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Preface

An algebraic fiber space is a family of algebraic varieties, which may have degener-
ate fibers, such that not only general fibers but also the total and the base space
have structures of algebraic varieties. More precisely, it is defined as a separable
surjective morphism f : X → Y of projective varieties with connected fibers. For
the classification of algebraic varieties, it is important to consider the relationship
between X, Y and the geometric generic fiber F of f . In this thesis, we study their
relationship in terms of properties of the (anti-)canonical divisors.

In characteristic zero, there are many significant results on algebraic fiber spaces.
For example, Birkar–Chen [9] and Fujino–Gongyo [41, 42] proved that some posi-
tivity conditions can be passed from the anti-canonical divisor on X to that on Y
when f is smooth. As for properties of the canonical divisors, the semi-positivity
theorem, the weak positivity theorem and the partial settlement of Iitaka’s Cn,m
conjecture are established due to Birkar [8], Fujino [34, 35, 38], Fujita [44], Kawa-
mata [66, 67, 68, 69], Kollár [72, 73], Viehweg [108, 109], etc. However, since the
proofs of the above results depend on the existence of resolution of singularities, the
weak semi-stable reduction theorem or some consequences of the Hodge theory, we
cannot use the same arguments in positive characteristic. In this thesis, we over-
come this difficulty by applying the methods of F -singularities, singularities defined
in terms of the Frobenius morphism, and prove positive characteristic analogs of
several results on algebraic fiber spaces in characteristic zero.

This thesis consists of seven chapters.
In Chapter 1, we set up notation and terminology, and recall basic notions such

as almost Cartier divisors and the trace of the Frobenius morphism. In particular,
we carefully describe the traces of the relative and absolute Frobenius morphisms,
which appear repeatedly throughout this thesis.

Chapter 2 is devoted to the study of the Frobenius stable canonical rings intro-
duced by Hacon and Patakfalvi [52]. We compute them in the case of projective
Gorenstein curves and of projective varieties with semi-ample canonical divisors.
Roughly speaking, if the Frobenius stable canonical ring is large enough, then patho-
logical phenomena in positive characteristic do not occur. Indeed, we see in Chapters
4 and 6 that analogs of some well-known results on algebraic fiber spaces in charac-
teristic zero hold in positive characteristic if the geometric generic fibers have large
Frobenius stable canonical rings.

In Chapter 3, we define some positivity conditions of coherent sheaves including
the weak positivity, and introduce a numerical invariant which provides a sufficient
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condition for coherent sheaves to be weakly positive. This invariant plays important
roles in the proofs of the main results of Chapters 4 and 5.

Chapter 4 establishes a weak positivity theorem for algebraic fiber spaces whose
geometric generic fibers have finitely generated canonical rings and large Frobenius
stable canonical rings. We apply it to prove Iitaka’s Cn,m conjecture in some cases
in Chapter 6. For this application, we also show a result on the weak positivity of
some subbundles of the direct image sheaf of a relative pluri-canonical bundle.

In Chapter 5, we consider what positivity conditions can be passed from the
anti-canonical divisor on the total space of an algebraic fiber space to that on the
base space. As a corollary of the mains results of this chapter, we show that in
positive characteristic, the image of a weak Fano variety under a smooth morphism is
again weak Fano. Another corollary shows that a relatively trivial relative canonical
divisor is pseudo-effective if the geometric generic fiber has only F -pure singularities,
which are an F -singularity theoretic counterpart of log canonical singularities. This
second corollary is used in Chapter 6. Moreover, using modulo p reduction, we
obtain some results which are valid in arbitrary characteristic.

In Chapter 6, we discuss Iitaka’s Cn,m conjecture in characteristic p > 0. We
prove that it holds true for algebraic fiber spaces whose geometric generic fibers
have finitely generated canonical rings and large Frobenius stable canonical rings,
under the assumption that the base spaces are of general type or curves. Using this
result, we show that the conjecture holds when the total spaces are 3-folds and the
characteristic p is greater than 5.

In Chapter 7, using the results in Chapters 4 and 5, we show that the Albanese
morphism a : X → A of a smooth projective variety X in positive characteristic
is an algebraic fiber space if one of the following conditions is satisfied: (1) the
anti-canonical divisor of X is nef and the geometric generic fiber of a has only F -
pure singularities, or (2) the variety X is globally F -split, which means that the
affine cone over X has only F -pure singularities. As a consequence, we establish a
characterization of (ordinary) abelian varieties.

This thesis is based on the author’s papers [27, 28, 29] and a joint paper [31]
with Lei Zhang.
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Chapter 1

Preliminaries

In this chapter, we prepare notation, terminologies and fundamental notions which
are used throughout this thesis. In particular, we introduce the notion of the trace
maps of the (relative) Frobenius morphisms, which plays key roles in the proofs of
the main theorems in this thesis.

1.1 Notation and terminology

Let k be a field. A k-scheme means a separated scheme of finite type over k. By
variety over k we mean an integral k-scheme. A morphism f : X → Y between
projective varieties over k is said to be an algebraic fiber space (or a fibration) if f is
separable and the natural morphism OY → f∗OX is an isomorphism. Let φ : S → T
be a morphism of k-schemes and let T ′ be a T -scheme. Then we denote by ST ′ and
φT ′ : ST ′ → T ′ respectively the fiber product S×T T

′ and its second projection. For
a Cartier or Q-Cartier divisor D on S (resp. an OS-module G), the pullback of D
(resp. G) to ST ′ is denoted by DT ′ (resp. GT ′) if it is well-defined. Similarly, for a
homomorphism of OS-modules α : F → G, the pullback of α to ST ′ is denoted by
αT ′ : FT ′ → GT ′ .

Assume that k is of characteristic p > 0. We say that k is F -finite if the
field extension k/kp is finite. For a k-scheme X, FX : X → X is the absolute
Frobenius morphism. We often denote the source of FX

e by Xe. Let f : X → Y
be a morphism between schemes of positive characteristic. The same morphism is
denoted by f (e) : Xe → Y e when we regard X (resp. Y ) as Xe (resp. Y e). We define

the e-th relative Frobenius morphism of f to be the morphism F
(e)
X/Y := (F e

X , f
(e)) :

Xe → X ×Y Y
e =: XY e .

1.2 Almost Cartier divisors

Let k be a field of characteristic p > 0 and X be a k-scheme of pure dimension
satisfying S2 and G1. An AC divisor (or almost Cartier divisor) on X is a coherent
OX-submodule of the sheaf of total quotient rings K(X) which is invertible in codi-
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mension one (see [75], [59], or [84]). For any AC divisor D we denote the coherent
sheaf defining D by OX(D). The set of AC divisors WSh(X) has the structure of
additive group [59, Corollary 2.6]. Let Z(p) denote the localization of Z at (p) = pZ.
A Z(p)-AC divisor is an element of WSh(X)⊗Z Z(p). An AC divisor D is said to be
effective if OX ⊆ OX(D), and a Z(p)-AC divisor ∆ is said to be effective if ∆ = D⊗r
for some effective AC divisor D and some 0 ≤ r ∈ Z(p). Now we have the following
diagram:

WSh(X)
( )⊗1 // WSh(X)⊗Z Z(p)

CDiv(X)
( )⊗1//

?�

OO

CDiv(X)⊗Z Z(p)

?�

OO

We note that the horizontal homomorphisms are not necessarily injective [75, Page
172]. Throughout this thesis, given an effective Z(p)-AC (resp. Z(p)-Cartier)
divisor ∆, we fix an effective AC (resp. Cartier) divisor E and an integer
a > 0 not divisible by p such that E ⊗ 1 = a∆. The choice of E and a is
often represented by ∆ = E/a. For every integer m, we regard the Z(p)-AC divisor
am∆ as the AC divisor mE. For instance, the symbol OX(am(D+∆)) denotes the
sheaf OX(amD +mE), for every AC divisor D. For a morphism (resp. immersion)
π : Y → X from a k-scheme Y of pure dimension satisfying S2 and G1, we set
π∗∆ = (π∗E)/a (resp. ∆|Y = E|Y /a) if π∗E (resp. E|Y ) can be defined.

We also note that if X is a normal variety, then AC divisors are Weil divisors,
and the horizontal homomorphisms in the above diagram is injective. In this case,
we can choose E and a canonically for an effective Z(p)-divisors ∆: a is the smallest
positive integer such that a∆ is integral and E := a∆.

Using Q instead of Z(p), we define concepts similar to the above.

1.3 Trace maps

In this section, we recall the notion of the trace maps of the absolute and relative
Frobenius morphisms. Throughout this section, we work over an F -finite field k of
characteristic p > 0.

1.3.1 Trace maps of the absolute Frobenius morphisms

We start with recalling the trace maps of finite morphisms. Let π : X → Y be a finite
surjective morphism between Gorenstein k-schemes of pure dimension, ωX and ωY be
dualizing sheaves of X and Y , respectively. Applying the functor HomOY

( , ωY ) to
the natural morphism π# : OY → π∗OX , we obtain the morphism Trπ : π∗ωX → ωY
of OY -modules. This is called the trace map of π. Using this, we define

ϕ
(1)
X := TrFX

⊗ ω−1
X : FX∗ω

1−p
X → OX , and

ϕ
(e+1)
X := ϕ

(e)
X ◦ F e

X∗(ϕ
(1)
X ⊗ ω1−pe

X ) : F e+1
X ∗ω

1−pe+1

X → OX
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for each e > 0.
Next we extend the definition of ϕ

(e)
X for pairs. Let X be a Gorenstein k-scheme

of pure dimension, ∆ = E/a be an effective Z(p)-Cartier divisor on X and d > 0
be the smallest integer such that a|(pd − 1). Let KX be a Cartier divisor satisfying
OX(KX) ∼= ωX . For each e > 0 we define

L(de)
(X,∆) := OX((1− pde)(KX +∆)) ⊆ OX((1− pde)KX),

ϕ
(d)
(X,∆) : F

d
X∗L

(d)
(X,∆) → F d

X∗OX((1− pd)KX)
ϕ
(d)
X−−→ OX , and

ϕ
(d(e+1))
(X,∆) := ϕ

(de)
(X,∆) ◦ F

de
X ∗(ϕ

(d)
(X,∆) ⊗ L(de)

(X,∆)) : F
d(e+1)
X ∗L

(d(e+1))
(X,∆) → OX .

We further extend the above notion to a more general case. Let X be a k-scheme
of pure dimension satisfying S2 and G1, ∆ = E/a be an effective Z(p)-AC divisor on
X and d be as above. Let ι : U ↪→ X be a Gorenstein open subset of X such that
codimX \ U ≥ 2 and that E|U is Cartier. Then for each e > 0 we define

L(de)
(X,∆) := ι∗L(de)

(U,∆|U ) and ϕ
(de)
(X,∆) := ι∗(ϕ

(de)
(U,∆|U )) : F

de
X ∗L

(de)
(X,∆) → OX

Note that ϕ
(de)
(X,∆) is a morphism between reflexive sheaves on X (cf. [59, Proposi-

tion 1.11]). Using the trace maps of the Frobenius morphisms, we can define F -pure
and strongly F -regular singularities of pairs.

Definition 1.3.1 ( [56, Definition 2.1] or [84, Definition 2.6] ). Let X be a reduced
k-scheme of pure dimension satisfying S2 and G1. Let ∆ be an effective Q-AC divisor
on X. (1) The pair (X,∆) is said to be F -pure if for every e > 0 and for every
effective AC divisor D with D ≤ (pe − 1)∆, the morphism

ϕ
(e)
(X,D/(pe−1)) : F

e
X∗OX((1− pe)KX −D) → OX

is surjective. We simply say that X is F -pure if (X, 0) is F -pure.
(2) [98, Definition 3.1] Assume that X is a normal variety. (Then ∆ is a Q-Weil
divisor.) The pair (X,∆) is said to be strongly F -regular if for every effective Cartier
divisor D, there exists an e > 0 such that

ϕ
(e)
(X,⌈(pe−1)∆⌉+D/pe−1) : F

(e)
X ∗OX(⌊(1− pe)(KX +∆)⌋ −D) → OX

is surjective. Here ⌈∆⌉ (resp. ⌊∆⌋) denotes the round up (resp. down) of ∆. We
simply say that X is strongly F -regular if (X, 0) is strongly F -regular.

Remark 1.3.2. (1) With the notation as in Definition 1.3.1, we assume that X is
normal and affine. Then Definition 1.3.1 (1) is equivalent to [56, Definition 2.1] (2).
Indeed, since ⌊(pe− 1)∆⌋ ≤ (pe− 1)∆, the condition of Definition 1.3.1 implies that

ϕ
(e)
(X,⌊(pe−1)∆⌋/(pe−1)) is surjective. Conversely, since ϕ

(e)
(X,⌊(pe−1)∆⌋/(pe−1)) factors through

ϕ
(e)
(X,D/(pe−1)) for every effective Weil divisor D with D ≤ ⌊(pe−1)∆⌋ (or equivalently
D ≤ (pe − 1)∆), the surjectivity of ϕ

(e)
(X,⌊(pe−1)∆⌋/(pe−1)) implies the condition of

Definition 1.3.1.
(2) Let (X,∆) be a strongly F -regular pair and ∆′ be an effective Q-divisor on X.
Then there exists an 0 < ε ∈ Q such that (X,∆+ ε∆′) is again strongly F -regular.
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1.3.2 Trace maps of the relative Frobenius morphisms

We recall the notion of the trace maps of the relative Frobenius morphisms and
study their properties. See [94] for more details.

Let f : X → Y be a morphism between Gorenstein k-schemes of pure dimension.
We assume that either FY is flat (i.e., Y is regular) or f is flat. Then FY or f is a
Gorenstein morphism, so XY 1 is a Gorenstein k-scheme [57, III, §9]. We define the
relative dualizing sheaf ωX/Y of f to be ωX ⊗ f ∗ω−1

Y . Then we have

ωXY 1/Y 1 :=ωXY 1 ⊗ fY 1
∗ω−1

Y 1

∼=ωXY 1 ⊗ fY 1
∗ωp−1

Y 1 ⊗ fY 1
∗FY

∗ω−1
Y

∼=(FY )X
!OX ⊗ (FY )X

∗ωX ⊗ (fY 1
∗FY

!OY )
−1 ⊗ (FY )X

∗f ∗ω−1
Y

∼=(FY )X
∗ωX/Y = (ωX/Y )Y 1

by the assumption. Moreover, for positive integers d, e, we consider the following
commutative diagram:

Xde

��

F
(di′)
Xdi/Y di

��

F
(de)
X/Y

��
f (de)

��

...

��

. . .
F d
X

!!
Xdi
Y de

��

F
(di)

X
Y di′ /Y

di′

yy

f
(di)

Y de
vv

· · · // X2d

F d
X

!!
F

(d)

Xd/Y d

��...

��

· · · // Xd
Y 2d

//

F
(d)

X
Y d/Y d

��

Xd

F d
X

��
F

(d)
X/Y

��
XY de

��

· · · // XY 2d
//

f
Y 2d

��

XY d
(F d

Y )X

//

f
Y d

��

X

f
��

Y de · · ·
F d
Y

// Y 2d

F d
Y

// Y d

F d
Y

// Y.

Here, we put i′ := e− i. Then for each e > 0 we define

ϕ
(1)
X/Y := Tr

F
(1)
X/Y

⊗ ω−1
XY 1

: F
(1)
X/Y ∗

ω1−p
X1 → OXY 1 , and

ϕ
(e+1)
X/Y :=

(
ϕ
(e)
X/Y

)
Y e+1

◦ F (e)

XY 1/Y 1
∗

(
ϕ
(1)
Xe/Y e ⊗ ω1−pe

Xe
Y e+1

)
: F

(e+1)
X/Y ∗

ω1−pe+1

X → OXY e+1 .

Let ∆ = E/a be an effective Z(p)-AC divisor on X and d be the smallest positive
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integer satisfying a|(pd − 1). For each e > 0 we define

L(de)
(X/Y,∆) := ω1−pde

Xde ((1− pde)∆) ⊆ ω1−pde
Xde ,

ϕ
(d)
(X/Y,∆) : F

(d)
X/Y ∗

L(d)
(X/Y,∆) → F

(d)
X/Y ∗

ω1−pd
Xd

ϕ
(d)
X/Y−−−→ OX

Y d
,

and

ϕ
(d(e+1))
(X/Y,∆)

:=
(
ϕ
(de)
(X/Y,∆)

)
Y d(e+1)

◦ F (de)

X
Y d/Y d

∗

(
ϕ
(d)

(Xde,∆)/Y de ⊗
(
L(de)

(X/Y,∆)

)
Y d(e+1)

)
: F

(d(e+1))
X/Y ∗

L(d(e+1))
(X/Y,∆) → OX

Y d(e+1)
.

Let f : X → Y be a morphism between k-schemes of pure dimension. Assume
that X satisfies S2 and G1, Y is Gorenstein, and f or FY is flat. Let E be an
effective AC divisor on X, and a, d be as above. Let ι : U ↪→ X be a Gorenstein
open subset of X such that codimX \U ≥ 2 and that E|U is Cartier. Then for each
e > 0 we define

L(de)
(X/Y,∆) := ιY de∗L

(de)
(U/Y,∆|U ), and

ϕ
(de)
(X/Y,∆) := ιY de∗(ϕ

(de)
(U/Y,∆|U )) : F

(de)
X/Y ∗

L(de)
(X/Y,∆) → OX

Y de
.

The following lemma is used in the proof of Theorem 5.2.5, which is one of the main
theorems of Chapter 5.

Lemma 1.3.3. Let f : X → Y be a projective morphism from a pure dimensional
k-scheme X satisfying S2 and G1 to a variety Y . Let V ⊆ Y be a regular open
subset such that fV : XV → V is flat and U ⊆ X be a Gorenstein open subset. Let
∆ = E/a be an effective Z(p)-AC divisor on X whose support does not contain any
component of any fiber over V . Assume that aKXV

+EV is a Cartier divisor on XV

and that codimXy
(Xy \ Uy) ≥ 2 for every y ∈ V . Then the following holds.

(1) [94, Corollary 3.31] The set V0 := {y ∈ V |(Xy,∆|Uy
) is F -pure} is an open

subset of V . Here y := Spec k(y) and ∆|Uy
is the Z(p)-AC divisor on Xy obtained

as the unique extension of the Z(p)-Cartier divisor ∆|Uy
on Uy.

(2) Assume that V0 is non-empty. Let A be a Cartier divisor on X such that AV0 is
fV0-ample. Then there exists an m0 > 0 such that

fY e∗(ϕ
(e)
(X/Y,∆) ⊗OY e(mAY e +NY e)) :

f (e)
∗OXe((1− pe)(KXe/Y e +∆) + pe(mA+N)) → fY e∗OXY e (mAY e +NY e)

is surjective over V0 for each m ≥ m0, for every Cartier divisor N on X whose
restriction NV0 to XV0 is fV0-nef and for every e > 0 with a|(pe − 1).



11

Proof. Replacing f : X → Y by fV : XV → V , we may assume that Y is regular
and f is flat. Take an integer e > 0 with a|(pe− 1) and a point y ∈ V . Then by [94,
Lemma 2.18] we get

ϕ
(e)
(X/Y,∆)|Uy

= ϕ
(e)
(U/Y,∆|U )|Uy

∼= ϕ
(e)

(Uy/y,∆|Uy)
: F

(e)
Uy/y∗

L(e)
(Uy/y,∆|Uy

) → OUye
. (1.3.3.1)

Let ιy : Uy → Xy be the open immersion, and E|Uy
be the unique extension of E|Uy

to Xy. Since L(e)
(X/Y,∆) is invertible by the assumption, the natural morphism

L(e)
(X/Y,∆)|Xy

→ ιy∗L
(e)
(Uy/y,∆|Uy

)

(
=: L(e)

(Xy/y,∆|Uy
)

)
is an isomorphism. Hence, extending the morphism (1.3.3.1) to Xy, we obtain that

ϕ
(e)
(X/Y,∆)|Xy

∼= ϕ
(e)

(Xy/y,∆|Uy)
: F

(e)
Xy/y∗

L(e)

(Xy/y,∆|Uy
)
→ OXye

. (1.3.3.2)

Then one can show (1) by an argument similar to the proof of [94, Corollary 3.31].
We prove (2). Replacing Y by V0, we may assume that V0 = V = Y . Then by

(1.3.3.2), we have that ϕ
(e)
(X/Y,∆)|Xy

is surjective for each e > 0 with a|(pe − 1) and

every y ∈ Y , which implies that ϕ
(e)
(X/Y,∆) is surjective for each e > 0 with a|(pe− 1).

Let d > 0 be the minimum integer such that a|(pd − 1). Note that we have d|e for
every integer e > 0 with a|(pe − 1). Applying Keeler’s relative Fujita vanishing [71,

Theorem 1.5] to the kernel of ϕ
(d)
(X/Y,∆), we obtain an integer m0 ≫ 0 such that

fY d∗

(
ϕ
(d)
(X/Y,∆) ⊗ (OX(mA+N))Y d

)
(1.3.3.3)

is surjective for each m ≥ m0 and every f -nef Cartier divisor N on X. Replacing m0

by a larger integer if necessary, we may assume that am0A− (KX/Y +∆) is f -nef.
We fix an integer m ≥ m0 and an f -nef divisor N on X. We show that

ψ(de) := fY de∗

(
ϕ
(de)
(X/Y,∆) ⊗ (OX(mA+N))Y de

)
is surjective for every integer e > 0 by induction on e. We have already seen that
ψ(d) is surjective. We assume that ψ(de) is surjective. By the definition of ϕ

(d(e+1))
(X/Y,∆),

we have

ψ(d(e+1)) =fY d(e+1)∗

(
ϕ
(d(e+1))
(X/Y,∆) ⊗ (OX(mA+N))Y d(e+1)

)
∼=F d

Y

∗
(
fY de∗

(
ϕ
(de)
(X/Y,∆) ⊗ (OX(mA+N))Y de

))
◦ f (de)

Y d(e+1)∗

(
ϕ
(d)

(Xde/Y de,∆de)
⊗
(
L(de)

(X/Y,∆)(p
de(mA+N))

)
Y d(e+1)

)
∼=F d

Y

∗
(ψ(de)) ◦ f (de)

Y d(e+1)∗

(
ϕ
(d)

(Xde/Y de,∆de)
⊗
(
L(de)

(X/Y,∆)(p
de(mA+N))

)
Y d(e+1)

)
.
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Since ψ(de) is surjective, F d
Y
∗
(ψ(de)) is also surjective. We need to show that the

morphism

f
(de)

Y d(e+1)∗

(
ϕ
(d)

(Xde/Y de,∆de)
⊗
(
L(de)

(X/Y,∆)(p
de(mA+N))

)
Y d(e+1)

)
(1.3.3.4)

is surjective. Here we recall that f (de) : Xde → Y de is nothing but f : X → Y . Let
Nde,m denote the Cartier divisor

(pde − 1)a−1(amA− (KXd/Y d +∆)) + pdeN

=(pde − 1)(m−m0)A+ (pde − 1)a−1(am0A− (KXd/Y d +∆)) + pdeN

on Xd. Since am0A − (KX/Y + ∆) is f -nef, Nde,m is f (d)-nef. Now we can rewrite
(1.3.3.4) as

fY d∗

(
ϕ
(d)
(X/Y,∆) ⊗

(
OX((1− pde)(KX/Y +∆) + pde(mA+N))

)
Y d

)
=fY d∗

(
ϕ
(d)
(X/Y,∆) ⊗

(
OX(mA+ (pde − 1)(mA− (KX/Y +∆)) + pdeN)

)
Y d

)
=fY d∗

(
ϕ
(d)
(X/Y,∆) ⊗ (OX(mA+Nde,m))Y d

)
.

Hence the required surjectivity follows from the surjectivity of (1.3.3.3).

1.4 Vector bundles on elliptic curves

In this section, we recall several facts on vector bundles on elliptic curves due to
Atiyah and Oda. They are used in Chapters 6 and 7. Throughout this section, let
C denote an elliptic curve over an algebraically closed field k of characteristic p > 0.

Theorem 1.4.1 ([4, 89]). Let EC(r, d) be the set of isomorphism classes of inde-
composable vector bundles of rank r and of degree d. Then the following holds:

(1) ([4, Theorem 10]) For each r > 0, there exists a unique element Er,0 of EC(r, 0)
such that H0(C, Er,0) ̸= 0. Moreover, for every E ∈ EC(r, 0) there exists an
L ∈ Pic0(C) = EC(1, 0) such that E ∼= Er,0 ⊗ L.

(2) For every E ∈ EC(r, d),

(
dimH0(C, E), dimH1(C, E)

)
=


(d, 0) when d > 0

(0,−d) when d < 0

(0, 0) when d = 0 and E ≇ Er,0
(1, 1) when E ∼= Er,0.

(3) Let E ∈ EC(r, d). If d > r (resp. d > 2r) then E is globally generated (resp.
ample).
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(4) ([89, Corollary 2.9]) When C is ordinary, F ∗
CEr,0 ∼= Er,0. When C is supersin-

gular, F ∗
CEr,0 ∼=

⊕
1≤i≤min{r,p} E⌊(r−i)/p⌋+1,0.

(5) ([89, Theorem 2.16]) Let r > 0 and d be coprime integers and E be an element
of EC(rh, dh) for some h > 0. When C is ordinary, FC

∗E is indecomposable.
When C is supersingular, FC

∗E is indecomposable if and only if either h = 1,
or h ̸= 1 and p ∤ r.

(6) ([89, Proposition 2.1]) Let π : C ′ → C be an isogeny of degree r and L be a
line bundle of degree d on C ′. If r and d are coprime, then π∗L ∈ EC(r, d).

In characteristic zero, the pullback of Er,0 by a finite morphism from an elliptic
curve is again indecomposable. In contrast, in positive characteristic, the lemma
below shows that the pullback of Er,0 can be a trivial vector bundle.

Lemma 1.4.2. For each integer r ≥ 2, there exists a finite morphism πr : Cr → C
from an elliptic curve Cr such that πr

∗Er,0 ∼= OCr

⊕r and πr∗OCr
∼= Epr−1,0.

Proof. Recall that E1,0 ∼= OC and that Er+1,0 is obtained as a non-trivial extension
ξr : 0 → OC → Er+1,0 → Er,0 → 0. We first define π2 := πC,2 : C2 → C. If C is
ordinary, or equivalently, if FC

∗ : H1(C,OC) → H1(C,OC) is an isomorphism, then
we may assume that FC

∗ξ1 = ξ1. Let πC,2 : C2 → C denote the étale cover defined
by ξ1. Then we have πC,2

∗ξ1 = 0. If C is supersingular, or equivalently FC
∗ξ1 = 0,

then we set πC,2 := FC . By the choice of πC,2, we have πC,2
∗E2,0 ∼= OC2

⊕2. For
each r ≥ 2, we define inductively πr+1 := πC,r+1 := πC,r ◦ πCr,2. Since πC,r

∗ξr ∈
H1(Cr, πC,r

∗ECr,0)
∼= H1(Cr,OCr

⊕r), we have π∗
C,r+1ξr = 0.

Next we prove the second statement. It is enough to show π∗Epe,0 ∼= Epe+1,0 for
each e ≥ 0, where π := π2 : C2 → C. Set F := F (e) := π∗Epe,0. Since Epe,0∗ ∼= Epe,0,
we have F∗ ∼= F by the Grothendieck duality. Let F1, . . . ,Fl be indecomposable
vector bundles such that F ∼=

⊕
1≤i≤l Fi and ri be the rank of Fi. We may assume

that H0(C,F1) ∼= k. We show H1(C,F1) ∼= k by contradiction. If H1(C,F1) = 0,
then degF1 = 1, and so deg(F1 ⊗ L) = 1 for every L ∈ Pic0(C). Then

0 ̸= H0(C,F1 ⊗ L) ⊆ H0(C,F ⊗ L) ∼= H0(C2, Epe,0 ⊗ π∗L).

By Theorem 1.4.1 (1), we get π∗L ∼= OC2 , which is a contradiction. SinceH i(C,F) ∼=
H i(C,F1) ∼= k for i = 0, 1, we have degF1 = · · · = degFl = 0.

In order to prove l = 1, we show that Pic0(C)
π∗
−→ Pic0(C2) is injective. Take

an arbitrary L ∈ Pic0(C) so that π∗L ∼= OC2 . Since F ⊗ L ∼= F by the projection
formula, the group {Lm|m ∈ Z} acts on {F1, . . . ,Fl}. In addition, taking the
determinant of F ⊗ L ∼= F , we get Lp ∼= OC . Note that we have deg π = p. Since
OC → F1 does not split, we see that r1 > 1. Set e = 0. Then F = F (0) =
π∗OC2 . Considering ranks, we see that F1 ⊗ Lm ∼= F1 for each m ∈ Z. Then by
Theorem 1.4.1 (1) again, we have L ∼= OC .

We show l = 1 for every e ≥ 0. Now we have Li ∈ Pic0(C) with H0(C,Fi⊗Li) ∼=
k for each 1 ≤ i ≤ l. By the projection formula, we obtain H0(C2, Epe,0 ⊗ π∗Li) ∼=
H0(C,F ⊗ Li) ∼= k, and thus π∗Li ∼= OC2 and Li ≇ Lj for i ̸= j. Hence by the
above argument, we see that l = 1.
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Proposition 1.4.3. Let E be a vector bundle on an elliptic curve C. Then there
exists a finite morphism π : C ′ → C from an elliptic curve C ′ such that π∗E is a
direct sum of line bundles.

Proof. We may assume that for every finite morphism φ : B → C from an elliptic
curve B, φ∗E is indecomposable. Set d := deg E and r := rankE . We show that
r = 1. Let Q ∈ C be a closed point. Replacing E by ((rC)

∗E)(−dQ), we may
assume that d = 0. Here rC : C → C is the morphism given by multiplication by
r. Then by Theorem 1.4.1 (1) and Lemma 1.4.2 there exists a finite morphism from
an elliptic curve to C such that the pullback of E is a direct sum of line bundles.
Hence r = 1.



Chapter 2

Stable global sections under traces
of Frobenius morphisms

In this chapter, we recall the notion of the Frobenius stable canonical rings, and
study its fundamental properties. As we see in Chapter 4, the Frobenius stable
canonical rings of the geometric generic fibers are important from the view point
of weak positivity theorems. In Section 2.1, after recalling definitions and basic
properties, we study the Frobenius stable canonical rings of varieties with ample
canonical bundles. We particularly consider the case of Gorenstein projective curves
(Corollary 2.1.14). In Section 2.2, we discuss the case of varieties with semi-ample
canonical bundles in any dimension (Corollary 2.2.3). To this end, we provide a
canonical bundle formula (Theorem 2.2.2). Using this formula, we also study the
Frobenius stable canonical rings of surfaces of general type (Corollary 2.2.8).

Throughout this chapter, we work over an algebraically closed field k of charac-
teristic p > 0.

2.1 Frobenius stable canonical rings

We fix the following notation.

