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Abstract

Supersymmetric models generally contain long-lived particles that could cause cosmologi-

cal difficulties. In particular, moduli/Polonyi fields dominate total energy of the universe

as coherent oscillation and spoil the success of the Big-Bang cosmology. It is known that

the moduli/Polonyi abundance can be diluted sufficiently by thermal inflation. However,

preexisting baryon asymmetry is also diluted in this scenario. In this thesis, we study

whether it is possible to generate the observed baryon asymmetry with the dilution of the

moduli/Polonyi abundance. When we consider baryogenesis before dilution of the moduli

abundance, the Affleck-Dine mechanism is the most promising among known baryogen-

esis mechanisms. In gravity-mediated SUSY breaking models with the moduli mass of

O(1)TeV, the Affleck-Dine mechanism before dilution cannot explain the observed baryon

asymmetry. In gauge-mediated SUSY breaking models, the Affleck-Dine fields except for

LHu flat direction inevitably form into Q-balls after the onset of their oscillation. The

produced baryon number is absorbed into Q-balls, and it is difficult to extract the baryon

number from Q-balls. We show that the Affleck-Dine fields cannot provide sufficient

baryon number with dilution of moduli abudnance because of Q-ball formation. In the

case of the LHu flat direction, µ-term prevents the Q-ball formation. We propose alter-

native scenario using the LHu direction, but we show that it cannot explain the observed

baryon asymmetry either. When the moduli/Polonyi field is as heavy as O(100)TeV, it

can decay before the Big-Bang nucleosynthesis, but the lightest supersymmetric particles

are generally overproduced from the decay. We show that the baryon asymmetry cannot

be explained by the Affleck-Dine mechanism even if the moduli abundance is diluted by

entropy production to prevent the LSP overproduction. In the case of the Polonyi field

with a mass of O(100)TeV, on the other hand, we show that the observed baryon-to-

dark matter ratio is explained in sequestering models with a (pseudo-)Nambu-Goldstone

boson.
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Chapter 1

Introduction

1.1 Overview

The origin of matter-antimatter asymmetry in the universe is one of long-standing ques-

tions in cosmology. The matters and antimatters are composed of elementary particles,

and they seem to be created by the same amount in the early universe. However, all

of astronomical objects are composed of not antimatters but matters, and there are no

primordial antimatters in our universe. The question is how this asymmetry was created

during the history of the universe. The cosmic microwave background (CMB) observation

and the Big-Bang nucleosynthesis (BBN) offers an estimation of the asymmetry between

baryonic and antibaryonic components. Both CMB observation and successful formation

of light elements require the following baryon asymmetry [1–3]:1

nB

s
≃ (8.7± 0.1)× 10−11, (1.1)

where nB ≡ nb − nb̄ is the difference between the baryon density nb and the antibaryon

density nb̄, and s is the entropy density.

Generation of the baryon asymmetry is referred to as baryogenesis and has been stud-

ied in connection with particle physics for a long time. Sakharov firstly pointed out

the following necessary conditions for baryogenesis, that are referred to as Sakharov’s

criteria [4]: (1) baryon number violating processes, (2) C and CP violating processes,

(3) departure from thermal equilibrium. The earliest attempt to produce the baryon

asymmetry was proposed in the context of the Grand Unified Theory (GUT) [5, 6]. The

GUT [7] predicts the existence of baryon number violation, and CP violating decay of

superheavy particles can produce baryon asymmetry. However, the GUT baryogenesis is
1 The value is obtained from the analysis of the Planck collaboration using the data of TT, TE,

EE+lowP+BAO (95%C.L.).
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incompatible with the inflationary universe because it is difficult to achieve temperature

of the GUT scale after the inflation.

Actually, the electroweak sector of the standard model itself has baryon number vi-

olation at the quantum level [8]. The violation is provided by a quantum anomaly, and

these effects are very tiny since they occur by quantum tunneling effects in the present

cold universe. At high temperature above the electroweak scale, however, it was found

that thermal transitions over the barrier occur and that the baryon number violating

processes, called sphaleron processes [9, 10], come to thermal equilibrium [11].

The sphaleron processes make it possible to produce baryon asymmetry at least in two

ways. The first one is electroweak baryogenesis [11–13]. In this scenario, the electroweak

transition must be first order since departure from thermal equilibrium is realized by

walls of false vacuum bubbles. However, it is found that the electroweak transition of the

standard model is a smooth crossover [14, 15]. Therefore, an extension of the standard

model is needed for successful electroweak baryogenesis.

The second one is leptogenesis [16]. While the sphaleron processes violate the baryon

(B + L) symmetry, they conserve B − L symmetry. If lepton asymmetry is generated

before the electroweak phase transition, it is converted into baryon asymmetry. In this

case, heavy right-handed neutrinos other than the standard model particles are usually

responsible for generating the lepton asymmetry.

These two scenarios can work in the inflationary universe since the baryon asymmetry

is dynamically generated after the end of the primordial inflation. An important point

is that the origin of the baryon asymmetry cannot be explained in the framework of the

standard model. It is still an open question how the baryon asymmetry was generated in

the early universe.

In particle physics, on the other hand, supersymmetry (SUSY)2 is one of the most

attractive candidates for extensions of the standard model. It can not only drastically

relax the hierarchy problem but also achieve the unification of the gauge couplings, which

implies the existence of the GUTs. In addition, supersymmetric models with conserved R

parity predict the stability of the Lightest Supersymmetric Particle (LSP), which becomes

a good candidate for the dark matter. Moreover, SUSY extensions of the SM contain a

lot of flat directions with B−L charge [19], which can produce the B−L asymmetry [20].

In the early universe, one of the flat directions, which we call the Affleck-Dine field, may

receive an angular kick from SUSY breaking and R symmetry breaking effects and rotates

in its complex plane, which corresponds to the generation of the B − L asymmetry. The

2 For reviews, see Refs. [17, 18]
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B−L asymmetry is converted into the baryon asymmetry through the sphaleron process.

This mechanism, known as the ”Affleck-Dine mechanism”, can produce baryon number

more efficiently than the electroweak baryogenesis and the leptogenesis [20, 21].

In spite of these advantages of the SUSY, some long-lived particles in supersymmetric

models tend to have cosmological difficulties. In local SUSY, the existence of the gravitino

is expected, which is a superpartner of the graviton. The gravitino interacts with other

particles only through interactions suppressed by the Planck scale, hence has a very

long lifetime. In the history of the universe, gravitinos are produced through scattering

processes during the reheating [22]. When the gravitino mass is of O(1)TeV, the decay of

the produced gravitinos destroy the BBN [23–26]. When the gravitino mass is much lighter

than the electroweak scale, it is stable and its abundance may give too much contribution

to the cosmic density of the present universe [27]. The reheating temperature is then

constrained from these cosmological difficulties [28–30].

The situation gets worse when we think of supersymmetric models as an effective the-

ory of superstring. In superstring theories, a lot of flat directions, called moduli fields,

generally appear at the low energy scale through compactifications of extra dimensions.

It is known that many of them can be stabilized with heavy masses by flux compactifi-

cations [31–33], but some of them often remain relatively light, whose mass is about the

gravitino mass [34]. In this thesis, I focus on these moduli fields whose mass is the order of

the gravitino mass. Such moduli fields cause cosmological difficulties, called cosmological

moduli problems [34–36], because they also interacts with other particles only through

the interaction suppressed by the Planck scale and hence have long lifetimes. Moreover,

when the moduli mass is of O(0.1)MeV-O(1)GeV, moduli generally decay into X-rays

during the present epoch, and it may give too much contribution to the X-ray background

spectrum, which constrains the moduli abundance more severely than the dark matter

abundance [37,38].

The moduli density mainly comes from its coherent oscillation. Since its initial am-

plitude is of the order of the Planck scale, its density soon dominates the energy density

of the universe. As we will see, the moduli problems cannot be solved even if the re-

heating temperature is as low as O(10)MeV, which is restricted from below to realize

the BBN [39, 40]. Therefore, the moduli problems are more severe than the gravitino

problems.

The same problem occurs when supersymmetric models contain a singlet field in a

hidden sector. For example, singlet fields are often responsible for spontaneous breaking

of the SUSY. The simplest SUSY breaking model with a singlet field is called the “Polonyi

model” [41]. The singlet field whose F -term breaks the SUSY, called the “Polonyi field”,
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gauge mediation gravity/anomaly mediation

moduli (gravitino) mass ! O(1)GeV O(0.1-1)TeV O(100)TeV

part Section 3.4 Section 3.3 Chapter 4

Section 3.5 (LHu direction)

Table 1.1: The contents of Chap. 3 and 4.

also causes cosmological problems as well as moduli fields [35].

There are some ways to solve the problems. One of the most probable candidates

is the “thermal inflation” [42, 43]. It is a mini-inflation caused after the onset of the

moduli oscillation, and dilutes the moduli density. The mechanism requires a scalar field

called “the flaton”. The end of the thermal inflation is triggered by the thermal mass of

the flaton, and the flaton decay can produce a large number of entropy enough to solve

the moduli problems. Indeed, it has been studied that some specific models succeed in

diluting the moduli density sufficiently [44–46].

However, this is not the end of the story. One is faced with another important problem

with regard to the baryon asymmetry. When the thermal inflation dilutes the moduli

density, it also dilutes preexisting baryon (B − L) asymmetry. In order to explain the

present baryon asymmetry, it is necessary to produce huge baryon (B−L) number enough

to survive dilution beforehand. The thermal leptogenesis cannot work because it cannot

produce such huge lepton number beforehand. The electroweak baryogenesis also seems

to be difficult to explain the observed baryon asymmetry since reheating temperature is

often predicted to be below the electroweak scale in the thermal inflation. Therefore, we

need a mechanism to generate the baryon number more efficiently.

The topic of this thesis is how to explain the observed baryon asymmetry in the context

of the thermal inflation. As mentioned above, the Affleck-Dine mechanism is one of the

most probable candidates for baryogenesis in supersymmetric models and can generate

much larger baryon asymmetry than other baryogenesis scenarios such as the thermal

leptogenesis. In this thesis, we consider the case where the Affleck-Dine mechanism is

responsible for producing baryon number.

1.2 Outline of this thesis

The outline of this thesis is as follows. In Chap. 2, we review motivations for super-

symmetry and its cosmological implications. In particular, we focus on cosmological

moduli/Polonyi problems and introduce mechanisms to partially solve these problems. In
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the former half of Chap. 3, we review the Affleck-Dine mechanism and the Q-ball, which

is a non-topological soliton formed during the Affleck-Dine field oscillation. In the rest

of the chapter, we study whether the Affleck-Dine mechanism can explain the observed

baryon asymmetry with dilution of the moduli abundance. Section 3.4 and 3.5 are based

on the work of Ref. [47]. In Chap. 4, we consider the case where the moduli/Polonyi field

is as heavy as O(100)TeV. This chapter is based on the work of Ref. [48]. The contents

of Chap. 3 and 4 are summarized in the Table 1.1. Chapter 5 is devoted to conclusions.
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Chapter 2

Supersymmetry and cosmological
problems

In this chapter, we will review supersymmetry and its cosmological problems. We then

explain conventional scenarios to solve the problems.

2.1 Motivations for supersymmetry

In particle physics, the idea of symmetry provides us with a description of interactions

between elementary particles. The standard model successfully describes the strong and

electroweak interactions based on the local symmetry of SU(3)C × SU(2)L × U(1)Y , and

has been experimentally confirmed with a high degree of precision to date, except for

neutrino oscillation [49, 50]. The electromagnetic interaction appears as a result of the

spontaneously breaking of the electroweak symmetry SU(2)L × U(1)Y → U(1)em, which

requires the existence of the Higgs boson transforming as a SU(2)L doublet with hyper-

charge. The symmetry breaking occurs when the Higgs acquires the Vacuum Expectation

Value (VEV) of the order of 100GeV, and then quarks, leptons and W and Z bosons

acquire masses smaller than the electroweak scale. These masses are determined by the

couplings between Higgs and standard model particles. It should be noted that the stan-

dard model particles except for the Higgs are massless unless the electroweak symmetry

breaking occurs. Therefore, the Higgs VEV is an origin of masses of already known par-

ticles. How does the Higgs field acquire the VEV and why is it of the order of 100GeV?

The potential for the electrically neutral part of the Higgs doublet is given by

V = m2
H |H|2 + λH |H|4, (2.1)

where m2
H is the mass of the Higgs field at the origin of the potential, λH is the Higgs
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t H

t̃

Figure 2.1: Some of the Feynman diagrams contributing to the Higgs mass corrections.

self-coupling of O(1) and H represents the Higgs field. The symmetry breaking requires

m2
H < 0 and λH > 0, and m2

H should be of the order of −(100GeV)2 in order to get

the Higgs VEV of O(100)GeV. However, the parameter of m2
H receives huge quantum

corrections from loops containing fermions. For example, the top quarks tL, tR couples to

the Higgs field with a term of −ytHtLt
†
R, and then m2

H receives the following corrections

at the one-loop level:

∆m2
H = − |yt|2

8π2
Λ2

UV + · · · . (2.2)

Here ΛUV is an ultraviolet momentum cutoff. Other fermions and gauge bosons coupling to

the Higgs also contribute to the quantum corrections. If one assumes that the momentum

cutoff is the Planck scalempl, the renormalized parameterm2
H of the order of −(100GeV)2

requires miraculous cancellation between the bare parameter and the quantum corrections

of O(m2
pl). In other words, O(10−34) fine-tuning is necessary for the successful electroweak

symmetry breaking. This is called the hierarchy problem in the standard model.

Supersymmetry (SUSY) is one of the most attractive candidates for solving the hi-

erarchy problem. The SUSY is symmetry between bosons and fermions, and then pre-

dicts an equal number of boson and fermion degrees of freedom. Therefore, there exists

supersymmetric partners of all the known standard model particles. For example, the

supersymmetric standard model has superpartners of the top quarks, t̃L and t̃R, with

terms like |yt|2|H|2|t̃L|2 and |yt|2|H|2|t̃R|2. The quantum corrections proportional to Λ2
UV

in Eq. (2.2) are cancelled by the following contributions from loops containing these scalar

particles at the one-loop level:

∆m2
H = 2× |yt|2

16π2
Λ2

UV + · · · . (2.3)

Some of the diagrams including top quarks and stops are shown in Fig. 2.1. These can-

cellations also occur between gauge bosons and their superpartners loops. The quadratic
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Figure 2.2: The energy dependence of the standard model gauge couplings, αa = g2a/4π,
at the one-loop level, where a is a gauge index. We take the SUSY scale as 1TeV.

divergences similarly vanish to all orders in perturbation theory unless the supersymmetry

is broken [51–54]. The SUSY provides a solution to the hierarchy problem.

