ into the UB estimator, we get the empirical uncertain Bayes (EUB)
estimator

µ̂i ≡ µ̃i(yi, ϕ̂) = m̂i +
ni

ν̂ + ni
(yi − m̂i)ri(yi, ϕ̂), (8.9)

where m̂i = ψ′(xtiβ̂).

8.2.3 Some examples

Here we provide three typical models often used in practice and investigate properties of the
UB estimators with detailed expressions of E-step and M-step in the EM algorithm.

[1] Normal-normal (Fay-Herriot) model. The Fay-Herriot model (Fay and Herriot,
1979) is an area-level model frequently used in small area estimation, given by

yi|θi ∼ N(θi, Di), θi|(si = 1) ∼ N(xtiβ, A), i = 1, . . . ,m,

corresponding to ni = D−1
i , v0 = 1, v1 = v2 = 0, ν = A−1 and ψ(θi) = θ2i /2 in (8.1) and (8.2).

This model was studied in Datta and Mandal (2015) in terms of Bayesian perspectives. The
marginal distributions of f1(yi) and f2(yi) in (8.3) are given by

f1(yi;ϕ) =
1√

2π(A+Di)
exp

(
−(yi −mi)

2

2(A+Di)

)
, f2(yi;ϕ) =

1√
2πDi

exp

(
−(yi −mi)

2

2Di

)
,

(8.10)
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so that ri(yi, p) is obtained from (8.6) as

ri(yi, p) = p

{
p+ (1− p)

√
A+Di

Di
exp

(
− A(yi −mi)

2

2Di(A+Di)

)}−1

,

which coincides with the result given in Datta and Mandal (2015). It is clear that ri(yi, p)
takes small values when yi is close to mi, corresponding to the case where yi is well explained
by mi without random effects.

Regarding the parameter estimation via the EM algorithm in the Fay-Heriot model, the
objective function at the M-step is

Q(r)(β, A) = −1

2

m∑
i=1

r
(r)
i

{
logA+

1

A

(
θ
(r)
i − xtiβ

)2}
,

where r
(r)
i = ri(yi,β

(r), A(r), p(r)) and θ
(r)
i = (A(r)yi + Dix

t
iβ

(r))/(A(r) + Di), so that the
updating step for β and A is written as

β(r+1) =

(
m∑
i=1

r
(r)
i xix

t
i

)−1 m∑
i=1

r
(r)
i θ

(r)
i xi, A(r+1) =

1

m

m∑
i=1

(
θ
(r)
i − xtiβ(r+1)

)2
.

[2] Poisson-gamma model. Let z1, . . . , zm be mutually independent random variables
having

zi|λi ∼ Po(niλi), λi|(si = 1) ∼ Ga(νmi, ν)

where λ1, . . . , λm are mutually independent, Po(λ) denotes the Poisson distribution with
mean λ, and Ga(a, b) denotes the gamma distribution with density f(x) ∝ xa−1 exp(−bx).
Let yi = zi/ni and logmi = xtiβ for i = 1, . . . ,m. Then, the notations in (8.1) and (8.2)
correspond to v1 = 1, v0 = v2 = 0 and ψ(θi) = exp(θi). The marginal distributions of f1(yi)
and f2(yi) are given by

f1(yi;ϕ) =
Γ(niyi + νmi)

Γ(niyi + 1)Γ(νmi)

(
ni

ni + ν

)niyi ( ν

ni + ν

)νmi

, f2(yi;ϕ) =
(nimi)

niyi

(niyi)!
exp(−nimi)

(8.11)
where Γ(·) denotes a gamma function, so that ri(yi, p) is written as

ri(yi, p) = p

{
p+ (1− p)

Γ(νmi) exp(−nimi)

Γ(niyi + νmi)
(ni + ν)niyi+νmimniyi

i ν−νmi

}−1

. (8.12)

Unlike the Fay-Herriot model, it is not clear when ri(yi, p) takes small values as a function of
yi. To see this property, let h(zi) = (ni + ν)zi+νmimzi

i /Γ(zi + νmi). It is noted that ri(yi, p)
depends on zi(= niyi) through h(zi). It follows that

h(zi + 1)

h(zi)
=
nimi + νmi

zi + νmi
,

so that we have h(zi) ≤ h(zi + 1) for yi ≤ mi and h(zi) ≥ h(zi + 1) for yi ≥ mi. Then, when
yi is close to mi, h(zi) takes a large value, which results in a small value of ri(yi, p). This
observation is similar to the case of the Fay-Herriot model.
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The objective function at the M-step in the EM algorithm can be expressed as

Q(r)(β, ν) =

m∑
i=1

ri(yi,β
(r), ν(r), p(r))

{
νmi log ν − log Γ(νmi)

+ νmi

∫ ∞

0
(log t)fΓ(t;niyi + ν(r)m

(r)
i , ni + ν(r))dt− ν

niyi + ν(r)m
(r)
i

ni + ν(r)

}
,

where fΓ(·; a, b) denotes the density function of Ga(a, b). It should be noted that the integral
given in the objective function can be easily calculated by generating samples from Ga(niyi+

ν(r)m
(r)
i , ni + ν(r)).

[3] Binomial-beta model. Let z1, . . . , zm be mutually independent random variables
having

zi|pi ∼ Bin(ni, pi), pi|(si = 1) ∼ Beta(νmi, ν(1−mi)),

where p1, . . . , pm are mutually independent, Bin(n, p) denotes the binomial distribution and
Beta(a, b) denotes the beta distribution with density f(x) ∝ xa−1(1 − x)b−1. Let yi = zi/ni
and mi = exp(xtiβ)/(1 + exp(xtiβ)) for i = 1, . . . ,m. Then the notations in (8.1) and (8.2)
correspond to v0 = 0, v1 = 1 and v2 = −1, µi = pi = exp(θi)/(1 + exp(θi)) and ψ(θi) =
log(1 + exp(θi)). The marginal distributions of f1(yi) and f2(yi) are

f1(yi;ϕ) =

(
ni
niyi

)
B(νmi + niyi, ni(1− yi) + ν(1−mi))

B(νmi, ν(1−mi))
, f2(yi;ϕ) =

(
ni
niyi

)
mniyi
i (1−mi)

ni(1−yi),

where B(·, ·) denotes a beta function, so that ri(yi, p) is written as

ri(yi, p) = p

{
p+ (1− p)

B(νmi, ν(1−mi))

B(νmi + niyi, ni(1− yi) + ν(1−mi))
mniyi
i (1−mi)

ni(1−yi)
}−1

.