Notation 2.1.1. Let k be an algebraically closed field of characteristic p > 0. Let
X be a k-scheme of pure dimension satisfying S2 and G1, and let ∆ = E/a be an
effective Z(p)-AC divisor. Set d > 0 be the smallest integer satisfying a|(pd − 1).

Definition 2.1.2 ([99, §3]). In the situation of Notation 2.1.1, let M be a reflexive
sheaf on X of rank one such that invertible in codimension one. Then we define
S0(X,∆,M) as∩

e>0

im

(
H0(X, ((F de

X ∗L
(de)
(X,∆))⊗M)∗∗)

H0(X,(ϕ
(de)
(X,∆)

⊗M)∗∗)

−−−−−−−−−−−−→ H0(X,M)

)
,

where ϕ
(de)
(X,∆) is the morphism defined in Subsection 1.3.1, and ( )∗∗ :=

Hom(Hom( ,OX),OX) is the functor of the double dual. For any AC divisor D
on X, we denote S0(X,∆,OX(D)) by S0(X,∆, D). Write S0(X,D) := S0(X, 0, D).

15
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Remark 2.1.3. The above definition does not depend on the choice of E and a
satisfying ∆ = E/a. Indeed, if E ′ and a′ satisfy ∆ = E ′/a′, then one can check that

ϕ
(eg)
(X,E/a)

∼= ϕ
(eg)
(X,E′/a′) for every g > 0 divisible enough.

Example 2.1.4. In the situation of Notation 2.1.1, it is easily seen that the following
are equivalent:

(1) (X,∆) is globally F -split, that is to say, there exists an e > 0 divisible enough
such that the composite of natural morphisms OX → F e

X∗OX and F e
X∗OX →

F e
X∗OX((p

e − 1)∆) splits as a homomorphism of OX-modules;

(2) S0(X,∆,OX) = H0(X,OX);

(3) S0(X,∆, D) = H0(X,D) for every AC divisor D on X.

Definition 2.1.5 ([52, Section 4.1] or [93, Exercise 4.13]). In the situation of No-
tation 2.1.1, let M be a reflexive sheaf on X of rank one such that invertible in
codimension one. Then we define

RS(X,∆,M) :=
⊕
n≥0

S0(X,∆,M[n]) ⊆ R(X,M) :=
⊕
n≥0

H0(X,M[n]),

where M[n] := (M⊗n)∗∗. For any AC divisor D, we denote R(X,OX(D))
and RS(X,∆,OX(D)) respectively by R(X,D) and RS(X,∆, D). We call
RS(X,∆, a(KX+∆)) the Frobenius stable canonical ring, whereKX is an AC divisor
such that OX(KX) is isomorphic to the dualizing sheaf ωX of X.
When D is a Q-Weil divisor on a normal variety X, we define

RS(X,∆, D) :=
⊕
n≥0

S0(X,∆, ⌊nD⌋) ⊆ R(X,D) :=
⊕
n≥0

H0(X, ⌊nD⌋).

Lemma 2.1.6 ([52, Lemma 4.1.1]). RS(X,∆, D) is an ideal of R(X,D).

Proof. This follows from an argument similar to the proof of [52, Lemma 4.1.1].

Notation 2.1.7. We denote by R/RS(X,∆, D) the quotient ring of R(X,D) mod-
ulo RS(X,∆, D).

We recall that assumption (ii) of the main theorem (Theorem 4.1.1): there exists
an m0 > 0 such that S0(Xη,∆η, am(KXη

+∆η)) = H0(Xη, am(KXη
+∆η)) for every

m ≥ m0. This is equivalent to the condition that there exists an integer m0 > 0 such
that the degree m part of R/RS(Xη,∆η, a(KXη

+ ∆η)) is zero for every m ≥ m0.
Note that the existence of such m0 is equivalent to the finiteness of the dimension
of k-vector space R/RS(Xη,∆η, a(KXη

+∆η))

Definition 2.1.8. In the situation of Notation 2.1.1, assume that each connected
component of X is integral. An AC divisor D is said to be finitely generated if
R(X,D) is a finitely generated k-algebra. A Z(p)-AC (resp. Q-AC) divisor Γ is said
to be finitely generated if there exists a finitely generated AC divisor D such that
Γ = D ⊗ λ for some 0 < λ ∈ Z(p) (resp. Q).
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Lemma 2.1.9. Let R =
⊕

m≥0Rm be a graded ring. Assume that R is a domain
and R0 is a field.

(1) If the n-th Veronese subring R(n) :=
⊕

m≥0Rmn is a finitely generated R0-
algebra for some n > 0, then so is R.

(2) Let a ⊆ R be a nonzero homogeneous ideal, and suppose that R is a finitely
generated R0-algebra. If R(n)/a(n) is a finite dimensional R0-vector space for
some n > 0, then so is R/a, where a(n) :=

⊕
m≥0 amn.

Proof. For the proof of (1) we refer the proof of [51, Lemma 5.68]. For (2), let l > 0
be an integer divisible enough. Then there exists n0 > 0 such that al+n ⊆ Rl+n =
Rn ·Rl = Rn · al ⊆ al+n for each n ≥ n0, and hence am = Rm for each m≫ 0, which
is our claim.

As mentioned after Notation 2.1.7, assumption (ii) of the main theorem (The-
orem 4.1.1) satisfied if and only if R/RS(Xη,∆η, a(KXη

+ ∆η)) is finite dimen-
sional as k-vector space. This condition is equivalent to the condition that
R/RS(Xη,∆η, an(KXη

+∆η)) is finite dimensional for an integer n > 0 by (2) of the
above lemma.

Definition 2.1.10. In the situation of Notation 2.1.1, we denote the kernel of
ϕ
(de)
(X,∆) : F de

X ∗L
(de)
(X,∆) → OX by Bde(X,∆) for every integer e > 0. When ∆ = 0, we

denote Be(X,0) by BeX .
Example 2.1.11. In the situation of Notation 2.1.1, assume that X is projective, and
(pc − 1)(KX + ∆) is Cartier for some c > 0 divisible by d. Let H be an ample
Cartier divisor. We show that R/RS(X,∆, H) is finite dimensional if and only if
(X,∆) is F -pure. By the Fujita vanishing theorem, there is an m > 0 such that
H1(X,Bc(X,∆)(mH +N)) = 0 for every nef Cartier divisor N . We may assume that

mH − (KX + ∆) is nef. If (X,∆) is F -pure, or equivalently if ϕ
(c)
(X,∆) is surjective,

then so is the morphism H0(X,ϕ
(c)
(X,∆) ⊗ OX(mH + N)). Furthermore we see that

H0(X,ϕ
(ce)
(X,∆) ⊗ OX(mH + N)) is also surjective for each e > 0, because of the

definition of ϕ
(ce)
(X,∆) and the following isomorphisms(

F ce
X ∗(ϕ

(c)
(X,∆) ⊗ L(ce)

(X,∆))
)
⊗OX(mH +N)

∼=F ce
X ∗

(
ϕ
(c)
(X,∆) ⊗OX(mH + (pce − 1)(mH − (KX +∆)) + pceN)

)
.

This implies that S0(X,∆,mH+N) = H0(X,mH+N) and that R/RS(X,∆, H) is
finite dimensional. Conversely it is clear that if R/RS(X,∆, H) is finite dimensional,

then ϕ
(c)
(X,∆) is surjective, or equivalently, (X,∆) is F -pure.

The above example shows that if (Xη,∆η) is F -pure and KXη
+∆η is an ample

Z(p)-Cartier divisor, then assumption (ii) (and (i)) of the main theorem (Theo-
rem 4.1.1) holds. We next consider the value of such m0 in the case when Xη is a
curve. Corollary 2.1.14 provides a value of such m0 effectively when KXη

+ ∆η is
ample.



18

Lemma 2.1.12. Let X be a Gorenstein projective curve, and let H be an ample
Cartier divisor such that H −KX is nef. Then for each integer e,m ≥ 1,

H1(X,BeX ⊗OX(KX +mH)) = 0.

Moreover if X is F -pure, then

S0(X,KX +mH) = H0(X,KX +mH).

Proof. Clearly the second statement follows from the first and the long exact se-
quence of cohomology induced from the surjective morphism ϕ

(e)
(X,∆)⊗OX(KX+mH).

We prove the first statement. Let ν : C → X be the normalization. Then a com-
mutative diagram of varieties

C
F e
C //

ν
��

C

ν
��

X
F e
X

// X

induces a commutative diagram of OX-modules:

0 // ν∗BeC(KC) //

α

��

ν∗F
e
C∗ωC

ν∗TrFe
C //

F e
X∗Trν

��

ν∗ωC //

Trν

��

0

0 // BeX(KX) // F e
X∗ωX TrFe

X

// ωX

Since each vertical morphism is an isomorphism on some dense open subset of X,
the kernel and the cokernel of α are torsion OX-modules. Furthermore since BeC has
no torsion, we see that α is injective. For each m > 0, the following exact sequence

0 → (ν∗BeC(KC))(mH)
α⊗OX(mH)−−−−−−−→ BeX(KX +mH) → coker(α) → 0,

induces a surjection

H1(C,BeC(KC +mν∗H)) ∼= H1(X, (ν∗BeC(KC))(mH)) ↠ H1(X,BeX(KX +mH)).

Moreover, since ν∗H is ample and

ν∗H −KC = ν∗(H −KX) + ν∗KX −KC ∼ ν∗(H −KX) + E

is nef, where E is effective divisor on C defined by the conductor ideal, we may
assume that X is smooth. Then we have H1(X,mpH) = H0(X,KX −mpH) = 0
for each m ≥ 1 by the Serre duality. For each m ≥ 1 there exists an exact sequence

0 → OX(mH) → FX∗OX(mpH) → B1
X(KX +mH) → 0

induced by Cartier operator, which shows that H1(X,B1
X(KX + mH)) = 0. This

implies H0(X,ϕ
(1)
X ⊗OX(KX)) is surjective, and thus H0(X,ϕ

(e)
X ⊗OX(KX +mH))
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is also surjective for every e,m ≥ 1 because of the definition of ϕ
(e)
X . Hence the exact

sequence

0 → BeX(KX +mH) → F e
X∗OX(KX +mpeH)

ϕ
(e)
X ⊗OX(KX+mH)

−−−−−−−−−−−→ OX(KX +mH) → 0

induces the following:

H1(X,BeX(KX +mH)) ↪→H1(X,OX(KX +mpeH))
∼= H0(X,−mpeH) = 0.

Proposition 2.1.13. In the situation of Notation 2.1.1, let X be a projective curve,
let KX+∆ is nef and let H be a Cartier divisor. Assume either that (i) H+(a−1)KX

is ample and H + (a− 2)KX is nef, or that (ii) X ∼= P1 and H is ample. Then for
each e > 0,

H1(X,Bde(X,∆) ⊗OX(a(KX +∆) +H)) = 0.

Moreover if (X,∆) is F -pure, then

S0(X,∆, a(KX +∆) +H) = H0(X, a(KX +∆) +H).

Proof. Clearly the second statement follows from the first and the long exact se-
quence of cohomology induced from the surjective morphism ϕ

(e)
(X,∆)⊗OX(KX+mH).

We prove the first statement. Let E ′ be an effective Cartier divisor satisfying
OX(E

′) ⊆ OX(E) and ∆′ := E ′/a. For each e > 0 there is a commutative dia-
gram

F de
X ∗L

(de)
(X,∆)(p

de(a(KX +∆) +H))
ϕ
(de)
(X,∆)

⊗OX(a(KX+∆)+H)
// OX(a(KX +∆) +H)

F de
X ∗L

(de)
(X,∆)(p

de(a(KX +∆′) +H))

ϕ
(de)

(X,∆′)⊗OX(a(KX+∆′)+H)
//

?�

OO

OX(a(KX +∆′) +H),
?�

OO

where the vertical morphisms are natural inclusion. This induces the injective mor-
phism

Bde(X,∆′)(a(KX +∆′) +H) → Bde(X,∆)(a(KX +∆) +H)

whose cokernel is a torsion OX-module. Hence it suffices to prove that
H1(X,Bde(X,∆)(a(KX + ∆′) + H)) = 0. When (i) holds, we set E ′ = 0. By the

previous lemma we have H1(X,BdeX (aKX + H)) = 0. When (ii) holds, we may as-
sume a(KX + ∆′) ∼ 0. Then it is easily seen that dimH1(X,Bde(X,∆′)) ≤ 1. Since

every vector bundle on P1 is isomorphic to a direct sum of line bundles, we have
H1(X,Bde(X,∆′)(H)) = 0. This completes the proof.

The following corollary will be used to prove weak positivity theorem for fibra-
tions of relative dimension one (Corollary 4.2.4).
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Corollary 2.1.14. In the situation of Notation 2.1.1, assume that X is a projective
curve and (X,∆) is F -pure. If KX + ∆ is ample (resp. KX is ample and a ≥ 2),
then for each m ≥ 2 (resp. m ≥ 1),

S0(X,∆, am(KX +∆)) = H0(X, am(KX +∆)).

Proof. We note that a Gorenstein curve has nef dualizing sheaf unless it is isomorphic
to P1. Hence the statement follows from the above proposition.

Remark 2.1.15. F -pure singularities of curves are completely classified [48]. For
example, nodes are F -pure singularities, but cusps are not.

2.2 A canonical bundle formula

We next study the Frobenius stable canonical rings of varieties with semi-ample
canonical bundles in any dimension. To this end, we establish a canonical bundle
formula (Theorem 2.2.2) for algebraic fiber spaces with globally F -split geometric
generic fibers. As a corollary, we obtain a criterion of the finiteness of the dimension
of R/RS in terms of singularities of the canonical models (Corollary 2.2.3).

Throughout this section, we fix an algebraically closed field k of characteristic
p > 0.

In order to formulate the problem, we start with an observation of the Iitaka
fibrations.

Observation 2.2.1. Let X be a normal projective variety, and let ∆ be an effective
Z(p)-Weil divisor on X such that KX +∆ is a semi-ample Q-Cartier divisor. Let

f : X → Y := Proj R(X,KX +∆)

be the Iitaka fibration. Then there exists an ample Q-Cartier divisor H on Y
satisfying f ∗H ∼Q KX + ∆. Let Y0 ⊆ Y be an open subset such that f0 := f |X0 :
X0 → Y0 is flat, where X0 := f−1(Y0).
(I) Assume that RS(X,∆, KX + ∆) ̸= 0. Then there exists an integer m > 0 such
that m∆ is integral and S0(X,∆,m(KX +∆)) ̸= 0. This implies that

S0(X,∆, ((m− 1)pe
′
+ 1)(KX +∆)) ̸= 0

for some e′ > 0 divisible enough. Since p ∤ (m− 1)pe
′
+1, there exists an e > 0 such

that S0(X,OX((p
e − 1)(KX + ∆))) ̸= 0. We set R′ := (1 − pe)(KX + ∆). Let η

be the generic point of Y . By the assumption, OX(−R′)|Xη is a torsion line bundle
on Xη with nonzero global sections, and thus it is trivial. Hence OX(R

′)|Xη is also
trivial, and f∗OX(R

′) is a torsion free sheaf on Y of rank one. Then there exists an
effective Weil divisor B supported on X \X0 such that f∗OX(R

′ +B) ∼= OY (S) for
some Weil divisor S on Y . We set R := R′ +B = (1− pe)(KX +∆) +B. Then

R = KX +∆+B − pe(KX +∆) ∼Q KX +∆+B − pef ∗H.
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Replacing e, we may assume that peH is Z(p)-Cartier, and thus there exists an integer
a > 0 not divisible by p such that a∆ is integral and H ′ := apeH is Cartier. Then
we have

aR ∼ a(KX +∆) + aB − f ∗H ′.

(II) In the situation of (I), after replacing e by its multiple, we assume that (pe −
1)(KX +∆) is base point free. Then we may take (pe−1)H as Cartier. In this case,
we have OX(R

′) ∼= f ∗OY ((1 − pe)H), and thus we may choose B = 0, R = R′ and
S = (1− pe)H by the projection formula. In particular we have R ∼ f ∗S.

In a more general situation than the above, we prove the following theorem which
is a kind of canonical bundle formula (see [25, Theorem B] for a related result).

Theorem 2.2.2. Let f : X → Y be an algebraic fiber space between normal vari-
eties, let ∆ be an effective Q-Weil divisor on X such that a∆ is integral for some
integer a > 0 not divisible by p, and let Y0 be a smooth open subset of Y such that
codimY \ Y0 ≥ 2 and f0 := f |X0 : X0 → Y0 is flat, where X0 := f−1(Y0). Further
assume that the following conditions:

(i) The pair (Xη,∆η) is globally F -split, where η is geometric generic point of Y .

(ii) There exists a Weil divisor R on X, such that f∗OX(R) ∼= OY (S) for some
Weil divisor S on Y and aR ∼ a(KX +∆)+B− f ∗C for some effective Weil
divisor B supported on X \X0 and for some Cartier divisor C on Y .

Then, there exists an effective Q-Weil divisor ∆Y on Y , which satisfies the following
conditions:

(1) For some integer a′ > 0 divisible by a but not by p, a′∆Y is integral, and

OY (a
′(KY +∆Y − S)) ∼= OY (a

′a−1C) ∼= f∗OX(a
′(KX +∆+ a−1B −R)).

(2) For every effective Weil divisor B′ supported on X \X0 and for every Cartier
divisor D on Y ,

S0(X,∆, B′ + f ∗D +R) ∼= S0(Y,∆Y , D + S).

(3) If f is a birational morphism, then ∆Y = f∗∆.

(4) Suppose that X0 is Gorenstein and R|X0 is Cartier. Let Γ be an effective
Cartier divisor on X0 defined by the image of the natural morphism

OX0(−R|X0)⊗ f0
∗(f0∗OX0(R|X0)) → OX0 ,

and let y be a point of Y0. Then the following conditions are equivalent:

(a) Supp ∆ does not contain any irreducible component of f−1(y), and
(Xy,∆y) is globally F -split, where y is the algebraic closure of y;
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(b) y is not contained in f(Supp Γ) ∪ Supp ∆Y .

Note that if R is linearly equivalent to the pullback of a Cartier divisor on Y ,
then replacing C, we may assume that R = 0, S = 0 and Γ = 0.

For varieties with semi-ample canonical bundles, Corollary 2.2.3 provides a cri-
terion of the finiteness of the dimension of R/RS in terms of the singularity of
the canonical models. As explained after Notation 2.1.7, the finiteness of R/RS is
equivalent to assumption (ii) of the main theorem (Theorems 4.1.1 or 4.2.1). We re-
mark that for such varieties, assumption (i) of the main theorem, that is the finitely
generation of canonical rings, is always satisfied.

Corollary 2.2.3. In the situation of Observation 2.2.1 (I), the following holds:

(1) The pair (Xη,∆η) is globally F -split, where η is the geometric generic point of
Y . In particular, f is separable.

(2) Let ∆Y be as in Theorem 2.2.2. In the situation of Observation 2.2.1 (II) (i.e.
l(KX+∆) is Cartier for an integer l > 0 not divisible by p), R/RS(X,∆, KX+
∆) is a finite dimensional k-vector space if and only if (Y,∆Y ) is F -pure.

Before the proof of Theorem 2.2.2 and Corollary 2.2.3, we observe the morphisms
obtained by pushing forward of the trace maps of the relative Frobenius morphisms.

Observation 2.2.4. Let f : X → Y be a projective morphism from a Gorenstein
variety X to a smooth variety Y . Let ∆ = E/a be an effective Z(p)-AC divisor on
X whose support does not contain any irreducible component of any fiber of f . Let
d be the smallest positive integer satisfying a|(pd − 1). Let e ≥ 0 be an integer.
(I) For every y ∈ Y , we have the following diagram:

(Xy)
de Xde

yde
//

F
(de)
Xy/y

��

Xde

F
(de)
X/Y

��
f (de)

��

Xyde
//

��

XY de

f
Y de

��
yde // Y de

Let R be a Cartier divisor on X. We denote by θ(de) the morphism

fY de∗(ϕ
(de)
(X,∆)/Y ⊗OX(R)Y de) : f (de)

∗L
(de)
(X,∆)/Y (p

deR) → fY de∗OX
Y de

(R)Y de .

Here we recall that L(de)
(X,∆)/Y := OXde((1− pde)(KXde/Y de +∆)).

(II) Let Y0 ⊆ Y be an open subset such that f0 := f |X0 : X0 → Y0 is flat, where
X0 := f−1(Y0). Assume that y ∈ Y0 and that E|Y0 is Cartier. Since f0 is a Gorenstein

morphism, Xy is Gorenstein. Set ∆y = E|Xy
/a. Then L(de)

(X,∆)/Y |(Xy)de
∼= L(de)

(Xy/y,∆y)
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and we have the following diagram of k(yde)-vector spaces for every e > 0:

H0((Xy)
de,L(de)

(Xy/y,∆y)
⊗OX(p

deR)|(Xy)de)

H0(X
yde

,ϕ
(de)
(Xy/y,∆y)

⊗OX(pdeR)|X
yde

)

��

(
f (de)

∗L
(de)
(X,∆)/Y (p

deR)
)
⊗ k(yde)oo

θ(de)⊗k(yde)

��
H0(Xyde ,OX(R)|X

yde
) (fY de∗OX(R)Y de)⊗ k(yde)oo

(III) Let Y1 ⊆ Y0 be an open subset such that dimH0(Xy,OX(R)|Xy) is a constant
function on Y1 with value h. If y ∈ Y1, then the horizontal morphisms in the above
diagram are isomorphisms by [58, Corllary12.9]. Hence for every e > 0 we have

dimk(y) im(H0(Xy, ϕ
(de)
(Xy ,∆y)

⊗OX(R)|Xy
))

=dimk(yde) im(H0(Xyde , ϕ
(de)
(Xy/y,∆y)

⊗OX(R)|X
yde

))

=dimk(yde) im(θ(de) ⊗ k(yde))

=h− dimk(yde) coker
(
θ(de) ⊗ k(yde)

)
=h− dimk(yde)

(
coker(θ(de))

)
⊗ k(yde).

Here, the last equality follows from the right exactness of the tensor functor.
(IV) Assume that (pd − 1)(KX/Y +∆−R)|X1 ∼ f ∗

1C for some Cartier divisor C on
Y1, where X1 := f−1(Y1) and f1 := f |X1 : X1 → Y1. Then

L(de)
(Xy ,∆y)

⊗OXde(pdeR)|(Xy)de
∼= OXde(R)|(Xy)de

for every y ∈ Y1. Thus we can regard H0(Xy, ϕ
(de)
(Xy ,∆y)

⊗ OX(R)|Xy
) as the e-th

iteration of the (p−d-linear) morphism

τ := H0(Xy, ϕ
(d)
(Xy ,∆y)

⊗OX(R)|Xy
) :

H0(Xy,OX(R)|Xy
) → H0(Xy,OX(R)|Xy

).

If e ≥ h, then im(τ e) = im(τh), and thus

im(H0(Xy, ϕ
(de)
(Xy ,∆y)

⊗OX(R)|Xy
)) = S0(Xy,∆y,OX(R)|Xy

).

Hence by (3), we see that

dimk(y) S
0(Xy,∆y,OX(R)|Xy

) = h− dimk(yde)

(
coker(θ(de))

)
⊗ k(yde).

In particular, since the function dimk(yde)(coker(θ
(de))) ⊗ k(yde) on Y de is upper

semicontinuous, the function dimk(y) S
0(Xy,∆y,OX(R)|Xy

) on Y1 is lower semicon-
tinuous.
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Proof of Theorem 2.2.2. Let d > 0 be an integer such that a|(pd − 1).

Step 1. We define ∆Y and we show that this is independent of the choice of d. We
first note that, for each e ≥ 0 there exist isomorphisms

f∗OX((1− pde)(KX +∆) + pdeR)

∼=f∗OX((1− pde)(KX +∆+ a−1B −R) + (pde − 1)a−1B +R)

∼=OY ((1− pde)a−1C)⊗ f∗OX((p
de − 1)a−1B +R)

∼=OY ((1− pde)a−1C)⊗ f∗OX(R)

∼=OY ((1− pde)a−1C + S).

Since Y is normal, to define ∆Y we may assume Y = Y0 and X is smooth. Then for
each e > 0 we have

f (de)
∗ L(de)

(X,∆)/Y (p
deR) ∼= OY de((1− pde)(a−1C −KY de) + S) and

fY de∗OXde
Y
(RY de) ∼= F de

Y

∗
f∗OX(R) ∼= OY de(pdeS),

thus

θ(de) := fY de∗ϕ
(de)
(X,∆)/Y ⊗OX

Y de
(RY de)

: f (de)
∗ L(de)

(X,∆)/Y (p
deR) → fY de∗OX

Y de
(RY de)

is a homomorphism between line bundles. By the assumption of global F -splitting of
(Xη,∆η), we see that the left vertical morphism of the diagram in Observation 2.2.4
(II) (for y = η) is surjective, and hence by Observation 2.2.4 (III) θ(de) is generically
surjective for every e > 0. Thus θ(de) defines an effective Cartier divisor E(de) on Y .
Then for every e > 1 we have E(de) = pdE(d(e−1)) + E(d), because relations between
morphisms

θ(de) :=fY de∗ϕ
(de)
(X,∆)/Y ⊗OX

Y de
(RY de)

=fY de∗

(
ϕ
(d(e−1))
(X,∆)/Y ⊗OX

Y d(e−1)
(RY d(e−1))

)
Y de

◦ f (d(e−1))
Y de∗ϕ

(d)

(Xd(e−1),∆)/Y d(e−1) ⊗
(
L(d(e−1))

(X,∆)/Y

)
Y de

(pd(e−1)RY de)

∼=(F d
Y

∗
θ(d(e−1))) ◦ (θ(d) ⊗OY de((pd(e−1) − 1)(a−1C −KY de)))

implies that E(de) = (pd(e−1) + · · · + p + 1)E(d) = (pde − 1)(pd − 1)−1E(d) for every
e > 0. We define ∆Y := (pd− 1)−1E(d), this is independent of the choice of d by the
above. Note that by this definition

f∗OX((p
d − 1)(KX/Y +∆−R)) ∼=OY ((p

d − 1)(a−1C −KY ))

∼=OY ((p
d − 1)(∆Y − S)),

which proves (1).
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Step 2. We show that for each e > 0 there exists a commutative diagram

F de
Y ∗L

(de)
(Y,∆Y )

(ϕ
(de)
(Y,∆Y )

⊗OY (S))∗∗

//

∼=
��

OY (S)

∼=
��

f∗F
de
X ∗L

(de)
(X,∆)(p

deR)
ψ(de)

// f∗OX(R),

where ψ(de) := f∗((ϕ
(de)
(X,∆) ⊗ OX(R))

∗∗). It is clear that each object of the above
diagram is a reflexive sheaf, so we may assume that Y = Y0 and X is smooth. Since
F d
X = (F d

Y )X ◦ F (d)
X/Y , we have

ϕ
(d)
(X,∆) ⊗OX(R)

:=TrF d
X
⊗ ω−1

X (R) ∼=
(
Tr(F d

Y )X
◦ (F d

Y )X∗TrF (d)
X/Y

)
⊗ ω−1

X (R)

∼=
(
((f ∗TrFY

)⊗ ωX/Y ) ◦ (F d
Y )X∗TrF (d)

X/Y

)
⊗ ω−1

X (R)

∼=(f ∗ϕ
(d)
Y ⊗OX(R)) ◦ (F d

Y )X∗

(
ϕ
(d)
(X,∆)/Y ⊗ f ∗

Y dω
1−pd
Y d (RY d)

)
.

We note that ϕ
(d)
Y is a morphism between vector bundles on Y , thus ψ(d) is decom-

posed into

ψ(d) ∼=(ϕ
(d)
Y ⊗OY (S)) ◦ F d

Y ∗(θ
(d) ⊗ ω1−pd

Y d ).

On the other hand, by the definition of ∆Y , there exists a commutative diagram

OY ((1− pd)∆Y + pdS) //

∼=
��

OY d(pdS)

∼=
��

f (d)
∗L

(d)
(X,∆)/Y (p

dR) θ(d) // fY d∗OX
Y d
(RY d).

Applying the functor F d
Y ∗(( )⊗ ω1−pd

Y ) to this diagram, we have the following:

(F d
Y ∗OY ((1− pd)(KY +∆Y )))⊗OY (S) //

∼=
��

(F d
Y ∗ω

1−pd
Y )⊗OY (S)

∼=
��

F d
Y ∗f

(d)
∗L

(d)
(X,∆)(p

dR)
F d
Y ∗(θ

(d)⊗ω1−pd

Y )
// (F d

Y ∗ω
1−pd
Y )⊗ f∗OX(R).

Hence by the decomposition of ψ(d) and the definition of ϕ
(d)
(Y,∆Y ), the claim is proved
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in the case when e = 1. Furthermore, for each e > 0 we have

ψ(d(e+1))

∼=(f∗(ϕ
(de)
(X,∆) ⊗OX(R))) ◦ f∗F de

X ∗(ϕ
(d)

(Xde,∆)
⊗ L(de)

(X,∆)(p
deR))

∼=ψ(de) ◦ F de
Y ∗f

(de)
∗(ϕ

(d)

(Xde,∆)
⊗OXde(R + (1− pde)(KXde +∆−R)))

∼=ϕ(de)
(Y,∆Y ) ⊗OY (S) ◦ F de

Y ∗(ϕ
(d)

(Y de,∆Y )
⊗OY de(S + (1− pde)a−1C))

∼=ϕ(de)
(Y,∆Y ) ⊗OY (S) ◦ F de

Y ∗(ϕ
(d)

(Y de,∆Y )
⊗OY de((1− pde)(KY +∆Y ) + pdeS))

∼=ϕ(de)
(Y,∆Y ) ⊗OY (S) ◦ F de

Y ∗(ϕ
(d)

(Y de,∆Y )
⊗ L(de)

(Y,∆Y )(p
deS))

∼=ϕ(d(e+1))
(Y,∆Y ) ⊗OY (S).

This is our claim.

Step 3. We prove statements (2)-(4). (3) is obvious. We show (2). By the definition

of ϕ
(d)
(X,∆), we may assume that X is smooth. Then there is a commutative diagram

(F de
Y ∗f

(de)
∗L

(de)
(X,∆)(p

deR))(D)
ψ(de)⊗OY (D) //

∼=
��

(f∗OX(R))(D)

∼=
��

F de
Y ∗f

(de)
∗L

(de)
(X,∆)(p

de(f ∗D +R))
f∗(ϕ

(de)
(X,∆)

⊗OY (f∗D+R))
//

∼=
��

f∗OX(f
∗D +R)

∼=
��

F de
Y ∗f

(de)
∗L

(de)
(X,∆)(p

de(f ∗D +B′ +R))
f∗(ϕ

(de)
(X,∆)

⊗OX(f∗D+B′+R))
// f∗OX(f

∗D +B′ +R).