Actually, the SUSY must be broken in the vacuum state since superpartners of the

standard model particles are not discovered. Fortunately, soft SUSY breaking ensures the

cancellation of quadratic divergences even in the presence of the SUSY breaking. Softly

breaking terms contain parameters with positive mass dimension, and then the SUSY is

restored when these parameters vanish. We denote the scale of the mass parameters as

mSUSY . The contribution to the Higgs mass term from the soft SUSY breaking effects is

as follows:

∆m2
H = m2

SUSY

[
λ

16π2
ln

ΛUV

mSUSY
+ · · ·

]
. (2.4)

Here λ is a typical dimensionless coupling. One can find that this contribution vanishes in

the limit of mSUSY → 0 and that the quantum corrections to m2
H is at most of the order

of m2
SUSY as long as the SUSY is softly broken. In order to solve or drastically relax the

hierarchy problem, mSUSY should be around the electroweak or TeV scale and not much

larger than TeV scale.

Another important motivation for the SUSY is the unification of the gauge couplings at

the high energy scale. We already know that the electromagnetic and the weak interactions

are unified into the electroweak interaction. Similarly, it is also expected that three gauge

couplings of SU(3)C×SU(2)L×U(1)Y are unified at the higher energy scale, which implies

10



the existence of the GUT [7]. One can evolve the gauge couplings up to the high energy

scale according to renormalization group equations. The unification of the gauge couplings

cannot be achieved in the standard model as shown in Fig. 2.2. In supersymmetric models,

however, the renormalization group equations are different from the standard model, and

then one can actually see the unification of the gauge couplings just below the Planck

scale.

Furthermore, we know that there exists four fundamental forces in nature: the grav-

itational force, the strong force, the weak force and the electromagnetic force. If three

fundamental interactions other than the gravitation are unified by the SUSY GUT, our

further goal is the unification of all the known interactions including the gravitation. The

gravitational force can be described by the general relativity at the macroscopic scale, but

how to combine the quantum theory and the general relativity is completely unknown.

The superstring theory, that is one of supersymmetric theories, is known to be the most

probable candidate for “the theory of everything” at present. If the superstring theory is

a proper theory of the unification of all the known fundamental forces, there should exist

the SUSY.

2.2 Minimal Supersymmetric Standard Model

The simplest supersymmetric extension for the standard model is called Minimal Super-

symmetric Standard Model (MSSM). As mentioned in the previous section, all the known

standard model particles must have superpartners with the same degrees of freedom. For

example, each of two-component Weyl fermions has one complex scalar partner called

a “sfermion”. The superpartner of the left-handed quark qL is a left-handed squark q̃L.

Hereafter, we denote superpartners of fermions f as f̃ . Gauge bosons and Higgs bosons

also have fermions called “gauginos” and “higgsinos”. We show all the particle contents

of the MSSM in Table 2.1.

A notable feature of the MSSM is that it contains two Higgs doublets from the following

reasons. First, the gauge anomalies must vanish in order to ensure the gauge symmetry

at the quantum level. In the standard model, one can find that these anomalies vanish

by using the charge of the quarks and the leptons. In the MSSM, on the other hand, the

higgsinos also contribute to the gauge anomalies, and then anomaly cancellation requires

two higgsinos with opposite hypercharge, Y = 1/2 and Y = −1/2. Second, two Higgs

doublets are necessary for giving mass terms of both up-type and down-type quarks in the

supersymmetric Lagrangian. In the following, we call the Higgs boson giving the masses of

the up-type quarks “up-type Higgs” and one giving the down-type quark masses “down-

11



Chiral superfield Scalar boson Weyl fermion SU(3)C SU(2)L U(1)Y

Squarks, Quarks Q Q̃ = (ũL, d̃L)T Q = (uL, dL)T 3 2 1
6

ū ũ∗
R (˜̄u) u†

R (ū) 3 1 −2
3

d̄ d̃∗R ( ˜̄d) d†R (d̄) 3 1 1
3

Sleptons, Leptons L L̃ = (ẽL, ν̃L)T L = (eL, νL)T 1 2 −1
2

ē ẽ∗R (˜̄e) e†R (ē) 1 1 1

Higgs, Higgsinos Hu Hu = (H+
u , H

0
u)

T H̃u = (H̃+
u , H̃

0
u)

T 1 2 1
2

Hd Hd = (H0
d , H

−
d )

T H̃d = (H̃0
d , H̃

−
d )

T 1 2 −1
2

Vector superfield Vector boson Weyl fermion SU(3)C SU(2)L U(1)Y

Gluon, Gluino g g̃ 8 1 0

W boson, Wino W W̃ 1 3 0

B boson, Bino B B̃ 1 1 0

Table 2.1: The contents of MSSM particles.

type Higgs”.

Before introducing the MSSM Lagrangian, we will briefly see construction of super-

symmetric Lagrangian. The supersymmetric Lagrangian is easily constructed based on

superspace. Coordinates on superspace are xµ, θα and θ†α̇, where α and α̇ are spinor in-

dices. θα and θ†α̇ are anti-commuting two-component spinors. On superspace, a complex

scalar field φ and its supersymmetric partner, Weyl fermion ψ, can be described as a

chiral superfield:

Φ = φ(y) +
√
2θψ(y) + θθF (y), (2.5)

where yµ ≡ xµ + iθ†σ̄µθ, and F is an auxiliary field. A real superfield V a that contains

gauge fields is written as

V a = θ†σ̄µθAa
µ(y) + θ†θ†θλa(y) + θθθ†λ†a(y) +

1

2
θθθ†θ†

[
Da(y) + i∂µAa

µ(y)
]
, (2.6)

where Aa
µ is a gauge field, λa is a gaugino field and Da is an auxiliary field. Here a is a

gauge index. A chiral field strength superfield W a
α is given as

W a
α = λaα + θαD

a − i

2
(σµσ̄νθ)αF

a
µν + iθθ(σµ∇µλ

†a)α, (2.7)

where F a
µν is a field strength of the gauge field Aa

µ. ∇µ is the gauge covariant derivative,

but is the usual coordinate derivative when the gauge group is abelian. We can write the
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supersymmetric Lagrangian by using the above superfields as follows:

L =

∫
dθ2dθ†2K

(
Φ∗i, Φ̃j

)
+

(∫
dθ2
[
1

4
τab (Φi) Ŵ

a
αŴ

bα +W (Φi)

]
+ c.c.

)
. (2.8)

Here we used Φ̃i = (e2T
aV̂ a

)jiΦj, V̂ a = gaV a and Ŵ a
α = gaW a

α . K is a gauge-invariant real

function called “Kähler potential” with mass dimension 2. τab and W are gauge-invariant

holomorphic functions called a “gauge kinetic function” and “superpotential”.

In the case of renormalizable Lagrangian, the Käler potential and the gauge kinetic

function are written as

K = Φ∗iΦ̃i, (2.9)

τab = δab

(
1

g2a
− i

θa
8π2

)
, (2.10)

where θa is a CP violating parameter. The supersymmetric part of the MSSM Lagrangian

can be described by the following superpotential:

WMSSM = yu,ijūiQjHu − yd,ij d̄iQjHd − ye,ij ēiLjHd + µHuHd. (2.11)

Here, yu, yd and ye are the Yukawa couplings, and i, j represent the family indices. We

omit all the gauge indices. For example, the term of yūQHu represents yūaQαa(Hu)βϵαβ,

where a is a SU(3)C gauge index, and α and β are SU(2)L gauge indices. Similarly, the

term of µHuHd, that is called a “µ-term”, represents µ(Hu)α(Hd)βϵαβ.

One can generally write other gauge-invariant terms, such as LLē or ūd̄d̄, in the

renormalizable superpotential. However, these terms are L and B violating interactions

and are constrained by experiments. For example, they cause relatively early proton

decay [55, 56]. In order to forbid these harmful terms, we generally impose discrete R-

symmetry defined as

PR ≡ (−1)3(B−L)+2s, (2.12)

where s is spin of particles. This discrete symmetry is called “R-parity” All the standard

model particles and two Higgs bosons have R-parity charge of 1, and their superpartners

have R-parity charge of −1. This symmetry provides another benefit to supersymmetric

models in light of cosmology. The R-parity conservation predicts stability of the Lightest

Supersymmetric Particle (LSP) since it cannot decay into the standard model particles,

and then it is a probable candidate for the dark matter. The existence of the dark matter

candidate is additional motivation for the SUSY.
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The SUSY breaking effects give gaugino masses, sfermion masses and trilinear cou-

plings for scalar fields. The SUSY breaking Lagrangian is given as

Lsoft = −1

2

(
M3g̃g̃ +M2W̃W̃ +M1B̃B̃ + c.c.

)

−m2
Q,ijQ̃

∗
i Q̃j −m2

L,ijL̃
∗
i L̃j −m2

u,ij
˜̄u∗
i
˜̄uj −m2

d,ij
˜̄d∗i
˜̄dj −m2

e,ij
˜̄e∗i ˜̄ej

−
(
au,ij ˜̄uiQ̃jHu − ad,ij

˜̄diQ̃jHd − ae,ij ˜̄eiL̃jHd + c.c.
)

−m2
Hu

|Hu|2 −m2
Hd

|Hd|2 − (bHuHd + c.c.) , (2.13)

where M3, M2 and M1 are gluino, wino and bino masses, and m2
Q,ij, m

2
L,ij, m

2
u,ij, m

2
d,ij

and m2
e,ij are sfermion squared mass matricies. au,ij, ad,ij and ae,ij are complex matrices

with mass dimension 1. These are SUSY breaking terms corresponding to the Yukawa

matrices in Eq. (2.11). m2
Hu

and m2
Hd

are squared masses of up-type and down-type Higgs

scalar fields. b is the SUSY breaking term called the ‘b-term”, and has mass dimension 2.

This term is necessary for the successful electroweak symmetry breaking.

Before proceeding to the next section, we will see the electroweak symmetry breaking

in the case of the MSSM. At the tree level, the potential for two Higgs doublets is given

as

V =
(
|µ|2 +m2

Hu

)
|Hu|2 +

(
|µ|2 +m2

Hd

)
|Hd|2 + (bHuHd + c.c.)

+
1

8

(
g2 + g′2

) (
|Hu|2 − |Hd|2

)2
+

1

2
g2
∣∣H†

uHd

∣∣2 , (2.14)

where g and g′ are SU(2)L and U(1)Y gauge couplings, respectively. Note that Hu and Hd

are Higgs doublets, Hu = (H+
u , H

0
u)

T and Hd = (H0
d , H

−
d )

T . The terms proportional to the

gauge couplings come from the first term in Eq. (2.8), and are called D-term contributions

since their origins are the auxiliary fields in Eq. (2.6). By using freedom of SU(2)L gauge

transformation, one can choose ⟨H+
u ⟩ = 0 at the vacuum state. This choice determines

the VEV of the down type Higgs as ⟨H−
d ⟩ = 0. Then, the potential for the neutral parts

of the Higgs doublets is written as

V =
(
|µ|2 +m2

Hu

) ∣∣H0
u

∣∣2 +
(
|µ|2 +m2

Hd

) ∣∣H0
d

∣∣2 −
(
bH0

uH
0
d + c.c.

)

+
1

8

(
g2 + g′2

) (∣∣H0
u

∣∣2 −
∣∣H0

d

∣∣2
)2

. (2.15)

Redefinition of the phases of H0
u or H0

d can rotate the phase of b, and we will take it to

be real and positive for convenience.

The potential must be bounded from below at large field values of H0
u and H0

d . The D-

term contributions give quartic couplings of the Higgs fields, and vanish when |H0
u| = |H0

d |.
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Therefore, the quadratic term must be positive in this direction. This condition gives the

following inequality:

2b < 2|µ|2 +m2
Hu

+m2
Hd
. (2.16)

In order for the quarks and leptons to acquire the masses, both H0
u and H0

d must have

the nonzero VEVs, which requires a negative squared mass of one linear combination of

H0
u and H0

d around the origin of the potential. This condition leads to

b2 >
(
|µ|2 +m2

Hu

) (
|µ|2 +m2

Hd

)
. (2.17)

Conditions to minimize the potential of Eq. (2.15) are given by

m2
Hu

+ |µ|2 − b

tan β
− g2 + g′2

4
v2 cos(2β) = 0, (2.18)

m2
Hd

+ |µ|2 − b tan β +
g2 + g′2

4
v2 cos(2β) = 0. (2.19)

Here, β and v are defined as

tan β ≡ ⟨H0
u⟩

⟨H0
d⟩
, (2.20)

v2 ≡ ⟨H0
u⟩2 + ⟨H0

d⟩2 ≃ (174GeV)2 . (2.21)

Note that these equations satisfy the conditions given by Eqs. (2.16) and (2.17). Therefore,

the electroweak symmetry breaking correctly occurs as long as the minimization conditions

are satisfied.

2.3 Mediation of SUSY breaking

As mentioned above, the SUSY must be broken in the vacuum since the superpartners

of the standard model particles are not discovered. In order to construct a phenomeno-

logically consistent SUSY model, we need some mechanisms to provide the soft SUSY

breaking terms given by Eq. (2.13). Order parameters of the SUSY breaking are the

auxiliary fields of some superfields, in other words, non-vanishing F -terms in Eq. (2.5) or

D-terms in Eq. (2.6) implying the SUSY breaking. As we will see, a viable model requires

a hidden sector different from the MSSM sector, that is a SUSY breaking sector, and a

way to communicate the SUSY breaking effects to the MSSM sector.

The SUSY breaking effects are expected to communicate to the observable sector

indirectly because of the tree-level supertrace formula [57]:

StrM2 ≡
∑

spin j

(−1)2j (2j + 1)TrM2
j = −2gaTr [T

a]Da (2.22)
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The supertrace is defined by a weighted sum over all particles with spin j. Since the

traces on the generators of non-abelian gauge group vanish, the only U(1) gauge group

contributes to the right-hand side. However, it also vanishes as long as we consider

anomaly-free gauge theories. Therefore, one can find that the supertrace must vanish

at the renormalizable level. If the observable sector is connected to the SUSY breaking

sector at the tree level, some superpartners should be light enough to be discovered. This

is the reason to require a mechanism for an indirect mediation of the SUSY breaking

effects.

Here, we introduce two major scenarios to mediate the SUSY breaking effects. One

possible way is the mediation by interactions suppressed by the Planck scale. We call

these models “gravity-mediation models” [58–63]. Since the SUSY breaking effects are

mediated by the Planck-suppressed operators, the soft SUSY breaking terms in Eq. (2.13)

are roughly estimated as

mSUSY ∼ ⟨F ⟩
Mpl

, (2.23)

where mSUSY represents generic soft SUSY breaking terms, and we assume that the

SUSY is broken by the F -term in the hidden sector. For TeV scale soft mass terms,√
⟨F ⟩ ≃ 1010GeV is required.

