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Abstract

An active galactic nucleus (AGN) is a galactic central region that exhibits intense activity being

powered by mass accretion onto a supermassive black hole. Its energy output plays a significant

role in the formation and evolution of the host galaxy. This central engine is considered to be

surrounded by a dusty structure like a torus (AGN torus). The anisotropy of the torus is a

key factor in understanding widely diverging appearances of AGNs. When an AGN is observed

from the direction parallel to its torus axis, broad optical emission lines that originate from

the vicinity of the nucleus are directly seen, and the AGN is recognized as type-1. When the

AGN is viewed from the direction perpendicular to the axis, the broad lines are obscured by the

extinction within the torus, only narrow optical emission lines originating from a region above

the torus are observed, and the AGN is recognized as type-2. This viewing angle effect is the

fundamental concept of the unification scheme of AGNs. Many modifications and extensions

of this basic picture have been proposed to explain complicated characteristics of AGNs with

different luminosities and multi-wavelength properties. In any case, at least it is certain that

some anisotropic structure exists at the center of an AGN. For the establishment of a unified

understanding of AGNs, it is essential to observe and investigate physical states and structures

of AGN tori in a large sample including AGNs of different properties. However, the small

parsec-scale sizes of AGN tori make it tough to perform spatially-resolved direct observations.

The strategy in this thesis is near-infrared spectroscopy of the CO fundamental rotational-

vibrational absorption band centered at 4.67 µm. If a torus is viewed edge-on, using the bright

near-infrared dust emission from the central region as the background continuum, we can ex-

pect to observe the foreground torus with an effectively high spatial resolution owing to the

compactness of the continuum source. The aim of this thesis is to demonstrate the effective-

ness of the CO absorption as a probe of a putative AGN torus and use it to investigate torus

properties in galaxies of different luminosities and optical classifications. The Infrared Camera

(IRC) onboard the AKARI satellite enables unique observations of the CO absorption even in

less-luminous galaxies of infrared luminosities of 1011 L� or less. Its near-infrared grism spec-

troscopy covers wavelengths from 2.5 to 5.0 µm with a spectral resolution of about 100 and has

a 1σ sensitivity of 0.5 mJy.

However, the IRC near-infrared spectrum is problematic at wavelengths longer than 4.9 µm

being contaminated by the diffracted second-order light, which prevents the accurate flux cali-

iii



iv

bration in that range. To utilize the IRC observations for our study, we corrected for the effect

of the contamination.

First, we fixed the artifact in the observations that had been conducted during the cryogenic

phase of the satellite. The IRC wavelength calibration was revised by considering a higher-

order effect caused by the wavelength dependence of the refractive index of the grism material.

The new wavelength calibration revealed that the contamination occurs due to the nonlinearity

arising from the refractive index, even if the order-sorting filter coated on the grism perfectly

cuts off wavelengths shorter than 2.5 µm. The spectral responses from the first- and second-

order light were simultaneously obtained by using standard objects of red and blue spectra,

which leads contrastive strengths of the contamination. With the new responses, the first- and

second-order light mixing in 4.9–5.0 µm were quantitatively decomposed for the first time.

We then proceeded to the post-cryogenic phase, during which the detector temperature

had gradually increased. The revised wavelength calibration curve in the post-cryogenic phase

was found to be consistent with that in the cryogenic phase and not to have any significant

temperature dependence. The response from the first-order light was found to be smaller than

that in the cryogenic phase by a factor of 0.7. The decline of the response during the period

was evaluated to be 10%. The relative strength of the contaminating second-order light to the

first-order spectrum was found to be smaller than that in the cryogenic phase by 25%, reflecting

the degradation of the point-spread function around 2.5µm relevant to the contaminated range.

Next, using spectroscopic observations with the AKARI and Spitzer satellites, we analyzed

band profiles of the CO absorption in nearby ten AGNs, which had been known to show the

feature, by fitting a plane-parallel local thermal equilibrium gas model. The CO gas was found

to be warm (200–500 K) and to have a large column density (NH & 1023 cm−2). The heating

of the gas is not explicable by either UV heating or shock heating because these processes

cannot represent the observed large column densities. Instead, X-ray radiation from the nuclei

is the most convincing candidate because it can produce large columns of warm gas of up

to NH ∼ 1024 cm−2. Based on the adoption of the CO abundance of CO/H = 10−4, the

hydrogen column density estimated from the CO band was smaller than that inferred from X-

ray observations. These results can be explained that the region probed by the near-infrared

CO absorption is in the vicinity of the nuclei and is located outside the X-ray emitting region.

Furthermore, the almost unity covering factors required by the observed deep absorption profiles

suggest that the probed region is close to the continuum source, which can be designated as the

inner rim of the obscuring material around the AGNs.

Being motivated by the above result, we performed a systematic analysis of the CO band

with a larger sample that includes less-luminous infrared galaxies. Nearby 47 infrared galaxies

were selected from the AKARI post-cryogenic observations without any prior information on the

presence or absence of the CO feature. Their band profiles were compared in different luminosity

classes and optical classifications. Many of the sample galaxies showed warm large-column gas

of NCO & 1019 cm−2 and TCO ∼ several × 102 K, which can be considered to be heated by X-

rays. High-luminosity galaxies (> 1011 L�) showed deeper absorption profiles than less-luminous

galaxies (< 1011 L�). We found that the fraction of galaxies with NCO > 1019 cm−2 had a peak
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at a 14 µm monochromatic luminosity of 1010 L�, being consistent with the obscured fraction

measured in X-ray observations. Based on this result, the obscuring material observed in X-rays

is being identified to be molecular gas. We also found that AGN-starburst composites had on

average larger NCO than Seyfert 2 galaxies. This result can be interpreted that the obscuration

by an AGN torus is also effective in composites and that the torus is geometrically thicker in

composites than in typical Seyfert galaxies. This picture is qualitatively consistent with the

connection that supernovae in the circum-nuclear disk inflate the scale height of the torus.

Our studies indicate that warm molecular gas with a large column density exists in the

vicinity of AGNs and that such gas has properties common to the obscuring material observed

in X-rays. These results suggest that the anisotropic structure around an AGN consists of

molecular gas, agreeing with the AGN unified model.
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Chapter 1
Introduction

This chapter introduces basic information of the topics of this thesis. First, fundamental aspects

of active galactic nuclei (AGNs) and the diversity among them are explained. Next, the unifi-

cation scheme of AGNs and its key element, the AGN torus, are described. After mentioning

various approaches to observe an AGN torus, we show our observation strategy. Finally, we

state the aim of this thesis.

1.1 Active Galactic Nuclei (AGNs)

Almost every galaxy possesses a black hole whose mass is far larger than the stellar scale (106–

1010 M�) in its central region. It is remarkable that the mass of such a supermassive black hole

(SMBH) tightly correlates with that of the spheroid part of the host galaxy (Magorrian et al.

1998; Marconi & Hunt 2003). This relation indicates that a galaxy forms and evolves being

interacting with its SMBH. Some SMBHs exhibit intense activity by releasing the gravitational

energy of accreting mass, and their luminosities are comparable to that of the host galaxies.

Their radiative energy in the optical, ultra-violet (UV), and X-ray is absorbed and reproduced

in the infrared (IR) by interstellar dust and leads high IR luminosities. These powerful central

engines are called as active galactic nuclei (AGNs). Many studies propose that the energy output

from an AGN plays as feedback into the evolution of the host galaxy in various ways as reviewed

by Fabian (2012).

AGNs show a wide diversity in observational characteristics. The difference in optical prop-

erties has been studied since the oldest. AGNs are primary classified into those with and without

broad (FWHM1 ∼ 103–104 km s−1) emission lines in their optical spectra, and the two groups

are called as type-1 and -2, respectively (Khachikian & Weedman 1974). Type-1 AGNs show

both broad permitted lines and narrow (FWHM ∼ 102–103 km s−1) forbidden lines while type-2

AGNs show only narrow lines. More detailed classifications are described below.

Seyfert Galaxies Seyfert galaxies are AGNs with relatively low nuclear optical luminosity in

the range of 1042–1046 erg s−1. Seyfert galaxies are divided into two groups, Seyfert 1s (Sy1s)

1Full width at the half maximum.

1
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and Seyfert 2s (Sy2s), in the same way for type-1 and -2 AGNs. The number ratio of Sy2s to

Sy1s in the local universe is 3–5 (Maia et al. 2003; Lu et al. 2010). There are more intermediate

subgroups are defined between the two types, Seyfert 1.2, 1.5, 1.8, 1.9, based on the appearance

of Balmer emission lines (Osterbrock 1977, 1981). Some Sy2s exhibit Sy1-like broad lines in the

linearly-polarized spectrum (e.g., NGC 1068; Antonucci & Miller 1985). Such Sy2s are called

hidden Seyfert 1 or prototypical Seyfert 2 while the others are recognized to have a “true” type-2

AGN.

Quasars Quasar is a class of AGNs that show the highest nuclear luminosities over 1046 erg s−1.

Because of the extremely high nuclear brightness, quasars appear stellar-like with their host

galaxies barely seen. The optical spectrum of quasars resembles that of Seyferts, but the num-

ber ratio of type-1 to type-2 quasars in the local universe is ∼ 1 (Reyes et al. 2008).

LINERs Low-ionization nuclear emission-line regions (LINERs) are characterized with the

lowest luminosity less than 1042 erg s−1 and emission lines of low-ionization species (Heckman

1980). LINERs are distinguished from Seyferts and star formation dominated galaxies (H ii

galaxies) by diagnostics of flux ratios of optical lines (e.g., Baldwin et al. 1981; Kewley et al.

2001).

1.2 AGN Unification Scheme and AGN Torus

The fact that some type-2 AGNs show polarized broad emission lines indicates that the two

types of AGNs are intrinsically the same or at least share common properties. This implication

motivates the unification of different appearance of AGNs. The fundamental unification scheme

called AGN unified model was proposed by Antonucci & Miller (1985) and Antonucci (1993).

This model assumes the existence of an optically and geometrically thick torus-shaped molecular

cloud (AGN torus) and explains the discrepancy of the two types as a viewing angle effect

caused by the torus around the central engine. Figure 1.1 shows a schematic view of this model.

The torus surrounds an central engine. Clouds that emit broad lines (broad line regions) are

distributed in the funnel of the torus while those emit narrow lines (narrow line regions) are

above the torus. Broad lines are directly observed if the torus is face-on against the line of

sight. When the torus is edge-on, broad lines are not directly seen by the extinction within the

torus but can be observed if they are scattered by hot electrons existing above the torus. The

observed linear polarization supports this path of hidden broad lines (Antonucci & Miller 1985).

The outer radius of the torus is estimated to be an order of 10 pc or less from IR spectral energy

distribution (SED) analyses (Alonso-Herrero et al. 2011; Ramos Almeida et al. 2014; Ichikawa

et al. 2015). The inner radius of the torus is depending on the nuclear luminosity and measured

to be an order of 0.1 pc for 1044 erg s−1 from dust reverberation mappings (Kishimoto et al.

2007; Kawaguchi & Mori 2010, 2011). IR SED analyses and dust reverberation mappings are

explained in Section 1.3.

Based on this concept, many modifications and extensions have been proposed (Netzer 2015).
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Figure 1.1: Conceptual picture of the AGN unified model.

Clumpy Torus Model Today it is widely accepted that the distribution of gas in the torus is

clumpy rather than smooth. This idea, first proposed by Krolik & Begelman (1988), is called as

clumpy torus model. The number fraction of type-1 to type-2 AGNs indicates that the aspect

ratio of the torus is close to unity. Such a thick gas distribution requires a velocity dispersion

along the torus axis comparable to the orbital velocity (∼ 102 km s−1; Krolik & Begelman 1988).

Such a large dispersion is not explainable as a thermal velocity because the dust cannot survive

over the sublimation temperature (1500 K; Barvainis 1987). Hence the velocity dispersion is

highly likely that between gas clumps within which the temperature does not exceed 1500 K.

Besides, numerical simulations based on the assumption of the smooth distribution does not

always represent the behavior of the mid-IR 10 micron silicate dust feature (Pier & Krolik 1992).

Many simulation codes based on the clumpy distribution have been developed (e.g., Nenkova

et al. 2008a,b; Schartmann et al. 2008; Hönig & Kishimoto 2010), and they successfully represent

the silicate feature.

Receding Torus Model If we define the torus structure by the region where dust abundantly

exists, the inner rim of the torus can be considered as the layer where dust grains sublimate.

Because the incident flux that results in the sublimation temperature is constant, the inner radius

is proportional to the square root of the nuclear luminosity. This model was first suggested by

Lawrence (1991) and is called the receding torus model. This concept is supported by an

observational fact that the ratio of the number of type-2 AGNs to the total number of all AGNs,

which can be assumed as the solid angle fraction covered by a torus, decreases with increasing

luminosity when the numbers are counted in optical and IR surveys (Simpson 2005; Toba et al.
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2013, 2014). The obscured fraction (fraction of type-2 AGNs) observed in X-rays also decreases

as a function of X-ray luminosities (Ueda et al. 2003; Lusso et al. 2013), but some authors argue

that the fraction has a peak at a certain luminosity (Brightman & Nandra 2011a; Burlon et al.

2011). If the latter dependence in low luminosities is true, it suggests that in such low-luminosity

AGNs some physical mechanisms other than the radiative energy input control the innermost

structure of the tori.

Torus Geometry The geometry of AGN tori is not necessarily constant and is important

to understand the diversity of AGNs. Prototypical type-2 AGNs (hidden type-1 AGNs) are

suggested to have AGN tori of smaller opening angles and taller thicknesses (i.e., scale heights

along the torus axis) than true type-2 AGNs do, based on an IR SED analysis (Ichikawa et al.

2015). In that case, the absence of broad polarized lines can be explained by the combination of a

reduced volume of the scattering medium and a decreasing chance to escape from the scattering

medium to outside the torus due to blocking by the tall wall of the torus. Additionally, the new

class of AGNs that are almost entirely enshrouded by dust have been discovered (e.g., Ueda

et al. 2007). These results indicate that the torus geometry has a wide variety.

Formation of the Torus It is a critical problem how to form and maintain the geometrically

thick torus structure. One explanation is radiative pressure with the help of nuclear star-

forming activity to enhance the accretion rate suggested by the three-dimensional hydrodynamic

simulations by Wada (2012). His model, which calculates the X-ray heating and radiation

pressure on the gas by a ray-tracing method, found that the radiative feedback drives a vertically

circulating gas flow within the central tens parsecs and realize internal turbulent motion of

large scale height. His model also implies that to maintain the geometrically thick structure

for millions of years the mass accretion rate into the center needs to be enhanced by other

mechanisms, such as supernova explosions (Wada & Norman 2002; Wada et al. 2009; Izumi

et al. 2016) and stellar mass loss (Schartmann et al. 2010) in the surrounding environment.

This is an example of a link between the torus formation and nuclear star formation.

1.3 Observations of the Torus

To understand the characteristics of AGNs, it is important to observe AGN tori and verify

the AGN unified model. To overcome the too small size of the torus for observations, many

approaches have been attempted. Some of them are introduced here.

Interferometric Observations Long baseline interferometry can realize the highest-class

milliarcsecond angular resolution. Garćıa-Burillo et al. (2016) mapped the emission of the

CO(6–5) emission line and the 432 µm continuum from the nearby Sy2 galaxy NGC 1068

(luminosity distance DL = 14 Mpc) with the Atacama Large Millimeter Array (ALMA) Cycle

2. Their observation achieved a resolution of ∼ 4 pc and successfully resolved out a 7–10 pc sized

putative torus. Imanishi et al. (2016) also observed NGC 1068 with ALMA but at HCN J = 3–2
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and HCO+ J = 3–2 lines and also imaged the putative torus. Tristram et al. (2014) observed the

closest Sy2 galaxy Circinus galaxy with the MID-infrared Interferometric instrument at the Very

Large Telescope Interferometer. They modeled the observed data assuming blackbody emitters

with dust extinction and found two distinct components, a disk-like component of 1.1 pc width

and an elongated polar component of 1.9 pc length, which possibly represent a small torus and

a polar outflow. These radio and mid-IR interferometric observations succeeded in resolving the

putative torus. However, the sample is limited to the closest sources. The angular resolution of

these observations is still somewhat inadequate for a systematic study.

Infrared SED Analysis By fitting the IR SED with a prediction by a torus model, one

can restrict the parameters of the model and estimate the torus geometry. In particular, the

10 µm silicate dust emission or absorption strongly constraints the model because it changes

acutely with respect to the inclination of the torus and the amount of dust. Many studies in

this approach have been conducted using clumpy torus models, and they revealed intrinsically

different geometries between type-1 and -2 AGNs or between luminosity classes (e.g., Alonso-

Herrero et al. 2011; Ramos Almeida et al. 2011, 2014; Ichikawa et al. 2015). However, this

method cannot be straightforwardly adopted for galaxies that have a significant contribution

from starburst activity because the AGN and starburst components in the SED are difficult to

be decomposed.

X-Ray SED Analysis The X-ray spectrum of AGNs is characterized by a component of

(absorbed) primal continuum emission, a hump of scattered light around 30 keV, the iron 6.4 keV

line (Risaliti & Elvis 2004). The torus geometry and inclination are determined by decomposing

these components. Some examples are Ueda et al. (2003); Brightman & Nandra (2011b); Burlon

et al. (2011); Lusso et al. (2013). The results of X-ray spectral analyses are, however, severely

model-dependent in heavily obscured AGNs because such objects do not provide sufficient counts

during observations.

Reverberation Mapping Reverberation mapping is a technique to measure the inner radius

of an AGN torus from the time lag from optical/UV flux variations to the following near-IR

variations caused by the dust heated by the prior variation. Suganuma et al. (2006) measured

and collected lag times between the flux variation of the optical continuum in the V band and

that of the dust emission in the K band in nine Sy1 galaxies and found that the lag times are

proportional to the square root of the optical luminosity as predicted by the receding torus.

Though, the inner radii of the tori estimated by multiplying the lag times by the light speed are

systematically smaller than the dust sublimation radii by a factor of 1/3 (Kishimoto et al. 2007).

Kawaguchi & Mori (2010) explained this deviation by a dust sublimation layer that is concave

and smoothly connected to the accretion disk in the equatorial plane due to anisotropic radiation

of the accretion disk. As exampled above, the dust reverberation mapping can investigate the

inner boundary of an AGN torus. However, it cannot obtain information on physical conditions

of warm gas near the inner rim of the torus.
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1.4 Spectroscopy of Near-IR Absorption

Our strategy to observe an AGN torus is spectroscopy of a near-IR absorption feature. Figure 1.2

schematically illustrates the concept of this approach. If the torus is viewed edge-on, using the

bright near-IR radiation from the central region as the background continuum, we can observe

foreground molecular gas clouds with an effectively high spatial resolution of parsec-scale owing

to the compactness of the near-IR emitting region. We here describe the method in detail and

review prior observations.

Figure 1.2: Schematic picture of the observation method of the near-IR absorption spec-
troscopy.

1.4.1 CO Fundamental Ro-Vibrational Transition

As an absorption feature to probe AGN tori, we propose that the fundamental rotational-

vibrational transition of a CO molecule centered at 4.67 µm is the most effective because it

provides us with much physical information. Figure 1.3 shows the energy diagram of this tran-

sition. Electric dipole transitions are restricted by selection rules asv = 1← 0,

∆J = ±1.
(1.1)

The two branches of ∆J = +1 and −1 are named R- and P -branches, respectively. Due to

the far different energy scales between the vibrational levels and rotational levels, this band

contains multiple lines of a nearly constant interval associated with different rotation levels in a

narrow wavelength range. Some calculated model spectra (Cami 2002) are shown in Figure 1.4.

The CO band profile becomes deeper with increasing CO column density and becomes wider

with increasing temperature. Increasing turbulent velocity changes each line broader. As these

model spectra show, we can easily obtain information on the gas amount and gas excitation
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state from one observation. In this respect, the near-IR CO absorption band is preferable to the

(sub-)millimeter CO pure rotational emission lines, which are easily affected by contamination

from the host galaxy and cannot be observed simultaneously.

Figure 1.3: Energy diagram of the CO fundamental ro-vibrational transition.

1.4.2 Previous Studies

There are only a few previous studies that analyzed the CO absorption in AGNs. Geballe

et al. (2006) and Shirahata et al. (2013, hereafter S13) observed the absorption band toward

the heavily obscured ultra-luminous infrared galaxy (ULIRG2) IRAS 08572+3915 using the

United Kingdom 3.8-m Infrared Telescope (UKIRT) and the 8.2-m Subaru telescope, respec-

tively. Strong absorption lines were detected up to high rotational levels (J ≤ 17), with the

resulting population diagram showing the presence of large columns of warm molecular gas in

the line of sight. Spoon et al. (2004, hereafter S04) observed another obscured ULIRG IRAS

00182−7112 using the Spitzer Space Telescope (Werner et al. 2004) and also detected strong CO

absorption. Although their observation did not resolve the multiple lines owing to insufficient

spectral resolution, they analyzed the entire absorption profile using a plane-parallel local ther-

mal equilibrium (LTE) gas model (Cami 2002) and also found that the gas is warm and has

a large column density. Spoon et al. (2005) reported that other three ULIRGs observed with

Spitzer also show the CO absorption, but their spectra have not been analyzed in detail yet.

Based on the high temperatures and large column densities, both S13 and S04 argued that the

2ULIRGs are defined as the galaxies that have IR (8–1000 µm) luminosities of LIR > 1012 L�. Similarly, the
galaxies of 1011 < LIR < 1012 L� and LIR < 1011 L� are called LIRGs and IRGs, respectively.
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Figure 1.4: Model spectra of the CO fundamental ro-vibrational absorption lines. A single
component gas that has homogeneous temperature and turbulent velocity is assumed. Each
model is calculated at the CO column density, temperature, and turbulent velocity written at
the right bottom corner. The three panels other than the upper left one show the results when
only one parameter is changed from the upper left model.

observed gas should be in the vicinity of the dominant nuclear power source. S13 additionally

proposed that the warm gas is heated by X-ray radiation from an AGN engine.

This CO absorption feature, however, does not always appear in all type-2 AGNs, in which

the putative torus should be seen edge-on. Lutz et al. (2004) observed nearby 19 type-1 and

12 type-2 AGNs using the Infrared Space Observatory (ISO ; Kessler et al. 1996), but none

of them showed the CO feature. Lahuis et al. (2007) detected similar warm molecular gas

toward obscured U/LIRGs through the mid-IR absorption bands of C2H2, HCN, and CO2 but

concluded that the gas is unlikely to be associated with the material surrounding AGNs because

these molecules would be rapidly destroyed in an intense X-ray field. The two above studies

controvert the hypothesis that CO absorption probes warm gas near the central region.

We assume that the reason for the small number of the analysis of the CO absorption in

AGNs is due to severe constraints for observations. In a ground-based observation with Subaru

like S13, the target must be brighter than ∼ 100 mJy at 5 µm for one-night observation, and

must be in the redshift range of z < 0.13 so that the CO feature is captured in M -band. Because

the wavelengths coverage of Spitzer starts from 5.2 µm to longer, observable AGNs are more

distant than z = 0.11 and consequently limited to high-luminosity ones, roughly speaking, the

ULIRG-class ones. If the ULIRG IRAS 00182−7112 (z = 0.327, LIR = 8 × 1012 L�) were a

LIRG of LIR = 1× 1011 L�, its flux density at the CO absorption would be ∼ 0.3 mJy, which is

below the 5σ sensitivity of Spitzer for 512-second integration (IRS Instrument Team and Science

User Support Team 2011). The 1σ sensitivity of the ISOPHOT-S on board ISO for 256-second
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integration is 26 mJy (Klaas et al. 1997).

The unique observation that overcomes those severe constraints is the near-IR spectroscopy

with the AKARI satellite. This spectroscopy covers wavelengths from 2.5 to 5.0 µm with a

spectral resolution of ∼ 100 and has a 1σ sensitivity of 0.5 mJy (Section 2.1.2). In fact, several

authors have detected the CO absorption in the AKARI spectra of AGNs (Imanishi et al. 2008,

2010; Ichikawa et al. 2014; Kim et al. 2015). The AKARI near-IR spectroscopy has a potential

for a systematic analysis of the CO absorption with a large sample that includes galaxies in a

wide luminosity range and galaxies of different optical classifications. However, the absorption

profiles found in the AKARI spectra have never been analyzed in detail so far. The reason

may be because the AKARI spectrum at wavelengths longer than 4.9 µm is problematic being

contaminated by the diffracted second-order light, which prevents the accurate flux calibration

in that range (Onaka et al. 2009). This artifact distorts the CO absorption profile from the

correct shape.

1.5 The Aim of This Thesis

The aim of this thesis is to demonstrate the effectiveness of the CO absorption as a probe of

the AGN torus and use it to investigate torus properties in galaxies of different luminosities and

optical classifications. For this purpose, we by ourselves correct the AKARI observations for

the effect of the contamination.

1.6 Outline of This Thesis

In the series of studies compiled in this theses, we solved the problem of the AKARI near-IR

spectroscopy by ourselves and then analyzed the CO absorption in nearby AGNs to discuss the

physical condition and geometrical structure of AGN tori. Chapter 2 explains the telescopes used

in this thesis their roles in our analysis. Chapters 3 and 4 show the revision of the calibration of

the AKARI spectroscopy. Chapters 5 and 6 present the results of the analysis of the CO band

and discussion on them. Finally, in Chapter 7, we conclude the achievement of this thesis.
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Chapter 2
Telescopes

In this study, we mainly used observed data obtained with three space telescopes: AKARI,

Spitzer, and WISE. The current study requires continuous near-IR spectra in 4–6 µm of AGNs

down to low luminosity classes for a systematic analysis of the CO ro-vibrational absorption band

centered at λrest = 4.67 µm. The AKARI satellite has a unique capability for such spectroscopy.

However, since its spectral coverage is only up to 5 µm, it does not provide information on

the continuum level at longer wavelengths of the CO band. For the reliable determination of

continuum levels over the CO absorption, complementary spectra at wavelengths longer than

5 µm are needed. The Spitzer Space Telescope is useful for this requirement. Since the two

telescopes have different aperture sizes, it is necessary to match the fluxes of the two spectra

based on a consistent reference in determining continuum levels in order to cancel possible missed

flux. The photometric measurement by WISE at four bands, which lie within the coverages of

AKARI and Spitzer, can be used as the reference points for the scaling of the two spectra. This

chapter briefly describes basic information of these telescopes.

2.1 AKARI

2.1.1 Mission Overview

AKARI is the Japanese first satellite dedicated to IR astronomy launched on 2006 February 21

(Murakami et al. 2007). The primal mission goal is to update the IR all-sky atlas produced by the

previous IRAS satellite (Neugebauer et al. 1984) with a wider wavelength coverage and higher

angular resolutions and sensitivities. AKARI carried out an all-sky survey in six bands centered

at 9, 18, 65, 90, 100, and 160 µm using a 68.5-cm telescope and two focal-plane instruments: the

Infrared Camera (IRC; Onaka et al. 2007) and the Far-Infrared Surveyor (FIS; Kawada et al.

2007). The IRC performed near- to mid-IR observations and was in charge of the two bands

of the shortest wavelengths of the survey. The FIS conducted far-IR observations including the

mapping at the other four bands. The angular resolutions of the survey are about 4′′–7′′ for the

bands of the IRC (Onaka et al. 2007) and about 40′′–60′′ for those of the FIS (Kawada et al.

2007). These are more than five times superior to the IRAS ones.

11
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The satellite’s orbit was a Sun-synchronous polar orbit of a 700-km altitude. To enable mid-

to far-IR observations, the satellite was cooled down both by liquid helium and by mechanical

cryocoolers (Nakagawa et al. 2007). The liquid helium was 179 litters at the launch to be used up

to 500 days on the orbit. Until the exhaustion of the cryogen, the temperature of the telescope

and the instruments were kept to cryogenic temperatures.

2.1.2 Near-IR Spectroscopy

In addition to the all-sky survey, a lot of pointed observations were carried out. The IRC

consists of three channels named NIR, MIR-S, MIR-L. The NIR and MIR-S/L channels are

dedicated to the near- and mid-IR ranges, respectively, and each of them is capable of imaging

and spectroscopic observations. It is remarkable that the grism spectroscopy in the NIR channel

is a unique capability not available from other telescopes. It covers wavelengths from 2.5 to

5.0 µm, and its sensitivity is 0.5 mJy at 5 µm for 1σ per pointing. These continuous wavelength

coverage and low detection limit are not available in ground-based observations being affected

by the atmosphere and indispensable for the systematic study of the CO absorption. Although

the Infrared Space Observatory (ISO ; Kessler et al. 1996) also carried out near-IR spectroscopic

observations in space, those observations were limited to bright sources of a few Jy. The grism

mode has a spectral resolution of R = λ/∆λ = 120 at 3.6 µm(Ohyama et al. 2007), which

is adequate to analyze absorption profiles of the CO ro-vibrational band in Chapters 5 and

6. Although the NIR channel is also capable of prism spectroscopy, its spectral resolution is

relatively low (R = 19 at 3.5 µm; Ohyama et al. 2007), and there are less number of observations

of AGNs performed in the prism mode.

The AKARI near-IR grism spectroscopy is the best opportunity for our purpose. However,

a problem was known for the grism mode that its spectrum has blue-leak (i.e., the diffracted

first-order spectrum is contaminated by the second-order light at longer wavelengths). This

contamination prevented the accurate flux calibration at wavelengths longer than 4.9 µm and

had not been fixed. Because the CO absorption band in nearby AGNs appears at the problematic

range due to redshift, it is essential to correct for the contamination. Thus we at first established

a method to correct for the effect of the contamination (Chapters 3 and 4).

2.1.3 Observational Phases

The period of the AKARI mission is divided into some phases based on cooling conditions. The

definitions are summarized in Table 2.1. The first two months from the launch was a phase for

performance verification on the orbit (PV phase). After that began a 6-month period primarily

dedicated for the survey observation (Phase 1), and then followed the remaining cryogenic

phase (Phase 2), during which extensive mapping observations and an increasing number of

pointed observations up to the far-IR range were carried out. In this thesis, Phases 1 and 2 are

collectively called as the cryogenic phase. After the liquid helium depleted on 2007 August 26, the

temperature of the satellite began increasing. After a 9-month performance verification (PV2),

the post-cryogenic science observations were started using only the IRC. Phase 3 is sometimes
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called as the post-cryogenic phase in this thesis. Figure 2.1 shows the variation of the detector

temperature of the NIR channel. The temperature had been kept to 10 K until the exhaustion

of the cryogen, raised to 41 K before the beginning of Phase 3, and gradually increased to

47 K during that phase. This temperature change affects the performance of the grism mode

spectroscopy and should be taken into consideration in the correction for the contaminating

second-order light.