Thus by Step2,

H0(X,ϕ
(de)
(X,∆) ⊗OX(f

∗D +B′ +R))

∼=H0(Y, f∗(ϕ
(de)
(X,∆) ⊗OX(f

∗D +B′ +R)))

∼=H0(Y, (ϕ
(de)
(Y,∆Y ) ⊗ (D + S))∗∗),

which implies (2). For (4), we may assume that Y = Y0. Then, since f∗OX(R)
is a line bundle, we only need to show that the case when f∗OX(R) ∼= OY and
R = Γ ≥ 0. In this case, since R and (pd − 1)(KX +∆) are Cartier, and since f is
flat projective, we have H0(Xy,OX(R)|Xy) ̸= 0 and

H0(Xy,OX((1− pd)R)|Xy) = H0(Xy,OXy((1− pd)(KXy +∆y))) ̸= 0

for every y ∈ Y by assumptions and upper semicontinuity [58, Theorem 12.8]. In
particular, if Xy is reduced then OX(R)|Xy

∼= OXy , because every nonzero endomor-
phism of a line bundle on a connected reduced projective scheme over a field is an
isomorphism. Hence the isomorphism OY

∼= f∗OX(R) shows that the support of R is
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contained a union of nonreduced fibers. Set Y1 := {y ∈ Y |H0(Xy,OX(R)y) ∼= k(y)}.
Then we have

Supp ∆Y |Y1 = Supp coker(θ(d))|Y1 ={y ∈ Y1|S0(Xy,∆y,OX(R)|Xy
) = 0},

where the first (resp. the second) equality follows from the definition of ∆Y (resp.
Observation 2.2.4 (IV)). Now we prove (a)⇒(b). In the situation of (a)Xy is reduced,
and so y ∈ Y \f(Supp R). We recall Example 2.1.4, which shows that the global F -
splitting of (Xy,∆y) is equivalent to the equality S0(Xy,∆y,OXy

) = H0(Xy,OXy
).

Thus it is enough to show that y ∈ Y1. Let {y} be the closure in Y of the set {y}
with the reduced induced subscheme structure. Let Y ′ be a smooth open subset of
{y} such that RY ′ = 0 and that Supp ∆ does not contain any irreducible component
of any fiber over Y ′. Then for a general closed point y′ ∈ Y ′,

dimk S
0(Xy′ ,∆y′ ,OXy′

) =dimk(y) S
0(Xy,∆y′ ,OXy

)

=dimk(y)H
0(Xy,OXy

) = dimkH
0(Xy′ ,OXy′ ),

where the first (resp. the third) equality follows from lower semicontinuity proved
in Observation 2.2.4 (IV) (resp. upper semicontinuity). Thus (Xy′ ,∆y′) is globally
F -split, and in particular Xy′ is reduced. Since k is algebraically closed, we have
H0(Xy′ ,OXy′ )

∼= k, and hence H0(Xy,OXy)
∼= k(y), or equivalently, y ∈ Y1. To

prove (b)⇒(a), we replace Y by its affine open subset contained in Y \ (Supp ∆Y ∪
f(Supp R)). Then the surjectivity of θ(d) shows that ϕ

(d)
(X,∆)/Y : F

(d)
X/Y ∗

L(d)
(X,∆)/Y →

OX
Y d

is split, and thus so is ϕ
(d)
(X,∆)/Y |Xyd

: F
(d)
Xy/y∗

(L(d)
(X,∆)/Y |(Xy)d) → OX

yd
. This

means that ∆ does not contain any irreducible component of f−1(y), so ∆y is well-

defined, and we have ϕ
(d)
(X,∆)/Y |Xyd

∼= ϕ
(d)
(Xy ,∆y)/y

, which completes the proof.

Proof of Corollary 2.2.3. We use the notation of Observation 2.2.1. Let l > 0 be
an integer such that l(KX + ∆) is Cartier and base point free. We replace Y by
its smooth locus Ysm, and X by the smooth locus of f−1(Ysm). As in the proof of
Theorem 2.2.2, we set

ψ(e) := f∗(ϕ
(e)
(X,∆) ⊗OX(R)) and θ

(e) := fY e∗(ϕ
(e)
(X,∆)/Y ⊗OX(R)Y e)

for every e > 0 divisible enough. Since S0(X,∆, (pd − 1)(KX +∆)) ̸= 0, we have

0 ̸=S0(X,∆, (l − 1)(pd − 1)(KX +∆))

↪→S0(X,∆, (l − 1)(pd − 1)(KX +∆) +B) = S0(X,∆, f ∗l(pd − 1)H +R).

This implies the morphism

f∗(ϕ
(e)
(X,∆) ⊗OX(f

∗l(pd − 1)H +R)) ∼= ψ(e) ⊗OY (l(p
d − 1)H)

is nonzero for an e > 0 divisible enough, where the isomorphism follows from the
projection formula. Hence ψ(e) is also nonzero. By an argument similar to Step2,
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we can factor ψ(e) into (ϕ
(e)
Y ⊗OY (S)) ◦F e

Y ∗(θ
(e) ⊗ω1−pe

Y ), and hence θ(e) is nonzero.

Thus θ(e)⊗k(η) ∼= H0(Xη, ϕ
(e)
(Xη/η,∆η)

) is nonzero, or equivalently, (Xη,∆η) is globally

F -split. In particular Xη is reduced, and this means that f is separable. We show
(2). First note that R/RS(X,∆, KX + ∆) is finite dimensional if and only if so is
R/RS(X,∆, l(KX +∆)) by Lemma 2.1.9. Let m ≥ 0 be an integer with l|m. Then
we have H0(X, lm(KX+∆)) ∼= H0(Y, lm(KY +∆)). Furthermore, by Theorem 2.2.2
(2), we have

S0(X,∆,m(KX +∆)) = S0(X,∆, f ∗(mH − S) +R)

= S0(Y,∆Y ,mH − S + S) = S0(Y,∆Y ,mH).

Thus R/RS(X,∆, l(KX+∆)) ∼= R/RS(Y,∆Y , lH). By Example 2.1.11, this k-vector
space is finite dimensional if and only if (Y,∆Y ) is F -pure, which is our claim.

Example 2.2.5. Let f : X → Y be a relatively minimal elliptic fibration. In other
words, let f be a generically smooth morphism from a smooth projective surfaceX to
a smooth projective curve Y , whose fibers are connected curves having arithmetic
genus one and do not contain (−1)-curves of X. Then by the canonical bundle
formula [12, Theorem 2], we have

KX ∼ f ∗D +
r∑
i=1

liFi,

where D is a divisor on Y , miFi = Xyi is a multiple fiber with the multiplicity mi,
and 0 ≤ li < mi. Let m be the least common multiple of m1, . . . ,mr, and let a, e ≥ 0
be integers such that m = ape and p ∤ a. We set

R :=
r∑
i−1

{
(1− pd)li

mi

}
miFi

for some d ≥ e satisfying a|(pd − 1). Here, recall that for every s ∈ Q, {s} is the
fractional part s− ⌊s⌋ of s. It is easily seen that f∗OX(R) ∼= OY and

aKX − aR ∼af ∗D + a

r∑
i=1

liFi − a

r∑
i=1

(1− pd)liFi + a

r∑
i=1

⌊(1− pd)li
mi

⌋miFi

=f ∗(aD +
r∑
i=1

(
alip

d

mi

+ a⌊(1− pd)li
mi

⌋)yi).

Thus, a and R satisfy condition (ii) of Theorem 2.2.2. Furthermore, assume that
the geometric generic fiber of f is globally F -split, or equivalently, is an elliptic
curve with nonzero Hasse invariant. Then by Theorem 2.2.2 there exists an effective
Z(p)-divisor ∆Y on Y such that

S0(X, f ∗D′ +R) = S0(Y,∆Y , D
′)

for every divisor D′ on Y , and y1, . . . , yr ∈ f(R) ∪ ∆Y . Remark that if p ∤ mi for
each i, then mi|(pd − 1), and so R = 0.
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Finally, applying Theorem 2.2.2, we show that for a smooth projective surface
X of general type, R/RS(X,KX) is finite dimensional (Corollary 2.2.8).

Corollary 2.2.6. Let f : X → Y be a birational morphism between normal pro-
jective varieties, let ∆ be an effective Q-Weil divisor on X and let ∆Y := f∗∆.
Assume that a(KY +∆Y ) is Cartier for some a > 0 not divisible by p and (Y,∆Y )
is canonical. Then for each m > 0,

S0(Y,∆Y , am(KY +∆Y )) ∼= S0(X,∆, am(KX +∆)).

Proof. Since (Y,∆Y ) is canonical, R := a(KX +∆)− f ∗a(KY +∆Y ) is an effective
Weil divisor on X supported on the exceptional locus of f . Note that f∗OX(R) ∼=
OY . We set B := (a− 1)R and B′

m := (m− 1)R for each m ≥ 1. Then we have

aR = R + (a− 1)R = a(KX +∆)− f ∗a(KY +∆Y ) + B.

Thus, by Theorem 2.2.2, we have

S0(Y,∆Y , am(KY +∆Y )) ∼= S0(X,∆, B′
m + f ∗am(KY +∆Y ) +R)

∼= S0(X,∆, am(KX +∆)).

Corollary 2.2.7 ([93, Excercise 5.15]). Let φ : Y 99K Y ′ be a birational map
between normal projective varieties, let ∆ be an effective Q-Weil divisor on Y and
let ∆′ := φ∗∆. Assume that a(KY +∆) and a(KY ′ +∆′) are Cartier for some a > 0
not divisible by p, and that (Y,∆) and (Y ′,∆′) are canonical. Then, for each m > 0,

S0(Y,∆, am(KY +∆)) ∼= S0(KY ′ ,∆′, am(KY ′ +∆′)).

Proof. This follows directly from Corollary 2.2.6.

The following corollary is used to prove the weak positivity theorem when geo-
metric generic fibers are normal projective surfaces of general type with only rational
double point singularities (Corollary 4.2.5). Recall that the finiteness of the dimen-
sion of R/RS is equivalent to assumption (ii) of the main theorem (Theorems 4.1.1
or 4.2.1).

Corollary 2.2.8. Let X be a normal projective surface of general type with only ra-
tional double point singularities. If p > 5, then R/RS(X,KX) is a finite dimensional
vector space.

Proof. By Corollary 2.2.7, we may assume that X is a smooth projective surface
of general type which has no (−1)-curve. Then for each n ≫ 0, nKX is base
point free, and Y := Proj R(X,KX) has only rational double point singularities [5,
Theorem 9.1]. When p > 5, Y is F -pure, because of the classification of rational
double points [2, Section 3], and of Fedder’s criterion [32]. Hence the statement
follows from Corollary 2.2.3.



Chapter 3

Positivity conditions and a
numerical invariant

In this chapter, we introduce some positivity conditions of coherent sheaves on
normal varieties over a field k (Section 3.1). In order to give a sufficient condition
for coherent sheaves to have such positivity conditions, we also introduce a numerical
invariant when k is an F -finite field of positive (Section 3.2).

3.1 Positivity conditions of coherent sheaves

Definition 3.1.1. Let Y be a quasi-projective normal variety over a field k, let G
be a coherent sheaf on Y and let H be an ample Cartier divisor. Let V ⊆ Y be the
largest open subset such that G|V is locally free and S be a non-empty subset of V .

(i) We say that G is globally generated over S if the natural morphism H0(Y,G)⊗k

OY → G is surjective over S.

(ii) We say that G is weakly positive over S if for every integer a > 0, there exists
an integer b > 0 such that (SabG)∗∗ ⊗ OY (bH) is globally generated over S.
Here Sab( ) and ( )∗∗ denote the ab-th symmetric product and the double
dual, respectively.

(iii) We say that G is big over S if there exists an integer a > 0 such that (SaG)(−H)
is weakly positive over S.

We simply say that G is globally generated (resp. weakly positive, big) over y when
S = {y} for a point y ∈ V . We say that G is generically globally generated (resp.
weakly positive, big) if it is globally generated (resp. weakly positive, big) over the
generic point η of Y .

Remark 3.1.2. The notion of weak positivity is first introduced by Viehweg as a
generalization of nefness of vector bundles, when S is an open subset [110]. In [72]
and [92] (resp. [88]), this notion is also defined in the case when S = {η} (resp.
S = {y} for a point y ∈ Y ).
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Remark 3.1.3. Let Y,G, V, S and H be as above.
(1) The above definition is independent of the choice of H (cf. [110, Lemma 2.14]).
(2) Let Y0 ⊆ Y be an open subset containing S such that codimY (Y \ Y0) ≥ 2 and
let i : Y0 → Y be the open immersion. Then we have

(SmG)∗∗(nH) ∼= i∗ (((S
mG)∗∗(nH))|Y0) ∼= i∗ ((S

m(G|Y0))∗∗(nH|Y0))

for each integers m,n with m > 0. Therefore, we see that G is weakly positive (resp.
big) over S if and only if so is G|Y0 .
(3) The natural morphism G → G∗∗ induces the morphism (SmG)∗∗(nH) →
(SmG∗∗)∗∗(nH) for each integers m,n with n > 0, which is an isomorphism be-
cause of the normality of Y . In particular, G is weakly positive (resp. big) over S if
and only if so is G∗∗.
(4) Assume that G is a vector bundle and that Y is projective. Then G is weakly
positive (resp. big) over Y if and only if G is nef (resp. ample). For details, see for
example [79, §6].
(5) Assume that G is a line bundle and that Y is projective. Then G is weakly
positive (resp. big) over the generic point η of Y if and only if G is pseudo-effective
(resp. big).

Observation 3.1.4. (1) With the notation as Definition 3.1.1, we define

T ′
S(G, H) :=


there exist a, b ∈ Z such that

ε ∈ Q ε = a/b, b > 0, and (SbG)∗∗(−aH) is
globally generated over S.

, and

t′S(G, H) := supT ′
S(G, H).

We first prove that T ′
S(G, H) is equal to Q∩ (−∞, t′S(G, H)) or Q∩ (−∞, t′S(G, H)].

By Remark 3.1.3 (3), we have T ′
S(G, H) = T ′

S(G∗∗, H). Furthermore, similarly to
Remark 3.1.3 (2), we see that T ′

S(G, H) = T ′
S(G|V , H|V ), where V ⊆ Y is the

maximum open subset such that G∗∗|V is locally free. Hence we may assume that
G is locally free. If (SbG)(−aH) is globally generated over S for integers a, b with
b > 0, then (SbcG)(−acH) is also globally generated over S for every c > 0, because
of the natural morphism

Sc((SbG)(−aH)) → (SbcG)(−acH)

which is surjective over S. Then (SbcG)((−ac + d)H) is also globally generated
over S for every d > 0 such that dH is free. Hence we see that (ac − d)/(bc) =
a/b− d/(bc) ∈ T ′

S(G, H), which proves our claim.
(2) Next, we show that G is weakly positive (resp. big) over S if and only if
t′S(G, H) ≥ 0 (resp > 0). By an argument similar to the above, we may assume that
G is locally free. The definition of the weak positivity of G over S is equivalent to
that −1/a ∈ T ′

S(G, H) for all a > 0, which is also equivalent to t′S(G, H) ≥ 0 because
of (1). If G is big, then there exists an integer c > 0 such that (ScG)(−H) is weakly
positive. Then for an a > 0 there exists a b≫ 0 such that (Sab(ScG))(−abH + aH)
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is globally generated over S, and so is (SabcG)(a(1 − b)H) as seen in (1). Hence
t′S(G, H) ≥ (ab − a)/(abc) = 1/c − 1/(bc) > 0. Conversely, if t′S(G, H) > 0 then by
(1) we have integers a, b > 0 such that (SbG)(−aH) is globally generated over S,
and hence G is big.
(3) For a line bundle L on Y and an integer m > 0, it is easily seen that
t′S(Lm, H) = mt′S(L, H). Hence we see that L is weakly positive over S if and
only if so is Lm.

By Observation 3.1.4 (3), we can define the weak positivity of a Q-Weil divisor.

Definition 3.1.5. With the notation as Definition 3.1.1, let D be a Q-Weil divisor
on Y ,m > 0 be an integer such thatmD is integral and G be isomorphic toOY (mD).
Then D is said to be weakly positive (resp. big) over S if so is G.

Note that this definition is independent of the choice of m by Observa-
tion 3.1.4 (3).

3.2 A numerical invariant of coherent sheaves

Next we introduce a numerical invariant of coherent sheaves which measures posi-
tivity. Throughout this section, we fix an F -finite field k of characteristic p > 0.

Definition 3.2.1. Let Y,G, V, S be as in Definition 3.1.1, and assume that the
characteristic of k is p > 0. Let D be a Q-Cartier divisor. Then we define

TS(G, D) :=


there exists an e > 0 such that

ε ∈ Q peεD is Cartier and (F e
Y
∗G)(−peεD) is

globally generated over S.
, and

tS(G, D) := supTS(G, D) ∈ R ∪ {−∞,+∞}.

When S is the singleton {η} of the generic point η ∈ Y , we often denote TS(G, D)
(resp. tS(G, D)) by T (G, D) (resp. t(G, D)).

Lemma 3.2.2. Under the same assumption as above, let F be a coherent sheaf on
Y .

(1) If there exists a morphism F → G which is surjective over S, then tS(F , D) ≤
tS(G, D).

(2) Assume that {tS(F , D), tS(G, D)} ≠ {−∞,+∞}. Then

tS(F , D) + tS(G, D) ≤ tS(F ⊗ G, D).

(3) For each e > 0, tS(F
e
Y
∗G, D) = petS(G, D).

(4) If the rank of G is positive, and tS(G, D) = +∞, then −D is weakly positive
over S.
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Proof. (1)–(3) follow directly from the definition. We prove (4). Recall that for
every y ∈ S, the stalk Gy of G at y is free of positive rank. From this we see that
the natural morphism G∗ ⊗ G → OY is surjective over S. Furthermore, there is
an ample Cartier divisor H such that G∗(H) is globally generated, so we have a
surjective morphism O⊕h

Y → G∗(H) for some h > 0. Hence we get a morphism

G⊕h → G∗ ⊗ G(H) → OY (H)

which is surjective over S. By (1) we have tS(OY (H), D) = +∞, and thus there

exists a sequence {εn > 0}n≥1 of elements of TS(OY (H), D) such that εn
n→+∞−−−−→ +∞.

By the definition of tS(OY (H), D), for every n ≥ 1 there exists an e ≥ 1 such that

(F e
Y
∗OY (H))(−εnpeD) ∼= OY (p

e(H − εnD))

is globally generated over S. Set G := OY (−bD) for an integer b > 0 such that bD
is Cartier. Then for an integer ln > 0 such that εnlnp

e is an integer,

(Sεnlnp
eG)∗∗ ⊗OY (blnp

eH) ∼= OY (εnlnp
e(−bD) + blnp

eH) ∼= Sbln(OY (p
e(H − εnD)))

is also globally generated over S. Using the notation of Observation 3.1.4, we see
that (−blnpe)/(εnlnpe) = −b/εn ≤ t′S(OY (−bD), H), and so 0 ≤ t′S(OY (−bD), H).
As shown in Observation 3.1.4 (2), this implies that OY (−bD) is weakly positive
over S.

Proposition 3.2.3. Let Y be a projective n-dimensional variety over a field of
characteristic p > 0. Let Y,G, V, S be as in Definition 3.1.1, H be an ample Cartier
divisor on Y and ∆ be an effective Q-Weil divisor on Y such that KY + ∆ is Q-
Cartier and Supp∆ ∩ S = ∅. Let Y0 be a regular open subset Y0 ⊆ Y satisfying
codim(Y \ Yo) ≥ 2, and set t := tS0(G|Y0 , H|Y0), where S0 := S ∩ Y0. If D is a
Cartier divisor such that

D − (KY +∆)− nA+ tH

is ample for a base point free ample divisor A on Y , then G∗∗(D) is globally generated
over S0.

Proof. Since tS0(G|Y0 , H|Y0) is the supremum, there exists an ε ∈ TS0(G|Y0 , H|Y0) such
that B := D− (KY +∆)− nA+ εH is ample. We fix such an ε. By the definition,
for every e ≫ 0, peε ∈ Z and there is a morphism αe :

⊕
OY → (F e

Y
∗G)∗∗(−peεH)

which is surjective over S0. Let l > 0 be an integer such that l(KY +∆) is Cartier
and lε ∈ Z. For every e ≥ 0, we denote by qe and re respectively the quotient and
the remainder of the division of pe − 1 by l. Hence we have following morphisms
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which are surjective over S0:⊕
F e
Y ∗OY (qel(B + nA) + (re + 1)(D −KY + εH) +KY )

∼=F e
Y ∗

⊕
OY (qel(B + nA) + (re + 1)(D −KY + εH) +KY )

→F e
Y ∗ ((F

e
Y
∗G)∗∗ ⊗OY (−peεH + qel(B + nA) + (re + 1)(D −KY + εH) +KY ))

∼=F e
Y ∗((F

e
Y
∗G)∗∗ ⊗OY (qel(B + nA− εH) + (re + 1)(D −KY ) +KY ))

=F e
Y ∗((F

e
Y
∗G)∗∗ ⊗OY (qel(D − (KY +∆)) + (re + 1)(D −KY ) +KY ))

=F e
Y ∗((F

e
Y
∗G)∗∗ ⊗OY (−qel∆+ pe(D −KY ) +KY ))

∼= (G∗∗(D)⊗ F e
Y ∗OY ((1− pe)KY − qel∆))∗∗

→ (G∗∗(D)⊗ F e
Y ∗OY ((1− pe)KY ))

∗∗

→G∗∗(D).

Here the morphism in the third (resp. ninth) line is induced by αe (resp. ϕ
(e)
Y ), and

the isomorphism in the seventh line follows from the projection formula. Therefore,
it is sufficient to show that

F e
Y ∗OY (qel(B + nA) + (re + 1)(D −KY + εH) +KY )

is globally generated for each e ≫ 0. Since 0 ≤ re < l, by the Serre vanishing
theorem, we have

H i(Y,OY (−iA)⊗ F e
Y ∗OY (qel(B + nA) + (re + 1)(D −KY + εH) +KY ))

∼=H i(Y, F e
Y ∗OY (qel(B + (n− i)A) + (re + 1)(D −KY + εH − iA) +KY ) = 0

for each i > 0 and e ≫ 0. Hence our claim follows from the Castelnuovo-Mumford
regularity ([79, Theorem 1.8.5]).

Proposition 3.2.4. Let Y, Y0, H,G, V, S be as above. If tS0(G|Y0 , H|Y0) ≥ 0, where
S0 := S ∩ Y0, then G is weakly positive over S0.

Proof. By the hypothesis and Lemma 3.2.2, we have

tS0((S
lG)∗∗|Y0 , H|Y0) ≥ tS0(G⊗l|Y0 , H|Y0) ≥ ltS0(G|Y0 , H|Y0) ≥ 0

for every l > 0. Applying the previous proposition, we obtain an ample Cartier
divisor D such that (SlG)∗∗(D) is globally generated over S0 for every l > 0, which
is our claim.



Chapter 4

Weak positivity theorems

4.1 Summary

Let f : X → Y be an algebraic fiber space, and letX and Y be smooth projective va-
rieties. The positivity of the direct image sheaf f∗ω

m
X/Y of the relative pluricanonical

bundle is an important property. In characteristic zero, there are numerous known
results. Fujita has proved that f∗ωX/Y is a nef vector bundle when dimY = 1
[43]. Kawamata generalized this to the case when m ≥ 2 [67] and to the case when
dimY ≥ 2 [66] (see also [38]). Viehweg has shown that f∗ω

m
X/Y is weakly positive

for each m ≥ 1 [109] (see also [72], [13], and [36]). There are several significant con-
sequences of these results. One of them is Iitaka’s conjecture in some special cases,
which we discuss in Chapter 6. Other consequences include some moduli problems
in [73] and [34] (see also [110]), where results of [43], [66], and [67] are generalized
to the case when X is reducible (see also [69], [39], and [40]).

On the other hand, in positive characteristic, it is known that there are counter-
examples to the above results. For example, Moret-Bailly constructed a semi-stable
fibration g : S → P1 from a surface S to P1 such that g∗ωS/P1 is not nef [86]. For other
examples, see [96, 114] (or Remark 4.2.2 in this chapter). Hence it is natural to ask
under what additional conditions analogous results hold in positive characteristic.
Kollár has shown that f∗ω

m
X/Y is a nef vector bundle for each m ≥ 2 when X is a

surface, Y is a curve, and the general fiber of f has only nodes as singularities [73,
4.3. Theorem]. Patakfalvi has proved that f∗ω

m
X/Y is a nef vector bundle for each

m ≫ 0 when Y is a curve, Xη has only normal F -pure singularities, and ωX/Y is
f -ample [91, Theorem 1.1].

In this chapter, we consider the weak positivity of f∗ω
m
X/Y in positive character-

istic under a condition on the canonical ring and the Frobenius stable canonical ring
of the geometric generic fiber. Recall that for a Gorenstein variety V , the canonical
ring of V is the section ring of the dualizing sheaf of V , and the Frobenius stable
canonical ring of V is its homogeneous ideal whose degreem subgroup is S0(V,mKV )
(see Definition 2.1.2).

From now on we work over an algebraically closed field k of characteristic p > 0.
The following theorem is the main result of this chapter.
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Theorem 4.1.1 (Theorem 4.2.1). Let f : X → Y be an algebraic fiber space, X and
Y be smooth projective varieties and ∆ be an effective Q-divisor on X such that a∆
is integral for some integer a > 0 not divisible by p. Let η be the geometric generic
point of Y . Assume that

(i) the k(η)-algebra
⊕

m≥0H
0(Xη, am(KX +∆)η) is finitely generated, and

(ii) there exists an integer m0 > 0 such that for each m ≥ m0,

S0(Xη,∆η, am(KX +∆)η) = H0(Xη, am(KX +∆)η).

Then f∗OX(am(KX/Y +∆)) is weakly positive for each m ≥ m0.

This theorem is proved in Section 4.2 under a more general situation. Condition
(ii) of the theorem holds, for example, in the case where Xη is a curve of arithmetic
genus at least two which has only nodes as singularities, ∆ = 0, and m0 = 2 (Corol-
lary 2.1.14), or in the case where the pair (Xη,∆η) has only F -pure singularities,
KXη

+ ∆η is ample, and m0 ≫ 0 (Example 2.1.11). Thus Theorem 4.1.1 can be
viewed as a generalization of [73, 4.3. Theorem] and [91, Theorem 1.1].

Theorem 4.1.1 should be compared with another result of Patakfalvi [92, The-
orem 6.4], which states that if S0(Xη, KXη

) = H0(Xη, KXη
) then f∗ωX/Y is weakly

positive (see also [63]). These two results imply that S0(Xη,mKXη
) is closely related

to the positivity of f∗ω
m
X/Y for each m ≥ 1. In order to prove Theorem 4.1.1, we

generalize the method of the proof of [92, Theorem 6.4] using a numerical invariant
introduced in Section 3.2.

When the relative dimension of f is one, we obtain the following theorem as a
corollary of Theorem 4.1.1.

Theorem 4.1.2 (Corollary 4.2.4). Let f : X → Y be an algebraic fiber space of
relative dimension one, X and Y be smooth projective varieties, and ∆ be an effective
Q-divisor on X such that a∆ is integral for some integer a > 0 not divisible by p.
Let η be the geometric generic point of Y . If (Xη,∆η) is F -pure and KXη

+ ∆η is
ample, then f∗OX(am(KX/Y +∆)) is weakly positive for each m ≥ 2. In particular,
if Xη is a smooth curve of genus at least two, then f∗ω

m
X/Y is weakly positive for each

m ≥ 2.

When the relative dimension of f is two, we also obtain the following theorem
as a corollary of Theorem 4.1.1.

Theorem 4.1.3 (Corollary 4.2.5). Assume that p > 5. Let f : X → Y be an
algebraic fiber space and let X and Y be smooth projective varieties. If the geo-
metric generic fiber is a surface of general type with only rational double points as
singularities, then f∗ω

m
X/Y is weakly positive for each m≫ 0.

Unfortunately, we cannot necessarily apply Theorem 4.1.1 to the case when the
geometric generic fiber Xη is a smooth projective surface not of general type, even
if the total space is a 3-fold. However, we can prove the following result.
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Theorem 4.1.4. Assume that p > 5. Let f : X → Y be an algebraic fiber space,
X be a smooth projective 3-fold and Y be a smooth projective curve. Suppose that
the geometric generic fiber Xη has only rational double points as singularities. If
κ(Xη, KXη

) = 1, then there exists a real number c > 0 such that f∗ω
m
X/Y contains a

nef subbundle of rank at least cm for sufficiently divisible m > 0.

This theorem may be not sufficient to be regarded as a kind of weak positivity
theorems, but it is useful enough to study Iitaka’s Cn,m conjecture for 3-folds. In-
deed, in Chapter 6, Theorems 4.1.3 and 4.1.4 are used to show the conjecture for
3-folds in the case when the Kodaira dimensions of the geometric generic fibers are
two and one, respectively. Theorem 4.1.4 is proved in Section 4.3 as a consequence of
the minimal model program for 3-folds in characteristic p > 5 developed by several
mathematicians including Birkar, Cascini, Hacon, Tanaka, Waldron and Xu.

4.2 Proof of the main theorem

As in the summary, we fix an algebraically closed field k of characteristic p > 0. We
prove Theorem 4.1.1 in a more general situation. This theorem is a generalization of
a result in the author’s master thesis, which deals with algebraic fiber spaces whose
total and base spaces are smooth. As applications of Theorem 4.2.1, we show weak
positivity theorems for certain surjective morphisms of relative dimension zero, one
and two (Corollaries 4.2.3, 4.2.4 and 4.2.5 respectively).

Theorem 4.2.1. Let f : X → Y be a separable surjective morphism between normal
projective varieties, ∆ be an effective Q-Weil divisor on X such that a∆ is integral
for some integer a > 0 not divisible by p, and η be the geometric generic point of Y .
Assume that

(i) KXη
+∆η is finitely generated in the sense of Definition 2.1.8, and

(ii) there exists an integer m0 > 0 such that

S0(Xη,∆η, am(KX +∆)η) = H0(Xη, am(KX +∆)η)

for each m ≥ m0.

Then f∗OX(am(KX +∆))⊗ ω−am
Y is a weakly positive sheaf for every m ≥ m0.

Proof of Theorem 4.2.1. We first note that Xη is a k(η)-scheme of pure dimension
satisfying S2 and G1, and that each connected component of Xη is integral. Let
d > 0 be an integer satisfying a|(pd − 1).

Step 1. In this step, we reduce to the case where X and Y are smooth. Let H
be an ample Cartier divisor on Y . By Proposition 3.2.4, it suffices to prove that
t((f∗OX(am(KX +∆)))|Y0 ⊗ ω−am

Y0
, H|Y0) ≥ 0 for each m ≥ m0, where Y0 ⊆ Y is an

open subset satisfying codim(Y \Y0) ≥ 2. Hence, replacing X and Y by their smooth
loci, we may assume that f is a dominant morphism between smooth varieties (the
projectivity of f may be lost, but we do not use it).
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We set t(m) := t(f∗OX(am(KX/Y +∆)), H) for each m > 0.