The gravity-mediation models generically provide new sources of flavor violations in

addition to the standard model Yukawa couplings. If the standard model Yukawa cou-

plings are generated at the scale below the Planck scale, there are no reasons for the

sfermion mass matrices in Eq. (2.13) to be diagonal in the flavor basis. Off-daiagonal

components, in other words, mixings between sfermions with different flavor often cause

flavor changing processes that are strongly constrained for TeV scalar masses. We call

this problem the SUSY flavor problem.

The other way to mediate the SUSY breaking effects utilizes the standard model gauge

interactions. We call these models “gauge-mediation models” [51,52,64–68]. These models

require messenger fields that are charged under the standard model gauge symmetry

SU(3)C × SU(2)L × U(1)Y and mediate SUSY breaking effects to the observable sector

through the gauge interaction. The superpotential in the messenger sector is generically

given by

Wmess = kZQQ̄, (2.24)

whereQ and Q̄ are messenger fields, and Z is the SUSY breaking field. k is a dimensionless

coupling constant. We assume that the SUSY breaking field resides in the hidden sector,
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and both the scalar component and its F -term acquire the VEVs. The VEV of the scalar

component ⟨Z⟩ provides masses for the messenger fields. The VEV of the F -term gives

mass splitting of the messenger fields.

The SUSY violation is communicated to the observable sector through loop diagrams

containing these messenger fields. Gaugino masses are provided by one-loop diagrams,

and squared masses for scalar fields are provided by two-loop diagrams. These soft masses

are then estimated as

mSUSY ∼ α

4π

⟨FZ⟩
Mmess

, (2.25)

where α denotes a generic gauge coupling constant defined as α ≡ g2/4π, and Mmess

denotes the messenger mass estimated as Mmess ≃ k⟨Z⟩. Given that Mmess "
√
⟨FZ⟩, the

SUSY breaking scale is estimated as

√
⟨FZ⟩ ≃ 1.1× 105GeVα−1/2

(
Mmess

106 GeV

)1/2 (mSUSY

1TeV

)1/2
, (2.26)

for TeV scale soft masses. Therefore, the gauge-mediation models predict the SUSY

breaking scale to be much lower than the gravity-mediation models. Note that the gravity-

mediated SUSY breaking effects exist even in the gauge-mediation models. In these

models, we can neglect such contributions since the SUSY breaking terms of Eq. (2.23)

are much smaller than the gauge-mediated SUSY breaking effects.

An attractive point of these models is to provide an explanation to the SUSY flavor

problem. If the standard model Yukawa couplings are generated at higher scales than

the messenger mass scale, the flavor violation is generated only through the Yukawa

interactions since the gauge interactions are flavor-blind. Therefore, we can predict the

sparticle masses without knowing physics at the higher energy scale than the messenger

scale, and the gauge-mediation models can solve the SUSY flavor problem.

2.4 Cosmological problems of supersymmetry

Although the SUSY is attractive from the theoretical point of view, there are some prob-

lems in cosmology. As mentioned in Chapter 1, supersymmetric models contain some

long-lived particles which cause cosmological difficulties. In this section, we will briefly

explain such problems.
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2.4.1 Gravitino problem

The existence of the gravitino, which is the superpartner of the graviton, is predicted in

local SUSY. The gravitino appears as a fermionic gauge field with spin 3/2 in supergravity.

From Eq. (2.12), one can find that the gravitino has R-parity of −1. The gravitino mass

is given by [17, 18]

m3/2 =
⟨F ⟩√
3Mpl

, (2.27)

where m3/2 denotes the gravitino mass. The gravity-mediation models generally predict

that the gravitino mass is comparable to the soft mass scale. On the other hand, the

gauge-mediation models predict the gravitino mass much lower than the soft mass scales.

In these models, the gravitino would be the LSP and cannot decay into any particles.

During the reheating after the inflation, gravitinos are abundantly produced through

scattering processes. The yield variable for the gravitino is proportional to the reheating

temperature TRH. When TRH is of the order of 109GeV, it is estimated as [22, 29]

Y3/2 ≡
n3/2

s
≃ 1.4× 10−13

[
1 + 0.6

(
m1/2

m3/2

)2
](

TRH

109GeV

)
, (2.28)

where n3/2 is the number density of the gravitino, and m1/2 is the gaugino mass at the

unification scale.

If the gravitino mass is smaller than the electroweak scale, the gravitino is the LSP and

stable when the R-parity is conserved. The abundance of gravitinos produced during the

reheating process must be smaller than the observed dark matter abundance, ΩDMh2 =

0.12 [2]. Here h is the present Hubble parameter in units of 100 km · sec−1 ·Mpc−1, and

the density parameter ΩDM is defined as a ratio of the present dark matter density ρDM

to the critical density ρcr, ρDM/ρcr. Therefore, Ω3/2 < ΩDM constrains the reheating

temperature from above. For example, TRH must be lower than O(105)GeV for m3/2 of

O(1)MeV. Furthermore, the NLSP (Next-to-LSP) decay into standard model particles

must be taken into account since the produced daughter particles may spoil the BBN.

The constraint depends on particle models since the lifetime and the branching ratio of

the NLSP decay depend on the mass spectra and what the NLSP is.

If the gravitino is not the LSP, it is unstable. The gravitino generally has a very long

lifetime since it interacts with other particles only through the gravitational interaction.

When the gravitino is as heavy as TeV scales, its lifetime is estimated as [23–25]

τ3/2 ≃ 105
( m3/2

1TeV

)−3

sec. (2.29)
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If the gravitino is heavier than O(10-100)TeV, it can decay before the BBN. In this

case, the constraint from the BBN becomes much milder.1 If the gravitino is lighter than

O(10)TeV and unstable, it decays during or after the BBN. In this case, there are two

decay modes to spoil the success of the BBN: radiative decays and hadronic decays. In

the radiative decays, energetic photons or charged particles produced in electromagnetic

showers destroy synthesized light elements such as 4He and D. The energy of daughter

particles generally dissipates into thermal bath, but the synthesized light elements are

destroyed through the electromagnetic interaction before the thermalization. On the

other hand, the hadronic decay of the gravitino causes p ↔ n conversion which leads

to the increase of the neutron-to-proton (n/p) ratio. This leads to the overproduction

of the synthesized 4He abundance. Moreover, the hadronic decays at T ! O(0.1)MeV

cause overproduction of D and 3He through the destruction of 4He by energetic nucleons.

Taking into account these effects, the gravitino abundance produced during the reheating

is constrained. In the case of m3/2 of O(1)TeV, the reheating temperature is constrained

to be lower than O(105-6)GeV [28–30].

2.4.2 Moduli problem

In superstring theories, there appears a lot of massless scalar fields, called moduli fields,

whose VEV determines the scale of extra dimensions at the low energy scale. Several

ways to stabilize these moduli fields are known [31–33,70], but all of the moduli fields are

not always stabilized at string scales. Some of them often remain flat, and their potential

is generally lifted with the curvature of the order of the gravitino mass after the SUSY

breaking.

Now, let us focus on one of the moduli fields, and consider its dynamics in the early

universe. During and after the primordial inflation, the vacuum energy which causes

the expansion of the universe largely breaks SUSY and lifts the moduli potential. The

moduli field then acquires a mass of the order of the Hubble scale and sits down at the

local minimum of the potential. The generic moduli potential is given as

V =
1

2
cHH

2 (η − η0)
2 +

1

2
m2

ηη
2 + · · · , (2.30)

where we take the origin as the minimum of the moduli potential at present. η denotes

the moduli field, mη denotes its mass and H denotes the Hubble scale. In the following,

we will assume that the moduli mass is about the gravitino mass (mη ≃ m3/2). cH is a

1 Even if gravitinos decay before the onset of the BBN, the abundance of LSPs produced from the
gravitino decay may exceed the dark matter abundance as explained in Sec. 2.5.2.
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coefficient of the Hubble induced mass term and is expected to be O(1). η0 denotes the

minimum of the potential determined by the Hubble induced mass term, and is expected

to be of the order of the Planck scale. This is because the moduli field is a singlet

field without any symmetry enhanced points and the gravitational scale is the only scale

appearing in the supergravity action. Since this potential is different from the one at

present, the moduli field is displaced from the origin when the Hubble scale is larger than

the moduli mass scale. When H ≃ mη, the moduli field starts to oscillate around the

origin with the amplitude of the order of Mpl according to the following equation:

d2η

dt2
+ 3H

dη

dt
+ Vη = 0, (2.31)

where Vη denotes the derivative of the potential with the moduli field. The energy of the

oscillating moduli field redshifts as a−3 like non-relativistic matters, where a denotes the

scale factor. Therefore, its energy soon dominates the universe after the inflaton decays.

In the case where the reheating after the primordial inflation occurs after the onset of

the moduli oscillation, the ratio of its energy density to the entropy density is estimated

as

ρη
s

≃ 1

8
T inf
RH

(
η0
Mpl

)2

≃ 1.3× 105GeV

(
T inf
RH

106 GeV

)(
η0
Mpl

)2

, (2.32)

where ρη is the oscillating energy of the moduli field, and T inf
RH denotes the reheating

temperature after the primordial inflation. On the other hand, in the case where the

reheating occurs before the onset of the moduli oscillation, the ratio is given by

ρη
s

≃ 1

8
Tη

(
η0
Mpl

)2

≃ 2.8× 109GeV
( mη

1TeV

)1/2( η0
Mpl

)2

. (2.33)

Tη is temperature at the onset of the moduli oscillation and is defined as

Tη ≡
(

90

π2g∗

)1/4√
mηMpl ≃ 2.2× 1010 GeV

( mη

1TeV

)1/2
, (2.34)

where g∗ is the effective number of degrees of freedom. Here we used g∗ = 229. The

moduli-to-entropy density ratio are conserved until present unless entropy production

occurs. Since the ratio of the critical density ρcr to the present entropy density s0 is given

by

ρcr
s0

≃ 3.6× 10−9h2 GeV, (2.35)

20



Figure 2.3: The constraints on the moduli abundance. The orange line shows the X-ray
background constraint, and the red dashed line shows the dark matter abundance. We
recast this figure using the results in Refs. [37, 38].

one can find that the produced moduli density is much larger than the critical density.

Note that the moduli abundance cannot be smaller than the critical density even if the

reheating temperature is as low as O(10)MeV, which is restricted from below to realize

the BBN.

Since the moduli field gravitationally interacts with other particles as well as the

gravitino, it also has a very long lifetime. When the moduli mass is of the order of TeV

scale, the moduli field decays during or after the BBN. As is the case for the unstable

gravitino, the moduli abundance is severely constrained as [28, 30]

ρη
s

! O
(
10−14

)
GeV (2.36)

when the branching ratio for hadronic decay channels is O(1) and the moduli mass is of

O(1)TeV. On the other hand, when the moduli mass is smaller than O(100)MeV, its

lifetime is larger than the present age of the universe. Since its density contributes to the

dark matter density, the produced moduli density must be smaller than the dark matter

density as well as the stable gravitino.

Moreover, there is a more stringent upper bound on the moduli abundance from X-ray

observations when O (10−4) GeV ! mη ! O(1)GeV [37, 38]. One of the most probable

candidates for the moduli field is the dilaton whose VEV determines gauge coupling

constants. The dilaton field η generically couples to kinetic terms of gauge fields as
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follows:

L =
b

4

η

Mpl
FµνF

µν , (2.37)

where b is a coefficient of the order of 1. Due to this coupling, the dilaton field can

decay into two photons or two gluons if the decay is kinetically allowed. In particular,

the decay mode into photons is always open, and the emitted photons should not exceed

the observed X-ray backgrounds. We then obtain the stringent constraint for the moduli

mass of O (10−4) GeV ! mη ! O(1)GeV (see Fig. 2.3).

2.4.3 Polonyi problem

A singlet field such as the moduli field may appear even if you do not promote supersym-

metric models to superstring theories. The Polonyi field appearing in the Polonyi model

is one of such fields. The Polonyi model is the simplest SUSY breaking model in which

the F -term of the Polonyi field Z breaks the SUSY in the hidden sector [41].2 In this

model, the only ingredient in the SUSY breaking sector is an elementary field Z. The

superpotential in the hidden sector is given by

Whid = µ2
SUSYMpl

(
1 + c

Z

Mpl
+ · · ·

)
, (2.38)

where µSUSY is a parameter with mass dimension 1, and c is a dimensionless parameter

of O(1). Higher order terms are expressed by the ellipsis. Note that the parameter µSUSY

breaks the R symmetry since Z has R charge of 0. µSUSY is related to the gravitino mass

as |µSUSY |2 ≃ ⟨|Whid|⟩/Mpl ≃ m3/2Mpl. The mass of the Polonyi field is of the order of

m3/2 for generic Kähler potentials. The F -term of Z is given by ⟨|FZ |⟩ ≃ m3/2Mpl, which

implies spontaneous SUSY breaking. This model is attractive in terms of its simplicity,

but the Polonyi field causes cosmological difficulties called the “Polonyi problems” as

well as the moduli field [35]. The Polonyi problem is also a severe problem because the

Polonyi abundance cannot be suppressed enough even for low reheating temperature of

TRH ≃ O(10)MeV.

2 In the Polonyi model, the SUSY breaking scale can be easily obtained by dynamical transmuta-
tion [53], by assigning vanishing R charge to the Polonyi field and breaking the R symmetry by gaugino
condensation [71, 72].
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2.5 Solutions to cosmological moduli/Polonyi prob-
lems

There are several ways of solving the cosmological moduli/Polonyi problems. One possible

solution is to dilute the moduli/Polonyi density by some mechanisms, for example, by

thermal inflation [42,43]. The thermal inflation is known to be one of the most probable

candidates for dilution mechanisms. Another simple way is to make the moduli/Polonyi

field heavy enough to decay before the BBN. In this case, scales of soft scalar masses

often deviate from the electroweak scales, and then it becomes difficult to achieve the

electroweak symmetry breaking. Moreover, the abundance of LSPs produced from the

moduli decay may exceed the observed dark matter abundance as we will explain. In this

section, we will explain how the moduli/Polonyi problems are solved in these scenarios.3

For simplicity, we focus only on the moduli field, but the following scenarios are applicable

to the case of the Polonyi field.

2.5.1 Thermal inflation

The thermal inflation is a short epoch of accelerated expansion of the universe at low

energy scales. We show the evolution of the energy density in Fig. 2.4. This mechanism

requires a scalar field corresponding to a flat direction at the renormalizable level, which

is called the “flaton”. Firstly, let us introduce a simple model of the thermal inflation

with a discrete symmetry.

