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Abstract

The nonequivariant coherent-costructible correspondence is a microlocal-geometric
interpretation of homological mirror symmetry for toric varieties conjectured by Fang–
Liu–Treumann–Zaslow. We prove a generalization of this conjecture for a class of toric
stacks which includes any toric varieties and toric orbifolds. Our proof is based on
gluing descriptions of ∞-categories of both sides.

1



Acknowledgments

I would like to express my gratitude to Professor Kazushi Ueda for many valuable com-
ments and continuous encouragements. I also thank Yuichi Ike. Some ideas of this work
stems from the collaboration with him [IK16].

While preparing this paper, I learned that a parallel work was announced by Dmitry
Vaintrob [Vai] from Eric Zaslow. Thereom 1.3 for smooth complete toric varieties was
also obtained by him independently. I thank Eric Zaslow for the information and Dmitry
Vaintrob for his comments. I also thank Vivek Shende for making some remarks on the
construction of Tamarkin’s projector and for his lectures on microlocal geometry which
affects the draft of this paper, David Nadler for giving the author a proof of presentability
of microlocal categories, and Alexei Bondal for giving me a thorough explanation of his
work [Bon06]. I also thank Harold Williams who pointed out some errors in the statement
of early preprints.

I also would like to thank Professor Shinobu Hosono and Professor Mitsuharu Ôtani
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1 Introduction

Mirror symmetry is a mysterious relationship between complex and symplectic geome-
try which predicts various mathematical consequences. To give a unified understanding
of mirror symmetry, Kontsevich proposed homological mirror symmetry (HMS) in 1994
[Kon95]. HMS predicts an equivalence between two different kinds of categories: the de-
rived category of coherent sheaves on a variety X and a Fukaya-type category of a mirror
of X. If X is a toric Fano variety, a mirror of X is given by a regular function W over
(C∗)n [Giv95, HV00]. Then HMS predicts an equivalence

cohX ≃ Fuk(W ) (1.1)

where cohX is the derived ∞-category of coherent sheaves on X and Fuk(W ) is the de-
rived Fukaya–Seidel ∞-category of W . The ∞-category Fuk(W ) is defined by Lagrangian
intersection Floer theory of Lefschetz thimbles of W [Sei01].

Recent developments of microlocal geometry suggest that such symplectic geometry
can be captured by microlocal sheaf theory. The key notion in microlocal sheaf theory de-
veloped by Kashiwara–Schapira [KS90] is microsupport, which assigns to a sheaf a certain
subset of the cotangent bundle of the manifold on which the sheaf lives. For a constructible
sheaf, the microsupport becomes a Lagrangian subvariety of the cotangent bundle. This
relation was further developed by Nadler–Zaslow [NZ09, Nad09]: their theorem says that
the derived category of constructible sheaves on a real analytic manifold Z is equivalent
to the derived infinitesimally wrapped Fukaya category of the cotangent bundle T ∗Z.

The Nadler–Zaslow equivalence mentioned above can be considered as a first exam-
ple of topological Fukaya categories, i.e., topological description of Fukaya categories.
Nadler–Zaslow’s work is based on Fukaya–Oh’s work [FO97] on Morse theory which is
motivated by Witten’s pioneering work [Wit95]. More generally, Kontsevich [Kon] sug-
gested that Fukaya categories of Stein manifolds can be captured in terms of topological
language. In the work of Dyckerhoff–Kapranov [DK13, Dyc15] and Haiden–Katzarkov–
Kontsevich [HKK14], they constructed Fukaya-type categories for marked punctured Rie-
mann surfaces without using Floer theory. Later, Nadler [Nad16b] constructed the cat-
egories equivalent to the ones described in [DK13, HKK14] via microlocal sheaf theory.
In general, Kontsevich’s conjecture are pursued by Nadler and Ganatra–Pardon–Shende
[Nad14, GPS]. Along this line, Tamarkin and Tsygan are trying to construct microlocal
categories expected to be equivalent to Fukaya categories of closed symplectic manifolds
[Tam15, Tsy15].

Topological description is also expected for Fukaya categories for Landau–Ginzburg
models and wrapped Fukaya categories. Fang–Liu–Treumann–Zaslow [FLTZ11a, FLTZ12]
provided candidates of topological Fukaya categories for mirrors of toric varieties, which
is the central topic in this paper. Sibilla–Treumann–Zaslow [STZ14] provided topological
description for mirrors of chains of projective lines. Nadler [Nad15a, Nad16a] provided such
examples for mirrors of pair of pants. Also, in the aforementioned work of [DK13, HKK14],
some marked punctured Riemann surfaces can be considered as Landau–Ginzburg models.
Topological nature of wrapped Fukaya categories of cotangent bundles have been described
by Abbondandolo–Schwarz and Abouzaid [AS10a, Abo12, Abo11]. Microlocal approach
to wrapped Fukaya categories pursued by Nadler [Nad16b] will be described later in this
section.

Homological mirror symmetry by using those topological Fukaya categories has also
been discussed. Fang–Liu–Treumann–Zaslow [FLTZ11a, FLTZ14] proved torus-equivariant
version of the coherent-constructible correspondence for smooth complete toric varieties
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and toric orbifolds. Here, the coherent-constructible correspondence is a version of homo-
logical mirror symmetry which is the central topic of this paper. Sibilla–Treumann–Zaslow
[STZ14] proved the coherent-constructible correspondence for chains of projective lines.
Nadler proved homological mirror symmetry of pair of pants as both A and B models
[Nad15a, Nad16a, Nad16b]. Pascaleff–Sibilla [PS16] proved homological mirror symme-
try for punctured Riemann surfaces by using Dyckerhoff–Kapranov’s topological Fukaya
category.

In this paper, we will discuss homological mirror symmetry for toric stacks by us-
ing topological Fukaya categories originally introduced by Fang–Liu–Treumann–Zaslow
mentioned above. Namely, we replace the right hand side of (1.1) by a category defined
in terms of microlocal geometry. The following setting was first introduced by Fang–
Liu–Treumann–Zaslow [FLTZ11a, FLTZ12, FLTZ14] after the pioneering work of Bondal
[Bon06].

In this paper, we always work over C. Let M be a free abelian group of rank n and
N be its dual. Let further Σ be a fan defined in NR. We write XΣ for the toric variety
associated with Σ. We set

ΛΣ :=
∪
σ∈Σ

p(σ⊥)× (−σ) (1.2)

where p : MR → MR/M =: Tn is the projection and σ⊥ := {m ∈MR | m(σ) = {0}}. We
consider ΛΣ as the subset in T ∗Tn ∼= MR/M ×NR. Then ΛΣ is a Lagrangian subvariety
of T ∗Tn with respect to its standard symplectic structure.

One can generalize these setups to a class of toric stacks of Tyomkin and Geraschenko–
Satoriano[Tyo12, GS15]. Namely, let β : L→ N be a homomorphism between finite rank
free abelian groups with finite cokernel and Σ̂ and Σ are fans defined in LR and NR
respectively. In this paper, we assume the following condition unless otherwise stated.

Condition 1.1. The map βR induces a combinatorial equivalence between Σ̂ and Σ.

In other words, we assume that the images of cones in Σ by β again form a fan and the
induced morphism between fans is an isomorphism as a morphism of posets. We write XΣ̂,β
for the associated toric stack. This class of toric stacks contains any toric varieties and
any toric orbifolds in the sense of [FLTZ14] which is defined as toric DM stacks without
generic stabilizers in the sense of Borisov–Chen–Smith [BCS05, Iwa09, FMN10]. We can
generalize the construction of ΛΣ to (Σ̂, β) and write it ΛΣ̂,β (see Section ?? below).

On the coherent side, we will use the following four stable ∞-categories:

(i) Ind cohXΣ̂,β: the ∞-category of ind-coherent sheaves on XΣ̂,β,

(ii) QcohXΣ̂,β: the derived ∞-category of quasi-coherent sheaves on XΣ̂,β,

(iii) cohXΣ̂,β: the bounded derived ∞-category of coherent sheaves on XΣ̂,β,

(iv) perf XΣ̂,β: the ∞-category of perfect complexes on XΣ̂,β.

The category perf XΣ̂,β (resp. cohXΣ̂,β) is the full subcategory of QcohXΣ̂,β (resp.
Ind cohXΣ̂,β) spanned by compact objects.

Let Shc(Tn) (resp. Sh♢(Tn)) be the derived ∞-category of (quasi-)constructible
sheaves on Tn . Then we will use the following three stable ∞-categories on the con-
structible side:

(i) Sh♢ΛΣ̂,β
(Tn): the full subcategory of Sh♢(Tn) spanned by objects whose microsup-

ports are contained in ΛΣ̂,β,
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(ii) Shw
ΛΣ̂,β

(Tn): the full subcategory of Sh♢ΛΣ̂,β
(Tn) spanned by compact objects,

(iii) Shc
ΛΣ̂,β

(Tn): the full subcategory of Shc(Tn) spanned by objects whose microsup-

ports are contained in ΛΣ̂,β.

The category of wrapped constructible sheaves Shw
ΛΣ̂,β

(Tn) recently introduced by Nadler

[Nad16b] is a microlocal counterpart of (patially) wrapped Fukaya category [AS10b, Aur10,
Syl16].

Our main theorem in this paper is the following.

Theorem 1.2 (Theorem 6.2, Corollary 12.10). There exists an equivalence of∞-categories

cohXΣ̂,β ≃ Shw
ΛΣ̂,β

(Tn), (1.3)

If XΣ̂,β is complete, there exists an equivalence of ∞-categories

perf XΣ̂,β ≃ Shc
ΛΣ̂,β

(Tn). (1.4)

If XΣ̂,β is smooth and complete, we moreover have an equivalence of ∞-categories

Shw
ΛΣ̂,β

(Tn) ≃ Shc
ΛΣ̂,β

(Tn), (1.5)

in particular,
cohXΣ̂,β ≃ Shc

ΛΣ̂,β
(Tn). (1.6)

Although this theorem holds for arbitrary toric varieties and toric orbofolds, smooth
cases had been conjectured and discussed. Originally, Bondal [Bon06] sketched an equiv-
alence between the derived categories for a class of toric varieties (which are in particular
Fano) and the category of “constructible sheaves with respect to certain decompositions
of Tn”. After Bondal’s announcement, Fang–Liu–Treumann–Zaslow formulated and con-
jectured Theorem 6.2 for smooth complete fans and called it the coherent-constructible
correspondence [FLTZ11a, FLTZ12, Tre10]. Scherotzke–Sibilla [SS16] generalized the con-
jecture for complete oribfolds, and Ike and the author [IK16] generalized further for smooth
fans.

For complete fans, the conjecture was proved when Σ is (i) zonotpal by Treumann
[Tre10], (ii) cragged by Scherotzke–Sibilla [SS16], and (iii) 2-dimensional by the present
author [Kuw15]. For noncomplete fans, Ike and the author [IK16] proved that noncomplete
cases follow from complete cases. In their original paper [FLTZ11a], Fang–Liu–Treumann–
Zaslow proved the equivariant version.

For complete fans, we can see a relation between mirror symmetry and the coherent-
constructible correspondence explicitly. By the Nadler–Zaslow equivalence, the right hand
side of (1.6) can be viewed as the full subcategory of the Fukaya category of T ∗Tn consist-
ing of Lagrangian submanifolds along ΛΣ. Then Fang–Liu–Treumann–Zaslow [FLTZ12]
showed that the coherent-constructible correspondence for line bundles exhibits T-duality
[SYZ96]. However, relations to HMS for toric varieties formulated in terms of other types
of Fukaya categories [Abo09, AKO06, AKO08, Ued06, UY13] are still unclear at present
time (some discussions can be found in [FLTZ12]).

We obtain Theorem 1.2 as a corollary of the following.

Theorem 1.3 (Theorem 6.2). There exists an equivalence of ∞-categories

Ind cohXΣ̂,β ≃ Sh♢ΛΣ̂,β
(Tn). (1.7)
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Theorem 1.2 (1.3) is obtained by taking compact objects on both sides of Theorem
1.3. Then Theorem 1.2 (1.4) is obtained as the dual of (1.3) by taking the ∞-categories
of exact functors to perfect C-modules.

Our proof of Theorem 1.3 is based on gluing argument, i.e., first we prove the affine
cases (Proposition 7.8), then we glue those equivalences and deduce Theorem 1.3.

Roughly speaking, our proof of affine case is as follows. In smooth cases, the affine
case is essentially known in the literature. In singular cases, we resolve singularities by
toric resolutions and reduce to smooth cases.

Then we glue up the coheret-constructible correspondence for affines to that for XΣ̂,β .
On the coherent side, required gluing theorem is known as Zariski descent (Proposition
8.2). On the constructible side, we give the following gluing theorem. We present ΛΣ̂,β as
a union

∪
σ Λσ of its closed subsets {Λσ}σ∈Σ which corresponds to the affine toric covering

of XΣ̂,β. Let C(Σ) be the Čech poset of Σ (see Sections 8).

Theorem 1.4 (Theorem 11.1). There exists an equivalence of ∞-categories

Sh♢ΛΣ̂,β
(Tn) ≃ lim←−

C(Σ)

Sh♢Λ•
(Tn). (1.8)

This theorem is proved by techniques of Tamarkin’s projector [Tam08] sophisticated by
Guillermou–Schapira [GS14]. Gluing theorem for topological Fukaya categories for closed
Lagrangian subsets are also considered in the work of Pascaleff–Sibilla [PS16]. They treat
only 1-dimensional Lagrangians (graphs), and Theorem 1.4 can be considered as a first
example of its generalization to higher-dimensional cases.

Although it is known that Shc
ΛΣ̂,β

(Tn) has the sheaf property called Kashiwara–

Schapira stack [KS90, Gui12, Nad14] (see also Section 3.3), gluing proerty presented here
is different from it. Relations to the locality expected to Fukaya categories [Kon, Nad14,
DK13, Dyc15, GPS] and some proofs of homological mirror symmetry obtained by gluing
[STZ14, PS16, Nad16b] are future interests.

There may also be potential applications of Theorem 1.2 to problems in the derived cat-
egory of coherent sheaves on toric varieties. In fact, Fang–Liu–Treumann–Zaslow applied
their equivariant version to prove Kawamata’s semi-orthogonal decomposition [FLTZ11b]
and Scherotzke–Sibilla applied to construction of tilting complexes in the derived cate-
gories of coherent sheaves of cragged toric stacks [SS16].

This paper is organized as follows. In Section 2, we recall some categorical generalities
to fix our notations. In Section 3, we recall ind-coherent sheaves from [Gai]. Section 4, we
recall microlocal sheaf theory of (wrapped) constructible sheaves and its relation to Fukaya
category. We also recall and expand Tamarkin’s techniques for convolution products. In
Section 5, we define toric stacks used in this paper. In Section 6, we formulate the
coherent-constructible correspondence for toric stacks. In Section 7,we prove the smooth
affine case. In Section 8, we provide a proof of Zariski descent. In Section 9, we give
a candidate of the functor which provides the coherent-constructible correspondence and
see it is a generalization of the original formulation of [FLTZ11a]. In Section 10, we
describe the identity objects for convolution products, which is crucial for the proof of
main theorems. In Section 11, we prove Theorem 1.2, Theorem 1.3 and Theorem 1.4 for
the smooth case. In Section 12, we define the functor for singular case and prove that it
is an equivalence by reducing the singular case to the smooth case.
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2 Preliminaries on categorical generalities

For ∞-categories, we refer to Lurie’s [Lur09, Lur]. For the Morita model structure, we
refer to [Tab07, Coh13]. We also refer to Section 1 of [DK13] as a useful summery.

In this paper, we always work over C, hence dg-category always means C-linear dg-
category. All functors in this paper are appropriately derived. First, we recall the quasi-
equivalent model structure of the dg-category of dg-categories. We say that a dg-functor
between two dg-categories is a quasi-equivalence if it induces an equivalence between the
graded C-linear categories which are the homotopy categories of the dg-categories.

Definition 2.1 (The quasi-equivalent model structure [Tab07]). The quasi-equivalent
model structure on the dg-category of dg-categories is specified as follows: A dg-functor
f : C → D is

(i) a weak equivalence if it is a quasi-equivalence,

(ii) a fibration if it is surjective on Hom-spaces and there exists a quasi-isomorphism
y → x for any object x ∈ D with y = f(y′) for some y′ ∈ C,

(iii) a cofibration if it has the left lifting property with respect to trivial fibrations.

Let Mod(C) be the dg-category of dg-modules over a dg-category C. A dg functor
f : C → D induces a dg-functor Mod(D)→Mod(C). We say f is a Morita equivalence if
the induced functor is a quasi-equivalence.

Definition 2.2 (The Morita model structure [Tab07]). The Morita model structure on
the dg category of dg-categories is specified by the following: a dg-functor f : C → D is

(i) a weak equivalence if it is a Morita equivalence,

(ii) a cofibration if it is a cofibration of the quasi-equivalent model structure,

(iii) a fibration if it has right lifting property with respect to trivial cofibrations.

We use the following properties of the Morita model structure.

Proposition 2.3 ([Tab07]). (i) The Morita model structure is a left Bousfield localiza-
tion of the quasi-equivalent model structure.

(ii) The class of fibrant objects of the Morita model structure is the class of idempotent-
complete pretriangulated dg-categories.

Proof. (i) follows from the definition of left Bousfield localization. (ii) follows from the
shape of generating cofibrations of the Morita model structure (See [Tab05, Remarque
5.3]).

In this paper, we always use C-linear stable ∞-categories for statements of theorems,
but use C-linear dg-categories for proofs. This treatment is justified by the following
theorem. Let PrLst,ω be the∞-category of compactly generated stable∞-categories whose
1-morphisms are functors preserving colimits and compact objects. Let Mod(HC) be the
∞-category of modules over the Eilenberg–Maclane spectrum HC of C, which defines a
commutative algebra object in PrLst,ω ([Lur, Coh13]).

Theorem 2.4 ([Coh13]). The following two ∞-categories are equivalent:
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• dgcatMorita
∞ : the∞-category obtained from the Morita model structure of the category

of dg-categories.

• ModMod(HC)(PrLst,ω) : the ∞-category of modules over Mod(HC) in PrLst,ω.

Moreover, by [Lur, Proposition 1.3.4.23, 24], (co)limits in dgcatMorita
∞ (equivalently, in

ModMod(HC)(PrLst,ω)) are calculated as homotopy (co)limits in the Morita model struc-

ture. Since the homotopy theory of ModMod(HC)(PrLst,ω) does not depend on any choice
of model structures, Theorem 2.4 supports the canonicity of the Morita model structure.

3 Preliminaries on Ind-coherent sheaves

For Ind-objects, we refer to Kashiwara-Schapira [KS01] and Lurie [Lur]. For ind-coherent
sheaves, we refer to Gaitsgory [Gai].

