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Abstract

Discrete logarithms arise in many aspects of cryptography. The hardness of
the discrete logarithm problem is central in many cryptographic schemes; for
instance in signatures, key exchange protocols and encryption schemes.

The first main contribution of this thesis examines the generic hardness
of the generalized multiple discrete logarithm problem, where the solver has
to solve k out of n instances for various settings of the discrete logarithm
problem. For generic k and n, we introduce two techniques to establish
the lower bounds for this computational complexity. One method can be
shown to achieve asymptotically tight bounds for small inputs in the classical
setting. The other method achieves bounds for larger inputs as well as being
able to adapt for applications in other discrete logarithm settings. In the
latter, we obtain the generalized lower bounds by applying partitions of n
and furthermore show that our chosen method of partition achieves the best
bounds. This work can be regarded as a generalization and extension on
the hardness of the multiple discrete logarithm problem analyzed by Yun
(EUROCRYPT ’15). Some explicit bounds for various n with respect to k
are also computed.

This second main contribution of this thesis describes methods of solv-
ing certain parameters of the discrete logarithm problem with low Hamming
weight product exponents. Our approach is shown to be applicable for a
concrete analysis of the GPS identification scheme. To achieve this, we in-
troduce the notion of parameters dependent splitting system which served as
tools to yield two improved results. The first attains a lower time complexity
over the current state of the art without any compromise in memory. The
second achieves the first known attack of the GPS scheme in a time com-
plexity of under 264 at the expense of some added memory requirements over
the former. Furthermore, our analysis uncovers classes of parameters that
are susceptible to such an improved attack. Overall, this work also serves as
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a framework to identify parameters which are more vulnerable in the design
of future cryptosystems based on the discrete logarithm problem with low
Hamming weight exponents.

Time-memory trade-off methods provide means to invert one way func-
tions. Such attacks offer a flexible trade-off between running time and mem-
ory cost in accordance to users’ computational resources. In particular, they
can be applied to hash values of passwords in order to recover the plaintext.
They were introduced by Martin Hellman and later improved by Philippe
Oechslin with the introduction of rainbow tables. The drawbacks of rainbow
tables are that they do not always guarantee a successful inversion.

This third main contribution of this thesis address such issues described
in the previous paragraph. In the context of passwords, it is pertinent that
frequently used passwords are incorporated in the rainbow table. It has been
known that up to four given passwords can be incorporated into a chain but
it is an open problem if more than four passwords can be achieved. We
solve this problem by showing that it is possible to incorporate more of such
passwords along a chain. Furthermore, we prove that this results in faster
recovery of such passwords during the online running phase as opposed to
assigning them at the beginning of the chains. For large chain lengths, the
average improvement translates to three times the speed increase during the
online recovery time.
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Chapter 1

Introduction

1.1 Overview and Motivations

The advent of the Information Age has brought about revolutions in how
information is stored and transmitted. Since then, the world has seen mas-
sive developments progressed rapidly over the past decades. We are now
living in an era where much of the data everywhere is handled and processed
electronically. This has engendered a necessity for secure handling of con-
fidential and private data. Such means are achieved through cryptography;
which is the study of techniques for secure communications. In particular,
modern cryptography utilizes a hybrid of tools in the fields of mathematics
and computer science. Some of its essential applications include electronic
commerce and computer passwords. The cores of modern cryptosystems are
based upon cryptographic primitives. Such cryptographic primitives are the
building blocks of secure cryptosystems. As such, the securities of cryptosys-
tems largely depend on their underlying primitives. It is therefore imperative
that the securities of these cryptographic primitives are well understood. In
this thesis, we analyze two commonly deployed primitives; the discrete log-
arithm problem and cryptographic hash functions. Our analysis considers a
variety of settings in which they occur and their respective computational
complexities.

Public key cryptography is a cryptographic system consisting of pairs of
keys: public keys and private keys. Public keys are accessible to everyone
whereas private keys are secret and only known by the owner. In a public key
encryption system, anyone can encrypt a message using the public key of the
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receiver, but such a message can only be decrypted with the receiver’s private
key. For practical usage, the pair of public and private keys needs to be
computationally easily generated by the user. The hardness of solving certain
computational problems is a fundamental aspect in the security of public key
cryptosystems. An advantage of public key algorithms over symmetric key
algorithms is that the former do not require a secure channel during the initial
exchange of secret keys between the parties. The difficulty of the discrete
logarithm problem is a basis for the constructions of various cryptographic
systems. As such, an in depth understanding of its security is of paramount
importance.

Denote the order of an algebraic group to be p, a sufficiently large prime.
There are generic algorithms that are known to solve the discrete logarithm
problem in O(

√
p). It was also shown by Shoup that any algorithm solv-

ing the generic discrete logarithm requires at least Ω(
√
p) group operations.

This provides some form of assurance that the discrete logarithm problem
is computationally intractable as long as the underlying group is carefully
chosen.

Since the emergence of elliptic curve cryptography, NIST has recom-
mended a number of standard fixed curves for use in cryptographic schemes.
As a result, there is an interest in understanding the security of solving
multiple instances of the discrete logarithm problem arising from the same
curve. This is referred to as the multiple discrete logarithm problem. A triv-
ial method to resolve this is to simply solve each discrete logarithm instance
separately, one after another which results in a trivial complexity of O(k

√
p).

It was subsequently shown that the bound can be reduced to O(
√
kp). More

recently, it was proven by Yun that any generic algorithm to solve the mul-
tiple discrete logarithm problem requires at least Ω(

√
kp) group operations.

The first work presented in this thesis generalizes the results of Yun by
investigating the complexity of solving the generalized multiple discrete log-
arithm problem, i.e. solving k out of n instances of the discrete logarithm
problem. We obtain concrete rigorous lower bounds for any generic algo-
rithm required to solve some subcollection of multiple discrete logarithms
instances. Our analysis is also extended to other settings of the discrete
logarithm problem.

There are other variations of the discrete logarithm problem having cer-
tain structures which arise in other cryptographic schemes. In particular,
the GPS identification scheme utilizes the discrete logarithm problem with
low Hamming weight product exponents as its security basis. Low Hamming
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weight products provide the advantage of speeding up the online computa-
tions of the identification scheme. On the other hand, it has to be evaluated
to ensure that security is not compromised in this variation. Coron et al.
proposed certain parameters of low Hamming weight products and analyzed
the security of those set of parameters based on computational and storage
requirements. Improvements to the computational complexity were subse-
quently discovered by Kim-Cheon.

Our second main contribution details a method of solving the discrete
logarithm problem with low Hamming weight exponents. We introduce a
notion of parameter dependent splitting system as a tool to solve it. We
show that this splitting system provides an improvement over the parame-
terized splitting system introduced by Kim-Cheon in many instances. More
pertinently, this can be applied to analyze the security of the GPS identifica-
tion scheme utilizing the parameters proposed by Coron et al.. Our results
provide a lower attack complexity over all current known methods.

A cryptographic hash function is an algorithm that maps data of arbitrary
size to a bit string of a fixed size. It is designed as a one way function such
that it is computationally infeasible to invert. The output of a hash function
is commonly referred to as the hash digest.

An application of hash functions in the context of our work arises in user
authentication and more specifically in password verification. The storage
of all user passwords as clear plaintext can potentially result in a security
breach if the password file is compromised. To resolve this issue, only the
hash digests of passwords are stored. During the authentication process, the
password provided by the user is hashed and a comparison with the stored
hash is performed. A match will result in a successful authentication and a
failure otherwise.

Passwords provide the most convenient and popular means of user authen-
tication. Password based authentication systems are deployed to safeguard
sensitive information against intruders and malicious adversaries. Two com-
mon forms of passwords are textual and graphical. For textual password
systems, the authentication mechanism is based on a string of characters
associated to each user. On the other hand, graphical password systems
require the selection of images in a specific order as the primary form of
authentication. In recent years, there has been some amount of interest in
graphical password based systems. For instance, some research have been
undertaken to explore the feasibility where the images concerned are maps.
In this particular case, the graphical password associated to an individual
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user is a sequence of regions within the map. Nevertheless, textual password
based systems remain the most predominant and most widespread means of
user authentication.

Some methods of decrypting password hashes include exhaustive search,
precomputations, targeted dictionary attacks, exploiting possible vulnerabil-
ities of certain hashing algorithms and time-memory trade-off techniques.
Exhaustive search is infeasible in most scenarios since all possible permu-
tations of the permissible password characters in the password space are
attempted resulting in an impractical amount of time during the online de-
cryption phase. Precomputations refer to the method of storing plaintext
hash pairs of all every string of characters in the passwords space. In re-
ality, an unrealistic amount of storage space is typically required in this
case. Targeted dictionary attacks aim at exploiting users’ tendencies to use
common popular passwords by specifically targeting such perceived ones via
exhaustive search. The class of time-memory trade-off techniques represents
a hybrid of exhaustive search and precomputations. This tool was first intro-
duced by Hellman and subsequent refinements were developed by Oechslin
which are referred to as rainbow tables. Rainbow tables provide a more
efficient time-memory trade-off but certain drawbacks remain inherent. In
particular, a successful hash inversion of a given password hash digest is not
always guaranteed.

Our third main contribution attempts to address this issue to some ex-
tent by including additional features of rainbow tables during the generation
phase. More specifically, we introduce an enhanced construction of rainbow
tables which can incorporate given passwords along a rainbow chain. The
advantages are two-fold. Firstly, this ensures that commonly used passwords
can be recovered within a rainbow table. Secondly, incorporating them along
a chain provides an improved efficiency over conventional means. An analysis
of the improvements is also provided.

In a broad sense, cryptographic primitives are ubiquitous in the field
of cryptography. They arise in many different settings and the work in this
thesis evaluates the computational complexity when deploying cryptographic
primitives in various scenarios relevant to cryptography and information se-
curity.
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1.2 Overall Organization

This thesis is organized as follows. The remainder of Chapter 1 contains
the definitions of several standard notations. Chapter 2 computes bounds
in various generalized settings of the discrete logarithm problem. Chapter 3
presents methods for solving the discrete logarithm problem with low Ham-
ming weight product exponents as well as improved attacks on the GPS
identification scheme. Chapter 4 covers the decryption of frequent password
hashes in rainbow tables. Within each individual Chapters 2, 3 and 4, a sum-
mary of our contributions is also included. We provide an overall conclusion
in Chapter 5.

1.3 Notations

We present several standard notations that are used throughout this thesis.

O(g) = {f : N→ R+|∃c, n0 > 0 s.t. 0 ≤ f(n) ≤ cg(n) ∀n > n0};

Ω(g) = {f : N→ R+|∃c, n0 > 0 s.t. cg(n) ≤ f(n) ∀n > n0};

Θ(g) = {f : f = O(g) and g = O(f)};

Õ(g) : O(g) with logarithmic factors ignored;

f(n) = o(g(n)) ⇐⇒ ∀k > 0 ∃n0 s.t. ∀n > n0, |f(n)| ≤ k|g(n)|;

Zp : the group of primitive residue classes modulo a prime p;

γ : the Euler-Mascheroni constant;

B(n, p) : the binomial distribution with the parameters n and p;
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Chapter 2

Hardness Bounds of the
Generalized Multiple Discrete
Logarithm Problems

2.1 Introduction

Many variants of the discrete logarithm problem have evolved over the years.
Some of these include the Bilinear Diffie-Hellman Exponent Problem [14],
the Bilinear Diffie-Hellman Inversion Problem [12], the Weak Diffie-Hellman
Problem [39] and the Strong Diffie-Hellman Problem [13]. We first describe
the classical discrete logarithm problem and its generalizations. Formal de-
scriptions of the statements are as follow.

Let G be a cyclic group such that |G | = p where p a prime and denote
g to be a generator of G so that G = 〈g〉.

The discrete logarithm problem (DLP) is defined as follows: Given G ,
p and any h selected uniformly at random from G , find x ∈ Zp satisfying
gx = h.

The k -Multiple Discrete Logarithm (k -MDL) is defined as follows:

Definition 2.1.1 (MDL). Given G, p and k elements h1, h2, . . . , hk
selected uniformly at random from G, find non-negative integers x1, x2, . . . ,
xk satisfying gxi = hi ∀i ∈ Z+ such that 1 ≤ i ≤ k.

In particular when k = 1, the 1-MDL is equivalent to DLP.
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For k ≤ n, we define the (k, n)-Generalized Multiple Discrete Logarithm
((k, n)-GMDL) as follows:

Definition 2.1.2 (GMDL). Given G, p and n elements h1, h2, . . . , hn
selected uniformly at random from G, find k pairs (i, xi) satisfying gxi = hi
where i ∈ S and where S is a k-subset of {1, . . . , n}.

As the definition suggests, (k, n)-GMDL can be viewed as a generalization
of k -MDL. In particular when n = k, the (k, k)-GMDL is equivalent to the
k -MDL.

Cryptographic constructions based on DLP are applied extensively. For
instance, an early application of the DLP in cryptography came in the form
of the Diffie-Hellman key exchange protocol [19] for which the security is de-
pendent on the hardness of the DLP. Among some of the others include the
ElGamal encryption and signature schemes [20] as well as Schnorr’s signa-
ture scheme and identification protocol [48]. The multiple discrete logarithm
problem mainly arises from elliptic curve cryptography. NIST recommended
a small set of fixed (or standard) curves for use in cryptographic schemes
[1] to eliminate the computational cost of generating random secure elliptic
curves. The implications for the security of standard elliptic curves over ran-
dom elliptic curves were analysed based on the efficiency of solving multiple
discrete logarithm problems [28].

In a generic group, no special properties which are exhibited by any spe-
cific groups or their elements are assumed. Algorithms for a generic group
are termed as generic algorithms. There are a number of results pertaining
to generic algorithms for DLP and k -MDL.

Shoup showed that any generic algorithm for solving the DLP must per-
form Ω(

√
p) group operations [49]. There are a few methods for computing

discrete logarithm in approximately
√
p operations. For example, Shanks

Baby-Step-Giant-Step method computes the DLP in Õ(
√
p) operations. One

other method is the Pollard’s Rho Algorithm which can be achieved in O(
√
p)

operations [42]. Since then, further practical improvements to the Pollard’s
Rho Algorithm have been proposed in [10, 15, 51] but the computational
complexity remains the same. There exist index calculus methods which
solve the DLP in subexponential time. Some of these more recent works in-
clude [7, 32] for finite fields of small characteristic (with the latter achieving
a heuristic quasi-polynomial algorithm) and [8] for finite fields of medium
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to high characteristic. However, such index calculus methods are not rele-
vant in our context since they are not applicable for a generic group. Hence,
currently known generic algorithms are asymptotically optimal.

An extension of Pollard’s Rho algorithm was proposed in [36] which solves
k -MDL in O(

√
kp) group operations if k ≤ O(p1/4). It was subsequently

shown in [21] that O(
√
kp) can in fact be achieved without the imposed con-

dition on k . The former’s method of finding discrete logarithm is sequential
in the sense that they are found one after another. However in the latter’s
method, all the discrete logarithms can only be obtained towards the end.
Finally, it was presented in [58] that any generic algorithm solving k -MDL
must require at least Ω(

√
kp) group operations if k = o(p). This shows that

the algorithms of [36, 21] are asymptotically optimal, up to factors polyno-
mial in log p.

2.1.1 Our Contributions

In the context of our work, suppose an adversary has knowledge or access
to many instances of the discrete logarithm problem either from a generic
underlying algebraic group or from a standard curve recommended by NIST.
Our work investigates how difficult it is for such an adversary to solve sub-
collections of those instances. One of our result outcomes in this work shows
that an adversary gaining access to additional instances of the DLP provides
no advantage in solving some subcollection of them when k is small and for
corresponding small classes of n. Our techniques are also applicable to other
standard non-NIST based curves. For instance, the results in this work are
relevant to Curve25519 [9] which has garnered considerable interest in recent
years. Furthermore, we also establish formal lower bounds for the generic
hardness of solving the GMDL problem for larger k values. As a corollary,
these results provide the lower bounds of solving the GMDL problem for
the full possible range of inputs k . Part of this work can be viewed as a
generalization of the results in [58].

More specifically, we introduce two techniques to solve such generalized
multiple discrete logarithm problems. The first we refer to as the matrix
method which is also shown to achieve asymptotically tight bounds when
the inputs are small. From this, we obtain the result that the GMDL prob-

lem is as hard as the MDL problem for k = o
(

p1/3

log2/3 p

)
and kn2 = o

(
p

log2 p

)
.

This strictly improves the result of [36] where the equivalence is achieved for
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a smaller range of inputs satisfying k = o(p
1
4 ) and k2n2 = o(p). We also

analyse its trade-off efficiency when the sizes of matrices involved are varied.
The second technique is referred as the block method which can be applied
for larger inputs. We also show that the block partitioning in this method
is optimized. Moreover, when n is relatively small with respect to k , the
bounds that are obtained in this way are also asymptotically tight. Further-
more, we demonstrate that the block method can be adapted and applied to
generalized versions of other discrete logarithm settings introduced in [35] to
also obtain generic hardness bounds for such problems. For instance, part
of this work also shows that solving one out of n instances of the Discrete
Logarithm Problem with Auxiliary Inputs is as hard as solving a single given
instance when n is not too large. In addition, we also explain why the matrix
method cannot be extended to solve these problems.

2.1.2 Chapter Organization

This chapter is organized as follows. The hardness bounds of the (1, n)-
GMDL problem and the (k, n)-GMDL problem which were obtained in [36]
will be covered in Chapter 2.2. Chapter 2.3 describes the matrix method used
to solve the GMDL problem. An in depth analysis of the matrix method is
carried out in Chapter 2.4. We present the block method as well as establish
generalized bounds in Chapter 2.5. The bounds obtained for GMDL problem
can be viewed as a generalization of the bounds for the MDL problem. Indeed
for n = k, our bounds correspond to the results of [58]. The contents of
Chapter 2.6 show the partition of n carried out in the methods of Chapter
2.5 achieves the fastest running time among all other possible partitions.
Chapter 2.7 discusses the applicability of our techniques in other discrete
logarithm settings. In Chapter 2.8, we provide explicit bounds for various
values of n relative to k . We conclude in Chapter 2.9.