A. Model with Z4 symmetry

We assume an approximate Z4 symmetry in order to ensure the flatness. The superpo-

tential is given by [43–47]

W =
λX
4Mpl

X4 + gξXξξ̄ + C, (2.39)

where λX and gξ are dimensionless coupling constants, and X is the superfield of the

flaton field with a Z4 charge of 1. Here we assume that ξ and ξ̄ are massless fields charged

under the standard model gauge symmetry. C is a constant term which cancels out the

vacuum energy and is related to the gravitino mass by |C| ≃ m3/2M2
pl. Note that X is

singlet under the standard model gauge symmetry. The massless charged fields, ξ and

ξ̄, interact with thermal bath, which generates the thermal mass term for X. Here, we

3 For other solutions, see Refs. [73–78].

23



Figure 2.4: The evolution of the energy density in the thermal inflation scenario. When
the vacuum energy V0 dominates total energy density of the universe, the thermal inflation
starts.

ignore higher dimensional terms since we focus on the field value much smaller than the

Planck scale.

Including SUSY breaking effects and the thermal mass term, the potential is given by

V (X) = V0 +
(
cTT

2 −m2
X

)
|X|2 +

(
aX
4Mpl

λXX
4 + c.c.

)
+

|λX |2

M2
pl

|X|6 + · · · , (2.40)

where V0 respresents the vacuum energy which causes the thermal inflation, and cT is a

coefficient of the order of the gξ squared. When ξ and ξ̄ are 5 and 5̄ in SU(5), cT takes

a value of 5g2ξ/3 [46]. aX is a dimensional parameter of the order of m3/2. Hereafter,

we assume that X has a tachyonic soft SUSY breaking mass term around the origin

(m2
X > 0),4 which is essential for the thermal inflation to work.

The evolution of the flaton X is as follows: we assume that X obtains a positive

Hubble induced mass term during the primordial inflation. X is then expected to sit

around the origin just after the inflation. Even when H ! mX , X can be trapped around

the origin due to the thermal mass term, and then the vacuum energy V0 causes the

accelerated expansion of the universe when the vacuum energy exceeds the total energy

of the universe. The thermal inflation lasts until the temperature decreases to the critical

value of Tend ≃ c−1/2
T mX . After the end of the thermal inflation, X starts to roll down to

4 In gauge-mediation models, the soft SUSY breaking mass term arises from the coupling with massless
gauge charged fields, ξ and ξ̄.
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the true minimum due to the negative mass term. When H decreases to the decay rate of

the flaton, it decays into radiation with huge entropy production, and then the radiation

dominated universe is realized.

The true minimum of the potential is determined by the negative mass term, the

A-term and non-renormalizable terms. The flaton VEV at present is given by

M2 ≡ ⟨|X|⟩2 = mXMpl

6|λX |

[
|aX |
mX

+

√
|aX |2
m2

X

+ 12

]
. (2.41)

For simplicity, we assume that λX is of O(1). One can find that the flaton VEV is much

larger than the electroweak scale. Therefore, the charged matter ξ (ξ̄) with masses of

the order of gξ⟨|X|⟩ is expected to be much heavier than the electroweak scale after the

thermal inflation. By requiring that the vacuum energy vanishes at the true minimum,

the vacuum energy V0 is determined as follows:

V0 =
2m2

XM
2

3

[
1 +

|aX |
24mX

(
|aX |
mX

+

√
|aX |2
m2

X

+ 12

)]
. (2.42)

When X has its large VEV, it is decomposed as

X =

[
M +

χ√
2

]
exp

(
i

aχ√
2M

)
, (2.43)

where χ and aχ are canonically normalized real scalar fields. The component χ corre-

sponds to the flaton that starts to oscillate after the thermal inflation. We obtain a mass

of the radial component χ around the true minimum:

m2
χ = 4m2

X

[
1 +

|aX |
12mX

(
|aX |
mX

+

√
|aX |2
m2

X

+ 12

)]
. (2.44)

If C was absent in Eq. (2.39) and the R symmetry was not broken, the superpotential for

X would have the R symmetry and the phase component a would be a massless R axion.

However, the R symmetry breaking, namely the non-zero VEV of the superpotential,

generates the R symmetry breaking A-terms and the phase component aχ also obtains a

mass as

m2
aχ =

mX |aX |
3

(
|aX |
mX

+

√
|aX |2
m2

X

+ 12

)
. (2.45)

In gravity-mediation models, theR-axion is as heavy as the flaton with a mass ofO(1)TeV.

In gauge-mediation models, on the other hand, the R-axion is much lighter than the elec-

troweak scale since the R symmetry breaking parameter is small.
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After the end of the thermal inflation, the energy density of the oscillating flaton field

dominates that of the universe. Thus, the reheating occurs when H decreases to the decay

rate of the flaton χ. The decay process highly depends on models. In the model given by

Eq. (2.39), the flaton can decay into gluons through one loop diagrams of ξ and ξ̄. The

decay rate of this process is given by [46]

Γ (χ→ 2g) =
1

4π

(αS

4π

)2 m3
χ

M2
, (2.46)

where αS is the SU(3)C gauge coupling constant defined as αS ≡ g23/4π. If the reheating

completes by this decay, the reheating temperature T χ
RH is estimated as

T χ
RH ≃

(
90

π2g∗(T
χ
RH)

)1/4√
Γ(χ→ 2g)Mpl

≃ 6.1GeVαS

(
g∗(T

χ
RH)

100

)−1/4 ( mχ

1TeV

)3/2( M

1011 GeV

)−1

. (2.47)

When mχ > 2maχ , the flaton can also decay into R-axions. At the tree level, the

decay rate of this process is estimated as [46]

Γ(χ→ 2aχ) =
1

64π

m3
χ

M2
. (2.48)

The produced R-axions decay into standard model particles through one-loop diagrams

containing ξ and ξ̄. For example, the R-axions decay into photons and the decay rate is

estimated as [46]

Γ(aχ → 2γ) ≃ 2

9π

(αem

4π

)2 m3
aχ

M2
, (2.49)

where αem is the fine-structure constant defined as αem ≡ e2/4π. If loop running particles

are charged under SU(3)C and maχ " O(1)GeV, the R-axion can also decay into gluons.

Note that the flaton decay into R-axions is always allowed in gauge-mediated SUSY

breaking models. We then should consider the R-axion decay processes in such cases.

As seen above, in gauge-mediation models, the flaton decays into both the standard

model particles and R-axions when its decay rate becomes comparable to the Hubble

parameter. The produced standard model particles thermalize immediately and reheating

occurs. However, the produced R-axions cannot thermalize soon since they have only one-

loop suppressed interactions with particles in thermal bath. After the R-axions become

non-relativistic particles, its density scales as a−3 and soon dominates the universe [45,46].
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Later, R-axions decay into the standard model particles and reheating occurs again. Using

Eq. (2.49), the reheating temperature when the R-axions decay, T aχ
RH, is estimated as [47]

T aχ
RH ≃

(
90

π2g∗

)1/4√
Γ(aχ → 2γ)Mpl

≃ 1.6 keV|λX |1/2
(
αem

1/137

)( mX

1TeV

)1/4( |aX |
100 keV

)3/4

, (2.50)

where we use g∗ = 3.36. It is found that the R-axions decay at the temperature much

lower than O(10)MeV. This implies that it destroys light elements synthesized at the

BBN era and spoils the success of the BBN.

B. Model with linear term

One way to avoid the late-time decay of R-axions in the Z4 symmetric model is a pro-

hibition of the flaton decay into R-axions. It can be realized by adding a Z4 symmetry

breaking term [45–47],

δW = αX, (2.51)

into the superpotential. Note that α is a parameter with mass dimension 2. As we will

explain below, this term leads to degeneracy of masses of the flaton and the R-axion even

in gauge-mediated SUSY breaking models. The flaton decay into R-axions is forbidden

kinematically.

Here, we should comment on another motivation to introduce the Z4 symmetry break-

ing term. When the superpotential has the Z4 symmetry, there exists four degenerate

minima in the potential for X. The flaton randomly falls into one of them after the ther-

mal inflation, and then domain walls are formed. The domain walls dominate the energy

density of the universe, which leads to a cosmological disaster [79]. Hence, a bias for the

degenerate minima is necessary so that domain walls collapse before they dominate the

universe. In order to avoid the domain wall problem, the following condition should be

satisfied:5

δVbias ≫
σ2

M2
pl

, (2.52)

5 Assuming that the energy density of domain walls obeys the scaling relation, ρDW ∼ σH, domain
walls dominate the universe when Hdom ∼ σ/M2

pl. On the other hand, domain walls decay due to the
bias when Hdec ∼ δVbias/σ. The condition is derived by requiring Hdec ≫ Hdom.
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where δVbias represents the bias of the energy density, and σ represents the tension of

domain walls. In terms of the symmetry breaking parameter α, the condition is expressed

as

|α| "
m2

3/2mχM

M2
pl

. (2.53)

The necessary bias is so small that it does not change the scenario of the thermal inflation.

Hereafter, we consider the case that |α| is large enough to satisfy Eq. (2.53).

The flaton potential is now given by

V (X) = V0 − (2αaXX + h.c.)−m2
X |X|2

+

(
α∗λX
Mpl

X3 + h.c.

)
+

(
1

4

aX
Mpl

λXX
4 + h.c.

)
+

|λX |2

M2
pl

|X|6. (2.54)

The negative mass term is induced from the gauge-mediated SUSY breaking effect and

is applicable only for the flaton VEV smaller than the messenger mass scale. When the

flaton VEV beomes larger than the messenger scale, the negative soft SUSY breaking term

becomes suppressed at large amplitude [80]. In the following, we focus on the parameter

region where the flaton VEV at the true minimum is larger than the messenger mass scale.

We then ignore the negative mass term. When we assume that |aX | ≃ m3/2 ≃ O(100) keV

and |λX | ≃ O(1), the trilinear term dominates over both the linear term and the quartic

term at the true minimum for the flaton VEV larger than O(107)GeV.6 In this case, the

flaton VEV at present is estimated as

⟨X⟩ ≡ M ≃
(
|α|Mpl

|λX |

)1/3

, (2.55)

and the vacuum energy at the origin is estimated as

V0 ≃ |α|2. (2.56)

V0 is determined by requiring that the vacuum energy vanishes at the true minimum. The

masses of the flaton and R-axion are now almost the same and are given by

mχ ≃ maχ ≃ 3

(
|α|2|λX |
Mpl

)1/3

. (2.57)

6 As explained in Sec. 3.5, if there is a coupling between the flaton and Higgs such as Eq. (3.110), the
flaton VEV larger than O(1010)GeV can generate the µ-term of the electroweak scale. We then focus on
the parameter region where the flaton VEV is relatively large.
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Note that the flaton decay into R-axions is forbidden since their masses are degenerate.

Taking into account the thermal effects, the flaton potential around the origin is

rewritten by

V (X) ≃ (cT 2 −m2
X)

∣∣∣∣X − 2α∗a∗X
cTT 2 −m2

X

∣∣∣∣
2

+ V0 −
4|α|2|aX |2

cTT 2 −m2
X

, (2.58)

and the local minimum before and during the thermal inflation is given by

⟨|X|⟩ ≃
2|α|m3/2

cTT 2 −m2
X

. (2.59)

Then, one can find that the flaton does not sit at the origin due to the Z4 symmetry

breaking term α. This implies that the thermal inflation ends when the flaton VEV

becomes so large that it decouples from the thermal plasma, i.e., when the temperature

decreases to Tend ≃ c1/2T ⟨|X|⟩. Although the vacuum energy during the thermal inflation

also deviates from V0, we can ignore the deviation δV/V ≃ m2
3/2/cTT

2.

C. Moduli abundance

Now, we can estimate a dilution factor as follows:

∆ ≡
sfa3f
sia3i

=
4

3

V0

2π2/45g∗s(Tend)T 3
endT

χ
RH

≃ 3.0× 1020
(

V0

1028GeV4

)(
g∗s(Tend)

100

)−1( Tend

100GeV

)−3( T χ
RH

1GeV

)−1

, (2.60)

where si and sf are the entropy densities before and after the entropy production occurs,

respectively. By using Eqs. (2.32) and (2.60), the yield variable for the moduli density

after the dilution is estimated as

ρη,BB

s
≃ 1

8∆
T inf
RH

(
η0
Mpl

)2

≃ 4.1× 10−15 GeV

(
∆

3× 1020

)−1( T inf
RH

107GeV

)(
η0
Mpl

)2

. (2.61)

In the following, we will call moduli produced before the thermal inflation “Big-Bang

moduli”. Here we used the subscript of BB to represent the Big-Bang moduli.

In the scenario of the thermal inflation, there exists additional contribution to the Big-

Bang moduli. We call the secondary produced moduli “thermal inflation moduli” [43].
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As with Eq. (2.30), the moduli potential during the thermal inflation is given by

V =
1

2
c̃HH

2 (η − η̃0)
2 +

1

2
m2

ηη
2 + · · ·

≃ 1

2

(
m2

η + c̃HH
2
)(

η − c̃HH2

m2
η + c̃HH2

η̃0

)2

+ · · · , (2.62)

where c̃H is of O(1) and η̃0 is of the order of the Planck scale. Equation (2.62) clarifies

that the moduli field sits at the minimum depending on the Hubble induced mass term

during the thermal inflation. After that, it starts to roll down to the true minimum with

the amplitude of η ≃ c̃H(Hth/mη)2η̃0. Hth is the Hubble parameter at the end of the

thermal inflation. The ratio of the moduli to the entropy density at present is therefore

given by

ρη,TH

s
=

ρη,TH

4V0/3T
χ
RH

=
c̃2H
24

T χ
RHV0

m2
ηM

2
pl

(
η̃0
Mpl

)2

≃ 7.0× 10−17 GeVc̃2H

(
T χ
RH

1GeV

)(
V0

1028 GeV4

)( mη

1TeV

)−2
(
η̃0
Mpl

)2

. (2.63)

Note that the thermal inflation moduli is produced more abundantly as the vacuum energy

V0 becomes higher, which is contrary to the Big-Bang moduli.

The total moduli density is given by ρtotal = ρη,BB + ρη,TH, and then it is found that

the thermal inflation can solve the moduli problem since ρtotal/s ! O(10−14)GeV for

mη ∼ O(1)TeV. In the case of mη ! O(10−4)GeV, the moduli density can also be

sufficiently diluted out by taking model parameters properly.