3.1 Ind-objects

For an∞-category C, the∞-category of Ind-objects Ind(C) of C is the filtered cocomplete
closure of C in the category of presheaves on C. We sometimes call this colimit formal
colimit and write it “ lim−→ ”. The original category is recovered by taking compact objects
if the original category is idempotent-complete. Note that if C is stable then Ind(C) is
also stable.

Let F : C → D be a functor C → D. Then there exists a natural functor Ind(F ) : Ind(C)→
Ind(D) which extends F and preserves formal colimits. We also use F for IndF , if there
are no confusions.

Proposition 3.1 ([KS01, Proposition 1.1.3]). If F : C → D is fully faithful, the fucntor
F : IndC → IndD is also fully faithful.

3.2 Ind-coherent sheaves

Let X be a Deligne–Mumford stack of finite type over C. Let QcohX be the derived ∞-
category of quasi-coherent sheaves on X and cohX be the bounded derived ∞-category
of coherent sheaves on X . Since QcohX is cocomplete, we have the functor ΨX :=
holim−→

:

Ind cohX → QcohX . Let QcohbX be the bounded part of QcohX .

Proposition 3.2 ([Gai, Lemma 1.1.6, Corollary 3.3.6]). The restriction of ΨX to QcohbX
gives an equivalence onto QcohbX in QcohX . If X is smooth, the functor ΨX : Ind cohX →
QcohX is an equivalence.

Let f : X1 → X2 be a morphism of Deligne–Mumford stacks.

Proposition 3.3 ([Gai, Proposition 3.1.1, Lemma 3.5.8]). There exists a unique cocon-
tinuous functor

f Ind∗ : Ind cohX1 → Ind cohX2 (3.1)

which makes the diagram

Ind cohX1

ΨX1

��

fInd
∗ // Ind cohX2

ΨX2

��
QcohX1

f∗ // QcohX2

(3.2)
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commute. If f is proper, we have a natural isomorphsm f Ind∗ ≃ Ind(f∗). If f∗ gives
cohX2 → cohX1, the induced functor f∗ : Ind cohX2 → Ind cohX1 is the left adjoint
of f Ind∗ .

4 Preliminaries on microlocal sheaf theory

4.1 Microsupports

Let Z be a real analytic manifold. A sheaf E on Z is called constructible if there exists
an analytic Whitney stratification of Z such that E is finite rank locally constant C-sheaf
on each stratum [KS90]. If we allow E has infinite rank on each stratum, we say E is
quasi-constructible [FLTZ11a] (or weakly constructible in [KS90], or large constructible in
[Nad16b]). We write Shc(Z) (resp. Sh♢(Z)). for the stable ∞-category of complexes of
constructible (resp. weakly constructible) sheaves localized at quasi-isomorphisms.

Next we define microsupports due to Kashwara–Schapira [KS90]. Let π : T ∗Z → Z be
the cotangent bundle of Z.

Definition 4.1. For E ∈ Sh♢(Z), its microsupport SS(E) is the subset of T ∗Z which is
characterized as follows: (x; ξ) ∈ T ∗Z is not an element of SS(E) if there is an open neigh-
borhood U of (x, ξ) and any smooth function f with Graph(df) ⊂ U , Γ{z∈Z|f(z)≥f(x′)}(E)x′ ≃
0 holds for any x′ ∈ π(U).

Although this definition can be applied to any sheaves on manifolds, we can know much
more for quasi-constructible sheaves. Fix a conic Lagrangian Λ ⊂ T ∗M . Let Sh♢Λ(M) be
the full subcategory of Sh♢(M) spanned by objects whose microsupports are contained
in Λ.

Take E ∈ Sh♢Λ(M) and a smooth point (x, ξ) ∈ Λ.

Proposition 4.2 ([KS90, Propositioin 7.5.3]). Let f : M → R be a smooth function with
Graph(df) intersecting Λ transversely at (x, ξ) and f(x) = 0. Then up to shifts, the
complex

Γ{y|f(y)≥0}(E)x (4.1)

depends only on E and (x, ξ) and is independent of choice of f . If this complex is acyclic,
then (x, ξ) ̸∈ SS(E).

The complex m(x,ξ),f (E) := Γ{y|f(y)≥0}(E)x is called the microlocal stalk of E at (x, ξ)
with respect to Λ and f . Proposition 4.2 says microlocal stalk completely captures micro-
support.

There are standard estimates of microsupports which we will use later.

Proposition 4.3 ([KS90]). For E,F ∈ Sh♢(Z), the following estimates hold:

(i) SS(E ⊠ F ) ⊂ SS(E)× SS(F ),

(ii) SS(HomZ×Z(p
−1
1 E, p•2F )) ⊂ SS(E)a × SS(F ) (• = −1, !), and

(iii) SS(Cone(E → F )) ⊂ SS(E) ∪ SS(F ).

where a is the fiberwise antipodal map and pi : Z×Z → Z is the projection to each factor.

If E is constructible, SS(E) is a Lagrangian subvariety with respect to the standard
symplectic structure of T ∗Z. This observation leads to recent applications of microlocal
geometry to symplectic geometry, such as Tamarkin [Tam08] and Nadler–Zaslow [NZ09,
Nad09]. Here we review the latter briefly in the Section 4.2 (we also recall some techniques
of the former in Section 4.4).
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4.2 Fukaya categories and constructible sheaves

We assume that Z is compact. We consider the derived infinitesimally wrapped Fukaya
category Fuk(T ∗Z) of T ∗Z whose objects are generated by exact Lagrangian submanifolds
supposed to be tame at infinity and hom-spaces are calculated with inifinitesimal Hamilto-
nian perturbations which induce Reeb flows on the contact boundary when we canonically
compactify T ∗Z. Then the Nadler–Zaslow equivalence is the following.

Theorem 4.4 ([NZ09, Nad09]). There is a quasi-equivalence of ∞-categories

Shc(Z) ≃ Fuk(T ∗Z). (4.2)

This quasi-equivalence is roughly given as follows; the left hand side is generated by
constant sheaves on small contractible closed sets. For such a sheaf, we assign an exact
Lagrangian submanifold obtained by smoothing the microsupport of the sheaf. This gives
an embedding of the left hand side to the right hand side. The quasi-inverse functor is
given along the philosophy of family Floer homology; for an object L of the right hand
side, the stalk at z ∈ Z of the corresponding object in the left hand side is given by
the Floer homology between the fiber T ∗z Z and L. By the tameness of objects, we can
use an easy version of family Floer homology without technical difficulties described in
[Fuk01, Abo14].

In a rough classification, there are two types of Fukya categories defined for non-
compact symplectic manifolds. One has finite-dimensional hom-spaces, the other has
infinite dimensional ones. Infinitesimally wrapped Fukaya category and Fukaya–Seidel
category are of first type. Microlocal counterparts of these are considered as constructible
sheaves.

Fukaya categories of second type are known as partially wrapped Fukaya categories
[AS10b, Aur10, Syl16]. A microlocal counterpart of this notion is recently proposed by
Nadler [Nad16b]. Let Λ be a conic Lagrangian subvariety of T ∗Z. We write Sh♢Λ(Z) for
the full subcategory of Sh♢(Z) spanned by objects whose microsupports are contained in
Λ.

Definition 4.5 ([Nad16b, Definition 3.12]). The stable ∞-category Shw
Λ(Z) of wrapped

constructible sheaves along Λ is the full subcategory of compact objects of Sh♢Λ(Z).

The stability follows from Proposition 4.3 (iii). There is another (more geometric)
definition of this category also due to Nadler [Nad16b]. We will use the notation of the
definition of microlocal stalk presented in Section 4.2. Take a smooth point (x, ξ) of Λ
and a smooth function f : M → R as in Proposition 4.2. By microlocal Bertini–Sard
theorem [KS90, Proposition 8.12] and the non-characteristic deformation lemma [KS90,
Proposition 2.7.2], we have a neighborhood B of x such that

m(x,ξ),f (E) := Γ{z∈Z|f(z)≥f(x)}(E)x ≃ Γ{z∈Z|f(z)≥f(x)}(B,E). (4.3)

Note that B depends on Λ, but does not depend on E. Since Sh♢Λ(M) is presentable
(cf. Proposition 4.10 and Proposition 4.11 below) and Γ{z∈Z|f(z)≥f(x)}(B,−) preserves

limits and colimits, m(x,ξ),f : Sh♢Λ(M) → Mod(C) is representable by a compact object
F(x,ξ),f ∈ Shw

Λ(M). This F(x,ξ),f is called microlocal skyscraper sheaf at (x, ξ) with respect
to Λ and f . By Proposition 4.2, F(x,ξ),f does not depend on f up to shifts.

Lemma 4.6 ([Nad16b, Lemma 3.15]). The ∞-category Shw
Λ(Z) is split-generated by the

microlocal skyscrapers F(x,ξ),f for (x.ξ) smooth points of Λ.
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The category of wrapped constructible sheaves have some properties expected for par-
tially wrapped Fukaya categories, for example, mirror symmetry for pair of pants [Nad16b]
and categorical localization [IK16]. Like partially wrapped Fukaya categories sometimes
have only finite dimensional hom-spaces, all wrapped costructible sheaves are sometimes
constructible sheaves, for example, Λ = ΛΣ̂,β for complete Σ (see Corollary 12.10 below,
see also appendix of [IK16]).

Finally we recall the duality between constructible and wrapped constructible sheaves
from [Nad16b]. Let mod(C) be the derived ∞-category of bounded complexes of finite-
dimensional C-vector spaces. Let further Fun ex(C,D) be the∞-category of exact functors
for stable ∞-categories C and D.

Theorem 4.7 ([Nad16b, Theorem 3.2.1]). There exists an equivalence of ∞-categories

Shc
Λ(Z) ≃ Fun ex((Shw

Λ(Z))
op,mod(C)) (4.4)

given by E 7→ hom(−, E).

4.3 Kashiwara–Schapira stack

The notion of Kashiwara–Schapira stack is essentially established in the theory of microlo-
cal categories of Kashiwara–Schapira [KS90] and is clarified in recent various literatures
[Nad14, Nad13, Nad15b, STZ14, STW16, Gui12].

Firstly, we introduce microlocal categories. Let Z be a real analytic manifold, Λ be a
conic Lagrangian subset of T ∗Z and U be an open subset of T ∗Z. Then we set

µSh♢Λ
pre

(U) := Sh♢Λ(Z)/Sh
♢
(Λ\(U∩Λ))(Z). (4.5)

Then the assignment µSh♢Λ
pre

: U 7→ µSh♢Λ(U) form a presheaf on T ∗Z. We write µSh♢Λ
for the sheafification of µSh♢Λ

pre
. Moreover, the support of this sheaf is Λ.

Definition 4.8. The sheaf µSh♢Λ on Λ is called the Kashiwara–Schapira stack (or the
stack of microlocal sheaves) along Λ.

The global section of this sheaf is known as follows.

Proposition 4.9 ([STW16, Propsitioin 3.5]). The global section of µSh♢Λ(Z) is equivalent

to Sh♢T ∗
ZZ∪Λ(Z)/Sh

♢
T ∗
ZZ(Z).

The author learned the following proposition from David Nadler.

Proposition 4.10. Assume Z is compact. The global section of µSh♢Λ is a compactly
generated ∞-category.

Proof. By the arborealization [Nad13, Nad15b], µSh♢Λ(U) is compactly generated for any
sufficiently small open set U of Λ. Since the ∞-category of compactly generated ∞-
category is closed under finite limits, the global section of µSh♢Λ is also compactly gener-
ated.

The presentability allows us to use Neeman’s Brown representability theorem.

Proposition 4.11 ([Nee01]). Let C be a compactly generated stable∞-category and f : C →
D is an exact ∞-functor from C to a stable ∞-category D. If f is product-preserving, f
has a left adjoint. If f is coproduct-preserving, f has a right adjoint.
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4.4 Techniques of Tamarkin (after Guillermou–Schapira)

In this section, we recall and slightly generalize some techniques of Tamarkin [Tam08]. We
follow the survey by Guillermou–Schapira [GS14]. Although almost all statements before
Lemma 4.18 can be obtained by the argument in [GS14], we present details for reader’s
convenience.

Let M be a rank n free abelian group, N be its dual, and let MR := M ⊗Z R, NR :=
N ⊗Z R. Then the cotangent bundle of the real torus Tn := MR/M has a canonical
trivialization T ∗Tn ≃ Tn ×NR. We set the quotient map p : MR → Tn.

We write m : Tn×Tn → Tn for the multiplication of the torus. Note that m is proper.
Then Sh♢(Tn) have the convolution product ⋆ defined by

E ⋆ F := m!(E ⊠ F ) = m!(p
−1
1 E ⊗ p−12 F ) = m∗(p

−1
1 E ⊗ p−12 F ) (4.6)

for E,F ∈ Sh♢(Tn) where pi is the projection from Tn × Tn to each factor. Since pi are
proper, the push-forward p∗ is equal to the proper push-forward p!.

The convolution has the right adjoint. We define

Hom⋆(E,F ) := p1∗Hom(p−12 E,m!F ) (4.7)

for E,F ∈ Sh♢(Tn).

Lemma 4.12. For E,F,G ∈ Sh♢(Tn), we have

hom(E ⋆ F,G) ≃ hom(E,Hom⋆(F,G)), (4.8)

Hom⋆(E,F ) ≃ m∗Hom(p−12 (−1)−1E, p!1F ), (4.9)

where −1: Tn → Tn takes an element to its inverse.

Proof. The first one is clear from the definitions. The second one follows from the argument
of [GS14, Lemma 4.10], namely, set f := (m,−p2) : Tn × Tn → Tn × Tn. We can see
f ◦ f = id. Since f is an isomorphism, f−1 = f ! and f−1 = f∗. Hence

Hom⋆(E,F ) ≃ p1∗Hom(p−12 E,m!F )

≃ p1∗Hom(f−1p−12 (−1)−1E, f !p!1F )
≃ p1∗f−1Hom(p−12 (−1)−1E, p!1F )
≃ (p1 ◦ f)∗Hom(p−12 (−1)−1E, p!1F )
≃ m∗Hom(p−12 (−1)−1E, p!1F ).

(4.10)

This completes the proof.

Lemma 4.13. For E ∈ Sh♢(Tn × Tn), we have

SS(m!E) ⊂ m#(SS(E)). (4.11)

(4.12)

where m#(SS(E)) is defined by

m#(SS(E)) := {(x, ξ) | ∃(x1, x2) ∈ Tn × Tn such that x1 + x2 = x and (x1, ξ, x2, ξ) ∈ SS(E)} .
(4.13)

12



Proof. This is a version of [GS14, Theorem 2.16]. Although we can prove in a similar
manner to [GS14], we will give a different proof here.

Take a point (x, ξ) ∈ T ∗Tn\m#(SS(E)). We trivialize the fibration m as Tn ×
m−1(x) → Tn. Since (x, ξ) ̸∈ m#(SS(E)), the microsupport SS(E) does not have ξ
on m−1(x). Hence for any point y ∈ m−1(x), the microlocal stalk along ξ vanishes. Since
m−1(x) is compact, the radii of open disks centered on elements of m−1(x) on which one
evaluates microlocal stalk (we wrote as B in Section 3.1) have a lower bound. Hence we
can take a neighbourhood U = m−1(V ) of m−1(x) for some open set V and a function f
on V such that f(x) = 0, df(x) = ξ, and Graph(df) ⋔ m#(SS(E)) with

Γ{m◦f≥0}(U,E) ≃ 0. (4.14)

This implies
mx,ξ(E) ≃ Γf≥0(V,m∗E) ≃ Γ{m◦f≥0}(U,E) ≃ 0. (4.15)

Hence (x, ξ) ̸∈ SS(m∗E) = SS(m!E). This completes the proof.

Proposition 4.14. Let γi be closed cones in NR for i = 1, 2. For any objects Ei ∈
Sh♢Tn×γi(T

n) for i = 1, 2, we have

SS(E1 ⋆ E2) ⊂ Tn × (γ1 ∩ γ2), (4.16)

SS(Hom⋆(E1, E2)) ⊂ Tn × (γ1 ∩ γ2). (4.17)

Proof. This is a version of [GS14, Corollary 4.14]. By the definition of ⋆, Lemma 4.14,
and Proposition 4.3,

SS(E1 ⋆ E2) ⊂ m#SS(E1 ⊠ E2)

⊂ m#(SS(E1)× SS(E2))

⊂ m#(T
n × γ1 × Tn × γ2)

⊂ Tn × (γ1 ∩ γ2).

(4.18)

Similarly, by using (4.9), Lemma 4.14, and Proposition 4.3, we have

SS(Hom⋆(E1, E2)) ⊂ m#SS(Hom(p−12 (−1)−1E1, p
!
1E2))

⊂ m#(SS(E2)× SS(E1))

⊂ Tn × (γ1 ∩ γ2).
(4.19)

This completes the proof.

As a direct corollary, we have the following, which is a counterpart of [GS14, Proposi-
tion 3.17]. Let γ be a closed convex cone in a vector space MR and γ∨ ⊂ NR be its polar
dual:

γ∨ := {n ∈ NR | n(m) ≥ 0 for any m ∈ γ} . (4.20)

Corollary 4.15. For an object E ∈ Sh♢(Tn), we have

SS(E ⋆ p!CInt(γ)) ⊂ Tn × (−γ∨). (4.21)

We set

Zγ := T ∗MR\
(
MR × Int(γ∨)

)
, (4.22)

Ẑγ := T ∗Tn\
(
Tn × Int(γ∨)

)
(4.23)

where Int is the interior. We say a closed convex cone γ is strictly convex if γ∩(−γ) = {0}.
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Proposition 4.16 ([Tam08], [GS14, Proposition 4.17]). Suppose that γ is strictly convex.
Then

Hom(Cγ , E) ≃ 0 (4.24)

for E ∈ Sh♢Zγ
(MR).

Proposition 4.17. Suppose that γ is strictly convex. Then

E ⋆ p!Cγ ≃ 0 (4.25)

for E ∈ Sh♢
Ẑγ

(Tn).

Proof. Consider cone of the restriction map Cγ → C0, we have an exact triangle

E ⋆ p!Cγ → E → E ⋆ p!Cγ\{0} → . (4.26)

Then Proposition 4.15 implies that SS(E ⋆ p!Cγ) ⊂ Ẑγ . On the other hand, we can prove
E ⋆ p!Cγ is in the left orthogonal of Sh♢

Ẑγ
(Tn) in Sh♢(Tn). In fact, for F ∈ Sh♢

Ẑγ
(Tn), we

have

hom(E ⋆ p!Cγ , F ) ≃ hom(p!Cγ ,Hom⋆(E,F )) ≃ hom(Cγ , p
!Hom⋆(E,F )). (4.27)

Since SS(p!Hom∗(E,F )) ⊂ Zγ , vanishing of the right hand side follows from Proposition
4.16. Thus E ⋆ p!Cγ belongs to both Sh♢

Ẑγ
(Tn) and the left orthogonal, and this gives

E ⋆ p!Cγ ≃ 0.