2.2 Preliminaries

For generic groups of large prime order p, denote Tk, Tk,n to be the expected
workload (in group operations) of an optimal algorithm solving the k -MDL
problem and (k, n)-GMDL problem respectively.

Lemma 2.2.1 and Corollary 2.2.1 for a special case k = 1 are attributed
to [36].
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Lemma 2.2.1. T1 ≤ T1,n + 2n log2 p

Proof. Given an arbitrary h ∈ G = 〈g〉, obtaining x such that gx = h
can be achieved in time T1. For all i , 1 ≤ i ≤ n, select integers ri uni-
formly at random from the set {0, . . . , p − 1} and define hi := grih = gx+ri .
All the hi are random since all the ri and h are random. Apply a generic
algorithm with inputs of (h1, h2, . . . , hn) that solves the (1, n)-GMDL prob-
lem in time T1,n. The resulting algorithm outputs (j, y) such that hj = gy,
1 ≤ j ≤ n. Therefore, x ≡ y − rj mod p, thus solving the 1-MDL problem
within T1,n + 2n log2 p group multiplications. 2

Corollary 2.2.1. For all n = o
( √

p

log p

)
,

T1,n = Ω(
√
p).

Proof. Since T1 = Ω(
√
p) [49], when n = o

( √
p

log p

)
, it follows directly from

Lemma 3.2.1 that T1,n = Ω(
√
p). 2

It was also obtained in [36] that the GMDL problem is as hard as the MDL

problem if kn � √p. Since k ≤ n, this equivalence is valid for k = o(p
1
4 )

and and k2n2 = o(p).

2.3 Generalized Bounds of Tk,n for small k

The first method we introduce is to obtain an improved lower bound of Tk,n
for small k . We refer to this as the Matrix technique.

We seek to obtain an upper bound of Tk based on Tk,n. Given gxi = hi
∀ 1 ≤ i ≤ k, Tk represents the time to solve all such xi. For all 1 ≤ i ≤ n,
denote yi by the following1:

y1
y2
...
yn

 =


1 α1 α2

1 . . . αk−11

1 α2 α2
2 . . . αk−12

...
...

...
. . .

...
1 αn α2

n . . . αk−1n



x1
x2
...
xk


1This representation of yi came about from a suggestion by Phong Q. Nguyen.
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Next, multiply each gyi with a corresponding random element gri where 0 ≤
ri ≤ p−1. By considering these randomized gyi+ri as inputs to a (k, n)-GMDL
solver, this solver outputs solutions to k out of n of such discrete logarithms.
These solutions are of the form yi+ri. As such, a total of k values of yi can be
obtained by simply subtracting from their corresponding ri. We claim that
any k collections of yi is sufficient to recover all of x1, x2, . . . , xk. Indeed, it
suffices to show that any k -by-k submatrices of

V =


1 α1 α2

1 . . . αk−11

1 α2 α2
2 . . . αk−12

...
...

...
. . .

...
1 αn α2

n . . . αk−1n


has non zero determinant. This can be satisfied by simply letting αi = i
since V is a Vandermonde matrix.

In this case, recovering x1, x2, . . . , xk from k number of yi requires solving
a k -by-k system of linear equations. This can be achieved in O(k3) arithmetic
operations using Gaussian elimination. Crucially, this does not involve any
group operations. On the other hand, group operations are incurred from
the computations of all

gyi = gx1+αix2+···+αk−1
i xk . (2.1)

Since αi = i, this process requires the computations of each (gxj)i
j−1 ∀ 1 ≤ i ≤

n, 1 ≤ j ≤ k. Denote ai,j = (gxj)i
j−1

. By noting that ai+1,j = a
( i+1

i
)j−1

i,j , it can

be concluded that computing ai+1,j given ai,j requires at most 2(j−1) log2
i+1
i

group multiplications. Moreover, a1,j = gxj is already known. Hence the total

number of groups multiplications required to compute all (gxj)i
j−1

is at most

k∑
j=1

n−1∑
i=1

2(j − 1) log2

(
i+ 1

i

)
= k(k − 1) log2 n. (2.2)

Furthermore, each addition in the exponent of gx1+αix2+···+αk−1
i xk+ri consti-

tutes a group multiplication. Therefore, kn group multiplications are neces-
sary in this step. Thus, the total number of group multiplications required
to compute all of gyi+ri is at most

kn+ k(k − 1) log2 n.
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Since k ≤ n < p, the above expression can be bounded from above by
2kn log2 p and so it follows that

Tk ≤ Tk,n + 2kn log2 p. (2.3)

Since Tk = Ω(
√
kp) [58], from equation (2.3), Tk,n is asymptotically as large

as Tk if nk log p �
√
kp. Hence, Tk,n = Ω(

√
kp) if k = o

(
p1/3

log2/3 p

)
and

n
√
k = o

( √
p

log p

)
. Moreover, this bound is asymptotically tight since there

exists an algorithm which solves k -MDL in O(
√
kp).

2.4 Trade-off between Arithmetic Operations

and GMDL calls

This section is mainly more of theoretical interests than of practical intents.
The main computational bottleneck for arithmetic operations lies in solving
the large k×k system of linear equations. It is thus natural to consider
breaking the large matrix into multiple finer granularities and solving each
of them separately. Therefore, instead of solving all xi together in a sense, we
recover them separately in smaller subsets, one subset at a time. One might
expect this process allows the Gaussian elimination phase to be reduced
considerably. However, there is a trade-off that more calls to the GMDL
solver are required.

Denote m(k) to be the number of such subsets and f1(k), f2(k), . . . , fm(k)
to be the size of each subset. In this case, the Matrix technique requires m
calls to the GMDL solver. Furthermore, the complexity of the Gaussian
elimination phase is given by Θ(

∑m
i=1 f

3
i ). We obtain a feasible bound by

proving the following claim.

Theorem 2.4.1. Let m be a function m(k) : Z+ → Z+ and f1(k), f2(k), . . . , fm(k)
be positive functions of k such that

∑m
i=1 fi = k. Then,

m∑
i=1

f 3
i ≥

k3

m2
.
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Proof. Since ∑
1≤i<j≤m

(fi − fj)2 ≥ 0, (2.4)

the following ensue:

(m− 1)
m∑
i=1

f 2
i ≥ 2

∑
1≤i<j≤m

fifj (2.5)

m
m∑
i=1

f 2
i ≥ 2

∑
1≤i<j≤m

fifj +
m∑
i=1

f 2
i =⇒

m∑
i=1

f 2
i ≥

k2

m
(2.6)

Moreover, by noting that all fi are positive,∑
1≤i<j≤m

(fi − fj)2(fi + fj) ≥ 0, (2.7)

we obtain ∑
1≤i<j≤m

(f 3
i + f 3

j ) ≥
∑

1≤i<j≤m

(f 2
i fj + fif

2
j ) (2.8)

m
m∑
i=1

f 3
i ≥

∑
1≤i<j≤m

(f 2
i fj + fif

2
j ) +

m∑
i=1

f 3
i (2.9)

m
m∑
i=1

f 3
i ≥ (

m∑
i=1

f 2
i )(

m∑
i=1

fi) = k
m∑
i=1

f 2
i . (2.10)

Combining inequality (2.10) with the previously obtained
∑m

i=1 f
2
i ≥ k2

m
from

inequality (2.6), it follows that

m∑
i=1

f 3
i ≥

k3

m2
. (2.11)

2

Hence from inequality (2.11), the complexity of the Gaussian elimination
phase is given by

∑m
i=1 f

3
i = Ω( k

3

m2 ), where m is the trade-off parameter for
the number of GMDL calls. In particular, if the number of calls is minimized
to some constant, then the Gaussian elimination phase incurs at least cubic
time of arithmetic operations with respect to k .
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2.5 Generalized Bounds of Tk,n for larger k

The matrix technique has been shown to provide asymptotically tight bounds
required to solve k out of n of the multiple discrete logarithm in the classical
setting when the inputs are small. One main limitation of this technique is
that it is only applicable to the classical DLP and cannot be extended for
other variants or other settings of the DLP. This will be shown in further de-
tails in the subsequent sections. Moreover, in light of the fact that the bound
of Tk can be achieved for large inputs extending to o(p), the matrix method
is not sufficient to obtain analogous bounds for larger such k values. In this
section, we address these issues by introducing the block method to evaluate
lower bounds of Tk,n for general k, including large k values. Moreover, the
block technique can also be applied to other variants or other settings in the
MDLP. This will be also described in the later sections.

Proposition 2.5.1. Suppose that n ≥ k2. Then,

Tk ≤ kTk,n + 2nHk log2 p

where Hk denotes the kth harmonic number, Hk =
∑k

i=1
1
i
.

Proof. Given arbitraries h1, h2, . . . , hk ∈ G = 〈g〉, obtaining x1, x2, . . . , xk
such that gxi = hi ∀ 1 ≤ i ≤ k can be achieved in time Tk. Consider
n elements partitioned into k blocks each of size approximately sk, where
sk = n

k
. Each block is labelled i where i ranges from 1 to k . For each i ,

1 ≤ i ≤ k, select about sk integers ri,j uniformly at random from Zp and de-
fine hi,j := gri,jhi = gxi+ri,j . This generates n of hi,j which when applied to a
generic algorithm for the (k, n)-GMDL problem, outputs k pseudo solutions.
Computing each hi,j requires at most 2 log2 p group multiplications. Since
each block is about size n

k
≥ k, these k pseudo solutions might be derived

from the same block. In which case, the algorithm outputs k of ((i′, j), yi′,j)
such that hi′,j = gyi′,j for some i ′. As a result, one can obtain xi′ ≡ yi′,j−ri′,j
mod p but derive no other information of other values of xi. This invokes at
most Tk,n + 2n log2 p group operations. Figure 3.1 illustrates an overview of
the first phase.

The second phase proceeds as follows. Since 1 out of k discrete log-
arithms has been obtained, discard the block for which that determined
discrete logarithm is contained previously. For each of i ∈ {1, . . . , k} \
{i ′}, select about sk

k−1 integers ri,j uniformly at random from Zp and define
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Figure 2.1: Overview of the first phase

hi,j := gri,jhi = gxi+ri,j . Incorporate these new values of hi,j into the re-
maining k − 1 blocks. Hence, each of the remaining k − 1 unsolved discrete
logarithms are contained separately in k−1 blocks each of size approximately
n
k−1 . This generates n of hi,j which when applied to a generic algorithm for
the (k, n)-GMDL problem, outputs k pseudo solutions. Since each block is
about size n

k−1 ≥ k, these k pseudo solutions might once again be derived from
the same block. In which case, the algorithm outputs k of ((i′′, j), yi′′,j) such
that hi′′,j = gyi′′,j for some i ′′. As a result, one can obtain xi′′ ≡ yi′′,j − ri′′,j
mod p but derive no other information for the other remaining values of xi.
This second phase incurs at most Tk,n + 2sk log2 p group operations.

The third phase executes in a similar manner to the second phase as
follows. For each of i ∈ {1, . . . , k} \ {i ′, i ′′}, select about sk−1

k−2 integers ri,j
uniformly at random from Zp and define hi,j := gri,jhi = gxi+ri,j . Incorporate
these new values of hi,j into the remaining k − 2 blocks. Hence, each of
the remaining k − 2 unsolved discrete logarithms are contained separately
in k − 2 blocks each of size approximately n

k−2 . This generates n of hi,j
which when applied to a generic algorithm for the (k, n)-GMDL problem,
outputs k pseudo solutions. Since each block is about size n

k−2 ≥ k, these k
pseudo solutions might be derived from the same block. In which case, the
algorithm outputs k of ((i(3), j), yi(3),j) such that hi(3),j = g

y
i(3),j for some i(3).

As a result, one can obtain xi(3) ≡ yi(3),j − ri(3),j mod p but derive no other
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information for the other remaining values of xi. This second phase incurs
at most Tk,n + 2sk−1 log2 p group operations.

During each phase of the process, a generic algorithm for the (k, n)-GMDL
problem can never guarantee outputs deriving from different blocks since
n ≥ k2 implies n

k−i+1
≥ k, ∀1 ≤ i ≤ k. In general for i ≥ 2, the maximum

number of group operations required in the ith phase is given by

Tk,n + 2sk+2−i log2 p.

The process terminates when all k discrete logarithms have been obtained.
Since each phase outputs exactly 1 out of k discrete logarithms, all k dis-
crete logarithms can be determined after k phases. Therefore, the following
inequality can be obtained.

Tk ≤ Tk,n + 2n log2 p+
k∑
i=2

(Tk,n + 2sk+2−i log2 p) (2.12)

Since sk = n
k
,

k∑
i=2

(Tk,n + 2sk+2−i log2 p) = (k − 1)Tk,n + (2 log2 p)
k∑
i=2

si

= (k − 1)Tk,n + (2 log2 p)
k∑
i=2

n

i
.

Hence, it follows that

Tk ≤ kTk,n + 2n(1 +
k∑
i=2

1

i
) log2 p = kTk,n + 2nHk log2 p. (2.13)

This completes the proof. 2

Remark. When k = 1, Proposition 2.5.1 corresponds to Lemma 2.2.1.

By regarding k = k(p) as a function of p such that limp→+∞ k(p) = +∞,
the asymptotic bounds of Tk,n can be obtained.

Theorem 2.5.1. Suppose k3 log2 k = o
(

p
log2 p

)
, then

Tk,n = Ω

(√
p

k

)
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for all n satisfying n = k2 + Ω(1) and n = o
( √

kp
(log k)(log p)

)
.

Proof. Clearly k3 log2 k = o
(

p
log2 p

)
implies that k = o(p). Hence from

[58], Tk = Ω(
√
kp). It follows from Proposition 2.5.1 that if nHk log2 p� Tk,

then

Tk,n = Ω(
1

k

√
kp) = Ω

(√
p

k

)
. (2.14)

Moreover, since

lim
k→+∞

(Hk − log k) = lim
k→+∞

[(
k∑
i=1

1

i
)− log k] = γ (2.15)

where γ is the Euler-Mascheroni constant, the condition nHk log2 p � Tk

implies that n = o
( √

kp
(log k)(log p)

)
. The lower bound n = k2 + Ω(1) is obtained

by noting that n has to be of size at least k2 from the condition of Propo-
sition 2.5.1. Finally, since the lower bound for n cannot be asymptotically

greater than its upper bound, k(p) has to satisfy k3 log2 k = o
(

p
log2 p

)
. This

completes the proof of Theorem 2.5.1. 2

Remark. Although Theorem 2.5.1 holds for a wide asymptotic range of n
as given, the Tk,n bound becomes sharper as n approaches

√
kp

(log k)(log p)
. In

essence, Theorem 2.5.1 does not yield interesting bounds but is a prelude
to the more essential Theorem 2.5.2 which requires Proposition 2.5.1 and is
hence included.

Proposition 2.5.2. Suppose that k < n < k2. Then,

Tk ≤ (r +
n

k
)Tk,n + 2rk log2 p+ 2nHdn

k
e log2 p

where

r =

⌈
log(k

2

n
)

log( n
n−k )

⌉
.

Proof. The proof comprises two main phases. The former consists of the
initializing phase followed by subsequent subphases. It utilizes the extended
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pigeon hole principle to obtain more than one solution during each of the
initial subphases. The latter phase takes place after some point where the
number of remaining unknown discrete logarithms is small enough such that
each subphase can only recover one discrete logarithm. After this point, the
method of determining all other discrete logarithms essentially mirrors that
of the method described in the proof of Proposition 2.5.1. The formal proof
and details are given as follows.

The initializing phase proceeds as follows. Given arbitraries h1, h2, . . . , hk ∈
G = 〈g〉, obtaining x1, x2, . . . , xk such that gxi = hi ∀ 1 ≤ i ≤ k can be
achieved in time Tk. Consider n elements partitioned into k blocks each of
size approximately sk, where sk = n

k
. Each block is labelled i where i ranges

from 1 to k . For each i , 1 ≤ i ≤ k, select about sk integers ri,j uniformly at
random from Zp and define hi,j := gri,jhi = gxi+ri,j . This generates n of hi,j
which when applied to a generic algorithm for the (k, n)-GMDL problem,
outputs k pseudo solutions. Computing each hi,j requires at most 2 log2 p
group multiplications. Since each block is about size n

k
< k, by the extended

pigeon hole principle, at least k2

n
out of these k solutions must be derived

from distinct blocks. In other words, at least k2

n
correspond to distinct i val-

ues and as a result, k2

n
discrete logarithms out of k discrete logarithms can be

obtained during this initializing phase. This invokes at most Tk,n + 2n log2 p
group operations.

The first subphase proceeds as follows. Since k2

n
out of k discrete loga-

rithms have been obtained, discard all the blocks for which those determined
discrete logarithms are contained previously. Thus, about k − k2

n
= k(n−k)

n

blocks remain, each of size approximately n
k
. For each of the remaining

blocks i , select about k integers ri,j uniformly distributed across each i and
uniformly at random from Zp. Define hi,j := gri,jhi = gxi+ri,j . Incorporate

these new values of hi,j into the remaining k(n−k)
n

blocks. Hence, each of

the remaining k(n−k)
n

unsolved discrete logarithms are contained separately

in k(n−k)
n

blocks each of size approximately n2

k(n−k) . This generates n of hi,j
which when applied to a generic algorithm for the (k, n)-GMDL problem,
outputs k pseudo solutions. This incurs a maximum of Tk,n + 2k log2 p group
operations.

If k ≤ n2

k(n−k) , these k pseudo solutions might be derived from the same
block and hence phase two begins in which the method described in Propo-
sition 1 can then be applied on this new set of blocks.

If k > n2

k(n−k) , the extended pigeon hole principle ensures that at least
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k2(n−k)
n2 of the k pseudo solutions correspond to distinct i values and a result,

about k2(n−k)
n2 discrete logarithms can be obtained in the first subphase.