2.5.2 Heavy moduli/Polonyi scenario

A simple way to avoid the moduli/Polonyi problems is to make the moduli/Polonyi field

heavy enough to decay before the onset of the BBN, which requires the moduli mass of

O(10-100)TeV. Hereafter we assume that the gravitino mass is as heavy as the moduli

mass. The moduli decay produces huge entropy since its density dominates the cosmic

density of the universe before its decay. With the decay rate of the moduli field,

Γη =
dη
8π

m3
η

M2
pl

, (2.64)

the decay temperature is estimated as

Tη ≡
(

90

π2g∗(Tη)

)1/4√
ΓηMpl ≃ 4MeVd1/2η

( mη

100TeV

)3/2
. (2.65)
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Here dη is a numerical constant, and we used g∗(Tη) = 10.75. When the moduli mass

is lighter than O(10-100)TeV, the severe constraint, ρη/s ! O(10−14)GeV, is required

since the moduli decays after the onset of the BBN, T ≃ O(1-10)MeV [28–30]. When the

moduli field is heavier than O(100)TeV, it can decay before the BBN, and the constraint

from the BBN becomes much milder.7

Even in this case, however, there is an incidental problem: LSPs are abundantly

produced from the decay of the moduli field, and the LSP density tends to exceed the

observed dark matter density. The abundance of the LSPs is given by [69,85]

YLSP ≡ nLSP

s
≃ min

[
Γη

⟨σv⟩s(Tη)
,
NLSPnη(Tη)

s(Tη)

]
, (2.66)

where nLSP and nη denote the number density of the LSP and the moduli field, respectively.

⟨σv⟩ represents a thermally averaged cross section of the pair annihilation between LSPs.

NLSP is the averaged number of superparticles produced by the decay of one moduli field.

When the first term is relevant, the pair annihilation between LSPs effectively proceeds

after the moduli decay, and the yield variable for relic LSPs, YLSP, is approximately

proportional to T−1
η . For example, when the neutral wino is the LSP with a mass of

O(0.1-1)TeV, it is found that the decay temperature Tη generally needs to be larger

than O(1-10)GeV [69] in order for the wino abundance not to exceed the observed dark

matter density.8 This requires the moduli mass heavier than about 5PeV assuming that

dη ≃ O(1).

2.6 Moduli/Polonyi problem and baryon asymmetry

As explained above, cosmological moduli/Polonyi problems can be solved by several ways.

However, it should be kept in mind that preexisting baryon asymmetry is also diluted out

by entropy production. The dilution is provided by the flaton decay, the moduli/Polonyi

decay and so on. Therefore, in order to obtain cosmologically consistent scenarios, we

need a mechanism to generate huge baryon asymmetry beforehand or to generate the

observed baryon asymmetry after the dilution.

As mentioned in Chapter 1, leptogenesis is one of well-known baryogenesis. In this

scenario, lepton violating interactions generate lepton asymmetry at the higher energy

7 When the gravitino mass is much lighter than the moduli mass and is about O(1)TeV, the moduli
decay into gravitinos is kinematically allowed with the branching fraction of O(0.01-1) [81–84]. In this
case, the constraint from the BBN becomes stringent.

8 Reference [69] has taken into account the Sommerfeld effect and coannihilation among charged and
neutral winos.
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scale, i.e., before the entropy production. However, the produced lepton asymmetry is

too small to survive after the dilution since the produced asymmetry is generally of the

order of the observed baryon asymmetry before the dilution [86]. Then, the leptogenesis

cannot work in the existence of moduli/Polonyi fields.

On the other hand, the electroweak baryogenesis might be able to generate the baryon

asymmetry after the dilution. In this case, the reheating temperature after the dilution

should be higher than the electroweak scale in order for the produced asymmetry not to

be diluted. However, it seems to be difficult to achieve such high reheating temperature in

both cases of the conventional models of thermal inflation and the heavy moduli/Polonyi

scenarios. Moreover, the electroweak phase transition must be first order in order to

generate the baryon asymmetry. Unless a particle model achieves the first order phase

transition, the generated baryon asymmetry is washed out by the sphaleron process. In

the MSSM, the parameter region where the electroweak phase transition becomes first

order is strictly constrained [87, 88].

The Affleck-Dine (AD) mechanism is the most probable candidate for generating

baryon asymmetry beforehand because it can produce B−L number much more efficiently

than other baryogenesis scenarios, e.g., the leptogenesis and the electroweak baryogene-

sis. In the next chapter, we explore a parameter region to explain the observed baryon

asymmetry by the AD mechanism in the existence of the moduli/Polonyi field.
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Chapter 3

Baryogenesis before dilution

The thermal inflation dilutes out not only moduli density but also the baryon asymmetry

which may be produced beforehand. When we consider that baryon number is produced

before dilution, we need some viable mechanisms to produce sufficiently large amount of

baryon asymmetry. The Affleck-Dine mechanism [20, 21] is a promising candidate in the

framework of the SUSY. In the AD mechanism, flat directions rotating in the complex

plane produce baryon number, and they decay into standard model particles in the early

universe. In this chapter, we explain whether the AD mechanism can explain the observed

baryon asymmetry with huge dilution.

3.1 Affleck-Dine mechanism

The SUSY predicts a lot of flat directions which have vanishing potentials at the renormal-

izable level [19]. In particular, the MSSM contains flat directions carrying baryon (and/or

lepton) charge. They are referred to as “Affleck-Dine fields” in this scenario. One example

of them is the ūd̄d̄ flat direction. The ūd̄d̄ flat direction is combination of right-handed

squark fields with the same amplitude, for example, ˜̄uR
1 = 1√

3
Φ, ˜̄dG1 = 1√

3
Φ and ˜̄dB2 = 1√

3
Φ,

where ˜̄u and ˜̄d are the up-type and down-type right-handed squarks, respectively. The

superscripts and the subscripts show color and family indices, respectively. In this di-

rection, the D-term potentials indeed vanish and it also has no renormalizable terms in

the F -terms if the R-parity is conserved. In the following, we explain the AD mechanism

without restricting to the ūd̄d̄ flat direction. The other flat directions with B−L charges

are listed in Table 3.1.

Firstly, we will explain the AD potential responsible for generation of baryon number.

The flat directions are lifted by non-renormalizable terms and SUSY breaking effects. The
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flat directions B − L

LHu −1

ūd̄d̄ −1

LLē −1

Qd̄L −1

d̄d̄d̄LL −3

ūūūēē 1

QūQūē 1

QQQQū 1

(QQQ)4LLLē −1

ūūd̄Qd̄Qd̄ −1

Table 3.1: The flat directions with B−L charges in the MSSM. The subscript of 4 shows
that the combination of (QQQ) transforms as a 4 of SU(2)L [19].

non-renormalizable superpotential is generically written as

WNR =
λΦ

nMn−3
pl

Φn, (3.1)

where λΦ is a coupling constant and n(≥ 4) is an integer. Φ denotes the AD superfield.

For example, n = 6 in the case of the ūd̄d̄ flat direction. The superpotential of Eq. (3.1)

leads to the following AD field potential:

VA,NR =
m3/2

nMn−3
pl

(anλΦΦ
n + c.c.) +

|λΦ|2

M2n−6
pl

|Φ|2n−2. (3.2)

Here, we introduce a dimensionless parameter an of O(1), which depends on higher di-

mensional Kähler potentials. The terms proportional to an are A-terms induced from

gravitational effects. The A-terms are global U(1) breaking terms and produce the B−L

number during the evolution of the AD field as we will see.

The AD field also acquires the soft mass of the order of the gravitino mass, and its

potential is expressed as

Vgrav = m2
3/2

(
1 +K log

|Φ|2

M2
∗

)
|Φ|2 , (3.3)

where M∗ is a renormalization scale. This potential comes from the gravitational medi-

ation effects including one-loop corrections [89]. The parameter K comes from one-loop
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effects, and its absolute value is typically in the range of 0.01 to 0.1. If gaugino contribu-

tion to one-loop effects is larger than that of the top Yukawa interactions, the sign of K

is negative, and vice versa.

When the SUSY breaking effects are mediated by the gauge interactions, the potential

for the AD field is given by [90,91]

Vgauge = M4
F

(
log

|Φ|2

M2
mess

)2

, (3.4)

where Mmess is a mass scale of messenger fields which connect the observable sector with

the SUSY breaking sector. This potential is applicable only for |Φ| ≫ Mmess. At lower

scales than the messenger mass scale, the potential is replaced by a soft SUSY break-

ing mass term, m2
SUSY|Φ|2,1 where mSUSY ∼ O(0.1-1)TeV. MF is related to the SUSY

breaking scale as follows [90]:

MF ≃ g1/2

4π

√
k⟨F ⟩, (3.5)

where g represents generic gauge couplings of the standard model, and ⟨F ⟩ denotes the

SUSY breaking F -term. The parameter k is determined from coupling between the SUSY

breaking sector and the messenger sector and satisfies k ! O(1).

The SUSY breaking scale is constrained from below by the observed Higgs boson

mass at around 125GeV, which acquires radiative corrections from stop masses. Since

the masses of scalar particles are proportional to the parameter of Λ ≡ k⟨F ⟩/Mmess, we

obtain a lower bound of Λ as follows [92, 93]:2

Λ ≡ k⟨F ⟩
Mmess

" 6× 105 GeV. (3.6)

Moreover, M2
mess " k⟨F ⟩ is necessary to make masses of the messenger scalar particles

positive. In combination with Eq. (3.6),
√
k⟨F ⟩ " Λ " 6 × 105 GeV must be realized.

Therefore, MF is restricted from below,

MF " 5× 104g1/2GeV. (3.7)

Since the SUSY breaking scale ⟨F ⟩ is related to the gravitino mass as ⟨F ⟩ ≃
√
3m3/2Mpl,

MF is restricted from the above as follows:

MF ! 1.6× 106GeVg1/2
( m3/2

100 keV

)1/2
. (3.8)

1 The potential becomes logarithmic for |Φ| ≫ Mmess since a large amplitude of the AD field leads to
suppression of the transmission of SUSY breaking effects [90].

2 Hereafter, we consider the minimal gauge mediation model with one pair of the messenger par-
ticles [92]. The constraint becomes slightly milder in the case with more messenger particles, but the
following results do not drastically change.
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In the early universe, the vacuum energy largely breaks the SUSY and changes the

potential for the AD field since it is generally coupled with the inflaton through Planck-

suppressed interactions. Such SUSY breaking effects depend on the expansion rate of the

universe, which affects the evolution of the AD field. In supergravity, the scalar potential

is given by

V = eK/M2
pl

[
(DiW )Kij̄ (DjW )∗ − 3

M2
pl

|W |2
]
+ (D-terms) , (3.9)

where DiW ≡ Wi+KiW/M2
pl. The subscripts represent the derivatives with a field i. Kij̄

is an inverse matrix of Kij̄. The Kähler potential for the inflaton I and the AD field is

generically written by

K = |Φ|2 + |I|2 + cI
M2

pl

|Φ|2|I|2 + · · · , (3.10)

where cI is a real coupling constant of O(1). Higher order terms are expressed by the

ellipsis, and we assume that these terms are irrelevant to the dynamics of the AD field.

Here, we consider that the F -term of the I causes the primordial inflation. Therefore, the

Hubble parameter H is related to the F -term FI as |FI |2 ≃ 3M2
plH

2
inf during the inflation.

From Eq. (3.9), the resulting potential is given by

V ⊃ 3 (1− cI)H
2
inf |Φ|2, (3.11)

and we call it a Hubble-induced mass term. If Hinf is much larger than the soft mass of

the AD field and cI is larger than 1, one can easily find that the AD field acquires a large

negative mass term during the inflation. Hereafter we consider the case of 3(1 − cI) < 0

for the AD field to acquire a large field value.

After the primordial inflation ends, the inflaton starts to oscillate around the potential

minimum. The energy density of the universe is dominated by its oscillation energy. Since

the AD field is generically assumed to be coupled to the kinetic term of the inflaton, it

acquires a Hubble-induced mass term even in the inflaton oscillating era. Because of the

coupling between the inflaton and the AD field in the Kähler potential, the kinetic term

contains the following term:

L ⊃ cI
M2

pl

∂µI∂
µI∗|Φ|2. (3.12)

Since time scale of the inflaton oscillation is much shorter than that of the AD field, we

can take a time average of the inflaton oscillation. This term is then rewritten as

V ⊃ −3

2
cIH

2|Φ|2, (3.13)
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by using the Virial theorem: ⟨|∂0I|2⟩ ≃ 3H2M2
pl/2. In many models of inflation, the field

whose F -term causes the accelerating expansion is different from the one whose oscillation

energy dominates the universe after the inflation. Therefore, origins of the Hubble induced

mass terms are generally different between Eqs. (3.11) and (3.13). Hereafter we assume

that the AD field has the negative Hubble-induced mass terms both during the inflation

and after the end of the inflation.

Thermal effects may also affect the dynamics of the AD field. Even before the inflaton

completely decays, the radiation produced from the inflaton decay exists in the inflaton

dominated era, which is called a dilute plasma. The temperature of the dilute plasma is

given by [94]

T ≃
(
T 2
RHMplH

)1/4
. (3.14)

The effect from the dilute plasma must also be taken into account.

There are two types of thermal effects on the effective potential. Firstly, when fields

ξk directly couples to the AD field and have effective masses lighter than temperature,

thermal mass terms arise as [95]

Vth,1 =
∑

fk|Φ|!T

ckf
2
kT

2|Φ|2, (3.15)

where ck is a constant parameter of O(1). fk is a coupling constant between light fields

ξk and the AD field Φ. When the AD field has a field value, the fields ξk acquire effective

masses as fk|Φ|. Here we assume that masses of ξk are much lighter than fk|Φ|. Therefore,
only particles with effective masses fk|Φ| ! T contribute to the thermal mass term of

Eq. (3.15).

The other thermal effect exists at the two-loop level. Even when the AD field has a

large field value, fields that do not couple to the AD field remain massless. These fields

contribute to the free energy as radiation. When the AD field is the LHu direction, for

example, gluons and gluinos are massless fields. In this case, the potential is given as

V ∼ g2S(T )T
4 at the two-loop level, where gS(T ) is a SU(3)C gauge coupling constant

and evolves with temperature. Its dependence changes with the nonzero AD field value

because of fields with effective masses of fk|Φ| " T . In the case of LHu direction, the top

quark actually satisfies the condition. The thermal effect is generally given by [96,97]

Vth,2 ≃ agαS(T )
2T 4 ln

(
|Φ|2

T 2

)
, (3.16)

where ag is a constant parameter of O(1).
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Let us explain the evolution of the Affleck-Dine field in the early universe. During

the primordial inflation, the AD field sits down at the local minimum determined by the

negative Hubble-induced mass term and the non-renormalizable terms. The field value is

estimated as

|Φ| ≃
(
HinfM

n−3
pl

|λΦ|

)1/(n−2)

. (3.17)

After the end of the inflation, the energy of the universe is dominated by the oscillating

inflaton. When the Hubble parameter decreases to H ≃
√
|VΦ/Φ|, the AD field starts to

roll down to the origin of the potential. At this time, the phase of the AD field also starts

to rotate in the complex plane due to the A-terms in Eq. (3.2). When the AD field Φ

carries the B−L charge, the rotation in the complex plane corresponds to the production

of the B − L number. The B − L number density is given by

nB−L = iβB−L

(
Φ̇∗Φ− Φ∗Φ̇

)
, (3.18)

where βB−L denotes the B − L charge of the AD field, and the dots denote the time

derivative. As the oscillation amplitude of the AD field decreases due to the Hubble

friction, higher order terms become irrelevant. Therefore, the B − L number violating

operators, the A-terms, produce B−L number only at the onset of the oscillation. After

that, the B − L number density scales as a−3. The produced B − L number is finally

converted into the standard model particles by the decay of the AD field.