Proposition 4.18. Let γ0 be a closed full-dimensional convex rational polyhedral cone in
MR. Let γ′ be a closed rational polyhedral cone such that γ0 ⊂ γ′ and γ′∨ is not contained
in any face of γ∨0 . For an object E ∈ Sh♢

Ẑγ0

(Tn), we have

E ⋆ p!Cγ′ ≃ 0. (4.28)

Proof. Since γ∨0 ⊃ γ′∨, we have Zγ0 ⊂ Zγ′ . Then E ∈ Sh♢
Ẑγ′

(Tn). Hence the statement

has already been proved in Proposition 4.17 with the assumption γ′ is strictly convex.
Let us assume that γ′ is not strictly convex. We will prove by induction on the codi-

mension of γ′∨. First, we assume codim γ′∨ = 1. Then γ′∨ divides some full-dimensional
cone γ∨1 in γ∨0 to two full-dimensinal closed cones γ∨2 and γ∨3 , i.e., γ

∨
2 ∩ γ∨3 = γ′∨ and

γ∨2 ∪ γ∨3 = γ∨1 ⊂ γ∨0 . Then we have Ẑγ0 ⊂ Ẑγ1 = Ẑγ2 ∩ Ẑγ3 . It follows that E ∈ Sh♢
Ẑγ0

(Tn)

satisfies
E ⋆ p!Cγi ≃ 0 (4.29)

for i = 1, 2, 3. Since we have an exact triangle

Cγ′ → Cγ2 ⊕ Cγ3 → Cγ1 →, (4.30)

E ⋆ p!Cγ′ ≃ 0 holds.
Suppose that the statement holds up to codim = k−1 ≥ 1. Since γ′∨ ⊂ γ∨0 is not a face,

we can take (k − 1)-codimensional cones γ∨i ⊂ γ∨0 for i = 1, 2, 3 such that γ∨2 ∩ γ∨3 = γ′∨

and γ∨2 ∪ γ∨3 = γ∨1 . We can take a resolution of γ∨1 by γ∨2 and γ∨3 as in (4.30). Moreover,
all those cones can be taken as being not faces of γ∨0 . Then the statement can be shown
by an iteration of arguments similar to the previous paragraph.
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To use in Section 12, we give some calculations of Hom⋆ on MR. Let σ be a convex
cone in NR, E be a constructible sheaf over MR, p̃i, m̃ : MR ×MR →MR (i = 1, 2) be the
projections and the multiplication. We set

E ⋆R F := m̃!(E ⊠ F ) = m̃!(p̃
−1
1 E ⊗ p̃−12 F )

Hom⋆R(E,F ) := p̃1∗Hom(p̃−12 E, m̃!F )
(4.31)

for E,F ∈ Sh♢(MR). As noted in the proof of Lemma 4.12, Lemma 4.12 holds for ⋆R as
proved in [GS14, Lemma 4.10]. We write D for the Verdier duality functor.

Lemma 4.19. There exists a quasi-isomorphism

Hom⋆(E,CInt(σ∨)) ≃ m̃∗(−1)∗D(p̃−12 E ⊗ p̃−11 C−σ∨) (4.32)

Proof. We have

Hom⋆(Ẽ,CInt(σ∨)) := m̃∗Hom(p̃−12 (−1)∗E, p̃!1CInt(σ∨))

≃ m̃∗D(p̃−12 (−1)∗E ⊗ Dp̃!1CInt(σ∨))

≃ m̃∗(−1)∗D(p̃−12 E ⊗ p̃−11 C−σ∨)

(4.33)

This completes the proof.

Let {vρ1 , ..., vρs} and {vυ1 , ..., vυt} be sets of ray generators of rays (not necessarily
being edges) in σ. Let n1, ..., ns, l1, ..., lt be real numbers such that the subset D in MR
defined by the inequalities

⟨m, vρi⟩ > ni for i = 1, ..., s (4.34)

and ⟨
m, vυj

⟩
≤ li for j = 1, ..., t (4.35)

is bounded and contained in a fundamental domain of MR → Tn. We further assume that
there are no redundancy on v’s. We also write DD for the set defined by the inequalities

⟨m, vρi⟩ ≥ ni for i = 1, ..., s (4.36)

and ⟨
m, vυj

⟩
< lj for j = 1, ..., t. (4.37)

Then −DD is defined by
⟨m, vρi⟩ ≤ −ni for i = 1, ..., s (4.38)

and ⟨
m, vυj

⟩
> −lj for j = 1, ..., t. (4.39)

Lemma 4.20. There exists a quasi-isomorphism

Hom⋆(CD,CInt(σ∨)) ≃ C−DD. (4.40)

Proof. First, note that p̃2
−1CD ⊗ p̃−11 C−σ∨ ≃ CD×(−σ∨). Hence we have

(−1)∗D(p̃−12 CD ⊗ p̃−11 C−σ∨) ≃ C−DD×Int(σ∨). (4.41)

We will prove that m̃!C−DD×Int(σ∨) ≃ C−DD. To simplify the notation, we set C := −DD.
Then it suffices to show that the following: For r ∈MR, the set

Cr := m̃−1(r) ∩ (C × Int(σ∨)). (4.42)

15



is open and nonempty in m̃−1(r) if and only if r ∈ C, and if Cr is not open and not
empty then Cr is locally closed and not closed. In particular, if Cr is not open, then the
cohomology of CCr vanishes.

Assume that r ∈ C. Let (x, y) be a point in m̃−1(r) but not in C × Int(σ∨). Since the
condition (4.39) and y ∈ Int(σ∨) are open conditions, we only have to take care of (4.38).
Assume ⟨x, vρi⟩ = −ni for some i. Since r ∈ C, we also have ⟨r, vρi⟩ = ⟨x+ y, vρi⟩ ≤ −ni.
Then we have ⟨y, vρi⟩ < 0, but this implies y ̸∈ Int(σ∨). Hence Cr is open in this case.
Take v ∈ Int(σ∨). By choosing sufficiently small ϵ, the vector r − ϵv satisfies (4.37) and
⟨r − ϵv, vρi⟩ < −ni for any i. This implies (r − ϵv, ϵv) ∈ Cr, and hence Cr is nonempty.

Conversely, assume that r ̸∈ C. Then we have (i)
⟨
r, vυj

⟩
≤ −lj for some j or (ii)

⟨r, vρi⟩ > −ni for some i. If (i) holds, the vector (x, y) ∈ Cr satisfies⟨
x, vυj

⟩
≤ −lj −

⟨
y, vυj

⟩
(4.43)

for some j. Since
⟨
y, vυj

⟩
> 0, we have

⟨
x, vυj

⟩
< −lj , but this contradicts to x ∈ C.

Hence Cr is empty.
Hereafter we assume that Cr is nonempty, then (i) never occurs. Hence (ii) holds. Let

I be the subset of {1, ..., s} consisting of i satisfying

⟨r, vρi⟩ > −ni. (4.44)

Take (x, y) ∈ Cr. Since ⟨x, vρi⟩ ≤ −ni for any i, there exists ϵi ∈ (0, 1) such that

⟨(1− ϵi)x+ ϵir, vρi⟩ = −ni (4.45)

for each i ∈ I. Let ϵ0 be the smallest one among ϵi’s. Then the vector (1− ϵ)x+ ϵr for ϵ ∈
(0, ϵ0] is contained in C, but not contained in C for ϵ > ϵ0. Hence ((1−ϵ0)x+ϵ0r, (1−ϵ0)y)
is the boundary point of Cr. Hence Cr is not open. On the other hand, if we proceed ϵ to
the minus direction, the condition (4.36) is stable for (1 − ϵ)x + ϵr. Since C is bounded,
the vector (1− ϵ)x+ ϵr eventually violates (4.37). The largest one among such ϵ’s gives a
boundary point of Cr which is not contained Cr. Hence Cr is not closed. Hence we have
m̃!C−DD×Int(σ∨) ≃ C−DD.

In Lemma 4.19, we set E := CD. Since CD is compactly-supported, we have

Hom⋆(E,CInt(σ∨)) ≃ m∗(−1)∗D(p̃−12 E ⊗ p̃−11 C−σ∨)

≃ m!(−1)∗D(p̃−12 E ⊗ p̃−11 C−σ∨)

≃ m!C−DD×Int(σ∨)

≃ C−DD.

(4.46)

This completes the proof.

We give one more lemma which is a counterpart ofHomOX
(E ,F) ≃ HomOX

(E ,O)⊗OX

F on the coherent side.

Lemma 4.21. For E,F ∈ Sh♢(MR) and G ∈ Shc(MR) such that G is compactly-
supported, there exists a quasi-isomorphism

Hom⋆R(E,F ⋆R G) ≃ Hom⋆R(E,F ) ⋆ G. (4.47)
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Proof. We first prepare the notation. Let Mi (i = 1, .., 6) be copies of MR. Then we set
the multiplication maps

m12 : M1 ×M2 →M3 (4.48)

m14 : M1 ×M4 →M5 (4.49)

m34 : M3 ×M4 →M6 (4.50)

m25 : M2 ×M5 →M6 (4.51)

(4.52)

and projections

pkij : Mi ×Mj ×Mk →Mi ×Mj (4.53)

pji : Mi ×Mj →Mi (4.54)

pjki : Mi ×Mj ×Mk →Mi (4.55)

and identities idi : Mi →Mi.
Then we have

Hom⋆R(E,F ) ⋆R G ≃ m34!((p
4
3)
−1m12∗Hom((p12)

−1(−1)∗E, (p21)!F )⊗ (p34)
−1G)

≃ m34∗((p
4
3)
−1m12∗Hom((p12)

−1(−1)∗E, (p21)!F )⊗ (p34)
−1G)

(4.56)

by the assumption that G is compactly-supported.
Since we have the pull-back diagram

M1 ×M2 ×M4

m12×id
��

p412 //M1 ×M2

m12

��
M3 ×M4

p43

//M3,

(4.57)

the base change implies

m34∗((p
4
3)
−1m12∗Hom((p12)

−1(−1)∗E, (p21)!F )⊗ (p34)
−1G)

≃ m34∗((m12 × id4)∗((p
4
12)
−1Hom((p12)

−1(−1)∗E, (p21)!F ))⊗ (p34)
−1G)

≃ m34∗(m12 × id4)∗((p
4
12)
−1Hom((p12)

−1(−1)∗E, (p21)!F ))⊗ (m12 × id4)
−1(p34)

−1G).

(4.58)

By using p34 ◦ (m12 × id4) = p124 , p52 ◦ (m14 × id2) = p142 , and m34 ◦ (m12 × id4) = m25 ◦
(m14 × id2), we can further calculate as

m34∗(m12 × id4)∗((p
4
12)
−1Hom((p12)

−1(−1)∗E, (p21)!F ))⊗ (m12 × id4)
−1(p34)

−1G)

≃ m34∗(m12 × id4)∗((p
4
12)
−1Hom((p12)

−1(−1)∗E, (p21)!F ))⊗ (p124 )−1G)

≃ m34∗(m12 × id4)∗((p
4
12)
−1Hom((p12)

−1(−1)∗E, (p21)−1F [n]))⊗ (p124 )−1G)

≃ m34∗(m12 × id4)∗(Hom((p142 )−1(−1)∗E, (p241 )−1F [n]))⊗ (p124 )−1G)

≃ m34∗(m12 × id4)∗(Hom((p142 )−1(−1)∗E, (p214)−1((p41)−1F [n]⊗ (p14)
−1G)))

≃ m25∗(m14 × id2)∗(Hom((p142 )−1(−1)∗E, (p214)!((p41)−1F ⊗ (p14)
−1G)))

≃ m25∗(m14 × id2)!(Hom((m14 × id2)
−1(p52)

−1(−1)∗E, (p214)!((p41)−1F ⊗ (p14)
−1G)))

≃ m25∗(Hom((p52)
−1E, (p25)

!(F ⋆R G))

≃ Hom⋆R(E,F ⋆R G)

(4.59)
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This completes the proof.

Corollary 4.22. For F ∈ Sh♢(MR) and compactly-supported E ∈ Shc(MR), there exits
a quasi-isomorphism

hom(E,F ⋆ CD) ≃ hom(E ⋆ C−DD, F ⋆ CInt(σ∨)). (4.60)

Proof. Let S be a stratification of MR which refines SS(F ). Then we can take Fi ∈
Shc
S(MR) such that holim−→

F i

≃ F .

Let Br (r ∈ Z) be a ball in MR with radius r and ir : Br ↪→MR be an open inclusion.
Then we have a sequence {F r := ir!i

−1
r F}r∈N satisfying holim−→

r

Fr ≃ F where the colimit is

taken with respect to the morphisms which correspond to the identity via the isomorphisms

hom(ir!i
−1
r F, ir′!i

−1
r′ F ) ≃ hom(ir!i

−1
r F, ir!i

−1
r F ) (4.61)

for r < r′. Then holim−→
i,r

F r
i ≃ F .

Set Λ := SS(E)∪
∪

i,r SS(F
i
r ⋆RCD). Then E is compact in Sh♢Λ(T

n). By Lemma 4.20
and Lemma 4.21, we have

hom(E,F ⋆R CD) ≃ holim−→
i,r

hom(E,F i
r ⋆R CD)

≃ holim−→
i,r

hom(E,F i
r ⋆R Hom⋆

R(C−DD,CInt(σ∨)))

≃ holim−→
i,r

hom(E,Hom⋆
R(C−DD, F i

r ⋆R CInt(σ∨)))

≃ holim−→
i,r

hom(E ⋆R C−DD, F i
r ⋆R CInt(σ∨))

≃ hom(E ⋆R C−DD, F ⋆R CInt(σ∨)).

(4.62)

This completes the proof.

5 Preliminaries on toric stacks

Stacky generalization of toric varieties has been considered by various authors. Borisov–
Chen–Smith [BCS05] defined a certain combinatorial object called stacky fan and used
it to construct smooth Deligne–Mumford stacks called toric DM stacks. Later, Iwanari
[Iwa09] and Fantechi–Mann–Nironi [FMN10] give an intrinsic characterization of toric DM
stacks of [BCS05]. However, toric DM stacks of [BCS05] does not include singular toric
varieties. Tyomkin [Tyo12] generalized [BCS05] to include any toric varieties via local
construction. Geraschenko–Satoriano [GS15] proposed more generalized version and gives
a global construction as quotient stacks.

In this paper, we will use a special class of toric stacks in the sense of Tyomkin, but
we follow the construction of Geraschenko–Satoriano which is easier to describe.

Let L,N be free abelian groups and β : L → N be a homomorphism with a finite
cokernel. Let L∨ andM be the dual of L and N respectively. Let further Σ̂ and Σ be finite
fans consisting of rational strictly convex cones defined in LR := L⊗ZR and NR. As noted
in Introduction, we always asuume Condition 1.1 on βR: The map βR := β ⊗Z R induces
a combinatorial isomorphism between Σ̂ and Σ, i.e., βR(σ̂) conicides with an element of Σ
for any σ̂ ∈ Σ̂ and the assignment Σ̂ ∈ σ̂ 7→ βR(σ̂) ∈ Σ defines an isomorphism of posets
between Σ̂ and Σ.
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Lemma 5.1. Let β, L,N as above. Then

(i) dim σ̂ = dimβR(σ̂), and

(ii) β|span σ̂∩L is injective for any σ̂ ∈ Σ̂.

Proof. Note that the dimension of a cone in a fan is inductively determined by the structure
of the fan. This assertion and βR(0) = 0 imply (i).

If there is a nontrivial element in ker(β|σ̂∩L), this element gives a nontrivial kernel of
βR|span(σ̂) which contradicts to (i). This proves (ii).

The map β induces a surjective homomorphism Tβ := β ⊗Z C∗ between two tori

Tβ : TL := L⊗Z C∗ → TN := N ⊗Z C∗. (5.1)

We set Gβ := ker (Tβ). We abbreviate (L,N, Σ̂,Σ, β) as (Σ̂, β).

Definition 5.2. The toric stack XΣ̂,β associated to the above data (Σ̂, β) is defined as the
quotient stack

XΣ̂,β :=
[
XΣ̂ /Gβ

]
. (5.2)

Remark 5.3. (i) Our data (Σ̂, β) induces Tyomkin’s toric stacky data [Tyo12].

(ii) This definition without the assumption of combinatorial isomorphism is due to
Geraschenko–Satoriano [GS15]. Moreover, our definition is a special case of their
notion of fantastack [GS15].

Lemma 5.4. The toric stack XΣ̂,β is a Deligne–Mumford stack without generic stabilizers.

Proof. This lemma follows from the argument of Section 4 of Tyomkin [Tyo12], but we
reproduce it here for reader’s convenience.

Since Gβ acts on XΣ̂ faithfully, XΣ̂,β has no generic stabilizers. By Lemma 7.2 below,
the action of Gβ has only finite stabilizers. Since we are working over C, any finite group
schemes are reduced. Then the statement follows from [Edi00, Corollary 2.2].

Example 5.5. (i) Let Σ be a fan defined in NR. We set L = N and β = id. Then
XΣ,β = XΣ. Hence Definition 5.2 includes all toric varieties.

(ii) Let Σ be a simplicial fan defined in NR. We write Σ(1) := {ρ1, .., ρs} for the set of 1-
dimensional cones in Σ. Set L :=

⊕s
i=1 Z ·ei and define β by choosing β(ei) ∈ ρi∩N

for i = 1, ..., s. Let Σ̂ be the fan in LR consisting of cones

σ̂ := Cone (ei | ei ∈ σ) (5.3)

for any σ ∈ Σ. Then β induces a combinatorial isomorphism between Σ̂ and Σ. The
resulting toric stack is a toric DM stack without generic stabilizers in the sense of
[BCS05]. As noted in Introduction, this is equivalent to toric orbifold in the sense
of [FLTZ14].

The toric stack XΣ̂,β can be written as the union of [Uσ̂/Gβ] for all σ̂ ∈ Σ̂, where Uσ̂

is the affine toric subvariety of XΣ̂ corresponding to σ̂. We set Uσ := [Uσ̂/Gβ].
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6 The coherent-constructible correspondence

Let (Σ̂, β) be a stacky fan satisfying Condition 1.1 and rankN = n. We set M :=
HomZ(N,Z). The cotangent bundle of the torus MR/M =: Tn has a canonical trivializa-
tion T ∗Tn ∼= Tn ×NR.

Since β has finite cokernel, the induced map βR is surjective. Hence there exists induced
isomorphism [βR] : LR/ ker(βR) ∼= NR. We set Nβ := [βR](L/L∩ ker(βR)). We also set the

dual of β by β∨, then we have β∨R : MR
∼=−→ βR(MR). We set Mβ := (β∨R)

−1(L∨).

Lemma 6.1. (i) There exists a canonical inclusion M ⊂Mβ.

(ii) The natural pairing induces an isomorphism N∨β
∼=Mβ.