Subsequent subphases are similar to the first subphase. In general for

the rth subphase, since about k2(n−k)r−1

nr solutions will have been obtained
in the (r − 1)th subphase, discard all the blocks for which those determined
discrete logarithms are contained previously. By a simple induction, it can
be shown that the number of remaining blocks in the rth subphase is about
k(n−k)r

nr . The induction proceeds as follows. The base case has already been
verified in the first subphase. Suppose the result holds for r = m − 1 for
some m ≥ 2. By the inductive hypothesis, the number of blocks remaining

in the (m−1)th subphase is about k(n−k)m−1

nm−1 . During the m th subphase, since

about k2(n−k)m−1

nm solutions have already been obtained previously and are
thus discarded, the number of remaining blocks is given by

k(n− k)m−1

nm−1
− k2(n− k)m−1

nm
=
k(n− k)m

nm
. (2.16)

This completes the induction. For each of the remaining blocks i , select about
k integers ri,j uniformly distributed across each i and uniformly at random
from Zp. Define hi,j := gri,jhi = gxi+ri,j . Incorporate these new values of

hi,j into the remaining k(n−k)r
nr blocks. Hence, each of the remaining k(n−k)r

nr

unsolved discrete logarithms are contained separately in k(n−k)r
nr blocks each of

size approximately nr+1

k(n−k)r . This generates n of hi,j which when applied to a

generic algorithm for the (k, n)-GMDL problem, outputs k pseudo solutions.
Each of the rth subphase requires at most Tk,n + 2k log2 p group operations.

When k ≤ nr+1

k(n−k)r , the k outputs can only guarantee one solution. Hence,
as soon as r satisfies the above inequality, the first main phase terminates at
the end of the rth subphase and the second main phase commences. That is

k ≤ nr+1

k(n− k)r
=⇒ r =

⌈
log(k

2

n
)

log( n
n−k )

⌉
. (2.17)

At the beginning of second main phase, there are a total of about k(n−k)r
nr −

1 unresolved discrete logarithms. The rest of the procedure follows starting
from the second phase of Proposition 2.5.1 until the end. Hence, it can
immediately be derived from the proof of Proposition 2.5.1 that the number
of group operations required to solve them all is at most 2[(k(n−k)

r

nr − 1)Tk,n
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+ nHd k(n−k)r

nr e − n] log2 p. Since

k ≤ nr+1

k(n− k)r
=⇒ k(n− k)r

nr
≤ n

k
,

the maximum number of group operations required in the second main phase
is given by

(
n

k
− 1)Tk,n + 2(nHdn

k
e − n) log2 p.

The number of group operations required during the first main phase is the
sum of the number required for the initializing phase and the number required
for all the subphases. Therefore, the maximum number of group operations
required in the first main phase is given by

Tk,n + 2n log2 p+ r(Tk,n + 2k log2 p) = (r + 1)Tk,n + 2n log2 p+ 2rk log2 p.

Thus the maximum number of group operations required to execute both the
first main phase and the second main phase is given by

(r + 1)Tk,n + 2(n+ rk) log2 p+ (
n

k
− 1)Tk,n + 2(nHdn

k
e − n) log2 p.

Hence,

Tk ≤ (r +
n

k
)Tk,n + 2rk log2 p+ 2nHdn

k
e log2 p. (2.18)

2

Remark. One other approach is to replace the (k, n)-GMDL solver with
the (1, n)-GMDL solver during the second main phase. Both yield identi-
cal asymptotic results given in Chapter 2.8 as the computational bottleneck
arises from the first main phase.

By regarding k = k(p) as a function of p such that limp→+∞ k(p) = +∞,
the asymptotic bounds of Tk,n can be obtained.

Theorem 2.5.2. Suppose k, n satisfy the following conditions:

1. k = o(p)
2. n = k2 − Ω(1)

3. n√
k

log(n
k
) = o

( √
p

log p

)
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4.
log( k

2

n
)

log( n
n−k

)

√
k = o

( √
p

log p

)
Then,

Tk,n = Ω

( √
k

n
k

+ r

√
p

)
where r = r(k, n) ≥ 1 is any function of k and n satisfying r(k, n) =

Ω

(
log( k

2

n
)

log( n
n−k

)

)
.

Proof. Condition 1 is necessary to utilize results in [58] for a lower bound
of Tk. Condition 2 is required in order to apply the result of Proposition
2.5.2. Conditions 3 and 4 can be obtained by requiring nHdn

k
e log p � Tk

and rk log p � Tk respectively and noting that Tk = Ω(
√
kp). Hence from

Proposition 2.5.2 and under these conditions, Tk,n = Ω
( √

k
n
k
+r

√
p
)

. 2

It should be mentioned that r(k, n) can be taken to be any function sat-

isfying r(k, n) = Ω

(
log( k

2

n
)

log( n
n−k

)

)
. However, it is clear that Tk,n achieves sharper

bounds for asymptotically smaller choices of r . One other point of note is
that when n = k where k = o(p), all the 4 conditions are satisfied and r(k, n)
can be taken to be 1. In this case,

Tk = Tk,k = Ω(
√
kp) (2.19)

which indeed corresponds to the bound obtained in [58].

2.6 Optimizing the Partition of n

From the methods described in the proofs of Propositions 2.5.1 and 2.5.2, n is
partitioned into blocks of approximately equal size at each phase. There are
many ways to perform such partitions of n. The running time of each phase is
partially determined by the number of uniformly randomly chosen ri,j, which
invariably depends on the partition of n. In this section, we show that the
method of partition described in the proofs of the earlier Propositions min-
imizes the expected number of chosen ri,j required and hence results in the
fastest running time among all other possible partitions. We first consider
the case where a (k, n)-GMDL solver output solutions derived from the same
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block so only one discrete logarithm can be determined at each phase. We
follow this up by considering general scenarios where a (k, n)-GMDL solver
outputs solutions derived from multiple blocks.

Chebyshev’s Sum Inequality
We first provide a statement and proof of Chebyshev’s sum inequality which
is utilized to establish results in the subsequent parts of this section.

Chebyshev’s inequality. If x1 ≤ x2 ≤ · · · ≤ xn and y1 ≤ y2 ≤ · · · ≤ yn,
the following inequality holds.

n

(
n∑
i=1

xiyi

)
≥

(
n∑
i=1

xi

)(
n∑
i=1

yi

)

Proof. From the rearrangement inequality, the following system of inequali-
ties can be obtained.

n∑
i=1

xiyi ≥ x1y1 + x2y2 + . . . xnyn (2.20)

n∑
i=1

xiyi ≥ x1y2 + x2y3 + . . . xny1 (2.21)

. . .
n∑
i=1

xiyi ≥ x1yn + x2y1 + . . . xnyn−1 (2.22)

The result follows by summing all the above inequalities. 2

Pseudo Solutions Deriving from the Same Block
Denote si to be the size of block i , k ≤ si, 1 ≤ i ≤ k. so that

∑k
i=1 si = n.

Let pi,k be the conditional probability that the k output solutions derive from
block i given that the k output solutions derive from the same block. Then,
pi,k can be expressed by the following.

pi,k =

(
si
k

)∑k
j=1

(
sj
k

) (2.23)
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Suppose a solution is derived from block i . Upon discarding block i , si of
ri,j have to be randomly chosen to fill the remaining blocks so that they

sum back up to n. Let E
(1)
k be the expected number of randomly chosen ri,j

required. Then, E
(1)
k can be expressed by the following.

E
(1)
k =

k∑
i=1

pi,ksi =

∑k
i=1

(
si
k

)
si∑k

i=1

(
si
k

) (2.24)

Our objective is therefore to minimize E
(1)
k given

∑k
i=1 si = n. We expand

the admissible values of si to the set of positive real numbers so that si ∈ R+.
In this way,

(
si
k

)
is defined as

(
si
k

)
= si(si−1)...(si−k+1)

k!
. We prove the following

result.

Theorem 2.6.1 Given that
∑k

i=1 si = n,∑k
i=1

(
si
k

)
si∑k

i=1

(
si
k

) ≥ n

k
.

Proof. Without loss of generality, assume that s1 ≤ s2 ≤ · · · ≤ sk. Thus,(
s1
k

)
≤
(
s2
k

)
≤ · · · ≤

(
si
k

)
. By Chebyshev’s sum inequality,

k
k∑
i=1

(
si
k

)
si ≥

(
k∑
i=1

si

)(
k∑
i=1

(
si
k

))
. (2.25)

The result follows by replacing
∑k

i=1 si with n in the above inequality (2.25).
2

Hence, E
(1)
k ≥ n

k
and it is straightforward to verify that equality holds if

s1 = s2 = · · · = sk. Therefore, the method of partitioning n into blocks of
equal sizes at each phase as described in the proof of the Proposition 2.5.1
indeed minimizes the running time.

Pseudo Solutions Deriving from Multiple Blocks
Denote si to be the size of block i , 1 ≤ i ≤ k. so that

∑k
i=1 si = n. Let

pi1,i2,...,im,k be the conditional probability that the k output solutions derive
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from blocks i1, i2, . . . , im given that the k output solutions derive from m
distinct blocks. Then, pi1,i2,...,im,k satisfies the following.

pi1,i2,...,im,k
∑

{i1...im}⊆{1,...,k}

∑
k1+···+km=k

(
si1
k1

)
. . .

(
sim
km

)
=

∑
k1+···+km=k

(
si1
k1

)
. . .

(
sim
km

)
A more concise representation can be expressed as follows.

pi1,i2,...,im,k
∑

{i1...im}⊆{1,...,k}

∑
k1+···+km=k

m∏
t=1

(
sit
kt

)
=

∑
k1+···+km=k

m∏
t=1

(
sit
kt

)
(2.26)

We can further simplify the above expression by the following lemma.

Lemma 2.6.1 ∑
k1+···+km=k

m∏
t=1

(
sit
kt

)
=

(
si1 + · · ·+ sim

k

)

Proof. For brevity, denote s = si1 + · · ·+ sim .
Consider the polynomial (1 + x)s. By the binomial theorem,

(1 + x)s =
s∑
r=0

(
si1 + · · ·+ sim

r

)
xr. (2.27)

On the other hand,

(1 + x)s = (1 + x)si1 . . . (1 + x)sim =
m∏
t=1

sit∑
rt=0

(
sit
rt

)
xrt . (2.28)

In this instance, the coefficient of xr is the sum of all products of binomial
coefficients of the form

(
sit
rt

)
where the rt sum to r . Therefore,

m∏
t=1

sit∑
rt=0

(
sit
rt

)
xrt =

s∑
r=0

∑
r1+...rm=r

m∏
t=1

(
sit
rt

)
xr. (2.29)

Hence,
s∑
r=0

(
si1 + · · ·+ sim

r

)
xr =

s∑
r=0

∑
r1+...rm=r

m∏
t=1

(
sit
rt

)
xr. (2.30)
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The result follows by equating the coefficients of xr on both sides of the above
equation (2.30). 2

Corollary 2.6.1

pi1,i2,...,im,k
∑

{i1...im}⊆{1,...,k}

(
si1 + · · ·+ sim

k

)
=

(
si1 + · · ·+ sim

k

)

Proof. Follows directly from Equation (2.26) and Lemma 2.6.1 2

Suppose m solutions are derived from blocks i1, . . . , im. Upon discarding
blocks i1, . . . , im, si1 + · · ·+ sim of ri,j have to be randomly chosen to fill the

remaining blocks so that they sum back up to n. Denote E
(m)
k to be the

expected number of randomly chosen ri,j required. Then, a generalized form

of E
(m)
k can be expressed as follows.

E
(m)
k =

∑
{i1...im}⊆{1,...,k}

pi1,i2,...,im,k(si1 + · · ·+ sim) (2.31)

From the result of Corollary 2.6.1, this implies that E
(m)
k satisfies

E
(m)
k

∑
{i1...im}⊆{1,...,k}

(
si1 + · · ·+ sim

k

)
=

∑
{i1...im}⊆{1,...,k}

(
si1 + · · ·+ sim

k

)
(si1+· · ·+sim).

Once again, we seek to maximize E
(m)
k given

∑k
i=1 si = n. As before, we

expand the admissible values of si to the set of positive real numbers so that
si ∈ R+. In this way,

(
si
k

)
is defined as

(
si
k

)
= si(si−1)...(si−k+1)

k!
. We prove the

following result.

Theorem 2.6.2 Given that
∑k

i=1 si = n,∑
{i1...im}⊆{1,...,k}

(
si1 + · · ·+ sim

k

)
(si1+· · ·+sim) ≥ mn

k

∑
{i1...im}⊆{1,...,k}

(
si1 + · · ·+ sim

k

)
.

Proof. By Chebyshev’s sum inequality,(
k

m

) ∑
{i1...im}⊆{1,...,k}

(
si1 + · · ·+ sim

k

)
(si1 + · · ·+ sim)
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≥

 ∑
{i1...im}⊆{1,...,k}

(
si1 + · · ·+ sim

k

) ∑
{i1...im}⊆{1,...,k}

(si1 + · · ·+ sim)

 .

Since
∑k

i=1 si = n,

∑
{i1...im}⊆{1,...,k}

(si1 + · · ·+ sim) =

(
k − 1

m− 1

)
n. (2.32)

Hence, we obtain(
k

m

) ∑
{i1...im}⊆{1,...,k}

(
si1 + · · ·+ sim

k

)
(si1 + · · ·+ sim)

≥
(
k − 1

m− 1

)
n

∑
{i1...im}⊆{1,...,k}

(
si1 + · · ·+ sim

k

)
.

By elementary algebraic operations, it is straightforward to verify that(
k−1
m−1

)(
k
m

) =
m

k
(2.33)

from which the result follows. 2

Hence, E
(m)
k ≥ mn

k
and it is straightforward to verify that equality holds

if s1 = s2 = · · · = sk. Therefore, the method of partitioning n into blocks of
equal sizes at each phase as described in the proof of the Proposition 2.5.2
indeed minimizes the running time.

2.7 Applications in Other MDLP Settings

We demonstrate how the block method can be adapted to obtain bounds in
other generalized multiple discrete logarithm settings. We consider applica-
tions to the (e1, . . . , ed)-Multiple Discrete Logarithm Problem with Auxiliary
Inputs (MDLPwAI) as well as the Fp-Multiple Discrete Logarithm Problem
in the Exponent (Fp-MDLPX). Let G = 〈g〉 be a cyclic group of large prime
order p. Their formal definitions are as follow.
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Definition 2.7.1 (MDLPwAI). Given G, g, p, ei and gxi
e1 , gxi

e2 , . . . gxi
ed

∀ 1 ≤ i ≤ k, find non-negative integers x1, x2, . . . , xk ∈ Zp.

Definition 2.7.2 (Fp-MDLPX). Let χ ∈ Fp be an element of multiplica-
tive order N . Given G, g, p, χ and gχ

xi ∀i ∈ Z+ such that 1 ≤ i ≤ k, find
non-negative integers x1, x2, . . . , xk ∈ ZN .

The computational complexity of MDLPwAI was analysed in [35]. In the
same paper, the authors introduced the Fp-MDLPX and also analysed its
complexity.

Here, we define the Generalized Multiple Discrete Logarithm Problem
(GMDLPwAI) with Auxiliary Inputs and the Generalized Fp-Multiple Dis-
crete Logarithm Problem in the Exponent (Fp-GMDLPX) to be solving k out
of n instances of the MDLPwAI and Fp-MDLPX respectively. We provide
the formal definitions below.

Definition 2.7.3 (GMDLPwAI). Given G, g, p, ei and gxi
e1 , gxi

e2 , . . . gxi
ed

∀i ∈ Z+ such that 1 ≤ i ≤ n, find k pairs (i, xi), xi ∈ Zp, where i ∈ S such
that S is a k-subset of {1, . . . , n}.

Definition 2.7.4 (Fp-GMDLPX). Let χ ∈ Fp be an element of multiplica-
tive order N . Given G, g, p, χ and gχ

xi ∀i ∈ Z+ such that 1 ≤ i ≤ n, find
k pairs (i, xi), xi ∈ ZN , where i ∈ S such that S is a k-subset of {1, . . . , n}.

2.7.1 Block Based GMDLPwAI

The block method can be adapted to obtain bounds for the GMDLPwAI
by randomizing the input elements in the following way. Given gxi

e1 , select
random integers ri,j ∈ Z∗p and compute values of

(gxi
e1 )ri,j

e1 = g(ri,jxi)
e1

(2.34)

as inputs into the GMDLPwAI solver. For each ri,j, reduce re1i,j modulo p

and then g(ri,jxi)
e1

can be computed within 2 log2 p group operations. Repeat
this procedure for all e2, . . . , ed. We show how the xi can be recovered. For
instance, suppose the solver outputs solution (l, y) corresponding to some
particular input g(ri,jxi)

e1
. In which case, xi can thus be obtained by solving

ri,jxi ≡ y mod p. Such congruence equations are efficiently solvable since
gcd(ri,j, p) = 1.
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Let T ′k and T ′k,n denote the time taken in group operations for an optimal
algorithm to solve the MDLPwAI and GMDLPwAI problems respectively.

Suppose k < n < k2. Then by adapting the block technique applied to
the GMDL problem before, it can be shown that

T ′k ≤ (r +
n

k
)T ′k,n + 2d(rk + nHdn

k
e) log2 p (2.35)

where

r =

⌈
log(k

2

n
)

log( n
n−k )

⌉
.

It has been conjectured in [35] that T ′k = Ω(
√
kp/d) for values of ei =

i. Assuming this conjecture, we can conclude from our results that for all
polynomially bounded inputs with d = O(p1/3−ε), ε > 0, T ′k,n is bounded by

T ′k,n = Ω

( √
k

n
k

+ r

√
p

d

)
(2.36)

where r = r(k, n) ≥ 1 is any function of k and n satisfying r(k, n) =

Ω

(
log( k

2

n
)

log( n
n−k

)

)
.

When k = 1, the above bound given in (2.36) is not applicable since n ≥
k2 in this situation. Nevertheless, we show how an unconditional bound for
T ′1,n can still be obtained in this specific case without the assumption of any
conjecture. Similar to the generalized case, randomize input elements of the
form g(ri,jxi)

e1
. One of the xi can then be computed by solving ri,jxi ≡ y mod

p where y is a given known output. The process terminates here since one of
the xi has already been obtained. Hence, we have the following inequality:

T ′1 ≤ T ′1,n + 2nd log2 p. (2.37)

From the results of [13], T ′1 = Ω(
√
p/d). It follows that for n = o

( √
p

d3/2 log p

)
,

T ′1,n = Ω(
√
p/d). (2.38)

2.7.2 Matrix Based GMDLPwAI

In this section, our objective is to find values of ei for which the matrix
method can applied to solve the GMDLPwAI. We recall from Chapter 2.3
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that the validity of the method for the GMDL problem necessitates gx1+x2+···+xk

to be efficiently computable from given values of gx1 , gx2 , . . . , gxk . Moreover,
the GMDLPwAI can be viewed as a generalization of the GMDL problem (i.e.
the GMDLPwAI reduces to the GMDL problem when d = 1 and e1 = 1).
In a similar vein, it is required that gfi(x1+x2+···+xk) to be efficiently com-
putable, from the given known values of the GMDLPwAI. In the instance
of GMDLPwAI, fi(x) = xei . In that regard, suppose gfi0(x1+x2+···+xk) =
ga1fi1(x1)ga2fi2(x2) . . . gakfik(xk) ∀ xi and for some integer constants ai so that
it can be efficiently computed. We prove the following result.