During Phase 3, although the operation temperature was not stable and the detector sensi-

tivity was lower than that during Phases 1 and 2, many LIRGs and IRG were observed in the

NIR grism mode. As mentioned in Chapter 1, such low-luminosity galaxies cannot be reliably

observed by Spitzer/IRS. For a systematic study of the CO band, the AKARI post-cryogenic

observations and the corrected calibration for those observations are necessary.

Table 2.1: Definition of sub-phases and corresponding temperature ranges

Phase Date

PV 2006 Feb 21 – 2006 May 7

Phase 1 2006 May 8 – 2006 Nov 7

Phase 2 2006 Nov 8 – 2007 Aug 26

PV2 2007 Aug 26 – 2008 May 31

Phase 3 2008 Jun 1 – 2010 Feb 15
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Figure 2.1: Temperature variation of the detector of the NIR channel during Phases 1, 2, and
3.

2.2 Spitzer

The Spitzer Space Telescope is the infrared space observatory launched by National Aeronautics

and Space Administration (NASA) on 2003 August 25 (Werner et al. 2004). Spitzer performed

a lot of pointed observations from a unique Earth-trailing solar orbit with an 85-cm telescope.
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One of the focal plane instruments incorporated to Spitzer is the Infrared Spectrograph

(IRS; Houck et al. 2004). The IRS consists of four separated modules of different wavelength

coverages and spectral resolutions: Short-Low (SL), Short-High (SH), Long-Low (LL), and Long-

High (LH). While the SH and LH modules cover a continuous wavelength range of 10–37 µm

with a resolution of ∼600, the SL and LL modules cover a wider range of 5.2–38 µm with a

varying resolution of 80–128. Although the spectrum that can be obtained with the latter two

modules is inferior in resolution to that from the former two, its coverage near to the position

of the CO band is useful for the following studies. Practically, its resolution is adequate for

analyses of dust features such as PAH emissions or the 9.7 µm silicate dust absorption. The 1σ

continuum sensitivity of the SL module at 6 µm for 512-second integration is about 0.05 mJy

(IRS Instrument Team and Science User Support Team 2011).

The two low-resolution modules use separated slits, and each of them observes the first- and

second-order spectra using subslits contained in the respective slit. The slit sizes are summarized

in Table 2.2. Hence the IRS low-resolution full-coverage spectrum is made by stitching the four

orders obtained with different slit widths. It should be paid attention to in the case of an

extended source whether some flux is missed at borders of different parts. Moreover, when

comparing the IRS spectrum with the AKARI /IRC spectrum, one should be careful of the

difference that the former is slit spectroscopy whereas the latter is slitless spectroscopy.

Table 2.2: Definition of sub-phases and corresponding temperature ranges

Module Order Slit Size λ R = λ/∆λ

(arcsec2) (µm)

Short-Low SL2 3.6× 57 5.2–7.7 80–128

SL1 3.7× 57 7.4–14.5 64–128

Long-Low LL2 10.5× 168 14.0–21.3 80–128

LL1 10.7× 168 19.5–38.0 80–128

2.3 WISE

The Wide-field Infrared Survey Explorer (WISE ) is the NASA’s astronomical satellite launched

on 2009 December 14 (Wright et al. 2010). WISE conducted all-sky mapping in near- to mid-IR

four bands centered at 3.4, 4.6, 12, and 22 µm (named W1, W2, W3, and W4, respectively)

with a 40-cm telescope in a Sun-synchronous low Earth orbit. The bands W1–4 have angular

resolutions of 6.′′1, 6.′′4, 6.′′5, and 12.′′0, and their 5σ sensitivities for a point source are better than

0.08, 0.11, 1, and 6 mJy, respectively.

The satellite was cooled by solid hydrogen stored in two tanks. After the exhaustion of

the secondary tank on 2010 August 5, the survey was continued in the three bands at shorter

wavelengths until the primary tank depleted on 2010 September 29. After that, the operation in

the W1 and W2 bands was extended to enhance data processing and explore near-earth objects,

being funded by the NASA’s Planetary Science Division (NEOWISE ; Mainzer et al. 2011).
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The data collected in the WISE and NEOWISE missions are cataloged in the AllWISE Data

Release. The AllWISE Source Catalog in this release contains information of over 747 million

objects detected in the coadded atlas image. This catalog is a unique database that provides

homogeneous photometric measurement in bands within the AKARI /IRC and Spitzer/IRS

spectral coverages and useful to compare the two spectra obtained in different aperture sizes.

There is also the WISE All-Sky Source Catalog available, which is the first archive constructed

from only exposures during the full cryogenic phase.
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Chapter 3
Revised Wavelength and Spectral

Response Calibrations for AKARI

Near-Infrared Grism Spectroscopy:

Cryogenic Phase

The content of this chapter is based on the study published in the paper: Baba, S., Nakagawa, T.,

Shirahata, M., Isobe, N., Usui, F., Ohyama, Y., Onaka, T., Yano, K., and Kochi, C. 2016, “Re-

vised wavelength and spectral response calibrations for AKARI near-infrared grism spectroscopy:

Cryogenic phase”, Publications of the Astronomical Society of Japan, 68, 27.

The AKARI near-IR grism spectroscopy, which covers the wavelength range of 2.5–5.0 µm,

is essential for the systematic study of the CO absorption, the main object of this thesis. How-

ever, this spectroscopic mode has a problem that the diffracted second-order light contaminates

the first-order spectrum at wavelengths longer than 4.9 µm. To obtain the correct absorption

spectra of the CO band, we corrected for the effect of the contamination. First, we performed

a wavelength calibration under the consideration that the refractive index of the grism is a

function of wavelengths. We found that the previous wavelength calibration had differed by

up to 0.01 µm and that the contamination occurs even if the order-sorting filter perfectly cuts

off wavelengths shorter than 2.5 µm because incident positions of the first- and second-order

light do not linearly relate exactly due to the wavelength dependence of the refractive index.

Secondly, we evaluated spectral responses of the system from the first- and second-order light

simultaneously using two types of standard objects of different colors. The obtained response

from the second-order light suggests leakage of the order-sorting filter. The relations between

the output of the detector and the intensities of the first- and second-order light are formalized

into a matrix equation. The contaminating second-order light can be subtracted by solving the

matrix equation. These new calibrations extend the longer end of the reliable spectral coverage

from 4.9 µm to 5.0 µm and enable the study of the CO absorption in nearby AGNs.

17
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3.1 Introduction

As explained in Section 2.1, the grism spectroscopy in the wavelength range of 2.5–5.0 µm

with the AKARI IRC NIR channel is a unique capability to observe the CO absorption band

in various IR galaxies and to carry out a systematic analysis of the feature. To acquire the

CO band profile, we need the spectrum in the wavelength range of 4.5–5.0 µm. This part

is, unfortunately, in the longer end of the AKARI coverage and requires careful treatment.

In particular, as mentioned before, that longest part is considered to be contaminated by the

second-order light at wavelengths longer than 4.9 µm although an order-sorting filter is coated

on the grism to prevent spectral overlapping (Onaka et al. 2009, Section 6.9.7). Despite this

difficulty, the systematic study of the CO absorption, the object of this thesis, is impossible

without this AKARI spectroscopy.

The latest official IDL-based data reduction package “IRC Spectroscopy Toolkit Version

201503311” developed by the IRC team can extract a spectral image for each source after the

basic processes (dark subtraction, linearity correction, flat fielding, and frame stacking) and can

perform wavelength and flux calibrations for the image. However, those calibrations do not

take into account the effect of the contamination. The pixel position of a spectral image along

the dispersion direction is converted into wavelength upon a linear relation, within which the

wavelength dependence of the refractive index of the grism material is ignored. The raw output

of the detector is converted into flux density being divided by a spectral response function (the

output per unit flux density at each wavelength) derived based on observations of some A-

and K-type standard stars (Ohyama et al. 2007; Shimonishi et al. 2013)2, which are severely

contaminated by the second-order light. Figure 3.1(a) is an example of the CO absorption

spectrum calibrated by the present toolkit. The spectrum shows a steep drop above 4.9 µm.

Figure 3.1(b) is another example of the data reduction for a ULIRG based on the toolkit and

also indicates the unnatural decrease. This artifact caused by the contamination prevents the

analysis of the CO band profile.

If the wavelength calibration curve is really linear and the order-sorting filter ideally cuts off

wavelengths shorter than 2.5 µm, the second-order light does not overlap with the first-order

spectrum. The cause of the contamination may be due to the nonlinearity of the wavelength

calibration curve and/or the leak of the filter. To remove the contamination component in the

calibration, it is necessary, at first, to verify the nonlinearity and confirm the position where the

second-order light incidents by taking into account the wavelength dependence of the refractive

index of the grism material. It is also needed to derive the spectral responses against the first-

and second-order lights separately. The two unknown values can be simultaneously determined

by observing both a standard star and another object that has a predictable spectrum. As

such an object, one with a red color, which causes little contamination of the second-order light

contrastively to the standard star, is appropriate.

In this chapter, we explain the revision of the AKARI calibration performed to correct for

the effect of the second-order light contamination. This chapter is dedicated to the cryogenic

1Distributed at the AKARI website (http://www.ir.isas.jaxa.jp/AKARI/Observation/support/IRC/).
2See also the change log of the IRC Spectroscopy Toolkit Version 20130813.

http://www.ir.isas.jaxa.jp/AKARI/Observation/support/IRC/
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Figure 3.1: Examples of spectra calibrated by the toolkit. Each of them shows the artificial
steep decrease at λobs = 4.9 µm caused by the second-order light contamination. (a) CO
absorption in the Seyfert 2 galaxy Mrk 273 (z = 0.0373). The observation ID is 1100273.1. (b)
Featureless red spectrum of the ULIRG IRAS F15002+4945. The observation ID is 3051015.1.

phase of the satellite, during which the sensitivity of the detector is higher than in the post-

cryogenic phase. A similar revision for the latter phase appears in Chapter 4. In section 3.2,

the design of the NIR channel and that of the grism are described. In section 3.3, the revision

of the wavelength calibration and the derivation of the spectral responses from the first- and

second-order light are explained. The benefit of the new calibration is discussed in section 3.4.

Finally, we summarize the result of our calibration in section 3.5.

3.2 Design of the IRC NIR Channel and the Grism

A grism is a prism combined with a transmission diffraction grating designed so that a ray of

specific wavelength passes straight through. With the help of the diffraction grating, the grism

has higher spectral resolving power than a prism, but at the same time, it produces higher

order interference. In simple grating spectroscopy, the observing wavelength range is limited

within an octave. An order-sorting filter is generally used to prevent overlap between light of

different orders. The situation is more complex in the case of grism spectroscopy. The optical

path difference within a grism depends on the refractive index of its material. Owing to the

wavelength dependence of the refractive index, the second-order light can contaminate the first-

order spectrum even if the order-sorting filter works perfectly. We therefore review the design

of the IRC NIR channel and the grism considering this effect.

According to the ASTRO-F interim report volume 2 (SES data center 2002), the light that

enters the NIR channel is first collimated by three lenses, diffracted by the grism mounted on

the filter wheel, and focused by the plano-convex camera lens on the detector array. Figure 3.2

shows a schematic of the NIR channel and key parameters. Onaka et al. (2007) give a more

detailed layout including the fore-optics. The spacing between the grism and the plano-convex

lens is 27.7 mm. This lens is 6.5-mm thick and made of silicon. Since the refractive index of
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silicon is 3.4 in the wavelength range of the grism mode (Frey et al. 2006), the second principal

plane of the plano-convex lens is located 6.5/3.4=1.9 mm in front of its rear surface. The

designed interval between the lens and the focal plane is 60 mm. Note that the actual in-flight

interval between them may not be equal to this value because the focal position is optimized

for low-temperature operation by slightly rearranging the optical elements. The report does not

provide the in-flight value. Thus, we assumed the design value of 60 mm for the interval as a

first approximation.

IR light of wavelength λ interferes constructively with the grism if the emitting angle θ

satisfies

mλ = d [n sinα− sin(α− θ)] , (3.1)

where m is an integer that denotes the order number, α is the blaze angle, d is the groove spacing,

and n is the refractive index of the material of the grism. The grism is made of germanium

(Ge). The design value of the blaze angle is α = 2.◦86 and the groove spacing is d = 21 µm

(Ohyama et al. 2007). The interval from the second principal plane of the lens to the detector is

L = 61.9 mm (Figure 3.2); thus, IR rays of the emitting angle θ converges at a point separated

by L tan θ from the direct light point on the detector. Dividing the separation by the pixel pitch

of the detector p = 30 µm, the pixel offset from the direct light position ∆Y (in units of pixel

number) is represented as

∆Y = (L/p) tan θ. (3.2)

Consequently, the relation between wavelength λ and pixel offset ∆Y is modeled by Equations

(3.1) and (3.2). When θ is small, Equations (3.1) and (3.2) are simplified to

∆Y =
L

p

[
mλ

d
− (n− 1)α

]
. (3.3)

If the refractive index n has no wavelength dependence, the pixel position linearly relates

with the wavelength; hence, the first-order 5.0 µm and the second-order 2.5 µm correspond

to the same position. The current toolkit uses a linear wavelength calibration based on this

assumption, and it is expressed as

λtool[µm] = 0.00967625×∆Y [pix] + 3.12121. (3.4)

The front surface of the grism has multi-layer coating that cuts off the radiation with wavelengths

shorter than 2.5 µm to avoid the contamination of the second-order light as an order-sorting

filter. However, the refractive index of Ge changes by up to 1% as a function of wavelength

between 2.5 and 5.0 µm (Frey et al. 2006). Moreover, the cut-off coating is not perfect and, in

practice, there is leakage. Contamination by second-order light can occur even at wavelengths

shorter than 5.0 µm.

The field-of-view of the NIR channel consists of four sections, each of which has a respective

observational purpose. These sections are composed of two slits and two square-shaped aper-

tures, which are shown in Figure 3.3. The wider slit is named Ns and the narrower one is named

Nh. The width of the Ns and Nh slits are 5′′ and 3′′, respectively. These slits are designed for
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observing extended sources. In the larger aperture (Nc), multi-object slit-less spectroscopy and

imaging observations can be performed. The smaller aperture (Np) is equipped to observe a

point source while avoiding overlaps with other sources. This aperture has size of 1′×1′ (Onaka

et al. 2007; Ohyama et al. 2007).

Figure 3.2: Schematic of the NIR channel. See the text for explanation.

Figure 3.3: Field of view of the NIR channel.

The design of the grism mode does not precisely consider the wavelength dependence of the

refractive index of the grism. The wavelength dependence can cause the contamination of the

second-order light and must be considered in the flux calibration. The refractive index also

depends on the temperature as well as the wavelength. In this chapter, we focus on observations

before the exhaustion of liquid helium (Phases 1 and 2), when the temperature of the NIR

channel was stable. Similar calibrations for the post-helium phase (Phase 3) appears in Chapter

4.

3.3 New Calibration Method for the IRC Grism Spectroscopy

3.3.1 Wavelength Calibration

In this section, based on observations of objects that show several emission lines, we revise the

relation between the pixel offset and the wavelength for the grism mode using the equations

described in the previous section and considering the refractive index as a function of the wave-
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length. In addition to the relation for the first-order light, we also calculate the relation for the

second-order light to identify the spectral range where the contamination occurs.

The wavelength-dependent refractive index n(λ) of Ge was measured at cryogenic tempera-

tures by Frey et al. (2006), and they gave it as a function of wavelength and temperature in the

range of 1.9–5.5 µm and 20–300 K. The NIR channel was cooled down to ∼6 K during Phases

1 and 2 (Nakagawa et al. 2007). Extrapolation of the function provided by Frey et al. (2006) to

lower temperatures suggests that the temperature dependence of the refractive index between 6

and 20 K is negligibly small (∼ 0.01%). In our analysis, we used n(λ) at 20 K as the operating

refractive index of the grism.

The previous calibration expressed in Equation (3.4) was made based on observations of the

recombination lines of the bright planetary nebula NGC6543 (Ohyama et al. 2007). To examine

the effect of the wavelength dependence of the refractive index, we revisited the two observations

of NGC6543 (Observation IDs 5020047.1 and 5020048.1). Both observations were carried out on

2006 April 29 using the Ns slit. We followed Yano et al. (in preparation) for the data reduction

and the error estimate. One of the reduced spectra is shown in Figure 3.4. We fitted a Gaussian

on a linear continuum to each recombination line excepting H i Pfβ and H i Pfε. H i Pfβ was

fitted together with its immediate neighbor [K iii] by two Gaussians on a linear continuum.

Similarly, H i Pfε was fitted with He ii 7–6. The fitted central wavelengths λtool are tabulated

in Table 3.1 with theoretical values λtrue taken from the ISO line list3. The difference between

λtool and λtrue relative to λtrue corresponds to velocity of 450 km s−1 on average. The velocity

of NGC6543 relative to the local standard of rest is VLSR = −51 km s−1 (Schneider et al. 1983).

The Doppler shift arising from VLSR is smaller than the difference between λtool and λtrue by an

order of magnitude. For the two observations, the orbital velocity of the satellite projected to

the line-of-sight is 0.7 km s−1. The Doppler shift caused by the satellite’s motion is also smaller

than the difference λtool − λtrue, by a few orders of magnitude. We thus ignored any Doppler

effects.

Table 3.1: Fitted recombination lines

line λtrue (µm)a λtool (µm)b

5020047.1 5020048.1

H i Brβ 2.62587 2.62629± 0.00087 2.62559± 0.00044

H i Pfε 3.03920 3.04600± 0.00059 3.04581± 0.00049

H i Pfδ 3.29699 3.30523± 0.00054 3.30501± 0.00065

H i Pfγ 3.74056 3.74909± 0.00066 3.74914± 0.00049

H i Brα 4.05226 4.05811± 0.00035 4.05823± 0.00045

H i Pfβ 4.65378 4.65898± 0.00067 4.65886± 0.00086

a The theoretical wavelength of each line taken from the ISO line list.
b The wavelength of each line in the spectra processed by the toolkit

(Figure 3.4).

3http://www.mpe.mpg.de/ir/ISO/linelists/Hydrogenic.html
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Figure 3.4: 2.5–5.0 µm spectra of NGC 6543 observed in the grism mode (observation ID:
5020047.1).

The differences between λtool and λtrue can be explained by the wavelength dependence of

n(λ). From Equations (3.1), (3.2), and (3.4), and n(λ), the relation between the difference

of λtool − λtrue and λtrue can be estimated. Here, λ in Equation (3.1) is assumed as λtrue.

The estimates are denoted by the dotted line in Figure 3.5 and fail to reproduce the measured

differences. The failure may be attributed to the possibility that the assumed L = 61.9 mm

differs from the in-flight value. Thus, we took L and the blaze angle α as variables and fitted

the curve to the differences. The obtained best fit is denoted by the solid line in Figure 3.5.

The fitted parameters are L = 63.92 ± 0.03 mm and α = 2.◦8690 ± 0.◦0003. The change in L is

sufficiently small to be interpreted as the result of the adjustment of the focal length described

in the previous section, and that in α is within the fabrication error. We adopted the best-fitting

parameters in the following calibrations.

Using the best fit, the relation between ∆Y and λ was calculated for both the first- and

the second-order light. The obtained relations are shown in Figure 3.6(a). We denote the

wavelength of the first-order light as λ(1) and that of the second-order light as λ(2). First-order

light λ(1) = 5.00 µm goes to ∆Y = 194.3 pix, whereas second-order light λ(2) = 2.50 µm goes

to ∆Y = 189.7 pix. The difference of 4.6 pixels stems from the wavelength dependence of the

refractive index of Ge. The refractive index n is 3.940 at 5.00 µm and 3.983 at 2.50 µm (Figure

3.6(d)). According to Equation (3.4), ∆n yields the difference of the pixel offset (L/p)∆nα. Pixel

offset ∆Y = 189.7 pix corresponds to λ(1) = 4.95 µm. Hence, even if the order-sorting filter of

the grism perfectly cuts the radiation of λ(2) < 2.50 µm, the second-order light contaminates the

first-order spectra at λ(1) = 4.95–5.00 µm. The derived pixel offset for the first-order light differs

from that of the present wavelength calibration by up to 0.8 pixels at 3.5 µm (Figure 3.6(b)). This

is a direct consequence of the fact that the observed wavelength difference λtool − λtrue reaches

the maximum 0.008 µm at λtrue = 3.5 µm (see Figure 3.5). This difference is smaller than the

shift of the positions for the first- and second-order light at about ∆Y ∼ 190 pix discussed above.
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This is because Ohyama et al. (2007) determined the dispersion and the wavelength origin in

Equation (3.4) so that the equation represented the positions of the emission lines, but they did

not consider whether it predicted the incident positions of the second-order light or not. The 1σ

uncertainty of the revised wavelength calibration estimated from using L and α is ±0.1 pixels

or less (Figure 3.6(c)).
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Figure 3.6: (a) The relation between the pixel offset and the wavelength for the first- and
second-order light calculated with the wavelength-dependent refractive index of Ge. (b) Differ-
ence between the new and old wavelength calibration for the first-order light. The pixel offset
of the present wavelength calibration (Equation 3.4) is subtracted from that shown in the top
panel. (c) One-sigma uncertainty of the pixel offset. (d) Refractive index of Ge at 20 K (Frey
et al. 2006), which is the same as the bottom panel of Figure 3.5 but is also shown in shorter
wavelengths.

Taking the refractive index as a function of the wavelength, we succeeded in explaining the

observed difference of the previous wavelength calibration. For the first time, to the best of our

knowledge, it is also shown that, owing to the wavelength dependence of the refractive index,

the contamination by the second-order light occurs even in the case of the perfect order-sorting

filter.
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3.3.2 Spectral Response Calibration

We obtained the relation between pixel offset and wavelength in the previous section. Next, we

discuss the conversion of the output of the detector into the flux density, or flux calibration. We

consider the response of the system not only for the first-order light but also for the second-order

one, to quantify and subtract the second-order contamination.

Raw spectroscopic images are provided in analog-todigital units (ADU). A series of basic

data reduction procedures (dark subtraction, linearity correction, flat fielding, stacking, etc.)

and spectral image extraction can be performed with the toolkit (Ohyama et al. 2007).

If there is no contamination from the second-order light, the output at each pixel N in

ADU is proportional to the flux density Fν(λ). Hence, N = R(λ)Fν(λ), where R(λ) is the total

spectral response of the system at wavelength λ. Even if contamination by the second-order light

occurs, similar relations hold for the individual components of the first- and the second-order

light, respectively. Therefore, the output at the ith pixel Ni can be written as

Ni = R(1)(λ
(1)
i )Fν(λ

(1)
i ) +R(2)(λ

(2)
i )Fν(λ

(2)
i ). (3.5)

Here, λ
(1)
i and λ

(2)
i are the wavelengths of the first- and the second-order light in the ith pixel.

R(1)(λ) and R(2)(λ) are the response functions from the first- and the second-order light. Note

that the two functions are not equal (R(1)(λ) 6= R(2)(λ)) because the grism does not disperse

higher-order light with the same efficiency as the first-order.

The present response R(1)(λ) from the first-order light was derived from observations of A-

and K-type standard stars (Ohyama et al. 2007). Since these types of stars show blue spectra

(RayleighJeans side) in 2.5–5.0 µm, this calibration scheme may result in severe contamination

by second-order light, which leads to overestimates of R(1).

Because Equation (3.5) contains two unknown responses R(1) and R(2), it cannot be solved

with one standard star. Even if the equation is simultaneously applied to two different standard

stars, the response from the second-order light R(2) will have large uncertainty because these

standard stars have similar spectra and do not provide sufficiently independent information for

calibration. To reliably obtain R(1)(λ) and R(2)(λ), we used standard objects that have blue

and red spectra, where the latter suffer much less from the second-order light than the ordinary

standard stars do.

As for the blue standard objects, we used ordinary K-type standard stars. Table 3.2 sum-

marizes Two-Micron All-Sky Survey (2MASS: Skrutskie et al. 2006) IDs, spectral types, and

observational information of the two standard stars. KF09T1 was also used in the original

spectral response calibration of the grism mode (Ohyama et al. 2007). Using the toolkit, we

extracted the raw spectra. Only the sky fluctuation of the spectral image was taken as the un-

certainty of the output. The obtained raw spectra of the stars are shown in Figure 3.7. We used

model spectra provided by M. Cohen and coworkers (Cohen et al. 1996, 1999, 2003a,b; Cohen

2003) in the same manner as previous calibrations of the IRC (Ohyama et al. 2007; Tanabé et al.

2008; Shimonishi et al. 2013). Both raw spectra show small bumps at around 200 pixels. We

attributed these bumps to the contaminating second-order light.
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Table 3.2: Basic properties and observation log of standard stars

Object 2MASS ID Type Obs. ID Obs. Date aperture

KF01T4 J18040314+6654459 K1.5 III 5124053.1 2007 Apr 7 Nc

KF09T1 J17592304+6602561 K0 III 5020032.1 2006 Apr 24 Nc
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Figure 3.7: Raw spectra of standard stars observed in the grism mode. The arrows denote the
ranges where the second-order light component causes anomalies. Left: KF01T4 (observation
ID: 5124053.1). Right: KF09T1 (observation ID: 5020032.1).

We used two ultra-luminous IR galaxies (ULIRGs) Mrk 231 and IRAS 05189−2524 as the

red standard objects. The dominant energy source of these ULIRGs is an AGN rather than

starburst activity (Imanishi & Dudley 2000). Owing to the strong thermal radiation from the

dust heated by the AGN, the spectra of the two ULIRGs do not show measurable emission or

absorption features in the 3–4 µm range except for the 3.3-µm polycyclic aromatic hydrogen

(PAH) emission (Imanishi & Dudley 2000; Imanishi et al. 2007b). Although IRAS 05189−2524

shows weak 3.4-µm absorption of carbonaceous dust with optical depth ∼0.04 (Imanishi &

Dudley 2000), it is negligible in building the model spectrum. The 3.4-µm absorption would

affect the continuum by less than 4%. Table 3.3 summarizes the redshift, optical classification,

and observational information of the two ULIRGs. The raw spectra of the two ULIRGs were

extracted in the same manner as the stars and are shown in Figure 3.8.

Table 3.3: Basic properties and observation log of ULIRGs

Object redshift Classa Obs. ID Obs. Date aperture

Mrk 231 0.042 Seyfert 1 1100271.1 2007 May 30 Np

IRAS 05189−2524 0.043 Seyfert 2 1100129.1 2007 Mar 8 Np

a Veilleux et al. (1999).

To create the intrinsic model spectra of the ULIRGs, we compiled observations made with

telescopes other than AKARI.

Archival data of the 2MASS, Wide-field Infrared Survey Explorer (WISE : Wright et al.

2010), and Spitzer/IRS were used. From the 2MASS All-Sky Extended Source Catalog, we took
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Figure 3.8: Raw spectra of ULIRGs observed in the grism mode. Left: Mrk 231 (observation
ID: 110027.1). Right: IRAS 05189−2524 (observation ID: 1100129.1).

the J , H, and Ks total magnitudes extrapolated from the surface brightness profile (Skrutskie

et al. 2006). The magnitudes were converted into flux densities using the mean wavelengths and

corresponding flux densities for the zero magnitude provided by Rieke et al. (2008). Under the

definition of the mean wavelength and zero magnitude, the color correction was normalized for

the spectral energy distribution of Fλ = constant, or Fν ∝ λ2 (see Appendix E of Rieke et al.

(2008)). Since the two ULIRGs show the same spectral shape in 1–2 µm, no color correction

factor was applied.

The W1 and W2 profile-fit magnitudes were taken from the AllWISE Source Catalog. The

fluxes for the zero magnitudes reported by Jarrett et al. (2011) and the color-correction factors

provided by Wright et al. (2010) were used. The calibrated Spitzer/IRS spectroscopic data

were also considered. These data are plotted in Figure 3.9. We fitted a cubic function to these

data points for each ULIRG in the logFν-log λ plane to approximate their spectra. The fitted

functions are shown in Figure 3.9.
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Figure 3.9: Flux densities of the ULIRGs observed with 2MASS, WISE, and Spitzer/IRS.
Solid lines denote the fitted cubic functions, which were taken as the model spectra of the
ULIRGs. The fitting ranges were intervals where the lines are drawn. Left: Mrk 231. Right:
IRAS 05189−2524.

We calculated the spectral responses from two pairs of standard objects (KF01T4 and Mrk

231, and KF09T1 and IRAS 05189−2524). For the uncertainties of the responses, those in the
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raw spectra, model spectra, and the wavelength calibration curve were propagated. The re-

sponse from the first-order light has a measurement uncertainty of about 5%. The measurement

uncertainty of the response from the second-order light is about 5% at 2.55 µm and increases

at shorter wavelengths. At 2.3 µm, it becomes around 50%. Below 2.3 µm, the response from

the second-order light is substantially zero. The responses have systematic uncertainty of at

most 4% owing to the weak emission or absorption lines of the ULIRGs. Since we built the

model spectra of the ULIRGs ignoring the PAH emission, we mask the data points affected by

the PAH emission. The rest-frame full width at half-maximum of the PAH emission is 0.05 µm

(Imanishi & Dudley 2000; Imanishi et al. 2007b); thus, we removed 15 data points (∼0.15 µm)

of the responses from the first-order light around λ(1) = (1 + z) × 3.29 µm, where z is the

redshift of the ULIRGs and 3.29 µm is the peak wavelength of the PAH emission (Imanishi

et al. 2008). The data points of the responses from the second-order light were also removed at

wavelengths that correspond to the same masked pixel offsets. The two ULIRGs have similar

redshifts, as listed in Table 3.3. Hence, the PAH-masked regions almost entirely overlap with

each other. The results from the two pairs were averaged to reduce the uncertainty. Next, since

the responses hardly change along a few pixels, we took the five-pixel-width moving average

to reduce the pixel-to-pixel scatter in a manner similar to the spectral response calibration for

the prism mode by Shimonishi et al. (2013). Finally, the responses shown in Figure 3.10 were

obtained. The set of the responses (R(1) and R(2)) covers the range of ∆Y from −77.2 to 200.8

pixels. This range corresponds to that of λ(1) = 2.38–5.06 µm and λ(2) = 1.31–2.55 µm. The

measurement uncertainty of the response from the first- and second-order light is minimized to

about 2% and 2–26%, respectively.