Proof. Since β∨R is an inclusion MR ↪→ LR, we only have to check that the pairing of
β∨R(M) with L is in integer. This is true since β∨R

∼= β∨⊗Z R. This completes the proof of
(i).

Since [βR] is an isomorphsim, we have

N∨β
∼= (L/L ∩ ker(βR))

∨ ∼= L∨ ∩ im(β∨R)
∼= (β∨R)

−1(L∨). (6.1)

This completes the proof.

Let ⟨−,−⟩ : M ×N → Z be the natural pairing. For σ ∈ Σ, we set

σ⊥ := {m ∈MR | ⟨m, s⟩ = 0 for any s ∈ σ} ,
σ∨ := {m ∈MR | ⟨m, s⟩ ≥ 0 for any s ∈ σ} .

(6.2)

For χ ∈Mβ, we also set

σ⊥χ := σ⊥ + χ,

σ∨χ := σ∨ + χ.
(6.3)

Let p be the quotient map MR → Tn. Both p(σ⊥χ ) and p(σ
∨
χ ) depend only on the class of

χ in Mβ/M . We write [χ] for the class of χ in Mβ/M .
We set

ΛΣ̂,β :=
∪
σ∈Σ

∪
[χ]∈Mβ/M

p(σ⊥χ )× (−σ) ⊂ T ∗Tn. (6.4)

The main result in this paper is the following.

Theorem 6.2. There exists an equivalence of ∞-categories

Ind cohXΣ̂,β ≃ Sh♢ΛΣ̂,β
(Tn). (6.5)

7 Affine case

Let (Σ̂(σ̂), β) be as in Section 5 with the following additional assumption: Σ̂(σ̂) is a fan
consisting of faces of a single rational strictly convex cone in LR. Take χ ∈ Mβ. Since
Mβ ⊂ L∨, the element χ defines a character of TL. We define OXΣ̂(σ̂),β

(χ) to be the

structure sheaf on XΣ̂(σ̂),β twisted by the character χ|Gβ
of Gβ.

Lemma 7.1. The sheaf OXΣ̂(σ̂),β
(χ) depends only on the class [χ] of χ in Mβ/M .
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Proof. For χ ∈M , a character of TL given by the inclusionM ↪→Mβ ⊂ L∨ is given by the

composition TL
Tβ−−→ TN

χ−→ C∗. By the definition of Gβ, this composition is trivial.

We set
Θ′(σ, χ) := OXΣ̂(σ̂),β

(χ) ∈ Qcoh(XΣ̂(σ̂),β), (7.1)

which depends only the class [χ] of χ in Mβ/M by Lemma 7.1. For a face τ of σ, we have
an open substack Uτ of XΣ̂(σ̂),β. The restriction of the sheaf Θ′(σ, χ) to Uτ is equal to

Θ′(τ, χ).
We also set

Θ(σ, χ) := p!CInt(σ∨
χ )[n] ∈ Sh♢ΛΣ̂(σ̂),β

(Tn) (7.2)

where Int denotes the interior. This also depends only on σ and the class [χ] ∈ Mβ/M
since p(σ∨χ ) depends only on [χ].

Lemma 7.2. There exists an isomorphism

XΣ̂(σ̂),β :=
[
SpecC[σ̂∨ ∩ L∨]

/
Gβ

] ∼= [SpecC[σ̂∨ ∩ L∨ ∩ β∨R(MR)]
/
Hβ

]
∼=
[
SpecC[σ∨ ∩Mβ]

/
Hβ

]
.

(7.3)

where Hβ := ker(Tβ)/TL∩ker(βR). Moreover, Hβ is a finite group.

Proof. First, we note that there exists a splitting

L∨ ∼=
(
L∨ ∩ β∨R(MR)

)
⊕
(
L∨/L∨ ∩ β∨R(MR)

)
. (7.4)

Since β preserves the dimension of σ, we have(
σ̂∨ ∩ L∨R

)
/
(
L∨R ∩ β∨R(MR)

)
= L∨R/

(
L∨R ∩ β∨R(MR)

)
. (7.5)

Hence
(
σ̂∨ ∩L∨

)
/
(
L∨ ∩β∨R(MR)

)
= L∨/

(
L∨ ∩β∨R(MR)) is a free abelian group and we get

a splitting

σ̂∨ ∩ L∨ =
(
σ̂∨ ∩ L∨ ∩ β∨R(MR)

)
⊕
(
L∨/

(
L∨ ∩ β∨R(MR)

))
, (7.6)

and

SpecC[σ̂∨ ∩ L∨] ∼= SpecC[σ̂∨ ∩ L∨ ∩ β∨R(MR)]× SpecC[L∨/
(
L∨ ∩ β∨R(MR)

)
]. (7.7)

On the other hand, we have

(L ∩ ker(βR))
∨ ∼= L∨/

(
L∨ ∩ β∨R(MR)

)
. (7.8)

From this isomophism, it also follows that TL∩ker(βR)
∼= SpecC[L∨/

(
L∨ ∩ β∨R(MR)

)
]. This

is nothing but the second component of (7.7). Hence[
SpecC[σ̂∨ ∩ L∨]

/
Gβ

] ∼= [(SpecC[σ̂∨ ∩ L∨]/TL∩ker(βR))/(Gβ/TL∩ker(βR))
]

∼=
[
SpecC[σ̂∨ ∩ L∨ ∩ β∨R(MR)]

/
Hβ

]
.

(7.9)

Moreover, since σ ∼= σ̂ via βR, we have σ
∨ ∼= σ̂∨∩βR(MR). Hence the second isomorphism

follows. Since Hβ = ker(TL/TL∩ker(βR) → TN ) and dim
(
TL/TL∩ker(β∨

R )

)
= dimTN , Hβ

is finite.

Let Ȟβ be the set of characters of Hβ.
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Lemma 7.3. There exists a natural identification Mβ/M ∼= Ȟβ.

Proof. We have TL/TL∩ker(βR)
∼= TL/L∩ker(βR)

∼= Nβ ⊗Z C∗. Via this identification, the
map TL/TL∩ker(βR) → TN induced by Tβ is induced by Nβ → N .

Let τ be a face of σ. Take χi ∈Mβ for i = 1, 2.

Proposition 7.4. There exist canonical isomorphisms:

H i(hom(Θ′(σ, χ1),Θ
′(τ, χ2))) ∼=

{
C[τ∨ ∩ (M + χ2 − χ1)] if i = 0,

0 otherwise.
(7.10)

H i(hom(Θ(σ, χ1),Θ(τ, χ2))) ∼=

{
C[τ∨ ∩ (M + χ2 − χ1)] if i = 0,

0 otherwise.
(7.11)

such that the composition of morphisms are expressed by the sum of elements in MR.

Proof. This follows from Lemma 7.2, Lemma 7.3, and the argument of [Tre10, Proposition
2.3], and hence omitted.

We set Θ′(σ) :=
⊕

[χ]∈Mβ/M
Θ′(σ, χ).

Lemma 7.5. There exists an equivalence of ∞-categories

Qcoh(XΣ̂(σ̂),β) ≃Mod
(
End

(
Θ′(σ)

))
. (7.12)

Proof. For each [χ] ∈ Ȟβ, there exists an idempotent eχ ∈ C[σ̂∨ ∩ L∨ ∩ β∗(MR)] ⋊ Hβ

with 1 =
∑

[χ]∈Ȟβ
eχ. Then by the definition of eχ, the C[σ̂∨ ∩L∨ ∩β∗(MR)]⋊Hβ-module

C[σ̂∨∩L∨∩β∗(MR)]⋊Hβ ·eχ corresponds to Θ′(σ, χ) via the identificationQcoh(XΣ̂(σ̂),β) ≃
Mod(C[σ̂∨∩L∨∩β∗(MR)]⋊Hβ). Hence the quasi-coherent sheaf Θ

′(σ) =
⊕

[χ]∈Ȟβ
Θ′(σ, χ)

corresponds to the C[σ̂∨ ∩ L∨ ∩ β∗(MR)]⋊Hβ-module C[σ̂∨ ∩ L∨ ∩ β∗(MR)]⋊Hβ.

Lemma 7.6. Let Λ be a conic Lagrangian subset in T ∗Tn contained in Tn × (σ). The
sheaf Θ(σ, χ) is compact in Sh♢Λ(T

n) for any χ ∈Mβ.

Proof. We have Θ(σ, χ) = p!CInt(σ∨
χ )[n] = p!CInt(σ∨+χ)[n]. For E ∈ Sh♢Λ(T

n), we have

hom(Θ(σχ), E) ≃ Γ(Int(σ∨ + χ), p!E)[−n]. (7.13)

Via the canonical trivialization T ∗MR ∼= MR × NR, the conormal direction of SS(p!E) is
contained in −σ. Choose a splitting σ∨ =

(
σ⊥
)
×
(
σ∨/σ⊥

)
. Then for any m ∈

(
σ∨/σ⊥

)
,

the restriction of p!E to
(
σ⊥
)
× {m} is a derived local system. Hence we have

Γ(Int(σ∨ + χ), p!E) ≃ Γ(Int(σ∨ + χ) ∩ (σ∨/σ⊥), p!E). (7.14)

An element n in Int(σ) induces a family of open sets {Vs}s>v in Int(σ∨+χ)∩ (σ∨/σ⊥)
where

Vs := Int(σ∨ + χ) ∩ (σ∨/σ⊥) ∩ {m ∈MR | ⟨m,n⟩ < s} (7.15)

and v is an element of R satisfying Vv ̸= ∅. Since the family {Vs}s∈R satisfies the conditions
of the non-characteristic deformation lemma [KS90, Proposition 2.7.2], we have

Γ(Int(σ∨ + χ), p!E) ≃ Γ(Vv, p
!E) ≃ hom(p!CVv , E). (7.16)
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Hence we have an isomorphism of functors

hom(Θ(σ, χ), (−)) ≃ hom(p!CVv , (−))[−n] : Sh♢Λ(T
n)→Mod(C). (7.17)

Since p!CVv is compact in Sh♢Λ∪SS(p!CVv )
(Tn), the functor hom(p!CVv , (−)) is cocontin-

uous. Hence the restriction of hom(p!CVv , (−)) to Sh♢Tn×(−σ)(T
n) is also cocontinuous. By

(7.17), the statement follows.

We also set Θ(σ) :=
⊕

χ∈Mβ/M
Θ(σ, χ). Suppose that σ̂ is smooth. By adding some

vectors to the set of ray generators of σ̂, we can take a trivialization L ∼= Zn. This
trivialization induces trivializations Mβ

∼= Zn and MR ∼= Rn, which are compatible. We
also write M for the image of M under this trivialization. Since β is a combinatorial
isomorphism, the cone σ is also identified with Rr

≥0 by using the above trivialization

where r ≤ n is an integer. Let (Σ̂Ar×(C∗)n−r , id) be the standard fan of Ar × (C∗)n−r,
where Σ̂Ar×(C∗)n−r is formed by the set of faces of the first quadrant of Rr in Rn. We set

Λr,n :=
∪

σ∈Σ̂Ar×(C∗)n−r

σ⊥ × (−σ) ⊂ Rn × Rn ∼= T ∗Rn. (7.18)

As a result of the above trivializations, we have

ΛΣ̂,β
∼=
∪

s∈Mβ

dp (s+ Λr,n) (7.19)

in T ∗MR/M ∼= T ∗Rn/M .

Lemma 7.7. If σ̂ is smooth, the sheaf Θ(σ) compactly generates Sh♢ΛΣ̂,β
(Tn).

Proof. The case of (ΛΣ̂Ar×(C∗)n−r ,id
) is proved in [Nad16b, IK16]. Consider T ∗Rn and set

Λ :=
∪
s∈Zn

s+ Λr,n. (7.20)

For E ∈ Sh♢Λ(R
n), suppose that hom(

⊕
s∈ZCs+Rr

>0×Rn−r , E) ≃ 0. For s ∈ Zn, we write
ts : Zn → Zn for the translation by s. Then we have

0 ≃ homSh♢
Λ (Rn)(Cs+Rr

>0×Rn−r , E) ≃ homSh♢
Λ (Rn)(CRr

>0×Rn−r , t∗sE). (7.21)

Hence we also have

homSh♢
Λ
Σ̂An,id

(Tn)(p!CRr
>0×Rn−r , p!E) ≃ homSh♢

Λ (Rn)(CRr
>0×Rn−r , p−1p!E)

≃ homSh♢
Λ (Rn)

(
CRr

>0×Rn−r ,
⊕
s∈Z

t∗sE

)
≃ 0

(7.22)

In the last equality, we used (7.21) and the fact CRr
>0×Rn−r is compact, which is deduced

from the same argument as in the proof of Lemma 7.6. Since Sh♢ΛΣ̂An,id
(Tn) is generated

by p!CRr
>0×Rn−r , we have p!E ≃ 0. This further implies 0 ≃ p−1p!E ≃

⊕
s∈Z t

∗
sE, hence

E ≃ 0.
For E ∈ Sh♢ΛΣ̂,β

(Rn/M), suppose that hom(Θ(σ), E) ≃ 0. Note that Zn in Rn in the

above trivialization is mapped to Mβ by p. Then we have

hom(Cs+Rr
>0×Rn−r , p−1E) ≃ hom(p!Cs+Rr

>0×Rn−r , E) ≃ 0. (7.23)

Hence p−1E ≃ 0. This further implies E ≃ 0. Since Θ(σ) is compact by Lemma 7.6, this
completes the proof.
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Proposition 7.8. There exists a fully faithful embedding of ∞-categories

κσ̂,β : Qcoh(XΣ̂,β) ↪→ Sh♢ΛΣ̂,β
(Tn) (7.24)

such that
κσ̂,β(Θ

′(σ, χ)) ≃ Θ(σ, χ). (7.25)

If σ̂ is smooth, this is an equivalence.

Proof. By Proposition 7.4, Lemma 7.5, and Lemma 7.7, we have a morphism

Qcoh(XΣ̂,β) ≃Mod(⊕[χ]∈Mβ/MΘ′(σ, χ)))

≃Mod(⊕[χ]∈Mβ/MΘ(σ, χ))) ↪→ Sh♢ΛΣ̂,β
(Tn).

(7.26)

By Lemma 7.7, the last inclusion in (7.26) is a compact generataion if σ̂ is smooth. This
completes the proof.

As a consquence of Proposition 7.4 and Proposition 7.8, we have the following corollary.

Corollary 7.9. Let τ be a face of σ and χ be an element of Mβ. Then we have

κσ̂,β(Θ
′(τ, χ)) ≃ Θ(τ, χ). (7.27)

8 Gluing description on the coherent side

Let G be a reductive group andX be a scheme over C with a G-action. We set X := [X/G].
Let {Ui}i∈I be a Zariski open covering of X which is finite and G-invariant. We set
C(I)0 := 2I\{∅} where 2I is the power set of I. We introduce the poset structure on
C(I)0 by the inclusion relation. This poset will be called the Čech poset of I. We also
view the poset as a category by assigning a morphism i1 → i2 to i1, i2 ∈ C(I)0 satisfying
i1 ⊂ i2. Let further C(I) be the nerve of the Čech poset of I.

For i ∈ C(I)0, we set Ui :=
∩

i∈i Ui and Ui :=
[
Ui

/
G
]
. Let ιi1i2 be the open inclusion

Ui2 ↪→ Ui1 for i1, i2 ∈ C(I)0 satisfying i1 ⊂ i2. Then there exists a morphism of ∞-
categories Ind cohU• : C(I)→ModMod(HC)(PrLst,ω) sending i to Ind cohUi and i1 ⊂ i2
to Indι∗i1,i2 . We write ι∗i1,i2 for Indι∗i1,i2 for simplicity.

The following proposition is proved in [Gai], but we present a detailed proof for our
later discussion.

Proposition 8.1 ([Gai, Proposition 4.2.1]). There exists an equivalence of ∞-categories

Ind cohX ≃ lim←−
C(I)

Ind cohU•. (8.1)

We use the Morita model structure of the dg-category of dg-categories to prove Propo-
sition 8.1.

Proof. In this proof, we view C(I) as a category. Let i be an element of I. The morphisms
ιi,i∪{i} for i ∈ C(I\{i})0 ⊂ C(I)0 together give a morphism

holim←−
C(I\{i})

Ind cohU• → holim←−
C(I\{i})

Ind cohU•∪{i}. (8.2)

24



The morphisms ι{i},i∪{i} also give a morphism

Ind cohUi → holim←−
C(I\{i})

Ind cohU•∪{i}. (8.3)

By the universality of homotopy limits, the homotopy pullback of (8.2) and (8.3) satisfies

holim←−
C(I)

Ind cohU• ≃ Ind cohUi
h
×

holim←−
C(I\{i})

Ind cohU•∪{i}
holim←−
C(I\{i})

Ind cohU•. (8.4)

Hence by induction on the cardinality of I, it suffices to show the case |I| = 2. Namely,
for a G-invariant covering {U, V } of X, we have to show

Ind coh[X/G] ≃ Ind coh[U/G]
h
×

Ind coh[(U∩V )/G]
Ind coh[V/G]. (8.5)

Note that Ind coh[X/G] is equivalent to the dg-category Ind cohGX of G-equivariant
ind-coherent sheaves over X.

Denote the open inclusions by

X U
iUoo

V

iV

OO

U ∩ V.
jV

oo

jU

OO
k

ccGGGGGGGGG

(8.6)

By using the functorial factorization of the Morita model structure, we have a factorization

Ind cohG U
γ(j∗U )
−−−→ A

δ(j∗U )
−−−→ Ind cohG(U ∩ V ) (8.7)

where γ and δ are the functorial factorizations which produce a trivial cofibration and a
fibration respectively. Since the dg-categories of G-equivariant ind-coherent sheaves are
idempotent-complete pretriangulated dg-categories, they are fibrant objects in the Morita
model structure by Proposition 2.3. We have

Ind cohG U
h
×

Ind cohG(U∩V )
Ind cohG V ≃ A ×

Ind cohG(U∩V )
Ind cohG V (8.8)

where the right hand side is the strict pullback. We have a functor l : A → Ind cohG U
which fits into the commutative diagram

Ind cohG U
id

//

γ(j∗U )
��

Ind cohG U

��

iInd
U∗

// Ind cohGX

A //
l

66mmmmmmm ∗

(8.9)

since γ(j∗U ) is a trivial cofibration and Ind cohG U is a fibrant object.
We have two canonical morphisms coming from adjunctions:

l→ jIndU∗ j
∗
U l and

id→ jIndV ∗ j
∗
V .