Theorem 2.7.1 Let fi(x) = xei, where ei ∈ Z are not necessarily distinct.
If for some integer constants ai such that

f0(x1 + x2 + · · ·+ xk) ≡ a1f1(x1) + a2f2(x2) + . . . akfk(xk) mod p

for all odd primes p and for all x1, x2, . . . , xk ∈ Zp, then the only solutions
are of the form fi = xci(p−1)+1 for some integer constants ci.

Proof. For each 1 ≤ i ≤ k, substitute xi = 1 and xi′ = 0 for i 6= i′.
We obtain f0(1) = aifi(1) ∀ i. Hence, ai = 1 ∀ i. Upon establishing that all
ai values have to be 1, we proceed as follows.

Let x2 = x3 = · · · = xk = 0. This implies that f0(x1) ≡ f1(x1) mod p for
all x1.

Similarly, let x1 = x3 = · · · = xk = 0. This implies that f0(x2) ≡ f2(x2)
mod p for all x2.

Continuing in this fashion, it can be deduced that f0(x) ≡ f1(x) ≡
. . . fk(x) mod p ∀ x . Next, let x3 = x4 = · · · = xk = 0. This implies
f0(x1 + x2) ≡ f0(x1) + f0(x2) mod p. We claim that f0(x) ≡ xf0(1) mod p ∀
x . It clear that the result holds true for x = 0, 1. By applying an inductive
argument,

f0(x+ 1) ≡ f0(x) + f0(1) ≡ xf0(1) + f0(1) ≡ (x+ 1)f0(1) mod p

and the claim follows. Hence, p divides xe0 − x for all x ∈ Zp. Since
(Z/pZ)× ∼= Cp−1, there exists a generator of the cyclic group x0 ∈ Zp such
that if p divides xe00 − x0, then e0 ≡ 1 mod p − 1. Moreover, since we have
earlier established that f0(x) ≡ f1(x) ≡ . . . fk(x) mod p, it can be concluded
that ei ≡ 1 mod p−1 for all i . Hence, fi = xci(p−1)+1 and it is straightforward
to verify that these are indeed solutions to the original congruence equation.
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2

From the result of Theorem 2.7.1, if ei is of the form ei = ci(p − 1) + 1,
then gfi(x1+x2+···+xk) be can efficiently computed. However,

gx
ci(p−1)+1

= gx

so such ei values reduces to the classical multiple discrete logarithm problem.
Therefore, the matrix method is not applicable to solve the GMDLPwAI.

2.7.3 Block Based Fp-GMDLPX

The block method can be also adapted to obtain bounds for the Fp-GMDLPX
by randomizing the input elements with the computations

(gχ
xi )χ

ri,j
= gχ

xi+ri,j

where ri,j ∈ Zp are selected randomly. For each ri,j, reduce χri,j modulo p

and then gχ
xi+ri,j

can be computed within 2 log2 p group operations.
Suppose the solver outputs solution (l, y) corresponding to some par-

ticular input gχ
xi+ri,j

. In which case, xi can thus be obtained by solving
ri,j +xi ≡ y mod p. The analysis and obtained bounds in this case is similar
to the classical GMDL problem which has already been discussed so we will
omit the details here.

Let T ′′k and T ′′k,n denote the time taken in group operations for an optimal
algorithm to solve the Fp-MDLPX and Fp-GMDLPX problems respectively.

It has been shown in [35] that T ′′k can be achieved in O(
√
kN). If this is

optimal, then our results show that

T ′′k,n = Ω

( √
k

n
k

+ r

√
N

)
where r = r(k, n) ≥ 1 is any function of k and n satisfying r(k, n) =

Ω

(
log( k

2

n
)

log( n
n−k

)

)
, subject to the conditions given in Theorem 2.5.2.

2.7.4 Matrix Based Fp-GMDLPX

We recall that the computational Diffie-Hellman assumption (CDH assump-
tion) states that a certain computational problem within a large cyclic group
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is hard. More specifically, it states the following.

CDH assumption. Suppose G is a large cyclic group of order p. Let g
be a generator element of the underlying group G and x, y ∈ {0,1,. . . ,p− 1}
be randomly selected. Given g, gx and gy, it is computationally intractable
to compute gxy.

In this case, the matrix method does not apply here since there is no known
efficient method to compute gχ

xi+xj
given gχ

xi and gχ
xj

if the Diffie-Hellman
assumption holds.

2.8 Some Explicit Bounds of Tk,n

The conditions imposed in Theorem 2.5.2 might initially seem restrictive but
in fact they are satisfied by large classes of k and n. In this section, we
present some interesting explicit bounds of Tk,n by varying n relative to k .
For the remainder of this section, k can be taken to be any function satisfying
k = O(p1−ε), for some 0 < ε < 1.

Suppose n = k + c for some constant c, c > 0. It is straightforward to
verify that all the conditions of Theorem 2.5.2 are satisfied. We show that
r(k , n) be can be taken to be a constant.

Lemma 2.8.1 Let r(k, n) = 2, where n = k + c, c > 0. Then

r(k, n) = Ω

(
log(k

2

n
)

log( n
n−k )

)
.

Proof. The proof is straightforward. For all k > c2,

2 >
log k

log k − log c
=

log k

log k
c

. (2.39)

Since log k ≥ log( k2

k+c
) and log(k

c
) ≤ log(k+c

c
), we have

log k

log k
c

≥
log( k2

k+c
)

log(k+c
c

)
. (2.40)
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Thus for all k > c2,

r(k, n) = 2 >
log( k2

k+c
)

log(k+c
c

)

and the result follows. 2

Corollary 2.8.1
Tk,k+c = Ω(

√
kp)

where c is a positive constant.

Proof. It follows directly from Lemma 2.8.1 and Theorem 2.5.2 that

Tk,k+c = Ω

( √
k

k+c
k

+ 2

√
p

)
= Ω(

√
kp).

2

Next, we consider n = ck for some constant c, c > 1. Once again, it is
straightforward to verify that all the conditions of Theorem 2.5.2 are satis-
fied. We show that r(k, n) can be taken to be log k.

Lemma 2.8.2 Let r(k, n) = log k, where n = ck, c > 1. Then

r(k, n) = Ω

(
log(k

2

n
)

log( n
n−k )

)
.

Proof. Clearly when n = ck,

log(k
2

n
)

log( n
n−k )

= (log
c

c− 1
)−1(log k − log c) (2.41)

and the result follows. 2

Corollary 2.8.2

Tk,ck = Ω(

√
k

log k

√
p)
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where c is a constant, c > 1.

Proof. By a direct application of Lemma 2.8.2 and Theorem 2.5.2,

Tk,ck = Ω(

√
k

c+ log k

√
p) = Ω(

√
k

log k

√
p).

2

Let n = k logc k for some constant c, c > 0. It is again straightforward
to verify that all the conditions of Theorem 2.5.2 are satisfied. We show
that r(k, n) can be taken to be log1+c k. The proof here is only slightly more
involved than the previous two. We first recall the Taylor series.

Taylor series. The Taylor series of a real function f(x) that is infinitely
differentiable at a real number a is the power series

∞∑
n=0

f (n)(a)

n!
(x− a)n.

When a = 0, the series is also known as a Maclaurin series.

Lemma 2.8.3 Let r(k, n) = log1+c k, where n = k logc k, c > 0. Then

r(k, n) = Ω

(
log(k

2

n
)

log( n
n−k )

)
.

Proof.

log
n

n− k
= log

logc k

logc k − 1
.

Next, consider the function log logc k
logc k−1 , for k > e where e is the base of the

natural logarithm. For brevity, denote x = logc k so x > 1. By the Maclaurin
series expansion, for x > 1,

log
x

x− 1
= − log(1− 1

x
) =

∞∑
i=1

1

ixi
>

1

x
. (2.42)
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In particular, this proves that when k > e,

log
logc k

logc k − 1
>

1

logc k
. (2.43)

Hence for k > e,

log(k
2

n
)

log( n
n−k )

< (logc k) log(
k2

n
) = (logc k) log(

k

logc k
) < log1+c k. (2.44)

Thus r(k, n) can be taken to be log1+c k when n = k logc k. 2

Corollary 2.8.3

Tk,k logc k = Ω(

√
k

log1+c k

√
p)

where c is a positive constant.

Proof. From Lemma 2.8.3, we can take r(k, n) = log1+c k and so

n

k
+ r = logc k + log1+c k.

From Theorem 2.5.2, we obtain

Tk,k logc k = Ω(

√
k

logc k + log1+c k

√
p) = Ω(

√
k

log1+c k

√
p).

2

Table 2.1 provides a summary of the results for the lower bounds of Tk,n
with different n relative to k .

2.9 Conclusion

In this chapter, we established rigorous bounds for the generic hardness of
the generalized multiple discrete logarithm problem which can be regarded
a generalization of the multiple discrete logarithm problem. Some explicit
bounds are also computed using both the matrix method and block method.
Many instances of Tk,n are shown to be in fact asymptotically optimal. The
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Table 2.1: Some bounds of Tk,n

k n r Tk,n

o
(

p1/3

log2/3 p

)
{n : n

√
k = o

( √
p

log p

)
} N.A. Ω(

√
kp)

Ω
(

p1/3

log2/3 p

)
k + c, c ≥ 0 constant Ω(

√
kp)

Ω
(

p1/3

log2/3 p

)
ck, c > 1 log k Ω(

√
k

log k

√
p)

Ω
(

p1/3

log2/3 p

)
k logc k, c > 0 log1+c k Ω(

√
k

log1+c k

√
p)

overall best bounds obtained here require the union of results from both of
these techniques. Furthermore, we show that the block method can also be
adapted to handle generalizations arising in other discrete logarithm prob-
lems. We similarly obtain bounds for these generalizations. For instance, a
consequence of our result highlights that solving an instance of the MDLP-
wAI problem is as hard as solving the DLPwAI problem under certain con-
ditions. We also demonstrated why the matrix method is not applicable to
these and other variants of DLP.
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Chapter 3

Splitting Systems for Solving
the DLP with Low Hamming
Weight Product Exponents

3.1 Introduction

The hardness of the discrete logarithm problem (DLP) is central in many
cryptographic schemes; for instance those arising in identification schemes
[2, 23, 48]. The security of the discrete logarithm problem has been under-
stood to a large extent over generic groups of prime order p. In particular,
Shoup showed that any generic algorithm for solving the DLP must perform
Ω(
√
p) group operations [49]. There are a few methods for computing dis-

crete logarithm in approximately
√
p operations. For example, Shanks Baby-

Step-Giant-Step method computes the DLP in Õ(
√
p) operations. One other

method is the Pollard’s Rho Algorithm which can be achieved in O(
√
p) op-

erations [42]. Since then, further practical improvements to the Pollard’s
Rho Algorithm have been proposed in [10, 15, 51] but the computational
complexity remains the same.

One aspect of practical cryptosystems lies in the implementation effi-
ciency in which exponentiations can be carried out. Agnew et al. proposed the
usage of low Hamming weight integers as secret exponents in order to achieve
faster implementations [3]. This speeds up computations since the number
of multiplications for exponentiations depends on the Hamming weight of
the exponent. The security of the low Hamming weight discrete logarithm
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problem has also been analyzed. For example, Heiman and Odlyzko first
provided a method of attack [26]. Further improvements were subsequently
demonstrated in [37, 50] by applying the Coppersmith’s splitting system.

The GPS identification scheme is an interactive protocol between a prover
and a verifier. It was introduced by Girault in [23] and later shown to be
secure in [43]. This protocol is applicable for usage in low cost chips as the
computational cost required by the prover is relatively low. Nevertheless,
every operation incurred is still significant for low cost chips, like RFID tags.
As such, Girault and Lefranc proposed in [24] for the private key exponent to
be the product of two integers with low Hamming weight, thereby reducing
the online computational cost. More specifically the private key was chosen
such that it is a product of a 142-bit number with 16 random bits equal
to 1 chosen among the 138 least significant ones and a 19-bit number with
5 random bits equal to 1 chosen among the 16 least significant ones (from
which we henceforth refer to as GL parameters). In the same paper, it was
computed that these parameters are not susceptible to a routine attack by
exhaustive search.

Subsequent work by Coron, Lefranc and Poupard [18] demonstrated a
method of attack via Coppersmith’s splitting system of the GL parameters
with lower complexity than routine exhaustive search. As a result, they
instead proposed a different set of parameters; namely that the private key
be a product of a 30-bit number with 12 nonzero bits and a 130-bit number
with 26 nonzero bits (from which we henceforth refer to as CLP parameters).
Moreover, they show that their line of attack is not effective against the CLP
parameters.

Parameterized splitting system was first introduced by Kim and Cheon
in [33]. Parameterized splitting system can be regarded as a generalization
of Coppersmith’s splitting system. Using this tool, they demonstrated an
improved attack (with regards to speed) on the CLP parameters. They later
further improve this attack over the previous work by applying a refinement
[34]. Thus far, this is the current fastest known attack of the GPS identifi-
cation scheme with CLP parameters.

3.1.1 Our Contributions

This work highlights general methods of solving various DLP with low Ham-
ming weight product (LHWP) exponents by providing improved results for
certain settings of the parameterized splitting system. We introduce the con-
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cept of parameters dependent splitting system which served as tools to solve
such problems more efficiently. Moreover, we show that the GPS identifica-
tion scheme utilizing CLP parameters satisfy such settings. There are two
significant results that arise from this work. The first provides an improved
attack on the GPS scheme with lower time over the most recent state of the
art without any increment in memory. The second result shows for the first
time that the GPS scheme can be attacked in time complexity of under 264

with a slight increase in memory requirement over the former. Furthermore,
we also prove that the settings required to apply our improved parameterized
system are not restrictive but in fact that the set of admissible applicable
values increases when the splitting sizes are further apart. More details of
this property will be described in a later section. Overall, this work also
serves to provide a general framework on the type of parameters suitable for
consideration in future design of cryptosystems based on DLP with LHWP
exponents.

3.1.2 Chapter Organization

This chapter is organized as follows. Preliminaries involving related tools
required to solve the DLP with LHWP exponents will be covered in Chap-
ter 3.2. Chapter 3.3 describes the GPS scheme and its current known at-
tacks. We present the results of two parameters dependent splitting sys-
tems in Chapter 3.4. Chapter 3.5 describes methods to solve the DLP with
LHWP exponents and implications of our results. The contents of Chapter
3.6 demonstrate improved attacks to the GPS scheme. Chapter 3.7 discusses
the classes of parameters which are relevant to our analysis. A summary of
results is covered in Chapter3.8. We conclude in Chapter 3.9.

3.2 Preliminaries

Let G be a group, g ∈ G be a generator of the group and z be an integer.
Denote wt(z) and ord(g) to be the Hamming weight of z and the order of g
respectively.

The low Hamming weight DLP seeks solution z such that gz = h for
given known G, g, h ∈ G, ord g and wt(z). The computational complexity of
solving the low Hamming weight DLP has been well understood and a good
exposition of known methods can be found in [50]. We denote CSS and PSS
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to mean Coppersmith’s splitting system and parameterized splitting system
respectively.

In our work, we are interested to solve the DLP with LHWP exponents
which has applications to the security of the GPS identification scheme. A
definition of the DLP with LHWP exponents is given as follows.

Definition 3.2.1 (DLP with LHWP exponents). Let z = xy, where x,
y ∈ Z+. Given G, g, ord g, wt(x), wt(y) and h ∈ G, find z satisfying gz = h.

The Coppersmith’s splitting system was initially introduced in [37] which
came about from the work of [17]. It is described as follows.

Definition 3.2.2 (Coppersmith’s splitting system (CSS)). Let n and
t be even integers such that 0 < t < n. A (N,n,t)-splitting system is a pair
of (X,B) satisfying
1. |X|= n.
2. B is a set of n

2
-subsets of X called blocks and |B|= N .

3. For every Y ⊆ X such that |Y |= t, ∃ a block B ∈ B such that |B∩Y |= t
2
.

It was shown in [50] among others that N can be taken to be n
2
. This result

was applied in [18] to obtain improved attacks of the GPS scheme with GL
parameters.

The parameterized splitting system was first introduced in [33]. It can be
also be regarded as a generalized version of Coppersmith’s splitting system
and is given as follows.

Definition 3.2.3 (Parameterized splitting system (PSS)). Let n and
t be integers such that 0 < t < n. For any ts such that 1 ≤ ts ≤ t. A
(N,n,t,ts)-parameterized splitting system is a pair of (X,B) satisfying
1. |X|= n.
2. B = {B ⊂ X : |B|= b tsn

t
c} is a set of b tsn

t
c-subsets of X called blocks and

|B|= N .
3. For every Y ⊆ X such that |Y |= t, ∃ a block B ∈ B such that |B∩Y |= ts.

In particular, when ts = t
2
, the parameterized splitting system corresponds

to the Coppersmith’s splitting system.
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3.3 The GPS Scheme and Related Work

In this section, we outline the GPS scheme and briefly describe related work
pertaining to solving the LHWP DLP.

3.3.1 The GPS identification scheme

The GPS identification scheme was submitted to the NESSIE project [25] and
is based on the DLP modulo a large composite. The details of the scheme
are as follows:

- N is the product of two sufficiently large prime integers so that factoring
N is computationally infeasible,

- g ∈ Z∗N (the multiplicative group of invertible elements in ZN) is of
maximal order m,

- z is the private key of the prover and the associated public keys are
(N, g, h = g−z).

The security parameters are given by:
- S refers to the binary size of the private key z; S = 160 typically.
- k refers to the binary size of the challenges sent to the provers. It also

corresponds to the security level of the scheme.
- R refers to the binary size of the exponents in the commitment compu-

tation and typically R = S + k + 80.