Step 2. We show that there exist integers l, n0 > m0 such that t(l) + t(n) ≤ t(l+ n)
for each n ≥ n0. By the hypothesis (i) and Lemma 2.1.9, R(Xη, a(KXη

+∆η)) is a
finitely generated k(η)-algebra. Hence for every l > m0 divisible enough there exists
an n0 > m0 such that the natural morphism

H0(Xη, al(KXη
+∆η))⊗H0(Xη, an(KXη

+∆η)) → H0(Xη, a(l + n)(KXη
+∆η))

is surjective. This shows that the natural morphism

f∗OX(al(KX/Y +∆))⊗ f∗OX(an(KX/Y +∆)) → f∗OX(a(l + n)(KX/Y +∆))

is generically surjective, thus we have t(l) + t(n) ≤ t(l+ n) by Lemma 3.2.2 (1) and
(2).

Step 3. We show that t(mpde − a−1(pde − 1)) ≤ pdet(m) for each e > 0 and for each
m ≥ m0. By the hypothesis (ii) and Observation 2.2.4 (III), there exist generically
surjective morphisms

f (de)
∗OXde(((am− 1)pde + 1)(KXde/Y de +∆))

α−→fY de∗OX
Y de

(am(KX
Y de/Y de +∆Y de))

∼=F de
Y

∗
f∗OX(am(KX/Y +∆)),

where α := fY de∗(ϕ
(de)
(X,∆)/Y ⊗ OX

Y de
(am(KX

Y de/Y de + ∆Y de))), and the isomorphism
follows from the flatness of FY . Hence by Lemma 3.2.2, we have

t(mpde − a−1(pde − 1))
Lemma 3.2.2 (1)

≤ t(F de
Y

∗
f∗(ω

am
X/Y (am∆)), H)

Lemma 3.2.2 (3)
= pdet(m).

Step 4. We prove the theorem. Set m ≥ m0. If am = 1, then t(1) ≤ pdt(1) by Step3,
which gives t(1) ≥ 0. Thus we may assume am0 ≥ 2. Let qm,e be the quotient of
mpde− a−1(pde− 1)−n0 by l and let rm,e be the remainder for e≫ 0. We note that

qm,e > 0 since m ≥ m0 ≥ 2a−1 > a−1, and that pde − ql,e
e→∞−−−→ ∞. Then

qm,et(l) + t(rm,e + n0)
Step2

≤ t(mpde − a−1(pde − 1))
Step3

≤ pdet(m),

and so c := min{t(r + n0)|0 ≤ r < l} ≤ pdet(m)− qm,et(l). By substituting l for m,
we have c ≤ (pde− ql,e)t(l) for each e≫ 0, which means t(l) ≥ 0. Hence c ≤ pdet(m)
for each e≫ 0, and consequently t(m) ≥ 0. This completes the proof.

Remark 4.2.2. There exists an algebraic fiber space g : S → C from a smooth pro-
jective surface S to a smooth projective curve C such that g∗ω

m
S/C is not nef for any

m > 0 [96][114, Theorem 3.6]. This algebraic fiber space does not satisfy condition
(ii) of Theorem 4.2.1. Indeed, the geometric generic fiber of g is a Gorenstein curve
which has a cusp, hence by [48] it is not F -pure. Since the dualizing sheaf of a
Gorenstein curve not isomorphic to P1 is trivial or ample, the claim follows from
Examples 2.1.4 and 2.1.11.
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Corollary 4.2.3. Let f : X → Y be a surjective morphism between normal
projective varieties, ∆ be an effective Q-Weil divisor on X, and a > 0 be an
integer such that a∆ is integral. If f is separable and generically finite, then
f∗OX(a(KX +∆))⊗ ω−a

Y is weakly positive.

Proof. Since f is generically finite, the natural morphism

f∗OX(aKX)⊗ ω−a
Y → f∗OX(a(KX +∆))⊗ ω−a

Y

is an isomorphism at the generic point of Y . Thus it is enough to show the case of
∆ = 0. Since the geometric generic fiber Xη is a reduced k(η)-scheme of dimension
zero, the assertion follows directly from Theorem 4.2.1.

Corollary 4.2.4. Let f : X → Y be a separable surjective morphism of relative
dimension one between normal projective varieties, ∆ be an effective Q-Weil divisor
on X, and a > 0 be an integer not divisible by p such that a∆ is integral. Assume
that (Xη,∆η) is F -pure, where η is the geometric generic point of Y . If KXη

+∆η is
ample (resp. KXη

is ample and a ≥ 2), then f∗OX(am(KX +∆))⊗ ω−am
Y is weakly

positive for each m ≥ 2 (resp. m ≥ 1). In particular, if every connected component
of Xη is a smooth curve of genus at least two, then f∗ω

m
X ⊗ ω−m

Y is weakly positive
for each m ≥ 2.

Proof. Let U ⊆ X be a Gorenstein open subset such that codim(X \ U) ≥ 2 and
that a∆|U is Cartier. Since dim(X \ U) ≤ dimX − 2 = dimY − 1, X \ U does not
dominate Y . Thus there exists an open subset Y0 ⊆ Y such that f |X0 : X0 → Y0 is a
Gorenstein morphism and that a∆|X0 is Cartier, whereX0 := f−1(Y0). In particular,
Xη is Gorenstein and (a∆)η is Cartier. Thus the statement follows directly from
Corollary 2.1.14 and Theorem 4.2.1.

Corollary 4.2.5. Let f : X → Y be a separable surjective morphism of relative
dimension two between normal projective varieties. Assume that every connected
component of the geometric generic fiber is a normal surface of general type with
only rational double points. Assume in addition that p > 5. Then f∗ω

m
X ⊗ ω−m

Y is
weakly positive for each m≫ 0.

Proof. We note that in this case KXη
is finitely generated (cf. [5, Corollary 9.10]).

Hence the assertion follows from Corollary 2.2.8 and Theorem 4.2.1.

4.3 Algebraic fiber spaces whose total spaces are

3-folds

In this section, we prove Theorem 4.1.4. To this end, we recall several results on
the minimal model program for 3-folds of characteristic p > 5.
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4.3.1 Results on the minimal model program for 3-folds

The existence of (log) minimal models of 3-folds in positive characteristic p > 5 has
been first proved for canonical singularities by Hacon and Xu [55], and in general
by Birkar [8] (see [112] for the lc case). The existence of Mori fiber spaces has been
first proved for terminal singularities by Cascini, Tanaka and Xu [17], and in general
by Birkar and Waldron [11].

Theorem 4.3.1. Let k be an algebraically closed field of characteristic p > 5. Let
f : X → Y be a contraction from a normal 3-fold, and ∆ be an effective Q-Cartier
Q-divisor on X.

(1) If either (X,∆) is klt and KX +∆ is pseudo-effective over Y , or (X,∆) is lc
and KX + ∆ has a weak Zariski decomposition (i.e., there exists a birational
projective morphism µ : W → X such that ν∗(KX +∆) = P +M , where P is
nef over Y and M is effective), then (X,∆) has a log minimal model over Y .

(2) If (X,∆) is a dlt pair and Y is a smooth projective curve with g(Y ) ≥ 1, then
every step of LMMP in [8, Sec. 3.5-3.7] starting from (X,∆) is over Y .

Proof. For (1) please refer to [8, Theorem 1.2 and Proposition 8.3]. For (2), since
(X,∆) is dlt, every KX +∆-extremal ray is generated by a rational curve by cone
theorem [11, Theorem 1.1], which is contracted by f since g(Y ) ≥ 1. So for an
extremal contraction X → X̄, if there is a divisorial contraction or a flip σ : X 99K
X+ as in [8, Sec. 3.5-3.7], there exist natural morphisms f̄ : X̄ → Y and f+ : X+ →
Y fitting into the following commutative diagram

X

��
f

��

// X+

}}

f+

��

X̄

f̄
��
Y .

Note that (X+,∆+ = σ∗∆) is a dlt pair. We can show this assertion by induction.

Lemma 4.3.2. Let k be an algebraically closed field of characteristic p > 5. Let
(X,∆) be a normal Q-factorial lc 3-fold (not necessarily projective). Let C be a
projective lc center of (X,∆) and C̃ be the normalization of C. If (KX + ∆)|C̃ is
numerically trivial, then (KX +∆)|C̃ is Q-trivial.

Proof. By [8, Lemma 7.5], we can take a crepant partial resolution µ : X ′ → X such
that

KX′ +D +∆′ ∼Q µ
∗(KX +∆),

where D is a reduced irreducible divisor dominant over C and ∆′ ≥ 0 is a Q-divisor
on X ′ such that (X ′, D + ∆′) is dlt. By [8, Lemma 5.2], we see that D is normal.



41

Considering the restriction of the above Q-divisors to D, we obtain an effective
Q-Weil divisor ∆D on D such that

KD +∆D ∼Q µ
∗(KX +∆)|D

by the adjunction formula [70, 5.3]. Then we see that (D,∆D) is lc by [8, Lemma
5.2] again. Applying [105, Theorem 1.2], we have that KD + ∆D is semi-ample.
Thus µ∗(KX + ∆)|D is Q-trivial since (KX + ∆)|C̃ is numerically trivial. We can
conclude that (KX +∆)|C̃ is Q-trivial by the lemma below.

Lemma 4.3.3. Let g : V → W be a surjective morphism between proper varieties
over a field. Assume that W is normal. Then a Cartier divisor L on W is Q-linearly
trivial if and only if so is g∗L.

Proof. The “only if” part is obvious. We prove the “if” part. Assume thatm(g∗L) ∼
0. Then by the projection formula, we have (g∗OV )⊗OW (mL) ∼= g∗OV (m(g∗L)) ∼=
g∗OV . Taking the determinants, we obtain det(g∗OV ) ⊗ OW (rank(g∗OV ) · mL) ∼=
det(g∗OV ), and thus (m · rank(g∗OV ))L ∼ 0.

4.3.2 Proof of Theorem 4.1.4

The next lemma is a consequence of Tanaka’s vanishing theorem for surfaces [106].

Lemma 4.3.4. Let g : S → C be a generically smooth surjective morphism from
a smooth projective surface to a smooth projective curve. Let H be a nef and g-big
divisor on S. Then g∗OS(KS/C + lH) is a nef vector bundle for every l ≫ 0.

Proof. Set G(l) := g∗OS(KS/C + lH) for each l ∈ Z. Let A be an ample divisor on
C with degA ≥ degKC + 2 and c ∈ C be a general closed point. Then A−KC − c
is ample, where we regard c as a divisor on C. Note that ν(H) ≥ 1 and H + g∗(A−
KC − c) is nef and big. Denote by Sc the fiber of g over c. By [106, Theorem 2.6]
we see that

H1(S,KS +H + g∗(A−KC) + (l − 1)H − Sc)

=H1(S,KS +H + g∗(A−KC − c) + (l − 1)H) = 0

for l ≫ 0. Thus for a closed point c ∈ C, by the long exact sequence arising from
taking cohomology of the exact sequence

0 → OS(KS/C + g∗A+ lH − Sc) → OS(KS/C + g∗A+ lH)

→ OS(KS/C + g∗A+ lH)|Sc → 0,

we conclude that the restriction

H0(S,KS/C + g∗A+ lH) → H0(Sc, (KS/C + g∗A+ lH)|Sc)

is surjective. This implies that g∗OS(KS/C + g∗A + lH), which is isomorphic to
G(l) ⊗ OC(A), is generically globally generated. Hence we obtain t(G(l), A) ≥ −1
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(see Definition 3.2.1). On the other hand, since H|Sη
is ample, where Sη is the

geometric generic fiber of g, we get an l0 > 0 such that

gCe∗(ϕ
(e)
S/C ⊗OSCe ((KS/C + lH)Ce)) :

g(e)∗OS(KS/C + lpeH) → gCe∗OSCe ((KS/C + lH)Ce)

is generically surjective for each l ≥ l0 and e > 0 by Lemma 1.3.3. Since FC is flat,
the target is isomorphic to F e

C
∗G(l). Applying Lemma 3.2.2, we get

−1 ≤ t(G(lpe), A)
Lemma 3.2.2 (1)

≤ t(F e
C
∗(g∗G(l), A)

Lemma 3.2.2 (3)
= pet(G(l), A)

which means that t(g∗OS(KS/C + lH)) ≥ 0. By Proposition 3.2.4, we conclude that
g∗OS(KS/C + lH) is nef.

In order to prove Theorem 4.1.4, we recall the following two results without
proofs.

Theorem 4.3.5 ([20, 3.2]). Let f : X → Y be an algebraic fiber space such that
X and Y are smooth projective varieties over an algebraically closed field of positive
characteristic. Assume that the geometric generic fiber of f is a smooth elliptic
curve. Then κ(X,KX/Y ) ≥ 0.

The following lemma is also used in Chapter 6.

Lemma 4.3.6 ([111, Lemma 3.2]). Let f : X → Y be a fibration between normal
quasi-projective varieties. Let L be an f -nef Q-Cartier divisor on X such that Lη ∼Q
0, where η is the generic point of Y . Assume dimY ≤ 3. Then there exist a
commutative diagram

X ′ ϕ //

f ′

��

X

f
��

Y ′ ψ // Y

with ϕ, ψ projective birational, and a Q-Cartier divisor D on Y ′ such that ϕ∗L ∼Q
f ′∗D. Furthermore, if f is flat and Y is Q-factorial, then we can take X ′ = X and
Y ′ = Y .

Proof of Theorem 4.1.4. Let W be a minimal model of X over Y . Let ρ : Xη → Wη

be the induced morphism. Since ρ∗OXη
∼= OWη

,Wη is normal. Furthermore, sinceW
is terminal, we haveKXη

≥ ρ∗KWη
, and henceWη has at most canonical singularities.

Replacing X with a minimal model with loss of smoothness, we may assume that
KX/Y is f -nef. Then by [105, Theorem 1.2], KXη

is semi-ample, and since p > 5, the
geometric generic fiber of the Iitaka fibration Iη : Xη → Cη is a smooth elliptic curve
over k(η) by [5, Theorem 7.18]. For the generic fiber Xη and a sufficiently divisible
positive integer n, since H0(Xη, nKXη

) ∼= H0(Xη, nKXη)⊗k(η) k(η), we see that the
Iitaka fibration Iη : Xη → Cη coincides with the Iitaka fibration Iη : Xη → Cη
tensoring with k(η). Thus the geometric generic fiber of Iη is a smooth elliptic
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curve. Considering the relative Iitaka fibration of f : X → Y , whose geometric
generic fiber is a smooth elliptic curve, we get a birational morphism u : X ′ → X,
a fibration g : S → Y from a smooth projective surface S, and an elliptic fibration
h : X ′ → S fitting into the following commutative diagram:

X ′

h
��

u // X

f
��

S
g // Y.

Note that the geometric generic fiber Sη of g : S → Y is normal, and hence smooth.
By Lemma 4.3.6, we may assume that u∗KX/Y ∼Q h∗H for a nef g-big Q-Cartier
divisor on S. By Theorem 4.3.5, we have κ(X ′, KX′/S) ≥ 0, and hence there exists
an injective homomorphism h∗ωmS/Y → ωmX′/Y for sufficiently divisible m > 0. Let
l ≫ 0 be an integer such that lH is Cartier and u∗lKX/Y ∼ h∗lH. Then we have
natural homomorphisms

(g∗OS(KS/Y + lH))⊗m → g∗OS(m(KS/Y + lH))
∼= g∗h∗OX′(mh∗(KS/Y + lH))

↪→ f∗u∗OX′(mKX′/Y + u∗lmKX/Y )
∼= f∗OX(m(l + 1)KX/Y ).

Replacing l if necessary, we may assume that the first homomorphism is generically
surjective. By Lemma 4.3.4, g∗OS(KS/Y +lH) is nef, and hence so is g∗OS(m(KS/Y +
lH)). This completes the proof.



Chapter 5

Positivity of anti-canonical
divisors

5.1 Summary

Let f : X → Y be a surjective morphism between smooth projective varieties over
an algebraically closed field k. Kollár, Miyaoka and Mori [74, Corollary 2.9] have
proved that, under the assumption that f is smooth, if X is a Fano variety, that is,
−KX is ample, then so is Y . It follows from an analogous argument that, under the
same assumption, if −KX is nef, then so is −KY (cf. [85], [42, Theorem 1.1] and
[26, Corollary 3.15 (a)]). Based on these results, Yasutake asked: “what positivity
condition is passed from −KX to −KY ?” Some answers to this question are known
in characteristic 0. Fujino and Gongyo [41, Theorem 1.1] have proved that, under
the assumption that f is smooth, if X is a weak Fano variety, that is, −KX is nef
and big, then so is Y . Birkar and Chen [9, Theorem 1.1] have shown that, under the
same assumption, if −KX is semi-ample, then so is −KY . Furthermore, similar but
weaker results hold even if f is not smooth (but the characteristic of k is still zero).
For example, a result of Prokhorov and Shokurov [95, Lemma 2.8] (cf. [41, Corollary
3.3]) implies that if −KX is nef and big, then −KY is big. Chen and Zhang [19,
Main theorem] have also proved that if −KX is nef, then −KY is pseudo-effective.

In contrast, little was known about the positive characteristic case. In this
chapter, assuming that the geometric generic fiber has only F -pure or strongly F -
regular singularities, we prove that (generalizations of) the statements above hold in
positive characteristic, except the one about semi-ampleness. F -purity and strong
F -regularity are mild singularities defined in terms of Frobenius splitting properties
(Definition 1.3.1), which have a close connection to log canonical and Kawamata log
terminal singularities, respectively.

Suppose that k is an algebraically closed field of characteristic p > 0. Let
f : X → Y be a surjective morphism between smooth projective varieties, let ∆
be an effective Q-divisor on X which is Q-Cartier with index m, and let D be a
Q-divisor on Y which is Q-Cartier with index n. Then our main theorem is stated
as follows.

44
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Theorem 5.1.1 (Theorem 5.2.5). Let S be a subset of Y such that the following
conditions hold for every y ∈ S:

(i) dimXy = dimX − dimY ;

(ii) the support of ∆ does not contain any irreducible component of Xy;

(iii) (Xy,∆y) is F -pure, where y is given by Spec k(y).

If p ∤ m and −(KX + ∆ + f ∗D) is nef, then OY (−n(KY + D)) is weakly positive
over an open subset of Y containing S.

In Section 5.2, Theorem 5.2.5 is proved in a more general setting, which is used
to prove Iitaka’s conjecture C3,1 (Theorem 6.1.2).

The following two theorems are corollaries of Theorem 5.1.1.

Theorem 5.1.2 (Corollary 5.2.9). Assume that f is flat, the support of ∆ does not
contain any component of any fiber, and (Xy,∆y) is F -pure for every closed point
y ∈ Y .

(1) If p ∤ m and −(KX +∆+ f ∗D) is nef, then so is −(KY +D).

(2) If −(KX +∆+ f ∗D) is ample, then so is −(KY +D).

Theorem 5.1.3 (Corollary 5.2.10). Assume that (Xη,∆η) is F -pure, where η is the
geometric generic point of Y .

(1) If p ∤ m and −(KX +∆+ f ∗D) is nef, then −(KY +D) is pseudo-effective.

(2) If −(KX +∆+ f ∗D) is ample, then −(KY +D) is big.

(3) If (Xη,∆η) is strongly F -regular and −(KX + ∆ + f ∗D) is nef and big, then
−(KY +D) is big.

Theorem 5.1.2 is a generalization of [74, Corollary 2.9] and [26, Corollary 3.15]
in positive characteristic. We can also recover [74, Corollary 2.9] in characteristic
zero from Theorem 5.1.2 by standard reduction to characteristic p techniques. Our
proof relies on a study of the positivity of direct image sheaves for f in terms of
the Grothendieck trace of the relative Frobenius morphism. This is completely
different from the proof of Kollár, Miyaoka and Mori which relies on a detailed
study of rational curves on varieties. Theorem 5.1.3 should be compared with [95,
Lemma 2.8] and [19, Main Theorem].

The following two theorems are direct consequences of Theorems 5.1.2 and 5.1.3.

Theorem 5.1.4 (Corollary 5.2.11). Assume that (Xη,∆η) is F -pure, where η is the
geometric generic point of Y . If p ∤ m and KX + ∆ is numerically equivalent to
f ∗(KY + L) for some Q-divisor L on Y , then L is pseudo-effective.
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Theorem 5.1.5 (Corollary 5.2.14). Assume that f is flat, that every closed fiber is
F -pure, and that the geometric generic fiber is strongly F -regular. If X is a weak
Fano variety, that is, −KX is nef and big, then so is Y .

Theorem 5.1.5 is a positive characteristic counterpart of [41, Thorem 1.1].
For another application of Theorem 5.1.1, we return to the situation where k is of

arbitrary characteristic. Suppose that f : X → Y is a generically smooth surjective
morphism between smooth projective varieties over an algebraically closed field of
arbitrary characteristic and in addition that the dimension of Y is positive.

Theorem 5.1.6 (Corollary 5.2.15 and Theorem 5.3.5). −KX/Y is not nef and big.

Theorem 5.1.7 (Corollary 5.2.16 and Theorem 5.3.6). Assume that ω−m
Xη

is globally
generated for an integer m > 0, where η be the geometric generic point of Y . Then
f∗ω

−m
X/Y is not big in the sense of Definition 3.1.1.

In both of the theorems, the characteristic zero case is proved by reduction to
positive characteristic. Theorem 5.1.6 improves a result of Kollár, Miyaoka and Mori
[74, Corollary 2.8] which states that −KX/Y is not ample. Theorem 5.1.7 includes
a result of Miyaoka [85, COROLLARY 2’] which states that if ω−1

X/Y is f -ample and

ω−m
X/Y is f -free for an integer m > 0, then f∗ω

−m
X/Y is not an ample vector bundle.

5.2 Main theorems in positive characteristic

The purpose of this section is to prove Theorems 5.2.5 and 5.2.6. First we prepare
three lemmas. The following lemma is used in the proof of Theorem 5.2.5.

Lemma 5.2.1. Let k be a field. Let f : X → Y be a surjective projective morphism
from a k-scheme X to a variety Y , let A be an f -ample Cartier divisor on X and
let F be a coherent sheaf on X. Then there exists an integer m0 > 0 such that for
each integer m ≥ m0 and for every nef Cartier divisor N on X, f∗(F(mA+N)) is
locally free over V , where V ⊆ Y is an open subset such that FV is flat over V .

Proof. By Keeler’s relative Fujita vanishing ([71, Theorem 1.5]), there exists an
integer m0 > 0 such that

Rf i∗F(mA+N) = 0

for each m ≥ m0, for every nef Cartier divisor N on X and for each i > 0. Fix an
integer m ≥ m0 and a nef Cartier divisor N . For each i ≥ 0, we define the function
hi on V by hi(y) := dimk(y)H

0(Xy,F(mA + N)|Xy). Since dimXy ≤ dimX for
every y ∈ V , we see that hi = 0 for each i > dimX. Let i ≥ 2 be an integer such
that hi = 0. By applying [58, Theorem III 12.11] to the morphism fV : XV → V
and F(mA+N)V , we obtain that hi−1 = 0. From this, we see that hi = 0 for each
i ≥ 1, and hence χ(F(mA + N)|Xy) = h0(y) for every y ∈ V . Since the left hand
side is constant on V by [58, Theorem III 9.9] and its proof, h0 is also constant on
V . Applying [58, Corollary III 12.9], we obtain that f∗F(mA + N) is locally free
over V , which is our claim.
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Lemma 5.2.2. With the notation as in Lemma 5.2.1, assume that X and Y are
projective and A is ample. Then there exists an integer m0 > 0 such that for each
integer m ≥ m0 and for every nef Cartier divisor N on X, f∗(F(mA + N)) is
globally generated.

Proof. Let H be an ample and free Cartier divisor on Y , and let m1 > 0 be an
integer such that m1A − dimY f ∗H is nef. By the Fujita vanishing ([44, Theorem
(1)], [45, Section 5]) and Keeler’s relative Fujita vanishing ([71, Theorem 1.5]), there
exists an integer m2 > 0 such that

H i(X,F(mA+N)) = 0 and Rif∗(F(mA+N)) = 0

for each m ≥ m2, for every nef Cartier divisor N on X and for each i > 0. Since
Rif∗(F(mA+N)) = 0, by the Leray spectral sequence, we have

H i(Y, (f∗(F((m+m1)A+N)))(−iH)) ∼= H i(Y, f∗(F((m+m1)A− if ∗H +N)))

∼= H i(X,F(mA+m1A− if ∗H +N))

for each m ≥ m0 and for each i > 0. Since m1A− if ∗H+N is nef for 0 < i ≤ dimY ,
the right hand side vanishes. This implies that f∗(F((m+m1)A+N)) is 0-regular
with respect to H, and hence it is globally generated by the Castelnuovo-Mumford
regularity [79, Theorem 1.8.5]. Definingm0 := m1+m2, we obtain the assertion.

The next lemma is a consequence of the relative Castelnuovo-Mumford regularity
[79, Example 1.8.24], and is used in the proof of Theorems 5.2.5 and 5.2.6.

Lemma 5.2.3. Let k, f , X, Y and F be as in Lemma 5.2.1. Let W ⊆ Y be an
open subset. Let L be a Cartier divisor on X.

(1) If LW is fW -free, then there exists an integer n0 > 0 such that for each n ≥ n0

and each m > 0, the natural morphism

f∗OX(mL)⊗ f∗(F(nL)) → f∗(F((m+ n)L))

is surjective over W .

(2) If LW is fW -ample and fW -free, then there exists an integer n0 > 0 such that
for each n ≥ n0, for each m > 0 and for every Cartier divisor N on X whose
restriction NW to XW is fW -nef, the natural morphism

f∗OX(mL)⊗ f∗(F(nL+N)) → f∗(F((n+m)L+N))

is surjective over W .

Proof. Replacing f : X → Y by fW : XW → W , we may assume that W = Y . Set
L := OX(L). We first show that (2) implies (1). Indeed, since L is f -free, there
exist surjective projective morphisms g : X → Z and h : Z → Y with h ◦ g = f
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such that L ∼= g∗M for an h-ample and h-free line bundle M on Z. Then we have
the following commutative diagram of natural morphisms:

(h∗Mm)⊗ h∗((g∗F)⊗Mn) //

��

h∗((g∗F)⊗Mm+n)

∼=

��

(h∗g∗g
∗Mm)⊗ h∗((g∗F)⊗Mn)

∼=
��

h∗g∗Lm ⊗ h∗g∗(F ⊗ Ln) // h∗g∗(F ⊗ Lm+n)

Here the isomorphisms follow from the projection formula. The surjectivity of the
upper horizontal morphism induces that of the lower horizontal morphism. Hence
we see that it is enough to prove (2).

We show (2). We first prove the case m = 1. In this case, by Keeler’s relative
Fujita vanishing ([71, Theorem 1.5]), there exists an integer n0 > 0 such that for
each n ≥ n0 and every f -nef line bundle N on X, F ⊗ Ln ⊗ N is 0-regular with
respect to L and f , and hence the surjectivity follows from the relative Castelnuovo-
Mumford regularity [79, Example 1.8.24]. Next we show the case when m ≥ 2. In
this case, we have the following commutative diagram of natural morphisms:

(f∗L)⊗m ⊗ f∗(F ⊗ Ln ⊗N ) //

��

f∗Lm ⊗ f∗(F ⊗ Ln ⊗N )

��

(f∗L)⊗m−1 ⊗ f∗(F ⊗ Ln+1 ⊗N )

��
...

��
f∗(F ⊗ Lm+n ⊗N ) f∗(F ⊗ Lm+n ⊗N )

By the above argument, we see that the left vertical morphisms are surjective, and
hence so is the right vertical morphism, which is our claim.

Notation 5.2.4. Let k be an F -finite field and f : X → Y be a surjective projective
morphism from a pure dimensional quasi-projective k-scheme X satisfying S2 and
G1 to a normal quasi-projective variety Y . Let a > 0 be an integer and E be an
effective AC-divisor on X such that aKX +E is Cartier. Set ∆ := E/a. Let U ⊂ X
be a Gorenstein open subset and let S ⊆ Y be a non-empty subset such that the
following conditions hold for every y ∈ S:

(i) Y is regular in a neighborhood of y and f is flat at every point in f−1(y);

(ii) codimXy
(Xy \ Uy) ≥ 2;

(iii) the support of E does not contain any irreducible component of f−1(y);
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(iv) (Xy,∆|Uy
) is F -pure, where y := Spec k(y) and ∆|Uy

is the Z(p)-AC divisor on
Xy obtained as the unique extension of the Z(p)-Cartier divisor ∆|Uy

on Uy.

Let D be a Q-Cartier divisor on Y .

In this setting, we show the following theorems.

Theorem 5.2.5. With the notation as in 5.2.4, assume that X is projective and
KX +∆ is Q-Cartier.

(1) If p ∤ a and −(KX +∆+ f ∗D) is nef, then −(KY +D) is weakly positive over
an open subset of Y containing S.

(2) If KX is Q-Cartier and −(KX +∆ + f ∗D) is ample, then −(KY +D) is big
over an open subset of Y containing S.

Theorem 5.2.6. With the notation as in 5.2.4, let b > 0 be an integer such that
bD is Cartier. Set L := abKX + bE + af ∗(bD). Assume that the natural morphism

f ∗f∗OX(−L) → OX(−L)

is surjective over f−1(S). If p ∤ a and f∗OX(−L) is globally generated over S, then
−(KY +D) is weakly positive over S.

Remark 5.2.7. In the case when X is a normal variety and S is the singleton {η}
of the generic point η of Y , conditions (i)–(iii) above hold. However, condition (iv)
does not necessarily hold even if X is smooth and ∆ = 0.

Proof of Theorem 5.2.5. First we show that (1) implies (2). By the assumption of
(2), ∆ is Q-Cartier. Let m > 0 and c ≥ 0 be integers such that a = mpc and p ∤ m.
Take an integer e ≫ 0. Set a′ := m(pe + 1), E ′ := pe−cE and ∆′ := (pe−cE)⊗ a′−1.
Then p ∤ a′, and E ′ satisfies assumption (iii). Furthermore, ∆′ satisfies assumption
(iv). Indeed, we have

∆−∆′ = a′E ⊗ 1

aa′
− ape−cE ⊗ 1

aa′

= (m(pe + 1)−mpcpe−c)E ⊗ 1

aa′
= mE ⊗ 1

aa′
=
m

a′
∆ =

1

pe + 1
∆ ≥ 0,

and hence ∆′
y ≤ ∆y for every y ∈ S, which implies that (Xy,∆

′
y) is also F -pure for

every y ∈ S. Replacing e by a larger integer if necessary, we may assume that

−(KX +∆′ + f ∗D) = −(KX +∆+ f ∗D)− 1

pe + 1
∆

is an ample Q-Cartier divisor. Then −(KX + ∆′ + f ∗(D′ + εH)) is nef for an
ample Cartier divisor H on Y and an ε ∈ Q with 0 < ε ≪ 1. By (1) we see that
−(KY +D + εH) is weakly positive over an open subset Y1 ⊆ Y containing S, and
hence −(KY +D) is big over Y1.