The obtained spectral response from the first-order light R(1) agrees with the previous one

within the uncertainties between 2.6 and 4.9 µm, where contamination by the second-order light

is not expected. At wavelengths longer than 4.9 µm, R(1) of this work monotonically decreases,

in contrast to that in the toolkit. The ratio of R(1) of this work to that of the toolkit is 0.63

at 5.0 µm and 0.96 at 2.6 µm. In addition to this, the response from the second-order light

R(2), which is, to our knowledge, derived for the first time, increases at wavelengths longer than

2.5 µm. These results show that the previous response curve at wavelengths longer than 4.9 µm

is contributed by the two components, first- and second-order light, and that we succeeded in

separating them into the two responses R(1) and R(2). Moreover, the responses are significantly

non-zero at wavelengths shorter than 2.5 µm. This means that the detector responds to the

radiation of wavelengths shorter than 2.5 µm, beyond the nominal wavelength range of 2.5–

5.0 µm. Therefore, this suggests that the order-sorting filter had some leakage below 2.5 µm.

Subtraction of the second-order-light component from the first-order spectra is formalized

by extending the spectral response in the matrix that relates the output with the first-order

spectrum. The first-order spectrum can be purely obtained from this equation. This is the main

goal of our calibrations.

To evaluate the amount of the second-order light as a function of the wavelength, we need

the intensity of the first-order light at the same wavelength. We assume that wavelength λ
(1)
1 ,

which comes in at the first pixel as first-order light, enters between the (k− 1)th and kth pixels
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Figure 3.10: Spectral responses from the first- and second-order light and that of the present
toolkit. (a) The entire plot. Gaps in the new response curves are masked ranges affected by the
PAH emission. Error bars are drawn every five points. (b) and (c) Zoom-in plots around 5 µm
and 2.5 µm, respectively. The scales of the abscissas of panels (b) and (c) are aligned so that
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as second-order light. Based on this assumption, since the increment of λ
(2)
i is about half of that

of λ
(1)
i , the following magnitude relation holds:

λ
(2)
k−1 < λ

(1)
1 < λ

(2)
k < λ

(2)
k+1 < λ

(1)
2 < · · · . (3.6)

Hereafter, we define R(1)(λ
(1)
i ) as R

(1)
i , R(2)(λ

(2)
i ) as R

(2)
i , and Fν(λ

(1)
i ) as Fν,i. Using these

notations, the output at the kth pixel is

Nk = R
(1)
k Fν,k +R

(2)
k Fν(λ

(2)
k ). (3.7)

From the linear interpolation, the flux density of the second-order-light component at the kth

pixel becomes

Fν(λ
(2)
k ) =

λ
(1)
2 − λ

(2)
k

λ
(1)
2 − λ

(1)
1

Fν,1 +
λ

(2)
k − λ

(1)
1

λ
(1)
2 − λ

(1)
1

Fν,2. (3.8)

Equations (3.7) and (3.8) can be combined into the following matrix.

N1

N2

...

Nk

...


=



R1,1

R2,2

. . .

Rk,1 Rk,2 Rk,k
...

...
. . .





Fν,1

Fν,2
...

Fν,k
...


(3.9)
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Ri,i = R
(1)
i (3.10)

Rk,1 =
λ

(1)
2 − λ

(2)
k

λ
(1)
2 − λ

(1)
1

R
(2)
k , Rk,2 =

λ
(2)
k − λ

(1)
1

λ
(1)
2 − λ

(1)
1

R
(2)
k , · · · (3.11)

The response from the second-order light is included as the off-diagonal elements of this matrix.

The inverse matrix of the response matrix can be analytically obtained (see Appendix A.1).

Multiplying it with the column vector of the output, we can obtain the pure first-order spectrum

Fν,i.

The spectral responses obtained in this section separate the components of the first- and

second-order light and quantify the second-order-light contamination. The relations among the

components of the first- and second-order light and the output can be formalized in one equation

with the response matrix, whose diagonal and off-diagonal elements represent the responses

from the first- and second-order light, respectively. The flux calibration that considers the

contamination effect can be achieved by multiplying the inverse matrix of the response with the

output.

3.4 Demonstrations of the Effectiveness of the New Flux Cali-

bration

We here first demonstrate the matrix-formulated flux calibration for two objects that have dif-

ferent colors and compare the results with those from the toolkit. Next, we show how the

correct CO absorption profile is recovered by our calibration method. In the following demon-

strations, the response from the first-order light is interpolated into the PAH-masked range using

a quadratic function of the wavelength.

Figure 3.11 compares the spectra of the ULIRG IRAS F15002+4945, which has appeared

in Section 3.1 as an example of the toolkit calibration. This ULIRG has a red spectrum, and

hence, the second-order light component is expected to be smaller than that of blue objects.

The spectrum obtained by the new flux calibration shows a smooth distribution up to 5.0 µm,

whereas that obtained by the toolkit decreases at 4.9 µm. This change reflects the revision of the

first-order light response curve: the current one monotonically decreases at longest wavelengths

in contrast to the previous one (see Figure 3.10(b)).

As another example, Figure 3.12 shows the result for an A0V star (HD 40624), which has

a blue spectrum. In this case, the first-order spectrum at longer wavelengths is considered to

be largely contaminated by the second-order light that comes from shorter wavelengths. This

star was also observed in the prism mode just before the grism mode observation. Since the

prism is not a grating element, any problems associated with the higher-order light cannot

occur in the prism mode. The flux calibration results basically agree with the prism mode

spectrum but disagree with it if the off-diagonal elements of the response matrix, which measure

the contribution of the second-order light, are ignored. This suggests that our flux calibration

successfully removes the second-order component.

The toolkit had not been able to correct the second-order light contamination of the first-
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Figure 3.11: Demonstration of the matrix-formulated calibration for a ULIRG, IRAS
F15002+4945 (observation ID: 3051015.1). The spectrum processed with the toolkit (Figure
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0

100

200

300

400

2.5 3.0 3.5 4.0 4.5 5.0 5.5

HD 40624
5124038.1

F
lu

x
 D

e
n

s
it
y
 [

m
J
y
]

Observed Wavelength [µm]

NG, diagonal
NG
NP

80

120

160

4.7 4.8 4.9 5.0

Figure 3.12: Demonstration of the matrix-formulated calibration for an A0V star, HD 40624
(observation ID: 5124038.1). The spectrum calculated with only the diagonal elements of the
response matrix is also shown. The magenta points show the spectrum obtained in the prism
mode observation of IRC. The prism mode spectrum in the 1.8–3.0 µm range was not obtained
owing to the saturation of the detector.
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order spectra in wavelengths longer than 4.9 µm. This effect had led the incorrect flux cali-

bration, especially for red objects, and prevented obtaining accurate spectra in this wavelength

range. The new flux calibration, which quantifies and subtracts the contamination, can resolve

this problem for a wide range of objects, as shown by the above examples. Now we can accurately

obtain the 4.9–5.0 µm spectra without the effect of the second-order light. Figure 3.13 compares

the CO band spectra calibrated by the toolkit (presented in Figure 3.1(a)) and by our method.

As this figure shows, the double-branched profile of the band is successfully recovered in the new

result. Imanishi et al. (2008) reported that three ULIRGs observed in the grism mode during

Phases 1 and 2 showed the CO absorption. However, these absorption spectra were significantly

affected by the second-order contamination and had never been analyzed. Our new calibration,

for the first time, enables the analysis of the CO absorption in nearby AGNs observed in the

AKARI grism mode spectroscopy.
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Figure 3.13: Demonstration of the matrix-formulated calibration for a CO absorption spectrum
observed in the Seyfert 2 galaxy Mrk 273 (observation ID: 1100273.1). The spectrum processed
with the toolkit (Figure 3.1(a)) is also shown.

Another science that may be allowed by the revised calibration is the analysis of the OCS

ice absorption band at 4.9 µm (Boogert et al. 2015). The OCS ice can be used to study the

evolution of circumstellar disks of young stellar objects. For instance, Aikawa et al. (2012)

tentatively detected the OCS ice absorption toward a low-mass young stellar object IRCL1041-2

from the grism mode observation. The study of this feature in young stellar objects also requires

the correction for the contamination.

3.5 Summary

In this chapter, we have described the revision of the wavelength and spectral response calibra-

tions of the AKARI IRC grism mode spectroscopy. These new calibrations were performed to

correct for the effect of the second-order light contamination in the first-order spectrum. First,



34 CHAPTER 3. REVISED AKARI CALIBRATION: CRYOGENIC

the refractive index of Ge, the material of the grism, was considered as a function of wave-

length. The difference from the previous linear wavelength calibration was measured from the

recombination lines of planetary nebulae, and we successfully represented it with the wavelength

dependence of the refractive index. Next, the spectral responses from the first- and second-order

light were simultaneously obtained using standard objects that show contrastive red and blue

spectra. With these new responses, the first- and second-order light mixing in 4.9–5.0 µm were

decomposed for the first time. Finally, the flux calibration with the set of the responses was

formulated into a matrix form. This flux calibration was demonstrated to be able to remove the

second-order-light component in both red and blue objects. The new calibrations enable us to

obtain the correct 4.9–5.0 µm spectra in the grism mode and are essential for the study of the

CO absorption in nearby AGNs, which appears Chapters 5 and 6. Note that the calibrations

presented here are limited to the observations before the exhaustion of liquid helium (Phases 1

and 2). During the post-helium phase (Phase 3), the temperature of the detector exceeds 40 K,

and hence, the operating conditions in Phase 3 largely differ from those in the earlier phases.

Similar calibrations for Phase 3 is presented in Chapter 4.



Chapter 4
Revised Wavelength and Spectral

Response Calibrations for AKARI

Near-Infrared Grism Spectroscopy:

Post-Cryogenic Phase

Following the re-calibration of the AKARI NIR grism spectroscopy in the cryogenic phase

presented in Chapter 3, we revised the wavelength and spectral response calibration in the

post-cryogenic phase in a similar manner. To assess the effect of the temperature increase

during this period, we divided the period into three sub-phases and performed the calibrations

separately. Similar to the cryogenic phase, we confirmed in every sub-phase the presence of

the second-order light contamination due to the wavelength dependence of the refractive index

of the grism material and succeeded in quantifying its effect on the spectral response function.

Wavelength calibration curves in the three sub-phases coincide with each other and do not show

any significant temperature dependence. Spectral response from the first-order light decreases as

the temperature increases by ∼ 10% from the beginning to the end of the post-cryogenic phase.

We approximated the temperature dependence of the response as a linear relation and derived

a correction factor as a function of temperature. The relative strength of the second-order light

contamination to the first-order light decreased by 25% from the cryogenic phase due to the

degradation of the point-spread function around 2.5 µm relevant to the contamination at 5 µm.

4.1 Introduction

During the post-cryogenic phase (Phase 3) of the AKARI satellite, a large number of near-IR

spectroscopic observations of AGNs were performed. However, as well as cryogenic phase (Phases

1 and 2), those observations were suffered from the contamination from the second-order light.

The latest published version of the official data reduction toolkit for Phase 3 (version 20150331)

does not support the subtraction of the contamination. To utilize the observations during Phase

35
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3 for the study of the CO absorption, we need to correct for the effect of the second-order light

as we did in the cryogenic phase.

The major difference from the before is the operating temperature. Between the two periods,

the temperature of the instrument jumped from ∼ 6 K to > 40 K due to the exhaustion of

liquid helium. Besides, during the latter period, the temperature was not stable and gradually

increased with time. It has been known that the absolute sensitivity of the NIR grism mode

had decreased to be roughly 70% of that in Phases 1 and 2 (Onaka et al. 2009, Section 6.9.4).

Our detailed calibration that considers the higher order effects (the nonlinearity of the refractive

index and the second-order light contamination) thus requires the evaluation of the effect of the

temperature variation.

In this chapter, we explain the revision of the wavelength and spectral response calibrations

in Phase 3. In section 4.2, we define three sub-phases that have different temperature ranges.

Wavelength and spectral response calibrations are given in Sections 4.3 and 4.4, respectively,

followed by the summary in Section 4.5.

4.2 Definition of Sub-Phases

The header of FTIS images obtained in the AKARI pointed observations contains the detector

temperature at the data acquisition time. We measured the temperature at spectroscopic ob-

servations performed during Phase 3. The obtained temperature variation curve is shown in the

top panel of Figure 4.1. The temperature began from 41 K and increased to 46.5 K during the

first year making shoulders in June and December solstices due to small Earth avoidance angles

shown in the bottom panel of Figure 4.1. The temperature then decreased and again turned to

rise at the beginning of 2009 November when the average Earth avoidance angle was large.

We divided Phase 3 into three periods as tabulated in Table 4.1. These sub-phases correspond

to the temperature ranges of T < 42 K, 42 < T < 44.5 K, and T > 44.5 K. This definition

was set so that we can secure a sufficient number of observations for the calibration in each

sub-phase. We performed wavelength and spectral response calibrations separately for each

sub-phase to assess their temperature dependence as explained in the following sections.

Table 4.1: Definition of sub-phases and corresponding temperature ranges

Sub-Phase Date Detector Temperature (K)

3-1 2008 Jun 1 – 2008 Oct 31 40.0–42.0

3-2 2008 Nov 1 – 2009 Apr 14 42.0–44.5

3-3 2009 Apr 15 – 2010 Feb 15 44.5–47.0

4.3 Wavelength Calibration

Similar to the procedure in Section 3.3.1, we measured the difference of the wavelength cali-

bration of the toolkit (Equation (3.4)) from the Ns-slit observations of emission-line objects.
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Figure 4.1: Top: variation of the detector temperature T in the NIR channel during Phase 3
is shown in a thick gray line. Orange filled squares indicate observations used in the wavelength
calibration, and blue crosses and red open circles represent observations of the blue and red
standard objects used in the spectral response calibration. Vertical dotted lines denote the
borders between sub-phases 3-1, 3-2, and 3-3. These phases correspond to the temperature
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Bottom: mean Earth avoidance angle of the satellite during each pointed observation. Not all
of the pointed observations are plotted. The number of points is thinned out to about 1 per day.

Because the number of observations of planetary nebulae is small, we instead used Galactic H ii

regions as calibrators. Object names and observation IDs are listed in Table 4.2. For each obser-

vation, the detector temperatures recorded in the header of the FITS images were averaged, and

its uncertainty was estimated from the deviation. The number of images for each spectroscopic

observation was 8–10, including one reference frame. The obtained values are tabulated in Table

4.2.

A 2D spectral image was extracted from each observation by the latest toolkit in the standard

manner. The image usually contained a lot of hot pixels, which are treated as the missing value

in the present toolkit, as shown in Figure 4.2(a). We thus filled the lacking pixels with the

median of their adjacent valid pixels. Figure 4.2(b) gives an example of this procedure. We

extracted a 1D spectrum from the filled image and then fitted the H i Brα, Brβ, Pfβ, Pfγ, Pfε,

Pf11, and Pf12 lines in the spectrum with a Gaussian on a liner baseline with the line width

fixed to FWHM=0.031 µm. This is the same value adopted by Mori et al. (2014). We did

not fit the Pfδ line because it is overlapped by the 3.3 µm PAH emission in the spectra of H ii

regions. The central wavelength λtool obtained from the line fitting is plotted in Figure 4.3 as

the difference from the theoretical value λtrue.

As we did for the cryogenic phase, we fitted the measured wavelength difference λtool−λtrue

with Equations (3.1), (3.2), and (3.4) taking α and L as free parameters. The refractive index

n(λ) was calculated with the equation of (Frey et al. 2006) at the average detector temperature

of the observations used for the line fitting (Table 4.2). The resultant values of α and L are
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Table 4.2: Galactic H ii regions observed in the Ns slit

Phase Object Typea Obs. ID Date Temp. (K)b

3-1 G330.868−0.365 GH ii 5200110.1 2008 Sep 2 41.43± 0.03
G331.386−0.359 unknown 5200114.1 2008 Sep 3 41.48± 0.03
G333.122−0.446 GH ii 5200122.1 2008 Sep 4 41.50± 0.02
G345.528−0.051 unknown 5200134.1 2008 Sep 11 41.69± 0.02
G347.611+0.204 GH ii 5200138.1 2008 Sep 12 41.69± 0.04
Sgr C GH ii 5200144.1 2008 Sep 18 41.74± 0.02
G351.467−0.462 GH ii 5200142.1 2008 Sep 14 41.76± 0.03
AMWW35 GH ii 5200160.1 2008 Sep 22 41.79± 0.05
M8 GH ii 5200162.1 2008 Sep 24 41.81± 0.02
G8.137+0.228 GH ii 5200164.1 2008 Sep 23 41.86± 0.02

3-2 RCW42 GH ii 5200453.1 2008 Dec 15 42.98± 0.04
G298.862−0.438 GH ii 5200451.1 2009 Jan 30 43.31± 0.03
G298.227−0.340 GH ii 5200449.1 2009 Jan 28 43.32± 0.08
G282.023−1.180 GH ii 5200437.1 2009 Jan 2 43.34± 0.03
G289.066−0.357 GH ii 5200443.1 2009 Jan 13 43.34± 0.05
NGC 3576 GH ii 5200445.1 2009 Jan 17 43.37± 0.05
NGC 3372 GH ii 5200441.1 2009 Jan 10 43.38± 0.03
NGC 3603 GH ii 5200447.1 2009 Jan 17 43.42± 0.02
RCW49 GH ii 5200439.1 2009 Jan 4 43.55± 0.08
G333.6−0.2s47 GH ii 5200586.1 2009 Mar 4 43.64± 0.03

3-3 G81.679+0.537 UCH ii 5200778.1 2009 May 21 45.07± 0.02
W58A GH ii 5200768.1 2009 May 3 45.10± 0.03
G75.783+0.343 UCH ii 5200773.1 2009 May 11 45.10± 0.02
G78.438+2.659 UCH ii 5200777.1 2009 May 13 45.11± 0.02
G289.066−0.357 GH ii 5201356.2 2010 Jan 15 45.76± 0.11

5201356.1 2010 Jan 14 45.87± 0.03
5200881.1 2009 Jul 15 46.19± 0.06
5200881.2 2009 Jul 15 46.26± 0.03

G298.862−0.438 GH ii 5200886.1 2009 Aug 1 45.55± 0.05
G319.158−0.398 GH ii 5200934.1 2009 Aug 25 45.62± 0.05
G133.947+1.064 UCH ii 5200959.1 2009 Aug 20 45.70± 0.09
G319.392−0.009 GH ii 5200936.2 2009 Aug 26 45.74± 0.02

5200936.1 2009 Aug 26 45.81± 0.05
G22566+5830 unknown 5201369.2 2010 Jan 14 45.88± 0.03

5201369.1 2010 Jan 12 45.94± 0.07
G22475+5939 unknown 5201368.1 2010 Jan 14 45.96± 0.02
G12127−6244 unknown 5201366.1 2010 Jan 30 45.99± 0.05

5201366.2 2010 Jan 30 45.99± 0.02
G12272−6240 unknown 5201367.1 2010 Jan 31 45.94± 0.03

5201367.2 2010 Feb 1 46.03± 0.01
5201367.3 2010 Feb 1 46.00± 0.02

a Quoted from Mori et al. (2014); Conti & Crowther (2004); Crowther & Conti (2003).
GH ii: giant H ii region. UCH ii: ultracmoact H ii region.

b Detector temperature. Also plotted in Figure 4.1
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Figure 4.2: (a) 2D spectral image of the giant H ii region G330.868−0.365 (observation ID:
5200110.1). Black cells represent hot pixels. The 1D spectrum in the top panel was obtained by
integrating the 2D image along the spatial axis. (b) 2D spectral image and 1D spectrum of the
same observation after the bad pixels were filled with the median of their adjacent valid pixels.
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Figure 4.3: The measured difference of the previous wavelength calibration and the refractive
index of Ge for the three sub-phases are shown in the quadrants other than the right bottom
one. These plots are analogs of Figure 3.5 presented for the cryogenic phase. The top panel
in each quadrant indicates the measured difference between the central wavelength obtained in
the line fitting (λtool) and the theoretical value (λtrue). The overlaid transparent filled curve is
the 1σ fitting error of the model described in Section 3.3.1. The bottom panel of each quadrant
shows the refractive index of Ge at the average detector temperature of the observations listed
in Table 4.2). In the right bottom quadrant, the fitting errors and the refractive indices in the
three sub-phases are overlaid.
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tabulated in Table 4.3 and the best-fitting model is shown in Figure 4.3 with n(λ). The results

of the three sub-phases coincide with each other within the 1σ fitting error. The temperature

dependence of n(λ) in 41–47 K and 1.2–5.5 µm is less than 0.4%. Therefore, we did not find any

significant temperature dependence of the wavelength calibration. Then we fitted the model in

the same manner to all the data points not dividing them into sub-phases. The obtained values

for the two parameters are listed in Table 4.3.

Table 4.3: Average detector temperature and the fitted value of α and L

Phase T (K) α (deg) L (mm)

3-1 41.7 2.86966± 0.00018 63.894± 0.013

3-2 43.4 2.86957± 0.00011 63.908± 0.009

3-3 45.8 2.86938± 0.00009 63.881± 0.007

all 44.3 2.86952± 0.00007 63.891± 0.005

Using the model fitted to the entire observations, we constructed the relation between the

pixel offset from the direct light position ∆Y and the first- and second-order wavelengths λ(1)

and λ(2), which is presented in Figure 4.4(a). This figure indicates that the second-order light

of λ(2) = 2.5 µm incidents to the same position for the first-order light of λ(1) = 4.95 µm. This

clarifies the presence of the contamination. The difference from the result for the cryogenic

phase is about 0.2 pixels. Thus there is little practical difference between the calibrations in the

two phases.

4.4 Spectral Response Calibration

For each sub-phase, as in Phases 1 and 2, we simultaneously derived the spectral response

function for the first- and second-order light using two types of standard objects: AGNs and

infrared galaxies whose near-IR spectra can be modeled easily and standard stars that have a

Cohen template. In this section, we explain the selection of the standard objects, the derivation

of the spectral responses, and the evaluation of the temperature dependence.

4.4.1 Red Standard U/LIRGs

We searched infrared galaxies for which we can make a reliable model spectrum from earlier

published results of the AKARI spectroscopy. Several authors have analyzed the Phase-3 near-

IR grism mode observations of AGNs and infrared galaxies with earlier versions of the toolkit.

We first explored the sample of Kim et al. (2015), who studied the spectra of 83 nearby and

bright type-I AGNs and identified emission and absorption features. We selected the 41 AGNs

for which Kim et al. (2015) had not identified any features. Secondly, we looked for the sample

of Yamada et al. (2013). The authors investigated the spectra of 184 galaxies and measured the

equivalent width of the 3.3 µm PAH emission, the luminosity of the Brα line, and the optical

depth of the 3.1 µm H2O ice absorption. Yamada et al. (2013) did not significantly detect any of
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Figure 4.4: Revised wavelength calibration curve for Phase 3. This figure is an analog to
Figure 3.6. For comparison, the result for the cryogenic phase is drawn in thin lines. (a) The
relation between the pixel offset and the wavelength for the first- and second-order light. (b)
Difference between the new and old wavelength calibration for the first-order light. The pixel
offset of the present wavelength calibration is subtracted from that shown in the top panel. (c)
One-sigma uncertainty of the pixel offset. (d) Refractive index of Ge.
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the three features in 33 objects. Some of them were also analyzed by Imanishi et al. (2010). We

discarded those for which Imanishi et al. (2010) had found significant PAH emission. Finally,

29 galaxies were selected from the sample of Yamada et al. (2013).

Our method to make a model spectrum of a red object, which is similar to that of Chapter

3, requires the Spitzer/IRS 5.2–32 µm spectrum and reliable 2MASS and WISE magnitudes.

Among the 70 galaxies taken from the samples of Kim et al. (2015) and Yamada et al. (2013), 41

objects have the IRS spectra. To 2MASS, we set the criteria of ph_qual=AAA, cc_flg=000,

Ks < 13 mag, and that the object has no neighbor brighter than 1% of itself at least one

band within 15′′. We also set the criterion of ph_qual=AAAA to WISE. Afterward, 23 galaxies

satisfied these criteria.

The 2MASS and WISE magnitudes of each galaxy were converted into flux densities in

Jy based on the zero magnitudes presented by Cohen et al. (2003b) and Jarrett et al. (2011),

respectively. The color correction was performed upon the spectral slope inferred from the

original band fluxes. The IRS spectrum was rescaled so that it matches the W3 and W4

fluxes because the IRS slit spectroscopy could miss the flux compared to the AKARI slitless

observation. We then fitted the J , H, K, W1, and W2 band fluxes and the IRS data points at

wavelengths shorter than 6.5 µm with a cubic function on the logFν-log λ plane. The degree

of freedom in this configuration was 44. We rejected bad fits having the reduced χ2 value

χ2
ν ≡ χ2/dof apart from unity (χ2

ν < 0.63 or χ2
ν > 1.46), which correspond to being out of the

95% confidence range. Eventually, 13 U/LIRGs were accepted as red standard objects. The

obtained model spectra of them are shown in Figure 4.5. The AKARI observations of them are

listed in Table 4.4. Sub-phases 3-1, -2, and -3 contain 5, 3, and 8 objects, respectively, while

having some overlap. Although IRAS 23060+0505 were observed twice during phase 3-2, we

regarded the two observations as independent ones to let them be paired with different standard

stars. We attached an ID to each object as shown in Table 4.4. The ID is to be paired with an

observation set of a standard star.

The 2D spectral image was obtained from each observation with the latest toolkit. Bad

pixels were filled up in the same way described in Section 4.3. From the corrected 2D image, a

raw 1D spectrum expressed in the detector output N versus the pixel offset ∆Y was extracted

with the spatial width of five pixels (∼ 7′′). We stacked multiple raw spectra of the same pair

ID to reduce the uncertainty.

4.4.2 Blue Standard Stars

Several ordinary standard stars were originally observed for calibration purposes throughout

Phase 3. Especially, the K0 III star KF09T1 (2MASS J17592304+6602561) was monitored

frequently. These stars have Cohen templates (Cohen et al. 1996, 1999, 2003a,b; Cohen 2003).

We used the templates as the model spectra for our calibration. The observations of the stars

are tabulated in Table 4.5. We divided the observations of KF09T1 into subsets to match the

number of the red standard U/LIRGs. The observation subsets were paired with those of the

U/LIRGs via the pair IDs. Raw spectra were created per pair ID similarly to the U/LIRGs.
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Figure 4.5: The spectrum of each U/LIRG used as a red standard object. Points with error
bars represent the flux densities derived from the 2MASS and WISE magnitudes with the color
correction considered. Black solid line and the accompanying gray lines denote the Spitzer/IRS
spectrum and its uncertainty, respectively. The IRS spectrum is rescaled so that it fit to the
WISE W3 and W4 bands. Red solid line and the accompanying light-red lines indicate the
fitted cubic function and 1σ fitting error, respectively, which was used as the model spectrum
in the calibration. The goodness of fit χ2

ν ≡ χ2/dof is shown in the right bottom corner.