Prover Verifier
W = gr mod N−−−−−−−−−−−−−−→

c←−−−
w = r + z × c−−−−−−−−−−−−−→

pick r ∈ [0, 2R]
pick c ∈ [0, 2k]

check c ∈ [0, 2k]
verify both

w ∈ [0, 2R + 2k+s]
and W = gwhc

Figure 3.1*: GPS Scheme

Figure 3.1* provides an overview of the interactive protocol between a prover
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and verifier of the GPS identification scheme. It was subsequently proposed
in [24] for the private key to be a product of two low Hamming weight integers
to speed up the online computation.

3.3.2 Related Work

We briefly cover the known methods to solve the DLP with LHWP exponents.
Let z be a product of two elements x ∈ X and y ∈ Y , where X, Y ∈ Zm.

One straightforward method proceeds in the following manner. Recall
that h = gz = gxy, for some given wt(x) and wt(y). This can be rewritten
as gx = hy

−1
. The meet-in-the-middle technique can then applied to this

equation by computing all possible values of gx and hy
−1

respectively until
equality between the two is achieved. The complexity is thus

O(|X|+ |Y |)

and the memory requirement is

O(min(|X|, |Y |)).

Method of Coron et al.

A method in [18] considers the equation h = gz = gxy to be expressed as

h = gxy = ry

where r = gx. Without loss of generality, suppose that |X| > |Y |. For every
yi such that wt(yi) = wt(y), apply the method of Coppersmith splitting
system. Hence, there must exist yi such that the x value obtained via this
splitting system will result equality in the equation. Let l and t denote the
binary size and Hamming weight of x respectively. Thus, the computational
complexity of solving for z is given by

O

(
|Y |×l

(
l/2

t/2

))
and the space requirement is given by

O

((
l/2

t/2

))
.
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Method of Kim-Cheon

The results in [33] and [34] utilize the parameterized splitting system in
solving the DLP with LHWP exponents. Without loss of generality, suppose
that |X| > |Y |. Then split x = u + v for u ∈ U , v ∈ V and where U and V
are disjoint subsets of Zm such that X ⊂ U + V = {u + v : u ∈ U, v ∈ V }.
By considering the following equation

hy
−1

g−u = gv

the parameterized splitting system from Definition 3.2.3 can be applied. Let
wt(x) = t, wt(u) = ts and wt(v) = t − ts, where ts ≤ d t2e. Since, a result
from [33] shows that n blocks are required, the resulting time complexity is
given by

O

(
n

(
|Y |
(
ns
ts

)
+

(
n− ns
t− ts

)))
and memory space requirement of

O

(
min

{
|Y |
(
ns
ts

)
,

(
n− ns
t− ts

)})
.

A refinement from [12] shows that time and space complexity can be further
reduced to

O

(
n

(
|Y |
(
ns − 1

ts − 1

)
+

(
n− ns
t− ts

)))
and

O

(
min

{
|Y |
(
ns − 1

ts − 1

)
,

(
n− ns
t− ts

)})
respectively.

3.4 Improved Results on the Parameterized

Splitting System

It was shown in [33] and [34] that the parameterized splitting system requires
n blocks. We prove that for numerous classes of parameters, the number
of blocks required in the parameterized splitting system is less than n. In
particular, we show that the GPS scheme with CLP parameters is among
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those arising in such situations. As a result, we obtain a lower complexity
attack on the GPS scheme.

We first provide a slight reformulation of the parameterized splitting sys-
tem in order to distinguish and make a comparison of the number of blocks
required of the splitting system. Let t1, t2, n1, n2 ∈ Z+ such that t1 ≤ t2,
n1 ≤ n2, t = t1 + t2, n = n1 + n2 and ni = nti

t
for i = {1, 2}. With these

added notations, we introduce the parameters dependent splitting system or
PDSS as follows.

Definition 3.2.3* (Parameters dependent splitting system (PDSS)).
A (N, n1, n2, t1, t2)-parameterized splitting system is a pair of (X,B) satisfy-
ing
1. |X|= n = n1 + n2.
2. B = {B ⊂ X : |B|= t2n

t
= n2} is a set of n2-subsets of X called blocks

and |B|= N .
3. For every Y ⊆ X such that |Y |= t, ∃ a block B ∈ B such that |B∩Y |= t2.

Remark. t2, n2 can essentially be swapped with corresponding t1, n1 by
considering the complement. For example, let X ⊆ Zm so that X = {x =∑n−1

i=0 xj2
j : xj = 0 or 1,wt(x) = t}. If |B ∩ Y |= t2 then |(Zm\B) ∩ Y |= t1.

Theorem 3.4.1. Let n1 > n2

2
. For any n1, n2, let k ∈ Z+\{1} be the

integer satisfying
k + 1

2k + 1
n2 ≤ n1 <

k

2k − 1
n2.

Suppose t1 and t2 satisfy the following:

2k + 1

k + 1
t1 −

3k + 1

k + 1
≤ t2 ≤

2k − 1

k
t1 +

3k − 2

k
,

2k − 1

k
t1 < t2 ≤

2k + 1

k + 1
t1.

Then N = 2n2−n1 + 1 suffices to generate a parameterized splitting system.

Proof. Let X = Zn and define

Ai = {i+ j mod n : 0 ≤ j < n1}
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Bi = {i+ j mod n : 0 ≤ j < n2}
Ci,j = {i mod n, i+ 1 mod n . . . , j − 1 mod n}

Fix any subset Y ⊆ X such that |Y |= t. From the construction of Bi, it is
clear that for all i,

|Bi ∩ Y |−|Bi+1 ∩ Y |= {−1, 0, 1}. (3.1)

From the above (3.1), we say that |Bi ∩ Y | exhibits discrete continuity and
refer to it as Property 1. Let

B = {Bi : 0 ≤ i ≤ 2n2 − n1}.

For brevity we denote [a, b) to mean the set of integers {a, a+ 1, . . . , b− 1}.
Now, suppose that |Bi∩Y |≥ t2+1, ∀i ∈ [0, 2n2−n1+1). In particular, this

implies that |B0∩Y |≥ t2+1 and |Bn2∩Y |≥ t2+1. Therefore correspondingly,
|An2∩Y |≤ t1−1 and |An2−n1∩Y |≤ t1−1. Thus, we obtain |(An2∪An2−n1)∩
Y |≤ 2t1 − 2. This in turn implies that |C0,n2−n1 ∩ Y |≥ t2 − t1 + 2. Also,
|Bn1 ∩ Y |≥ t2 + 1 and hence |A0 ∩ Y |≤ t1 − 1. Combining these results, we
obtain

|Cn2−n1,n1 ∩ Y |≤ 2t1 − t2 − 3. (3.2)

Moreover, |Bn2−n1 ∩ Y |≥ t2 + 1 and so |(C0,n2−n1 ∪ C2n2−n1,n) ∩ Y |≤ t1 − 1.
Hence,

|(C0,n1 ∪ C2n2−n1,n) ∩ Y |≤ 3t1 − t2 − 4. (3.3)

We proceed to build up the length of blocks as follows. For 3n1 < 2n2,
|B2n1 ∩ Y |≥ t2 + 1 and |B2n1−n2 ∩ Y |≥ t2 + 1. Therefore correspondingly,
|An1 ∩ Y |≤ t1 − 1 and |A2n1 ∩ Y |≤ t1 − 1. Thus, we obtain

|(C0,2n1−n2 ∪ An1,n) ∩ Y |≤ 2t1 − 2. (3.4)

This implies that
|C2n1−n2,n1 ∩ Y |≥ t2 − t1 + 2. (3.5)

Also, |B3n1−n2 ∩ Y |≥ t2 + 1 and so |A2n1−n2 ∩ Y |≤ t1 − 1. Combining this
with the result of (3.5), we obtain

|Cn1,3n1−n2 ∩ Y |≤ 2t1 − t2 − 3. (3.6)

Together with the result of (3.3), it follows that

|(C0,3n1−n2 ∪ C2n2−n1,n) ∩ Y |≤ 5t1 − 2t2 − 7. (3.7)
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Moreover, if |(C0,n1 ∪C2n2−n1,n)|≥ n2 i.e. 5n1 ≥ 3n2 and 5t1−2t2−7 ≤ t2
i.e. 5t1 ≤ 3t2 +7, then from Property 1, it can be concluded that there exists
some i′ ∈ [0, 2n2 − n1 + 1) such that

|Bi′ ∩ Y |= t2.

Next, suppose that |Bi∩Y |≤ t2−1, ∀i ∈ [0, 2n2−n1+1). In particular, this
implies that |B0∩Y |≤ t2−1 and |Bn2∩Y |≤ t2−1. Therefore correspondingly,
|An2∩Y |≥ t1 +1 and |An2−n1∩Y |≥ t1 +1. Thus, we obtain |(An2∪An2−n1)∩
Y |≥ 2t1 + 2. This in turn implies that

|C0,n2−n1 ∩ Y |≤ t2 − t1 − 2. (3.8)

Also, |Bn1 ∩Y |≤ t2− 1 and hence |A0 ∩Y |≥ t1 + 1. Combining this with the
result of (3.8), we obtain

|Cn2−n1,n1 ∩ Y |≥ 2t1 − t2 + 3. (3.9)

Moreover, |Bn2−n1 ∩ Y |≤ t2 − 1 and so |(C0,n2−n1 ∪ C2n2−n1,n) ∩ Y |≥ t1 + 1.
Hence,

|(C0,n1 ∪ C2n2−n1,n) ∩ Y |≥ 3t1 − t2 + 4. (3.10)

If 3t1 − t2 + 4 ≥ t2 i.e. 3t1 ≥ 2t2 − 4 and |(C0,n1 ∪ C2n2−n1,n)|< n2 i.e.
3n1 < 2n2, then from property 1, it can be concluded that there exists some
i′ ∈ [0, 2n2 − n1 + 1) such that

|Bi′ ∩ Y |= t2.

Combining all of the above results, it follows that if 3n1 < 2n2, 5n1 ≥ 3n2,
5t1 ≤ 3t2 + 7 and 3t1 ≥ 2t2 − 4 then there exists some i′ ∈ [0, 2n2 − n1 + 1)
such that |Bi′ ∩ Y |= t2. Recall that ni = nti

t
for i = {1, 2}. Therefore, the

bounds involving n1 and n2 impose additional conditions involving t1 and t2.
More specifically, 3n1 < 2n2 =⇒ 3t1 < 2t2 and 5n1 ≥ 3n2 =⇒ 5t1 ≥ 3t2.

As a result, it can be concluded that if

3

5
n2 ≤ n1 <

2

3
n2

and that t1, t2 satisfy
5

3
t1 −

7

3
≤ t2 ≤

3

2
t1 + 2,
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3

2
t1 < t2 ≤

5

3
t1,

then there exists a i′ ∈ [0, 2n2 − n1 + 1) such that

|Bi′ ∩ Y |= t2

This implies that B is the required set to form the splitting system and that
N = |B|= 2n2 − n1 + 1. This proves the case k = 2. Higher orders of k can
be similarly derived by an inductive argument. 2

Recall that N = n = n1 + n2 was obtained in [14, 12]. Since n1 > n2

2
,

2n2−n1 +1 ≤ n = n1 +n2, we derive a parameterized splitting system which
requires a fewer number of blocks.

In situations where t2 ≈ 2t1, we show that Theorem 3.4.1 can be further
improved. In particular, we present the following result.

Theorem 3.4.2. Let 1
2
n2 ≤ n1 ≤ 2

3
n2. Suppose t2 = 2t1, 2t1 − 1 or 2t1 − 2.

Then

N =


2n1d13(t1 − 1)e − n2(d13(t1 − 1)e − 1) + 1, if t2 = 2t1

2n1d14(t1 − 2)e − n2(d14(t1 − 2)e − 1) + 1, if t2 = 2t1 − 1

2n1d15(t1 − 3e − n2(d15(t1 − 3)e − 1) + 1, if t2 = 2t1 − 2

suffices to generate a parameterized splitting system.

Proof. Let X = Zn and define

Bi = {i+ j mod n : 0 ≤ j < n2}

Ci,j = {i mod n, i+ 1 mod n . . . , j − 1 mod n}

Fix any subset Y ⊆ X such that |Y |= t. Let

Bk = {Bi : 0 ≤ i ≤ 2kn1 − (k − 1)n2}.

For brevity, denote [a, b) to mean the set of integers {a, a+ 1, . . . , b− 1}.
Suppose that |Bi ∩ Y |≥ t2 + 1, ∀i ∈ [0, 2kn1 − (k − 1)n2 + 1). In par-

ticular, this implies that |B0 ∩ Y |≥ t2 + 1 and |Bn2 ∩ Y |≥ t2 + 1. Therefore
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correspondingly, |Cn2,n ∩ Y |≤ t1 − 1 and |Cn2−n1,n2 ∩ Y |≤ t1 − 1. Thus, we
obtain

|Cn2−n1,n ∩ Y |≤ 2t1 − 2. (3.11)

Furthermore, |Bn1 ∩ Y |≥ t2 + 1. Since t2 ≥ 2t1 − 2, it follows that

|Bn1 ∩ Y |> |Cn2−n1,n ∩ Y |. (3.12)

However, this implies that n1 > n2 − n1, a contradiction.
On the other hand, suppose that |Bi ∩ Y |≤ t2 − 1, ∀i ∈ [0, 2kn1 − (k −

1)n2+1). In particular, this implies that |B0∩Y |≤ t2−1 and |Bn2∩Y |≤ t2−1.
Therefore correspondingly, |Cn2,n ∩ Y |≥ t1 + 1 and |Cn2−n1,n2 ∩ Y |≥ t1 + 1.
Thus, we obtain

|Cn2−n1,n ∩ Y |≥ 2t1 + 2. (3.13)

Furthermore, |Bn1 ∩ Y |≤ t2 − 1. Hence,

|Cn2−n1,n1 ∩ Y |≥ (2t1 + 2)− (t2 − 1) = 2t1 − t2 + 3. (3.14)

We proceed to build the length of blocks in following way. We have that
|C2n1,n1 ∩ Y |≤ t2 − 1. Thus, |Cn1,2n1 ∩ Y |≥ t1 + 1. Hence,

|Cn2−n1,2n1 ∩ Y |≥ t1 + 1 + (2t1 − t2 + 3) = 3t1 − t2 + 4. (3.15)

If 3t1 − t2 + 4 ≥ t2 and 2n1 − (n2 − n1) ≤ n2, then there exists some
i′ ∈ [0, 2n1 + 1) such that |Bi′ ∩ Y |= t2. Otherwise, continue with the
building of blocks as follows. |B2n1 ∩ Y |≤ t2 − 1 and |B2n1−n2 ∩ Y |≤ t2 − 1.
Therefore correspondingly, |Cn1,2n1 ∩Y |≥ t1 +1 and |C2n1,2n1−n2 ∩Y |≥ t1 +1.
Thus, we obtain

|Cn1,2n1−n2 ∩ Y |≥ 2t1 + 2. (3.16)

Furthermore, |B3n1−n2 ∩ Y |≤ t2 − 1. Hence,

|Cn1,3n1−n2 ∩ Y |≥ (2t1 + 2)− (t2 − 1) = 2t1 − t2 + 3. (3.17)

Therefore, it follows that

|Cn2−n1,3n1−n2 ∩ Y |≥ 2(2t1 − t2 + 3). (3.18)

Also, since |B4n1−n2 ∩Y |≤ t2− 1, it follows that |C3n1−n2,4n1−n2 ∩Y |≥ t1 + 1.
Combining this with the result of (3.18), we obtain

|Cn2−n1,4n1−n2 ∩ Y |≥ 5t1 − 2t2 + 7. (3.19)
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If 5t1 − 2t2 + 7 ≥ t2 and (4n1 − n2) − (n2 − n1) ≤ n2, then there exists
some i′ ∈ [0, 4n1 − n2 + 1) such that |Bi′ ∩ Y |= t2. By proceeding in an
inductive fashion we have shown that if t1, t2 satisfy t1(2k + 1) ≤ t2(k + 1)
and (t1 + 1) + k(2t1 − t2 + 3) ≥ t2 for some k ∈ Z+, then

N = 2kn1 − n2(k − 1) + 1

suffices to generate a splitting system.
The final part of the proof involves evaluating the bounds for k under the

above conditions for each of t2 = 2t1, 2t1−1 and 2t1−2. Since 2kn1−n2(k−1)
is an increasing function of k, ideal results are obtained when k is as low as
possible. When t2 = 2t1, k ≥ t1−1

3
so we can take k = d1

3
(t1 − 1)e. When

t2 = 2t1 − 1, k ≥ t1−2
4

so we can take k = d1
4
(t1 − 2)e. When t2 = 2t1 − 2,

k ≥ t1−3
5

so we can take k = d1
5
(t1−3)e. This completes the proof of Theorem

3.4.2. 2

When t2 ≈ 2t1, the results of Theorem 3.4.2 show that fewer blocks than
those obtained in Theorem 3.4.1 suffice.

3.5 Solving the DLP with LHWP Exponents

and Applications

Upon obtaining improvements to the parameterized splitting system, the
subsequent approach of solving the DLP with LHWP exponents is simply a
meet-in the-middle technique. We provide an outline of it below.

The DLP with LHWP exponents seeks the solution z satisfying h =
gz = gxy given wt(x) and wt(y). Without loss of generality, suppose that
|X| > |Y |. Then split x = u + v for u ∈ U , v ∈ V and where U and V
are disjoint subsets of Zm such that X ⊂ U + V = {u + v : u ∈ U, v ∈ V }.
Denote n to be the maximum binary size of an element X. Hence

X = {x =
n−1∑
j=0

xj2
n−1−j : xj = 0 or 1,wt(x) = t}.

Now, by considering elements of X in their binary representations, say of the
form x0x1 . . . xn−1 where each xi = 0 or 1, express them in a more concise form
based off their indices via Ai and Bi where Ai = {i+ j mod n : 0 ≤ j < n1}
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and Bi = {i + j mod n : 0 ≤ j < n2}. For example A0 = {0, 1, . . . , n1 − 1}
and this represents x0x1 . . . xn1−10 . . . 0.

Express h = gxy as
hy
−1

g−u = gv.