Next we show (1). The proof is divided into seven steps.
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Step 1. In this step, we prove that we may assume that S is an open subset. In other
words, there exists an open subset S ′ ⊆ Y containing S such that conditions (i)–(iv)
hold for every y ∈ S ′. Note that weak positivity over S ′ implies weak positivity
over S. Set r := dimX − dimY . Let Y ′ be the subset of points satisfying condition
(i). Then Y ′ ⊆ Y is an open subset containing S, and Xy is an S2 scheme of
pure dimension r for every y ∈ Y ′. Since the function dim(X \ U)y on Y is upper
semicontinuous by Chevalley’s theorem ([50, Corollaire 13.1.5]), we obtain that the
function codimXy

(Xy \ Uy) = r − dim ((X \ U)y) on Y ′ is lower semicontinuous.
Therefore the subset of points y in Y ′ with codimXy

(Xy \ Uy) ≥ 2 is open, and
contains S. By an argument similar to the above, we see that the subset of points
y in Y ′ with codimXy

(Ey) ≥ 1 is open, and contains S. Hence, shrinking Y ′ if
necessarily, we may assume that every y ∈ Y ′ satisfies conditions (i)–(iii). Applying
Lemma 1.3.3 (1) (set S ′ = V ), we obtain an open subset S ′ ⊆ Y ′ containing S such
that conditions (i)–(iv) hold for every y ∈ S ′.

Step 2. In this step, we reduce the proof to a numerical condition. By Step 1, we
may assume that S ⊆ Y is open. Let A be an ample and free Cartier divisor on
X. By Lemma 5.2.2, we have an integer m′ > 0 such that f∗OX(mA) is globally
generated for each integer m ≥ m′. Let V denote the regular locus of Y . Note
that S ⊆ V by assumption (i). By Lemma 5.2.1, we have an integer m′′ > 0 such
that fV ∗OXV

(N +mAV ) is locally free over S for each integer m ≥ m′′ and every
Cartier divisor N on XV whose restriction NS to XS is fS-nef. Replacing A by
max{m′,m′′}A if necessary, we may assume that m′ = m′′ = 1. For simplicity, we
set

D′ := D +KY ,

G(l,m) := fV ∗OXV
(l(KXV /V +∆V ) +mAV ) and

t(l,m) := tS(G(l,m), D′|V )

for every integers l,m with a|l. Then, since f∗OX(mA) is globaly generated, we
have t(0,m) ≥ 0 for each m > 0. Furthermore, since −l(KXV /V + ∆V )S is fS-nef
for each l ≥ 0 with a|l by the assumption, G(−l,m) is locally free over S for each
l ≥ 0 with a|l and m > 0. Our goal is to prove that t(0,m) = +∞ for an integer
m ≥ 0. If this is shown, then by Lemma 3.2.2 we obtain that −D′|V = −(KY +D)|V
is weakly positive over S. As mentioned in Remark 3.1.3 (2), this is equivalent to
the weak positivity of −(KY +D). In order to get a contradiction, we assume that
t(0,m) ̸= +∞ for each integer m > 0. Then we have 0 ≤ t(0,m) ∈ R.
Step 3. Let d > 0 be an integer divisible by a such that dD and d(KX + ∆) is
Cartier. Let ql and rl denote the quotient and the remainder of the division of an
integer l by d, respectively. In this step, we show that there exists an integer m0 > 0
such that

dql ≤ t(−l,m)

for each m ≥ m0 and each l ≥ 0 with a|l. Since aKX + E is Cartier and S is
contained in the regular locus V of Y , we have that for each 0 ≤ r < d with a|r,

Mr := f ∗ω⊗r
Y (−r(KX +∆))
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is invertible in a neighborhood of f−1(S). Hence we see that Mr is flat over Y at
every point of f−1(S) by assumption (i). As shown in Lemmas 5.2.1 and 5.2.2, there
exists an integer m0 > 0 such that for every integer m ≥ m0, for every nef Cartier
divisor N on X and for each 0 ≤ r < d with a|r, f∗(Mr(N +mA)) is locally free
over S and globally generated over Y . Set L := −(dKX + d∆+ f ∗(dD)). Then by
the assumption of (1), L is a nef Cartier divisor on X. For each m ≥ m0 and each
l ≥ 0 with a|l, we have the following isomorphisms:

(G(−l,m)) (−dqlD′|V )
=
(
fV ∗OXV

(−l(KXV /V +∆V ) +mAV )
)
(−dqlD′|V )

∼=
(
fV ∗OXV

((−rl − dql)(KXV /V +∆V ) +mAV )
)
(−ql(dD′|V ))

∼=fV ∗OXV
(−rl(KXV /V +∆V )− ql(dKXV /V + d∆V + fV

∗(dD′|V )) +mAV )
∼=fV ∗OXV

(−rl(KXV /V +∆V )− ql(dKXV
+ d∆V + fV

∗(dD|V )) +mAV )
∼=fV ∗OXV

(rlfV
∗KV − rl(KX +∆)V − ql(dKX + d∆+ f ∗(dD))V +mAV )

∼=fV ∗ ((Mrl |XV
)(qlLV +mAV )) ∼= (f∗Mrl(qlL+mA)) |V .

Here the isomorphisms in the forth and the last line follow from the projection
formula and the flatness of V → Y , respectively. Note that since a|l and a|d, we
have a|rl. By the choice of m0, we see that f∗(Mrl(qlL+mA)) is globally generated,
and hence so is (G(−l,m)) (−dqlD′|V ). This implies that dql ≤ t(−l,m).

Step 4. The assumption of the projectivity ofX is used only in Steps 2 and 3. Hence,
replacing f : X → Y by fV : XV → V , we may assume that V = Y in the steps
below. Then

G(l,m) = f∗OX(l(KX/Y +∆) +mA) and t(l,m) = tS(G(l,m), D′)

for every integers l,m with a|l.
Step 5. In this step, we show that there exists an integer n0 > 0 such that

t(0,m) + t(−l, n) ≤ t(−l,m+ n)

for each n ≥ n0, each m > 0 and each l ≥ 0 with a|l. By Step 1 we may assume
that S ⊆ Y is open. By the choice of A, we have that AS is fS-ample and fS-free.
Applying Lemma 5.2.3 (2), we get an integer n0 > 0 such that for each n ≥ n0, each
m > 0 and every Cartier divisor N on X whose restriction NS to XS is fS-nef,

fS∗OXS
(mAS)⊗ fS∗OXS

(NS + nAS) → fS∗OXS
(NS + (m+ n)AS)

is surjective. Since −(aKX/Y + E)S is an fS-nef Cartier divisor, it follows that for
each n ≥ n0 and each l ≥ 0 with a|l, the natural morphism

G(0,m)⊗ G(−l, n) → G(−l,m+ n)
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is surjective over S. Hence we obtain that

t(0,m) + t(−l, n) = tS(G(0,m), D′) + tS(G(−l, n), D′)

Lemma 3.2.2 (2)

≤ tS(G(0,m)⊗ G(−l, n), D′)

Lemma 3.2.2 (1)

≤ tS(G(−l,m+ n), D′) = t(−l,m+ n).

Here note that since t(0,m) ̸= +∞,−∞ as mentioned in Step 2, we can use
Lemma 3.2.2 (2).

Step 6. In this step, we prove that there exists an integer m1 > 0 such that

t(1− pe,mpe) ≤ pet(0,m)

for each m ≥ m1 and each e ≥ 0 with a|(pe − 1). Now we have the morphism

fY e∗ϕ
(e)
(X/Y,∆) ⊗OXY e (mAY e) : G(1− pe,mpe) → fY e∗OXY e (mAY e) ∼= F e

Y
∗G(0,m)

for each integers e,m ≥ 0 with a|(pe − 1). Here the isomorphism follows from the
flatness of F e

Y . Applying Lemma 1.3.3 (2), we see that there exists an integerm1 > 0
such that the morphism

(fS)Se∗

(
ϕ
(e)
(XS/S,∆S)

⊗OXSe (mASe)
)
∼=
(
fY e∗ϕ

(e)
(X/Y,∆) ⊗OXY e (mAY e)

)
|S

is surjective for each m ≥ m1 and each e ≥ 0 with a|(pe − 1). Therefore we obtain
that

t(1− pe,mpe) = tS(G(1− pe,mpe), D′)
Lemma 3.2.2 (1)

≤ tS(F
e
Y
∗G(0,m), D′)

Lemma 3.2.2 (3)
= petS(G(0,m), D′) = pet(0,m).

Step 7. In this step, we obtain a contradiction. Fix an integer µ > 0 such that
m1µ ≥ max{m0, n0}. Then by Steps 5 and 6, we see that

(pe − µ)t(0,m1) + t(1− pe,m1µ)
Step 5

≤ t(1− pe,m1p
e)

Step 6

≤ pet(0,m1)

for each e ≥ 0 with a|(pe−1) and pe ≥ µ. Therefore, we obtain that t(1−pe,m1µ) ≤
µt(0,m1). In particular, t(1 − pe,m1µ) is bounded from above. However, as shown
in Step 3 we have dqpe−1 ≤ t(1− pe,m1µ), which implies that t(1− pe,m1µ) goes to
infinity as e goes to infinity. This is a contradiction.

Proof of Theorem 5.2.6. The strategy of the proof is very similar to the one of The-
orem 5.2.5 (1).

Step 1. In this step, we show that we may assume that Y is regular. Let V be the
regular locus of Y . Then we have S ⊆ V . As mentioned in Remark 3.1.3 (2), the
weak positivity of −(KY +D) is equivalent to the weak positivity of −(KY +D)|V .
Hence, replacing f : X → Y by fV : XV → V , we may assume that Y is regular.
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Step 2. In this step, we show that we may assume that S ⊆ Y is open. As shown in
Step 1 of the proof of Theorem 5.2.5, there exists an open subset S ′ ⊆ Y containing
S such that conditions (i)–(iv) hold for every y ∈ S ′. Let B ⊂ X and C ⊂ Y be,
respectively, the supports of the cokernels of the natural morphisms

f ∗f∗OX(−L) → OX(−L) and H0(Y, f∗OX(−L))⊗OY → f∗OX(−L).

Then S ∩ f(B) = S ∩ C = ∅ by the assumption. Hence we may replace S by the
open subset S ′ \ (f(B) ∪ C).
Step 3. In this step, we reduce the proof to a numerical condition. Let A′ be an
f -ample and f -free Cartier divisor on X. Let H be an ample and free Cartier divisor
on Y . We take an integer c > 0 and set A := A′ + cf ∗H. Applying Lemma 5.2.1
and Lemma 5.2.3 (2), we get an integer n′ > 0 such that f∗OX(N + nA) is locally
free over S and the natural morphism

f∗OX(mA)⊗ f∗OX(N + nA) → f∗OX(N + (m+ n)A)

is surjective over S for each n ≥ n′, each m > 0 and every Cartier divisor N whose
restriction NS to XS is fS-nef. Note that since the statement is local on Y , n′ is
independent of the choice of c. Replacing A by n′A, we may assume that n′ = 1.
For simplicity, we set

D′ := D +KY ,

G(l,m) := f∗OX(l(KX/Y +∆) +mA) and

t(l,m) := tS(G(l,m), D′)

for every integers l,m with a|l. Note that since−l(KX/Y+∆)S is fS-nef for each l ≥ 0
by the assumption, we see that G(−l,m) is locally free over S for each l ≥ 0 with
a|l and m > 0. Our goal is to prove that t(−l,m) = +∞ for some integers l,m ≥ 0
with a|l. If this is shown, then the assertion follows from Lemma 3.2.2 (4). Note
that G(−l,m) is of positive rank, because of the fS-freeness of (−l(KX+∆)+mA)S.
In order to get a contradiction, we assume that t(−l,m) ̸= +∞ for every integers
l,m ≥ 0 with a|l.
Step 4. Set d := ab. Let ql and rl denote the quotient and the remainder of the
division of an integer l by d, respectively. In this step, we show that there exists an
l0 > 0 (independent of the choice of c) such that for each l ≥ l0 with a|l,

dql−l0 + t(−rl−l0 − l0, 1) ≤ t(−l, 1).

By the projection formula, we have

(G(−d, 0)) (−dD′) ∼= f∗OX(−b(aKX/Y + E)− dD′)

= f∗OX(−b(aKX + E + af ∗D)).

The right hand side is globally generated over S by the assumption, and hence so is
the left hand side. This implies that

d ≤ t(−d, 0) (5.2.6.1)
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On the other hand, by the assumption, −b(aKX/Y + E)|XS
= −LS + abfS

∗(D|Y +
KY )|S is fS-free. Applying Lemma 5.2.3 (1), we have an integer l0 > 0 such that for
each l ≥ l0, the natural morphism

f∗OX(−d(KX/Y +∆))⊗f∗OX(−l(KX/Y +∆) + A)

→ f∗OX(−(d+ l)(KX/Y +∆) + A)

is surjective over S. Note that since the statement is local on Y , l0 is independent of
the choice of c. Then by an argument similar to Step 5 of the proof of Theorem 5.2.5,
we get

t(−d, 0) + t(−l, 1) ≤ t(−d− l, 1). (5.2.6.2)

Consequently, we obtain

dql−l0 + t(−rl−l0 − l0, 1)
(5.2.6.1)

≤ ql−l0t(−d, 0) + t(−rl−l0 − l0, l)

(5.2.6.2)

≤ t(−dql−l0 − rl−l0 − l0, 1) = t(−l, 1).

Step 5. We show that for each m,n > 0 and l ≥ 0 with a|l,

t(0,m) + t(−l, n) ≤ t(−l,m+ n).

As mentioned in the previous step, −b(aKX/Y +E)|XS
is fS-free, and so it is fS-nef.

By an argument similar to Step 5 of the proof of Theorem 5.2.5, we obtain the
claimed inequality.

Step 6. By the same argument as Step 6 of the proof of Theorem 5.2.5, we see that
there exists an m1 > 0 such that for each m ≥ m1 and each e ≥ 0 with a|(pe − 1),

t(1− pe,mpe) ≤ pet(0,m).

Step 7. In this step, we obtain a contradiction. Let l0 be as in Step 4. Recall that
A := A′ + cf ∗H and l0 is independent of the choice of c. Replacing c by a larger
integer, we may assume that for each integer l with 0 ≤ l ≤ d(l0 + 1) and a|l,

G(l, 1) = f∗OX(l(KX/Y +∆) + A′ + cf ∗H) ∼=
(
f∗OX(l(KX/Y +∆) + A′)

)
(cH)

is globally generated, which implies that

0 ≤ t(−l, 1). (5.2.6.3)

Using the inequalities in the previous steps, we obtain that

(pe − 1)t(0,m1) + dqpe−1−l0
(5.2.6.3)

≤ (pe − 1)t(0,m1) + (m1 − 1)t(0, 1) + t(−rpe−1−l0 − l0, 1) + dqpe−1−l0
Step 4

≤ (pe − 1)t(0,m1) + (m1 − 1)t(0, 1) + t(1− pe, 1)

Step 5

≤ (pe − 1)t(0,m1) + t(1− pe,m1)
Step 5

≤ t(1− pe,m1p
e)

Step 6

≤ pet(0,m1).



55

for each e ≥ 0 with pe− 1 ≥ l0 and a|(pe− 1). Hence by the transposition we obtain
dqpe−1−l0 ≤ t(0,m1). Note that since 0 ≤ m1t(0, 1) ≤ t(0,m1) < +∞ by Step 5, we
have t(0,m1) ∈ R. However, dqpe−1−l0 goes to infinity as e goes to infinity, which is
a contradiction.

In the remaining part of this section, we give some corollaries of the above
theorems in the following situation:

Notation 5.2.8. Let f : X → Y be a surjective morphism between regular projec-
tive varieties over an F -finite field, and let ∆ be an effective Q-divisor on X such
that a∆ is integral. Let D be a Q-divisor on Y . Let η be the geometric generic
point of Y .

Corollary 5.2.9. With the notation as in 5.2.8, assume that f is flat, that the
support of ∆ does not contain any component of any fiber, and that (Xy,∆y) is
F -pure for every point y ∈ Y .

(1) If p ∤ a and −(KX +∆+ f ∗D) is nef, then so is −(KY +D).

(2) If −(KX +∆+ f ∗D) is ample, then so is −(KY +D).

Proof. This follows from Theorem 5.2.5 and Remark 3.1.3 immediately.

Corollary 5.2.10. With the notation as in 5.2.8, assume that (Xη,∆η) is F -pure.

(1) If p ∤ a and −(KX +∆+ f ∗D) is nef, then −(KY +D) is pseudo-effective.

(2) If −(KX +∆+ f ∗D) is ample, then −(KY +D) is big.

(3) If (Xη,∆η) is strongly F -regular and −(KX + ∆ + f ∗D) is nef and big, then
−(KY +D) is big.

Proof. By remark 3.1.3, (1) and (2) of the corollary follow from (1) and (2) of
Theorem 5.2.5, respectively. We prove (3). By Kodaira’s lemma, there exists a
Q-divisor ∆′ ≥ ∆ on X such that −(KX +∆′+f ∗D) is ample and (Xη,∆

′
η) is again

strongly F -regular. Hence (3) follows from (2).

Corollary 5.2.11. With the notation as in 5.2.8, assume that (Xη,∆η) is F -pure.
If p ∤ a and KX +∆ is numerically equivalent to f ∗(KY + L) for a Q-divisor L on
Y , then L is pseudo-effective.

Proof. Set D := −(KY + L). Then KX +∆+ f ∗D is numerically trivial, and so it
is nef. Hence by Corollary 5.2.10 (1), we obtain the assertion.
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Remark 5.2.12. Assume that KX +∆ ∼Q f
∗(KY + L) for a Q-divisor. It is known

that if (Xη,∆η) is globally F -split, then L is Q-linearly equivalent to an effective
Q-divisor on Y (see Theorem 2.2.2 or [25, Theorem B]). However, (Xη,∆η) is not
necessary globally F -split even if Xη is a smooth curve and ∆ = 0. Incidentally,
Chen and Zhang have proved that relative canonical divisors of elliptic fibrations
are Q-linearly equivalent to an effective Q-divisor on X [20, 3.2].

Remark 5.2.13. In the case when dimY = 1, Corollary 5.2.11 follows from a result
of Patakfalvi [91, Theorem 1.6].

Corollary 5.2.14. With the notation as in 5.2.8, assume that f is flat and every
geometric fiber is F -pure.

(1) If X is a Fano variety, that is, −KX is ample, then so is Y .

(2) If the geometric generic fiber of f is strongly F -regular and if X is a weak
Fano variety, that is, −KX is nef and big, then so is Y .

Proof. This follows from Corollaries 5.2.9 (2) and 5.2.10 (3) by setting D = ∆ =
0.

Corollary 5.2.15. With the notation as in 5.2.8, assume that Y is not a point.

(1) If (Xη,∆η) is F -pure, then −(KX/Y +∆) is not ample.

(2) If (Xη,∆η) is strongly F -regular, then −(KX/Y +∆) cannot be nef and big.

Proof. SetD := −KY . Then −(KX+∆+f ∗D) = −(KX/Y +∆). Since −(KY +D) =
0 is not big, the assertions follow from Corollary 5.2.10 (2) and (3).

Corollary 5.2.16. With the notation as in 5.2.8, assume that OX(−m(KX+∆))|Xη

is globally generated for an m > 0 with a|m and that Y is not a point. If p ∤ a and
(Xη,∆η) is F -pure, then f∗OX(−m(KX/Y +∆)) is not big.

Proof. Set G(n) := f∗OX(n(KX/Y + ∆)) for every n ∈ Z with a|n. Let H be an
ample and free divisor on Y . We show that the bigness of G(−m) induces the pseudo-
effectivity of −H, which contradicts to the assumption that Y is not a point. Recall
that the pseudo-effectivity of −H is equivalent to its weak positivity. Since G(−m)
is torsion free, there exists an open subset V ⊆ Y such that G(−m)|V is locally free
and codimY (Y \ V ) ≥ 2. As explained in Remark 3.1.3 (2), G(−m) (resp. −H) is
weakly positive if and only if so is G(−m)|V (resp. −H|V ). Replacing f : X → Y
by fV : XV → V , we may assume that G(−m) is locally free. (Here we lose the
projectivity of X and Y .) We assume that G(−m) is big. Then by Observation 3.1.4
(1) and (2), we see that (SlG(−m))(−H) is generically globally generated for some
l > 0. Since OX(−m(KX + ∆))|Xη is globally generated, we have an n0 > 0 such
that the natural morphism

(SlG(−m))⊗n−n0 ⊗ G(−lmn0) → G(−lmn)
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is generically surjective for every n ≥ n0, by Lemma 5.2.3 (1). Let n1 > 0 be
an integer such that (G(−lmn0))(n1H) is globally generated. Tensoring the above
morphism with OX((n0 + n1 − n)H), we have the generically surjective morphism(

(SlG(−m))(−H)
)⊗n−n0 ⊗ (G(−lmn0))(n1H) → (G(−lmn))((n0 + n1 − n)H).

From this we see that (G(−lmn))((n0 +n1 −n)H) is generically globally generated.
Since

(G(−lmn))((n0 + n1 − n)H) ∼= f∗OX(−lmn(KX/Y +∆) + f ∗(n0 + n1 − n)H)
∼= f∗OX(−lmn(KX/Y +∆+ f ∗Hn))
∼= f∗OX(−lmn(KX +∆+ f ∗(Hn −KY ))),

where Hn := (n− n0 − n1)(lmn)
−1H, we can apply Theorem 5.2.6, and then we get

that −(KY + (Hn −KY )) = −Hn is weakly positive for every n ≥ n0. Hence −H is
weakly positive, which completes the proof.

Remark 5.2.17. We cannot remove the assumption of F -purity of fibers in Corollar-
ies 5.2.11 and 5.2.16. Indeed, the quasi-elliptic fibration g : X → C introduced in
Remark 4.2.2 satisfies KS/C ∼Q g∗L for a Q-divisor L on C with degL < 0. Note
that general fibers of g have cuspidal singularities, which are not F -pure [48].

5.3 Results in arbitrary characteristic

In this section, we generalize several results in Section 5.2 to arbitrary characteristic
by using reduction to positive characteristic. In particular, we prove characteristic
zero counterparts of Corollaries 5.2.15 and 5.2.16 (Theorems 5.3.5 and 5.3.6). In the
last of this section, we deal with morphisms which are special but not necessarily
smooth, and show that images of Fano varieties are again Fano varieties. First
we recall some classes of singularities in characteristic zero defined by reduction to
positive characteristic.

Definition 5.3.1. Let X be a normal variety over a field k of characteristic zero,
and ∆ be an effective Q-Weil divisor on X. Let (XR,∆R) be a model of (X,∆)
over a finitely generated Z-subalgebra R of k. (X,∆) is said to be of dense F -pure
type (resp. strongly F -regular type) if there exists a dense (resp. dense open) subset
S ⊆ Spec R such that (Xµ,∆µ) is F -pure (resp. strongly F -regular) for all closed
points µ ∈ S.

Remark 5.3.2. The above definition can be generalized in an obvious way to the case
where X is a finite disjoint union of varieties over k.

Theorem 5.3.3 ([104, Corollary 3.4]). Let X be a normal variety over a field of
characteristic zero, and let ∆ be an effective Q-Weil divisor on X such that KX+∆
is Q-Cartier. Then (X,∆) is klt if and only if it is of strongly F -regular type.
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Notation 5.3.4. Let f : X → Y be a surjective morphism between smooth projec-
tive varieties over an algebraically closed field of characteristic zero, and ∆ be an
effective Q-divisor on X.

Theorem 5.3.5. With the notation as in 5.3.4, assume that Y is not a point. If
(Xy,∆y) is of dense F -pure type (resp. klt) for a general closed point y ∈ Y , then
−(KX/Y +∆) is not ample (resp. not nef and big). In particular, −KX/Y is not nef
and big.

Proof. Assume that (Xy,∆y) is of dense F -pure type for a general closed point
y ∈ Y . Let XR, ∆R, YR, yR and fR be respectively models of X, ∆, Y , y and f
over a finitely generated Z-algebra R. We may assume that (XR)yR is a model of
Xy over R. Then there exists a dense subset S ⊆ Spec R such that ((Xy)µ,∆µ) is
F -pure for every µ ∈ S. Note that (Xy)µ ∼= (Xµ)yµ and (∆y)µ = (∆µ)yµ . Thus
by Corollary 5.2.15, we see that −(KXµ/Yµ + ∆µ) is not ample. This implies that
−(KX/Y + ∆) is not ample. Next, we assume that (Xy,∆y) is klt for a general
closed point y ∈ Y . If −(KX/Y + ∆) is nef and big, then by Kodaira’s lemma,
there exists ∆′ ≥ ∆ such that (Xy,∆

′
y) is klt for a general closed point y ∈ Y and

−(KX/Y + ∆′) is ample. However, by Theorem 5.3.3, (Xy,∆
′
y) is of dense F -pure

type, which contradicts to the above arguments.

Theorem 5.3.6. With the notation as in 5.3.4, assume that Y is not a point and
that (Xy,∆y) is of dense F -pure type for a general closed point y ∈ Y . Let η be a
geometric generic point of Y . If OX(−m(KX/Y + ∆))|Xη

is globally generated for
some m > 0 such that m∆ is integral, then f∗OX(−m(KX/Y +∆)) is not big.

Proof. Set G := f∗OX(−m(KX/Y + ∆)) and r := rank G. Since y ∈ Y is gen-
eral, f is flat at every point in f−1(y) and dimH0(Xy,−m(KXy + ∆y)) = r.
Let XR, ∆R, YR, yR and fR be respectively models of X, ∆, Y , y and f . By
replacing R if necessary, we may assume that fR∗OXR

(−m(KXR/YR + ∆R)) and
(XR)yR are respectively models of G and Xy, and that for every µ ∈ Spec R,
dimH0((Xµ)yµ ,−m(KXµ + ∆µ)yµ) = r. Hence by [58, Corollary 12.9], the natural
morphism

Gµ = fR∗OXR
(−m(KXR/YR +∆R))|Yµ → fµ∗OXµ(−m(KXµ/Yµ +∆µ))

is surjective over yµ. Since fµ∗OXµ(−m(KXµ/Yµ + ∆µ)) is not big as shown in
Corollary 5.2.16, Gµ is also not big. Thus the lemma below completes the proof.

Lemma 5.3.7. Let G be a torsion free coherent sheaf on a smooth projective variety
Y over an algebraically closed field of characteristic zero. Let YR and GR be models
of Y and G respectively over a finitely generated Z-algebra. If G is big, then there
exists a dense open subset S ⊆ Spec R such that Gµ is big for every µ ∈ S.

Proof. Let H be an ample and free divisor on Y . Replacing Y by its appropriate
open subset, we may assume that G is locally free. By Observation 3.1.4 (1) and (2),
we have an integer c > 0 such that (ScG)(−H) is generically globally generated. In
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other words, there exists a generically surjective morphism φ :
⊕

OY (H) → ScG.
Let y ∈ Y be a general closed point. Then φ is surjective in a neighborhood of y.
Let φR, HR and yR be models of φ, H and y over R, respectively. By replacing R if
necessary, we may assume that φR is surjective over yR. Thus for every closed point
µ ∈ Spec R, the morphism φµ :

⊕
OXµ(Hµ) → ScGµ obtained as the restriction of

φR is surjective over yµ. This implies that Gµ is big, since Hµ is ample.

Kollár, Miyaoka and Mori [74, Corollary 2.9] (cf. [85, THEOREM 3]) have proved
that images of Fano varieties under smooth morphisms are again Fano varieties.
The next theorem shows that the same statement holds when morphisms are not
necessary smooth.

Theorem 5.3.8. Let f : X → Y be a surjective morphism between smooth projective
varieties over an algebraically closed field k of any characteristic p ≥ 0, and let ∆
be an effective Q-divisor on X such that a∆ is integral for some 0 < a ∈ Z \ pZ.
Assume that for every closed point x ∈ X, there exist a neighborhood U ⊆ X (resp.
V ⊆ Y ) of x (resp. f(x)) and a commutative diagram

U
α //

(fV )|U
��

Am

φ
��

Spec k[u1, . . . , um]

V
β // An Spec k[v1, . . . , vn]

whose horizontal morphisms are étale, that the morphism φ is defined as

φ(a1, . . . , am) =

 ∏
0<i≤l1

ai,
∏

l1<i≤l2

ai, . . . ,
∏

ln−1<i≤ln

ai

 with 0 < l1 < · · · < ln ≤ m,

and that

∆|U = α∗

( ∑
ln<i≤m

didiv(ui)

)
with dln+1, . . . , dm ∈ Z(p) ∩ [0, 1].

In this situation, if −(KX + ∆ + f ∗D) is ample for some Q-Cartier divisor D on
Y , then so is −(KY +D).

Proof. When the characteristic of k is zero, one can easily check that the entire
setting can be reduced to characteristic p ≫ 0. Thus we only need to consider the
case when p > 0. Let x ∈ X be a closed point, and let U , V , α, β and φ be as above.
Set y := f(x), a := α(x) = (a1, . . . , am) ∈ Am and b := β(y) = (b1, . . . , bn) ∈ An.
Set u′i := ui − ai and v

′
j := vj − bj for each i and j. Then

φ∗v′j =
∏

lj−1<i≤lj

(u′i + ai)−
∏

lj−1<i≤lj

ai

for j = 1, . . . , n, where l0 := 0. Set g :=
∏

ln<i≤m ui. It is easy to check
that the sequence φ∗v′1, . . . , φ

∗v′n, g is k[u1, . . . , um]-regular. In particular, Z :=
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Z(φ∗v′1, . . . , φ
∗v′n) ⊆ Am is equi-dimensional of dimension m − n. Note that Z is

the fiber of φ over b. Since étaleness is stable under base change, the morphism
αb : Ub → Z obtained by the restriction of α to the fibers over b is again étale.
Replacing V and U if necessary, we may assume that β−1(b) = {y}. Then Uy ∼= Ub.
This implies that every closed fiber of f is equi-dimensional, in particular f is flat.

Claim 5.3.9. (Xy,∆y) is F -pure for every closed point y ∈ Y .

If this claim holds, then the theorem follows from Corollary 5.2.9, because by the
assumption the support of ∆ does not contain any component of any fiber. Since∑

ln<i≤m didiv(ui) ≤ div(g), it suffice to show that the pair (Z, div(g)|Z) is F -pure
around a. Let ma be the maximal ideal of a. Then it is easily seen that

(φ∗v′1 · · ·φ∗v′n)
q−1 · gq−1 /∈ m[q]

a

for every q = pe. Thus by [56, Corollary 2.7], the pair (Z, div(g)|Z) is F -pure, which
completes the proof.

Example 5.3.10. When ∆ = 0, the assumptions of Theorem 5.3.8 hold for a flat toric
morphism with reduced closed fibers between smooth projective toric varieties over
an algebraically closed field.