44 CHAPTER 4. REVISED AKARI CALIBRATION: POST-CRYOGENIC

Table 4.4: Observations of U/LIRGs used as red standard objects

Phase Pair IDa Object Obs. ID Date Temp. (K)b

3-1 1 PG 1545+210 1340496.1 2008 Aug 11 41.26± 0.03
1340496.2 2008 Aug 11 41.36± 0.08

2 PG 1700+518 1340465.1 2008 Aug 15 41.33± 0.01
1340465.3 2008 Aug 17 41.36± 0.01
1340465.2 2008 Aug 17 41.39± 0.01

3 PG 1704+608 1340493.2 2008 Jul 23 41.43± 0.02
1340493.3 2008 Jul 23 41.48± 0.01
1340493.1 2008 Jul 23 41.49± 0.06

4 IRAS 23060+0505 1120005.1 2008 Jun 11 41.50± 0.02

5 PG 1244+026 1340529.1 2008 Jun 30 41.65± 0.05
1340529.2 2008 Jun 30 41.67± 0.06

3-2 1 IRAS 23060+0505(1) 1120005.2 2008 Dec 11 42.81± 0.04

2 IRAS 23060+0505(2) 1120005.3 2008 Dec 11 42.89± 0.04

3 PG 1415+451 1340542.1 2008 Dec 29 43.22± 0.02

4 PG 1244+026 1340529.3 2008 Dec 31 43.25± 0.03

3-3 1 PG 0934+013 1340513.2 2009 May 17 45.07± 0.02
1340513.1 2009 May 17 45.09± 0.06

2 PG 0947+396 1341144.1 2009 Nov 7 45.07± 0.02
1341144.3 2009 Nov 7 45.07± 0.03
1341144.2 2009 Nov 7 45.10± 0.03

3 J1353157+634545 1920191.2 2009 May 26 45.13± 0.02
1920191.1 2009 May 26 45.16± 0.04

4 PG 1049−005 1340501.2 2009 Jun 4 45.35± 0.04
1340501.1 2009 Jun 4 45.41± 0.04
1340501.3 2009 Jun 4 45.41± 0.02

5 PG 1202+281 1341158.1 2009 Dec 11 45.41± 0.02

6 PG 1519+226 1340549.3 2009 Aug 3 45.61± 0.01
1340549.1 2009 Aug 2 45.64± 0.02
1340549.2 2009 Aug 3 45.64± 0.03

7 PG 1501+106 1340548.1 2009 Aug 2 45.61± 0.02
1340548.2 2009 Aug 2 45.63± 0.02
1340548.3 2009 Aug 2 45.64± 0.03

8 PG 1415+451 1340542.2 2009 Jun 28 46.49± 0.03
1340542.3 2009 Jun 28 46.50± 0.02

a The ID attached to each pair of standard objects (corresponding to Table 4.5).
b Detector temperature. Also plotted in Figure 4.1



4.4. SPECTRAL RESPONSE CALIBRATION 45

Table 4.5: Observations of stars used as blue standard objects

Phase Pair IDa Object Type Obs. ID Date Temp. (K)b

3-1 1 KF09T1(1) K0 III 5200086.1 2008 Aug 5 40.91± 0.16
5200086.2 2008 Aug 9 41.21± 0.02
5200016.1 2008 Jun 7 41.36± 0.03
5200086.3 2008 Aug 14 41.37± 0.02
5200038.14 2008 Jul 23 41.43± 0.04
5200086.4 2008 Aug 17 41.44± 0.03
5200086.7 2008 Aug 28 41.47± 0.04
5200038.4 2008 Jul 7 41.50± 0.04
5200086.5 2008 Aug 22 41.50± 0.02
5200016.2 2008 Jun 14 41.51± 0.03
5200086.6 2008 Aug 25 41.52± 0.01
5200288.1 2008 Sep 2 41.54± 0.07
5200038.12 2008 Jul 15 41.55± 0.04
5200038.5 2008 Jul 7 41.56± 0.01
5200038.13 2008 Jul 16 41.56± 0.01
5200288.2 2008 Sep 7 41.56± 0.02
5200038.3 2008 Jul 6 41.57± 0.02
5200038.8 2008 Jul 10 41.57± 0.04
5200016.4 2008 Jun 30 41.58± 0.02
5200038.9 2008 Jul 12 41.58± 0.02

2 KF09T1(2) K0 III 5200038.6 2008 Jul 8 41.59± 0.01
5200038.2 2008 Jul 5 41.60± 0.02
5200038.1 2008 Jul 3 41.61± 0.03
5200038.10 2008 Jul 13 41.62± 0.02
5200038.7 2008 Jul 9 41.63± 0.02
5200038.11 2008 Jul 13 41.64± 0.01
5200288.3 2008 Sep 10 41.71± 0.01
5200288.5 2008 Sep 16 41.71± 0.04
5200288.8 2008 Sep 29 41.80± 0.02
5200327.1 2008 Oct 2 41.82± 0.01
5200288.4 2008 Sep 13 41.83± 0.02
5200288.7 2008 Sep 24 41.86± 0.03
5200327.2 2008 Oct 5 41.88± 0.04
5200327.4 2008 Oct 14 41.91± 0.02
5200327.3 2008 Oct 10 41.93± 0.05
5200288.6 2008 Sep 21 41.94± 0.10
5200327.7 2008 Oct 26 41.97± 0.02
5200327.5 2008 Oct 19 41.98± 0.02
5200327.6 2008 Oct 23 41.99± 0.01
5200327.8 2008 Oct 29 42.00± 0.02

3 KF03T2 K1.5 III 5200313.1 2008 Oct 7 41.83± 0.02
5200313.2 2008 Oct 7 41.83± 0.06

4 KF03T1 K0 III 5200312.2 2008 Oct 6 41.81± 0.03
5200312.1 2008 Oct 6 41.89± 0.03

5 TYC 4212-455-1 A3 V 5200311.1 2008 Oct 6 41.85± 0.01
5200311.2 2008 Oct 6 41.86± 0.04
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Table 4.5: (Continued)

Phase Pair IDa Object Type Obs. ID Date Temp. (K)b

3-2 1 KF03T1 K0 III 5200403.1 2008 Nov 19 42.44± 0.01

2 KF03T2 K1.5 III 5200457.1 2008 Dec 19 42.94± 0.08
5200457.2 2008 Dec 21 43.07± 0.02

3 KF01T4 K1.5 III 5200459.2 2009 Jan 4 43.33± 0.04
5200459.1 2009 Jan 4 43.37± 0.02

4 KF09T1 K0 III 5200402.1 2008 Nov 7 42.06± 0.06
5200397.1 2008 Nov 5 42.12± 0.02
5200397.2 2008 Nov 11 42.27± 0.02
5200397.3 2008 Nov 18 42.39± 0.02
5200397.4 2008 Nov 23 42.46± 0.07
5200397.5 2008 Nov 30 42.59± 0.02
5200533.1 2008 Dec 6 42.76± 0.02
5200533.2 2008 Dec 12 42.80± 0.07
5200533.3 2008 Dec 18 43.02± 0.02
5200533.4 2008 Dec 24 43.07± 0.07
5200458.1 2008 Dec 27 43.20± 0.04
5200458.2 2008 Dec 29 43.24± 0.03
5200533.8 2009 Jan 20 43.29± 0.02
5200533.5 2008 Dec 30 43.30± 0.04
5200533.9 2009 Jan 26 43.30± 0.02
5200701.1 2009 Feb 1 43.34± 0.07
5200533.6 2009 Jan 5 43.38± 0.06
5200701.2 2009 Feb 5 43.39± 0.02
5200533.7 2009 Jan 11 43.40± 0.03
5200701.3 2009 Feb 8 43.46± 0.02
5200701.4 2009 Feb 15 43.46± 0.02
5200701.5 2009 Feb 22 43.51± 0.01
5200701.6 2009 Mar 1 43.58± 0.02
5200701.7 2009 Mar 5 43.58± 0.01
5200701.8 2009 Mar 16 43.87± 0.02
5200701.11 2009 Mar 27 44.01± 0.06
5200701.9 2009 Mar 19 44.02± 0.16
5200701.10 2009 Mar 23 44.04± 0.02
5200701.12 2009 Mar 30 44.11± 0.02
5200756.1 2009 Apr 4 44.12± 0.01
5200797.1 2009 Apr 6 44.17± 0.03
5200756.2 2009 Apr 7 44.19± 0.01
5200756.3 2009 Apr 10 44.28± 0.03
5200756.4 2009 Apr 14 44.40± 0.06

3-3 1 KF09T1(1) K0 III 5200756.5 2009 Apr 18 44.67± 0.03
5200797.2 2009 Apr 18 44.70± 0.03
5200797.3 2009 Apr 22 44.88± 0.02
5200756.6 2009 Apr 23 44.98± 0.01
5200756.9 2009 May 4 44.99± 0.07
5200797.7 2009 May 2 45.01± 0.05
5200756.11 2009 May 19 45.01± 0.04
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Table 4.5: (Continued)

Phase Pair IDa Object Type Obs. ID Date Temp. (K)b

5200756.10 2009 May 7 45.05± 0.08
5200797.14 2009 May 23 45.08± 0.02
5200797.8 2009 May 2 45.09± 0.03
5200797.9 2009 May 3 45.09± 0.04
5200797.10 2009 May 4 45.09± 0.02
5200797.15 2009 May 29 45.09± 0.09
5201280.2 2009 Nov 8 45.09± 0.01
5201283.2 2009 Nov 16 45.09± 0.02
5200756.12 2009 May 22 45.10± 0.06
5200756.13 2009 May 26 45.10± 0.03
5201277.1 2009 Oct 30 45.10± 0.01

2 KF09T1(2) K0 III 5201280.1 2009 Nov 8 45.10± 0.01
5200797.4 2009 Apr 28 45.11± 0.08
5201277.2 2009 Oct 30 45.11± 0.02
5200756.8 2009 May 1 45.12± 0.02
5200797.6 2009 May 1 45.12± 0.02
5200797.11 2009 May 4 45.12± 0.03
5200797.12 2009 May 5 45.12± 0.06
5201280.3 2009 Nov 8 45.12± 0.02
5200797.13 2009 May 7 45.13± 0.01
5201283.1 2009 Nov 16 45.14± 0.03
5200756.7 2009 Apr 27 45.15± 0.03
5201277.3 2009 Oct 31 45.15± 0.01
5201283.3 2009 Nov 16 45.15± 0.02
5200797.5 2009 Apr 29 45.16± 0.02
5201286.2 2009 Nov 23 45.16± 0.02
5201286.3 2009 Nov 23 45.17± 0.05
5201286.1 2009 Nov 22 45.20± 0.03
5200797.16 2009 May 30 45.22± 0.02

3 KF01T4 K1.5 III 5201219.1 2009 Oct 25 45.12± 0.04
5201219.3 2009 Oct 27 45.16± 0.03
5201219.2 2009 Oct 27 45.20± 0.05

4 KF09T1(3) K0 III 5200756.14 2009 May 30 45.24± 0.01
5200797.17 2009 May 31 45.25± 0.02
5201274.3 2009 Oct 20 45.25± 0.02
5201274.1 2009 Oct 20 45.26± 0.03
5201289.1 2009 Nov 28 45.27± 0.02
5201289.2 2009 Nov 28 45.28± 0.02
5200920.1 2009 Jun 1 45.29± 0.03
5201274.2 2009 Oct 20 45.29± 0.03
5201289.3 2009 Nov 28 45.32± 0.02
5200920.2 2009 Jun 4 45.38± 0.03
5200920.3 2009 Jun 6 45.44± 0.02
5201271.3 2009 Oct 14 45.44± 0.02
5201271.1 2009 Oct 13 45.50± 0.03
5201271.2 2009 Oct 13 45.50± 0.02
5201496.1 2009 Dec 17 45.51± 0.02
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Table 4.5: (Continued)

Phase Pair IDa Object Type Obs. ID Date Temp. (K)b

5200920.4 2009 Jun 8 45.53± 0.02
5201496.3 2009 Dec 18 45.54± 0.06
5201496.2 2009 Dec 17 45.55± 0.03

5 KF09T1(4) K0 III 5200920.5 2009 Jun 10 45.57± 0.05
5200920.28 2009 Jul 30 45.57± 0.04
5200920.6 2009 Jun 10 45.59± 0.04
5201170.3 2009 Aug 2 45.60± 0.02
5201173.1 2009 Aug 4 45.60± 0.02
5201173.2 2009 Aug 4 45.60± 0.03
5201170.1 2009 Aug 2 45.61± 0.02
5201170.2 2009 Aug 2 45.61± 0.02
5201173.3 2009 Aug 4 45.61± 0.11
5200920.26 2009 Jul 29 45.64± 0.02
5200920.25 2009 Jul 28 45.65± 0.04
5201182.3 2009 Sep 22 45.65± 0.06
5200920.7 2009 Jun 11 45.66± 0.02
5201182.1 2009 Sep 21 45.66± 0.02
5201455.2 2009 Dec 25 45.66± 0.02
5200920.27 2009 Jul 30 45.67± 0.02
5200920.29 2009 Jul 31 45.69± 0.04
5201182.2 2009 Sep 22 45.69± 0.02

6 KF03T4 K1 III 5201220.2 2009 Oct 29 45.07± 0.05
5201220.3 2009 Oct 30 45.11± 0.05
5201220.1 2009 Oct 29 45.25± 0.11
5201457.2 2009 Dec 11 45.43± 0.03
5201457.3 2009 Dec 12 45.47± 0.03
5201457.1 2009 Dec 11 45.48± 0.02
5201458.1 2010 Jan 7 45.79± 0.09
5201458.3 2010 Jan 13 45.86± 0.02
5201458.2 2010 Jan 10 45.91± 0.02
5201524.2 2010 Feb 1 46.03± 0.08
5201524.1 2010 Feb 1 46.04± 0.02
5201524.3 2010 Feb 2 46.06± 0.02

7 KF09T1(5) K0 III 5201455.3 2009 Dec 25 45.70± 0.02
5200920.24 2009 Jul 27 45.74± 0.04
5201176.2 2009 Aug 14 45.75± 0.04
5201176.3 2009 Aug 14 45.75± 0.07
5201176.1 2009 Aug 14 45.76± 0.02
5201179.1 2009 Aug 24 45.76± 0.03
5201455.1 2009 Dec 24 45.76± 0.05
5200920.23 2009 Jul 25 45.78± 0.02
5201179.2 2009 Aug 24 45.78± 0.02
5201179.3 2009 Aug 24 45.79± 0.02
5200920.8 2009 Jun 12 45.80± 0.05
5200920.22 2009 Jul 23 45.81± 0.05
5201499.1 2010 Jan 6 45.81± 0.02
5201499.2 2010 Jan 6 45.83± 0.02
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Table 4.5: (Continued)

Phase Pair IDa Object Type Obs. ID Date Temp. (K)b

5201499.3 2010 Jan 6 45.84± 0.03
5201502.3 2010 Jan 27 45.90± 0.07
5200920.9 2009 Jun 15 45.91± 0.02
5201502.1 2010 Jan 26 45.95± 0.02

8 KF09T1(6) K0 III 5201456.2 2010 Jan 28 45.98± 0.02
5201502.2 2010 Jan 27 46.00± 0.01
5201456.1 2010 Jan 26 46.01± 0.05
5200920.21 2009 Jul 20 46.05± 0.03
5201456.3 2010 Feb 1 46.06± 0.04
5201636.1 2010 Feb 15 46.11± 0.05
5201636.2 2010 Feb 15 46.18± 0.02
5200920.20 2009 Jul 17 46.21± 0.04
5200920.18 2009 Jul 14 46.25± 0.02
5200920.19 2009 Jul 16 46.26± 0.04
5200920.17 2009 Jul 12 46.34± 0.02
5200920.11 2009 Jun 24 46.37± 0.04
5200920.10 2009 Jun 22 46.39± 0.03
5200920.12 2009 Jun 26 46.40± 0.08
5200920.16 2009 Jul 10 46.43± 0.02
5200920.13 2009 Jun 28 46.46± 0.02
5200920.15 2009 Jul 7 46.54± 0.03
5200920.14 2009 Jul 1 46.55± 0.04

a The ID attached to each pair of standard objects (corresponding to Table 4.4).
b Detector temperature. Also plotted in Figure 4.1

4.4.3 Temperature Dependence of Response Functions

From the results of the cryogenic phase and that of the Phase 3 wavelength calibration, it

is certain that the second-order light contamination exists only at wavelengths longer than

λ(1) > 4.9 µm. For λ(1) > 4.9 µm, we simultaneously calculated the spectral response functions

against the first- and second-order light R(1,2) from each pair, by formulating Equation (3.5)

for the two objects. For λ(1) < 4.9 µm, we derived R(1) assuming R(2) = 0 and using the

star only because the standard stars had experienced other calibrations of such as 2MASS and

Spitzer/IRS, and their templates had been better established than our model spectra of the

U/LIRGs. We averaged the response curves obtained in each sub-phase after taking five-pixel

smoothing and estimated its uncertainty from the standard deviation of the curves. The results

of the three sub-phases are compared in Figure 4.6.

We cannot discuss the temperature dependence of the response curve for the second-order

light from the right panel of Figure 4.6 because the results in the three phases have large

uncertainty. On the contrary, the response curves for the first-order light certainly shows that

the response has decreased with temperature during Phase 3. Moreover, the decrease appears

not to have obvious wavelength dependence. To confirm this, we averaged the three response

curves and derived the ratio of each response to the average. The obtained ratio is shown in
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Figure 4.6: Spectral response curves in the three sub-pases. Left and right panels show the
response from the first- and second-order light, respectively.

Figure 4.7. The averaged response curve appears in Figure 4.9 to be compared with the result

of the cryogenic phase. Although there are large uncertainties in the response ratio around

the ends of the observed range, in the bulk of the wavelength coverage, we cannot find any

clear wavelength dependence. In each sub-phase, the level of the response ratio averaged in

2.5–4.7 µm, which is shown in a thick dot-dashed line in Figure 4.7, hits most of the points

within the errors. We thus assume that the decrease of R(1)(λ) has no wavelength dependence.
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Figure 4.7: Ratio of the response in each sub-phase to the average of all sub-pases. Thick
dot-dashed lines indicate the level of the response ratio averaged in the 2.5–4.7 µm range.

Figure 4.8 plots the level of the averaged response ratio against the average detector temper-

ature of the observations used for the calibration. To derive a correction factor for the response

decrease, we approximated it as a linear relation and fitted a function of the form of

f(T ) = 1 + a(T − T0), (4.1)
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to the three points in Figure 4.8. The obtained parameter values are,a = −0.0290 K−1,

T0 = 43.55 K.
(4.2)

The response decreasing rate a we found from the spectroscopic observations coincides the value

derived from near-infrared photometric observation (Yamashita et al. in preparation). Thus the

response decline can be attributed to the parts of the NIR channel shared in the spectroscopic

and photometric modes. Because it is unlikely that the transmittance of the Si lenses had

changed, the dominant cause of the decline should be the worsening of the detector sensitivity.

Users who want to reduce the data from a spectroscopic observation can adopt the averaged

spectral response curve scaling it by the factor of f(T ). Although the temperature dependence

of the spectral response for the second-order light is not trivial, we assume that it together

scales with the same factor f(T ). This assumption would cause no practical problem because

the variation of f(T ) during Phase 3 (∼ 10%) is as small as the uncertainty of R(2)(λ) in each

sub-phase. The analysis in Chapter 6 was conducted upon this assumption.
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Figure 4.8: Plot of the averaged response ratio against the average detector temperature of
the observations used for the calibration. Black solid line shows the linear function fitted to the
three points and denotes the temperature correction factor expressed in Equations (4.1, 4.2).

4.4.4 Comparison with the cryogenic phase

The left panel of Figure 4.9 compares R(1)(λ) averaged among the three sub-phases and that

obtained in the cryogenic phase. The relative shape ofR(1)(λ) does not change from the cryogenic

to post-cryogenic phase. This also justifies the assumption in the derivation of f(T ). The absolute

value of R(1)(λ) decreases by a factor of ∼ 0.7, which represents the result of Onaka et al. (2009,

Section 6.9.4).

The right panel of Figure 4.9 is the same comparison as the left panel but for R(2)(λ).
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Contrast to R(1), R(2) decreases more than a factor of 0.7 from the cryogenic phase: it decreases

by a factor of 0.52. This means that the relative strength of the second-order light contamination

to the first-order light in the post-cryogenic phase is lower than that in the cryogenic phase by

25% if we observe the same object in both of the phases. This specific response decline around

2.5 µm is consistent to that found in the NP prism mode (Shimonishi et al. 2013). Figure 4.10

compares the prism-mode spectral response in the two phases and shows that the response at

2.5 µm had decreased more by 25% than those at the other wavelengths. This change has been

explained as the lowering of the spectral resolution due to the degradation of the point-spread

function in Phase 3 (Shimonishi et al. 2013; Onaka et al. 2009, Section 6.9.2). We here conclude

that the change of the relative strength of the contamination in the grism mode was caused by

the same reason: the degradation of the imaging performance at 2.5 µm.
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Figure 4.9: Comparison of the spectral responses in the cryogenic and post-cryogenic phases.
The cryogenic response curves shown in Figure 3.10 are displayed being multiplied by a factor
of 0.7.
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4.5 Summary

We carried out the correction for the second-order light contamination in the AKARI NIR

grism spectroscopy scoping to the post-cryogenic phase (Phase 3). To assess the temperature

dependence of the wavelength and spectral response calibrations, we defined three sub-phases,

which correspond to different ranges of the detector temperature. Wavelength calibrations in the

three sub-phases coincide with each other and do not show any temperature dependence. The

final wavelength calibration curve obtained from the measurement of emission lines throughout

Phase 3 confirms the presence of the second-order light contamination, similarly to Phase 1

and 2. It is shown that the spectral response from the first-order light had decreased by ∼ 10%

from the beginning to the end of the post-cryogenic phase. Based on the approximation that the

decline of the response linearly relates to the temperature, a correction factor for the temperature

dependence is obtained. The relative strength of the second-order light contamination to the

first-order light is found to had lowered by 25% from the cryogenic phase. This change can be

explained as the degradation of the point-spread function around 2.5 µm.
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Chapter 5
The Near-Infrared CO Absorption

Band as a Probe to the Innermost

Part of an AGN Obscuring Material

The content of this chapter is based on the study published in the paper: Baba, S., Nakagawa,

T., Isobe, N., and Shirahata, M. 2017, “The Near-Infrared CO Absorption Band as a Probe to

the Innermost Part of an AGN Obscuring Material”, The Astrophysical Journal, 852, 83.

As a preliminary investigation for systematic studies, we analyzed the 4.67 µm CO ro-

vibrational absorption band profiles in selected ten luminous AGNs that had been known to

show the feature in the AKARI and Spitzer spectra by fitting a plane-parallel local thermal

equilibrium gas model. We found that CO gas is warm (200–500 K) and has a large column

density (NH & 1023 cm−2). The heating of the gas is not explicable by either UV heating or

shock heating because these processes cannot represent the large column densities of the warm

gas. Instead, X-ray photons from the nuclei, which can produce large columns of warm gas

with up to NH ∼ 1024 cm−2, are the most convincing power source. The hydrogen column

density estimated from the CO band is smaller than that inferred from X-ray observations if the

abundance of CO/H=10−4 is adopted. These results can be interpreted that the region probed

by the near-infrared CO absorption is in the vicinity of the nuclei and is located outside the X-

ray emitting region. Furthermore, the covering factors of nearly unity required by the observed

deep absorption profiles suggest that the probed region is close to the continuum source, which

can be designated as the inner rim of the obscuring material around the AGN.

5.1 Introduction

Active galactic nuclei (AGNs) show a wide diversity of observational characteristics in their

spectra. AGN spectra differ primarily in terms of optical broad emission lines, the presence or

absence of which are used to classify the AGNs as types 1 or 2, respectively. This dichotomy

55
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has been attributed to a viewing angle effect caused by a putative AGN torus, an optically

and geometrically thick torus-shaped dusty cloud that obscures direct emission from the nuclear

region when the AGN is viewed edge-on (AGN unified model, Antonucci 1993). To understand

the characteristics of AGNs, it is important to observe AGN tori and verify the AGN unified

model. However, because of their small sizes on parsec scales, it is difficult to directly image AGN

tori. Recent millimeter to sub-millimeter interferometric observations with the Atacama Large

Millimeter Array of carbon monoxide (CO) pure rotational emission lines revealed the presence

of gas concentrated near central nuclei (e.g., Garćıa-Burillo et al. 2016), but the highest spatial

resolution that can be achieved with such observations is about several parsecs, even in the

nearest AGNs. Thus, in distant galaxies millimeter and sub-millimeter emission lines are not

suitable for resolving AGN tori from their hosts. An alternative observing method that can be

applied to large numbers of AGNs is required.

The strategy we employ in this study is based on spectroscopy of the CO fundamental ro-

vibrational absorption band centered at 4.67 µm (v = 1← 0, ∆J = ±1). Using the bright near-

IR radiation from the central region as the background continuum, this technique can observe

foreground molecular gas clouds with an effectively high spatial resolution at the parsec scale

because of to the compactness of the near-IR emitting region. Furthermore, because this band

contains multiple lines with different rotation levels in a narrow wavelength range, it is possible

to obtain information on the gas excitation state from one observation. In this respect, the

near-IR CO absorption band is preferable to the (sub-)millimeter CO pure rotational emission

lines, which are easily affected by contamination from the host galaxy and cannot be observed

simultaneously.

As mentioned in Chapter 1, there are a few previous observations of the near-IR CO absorp-

tion. Geballe et al. (2006) and S13 observed the CO band toward the heavily obscured ULIRG

IRAS 08572+3915 using UKIRT and Subaru, respectively, and detected strong absorption lines

up to high rotational levels (J ≤ 17). S04 observed another obscured ULIRG IRAS 00182−7112

with Spitzer and also detected strong CO absorption of high temperature. Based on the highly

excited states, both authors argued that the observed gas should be in the vicinity of the dom-

inant nuclear power source. S13 also proposed that the warm gas is heated by X-ray radiation

from an AGN engine. The CO absorption, however, does not always appear in all type-2 AGNs.

Lutz et al. (2004) observed nearby 12 type-2 AGNs with ISO, but none of them shows the CO

feature. Lahuis et al. (2007) detected similar warm molecular gas toward obscured U/LIRGs

through the mid-IR absorption bands of C2H2, HCN, and CO2 but concluded that the gas is

unlikely to be associated with the material surrounding AGNs because these molecules would

be rapidly destroyed in an intense X-ray field. The two above studies controvert the hypothesis

that CO absorption probes warm gas near the central region.

To assess the location of the region probed by CO ro-vibrational absorption, in this study we

analyzed space telescope observations of the CO feature toward ten nearby AGNs and compared

the results with the results from other X-ray and mid-IR observations. Such a systematic analysis

of the CO absorption profile had not previously been performed, although detection of the feature

has been reported in some objects (Imanishi et al. 2008, 2010; Spoon et al. 2005). Together with



5.2. TARGETS, OBSERVATIONS, AND DATA REDUCTION 57

a description of observations and data reduction, the selection of our targets is explained in

Section 5.2. The method used to analyze the CO absorption profile is described in Section 5.3,

followed by presentation of results in Section 5.4. We discuss these results and compare them

with other observations in Section 5.5 and, finally, we give our conclusion in Section 5.6.

5.2 Targets, Observations, and Data Reduction

We used spectroscopic observations carried out with the AKARI satellite (Murakami et al.

2007) and the Spitzer Space Telescope (Werner et al. 2004) to collect targets that show CO

absorption. AKARI and Spitzer have near- and mid-IR spectrometers, respectively, which

cover complementary redshift ranges. Because we were not able to obtain information on the

longward continuum level over the CO absorption from the AKARI observations themselves,

Spitzer data were used to complement the spectrum in longer wavelengths. For these sources,

we scaled the two spectra using WISE catalog magnitudes as reference points. In the following,

we describe in detail the observations and data reduction techniques and present the spectra of

the targets.

5.2.1 AKARI

We searched AGNs showing CO absorption from the archival data of the AKARI mission pro-

gram AGNUL (PI: Takao Nakagawa). The program conducted many spectroscopic observations

of nearby AGNs and ULIRGs using the Infrared Camera (IRC) in the NG grism mode. Almost

all of the observations were performed through a 1′ × 1′ aperture, and thus constituted slitless

spectroscopy. The NG grism mode covers a wavelength range from 2.5 to 5.0 µm. Although its

spectral resolution in general depends on the spatial extent of the target, if it is a point source,

the resolution can be given as R = 33.3λ, where λ is the observed wavelength in µm (Onaka

et al. 2007; Ohyama et al. 2007). The redshift range within which it is possible to observe the

band center of the CO feature is z < 0.07. The AGNUL program also carried out observations

in another dispersion mode (NP), but we excluded these from our sample because the spectral

resolution of that mode was insufficient for the following analysis. The observation period of the

program is divided into two parts: a cryogenic phase and a post-cryogenic phase. In this study,

we scoped only cryogenic observations, which had been calibrated better than the post-cryogenic

observations. A study using post-cryogenic data will be presented in Chapter 6.

Under the above conditions, 50 ULIRGs were observed, eight of which are within z < 0.07.

We found that the six ULIRGs listed in the upper part of Table 5.1 show CO absorption. The

other two ULIRGs are Mrk 231 and IRAS 05189−2524, which are classified as Sy1 and Sy2,

respectively (Veilleux et al. 1995). Table 5.1 also presents the redshift, optical classification,

and IR and X-ray AGN signatures of the six CO ULIRGs. Although some of these are not

classified as Seyferts, either IR or X-ray diagnostics suggest that they are AGN hosts, and we

therefore assumed that all six ULIRGs harbor an AGN and used them as targets for analysis.

IRAS 23128−5919 is a merging system with a nuclear separation of 5′′ (Duc et al. 1997). The

southern nucleus of the galaxy was detected in hard X-rays with Chandra and believed to be an
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obscured AGN based on the observed X-ray hardness ratio (Iwasawa et al. 2011).

Table 5.1: Basic target data

Group Object z logLIR Optical AGN Sign Ref.

(L�) Class IR X-ray

(1) (2) (3) (4) (5) (6) (7) (8)

AKARI IRAS 06035−7102 0.0797 12.2 LI X · · · 1; 6, 7; —

IRAS 08572+3915 0.0583 12.1 LI X X 2, 3; 7, 8; 9

UGC 5101 0.0392 12.0 LI X X 3; 7, 8; 9

Mrk 273 0.0373 12.2 Sy2 X X 2, 3; 6, 7; 9

IRAS 19254−7245 0.0616 12.1 Sy2 X X 1, 4; 7, 8; 10

IRAS 23128−5919 0.0448 12.0 H ii/Sy2/LI — X 1; 6; 9

Spitzer IRAS 00182−7112 0.3270 12.9 LI X X 5; 8; 11

IRAS 00397−1312 0.2617 13.0 H ii X — 2; 8; 12

IRAS 00406−3127 0.3424 12.8 Sy2 X · · · 4; 7; —

IRAS 13352+6402 0.2366 12.5 ? X · · · —; 7; —

Note—Column 1: target group. Column 2: object name. Column 3: redshift taken from the
PSCz catalog (Saunders et al. 2000). Column 4: logarithm of the infrared (8–1000 µm) lu-
minosity in units of the solar luminosity L� derived from Sanders & Mirabel (1996): LIR =
2.1× 1039 ×D2

L × (13.48f12 + 5.16f25 + 2.58f60 + f100) erg s−1, where DL is the distance in Mpc,
and f12, f25, f60, and f100 are IRAS fluxes in Jy. In calculating DL, H0 = 70 km s−1 Mpc−1,
Ωm = 0.3, and ΩΛ = 0.7 are adopted. The IRAS fluxes are taken from Sanders et al. (2003), Kim
& Sanders (1998), or the IRAS Faint Source Catalog Version 2.0. For objects having upper lim-
its in the IRAS fluxes, we evaluated the upper and lower limits of LIR by assuming an actual flux
equal to the upper limit and a zero value, respectively. Those upper and lower limits are quite
close, with a difference less than 0.16 dex. Ultimately, the average of the two limits was adopted.
Column 5: optical spectral classification. “LI”, “Sy2”, “H ii”, and “?” denote LINER, Seyfert 2,
H ii galaxy, and no optical classification, respectively. Columns 6 and 7: IR and X-ray AGN signa-
tures, respectively. Check: present. Dash: absent. Dots: no data. The IR signature is based on the
low equivalent widths of the 3.3 and/or 6.2 µm PAH emissions. The X-ray signature is based on a
hard photon index and/or strong iron K lines. Column 8: references for columns 5, 6, and 7 with
semicolons as delimiters. 1: Duc et al. (1997). 2: Veilleux et al. (1999). 3: Veilleux et al. (1995). 4:
Allen et al. (1991). 5: Armus et al. (1989). 6: Imanishi et al. (2010). 7: Sargsyan et al. (2011). 8:
Imanishi et al. (2008). 9: Iwasawa et al. (2011). 10: Braito et al. (2009). 11: Nandra & Iwasawa
(2007). 12: Nardini & Risaliti (2011).

Table 5.2 summarizes observational information obtained from AKARI /IRC. To correct for

the second-order light contamination, we reduced raw data in the manner described in Chapter 3.

One-dimensional raw spectra were extracted using the official IRC Spectroscopy Toolkit Version

20150331 in the standard manner. To minimize uncertainty in the wavelength calibration, the

wavelength origin was adjusted from the value reported by the toolkit by a few pixels based on

the positions of features such as the 3.3 µm PAH emission band, H i Brα and Brβ emission lines,

and 4.26 µm CO2 absorption band. The wavelength dependence of the refractive index of the

grism material was included in the wavelength calibration. Contamination from the second-order

light was correctly removed in the flux calibration.
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The flux uncertainty at i-th pixel, δFν,i, was evaluated from the uncertainty in the signal

in ADU (δN) and that in the spectral response at the wavelength of the pixel (δRi) based

on Equations (3.9) and (A.1). The former uncertainty δN was common to all points and was

measured as the sky fluctuation in the part of the two-dimensional spectral image other than

the spectrum of the source. This is the standard way incorporated in the toolkit. The latter

uncertainty δRi was that determined in Chapter 3. The flux uncertainty was then obtained

through the error propagation that δFν,i/Fν,i =
√

(δN/Ni)2 + (δRi/Ri)2. When subtracting

the second-order light, for example k-th pixel in Equation (3.9), we calculated the uncertainty

in the final flux as

δFν,i =
√

(δDk,k)2N2
k + (δDk,1)2N2

1 + (δDk,2)2N2
2 + (D2

k,k +D2
k,1 +D2

k,2)(δN)2,

where δD is the uncertainty in the matrix elements in Equations (A.1) calculated from δR.

Although in the above equation δN appears three times, since Nk, N1, and N2 are independent,

it is not triple counting.