The evolution equation for the B − L number density is expressed as

ṅB−L + 3HnB−L = 2βB−LIm

[
∂V

∂Φ
Φ

]
. (3.19)

The right-hand side is the source of the B − L asymmetry. By solving the equation, one

can find that the asymmetry is produced most effectively at the onset of the oscillation.

The produced B − L density is then estimated as

nB−L(tosc) ≃ 2βB−L |anλΦ| sin [nθi + arg (anλΦ)]
m3/2

Hosc

|Φosc|n

Mn−3
pl

(3.20)

≡ ϵnmax
B−L(tosc), (3.21)

where the subscripts of osc show the values when the AD field starts to oscillate. θi is the

initial phase of the AD field. nmax
B−L(tosc) denotes the maximal baryon number produced

at t = tosc and is estimated as

nmax
B−L(tosc) ≡ Hosc |Φosc|2 . (3.22)
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ϵ is estimated as

ϵ ≃ 2βB−L|anλΦ| sin [nθi + arg (anλΦ)]
m3/2

H2
osc

|Φosc|n−2

Mn−3
pl

, (3.23)

and shows the efficiency of the AD mechanism. ϵ ≃ O(1) means that the orbit of the

AD field in the complex field plane is nearly circular. When ϵ ! O(1), its orbit becomes

elliptic. The parameter ϵ is called the ellipticity parameter.

The sphaleron process is in thermal equilibrium at temperature above the EW scale,

and the produced B−L number is converted into the baryon number through anomalous

B + L breaking processes. The baryon asymmetry is related to the B − L asymmetry

as [98, 99]

nB =
8

23
nB−L, (3.24)

where nB−L expresses B − L number density. Since the produced baryon number is

comparable to the number density of coherent oscillation with a large amplitude, the

AD mechanism is much more efficient than the other conventional baryogenesis. The

AD mechanism is a probable candidate for baryogenesis in cosmology with the long-lived

particles such as the gravitino, the moduli field, and so on.

3.2 Q-ball

The baryon number production by the AD mechanism is closely related to Q-ball forma-

tion. Q-ball [100] is a non-topological soliton that could be formed during the oscillation

of the AD field. The AD field fragments into Q-balls if its potential becomes flatter than

a quadratic term for a larger field value. From the previous numerical calculation, it is

known that almost all produced baryon charges are confined into Q-balls [101–103]. We

then need to calculate baryon number released from these Q-balls to estimate the baryon

asymmetry.

Firstly let us explain conditions that Q-balls are formed after the AD baryogenesis

and profiles of Q-balls. The configuration of the Q-ball is determined by the condition of

minimizing the energy with conserved baryon charge, where the energy and the baryon

charge are given by

E =

∫
d3x

[∣∣∣Φ̇
∣∣∣
2

+ |∇Φ|2 + V (|Φ|)
]
, (3.25)

Q = 2

∫
d3xIm

[
Φ∗Φ̇

]
, (3.26)

39



respectively. Here, we assume that the AD field carries an unit of baryon charge for

simplicity. The scalar field configuration is obtained by minimizing

Eω ≡ E + ω

(
Q− 2

∫
d3xIm

[
Φ∗Φ̇

])
, (3.27)

where ω is a Lagrangian multiplier. Eω is rewritten by

Eω =

∫
d3x

[∣∣∣Φ̇− iωΦ
∣∣∣
2

− ω2 |Φ|2 + |∇Φ|2 + V (|Φ|)
]
+ ωQ. (3.28)

The time dependence of Φ is determined as Φ(x, t) = ϕeiωt/
√
2 from the first term in order

to minimize Eω. We assume that the stable field configuration is spherically symmetric,

which leads to the following equation of the field configuration:

∂2

∂r2
ϕ+

2

r

∂

∂r
ϕ+ ω2ϕ− ∂

∂ϕ
V (ϕ) = 0. (3.29)

The boundary condition is ϕ′(0) = 0 and ϕ(∞) = 0 in order to obtain a smooth and local

configuration. The solution with the boundary condition exists for

ω2
0 ≡ min

[
2V (ϕ)

ϕ2

]

ϕ=ϕ0 ̸=0

<
∂2V (0)

∂ϕ2
. (3.30)

The inequality requires the existence of the field value where the potential is flatter than

the quadratic potential. This condition is satisfied if the potential of the AD field is

dominated by the terms of Eqs. (3.4) and (3.16). Even if the term of Eq. (3.3) dominates

the potential, Eq. (3.30) is satisfied in the case of K < 0.

The profile of the Q-ball depends on the potential of the AD field. We show classifi-

cation of the Q-ball in Table 3.2. When the AD field starts to oscillate by the potential

determined by the gauge-mediated effect of Eq. (3.4), formed Q-balls are referred to as

“gauge mediation type Q-balls”. The field configuration of the gauge-mediation type

Q-ball is determined by solving Eq. (3.29) and is approximately given by [104]

Φ(r) ≃ eiωt√
2
×
{
ϕ0

sinωr
ωr for r < R ≡ π/ω

0 for r > R
, (3.31)

where ω and ϕ0 are given by

ω ≃
√
2πMFQ

−1/4, (3.32)

ϕ0 ≃ MFQ
1/4. (3.33)
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gauge mediation gravity mediation

φosc φosc < φeq φosc > φeq

K K < 0, K > 0 K < 0 K > 0 K < 0

type gauge mediation type new type delayed type gravity mediation type

Table 3.2: Classification of the type of the Q-ball.

The energy of the Q-balls is calculated from Eq. (3.25) and is estimated as

E ≃ 4
√
2π

3
MFQ

3/4. (3.34)

One can find that the Q-ball energy per unit charge (≃ dE/dQ) is smaller for large Q.

When it is smaller than the proton mass, i.e. dE/dQ ∼ MFQ−1/4 < 1GeV, Q-balls

cannot decay into nucleons. The charge of the Q-ball can be determined by numerical

simulations and is given by [103]

Q ∼ β

(
φosc

MF

)4

, (3.35)

where β is a numerical coefficient and is determined as β ≃ 6 × 10−4.3 Hereafter, we

use φ as the amplitude of the AD field and φosc denotes the amplitude at the onset of

the oscillation, in other words, φosc ≡ |Φosc|. Note that φosc should be smaller than a

threshold value φeq given by

Vgauge(φeq) = Vgrav(φeq), (3.36)

in this case. φeq is estimated as

φeq ≃ 5.2× 1014 GeV
( m3/2

200 keV

)−1
(

MF

5× 104GeV

)2

, (3.37)

for Mmess ≃ 5 × 105GeV. Note that φeq has a logarithmic dependence on Mmess. The

gauge-mediated effects dominate over the gravity-mediated effects below the threshold

value φeq.

In the case of φosc " φeq, the gravity-mediated effects dominate over the gauge-

mediated ones, and one can consider two types of scenarios: K > 0 and K < 0. Firstly
3 Precisely speaking, the numerical coefficient β depends on the orbit of the AD field in the complex

plane. β ≃ 6 × 10−4 for a circular orbit (ϵ = 1), while β ≃ 6 × 10−5 for an oblate orbit (ϵ ! 0.1).
Hereafter, we use β ≃ 6× 10−4 for simplicity since our results do not change significantly.
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we consider the case of K < 0. The potential of Eq. (3.3) with K < 0 satisfies the con-

dition for Q-ball formation. Q-balls formed in this potential are referred to as “new type

Q-balls” [102]. Even in gravity-mediated SUSY breaking models, Q-ball formation occurs

when the AD field starts to oscillate in the potential determined by the gravity-mediated

effects of Eq. (3.3) with K < 0. Formed Q-balls are referred to as ”gravity mediation type

Q-balls”. The field configuration is approximately given by a Gaussian function [89]:

Φ(r) ≃ 1√
2
ϕ0e

−r2/2R2
eiωt, (3.38)

where R, ω and ϕ0 are given by

R ≃ 1

|K|1/2m3/2
, (3.39)

ω ≃ m3/2, (3.40)

ϕ0 ≃
(
|K|
π

)3/4

m3/2Q
1/2, (3.41)

respectively. The energy of the Q-ball is given by

E ≃ m3/2Q. (3.42)

In gauge-mediated SUSY breaking models, this type of Q-balls is stable against the decay

into nucleons since dE/dQ ≃ m3/2 < 1GeV. The charge of the new type Q-ball is given

by [105,106]

Q ∼ β̃

(
φosc

m3/2

)2

, (3.43)

where β̃ ≃ 2× 10−2.

When K > 0, on the other hand, the condition of Eq. (3.30) is not satisfied, and then

Q-balls are not formed. In this case, the oscillation of the AD field remains homogeneous.

Its amplitude decreases as φ ∝ a−3/2 after it starts to oscillate. However, when the

potential of the AD field becomes dominated by the gauge-mediated effects after the

onset of the oscillation, in other words, its amplitude decreases to φeq, Q-ball formation

occurs. This type of Q-balls is referred to as “delayed type Q-balls” [103]. The profile

and properties of the Q-ball are the same as those of the gauge-mediation type Q-ball

(see Eqs. (3.31), (3.32), (3.33) and (3.34)), while the charge of the delayed type Q-ball is

given by

Q ∼ β

(
φeq

MF

)4

. (3.44)
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The thermal logarithmic potential of Eq. (3.16) also satisfies the condition for Q-ball

formation. If the AD field starts to oscillate by the thermal logarothmic potential, one

can obtain charge of the Q-ball by replacing MF with T∗ in Eq. (3.35), where T∗ is the

temperature at Q-ball formation. The profile and properties become the same as those of

gauge-mediation type Q-balls when temperature decreases sufficiently.

Finally, let us estimate baryon number released from the Q-balls. Even if the Q-ball

is stable against its decay into nucleons, in other words, dE/dQ < 1GeV, baryon charge

is released from the Q-ball surface via evaporation [107]. At finite temperature, the free

energy of the AD field is minimized when the all confined baryon charges behave as free

particles in the thermal plasma rather than inside the Q-ball. However, baryon charge

inside the Q-ball cannot completely evaporate since the evaporation rate is slower than

the cosmic expansion rate. The total evaporated charge of gauge-mediation type Q-balls

is given by [103,108]

∆Q ∼ 1016
(mSUSY

1TeV

)−2/3
(

MF

5× 104GeV

)−1/3

Q1/12. (3.45)

In the case of new type Q-balls, it is given by [102,103]

∆Q ∼ 1020
(
|K|
0.01

)−2/3 ( m3/2

100 keV

)−1/3 (mSUSY

1TeV

)−2/3

. (3.46)

On the other hand, the Q-ball can decay into nucleons when dE/dQ > 1GeV and

release baryon charges from its surface. The emission rate is determined by the Pauli

blocking effect on its surface. It is given by [109–111]

∣∣∣∣
dQ

dt

∣∣∣∣≃
(2ω)3A

96π2
, (3.47)

where A is the surface area of the Q-ball. In order to avoid destroying light elements

formed during the BBN due to decay products of Q-balls, the decay temperature is con-

strained as follows:

Tdec ≃

√
1

Q

dQ

dt
Mpl " O(10)MeV. (3.48)

In gauge-mediated SUSY breaking models, Q-ball formation is inevitable due to the log-

arithmic potential of Eq. (3.4). Therefore, we should take into account the evaporated

charge and Q-ball decay temperature for the estimation of the baryon asymmetry.
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3.3 Case of gravity-mediation models

In this section, we will estimate baryon number produced by the AD mechanism before

dilution in gravity-mediation models with moduli mass of O(1)TeV.4 Since we need to

dilute the moduli/Polonyi field density sufficiently, one can know whether the observed

baryon asymmetry is explained by estimating the ratio of the produced baryon number

to the moduli/Polonyi density. For simplicity, we will focus on one moduli field hereafter.

Firstly, we consider the case where the AD field starts to oscillate by the SUSY break-

ing terms ignoring the thermal potential. In gravity-mediation models, the AD potential

at zero-temperature is given by Eq. (3.3). In this case, the Hubble parameter at the onset

of the AD field oscillation is estimated as Hosc ≃ m3/2 ≃ O(1)TeV. Since the field value

of Eq. (3.17) is estimated by the balance between the negative Hubble induced mass term

and the non-renoralizable term that is the last term in Eq. (3.2), it is applicable up to the

Planck scale. Above the Planck scale, the exponential term with Kähler potential lifts

the potential (see Eq. (3.9)). Therefore, the AD field value at the onset of the oscillation

is given as

φosc ≡ |Φosc| ≃

⎧
⎪⎨

⎪⎩

(
HoscM

n−3
pl

|λΦ|

)1/(n−2)

for |λΦ| " λ∗

Mpl for |λΦ| ! λ∗

, (3.49)

where λ∗ ≡ Hosc/Mpl. The ellipticity parameter ϵ is then estimated as

ϵ ≃
{

m3/2

Hosc
for |λΦ| " λ∗

|λΦ|
m3/2Mpl

H2
osc

for |λΦ| ! λ∗
. (3.50)

Since the produced B − L asymmetry is about nB−L(tosc) ≃ ϵHoscφ2
osc, one can find that

the maximal B − L number density is achieved as nB−L(tosc) ≃ m3/2M2
pl when |λΦ| ≃ λ∗,

in other words, φosc ≃ Mpl and ϵ ≃ m3/2/Hosc ≃ O(1) in this case.

Ignoring the thermal potential, the ratio of the baryon number to moduli density is

estimated as

nB

ρη
=

8

23

nB−L

3M2
plH

2

∣∣∣∣∣
AD osc

3M2
plH

2

ρη

∣∣∣∣
moduli osc

≃ 16

23

ϵ

Hosc

(
φosc

Mpl

)2( η0
Mpl

)−2

, (3.51)

where we used nB−L(tosc) ≃ ϵHoscφ2
osc. Here, we assume that the moduli mass is about

the gravitino mass and that the AD field and moduli field start to oscillate in the same

4 The case where the moduli mass is about O(100)TeV will be discussed in Chap. 4.
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epoch. This ratio does not change after the moduli oscillation. The baryon asymmetry

after the dilution is estimated as

nB

s
=

nB

ρη

ρη
s

≃ 7.0× 10−18ϵ

(
ρη/s

10−14 GeV

)(
η0
Mpl

)−2( Hosc

1TeV

)−1(φosc

Mpl

)2

. (3.52)

One can find that the produced baryon asymmetry is much smaller than the observed one

in gravity-mediation models.

