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1. Abstract 
The dynamics of a microscopic system is naturally written in the language of canonical Hamiltonian mechanics. A 
macroscopic system emerges when constraints are imposed on the `flat' phase space of microscopic degrees of freedom. 
Such topological constraints may destroy the canonical Hamiltonian form. Integrable constraints foliate the phase space and 
dictate a non-canonical Hamiltonian structure represented by a Poisson operator. Non-integrable constraints impart 
`vorticity' to the metric of space and induce an almost Hamiltonian structure with an associated almost Poisson operator. 
Here, we categorize almost Poisson operators and investigate the statistical properties of ensembles endowed with non-
canonical and almost Hamiltonian structures. A proper entropy measure reflecting the geometric properties of space is 
introduced, the form of the equilibrium probability distribution is calculated, and it is shown that self-organization driven by 
topological constraints is consistent with the second law of thermodynamics. 
 
2. Introduction 
The motion of elementary particles in gravitational and electromagnetic fields is an example of microscopic dynamics. The 
natural setting of microscopic dynamics is provided by canonical Hamiltonian mechanics [1]. In a canonical Hamiltonian 
system, motion occurs in a flat space, the symplectic manifold called phase space [2]. A macroscopic description of a physical 
system can be obtained by removing the redundant degrees of freedom of microscopic dynamics. Such redundant degrees 
of freedom are mathematically represented by a set of topological constraints acting on the phase space of canonical 
Hamiltonian mechanics. The ideal Euler equations for the motion of a fluid are an example of macroscopic system. Here, the 
microscopic degrees of freedom of the molecules composing the fluid are reduced to the simplified flow of fluid elements. 
 
The process of reduction may, in general, destroy the canonical Hamiltonian form: the 
space where the motion of a macroscopic system occurs does not have the properties of 
canonical phase space. However, if the constraints acting on the system are integrable (in 
the sense of Frobenius [3]), the reduced space can be locally transformed to the canonical 
phase space by an appropriate change of coordinates. Systems with this property are 
called non-canonical Hamiltonian systems and are mathematically represented by a 
Poisson operator that satisfies the Jacobi identity [4-5]. The ideal Euler equations exhibit 
a non-canonical Hamiltonian structure. 
 
If the topological constraints cannot be integrated, the resulting dynamics is called almost 
Hamiltonian and it is described by an almost Poisson operator that fails to satisfy the 
Jacobi identity [6]. Systems affected by nonholonomic constraints, such as the rolling of a 
rigid body, fall in this category [7]. We further note that canonical and non-canonical 
Hamiltonian systems can be regarded as special subclasses of almost Hamiltonian 
dynamics1.  
 
Figure 1 shows a schematic view of the radiation belts that surround the Earth. These 
plasma formations are a prototype of macroscopic self-organization [8-9]. The long-
lasting, stable, and heterogeneous structure of a radiation belt seemingly violates the 
entropy principle dictated by the second law of thermodynamics. Analogous macroscopic 
and hierarchical structures are observed across different scales (spiral shape of galaxies, 

                                                      
1 In formulae, an almost Hamiltonian vector field 𝑋 = 𝑥̇𝑖𝜕𝑖 on an 𝑛-dimensional manifold is represented as: 

𝑋 = ℑ(𝑑𝐻). 
Here, ℑ  is an antisymmetric operator and 𝐻  the Hamiltonian (energy) of the system. If 𝑋  is a canonical Hamiltonian 
vector field, ℑ is the symplectic matrix ℐ𝑐. If 𝑋 is a non-canonical Hamiltonian vector field, ℑ satisfies the Jacobi identity 

ℑ𝑖𝑚ℑ𝑚
𝑗𝑘

+ ℑ𝑗𝑚ℑ𝑚
𝑘𝑖 + ℑ𝑘𝑚ℑ𝑚

𝑖𝑗
= 0. 

Fig. 1: Schematic view of a radiation 
belt and magnetic coordinates. 



turbulent structures on the surface of gaseous planets) and throughout the physical world (fluid and plasma turbulence, 
rigid body dynamics, ferromagnetism, and so on). 
 
Aim of the present study is to construct a rigorous theory of the statistical mechanics of macroscopic systems that lack 
canonical phase space due to the existence of topological constraints. The cornerstone of the standard formulation of 
statistical mechanics is Liouville's theorem, which states that the phase space volume is preserved by the canonical flow. 
This theorem justifies the conventional notion of entropy of a probability distribution and the assumption of the ergodic 
hypothesis [10]. However, we have seen that macroscopic systems are not, in general, canonical. Thereby, none of the above 
results hold and a new paradigm that takes into account the non-trivial topology of space is needed to understand the 
statistical and thermodynamic properties of macroscopic systems.  
 