Because the southern and northern parts of IRAS 23128−5919 were barely resolved in the

two-dimensional spectral image, we selectively extracted flux from the southern part, which is

known to be an AGN host as mentioned above. IRAS 06035−7102, IRAS 08572+3915, Mrk

273, and IRAS 19254−7245 also have double disks or nuclei, which we were not able to resolve

because they either have small separations or are aligned in the dispersion direction of the

two-dimensional spectral images.

Table 5.2: AKARI /IRC observation log

Object Observation ID Observation Date

IRAS 06035−7102 1100130.1 2007 Mar 11

IRAS 08572+3915 1100049.1 2006 Oct 26

UGC 5101 1100134.1 2007 Apr 22

Mrk 273 1100273.1 2007 Jun 8

IRAS 19254−7245 1100132.1 2007 Mar 30

IRAS 23128−5919 1100294.1 2007 May 10

5.2.2 Spitzer

Spoon et al. (2005) reported that four ULIRGs observed with the Infrared Spectrometer (IRS)

onboard Spitzer (Houck et al. 2004) show CO absorption. The lower part of Table 5.1 presents

basic information on these four ULIRGs. These ULIRGs are, except for IRAS 00406−3127,

not optically classified as Seyferts but show IR AGN signatures. Thus, we investigated these

ULIRGs in addition to the AKARI targets. The Spitzer targets are systematically more lumi-

nous than the AKARI targets. Table 5.3 summarizes the Spitzer/IRS observational information

and tabulates the observations used to complement the spectra of the AKARI targets.

The spectra around the CO absorption were obtained in the IRS SL2 mode, which covers
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wavelengths from 5.21 to 7.56 µm with a spectral resolution R = 16.5λ at a slit width of 3.′′6 (IRS

Instrument Team and Science User Support Team 2011). This wavelength range corresponds to

the redshift range z = 0.12–0.62. The spectral resolution is lower than that of the AKARI /IRC

NG mode but sufficient for the following analysis. The calibrated Spitzer/IRS spectra including

flux uncertainties were downloaded from the IRS Enhanced Products on the Spitzer Heritage

Archive.

Table 5.3: Spitzer/IRS observation log

Object AOR Key Observation Date

IRAS 06035−7102 W 4969728 2004 Apr 14

IRAS 08572+3915 NW 4972032 2004 Apr 15

UGC 5101 4973056 2004 Mar 23

Mrk 273 4980224 2004 Apr 14

IRAS 19254−7245 S 12256512 2005 May 30

IRAS 23128−5919 S 4991744 2004 May 11

IRAS 00182−7112 7556352 2003 Nov 14

IRAS 00397−1312 4963584 2004 Jan 4

IRAS 00406−3127 12258816 2005 Jul 11

IRAS 13352+6402 12258560 2005 Mar 20

5.2.3 Scaling to the WISE Photometry

Because the AKARI /IRC spectra of the AKARI targets lacked the longward part of the CO

absorption owing to redshift, we supplemented them with Spitzer/IRS ones to estimate the

longward continuum levels. To reduce the effect of the different aperture sizes of AKARI and

Spitzer, we scaled the fluxes of the two spectra so that they match with the WISE photometry

(Wright et al. 2010). The procedure was as follows. Profile-fit magnitudes were taken from the

AllWISE catalog and converted into fluxes in Jy based on the zero magnitudes presented by

Jarrett et al. (2011), with color corrections taken into account. The color correction factor for

the W1 band was calculated by integrating the product of the W1 spectral response function

and the relative shape of the AKARI spectrum, and those factors for the W3 and W4 bands

were similarly obtained using the relative shape of the Spitzer spectrum. The W2 band flux

cannot put clear constraint because the band protrudes from the AKARI wavelength coverage.

We thus evaluated only the lower limit for the factor, which resulted in the flux upper limit.

The AKARI spectrum was scaled so that its flux density at the isophotal wavelength of the

W1 band (λobs = 3.35 µm) hits the color-corrected W1 flux, and confirmed not to pass over the

W2 upper limit. The Spitzer spectrum was scaled so that its flux densities at the W3 and W4

isophotal wavelengths (λobs = 11.56, 22.09 µm) fit the corrected fluxes of the two bands.

After the scaling, the two spectra agreed well so that we were able to draw baselines smoothly

(Section 5.3.1). The obtained combined spectra are shown in Figure 5.1. The resultant scaling
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shifts from the original fluxes were mainly within 20%, although the shift for the Spitzer spectrum

of IRAS 23128−5919 was +64%. This large shift can be attributed to the compensation of the

flux from the northern nucleus, which did not fall in the Spitzer slit but blends into the AKARI

spectral extraction.

While the original flux uncertainties of the AKARI and Spitzer spectra were propagated

into the combined spectra, the scale factor uncertainties were not, because only the continuum-

normalized spectra were used in the analysis described below. However, the uncertainty in the

ratio between the two scale factors, which affects the determination of the longward continuum

level from the Spitzer spectrum, should be treated as a systematic error. The largest uncertainty

in the ratio of the two scale factors was obtained in IRAS 23128−5919, in which the uncertainty

was ±0.11 out of 1.54. We estimate the systematic error stemming from this uncertainty in

Section 5.4.

Figure 5.2 shows the Spitzer spectra of the four Spitzer targets. In contrast to the AKARI

spectra of the AKARI targets, these spectra entirely cover the CO absorption within themselves.

We did not apply any scaling to these spectra because the absolute fluxes were not important,

as only the continuum-normalized spectra were used in the analysis.

5.3 Analysis

5.3.1 Continuum-Normalized Spectra

We normalized each spectrum around the CO absorption with a continuum level estimated as

a cubic spline curve interpolated between the pivots at 4.15, 4.35, 5.10, and 5.40 µm. These

pivots were taken so that they avoid the Brα line at 4.05 µm, CO2 absorption at 4.26 µm,

and PAH emissions at 5.27 and 5.70 µm (Smith et al. 2007). In IRAS 13352+6402, we instead

used a quadratic continuum that passes over the remaining three pivots, as its spectrum did not

cover wavelengths shorter than 4.21 µm. Figure 5.3 shows the adopted continuum curves and

the resulting normalized spectra. In this figure, double-branched features are observed, with the

branches at the long and short wavelength sides representing the P - andR-branches, respectively.

The depth of the absorption is deep, and the width of each branch is broad (∼ 0.2 µm) compared

to that observed toward Sgr A∗ (∼ 0.05 µm, Lutz et al. 1996). These characteristics suggest

that the CO gas has a large column density and a high temperature of up to ∼ 500 K.

5.3.2 Gas-Model Fitting

We used the plane-parallel LTE gas model developed by Cami (2002) to analyze the absorption

profile. For simplicity, we assume that the CO gas comprises of a single component with uniform

number density, temperature, and turbulent velocity (velocity width). We did not include any

isotopomers other than 12C16O. The model gives the flux normalized to the background intensity,

including the contribution of both the absorption by the gas and the thermal emission from

the gas itself. Because the observed absorption profiles suggested high gas temperatures, to

accurately take the relative contribution of the gas in emission compared to the continuum into
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Figure 5.1: Combined spectrum of each AKARI target. Red and blue solid curves are the
AKARI /IRC and Spitzer/IRS spectra scaled to match the WISE photometry, respectively (see
text). Dashed lines in light colors, which are sometimes hidden behind the solid lines, are the
original spectra before scaled. Orange filled circles represent the WISE photometric fluxes. The
AKARI and Spitzer spectra are scaled so that they fit with the WISE points, but the W2 band
(4.6 µm in the observed frame) flux shown with a downward arrow is used only as an upper
limit. Gray shaded areas indicate the wavelength range in which the CO absorption appears.



5.3. ANALYSIS 63

 0.001

 0.01

 0.1

 1

 3  30 10

IRAS 00182−7112

 z = 0.3270

F
lu

x
 D

en
si

ty
 [

Jy
]

Rest Wavelength  [µm]

 0.01

 0.1

 1

 3  30 10

IRAS 00397−1312

 z = 0.2617

F
lu

x
 D

en
si

ty
 [

Jy
]

Rest Wavelength  [µm]

 0.001

 0.01

 0.1

 3  30 10

IRAS 00406−3127

 z = 0.3424

F
lu

x
 D

en
si

ty
 [

Jy
]

Rest Wavelength  [µm]

 0.001

 0.01

 0.1

 3  30 10

IRAS 13352+6402

 z = 0.2366

F
lu

x
 D

en
si

ty
 [

Jy
]

Rest Wavelength  [µm]

Figure 5.2: Spitzer/IRS spectrum of each Spitzer target (blue solid curves). Gray shaded
areas indicate the wavelength range in which CO absorption appears.
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Figure 5.3: Continuum curves over the CO absorption (top) and continuum-normalized spec-
tra (bottom). Red and blue curves are the AKARI and Spitzer spectra, respectively. Flux
uncertainty is not shown here but is indicated in Figure 5.4. The continuum spectrum of each
target (gray dotted line) is taken as a cubic spline curve that passes four pivots at 4.15, 4.35,
5.10, and 5.40 µm (gray open circles), except for IRAS 13352+6402, whose continuum is taken
as a quadratic curve that passes the three pivots at longer wavelengths.



5.3. ANALYSIS 65

0.5

1.0

4.0 4.5 5.0 5.5

N
o

rm
.

Rest Wavelength  [µm]

0.01

0.03

0.05
IRAS 00182−7112

F
lu

x
 D

en
si

ty
 [

Jy
]

0.1

1.0

4.0 4.5 5.0 5.5

N
o

rm
.

Rest Wavelength  [µm]

0.03

0.06

0.09
IRAS 00397−1312

F
lu

x
 D

en
si

ty
 [

Jy
]

0.3

1.0

4.0 4.5 5.0 5.5

N
o

rm
.

Rest Wavelength  [µm]

0

0.004

0.008

0.012
IRAS 00406−3127

F
lu

x
 D

en
si

ty
 [

Jy
]

0.4

1.0

4.0 4.5 5.0 5.5

N
o

rm
.

Rest Wavelength  [µm]

0.004

0.008

0.012
IRAS 13352+6402

F
lu

x
 D

en
si

ty
 [

Jy
]

Figure 5.3: (Continued)
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account, we needed to explicitly assume the temperature of the background radiation source.

Assuming that the background continuum source is an optically thick hot dust sublimation

layer, we set the continuum as a blackbody Iν,0 = Bν(TBG) with a sublimation temperature

TBG = 1500 K (Barvainis 1987). The intensity we observe, Iν , is then the sum of the absorbed

background, Iν,0e
−τν , and the emission from the CO gas itself, Bν(TCO)(1 − e−τν ), where τν is

the optical depth of the CO gas, and TCO is the gas temperature. Accordingly, the continuum-

normalized intensity becomes

Iν/Iν,0 = e−τν +
Bν(TCO)

Bν(TBG)

(
1− e−τν

)
. (5.1)

The optical depth for a transition (v, J) = (0, J ′′)→ (1, J ′) at frequency ν0 can be written as

τν = NCO
hν0

4π
gJ ′′BJ ′′J ′

e−EJ′′/kTCO

Z(TCO)

(
1− e−hν0/kTCO

)
φ(ν, ν0), (5.2)

where NCO is the total CO column density, gJ ′′ = (2J ′′ + 1) and EJ ′′ are the statistical weight

and the energy level of the lower state, respectively, BJ ′′J ′ is the Einstein coefficient of the

transition, Z(TCO) is the partition function at TCO, and φ(ν, ν0) is a line profile. We assumed a

Gaussian profile for each transition with a common turbulent velocity vturb:

φ(ν, ν0) = 1√
π∆νD

e−(ν−ν0)2/∆ν2D , (5.3)

∆νD = vturb
c ν0. (5.4)

From these equations, the intrinsic model spectrum can be parameterized by three variables:

column density NCO, temperature TCO, and velocity width vturb.

We can fit the model (Equation (5.1)) to the data using NCO, TCO, and vturb as free parame-

ters. In the model calculation, we set the lower limit of the parameter range of vturb to 10 km s−1

referring to the result of a similar gas model fitting for the CO band in IRAS 00182−7112 con-

ducted by Spoon et al. (2004), who found vturb=50 km s−1. Since the A coefficient of each

transition is smaller than 35 s−1 (Goorvitch 1994), its natural width is more than 8 orders of

magnitude narrower than the velocity width and thus negligible. In addition, we set the upper

limit of vturb to 300 km s−1, where the FWHM of each line is comparable to the line spacing

(∼ 0.008 µm) between adjacent rotational levels. To represent instrumental spectral resolutions,

intrinsic absorption spectra were convolved with a Gaussian of a dispersion of 0.03/(1 + z) µm

for the AKARI targets and 0.06/(1 + z) µm for the Spitzer targets. The three parameters are

somewhat degenerate with each other at such low resolutions since different rotational levels

are not resolved, and the absorption spectrum is smoothed-out as a double-branched profile

as observed in the previous subsection. Appendix B.1 explains how the parameters alter the

absorption profile.

Because most of the targets show absorption dominated spectra, the contribution from emis-

sion lines within the CO band can be generally expected to be small. However, there is some

concern. The Pfβ line at 4.65 µm may be superimposed over the CO absorption. The theo-
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retical line ratio of Pfβ/Brα is 0.20 under the Case B condition, with ne ∼ 102–107 cm−3 and

Te ∼(3–30)×103 K (Storey & Hummer 1995). Considering the small equivalent width of the Brα

line, we ignored the contribution from Pfβ in all the targets except for Mrk 273, in which the

observed intensity near the CO band center exceeded unity. Yano et al. (in preparation) found

that this galaxy shows an anomalous Brβ/Brα ratio in the AKARI spectrum. Accordingly, we

attributed the high intensity to the effect of Pfβ and masked the data points within the ±3σ

wavelength range around that line assuming a line width at FWHM = 0.03 µm and excluded

those points from the fitting process. There is no other H i line predicted to be stronger than

the Pfβ line.

Another possible contamination is the molecular hydrogen pure-rotational line H2 0–0 S(9)

at 4.69 µm. We estimated its flux from those of H2 0–0 S(7) at 5.51 µm and S(3) at 9.66 µm.

We did not use the S(6), S(5), and S(4) lines at 6.11, 6.91, and 8.03 µm, respectively, because

they can be blended with PAH emissions. On the assumption that J = 5, 9, and 11 levels are

in LTE, the S(9) line peak is derived to be smaller than 4% of the continuum level at 4.69 µm

in all the galaxies. We thus ignore the contribution of the S(9) line.

There are some fine structure lines that possibly appear over the CO band: [Mg iv] 4.49 µm,

[Arvi] 4.53 µm, and [Navii] 4.69 µm. These transitions start from high excitation stages of 80,

75, and 172 eV, respectively, and, in Seyfert galaxies, usually observed to be weaker than the

[Mgv] 5.61 µm line, whose excitation potential is 109 eV (Lutz et al. 2000; Sturm et al. 2002).

We did not significantly detect the [Mgv] line above the 3σ level in all the targets. Hence we

ignored any contribution from the three lines.

5.4 Results

We derived the best-fit models using an iterative least-chi-square method and confirmed that

they definitely provided the minimum χ2 values through grid calculation. In the computation of

the χ2 values, uncertainties in the normalized flux of the data points were taken into account. In

IRAS 00397−1312 and 13352+6402, because the observed data points appeared to be systemat-

ically displaced to shorter wavelengths from the best models we obtained at first, we manually

shifted the points of the two galaxies by 0.009 and 0.010 µm, respectively, and then again fitted

the model. These amounts are about the same as the wavelength calibration accuracy in the SL2

order of the IRS spectrum (0.008 µm RMS, IRS Instrument Team and Science User Support

Team 2011). After this shifting, the reduced chi-squares for the two galaxies improved from

23.99 to 7.88 and from 7.14 to 3.39, respectively.

Figure 5.4 shows the best-fit CO gas model for each galaxy. The fitting process returned

quite high reduced χ2 values (χ2
ν ≡ χ2/dof). We consider that these poor fits originate from the

difficulty in determining the continuum levels over the broad CO band. Some other possibilities

concerning limitations of the current model are discussed in Section 5.5.1. We speculate that

there is a systematic trend in which the observed flux in the red wing of the P -branch is higher

than the model prediction; possible origins of this trend are also discussed in Section 5.5.1.

For mathematically correct treatment of the parameter errors of each galaxy, we posteriorly
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Figure 5.4: Results of the gas-model fitting obtained before the addition of σsys. Black
solid lines denote the best-fit CO absorption profiles. Red and blue points are data from the
AKARI /IRC and Spitzer/IRS spectra, respectively. Gray shaded areas indicate the wavelength
range used for the spectral fitting. Dark-gray points in the spectrum of Mrk 273 were excluded
from the fitting to avoid the possible contribution from the Pfβ (4.65 µm) emission. The best-fit
parameters and the goodness-of-fit χ2

ν ≡ χ2/dof are noted at the right bottom corners.
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added a common systematic error σsys to the statistical errors in the normalized flux σi shown

in Figure 5.4 linearly (σi → σi + σsys) so that the resultant χ2
ν reached close to unity. Table

5.4 tabulates σsys introduced and the best-fit parameters and their errors determined after the

addition of σsys. Figure 5.5 shows the new best-fit absorption profiles with their confidence

ranges. A set of color maps of the ∆χ2 value is shown in Appendix B.2. Hereafter, we use the

numbers in Table 5.4 for discussion, otherwise noted. Among our targets, the CO absorptions

in IRAS 00182−7112 and IRAS 08572+3915 were also analyzed by S04 and S13, respectively.

Comparisons between their results and ours appear in Appendix B.3.

Table 5.4: Best-fit parameters and goodness of fit after the addition of σsys

Object σsys logNCO TCO vturb χ2/dof

(in cm−2) (K) (km s−1)

IRAS 06035−7102 0.02 18.73+0.17
−0.07 516+52

−71 > 40 36.8/38

IRAS 08572+3915 0.03 19.36+0.15
−0.12 420+36

−36 62+7
−6 43.8/43

UGC 5101 0.04 19.48+0.22
−0.15 493+58

−59 58+7
−7 51.8/49

Mrk 273 0.01 18.27+0.03
−0.03 414+44

−39 > 44 43.9/42

IRAS 19254−7245 0.01 18.46+0.05
−0.02 452+24

−27 > 53 39.6/44

IRAS 23128−5919 0.05 > 18.85 302+92
−207 33+8

−13 42.2/48

IRAS 00182−7112 0.02 21.19+0.74
−1.16 328+140

−51 28+8
−3 20.8/30

IRAS 00397−1312 0.02 19.45+0.12
−0.10 204+13

−14 124+14
−12 21.7/28

IRAS 00406−3127 0.04 20.92+1.23
−1.33 207+130

−58 44+22
−5 33.1/30

IRAS 13352+6402 0.02 19.17+0.20
−0.13 302+31

−33 80+19
−13 21.0/28

Note—All errors represent the 68% confidence interval for one parameter of
interest (∆χ2 = 1).

We found that the observed CO gas has a high temperature and large column density. The

average TCO is 360 K, which is far higher than the typical temperature of molecular gas in

ordinary star-forming regions (10–102 K, Hollenbach & Tielens 1999). The logarithm of NCO in

units of cm−2 is on average 19.5,1 which corresponds to a molecular hydrogen column density

of logNH2 ∼ 23.5 if a CO abundance [CO]/[H2] = 10−4 is adopted. This large column density

can be converted to extinction at M -band (5 µm) of AM ∼ 8 if we assume NH = 2NH2 and

Galactic relations NH/AV = 1.9 × 1021 cm−2 mag−1 (Bohlin et al. 1978) and AV /AM ∼ 40

(RV = 3.1, Draine 2003). Because we were able to observe CO gas absorption with this large

column density, the extinction by dust must not be too high. This could suggest that the dust-

to-gas ratio in AGN neighborhoods is lower than the Galactic value. Note that the estimate

of AM have a major uncertainty depending on the assumption of the abundance ratio. The

ratio measured in Galactic objects differs in (0.8–3)×10−4 (Dickman 1978; Frerking et al. 1982;

Watson et al. 1985; Black et al. 1990; Lacy et al. 1994). There is no direct measurement of the

CO abundance in ULIRGs, to our knowledge. The range of the abundance leads 3 < AM < 10.

For the results of the AKARI targets, we estimated the systematic error stemming from the

1Throughout this chapter, the logarithm of column density is presented in units of cm−2.
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Figure 5.5: Results of gas-model fitting obtained after the addition of σsys. The symbols are
the same as in Figure 5.4, but here the gray-filled curves represent the 68% joint confidence
range of the best-fit models.



5.5. DISCUSSION 71

scaling of the AKARI and Spitzer spectra. In IRAS 23128−5919, the ratio of the scaling factor

for the Spitzer spectrum to that for AKARI was determined to be 1.54± 0.11; this uncertainty

was the largest among all the AKARI targets (Section 5.2). Changing the amount of scaling

by this uncertainty, the fitting result of this galaxy differs by ∆(logNCO) ∼ 0.2, ∆TCO ∼ 40 K,

∆vturb ∼ 2 km s−1. We therefore estimate that the systematic error is smaller than these values

and conclude that this error does not affect the following discussion.

5.5 Discussion

5.5.1 Limitations of the Current Model

As the model simplifies the CO gas temperature to a uniform value, the results should be treated

as first order approximations. Here, we note some effects that are not incorporated in the current

approximation.

If there are two or more temperature components, the higher-temperature components will

make the column density appear to be larger. Under the current spectral fitting, the band wings

strictly constrain the solution. The higher-temperature components work to lower the flux in

the band wings in an effect similar to that of increasing the column density (see also Appendix

B.1). The high reduced χ2 values we obtained in the fitting may therefore be the result of

over simplification of multi-temperature components. Although this factor is of concern, given

the quality of the AKARI and Spitzer spectra, it is difficult to fit a more complicated multi-

temperature gas model.

If there is an optically-thin foreground dust screen in front of the CO gas, as shown Figure

5.6(a), its thermal radiation will fill up the absorption. The observed potential trend in the

shallow red wing of the P -branch (Section 5.4) may be caused by this effect. Similarly, if the

CO gas extends to a larger solid angle than the continuum source as shown in Figure 5.6(b), the

band profile would be skewed, as the outer part of the CO gas contributes merely by emission

without absorbing the background light. This effect can be quantified in terms of the area

ratio, f , of the CO gas to the background source. We can introduce f into Equation (5.1) by

multiplying it with the second term. The increase of the normalized flux density owing to f is

larger at longer wavelengths because Bν(TCO) is redder than Bν(TBG) at 4.67 µm. This effect

can also cause the systematic trend seen in the shallow red wing in the P -branch. However,

if TCO ∼ 300 K, f must be very large (∼ 103) because Bν(TCO) is at the Wien side at that

wavelength. This effect would therefore appear not to fully explain the systematic trend.

We did not adopt any Doppler shifts into the modeled absorption. The implied systematic

poor fit in the red wing in the P -branch can also be interpreted as blueshift from the systemic

velocity. A shift of ∼ 0.02 µm requires a velocity of ∼ −1000 km s−1. Such high-velocity

molecular outflows have in fact been found in far-IR OH emission lines (e.g., Fischer et al.

2010; Spoon et al. 2013) and are comparable with column densities as large as NH ∼ 1023 cm−2

(González-Alfonso et al. 2017). Thus, the poor fit in the P -branch may be a signature of

warm molecular outflows. However, such a conclusion from only the present broad blurred

absorption profiles is not robust, and verification will require other observations at higher spectral
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Figure 5.6: Two types of geometries beyond the model assumption. (a) Geometry in which
another foreground thin dust layer is present. (b) Geometry in which the CO gas layer extends
beyond the background dust sublimation layer with an area ratio f .

resolutions that can resolve different rotational levels.

Some other absorption bands possibly overlap the CO band. If present, 13CO gas and CO

ice features appear at wavelengths longer than the 12CO gas band center. These would deepen

the P -branch of the 12CO profile, but this contribution is contrary to the observed pattern,

suggesting that there is no signature of such features. On the other hand, the XCN ice feature,

whose center is 4.62 µm and FWHM is 0.05 µm, possibly superimposes on the R−branch of the

gas phase 12CO band, as was observed in the starburst/AGN galaxy NGC 4945 (Spoon et al.

2003) and the starburst galaxy NGC 253 (Yamagishi et al. 2011). However, this ice band is

narrower than the observed width of the CO R-branch and thus unlikely to mimic it. Although

there are weak implications of such an additional narrow absorption at the peak of the branch

in some targets such as UGC 5101 (Figure 5.5), we cannot rule out the possibility that the

responsible absorber is not XCN ice but another, colder CO gas component.

As it is difficult to discuss the above effects in detail based on the present AKARI and

Spitzer spectra, we do not further pursue them in this thesis.

5.5.2 Effect of the Assumption on the Dust Sublimation Temperature

In our model, we fixed TBG to be 1500 K. Here we discuss the change in the results caused when a

different temperature is adopted. Given that the maximum sublimation temperatures for silicate

and graphite dust grains are 1400 and 1800 K, respectively (Netzer 2015), TBG could change by

a few times 102 K. Hence we performed the same model fitting at TBG=1400 and 1600 K. At

NCO < 1020 cm−2, the resultant logNCO, TCO, vturb did not differ from the result at 1500 K by

larger than 0.005, 1 K, 1 km s−1, respectively. In the two galaxies of NCO > 1020 cm−2, IRAS

00182−7112 and IRAS 00406−3127, logNCO more largely changed by as large as 0.1, TCO did

by as large as 10 K, but those changes were smaller than 10% of the parameter errors obtained

at 1500 K. Therefore, the uncertainty in the adopted value of TBG does not critically affect the

results.
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5.5.3 Heating Mechanism

Our most important finding is that the observed CO gas has a high temperature and a large

column density. The typical temperature TCO ∼ 400 K is far higher than that of molecular gas

in ordinary star-forming regions (10–102 K, Hollenbach & Tielens 1999). The typical column

density NCO ∼ 1019 cm−2 corresponds to NH2 ∼ 1023 cm−2 if we assume an abundance ratio

[CO]/[H2] = 2×10−4 (Dickman 1978). Here, we consider what mechanism can heat the observed

large columns of warm gas through a discussion of three candidates.

The first candidate heating source is ultraviolet (UV) photons emitted from the central ac-

cretion disk. An intense UV radiation field incident on a cloud forms a photon-dominated region

(PDR) and determines its thermal and chemical structures. Several authors have modeled the

PDR under various conditions (e.g., Tielens & Hollenbach 1985; Hollenbach & Tielens 1999).

Meijerink & Spaans (2005) developed PDR models at four conditions specified by the combina-

tion of the gas number density (nH = 103 or 105.5 cm−3) and the incident far-UV flux (G0 = 103

or 105). Here G0 is a flux measure normalized at 1.6 × 10−3 erg cm−2 s−1 (Habing 1969). In

all the cases except for the high-density and low-flux case (nH = 105.5 cm−3 and G0 = 103), the

maximum gas temperature exceeds 103 K, which is sufficiently higher than the observed values

of TCO. However, in the models, the gas temperature afterward decreases steeply because of

strong attenuation by dust and drops to 102 K before the column density NH reaches 1022 cm−2.

Moreover, the CO abundance is suppressed in this PDR region due to photo-dissociation: the

CO/C ratio is lower than unity at NH < 1022 cm−2. The achievable warm (> 102 K) CO column

density is only NCO ∼ 1016 cm−2 and far smaller than the observed values (& 1018 cm−2) by

two orders of magnitude. This suggests that UV heating cannot represent the observed large

columns of warm gas.

In the study of CO pure rotational emission lines, merely detecting high-J lines with a

high excitation temperature does not rule out the possibility of PDRs as the origin of the

emission (Mashian et al. 2015). Actually, Loenen et al. (2010) reproduced the spectral line energy

distribution (SLED) of the starburst galaxy M82 up to J = 12 using only PDRs. However, the

PDRs introduced in their analysis had column densities only on the order of NH ∼ 1021 cm−2.

In our observation of the fundamental CO ro-vibrational transition, the broad band width was

equivalent to the detection of highly excited lines at J & 20. More importantly, the obtained

column density is too large (NH & 1022 cm−2) to be reproduced by PDRs and requires other

heating sources.

The next candidate is shock heating. Given that many of the observed galaxies are merging

systems or in disturbed morphologies, it is reasonable to conjecture that their gas is powered

by shocks arising from turbulent motion. A number of studies have discussed the physical and

chemical processes in shock propagation in interstellar clouds (e.g., McKee et al. 1984; Hollenbach

& McKee 1989; Neufeld & Dalgarno 1989). With a shock velocity of ∼ 100 km s−1 and a pre-

shock density of 104–106 cm−3, the post-shock temperature structure begins with the initial

value of & 104 K, where the gas is heated by UV photons from the vicinity of the shock front.

The temperature then gradually decreases until the UV radiation is sufficiently attenuated and

molecular recombination becomes effective. After this point, OH molecules become the major
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coolant and the gas temperature rapidly falls below ∼ 103 K. This rapid drop is followed by

an equilibrium between OH cooling and heating owing to H2 formation on dust grains. CO

rotational transitions also significantly contribute to cooling in this phase. Under this balance,

the temperature remains at ∼ 102 K until H2 formation is completed.

Because the molecular-forming region downstream of a shock provides gas temperatures

higher than 102 K, shock heating can explain observed TCO values. On the other hand, the scale

of the column density in the warm gas layer is NH . 1022 cm−2 and the CO relative abundance is

nearly constant at ∼ 10−4 (Hollenbach & McKee 1989; Neufeld & Dalgarno 1989). Hence, shock

heating can produce a warm CO gas with column densities of up to NCO ∼ 1018 cm−2. This

upper bound is comparable to the smallest NCO we observed. Thus, while there is still room for

a partial contribution from shock heating, it cannot fully account for the heating mechanism of

the CO gas.

The third heating source candidate is X-ray photons emitted from the nuclear region of the

AGN. A strong X-ray radiation field incident on a cloud creates an X-ray-dominated region

(XDR) that drives its internal thermal and chemical processes. Although this process is similar

to PDR formation by UV photons, X-ray photons can penetrate more deeply into clouds because

of their small cross sections. Meijerink & Spaans (2005) modeled XDRs with chemical reactions

under four conditions involving combinations of two densities (nH = 103 and 105.5 cm−3) and

two incident X-ray fluxes (FX = 1.6 and 160 erg cm−2 s−1). In all cases except those with high

density and low flux, the simulated temperatures are in the range 102–104 K and accord with

observed TCO values. Moreover, the temperatures remain higher than 102 K up to a column

density of NH ∼ 1024 cm−2. This scale of heating is more than two orders of magnitude larger

than those resulting from the previous two mechanisms. In all cases, NCO reaches 1018 cm−2

before the temperature falls to 102 K (compare Figures 6 and 8 in Meijerink & Spaans 2005),

demonstrating that such XDRs can account for the observed warm CO gas of a large column

density. In addition, the dense and intense case (nH = 105.5 cm−3 and FX = 160 erg cm−2 s−1)

gives the largest NCO at T = 100 K among all cases (1020 cm−2), suggesting that the two

sources of large NCO ∼ 1021 cm−2, IRAS 00182−7112 and IRAS 00406−3127, require more

extreme XRDs.