Using the same arguments as in the Poisson-gamma model, we consider the function h(zi) =
mzi
i (1−mi)

ni−zi/B(νmi+zi, ni−zi+ν(1−mi)). Then the straightforward calculation shows
that

h(zi + 1)

h(zi)
=
mi {ni − zi − 1 + ν(1−mi)}

(1−mi)(νmi + zi)
,

whereby h(zi) ≤ h(zi + 1) for yi ≤ mi(1 − n−1
i ) and h(zi) ≥ h(zi + 1) for yi ≥ mi(1 − n−1

i ).
Thus, when yi is close to mi, h(zi) takes a large value, which results in a small value of
ri(yi, p).

The objective function at the M-step in the EM algorithm is expressed as

Q(r)(β, ν) =

m∑
i=1

ri(yi,β
(r), ν(r), p(r))

{
νmi

∫ 1

0
(log t)fB(t; a

(r)
i , b

(r)
i )dt

+ ν(1−mi)

∫ 1

0
log(1− t)fB(t; a

(r)
i , b

(r)
i )dt− logB(νmi, ν(1−mi))

}
,

where a
(r)
i = niyi+ν

(r)m
(r)
i , b

(r)
i = ni(1−yi)+ν(r)(1−m(r)

i ) and fB(·; a, b) denotes the density
function of the beta distribution Beta(a, b). The two integrals given in the above formula can

be easily computed by generating samples from Beta(a
(r)
i , b

(r)
i ).
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In Figure 8.1, we draw the shrinkage function ri(yi, p) as a function of yi for the three
models, where ni = 10, ν = 10, mi = ψ′(β) at β = 0, and the solid, dashed and dotted
lines correspond to the three values p = 0.2, 0.5 and 0.8, respectively. It is observed from
Figure 8.1 that the shrinkage function in all the models are actually minimized at yi = mi

as discussed so far, and converges to 1 as yi goes away from mi. Especially, it is interesting
to point out that in the Poisson-gamma model, the shrinkage ratio is not symmetric around
yi = mi, while the other two models are symmetric around yi = mi.
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Figure 8.1: Shrinkage function ri(yi, p) in the thee models with p = 0.2 (solid), 0.5 (dashed),
and 0.8 (dotted).

8.3 Risk Evaluation of the EUB Estimator

8.3.1 Conditional MSE of the EUB estimator

In practice, the risk evaluation of the resulting estimator is an important issue in small
area estimation. The unconditional mean squared error (MSE) is often used, but it is not
suitable in this context, because researchers are interested in the risk of the area-specific
risk in predicting µi under given yi. This philosophy was originally proposed by Booth and
Hobert (1998), and they suggested using the conditional MSE (CMSE) instead of the classical
unconditional MSE in the context of mixed model prediction. Since then, the CMSE has been
studied in the literature of small area estimation, including Datta et al. (2011a) and Sugasawa
and Kubokawa (2016). The CMSE of the EUB estimator is defined as

CMi(yi,ϕ) = E
[
(µ̂i − µi)

2|yi;ϕ
]
,

noting that the expectation is taken with respect to the conditional distribution Y(−i)|yi with
Y(−i) = {y1, . . . , yi−1, yi+1, . . . , ym}. Because µ̃i is the conditional expectation, the CMSE can
be decomposed as

CMi = Var(µi|yi;ϕ) + E
[
(µ̂i − µ̃i)

2|yi;ϕ
]
. (8.13)

We shall evaluate the two terms in the right hand side of (8.13).
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Concerning the first term in (8.13), owing to the quadratic variance structure of the
assumed model, we have

Var(µi|yi;ϕ) = E [Var(µi|si, yi;ϕ)|yi;ϕ] + Var (E[µi|si, yi;ϕ]|yi;ϕ) .

In the case of si = 1, we have Var(µi|si = 1, yi;ϕ) = Q(ηi)/(ni + ν − v2) for ηi = E[µi|si =
1, yi;ϕ] = (niyi + νmi)/(ni + ν). Thus,

Var(µi|si, yi;ϕ) =
Q(ηi)

ni + ν − v2
I(si = 1).

From (8.4), it follows that

Var(µi|yi;ϕ) =
Q(ηi)

ni + ν − v2
P (si = 1|yi;ϕ)+Var

(
mi+

ni
ν + ni

(yi−mi)I(si = 1)|yi;ϕ
)
. (8.14)

Here it is observed that

Var
(
mi +

ni
ν + ni

(yi −mi)I(si = 1)|yi;ϕ
)
=
( ni
ν + ni

)2
(yi −mi)

2E
[
I(si = 1)− 2riI(si = 1) + r2i |yi;ϕ

]
=
( ni
ν + ni

)2
(yi −mi)

2ri(1− ri),

where ri is given in (8.6). We thus get

R1i(yi,ϕ) ≡ Var(µi|yi;ϕ) =
n2i

(ν + ni)2
(yi −mi)

2ri(1− ri) +
riQ(ηi)

ni + ν − v2
, (8.15)

which is of order Op(1).
Concerning the second term E

[
(µ̂i − µ̃i)

2|yi
]
in (8.13), we approximate it up to sec-

ond order. For notational simplicity, let ϕ = (ϕ1, . . . , ϕq, ϕq+1, ϕq+2)
t for (ϕ1, . . . , ϕq)

t = β,

ϕq+1 = ν and ϕq+2 = p. Let ϕ̂ = (ϕ̂1, . . . , ϕ̂q, ϕ̂q+1, ϕ̂q+2)
t be the ML estimator of ϕ, where

(ϕ̂1, . . . , ϕ̂q)
t = β̂, ϕ̂q+1 = ν̂ and ϕ̂q+2 = p̂. The asymptotic variance and bias of ϕ̂ are,

respectively, written as

Ω ≡ E
{
(ϕ̂− ϕ)(ϕ̂− ϕ)t

}
, B ≡ E

(
ϕ̂− ϕ

)
.

It is noted that Ω and B are of order O(m−1). Assume the following regularity conditions.

Assumption 8.1.

(i) There exist n, n > 0 such that n ≤ ni ≤ n for all i = 1, . . . ,m.

(ii) The true value of the parameter ϕ is in the interior of Φ, where Φ is the parameter space.