The method proceeds by computing and storing all the values of the left-
hand side followed by computing each value of the right-hand side and check
if it is in the list from the first part.

Let t′ ∈ {1, 2, . . . , d t
2
e : nt′

t
∈ Z} be the value of t1 that minimizes

|Y |
(
n1

t1

)
+

(
n− n1

t− t1

)
.

If t′ and the corresponding t−t′ satisfy the conditions stated in Theorem 4.4.1
for the given k, then the computational complexity of solving the problem is
given by

O

(
(2n2 − n1 + 1)

(
|Y |
(
n′

t′

)
+

(
n− n′

t− t′

)))
where n′ = nt′

t
. The corresponding memory requirement is given by

O

(
min

{
|Y |
(
n′

t′

)
,

(
n− n′

t− t′

)})
.

This already provides a lower computational complexity over the results in
[14] without any additional memory requirements via PDSS.

Improved results over [33] were subsequently obtained in [34]. Fix any
subset T ⊆ X such that |T |= t. The main improvement derives by not-
ing that among all blocks Bi such that |Bi ∩ T |= t2, there exists block Bi′

such that xi′ = 1 and block Bi′′ such that xi′′+n2−1 mod n = 1. A similar
property holds for Ai. However, this is not true in our PDSS. In the case
of PDSS, there either exists block Bi′ such that xi′ = 1 and block Bi′′ such
that xi′′+n2−1 mod n = 1. From the symmetry of t1 and t2 in PDSS, a similar
property also holds for Ai. Crucially, there is no way to determine which of
the two stated block properties will occur (or both). As such, a direct ap-
plication of the PDSS as shown above while it yields improvements to [33],
does not provide better results over [34]. Nevertheless, with some delicate
refinements, we show how the results and properties of PDSS can be utilized
to obtain two improved results over the existing state of the art. First, we
present the following lemma.
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Lemma 3.5.1. Suppose for inputs ti and ni there exists some s < n−1 such
that for all 0 ≤ i ≤ s satisfying |Bi ∩ T |= t2, we have that xi+n2−1 mod n = 0.
Then there exists some m satisfying s < m ≤ n − 1 such that xm = 0 and
xm+n2−1 mod n = 1.

Proof. From Kim-Cheon’s results of the PSS property that there must exist
some i, 0 ≤ i ≤ n − 1 satisfying |Bi ∩ T |= t2, xi+n2−1 mod n = 1, it can be
concluded from the assumption of the lemma that there must exist some m
satisfying s < m ≤ n − 1 such that xm+n2−1 mod n = 1. Thus it suffices to
show that at least one such exist m which must also satisfy the condition that
xm = 0. Let M be the set of all possible values of m satisfying s < m ≤ n−1
such that xm+n2−1 mod n = 1. We know that M is non empty from the above
argument. Let m′ be the largest element of M . If xm′ = 0, we are done. Oth-
erwise, suppose (for a contradiction) that xm′ = 1. Since m′ is the largest
element in M , |Bj∩Y |< t2 for all j such that m′ < j ≤ n−1. Let r ≤ k be the
minimum value satisfying |Br∩Y |= t2. Since |Bi∩T |−|Bi+1∩T |= {−1, 0, 1},
it follows that xr+n2−1 mod n = 1, a contradiction from the assumption of the
lemma. 2

With the results of Theorem 3.4.1, Theorem 3.4.2 and Lemma 3.5.1, we
provide two possible ways via PDSS (dependent on parameters) to solve the
DLP with low Hamming weight exponents more efficiently. We will also show
in the subsequent section on how they can be applied to analyze or attack
the GPS identification scheme utilizing CLP parameters.

From the result of Lemma 3.5.1, we can refine the earlier procedure of
solving the DLP with LHWP exponent by computing gv (or g−u) where
during the computation of all possible elements with hamming weight of t2
in Bi, some bits are redundant and can be removed from the computations.
More specifically for i ≤ s, we first proceed with the assumption that one of
the bits at the end edge of a block is 1. Hence, this requires a total of

(s+ 1)

(
n2 − 1

t2 − 1

)
computations. If the above does not yield a valid solution, then for i > s,
we can deduce from Lemma 3.5.1 that one of the bits at the initial edge of
a block can be taken to be 0 and one bit at the end edge within this same
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block can be taken to be 1. This requires

(n− s)
(
n2 − 2

t2 − 1

)
computations. Lemma 3.5.1 ensures that ignoring these redundant compu-
tations will nevertheless still ensure the solution can be obtained. Without
loss of generality, a similar result holds for Ai.

The roles of Theorems 3.4.1 and 3.4.2 arise in determining the values of
s.

Our first improved result utilizing Theorem 3.4.1 and Lemma 3.5.1 is
given as follows. Let

t′ ∈
{

1, 2, . . . ,

⌈
t

2

⌉
:
nt′

t
∈ Z

}
be the value of t1 that minimizes

|Y |
(
n1 − 1

t1 − 1

)
+

(
n− n1

t− t1

)
.

If t′ and the corresponding t − t′ satisfy the conditions stated in Theorem
3.4.1 then s can be taken to be 2n2 − n1 and the computational complexity
of solving the problem is given by

O

(
(2n2 − n1 + 1)|Y |

(
n′ − 1

t′ − 1

)
+ n

(
n− n′

t− t′

)
+ (2n1 − n2 − 1)|Y |

(
n′ − 2

t′ − 1

))
where n′ = nt′

t
. The corresponding memory requirement is given by

O

(
min

{
|Y |
(
n′ − 1

t′ − 1

)
,

(
n− n′

t− t′

)})
.

This provides a strict improvement over the current best known result of
[12] with regards to time complexity while maintaining an equal amount of
storage required.

We can further improve on this result if t2 ≈ 2t1 using Theorem 3.4.2.
Let t′ ∈ {1, 2, . . . , d t

2
e : nt′

t
∈ Z} be the value of t1 that minimizes

|Y |
(
n1

t1

)
+

(
n− n1 − 1

t− t1 − 1

)
.
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If t′ and the corresponding t − t′ satisfy the conditions stated in Theorem
3.4.2, then s can be taken to be 2kn1 − (k − 1)n2, where the value of k
depends on the relation between t1 and t2 as highlighted in Theorem 3.4.2.
For brevity, let k′ = 2kn1 − (k − 1)n2. The computational complexity of
solving the problem is then given by

O

(
(k′ + 1)

(
n− n′ − 1

t− t′ − 1

)
+ n|Y |

(
n′

t′

)
+ (n− k′ − 1)

(
n− n′ − 2

t− t′ − 1

))
where n′ = nt′

t
. The corresponding memory requirement is given by

O

(
min

{
|Y |
(
n′

t′

)
,

(
n− n′ − 1

t− t′ − 1

)})
.

3.6 Application to the GPS Scheme

In this section, we provide 2 improved approaches of attacking the GPS
identification scheme utilizing CLP parameters. The CLP parameters for
the GPS scheme based on the DLP with LHWP exponents were proposed
in [18]. We show that these parameters satisfy the conditions to utilize the
PDSS and provide concrete security evaluations. Furthermore, we demon-
strate additional enhancements which can be applied to provide further im-
provements for these specific parameters. One caveat is that the ord(g) is
kept secret in the GPS. However, it is already known (for instance in [18])
that this can be circumvented without any significant increase in computa-
tional resources.

The CLP parameters are that the private key be a product of a 30-
bit number with 12 nonzero bits and a 130-bit number with 26 nonzero
bits. As such, |Y |=

(
30
12

)
, n = 130 and t = 26. Moreover, some simple

computational checking reveals that t′ = 10 is the value of t1 which minimizes
|Y |
(
n1−1
t1−1

)
+
(
n−n1

t−t1

)
. Hence t1 = 10, t2 = 16, n1 = 50 and n2 = 80. It is

easily verified that k = 2 in Theorem 4.4.1 and the conditions for ti are also
satisfied. As a result, 2n2−n1 + 1 = 111 and so only 111 blocks are required
as opposed to 130 required in [33, 34].

The additional enhancement to further reduce from 111 blocks to 106
blocks proceeds as follows. We refer back to the proof of Theorem 4.4.1,
at the two separate parts where |(C0,3n1−n2 ∪ C2n2−n1,n) ∩ Y |≤ 5t1 − 2t2 − 7
and |(C0,n1 ∪ C2n2−n1,n) ∩ Y |≥ 3t1 − t2 + 4. These bounds correspond to

57



|(C0,70∪C110,130)∩Y |≤ 11 and |(C0,50∪C110,130)∩Y |≥ 18 upon applying the
CLP parameters. Hence if |Bi ∩ Y |≥ 17, ∀i ∈ [0, 110), then

|(C0,70 ∪ C105,130) ∩ Y |≤ 16

and if |Bi ∩ Y |≥ 9, ∀i ∈ [0, 110)

|(C0,50 ∪ C105,130) ∩ Y |≥ 18.

By property 1, this proves that there exists some i′ ∈ [0, 106) such that

|Bi′ ∩ Y |= 16.

This additional enhancement shows that only 106 blocks are required. The
computational complexity of this attack can now easily be computed to be
264.49 exponentiations with memory requirement of 254.58 which is an improve-
ment in time complexity over the results of [34] without any added storage
requirements.

Our second improvement is achieved by minimizing |Y |
(
n1

t1

)
+
(
n−n1−1
t−t1−1

)
.

The minimum is attained when t1 = 9, t2 = 17, n1 = 45 and n2 = 85.
In this case, we have that t2 = 2t1 − 1 and thus Theorem 3.4.2 can be
applied. From the result of Theorem 3.4.2, we obtain N = 96. We can
actually further reduce to N = 95 by following the proof in Theorem 3.4.2
until the portion where we have |B4n1−n2 ∩ Y |≤ t2 − 1. This corresponds
to |B95 ∩ Y |≤ 16. Instead in this particular case, we can be a little more
precise and consider |B94 ∩ Y |≤ 16. Hence, it follows that |C49,94 ∩ Y |≥ 10.
This implies |C50,94 ∩ Y |≥ 9. Combining with earlier results in the proof of
Theorem 3.4.2, we obtain |C40,94∩Y |≥ 17. Hence, only 95 blocks are required.
The computational complexity of this attack can now easily be computed to
be 263.95 exponentiations with memory requirement of 255.83. It is of note
that this second approach yields the first known result that achieves a time
complexity of under 264 at a slight additional expense of memory space.

3.7 Admissible values of ti

In this section, we investigate the type of parameters which are susceptible
to the results of our work. In general, such problems can solved using the
theory of Ehrhart polynomials. However in both of our cases, since we only
deal with some particular forms involving systems of bivariate inequalities,
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the analysis can be simplified via Pick’s theorem.

Let P be a simple polygon on the x-y plane such that all of x and y co-
ordinates of it vertices are integers. Let A denote the area of the polygon P ,
i denote the number of (standard) lattice points strictly in the interior of P
and b denote the number of (standard) lattice points on the boundary of P .
Pick’s theorem asserts the following.

Pick’s theorem.

A = i+
b

2
− 1

An elementary proof of Pick’s theorem can be found in [57].

Definition 3.7.1. For given k ∈ Z+\{1}, t1 and t2 are admissible if they
satisfy

2k + 1

k + 1
t1 −

3k + 1

k + 1
≤ t2 ≤

2k − 1

k
t1 +

3k − 2

k
,

2k − 1

k
t1 < t2 ≤

2k + 1

k + 1
t1.

In the case of the GPS scheme with CLP parameters of k = 2, t1 = 10, t2 =
16, the collection of admissible ti values for the same k are given in Figure
3.1. Figure 3.2 highlights the point where these CLP parameters are located.

The set of admissible values of ti might seem restrictive from Figure 3.1.
However, we show that the set of admissible values increase at a quadratic
rate with respect to k. In particular, we prove that the number of admissible
values of ti for any integer k ≥ 2 is given by 9k2 − 4.

Theorem 3.7.1 Let k ∈ Z+\{1}. The number of integer pairs (t1, t2) satis-
fying

2k + 1

k + 1
t1 −

3k + 1

k + 1
≤ t2 ≤

2k − 1

k
t1 +

3k − 2

k
,

2k − 1

k
t1 < t2 ≤

2k + 1

k + 1
t1
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Figure 3.1: Region of admissible ti values (t1 = 10, t2 = 16, k = 2)

Figure 3.2: Location of CLP parameters (t1 = 10, t2 = 16, k = 2)
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is 9k2 − 4.

Proof. The admissible values of ti can be viewed to lie on the x-y plane.
By solving the linear equations at equality, it straightforward to obtain the
4 vertices to be

(0, 0), (3k2 + k, 6k2 − k − 1),

(6k2 + 2k − 2, 12k2 − 2k − 3), (3k2 + k − 2, 6k2 − k − 2).

The area of this parallelogram enclosed by these vertices can be computed
by

1

2

∣∣∣∣0 3k2 + k 6k2 + 2k − 2 3k2 + k − 2 0
0 6k2 − k − 1 12k2 − 2k − 3 6k2 − k − 2 0

∣∣∣∣
= 9k2 − 3k − 2

The total number of pairs of integer points satisfying the boundary segment
t2 = 2k−1

k
t1 is easily checked to be 3k + 2. Since gcd(k + 1, 2k + 1) = 1; for

the boundary segment t2 = 2k+1
k+1

t1, it is 3k − 1. For the boundary segment

t2 = 2k−1
k
t1 + 3k−2

k
, it is 3k+2. For the boundary segment t2 = 2k+1

k+1
t1− 3k+1

k+1
,

it is 3k− 1. Hence, the total number of integer points lying on the boundary
(excluding double counting at the vertices) is

2(3k + 2) + 2(3k − 1)− 4 = 12k − 2.

By Pick’s theorem, the number of integer points lying strictly within the
enclosed region is thus

9k2 − 3k − 2− 1

2
(12k − 2) + 1 = 9k(k − 1).

Finally, by adding up the remaining integer points on 3 of the boundaries,
we obtain the desired number to be 9k2 − 4. 2

While the number of admissible points for ti is of order O(k2) in Theorem
3.4.1, the number of such admissible points in Theorem 3.4.2 is of the order
O(k).

Definition 3.7.2 For given k ∈ Z+, t1 and t2 are admissible if they sat-
isfy

2k + 1

k + 1
t1 ≤ t2 ≤

2k + 1

k + 1
t1 +

3k + 2

k + 1
,
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2t1 − 2 < t2 ≤ 2t1.

Theorem 3.7.2 Let k ∈ Z+. The number of integer pairs (t1, t2) satisfying

2k + 1

k + 1
t1 ≤ t2 ≤

2k + 1

k + 1
t1 +

3k + 2

k + 1
,

2t1 − 2 < t2 ≤ 2t1

is 9k + 6.

Proof. The admissible values of ti can be viewed to lie on the x-y plane.
By solving the linear equations at equality, it straightforward to obtain the
4 vertices to be

(0, 0), (2k + 2, 4k + 2),

(5k + 3, 10k + 4), (3k + 1, 6k + 2).

The area of this parallelogram enclosed by these vertices can be computed
by

1

2

∣∣∣∣0 2k + 2 5k + 3 3k + 1 0
0 4k + 2 10k + 4 6k + 2 0

∣∣∣∣
= 6k + 2

The total number of pairs of integer points satisfying the boundary segment
t2 = 2t1 is easily checked to be 3k+2. For the boundary segment t2 = 2k+1

k+1
t1,

it is 3 since gcd(k + 1, 2k + 1) = 1. For the boundary segment t2 = 2t1 − 2,
it is 3k + 2. For the boundary segment t2 = 2k+1

k+1
t1 + 3k+2

k+1
, it is 3. Hence,

the total number of integer points lying on the boundary (excluding double
counting at the vertices) is

2(3) + 2(3k + 1)− 4 = 6k + 6.

By Pick’s theorem, the number of integer points lying strictly within the
enclosed region is thus

6k + 2− 1

2
(6k + 6) + 1 = 3k.

Finally, by adding up the remaining integer points on all of the bound-
aries, we obtain the desired number to be 9k + 6. 2

Figure 3.3 and Figure 3.4 illustrate the region of admissible ti values and
the location of CLP parameters for t1 = 9, t2 = 17, k = 2 respectively.
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Figure 3.3: Region of admissible ti values (t1 = 9, t2 = 17, k = 2)

Figure 3.4: Location of CLP parameters (t1 = 9, t2 = 17, k = 2)
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Table 3.1: Results

Attacks Method Exponentiations Storage

[18] CSS 277.3 243.9

[14] PSS 265.48 256.09

[12] PSS 264.53 254.58

[This work] PDSS 264.49 254.58

[This work] PDSS 263.95 255.83

3.8 Results

Table 3.1 highlights the results of our work when compared with other ex-
isting state of the art.

As evident from the results of Table 3.1, the method of PDSS introduced
in this work provides improvements to current known attacks and analysis of
the GPS identification scheme. They are two ways of approach to apply the
PDSS method. The former provides a reduced complexity of the best current
known GPS scheme without additional increment in storage requirement.
The latter provides an even lower time complexity that falls under 264 for
the first time at the expense of some storage increment.

3.9 Conclusion

In this work, we introduce a method of parameters dependent splitting sys-
tem (PDSS) which can be applied to analyze the security of the GPS scheme
which invokes the DLP with low hamming weight exponents as its security
basis. The method is shown to provide better results over existing state of
the art. In particular, we show for the first time that the security barrier for
the GPS scheme is under 264. This work also serves to provide a framework
to identify suitable and more secure parameters for future constructions of
cryptographic schemes involving DLP with LHWP exponents. The analysis
of the minimum number of blocks required in the parameterized splitting of
given inputs might also be of independent interest in the field of Combina-
torics.
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Chapter 4

Password Recovery via
Rainbow Tables

4.1 Introduction

One-way functions have important relevance in the context of passwords for
user authentication purposes. For instance, storing user passwords in plain-
text will result in a breach of security should the password file be compro-
mised. In particular, cryptography hash functions are employed to store the
hash digests of passwords instead. The authentication process then compares
the stored hash with the hash of a user’s input.

There are various ways to invert such hash functions to recover the plain-
text password. Some of these methods include exhaustive search, precom-
putations and time-memory trade-offs. In exhaustive search, every feasible
password combination is searched until the correct one is obtained. In pre-
computations, a large table of all feasible plaintext passwords and their cor-
responding hashes are stored. Due to the large password space, both of these
methods suffer the drawbacks of requiring long online computation time and
large storage space for exhaustive search and precomputations respectively.