3. Categorization of Almost Poisson Operators, Types of Self-Organization, and Equilibrium 
Cardinal part of the present investigation is the classification of almost Poisson operators according to their geometrical 
properties (see figure 2).  

The symplectic matrix of microscopic dynamics is located at 
the top of the pyramid. The following category is that of 
Poisson operators of non-canonical Hamiltonian systems. 
Beyond Poisson operators, the phase space is lost, and we 
first encounter conformal operators. Such operators can be 
transformed to Poisson operators by performing an 
appropriate time reparametrization. The subsequent class 
we introduce is that of measure preserving operators. These 
operators impart an invariant measure to the system for any 
choice of the Hamiltonian function. Using this property, we 
prove a theorem on the equilibrium of the probability 
distribution 𝑓 on the invariant measure: 

 
This theorem, which does not require the existence of the 
phase space, reduces to the standard Boltzmann distribution 

𝑓 = 𝑐𝑒−𝛽𝐻 when ℑ is the symplectic matrix. Here, 𝑐, 𝛽 ∈
ℝ>0  are constants. If, instead, ℑ  is a Poisson operator, 
equation (1) becomes: 

Here, the functions 𝐶𝑖  are the so called Casimir invariants whose gradients span the kernel of the Poisson operator 

ℑ(𝑑𝐶𝑖) = 0. These invariants, which only depend on the properties of ℑ, are responsible of the first type of macroscopic 

self-organization (see figure 3): motion is restricted on the level sets (leaves) of the 𝐶𝑖s.  
 
We further show that, by introducing a new degree of freedom, any 𝑛 -dimensional almost Poisson operator can be 
extended to an 𝑛 + 1-dimensional measure preserving operator, and that 𝑎𝑛𝑦 measure preserving operator has vanishing 
vorticity (i.e. it corresponds to a closed differential form) on the 
invariant measure. Since operators determine the topological 
properties of space, we therefore find that, beyond measure 
preserving operators, the metric of space in endowed with an 
intrinsic vorticity. This kind of metric induces a second type of 
self-organization (see figure 3): in this case, a particle will tend 
to fall toward the center of the metric vortices.  
 
The following category is that of Beltrami operators. These 
operators are characterized by being completely aligned with 
their own vorticity and generalize the notion of Beltrami field 
from 3  to arbitrary dimensions. It is worth to mention that 
they exhibit peculiar properties from the standpoint of 
statistical mechanics. Finally, operators that do not fall in any 
of the previous categories are simply referred to as almost 
Poisson. 

lim
𝑡→∞

ℑ(𝑑 log 𝑓 + 𝛽𝑑𝐻) = 0    𝑎. 𝑒. (1) 

lim
𝑡→∞

𝑓 = 𝑐 exp{−𝛽𝐻 − 𝛾𝑖𝐶𝑖}    𝑎. 𝑒. (2) 

Fig. 2: The hierarchical structure of almost Poisson operators. Each box 
is named by the corresponding operator. The yellow line indicates 
transition from microscopic to macroscopic dynamics. The red line 
indicates transition from Hamiltonian to almost Hamiltonian dynamics, 
with corresponding loss of phase space. The green line indicates 
transition from conservative to dissipative dynamics. The latter is not 
object of the present study. 

Fig. 3: Types of self-organization. Left: type I self-organization driven 
by Casimir invariants. Right: type II self-organization driven by 
metric vorticity. 



4. Self-Organization in Non-Canonical Hamiltonian Systems 
As a concrete example of self-organization in a non-canonical Hamiltonian system, we examine the mechanism by which 
radiation belts are created in a dipole magnetic field. Here, the topological constraint affecting the system is the first 
adiabatic invariant of magnetized particles: the magnetic momentum associated to the cyclotron gyration around the 
magnetic field.  
 
Exploiting the theory developed so far, we first determine 
the Poisson operator of the system. The magnetic 
momentum is found to be a Casimir invariant of the Poisson 
operator, and dictates a type I self-organization. Then, on 
the Casimir leaf, the corresponding invariant measure 𝑑𝑉𝐼 
is obtained, and a diffusion operator is formulated. On this 
appropriate metric induced by the topology of the magnetic 
field, the proper entropy measure: 

is maximized, and its entropy production 𝜎 = 𝛴̇ is positive. 
Here 𝑓 is the probability distribution on 𝑑𝑉𝐼. The opposite 
behavior is observed in the laboratory coordinates 𝑑𝑉𝐿 =
𝐵−1𝑑𝑉𝐼 , where the standard (and erroneous) entropy 
measure:  

is minimized (see figure 4). Here 𝐵  is the Jacobian of the 
coordinate change and physically represents the magnetic 
field strength. Figure 5 shows the numerical simulation of the 
derived transport equation, where the creation of the 
radiation belt is manifest. The results of this part, and their 
generalization to non-canonical Hamiltonian systems, are 
summarized in [11-14]. 
 