Example 5.3.11. Let {e1, e2, e3} be the canonical basis of R3. For integers m,n ≥ 0,
we define vm,n := (1,m, n) ∈ R3. Let Σm,n be the fan consisting of all the faces of
the following cones:

< vm,n, e2, e2 + e3 >,< vm,n, e2 + e3, e3 >,

< vm,n,−e2, e3 >,< vm,n, e2,−e3 >,< vm,n,−e2,−e3 >,

< −e1, e2, e2 + e3 >,< −e1, e2 + e3, e3 >,

< −e1,−e2, e3 >,< −e1, e2,−e3 >,< −e1,−e2,−e3 > .

Let Xm,n be the smooth toric 3-fold corresponding to the fan Σm,n with respect to
the lattice Z3 ⊂ R3. Then Xm,n is a Fano variety if and only if m,n ∈ {0, 1}. The
projection R3 → R2 : (x, y, z) 7→ (x, y) induces a toric morphism f : Xm,n → Ym
from Xm,n to the Hirzebruch surface Ym := PP1(OP1 ⊕ OP1(m)). Set ∆ = 0. Then
one can check that f satisfies the assumptions of Theorem 5.3.8, but is not smooth.
Hence by Theorem 5.3.8, we see that Ym is a Del Pezzo surface if m = 0, 1. In fact,
it is well known that Ym is a Del Pezzo surface if and only if m = 0, 1.



Chapter 6

Iitaka’s Cn,m conjecture

6.1 Summary

The Kodaira dimension is one of the most important birational invariants and plays
a key role in the birational classification of algebraic varieties. For an algebraic fiber
space, we have the following conjecture on Kodaira dimensions, which has been
proposed by Iitaka in characteristic zero.

Conjecture 6.1.1 (Cn,m). Let f : X → Y be an algebraic fiber space, and let X
and Y be smooth projective varieties of dimension n and m respectively over an
algebraically closed field k. Suppose that the geometric generic fiber Xη is smooth.
Then

κ(X) ≥ κ(Xη) + κ(Y ).

In characteristic zero, many results related to this conjecture are known [7, 14, 16,
18, 35, 37, 66, 67, 68, 72, 76, 77, 108, 109]. In particular, this conjecture has been
reduced to problems in the minimal model program by Kawamata [68, Corollary
1.2].

In positive characteristic, Conjecture 6.1.1 has been proved in some cases re-
cently. From now on we work over an algebraically closed field k of characteristic
p > 0. Chen and Zhang have shown Cn,n−1 [20, Theorem 1.2]. Patakfalvi has proved
the conjecture in the case where Y is of general type and S0(Xη, ωXη

) ̸= 0 [92]. Un-

der the assumption that p > 5, C3,1 has been shown when k = Fp by Birkar, Chen
and Zhang [10, Theorem 1.2] and when the genus of Y is at least two by Zhang
[116, Corollary 1.9]. Note that [20, 10, 92, 116] dealt with algebraic fiber spaces
with singular geometric generic fibers.

One of the main results of this chapter is the theorem below.

Theorem 6.1.2. Conjecture C3,m holds when p > 5.

The cases when κ(Xη) is equal to 0 and 1 are proved in Subsections 6.3.1
and 6.3.2, respectively. The proofs rely on results of the minimal model program
for 3-folds in characteristic p > 5, which are summarized in Subsection 4.3.1. The
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case when κ(Xη) = 2 is a direct consequence of the next theorem, which is another
of the main results of this chapter.

Theorem 6.1.3 (Theorems 6.2.2 and 6.2.4). Let f : X → Y be an algebraic fiber
space, X and Y be smooth projective varieties and ∆ be an effective Q-divisor on
X such that a∆ is integral for some integer a > 0 not divisible by p. Let η be the
geometric generic point of Y . Assume that

(i) the k(η)-algebra
⊕

m≥0H
0(Xη,m(aKXη

+ (a∆)η)) is finitely generated,

(ii) there exists an integer m0 ≥ 0 such that

S0(Xη,∆η,m(aKXη
+ (a∆)η)) = H0(Xη,m(aKXη

+ (a∆)η))

for each m ≥ m0, and

(iii) either that Y is of general type or Y is a curve.

Then
κ(X,KX +∆) ≥ κ(Y ) + κ(Xη, KXη

+∆η).

Note that, as shown in the proof of Corollary 6.2.6, conditions (i) and (ii) are
satisfied if Xη is smooth, ∆η = 0, p > 5 and κ(Xη) = 2.

Theorem 6.1.3 is proved in Section 6.2 as an application of Theorem 4.1.1.

6.2 Algebraic fiber spaces with large RS(Xη, ωXη)

In this section, we prove Theorem 6.1.3. Throughout this section, we use the fol-
lowing notation.

Notation 6.2.1. Let X and Y be smooth projective varieties over an algebraically
closed field k of characteristic p > 0, and ∆ be an effective Q-divisor on X such
that a∆ is integral for some integer a > 0 not divisible by p. Let η be the geometric
generic point of Y . Let f : X → Y be a separable surjective morphism such that

(i) KXη
+∆η is finitely generated in the sense of Definition 2.1.8, and

(ii) there exists an integer m0 > 0 such that for every integer m ≥ m0,

S0(Xη,∆η,m(aKXη
+ (a∆)η)) = H0(Xη,m(aKXη

+ (a∆)η)).

Here condition (i) and (ii) are the same as in Theorem 4.2.1. We first prove the
case where Y is of general type, by using an argument similar to [92, §4] and the
proof of [92, Theorem 1.7].

Theorem 6.2.2. In the situation of Notation 6.2.1, assume that Y is of general
type. Then

κ(X,KX +∆) ≥ κ(Y ) + κ(Xη, KXη
+∆η).
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Proof. We may assume that κ(Xη, Kη +∆η) ≥ 0.

Step 1. Set S ′ := {ε ∈ Q|κ(X,KX/Y + ∆ − εf ∗H) ≥ κ(Xη, KXη
+ ∆η) + κ(Y )},

where H is an ample divisor on Y . We show that S ′ is nonempty. By assumption
(i), there exists an integer b > 0 such that R(Xη, ab(KXη

+ ∆η)) is generated by
H0(Xη, ab(KXη

+∆η)). By the projection formula, there exists an integer c > 0 such
that f∗OX(ab(KX/Y +∆)+ cf ∗H) is globally generated. Thus for every m > 0, the
natural morphism

m⊗
f∗OX(ab(KX/Y +∆) + cf ∗H) → f∗OX(abm(KX/Y +∆) + cmf ∗H)

is generically surjective, and hence f∗OX(abm(KX/Y +∆) + cmf ∗H) is generically
globally generated. This implies

dimkH
0(X, abm(KX +∆) + cmf ∗H)

≥ dimk(η)H
0(Xη, abm(KXη

+∆η)) + dimkH
0(Y, abmKY ).

Hence for ε0 := −c/(ab), we have κ(X,KX+∆−ε0f ∗H) ≥ κ(Xη, KXη
+∆η)+κ(Y ).

Step 2. Set S := {ε ∈ Q|κ(X,KX/Y +∆−εf ∗H) ≥ 0}. We show that supS = supS ′.
Since S ⊇ S ′ we have the inequality ≥. We show the inequality ≤. For an ε ∈ S,
KX/Y +∆− εf ∗H is Q-linearly equivalent to an effective Q-divisor. Thus for every
0 < δ ∈ Q and ε0 ∈ S ′,

κ(X, (1 + δ)(KX/Y +∆)− (ε+ δε0)f
∗H) ≥κ(X, δ(KX/Y +∆− ε0f

∗H))

≥κ(Xη, KXη
+∆η) + κ(Y ).

This implies (ε+ δε0)/(1 + δ) ≤ supS ′. Since limδ→0(ε+ δε0)/(1 + δ) = ε, we have
ε ≤ supS ′, and hence supS ≤ supS ′.

Step 3. We show that supS ≥ 0. For simplicity of notation, we denote
f∗OX(m(KX/Y +∆)) by G(m) for each m ∈ Z with a|m. By the proof of 4.2.1, we
have t(G(m), H) ≥ 0 for eachm ≥ m0. We fix anm ≥ m0 such that G(m) ̸= 0, where
such m exists by the assumption that κ(Xη,∆η, KXη

+∆η) ≥ 0. Let d > 0 be an in-
teger such that a|(pd−1). Then for every ε ∈ T (G(m), H) there exists an e > 0 such
that pdee ∈ Z and (F de

Y
∗G(m))(−pdeεH) has a nonzero global section. On the other

hand, since XY de is a variety, the natural morphism F
(de)
X/Y

#
: OX

Y de
→ F

(de)
X/Y ∗

OXde

is injective, which induces an injective OY de-module homomorphism

F de
Y

∗G(m) ∼=fY de∗OX
Y de

(am(KX
Y de/Y de +∆Y de))

↪→f (de)
∗OXde(ampde(KXde/Y de +∆)).

Note that the reducedness of XY de follows from the separability of f and the flatness
of FY . From this

H0(X, ampde(KX/Y +∆)− pdeεf ∗H) ̸= 0,

and hence we have (ampde)−1pdeε = (am)−1ε ≤ supS, and so

0 ≤ t(G(m), H)

am
≤ supS.
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Step 4. We show the assertion. By the assumption and Step3, there exists an ε ∈ S ′

such that KY − εH is linearly equivalent to an effective Q-divisor. Then

κ(X,KX +∆) =κ(X,KX/Y +∆+ f ∗KY )

≥κ(X,KX/Y +∆+ εf ∗H) ≥ κ(Xη, KXη
+∆η) + κ(Y ).

This is our claim.

Next, we show that Iitaka’s conjecture when Y is an elliptic curve (Theo-
rem 6.2.4). To this end, we recall the following result without the proof.

Theorem 6.2.3 ([62, Theorem 10.5]). Let f : X → Y be a surjective morphism
between smooth complete varieties, D be a divisor on Y , and E be an effective divisor
on X such that codim(f(E)) ≥ 2. Then κ(X, f ∗D + E) = κ(Y,D).

Theorem 6.2.4. In the situation of Notation 6.2.1, assume that Y is an elliptic
curve. Then

κ(X,KX +∆) ≥ κ(Y ) + κ(Xη, KXη
+∆η).

Proof. Set G(m) := f∗OX(m(KX/Y +∆)) for each m ∈ Z with a|m.

Step 1. By Theorem 4.1.1, we see that there exists an m0 > 0 such that G(m) is
weakly positive for each m ≥ m0 with a|m. Let M ≥ m0 be an integer. Applying
Proposition 1.4.3, we obtain a finite morphism αM : Y ′ → Y from an elliptic curve
Y ′ such that for each integer m with M ≥ m ≥ m0, αM

∗G(m) is isomorphic to a
direct sum of line bundles. Therefore, replacing αM if necessary, we may assume
that αM

∗G(m) ∼= G+(m) ⊕ G0(m), where G+(m) (resp. G0(m)) is a direct sum of
very ample (resp. numerically trivial) line bundles.

Step 2. We show that κ(XY ′ , KXY ′ + ∆Y ′) = κ(X,KX + ∆). Obviously, we need
only consider when α is separable and when α is purely inseparable. If α : Y ′ → Y
is separable then it is étale, thus so is αX : XY ′ → X, in particular XY ′ is a
smooth variety. Hence the claim follows from Theorem 6.2.3, where we note that
KXY ′ ∼ KXY ′/Y ′ ∼ (KX/Y )Y ′ ∼ (KX)Y ′ . If α = F

(e)
Y/k for some e > 0, then there is a

commutative diagram
Xe

F
(e)
X/Y

��

F
(e)
X/k

""
XY e

(F
(e)
Y/k

)X

//

fY e

��

Xke ∼=
//

fke
��

X

f
��

Y e

F
(e)
Y/k

// Yke ∼=
// Y.

Since XY e is a variety (cf. [92, Lemma 5.2]), we have injective morphisms OXke
→

(F
(e)
Y/k)X∗

OXY e → F
(e)
X/k∗

OXe , which induce injective morphisms

H0(X, am(KX +∆)) ↪→ H0(XY e , am(KXY e +∆Y e)) ↪→ H0(Xe, ampe(KXe +∆))

for every m > 0. Thus κ(X,KX +∆) = κ(XY e , KXY e +∆Y e) as claimed.
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Step 3. We complete the proof. Let l, n0 > m0 be as in the proof of Theorem 4.2.1.
By Steps 1 and 2, we may assume that G(m) ∼= G+(m) ⊕ G0(m) for each m ∈
{l} ∪ {n0 + i}1≤i<l, where G+(m) and G0(m) are as in Step 1. Let Sm ⊆ Pic0(Y ) be
the set of line bundles which is a direct summand of G0(m).

Claim 6.2.5. The subgroup G of Pic0(Y ) generated by Sl is a finite group.

Proof of Claim 6.2.5. Let d, ql,e, rl,e be as in the proof of Theorem 4.2.1 for each
e ≫ 0. Set Sl = {L1, . . . ,Lh}. Then for each i = 1, . . . , h, there exist generically
surjective morphisms

(G+(l)⊕ L1 ⊕ · · · ⊕ Lh)⊗ql,e ⊗ (G+(n0 + rl,e)⊕ G0(n0 + rl,e))

∼=G(l)⊗ql,e ⊗ G(n0 + rl,e) → G(lpde + a−1(1− pde)) → F de
Y

∗G(l) → Lp
de

i

as in the proof of Theorem 4.2.1. It follows that there exists a nonzero morphism

Lt11 ⊗ · · · ⊗ Lthh ⊗ L → Lp
de

i for some integers t1, . . . , th ≥ 0 satisfying
∑h

i=1 ti = ql,e
and for some L ∈

∪l−1
r=0 Sn0+r. Since this is a nonzero morphism between line bundles

of degree zero on a smooth projective curve, this is an isomorphism, in particular
L ∈ G. For each i = 1, . . . , h we denote L−1

i by Li+h, and for each m > 0 we set

G(m) := {
⊗2h

i=1 L
mi
i | 0 ≤ mi and

∑2h
i=1mi ≤ m } ⊆ G.

Let c > 0 be an integer satisfying {L ∈ G|L or L−1 is in
∪l−1
r=0 Sn0+r} ⊆ G(c). Then

by the above argument Lp
de

1 , . . . ,Lp
de

2h ∈ G(ql,e + c). Since pde > ql,e + c for some
e≫ 0, there exists an N > 0 such that G = G(N), which is our claim.

By the claim, there exists an n > 0 such that n∗
YL ∼= Ln ∼= OY for each L ∈ Sl.

Hence, replacing f by its base change with respect to nY , we may assume that G(l)
is globally generated. Then, for each b ≫ 0, G(bl) is generically globally generated,
because the natural morphism G(l)⊗b → G(bl) is generically surjective as in the proof
of Theorem 4.2.1. Thus we have

dimkH
0(X, abl(KX/Y +∆)) =dimkH

0(Y,G(bl))
≥ dimk(η)(G(bl))η
=dimk(η)H

0(Xη, bl(aKXη
+ (a∆)η))

for each b≫ 0, and so κ(X,KX +∆) ≥ κ(Xη, KXη
+∆η).

Corollary 6.2.6. Let f : X → Y be an algebraic fiber space such that X is a smooth
projective 3-fold and Y is a smooth projective curve. Assume that the geometric
generic fiber Xη is a normal surface of general type with only rational double point
singularities, and p > 5. Then

κ(X) ≥ κ(Y ) + κ(Xη).

Proof. We note that in this case KXη
is finitely generated (cf. [5, Corollary 9.10]).

Thus the result follows from Corollary 2.2.8 and Theorems 6.2.2 and 6.2.4.
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6.3 Iitaka’s conjecture C3,1

This section is devoted to the proof of Theorem 6.1.2. As in the summary, we work
over an algebraically closed field k of characteristic p > 0.

6.3.1 Proof in the case κ(Xη) = 0

In this subsection, we prove Theorem 6.1.2 in the case when the Kodaira dimension
of the geometric generic fiber is equal to zero. It is proved as a consequence of the
next theorem.

Theorem 6.3.1. Let f : X → Y be a surjective morphism from a normal projective
variety X over an algebraically closed field k of characteristic p > 0 to an elliptic
curve Y , and ∆ be an effective Q-divisor on X such that a∆ is integral for an integer
a > 0 not divisible by p. Assume that (Xη,∆η) is F -pure, where η is the geometric
generic point of Y . If KX +∆ ∼Q f

∗(KY + L) for some Q-divisor L on Y , then L
is semi-ample.

Proof. By Theorem 5.2.5 and Remark 5.2.7, we have degL ≥ 0. We may assume
that degL = 0, and it suffices to show that L ∼Q 0. Since (KX +∆)η ∼Q 0, there is
an ample Cartier divisor A on X such that l(KX +∆)η + Aη is ample and free for
every l ∈ aZ. Recall that 0 < a ∈ Z \ pZ and a∆ is integral. By Fujita’s vanishing
theorem, there exist some m0 > 0 such that for every nef Cartier divisor N on Xη,
OXη

((m0−1)Aη+N) is 0-regular with respect to l(KX +∆)η+Aη for every l ∈ aZ.
Then the natural homomorphism

H0(Xη, l(KX +∆)η +mAη)⊗H0(Xη, (m
′ − 1)Aη)⊗H0(Xη, l

′(KX +∆)η + Aη)

→ H0(Xη, (l + l′)(KX +∆)η + (m+m′)Aη)

is surjective for every l, l′ ∈ aZ and m,m′ ≥ m0. Thus

H0(Xη, l(KX +∆)η +mAη)⊗H0(Xη, l
′(KX +∆)η +m′Aη)

→ H0(Xη, (l + l′)(KX +∆)η + (m+m′)Aη)

is also surjective, and hence the natural homomorphism

G(l,m)⊗ G(l′,m′) → G(l + l′,m+m′)

is generically surjective, where G(l,m) := f∗OX(l(KX/Y + ∆) + mA). By Exam-
ple 2.1.11, replacing m0 if necessary, we may assume that

H0(Xη, ϕ
(e)
(Xη ,∆η)

⊗OXη
(N +m0Aη)) :

H0(Xη, (1− pe)(KX +∆)η + pe(N +m0Aη)) → H0(Xη, N +m0Aη)

is surjective for every e > 0 with a|(pe − 1) and for every nef Cartier divisor N on
Xη. Since l(KX +∆)η is nef,

fY e∗(ϕ
(e)
(X/Y,∆) ⊗OXY e (l(KX/Y +∆)Y e +m0AY e)) :

G((l − 1)pe + 1,m0p
e) → fY e∗OXY e (l(KX/Y +∆)Y e +m0AY e) ∼= F e

Y
∗G(l,m0)
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is generically surjective. Let b > 0 be an integer such that a|b, bL is integral and
b(KX +∆) is linearly equivalent to bf ∗L. By Proposition 1.4.3, there exists a finite
morphism π : Y ′ → Y from an elliptic curve Y ′ such that π∗G(r,m0) is a direct sum
of line bundles for each 0 ≤ r < b with a|r. By Lemma 4.3.3, we may replace L and
G(r,m0) respectively with their pullbacks by π. Set

F :=
⊕

0≤r<b, a|r

G(r,m0),

µ :=min{degM|M ∈ Pic(Y ) and M is a direct summand of F}, and
T :={M ∈ Pic(Y )|degM = µ and M is a direct summand of F}

={M1, . . . ,Mλ}.

Then for every Mi ∈ T , there exists an 0 ≤ s < b with a|s such that the composition

G(s,m0)
⊗pe−1 ⊗ G(ri,e,m0)⊗OY (−qi,ebL)

→ G((s− 1)pe + 1, pem0) → F e
Y
∗G(s,m0) ↠ Mpe

i

is generically surjective for every e > 0 with a|(pe−1). Here qi,e and ri,e are integers
satisfying 1 + s − pe = −qi,eb + ri,e and 0 ≤ ri,e < b. Then there exists a line
bundle M which is a direct summand of G(s,m0)

pe−1 ⊗ G(ri,e,m0) and a non-zero
morphism M → Mpe

i (qi,ebL). By considering the degree of the line bundles, we see
that Mpe

i (qi,ebL)
∼= M ∈ T p

e
, where

T n := {
⊗

1≤i≤λM
ni
i ∈ Pic(Y )|ni ≥ 0,

∑
1≤i≤λ ni = n}.

Fix an integer e > 0 such that a|pe − 1. Set n := λ(pe − 1) + 1. For every N ∈ T n,
there exist n1, . . . , nλ ≥ 0 such that N ∼=

⊗
1≤i≤λM

ni
i and n′

j := nj − pe ≥ 0 for at
least one j. Then

N (qj,ebL) ∼= (
⊗
i̸=j

Mni
i )⊗Mn′

j

j ⊗Mpe

j (qj,ebL).

Since Mpe

j (qj,ebL) ∈ T p
e
, we have N (qj,ebL) ∈ T n. Hence for every m ≥ q :=

max{q1,e, . . . , qλ,e},

N (mbL) ∈ {M(kbL) ∈ Pic(Y )|M ∈ T n, 0 ≤ k < q}.

Since T n is a finite set, there are integersm > m′ > 0 such thatN (mbL) ∼= N (m′bL),
and hence (m−m′)bL ∼ 0.

Proof of Theorem 6.1.2: the case κ(Xη) = 0. As in the proof of Theorem 4.1.4, we
may assume that X is minimal over Y and KXη

is semi-ample, so KXη
∼Q 0. By

Lemma 4.3.6, KX is Q-linearly equivalent to the pullback of KY + L for some Q-
divisor L on Y . In particular κ(X,KX) = κ(Y,KY + L). It is enough to show that
κ(Y,KY + L) ≥ κ(Y ). By Theorem 5.2.5 and Remark 5.2.7, we see that L is nef.
Note that since p > 5 and Xη has only rational double points as singularities, Xη is
F -pure by [2, Section 3] and [32]. When Y is of general type, we have KY +L is big,
thus κ(Y,KY +L) = dimY = κ(Y ). When Y is an elliptic curve, by Theorem 6.3.1,
we have κ(Y,KY + L) ≥ κ(Y ), and the proof is complete.
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6.3.2 Proof in the case κ(Xη) = 1

In this subsection, we consider the case when the Kodaira dimension of the geometric
generic fiber is one.

Proof of Theorem 6.1.2: the case κ(Xη) = 1. Let f : X → Y be a surjective mor-
phism from a smooth projective 3-fold to a smooth projective curve of genus at least
one, and let η be the geometric generic point of Y . Suppose that κ(Xη) = 1. With
loss of smoothness, by Theorem 4.3.1 (2) we may assume that X is a minimal model.
Then Xη has canonical singularities by the proof of Theorem 4.1.4.

If g(Y ) > 1, then since f∗ω
m
X/Y contains a nef subbundle of rank ≥ cm for some

c > 0 and any sufficiently divisible m (Theorem 4.1.4), by some standard arguments
(see, for example, the proof of [10, Proposition 5.1]), we can conclude that

κ(X) ≥ 2 = κ(Y ) + κ(Xη).

From now on, we assume g(Y ) = 1. Then ωX = ωX/Y . We break the proof into
several steps.

Step 1. By considering the relative Iitaka fibration and applying Lemma 4.3.6, we
get the following commutative diagram

X ′

h
��

σ // X

f
��

Z
g // Y,

where Z is a smooth projective surface, such that σ∗KX ∼Q h∗D for a nef g-big
divisor D on Z. Here h is a fibration with geometric fiber being a smooth elliptic
curve by the proof of Theorem 4.1.4h If D is big, then we are done. From now on,
we assume the numerical dimension ν(KX) = ν(D) = 1.

Claim 6.3.2. If X has a fibration f ′ : X → W to a normal projective curve W
such that KF ′ is numerically trivial, where F ′ denotes the generic fiber of f ′. As-
sume moreover that there exists an L ∈ Pic0(Y ) and an integer m > 0 such that
dimH0(X,mKX + f ∗L) > 0. Then KX is semi-ample.

Proof of the claim. Take an effective divisor DL ∼ mKX + f ∗L. Since DL is nef,
effective and DL|F ′ ∼num 0, we have

(mKX + f ∗L)|F ′ ∼ DL|F ′ ∼ 0.

By Lemma 4.3.6 we can assume DL ∼Q f ′∗A, where A is a divisor on W , which is
ample since DL ̸= 0. We only need to show that L ∼Q 0.

Since X has only terminal singularities, it is smooth in codimension one, so F ′ is
a regular surface over the function filed K(W ) of W . Applying [107, Theorem 0.2],
we have KF ′ ∼Q 0. Therefore, we conclude that

f ∗L|F ′ ∼Q mKF ′ + f ∗L|F ′ ∼Q (mKX + f ∗L)|F ′ ∼Q DL|F ′ ∼Q 0.

On the other hand, since F ′ is dominant over the curve Y ⊗k K(W ), we see that L
is torsion by Lemma 4.3.3.
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Step 2. By Theorem 4.1.4, there exists an integer c > 0 such that for sufficiently
divisible m1, f∗ω

m1
X contains a nef subbundle V of rank rm1 ≥ cm1. If deg V > 0,

then we are done by some standard arguments ([10, Propostion 5.1]). Therefore,
we assume that deg V = 0. By Proposition 1.4.3 there exists a finite morphism
π : Y1 → Y from an elliptic curve Y1 such that π∗V = ⊕n

i=1Li, where Li ∈ Pic0(Y1).
Let X1 be the normalization of X ×Y Y1. Then we get the following commutative
diagram

X1

f1
��

π1 // X

f
��

Y1
π // Y,

where π1 and f1 denote the natural morphisms. We have that π∗f∗ω
m1
X ⊂ f1∗π

∗
1ω

m1
X

by [58, Proposition 9.3], and hence

π∗V = ⊕n
i=1Li ⊂ f1∗π

∗
1ω

m1
X .

Thus we conclude that dimH0(X1, π
∗
1ω

m1
X ⊗ f ∗

1L−1
i ) ≥ 1, and if Li = Lj for some

j ̸= i then the strict inequality holds. Since π∗ : Pic0(Y ) → Pic0(Y1) is surjective,
there exists an L′

i such that Li ∼= π∗L′
i, so we have

π∗
1ω

m1
X ⊗ f ∗

1L−1
i

∼= π∗
1(ω

m1
X ⊗ f ∗(L′

i)
−1).

Applying Theorem 6.2.3, we can find a sufficiently divisible integer l > 0 such
that dimH0(X, l(m1KX − f ∗L′

i)) ≥ 1. Let m = lm1 and Li be a divisor on Y with
OY (Li) ∼= (L′

i)
l. Then dimH0(X,mKX−f ∗Li) ≥ 1. If dimH0(X,mKX−f ∗Li) > 1,

then dimH0(Z,mD − g∗Li) > 1 by the construction in Step 1. Since mD − g∗Li
is nef and ν(mD − g∗Li) = 1, the movable part of |mD − g∗Li| has no base point,
and hence it induces a fibration g′ : Z → W ′ on Z to a curve W ′. The Stein
factorization of the composite morphism g′ ◦ h : X ′ → W ′ induces a fibration
f ′′ : X ′ → W from X ′ to a normal curve W , which is defined by the base point
free linear system |µ∗l(mKX − f ∗Li)| for sufficiently divisible integer l > 0. Since
σ : X ′ → X is a birational morphism such that σ∗OX′ = OX , we conclude that
|µ∗l(mKX − f ∗Li)| = µ∗|l(mKX − f ∗Li)|, and thus |l(mKX − f ∗Li)| has no base
point, hence defines such a fibration f ′ : X → W as in Claim of Step 1. Thus KX

is semi-ample, and this completes the proof in this case.
From now on, we can assume dimH0(X,mKX − f ∗Li) = 1 and

dimH0(X1, π
∗
1(mKX − f ∗Li)) = 1. For every i, we have an effective divisor

Bi ∼ mKX − f ∗Li. By the construction, we can assume π∗
1Bi ̸= π∗

1Bj if i ̸= j,
thus Li ̸= Lj. We only need to show that at least two of Li are torsion.

Step 3. For every j, we have the unique effective divisor Bj ∼ mKX − f ∗Lj. Let
B′ be the reduced divisor supported on the union of components of

∑
j Bj. Take a

smooth log resolution µ : X̃ → X of the pair (X,B′). Denote by f̃ : X̃ → Y the
natural morphism. Let B̃ be the reduced divisor supported on the union components
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of
∑

j µ
∗Bj. Consider the dlt pair (X̃, B̃). Since X has terminal singularities, there

exists an effective µ-exceptional divisor E on X̃ such that

KX̃ ∼Q µ
∗KX + E.

Hence KX̃ + B̃ ∼Q µ∗KX + E + B̃ has a weak Zariski decomposition. By The-

orem 4.3.1, (X̃, B̃) has a minimal model (X̂, B̂) which is dlt, and there exists a
natural morphism f̂ : X̂ → Y . By the construction, we have the following:
(i) Note that Bj|Xη̄ is contained in finitely many fibers of the Iitaka fibration

Iη̄ : Xη̄ → Cη̄, which implies that κ(X̃η̄, (KX̃ + B̃)|X̃η̄
) = 1. Since the restriction

(KX̂ + B̂)|X̂η̄
is semi-ample by [105, Theorem 1.2], it induces an elliptic fibration on

X̂η̄ by the construction. Hence applying Lemma 4.3.6 again, we get the following
commutative diagram

X̂ ′

ĥ
��

σ̂ // X̂

f̂

��
Ẑ

ĝ // Y,

where Ẑ is a smooth projective surface and ĥ is an elliptic fibration such that
σ̂∗(KX̂ + B̂) ∼Q ĥ

∗D̂ for a nef and ĝ-big divisor D̂ on Ẑ.

(ii)We claim that ν(KX̂ + B̂) = ν(D̂) = 1. Indeed, otherwise D̂ is big. Note that

the divisor µ∗∑
j Bj − B̃ is effective and µ∗∑

j Bj ∼ µ∗nmKX −
∑

j f̃
∗Lj. Then

applying Theorem 6.2.3 we can get a contradiction as follows:

2 =κ(Ẑ, D̂) = κ(X̂ ′, σ̂∗(KX̂ + B̂)) = κ(X̂,KX̂ + B̂) = κ(X̃,KX̃ + B̃)

≤κ(X̃,KX̃ + µ∗nmKX −
∑
j

f̃ ∗Lj)

=κ(X̃, µ∗KX + E + µ∗nmKX −
∑
j

µ∗f ∗Lj)

=κ(X, (nm+ 1)KX −
∑
j

f ∗Lj) = 1.

(iii) For sufficiently divisible M and every 1 ≤ i ≤ n, we get an effective Cartier
divisor

Γ̃i =M(µ∗Bi +mE) +MmB̃ ∼M(mKX̃ − f̃ ∗Li) +MmB̃.

Denote by ν : X̃ 99K X̂ the natural birational map. Let Γ̂i = ν∗Γ̃i. Then

Γ̂i ∼M(mKX̂ − f̂ ∗Li) +MmB̂ ∼Mm(KX̂ + B̂)−Mf̂ ∗Li.