Next, we consider the case where the AD field starts to oscillate by the thermal

potential. When the thermal logarithmic potential dominates over the soft mass term

at t = tosc, the Hubble parameter is estimated as Hosc ≃ αST 2
osc/φosc, where Tosc ≃

(T 2
RHMplHosc)1/4. Hosc and Tosc are then calculated as

Hosc ≃ α2
S

T 2
RHMpl

φ2
osc

, (3.53)

Tosc ≃ TRH

√
αSMpl

φosc
. (3.54)

Since α2
ST

4
osc log

φ2
osc

T 2
osc

" m2
3/2φ

2
osc, the AD field starts to oscillate before the beginning of

the moduli oscillation, in other words, Hosc " m3/2.

Since the moduli field begins to oscillate after the onset of the AD field oscillation,

there are two cases depending on when the reheating occurs. If the moduli field starts

to oscillate before the reheating, the ratio of the baryon number to moduli density is

estimated as Eq. (3.51). If the moduli field starts to oscillate after the reheating, the

ratio becomes larger by the factor of TRH/Tη since the radiation dominated universe is

realized before the onset of the moduli oscillation. Tη is defined in Eq. (2.34). The ratio

is estimated as

nB

ρη
≃ 16

23

m3/2

H2
osc

(
φosc

Mpl

)2( η0
Mpl

)−2

×R, (3.55)

where the factor of R is defined as

R ≡
{

1 for TRH ! Tη

TRH/Tη for TRH " Tη

. (3.56)

We calculated the baryon number density before Q-ball formation for simplicity. Here we

used ϵ ≃ m3/2/Hosc since the ellipticity parameter is maximized when |λΦ| " λ∗. When

TRH ! Tη, the ratio is clearly smaller than the case of ignoring the thermal potential since

Hosc " m3/2 (see Eq. (3.51)). When TRH " Tη, one can find that the produced baryon
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asymmetry decreases as the reheating temperature becomes higher (see Eqs. (3.53), (3.55)

and (3.56)). Therefore, the produced baryon asymmetry is much smaller than the observed

one even when the AD field starts to oscillate by the thermal potential. As a result, the

AD mechanism cannot explain the observed baryon asymmetry with dilution in gravity-

mediation models.

3.4 Case of gauge-mediation models

In gauge-mediated SUSY breaking models, Q-balls are inevitably formed during the os-

cillation of the AD field. Almost all baryon number is absorbed into Q-balls even if

huge baryon asymmetry is produced by the AD mechanism. If Q-balls are stable, baryon

charge is released from Q-balls via evaporation. In the case of unstable Q-balls, the decay

of Q-balls can release baryon charge. However, it must occur before the BBN epoch in

order to explain the baryon asymmetry. We study if the AD mechanism can work with

dilution in both cases. In this section, we update the analysis in Ref. [112] by using the

lower bound of Eq. (3.7).5 The AD potential in the following cases is shown in Figs. 3.1

and 3.2.

A. Stable Q-ball formation when Vgauge,grav(φosc) " Vth(φosc)

Firstly, we consider the case where the AD potential is dominated by the zero-temperature

potential. Since ∆Q/Q becomes smaller as Q increases, it is more difficult to extract

baryon charge from Q-balls with larger baryon number. In order to produce huge baryon

number, φosc should be large, which leads to increase of baryon charges confined in Q-

balls. Then, the released baryon number generally becomes smaller as φosc increases. In

the case of the delayed type Q-ball, however, baryon charges of Q-balls do not increase

even though φosc becomes much larger than φeq. Hence, the delayed type Q-ball seems to

be able to most effectively provide baryon charge outside Q-balls. We then focus on the

delayed type Q-ball.

The finally provided baryon asymmetry is calculated as

nB

s
=

ñB

s

∆Q

Q
, (3.57)

where ñB/s is the ratio estimated without considering Q-ball formation. When φosc " φeq,

the AD field starts to oscillate by Vgrav that is given by Eq. (3.3) with K > 0. After that,

5 This section is based on the work of Ref. [47]. In this thesis, we study all the cases including effects
of the thermal potential while the analysis in Ref. [47] is incomplete.
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Figure 3.1: The potential of Vgauge and Vgrav. The circles denote φosc in the case of A and
D.

Figure 3.2: The potential of Vth,2 and Vgrav. The circles denote φosc in the case of B, C, E
and F.
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the oscillation amplitude decreases to φeq, and then Q-balls are formed. The charge of

the Q-ball is given by Eq. (3.44). At t = tosc, the Hubble parameter becomes of the order

of the gravitino mass, Hosc ≃ m3/2. For the delayed type Q-ball, ∆Q/Q is estimated as

∆Q

Q
∼
{

2× 10−18
(
mSUSY
1TeV

)−2/3 ( MF
5×104 GeV

)−4 ( m3/2

200 keV

)11/3
, for MF " MF∗

1 for MF ! MF∗
, (3.58)

where we have used Eqs. (3.37), (3.44) and (3.45). Since MF∗ is estimated as

MF∗

5× 104 GeV
≃ 4× 10−5

(mSUSY

1TeV

)−1/6 ( m3/2

200 keV

)11/12
, (3.59)

we will consider the case for MF " MF∗. The stability condition, dE/dQ < 1GeV, leads

to the upper bound on the gravitino mass:

m3/2 ! 1.4GeV, (3.60)

where we have used Eqs. (3.34), (3.37) and (3.44).

In this case, the ratio of the baryon number to moduli density is estimated as

ñB

ρη
≃ 16

23

m3/2

H2
osc

(
φosc

Mpl

)2( η0
Mpl

)−2

, (3.61)

in the same way with Eq. (3.51). The produced baryon asymmetry is estimated as

nB

s
∼ 3× 10−24

(
Ωηh2

0.12

)(
η0
Mpl

)−2 m3/2

Hosc

(
Hosc

200 keV

)−1(φosc

Mpl

)2

×
(mSUSY

1TeV

)−2/3
(

MF

5× 104GeV

)−4 ( m3/2

200 keV

)11/3
, (3.62)

where we take the gravitino mass as O(100) keV in order to avoid the X-ray background

constraint (see Fig. 2.3). One can find that the estimated baryon asymmetry is too small

to explain the present one, nB/s ≃ 8× 10−11, even if φosc ∼ Mpl and MF is taken as the

lower bound of Eq. (3.7).

B. Stable Q-ball formation when Vth,2(φosc) " Vgrav,gauge(φosc)

We consider the case where the thermal logarithmic potential Vth,2 dominates over both

Vgauge and Vgrav. In this case, α2
ST

4
osc " M4

F and α2
ST

4
osc " m2

3/2φ
2
osc should be satisfied.

The Hubble parameter Hosc and the temperature Tosc when the AD field starts to oscillate
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are given by Eqs. (3.53) and (3.54). Therefore, the reheating temperature is constrained

below as

TRH " MF

αS

√
φosc

Mpl
, (3.63)

and

TRH " φosc

αSMpl

√
m3/2Mpl, (3.64)

from Vth,2(φosc) " Vgauge(φosc) and Vth,2(φosc) " Vgrav(φosc), respectively.

Since the charge of the formed Q-ball is given byQ ≃ β(φosc/Tosc)4, ∆Q/Q is estimated

as

∆Q

Q
∼ 2× 10−12α11/6

S

(mSUSY

1TeV

)−2/3
(

MF

5× 104 GeV

)−1/3

×
(

TRH

1010 GeV

)11/3(φosc

Mpl

)−11/2

, (3.65)

where we used Eq. (3.45). We can use this relation only when ∆Q/Q < 1, in other words,

only when

φosc

Mpl
" 7× 10−3α1/3

S

(mSUSY

1TeV

)−4/33
(

MF

5× 104GeV

)−2/33( TRH

1010 GeV

)2/3

(3.66)

is satisfied, and the right-hand side does not exceed O(1):

TRH ! 1.7× 1013 GeVα−1/2
S

(mSUSY

1TeV

)2/11( MF

5× 104 GeV

)1/11

. (3.67)

Otherwise, ∆Q/Q becomes 1.

Moreover, dE/dQ < 1GeV leads to

φosc

Mpl
" 0.03α1/3

S

(
MF

5× 104GeV

)2/3( TRH

1010 GeV

)2/3

, (3.68)

and the right-hand side is smaller than O(1) when

TRH ! 1.7× 1012 GeVα−1/2
S

(
MF

5× 104 GeV

)−1

. (3.69)
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When ∆Q/Q < 1, the produced baryon asymmetry is then estimated as

nB

s
≃ 6× 10−29α−13/6

S

( m3/2

200 keV

)(Ωηh2

0.12

)(
η0
Mpl

)−2 (mSUSY

1TeV

)−2/3

×
(

MF

5× 104GeV

)−1/3( TRH

1010 GeV

)−1/3(φosc

Mpl

)1/2

R, (3.70)

When TRH ! Tη (R = 1), the lower bounds on the reheating temperature give an upper

bound on the baryon asymmetry. Equation (3.63) leads to

nB

s
! 3× 10−27α−11/6

S

( m3/2

200 keV

)(Ωηh2

0.12

)(
η0
Mpl

)−2

×
(mSUSY

1TeV

)−2/3
(

MF

5× 104 GeV

)−2/3(φosc

Mpl

)1/3

, (3.71)

and Eq. (3.64) leads to

nB

s
! 4× 10−28α−11/6

S

( m3/2

200 keV

)5/6(Ωηh2

0.12

)(
η0
Mpl

)−2

×
(mSUSY

1TeV

)−2/3
(

MF

5× 104GeV

)−1/3(φosc

Mpl

)1/6

. (3.72)

On the other hand, when TRH " Tη (R = TRH/Tη), the upper bounds on the reheating

temperature give an upper bound on the produced baryon asymmetry. Equation (3.67)

leads to

nB

s
! 8× 10−24α−31/6

S

( m3/2

200 keV

)1/2(Ωηh2

0.12

)(
η0
Mpl

)−2

×
(mSUSY

1TeV

)−6/11
(

MF

5× 104 GeV

)−3/11(φosc

Mpl

)1/2

. (3.73)

When the equality of Eq. (3.67) is satisfied, Q-balls completely evaporate and the produced

baryon asymmetry is maximized. Moreover, Eq. (3.69) leads to

nB

s
! 2× 10−24α−31/6

S

( m3/2

200 keV

)1/2(Ωηh2

0.12

)(
η0
Mpl

)−2

×
(mSUSY

1TeV

)−2/3
(

MF

5× 104GeV

)−1(φosc

Mpl

)1/2

. (3.74)

From these inequalities (Eqs. (3.71), (3.72), (3.73) and (3.74)), one can find that the

produced baryon asymmetry is much smaller than the observed one when Vth,2 dominates

over both Vgrav and Vgauge.
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C. Stable Q-ball formation when Vgrav(φosc) " Vth,2(φosc) and Vth,2(φeq) " Vgauge(φeq)

Next, we consider the case where the AD field starts to oscillate by Vgrav and fragments

into Q-balls by the thermal logarithmic potential Vth,2. In this case, the AD field starts

to oscillate by Vgrav with K > 0. The Hubble parameter at the onset of the oscillation is

about Hosc ≃ m3/2. After that, the oscillation amplitude decreases, and then the thermal

logarithmic potential Vth,2 dominates. The threshold field value φeq is determined by

Vth,2(φeq) = Vgrav(φeq), and then φeq is roughly given by φeq ≃ T 2
eq/m3/2, where Teq is

the temperature in this epoch. The oscillation amplitude scales as φ ∝ a−3/2 when it

is larger than φeq. Assuming that the universe is dominated by the inflaton oscillating

energy, the oscillation amplitude scales as φ ∝ H, which leads to Heq ≃ Hosc
φeq

φosc
. By

using Hosc ≃ m3/2 and φeq ≃ T 2
eq/m3/2, Heq is expressed as

Heq ≃
T 2
eq

φosc
. (3.75)

Since the temperature of the dilute plasma is given by Teq ≃ (T 2
RHMplHeq)1/4, Teq is

expressed as

Teq ≃ TRH

√
Mpl

φosc
(3.76)

We now consider the case where Q-balls are formed when Vth,2(φeq) dominates over

Vgauge(φeq):

φosc

Mpl
! α2

S

(
TRH

MF

)2

. (3.77)

Moreover, φosc should be larger than φeq in this scenario, which leads to

φosc

Mpl
" TRH√

m3/2Mpl

. (3.78)

In order for φosc to be smaller than the Planck scale, the reheating temperature is roughly

lower than the moduli oscillation temperature, in other words, TRH !
√

m3/2Mpl ≃ Tη.

Hence, we use R = 1 in this case. Combining Eqs. (3.77) and (3.78), the reheating

temperature is constrained below as

TRH " 1.1× 102GeVα−2
S

(
MF

5× 104GeV

)2 ( m3/2

200 keV

)−1/2

. (3.79)
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Since the charge of the formed Q-ball is given by Q ≃ β(φeq/Teq)4, ∆Q/Q is estimated

as

∆Q

Q
∼ 2× 10−17

(mSUSY

1TeV

)−2/3
(

MF

5× 104GeV

)−1/3

×
( m3/2

200 keV

)11/3( TRH

106 GeV

)−11/3(φosc

Mpl

)11/6

. (3.80)

We can use this relation only when ∆Q/Q < 1, in other words, only when

φosc

Mpl
! 1× 109

(mSUSY

1TeV

)4/11( MF

5× 104GeV

)2/11 ( m3/2

200 keV

)−2
(

TRH

106GeV

)2

(3.81)

is satisfied. This condition is applied when the right-hand side does not exceed O(1):

TRH ! 30GeV
(mSUSY

1TeV

)−2/11
(

MF

5× 104GeV

)−1/11 ( m3/2

200 keV

)
, (3.82)

otherwise it just implies φosc ! Mpl.

Moreover, dE/dQ < 1GeV leads to

φosc

Mpl
! 1× 107

(
TRH

106GeV

)2 ( m3/2

200 keV

)−2
(

MF

5× 104GeV

)−2

. (3.83)

This condition is applied when the right-hand side is smaller than O(1):

TRH ! 3× 102GeV
( m3/2

200 keV

)( MF

5× 104GeV

)
, (3.84)

otherwise it just implies φosc ! Mpl.