(8.10)
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By applying iInd coh
U∗ to the first line and iIndV ∗ to the second line, we have

iIndU∗ l→ kInd∗ δ(j∗U ),

iIndV ∗ → kInd∗ j∗V .
(8.11)

An object in A ×
Ind cohG(U∩V )

Ind cohG V is an object (a, E) of A× Ind cohG V satisfying

δ(j∗U )(a) = j∗V E . Hence we have a diagram

iIndU∗ l(a)→ kInd∗ δ(j∗U )(a) = kInd∗ j∗V (E)← iIndV ∗ (E) (8.12)

in Ind cohGX. Therefore, there exists a functor ϕ : A ×
Ind cohG(U∩V )

Ind cohG V →

Ind cohGX, which is defined on objects as

ϕ(a, E) := iIndU∗ l(a)
h
×

kInd
∗ j∗V (E)

iIndV ∗ (E). (8.13)

We show that the functor ψ : Ind cohGX → A ×
Ind cohG(U∩V )

Ind cohG V given by

ψ(E) := (γ(j∗U )i
∗
U (E), i∗V (E)) (8.14)

on objects is the quasi-inverse of ϕ. For E ∈ Ind cohGX, we have

ϕ ◦ ψ(E) = iIndU∗ lγ(j
∗
U )i
∗
U (E)

h
×

kInd
∗ j∗V i∗V (E)

iIndV ∗ i
∗
V (E) = iIndU∗ i

∗
U (E)

h
×

kInd
∗ k∗(E)

iIndV ∗ i
∗
V (E), (8.15)

We write “ lim−→ ” Ei for E , then we have

iIndU∗ i
∗
U (E)

h
×

kInd
∗ k∗(E)

iIndV ∗ i
∗
V (E) ≃ “ lim−→ ” iU∗i

∗
U (Ei)

h
×

k∗k∗(Ei)
iV ∗i

∗
V (Ei), (8.16)

where we used Proposition 3.2 and Proposition 3.3 in order to deduce iInd•∗ i
∗Ei ≃ i•∗i

∗Ei
for • = U, V and kInd∗ k∗Ei ≃ k∗k∗Ei

Moreover, we have the right hand side fits into an exact triangle in cohGX

iU∗i
∗
U (Ei)

h
×

k∗k∗(E)
iV ∗i

∗
V (Ei)→ iU∗i

∗
U (Ei)⊕ iV ∗i∗V (Ei)→ k∗k

∗(Ei)→ . (8.17)

This is nothing but a Mayer-Vietoris sequence, hence Ei ≃ iU∗i∗U (Ei)
h
×

k∗k∗(Ei)
iV ∗i

∗
V (Ei). This

gives the essential surjectivity of H0(ϕ).
Set C := A ×

Ind cohG(U∩V )
Ind cohG V for short. For (ai, Ei) ∈ C for i = 1, 2, we have

homC((a1, E1), (a2, E2)) ≃ homA(a1, a2) ×
homInd cohG(U∩V )(j

∗
V E1,j

∗
V E2)

homInd cohG V (E1, E2).

(8.18)
by the definition of strict pullback of dg-categories, there the pullback of the left hand
side is taken in Mod(C). Note the fact the Morita model structure is a left Bousfield
localization of the quasi-equivalent model structure. Hence fibrations of the Morita model
structure are fibrations of the quasi-equivalent model structure. Since fibrations of the
quasi-equivalent model structure are in particular surjective, they are fibrations in the
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projective model structure of the dg-category of dg-vector spaces Mod(C). Moreover, all
objects are fibrant objects in the projective model structure. Hence we have

homA(a1, a2) ×
homInd cohG(U∩V )(j

∗
V E1,j

∗
V E2)

homInd cohG V (E1, E2)

≃ homA(a1, a2)
h
×

homInd cohG(U∩V )(j
∗
V E1,j

∗
V E2)

homInd cohG V (E1, E2).
(8.19)

Since l is a quasi-equivalence, we further have

homA(a1, a2)
h
×

homInd cohG(U∩V )(j
∗
V E1,j

∗
V E2)

homInd cohG V (E1, E2)

≃ homInd cohG U (l(a1), l(a2))
h
×

homInd cohG(U∩V )(j
∗
V E1,j

∗
V E2)

homInd cohG V (E1, E2).
(8.20)

On the other hand, we have

hom

(
iIndU∗ l(a1)

h
×

kInd
∗ j∗V (E1)

iIndV ∗ (E1), iIndU∗ l(a2)
h
×

kInd
∗ j∗V (E2)

iIndV ∗ (E2)

)
≃ X1

h
×
X3

X2 (8.21)

where

X1 := hom

(
iIndU∗ l(a1)

h
×

kInd
∗ j∗V (E1)

iIndV ∗ (E1), iIndU∗ l(a2)

)
,

X2 := hom

(
iIndU∗ l(a1)

h
×

kInd
∗ j∗V (E1)

iIndV ∗ (E1), iIndV ∗ (E2)

)
, and

X3 := hom

(
iIndU∗ l(a1)

h
×

kInd
∗ j∗V (E1)

iIndV ∗ (E1), kInd∗ j∗V (E2)

)
.

(8.22)

Since

i∗U

(
iIndU∗ l(a1)

h
×

kInd
∗ j∗V (E)

iIndV ∗ (E1)

)
≃ l(a1), (8.23)

i∗V

(
iIndU∗ l(a1)

h
×

kInd
∗ j∗V (E)

iIndV ∗ (E1)

)
≃ E1, and (8.24)

k∗

(
iIndU∗ l(a1)

h
×

kInd
∗ j∗V (E)

iIndV ∗ (E1)

)
≃ j∗V E1, (8.25)

we have a quasi-isomorphism

X1

h
×
X3

X2 ≃ hom(l(a1), l(a2))
h
×

hom(j∗V E1,j
∗
V E2)

hom(E1, E2). (8.26)

The equations (8.20) and (8.26) show that H0(ϕ) is fully faithful.

Let (Σ̂, β) be a stacky fan satisfying Condition 1.1. Let Σ̂max be the set of maximal
cones in Σ. The set Σ̂max gives the index set of the open Gβ-invariant covering {Uσ̂}σ∈Σ̂max

of XΣ̂. We set C(Σ) := C(Σ̂max). Then we have the following corollary of Proposition 8.1.

Corollary 8.2. We have an equivalence of ∞-categories

Ind cohXΣ̂,β ≃ lim←−
C(Σ)

Ind cohU•. (8.27)
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9 Gluing the functors Kσ̂,β

Let (Σ̂, β) be a stacky fan satisfying Condition 1.1. In the present section, we further
assume the following Condition 9.1 below. For σ = {σ1, ..., σs} ∈ C(Σ)0, we set |σ| :=∩s

i=1 σi ∈ Σ and
Λσ := Λ

Σ̂(|̂σ|),β . (9.1)

Evidently
∪

σ Λσ = ΛΣ̂,β and Λσ ∩ Λτ = Λσ∩τ for σ, τ ∈ Σ.

Condition 9.1. For any σ̂ ∈ Σ̂, there exists an equivalence

Kσ̂,β : cohXΣ̂(σ̂),β

≃−→ Shw
Σ̂(σ̂),β

(Tn) (9.2)

which satisfies the following:

(i) Set the image of i∗σ1σ2
under Kσ̂,β as

Iσ1σ2 := IndKσ̂1,β ◦ i∗σ1σ2
◦ IndK−1σ̂2,β

: Sh♢Λσ2
(Tn)→ Sh♢Λσ1

(Tn) (9.3)

for faces σ2 ⊂ σ1 ⊂ σ. Then there exists a natural isomorphism

Iσ1σ2(−) ≃ (−) ⋆Θ(σ1, 0). (9.4)

(ii) The restriction of Kσ̂,β to perf XΣ̂(σ̂),β⊗ωXΣ̂(σ̂),β
is κσ̂,β ◦D ◦D for any σ ∈ Σ where

D := Hom(−,OXΣ̂(σ̂),β
) and D := Hom(−, ωXΣ̂(σ̂),β

).

We assume Condition 9.1. We set Iσ1σ2 := I |σ1||σ2|. As in Section 8, let Sh♢Λ•
: C(Σ)→

ModMod(HC)(PrLst,ω) be a morphism of ∞-categories sending σ 7→ Sh♢Λσ
(Tn) and (σ1 ⊂

σ2) 7→ Iσ1σ2 : Sh♢Λσ1
(Tn)→ Sh♢Λσ2

(Tn).

The adjunction id→ iIndσ1σ2∗ ◦ i
∗
σ1σ2

induces a natural transformation

A(σ1σ2) : id→ IndKσ̂1,β ◦ iIndσ1σ2∗ ◦ i
∗
σ1σ2
◦ IndK−1σ̂1,β

. (9.5)

Then by using Proposition 8.2, we can define

KΣ̂,β : Ind cohXΣ̂,β

≃−→ lim←−
C(Σ)

Ind cohU•
≃−−−−−−−−→

lim←−
C(Σ)

IndKσ̂,β

lim←−
C(Σ)

Sh♢ΛΣ̂(•),β
(Tn)→ Sh♢ΛΣ̂,β

(Tn)

(9.6)
where the rightmost arrow is given by the gluing of the natural inclusions Sh♢ΛΣ̂,β

(Tn) ↪→

Sh♢ΛΣ̂,β
(Tn) and the natural transformations A(σiσj) in the same manner as the Čech

resolution on the coherent side (see Section 11 for details).
Let iσ : Uσ → XΣ̂,β be the open inclusion for σ ∈ Σ.

Lemma 9.2. The functor KΣ̂,β is fully faithful.

Proof. For E ,F ∈ cohXΣ̂,β, by the Čech resolution, we have

homcohXΣ̂,β
(E ,F) ≃ holim−→

σ∈C(Σ)

holim←−
σ′∈C(Σ)

homInd cohXΣ̂,β
(E|Uσ ,F|Uσ′ ). (9.7)
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By the adjunction, we have

holim−→
σ∈C(Σ)

holim←−
σ′∈C(Σ)

homInd cohXΣ̂,β
(E|Uσ ,F|Uσ′ ) ≃ holim−→

σ∈C(Σ)

holim←−
σ′∈C(Σ)

homInd cohUσ′ (E|Uσ∩σ′ ,F|Uσ′ ).

(9.8)
Since Kσ̂,β is an equivalence by Condition 9.1, we have

holim−→
σ∈C(Σ)

holim←−
σ′∈C(Σ)

homInd cohUσ′ (E|Uσ∩σ′ ,F|Uσ′ )

≃ holim−→
σ∈C(Σ)

holim←−
σ′∈C(Σ)

homSh♢
Λ
Σ̂( ˆ|σ′|),β

(Tn)(KΣ̂( ˆ|σ′|),β(E|Uσ∩σ′ ),KΣ̂( ˆ|σ′|),β(F|Uσ′ )).
(9.9)

By Condition 9.1 (i), we further have

holim−→
σ∈C(Σ)

holim←−
σ′∈C(Σ)

homSh♢
Λ
Σ̂( ˆ|σ′|),β

(Tn)(KΣ̂( ˆ|σ′|),β(E|Uσ∩σ′ ),KΣ̂( ˆ|σ′|),β(F|Uσ′ ))

≃ holim−→
σ∈C(Σ)

holim←−
σ′∈C(Σ)

homSh♢
Λ
Σ̂( ˆ|σ′|),β

(Tn)(KΣ̂( ˆ|σ|),β(E|Uσ) ⋆Θ(σ′, 0),K
Σ̂( ˆ|σ′|),β(F|Uσ′ )).

(9.10)

The adjunction in Lemma 4.12 implies

holim−→
σ∈C(Σ)

holim←−
σ′∈C(Σ)

homSh♢
Λ
Σ̂( ˆ|σ′|),β

(Tn)(KΣ̂( ˆ|σ|),β(E|Uσ) ⋆Θ(σ′, 0),K
Σ̂( ˆ|σ′|),β(F|Uσ′ ))

≃ holim−→
σ∈C(Σ)

holim←−
σ′∈C(Σ)

homSh♢(Tn)(KΣ̂( ˆ|σ|),β(E|Uσ),Hom
⋆(Θ(σ′, 0),K

Σ̂( ˆ|σ′|),β(F|Uσ′ ))).

(9.11)

Lemma 10.2 below shows

holim−→
σ∈C(Σ)

holim←−
σ′∈C(Σ)

homSh♢(Tn)(KΣ̂( ˆ|σ|),β(E|Uσ),Hom
⋆(Θ(σ′, 0),K

Σ̂( ˆ|σ′|),β(F|Uσ′ )))

≃ holim−→
σ∈C(Σ)

holim←−
σ′∈C(Σ)

homSh♢(Tn)(KΣ̂( ˆ|σ|),β(E|Uσ),KΣ̂( ˆ|σ′|),β(F|Uσ′ )).
(9.12)

Finally, by the definition of KΣ̂,β, we have

holim−→
σ∈C(Σ)

holim←−
σ′∈C(Σ)

homSh♢(Tn)(KΣ̂( ˆ|σ|),β(E|Uσ),KΣ̂( ˆ|σ′|),β(F|Uσ′ )) ≃ homSh♢(Tn)(KΣ̂,β(E),KΣ̂,β(F)).

(9.13)
This completes the proof.

We set another functor

κΣ̂,β := holim−→ Ind(KΣ̂β
◦ ((−)⊗ ωXΣ̂,β

)) : QcohXΣ̂,β → Sh♢ΛΣ̂,β
(Tn) (9.14)

where D := Hom(−, ωXΣ̂,β
), which means the composition of the functors

Ind(KΣ̂β
◦ ((−)⊗ ωXΣ̂,β

)) : QcohXΣ̂,β ≃ Ind(perf(XΣ̂,β))→ Ind(Sh♢ΛΣ̂,β
(Tn)) (9.15)

and holim−→ : Ind(Sh♢ΛΣ̂,β
(Tn))→ Sh♢ΛΣ̂,β

(Tn) (9.16)

where the latter functor is just taking colimits.
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Remark 9.3. By Lemma 7.8 and Condition 9.1 (ii), the functor κΣ̂,β induces the functor of
Fang–Liu–Treumann–Zaslow’s functor for toric varieties and orbifolds [FLTZ11a, FLTZ12,
Tre10, SS16].

Let βi : Li → Ni for i = 1, 2 be homomorphisms of free abelian groups and (Σ̂i, βi) be
stacky fans satisfying Condition 1.1. Let fL : L1 → L2 and fN : N1 → N2 be injections
which are compatible with βi’s and fL(σ̂) ∈⊂ σ̂2 for some σ̂2 ∈ Σ̂2 (resp. fN (σ) ⊂ σ2 for
some σ2 ∈ Σ̂2) for any σ̂ ∈ Σ̂1 (resp. σ ∈ Σ1). We assume that the inverse image of each
cone in Σ̂2 (resp. Σ2) under fL (resp. fN ) is written as a union of cones in Σ̂1 (resp. Σ1).
Then there exists a morphism f : XΣ̂1,β1

→ XΣ̂2,β2
induced by fL and fN . Let [f∨N ] be the

induced morphism (M2)R/M2 → (M1)R/M1 where Mi := HomZ(Ni,Z) for i = 1, 2.

Proposition 9.4 ([FLTZ11a, Tre10, SS16]). There exists a commutative diagram.

QcohXΣ̂2,β2

f∗

��

κΣ̂2,β2 // Sh♢ΛΣ̂2,β2

((M2)R/M2)

[f∨
N ]!

��
QcohXΛΣ̂1,β1 κΣ̂1,β1

// Sh♢ΛΣ̂1,β1

((M2)R/M2).

(9.17)

Proof. By the definition of κΣ̂,β, we only have to prove the case Σ̂ = Σ̂(σ̂), i.e., the fan
consisting of faces of a single cone σ̂. Since the category QcohXΣ̂(σ̂),β is generated by

Θ′(σ) by Proposition 7.5, it suffices to show κΣ̂1,β1
◦ f∗Θ′(σ, χ) ≃ [f∨]!Θ(σ, χ) for any

χ ∈Mβ. This can be proved in the same manner as in [FLTZ11a, Theorem 3.8] and hence
omitted.

We follow the notation in Section 4.4.

Proposition 9.5 ([FLTZ11a, Tre10, SS16]). Suppose that Σ̂ is smooth. For E1, E2 ∈
QcohXΣ̂,β, we have

κΣ̂,β(E1 ⊗ E2) ≃ κΣ̂,β(E1) ⋆ κΣ̂,β(E2). (9.18)

Proof. This proposition follows from Proposition 9.4 and the proof of [FLTZ11a, Corollary
3.13].

Hereafter in this section, we will assume Σ̂ is smooth. Proposition 9.5 has the following
important corollary.

Corollary 9.6. Assume σ̂ is smooth. The functor κσ̂,β satisfies Condition 9.1.

Proof. Condition 9.1 (ii) follows by the definition.
Proposition 9.5 implies that κσ̂,β is a monoidal equivalence. Hence

Θ(σ1, χ) ⋆Θ(σ2, 0) ≃ κσ̂1,β(Θ
′(σ1, χ)⊗Θ′(σ2, 0))

≃ κσ̂1,β(Θ
′(σ1, χ))

≃ Θ(σ1, χ)

(9.19)

for any χ ∈Mσ1 . It also holds that Iσ1σ2(Θ(σ2, χ)) ≃ Θ(σ1, χ). Since
⊕

χ∈Mβ/M
Θ(σ2, χ)

generates the whole category QcohXΣ̂(σ̂2),β
, Condition 9.1 (i) follows.
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10 Identity object for ⋆-product

Let (Σ̂, β) be a stacky fan satisfying Condition 1.1 and Condition 9.1. Let [0] ∈ Tn be the
identity element of Tn =MR/M .

Lemma 10.1. If Σ is complete. we have

κΣ̂,β(OXΣ̂,β
) ≃ C[0]. (10.1)

Proof. Let Σ(i) be the set consisting of i-dimensional cones in Σ for i = 1, ..., n. We have
an exact sequence of OXΣ̂,β

as

0→ OXΣ̂σ,β
→

⊕
σ∈Σ(n)

Θ′(σ, 0)→
⊕

σ∈Σ(n−1)

Θ′(σ, 0)→ · · · → Θ′({0}, 0)→ 0. (10.2)

where the diffrentials are sums of appropriately signed restriction maps. Hence OXΣ̂,β

is quasi-isomorphic to the complex
⊕n

i=1

⊕
σ∈Σ(i)Θ

′(σ, 0)[i − n] with the differentials
induced by restriction maps. By the definition of κΣ̂,β and Proposition 7.8, we have

κΣ̂,β(Θ
′(σ)) ≃ p!CInt(σ∨)[n]. By Lemma 7.4, the images of the restriction maps are induced

by inclusion maps σ∨ ↪→ τ∨ for τ ⊂ σ. Hence the sheaf κΣ̂,β(OXΣ̂,β
) is quasi-isomorphic to⊕n

i=1

⊕
σ∈Σ(i)Θ(σ, 0)[i] with the differentials induced by inclusion maps. Since the sheaf⊕n−1

i=1

⊕
σ∈Σ(i)CInt(σ∨)[i] is precisely the Čech resolution of CMR\{0} by the open covering

{Int(ρ∨)}ρ∈Σ(1), we have

κΣ̂,β(OXΣ̂,β
) ≃ p!Cone

 ⊕
ρ∈Σ(1)

CInt(ρ∨) → CMR

 ≃ p!C0 = C[0]. (10.3)

This completes the proof.