Since E is contained in finitely many fibers of f̃ , ν∗E is contracted by f̂ . Therefore,
if a component of Γ̂i is dominant over Y then it is contained in B̂.
(iv) Take an effective divisor D̂i ∼ MmD̂ −Mĝ∗Li for each i. Since D̂ is nef and
D̂2 = 0, so is D̂i. Considering connected components of D̂1, . . . , D̂n, we see that
there exist nef effective Cartier divisors D̂′

1, . . . , D̂
′
k satisfying the conditions below:
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• Supp(D̂′
j) is connected for each j, and Supp(D̂′

j)∩Supp(D̂′
l) = ∅ for each j ̸= l;

• (D̂′
1)

2 = · · · = (D̂′
k)

2 = 0;

• the greatest common divisor of the coefficients of every D̂′
j is equal to one;

• for each i, there exist ai1, . . . , aik ≥ 0 such that D̂i = ai1D̂
′
1 + · · ·+ aikD̂

′
k.

Note that at least one of the D̂′
j is dominant over Y , and hence intersects every fiber

of f̂ . From this we see that every D̂′
j is dominant over Y . Indeed, if a D̂′

j is contained

in one fiber, then the support of D̂′
j is equal to the whole of the fiber as shown by [6,

VIII.4], which contradicts to the first condition above. Now we have σ̂∗Γ̂i = ĥ∗D̂i

by the construction. Hence ĥ∗D̂′
1, . . . , ĥ

∗D̂′
k are disjoint connected components of

σ̂∗(
∑

Γ̂i). Let Ĝj := σ̂∗ĥ
∗D̂′

j. Then we have that Supp(Ĝj)∩Supp(Ĝl) = ∅ for each
j ̸= l.
(v) Take two divisors D̂1, D̂2. Since D̂1 ̸= D̂2, we may assume that a11 > a21 ≥ 0.
We may further assume that a22 > a12 ≥ 0, because of D̂1 ∼num D̂2. We can write
that

Γ̂1 = a11Ĝ1 + a12Ĝ2 + Ĝ′
3 and Γ̂2 = a21Ĝ1 + a22Ĝ2 + Ĝ′′

3,

where neither of Ĝ1 and Ĝ2 intersects Ĝ′
3 ∪ Ĝ′′

3.

Step 4. Take two reduced, irreducible and dominant over Y components Ĉ1, Ĉ2 of
Ĝ1, Ĝ2, respectively. Then Ĉ1, Ĉ2 are contained in B̂ by the construction of Γ̂i in
Step 3 (iii). Since (X̂, B̂) is dlt and B̂ is a reduced integral divisor, so Ĉ1, Ĉ2 are log
canonical centers of (X̂, B̂). By Step 3 (iv), since D̂ is nef and D̂ · D̂i = 0, we have
D̂|D̂i

∼num 0. For j = 1, 2, since ĥ(σ̂−1Ĉj) is a component of some D̂i, we conclude
that

σ̂∗(KX̂ + B̂)|σ̂−1Ĉj
∼Q ĥ

∗D̂|σ̂−1Ĉj
∼num 0.

Denote by Ĉ ′
i the normalization of Ĉi. Then (KX̂+B̂)|Ĉ′

i
∼num 0, so (KX̂+B̂)|Ĉ′

i
∼Q

0 by Lemma 4.3.2. Therefore,

−a21Mf̂ ∗L1|Ĉ′
1
∼Q a21(Mm(KX̂ + B̂)−Mf̂ ∗L1)|Ĉ′

1

∼Q a21Γ̂1|Ĉ′
1
∼Q a11a21Ĝ1|Ĉ′

1

∼Q a11Γ̂2|Ĉ′
1
∼Q −a11Mf̂ ∗L2|Ĉ′

1
.

(6.1)

By Lemma 4.3.3, this implies that

a21ML1 ∼Q a11ML2.

In the same way, restricting on Ĉ ′
2 gives

a22ML1 ∼Q a12ML2.

Finally by the conditions a11 > a21 and a12 < a22, we conclude that L1 ∼Q L2 ∼Q 0,
and this completes the proof.



Chapter 7

When is the Albanese morphism
an algebraic fiber space?

7.1 Summary

The Albanese morphism is an important tool in the study of varieties with non-
positive Kodaira dimension. In characteristic zero, Kawamata has proved that the
Albanese morphism of a smooth projective variety with Kodaira dimension zero is
an algebraic fiber space [66, Theorem 1]. Zhang has shown the same statement for a
smooth projective variety with nef anti-canonical divisor [117, Corollary 2]. Under
the same assumption, Cao has recently proved that the Albanese morphism is locally
isotrivial [15, 1.2. Theorem]. In positive characteristic, Hacon and Patakfalvi have
proved that the Albanese morphism of a smooth projective variety X is surjective if
the S-Kodaira dimension κS(X) of X is zero [52, Theorem 1.1.1]. Here, S-Kodaira
dimension is an analog of usual Kodaira dimension defined by using the trace maps
of the Frobenius morphisms. Wang has shown that the Albanese morphism of a
threefold with semi-ample anti-canonical divisor is surjective if the general fiber is
F -pure [113, Theorem B]. In this chapter, we generalize his result to varieties of
arbitrary dimension, which can be viewed as a positive characteristic counterpart of
the above result of Zhang.

Theorem 7.1.1. Let X be a normal projective variety over an algebraically closed
field of characteristic p > 0, and ∆ be an effective Q-Weil divisor on X such that
−m(KX + ∆) is a nef Cartier divisor for an integer m > 0 not divisible by p. Let
a : X → A be the Albanese morphism of X, and Xη be the geometric generic fiber
over the image of a. If (Xη,∆|Xη

) is F -pure, then a is an algebraic fiber space.

We also study the relation between the Albanese morphisms and Frobenius split-
ting. The notion of an F -split variety has been introduced by Mehta and Ra-
manathan as a variety with splitting of the Frobenius morphism [82], which are
considered to be related to varieties of Calabi–Yau type [46, 47, 90, 100]. As a
generalization of F -splitting of varieties, we consider a notion of the F -splitting of
a pair (f,Γ) consisting of a morphism f : V → W and an effective Q-Weil divisor Γ

72
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on V (Definition 7.3.1). In this chapter, we focus on the F -splitting of the Albanese
morphism. Let X be a normal projective variety over an algebraically closed field k
of characteristic p > 0, ∆ be an effective Q-Weil divisor on X, and a : X → A be
the Albanese morphism of X. Then there is the following relationship between the
F -splitting of a and that of X.

Theorem 7.1.2. (X,∆) is F -split if and only if (a,∆) is F -split and A is ordinary.

We study the Albanese morphism a under the assumption that (a,∆) is locally
F -split (Definition 7.3.1), which is weaker than the assumption that it is F -split.
For instance, a flat morphism with normal F -split fibers is locally F -split, but not
necessarily F -split. The next theorem shows that the local F -splitting of (a,∆) re-
quires that a is an algebraic fiber space and that ∆ and fibers satisfy some geometric
properties.

Theorem 7.1.3. Assume that (a,∆) is locally F -split. Then a is an algebraic fiber
space. Furthermore, if m∆ is Cartier for an integer m > 0 not divisible by p, then
the following holds:

(1) The support of ∆ does not contain any irreducible component of any fiber.

(2) For every scheme-theoretic point z ∈ A, (Xz,∆z) is F -split, where z is the
algebraic closure of z. In particular, Xz is reduced.

(3) The morphism a is smooth in codimension one. In other words, there exists
an open subset U of X such that codim(X \ U) ≥ 2 and a|U : U → A is a
smooth morphism. In particular, the general geometric fiber of a is normal.

This theorem recovers the result of Hacon and Patakfalvi whenKX is numerically
trivial, because the condition κS(X) = 0 is equivalent to the F -splitting of X in that
case. As a corollary of this theorem, we provide a new characterization of abelian
varieties. Before stating the precise statement, we recall that the first Betti number
b1(X) of X is defined as a dimension of the Ql-vector space H

1
ét(X,Ql) for a prime

l ̸= p and is equal to 2 dimA.

Theorem 7.1.4. Assume that (a,∆) is locally F -split (resp. (X,∆) is F -split).
Then b1(X) ≤ 2 dimX. Furthermore, the equality holds if and only if X is an
abelian variety (resp. ordinary abelian variety) and ∆ = 0.

As an application of Theorem 7.1.4, we give a necessary and sufficient condition
for a normal projective variety to have F -split Albanese morphism (Theorem 7.4.6).
We conclude this chapter with a classification of minimal surfaces with F -split or
locally F -split Albanese morphisms (Theorem 7.5.1).
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7.2 Varieties with nef anti-canonical divisors

In this section, we prove Theorem 7.1.1 which states that the Albanese morphism of
a normal projective variety with nef anti-canonical divisor is an algebraic fiber space
if the geometric generic fiber is F -pure. Throughout this section, we work over an
algebraically closed field k of characteristic p > 0.

We first recall that the Albanese morphism ofX is defined as a morphism a : X →
A to an Abelian variety A (called the Albanese variety) such that every morphism
b : X → B to an abelian variety B factors uniquely through a. The existence of
the Albanese morphism for a normal projective variety is proved for instance in [33,
§9]. We must remark that the above definition of the Albanese morphisms
is different in general from the standard notion of the Albanese maps
defined by using the Albanese morphisms of resolutions of singularities
(see [113, Example 2.3] for an example of variety whose Albanese morphism and
Albanese map are different).

Theorem 7.1.1 is proved as an application of Theorem 5.2.5 and the theorem
below.

Theorem 7.2.1 ([53, Theorem 0.2]). Let X be a normal projective variety with
κ(X,KX) = 0. Let a : X → A be the Albanese morphism of X. If a : X → Im(a) is
generically finite and separable, then a is surjective.

The following lemma is also used in the proof of Theorem 7.1.1.

Lemma 7.2.2. Let D be an effective Weil divisor on a normal projective variety Y .
If OY (−D) is weakly positive, then D = 0.

Proof. Let π : Y ′ → Y be the blowing-up of Y along D. Then we have the natural
surjection π∗OY (−D) → OY ′(−D′), where D′ is the exceptional divisor of π. Since
OY (−D) is weakly positive, so is π∗OY (−D). Then by the above surjection, we see
that OY ′(−D′) is also weakly positive. Since the weak positivity of a line bundle
is equivalent to the pseudo-effectivity, we see that −D′ is pseudo-effective. Hence
D′ = 0, and so D = 0.

Proof of Theorem 7.1.1. Let Z be the normalization of Im(a) and f : X → Z be
the induced morphism. Now we have the natural morphism Ω1

A|Z → Ω1
Z which is

generically surjective. Hence H0(Z, ωZ) ̸= 0. Furthermore, by Theorem 5.2.5, we
obtain that ω−1

Z is weakly positive. Therefore we have ωZ ∼= OZ by Lemma 7.2.2.

By Theorem 7.2.1 we see that a is surjective, or equivalently Z = A. Let a : X
g−→

Y
h−→ A be the Stein factorization of a. Since the geometric generic fiber of a is F -

pure, it is reduced, and hence a is separable. This implies that h is also separable,
and therefore we have an injection OY

∼= h∗ωA → ωY . By the same argument as
before we see that ωY ∼= OY , and by the Zariski-Nagata purity we obtain that a is
an étale morphism. Hence we see that Y is an abelian variety by [87, Section 18,
Theorem] and h is an isomorphism. Consequently we obtain a∗OX

∼= OA, which is
our assertion.
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7.3 Splittings of Relative Frobenius

In this section, we introduce and study the notion of F -split morphisms. We fix an
algebraically closed field k of characteristic p > 0.

Definition 7.3.1. Let X be a normal variety and ∆ be an effective Q-Weil divisor
on X. Let f : X → Z be a projective morphism to a smooth variety Z. We say that
f is sharply F -split (F -split for short) with respect to ∆ if there exists an e > 0
such that the composite

OXZe

F
(e)
X/Z

♯

−−−→ F
(e)
X/Z∗

OXe ↪→ F
(e)
X/Z∗

OXe(⌈(pe − 1)∆⌉) (7.3.1.1)e

of the natural homomorphism F
(e)
X/Y

♯
and the natural inclusion F

(e)
X/Z∗

OXe ↪→
F

(e)
X/Z∗

OXe(⌈(pe − 1)∆⌉) is injective and splits as an OXZe -module homomorphism.

We say that f is locally sharply F -split (locally F -split for short) with respect to
∆ if there exists an open covering {Vi} of Z such that f |f−1(Vi) : f

−1(Vi) → Vi is
F -split with respect to ∆|f−1(Vi) for every i.

We often say that the pair (f,∆) is F -split (resp. locally F -split) if f is F -split
(resp. locally F -split) with respect to ∆. We simply say f is F -split (resp. locally
F -split) if so is (f, 0).

Remark 7.3.2. (1) If the morphism (7.3.1.1)e splits, then (7.3.1.1)ne also splits for
every integer n > 0.
(2) When Z = Spec k, it is easily seen that (f,∆) is F -split if and only if (X,∆) is
F -split. Note that we now assume that k is algebraically closed.
(3) Let ∆′ be an effective Q-divisor on X with ∆′ ≤ ∆. If (f,∆) is F -split (resp.
locally F -split), then so is (f,∆′).
(4) Hashimoto has dealt with morphisms with local splittings of (7.3.1.1)e in [60].

Example 7.3.3. Let X, ∆, Z and f be as in Definition 7.3.1. Assume that X is
the projective space bundle P(E) associated with a locally free coherent sheaf E and
that f : X → Z is its projection. Then f is locally F -split. Furthermore, if E is the
direct sum of line bundles L1, . . . ,Ln on Z, then f is F -split. The first statement
follows from the second. We assume that E =

⊕n
i=1 Li. For every m ≥ 0, there

exists the natural injective morphism

ψm :
⊕

m1+···+mn=m

Lmip
i

∼= FZ
∗SmE → SmpE .

Then obviously the image of ψm is
⊕

m1+···+mn=m
Lmip
i ⊆ SmpE , and hence ψm splits.

The morphism OXZ1 → F
(1)
X/Z∗

OX1 corresponds to the morphism

ψ :=
⊕
m≥0

ψm :
⊕
m≥0

SmF 1
Z
∗E →

⊕
m≥0

SmpE ⊆
⊕
m≥0

SmE .
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Since ψm splits for every m ≥ 0, ψ also splits, and hence OXZ1 → F
(1)
X/Z∗

OX1 splits.

Note that as we see in Theorem 7.5.1, there exists an indecomposable vector bundle
E on an elliptic curve Z such that P(E) → Z is not F -split.

We first prove that F -split morphisms are surjective.

Lemma 7.3.4. Let X, ∆, Z and f be as in Definition 7.3.1. Assume that f is
locally F -split. Then there exists an e > 0 such that for each i ≥ 0, Gi := Rif∗OX

is a vector bundle satisfying F e
Z
∗Gi ∼= Gi. In particular, f is surjective.

Proof. Applying the functor RifZe∗ to OXZe → F
(e)
X/Z∗

OXe , we obtain the morphism

RifZe∗OXZe → Rif (e)
∗OXe = Gi which is injective and splits locally. Since FZ is

flat, we have RifZe∗OXZe
∼= F e

Z
∗Rif∗OX = F e

Z
∗Gi. Hence we obtain the morphism

F e
Z
∗Gi → Gi which is injective and splits locally. It is easily seen that this morphism

is an isomorphism. By the lemma below, we see that Gi is locally free.

Lemma 7.3.5 ([81, Lemma 1.4]). Let M be a finitely generated module over a
regular local ring R of positive characteristic. If F e

R
∗M ∼= M for some e > 0, then

M is free.

The following proposition shows that locally F -splitting requires some conditions
on boundaries and fibers.

Proposition 7.3.6. Let X, ∆, Z and f be as in Definition 7.3.1. Assume that ∆
is Z(p)-Cartier and (f,∆) is locally F -split. Then the following holds:

(1) The support of ∆ does not contain any irreducible component of any fiber.

(2) For every z ∈ Z, (Xz,∆z) is F -split, where z is the algebraic closure of z. In
particular, Xz is reduced.

(3) There exists an open subset U ⊆ X such that codim(X \ U) ≥ 2 and f |U :
U → Y is a smooth morphism. In particular, general geometric fibers of f are
normal.

Note that f is surjective as shown by Lemma 7.3.4.

Proof. Let z ∈ Z. Restricting the homomorphism (7.3.1.1)e to Xze , we obtain the
homomorphism of OXze

-modules

OXze

F
(e)
Xz/z

♯

−−−−→ F
(e)
Xz/z∗

O(Xz)e → F
(e)
Xz/z∗

(O(Xz)e((p
e − 1)∆))|(Xz)e

which is injective and splits for some e > 0. This implies that the homomorphism
OXz

→ (OX(p
e − 1∆))|Xz

is not zero over each irreducible component. Hence the
support of ∆ does not contain any component of Xz, and (Xz,∆z) is F -split. Thus
(1) and (2) hold. We show (3). Let π : Y → XZe be the normalization of XZe . Then

F
(e)
X/Y : X(e) → XY e factors through Y , and we have morphisms

OXZe → π∗OY → F
(e)
X/Y ∗

OXe
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of OXZe -modules. Therefore the morphism OXZe → π∗OY splits. Since
(π∗OY )/OXZe is a torsion module and π∗OY is torsion free, we see that

(π∗OY )/OXZe = 0. Hence XZe is normal. Since F
(e)
X/Z∗

OXe is torsion free, there

exists an open subset U ⊆ X such that F
(e)
X/Z∗

OXe|UZe
∼= F

(e)
U/Z∗

OUe is locally free

over UZe . From this, we see that F
(e)
Uz/z∗

OUz
∼= F

(e)
U/Z∗

OUe |UZe is locally free for every

z ∈ Z. Consequently, we deduce that Uz is regular by Kunz’s theorem, and thus
f |U : U → Z is smooth.

On the contrary to the above, f is not necessarily F -split even if every fiber is
F -split (see Theorem 7.5.1 for example). However, if KX is Z(p)-linearly trivial over
Z, then the converse holds as seen in the next theorem. This is used in the proofs
of Proposition 7.4.9 and Theorem 7.5.1.

Theorem 7.3.7 (A special case of Theorem 2.2.2). Let f : X → Z be an algebraic
fiber space, and let X and Z be normal varieties. Let ∆ be an effective Z(p)-Weil
divisor on X such that KX +∆ ∼Z(p)

f ∗C for some Cartier divisor C on Z. Let η
be the geometric generic point of Z.

(i) If (Xη,∆η) is not F -split, then so is (Xz,∆z) for general z ∈ Z.

(ii) If (Xη,∆η) is F -split, then there exists an effective Z(p)-Weil divisor ∆Z on Z
such that the following holds:

(1) The divisor (KZ +∆Z) is Z(p)-linearly equivalent to C.

(2) The pair (X,∆) is F -split if and only if so is (Z,∆Z).

(3) The following are equivalent:

(3-1) (f,∆) is F -split;

(3-2) (f,∆) is locally F -split;

(3-3) (Xz,∆|Xz
) is F -split for every codimension one point z ∈ Z, where

z is the algebraic closure of z;

(3-4) ∆Z = 0.

Proof. (i) follows from Observation 2.2.4. (1) of (ii) follows directly from Theo-
rem 2.2.2. Theorem 2.2.2 (2) shows that S0(X,∆,OX) ∼= S0(Z,∆Z ,OZ). Hence
(2) of the theorem follows from the fact that (X,∆) is F -split if and only if
S0(X,∆,OX) = H0(X,OX). To prove (3), we recall the construction on ∆Z . Re-
placing X and Z by its smooth locus respectively, we may assume that X and Z
are smooth. For an e > 0 with a|(pe − 1), we have

f (e)
∗L

(e)
(X/Z,∆) = f (e)

∗OXe((1− pe)(KXe/Ze +∆)) ∼= OZe((1− pe)(C −KZe))

by the projection formula. Then we set

θ(e) : OZe((1− pe)(C −KZe)) ∼= f (e)
∗OXeL(e)

(X/Z,∆)

fZe∗ϕ
(e)
(X/Z,∆)−−−−−−−−→ OXZe .
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Since (fZe∗ϕ
(e)
(X/Z,∆)) ⊗ k(ηe) ∼= H0(Xηe , ϕ

(e)
(Xη/η,∆η)

) is surjective because of the as-

sumption, θ(e) is nonzero. Hence there exists an effective divisor E on Z such that
OZ(−E) is equal to the image of θ(e). We define ∆Z := (pe − 1)−1E. By definition,
∆Z = 0 if and only if θ(e) is surjective. Furthermore, by the argument similar to the
above, we see that for a codimension one point z ∈ Z, (Xz,∆|Xz

) is F -split if and
only if θ(e)⊗k(z) is non-zero, or equivalently, ∆ is zero around z. Now we prove (3).
(3-1)⇒(3-2) is obvious. (3-2)⇒(3-3) follows from Proposition 7.3.6. (3-3)⇒(3-4)
follows from the above argument. If θ(e) is surjective, or equivalently is an isomor-
phism, then H0(XZe , ϕ

(e)
(X/Z,∆))

∼= H0(Ze, θ(e)) is also surjective, and hence ϕ
(e)
(X/Z,∆)

splits. This proves (3-4)⇒(3-1).

When f : X → Z is F -split with respect to ∆, there exists a Z(p)-Weil divisor
∆′ ≥ ∆ on X such that KX/Z +∆′ ∼Z(p)

0 as explained below.

Observation 7.3.8. Let X, ∆, Z and f be as in Definition 7.3.1. Assume that (f,∆)

is F -split. Then there exists an e > 0 such that ϕ
(e)
(X,∆) : F

(e)
X/Z∗

L(e)
(X/Z,∆) → OXZe

splits as a homomorphism of OXZe -module. Here, we recall that

L(e)
(X/Z,∆) := OXe(⌊(1− pe)(KXe/Ze +∆)⌋).

Then there exists an element s ∈ H0(Xe, ⌊(1−pe)(KXe/Ze +∆)⌋) such that ϕ
(e)
(X/Z,∆)

sends s to 1. Let E be an effective Weil divisor on Xe defined by s. Set ∆′ :=
(pe − 1)−1⌈(pe − 1)∆ + E⌉ ≥ ∆. Then by the choice of E we have

L(e)
(X,∆′) := OXe((1− pe)(KXe/Ze +∆′)) = OXe(⌊(1− pe)(KXe/Ze +∆)−E⌋) ∼= OXe ,

and ϕ
(e)
(X/Z,∆) : F

(e)
X/Z∗

L(e)
(X/Z,∆′) → OXZe splits.

Next we consider the case of finite morphisms.

Proposition 7.3.9. Let X, ∆, Z and f be as in Definition 7.3.1. Assume that
dimX = dimZ. Then the following conditions are equivalent:

(1) (f,∆) is F -split;

(2) (f,∆) is locally F -split;

(3) f is étale and ∆ = 0.

In the case when ∆ = 0, the proposition has been shown in [60, 2.19 Theorem.].

Proof. (1)⇒(2) is obvious. Let f be étale and ∆ = 0. Then F
(e)
X/Z : Xe → XZe

is a finite morphism of degree one between normal varieties, and hence it is an
isomorphism, which implies (3)⇒(1). We show (2)⇒(3). By Lemma 7.3.4 and
Proposition 7.3.6, f is a separable surjective morphism, and hence we obtain that
f is generically finite by the assumption. Let e > 0 be an integer such that the
morphism

OXZe → F
(e)
X/Z∗

OXe(⌈(pe − 1)∆⌉)
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splits. Since F
(e)
X/Z is a finite morphism of degree zero, F

(e)
X/Z∗

OXe(⌈(pe − 1)∆⌉) is a
torsion free sheaf of rank one. Note that as f is separable XZe is a variety. Therefore
the cokernel of the above morphism is zero, or equivalently, the above morphism is
an isomorphism. Hence ∆ = 0 and F

(e)
X/Z is an isomorphism. Then for every z ∈ Z,

F
(e)
Xz/z

is also an isomorphism, where z is the algebraic closure of z ∈ Z. This implies

that Xz is isomorphic to a disjoint union of copies of the spectrum of k(z), and thus
f is finite. Since f∗OX is locally free as shown by Lemma 7.3.4, f is flat. Hence the
smoothness of Xz implies that f is étale.

The following lemma is used in the proofs of Proposition 7.4.9 and Theorem 7.5.1.

Lemma 7.3.10. Let X, ∆, Z and f be as in Definition 7.3.1. Assume that ∆
is a Z(p)-Weil divisor and that (f,∆) is locally F -split. Then the Iitaka-Kodaira
dimension κ(X,KX/Z + ∆) of KX/Z + ∆ is non-positive. Furthermore, if (f,∆) is
F -split, then κ(X,−(KX/Z +∆)) ≥ 0.

Proof. The second statement follows from Observation 7.3.8. By Lemma 7.3.4, f is
surjective. Assume that κ(X,KX/Z +∆) ≥ 0. Then κ(Xη, KXη/η +∆η) ≥ 0, where
η is the geometric generic point of Z. Since Xη is F -split, we have H0(Xη, (1 −
pe)(KXη

+ ∆η)) ̸= 0 for some e > 0, and hence (1 − pe)(KXη
+ ∆) ∼ 0. Then the

morphism

fZe∗ϕ
(e)
(X/Z,∆) : f

(e)
∗OXe((1− pe)(KXe/Ze +∆)) → fZe∗OXZe

is a surjective morphism between torsion free coherent sheaves of the same rank,
and thus it is an isomorphism. Hence H0(X, (1−pe)(KX/Z+∆)) ̸= 0, which implies
that κ(X,KX/Z) = 0. This is our assertion.

In the rest of this section, we consider the composition of morphisms in the next
proposition, which is used frequently in Section 7.4.

Proposition 7.3.11. Let X, ∆, Z and f be as in Definition 7.3.1, and Y be a
normal variety. Assume that f : X → Z can be factored into projective morphisms
g : X → Y with g∗OX

∼= OY and h : Y → Z.

(1) If (f,∆) is F -split, then so is h.

(2) Assume that Y is smooth. If (g,∆) and h are F -split, then so is (f,∆).

(3) The converse of (2) holds if KY ∼Z(p)
h∗KZ.

Proof. Let e > 0 be an integer. Now we have the following commutative diagram:

Xe F
(e)
X/Y

//

F
(e)
X/Z

((

g(e) &&

XY e

gY e

��

π(e) // XZe

(F e
Z)X //

gZe

��

X

g

��
f

||

Y e
F

(e)
Y/Z //

h(e) ''

YZe

hZe

��

(F e
Z)Y // Y

h
��

Ze
F e
Z // Z.
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Here π(e) := (F
(e)
Y/Z)X . We first show (1). The above diagram induces a commutative

diagram of OYZe -modules

OYZe
//

∼=
��

F
(e)
Y/Z∗

OY e

∼=��

gZe∗OXZe
// gZe∗F

(e)
X/Z∗

OXe .

Here the left vertical morphism is an isomorphism because of the flatness of (F e
Z)Y .

Since the lower horizontal morphisms splits, so is the upper one.
Next we show (2) and (3). As explained in Observation 7.3.8, if (g,∆) (resp.

(f,∆)) is F -split, then there exists an effective Z(p)-Weil divisor ∆′ ≥ ∆ on X such
that KX/Y + ∆′ (resp. KX/Z + ∆′) is Z(p)-linearly trivial and that (g,∆′) (resp.
(f,∆′)) is also F -split. Thus we may assume that ∆ is a Z(p)-Weil divisor and that
(pe − 1)(KX/Y +∆) ∼ 0 (resp. ∼ (pe − 1)(f ∗KZ − g∗KY )) for every e > 0 divisible

enough. In particular, L(e)
(X/Y,∆) (resp. L

(e)
(X/Z,∆)) is isomorphic to the pullback by g(e)

of a line bundle on Y (e).
Let V ⊆ Y be an open subset such that g is flat at every point in XV := g−1(V )

and codim(Y \ V ) ≥ 2. Let u : U → XV be the open immersion of the regular locus
of XV . Set g′ := g ◦ u : U → Y . Then we have g′∗OU

∼= g∗OX
∼= OY because of

the assumptions. Additionally, by the flatness of F e
Z , we see that g

′
Ze∗OUZe

∼= OYZe .
Thus by the projection formula, we see that

H0(UZe , (gZe
∗L)|UZe ) ∼= H0(YZe , g′Ze∗(g

′
Ze

∗L)) ∼= H0(YZe ,L) ∼= H0(XZe , gZe
∗L)

for every line bundle L on YZe . Hence there exists the following commutative dia-
gram:

H0(U e,L(e)
(X/Z,∆)|Ue)

H0(UZe ,ϕ
(e)
(U/Z,∆|U )

)
//

∼=
��

H0(UZe ,OUZe )

∼=
��

H0(Xe,L(e)
(X/Z,∆))

H0(XZe ,ϕ
(e)
(X/Z,∆)

)
// H0(XZe ,OXZe ).

Note that in particular, H0(UY e ,OUY e ) ∼= H0(Y e,OY e) ∼= k. Clearly, the splitting

of ϕ
(e)
(X/Z,∆) is equivalent to the surjectivity of H0(XZe , ϕ

(e)
(X/Z,∆)). From this we see

that the F -splitting of (f,∆) is equivalent to the F -splitting of (f |U : U → Z,∆|U).
By an argument similar to the above, we also see that the F -splitting of (g,∆) is
equivalent to the F -splitting of (g|U ,∆|U).

Assume that we can choose V = Y and U = X, in other words, X and Y are
regular and g is flat. Let e > 0 be an integer. By the flatness of g, we have the
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following commutative diagram:

gZe
∗OYZe

gZe∗
(
F

(e)
Y/Z

♯
)

//

∼=
��

gZe
∗F

(e)
Y/Z∗

OY e

∼=
��

OXZe

π(e)♯

// π(e)
∗OXY e .

This implies that

Hom(π(e)♯,OXZe ) ∼= gZe
∗Hom(F

(e)
Y/Z

♯
,OVZe ) = gZe

∗ϕ
(e)
Y/Z .

Applying the functor Hom( ,OXZe ) and the Grothendieck duality to the natural
morphism

OXZe

π(e)♯

−−→ π(e)
∗OXY e → F

(e)
X/Z∗

OXe(⌈(pe − 1)∆⌉),

we obtain the morphism

ϕ
(e)
(X/Z,∆) : F

(e)
X/Z∗

L(e)
(X/Z,∆)

π(e)∗ϕ
(e)
(X/Y,∆)

⊗ω
π(e)

−−−−−−−−−−−−→ gZe
∗F

(e)
Y/Z∗

L(e)
Y/Z

gZe∗ϕ
(e)
Y/Z−−−−−→ OXZe .

Note that ωπ(e)
∼= ωXY e ⊗ π(e)∗ωXZe

∼= gZe
∗ω1−pe

Y e/Ze .