To alleviate such issues, cryptanalytic time-memory trade-off was intro-
duced by Hellman [27]. This is a method to invert generic one-way functions
by utilizing a trade-off between time and memory cost. Such technique can be
applied in password recovery by inverting the relevant hash function. Time-
memory trade-off techniques have also been applied in practical attacks such
as A5/1 [11] and LILI-128 [44].
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There are also other methods which can be performed for passwords or
encryption key recovery by identifying weaknesses of certain hashing algo-
rithms based on the collisions of hashes [16, 22], [47] and [46]. However, these
methods are only applicable to specific hashing algorithms.

Rainbow tables were introduced by Oechslin [40] which provided certain
improvements over the original method by Hellman. The main difference lies
in the usage of different reduction functions when generating a table during
the offline phase. They have been shown to be efficient in recovering LM
hash passwords [40] as well as UNIX passwords [38].

Subsequently, further analysis and improvements to these time-memory
trade-off methods were proposed. For instance, endpoints can be stored
more efficiently by applying prefix-suffix decomposition [5, 6] or by applying
compressed delta encoding [4]. Checkpoints were also proposed in [5] to
reduce false alarms. A theoretical framework of analyzing false alarms was
provided in [29] by comparing some trade-off algorithms in [30]. A formula
for choosing parameters to achieve a higher success rate in Hellman’s time-
memory trade-off method was discussed in [45]. Further improvements to
the trade-off efficiency of rainbow tables were proposed in [52, 53, 55].

4.1.1 Our Contributions

This chapter is motivated by the fact that distributions of passwords tend to
heavily skewed. Indeed, recent surveys in [31, 56] indicate that top frequently
used user passwords constitute a significant proportion of the database. Such
common passwords also tend to be identical across various databases. In this
chapter, we wish to incorporate such frequently used passwords in rainbow
tables generated to ensure that they can be recovered during the online phase.
A canonical method of incorporating such passwords involves assigning pass-
words at the start points of rainbow chains. We show that it is possible to
incorporate multiple passwords across a single chain instead. This is an ex-
tension of the results in [54] where only 3 or 4 passwords assigned in a chain
were analyzed. It is an open problem whether more than 4 given passwords
can be incorporated. We show that this is possible using a different technique
in this chapter which affirm that this can be generalized to incorporate more
passwords regardless of the type of hash applied. Furthermore, we prove
that this method of incorporating frequently used passwords provide a faster
recovery time during the online phase as opposed to the natural way of as-
signing them at the start of each chain. We also include results for typical
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rainbow change lengths in practical settings.

4.1.2 Chapter Organization

The organization of this chapter is as follows. Chapter 4.2 describes some of
the methods to invert hash functions, including time-memory trade-off tech-
niques which our work revolves upon. In Chapter 4.3, we show our method of
incorporating multiple given passwords along a rainbow chain is feasible. An
example is provided in Chapter 4.4. Chapter 4.5 considers the scenarios of
multiple passwords recovery. Explicit constructions on how to achieve long
dictionary rainbow chains are provided in Chapter 4.6. Theoretical evalua-
tions are analyzed in Chapter 4.7 and results are given in Chapter 4.8. We
conclude in Chapter 4.9.

4.2 Inverting Cryptographic Hash Functions

Let h be a cryptographic hash function, pi a password and ci its corresponding
hash digest such that ci = h(pi). We outline a number of ways to invert hash
functions fundamental in password recovery. They are exhaustive search,
precomputations and time-memory trade-off.

Exhaustive Search
Given a hash digest c, the hash of each possible pi in the password space is
computed until a match c = h(pi) is obtained. The drawback is that since
the password space is large, this method has a large online time complexity.

Precompuatations
A table of (pi, ci) are precomputed and stored for all possible pi in the pass-
word space. Given a hash digest c, its preimage can be obtained when there
is a match c = ci. The drawback is that large memory cost is required to
store such pairs since the password space is large.

Time-Memory Trade-off
We present an overview of Oecshlin’s method using rainbow tables. More
details can be found in [40]. It is best described in two phases; the offline
phase and the online phase. Let Ri be a reduction function which maps hash
digests to plaintext passwords uniformly. For example a typical choice of
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reduction function can be given by Ri(ci) = pj where pj ≡ ci + ri mod n,
where n is the size of the password space and ri ∈ Z. A reduction function
simply maps the hash of pi to some pj. Here, the hash digests ci are con-
verted to decimal representations and each password pj is represented by an
integer value between 0 and n− 1 inclusive. During the offline phase, a list
of passwords can be generated as the start points. Each of these passwords
are then alternatively hashed and reduced (via the reduction functions) for
a designated t number of times. The start and end points are then stored as
pairs in a table. During the online phase, the desired hash H to be inverted
is then reduced using Rt. If the outcome Rt(h) is not a match with any
end point entries in the table, one proceeds to compute Rt(h(Rt−1(H))) and
search for a match of with the end point entries of the table. This process
continues to Rt ◦ h ◦ Rt−1 ◦ · · · ◦ h ◦ R1(H) until a match is found. If no
matches are found throughout the process, then the given hash cannot be
inverted. If a match is found, one can then identify to which starting point
it corresponds to and reapply the series of hashes and reductions operations
to recover the password corresponding to its hash H. One drawback of this
method is that the success rate is not 100%.

Hellman Tables vs Rainbow Tables

One big distinction between Hellman tables [27] and Rainbow tables [40] is
that the former applies the same reduction function throughout the chains
while the latter utilizes distinct reduction functions. Chains which comprise
of distinct reduction functions are referred to as rainbow chains. In doing
so, Rainbow tables provide an advantage in that their generated chains have
lower chances of merging, thereby reducing redundancies. More details of its
improvements can be found in [40]. In view of this, our work considers such
chains having distinct reduction functions.

4.3 Incorporation of Fixed Passwords in Rain-

bow Tables

There are certain password compositions that are known to be much more
popular among users, usually due to easy remembrance. Indeed, recent sur-
veys provided in [31, 56] corroborate this. However, as discussed in Chapter
4.2.3, rainbow tables do not provide a guaranteed means of recovering the
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password of its corresponding hash digest. To ensure that a frequently used
password can be recovered, it has to be present at some point during the con-
struction of the rainbow chains. One natural way of ensuring this is to assign
such passwords at the beginning of each chain, i.e. at their start points. This
enables successful recoveries of given starting point passwords regardless of
any subsequent constructions for the remainder of the chains. In this chap-
ter, we show how multiple frequently used passwords can be incorporated
along a rainbow chain. This facilitates a more efficient means of recovering
such passwords during the online phase. In addition, the evaluation of its
superiority will also be discussed. Some results have been given in [54] show-
ing that 3 or 4 passwords can be incorporated along a chain. We prove a
generalization which shows that up to t such passwords can be incorporated
along a chain of length t where the length refers to the total number of hash
digests a chain computes until termination.

Suppose we have a list of t distinct frequently used passwords p1, p2, . . . ,
pt to be incorporated in a rainbow chain of length t. Denote an ordered
t-tuple (pi,1, pi,2, . . . , pi,t) to be an arrangement in which the t passwords
can be incorporated in a rainbow chain such that the reduction functions
will remain distinct. Here, pi,1, pi,2, . . . , pi,t is a permutation of p1, p2, . . . ,
pt. For example, if t = 3, (p2, p1, p3) implies that p2 can be incorporated at
the start of a chain, followed by p1 and then p3 in a way that the reduction
functions in between each pair of consecutively placed passwords will differ.
In other words, there exists distinct reduction functions R1, R2 such that
R1(h(p2)) = p1 and R2(h(p1)) = p3. We recall that Ri(ci) = pj where pj ≡
ci + ri mod n, where n is the size of the password space and ri ∈ Z. In this
context, two reduction functions are distinct if and only if the corresponding
ri are distinct.

Our objective is to show that (pi,1, pi,2, . . . , pi,t) exists. Let the size of
the password space be n. For brevity, ≡ refers to ≡ mod n.

We first demonstrate the cases t = 3 and t = 4 which were proven in
[54]. We include these in to highlight the differences between the general
case and t = 3, 4. Each of the three proofs provides a different flavour of
approach. The case t = 4 is handled by applying case by case considerations.
This method does not seem to extend to proof the general case and hence
we undertake a graph theoretic approach.

Theorem 4.3.1. Any given 3 passwords can be recovered regardless of the
size of keyspace and the hash applied.
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Proof. To prove the theorem, we show that there exists at least one ar-
rangement to insert these 3 passwords such their corresponding reduction
functions will be distinct. Let the 3 passwords be p1, p2 and p3. Let h(p1)
= a1, h(p2) = a2 and h(p3) = a3. Suppose for all 6 arrangements, each ar-
rangement results in having identical reduction functions. Thus, we obtain
the following system of equations:

p2 − a1 = p3 − a2 (4.1)

p3 − a1 = p2 − a3 (4.2)

p1 − a2 = p3 − a1 (4.3)

p3 − a2 = p1 − a3 (4.4)

p1 − a3 = p2 − a1 (4.5)

p2 − a3 = p1 − a2 (4.6)

Comparing equations (4.1) and (4.3), we get p1 + p2 = 2p3.
Comparing equations (4.2) and (4.5), we get p1 + p3 = 2p2.
Comparing equations (4.4) and (4.6), we get p3 + p2 = 2p1.

Solving these 3 new equations, we obtain p1 = p2 = p3. This is a con-
tradiction since p1, p2, p3 are distinct modulo n; thus proving Theorem 4.3.1.
2

Theorem 4.3.2. Any given 4 passwords can be recovered regardless of the
size of keyspace and the hash applied.

Proof. Denote the 4 passwords to be p1, p2, p3 and p4 and let h(p1) =
a1, h(p2) = a2, h(p3) = a3 and h(p4) = a4.

Consider the 3 passwords p1, p2, p3 to be placed in the first 3 entries of
the chain. Applying Theorem 4.3.1, there exists an arrangement which will
result in distinct reduction functions. Without loss of generality, assume that
the first 3 passwords in the chain are p1, p2, p3 in that order such that the
corresponding reduction functions are distinct. Then, p4 will be in the 4th

entry of the chain. Suppose p4 − a3 6= p2 − a1 and p4 − a3 6= p3 − a2. Then
p1p2p3p4 is the desired order to place the passwords which ensures distinct

70



reduction functions.

Suppose either p4 − a3 = p2 − a1 or p4 − a3 = p3 − a2.

Case 1: p4 − a3 = p2 − a1
Consider the arrangement p4p1p2p3. If p1−a4 6= p2−a1 and p1−a4 6= p3−a2,
we are done. Otherwise, either p1 − a4 = p2 − a1 or p1 − a4 = p3 − a2.

Case 1(a): p1 − a4 = p2 − a1 = p4 − a3.
Consider the arrangement p1p3p4p2. Suppose not all the reduction functions
are distinct, then p3−a1 = p2−a4. Next, consider the arrangement p4p1p3p2.
If not all the reduction functions are distinct, then p3 − a1 = p2 − a3. This
implies a4 = a3 and thus p1 = p4 which is a contradiction.

Case 1(b): p1 − a4 = p3 − a2 and p4 − a3 = p2 − a1
If p1−a4 = p1−a3, then a3 = a4. Thus p4p3p1p2 will be the desired arrange-
ment. If a3 6= a4, consider the arrangements p4p2p3p1, p1p3p4p2, p4p1p3p2,
p2p4p1p3 and p1p4p2p3 in the order as stated. Suppose none of these arrange-
ments result in distinct reduction functions.
By considering p4p2p3p1, we get p2 − a4 = p1 − a3.
By considering p1p3p4p2, we get p1 − a3 = p2 − a4 = p3 − a1.
By considering p4p1p3p2, we get p1 − a4 = p2 − a3.
By considering p2p4p1p3, we get p4 − a2 = p3 − a1.
By considering p1p4p2p3, we get p4 − a1 = p3 − a2.
From above arrangement p2p4p1p3, we obtain p3 − a1 = p4 − a2 and from
arrangement p1p4p2p3, we obtain p4 − a1 = p3 − a2. Hence, p3 = p4, a
contradiction.

Case 2: p4 − a3 = p3 − a2 and p4 − a3 6= p2 − a1
Consider the arrangement p3p4p1p2. If p4−a3 6= p1−a4 and p2−a1 6= p1−a4,
we are done. Otherwise, either p4 − a3 = p1 − a4 or p1 − a4 = p2 − a1.

Case 2(a): p4 − a3 = p3 − a2 = p1 − a4
Consider the arrangement p3p4p2p1. If this arrangement results in distinct
reduction functions, we are done; otherwise p2−a4 = p1−a2. Next, consider
arrangement p4p2p3p1. If this arrangement does not result in distinct reduc-
tion functions again, then we must have p2 − a4 = p1 − a3. Hence, a2 = a3
which implies p3 = p4, a contradiction.

Case 2(b): p1 − a4 = p2 − a1 and p4 − a3 = p3 − a2
If a1 = a3, consider the arrangement p3p2p1p4. If this is not the desired ar-
rangement, then a2 = a4. Hence, p2p1p3p4 will be the desired arrangement.
If a1 6= a3, consider the arrangements p4p1p3p2, p2p1p3p4, p3p2p4p1 and p2p3p1p4
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in this order. Suppose none of these arrangements result in distinct reduction
functions.
By considering p4p1p3p2, we get p3 − a1 = p2 − a3.
By considering p2p1p3p4, we get p3 − a1 = p2 − a3 = p1 − a2.
By considering p3p2p4p1, we get p4 − a2 = p1 − a4 = p2 − a1.
By considering p2p3p1p4, we get p1 − a3 = p4 − a1.
Thus, we obtain the following set of equations: p3 − a1 = p2 − a3 = p1 − a2,
p4 − a2 = p1 − a4 = p2 − a1 and p1 − a3 = p4 − a1. From p3 − a1 = p1 − a2
and p2 − a1 = p4 − a2, we obtain p1 − p4 = p3 − p2. From p1 − a3 = p4 − a1
and p3 − a1 = p2 − a3, we obtain p2 − p1 = p3 − p4. Thus after simplifying,
p2 = p3, a contradiction.

This proves Theorem 4.3.2. 2

Theorem 4.3.3 Any t given distinct passwords can be incorporated in a
rainbow chain such that corresponding reduction functions are distinct i.e.
(pi,1, pi,2, . . . , pi,t) exists.

Proof. Consider all expressions of pj − ci mod n, 1 ≤ i, j ≤ t, i 6= j.
There are a total of t(t−1) distinct expressions of pj− ci. Construct a graph
G with t(t− 1) vertices where vj,i corresponding to pj − ci are the vertices of
the graph.

There a total of t! possible ways for the passwords to be arranged. Sup-
pose for a contradiction pi 6= pj for i 6= j and that none of these t! ar-
rangements will result in a feasible chain where the reduction functions are
distinct. Thus, there are a total of t! equations of the form pj− ci = pj′− ci′ .
However, some number of these equations might appear multiple times. We
can remove these redundancies by noting that each pj − ci = pj′ − ci′ can
repeat at most (t − 2)! times. Hence, there are at least t!

(t−2)! = t(t − 1)
distinct equations.

Next, we identity all of these t(t − 1) distinct equations. We connect
an edge between vertices vj,i and vj′,i′ if pj − ci = pj′ − ci′ . If there is a
subgraph of G with more than t connected components, then pi = pj for
some i and j, a contradiction. Hence, any subgraph of G has at most t
connected components. The resulting graph of G has t(t− 1) edges.

Suppose there are a total of k connected components. Let each of these
connected components G1, ..., Gk be subgraphs of G such that each Gi contain
ni vertices. In the most extreme case, each of these Gi graphs are complete
graphs so that they have

(
ni

2

)
edges. Since G has a total of t(t− 1) edges, we
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have that in the most extreme case that

k∑
i=1

(
ni
2

)
= t(t− 1). (4.7)

Each subgraph corresponds to ni equations. Also, there are at most 2t un-
known variables p1, ..., pt, c1, ..., ct. Hence, we get a contradiction if

∑k
i=1 ni >

2t. Thus,
∑k

i=1 ni = 2t.
Therefore, we need to handle the specific case where k = 2 and n1 = n2 =

t. In this case, we get a series of equations

pj1 − ci1 = pj2 − ci2 = · · · = pjt − cit (4.8)

and
pj′1 − ci′1 = pj′2 − ci′2 = · · · = pj′t − ci′t (4.9)

where each of {j1, . . . , jt}, {i1, . . . , it}, {j′1, . . . , j′t} and {i′1, . . . , i′t} is a per-
mutation of {1, 2, . . . , t}. By subtracting equations (4.8) from equations (4.9)
and eliminating all ci in the process, we obtain that

p1 − pσ(1) = p2 − pσ(2) = ... = pt − pσ(t) (4.10)

where σ is a permutation of {1, 2, . . . , t}. Let p1 − pσ(1) = x. Then by
summing all of the equal expressions given in equations (4.10), we get tx = 0
and so x = 0 and hence p1 = p2 =. . . = pt, a contradiction. 2

4.4 An Example

Suppose we want to recover a 7 letter password where the characters in the
keyspace consist of all the lower case letters in the alphabet and hashed by
MD5. In addition, we want to ensure that common passwords are recoverable.
Given that ”letmein”, ”abcdefg” and ”testing” are three common 7 letters
passwords, the goal is to include these passwords in rainbow chains so that
they can be recovered. Denote Hi to be the hash digest of the ith plaintext
of a rainbow chain.

Set the beginning of the rainbow chain to be the password ”testing”.
Upon hashing, the hashed value will be

H1 = ae2b1fca515949e5d54fb22b8ed95575.
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Convert this to the decimal representation and apply a reduction function
R1 to H1 where

R1(H1) = H1 + 4938209469 mod 267.

Converting R1(H1) back to the password representation will correspond
to the password ”letmein”. The next step of the chain is to hash ”letmein”.
This will result in

H2 = 0d107d09f5bbe40cade3de5c71e9e9b7.

Then, apply a reduction function R2 to H2 where

R2(H2) = H2 + 3129034064 mod 267.

Converting R2(H2) back to the password representation will correspond
to the password ”abcdefg”. Hence, this rainbow chain consists of the 3
passwords which we want to be able to recover.