5. Self-Organization in Almost Hamiltonian Systems 
In this last section we discuss an example of type II self-
organization, driven by metric vorticity. For the sake of 
simplicity, we consider a 3 -dimensional system. Then, the 
equation of motion can be written as:  

Here, the vector 𝒘 is an almost Poisson operator. Equation 
(5) may represent the 𝑬 × 𝑩 motion of a charged particle in 
an electromagnetic field, the motion of a rigid body, or the evolution equation for the magnetization of a ferromagnet, and 
so on, depending on the specific choice of 𝒘 and 𝐻. We further assume that: 

Equation (6.1) implies the failure of the Jacobi identity (𝒘 is not a Poisson operator). Equation (6.2) implies that 𝒘 is not 
aligned with its own vorticity ∇ × 𝒘, and therefore it is not a Beltrami operator. As energy gradient we consider pure white 
noise, i.e. we set ∇𝐻 = 𝚪. Then, the evolution of the probability distribution 𝑓 reduces to a purely diffusive equation: 

In this notation, we introduced the normal Laplacian ∆⊥𝑓 = ∇ ∙ (𝒘 × (∇𝑓 × 𝒘)) and set 𝒃 =  𝒘 × (∇ × 𝒘), 𝔅 = ∇ ∙ 𝒃. 

In figure 6 we report the results of the numerical simulation of equation (5) for an ensemble of 8 ∙ 106 particles, when 
𝒘 = (1, sin 𝑥 + cos 𝑦 , cos 𝑥). Note that this choice is consistent with (6.1) and (6.2). Regardless of the fact that we are 
perturbing the system with homogenous fluctuations (the white noise 𝚪), a complex structure is created.  

𝛴 = − ∫ 𝑓 log 𝑓 𝑑𝑉𝐼 , (3) 

𝑆̃ = − ∫ 𝑓 log 𝑓𝐵 𝑑𝑉𝐼 , (4) 

𝑋 = 𝒘 × ∇𝐻, (5) 

𝒘 ∙ ∇ × 𝒘 ≠ 0, 
∇ ∙ [𝒘 × (∇ × 𝒘)] ≠ 0. 

(6.1) 
(6.2) 

𝜕𝑓

𝜕𝑡
=

1

2
∇ ∙ [𝒘 × (∇ × 𝑓𝒘)] =

1

2
(∆⊥𝑓 + ∇𝑓 ∙ 𝒃 + 𝑓𝔅). (7) 

Fig. 4: (a) 𝛴 (increasing line) and 𝑆̃ (decreasing line) as a function of time 
𝑡. (b) 𝜎 as a function of time 𝑡. Arbitrary units are used. Picture from [14]. 

Fig. 5: Self-organized plasma after entropy maximization. (a) Spatial 
profile of particle density (a.u.). (b) Temperature anisotropy 𝑻⊥/𝑻‖. 

(c) Parallel temperature 𝑻‖(𝒆𝑽) . (d) Perpendicular temperature 

𝑻⊥(𝒆𝑽) . White (vertical) lines, green (circular) lines, and purple 
(spreading from the left to the right) lines represent contours of 
magnetic field strength 𝑩, flux function 𝝍, and field line length 𝒍. 
Picture from [14]. 



From the standpoint of pure mathematics, equation (7) is of special 
interest since it is a second order non-elliptic partial differential 
equation. At present, there is no satisfactory theory of non-elliptic 
partial differential equations [15]. A special case in which an explicit 
solution to equation (7) with conditions (6.1) and (6.2) can be found 
occurs when 𝒘̂ × (∇ × 𝒘̂) = ∇𝜁  for some function 𝜁  and with 
𝒘̂ = 𝒘/𝑤. Then, we prove that in the limit 𝑡 → ∞ the solution is 
unique and converges to:  

In the present work, we further study existence and uniqueness of 
solution to the normal Laplace equation ∆⊥𝑓 = 𝜑 by introducing a 
novel function norm and applying Riesz theorem of representation. 
 
 
 
 

6. Conclusion 
In the present study, we have investigated dynamical properties and statistical behavior of macroscopic ensembles that lack 
the phase space of canonical Hamiltonian mechanics in virtue of topological constraints. The non-trivial topology is 
encapsulated in the almost Poisson operator that acts on the energy of the system to generate the dynamics. We have 
categorized almost Poisson operators, determined the resulting probability distributions, and shown that the creation of 
macroscopic structures is consistent with the second law of thermodynamics provided that an appropriate metric, reflecting 
the topology of space, is taken into account. Several examples of both non-canonical and almost Hamiltonian dynamics were 
discussed.  
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lim
𝑡→∞

𝑓 =
𝑐

𝑤
𝑒−𝜁    𝑎. 𝑒. (8) 

Fig. 6: Particle number f in (𝑥, 𝑦) plane. 