Lemma 10.2. There exists quasi-isomorphisms

E ⋆ κΣ̂,β(OXΣ̂,β
) ≃ E and (10.4)

Hom⋆(κΣ̂,β(OXΣ̂,β
), E) ≃ E (10.5)

for E ∈ Sh♢ΛΣ̂,β
(Tn).

Proof. Since OΣ̂,β is a perfect complex, the first equalities of (10.4) and (10.5) follow from
Condition 9.1 (ii).

The quasi-isomorphism (10.5) follows from (10.4), the fact Hom⋆ is the left adjoint of
⋆, and the Yoneda lemma for Sh♢ΛΣ̂,β

(Tn).

If Σ is complete, then κΣ̂,β(OXΣ̂,β
) is quasi-isomorphic to C[0] by Lemma 10.1. Since

the sheaf C[0] is the monoidal unit of ⋆, (10.4) holds for complete fans.

For non-complete fans, we will prove by induction. Let (Σ̂′, β) be another stacky fan
satisfying Condition 1.1 and assume that there exists a maximal cone σ ∈ Σ′ such that
Σ = Σ′\{σ}. As the induction hypothesis, we assume that (10.4) holds for (Σ̂′, β).

We set d := dimσ. Let {ρ1, ..., ρr} be the set of 1-dimensional faces of σ and ni be
the primitive generator of ρi for i = 1, ..., r. Set ρc := R ·

(∑r
i=1 n

i
)
. Let {f1, ..., f r} be

the set of facets ((d− 1)-dimensional face) of σ. We define σi to be the convex hull of fi
and ρc for any i. Then the union of the set of faces of all σi for i = 1, ..., r and Σ is a fan
refining Σ′. We write Σσ for this fan.
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Since βR|σ̂ : σ̂ → σ is bijective by Lemma 5.1, the inverse image ρ̂c of ρc under βR|σ̂
is again a 1-dimensional cone in σ̂. We define a fan Σ̂σ refining Σ̂′ in the same manner
as the definition of Σσ. Then (Σ̂σ̂, β) gives a stacky fan satisfying Condition 1.1. Let
π : XΣ̂σ ,β → XΣ̂′,β be the morphism induced by this refinement. Then Proposition 9.4 and

the induction hypothesis on Σ′ imply that

E ⋆ κΣ̂σ ,β(OXΣ̂σ,β
) ≃ E ⋆ κΣ̂σ ,β(π

∗OXΣ̂′,β
) ≃ E ⋆ κΣ̂′,β(OXΣ̂′,β

) ≃ E (10.6)

for E ∈ Sh♢ΛΣ̂,β
(Tn).

Let Σσ be the subfan of Σσ consisting of σ1, ..., σr and their faces. Then there exists
an exact triangle

OXΣ̂σ,β
→ OXΣ̂σ,β

⊕OXΣ̂,β
→ OXΣ̂′′,β

→ (10.7)

where Σ′′ := Σ ∩ Σσ. The exact triangle (10.7) and (10.6) imply that it suffices to show
that

E ⋆ κΣ̂σ ,β
(OXΣσ,β

) ≃ E ⋆ κΣ̂′′,β(OXΣ̂′′β
). (10.8)

for E ∈ Sh♢ΛΣ̂,β
(Tn) to prove (10.2) for Σ. We have the Čech resolution ofOXΣ̂σ,β

associated

to the covering {Uσi}ri=1

0→ OXΣ̂σ,β
→
⊕
i

Θ′(σi, 0)→
⊕
i<j

Θ′(σi ∩ σj , 0)→ · · · . (10.9)

For OXΣ̂′′,β
, we consider the Čech resolution associated to the covering {XΣ̂′′,β ∩ Uσi}ri=1.

Note that XΣ̂′′,β ∩ Uσi can be written as XΣ̂′′,β ∩ Uσi = Uσ′
i
by some σ′i ∈ Σ′′. Hence we

have the Čech resolution

0→ OXΣ̂′′,β
→
⊕
i

Θ′(σ′i, 0)→
⊕
i<j

Θ′(σ′i ∩ σ′j , 0)→ · · · . (10.10)

It follows from (10.9) and (10.10), in order to obtain (10.8), it suffices to show that

E ⋆ κΣ̂σ ,β
(Θ′(σi1 ∩ σi2 ∩ · · · , 0)) ≃ E ⋆ κΣ̂σ ,β

(Θ′(σ′i1 ∩ σ
′
i2 ∩ · · · , 0)) (10.11)

for any i1 < i2 < · · · and E ∈ Sh♢ΛΣ̂,β
(Tn). We set σi :=

∩
ij∈i σij ∈ Σσ and σ′i :=∩

ij∈i σ
′
ij
∈ Σ′ for i = (i1 < · · · < ik). Then by the construction of κΣ̂,β and Proposition

7.8, we can rewrite (10.11) as

E ⋆Θ(σi, 0) ≃ E ⋆Θ(σ′i, 0). (10.12)

By the definition of Θ, the equality (10.12) is equivalent to

E ⋆ p!CInt(σ∨
i ) ≃ E ⋆ p!CInt(σ′∨

i ). (10.13)

Note that Int(σ∨i ) ⊂ Int(σ′∨i ). Hence there is an exact triangle

E ⋆ p!CInt(σ∨
i ) → E ⋆ p!CInt(σ′∨

i ) → E ⋆ p!CInt(σ′∨
i )\ Int(σ∨

i ) → . (10.14)

Therefore, it suffices to prove

E ⋆ p!CInt(σ′∨
i )\ Int(σ∨

i ) ≃ 0 (10.15)

for E ∈ Sh♢ΛΣ̂,β
(Tn).
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Let {ρ1, ..., ρs} the set of 1-dimensional faces of σi, where s depends on i. Note that
{ρ1, ..., ρs} is a subset of {ρ1, ..., ρr, ρc} and always contains ρc. Without loss of generality,
we can assume that ρs = ρc. Then {ρ1, ..., ρs−1} is the set of 1-dimensional cones of σ′i.
We set

Hρi>0 := {m ∈MR | ⟨m, ρi⟩ > 0} and (10.16)

Hρi≤0 := {m ∈MR | ⟨m, ρi⟩ ≤ 0} . (10.17)

Since

Int(σ′∨i ) =

s−1∩
i=1

Hρi>0 and (10.18)

Int(σ∨i ) =

s∩
i=1

Hρi>0, (10.19)

we have

Int(σ′∨i )\ Int(σ∨i ) =
s−1∩
i=1

Hρi>0 ∩Hρs≤0. (10.20)

We set

H(i1, ..., il; il+1, ..., it) :=

l∩
j=1

Hρij>0 ∩
t∩

j=l+1

Hρij≤0 (10.21)

so that H(1, ..., s− 1; s) = Int(σ′∨i )\ Int(σ∨i ). Each H(∅; i1, ..., it, s) is a closed cone and
its dual cone is contained in −σ but are not contained in proper faces of −σ. Hence by
Proposition 4.18 and the assumption SS(E) ∩ (Tn × Int(−σ)) = ∅, we have

E ⋆ p!CH(∅;i1,...,it,s) ≃ 0 (10.22)

for any {i1, ..., it} ⊂ {1, ...., s− 1}.
In the following, we prove (10.15) by induction. Suppose that

E ⋆ p!CH(i1,...,ik;ik+1,...,it,s) ≃ 0 (10.23)

for fixed k and any t and ij as the induction hypothesis. There exists an equality

H(i1, ..., ik; ik+2, ..., it, s)\H(i1, ..., ik, ik+1; ik+2, ..., it, s) = H(i1, ..., ik; ik+1, ik+2, ..., it, s).
(10.24)

By the induction hypothesis and (10.24), we have

E ⋆ p!CH(i1,...,ik,ik+1;ik+2,...,it,s) ≃ 0. (10.25)

Hence by induction from (10.22), we have (10.15).

Corollary 10.3. Condition 9.1 implies the following: For a face inclusion σ1 ⊂ σ2, there
exists a natural isomorphism

IndKσ̂2,β ◦ iIndσ1σ2∗ ≃ IndKσ̂1,β . (10.26)

Proof. By Condition 9.1 (i), we have

hom(E, IndKσ̂2,β ◦ iIndσ1σ2∗(E)) ≃ hom(i∗σ1σ2
IndK−1σ̂2,β

(E), E)

≃ hom(IndKσ̂1,βi
∗
σ1σ2

IndK−1σ̂2,β
(E), IndKσ̂1,β(E))

≃ hom(E ⋆Θ(σ1, 0), IndKσ̂1,β(E))
≃ hom(E,Hom⋆(Θ(σ1, 0), IndKσ̂1,β(E)))
≃ hom(E, IndKσ̂1,β(E)),

(10.27)

where the last equality follows from Lemma 10.2. This completes tha proof.
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11 Gluing equivalences

We prove Theorem 6.2 and Theorem 11.1 below under Condition 9.1 simultaneously.

Theorem 11.1. There exists an equivalence of ∞-categories

Sh♢ΛΣ̂,β
(Tn) ≃ lim←−

C(Σ)

Sh♢Λ•
(Tn). (11.1)

Proposition 11.2. Theorem 6.2 and Theorem 11.1 hold under Condition 9.1.

Proof. Let Σ̂i for i = 0, 1, 2 be subfans of Σ̂ with Σ̂0 = Σ̂1 ∪ Σ̂2 and Σ̂12 := Σ̂1 ∩ Σ̂2. In
this proof, we use the notation in the proof of Proposition 8.1 with X = XΣ̂0

, U = XΣ̂1
,

and V = XΣ̂2
.

We set
J i := (−) ⋆ κΣ̂i,β

(OXΣ̂12,β
) : Sh♢ΛΣ̂i,β

(Tn)→ Sh♢ΛΣ̂12,β
(Tn) (11.2)

and
Ii := (−) ⋆ κΣ̂0,β

(OXΣ̂i,β
) : Sh♢ΛΣ̂,β

(Tn)→ Sh♢ΛΣ̂i,β
(Tn) (11.3)

for i = 1, 2. The well-definedness of J i and Ii follows from the assumption that κΣ̂1,β
and

κΣ̂2,β
are equivalences and the following: By Corollary 8.2 and Condition 9.1 (i), we have

J i ◦KΣ̂i,β
≃ KΣ̂12,β

◦ j∗XΣ̂i

and (11.4)

Ii ◦KΣ̂,β ≃ KΣ̂i,β
◦ i∗XΣ̂i

. (11.5)

As in the proof of Proposition 8.1, it suffices to show that

Sh♢ΛΣ̂0,β
(Tn) ≃ Sh♢ΛΣ̂1,β

(Tn)
h
×

Sh♢
Λ
Σ̂12,β

(Tn)

Sh♢ΛΣ̂2,β
(Tn) (11.6)

where the right hand side is defined by using J i for i = 1, 2. Moreover, there exists the
diagram of inclusions

Sh♢ΛΣ̂0,β
(Tn) Sh♢ΛΣ̂1,β

(Tn)
I1oo

Sh♢ΛΣ̂2,β
(Tn)

I2

OO

Sh♢ΛΣ̂12,β
(Tn).

J2
oo

J1

OO
K

ggNNNNNNNNNNN

(11.7)

By Corollay 10.3, we have

Ji ◦KΣ̂12,β
≃ KΣ̂i,β

◦ jIndXΣ̂i
∗,

Ii ◦KΣ̂i,β
≃ KΣ̂,β ◦ i

Ind
XΣ̂i
∗,and

K ◦KΣ̂12,β
≃ KΣ̂,β ◦ k

Ind
∗

(11.8)

where k is the notation in (8.6).
We write

Sh♢ΛΣ̂1,β
(Tn)

γ(J1)−−−→ B δ(J1)−−−→ Sh♢ΛΣ̂12,β
(Tn). (11.9)

34



for the functorial factorization of J1 in the Morita model structure. Then we can calculate
the right hand side of (11.6) as

Sh♢ΛΣ̂1,β
(Tn)

h
×

Sh♢
Λ
Σ̂12,β

(Tn)

Sh♢ΛΣ̂2,β
(Tn) ≃ B ×

Sh♢
Λ
Σ̂12,β

(Tn)

Sh♢ΛΣ̂2,β
(Tn), (11.10)

since Sh♢Λ ’s are idempotent-complete pretriangulated dg-categories.

We have a functor L : B → Sh♢ΛΣ̂1,β
(Tn) which fits into the commutative diagram

Sh♢ΛΣ̂1,β
(Tn)

id
//

γ(J1)

��

Sh♢ΛΣ̂1,β
(Tn)

��

I1
// Sh♢ΛΣ̂0,β

(Tn)

B //
L

77nnnnnn ∗.

(11.11)

By using L, there exists a functor Φ: B ×
Sh♢

Λ
Σ̂12,β

(Tn)

Sh♢ΛΣ̂2,β
(Tn)→ Sh♢ΛΣ̂0,β

(Tn) which is

defined on objects as

Φ(b, E) := I1L(b)
h
×

I2J2J2(E)
I2(E). (11.12)

We show the functor Ψ: Sh♢ΛΣ̂0,β
(Tn)→ B ×

Sh♢
Λ
Σ̂12,β

(Tn)

Sh♢ΛΣ̂2,β
(Tn) given by

Ψ(E) :=
(
γ(J1)I1(E), I2(E)

)
(11.13)

on objects is the quasi-inverse of ψ.
For E ∈ Sh♢ΛΣ̂0,β

(Tn), we have

I1I
1Lγ(J1)I1(E)

h
×

I2J2J2I2(E)
I2I

2(E) = I1I
1(E)

h
×

KK′(E)
I2I

2(E). (11.14)

where we set K ′ := J2I2 = J1I1. This fits into the exact triangle

I1I
1(E)

h
×

KK′(E)
I2I

2(E)→ I1I
1(E)⊕ I2I2(E)→ KK ′(E)→ . (11.15)

The exact triangle (11.15) can be rewritten as

I1I
1(E)

h
×

K′(E)
I2I

2(E)→ E ⋆ κΣ̂0,β
(OXΣ̂1,β

⊕OXΣ̂2,β
)→ E ⋆ κΣ̂0,β

(OXΣ̂12,β
)→ . (11.16)

Since Cone
(
(OXΣ̂1,β

⊕OXΣ̂2,β
)→ OXΣ̂12,β

)
≃ OXΣ̂0

,β, we have

I1(E)
h
×

K(E)
I2(E) ≃ E ⋆ κΣ̂0,β

(OXΣ̂0
,β). (11.17)

By Lemma 10.2 and (11.17), we have

I1I
1(E)

h
×

KK′(E)
I2I

2(E) ≃ E. (11.18)
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Hence the functor H0(Φ) is essentially surjective.
We consider the following diagram

Ind cohXΣ̂1,β

h
×

Ind cohXΣ̂12,β

Ind cohXΣ̂2,β

KΣ̂1,β

h
×

K
Σ̂12,β

KΣ̂2,β

��

ϕ
// Ind cohXΣ̂0,β

KΣ̂0,β

��
Sh♢ΛΣ̂1,β

(Tn)
h
×

Sh♢
Λ
Σ̂12,β

(Tn)

Sh♢ΛΣ̂2,β
(Tn)

Φ // Sh♢ΛΣ̂0,β
(Tn).

(11.19)

By the construction of KΣ̂,β as the homotopy limit (9.6) and (11.8), the diagram (11.19) is
homotopy commutative. Now we prove the theorems by induction on Σ. We assume that
Theorem 11.1 and Theorem 6.2 hold for proper subfans of Σ0 as the induction hypothesis.

Then in the diagram (11.19), the functors ϕ and KΣ̂1,β

h
×

KΣ̂12,β

KΣ̂2,β
are equivalences. Since

H0(Φ) is essentially surjective, the functor KΣ̂0,β
is also essentially surjective. Hence the

functor KΣ̂0,β
is an equivalence by Lemma 9.2. Therefore, Φ is also an equivalence.

Corollary 11.3. Assume Σ̂ is smooth. Then Theorem 6.2 and Theorem 11.1 hold.

Proof. Since smooth Σ̂ satisfies Condition 9.1 by Corollary 9.6, Proposition 11.2 completes
the proof.

12 General case

Let Σ̂(σ̂) be affine. Then we have a fully faithful functor κσ̂,β : perf XΣ̂(σ̂),β → Shw
ΛΣ̂(σ̂),β

(Tn).

Set D := hom(−,OXΣ̂(σ̂),β
) : perf XΣ̂(σ̂),β → (perf XΣ̂(σ̂),β)

op where (−)op denotes the op-

posite category. We define the composition

κDσ̂,β := ι ◦ Ind(κσ̂,β)op ◦ IndD ◦ ιcoh : cohXΣ̂,β → Fun(Sh♢ΛΣ̂,β
(Tn),Mod(C)). (12.1)

where Fun(Sh♢ΛΣ̂,β
(Tn),Mod(C)) is the functor category from Sh♢ΛΣ̂,β

(Tn) to Mod(C),
and

ιcoh : cohXΣ̂(σ̂),β ↪→ QcohXΣ̂(σ̂),β ≃ Indperf XΣ̂(σ̂),β, (12.2)

IndD : Indperf XΣ̂(σ̂),β

IndD−−−→ Ind(perf XΣ̂(σ̂),β)
op, (12.3)

Ind(κσ̂,β)
op : Ind(perf XΣ̂(σ̂),β)

op → Ind(Shw
ΛΣ̂(σ̂),β

(Tn))op, (12.4)

ι : Ind(Shw
ΛΣ̂(σ̂),β

(Tn))op → Ind(Sh♢ΛΣ̂(σ̂),β
(Tn))op ↪→ Fun(Sh♢ΛΣ̂(σ̂),β

(Tn),Mod(C)).

(12.5)

Lemma 12.1. The functor κDσ̂,β is a fully faithful functor.

Proof. This is clear from the definition of the functor, since κDσ̂,β is a composition of fully
faithful functors.
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More explicitly, the functor κDσ̂,β can be described as follows: Let E be a coherent
sheaf over XΣ̂,β . There exists a sequence of perfect complexes Ei such that holim−→

i

Ei in

QcohXΣ̂(σ̂),β ≃ E . Then we have

κDσ̂,β(E) ≃ holim−→
i

hom(κσ̂,β ◦D(Ei),−). (12.6)

There exists another presentation of κDσ̂,β as follows. We will use notations in Section

7. For an object F ∈ Sh♢ΛΣ̂,β
(Tn), the space

hom(Θ(σ), F ) := hom(⊕[χ]∈Mβ/MΘ(σ,−χ), F ) (12.7)

is naturally equipped with a C[σ∨ ∩Mβ]-module structure by the composition with

hom(Θ(σ, χ1),Θ(σ, χ2)) ≃ C[(σ∨ ∩M) + (χ2 − χ1)]. (12.8)

We assign a Hβ-weight −χ to hom(p!CInt(σ∨)−χ, F ), then hom(Θ(σ), F ) becomes a C[σ∨∩
Mβ]⋊Hβ-module.