(iii) The densities fa(yi;ϕ) for a = 1, 2 are three times continuously differentiable and satisfies
for j, ℓ, k = 1, . . . , q + 2,

|fa(ϕj)(yi;ϕ)|+ |fa(ϕjϕℓ)(yi;ϕ)|+ |fa(ϕjϕℓϕk)(yi;ϕ)| ≤ C(yi,ϕ),

for fixed ϕ and E[|C(yi,ϕ)|4+δ] <∞ for some δ > 0.
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The assumption (i) is a standard one in this context. For example, in the Fay-Heriot model
described in Section 8.2.3, the assumption corresponds to D ≤ Di ≤ D, i = 1, . . . ,m for some
D and D, which is usually assumed in the context of small area estimation (e.g. Datta et al.,
2005). The assumptions (ii) and (iii) are required for deriving the asymptotic properties of
the ML estimator of ϕ as provided in Lemma 8.1. It should be noted that the typical three
models described in Section 8.2.3 satisfy the assumption (iii), which can be demonstrated in
Section 8.6.

Since y1, . . . , ym are mutually independent, from Theorem 1 in Lohr and Rao (2009), we
can get the following lemma about asymptotic properties of estimators.

Lemma 8.1. For the ML estimator ϕ̂, under Assumption 1, it holds that
√
m(ϕ̂−ϕ) = Op(1),

E
{
(ϕ̂− ϕ)(ϕ̂− ϕ)t|yi

}
= Ω+ op(m

−1) and

E(ϕ̂− ϕ|yi) = B−ΩLi(ϕ)(yi,ϕ) + op(m
−1),

where Li(ϕ)(yi,ϕ) = ∂Li(yi,ϕ)/∂ϕ for Li(yi,ϕ) = log{pf1(yi;ϕ) + (1− p)f2(yi;ϕ)}.

Note that the conditional asymptotic variance of ϕ̂ does not depend on yi, while the
conditional asymptotic bias depends on yi. Using Lemma 8.1, we can evaluate the second
term as

E
[
(µ̂i − µ̃i)

2|yi
]
= E

[{
µ̃ti(ϕ)(ϕ̂− ϕ)

}2 ∣∣∣yi]+ op(m
−1)

= tr
(
Ωµ̃i(ϕ)µ̃

t
i(ϕ)

)
+ op(m

−1),

where µ̃i(ϕ) = ∂µ̃i/∂ϕ. Let

R2i(yi,ϕ) ≡ tr
(
Ωµ̃i(ϕ)µ̃

t
i(ϕ)

)
. (8.16)

Since R2i(yi,ϕ) = Op(m
−1), we obtain the following theorem.

Theorem 8.1. Let CM∗
i (yi,ϕ) = R1i(yi,ϕ) +R2i(yi,ϕ) for R1i and R2i given in (8.15) and

(8.16), respectively. Under Assumption 1, we have

CMi(yi,ϕ) = CM∗
i (yi,ϕ) + op(m

−1).

8.3.2 Second-order unbiased estimator of CMSE

The approximated CMSE given in Theorem 8.1 depends on the unknown parameter ϕ, so
that it is not feasible in practice. Here we provide a second-order unbiased estimator of the
CMSE. In what follows, we use the abbreviated notations R1i and R2i instead of R1i(yi,ϕ)
and R2i(yi,ϕ), respectively, without any confusion.

Since R2i = Op(m
−1), we estimate it by the plug-in estimator R2i(yi, ϕ̂) with second-order

unbiasedness, that is, E[R2i(yi, ϕ̂)−R2i(yi,ϕ)|yi] = op(m
−1). On the other hand, the plug-in

estimator R1i(yi, ϕ̂) has a second-order bias, namely E[R1i(yi, ϕ̂)−R1i(yi,ϕ)|yi] = Op(m
−1),
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because R1i = Op(1). To achieve the second-order accuracy, we correct the second-order bias

of the estimator R1i(yi, ϕ̂). Using the Taylor series expansion, we have

R1i(yi, ϕ̂) = R1i +Rt1i(ϕ)(ϕ̂− ϕ) + 1

2
(ϕ̂− ϕ)tR1i(ϕϕ)(ϕ̂− ϕ) + op(m

−1),

where R1i(ϕ) = ∂R1i/∂ϕ and R1i(ϕϕ) = ∂2R1i/∂ϕ∂ϕ
t. From Lemma 8.1, it is seen that the

second-order bias in R1i(yi, ϕ̂) is

bi(yi,ϕ) ≡Rt1i(ϕ)E
(
ϕ̂− ϕ|yi

)
+

1

2
tr
(
R1i(ϕϕ)E

[
(ϕ̂− ϕ)(ϕ̂− ϕ)t|yi

])
= Rt1i(ϕ)

(
B−ΩLi(ϕ)

)
+

1

2
tr
(
R1i(ϕϕ)Ω

)
.

Thus, the bias-corrected estimator of R1i is given by

RBC1i (yi, ϕ̂) = R1i(yi, ϕ̂)− bi(yi, ϕ̂), (8.17)

which satisfies E[RBC1i (yi, ϕ̂)−R1i(yi,ϕ)|yi] = op(m
−1).

Theorem 8.2. Let ĈMi = RBC1i (yi, ϕ̂) + R2i(yi, ϕ̂), where RBC1i (yi, ϕ̂) is given in (8.17).
Then, under Assumption 1, we have

E
[
ĈMi − CMi|yi

]
= op(m

−1).

To calculate the ĈMi, we compute the estimates ofΩ and B using the parametric bootstrap
method. Let Ω̂ and B̂ be bootstrap estimators of Ω and B, respectively. Then, we have the
approximations

E[Ω̂] = Ω+ o(m−1), E[B̂] = B + o(m−1),

because Ω = O(m−1) and B = O(m−1). Moreover, we need to compute f1(ϕ), f2(ϕ), R1i(ϕ),

R1i(ϕϕ) in bi and µ̃i(ϕ) in R2i at ϕ = ϕ̂. However, their analytical expressions are too
complicated to use them in practice. Thus we utilize the numerical derivatives which were
suggested in Lahiri et al. (2007). Let {zm} be a sequence of positive real numbers converging
to 0. Based on {zm}, we define

f∗a(ϕj)(yi, ϕ̂) =
1

2zm

{
fa(yi, ϕ̂+ zmej)− fa(yi, ϕ̂− zmej)