We attempted to distinguish shock and X-ray heating on the basis of the CO SLED of the

rotational transitions. Such lines are one of the major coolants in a shocked gas. This discussion

is analogous to that argued by Meijerink et al. (2013) for NGC 6240 and Mrk 231, which are

nearby merger/starburst and Sy1 galaxies, respectively. These two galaxies are similar in terms

of their CO SLED shapes,with a flat distribution up to higher rotational levels, but differ in

terms of their line-to-continuum ratios LCO/LIR, where LCO is the total luminosity of the 12CO

lines including CO J = 1–0 through J = 13–12. While the ratio in Mrk 231 is ∼ 6 × 10−5

(van der Werf et al. 2010), that in NGC 6240 is ∼ 7 × 10−4, which is approximately an order

of magnitude higher than the former value (Meijerink et al. 2013). The authors concluded that

this large difference results from the difference in gas heating processes in the two galaxies. UV

and X-ray photons effectively heat both gas and dust, and resulting in a far-IR spectrum that

is continuum-dominated and, consequently, a small line-to-continuum ratio. The authors also
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predicted the maximum line-to-continuum ratio in PDRs and XDRs as ∼ 10−4. Shocks, on the

other hand, selectively heat gas by compression, maintaining the thermal decoupling of dust

and attaining ratios higher than 10−4. This leads to the conclusion that the dominant power

sources for the CO gas clouds emitting rotational lines in Mrk 231 and NGC 6240 are UV to

X-ray photons and shocks, respectively.

To make a similar analysis, we referred to Pearson et al. (2016), who observed the CO

emission lines from J = 5–4 to J = 13–12 in 43 ULIRGs using the Herschel Space Observatory.

Seven of their sample galaxies are included in our targets, namely, all of the AKARI targets and

IRAS 00397−1312. We calculated the sub-total CO luminosity L′CO spanning from J = 5–4 to

J = 13–12 in the seven objects and then evaluated the line-to-continuum ratio from L′CO/LIR.

We also derived the ratios in NGC 62402 and Mrk 231 for comparison and found the values

of 4 × 10−4 and 6 × 10−5, respectively. Among the seven galaxies in our sample, the lowest

ratio was found in IRAS 08572+3915, in which the ratio is 3× 10−5, which is even smaller than

that in Mrk 231. This object also shows a continuum dominated spectrum in the near- and

mid-IR region. These facts strongly rule out the possibility of powerful shock heating within the

galaxy. On the other hand, the highest ratio was found in IRAS 06035−7102, where the ratio is

2× 10−4, suggesting the possibility of shock heating, a conclusion supported by the facts that:

a) the NCO value found in this galaxy is relatively smaller than that in the other targets, and

b): a widely used shock tracer H2 vibrational emission around 2 µm was detected in this source

(Dannerbauer et al. 2005). However, as the ratio L′CO/LIR is lower by a factor of two than that

in NGC 6240, shocks in IRAS 06035−7102 would not be as energetic as those in NGC 6240. In

the remaining four galaxies, the ratio ranged within (0.8–1.0)×10−4, and there was no evidence

of shock heating in these objects.

Given the above discussion, we conclude that the most reasonable heating mechanism of

observed warm CO gas with large column densities is X-ray heating, which leads to the further

conclusion that the observed CO gas is in the vicinity of the nucleus. Although the possibility

that shock heating accounts for a substantial fraction of the total power cannot be ruled out

in some objects, its contribution must be smaller than that of X-ray photons. In the following

discussion, we presuppose that the primal heating source of the CO gas observed in absorption

is X-ray photons from the central region of the AGN.

5.5.4 The Relations between the Column Density, Temperature, and IR Lu-

minosity

Figure 5.7 plots TCO versus NCO, showing that TCO decreases with NCO. Although the confi-

dence ranges of the best-fits show a strong degeneracy between the two parameters, these ranges

are smaller than the scale of the overall decreasing tendency. This result can be interpreted as an

attenuation in which the gas a large-column distant from the heating source is heated less than

gas near the source in a small column if the heating powers in the respective targets are nearly

2Note that the line luminosities in NGC 6240 measured by Pearson et al. (2016) were substantially lower than
the measurements by Meijerink et al. (2013). Pearson et al. (2016) claimed that the reason for this is unclear, as
the two papers had used the same observation.
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the same. Figure 5.8 shows that the dependence of NCO and TCO on the IR luminosity, LIR, is

not clear. This supports the interpretation that the heating process in the CO gas observed in

absorption is a local phenomenon occurring near the power source and is not tightly related to

the global activities of the host galaxy.

Figure 5.7: Plot of TCO versus NCO. Black points indicate the best-fit values. Gray shaded
areas are the projection of the three-dimensional 68% joint confidence regions along the vturb

axis. The unprojected 3D confidence regions are shown in Figure B.2.

5.5.5 Comparison with X-Ray Observations

To clarify the location of the region in which CO absorption originates, we compared the obtained

CO column densities with neutral column densities estimated from other X-ray observations.

Brightman & Nandra (2011b) performed a systematic X-ray spectral analysis for the XMM-

Newton data (0.2–10 keV) of 126 nearby galaxies and investigated their AGN properties using

a spectral model that assumes a spherical toroidal obscuring material. Four objects in their

sample are common with our targets. Table 5.5 summarizes their line-of-sight hydrogen column

densities determined by the X-ray spectral analysis.

A recent hydrodynamical gas model incorporating XDR chemistry (Wada et al. 2018) in-

dicates that the CO abundance relative to molecular hydrogen has large scatter ranging from

10−5 to 10−3 in NCO = 1018–1021 cm−2. Although there is such a considerable uncertainty, we

here adopt the abundance of CO/H = 10−4, which is near the middle value, as the fiducial value

to convert NCO into NH. Figure 5.9 compares the two types of hydrogen column density. The

hydrogen column density derived from the CO absorption, NH,4.67, is 2–30 times smaller than

that inferred from the X-ray spectral analysis, NH,X. This comparison indicates that the two

columns trace the amount of gas at different depths. The X-ray-derived column density NH,X



5.5. DISCUSSION 77

0

200

400

600

12.0 12.5 13.0

T
C

O
 [

K
]

logLIR [L⊙]

18

19

20

21

22

lo
g
N

C
O

 [
cm

−
2
]

Figure 5.8: Dependence of NCO (top) and TCO (bottom) on LIR. The abscissa is the logarithm
of LIR in units of the solar luminosity L�.

Table 5.5: Column density inferred from X-ray observations

Object NH,X

(1022 cm−2)

(1) (2)

UGC 5101 49.6+25.4
−18.2

Mrk 273 59.7+17.1
−12.8

IRAS 19254−7245 38.1+39.2
−21.7

IRAS 23128−5919 > 150

Note—Column 1: object name. Col-
umn 2: hydrogen absorption col-
umn density, with errors quoted at
90% confidence level for one param-
eter of interest (Brightman & Nan-
dra 2011b).
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measures the gas in front of the central AGN nucleus using the X-ray radiation from it as the

background. By contrast, NH,4.67 should measure the gas outside the X-ray emitting region,

tracing a smaller amount of foreground gas. This consideration motivated by the assumption of

CO/H = 10−4 is consistent with the assumption that the near-IR background continuum source

for CO absorption is a region in front of the nucleus being warmed by the radiation from the

nucleus.

If the CO abundance is higher than CO/H = 10−4, since NH,4.67 become smaller, the above

picture still valid. On the other hand, if the abundance is 10−5, NH,4.67 exceeds NH,X in UGC

5101, although in Mrk 273 and IRAS 19254−7245 the former is still smaller than the latter. In

this case, the above picture may be needed to be modified to account for the relation between

the two column densities, at least for UGC 5101. However, NH,X of the heavily obscured AGN

UGC 5101 may be much larger than the value found by Brightman & Nandra (2011b). Oda

et al. (2017), by fitting a torus model to a broadband 0.25–100 keV X-ray spectra, determined

NH,X to be 1.3 × 1024 cm−2, which is 2.6 times larger than the value of Brightman & Nandra

(2011b) and relaxes the excess of NH,4.67 from NH,X.

Although the above discussion comparing column densities derived from the CO absorption

and X-ray observations strongly depends on the assumption of the CO abundance, we suggest

that the most natural interpretation of the magnitude relation between NH,4.67 and NH,X and of

the presence of X-ray heated gas is that the CO absorption originates in molecular gas distribute

outside the X-ray emitting region.

22

23

24

25

23 24 25

lo
g
N

H
,4

.6
7
 [

cm
−

2
]

logNH,X [cm
−2

]

Figure 5.9: Comparison of the hydrogen column densities derived from an X-ray spectral
analysis (abscissa; Table 5.5) and from CO absorption (ordinate). The dashed line denotes the
identity.
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5.5.6 Comparison with the 9.7 µm Silicate Absorption

Another major indicator of the degree of obscuration is the strength of the 9.7 µm silicate

dust feature, as is seen in Figures 5.1 and 5.2. The optical depth of the feature τ9.7 in nearby

AGNs have been measured in several studies (e.g., Dartois & Muñoz-Caro 2007; Imanishi et al.

2007a; Imanishi 2009). The depth τ9.7 can be converted into the hydrogen column density

using two relations connected to visual extinction AV : AV /τ9.7 = 18.0 mag (Whittet 2003),

and NH/AV = 1.9 × 1021 cm−2 mag−1 (Bohlin et al. 1978). Table 5.6 cites the values of τ9.7

from other papers and tabulates the derived column density, NH,9.7. Figure 5.10 compares the

two types of hydrogen column density, NH,4.67 and NH,9.7. In contrast to the comparison with

the X-ray observations, NH,4.67 is similar to or a bit larger than NH,9.7. We conclude that

CO-absorbing gas and silicate dust roughly coexist in the same region.

Table 5.6: 9.7 µm silicate feature from literature

Object τ9.7 NH,9.7

(1022 cm−2)

(1) (2) (3)

IRAS 06035−7102 2.9 (10%)a 9.9

IRAS 08572+3915 3.8 (5%)b 13

UGC 5101 1.9 (10%)a 6.5

Mrk 273 2.3 (10%)a 7.9

IRAS 19254−7245 1.5 (10%)a 5.1

IRAS 00182−7112 3.1 (10%)a 11

IRAS 00397−1312 2.7 (5%)c 9.2

IRAS 00406−3127 2.0 (10%)a 6.8

Note—Column 1: object name. Column 2: opti-
cal depth of the 9.7 µm silicate dust absorption
with uncertainty in parenthesis. Column 3: hy-
drogen column density calculated from τ9.7 (see
the text).

a Dartois & Muñoz-Caro (2007).
b Imanishi et al. (2007a).
c Imanishi (2009).

5.5.7 Distribution of the CO Gas

In our model, we assume that the covering factor of CO gas is unity. This assumption is not triv-

ial but strongly supported by the observed deep absorption profiles. Such absorption indicates

that the continuum source is almost entirely covered by the foreground gas. Because molecular

clouds in star-forming regions distribute randomly, they cannot explain a large covering factor

close to unity. Thus, we assume that the absorber is a molecular cloud just in front of the

continuum source, which we now consider as the dust sublimation layer at the inner rim of the

AGN obscuring material.
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Figure 5.10: Comparison of hydrogen column densities derived from the 9.7 µm silicate dust
absorption strength (abscissa; Table 5.6) and from the CO absorption (ordinate). The dashed
line denotes the identity.

Figure 5.11 shows a schematic picture we propose to explain the relations of NH,4.67, NH,X,

and NH,9.7, the observed large-column warm gas, and the required close-to-unity covering factor.

X-ray, near-IR, and mid-IR emitting regions locate in this order from the center to outside, as

the temperature decreases. In this geometry, because the absorption feature in each wavelength

range traces the amount of gas in front of the corresponding background source, the magnitude

relations of the column densities measured in the three ranges are naturally reproduced. Given

that the CO gas is heated by X-ray radiation and that it almost entirely covers the continuum

source, the origin of the CO absorption is likely to locate just in front of the inner rim of the

AGN torus.

It is remarkable that a significant fraction of Sy2 galaxies do not show CO absorption. In the

AKARI program AGNUL, IRAS 05189−2524, which is classified as Sy2 or hidden broad-line

Sy1 (Véron-Cetty & Véron 2010), does not show any signature of CO absorption, as shown in

Figure 5.12. Lutz et al. (2004) searched ISO spectra of nearby 19 type-1 and 12 type-2 AGNs

for CO absorption, but none showed the signature of the absorption. One of their targets, the

famous Sy2 galaxy NGC 1068, was re-observed by Geballe et al. (2009) using UKIRT, with

CO absorption once again undetected. Here we speculate that the presence or absence of CO

absorption originates from a complex innermost geometry in the putative AGN torus, e.g., a

concave dust sublimation layer arising from an anisotropic radiation from the accretion disk

(Kawaguchi & Mori 2010, 2011) or a turbulent structure near the nucleus arising from the

interaction with other galaxies. This issue is also discussed in Section 6.6 based on the result of
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Figure 5.11: Schematic view of the location of the region where the CO absorption originates.

a systematic analysis.

5.6 Summary

In this chapter, we present a systematic spectral analysis of the CO ro-vibrational absorption

band (4.67 µm) toward ten nearby obscured AGNs observed with the AKARI and Spitzer space

telescopes. Using a gas model assuming LTE, slab geometry, and a single component gas, the CO

column density and gas temperature were estimated for each target. The average CO column

density of the sample was found to be NCO ∼ 1019.5 cm−2, which corresponds to a hydrogen

column density of NH ∼ 1023.5 cm−2 if we assume a standard abundance ratio [CO]/[H] ∼ 10−4.

This large column density indicates that the AGNs are heavily obscured. On the other hand,

the average temperature was found to be 360 K, which is much higher than the typical value in

normal star-forming regions.

The observed warm gas of a large column density cannot be represented by UV heating or

shock heating. The former can heat gas up to 103 K, but its maximum heating depth is only

NCO ∼ 1016 cm−2, which is two orders of magnitude smaller than the observed values. The

latter can make gas warm (∼ 102 K) up to NCO ∼ 1018 cm−2, a column density comparable to

the smallest NCO we observed. However, the low line-to-continuum ratios in the far-IR region

of our sample galaxies indicate that, in addition to gas, dust is also heated up. This does not

occur under shock heating, in which gas and dust are thermally decoupled. We conclude that

the most convincing heating source is X-ray photons emitted from the nucleus. This mechanism

can heat gas up to even NCO ∼ 1020 cm−2, which is large enough to account for the observed

values over 102 K. This conclusion suggests that the region probed by the CO absorption should

be in the vicinity of the nucleus.

A comparison with an X-ray spectral analysis (Brightman & Nandra 2011b) shows that, if

we adopt the CO abundance of CO/H = 10−4 as the fiducial value, the hydrogen column density
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Figure 5.12: Top: 4.0–5.5 µm spectrum of the Sy2 galaxy IRAS 05189−2524. Red and blue
points represent the AKARI and Spitzer data, observation ID 1100129.1 and AOR key 16909568,
respectively. Data reduction was performed in the manner described in Section 5.2. The black
dotted line denotes the continuum curve determined as explained in Section 5.3.1. The black
dashed line indicates the expected wavelength of the CO band center. Bottom: continuum-
normalized spectrum of the same galaxy.

converted from the CO column density is 2–30 times smaller than that inferred from the X-ray

analysis. We suggest that the region probed by the near-IR CO absorption is located outside the

X-ray emitting region. Moreover, the close-to-unity covering factor of the CO gas suggested by

the observed deep absorption indicates that the gas is close to the continuum source, which we

hypothesize to be the dust sublimation layer at the inner rim of the obscuring material around

the AGN. In contrast to the comparison with the X-ray observations, the hydrogen column

density derived from CO absorption is similar to or a bit larger than that calculated from the

optical depth of the 9.7 µm silicate dust absorption. We conclude that CO-absorbing gas and

silicate dust roughly coexist in the same region. These results can be explained in the picture

where X-ray, near-IR, and mid-IR emitting regions locate in this order from the center, and the

CO absorption originates just in front of the dust sublimation layer.

We reconfirmed a previously remarked-upon fact that not all Sy2 galaxies show CO absorp-

tion (Lutz et al. 2004; Geballe et al. 2009). The cryogenic phase AKARI AGNUL results for the

Sy2 galaxy IRAS 05189−2524 do not show any signature of the feature. We speculate that the

presence or absence of this absorption reflects the complex innermost geometry of the putative

AGN torus, e.g., as a concave dust sublimation layer generated by anisotropic radiation from

the accretion disk (Kawaguchi & Mori 2010, 2011) or a turbulent structure near the nucleus

caused by interaction with other galaxies.



Chapter 6
The Near-Infrared CO Absorption in

Nearby Infrared Galaxies

Motivated by the result of Chapter 5, we performed a systematic study of the CO absorption

with a larger sample that includes less-luminous infrared galaxies. Nearby 47 infrared galaxies

were selected from the AKARI post-cryogenic observations without any prior information on the

presence or absence of the CO feature. Their band profiles were compared in different luminosity

classes and optical classifications. Many of the sample galaxies, similar to the targets in the

previous chapter, showed warm large-column gas ofNCO & 1019 cm−2 and TCO ∼ several×102 K,

which can be considered to be heated by X-rays. ULIRGs and LIRGs showed deeper absorption

profiles than IRGs. We found that the fraction of galaxies with NCO > 1019 cm−2 had a peak

at a 14 µm monochromatic luminosity of 1010 L�, being consistent with the obscured fraction

measured in X-ray observations. Based on this result, the obscuring material observed in X-rays

is being identified to be molecular gas. We also found that AGN-starburst composites had on

average larger NCO than Seyfert 2s. This result suggests that the obscuration by an AGN torus

is also effective in composites and that the torus is geometrically thicker in composites than in

typical Seyferts. This difference is qualitatively consistent with the connection that supernovae

in the circum-nuclear disk inflate the scale height of the torus.

6.1 Introduction

In Chapter 5, we found that the CO absorption is effective as a probe to X-ray-heated warm

gas in the vicinity of AGNs. However, the AGNs analyzed were limited to those of the ULIRG

class (LIR > 1012 L�). As mentioned in Chapter 1, it is suggested that the torus geometry

changes depending on the nuclear luminosity. The covering fraction of an AGN torus, measured

as the fraction of type-2 AGNs in optical and IR surveys, decreases with increasing luminosity

as predicted by the receding torus model (Simpson 2005; Toba et al. 2013, 2014). The obscured

fraction observed in X-rays also decreases at high X-ray luminosity (Ueda et al. 2003; Lusso

et al. 2013). Its behavior at low luminosity is, however, controversial because some groups argue

83
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that it has a peak at a certain luminosity around LX ∼ 1043 erg s−1 (Brightman & Nandra

2011a; Burlon et al. 2011). For verification of the relation between the torus shape and the

central luminosity by the CO absorption, it is necessary to investigate fainter AGNs embedded

in LIRGs (1011 < LIR < 1012 L�) and IRGs (LIR < 1011 L�) additionally. Such low-luminosity

galaxies are hardly observable with the Spitzer/IRS.

The ten targets of the previous chapter include Seyferts, LINERs, H ii galaxies, and those

composites. However, the number of each optical classification was not sufficient to discuss the

difference between classifications in the CO column density and temperature. It is suggested

that feedback from the surrounding environment such as star formation in circum-nuclear disks

contributes to AGN activity and torus formation. Izumi et al. (2016) found that the mass

accretion rate from a circum-nuclear disk (CND) estimated from the mass of dense gas agrees

well with the sum of the accretion rate of the SMBH and the outflowing mass rate although there

were only two Seyfert galaxies as the sample. The hydrodynamical simulation of Wada (2012)

implies that to maintain a geometrically thick torus structure for millions of years the mass

accretion rate into the center needs to be increased by some mechanisms, such as supernova

explosions and stellar mass loss in the surrounding environment. If the behavior of the CO

absorption were different between pure Seyferts and LINERs or AGN-starburst composites, it

would help discussing the link between the torus geometry and the surrounding environment.

For this purpose, it is necessary to increase the number of sample galaxies.

The dataset of the AKARI post-cryogenic observations is helpful to search for new targets.

The number of near-IR spectroscopic observations is originally larger in Phase 3 than Phases 1

and 2. The mission program AGNUL, which we referred to in the previous chapter, observed a

lot of LIRG and IRG during Phase 3. Because we have already corrected for the effect of the

second-order light contamination for this phase in Chapter 4, we can utilize those observations

as a sample of the systematic analysis of the CO absorption.

In this chapter, we investigate the difference in the column density and temperature obtained

from the CO absorption between the luminosity classes and optical classifications. Section 6.2

shows sample selection, being followed by a description of observations and data reduction in

Section 6.3. Section 6.4 explains the method of analysis. The results are presented in Section

6.5. We discuss the results in Section 6.6 and finally summarize this chapter in Section 6.7.

6.2 Sample Selection

We selected our sample from the galaxies observed as a part of the AKARI mission program

AGNUL during the post-cryogenic phase. Some of the galaxies were discarded by the criteria

explained below. The change in the number of accepted galaxies is summarized in Table 6.1.

To avoid spectral confusion of different objects and ensure the spectral resolution adequate for

the gas model fitting, we restricted observations to those conducted in the Np aperture with the

grism. In this setup, 746 observations had been carried out in total. The number of observed

galaxies is 240 because each galaxy had been observed several times. The redshift range within

which the CO band is covered by the grism mode spectrum is z < 0.07, where 143 galaxies are
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Table 6.1: Sample selection flow

Criterion # of galaxies

AGNUL during Phase 3 240
z < 0.07 143
good IRC observation 134
with IRS spectrum 83
small jump at 14 µm 64
good WISE data 47

included. Nine of them were rejected because they were found not to have been properly observed

due to miss pointing, contamination from neighbor objects, or too high or low brightness.

We need the Spitzer/IRS spectrum to determine the continuum over the CO absorption, as

we do in Chapter 5. Among the 134 galaxies, 51 ones had not observed with IRS throughout

5.2–32 µm and thus were rejected. The IRS uses slits of different widths for divided wavelength

ranges. In particular, λobs = 14 µm is a point of connection between the Short-Low and Long-

Low modes, whose slit widths are ∼ 4′′ and ∼ 10′′, respectively (Houck et al. 2004). Thus,

depending on source extent, the spectrum does not necessarily connect smoothly at this point.

In that case, the flux matching with the AKARI /IRC spectrum based on WISE as performed

in Chapter 5 does not function properly. Many of the remaining 83 galaxies are nearer than

the sample of Chapter 5. Therefore, this problem should be considered. We obtained the IRS

spectra from the Cornell Atlas of Spitzer/IRS Sources (CASSIS; Lebouteiller et al. 2011, see

Section 6.3) and then measured the jump at 14 µm as the ratio of the LL-mode average flux to

the SL-mode one using 10 points at the edge of each mode. We excluded 19 galaxies that have

the ratio higher than 1.5.

To perform the flux matching of the AKARI and Spitzer spectra as in Chapter 5, we required

appropriate WISE photometric fluxes as the references. Cataloged W1–4 magnitudes were

obtained from the AllWISE Source Catalog for each galaxy except for IRAS 15250+3609, for

which the magnitudes in the WISE All-Sky Catalog were adopted because the former database

does not identify this object. We set criteria that the magnitudes are measured with high signal-

to-noise ratio (ph_qual=AAAA) and do not show time variability (var_flg<5555) and that no

saturation occurs (satnum=0000). These criteria rejected 17 galaxies.

Eventually, 47 galaxies were selected as the sample of this study. Their names, coordinates,

and redshifts are tabulated in Table 6.2. Mrk 273 and ESO 198-IG002 (=IRAS 23128−1919) are

in common with the sample of Chapter 5. The infrared luminosity LIR was calculated for each

galaxy from the N60, WIDE-S, and WIDE-L bands of the AKARI FIS Bright Source Catalogue

Ver.2 with the equation presented by Solarz et al. (2016). For some objects not resolved from

neighboring galaxies in the FIS catalog, we distributed the FIS flux to the unresolved galaxies

proportionally to their W4 fluxes. If the FIS fluxes are not available, we instead used IRAS

four bands and the equation of Sanders & Mirabel (1996). The luminosity distance DL was

calculated upon the cosmology of H0 = 70 km s−1 Mpc−1, Ωm = 0.3, and ΩΛ = 0.7. The

derived luminosities are also listed in Table 6.2. Figure 6.1 is a scatter plot and histograms of z
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and LIR. While all the targets studied in Chapter 5 are in the ULIRG class, the current sample

additionally covers less-luminous galaxies: 19 IRGs, 24 LIRGs, and 4 ULIRGs.

We compiled optical classifications of the sample in literature, which are listed in Column

(6) of Table 6.2, and then determined the class used in this study. If objects had been at least

once classified as composite or classified both as H ii and as another type, they were treated as

composites. Otherwise, the most frequent classification was adopted. Although there is only

one classification as an H ii galaxy for IRAS 09022−3615, we overwrote it considering a small

equivalent width of the 6.2 µm PAH emission EW6.2=0.14 µm (Stierwalt et al. 2014). The 47

objects were finally classified as 2 Seyfert 1s, 13 Seyfert 2s, 3 LINERs, 24 composites, and 5 of

no classification. Our sample has no galaxy purely classified as H ii. This is partly due to the

selection of the AGNUL sample biased to galaxies richer in absorption features. Thirty out of

our sample are in common with the sample of the Great Observatories All-Sky LIRG Survey

(GOALS; Armus et al. 2009).

Table 6.2: Basic data of the sample

Object R.A. Dec. z logLIR optical class adopted
(J2000) (J2000) (L�) in literature

(1) (2) (3) (4) (5) (6) (7)

Mrk 334 00h03m09.s62 +21◦57′36.′′6 0.021945 10.95 Sy16 Sy1
NGC 23 00h09m53.s41 +25◦55′25.′′6 0.015231 11.09 cp8,9 cp
MCG−02-01-051 00h18m50.s88 −10◦22′36.′′7 0.027103 11.35a H ii8,12, cp2 cp
NGC 232 00h42m45.s82 −23◦33′40.′′9 0.022639 11.44 cp8 cp
I Zw 1 00h53m34.s94 +12◦41′36.′′2 0.058900 11.51 Sy14,6 Sy1
MCG−07-03-014 01h18m08.s32 −44◦27′42.′′2 0.020928 11.05b cp8 cp
CGCG 436-030 01h20m02.s72 +14◦21′42.′′9 0.031229 11.69 H ii8, cp2 cp
NGC 612 01h33m57.s74 −36◦29′35.′′7 0.029771 11.13 Sy26 Sy2
ESO 353-G020 01h34m51.s28 −36◦08′14.′′0 0.015921 11.13 ? —
ESO 297-G018 01h38m37.s16 −40◦00′41.′′1 0.025227 10.43 Sy210 Sy2
IRAS 02530+0211 02h55m34.s43 +02◦23′41.′′4 0.027600 10.81 H ii12, cp8 cp
NGC 1614 04h33m59.s85 −08◦34′44.′′0 0.015938 11.60 H ii6,12, cp4,8 cp
ESO 121-IG028 06h23m45.s57 −60◦58′44.′′4 0.040521 < 10.63c Sy26,10 Sy2
NGC 2623 08h38m24.s08 +25◦45′16.′′7 0.018509 11.57 LI1,11 LI
Mrk 18 09h01m58.s40 +60◦09′06.′′2 0.011088 10.11 H ii3, cp1,2 cp
IRAS 09022−3615 09h04m12.s71 −36◦27′01.′′0 0.059641 12.30 H ii5 cph

ESO 434-G040 09h47m40.s16 −30◦56′55.′′4 0.008486 9.62 Sy26,10 Sy2
NGC 3081 09h59m29.s54 −22◦49′34.′′6 0.007976 9.85 Sy26,7,10 Sy2
NGC 3079 10h01m57.s80 +55◦40′47.′′2 0.003723 10.61 Sy24,6 Sy2
NGC 3268 10h30m00.s66 −35◦19′31.′′7 0.009340 < 9.46d ? —
ESO 264-G057 10h59m01.s79 −43◦26′25.′′7 0.017199 11.05 ? —
Arp 148 11h03m53.s20 +40◦50′57.′′0 0.034524 11.64 cp14 cp
NGC 4102 12h06m22.s99 +52◦42′39.′′9 0.002823 10.34 LI6,7,10 LI
NGC 4194 12h14m09.s47 +54◦31′36.′′6 0.008342 10.86 Sy12, H ii1,6 cp
M 106 12h18m57.s50 +47◦18′14.′′3 0.001494 9.23 Sy26 Sy2
NGC 4418 12h26m54.s62 −00◦52′39.′′4 0.007268 10.97 Sy12, Sy26,14, cp1 cp
ESO 506-G027 12h38m54.s59 −27◦18′28.′′2 0.025024 10.56c Sy26,10 Sy2
NGC 4818 12h56m48.s90 −08◦31′31.′′1 0.003552 10.11 H ii12, cp8 cp
ESO 507-G070 13h02m52.s35 −23◦55′17.′′7 0.021702 11.51 ? —
IC 860 13h15m03.s53 +24◦37′07.′′9 0.011164 10.99 LI1, H ii14 cp
UGC 8335 W 13h15m30.s59 +62◦07′45.′′3 0.030788 11.02e cp8 cp
UGC 8335 E 13h15m34.s98 +62◦07′28.′′7 0.031065 11.54e cp2,8 cp
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Table 6.2: (Continued)

Object R.A. Dec. z logLIR optical class adopted
(J2000) (J2000) (L�) in literature

(1) (2) (3) (4) (5) (6) (7)

MCG−03-34-064 13h22m24.s46 −16◦43′42.′′5 0.016541 10.84 Sy110, Sy24,6, H ii8 cp
NGC 5135 13h25m44.s06 −29◦50′01.′′2 0.013693 11.32 Sy26,8,12 Sy2
IC 4280 13h32m53.s40 −24◦12′25.′′7 0.016308 11.04 ? —
Mrk 273 13h44m42.s11 +55◦53′12.′′7 0.037780 12.13 Sy22,4,6,8,13,14 Sy2
UGC 9618 N 14h57m00.s83 +24◦37′04.′′1 0.033669 11.59f H ii2,16, cp8 cp
IRAS 15250+3609 15h26m59.s40 +35◦58′37.′′5 0.055155 11.96 cp1,2,8,14 cp
Arp 220 15h34m57.s25 +23◦30′11.′′3 0.018126 12.27 Sy12, Sy214, LI1,8,11,13 LI
NGC 6701 18h43m12.s46 +60◦39′12.′′0 0.013226 11.06 cp8,9 cp
IC 5063 20h52m02.s34 −57◦04′07.′′6 0.011348 10.45 Sy26,7,8,10,12 Sy2
ESO 286-IG019 20h58m26.s78 −42◦39′00.′′2 0.042996 12.00 H ii5,6,8,12, cp4 cp
NGC 7130 21h48m19.s52 −34◦57′04.′′5 0.016151 11.38g Sy16, Sy28 Sy2
NGC 7213 22h09m16.s31 −47◦09′59.′′8 0.005839 9.80 Sy17,10, LI6, cp4 cp
ESO 148-IG002 23h15m46.s75 −59◦03′15.′′6 0.044601 11.99 H ii5,6,12, cp4 cp
IC 5298 23h16m00.s70 +25◦33′24.′′1 0.027422 11.54 Sy26,8 Sy2
Mrk 331 23h51m26.s80 +20◦35′09.′′9 0.018483 11.47 H ii8, cp4 cp

Note—Column 1: common object name used as an ID in this chapter. Columns 2 and 3: right ascension
and declination (J2000). Column 4: redshift from the NASA/IPAC Extragalactic Database (NED). Column
5: logarithm of the infrared (8–1000 µm) luminosity in units of the solar luminosity derived from the N60,
WIDE-S, and WIDE-L bands of the AKARI FIS Bright Source Catalogue Ver.2, otherwise noted. Column 6:
optical spectral classification in literature. The abbreviations “Sy1”, “Sy2”, “LI”, and “H ii” indicate Seyfert 1
and 2 galaxies, LINERs, H ii galaxies, respectively, and “cp” means composites of H ii and AGNs or LINERs.

a MCG−02-01-051 is one of the galaxies consisting the
early-stage merger Arp 256. The FIS catalog does not
resolve MCG−02-01-051 and the other galaxy MCG−02-
01-052.

b MCG−07-03-014 is the northern nucleus of the inter-
acting pair ESO 244-IG012. The FIS catalog does
not resolve MCG−07-03-014 and the southern nucleus
MCG−07-03-013.

c Calculated from the fluxes in the IRAS Faint Source Cat-
alog Version 2.0.

d Evaluated from the IRAS Faint Source Rejected Catalog.
e The FIS catalog does not resolve UGC 8335 W and E.
f The FIS catalog does not resolve UGC 9618 N and S.
g The FIS catalog does not resolve NGC 7130 and 6dFGS

gJ214816.8-345632, which is far behind (z = 0.12) than
NGC 7130.

h We overwrote the class of H ii considering a small equiva-
lent width of the 6.2 µm PAH emission EW6.2 = 0.14 µm
(Stierwalt et al. 2014).