Lemma 12.2. There exists a natural isomorphism

κDσ̂,β(E) ≃ (E ⊗C[σ∨∩Mβ ] hom(Θ(σ),−))Hβ

≃
⊕

[χ]∈Mβ/M

(E · eχ)⊗C[σ∨∩M ] hom(Θ(σ,−χ),−) (12.9)

for E ∈ cohXΣ̂(σ̂),β where (−)Hβ is Hβ-invariant.

Proof. For a coherent sheaf E , take a projective resolution

0← E ←
⊕

[χ]∈Mβ/M

O(χ)⊕n
χ
1

d1←−
⊕

[χ]∈Mβ/M

O(χ)⊕n
χ
2

d2←−
⊕

[χ]∈Mβ/M

O(χ)⊕n
χ
3 ← · · · . (12.10)

We set

Ei :=

 ⊕
[χ]∈Mβ/M

O(χ)⊕n
χ
1

d1←− · · · di−1←−−−
⊕

[χ]∈Mβ/M

O(χ)⊕n
χ
i

 , (12.11)

then we have E = colim Ei. Then we have

κσ̂,β ◦D(Ei) =

 ⊕
[χ]∈Mβ/M

p!C
⊕nχ

1

Int(σ∨)−χ
κσ̂,β(d

t
1)−−−−−→ · · ·

κσ̂,β(d
t
i)−−−−−→

⊕
[χ]∈Mβ/M

p!C
⊕nχ

i

Int(σ∨)−χ


(12.12)

where dti is the transpose of di. Then we have

hom(κσ̂,β ◦D(Ei),F)

≃

 ⊕
[χ]∈Mβ/M

C[σ∨ ∩Mβ] · e
⊕nχ

1
χ

d1←− · · · di←−
⊕

[χ]∈Mβ/M

C[σ∨ ∩Mβ] · e
nχ
i

χ

 ⊗
C[σ∨∩Mβ ]

hom(Θ(σ), F )

Hβ

≃

(
Ei ⊗

C[σ∨∩Mβ ]
hom(Θ(σ), F )

)Hβ

(12.13)
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by (12.12). Since the colimit holim−→
i

Ei is Hβ-equivariant, we have

holim−→
i

hom(κσ̂,β ◦D(Ei), F ) ≃

(
E ⊗

C[σ∨∩Mβ ]
hom(Θ(σ), F )

)Hβ

(12.14)

by (12.6).

Before going further, we prepare some lemmas. Let us assume σ to be full-dimensional
until the end of the proof of Lemma 12.3. Let {v1, ..., vk} the set of primitive generators

of edges of σ. We index the set of connected components of MR\
(∪

m∈Mβ

∪k
i=1 v

⊥
i +m

)
by N. For a ∈ N, the corresponding component D′a have a presentation

D′a =

αa∩
α=1

Hviα>kiα ∩
βa∩
β=1

Hviβ<liβ
(12.15)

where Hv≷k := {m ∈MR | ⟨m, v⟩ ≷ k} and each ki and lj is some integer. We assume that
there is no redundancy in the presentation (12.15) i.e. each Hvi=k (k = ki, li) defines a
facet of the closure of D′a. Each D′a is a bounded open polytope by the assumption that
σ is full-dimensional. We set

Da :=

αa∩
α=1

Hviα>ki ∩
βa∩
β=1

Hviβ≤liβ . (12.16)

Then we have
MR =

⊔
a

Da. (12.17)

We also set

DDa :=

αa∩
α=1

Hviα≥kiα ∩
βa∩
β=1

Hviβ<liβ
. (12.18)

Let dp : T ∗MR → T ∗Tn be the differential of the quotient map MR → Tn.

Lemma 12.3. For E ∈ Sh♢
dp−1ΛΣ̂(σ̂),β

(MR), there exists a quasi-isomorphism

hom(C−DDa , E) ≃ 0. (12.19)

if DDa does not intersect with Mβ.

Proof. First, assume that
∩αa

α=1Hviα≤−kiα has no bounded faces. Hence αa is less than
the dimension of MR. The fact Da is bounded implies that Cone({vi1 , ..., , viαa

}) does
not form any face of σ. By the non-characteristic deformation, hom(C−DDa , E) mea-
sures the microsupport of E over a point in

∩αa
α=1Hviα=−kiα ∩ (−DDa) to the direction

Cone({v1, ..., , viα}), however this vanishes by E ∈ Sh♢
dp−1ΛΣ̂(σ̂),β

(MR).

Then assume that
∩αa

α=1Hviα≤−kiα has at least one bounded face. By the non-characteristic
deformation, there are nontrivial contribution to this local cohomology only from the
bounded faces of

∩αa
α=1Hviα≤−kiα . The subset {vis1 , ..., visk} of {vi1 , ..., , viαa

} forming a
bounded face has one of the following properties: (i) Cone({vis1 , ..., visk}) does not form
any face of σ, or (ii) {vis1 , ..., visk} is the set of primitive generators of σ. For the case (i),

the local cohomology contributing to hom(C−DDa , E) vanishes by E ∈ Sh♢
dp−1ΛΣ̂(σ̂),β

(MR).

For the case (ii), the local cohomology contributing to hom(C−DDa , E) also vanishes by
the assumption −DDa does not intersect with Mβ, since E can have microsupport to the
direction −σ only on Mβ.
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Let Σ̂ be a smooth refinement of σ̂. Let f be the morphism XΣ̂,β → XΣ̂(σ̂),β associated

to the refinement. Let further I be the inclusion Sh♢ΛΣ̂(σ̂),β
(Tn) ↪→ Sh♢ΛΣ̂,β

(Tn). Note that

the KΣ̂,β is an equivalence by Corollary 11.3.

Lemma 12.4. There exists a quasi-isomorphism

f∗ hom(Θ(σ), F ) ≃ κ−1
Σ̂,β

(IF ) (12.20)

for F ∈ Sh♢ΛΣ̂(σ̂),β
(Tn).

Proof. To prove this lemma, it suffices to show that

f∗ hom(Θ(σ), F )|Uτ ≃ κ−1Σ̂,β
(IF )|Uτ (12.21)

for any τ ∈ Σ. Since QcohUτ is generated by Θ(τ), the quasi-isomorphism (12.21) is
equivalent to

hom(Θ(τ), f∗ hom(Θ(σ), F )|Uτ ) ≃ hom(Θ(τ), κ−1
Σ̂,β

(IF )|Uτ ). (12.22)

The right hand side of (12.21) is written as

hom(⊕[χ]∈Mβ/MOUτ (−χ),κ
−1
Σ̂,β

(IF )|Uτ )

≃ hom(⊕[χ]∈Mβ/MOXΣ̂,β
(−χ), iUτ∗(κ−1Σ̂,β

(IF )|Uτ ))

≃ hom(⊕[χ]∈Mβ/Mp!CInt(σ∨)−χ, F ⋆ p!CInt(τ∨))

(12.23)

by Corollary 10.3.
The left hand side of (12.21) is calculated as follows: First, we have

f∗ hom(Θ(σ), F )|Uτ ≃ C[τ∨ ∩Mβ] ⊗
C[σ∨∩Mβ ]

hom(Θ(σ), F ). (12.24)

Then we have

hom(Θ(τ), f∗ hom(Θ(σ), F )|Uτ ) ≃ hom(Θ(τ),C[τ∨ ∩Mβ] ⊗
C[σ∨∩Mβ ]

hom(Θ(σ), F ))

≃ C[τ∨ ∩Mβ] ⊗
C[σ∨∩Mβ ]

hom(Θ(σ), F ).

(12.25)

Since κΣ̂,β is an equivalence, we have

hom(p!CInt(σ∨)−χ, F ) ≃ hom(κ−1
Σ̂,β

(p!CInt(σ∨)−χ), κ
−1
Σ̂,β

(IF ))

≃ hom(OXΣ̂,β
(−χ), κ−1

Σ̂,β
(IF )).

(12.26)

Hence we will prove

C[τ∨ ∩Mβ]⊗C[σ∨∩Mβ ] hom(⊕[χ]∈Mβ/MOXΣ̂,β
(−χ), κ−1

Σ̂,β
(IF ))

≃ hom(⊕[χ]∈Mβ/Mp!CInt(σ∨)−χ, F ⋆ p!CInt(τ∨)).
(12.27)

for any τ̂ ∈ Σ̂.
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Set S :=
∪

m∈τ∨∩Mβ
(Int(σ∨) +m) and C := Int(τ∨)\S. Note tha C does not contain

any elements of Mβ. Then we have an exact triangle

CS → CInt(σ∨) → CC → . (12.28)

First, we will prove
hom(p!CInt(σ∨)−χ, F ⋆ p!CC) ≃ 0. (12.29)

We can assume that σ is full-dimensional to prove (12.29), since all appearing sheaves are
constant to the direction σ⊥. We can also assume χ = 0 by replacing F .

The set C ∩ (Int(σ∨) + m) for m ∈ MR is bounded. Then we have a presentation
of CC as a colimit of compactly supported constructible sheaves with microsupports in
Tn × (−σ) :

CC ≃ holim−→
m∈Mβ

CC∩(Int(σ∨)+m) (12.30)

where the colimit is taken with respect to maps CC∩(Int(σ∨)+m1) → CC∩(Int(σ∨)+m2) for
Int(σ∨) +m1 ⊂ Int(σ∨2 ) +m2 which correspond to the identity via the isomorphisms

hom(CC∩(Int(σ∨)+m1),CC∩(Int(σ∨)+m2)) ≃ hom(CC∩(Int(σ∨)+m1),CC∩(Int(σ∨)+m1)). (12.31)

Set Gm := CC∩(Int(σ∨)+m). Then we have

hom(p!CInt(σ∨), F ⋆ p!CC) ≃ hom(p!CInt(σ∨), holim−→
m∈Mβ

(F ⋆ p!Gm))

≃ holim−→
m∈Mβ

hom(p!CInt(σ∨), F ⋆ p!Gm)

≃ holim−→
m∈Mβ

hom(CInt(σ∨), p
−1(F ⋆ p!Gm))

≃ holim−→
m∈Mβ

hom(CInt(σ∨), p
−1F ⋆R p

−1p!Gm))

≃ holim−→
m∈Mβ

⊕
m′∈M

hom(CInt(σ∨)+m′ , p−1F ⋆R Gm)

(12.32)

by Lemma 7.6.
Let B be a bounded open neighborhood of 0. By the non-characteristic deformation

as in the proof of Lemma 7.6, we have

hom(CInt(σ∨)+m′ , p−1F ⋆R Gm) ≃ hom(C(Int(σ∨)∩B)+m′ , p−1F ⋆R Gm). (12.33)

Since Gm can be written as a finite extension of CDa ’s, Lemma 4.22 implies

holim−→
j

hom(C(Int(σ∨)∩B)+m′ , Fj ⋆R Gm) ≃ hom(CInt(σ∨)+m′ ⋆ (−1)∗DGm, F ). (12.34)

Here CInt(σ∨)+m′ ⋆ (−1)∗DGm can be written as a finite extension of C−DDa without in-
tersections with Mβ. Hence, by Lemma 12.3, this is quasi-isomorphic to 0. This proves
(12.29).

Hence we have

hom(p!CInt(σ∨)−χ, F ⋆ p!CInt(τ∨)) ≃ hom(p!CInt(σ∨)−χ, F ⋆ p!CS). (12.35)
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by (12.29) and (12.28). We will calculate the right hand side of (12.35). We have

hom(p!CInt(σ∨)−χ, F ⋆ p!CS) ≃ hom(CInt(σ∨)−χ, p
−1(F ⋆ p!CS))

≃ hom(CInt(σ∨)−χ, m̃!(p
−1F ⊠ p−1p!CS))

≃
⊕
m∈M

hom(CInt(σ∨)+m−χ, p
−1F ⋆R CS)

(12.36)

by Lemma 7.6.
We fix m ∈M\τ∨ and set Sm := S ∩ (σ∨ +m). Then Sm ∩Mβ is a finitely-generated

module over the semigroup σ∨ ∩ Mβ by Gordon’s lemma. We can take the following
resolution of Sm ∩Mβ: First, take a set of generators m1, ...,ms of Sm ∩Mβ which are
distinct from each other. For each pair (i, j) ∈ {1, ..., s}×2, we consider the set (σ∨ +
mi)∩ (σ∨+mj)∩Mβ, which is the relation between the submodules generated by mi and
mj respectively. The set (σ∨ + mi) ∩ (σ∨ + mj) is again a rational convex polyhedron
hence gives a finitely generated module over σ∨ ∩Mβ. Then we take a set of generators

{mij
1 , ....,m

ij
sij} of (σ∨ +mi) ∩ (σ∨ +mj) ∩Mβ for each pair (i, j) ∈ {1, ..., s}×2 which are

distinct from each other. Then again the relations between the generators are given by
(σ∨ +mij

k ) ∩ (σ∨ +mij
l ) ∩Mβ for each (k, l) ∈ {1, ..., sij}×2. Iterating these process, we

have a sequence
Sm, {σ∨ +mi}si=1, {σ∨ +mij

k }k,(i,j), · · · (12.37)

of sets of subsets of MR and a resolution of Sm ∩Mβ

0← Sm ∩Mβ ←
s⊕

i=1

((σ∨ ∩Mβ) +mi)←
⊕
k,(i,j)

((σ∨ ∩Mβ) +mij
k )← · · · (12.38)

as a (σ∨ ∩Mβ)-module. Note that we can write the sequence (12.38) as

0← Sm ∩Mβ ←
s⊕

i=1

(σ∨ ∩Mβ)←
⊕
k,(i,j)

(σ∨ ∩Mβ)← · · · (12.39)

by using the identification ((σ∨∩Mβ)+m) ∼= (σ∨∩Mβ) as (σ
∨∩Mβ)-modules. To simplify

the notation, we set

n1⊕
i=1

((σ∨ ∩Mβ) +m1
i ) :=

s⊕
i=1

((σ∨ ∩Mβ) +mi) (12.40)

n2⊕
i=1

((σ∨ ∩Mβ) +m2
i ) :=

⊕
k,(i,j)

((σ∨ ∩Mβ) +mij
k ) (12.41)

and so on.
Set C[Sm∩Mβ] :=

⊕
m∈Sm∩Mβ

C ·χm, which is a finitely generated C[σ∨∩Mβ]-module

and holim−→
m∈M

C[Sm ∩Mβ] ≃ C[τ∨ ∩Mβ] where the colimit is taken with respect to natural

inclusions C[Sm1 ∩Mβ] ↪→ C[Sm2 ∩Mβ] for σ
∨ +m1 ↪→ σ∨ +m2. Then the resolution

(12.39) implies a resolution of C[Sm ∩Mβ] as a C[σ∨ ∩Mβ]-module:

0← C[Sm ∩Mβ]
d1←− C[σ∨ ∩Mβ]

⊕n1 d2←− C[σ∨ ∩Mβ]
⊕n2 ← · · · (12.42)

We also have a complex

E := 0← CSm
δ1←−

n1⊕
i=1

CInt(σ∨)+m1
i

δ2←−
n2⊕
i=1

CInt(σ∨)+m2
i
← · · · , (12.43)

41



from the sequence (12.37). Note that the presentation (12.38) implies that κσ̂,β(di) ≃ p!(δi)
for i > 1.

We claim that
hom(CInt(σ∨)+m−χ, p

−1F ⋆R E) ≃ 0. (12.44)

We can again assume that σ∨ is full-dimensional and χ = 0 to prove (12.44).
Take an increasing filtration

S1 ⊊ S2 ⊊ S3 ⊊ · · · ⊂ Int(σ∨) (12.45)

by Si such that each Si is closed and bounded in Int(σ∨) and is a union some Da’s. Then
we have two sequence of maps

0← CS1 ← CS2 ← · · · and (12.46)

0← CSm∩S1 ← CSm∩S2 ← · · · (12.47)

with

CInt(σ∨) ≃ holim←−
i

CSi and (12.48)

CSm ≃ holim←−
i

CSi∩Sm . (12.49)

Since the morphisms of E can be restricted to each Si, we have

E ≃ holim←−
i

(0← CSm∩Si ←
n1⊕
j=1

CSi+m1
j
←

n2⊕
j=1

CSi+m2
j
← · · · ). (12.50)

We write Ei for ith term of the limit (12.50). Since we take generators mk
i which are

distinct from each other in each step of constructing (12.37), we have σ∨+mk
i ∩σ∨+mk

j ⊊
σ∨ +mk

i , σ
∨ +mk

j . This observation and the convexity of σ∨ together imply that, for a

bounded set B in MR, there exists a large K such that mk
i ̸∈ B for k > K and any i. This

implies that each Ei is a finite limit.
Note that the complex (12.43) is not exact in general while (12.42) is exact. However

the exactness of (12.38) implies the following: Consider Da such that DDa contains a point
ofMβ. We writema for the point ofMβ contained in DDa. The stalk of CInt(σ∨)+mk

i
on Da

is rank 1 if and only if ma ∈ σ∨+mk
i otherwise zero. This exactly corresponds to whether

σ∨ + mk
i contains an element ma viewed as a (σ∨ ∩Mβ)-submodule of M or does not.

Since the resolution (12.38) occurs in M as submodules, the exactness of (12.38) implies
the vanishing of the stalk of CInt(σ∨)+mk

i
over such Da. Hence each Ei can be written by

a finite sequence of cones of CDa ’s such that each DDa does not contain points of Mβ.
Set im′ : Int(σ∨) + m′ ↪→ MR for m′ ∈ Mβ. Then we have holim−→

m′∈Mβ

im′!i
−1
m′p−1F ≃

p−1F where the colimit is taken with respect to maps im′
1!
i−1
m′

1
p−1F → im′

2!
i−1
m′

2
p−1F for

Int(σ∨) +m′1 ⊂ Int(σ∨2 ) +m′2 which correspond to the identity via the isomorphisms

hom(im′
1!
i−1
m′

1
p−1F, im′

2!
i−1
m′

2
p−1F ) ≃ hom(im′

1!
i−1
m′

1
p−1F, im′

1!
i−1
m′

1
p−1F ). (12.51)

We set Fm′ := im′!i
−1
m′p−1F . Then we have

hom(CInt(σ∨)+m, p
−1F ⋆R E) ≃ hom(CInt(σ∨)+m, holim−→

m′∈Mβ

Fm′ ⋆R E)

≃ holim−→
m′∈Mβ

hom(CInt(σ∨)+m, Fm′ ⋆R E),
(12.52)
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since CInt(σ∨)+m is compact in Sh♢Λ(MR) where Λ :=
∪

m′ SS(Fm′) and Fm′ ∈ Sh♢Tn×(−σ)(MR).