}
, a = 1, 2

µ̃∗i(ϕj)(yi, ϕ̂) =
1

2zm

{
µ̃i(yi, ϕ̂+ zmej)− µ̃i(yi, ϕ̂− zmej)

}
R∗

1i(ϕj)
(yi, ϕ̂) =

1

2zm

{
R1i(yi, ϕ̂+ zmej)−R1i(yi, ϕ̂− zmej)

}
where ej is a vector of 0’s other than the j-th element is 1. Similarly, we define approximations
of the second-order partial derivatives of R1i as

R∗
1i(ϕjϕj)

(yi, ϕ̂) =
1

z2m

{
R1i(yi, ϕ̂+ zmej) +R1i(yi, ϕ̂− zmej)− 2R1i(yi, ϕ̂)

}
, j = 1, . . . , k

R∗
1i(ϕjϕℓ)

(yi, ϕ̂) =
1

2z2m

[{
R1i(yi, ϕ̂+ zmejℓ) +R1i(yi, ϕ̂− zmejℓ)− 2R1i(yi, ϕ̂)

}
− z2m

{
R∗

1i(ϕjϕj)
(yi, ϕ̂) +R∗

1i(ϕℓϕℓ)
(yi, ϕ̂)

}]
, j ̸= ℓ,
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where ejℓ = ej + eℓ. The justification of the approximations based on these numerical
derivatives is given in the following theorem, where the proof is given in Section 8.6.

Theorem 8.3. Under Assumption 8.1, we have

|f∗a(ϕj)(yi, ϕ̂)− fa(ϕj)(yi, ϕ̂)| = Op(zm), |µ̃∗i(ϕj)(yi, ϕ̂)− µ̃i(ϕj)(yi, ϕ̂)| = Op(zm)

|R∗
1i(ϕj)

(yi, ϕ̂)−R1i(ϕj)(yi, ϕ̂)| = Op(zm), |R∗
1i(ϕjϕℓ)

(yi, ϕ̂)−R1i(ϕjϕℓ)(yi, ϕ̂)| = Op(zm)

From Theorem 8.3, the second-order unbiasedness of the MSE estimator given in Theorem
8.2 is still valid as far as zm = o(m−1). In our numerical investigation given in the next section,
we use zm = m−5/4.

8.4 Simulation Studies

8.4.1 Prediction error comparison

We first evaluated a finite sample performance of the proposed empirical uncertain Bayes
method. Specifically, we compared the EUB estimator with the traditional empirical Bayes
(EB) estimator. We focused on the two models: Poisson-gamma and binomial-beta models
described in Section 8.2.3.

For the Poisson-gamma model, we considered the following data generating process:

PG : (niyi)|θi ∼ Po(niθi), θi|(si = 1) ∼ Ga(ν exp(β0 + β1xi), ν), P (si = 1) = p,

where β0 = 0, β1 = 0.5, ν = 5, m = 50, ni’s were generated from the uniform distribution
on {5, 6, . . . , 30}, and xi’s were generated from a standard normal distribution. The prior
probability p takes the values 0.2, 0.4, 0.6, 0.8 and 1, where the conventional Poisson-gamma
model corresponds to the data generating process with p = 1. We computed both the EUB
and EB estimators from the simulated data set. Based on R = 5, 000 iterations of the data
generation, we calculated the mean squared error and the absolute bias which are respectively
defined as

MSEi =
1

R

R∑
r=1

(
θ̂
(r)
i − θ

(r)
i

)2
, Biasi =

1

R

∣∣∣ R∑
r=1

(
θ̂
(r)
i − θ

(r)
i

) ∣∣∣. (8.18)

Define MSEi(EUB) and MSEi(EB) be the simulated values MSEi for the EUB estimator
and the EB estimator, respectively. Then we computed the ratio Rai = MSEi(EUB)/MSEi(EB)
for each i, and calculated the q% quantiles of {Ra1, . . . ,Ram} for q = 5, 25, 50, 75 and 95.
Hence, if Rai is smaller than 1, the EUB estimator performs better than the EB estimator in
terms of MSE. We similarly define the ratio of the absolute biases, and the results for the five
p patterns are given in Table 8.1. In the scenario p = 1, the traditional Poisson-gamma model
is the true model and uncertain model is overfitting. However, the results show that the EUB
estimator performs as well as the EB estimator, which indicates that the effect of overfitting
seems small. Moreover, from Table 8.1, when p is smaller than 1, it is revealed that the EUB
estimator improve the EB estimator in terms of both the MSE and the absolute bias, and the
improvement is greater as p gets smaller.

We next compared performances of the two estimators in the binomial-beta model using
the data generating process:

BB : (niyi)|θi ∼ Bin(ni, θi), θi|(si = 1) ∼ Beta(νmi, ν(1−mi)), P (si = 1) = p,
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with mi = exp(β0 + β1xi)/{1 + exp(β0 + β1xi)}, where β0 = 0, β1 = 0.5, ν = 5, m = 50,
ni’s were generated from the uniform distribution on {10, 11, . . . , 30}, and xi’s were generated
from a standard normal distribution. Similarly to the previous study, we simulated the MSE
and the absolute bias using (8.18) with R = 5000, and computed the quantiles of the ratios.
The results are given in Table 8.1, which shows the similar results to the Poisson-gamma case.
However, the amount of improvement seems smaller than that in the Poisson-gamma case,
but the EUB estimator performs better than the EB estimator in the binomial-beta case.

Table 8.1: Simulated ratios of the MSEs and absolute biases of the EUB estimator over the
EB estimator.