1 Toba et al. (2014).
2 Toba et al. (2013).
3 Stern & Laor (2013).
4 Brightman & Nandra (2011a).
5 Lee et al. (2011).
6 Véron-Cetty & Véron (2010). Types Sy1.8,

Sy1.9, Sy1n are here aggregated into Sy1, and
types Sy1i, and Sy1h are aggregated into Sy2.

7 Tueller et al. (2010). An intermediate type
Sy1.5 is here aggregated into Sy1.

8 Yuan et al. (2010).
9 Alonso-Herrero et al. (2009).
10 Tueller et al. (2008). Intermediate types

Sy1.5 and Sy1.8 are here aggregated into Sy1.
11 Ĺıpari et al. (2004).
12 Kewley et al. (2001).
13 Veilleux et al. (1999).
14 Baan et al. (1998).

6.3 Observations and Data Reduction

Table 6.3 summarizes the AKARI /IRC observations used for the following analysis. From each

observation, a 2D spectral image was extracted with the toolkit. Bad pixels were filled with

median values of their adjacent valid pixels, which is the same manner shown in Figure 4.2. In

obtaining a 1D spectrum from the image, the spatial extraction width was determined from the

FHWM of the source extent. The wavelength calibration curve and spectral response function
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Figure 6.1: Distribution of z and LIR of our sample. In the histogram of LIR, the counts of
ESO 121-IG028 and NGC 3268 are equally distributed to bins below the respective upper limits.
The classifications of the two upper limits are represented in the same colors as the other points.

revised in Chapter 4 were used. The contamination from the second-order light was subtracted.

The wavelength calibration origin was adjusted by a few pixels based on the positions of the

Brα and Brβ lines and the 3.3 µm PAH emission. For galaxies with multiple observations, we

stacked the spectra from them to reduce noise.

The AOR keys of the used Spitzer/IRS observations are listed in Table 6.3. The calibrated

IRS spectra were obtained from the CASSIS low-resolution atlas (Lebouteiller et al. 2011), the

version LR7. The atlas provides two types of spectrum extracted by two methods: optimal

extraction and tapered column extraction. For each object, we employed the spectrum that the

atlas recommends based on the source extent. If multiple observations were available for an

object, we used the spectrum whose jump at 14 µm measured as described in Section 6.2 was

the smallest.

The IRC and IRS spectra of each galaxy were scaled to match the WISE fluxes in a similar

manner of Section 5.2.3. Different from the previous way, we additionally used the W2 band

to adjust the IRC spectrum. Because the W1 point could lie upon a prominent 3.3 µm PAH

emission due to small redshift, scaling the IRC spectrum based only on the W1 flux could cause

a large systematic error. The color correction factor for the W2 band, which overlaps the gap

between the two spectra, was determined by the method described in Appendix C.1, but finally,

it was found to be less critical than the factors for the W1 and W3 bands. The IRC spectrum

was scaled to fit the color-corrected W1 and W2 fluxes, and the IRS one was as done with W3

and W4. The resultant connected spectra are shown in the left panels in Figure 6.2. Figure 6.3

is a scatter plot of the scaling factors. While the factor for the IRC spectra distributes around

the unity, that for the IRS spectra spreads to higher values. This can be attributed to the flux

missing in the IRS slit spectroscopy.
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6.4 Analysis

The CO band could be contaminated by the H i Pfβ line at 4.65 µm. We estimated its line

flux from that of the Brα line with the predicted ratio of Pfβ/Brα=0.20 in the case B condition

with ne ∼ 102–107 cm−3 and Te ∼(3–30)×103 K (Storey & Hummer 1995). The Brα flux was

measured by fitting a Gaussian on a linear baseline with the FWHM fixed to 0.05 µm, which is

the width found in the stacked spectrum of the sample galaxies. If the Brα line was detected

with above the 3σ significance, we subtracted the Pfβ flux assuming a Gaussian line profile

with the same FWHM. Similarly, the molecular hydrogen pure-rotational line H2 0–0 S(9) at

4.69 µm could contaminate the CO absorption. We estimated its flux from those of higher-J

lines, H2 0–0 S(7) at 5.51 µm and S(3) at 9.66 µm. The lines between the two levels were not

used because they overlap with other emission lines or bands. The flux of the two lines were

measured as in that of the Brα line was. No correction for the dust extinction was performed.

If the two lines were detected with the 3σ level, we derived the excitation temperature Tex from

the two lines assuming LTE and then subtracted the S(9) line flux predicted from the same

Tex. The Einstein A coefficients and the energy levels were taken from Turner et al. (1977) and

Jennings et al. (1987), respectively. The estimated excitation temperatures are in the range of

900–1500 K, which is comparable with that of the hot components of the H2 gas in ULIRGs

found by Higdon et al. (2006). Table 6.4 summarizes the measurement and the estimates.

We set the continuum level over the CO band as a cubic spline curve interpolating pivots

placed avoiding the Brα line at 4.05 µm, the CO2 absorption at 4.26 µm, and the PAH emission

at 5.3 µm. The right panels in Figure 6.2 show the adopted continuum curves and used pivots

with the resultant optical depths at the position of the CO absorption. In the Sy2 galaxies NGC

3081 and MCG−03-34-064, a pivot was not put between the CO2 and CO absorption band

because the two galaxies show the [Mgvii] line at 4.5 µm. Figure 6.4 displays the individual

continuum-normalized absorption spectra and their average. The average exhibit a double-

peaked profile at 4.67 µm that can be identified as the P - and R-branches of the ro-vibrational

transition of CO, in addition to the Brα line and the CO2 absorption.

Before proceeding to the gas-model fitting, to approximately find the difference in the CO

absorption by galaxies’ characteristics, we stacked the spectra dividing the sample by the infrared

luminosity and the optical classifications. The results for each luminosity range and each optical

classification are shown in Figures 6.5 and 6.6, respectively. The former figure reveals that the

CO absorption becomes deeper as the infrared luminosity LIR becomes higher. The latter figure

indicates that the absorption in Sy1s is weaker than that in Sy2s, which is consistent with the

fundamental prediction in our observational strategy. On the other hand, the figure also shows

that the absorption in AGN-starburst composites and LINERs are possibly stronger than in

Sy2s. This difference may represent the contribution of nuclear starburst to the formation of

a torus. These results are discussed in detail in Section 6.6. Figure 6.5 also shows that the

CO2 band is broader in IRGs than U/LIRGs. This may reflect the effect that the dominant

component of the CO2 absorption changes from nuclear gas to ice around young stellar objects

as LIR decreases.
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Figure 6.2: Combined spectrum and the adopted continuum of each target. In all panels,
black solid lines show the AKARI /IRC and Spitzer/IRS spectra, and gray shades denote the
uncertainties of them. The two spectra are scaled to match the WISE photometric flux densities,
which are shown as gray filled points in the left panel. The scaling factors are noted in the right
bottom corner. The right top panel is a zoom-in plot around the CO absorption. A dashed line
is the adopted continuum: a cubic spline curve interpolating pivots shown as open circles. The
right bottom panel displays the resultant optical depth.



6.4. ANALYSIS 93

10

10−3

10−2

10−1

10
Rest Wavelength (µm)

10−3

10−2

10−1

F
lu

x
 D

en
si

ty
 (

Jy
)

2 40

ESO 121−IG028

z=0.040521

IRC: x0.95

IRS: x1.16

10−2

F
lu

x
 D

en
si

ty
 (

Jy
)

4 5 6 7 8
Rest Wavelength (µm)

0.0

0.8D
ep

th

10

10−2

10−1

100

101

102

10
Rest Wavelength (µm)

10−2

10−1

100

101

102

F
lu

x
 D

en
si

ty
 (

Jy
)

2 40

NGC 2623

z=0.018509

IRC: x0.88

IRS: x1.14

10−2

10−1

F
lu

x
 D

en
si

ty
 (

Jy
)

4 5 6 7 8
Rest Wavelength (µm)

0.0

0.5D
ep

th

10

10−2

10−1

100

101

10
Rest Wavelength (µm)

10−2

10−1

100

101

F
lu

x
 D

en
si

ty
 (

Jy
)

2 40

Mrk 18

z=0.011088

IRC: x0.99

IRS: x1.19

10−2

10−1

F
lu

x
 D

en
si

ty
 (

Jy
)

4 5 6 7 8
Rest Wavelength (µm)

0.0

0.2D
ep

th

10

10−3

10−2

10−1

100

101

10
Rest Wavelength (µm)

10−3

10−2

10−1

100

101

F
lu

x
 D

en
si

ty
 (

Jy
)

2 40

IRAS 09022−3615

z=0.059641

IRC: x0.92

IRS: x1.04

10−2

10−1

F
lu

x
 D

en
si

ty
 (

Jy
)

4 5 6 7 8
Rest Wavelength (µm)

0.0

0.4D
ep

th

10

10−2

10−1

100

101

10
Rest Wavelength (µm)

10−2

10−1

100

101

F
lu

x
 D

en
si

ty
 (

Jy
)

2 40

ESO 434−G040

z=0.008486

IRC: x1.02

IRS: x0.98

10−1

F
lu

x
 D

en
si

ty
 (

Jy
)

4 5 6 7 8
Rest Wavelength (µm)

0.0

0.2D
ep

th

10

10−2

10−1

100

101

10
Rest Wavelength (µm)

10−2

10−1

100

101

F
lu

x
 D

en
si

ty
 (

Jy
)

2 40

NGC 3081

z=0.007976

IRC: x1.05

IRS: x0.96

10−1

F
lu

x
 D

en
si

ty
 (

Jy
)

4 5 6 7 8
Rest Wavelength (µm)

0.0

0.2D
ep

th

10

10−2

10−1

100

101

102

10
Rest Wavelength (µm)

10−2

10−1

100

101

102

F
lu

x
 D

en
si

ty
 (

Jy
)

2 40

NGC 3079

z=0.003723

IRC: x1.01

IRS: x1.62

10−1

100

F
lu

x
 D

en
si

ty
 (

Jy
)

4 5 6 7 8
Rest Wavelength (µm)

0.0

0.3D
ep

th

10

10−3

10−2

10−1

10
Rest Wavelength (µm)

10−3

10−2

10−1

F
lu

x
 D

en
si

ty
 (

Jy
)

2 40

NGC 3268

z=0.009340

IRC: x0.89

IRS: x1.20

10−2

F
lu

x
 D

en
si

ty
 (

Jy
)

4 5 6 7 8
Rest Wavelength (µm)

0.0

0.4D
ep

th

10

10−3

10−2

10−1

100

101

10
Rest Wavelength (µm)

10−3

10−2

10−1

100

101

F
lu

x
 D

en
si

ty
 (

Jy
)

2 40

ESO 264−G057

z=0.017199

IRC: x0.68

IRS: x1.36

10−2

10−1

F
lu

x
 D

en
si

ty
 (

Jy
)

4 5 6 7 8
Rest Wavelength (µm)

0

2D
ep

th

10

10−3

10−2

10−1

100

101

10
Rest Wavelength (µm)

10−3

10−2

10−1

100

101

F
lu

x
 D

en
si

ty
 (

Jy
)

2 40

Arp 148

z=0.034524

IRC: x1.04

IRS: x1.34

10−2

10−1

F
lu

x
 D

en
si

ty
 (

Jy
)

4 5 6 7 8
Rest Wavelength (µm)

0

2D
ep

th

10

10−1

100

101

102

10
Rest Wavelength (µm)

10−1

100

101

102

F
lu

x
 D

en
si

ty
 (

Jy
)

2 40

NGC 4102

z=0.002823

IRC: x0.95

IRS: x1.13

10−1

100

F
lu

x
 D

en
si

ty
 (

Jy
)

4 5 6 7 8
Rest Wavelength (µm)

0.0

0.2D
ep

th

10

10−2

10−1

100

101

102

10
Rest Wavelength (µm)

10−2

10−1

100

101

102

F
lu

x
 D

en
si

ty
 (

Jy
)

2 40

NGC 4194

z=0.008342

IRC: x0.99

IRS: x1.24

10−1

100

F
lu

x
 D

en
si

ty
 (

Jy
)

4 5 6 7 8
Rest Wavelength (µm)

0.0

0.4D
ep

th

Figure 6.2: (Continued)
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Figure 6.2: (Continued)
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Figure 6.3: Scatter plot of the scaling factors for the AKARI /IRC and Spitzer/IRS spectra
derived based on the WISE photometric fluxes.
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Figure 6.4: Line-subtracted CO absorption profiles (gray) and the average of the sample
(black). Only the data from AKARI were used for the average. The vertical dotted line shows
the predicted position of the band center.
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Table 6.4: Measured and estimated line fluxes

Object Measured Estimated

Brα H2 0–0 S(3) H2 0–0 S(7) Pfβ Tex H2 0–0 S(9)

Mrk 334 0.543±0.044 < 0.518 < 0.497 0.109±0.009
NGC 23 0.717±0.096 0.305±0.062 0.849±0.042 0.143±0.019 932± 39 0.038±0.009
MCG−02-01-051 0.874±0.041 < 0.158 0.228±0.030 0.175±0.008
NGC 232 0.564±0.045 < 0.198 0.415±0.026 0.113±0.009
I Zw 1 < 0.290 < 0.739 < 0.650
MCG−07-03-014 1.070±0.034 < 0.373 0.346±0.062 0.214±0.007
CGCG 436-030 0.700±0.026 < 0.427 0.274±0.049 0.140±0.005
NGC 612 < 0.147 < 0.254 < 0.170
ESO 353-G020 0.646±0.039 0.342±0.050 0.616±0.026 0.129±0.008 1021± 34 0.056±0.010
ESO 297-G018 < 0.095 < 0.397 < 0.217
IRAS 02530+0211 0.095±0.023 < 0.357 0.114±0.028 0.019±0.005
NGC 1614 4.177±0.120 < 0.705 0.563±0.096 0.835±0.024
ESO 121-IG028 < 0.035 < 0.195 < 0.095
NGC 2623 0.537±0.036 < 0.585 < 0.451 0.107±0.007
Mrk 18 0.264±0.026 < 0.363 < 0.299 0.053±0.005
IRAS 09022−3615 0.790±0.040 < 0.607 0.489±0.082 0.158±0.008
ESO 434-G040 0.688±0.125 < 1.189 < 0.625 0.138±0.025
NGC 3081 0.232±0.043 < 0.662 < 0.492 0.046±0.009
NGC 3079 < 1.578 3.141±0.171 1.896±0.085 1339± 27 1.056±0.075
NGC 3268 < 0.330 < 0.041 < 0.046
ESO 264-G057 < 0.409 < 0.190 0.224±0.021
Arp 148 0.356±0.030 < 0.221 0.197±0.046 0.071±0.006
NGC 4102 2.325±0.164 0.411±0.121 1.127±0.090 0.465±0.033 935± 57 0.051±0.018
NGC 4194 2.091±0.118 < 0.305 0.664±0.114 0.418±0.024
M 106 < 0.799 < 0.493 0.665±0.145
NGC 4418 < 0.142 < 1.022 0.362±0.045
ESO 506-G027 0.131±0.038 < 0.609 < 0.309 0.026±0.008
NGC 4818 1.223±0.089 < 0.414 0.703±0.081 0.245±0.018
ESO 507-G070 0.421±0.031 0.457±0.068 0.794±0.037 0.084±0.006 1029± 35 0.077±0.014
IC 860 < 0.066 0.149±0.042 0.251±0.020 1036± 67 0.026±0.009
UGC 8335 W 0.130±0.024 < 0.205 < 0.175 0.026±0.005
UGC 8335 E 1.314±0.042 < 0.376 0.230±0.057 0.263±0.008
MCG−03-34-064 0.868±0.052 < 0.398 < 0.186 0.174±0.010
NGC 5135 1.221±0.087 0.319±0.104 0.936±0.087 0.244±0.017 923± 61 0.038±0.015
IC 4280 < 0.224 < 0.086 0.395±0.037
Mrk 273 0.366±0.070 < 1.244 0.768±0.086 0.073±0.014
UGC 9618 N 0.114±0.037 0.218±0.050 0.379±0.043 0.023±0.007 1028± 58 0.037±0.010
IRAS 15250+3609 0.149±0.023 < 0.689 < 0.168 0.030±0.005
Arp 220 0.574±0.029 1.352±0.190 0.607±0.045 0.115±0.006 1463± 72 0.552±0.096
NGC 6701 0.565±0.079 0.208±0.043 0.659±0.035 0.113±0.016 909± 37 0.024±0.006
IC 5063 0.775±0.072 < 0.863 < 1.250 0.155±0.014
ESO 286-IG019 0.099±0.026 < 0.769 0.377±0.065 0.020±0.005
NGC 7130 0.532±0.040 < 0.739 0.598±0.131 0.106±0.008
NGC 7213 < 1.086 < 0.572 < 0.679
ESO 148-IG002 0.522±0.031 < 0.632 0.298±0.091 0.104±0.006
IC 5298 0.366±0.063 < 0.499 0.219±0.072 0.073±0.013
Mrk 331 1.229±0.051 < 0.347 0.480±0.062 0.246±0.010

Note—The line fluxes are presented in units of 10−13 erg s−1 cm−2, and the excitation temperature
is presented in units of K.
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Figure 6.5: Observed CO absorption profiles divided by classes of the infrared luminosity.
Gray lines represent individual spectra, and black lines show the average in the classes. Only
the data from AKARI were used for the average.
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Figure 6.6: Same as Figure 6.5 but divided by the optical classes.
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We fitted the observed absorption spectra with the same model with Chapter 5. The fitting

range was determined as the interval from the wavelength of the pivot of the continuum between

the CO2 and CO bands to the end of the AKARI /IRS coverage (λobs = 5 µm). For NGC 3081

and MCG−03-34-064, where we did not place that pivot, the beginning wavelength was set as the

intersection of the continuum and the spectrum. Because of the lower signal-to-noise ratio of the

AKARI spectra in the post cryogenic phase, it is difficult to constrain the degeneracy between

the CO column density NCO and the velocity width vturb for the current sample. Hence we fixed

vturb to 63 km s−1, which is the mean value obtained in the analysis for the cryogenic phase (see

Table 5.4), and used the other two, the column density NCO and the temperature TCO, as free

parameters. For objects in which NCO and TCO cannot be constrained simultaneously with the

99% confidence level, we further fixed TCO and found only the best-fit NCO. See Section 6.5 for

the value of the fixed TCO.

6.5 Results

In 33 out of the 47 galaxies, both the column density NCO and the temperature TCO were

successfully obtained with vturb fixed. Figure 6.7 lists the best-fit gas model for each of them.

The upper part of Table 6.5 summarizes the obtained parameters. A large fraction of the

sample shows large column densities of NCO > 1019 cm−2 with high temperatures of TCO ∼
several × 102 K, similar to the results in Chapter 5. The average TCO of these 33 objects and

the targets of Chapter 5 is 623 K. In the remainder 14 galaxies, TCO was fixed to this average.

The result of the fitting with both vturb and TCO fixed are shown in Figure 6.8 and tabulated in

the lower part of Table 6.5. For I Zw 1, whose spectrum considerably differs from the double-

blanched profile, and for M 106 and NGC 7213, whose flux errors are large, only 99% upper

limits were estimated.

Lutz et al. (2004) searched for the signature of the CO absorption in nearby 31 AGNs with

ISO and found no significant detection in any of them. Their sample is summarized in Table

C.2. Among the 31 AGNs, NGC 7213 and IC 5063 are common with our sample. In NGC 7213,

we also did not find significant absorption. On the other hand, in IC 5063, we newly detected

the CO feature previously not found, owing to the higher sensitivity of AKARI than that of

ISO.

Table 6.5: Best-Fit parameters and goodness of fit

Object logNCO TCO χ2/dof

(in cm−2) (K)

Mrk 334 19.54+0.33
−0.33 1418+19

−35 71.6/47

MCG−02-01-051 19.38+0.31
−0.27 1254+68

−98 96.9/51

NGC 232 18.76+0.11
−0.07 842+125

−101 127.3/54

MCG−07-03-014 19.52+0.23
−0.22 1340+30

−44 200.6/55

CGCG 436-030 18.59+0.03
−0.03 630+65

−55 193.6/50

ESO 353-G020 18.48+0.03
−0.03 456+66

−56 212.8/57

IRAS 02530+0211 19.33+0.18
−0.16 1193+57

−67 135.6/47
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Table 6.5: (Continued)

Object logNCO TCO χ2/dof

(in cm−2) (K)

NGC 1614 19.32+0.20
−0.23 1283+44

−76 85.5/58

NGC 2623 18.75+0.04
−0.04 328+45

−39 322.7/56

IRAS 09022−3615 18.55+0.03
−0.03 269+29

−26 347.9/38

ESO 434-G040 17.86+0.12
−0.09 142+89

−56 141.5/52

NGC 3081 18.09+0.05
−0.05 376+141

−87 54.4/42

NGC 3079 18.35+0.07
−0.07 425+163

−123 29.0/56

Arp 148 18.88+0.09
−0.08 748+126

−112 83.8/43

NGC 4102 18.02+0.06
−0.06 275+147

−89 70.3/59

NGC 4418 19.58+0.02
−0.02 545+18

−18 1429.3/56

ESO 506-G027 18.38+0.03
−0.03 537+57

−50 281.9/51

ESO 507-G070 19.14+0.20
−0.17 1139+85

−109 95.6/54

IC 860 18.54+0.05
−0.05 564+125

−96 105.5/54

UGC 8335 W 20.12+0.35
−0.29 1259+46

−60 112.5/52

UGC 8335 E 19.13+0.14
−0.10 941+111

−109 81.7/51

MCG−03-34-064 17.51+0.09
−0.09 161+77

−53 54.8/37

NGC 5135 18.19+0.04
−0.04 345+67

−54 140.4/51

Mrk 273 18.75+0.08
−0.06 742+124

−103 38.5/47

UGC 9618 N 18.86+0.04
−0.03 602+89

−67 240.0/50

IRAS 15250+3609 21.23+0.17
−0.16 209+17

−15 169.1/36

Arp 220 18.97+0.02
−0.02 575+32

−29 767.6/55

NGC 6701 19.18+0.52
−0.60 1239+115

−489 60.6/56

IC 5063 18.04+0.04
−0.04 161+26

−23 112.2/48

ESO 286-IG019 19.51+0.04
−0.04 293+18

−16 303.5/43

NGC 7130 18.30+0.04
−0.04 562+101

−79 241.2/53

IC 5298 19.31+0.03
−0.03 537+43

−36 670.1/51

Mrk 331 19.49+0.12
−0.12 1258+28

−35 128.3/56

NGC 23 18.31+0.04
−0.05 623 (fixed) 50.7/55

I Zw 1 < 17.76 623 (fixed) 164.3/39

NGC 612 18.17+0.04
−0.04 623 (fixed) 47.8/52

ESO 297-G018 17.91+0.04
−0.04 623 (fixed) 98.7/53

ESO 121-IG028 18.15+0.14
−0.18 623 (fixed) 63.2/47

Mrk 18 17.79+0.06
−0.07 623 (fixed) 122.8/51

NGC 3268 18.34+0.07
−0.08 623 (fixed) 51.2/51

ESO 264-G057 18.74+0.08
−0.08 623 (fixed) 56.6/52

NGC 4194 18.52+0.03
−0.03 623 (fixed) 197.0/58

M 106 < 18.11 623 (fixed) 3.1/55

NGC 4818 18.16+0.05
−0.05 623 (fixed) 32.7/58

IC 4280 18.18+0.08
−0.09 623 (fixed) 48.4/58

NGC 7213 < 18.02 623 (fixed) 11.4/53

ESO 148-IG002 18.42+0.03
−0.03 623 (fixed) 118.6/40

Note—The upper and lower parts tabulate the results of the fitting with
only vturb fixed and with vturb and TCO fixed, respectively. All errors
are quoted at the 68% joint confidence level for the respective number
of free parameters (∆χ2 = 2.28 and 0.99 for the upper and lower parts,
respectively).
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6.6 Discussion

6.6.1 The NCO–TCO Relation

Figure 6.9 shows the scatter of NCO and TCO obtained in the first two-parameter fitting. Note

that Figure 6.9 covers a wider parameter space than Figure 5.7 does in Chapter 5. The scatter

in the current figure has two branches labeled as A and B in Figure 6.9. Branch A is the trend

that extends from NCO ∼ 1019 cm−2 and TCO ∼ 600 K to larger NCO with decreasing TCO.

This trend corresponds to that seen in Figure 5.7. The other, Branch B, is nearly vertical in

NCO = 1018–1019 cm−2. However, this branch seems to be an artificial pattern that emerges

because the absorption with NCO smaller than this border is too shallow to constrain the gas

model by the AKARI spectrum. Remind that this figure does not show the models that cannot

be determined when both NCO and TCO are taken free.

Regardless of the distinction between the two branches, similar to the result of the previous

chapter, most of the best-fit models have large CO column densities larger than 1018 cm−2 and

high temperatures of ∼ 102 K. Such large-column warm gas can be considered to be heated by

X-ray photons, as discussed in Section 5.5.3.

It is notable that all the galaxies in Branch A, Arp 220, IC 5298, NGC 4418, ESO 286-IG019,

and IRAS 15250+3609, and the targets in Chapter 5, show the 6.0 µm H2O ice absorption and the

6.9 and 7.3 µm hydrogenated amorphous carbon absorptions (e.g., Spoon et al. 2001; Stierwalt

et al. 2014, see also Figure 6.2). This indicates that the trend likely represents the relation in

heavily obscured AGNs.

In Branch B, TCO reaches over 1000 K with column densities of NCO ∼ 1019 cm−2. Such

high temperatures, which have not been found in Chapter 5, are mainly seen in AGN-starburst

composites. If the spatial extent of each source lowers the effective spectral resolution and

broadens the band profile, the current fitting method would overestimate the gas temperature

for that source. However, this interpretation is questionable because such broadening is not

observed in the Brα line (see Figure 6.4). We suggest that the obscuration by an AGN torus is

also effective in composites and speculate that the gas temperature higher in composite sources

than in typical Sy2s.

6.6.2 Comparison with the 9.7 µm Silicate Absorption

Stierwalt et al. (2014) measured the optical depth of the 9.7 µm silicate dust absorption for

the GOALS sample based on a multi-component spectral decomposition analysis. Twenty-seven

galaxies of their sample are in common with our sample. As in Section 5.5.6, we compared the

hydrogen column densities estimated from the CO absorption and from the optical depth of the

silicate feature. The former (NH,4.67) and the latter (NH,9.7) were calculated as in the previous

ways. The two column densities are plotted in Figure 6.10. This figure reproduces the previous

magnitude relation that NH,4.67 is similar to or a bit larger than NH,9.7, supporting the picture

that the warm CO gas and the silicate dust approximately coexist in the same region.
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Figure 6.7: Each panel shows the result of the gas model fitting with vturb fixed. Red closed
and pink open circles show the data used and unused for the fitting, respectively. A black solid
line denotes the best-fit model. A gray shaded area indicates the 68% confidence range. The
best-fit parameters and the goodness-of-fit χ2

ν ≡ χ2/dof are noted at the right bottom corner.
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Figure 6.7: (Continued)
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Figure 6.8: Each panel shows the result of the gas model fitting with both vturb and TCO

fixed. Symbols are the same as Figure 6.7, but in I Zw 1, M 106, and NGC 7213, a dotted line
indicates the 99% upper limit (∆χ2 = 6.63).
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Figure 6.9: Scatter plot of NCO and TCO obtained in the model fitting with vturb fixed. Cross
symbols indicates the best-fits and closed curves show the 68% joint confidence range. Some
outlying points are labeled with their object names. Dotted closed curves indicate the two
branches A and B discussed in the text.

6.6.3 Luminosity Dependence

As seen in Figure 6.5, the CO absorption is deeper in U/LIRGs. Figure 6.11(a) plots the CO

column density NCO against the infrared luminosity LIR. While in low-luminosity galaxies

of LIR < 1010.7 L� the column density NCO did not exceed 1018.5 cm−2, a large fraction of

U/LIRGs showed high NCO > 1019 cm−2. This indicates that intense absorption by CO occurs

in dusty environments. Combined with the discussion of the X-ray heating, this result supports

the suggestion that the CO absorption probes the obscuring material in the vicinity of AGNs.