Since the support of E and Fm′ is in a translation of Int(σ∨), the map m̃ is proper over
the support of E ⊠ Fm′ by the assumption σ is full-dimensional which is equivalent to σ∨

is strictly convex. Hence we have E ⋆R Fm′ ≃ holim←−
i

(Ei ⋆R Fm′). As a result, we have

hom(CInt(σ∨)+m, E ⋆R Fm′) ≃ hom(CInt(σ∨)+m, holim←−
i

(Ei ⋆R Fm′))

≃ holim←−
i

hom(CInt(σ∨)+m, Ei ⋆R Fm′).
(12.53)

Since Ei ⋆R Fm′ ∈ Sh♢Tn×(−σ), we again have

hom(CInt(σ∨)+m, Ei ⋆R Fm′) ≃ hom(C(Int(σ∨)∩B)+m, Ei ⋆R Fm′). (12.54)

Since Ei is a finite sequence of cones of CDa , we further have

hom(C(Int(σ∨)∩B)+m, Ei ⋆R Fm′) ≃ hom(C(Int(σ∨)∩B)+m ⋆R (−1)∗DEi, Fm′ ⋆ CInt(σ∨))

≃ hom(C(Int(σ∨)∩B)+m ⋆R (−1)∗DEi, Fm′).

(12.55)

by Corollary 4.22. We further have

hom(C(Int(σ∨)∩B)+m ⋆R (−1)∗DEi, Fm′) ≃ hom(C(Int(σ∨)∩B)+m,Hom⋆R((−1)∗DEi, Fm′))

≃ hom(CInt(σ∨)+m,Hom⋆R((−1)∗DEi, Fm′))

≃ hom(CInt(σ∨)+m ⋆R (−1)∗DEi, Fm′)

≃ hom((−1)∗DEi, F
m
m′)

(12.56)

where Fm
m′ is the translation of Fm′ by m. Hence we have

hom(CInt(σ∨+m), p
−1F ⋆R E) ≃ holim−→

m′∈Mβ

hom(holim−→
i

(−1)∗DEi, F
m
m′). (12.57)

Temporally, let us replace Fm by F , which has no effects to prove (12.44). Let jm′ be the
inclusion map of the complement of im′ . Then there exists an exact triangle

jm′!j
!
m′ Hom(holim−→

i

(−1)∗DEi, Fm′)

→ Hom(holim−→
i

(−1)∗DEi, Fm′)

→ im′∗i
−1
m′ Hom(holim−→

i

(−1)∗DEi, Fm′))→ .

(12.58)

Note that each term in (12.58) has maps induced by Fm′
1
→ Fm′

2
for Int(σ∨) + m′1 ⊂

Int(σ∨) +m′2. By taking global sections and colimits, we have

holim−→
m′∈Mβ

Γ(MR, jm′!j
!
m′ Hom(holim−→

i

(−1)∗DEi, Fm′))

→ holim−→
m′∈Mβ

hom(holim−→
i

(−1)∗DEi, Fm′)

→ holim−→
m′∈Mβ

hom(i−1m′ holim−→
i

(−1)∗DEi, i
−1
m′p
−1F )→

(12.59)
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The last term in (12.59)

holim−→
m′∈Mβ

hom(i−1m′ holim−→
i

(−1)∗DEi, i
−1
m′p
−1F ) ≃ holim−→

m′∈Mβ

holim←−
i

hom(i−1m′ (−1)∗DEi, i
−1
m′p
−1F )

≃ holim−→
m′∈Mβ

holim←−
i

hom(im′!i
−1
m′ (−1)∗DEi, p

−1F )

(12.60)

By the definition, im′!i
−1
m′C−DDa ≃ C−DDa if −DDa ⊂ Int(σ∨) + m′. If not −DDa ⊂

Int(σ∨) +m′, we have im′!i
−1
m′C−DDa ≃ 0. Hence, by Lemma 12.3, the last term in (12.59)

vanishes.
On the other hand, the complex jm′!j

!
mHom(holim−→

i

(−1)∗DEi, Fm′) is supported in

the boundary of σ + m′. Hence the maps appeared in the colimit of the first term of
(12.59) eventually vanishes when the boundary of Int(σ∨ + m′1) does not intersect with
the boundary of Int(σ∨ + m′2). Therefore the first term of (12.59) also vanishes. Then
we also have the vanishing of the middle of (12.59). From (12.52) - (12.57), the vanishing
(12.44) follows.

By (12.44), (12.43), and (12.36), we have

hom(⊕[χ]∈Mβ/Mp!CInt(σ∨)−χ, F ⋆ p!CSm)

≃ (⊕n1
i=1 hom(⊕[χ]∈Mβ/Mp!CInt(σ∨)−χ, F )← ⊕n2

i=1 hom(⊕[χ]∈Mβ/Mp!CInt(σ∨)−χ, F )← · · · )
≃ hom(⊕[χ]∈Mβ/Mp!CInt(σ∨)−χ, F )⊗C[σ∨∩Mβ ] C[S

m ∩Mβ].

(12.61)

By taking colimits with respect to m and applying (12.35), this completes the proof.

Let YSh♢
Λ
Σ̂,β

(Tn) : (Sh
♢
ΛΣ̂,β

(Tn))op → Fun(Sh♢ΛΣ̂,β
(Tn),Mod(C)) be the Yoneda embed-

ding.

Lemma 12.5. There exists a commutative diagram

(perf XΣ̂,β)
op

Y
Sh♢

Λ
Σ̂,β

(Tn)
◦κΣ̂,β((−)⊗ω

−1
X
Σ̂,β

)

��

f∗
// (cohXΣ̂(σ̂),β)

op

κD
σ̂,β◦DX

Σ̂(σ̂),β
��

Fun(Sh♢ΛΣ̂,β
(Tn),Mod(C)) ◦I // Fun(Sh♢ΛΣ̂(σ̂),β

(Tn),Mod(C)).

(12.62)

Proof. For E ∈ cohXΣ̂,β and F ∈ Sh♢ΛΣ̂(σ̂),β
(Tn), we have

hom(κDσ̂,β(Df∗E), F ) ≃ (Df∗E ⊗C[σ∨∩Mβ ] hom(Θ(σ), F ))Hβ

≃ (f∗DE ⊗C[σ∨∩Mβ ] hom(Θ(σ), F ))Hβ .
(12.63)

since f is proper. By Lemma 12.4, we have

(f∗DE⊗C[σ∨∩Mβ ] hom(Θ(σ), F ))Hβ

≃ f∗(DE ⊗OX
Σ̂,β

κ−1
Σ̂,β

(IF ))Hβ

≃ hom(E ⊗ ω−1XΣ̂,β
, κ−1

Σ̂,β
(IF ))

≃ hom(κΣ̂,β(E ⊗OX
Σ̂,β

ω−1XΣ̂,β
), IF ).

(12.64)

This completes the proof.
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Corollary 12.6. For E ∈ cohXΣ̂(σ̂),β, the image κDσ̂,β(DXΣ̂(σ̂),β
E) is representable by an

object of Shw
ΛΣ̂(σ̂),β

(Tn).

Proof. By the presentation (12.6), the functor κDσ̂,β(DE) is cocontinuous. Hence it suffices
to show that this functor is representable.

Let E• be a resolution of E by locally free sheaves. This resolution gives a sequence
{Ei} in perf XΣ̂(σ̂),β such that holim−→

i

Ei ≃ E . By Lemma 12.5, we have

hom(κDσ̂,β(DE), F ) ≃ (DE ⊗C[σ∨∩Mβ ] hom(Θ(σ), F ))Hβ

≃ (holim←−
i

(D(Ei))⊗C[σ∨∩Mβ ] hom(Θ(σ), F ))Hβ

≃ holim←−
i

hom(κΣ̂,β(Ei ⊗OX
Σ̂,β

ω−1XΣ̂,β
), IF )

≃ hom(I l holim−→
i

κΣ̂,β(Ei ⊗OX
Σ̂,β

ω−1XΣ̂,β
), F ).

(12.65)

This completes the proof.

By Lemma 9.2 and Lemma 12.6, we have a fully faithful functor κDσ̂,β◦D : cohXΣ̂(σ̂),β →
Fun(Shw

ΛΣ̂(σ̂),β
(Tn),Mod(C)), which is representable by compact objects. Then we set

Kσ̂,β := κDσ̂,β ◦DXΣ̂(σ̂),β
: cohXΣ̂(σ̂),β → Shw

ΛΣ̂(σ̂),β
, (12.66)

which is a fully faithful functor. As noted in Section 3, we also writeKσ̂,β : Ind cohXΣ̂(σ̂),β →
Sh♢ΛΣ̂(σ̂).β

(Tn) for the induced functor on ind-objects.

Corollary 12.7. The functor Kσ̂,β is an equivalence.

Proof. By Lemma 12.1, the functor Kσ̂,β is fully faithful. Since I l is essentially surjective
and KΣ̂,β is an equivalence in Lemma 12.5, Kσ̂,β is also essentially surjective.

Corollary 12.8. Any σ̂ satisfies Condition 9.1.

Proof. By Corollary 12.7, the functorKσ̂,β is an equivalence. Take an object E ∈ cohXΣ̂(σ̂),β .
For a face inclusion of cones σ1 ⊂ σ2 = σ, we have quasi-isomorphisms of functors
Sh♢ΛΣ̂(σ1),β

(Tn)→Mod(C),

hom(Kσ̂1,β(i
∗
σ1σ2
E),−)

≃ (Di∗σ1σ2
E ⊗C[σ∨

1 ∩Mβ ] homSh♢
Λ
Σ̂(σ1),β

(Tn)(Θ(σ1),−))Hβ

≃ (i∗σ1σ2
DE ⊗C[σ∨

1 ∩Mβ ] homSh♢
Λ
Σ̂(σ1),β

(Tn)(Θ(σ1),−))Hβ

≃ (i∗σ1σ2
DE ⊗C[σ∨

1 ∩Mβ ] homSh♢
Λ
Σ̂(σ1),β

(Tn)(Θ(σ2),−))Hβ

≃ (DE ⊗C[σ∨
2 ∩Mβ ] C[σ

∨
1 ∩Mβ]⊗C[σ∨

1 ∩Mβ ] homSh♢
Λ
Σ̂(σ1),β

(Tn)(Θ(σ2),−))Hβ

≃ (DE ⊗C[σ∨
2 ∩Mβ ] C[σ

∨
1 ∩Mβ]⊗C[σ∨

1 ∩Mβ ] homSh♢
Λ
Σ̂(σ1),β

(Tn)(Θ(σ2),−))Hβ .

(12.67)
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By seeing the C[σ∨1 ∩Mβ]-module structure of homSh♢
Λ
Σ̂(σ1),β

(Tn)(Θ(σ2),−), it follows that

C[σ∨2 ∩Mβ]⊗C[σ∨
2 ∩Mβ ] C[σ

∨
1 ∩Mβ]⊗C[σ∨

1 ∩Mβ ] homSh♢
Λ
Σ̂(σ1),β

(Tn)(Θ(σ2),−)

≃ homSh♢
Λ
Σ̂(σ1),β

(Tn)(Θ(σ2),−)
(12.68)

as C[σ∨2 ∩M ]-modules where the right hand side is equipped with the canonical C[σ∨2 ∩M ]-
module structure. Then we have

hom(Kσ̂1,β(i
∗
σ1σ2
E),−) ≃ (DE ⊗C[σ∨

2 ∩Mβ ] homSh♢
Λ
Σ̂(σ1),β

(Tn)(Θ(σ2),−))Hβ

≃ homSh♢
Λ
Σ̂(σ1),β

(Tn)(Kσ̂2,β(E),−).
(12.69)

Then we further have

homSh♢
Λ
Σ̂(σ1),β

(Tn)(Kσ̂2,β(E),−) ≃ hom(Kσ̂2,β(E),Hom⋆(κσ̂1,β(OXΣ̂(σ̂1),β
), (−)))

≃ hom(Kσ̂2,β(E) ⋆ κσ̂1,β(OXΣ̂(σ̂1),β
), (−))

(12.70)

by Lemma 10.2. By taking a smooth refinement Σ̂2 of Σ̂(σ̂2), we also have Kσ̂2,β(E) ∈
Sh♢ΛΣ̂2,β

(Tn). Since Σ̂2 is smooth, the functor κΣ̂2,β
is an equivalence. Let Σ̂1 be the

associated refinement of Σ̂(σ̂1). Then, by Proposition 9.5, we have

Kσ̂2,β(E) ⋆ κσ̂1,β(OXΣ̂(σ̂1),β
) ≃ κΣ̂2,β

(κ−1
Σ̂2,β

(Kσ̂2,β(E))⊗OXΣ̂1,β
). (12.71)

Then Corollary 7.9 implies Kσ̂2,β(E) ⋆ κσ̂1,β(OXΣ̂(σ̂1),β
) ∈ Sh♢ΛΣ̂1,β

(Tn). We also have

Kσ̂2,β(E) ⋆ κσ̂1,β(OXΣ̂(σ̂1),β
) ∈ Sh♢ΛΣ̂(σ̂2),β

(Tn). This can be deduced, for example, from

Remark 12.12 below, which implies

Kσ̂2,β(E) ⋆ κσ̂1,β(OXΣ̂(σ̂1),β
) ≃ Kσ̂2,β(E

!
⊗K−1σ̂2,β

(κσ̂1,β(OXΣ̂(σ̂1),β
))). (12.72)

Since ΛΣ̂(σ̂2),β
∩ ΛΣ̂1,β

= ΛΣ̂(σ̂1),β
, this completes the proof of Condition 9.1 (i).

For E ∈ perf XΣ̂(σ̂),β, we have

(D(E ⊗ ωXΣ̂(σ̂),β
)⊗C[σ∨∩Mβ ] hom(Θ(σ),−))Hβ

≃ (D(E)⊗C[σ∨∩Mβ ] hom(Θ(σ),−))Hβ ,
(12.73)

which is represented by κσ̂,β(E). This proves Condition 9.1(ii).

Proof of Theorem 6.2 and Theorem 11.1. Since Condition 9.1 holds for any fans by Corol-
lary 12.8, Proposition 11.2 holds for any fans. This completes the proof.

We recall the following duality theorem between coherent sheaves and perfect com-
plexes.

Theorem 12.9 ([BZNP12, Theorem 1.1.3]). Assume XΣ̂,β is complete. Then

perf XΣ̂,β ≃ Fun ex(cohXΣ̂,β ,mod(C)) (12.74)

given by E 7→ hom(DE ,−) where D := Hom(−,OXΣ̂,β
).
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Corollary 12.10. Assume that XΣ̂,β is complete. Then κΣ̂,β gives an equivalence

perf XΣ̂,β ≃ Shc
ΛΣ̂,β

(Tn). (12.75)

In particular, if XΣ̂,β is smooth, Shw
ΛΣ̂,β

(Tn) ≃ Shc
ΛΣ̂,β

(Tn).

Proof. By Theorem 6.2 and the Grothendieck duality, we have

cohXΣ̂,β ≃ (cohXΣ̂,β)
op ≃ (Shw

ΛΣ̂,β
(Tn))op (12.76)

given by KΣ̂,β ◦D. By taking Funex(−,mod(C)) and using Theorem 12.9 and Theorem
4.7, we have

Shc
ΛΣ̂,β

(Tn)
≃−→ Fun ex((Shw

ΛΣ̂,β
(Tn))op,mod(C)) ≃−→ Fun ex(cohXΣ̂,β,mod(C)) ≃−→ perf XΣ̂,β

(12.77)
given by

E 7→ hom(E,−) 7→ hom(E,KΣ̂,β ◦D(−)) 7→ D ◦D ◦K−1
Σ̂,β

(E). (12.78)

Hence the equivalence (12.75) is given byKΣ̂,β◦D◦D ≃ KΣ̂,β◦((−)⊗ωXΣ̂,β
). By Condition

9.1(ii), we have KΣ̂,β ◦ ((−)⊗ ωXΣ̂,β
) ≃ κΣ̂,β on perf XΣ̂,β. This completes the proof.

Remark 12.11. Assume XΣ̂,β is complete. The equivalence of Corollary 12.10 and The-
orem 6.2 is compatible with the dualities Theorem 4.7 and Thereom 12.9 in the following
sense. Indeed, for E ∈ perf XΣ̂,β and DXΣ̂,β

F ∈ cohXΣ̂,β, the pairing in Theorem 12.9 is

hom(DE ,DF) ≃ hom(F , E ⊗ ωXΣ̂,β
)

≃ hom(KΣ̂,β(F),KΣ̂,β(E ⊗ ωXΣ̂,β
))

≃ hom(KΣ̂,β(F), κΣ̂,β(E)).
(12.79)

Since κΣ̂,β(E) ∈ Shc
ΛΣ̂,β

(Tn) by [FLTZ11a] and KΣ̂,β(F) ∈ Shw
ΛΣ̂,β

(Tn), the last line of

(12.79) is the pairing of Theorem 4.7. This remark is inspired by an implication by Harold
Williams.

Remark 12.12. We also remark about the monoidality of the functor KΣ̂,β similar to

κΣ̂,β. The category Ind cohXΣ̂,β is symmetric monoidal with the product (−)
!
⊗ (−) :=

∆!((−)⊠ (−)) where ∆ is the diagonal map and the unit ωXΣ̂,β
by [Gai, Corollary 5.6.8].

Let Σ̂′ be a smooth refinement of Σ̂ and f : XΣ̂′,β → XΣ̂,β be the associated morphism.
Then by the projection formula ([DG13, 3.2.5]) and the fact any toric variety is Cohen-
Macaulay imply that

f Ind∗ (f !E
!
⊗ f !F) ≃ E

!
⊗ f Ind∗ f !F

≃ E
!
⊗F

!
⊗ f∗ωXΣ̂′,β

≃ E
!
⊗F

!
⊗ ωXΣ̂,β

≃ E
!
⊗F .

(12.80)
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Since κΣ̂′,β is monoidal (Proposition 9.5) and Σ̂′ is smooth, we have

KΣ̂′,β(f
!E

!
⊗ f !F) ≃ κΣ̂′,β(f

!E ⊗ f !F ⊗ ω−2XΣ̂′,β
)

≃ KΣ̂′,β(f
!E) ⋆ KΣ̂′,β(f

!F).
(12.81)

By Lemma 12.5 and the fact KΣ̂,β and KΣ̂′,β are both equivalences, we have KΣ̂′,β ◦ f
! ≃

I ◦KΣ̂,β. Combining with (12.80), we have

KΣ̂,β(E
!
⊗F) ≃ KΣ̂,β(f

Ind
∗ (f !E

!
⊗ f !F))

≃ I lKΣ̂′,β(f
!E

!
⊗ f !F)

≃ I l(IKΣ̂,β(E) ⋆ IKΣ̂,β(F))

≃ I l ◦ I(KΣ̂,β(E) ⋆ KΣ̂,β(F))

≃ KΣ̂,β(E) ⋆ KΣ̂,β(F).

(12.82)
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