MSE Absolute bias
p 5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

0.2 0.156 0.355 0.542 0.717 0.842 0.554 0.628 0.707 0.832 0.878
0.4 0.298 0.454 0.578 0.710 0.815 0.652 0.693 0.726 0.799 0.874

PG 0.6 0.540 0.640 0.728 0.826 0.894 0.795 0.821 0.843 0.876 0.911
0.8 0.700 0.832 0.876 0.912 0.962 0.890 0.911 0.925 0.949 0.977
1 0.985 0.993 1.000 1.005 1.011 0.989 0.993 0.999 1.002 1.007

0.2 0.395 0.608 0.730 0.807 0.996 0.490 0.583 0.650 0.768 0.980
0.4 0.488 0.736 0.827 0.887 0.983 0.721 0.747 0.805 0.862 0.987

BB 0.6 0.730 0.866 0.909 0.934 0.983 0.813 0.851 0.886 0.924 0.994
0.8 0.865 0.946 0.970 0.984 0.993 0.916 0.938 0.961 0.971 0.992
1 0.966 0.980 1.001 1.007 1.017 0.979 0.987 0.995 1.004 1.012

8.4.2 Sensitivity to distributional assumptions

We next investigated sensitivity to distributional assumptions in the proposed model. Here
we focused on the Poisson-gamma model as considered in the previous simulation study:

(niyi)|θi ∼ Po(niθi), θi|(si = 1) ∼ Ga(ν exp(β0 + β1xi), ν), P (si = 1) = p,

where p = 0.5, and other settings β, β1, ν, ni and xi are set as the same values as in the previ-
ous section. To asses sensitivity of the distributional assumption of the proposed method, we
consider the two alternative distributions: a log-normal distribution and a two-point distri-
bution for θi instead of the gamma distribution. Noting that E[θi] = mi and Var(θi) = mi/ν
under the gamma distribution, we scaled two distributions to have the same expectation and
variance. Specifically, we set log θi ∼ N(log(mi/

√
1 + 1/νmi), log(1 + 1/νmi)) for the log-

normal distribution, and P (θi = mi+
√
mi/ν) = P (θi = mi−

√
mi/ν) = 0.5 for the two-point

distribution. Based on R = 5000 simulation runs, we computed the MSE and absolute bias
with the formula (8.18) for three underlying distributions. In Table 8.2, we show the five
quantiles of the simulated MSE and absolute bias. It is observed that both the MSE and the
absolute bias in the misspecified cases of log-normal and two-point distributions are larger
than the correctly specified case of the gamma distribution. The absolute biases in the two
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misspecified cases are about twice as large as that in the gamma case, so that the inflation of
the absolute bias seems relatively large. However, the difference in the MSE is around 10%,
so that the effect of misspecification on MSE seems relatively small.

Table 8.2: Quantiles of the simulated MSE and absolute bias of the EUB estimator under the
three underlying distributions (the values are multiplied by 100).

MSE Absolute bias
distribution 5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

Gamma 1.31 2.55 3.98 5.92 11.06 0.03 0.10 0.25 0.48 0.71
Log-normal 1.32 2.47 4.15 5.85 10.89 0.05 0.33 0.49 0.72 1.25
two-point 1.57 2.87 4.50 6.46 10.58 0.08 0.28 0.51 0.84 1.18

8.4.3 Finite sample performance of the CMSE estimator

Finally we investigated a finite sample behavior of the CMSE estimator provided in Theorem
8.2 in the UPG model. We considered the simple data generating process without covariates:

(niyi)|λi ∼ Po(niλi), λi|(si = 1) ∼ Ga(ν exp(β), ν), P (si = 1) = p, (8.19)

with β = 1, ν = 5, p = 0.5 and ni = 10. For the number of areas, we consider the two cases of
m = 50 and m = 100. For conditioning values of yα, we consider α-quantiles of the marginal
distribution of yi, where α = 0.1, 0.2, . . . , 0.9, and calculate these values by generating 10, 000
random samples from (8.19). To get the simulated values of the CMSE given yα, we generate
random samples from (8.19) and replace y1 with yα, and we computed the EUB estimator of
λ̂1. For the true values of λ1, since yα is given, we generate λ1 from the posterior distribution
λ1|yα ∼ r1Ga(λ̃1, (n1 + ν)−1λ̃1) + (1− r1)δλ1(exp(β)) with λ̃1 = (n1 + ν)−1(n1yα + ν exp(β))
and r1 given in (8.12). Then, based on R = 10, 000 iteration, we calculate the simulated
values of the CMSE defined as

CMα =
1

R

R∑
r=1

(λ̂
(r)
1 − λ

(r)
1 )2,

where λ̂
(r)
1 and λ

(r)
1 are the EUB estimates of λ1, and λ

(r)
1 is the generated value from the

distribution of λ1|yα in the rth iteration.

For evaluation of the CMSE estimator, we generated random samples from (8.19) and
replace y1 with yα, and get CMSE estimators with B = 100 bootstrap samples and zm =
m−5/4 for computing the numerical derivatives. This procedure is repeated S = 2, 000 times
and calculated the percentage relative bias (RB) and the coefficient of variation (CV) defined
as

RBα =
1

S

S∑
s=1

(
ĈMα − CMα

CMα

)
× 100, CVα =

√√√√ 1

S

S∑
s=1

(
ĈMα − CMα

CMα

)2

.
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Remember that the suggested CMSE estimator given in Theorem 8.2 is second-order unbiased.
To emphasize the importance of bias correction in estimating the CMSE, we also computed
the two criteria of the naive CMSE estimator defined as ĈMα(N) = R11(yα, ϕ̂). It is noted
that the naive estimator has the first order bias, because it ignores the second term R2i and
the bias of the plug-in estimator of R1i. For the naive estimator, we calculated RB and CV
based on the same number of iteration and we define RBN and CVN as RB and CV of the
naive estimator. The resulting values are given in Table 8.3 for both m = 50 and m = 100.

It is observed from Table 8.3, the naive estimator has the serious negative bias when
m = 50. Especially, when the condition values are upper or lower quantiles, the negative bias
tends to be larger. This comes from the fact that the naive estimator ignores the positive
Op(m

−1) term in the CMSE decomposition given in Theorem 8.1. Since practitioners decide
policies or investments based on estimated values as well as their risk estimates, the under-
estimation of the CMSE is considered serious in practice. Hence, the results in Table 8.3 show
that the naive CMSE estimator without bias correction is not suitable for practical use. On
the other hand, the bias-corrected CMSE estimator works well in both m = 50 and m = 100
and provides accurate estimation of the CMSE in terms of the relative biases. Concerning the
CV values, the bias-corrected estimator has a slightly larger CV than the naive estimator in
most cases. This is because the bias corrected terms increase the variance of the estimator.
However, the difference is not so significant. Thus, the bias-corrected CMSE estimator is
useful in practice.

Table 8.3: Percentage of relative bias and coefficient of variation.