4.5 Scenario of Recovering Multiple Passwords

We shall aptly refer to the inclusion of given common passwords into a rain-
bow chain as dictionary rainbow chain since many of such common user
chosen passwords are those that can found in a dictionary. Intuitively, there
does not seem to be a need for constructing a dictionary rainbow chain since
rainbow tables with very high probability of success will already seem very
likely to include dictionary words. However, this is not the case. Suppose
that an arbitrary rainbow table has a high success rate of 99.9%. The proba-
bility that all 5000 of the most common passwords is recoverable = 0.9995000

= 0.00672. Hence, without the use of a dictionary rainbow chain, it is incred-
ibly unlikely that all 5000 of such passwords can be recoverable. On the other
hand, by implementing a dictionary rainbow chain, these 5000 passwords can
be generated in a single rainbow chain. Since a typical chain length exceeds
that number, using a dictionary rainbow chain will indeed be feasible with
100% recovery rate.

For the purpose of further clarity, suppose a few passwords are allowed
to be off the radar in the rainbow table, i.e. a few passwords cannot be
recovered. We will like to find out what is the probability that 99.9% of
the 5000 passwords are still recoverable from a rainbow table with a success
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rate of 99.9%. If this probability is extremely close to 1, then generating a
dictionary rainbow chain is unnecessary since most of the passwords can be
recoverable by using the usual rainbow table. The details of the computations
are described below.

Let X be the distribution of the number of passwords that can be recov-
ered from the rainbow table. Then X ∼ B(5000, 0.999). The objective is to
evaluate the value of P (4995 ≤ X ≤ 5000).

de Moivre–Laplace theorem. As n grows large and for k in the neigh-
bourhood of np, the following approximation holds. For positive values of p
and q such that p+ q = 1,(

n

k

)
pkqn−k ≈ 1√

2πnpq
e−

(k−np)2

2npq

and the ratio of the two expressions converge to 1 as n→∞.

A proof of de Moivre–Laplace theorem can be found in [52].

Let Z be the standard normal distribution. Since we are only interested
with an approximate value, we can apply the de Moivre - Laplace theorem
to approximate X to a normal distribution Y such that Y ∼ N(4995, 4.995).
This facilitates the computations and so we can compute P (4995 ≤ X ≤
5000) with the required continuity correction in the following way.

P (4995 ≤ X ≤ 5000)

= P (X ≤ 5000)− P (X ≤ 4994)

≈ P (Y ≤ 5000.5)− P (Y ≤ 4994.5)

= P (Z ≤ 5.5√
4.995

)− P (Z ≤ − 0.5√
4.995

)

= P (Z ≤ 2.4609)− P (Z ≤ −0.2237)

= 0.582

Since P(4995 ≤ X ≤ 5000) ≈ 0.582 which is nowhere high enough to 1,
therefore generating a dictionary rainbow chain is a necessity if one wants
to recover most of the common passwords. Furthermore by doing so, all the
common passwords will be recoverable with absolute certainty.
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4.6 Construction of Chain

In this section, we describe two methods on how such chains incorporating
given passwords can be constructed. We present a deterministic method and
a probabilistic approach. For practical usage, the probabilistic approach is
more efficient.

4.6.1 Deterministic Method

Consider all expressions of pj − ci mod n, 1 ≤ i, j ≤ t, i 6= j. Construct a
t × t matrix such that the pj − ci mod n value is in the (i,j ) entry of the
matrix. Since pi − ci is undefined, we fill the main diagonal of the matrix
with zeros.

Lemma 4.6.1 (pi,1, pi,2, . . . , pi,t) exists if and only if t − 1 cells of the
matrix (none of which belongs to the main diagonal) can be selected which
satisfy the following properties:
1) All have distinct entries and no two cells belong to either the same row or
column.
2) The union of the ith row with the ith column of the matrix contain at least
one of the selected cells ∀ i.
3) No two cells are reflections along the main diagonal.

Proof. Suppose all the above 3 properties are satisfied. Then, by prop-
erty 1, the t− 1 selected cells of the matrix say (i1,j1), (i2,j2), . . . , (it−1,jt−1)
are such that all the i ’s are distinct and all the j ’s are distinct. By property
2, there exists jk such that ik does not belong to the set {i1, i2, . . . , it−1} for
some k. Then by property 3, we are able to generate the chain with pk as
the start point. Conversely, given a valid chain, if property 3 is not satisfied,
then both pi−cj mod n and pj−ci mod n are selected for some i and j. This
implies that either (pi, pj, pi) or (pj, pi, pj) exists, a contradiction. Suppose
property 2 is not satisfied, then pi will not be incorporated in the chain, a
contradiction. Suppose 2 cells are picked from the same row, say pi - aj mod
n and pi - ak mod n. However, these expressions cannot be both present in
a valid chain. The same reasoning applies to columns. This, together with
the fact that a valid chain requires distinct reduction functions which results
in distinct entries and that n− 1 reduction functions are required will imply
property 1 is satisfied. This proves Lemma 5.6.1. 2
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Now, we proceed by inductively. Then for t = k, the k × k matrix con-
tains entries which satisfy all the 3 properties above. Consider t = k + 1,
we know from inductive hypothesis that there exists a row and column with
no selected cells, say row i and column j where i 6= j. Now, we consider the
entries (i, k + 1) and (k + 1, j).

Lemma 4.6.2. If either (i, k + 1) or (k + 1, j) is distinct from the pre-
viously selected entries, we are done.

Proof. It suffices to show that this new point together with the previous
selected points will satisfy the 3 properties stated above since by lemma 1,
this will imply this selected set of entries will form a valid chain. Property
1 is trivially true by construction. Suppose row i and column j do not have
any entries selected. If the cell chosen is (i, k+1), then row k+1 and column
j will not contain any selected cells. Since k + 1 6= j, property 2 is satisfied.
A similar argument applies if the chosen cell is (k + 1, j). Again, suppose
(i, k+ 1) is the chosen cell, then obviously its reflection along the main diag-
onal (k+ 1, i) cannot be one of the selected cells. A similar argument applies
if the chosen cell is (k + 1, i). Hence, property 3 is satisfied. This proves
lemma 5.6.2. 2

Suppose not, then we identify the cell whose value is identical to one of
the previous selected. We deselect that original cell and consider the lines
formed by the now 2 ‘empty’ rows and 2 ‘empty’ columns. By ‘empty’, we
refer to no selected cells. The 2 ‘empty’ rows and columns can be viewed to
form the sides of a rectangle.

Lemma 4.6.3. We can always pick a new cell (i.e. not the one which
was just deselected) from the 3 remaining vertices of the formed rectangle
such that this cell together with the previously selected ones, satisfy proper-
ties 2 and 3.

Proof. First, we verify that the reflection of a rectangle along its main di-
agonal is still a rectangle such that its reflected edges are at right angles to
its original edges. We can translate and rotate the rectangle and its main
diagonal such that the main diagonal is a line y = x on the Cartesian plane.
Suppose that the vertices of this new rectangle are (a, b), (a, d), (c, d) and
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(c, b). Upon reflection along the line y = x, the new coordinates are (b, a),
(d, a), (d, c) and (b, c). This is a rectangle with corresponding edges at right
angles to its original edges. Next, to prove Lemma 5.6.3, we consider the
following 3 cases.

Case 1 : Main diagonal does not intersect the vertices of the rectangle.
Suppose we are unable to pick such a cell, this implies that the reflected rect-
angle has 3 of its vertices having the selected entries which is a contradiction
since no two selected entries can be in the same row or column. Hence,
property 3 is satisfied. Also, since the main diagonal does not intersect the
vertices of the rectangle, any of the vertices of the rectangle being chosen
will not violate property 2.

Case 2 : Main diagonal intersects rectangle at two of its diagonally oppo-
site vertices.
In this instance, we pick the only vertex that can be chosen. In this case,
property 2 is automatically satisfied. Property 3 is also satisfied since this
reflection of this chosen point has just been removed.

Case 3 : Main diagonal intersects rectangle at exactly one of its vertex.
Pick the chosen cell to be the vertex that is diagonally opposite to the de-
selected cell. Property 2 is then automatically satisfied. Suppose property
3 is not satisfied. This implies its reflection is one of the selected points
but the removed point is on the same row or column as this removed point.
This results in having 2 selected points in either the same row or column, a
contradiction. This proves Lemma 4.6.3. 2

If this new entry is distinct from the previous selected group of cells, we
are done since property 1 will then be satisfied. Otherwise, we repeat the
process of replacing cells having identical entries until we obtain k cells hav-
ing distinct entries. If the process continues in a periodic cycle, we can
always begin with a different starting point. The process can then be re-
peated. Eventually, the selected cells must contain distinct entries after a
finite number of steps since we have proven in the earlier theorem that such
a construction exists.

4.6.2 Probabilistic Method

There is a straightforward probabilistic method which is to incorporate pass-
words in some random order until we have arrived at one where the all the
resulting reduction functions are distinct. Since we have proven that such
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Table 4.1: Success probability of a chain construction

t n p(t, n)

5700 7 characters alphanumeric lowercase 99.9586%
10000 7 characters alphanumeric lower/upper case 99.997%
15000 8 characters alphanumeric lower/upper case 99.9999%

a chain exists, this probabilistic method is of Las Vegas type. In practice,
this is the preferred method to employ the chain construction. We detail the
reason as follows.

Let n denote the password space. Since values of ci are digests of hash
functions, they are assumed to be randomly distributed. Hence, pj − ci are
assumed to be randomly distributed. Therefore the probability that any
arrangement of t (t ≥ 3) incorporated password result in a valid chain where
the reduction functions are all distinct is given by

t−2∏
i=1

n− i
n

>

[
n− (t− 2)

n

]t−2
. (4.11)

Since n is large and t� n, the above probability expressed in (4.11) is in fact

very large. For brevity, denote p(t, n) =
[
n−(t−2)

n

]t−2
. Table 4.1 highlights

the success rate that a random arrangement of passwords incorporation will
result in a successful feasible chain for various password space in practical
settings. This shows that any single random arrangement of password order
will almost surely yield a feasible chain. As such, this is the more efficient
way of chain construction.

4.7 Evaluations

Theorem 4.3.3 shows that any t given distinct passwords can be incorporated
in a rainbow chain during the online phase construction. In this section, we
provide theoretical comparisons of the online recovery phase between the av-
erage recovery time of frequently used passwords when they are incorporated
along a chain and the recovery time when they are assigned at the start of
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the chains. Define t to be the length of rainbow chains in both instances. Let
T (t) denote the number of pairs of hash and reduction operations required
before a successful recovery for passwords assigned at the start of chains.
Let T ′(t) denote the average number of pairs of hash and reduction opera-
tions required before a successful recovery for passwords incorporated along
a chain.

T (t) ≈ 1 + 2 + 3 + · · ·+ t =
1

2
t(t+ 1).

To compute T ′(t), we need to consider the cases when the password is located
in position i counting from the next to last endpoint of the chain ∀ 1 ≤ i ≤ t.
In particular, position t corresponds to the start of chain while position 1
corresponds to the location of password just before the end of the chain. Then
the number of pairs of hashed, reduced operations required for a password
at position i can be approximated by

1 + 2 + 3 + · · ·+ i+ (t− i) =
1

2
i(i− 1) + t.

Since the desired password to be recovered is equally likely to be each position
of the chain, hence T ′(t) can be approximated by the following

T ′(t) ≈ 1

t

t∑
i=1

(t+
1

2
i(i− 1)) =

1

6
(t2 + 6t− 1). (4.12)

Clearly, T ′(t) < T (t), ∀ t > 1. Moreover,

lim
t→∞

T ′(t)

T (t)
=

1

3
.

Therefore for large chain lengths, the time taken to recover a commonly used
password is 1

3
that of the time required when such passwords are assigned at

the start points of chains. This translates to a 66.7% decrease in recovery
time for long chains.

4.7.1 Partial Chain Flexibility

In cases where the password space is enormous, typical chain lengths exceed
over ten thousand. In such instances, a user might only require only a partial
of a chain to be incorporated with frequent passwords. For example, for a
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chain length of 10000, a user might want to ensure that 5000 of the most
frequently used passwords can be guaranteed a successful recovery. We also
provide an analysis of our improvements arising in such situations.

Let T (n, t) denote the number of pairs of hash, reduction operations re-
quired before a successful recovery for passwords assigned at the start of
chains. Let T ′(n, t) denote the average number of pairs of hash, reduction
operations required before a successful recovery for passwords assigned along
the start of chains. Here, n refers to the number of frequent passwords in-
cluded at the start of the chain and t refers to the length of the the chain.
Then, we have that

T (n, t) = T (t) ≈ 1

2
t(t+ 1)

while

T ′(n, t) ≈ 1

n

t∑
i=t−n+1

(t+
1

2
i(i− 1))

=
1

n

t∑
i=1

(t+
1

2
i(i− 1))− 1

n

t−n∑
i=1

(t+
1

2
i(i− 1))

= t− 1

6
+

1

6n
[t3 − (t− n)3]

≈ t+
1

6n
[t3 − (t− n)3].

4.7.2 Generalizing Partial Chain Improvements

We wish to evaluate the improvements of utilizing the partial chains over
conventional methods. We establish the percentage improvements with re-
spect to the ratio n

t
. First, we show that that such partial chain construction

result in more efficient recovery. Recall that n, t are positive integers and
that n < t.

Corollary 4.7.1 For all n > 1,

T ′(n, t) < T (n, t)

Proof. By straightforward computations,

n > 1 =⇒ 3n(n− 1)− n2 > 0
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Figure 4.1: Number of hash evaluations against chain length

=⇒ 3t(n− 1)− n2 > 0

=⇒ t+
1

6n
[t3 − (t− n)3] <

1

2
t(t+ 1)

=⇒ T ′(n, t) < T (n, t)

2

Percentage decrease over the conventional method is given by

1− T ′(n, t)

T (n, t)
≈ n

t
− 1

3

(n
t

)2
.

4.8 Results

We highlight the results of our technique in this section. In Figure 4.1, the
orange curve represents the usual method of inserting frequent passwords
at the start of chains while the blue curve represents our improvements. In
Figure 4.2, the chain length is varied together with the number of common
passwords to be recovered. The orange surface represents the usual method
while the blue surface represents our improvements. As can be seen, our
method results in significant improvements with regards to the number of
hashes needed to be computed before a successful recovery. This directly
translates to a corresponding reduction in recovery time. Tables 4.2 and 4.3
highlight the explicit improvements.

Table 4.2 shows that for typical large chain lengths, the decrease in the
number of hash evaluations required is about 66.7%. Table 4.3 shows that
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Figure 4.2: Number of hash evaluations against chain length and number of
passwords

Table 4.2: Percentage decrease in the number of hash computations

t T (t) T ′(t) % decrease

10000 5.0 × 107 1.668 × 107 66.65%
15000 1.125 × 108 3.75 × 107 66.656%
20000 2.0 × 108 6.669 × 107 66.658%
25000 3.125 × 108 1.042 × 108 66.66%

Table 4.3: Percentage decrease in the number of hash computations

n t T (n, t) T ′(n, t) % decrease

5000 6000 1.8 × 107 7.173 × 106 60.15%
10000 12000 7.2 × 107 2.868 × 107 60.17%
15000 18000 1.62 × 108 6.452 × 107 60.17%
20000 24000 2.88 × 108 1.147 × 108 60.17%
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when the number of frequently used passwords inserted is 5
6

of the chain
length, the decrease in the number of hash evaluations required is about
60%.

4.9 Conclusion

As the success rate of inverting a given hash using rainbow tables is not 100%,
it is inevitable that such frequently used passwords cannot be recovered aside
from performing an exhaustive search. This can be resolved by assigning
them to the start points of rainbow chains. We prove that it is also possible
to incorporate such frequently used passwords along a rainbow chain. This
can be achieved regardless of the type of hash applied. Moreover, we proceed
to show that this method of incorporation enables a faster online recovery
time as opposed to a canonical way of assigning them at the start of chains.
For long chains, the online running time to recover these passwords is on
average shortened to a factor of 1

3
. We also show our technique also offers

flexibility improvements when the passwords are incorporated only along a
fraction of the chain. In the case when 5

6
of the rainbow chain is incorporated

with given passwords, our result translates to an improvements of about 60%
decrease in recovery time.
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Chapter 5

Concluding Remarks

The bound for the generic hardness of discrete logarithm problem was first
derived by Shoup. Kuhn and Struik then obtained lower bounds for solving
1 out of n instances of the discrete logarithm problem based on that result.
Yun provided an extended result of Shoup in obtaining the hardness bound
for the multiple discrete logarithm problem. Our work can be regarded as a
generalization of the results by Yun. Figure 5.1 provides a summary of known
bounds for various settings of the classical discrete logarithm problem. Our
techniques are also applicable to obtain similar bounds for other variations
of the DLP.

Figure 5.1: Known bounds for the classical DLP

85



Splitting systems are useful tools to tackle types of low Hamming weight
discrete logarithm problems. Coppersmith splitting system is particularly ef-
fective at solving the standard low Hamming weight discrete logarithm prob-
lem. However, CSS is less efficient at handling DLP with LHWP exponents.
Kim and Cheon introduced PSS to obtain better results for this particular
type of problem. We introduce PDSS and show that for parameters satisfy-
ing certain conditions required by PDSS, improved results over PSS can be
achieved. We characterize certain classes of conditions required by PDSS to
obtain such improvements. It will be interesting to consider if other charac-
terizations exist which can also similarly offer improvements over PSS. Apart
from cryptographic applications, this might also be of independent interest
in discrete mathematics and Combinatorics.

The introduction of Hellman tables has enabled the computations of
preimages of one way functions like cryptographic hash functions via a time-
memory trade-off approach. The subsequent development of rainbow tables
has since given rise to improved trade-off efficiencies. One particular impor-
tant application of such rainbow tables is the decryption of password hashes.
Rainbow tables serve as a powerful tool to uncover the passwords inputs of
given cryptographic hash digests. However, an inherent feature of rainbow
tables is that this method does not ensure a successful recovery. In this thesis,
we demonstrate that certain sets of predetermined passwords can in fact be
incorporated during the generation of the rainbow tables. Furthermore, we
showed that this design of rainbow tables provide an advantage over earlier
works.
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