This luminosity dependence can explain why the 31 AGNs observed by Lutz et al. (2004)

did not show any the CO feature. Table C.2 tabulates the IR luminosity of those AGNs and

indicates that they are mainly IRGs. At such low luminosities, as 6.11(a) shows, a galaxy of

large NCO is rare. We thus consider that there was little chance to find the CO absorption,

which resulted in the non-detection.

In X-ray surveys, the fraction of obscured objects, sometimes called as obscured fraction, has

a peak around a hard X-ray luminosity of LX ∼ 1043 erg s−1 (Brightman & Nandra 2011b,a;

Burlon et al. 2011). We tested whether the fraction of large NCO has a similar luminosity

dependence. Although X-ray analyses in literature are not available for all of our sample galaxies

at present, it is known that X-ray luminosities correlate with mid-IR luminosities, where LX ∼
1043 erg s−1 corresponds to the IRAS 12 µm luminosity of 1010 L� (e.g., McKernan et al.

2009). We derived the rest 14 µm luminosity L14µm ≡ νLν(14 µm) for each galaxy by measuring

Fν(14 µm) from the spectrum in Figure 6.2. This wavelength is expected to avoid PAH emissions
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Figure 6.10: Comparison of the hydrogen column density converted from the CO column
density (ordinate; NH,4.67) with that estimated from the optical depth of the 9.7 µm silicate
dust absorption measured by Stierwalt et al. (2014) (abscissa; NH,9.7). Filled and open points
represent the results from the fitting with only vturb fixed and from that with both vturb and
TCO fixed, respectively. Galaxies with TCO > 1000 K are emphasized in double circles. Error
bars represent the 68% joint confidence range. A dotted line denotes the identity.
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and silicate dust absorptions (Spoon et al. 2007). Figure 6.11(b) plots NCO against L14µm and

shows that the scatter of NCO has a peak around L14µm ∼ 1010 L�. Figure 6.12 is a histogram

of logNCO plotted for two groups of L14µm > 109.5 L� and L14µm < 109.5 L�. It clearly

indicates that the more luminous group has a lager scatter of NCO than the less luminous

group. Therefore, based on the approximation that L14µm is nearly equal to the IRAS 12 µm

luminosity, the obscured fraction measured in the CO band is consistent with that measured in

X-rays. This result supports the identification that obscuring material observed by X-rays is

composed of molecular gas.
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the fitting with only vturb fixed and from that with both vturb and TCO fixed, respectively. Error
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6.6.4 Difference by Optical Classifications

The CO column density toward one of the two Sy1s, I Zw 1, was evaluated less than NCO <

1017.8 cm−2. This upper limit is significantly lower than the average NCO in Sy2s (1018.5 cm−2),

being consistent with our prediction that the CO absorption is observed when the AGN torus

is edge-on. In contrast, the other one, Mrk 334, had a large NCO of 1019.5 cm−2. Although Mrk

334 was aggregated into Sy1s here, however, the original classification for it by Véron-Cetty &

Véron (2010) is Seyfert 1.8. Thus its absorption could be attributed to a partial obscuration by

a torus viewed moderately edge-on.

Figure 6.11 shows that AGN-starburst composites on average have larger Nco than pure Sy2s.

Spoon et al. (2003) observed another composite galaxy NGC 4945 with ISO and detected the

near-IR CO absorption, but the CO column density they obtained (1018.3 cm−2) is moderately

small compared to our results, and the gas temperature they found (35 K) is far lower than our

results. Hence we think the CO absorption in NGC 4945 is associated with the star formation

in it, favoring the discussion by Spoon et al. (2003) that the gas phase CO is embedded in a

star-forming molecular disk. Our result could be interpreted that the torus is geometrically

thicker in composites than in typical Sy2s. A higher scale height of the torus would increase the

probability that the line of sight intersects the obscuring material, which leads a large expected

value of NCO.

The different scale heights between composites and Sy2s may be reflecting the influence of

nuclear starburst in their CNDs. There have been many connections proposed between the AGN

activity and nuclear starburst. For example, Izumi et al. (2016) measured the mass of dense

molecular gas in the CNDs of ten Seyfert galaxies using the dense gas tracer HCN(1-0) line and

found its positive correlation with the accretion rate of the central SMBHs. They claim that the

star formation within the CNDs contributes to the fueling of the SMBHs. The hydrodynamical

simulation model of the torus formation developed by Wada (2012) and his colleagues implies

that a geometrically thick torus does not survive for millions of years or longer unless the mass

accretion rate into the center is enhanced by some mechanisms, such as supernova explosions

and stellar mass loss in the surrounding environment. We would be able to make more detailed

discussion by observing the CO absorption in composites and Sy2s with a higher wavelength

resolution and comparing the turbulent velocities within them from the width of each rotational

line.

6.7 Summary

Motivated by the result of Chapter 5, we performed a systematic analysis of the CO absorption

band with a larger sample than that of the previous chapter. Nearby 47 infrared galaxies

were selected from the AKARI the post-cryogenic observations in the mission program AGNUL

without any prior information on the presence or absence of the CO feature. The sample includes

4 ULIRGs, 24 LIRGs, and 19 IRGs, covering a lower luminosity range than the previous sample.

Optical classifications of the galaxies were compiled from the literature, which resulted in 2

Seyfert 1s, 13 Seyfert 2s, 3 LINERs, 24 AGN-starburst composites, and 5 unclassified ones.
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Observed data were reduced in a similar way to the previous chapter, but additionally, the

subtraction of the line fluxes of H i Pfβ and H2 0-0 S(9) was performed. The gas model was

fitted at first with the velocity width fixed to the mean value of those obtained in the previous

chapter. For the objects of unsuccessful fits, the model was fitted with the temperature also fixed.

The CO absorption band was discovered in many of the sample galaxies. Especially, we newly

detected the CO feature in IC 5063, where the absorption had not been found from observations

with ISO. A large fraction of the sample showed CO column densities larger than 1019 cm−2

with high temperatures of several × 102 K, and such warm gas of a large column density can

be considered to be heated by X-rays. The fraction of the galaxies with large column densities

was higher in U/LIRGs than IRGs and had a peak at a 14 µm luminosity of L14µm ∼ 1010 L�,

which corresponds to a hard X-ray luminosity of LX 1043 erg s−1. This tendency is consistent

with the obscured fraction measured in X-rays. Based on this result, the obscuring material

observed in X-rays is being identified as molecular gas. This luminosity dependence also could

explain the rarity of the CO feature in the less-luminous AGNs that were observed with ISO.

It was also found that composite sources had on average larger CO column densities than Sy2s.

This result suggests that the obscuration by an AGN torus is also effective in composites and

that the torus is geometrically thicker in composites than in typical Sy2s. This is qualitatively

consistent with the advocated connection between the AGN activity and nuclear starburst that

supernovae in circum-nuclear disks inflate the scale height of a torus.



Chapter 7
Conclusion

7.1 The Main Results of This Thesis

In this thesis, we have presented a series of studies conducted with the aim to investigate physical

conditions and geometrical properties of AGN tori though the absorption spectroscopy of the

near-IR CO fundamental ro-vibrational band centered at 4.67 µm. We here summarize the main

results.

To improve the calibration of the AKARI near-IR grism spectroscopy at the wavelengths

required for the current study, we revised the AKARI calibration by taking the effect of the

contamination by the diffracted second-order light into account. The revision was started from

the cryogenic phase of the satellite, during which the temperature of the instrument had been

stably kept at cryogenic temperature (Chapter 3). The wavelength calibration was revised with

the wavelength dependence of the refractive index of the disperser taken into consideration. As

a result, it was revealed that the nonlinearity of the relation between wavelengths and pixel

positions causes the contamination even if the order-sorting filter perfectly works. The spectral

responses from the first- and second-order light were simultaneously derived by using a pair

of standard objects that have contrasting colors. The decomposition of the mixing flux of

the two orders was formulated as a matrix equation, and the contaminating component was

quantitatively subtracted for the first time. These revisions enabled the analysis of the CO

absorption band observed with AKARI, which is presented in Chapter 5.

We then revised the AKARI calibrations for the post-cryogenic phase of the satellite (Chap-

ter 4). During this period, although the temperature was not stable and gradually increased, a

large number of AGNs and IR galaxies of a wide luminosity range were observed. In addition to

the treatment of the previous chapter, the effect of the temperature increase was also considered.

The new wavelength calibration curve is consistent with that of the cryogenic phase and does

not show any significant temperature dependence. The spectral response from the first-order

light is lower than that of the cryogenic phase on average by 30% and decreases by 10% during

the post-cryogenic phase without clear wavelength dependence. This response decline is consis-

tent with that in imaging observations, indicating that the dominant cause of the decline is the

worsening of the detector sensitivity. A correction factor for this temperature dependence was
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obtained. The temperature dependence in the response from the second-order light is smaller

than its uncertainty. These revisions pioneered the possibility of the study of the CO absorption

in LIRGs and IRGs in Chapter 6.

In Chapter 5, we analyzed the CO absorption in nearby ten AGNs embedded in ULIRGs

that had been known to show the CO feature using observations with the AKARI /IRC (during

the cryogenic phase) and the Spitzer/IRS. The new calibration method established in Chapter 3

was utilized. The observed absorption spectra were fitted with a plane-parallel LTE gas model

on the assumptions that the gas is single-component and that the background continuum source

is the dust sublimation layer of 1500 K at the inner rim of an AGN torus. We found that the CO

gas is warm (200–500 K) and has a large column density of NCO > 1019 cm−2, which corresponds

to NH > 1023 cm−2. Such warm large-column gas is not attainable by either UV heating or

shock heating, and the most convincing candidate is X-ray heating. If the CO abundance of

CO/H = 10−4 is adopted, the hydrogen column density converted from the CO one is smaller

than that measured in X-ray spectral analyses. These results can be explained that the CO

absorption band probes the immediate outside of the X-ray emitting region within the vicinity

of the nuclei. The observed deep absorption profiles require almost unity covering factors and

suggest that the probed region is close to the continuum source, i.e., the innermost part of the

AGN tori.

In Chapter 6, motivated by the above result, we performed a systematic analysis of the CO

absorption with a large sample including LIRGs and IRGs. Nearby 47 IR galaxies were selected

from the AKARI post-cryogenic observations without any prior information on the presence or

absence of the CO feature, and their band profiles were compared in different luminosity classes

and optical classifications. This large sample, which contains LIRGs and IRGs and various

optical classifications, was enabled for the first time by the above re-calibrations of AKARI.

The CO absorption band was discovered in many of the sample galaxies. Especially, we newly

detected the CO feature in IC 5063, where the absorption had not been found from observations

with ISO. As well as the targets in the previous chapter, many of the sample galaxies show warm

large-column gas of NCO & 1019 cm−2 and TCO ∼ several × 102 K, which can be considered

to be heated by X-rays. It was revealed that the CO absorption is stronger in ULIRGs and

LIRGs than IRGs. We found that the fraction of the galaxies with column densities larger

than NCO = 1019 cm−2 had a peak at a 14 µm monochromatic luminosity of 1010 L�. This

tendency is consistent with the obscured fraction defined in X-ray surveys. Based on this result,

the obscuring material observed in X-rays is being identified to be molecular gas. In addition,

this luminosity dependence could explain the rarity of the presence of the CO feature in less-

luminous AGNs observed with ISO. It was also found that the AGN-starburst composites had

on average larger CO column densities than Seyfert 2s. This result can be interpreted that the

obscuration by an AGN torus is also effective in composites and that the torus is geometrically

thicker in composites than in typical Seyferts. This picture is qualitatively consistent with the

theoretically and observationally advocated connection between the AGN activity and nuclear

starburst that supernovae in circum-nuclear disks inflate the scale height of a torus.

The above studies indicate that warm molecular gas with a large column density exists in the
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vicinity of AGNs and that such gas has properties common to the obscuring material observed

in X-rays. These results suggest that the anisotropic structure around an AGN consists of

molecular gas, agreeing with the AGN unified model.

7.2 Future Work

The above studies have demonstrated that the CO ro-vibrational absorption band is a promis-

ing tool to probe warm obscuring gas in the vicinity of AGNs, which cannot be resolved even

by millimeter and submillimeter interferometers. Infrared astronomy is now about gaining a

new powerful observatory, James Webb Space Telescope (JWST ). JWST will, with its spectral

resolution of 3,000, make it possible to separate different rotational levels. Observing the CO

band with this telescope will provide a more detailed picture of AGN tori. Further, the SPICA

telescope is being prepared. This space observatory is being planned to be equipped with wave-

length resolving power as high as 10,000. This capability could enable, beyond the separation

of each line, decomposition of the velocity profile of each line, and it has an impact to unravel

the interaction between AGNs and the surrounding environment, such as molecular inflows and

outflows, and the formation of AGN tori. The study of the CO band conducted in this thesis is

a milestone for such developmental future works.
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Oyabu, S., Tanabé, T., Takagi, T., Ueno, M., Usui, F., Watarai, H., Pearson, C. P., Takeyama,

N., Yamamuro, T., and Ikeda, Y. 2007, “Near-Infrared and Mid-Infrared Spectroscopy with

the Infrared Camera (IRC) for AKARI”, Publications of the Astronomical Society of Japan,

59, 411



REFERENCES 125

Onaka, T., Lorente, R., Ita, Y. Ohyama, Y., Tanabe, T., and Pearson, C. 2009, “AKARI IRC

Data User Manual for Post-Helium (Phase 3) Mission”, Version 1.1, http://www.ir.isas.

jaxa.jp/AKARI/Observation/support/IRC/IDUM/IRC_IDUM_P3_1.1.pdf

Onaka, T., Matsuhara, H., Wada, T., Fujishiro, N., Fujiwara, H., Ishigaki, M., Ishihara, D.,

Ita, Y., Kataza, H., Kim, W., Matsumoto, T., Murakami, H., Ohyama, Y., Oyabu, S., Sakon,
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Appendix A
Appendix for Chapter 3

A.1 Inverse Matrix of the Response Matrix

We denote the response matrix defined by Equations (3.9), (3.10), and (3.11) as R. R is a

triangular matrix. Figure A.1 displays the nonzero elements of R. The columns with nonzero

off-diagonal elements shift rightward every two rows because the magnitude relation (3.6) holds.

By the sweep-out method or similar, the inverse matrix D ≡ R−1 is obtained as follows:

D =



D1,1

D2,2

. . .

Dk,1 Dk,2 Dk,k

...
...

. . .


(A.1)

Di,i =
1

Ri,i
(A.2)

Di,j = − Ri,j
Ri,iRj,j

(A.3)
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Figure A.1: Elements of the response matrix R. Black cells denote the nonzero elements. All
other elements are zero.
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Appendix for Chapter 5

B.1 Parameter Dependence of the Absorption Profile

Figure B.1 describes how our model depends on three parameters. If the column density, NCO,

increases, the absorption profile becomes deeper because the optical depth is proportional to

NCO. If the temperature, TCO, increases, the profile becomes wider because higher rotational

levels are populated. If the velocity width, vturb, increases, the profile becomes deeper at the

peaks of the P - and R-branches because the equivalent width is broadened only when the

absorption is saturated. When the absorption is weak, we cannot determine vturb from the

model fitting unless we resolve rotational levels with a high spectral resolution. In this paper,

however, we do not face this problem in most of the targets because they show sufficiently deep

absorption profiles. We restrict the range of vturb to less than 300 km s−1 because values higher

than this upper limit do not substantially affect the profile as they involve two neighboring

rotational lines to completely blend with each other.

B.2 ∆χ2 Map

Figure B.2 shows a set of color maps of the ∆χ2 value for all of the targets. The maps clearly

show the degeneracy among the parameters. Large values of NCO anti-correlates with TCO and

vturb. The NCO versus TCO anti-correlation can be interpreted as follows. At large NCO, the

absorption is nearly saturated. Because the depths at the two peaks of the absorption profile do

not change significantly with NCO, the depths at the band wings become more important in the

determination of the solution. However, high values of TCO instead of NCO can also deepen the

band wings, which results in the anti-correlation between NCO and TCO. On the other hand,

the NCO versus vturb anti-correlation originates because the two parameters similarly deepen

the band profile when the absorption is saturated.
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Figure B.1: Parameter dependence of the CO absorption model. The top panel compares the
intrinsic model spectrum for the parameters noted at the right bottom corner with a blurred
spectrum for a low spectral resolution (R = 100). The bottom panels show the changes in the
absorption profile from the top panel when one parameter is multiplied by a factor of five.

B.3 Comparisons with Previous CO Analyses

B.3.1 IRAS 00182−7112

Our best-fit model for IRAS 00182−7112 (or IRAS F00183−7111) had a large column density

and did not coincide with that of S04, who had performed a similar gas model fitting for a

Spitzer/IRS spectrum based on an earlier IRS calibration. Our best-fitting parameters were, as

tabulated in Table 3, NCO = 1021.2 cm−2, TCO = 328 K, and vturb = 28 km s−1, whereas those

found by S04 were 1019.5 cm−2, 720 K, and 50 km s−1. Their solution largely differs from ours

and locates near the edge of the 99% joint confidence region of our best-fit (See Figure B.2).

However, in the analysis of S04, another solution with NCO = 1021.5 cm−2, TCO = 400 K, and

vturb = 25 km s−1, which is similar to our result, was also found (H. Spoon & J. Cami, private

communication). We therefore finally adopted our obtained large-column solution even though

this solution has an uncertainty in the amount of gas hidden behind the τ = 1 surface.

B.3.2 IRAS 08572+3915

IRAS 08572+3915 comprises two nuclei, with the one in the northwest (NW) being brighter

than the one in southeast (SE) by 2.2 magnitudes at 2.2 µm (Scoville et al. 2000). The CO

ro-vibrational absorption lines in IRAS 08572+3915 NW were first detected by Geballe et al.

(2006) using UKIRT, and then observed with higher quality by S13 using Subaru. S13 obtained

a high spectral resolution spectrum (R ∼ 5000, ∆v ∼ 60 km s−1) with individual absorption

lines resolved and revealed a velocity profile comprising three distinct components centered at
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Figure B.2: Color maps of the ∆χ2 values of the best-fit models shown in Figure 5.5 whose
parameters are tabulated in Table 5.4. Each panel shows a slice of the three-dimensional param-
eter space at the turbulent velocity vturb noted at the top right corner. From inside to outside,
the closed solid curves denote the 68%, 90%, and 99% joint confidence levels, respectively.
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UGC 5101
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Figure B.2: (Continued)
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IRAS 19254−7245
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Figure B.2: (Continued)
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IRAS 00182−7112

19 20 21 22 23
log NCO

22 km s−1

19 20 21 22 23
log NCO

24 km s−1

19 20 21 22 23
log NCO

26 km s−1

19 20 21 22 23
log NCO

200

300

400

500

600

700

T
C

O
 (

K
)

30 km s−1

35 km s−140 km s−150 km s−1

200

300

400

500

600

700

T
C

O
 (

K
)

vturb = 60 km s−1

0

5

10

15

20

25

30

IRAS 00397−1312

19.2 19.5 19.8 20.1
log NCO

84 km s−1

19.2 19.5 19.8 20.1
log NCO

90 km s−1

19.2 19.5 19.8 20.1
log NCO

100 km s−1

19.2 19.5 19.8 20.1
log NCO

140

160

180

200

220

240

T
C

O
 (

K
)

110 km s−1

120 km s−1150 km s−1200 km s−1

140

160

180

200

220

240

T
C

O
 (

K
)

vturb = 300 km s−1

0

5

10

15

20

25

30

Figure B.2: (Continued)
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0, −160, and +100 km s−1 relative to the systemic velocity of the galaxy. The authors analyzed

the spectrum under the assumption of a three-component gas. Note that the numbers below

are quoted from the full coverage case of S13, which is equivalent to our assumption, although

the authors also discussed a partial coverage case. The first component was the blueshifted

component, which had the largest CO column density of 2.7× 1018 cm−2, a warm temperature

of 325 K, and a velocity width broader than 200 km s−1. The second component was at the

systemic velocity, with a column density of 5.7×1017 cm−2 and a temperature of 23 K. The third

was the redshifted component, which was weaker than the other two components (∼ 1017 cm−2)

and had the highest temperature (∼ 700 K).

Although the AKARI observation used in this work did not spatially resolve the two nuclei,

we assume that the contribution from the SE nucleus at around 4.67 µm is negligible as well

as that at 2.2 µm, as SE is also much fainter in mid-IR wavelengths (Soifer et al. 2000). Our

best-fitting column density, NCO = 1019.4 cm−2, and temperature, TCO = 420 K, were ∼ 7 times

larger and ∼ 1.3 times higher, respectively, than those of the most prominent component of S13.

Below, we discuss the source of this inconsistency.

The AKARI spectrum used in this study and the Subaru spectrum used in S13 have quite

different wavelength coverages. The former covered only the R-branch, while the latter, which

was limited by the atmospheric window, covered an almost opposite wavelength range corre-

sponding to the P -branch. Thus, the discrepancy in the column densities found from the R- and

P -branches can be attributed to the absorption profile becoming “asymmetric” and deviating

from the current model prediction. Although it is possible that the effects mentioned in Section

5.5.1 can cause such an asymmetric absorption profile, these effects are weak to explain the

difference.

We propose that the most plausible interpretation for the discrepancy is that S13 underesti-

mated the continuum level in the calculation of the equivalent widths. As the Subaru spectrum

used by S13 did not cover featureless wavelength regions, the authors determined the continuum

level under the assumption that high-intensity peaks correspond to zero-absorption intensities.

However, this determination is not trivial. The absorption depth in the Subaru spectrum coin-

cides with that observed with AKARI if the actual continuum level is higher than that adopted

by S13 by 30%. In this case, the equivalent width of each rotational line increases, and the exci-

tation temperature of the dominant component obtained from the population diagram becomes

480 K. This change follows the trend in the discrepancy between our analyses and those of S13.

To confirm this explanation, we require a seamless spectrum that continuously covers both the

P - and R-branches. Such a spectrum can be acquired using the upcoming James Webb Space

Telescope.
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C.1 Color Correction of the WISE Data

Because some of the sample galaxies exhibit prominent PAH emissions and do not have mono-

tonic spectral slopes within the WISE bands, the color-correction of the WISE magnitudes is

essential, especially for W1 and W3, which could overlap the 3.3 µm and 11.2 µm PAH emis-

sions, respectively. The color-correction factors for the W1, W3, and W4 bands, f1, f3, and f4,

respectively, were calculated in the same way of Section 5.2.3. However, because the W2 band

overhangs both of the IRC and IRS spectra, the derivation of the factor for the band f2 is not

straightforward. We thus iteratively determined the factor. Initially, it was calculated from the

relative spectral shape obtained by connecting the IRC and IRS spectra with no scaling. The

IRS spectrum was scaled to fit the color-corrected W3 and W4 fluxes, and the IRC one was

done based on the corrected W1 and the tentatively corrected W2. This initial scaling was used

to update f2. We repeated these processes three times to converge f2. The final color-correction

factors are summarized in Table C.1. The final f2 becomes small when the CO absorption is

deep, but its average among the sample points 1.03 with the standard deviation of 0.13. This

distribution more concentrates on f = 1 than those of f1 and f3 do because the latter two

factors are significantly affected by the PAH emissions. Consequently, the color-correction of

the W2 band is less critical than those of the W1 and W3 bands. The impact of the correction

is the smallest in the W4 band, within which few emission or absorption features appear.

C.2 Galaxies observed with ISO

Lutz et al. (2004) searched for the signature of the CO absorption in nearby 31 AGNs observed

with ISO and found no significant detection of the feature, even in type-2 AGNs. It is worth

comparing their result with ours. Table C.2 lists the AGNs analyzed in Lutz et al. (2004) and

indicates that those AGNs are mainly IRGs. This issue is discussed in Section 6.6.3. Among

those AGNs, NGC 7213 and PKS 2048−57 = IC 5063 are common with our sample in Chapter

6. While in NGC 7213 we also did not detect significant absorption, in IC 5063, we could detect

weak CO absorption owing to the sensitivity of AKARI (Section 6.5).
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Table C.1: WISE color correction factors

Object f1 f2 f3 f4

Mrk 334 0.725 0.949 0.624 0.998
NGC 23 0.750 1.021 0.517 1.018
MCG−02-01-051 0.504 1.180 0.505 1.007
NGC 232 0.604 1.034 0.477 1.013
I Zw 1 0.945 0.969 0.883 0.984
MCG−07-03-014 0.471 1.246 0.547 1.007
CGCG 436-030 0.712 0.969 0.900 1.014
NGC 612 0.824 1.030 0.370 1.021
ESO 353-G020 0.646 1.085 0.594 1.036
ESO 297-G018 0.934 0.988 0.750 0.988
IRAS 02530+0211 0.890 1.318 2.571 0.987
NGC 1614 0.481 1.056 0.867 0.984
ESO 121-IG028 0.896 0.987 1.122 1.014
NGC 2623 0.582 1.022 0.933 1.027
Mrk 18 0.832 1.029 0.730 0.996
IRAS 09022−3615 1.173 0.906 2.148 0.991
ESO 434-G040 0.973 0.959 1.040 0.989
NGC 3081 0.964 1.032 1.074 0.990
NGC 3079 0.912 1.139 0.942 1.061
NGC 3268 0.935 1.059 0.632 1.022
ESO 264-G057 0.702 0.994 0.545 1.016
Arp 148 0.789 0.935 0.634 1.037
NGC 4102 0.917 1.136 0.904 1.007
NGC 4194 0.580 1.091 0.903 1.000
M 106 0.947 1.008 0.844 1.002
NGC 4418 0.911 1.567 4.603 1.036
ESO 506-G027 0.963 0.968 1.161 0.989
NGC 4818 0.909 1.046 0.903 0.998
ESO 507-G070 0.623 1.046 0.753 1.035
IC 860 0.882 1.143 1.193 1.115
UGC 8335 W 0.722 0.997 0.455 1.016
UGC 8335 E 0.668 1.007 0.677 1.010
MCG−03-34-064 0.964 0.872 1.014 0.988
NGC 5135 0.709 0.994 0.712 1.007
IC 4280 0.753 1.008 0.503 1.026
Mrk 273 0.862 0.956 1.849 1.028
UGC 9618 N 0.810 0.962 0.492 1.055
IRAS 15250+3609 0.936 0.692 6.286 1.000
Arp 220 0.638 1.212 2.125 1.101
NGC 6701 0.749 1.106 0.627 1.016
IC 5063 0.989 0.963 1.009 1.002
ESO 286-IG019 1.044 0.824 3.892 0.994
NGC 7130 0.749 0.976 0.830 0.987
NGC 7213 0.975 0.992 0.776 0.995
ESO 148-IG002 1.017 0.981 1.742 0.971
IC 5298 0.839 0.979 0.791 1.013
Mrk 331 0.520 1.126 0.575 1.027

average 0.807 1.033 1.171 1.013
standard deviation 0.163 0.130 1.113 0.028
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Table C.2: Sample of Lutz et al. (2004)

Object Type R.A. Dec. z logLIR

(J2000) (J2000) (L�)

(1) (2) (3) (4) (5) (6)

Mrk 335 Type 1 00h06m19.s52 +20◦12′10.′′5 0.025785 10.7

Mrk 590 Type 1 02h14m33.s56 −00◦46′00.′′1 0.026385 10.7

NGC 1097 Type 1 02h46m19.s05 −30◦16′29.′′6 0.004240 10.7

NGC 1566 Type 1 04h20m00.s42 −54◦56′16.′′1 0.005017 10.4

Ark 120 Type 1 05h16m11.s42 −00◦08′59.′′4 0.032713 11.0

MCG 8−11−11 Type 1 05h54m53.s61 +46◦26′21.′′6 0.020484 11.1

Mrk 6 Type 1 06h52m12.s25 +74◦25′37.′′5 0.018813 10.6

Mrk 79 Type 1 07h42m32.s80 +49◦48′34.′′7 0.022189 10.9

NGC 3227 Type 1 10h23m30.s58 +19◦51′54.′′2 0.003859 9.9

NGC 3516 Type 1 11h06m47.s49 +72◦34′06.′′9 0.008836 10.1

NGC 3783 Type 1 11h39m01.s76 −37◦44′19.′′2 0.009730 10.6

NGC 4051 Type 1 12h03m09.s61 +44◦31′52.′′8 0.002336 9.5

NGC 4151 Type 1 12h10m32.s58 +39◦24′20.′′6 0.003319 9.9

Mrk 766 Type 1 12h18m26.s51 +29◦48′46.′′3 0.012929 10.7

NGC 4593 Type 1 12h39m39.s43 −05◦20′39.′′3 0.009000 10.3

IC 4329A Type 1 13h49m19.s27 −30◦18′34.′′0 0.016054 10.9

NGC 5548 Type 1 14h17m59.s53 +25◦08′12.′′4 0.017175 10.6

NGC 7213 Type 1 22h09m16.s31 −47◦09′59.′′8 0.005839 10.0

NGC 7469 Type 1 23h03m15.s62 +08◦52′26.′′4 0.016317 11.6

NGC 1068 Type 2 02h42m40.s71 −00◦00′47.′′8 0.003793 11.4

NGC 1365 Type 2 03h33m36.s37 −36◦08′25.′′4 0.005457 11.1

NGC 1386 Type 2 03h36m46.s18 −35◦59′57.′′9 0.002895 9.5

IRAS 04385−0828 Type 2 04h40m54.s97 −08◦22′22.′′2 0.015100 10.7

NGC 4388 Type 2 12h25m46.s75 +12◦39′43.′′5 0.008419 10.7

NGC 4507 Type 2 12h35m36.s63 −39◦54′33.′′3 0.011801 10.6

Cen A Type 2 13h25m27.s62 −43◦01′08.′′8 0.001825 10.5

Circinus Type 2 14h13m09.s95 −65◦20′21.′′2 0.001448 10.7

NGC 5506 Type 2 14h13m14.s89 −03◦12′27.′′3 0.006181 10.4

PKS 2048−57 Type 2 20h52m02.s34 −57◦04′07.′′6 0.011348 10.8

NGC 7582 Type 2 23h18m23.s50 −42◦22′14.′′0 0.005254 10.9

NGC 7674 Type 2 23h27m56.s72 +08◦46′44.′′5 0.028924 11.6

Note—Column 1: object name (by courtesy of D. Lutz). Column 2: AGN type adopted
in Lutz et al. (2004). Columns 3 and 4: right ascension and declination (J2000). Col-
umn 5: redshift from the NASA/IPAC Extragalactic Database (NED). Column 6: log-
arithm of the infrared (8–1000 µm) luminosity in units of the solar luminosity derived
from the IRAS 4 bands.
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