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
yi 1.8 2.1 2.3 2.5 2.7 2.9 3.0 3.3 3.6

m = 50 RB 1.21 -1.01 6.87 6.56 5.87 3.43 2.42 -3.95 -9.59
RBN -27.7 -23.5 -13.8 -6.56 -3.28 -3.86 -8.37 -21.1 -28.6
CV 0.53 0.36 0.53 0.67 0.73 0.68 0.64 0.43 0.34
CVN 0.38 0.37 0.43 0.53 0.61 0.55 0.51 0.39 0.39

m = 100 RB -0.23 -0.45 3.28 3.68 2.02 -0.12 0.55 -2.94 -5.82
RBN -16.9 -12.9 -6.33 -3.75 4.79 0.97 -2.55 -12.4 -17.9
CV 0.28 0.25 0.41 0.57 0.63 0.58 0.52 0.32 0.24
CVN 0.28 0.27 0.35 0.49 0.52 0.49 0.42 0.29 0.27

8.5 Illustrative Examples

8.5.1 Historical mortality data in Tokyo

The mortality rate is a representative index in demographics and has been used in various
fields. Especially, in economic history, one can discover new knowledge from a spatial distri-
bution of mortality rate in small areas. As divisions get smaller (e.g. city→town→block. . .),
one can get a more informative spatial distribution. However, the direct estimate of the mor-
tality rate in small area with extremely low population has high variability, which may leads
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to incorrect recognition of the spatial distribution. Therefore, it is desirable to use smoothed
and stabilized estimates through empirical Bayes methods.

We here focus on the mortality data in Tokyo, 1930. The data set consists of the observed
mortalities zi and the number of population Ni in the ith area in Tokyo. Such area-level data
are available for m = 1, 371 small areas. We first computed the expected mortality in the
ith area as ni = Ni

∑m
j=1 zj/

∑m
j=1Nj . The standardized mortality ratio (SMR) is defined as

the ratio of the actual mortality to the expected mortality for each area, which is often used
in epidemiology as an indicator of potential mortality risk. Then, the direct estimator of the
SMR in the ith area is yi = zi/ni. It is noted that yi = 0 in 84 areas, the number of areas
with SMR larger than 1 is 526, and the maximum value of yi is 16.4.

For this data set, we apply the two models: the uncertain Poisson-gamma model described
Section 8.2.3 and the traditional Poisson-gamma model, described as

UPG : niyi|λi ∼ Po(niλi), λi|si ∼ Ga(ν exp(β), ν), P (si = 1) = p

PG : niyi|λi ∼ Po(niλi), λi ∼ Ga(ν exp(β), ν),

where λi = E(yi|λi) denotes the ‘true’ SMR in the i-th area, which we want to estimate.
Using the EM algorithm in Section 8.2.2 with 5000 Monte Calro samples in each E-step,
we get the point estimates of the parameters of the two models as shown in Table 8.4. For
comparison of the two models, we computed AIC and BIC based on the maximum marginal
likelihood, and the results are also given in Table 8.4. In terms of AIC and BIC, the proposed
UPG model fits better than the traditional PG model for this data set. This comes from the
feature of the data. In the upper left panel of Figure 8.2, we show the sample plot of the
expected mortality ni and the SMR yi, noting that the solid line corresponds to the estimated
regression line yi = exp(β̂) in the UPG model. It is observed that most yi are distributed
around the regression line, and the random area effects are necessary in most areas. The UPG
model tells us about the feature of the data through the estimate of p. The lower left panel
of Figure 8.2 provides a scatter plot of the estimated conditional probability P (si = 1|yi) and
the SMR yi, where the conditional probability P (si = 1|yi) corresponds to the probability of
existing random area effect in the ith area when yi is observed. The solid line corresponds
to the estimated regression line yi = exp(β̂) in the UPG model. From the figure, we can
see that the estimates of P (si = 1|yi) are dramatically different from area to area, and the
probability gets lower as SMR is closer to the regression line. To see the difference of estimated
values of λi, in the upper right panel of Figure 8.2, we present the relative differences between
estimators from the two models, which are defined as (λ̂UPG

i − λ̂PGi )/λ̂PGi , where λ̂UPG
i and

λ̂PGi are empirical Bayes estimates of λi from the UPG model and the PG model, respectively.
We can observe that the differences are around 10% and are not negligible.

We next calculated the CMSE estimates of the EUB estimates λ̂UPG
i using Theorem 8.2

with B = 100 and zm = m−5/4. For comparison, we also computed the CMSE estimates of
λ̂PGi using Theorem 8.2 with p = 1, B = 100 and zm = m−5/4. Then, we computed their
difference and their histogram over areas is given in the lower right panel of Figure 8.2. In the
figure, the positive value indicates that the EUB estimator has the smaller CMSE value than
the EB estimator, and it is revealed that the EUB estimator can improve the estimation risk
over the EB estimator in many areas. In particular, the mean values of CMSEs are 4.2×10−2

for UPG and 5.4 × 10−2 for PG, so that the EUB estimator can improve 20% CMSE values
over the traditional EB estimator on average.
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Finally, we assessed the performance of the two models in terms of prediction accuracy in
non-sampled areas. Since areas with small ni have high variability, we consider to predict yi
of areas with ni larger than the α-quantile of ni’s, denoted by qα. Thus we omitted areas with
ni larger than qα and computed the estimates of the model parameters using the remaining
data. For fixed α, we define the predictive criterion (PC) as

PCα =

m∑
i=1

I(ni > qα) (m̂i − yi)
2

/ m∑
i=1

I(ni > qα), (8.20)

noting that m̂i is the best predictor in non-sampled areas. In this example, m̂i = exp(β̂).
The values of PC were computed for three quantiles of α = 0.90, 0.95 and 0.99 and reported
in Table 8.4. It is revealed that the EUB method can improve PC values over the EB method
by about 10%.

Table 8.4: Point estimates of the model parameters and values of AIC, BIC and PC (multiplied
by 100) for the three thresholds.

Estimates β̂ ν̂ p̂ AIC BIC PC0.90 PC0.95 PC0.99

UPG -0.039 5.15 0.56 8142.17 8157.84 8.00 7.70 5.69
PG -0.052 7.42 — 8265.12 8275.57 8.67 8.24 6.15

8.5.2 Poverty rates in Spanish provinces

We next applied our method to the income data set in Spanish provinces as used in Section
3.4. In this application, we focus on estimating area-level poverty rates. We set the poverty
level as 0.7 times the median of all the observed incomes, and computed the direct estimates
of the poverty rates. As covariates, we calculated area-level rates of female and labors. The
scatter plot of the pairs (ni, yi) is given in the left panel of Figure 8.3, from which we can
observe that the direct estimate yi has higher variability as ni gets smaller.