Now we prove the assertion. If (g,∆) is F -split and h is F -split, then both

of ϕ
(e)
(X/Y,∆) and ϕ

(e)
Y/Z split for every e > 0 divisible enough. Hence ϕ

(e)
(X/Z,∆) also

splits, or equivalently, (f,∆) is F -split. Conversely, assume that (f,∆) is F -split
and that (pe − 1)KY/Z ∼ 0 for an e > 0. Then ωπ(e)

∼= OXY e . Since for every e > 0

divisible enough H0(XZe , ϕ
(e)
(X/Z,∆)) is surjective, H

0(XZe , π(e)
∗ϕ

(e)
(X/Y,∆)) is a nonzero

morphism, and thus so is H0(XY e , ϕ
(e)
(X/Y,∆)). This is surjective because its target

space H0(XY e ,OXY e ) ∼= H0(Y e,OY e) ∼= k. Hence ϕ
(e)
(X/Y,∆) splits, and so (g,∆) is

F -split. Note that the F -splitting of h follows directly from (1).

7.4 Varieties with F -split Albanese morphisms

In this section, we prove Theorems 7.1.2, 7.1.3, 7.1.4 and 7.4.6. Throughout this
section, we denote by X and ∆ respectively a normal projective variety over an
algebraically closed field k of characteristic p > 0 and an effective Q-Weil divisor on
X.

Proof of Theorem 7.1.3. Assume that (a,∆) is locally F -split. The surjectivity of

a follows from Lemma 7.3.4. Let X
f−→ Z

g−→ A be the Stein factorization of a.
As seen in Proposition 7.3.11 (1), g is F -split, and hence we see that g is étale by
Proposition 7.3.9. Therefore [87, Section 18, Theorem] shows that Z is an abelian
variety, and hence g is an isomorphism and a∗OX

∼= g∗OZ
∼= OA. (1)-(3) follows

directly from Proposition 7.3.6.
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The next lemma is used to prove Theorems 7.1.2 and 7.1.4.

Lemma 7.4.1. Let F be a coherent sheaf of rank r on a normal variety Y . Let F ′ be
an indecomposable direct summand of F of rank r′. Set I := {L ∈ Pic(Y )|F ⊗ L ∼=
F} and I ′ := {L ∈ I|F ′ ⊗ L ∼= F ′}. Then

⊕
[L]∈I/I′ F ′ ⊗ L is a direct summand of

F . In particular, #(I/I ′) ≤ r/r′.

Proof. For every L ∈ I, F ′ ⊗ L is again a direct summand of F . Furthermore,
F ⊗ L ∼= F ⊗ L′ if and only if L′ ⊗ L−1 ∈ I. Hence by Krull-Schmidt theorem [3],
we see that

⊕
[L]∈I/I′ F ′ ⊗L is a direct summand of F . This implies r′#(I/I ′) ≤ r,

which is our claim.

To prove Theorem 7.1.2, we recall a characterization of ordinary abelian varieties
due to Sannai and Tanaka.

Theorem 7.4.2 ([97, Theorem 1.1]). Let Y be a normal projective variety over an
algebraically closed field k of characteristic p > 0. Then Y is an ordinary abelian
variety if and only if KY is pseudo-effective and F e

Y ∗OY is isomorphic to a direct
sum of line bundles for infinitely many e > 0.

Remark 7.4.3. In [30], it is proved that we only need to check F e
Y ∗OX for e = 1, 2 in

the above theorem.

For convenience, we use the following notation.

Notation 7.4.4. Let φ : S → T be a morphism of schemes. We denote by Pic(S)[φ]
(resp. Pic0(S)[φ]) the kernel of the induced homomorphism φ∗ : Pic(T ) → Pic(S)
(resp. φ∗ : Pic0(T ) → Pic0(S)). Then for every e > 0, Pic(X)[F e

X ] is the set of
pe-torsion line bundles. We denote it by Pic(X)[pe].

Proof of Theorem 7.1.2. We first prove that if (X,∆) is F -split, then (a,∆) is F -
split and A is ordinary. We have the following commutative diagram

H1(X,OX)
FX

∗
// H1(X,OX)

H1(A,OA)

α∗
OO

FA
∗
// H1(A,OA).

α∗
OO

Since X is F -split, the upper horizontal arrow is bijective. Furthermore, by [83,
Lemma(1.3)] we see that the vertical arrows are injective. (Note that although X is
assumed to be smooth in [83, Lemma(1.3)], the smoothness of X is not needed in
the proof.) Hence the lower horizontal arrow is injective, and thus A is ordinary. Let

X
f−→ Z

g−→ A be the Stein factorization of a. Then as shown by Proposition 7.3.11
(1), Z is F -split, or equivalently, OZ is a direct summand of F (e) := F e

Z∗OZe for
every e > 0. Since a∗ : Pic0(A) → Pic0(X) is bijective, g∗ : Pic0(A) → Pic0(Z) is
injective. Hence

pe·dimA = #Pic0(A)[F e
A] ≤ #Pic0(Z)[F e

Z ].
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Then by the projection formula and Lemma 7.4.1 (set F := F (e) and F ′ := OZ), we
obtain

pe·dimA ≤ #{L ∈ Pic(Z)|F (e) ⊗ L ∼= F (e)} ≤ rank F (e) = pe·dimZ .

This implies dimZ = dimA and that
⊕

L∈Pic(Z)[pe] L ⊆ F (e) is a direct summand of

maximum rank. Since F (e) is torsion free, the inclusion is an isomorphism. Therefore
F e
Z is flat, or equivalently, Z is smooth. Now it is enough to show that ωZ is pseudo-

effective. Indeed, if it holds, then Theorem 7.4.2 shows that Z is an ordinary abelian
variety, since F (e) is a direct sum of line bundles for every e > 0. Then g : Z → A is
an isomorphism, and by Proposition 7.3.11 (3), we see that (a,∆) is F -split, which
is our assertion. We show the pseudo-effectivity of ωZ . Fix an e > 0. Now we have
(F (e))∗ ∼= F (e) and F e

Z
∗F (e) ∼=

⊕
OZe . Furthermore, by the Grothendieck duality,

we obtain
F e
Z∗ω

1−pe
Ze

∼= Hom(F e
Z∗OZe ,OZ) = (F (e))∗ ∼= F (e).

Hence there exists a surjection F e
Z
∗F (e) ∼= F e

Z
∗F e

Z∗ω
1−pe
Ze → ω1−pe

Ze , which implies

that ω1−pe
Z is globally generated. Since H0(Ze, ω1−pe

Ze ) ∼= H0(Z,F (e)) ∼= k, we get
ω1−pe
Z

∼= OZ , or equivalently ω
pe−1
Z

∼= OZ , and thus ωZ is pseudo-effective.
The converse follows directly from Proposition 7.3.11.

Proof of Theorem 7.1.4. Assume that (a,∆) is locally F -split. By Theorem 7.1.3,
a is surjective with a∗OX

∼= OX , and hence the first statement follows. We show
the second statement. The “if” part is obvious. For the “only if” part, we assume
dimA = dimX. Then by Proposition 7.3.9, we see that a is an isomorphism and
∆ = 0.

Remark 7.4.5. For a smooth projective variety V over an algebraically closed field
of characteristic zero, we have b1(V )/2 = h1,0(V ) := dimH0(V,Ω1

V ). However,
in positive characteristic, we only have the inequality b1(V )/2 ≤ h1,0(V ). Igusa
constructed a smooth projective surface S with b1(S) = h1,0(S) = 2 [61]. In [30], or-
dinary abelian varieties of odd characteristic are characterized as smooth projective
F -split varieties V with h1,0(V ) = dimV .

The purpose of the remainder of this section is to prove the next theorem.

Theorem 7.4.6. Let γA be the p-rank of A. Assume that there exists a morphism
f : X → B to an abelian variety B of p-rank γB such that (f,∆) is F -split. Then
(a,∆) is F -split and γA = γB+dimA−dimB. In particular, if B is ordinary, then
(X,∆) is F -split.

To prove this, we need to prove Proposition 7.3.9, which is an application of The-
orem 7.1.4. We first observe line bundles whose pullbacks by the relative Frobenius
morphisms are trivial.

Observation 7.4.7. Let f : X → Z be an algebraic fiber space and X,Z be smooth
projective varieties. (1) We consider the following commutative diagram of Picard
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groups:
Pic(Xe)

Pic(XZe)

F
(e)
X/Z

∗
OO

Pic(X)
(F e

Z)X
∗

oo

F e
X

∗ff

Pic(Ze)

fZe∗

OO

Pic(Z).
F e
Z
∗

oo

f∗

OO

Clearly, f ∗ induces an injective morphism Pic(Z)[pe]
f∗−→ Pic(X)[(F e

Z)X ]. We show
that this is an isomorphism. Let L ∈ Pic(X)[(F e

Z)X ]. Then by the flatness of F e
Z ,

we have
F e
Z
∗f∗L ∼= fZe∗LZe ∼= fZe∗OXZe

∼= F e
Z
∗f∗OX

∼= OZe .

Hence f∗L is a pe-torsion line bundle on Z, and the natural morphism f ∗f∗L → L is
an isomorphism. Therefore we deduce that the above homomorphism is surjective.
Note that a non-zero homomorphism between numerically trivial line bundles on a
projective variety is an isomorphism.

By the above argument, we have the following exact sequence

0 → Pic(Z)[pe]
f∗−→ Pic(X)[pe] → Pic(XZe)[F

(e)
X/Z ].

(2) Set F := F
(e)
X/Z∗

OXe and I := {L ∈ Pic(XZe)|F ⊗ L ∼= F}. Then we have

Pic(XZe)[F
(e)
X/Z ] ⊆ I by the projection formula. Let F ′ be an indecomposable direct

summand of F and let I ′ := {L ∈ Pic(XZe)|F ′ ⊗ L ∼= F ′}. Then by Lemma 7.4.1,
we obtain that

⊕
[L]∈I/I′ F ′ ⊗ L is a direct summand of F . In particular,

rank F ′ ·#(I/I ′) ≤ rank F = pe(dimX−dimZ).

The following lemma is used to prove Proposition 7.4.9.

Lemma 7.4.8. Let f : X → Z be an F -split morphism to a smooth projective
variety Z. Let Xz be the general closed fiber of f . Then h1(X,OX) ≤ h1(Xz,OXz)+
h1(Z,OZ).

Proof. Set Gi := Rif∗OX . Then we have rank Gi = hi(Xz,OXz) and F
e
Z
∗Gi ∼= Gi for

some e > 0 by Lemma 7.3.4. As shown by [78, 1.4. Satz], there exists an étale cover
π : Z ′ → Z such that π∗Gi ∼=

⊕
OZ′ for each i, and hence

dimH0(Z,Gi) ≤ dimH0(Z ′, π∗Gi) = rank Gi = hi(Xz,OXz).

Therefore by the Leray spectral sequence, we have

h1(X,OX) ≤ h0(Z,G1) + h1(Z,OZ) ≤ h1(Xz,OXz) + h1(Z,OZ).
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Proposition 7.4.9. Let f : X → Z be an F -split morphism to an abelian variety
Z. Suppose that the Albanese morphism a : X → A of X is a finite morphism.
Then a is an isomorphism, or equivalently, X is an abelian variety.

Proof. Let f : X
f ′−→ Z ′ π−→ Z be the Stein factorization. As shown by Proposi-

tion 7.3.11, π is F -split. Hence we see that π is étale by Proposition 7.3.9. This
implies that Z ′ is also an abelian variety by [87, Section 18, Theorem] and that
(f ′,∆) is F -split by Proposition 7.3.11. Replacing Z by Z ′, we may assume that

f∗OX
∼= OZ . We can factor f into f : X

a−→ A
g−→ Z. Let z ∈ Z be a general closed

point. Then as shown by Proposition 7.3.6, Xz is integral, normal and F -split. We
recall that a is a finite morphism by the assumption. Then the induced morphism
Xz → (Az)red is a finite morphism to an abelian variety, and therefore Xz is an
ordinary abelian variety by Theorem 7.1.4. Hence by Lemma 7.4.8, we have

dimA ≤ h1(X,OX) ≤ h1(Xz,OXz) + h1(Z,OZ) = dimXz + dimZ = dimX.

This means that a is surjective. Since f is F -split, it is separable, and hence so is g,
which implies that Az is reduced. We may assume Xz → Az is an isogeny of abelian
varieties. Considering p-torsion points, we see that Az is also ordinary. Therefore
the p-rank γA of A is equal to

γAz + γZ = dimAz + γZ = dimA− dimZ + γZ ,

and hence g is F -split because of Theorem 7.3.7 (ii).

Claim 7.4.10. The morphism a : X → A is separable.

If the claim holds, then 0 ∼ a∗KA ≤ KX . Since f is F -split, we have
κ(X,KX/Z) = κ(X,KX) ≤ 0 by Lemma 7.3.10, and hence KX = 0. Applying
the Zariski-Nagata purity, we see that a is an étale morphism. Hence we obtain that
X is an abelian variety by [87, Section 18, Theorem]. This is our assertion.

Proof of Claim 7.4.10. We factor a : X → A into two finite morphisms i : X → Y
and s : Y → A such that i is purely inseparable and s is separable. We show that i
is an isomorphism. We fix an e > 0 such that there exists a morphism b : Y e → X
such that the following diagram commutes:

Xe
F e
X //

i(e)

��

X

i
��

Y e
F e
Y

//

b

==

Y.

This induces the following commutative diagram:

Xe
F

(e)
X/Z //

i(e)

��

XZe

iZe

��

(F e
Z)X // X

i
��

Y e

F
(e)
Y/Z

//

bZe

<<

YZe
(F e

Z)Y

// Y.
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Note that since f : X → Z and g ◦ s : Y → Z are separable, XZe and YZe are
varieties. Since OXZe → F

(e)
X/Z∗

OXe splits, OXZe → bZe∗OY e also splits. From this,

the coherent sheaf F := F
(e)
Y/Z∗

OY e on YZe has iZe∗OXZe as a direct summand. Let

F ′ be the indecomposable direct summand of iZe∗OXZe with H0(YZe ,F ′) ̸= 0. Set

I := {L ∈ Pic(YZe)|F ⊗ L ∼= F} and I ′ := {L ∈ I|F ′ ⊗ L ∼= F ′}.

Let L be a pe-torsion line bundle on A. Now we have the morphisms Y
s−→ A

g−→ Z.
Set M to be the pe-torsion line bundle (s∗L)Ze on YZe . We show that M ∈ I and
that M ∈ I ′ if and only if L ∈ g∗Pic(Z)[pe]. By the projection formula, we have

F ⊗M = (F
(e)
Y/Z∗

OY e)⊗ (s∗L)Ze ∼= F
(e)
Y/Z∗

(F e
Y
∗(s∗L)) ∼= F

(e)
Y/Z∗

(s∗Lpe) ∼= F ,

and hence M ∈ I. If L ∼= g∗N for an N ∈ Pic(Z)[pe], then M ∼= sZe
∗gZe

∗F e
Z
∗N ∼=

OYZe ∈ I ′. Conversely, if M ∈ I ′, then again by the projection formula, we have

0 ̸= H0(YZe ,F ′) ∼= H0(YZe ,F ′ ⊗M)

⊆ H0(YZe , (iZe∗OXe)⊗M)
∼= H0(XZe , iZe

∗M) ∼= H0(XZe , (a∗L)Ze).

Therefore (a∗L)Ze ∼= OXZe . By Observation 7.4.7 (1), we get a∗L ∈ f ∗(Pic(Z)[pe]) =
a∗g∗(Pic(Z)[pe]). Since a∗ : Pic0(A) → Pic0(X) is an isomorphism, we have L ∈
g∗(Pic(Z)[pe]). From the argument above, we have the following injective morphism

G := Pic(A)[pe]/g∗Pic(Z)[pe]
(s∗( ))Ze−−−−−−→ I/I ′.

Let r′ be the rank of F ′. Since the number of pe-torsion line bundles on A (resp. Z)
is equal to pe·γA (resp. pe·γZ ), we have

pe(dimA−dimZ)r′ = pe(γA−γZ)r′ ≤ #G · r′ ≤ #(I/I ′) · r′ ≤ pe(dimA−dimZ)

by Observation 7.4.7 (2). This implies that r′ = 1 and that
⊕

[L]∈GF ′⊗(s∗L)Ze ⊆ F
is a direct summand of maximal rank. Since F is torsion free, this inclusion is an
isomorphism. Since iZe∗OXZe is a direct summand of F , there exists a subset H ⊆ G
such that

⊕
[L]∈H F ′ ⊗ (s∗L)Ze ∼= iZe∗OXZe . Then the rank iZe∗OXZe = #H · r′ =

#H. We show #H = 1. For L ∈ Pic(A)[pe] with [L] ∈ H, we have

0 ̸= H0(YZe ,F ′) = H0(YZe ,F ′ ⊗ (s∗L)Ze ⊗ (s∗L−1)Ze)

⊆ H0(YZe , (iZe∗OXZe )⊗ (s∗L−1)Ze) = H0(XZe , (a∗L−1)Ze).

By an argument similar to the above, we see that L−1 ∈ g∗Pic(Z)[pe], and thus
[L] = [OA] ∈ G. Hence H = {[OA]}. Since deg i = deg iZe = rank iZe∗OXZe = 1, we
see that i is an isomorphism, which is our assertion.
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Proof of Theorem 7.4.6. Let X
π−→ X ′ g′−→ A be the Stein factorization of a. Then

we can factor f into f : X
π−→ X ′ g′−→ A

h−→ B. By Proposition 7.3.11 (1), h ◦ g′ is
F -split. Since the finite morphism g′ : X ′ → A is the Albanese morphism of X ′, we
see that g′ is an isomorphism by Proposition 7.4.9. Therefore Proposition 7.3.11 (3)
shows that (a,∆) is F -split. Since h : A → B is an F -split morphism whose closed
fibers Az are ordinary abelian varieties, we obtain

γA = γAz + γB = dimAz + γB = dimA− dimB + γB.

7.5 Minimal surfaces with F -split Albanese mor-

phisms

The aim of this section is to specify minimal surfaces over an algebraically closed
field k of characteristic p > 0 such that the Albanese morphisms are F -split or
locally F -split. Note that if a smooth projective surface has F -split (resp. locally
F -split) Albanese morphism, then so are its minimal surfaces. Indeed, let S1 be
a smooth projective surface and π : S1 → S2 be the contraction of a (−1)-curve.
Then it is easily seen that the induced morphism Alb(π) : Alb(S1) → Alb(S2) is an
isomorphism. Hence if S1 has F -split (resp. locally F -split) Albanese morphism,
then so does S2 by Proposition 7.3.11 (1).

Throughout this section, we denote by X a smooth projective minimal surface
and by a : X → A the Albanese morphism of X.

Theorem 7.5.1. If a is locally F -split, then one of the following holds:

(0) b1(X) = 0 and X is F -split;

(1-1) b1(X) = 2, κ(X) = −∞ and X is the projective space bundle P(E) associated
with a rank two vector bundle E on A;

(1-2) b1(X) = 2, κ(X) = 0 and X is a hyperelliptic surface such that every closed
fiber of a is an ordinary elliptic curve;

(2) X is an abelian surface.

Furthermore, in the case of (1-1), the morphism a is F -split if and only if either

(a) E is decomposable,

(b) E is indecomposable, p > 2 and deg E is odd, or

(c) E is indecomposable, p = 2 and A is ordinary.

In the case of (1-2), the morphism a is F -split.
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Note that the first Betti number b1(X) is equal to 2 dimA. By Theorem 7.1.4,
we see that b1(X) = 0, 2 or 4.

• If b1(X) = 0, then the F -splitting of a is equivalent to the F -splitting of X.

• If b1(X) = 4, then X is an abelian surface as shown by Theorem 7.1.4.

• The case when b1(X) = 2 is dealt with in the remainder of this section. As
shown by Lemma 7.3.10, we have κ(X) ≤ 0. We consider the cases κ(X) =
−∞ and κ(X) = 0 respectively in Subsections 7.5.1 and 7.5.2.

7.5.1 The case b1(X) = 2 and κ(X) = 0

In this case, by Bombieri and Mumford’s classification of minimal surfaces with
Kodaira dimension zero [12], we see that X is a hyperelliptic or quasi-hyperelliptic
surface. If a is locally F -split, then a has normal geometric generic fiber as shown by
Proposition 7.3.6, and hence X is hyperelliptic. In particular, there exist two elliptic
curves E0 and E1 such that X ∼= E1 ×E0/B, where B is a finite subgroupscheme of
E1 [12, Theorem 4]. Furthermore, every closed fiber of a is isomorphic to E0, and
A ∼= E1/B.

Proposition 7.5.2. The following are equivalent:

(1) a is F -split;

(2) a is locally F -split;

(3) E0 is ordinary.

Proof. (1)⇒(2) is obvious. If a is locally F -split, then the general fibers are F -
split by Proposition 7.3.6, and hence E0 is F -split. Thus (2)⇒(3) holds. We prove
(3)⇒(1). Assume that E0 is F -split. Since a is flat and every fiber has the trivial
canonical bundle, KX ∼ a∗C for a Cartier divisor C on A. Then by Theorem 7.3.7
(ii), we obtain an effective Q-divisor ∆A on A such that C ∼Z(p)

KA + ∆A ∼ ∆A.
Since KX ∼Q 0, we have ∆A = 0, and hence a is F -split as shown by Theorem 7.3.7
(ii)-(3). This is our claim.

7.5.2 The case b1(X) = 2 and κ(X) = −∞
In this case, X is a ruled surface over an elliptic curve. We start with recalling some
facts on elliptic curves. In the following lemmas, we denote by C an elliptic curve.

Lemma 7.5.3. Let F be a vector bundle on C of rank r and L be a line bundle
such that F ⊗ L ∼= F . Then Lr ∼= OC.

Proof. This follows from (detF)⊗ Lr ∼= det(F ⊗ L) ∼= detF .

Lemma 7.5.4. Let π : C ′ → C be a finite morphism of degree d from an elliptic
curve C ′. Let L be a line bundle on C such that π∗L ∼= OC′. Then Ld ∼= O′

C.
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Proof. By the projection formula, we have (π∗OC′)⊗L ∼= π∗OC′ . Hence the assertion
follows from Lemma 7.5.3.

Lemma 7.5.5. The m-th symmetric product SmE2,0 of E2,0 is isomorphic to a direct
sum of vector bundles of the form Er,0.

Proof. Let F be an indecomposable direct summand of SmE2,0 of rank r. By Theo-
rem 1.4.1, we may write F ∼= Er,0⊗L for an L ∈ Pic0(C). Let π := π2 : C2 → C be as
in Lemma 1.4.2. Since π∗SmE2,0 is trivial, we have π∗L ∼= OC2 . By Lemma 7.5.4, we
see that Lp ∼= OC . Since supersingular elliptic curves have no non-trivial p-torsion
line bundle, we may assume that C is ordinary. Then since FC

∗Er,0 ∼= Er,0, we get
that FC

∗F ∼= Er,0 ⊗ Lp ∼= Er,0 and FC
∗SmE2,0 ∼= SmE2,0. Hence we conclude that

L ∼= OC .

Now we return to study the F -splitting of the Albanese morphism a : X → A
of X. We may regard X and a respectively as P(E) for a vector bundle on A of
rank two and its projection. If E is decomposable, then a is F -split as seen in
Example 7.3.3. Assume that E is indecomposable. We only need to consider the
two cases: deg E = 0 and deg E = 1.

The case deg E = 0.

In this case, we may assume that E = E2,0 by Theorem 1.4.1 (1). Then we have
a finite morphism π : A′ → A from an elliptic curve A′ such that π∗E2,0 ∼= O⊕2

A′ ,
as seen in Lemma 1.4.2. In particular, XA′ ∼= P(π∗E2,0) ∼= P1 × A1. We show the
following:

Proposition 7.5.6. a : X → A is F -split if and only if A is ordinary and p = 2.

To prove Proposition 7.5.6, we prepare the following claims.

Claim 7.5.7. There exists an algebraic fiber space g : X → Y ∼= P1 such that
g∗OY (1) ∼= OX(p).

Claim 7.5.8. The p-th symmetric power SpE2,0 of E2,0 is isomorphic to Ep,0 ⊕OA.

Proof of Claims 7.5.7 and 7.5.8. Since the Iitaka-Kodaira dimensions of line bun-
dles are preserved under the pullback by any surjective projective morphism [62,
Theorem 10.5], we have

κ(X,OX(1)) = κ(XA′ ,OXA′ (1)) = κ(P1,OP1(1)) = 1.

Since ν(X,OX(1)) is also equal to one, we deduce that OX(1) is semi-ample. Let
g : X → Y be the Iitaka fibration associated to OX(1). Then Y ∼= P1 obviously. Let
B be the general fiber of g. Then B is an elliptic curve. Now we have the following
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commutative diagram:
BA′ //

��

B

��
XA′

πX //

aA′
��

X

a
��

g // Y

A′
π

// A.

By the construction, we have OX(B) ∼= OX(m) ⊗ a∗L for an m > 0 and a torsion
line bundle L on A. We consider the exact sequence

0 → OX(l)⊗OX(−B) → OX(l) → OB → 0

for l ∈ Z. Taking the direct image, we obtain exact sequences

0 → L∗ → SmE2,0 → a∗OB → 0 and 0 → Sm−1E2,0 → a∗OB → 0

when l = m and l = m − 1, respectively. By the first exact sequence and by
Lemma 7.5.5, we see that L ∼= OA, or equivalently OX(B) ∼= OX(m). By the
second one and Lemma 7.5.5, we obtain that a∗OB

∼= Sm−1E2,0 ∼= Em,0. Hence
π∗a∗OB

∼= O⊕m
A′ . Since π : A′ → A and (a|B) : B → A are flat, we obtain

dimH0(B, (a|B)∗Ep,0) =dimH0(B, (a|B)∗π∗OA′)

= dimH0(BA′ ,OBA′ ) = dimH0(A′, π∗a∗OB) = m.

Since a : X → A is a non-trivial projective space bundle, we have 2 ≤ m ≤ p.
For an N ∈ Pic0(A)[a|B], by the projection formula, we have Em,0 ∼= Em,0 ⊗ N .
Then N ∼= OA by Theorem 1.4.1 (1). Thus we get Pic0(A)[a|B] = {OA}, which
means that m is a power of p, so m = p. Since H0(A, SpE2,0) ∼= H0(X,OX(p)) ∼=
H0(Y,OY (1)) = k⊕2, we see that the first exact sequence splits, which implies that
SpE2,0 ∼= Ep,0 ⊕OA.

Now we start the proof of Proposition 7.5.6.

Proof of Proposition 7.5.6. We use the same notation as the proof of Claim 7.5.7.
First we prove the “if” part. We show that (a,B) is F -split. Now we have ωX ⊗
OX(B) ∼= OX(−2) ⊗ OX(p) ∼= OX . Hence by Theorem 7.3.7 (ii)-(3), it is enough
to show that (Xz, B|Xz) is F -split for a fiber Xz

∼= P1 of a. Since A is ordinary,
π : A′ → A is étale. Since π∗a∗OB is a trivial vector bundle of rank two on A′, we
see that BA′ is a disjoint union of sections of aA′ : XA′ → A′. This implies that the
divisor B|Xz is a sum of two distinct points. Using the assumption that p = 2, we
conclude that (Xz, B|Xz) is F -split.

Next we prove the “only if” part. We first show that A is ordinary by contra-
diction. Assume that A is supersingular. Then π = FA. In this case, we see that
BA′ = pS as divisors, where S is a section of aA′ : XA′ → A′. Set

ψ(e) := H0(XA′1 , ϕ
(1)
XA′/A′ ⊗ ω1−pe−1

XA′1
) : H0((XA′)1, ω1−pe

XA′ ) → H0(XA′1 , ω1−pe−1

XA′1
).
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Then by Claim 7.5.7, we have

H0(X,ω1−pe
X ) = H0(X,OX(2p

e − 2))

= (g∗H0(Y,OY (2p
e−1 − 1))) · (H0(X,OX(p− 2))).

Since there exists a section S of aA′ such that every fiber of g ◦ πX is equal to
pS as a divisor, we see that for every s ∈ πX

∗g∗H0(OY (2p
e−1 − 1)) there exists a

t ∈ H0(OXA′ (2p
e−1 − 1)) with s = tp. Hence we have ψ(e)(s · r) = ψ(e)(r) · t = 0 for

every r ∈ πX
∗H0(X,OX(p− 2)). We then deduce that ϕ

(e)
XA′/A′ sends s · r to 0. Since

ϕ
(e)
XA′/A′ is obtained as the pullback of ϕ

(e)
X/A, we conclude that H0(XAe , ϕ

(e)
X/A) is the

zero map. Therefore a is not F -split, which is a contradiction. Thus A is ordinary.
We show p = 2. By the assumption we see that the morphism OXA1 → F

(1)
X/A∗

OX1

splits. Applying the functor aA1∗( ⊗OXA1 (1)) to this, we obtain the morphism

E2,0 ∼= FA
∗E2,0 ∼= aA1∗OXA1 (1) → a(1)∗OX1(p) ∼= SpE2,0

which splits as OA1-modules. Since SpE2,0 ∼= Ep,0 ⊕OA as shown by Claim 7.5.8, we
get Ep,0 ∼= E2,0 and thus p = 2.

The case deg E = 1.

The following proposition is the conclusion of this case.

Proposition 7.5.9. If deg E = 1, then a is F -split if and only if A is ordinary or
p > 2.

Proof. We first prove the “if” part. When p > 2, we take the étale cover ρ : A′ → A
of degree two corresponding to a torsion line bundle L of order two. Then ρ∗OA′ ∼=
OA ⊕ L and

ρA′∗OA′×AA′ ∼= ρ∗ρ∗OA′ ∼= OA′ ⊕OA′ .

Here the first isomorphism follows from the flatness of ρ. Hence A′×AA
′ is a disjoint

union of two copies of A′. By Theorem 1.4.1 (1) and (6), there exists a line bundle
M of degree one such that ρ∗M ∼= E . Then

ρ∗E ∼= ρ∗ρ∗M ∼= ρA′∗MA′ ∼= M⊕M.

Therefore X ′ := XA′ ∼= P(M⊕M) is F -split over A′. We now have the following
commutative diagrams:

X ′e //

F
(e)

X′/A′
��

Xe

F
(e)
X/A

��
X ′

A′e
(ρ(e))X

// XAe

and
OXAe

//

�� ((

(ρ(e))X∗OX′
A′e

��

F
(e)
X/A∗

OXe // (ρ(e))X∗F
(e)
X′/A′∗

OX′e .
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Since ρ is a finite étale morphism of degree not divisible by p, the upper horizontal
morphism splits. Then the diagonal morphism also splits, and hence so is the left
morphism. Consequently, we see that X is F -split over A. When p = 2 and A is
ordinary, F ∗

AE ∈ EA(2, 2) as shown by Theorem 1.4.1 (5). Then by Proposition 7.5.6,
we see that aA1 : XA1 → A1 is F -split. Replacing ρ by FA, we can prove the assertion
by the same argument as the above.

Next we prove the “only if” part by contraposition. Assume that p = 2 and A is
supersingular. Then Theorem 1.4.1 (5) shows that FA

∗E ∈ EA(2, 2). Hence as seen
in Proposition 7.5.6, aA1 : XA1 → A1 is not F -split. This requires that a : X → A
is also not F -split, which completes the proof.
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