For the data set, we applied the two models: the uncertain binomial-beta (UBB) model
and the traditional binomial-beta (BB) model, described as

UBB : niyi|θi ∼ Bin(ni, θi), θi|si ∼ Beta(νmi, ν(1−mi)), P (si = 1) = p

BB : niyi|θi ∼ Bin(ni, θi), θi ∼ Beta(νmi, ν(1−mi)),

where yi is the direct estimate of the true poverty rate pi, ni is the number of observations in
the ith area, mi = logit(β0 + β1gi + β2fi) for logit(x) = exp(x)/(1 + exp(x)), and gi and fi
are rates of populations of females and labors, respectively. The point estimates of the model
parameters based on the EM algorithm in Section 8.2.2 with 5000 Monte Carlo samples are
shown in Table 8.5. The signs of β̂1 and β̂2 are reasonable. From the table, it is observed
that the estimate of p in the UBB model is almost 1, which implies that the traditional BB
model is appropriate for this data set. Actually, the values of AIC and BIC based on the
marginal likelihood, given in Table 8.5, support the BB model rather than the UBB model.
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Concerning the differences of predicted values, we provide in the right panel of Figure 8.3 the
histogram of the relative differences: (θ̂UBB

i − θ̂BB
i )/θ̂BB

i , where θ̂UBB
i and θ̂BB

i are predicted
values from the UBB and the BB models. It shows that the differences are smaller than 1%
in most areas.

We next calculated the CMSE estimates of the EUB and the EB estimates using Theorem
8.2 with B = 100 and zm = m−5/4. These two estimates are expected to be similar, but
the CMSE estimates of the EUB estimates are negative in some areas, while those of the EB
estimates are all positive. This may comes from the instability of estimating p close to 1.

Finally, we considered the performances of prediction for non-sampled areas. Similarly
to the previous section, we considered the predictive criterion (PC) defined in (8.20) with
m̂i = logit(β̂0+ β̂1gi+ β̂2fi). The values of PC were computed for α = 0.70, 0.80 and 0.90 and
reported in Table 8.5. It is observed that the UBB model provides the performance better
than the BB model while the differences are quite small.

Table 8.5: Point estimates of the model parameters, values of AIC, BIC and PC (multiplied
by 1, 000) for the three thresholds.

Estimates β̂0 β̂1 β̂2 ν̂ p̂ AIC BIC PC0.70 PC0.80 PC0.90

UBB -1.92 2.91 -1.03 41.33 0.96 459.67 469.42 5.59 5.42 5.17
BB -2.14 3.36 -1.07 42.93 — 457.74 465.55 5.61 5.42 5.19

8.6 Technical Issues

8.6.1 Checking Assumption 8.1 in typical three models.

(Fay-Herriot model). It follows from (8.10) that

f1(β)(yi;ϕ) = f1(yi;ϕ)

(
yi − xtiβ
A+Di

)
xi, f1(A)(yi;ϕ) =

f1(yi;ϕ)

2(A+Di)2

{(
yi − xtiβ

)2 −A−Di

}
.

Using f1(yi;ϕ) ≤ 1/
√
2πA, we can see that |f1(ϕj)(yi;ϕ)|, |f1(ϕjϕℓ)(yi;ϕ)| and |f1(ϕjϕℓϕk)(yi;ϕ)|

can be evaluated from above by 6th order polynomials of yi and the assumption (iii) is satisfied
for a = 1. The case of a = 2 can be shown similarly.

(Poisson-gamma model). It is noted that f1(ϕk)(yi;ϕ) = f1(yi;ϕ)∂ log f1(yi;ϕ)/∂ϕk. From
(8.11), it holds that

∂ log f1(yi;ϕ)

∂βk
= νxikmi {ψ(niyi + νmi)− ψ(νmi)} , k = 1, . . . , q,

∂ log f1(yi;ϕ)

∂ν
= mi {ψ(niyi + νmi)− ψ(νmi)} −

niyi
ni + ν

+mi

{
ni

ni + ν
+ log

(
ni

ni + ν

)}
,

where ψ(·) is the digamma function ψ(x) = d log Γ(x)/dx. Using the fact that ψ(x) ≈ log x
for large x, we have |∂ log f1(yi;ϕ)/∂βk| = Op(log yi) and |∂ log f1(yi;ϕ)/∂ν| = Op(yi) for
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large yi. Since there exists c ∈ R such that f1(yi;ϕ) ≤ c, |f1(ϕk)(yi;ϕ)| is bounded above by
an liner function of yi. Concerning the second derivatives, we note that

f1(ϕkϕℓ)(yi;ϕ) = f1(yi;ϕ)

{
∂2 log f1(yi;ϕ)

∂ϕk∂ϕℓ
+
∂ log f1(yi;ϕ)

∂ϕk

∂ log f1(yi;ϕ)

∂ϕℓ

}
. (8.21)

Moreover, the straightforward calculation shows that

∂2 log f1(yi;ϕ)

∂β2k
= νx2ikmi {ψ(niyi + νmi)− ψ(νmi)}+νx2ikm2

i

{
ψ(1)(niyi + νmi)− ψ(1)(νmi)

}
,

where ψ(n)(x) = dnψ(x)/dxn is a polygamma function. Since ψ(n)(x) ≈ (−1)n(n − 1)!x−n

for large x, we have |∂2 log f1(yi;ϕ)/∂β2k| = O(log yi) for large yi. Similarly, we obtain
|∂2 log f1(yi;ϕ)/∂βk∂ν| = O(log yi) and |∂2 log f1(yi;ϕ)/∂ν2| = O(yi) for large yi. Thus
from expression (8.21), |f1(ϕkϕℓ)(yi;ϕ)| is bounded above by an quadratic function of yi. The
similar argument shows that |f1(ϕkϕℓ)(yi;ϕ)| is bounded above by an cubic function of yi.
Hence, conditional (iii) is satisfied for a = 1, because E[yci ] <∞ for all c > 0 when yi has the
Poisson-gamma model. The case of a = 2 can be shown similarly.

(Binomial-beta model). Note that f1(yi;ϕ) and f2(yi;ϕ) have compact supports and the
derivatives fa(ϕj)(yi;ϕ), fa(ϕjϕℓ)(yi;ϕ) and fa(ϕjϕℓϕk)(yi;ϕ) are finite for an interior point ϕ.
Then condition (iii) is easy to check.
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8.6.2 Proof of Theorem 8.3.

Let us fix ϕ0 as an interior point of Φ. We here use the notation C(yi) as a generic function
of yi with C(yi) = Op(1), and the notations bu1i and u2i ∈ [−1, 1] as generic constants.
Expanding fa(yi,ϕ0 + zmej) and fa(yi,ϕ0 − zmej) around ϕ0, we get

fa(yi,ϕ0 + zmej) = fa(yi,ϕ0) + fa(ϕj)(yi,ϕ0)zm +
1

2
fa(ϕjϕℓ)(yi,ϕ0 + u1izmej)z

2
m

fa(yi,ϕ0 − zmej) = fa(yi,ϕ0)− fa(ϕj)(yi,ϕ0)zm +
1

2
fa(ϕjϕℓ)(yi,ϕ0 + u1izmej)z

2
m,

so that it follows that

(2zm)|f∗a(ϕj)(yi,ϕ0)− fa(ϕj)(yi,ϕ0)|

= |fa(yi,ϕ0 + zmej)− fa(yi,ϕ0 − zmej)− 2zmfa(ϕj)(yi,ϕ0)|

=
1

2
z2m|fa(ϕjϕℓ)(yi,ϕ0 + u1izmej)− fa(ϕjϕℓ)(yi,ϕ0 + u2izmej)| ≤ C(yi)z

2
m,

from (iii) of Assumption 8.1. This shows the first part of Theorem 8.3.
To show the other parts, we prove that there exist functions Ca(yi) = Op(1) for a = 1, 2, 3

such that

|ri(ϕj)(yi,ϕ0)| ≤ C1(yi), |ri(ϕjϕℓ)(yi,ϕ0)| ≤ C2(yi), |ri(ϕjϕℓϕk)(yi,ϕ0)| ≤ C3(yi). (8.22)

The straightforward calculation shows that

ri(p) = f1f2{pf1 + (1− p)f2}−2, ri(pp) = −2f1f2{pf1 + (1− p)f2}−3(f1 − f2),

ri(ppp) = 6f1f2{pf1 + (1− p)f2}−4(f1 − f2)
2,

which are all bounded above by C(yi) since fa/(pf1 + (1 − p)f2) ≤ max(p−1, (1 − p)−1) for
a = 1, 2. Moreover, it is noted that

|ri(ϕj)| =
p(1− p)

∣∣∣f1(ψj)f2 − f1f2(ψj)

∣∣∣
{pf1 + (1− p)f2}2

≤
p|f1(ψj)|+ (1− p)|f2(ψj)|

pf1 + (1− p)f2
≤ C(yi)

under (iii) of Assumption 8.1. Similarly, it can be shown that the higher order derivatives
ri(ϕjϕℓ), ri(ϕjϕℓϕk), ri(pϕℓ), ri(ppϕℓ) and ri(pϕℓϕk) have the form h(yi,ϕ0)/{pf1 + (1 − p)f2}c,
where c is a positive integer and h(yi,ϕ0) is a polynomial of fa, fa(ϕj), fa(ϕjϕk)

and fa(ϕjϕℓϕk),

so that there exists h†(yi) = Op(1) such that h(yi,ϕ0) ≤ h†(yi). This establishes property
(8.22). Using the property, we have

(2zm)
∣∣µ̃∗i(ϕj)(yi,ϕ0)− µ̃i(ϕj)(yi,ϕ0)

∣∣
=

1

2
z2m
∣∣µ̃i(ϕjϕj)(yi,ϕ0 + u1izmej)− µ̃i(ϕjϕj)(yi,ϕ0 + u2izmej) ≤ C(yi)z

2
m

and

(2zm)
∣∣R∗

1i(ϕj)
(yi,ϕ0)−R1i(ϕj)(yi,ϕ0)

∣∣
=

1

2
z2m
∣∣R1i(ϕjϕj)(yi,ϕ0 + u1izmej)−R1i(ϕjϕj)(yi,ϕ0 + u2izmej)

∣∣ ≤ C(yi)z
2
m.
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Finally, we consider the approximation of the second-order partial derivatives of R1i. Ex-
panding R1i(ϕ0 + zmej) and R1i(ϕ0 − zmej) up to O(z3m), we have

z2m
∣∣R∗

1i(ϕjϕj)
(yi,ϕ0)−R1i(ϕjϕj)(yi,ϕ0)

∣∣
=

1

6
z3m
∣∣R1i(ϕjϕjϕj)(yi,ϕ0 + u1izmej)−R1i(ϕjϕjϕj)(yi,ϕ0 + u2izmej)

∣∣ ≤ C(yi)z
3
m,

from property (8.22). From this result, we obtain for j ̸= ℓ,

R∗
1i(ϕjϕℓ)

(yi,ϕ0) =
1

2z2m

[
{R1i(yi,ϕ0 + zmejℓ) +R1i(yi,ϕ0 − zmejℓ)− 2R1i(yi,ϕ0)}

− z2m

{
R1i(ϕjϕj)(yi,ϕ0) +R1i(ϕℓϕℓ)(yi,ϕ0)

}]
+Op(zm).

It is noted that

R1i(yi,ϕ0 + zmejℓ) = R1i(yi,ϕ0) +R1i(ψj)(yi,ϕ0)zm +R1i(ϕℓ)(yi,ϕ0)zm +R1i(ϕjϕℓ)(yi,ϕ0)z
2
m

+
1

2
R1i(ϕjϕj)(yi,ϕ0)z

2
m +

1

2
R1i(ϕℓϕℓ)(yi,ϕ0)z

2
m +

1

6
z3m
∑
j,ℓ,k

R1i(ϕjϕℓϕk)(yi,ϕ0 + zmu1jℓkejℓk)

where u1jℓk ∈ [−1, 1] and ejℓk = ej + eℓ + ek. Then it follows that

z2m|R∗
1i(ϕjϕℓ)

(yi,ϕ0)−R1i(ϕjϕℓ)(yi,ϕ0)
∣∣

=
1

6
z3m

∣∣∣∣∑
j,ℓ,k

R1i(ϕjϕℓϕk)(yi,ϕ0 + zmu1jℓkejℓk)−
∑
j,ℓ,k

R1i(ϕjϕℓϕk)(yi,ϕ0 + zmu2jℓkejℓk)

∣∣∣∣,
for some u2jℓk ∈ [−1, 1]. Using property of (8.22), we conclude that the above term is bounded
above by C(yi)z

3
m, which completes the proof.
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