The produced baryon asymmetry is estimated as

nB

s
≃ 4× 10−23

( m3/2

200 keV

)8/3(Ωηh2

0.12

)(
η0
Mpl

)−2 (mSUSY

1TeV

)−2/3

×
(

MF

5× 104GeV

)−1/3( TRH

106GeV

)−11/3(φosc

Mpl

)23/6

, (3.85)

where we used R = 1. From the above inequalities, one can find that the produced

baryon asymmetry is maximized when TRH ≃ αSMF (see Eq. (3.77)). Therefore, the

baryon asymmetry is constrained as

nB

s
! 2× 10−18α−11/3

S

( m3/2

200 keV

)8/3(Ωηh2

0.12

)(
η0
Mpl

)−2

×
(mSUSY

1TeV

)−2/3
(

MF

5× 104GeV

)−4(φosc

Mpl

)23/6

. (3.86)
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Note that if φosc is about the Planck scale the conditions of Eqs. (3.78), (3.81) and (3.83)

are satisfied when TRH ≃ αMF . One can find that the produced baryon asymmetry is

too small to explain the observed baryon asymmetry when Vgrav(φosc) " Vth,2(φosc) and

Vth,2(φeq) " Vgauge(φeq).

D. Unstable Q-ball formation when Vgauge,grav(φosc) " Vth(φosc)

In gauge-mediated SUSY breaking models, unstable Q-balls correspond to the “delayed

type Q-ball” or the “gauge-mediation type Q-ball”. In the case of the delayed type Q-

ball, the condition dE/dQ > 1GeV leads to the lower bound on the gravitino mass as

m3/2 " 1.4GeV from Eq. (3.60). As is the case for the gravity-mediation models (see

Eq. (3.52)), the baryon asymmetry is estimated as

nB

s
≃ 7.0× 10−15

(
ρη/s

10−14GeV

)(
η0
Mpl

)−2 ( m3/2

1GeV

)−1
(
φosc

Mpl

)2

, (3.87)

and it too small to explain the present baryon asymmetry. We then focus on the gauge-

mediation type Q-ball here.

In this case, Vgauge(φosc) " Vgrav(φosc) should be satisfied, which leads to φosc ! φeq.

φeq is roughly given by φeq ≃ M2
F/m3/2, and then the oscillation amplitude is constrained

as

φosc

Mpl
! M2

F

m3/2Mpl
. (3.88)

Moreover, Vgauge(φosc) " Vth,2(φosc) leads to M4
F " α2

ST
4
osc, and this inequality is rewritten

as

φosc

Mpl
" α2

ST
2
RH

M2
F

. (3.89)

Combining Eqs. (3.88) and (3.89), we obtain a bound on reheating temperature as

TRH ! M2
F

αS

√
m3/2Mpl

. (3.90)

Since MF is related to the SUSY breaking scale as Eq. (3.5), it is constrained as MF !√
m3/2Mpl. Then, Eq. (3.90) implies TRH !

√
m3/2Mpl ≃ Tη, in other words, R = 1.

The charge of the formed Q-ball is given by Q ≃ β(φosc/MF )4, and then dE/dQ >

1GeV leads to

φosc

Mpl
! 1.2× 10−5

(
MF

106GeV

)2

. (3.91)
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Since the Q-ball should decay before the beginning of the BBN, the oscillation amplitude

of the AD field is constrained as

φosc

Mpl
! 1.7× 10−6

(
MF

106GeV

)6/5

, (3.92)

where we use Eq. (3.48).

The resulting baryon asymmetry is then estimated as

nB

s
≃ 0.36

(
Ωηh2

0.12

)(
η0
Mpl

)−2 ( m3/2

200 keV

)( MF

106GeV

)−4(φosc

Mpl

)4

, (3.93)

where we used Hosc = M2
F/φosc. Since φosc is restricted from above by Eq. (3.92), the

baryon asymmetry has an upper bound of

nB

s
! 3.0× 10−24

(
Ωηh2

0.12

)(
η0
Mpl

)−2 ( m3/2

200 keV

)( MF

106GeV

)4/5

. (3.94)

Note that Eqs. (3.88) and (3.91) are satisfied when we take m3/2 = 200 keV and MF =

106GeV. One can find that the estimated baryon asymmetry is too small to explain the

present baryon asymmetry.

E. Unstable Q-ball formation when Vth,2(φosc) " Vgrav,gauge(φosc)

Next, we consider the case where the thermal logarithmic potential Vth,2 dominates over

both Vgauge and Vgrav. In this case, the reheating temperature is constrained from below

as Eqs. (3.63) and (3.64). The charge of the Q-ball is given by Q ≃ β(φosc/Tosc)4. The

condition of dE/dQ > 1GeV leads to

φosc

Mpl
! 2.4× 10−3α1/3

S

(
MF

106GeV

)2/3( TRH

107GeV

)2/3

. (3.95)

The BBN constraint (Eq. (3.48)) is expressed as

φosc

Mpl
! 6.6× 10−4α1/3

S

(
MF

106 GeV

)2/15( TRH

107GeV

)2/3

, (3.96)

and is applicable only when

TRH ! 5.9× 1011 GeVα−1/2
S

(
MF

106GeV

)−1/5

. (3.97)

Otherwise, Eq. (3.96) just implies φosc ! Mpl.
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The produced baryon asymmetry is estimated as

nB

s
≃ 3.6× 10−5α−4

S

(
Ωηh2

0.12

)(
η0
Mpl

)−2 ( m3/2

200 keV

)( TRH

107 GeV

)−4(φosc

Mpl

)6

R. (3.98)

When TRH ! Tη (R = 1), Eq. (3.96) gives an upper bound on the baryon asymmetry as

nB

s
! 3.0× 10−24α−2

S

(
Ωηh2

0.12

)(
η0
Mpl

)−2 ( m3/2

200 keV

)( MF

106 GeV

)4/5

. (3.99)

Note that Eq. (3.95) is satisfied when we take m3/2 = 200 keV and MF = 106 GeV . In

the case of TRH " Tη (R = TRH/Tη), the produced baryon asymmetry is maximized when

we take TRH as the maximum value of Eq. (3.97), and it is given by

nB

s
! 1.8× 10−19α−2

S

(
Ωηh2

0.12

)(
η0
Mpl

)−2 ( m3/2

200 keV

)( MF

106 GeV

)4/5

. (3.100)

The resulting baryon asymmetry is then too small to explain the observed baryon asym-

metry.

F. Unstable Q-ball formation when Vgrav(φosc) " Vth,2(φosc) and Vth,2(φeq) " Vgauge(φeq)

When the AD field starts to oscillate by Vgrav and fragments into Q-balls by the thermal

logarithmic potential Vth,2, the condition Vth,2(φeq) " Vgauge(φeq) requires

φosc

Mpl
! αST 2

RH

M2
F

, (3.101)

where φeq is roughly estimated as φeq ≃ T 2
eq/m3/2. Teq is given by Eq. (3.76). The

condition dE/dQ > 1GeV leads to

φosc

Mpl
" 3.1× 104

( m3/2

200 keV

)−2
(

MF

106GeV

)−2( TRH

106GeV

)2

. (3.102)

Combining Eqs. (3.101) and (3.102), the gravitino mass is constrained below as

m3/2 " 1.4GeVα1/2
S . (3.103)

Note that this condition is the same with the instability condition of the delayed type

Q-ball (see Eq. (3.60)). The baryon asymmetry is estimated as Eq. (3.87), and is too

small to explain the present baryon asymmetry.
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G. AD field oscillation by Vth,1

When the AD field starts to oscillate by the thermal mass term Vth,1, particles coupled

with the AD field should be lighter than the temperature, which requires fφosc ! Tosc.

Here f denotes generic couplings between the AD field and light particles in the thermal

bath. Since Tosc is estimated as Tosc ≃ f 1/3T 2/3
RHM1/3

pl , the condition is rewritten as

φosc

Mpl
!
(

TRH

fMpl

)2/3

, (3.104)

and the right-hand side is smaller than O(1) when TRH ! fMpl. Otherwise, Eq. (3.104)

just implies φosc ! Mpl.

The produced baryon asymmetry is estimated as

nB

s
≃ 7.2× 10−21

(
f

10−5

)−8/3 ( m3/2

200 keV

)(Ωηh2

0.12

)(
η0
Mpl

)−2

×
(

TRH

106GeV

)−4/3(φosc

Mpl

)2

R. (3.105)

When TRH ! Tη (R = 1), the condition of Eq. (3.104) gives an upper bound as

nB

s
! 1.0× 10−30

(
f

10−5

)−4 ( m3/2

200 keV

)(Ωηh2

0.12

)(
η0
Mpl

)−2

. (3.106)

On the other hand, when TRH " Tη (R = TRH/Tη), the baryon asymmetry is maximized

for TRH ≃ fMpl. We then have the following bound:

nB

s
! 2.5× 10−24

(
f

10−5

)−3 ( m3/2

200 keV

)1/2(Ωηh2

0.12

)(
η0
Mpl

)−2

. (3.107)

Therefore, we cannot explain the observed baryon asymmetry even in this case.

H. Summary

Q-ball formation is inevitable for the logarithmic potential induced from the gauge-

mediated SUSY breaking effects and becomes a hinderance to the baryon number pro-

duction. In order to produce huge baryon number, the amplitude of the AD field should

be large, which renders the formed Q-ball stable. It is difficult to extract baryon charge

from stable Q-balls and the evaporated baryon charge cannot explain the observed baryon

asymmetry. On the other hand, unstable Q-balls can release all baryon charge. In this

case, however, the amplitude of the AD field is restricted from above in order to prohibit

Q-ball decay during and after the BBN epoch. Thus, sufficient baryon number cannot

be produced. As a result, the AD mechanism is incompatible with dilution to solve the

moduli problem in both cases.
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3.5 LHu direction in gauge-mediation models

In the previous section, we focused on flat directions that have only soft SUSY breaking

terms and non-renormalizable terms. However, there is an exception. The LHu direction

is special in terms of having the µ-term which prevents it from forming into Q-balls.

Moreover, one-loop correction gives a positive correction (K > 0). This implies that the

LHu flat direction does not form into Q-balls.6

First, let us consider the case where the µ-term exists before the thermal inflation and

show that it is still difficult to explain the baryon asymmetry. Assuming that the AD field

begins to oscillate because of the µ-term before the dilution, the ratio of lepton number

to moduli density is given by

∣∣∣∣
nL

ρη

∣∣∣∣=
2m3/2

µ2

(
φosc

Mpl

)2( η0
Mpl

)−2

, (3.108)

where µ is the electroweak scale. Here we use Eq. (3.51) that is applicable when the total

energy of the universe scales as a−3 between the eras when the AD field starts to oscillate

and when the moduli field starts to oscillate. Even if the reheating completes before the

onset of the moduli oscillation, the AD field immediately dominates the total energy of

the universe when φosc ≃ Mpl and the above estimation is valid in that case. The lepton

asymmetry is partially converted into baryon asymmetry through the sphaleron process,

and the produced baryon asymmetry is estimated as

nB

s
≃ 6.0× 10−20

(
Ωηh2

0.12

)(
η0
Mpl

)−2 ( m3/2

200 keV

)( µ

1TeV

)−2
(
φosc

Mpl

)2

. (3.109)

The resulting baryon asymmetry is then too small to explain the present asymmetry. This

is because the AD field oscillates earlier by the µ-term whose scale is much larger than

the gravitino mass scale (µ ≫ m3/2).

In this section, we consider an alternative scenario where the µ-term is negligible at

the onset of the oscillation of the AD field and is generated at the end of the thermal

inflation. The coupling between the flaton and Higgs supermultiplets prohibits the µ-

term before the thermal inflation and plays the role of generating the µ-term by the

flaton VEV after the thermal inflation. In this case, we expect that the scenario changes

as follows. The LHu flat direction produces lepton asymmetry by the SUSY breaking

terms when Hosc ≃ m3/2. Then, Q-balls are formed when the oscillation amplitude of

the LHu direction decreases to φeq. After the thermal inflation, the generated µ-term

6 This section is based on the work of Ref. [47].
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supermultiplets Q ū d̄ L ē Hu Hd X

Z4 charge 2 2 0 0 2 0 2 1

Table 3.3: Assignment of Z4 charge

violates the condition for the existence of the Q-ball. Q-balls decay and the absorbed

lepton number is released. In the following, we show if the released lepton number can

explain the observed baryon asymmetry.

In order to generate the µ-term, we assume that the flaton X couples with the Higgs

supermultiplets as

Wµ =
λµ
Mpl

X2HuHd, (3.110)

where λµ is a dimensionless coupling constant. This term is also motivated by solving the

µ problem in the Higgs sector: why is the µ-term electroweak scale and so small compared

to the GUT or Planck scale? The coupling is allowed if we assign Z4 charge to the MSSM

particles as shown in Table 3.3. Then, the following F -term potential arises:

VF =
|λµ|2|X|4

M2
pl

|Φ|2 ≡ µ2(X) |Φ|2 , (3.111)

where Φ denotes the up-type Higgs scalar field, namely the AD field. For convenience,

we introduce the µ parameter defined as Eq. (3.111). Considering a model with the Z4

symmetry breaking term (see Sec. 2.5.1), the flaton potential is then expressed as

V (X) ≃ V0 +

(
α∗λX
Mpl

X3 + h.c.

)
+

|λµ|2 |Φ|2

M2
pl

|X|4 + |λX |2

M2
pl

|X|6, (3.112)

where we neglect the linear terms and the quartic terms in Eq. (2.54). Before the ther-

mal inflation, the flaton VEV is so small that µ-term (Eq. (3.111)) is negligible for the

dynamics of the AD field compared with SUSY breaking terms, which implies that the

AD field forms into Q-balls when the oscillation amplitude is about φeq. The flaton then

acquires the VEV after the thermal inflation, and the µ-term is provided for the AD field

potential. Q-balls decay if the µ-term breaks the condition for the existence of the Q-ball.

The lepton charge is released to the thermal plasma.

The µ parameter must increase from the outside to the inside of the Q-ball in order to

violate the condition for the existence of the Q-ball. Namely, the following relation must

be realized:

µ2(X(|Φin|))
µ2(X(|Φout|))

> 1. (3.113)
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Φin and Φout show the AD field values inside and outside the Q-ball, respectively. From

Eq. (3.111), one can find that the µ parameter explicitly depends on |X|. |X| is determined

by the potential of Eq. (3.112), and depends on |Φ| via the interaction of Eq. (3.111). Thus,

one can find that the µ parameter depends on the AD field value.

Since |Φ| ̸= 0 inside the Q-ball, the coupling term between the flaton and the AD field

lifts the flaton potential and |X| inside the Q-ball is smaller than that outside the Q-ball.

Hence, Eq. (3.113) is not satisfied at the tree level. Taking into account the one-loop

correction, however, we find that the µ-term can be steeper than a quadratic mass term

for a larger VEV of the AD field |Φ|. It is expressed as

V =

[
|λµ|2M4

M2
pl

(
1 +K log

|Φ|2

M2
∗

)]
|Φ|2, (3.114)

where we assume that K > 0 and |K| ≃ O(0.1-0.01). The parameter M is the flaton

VEV. For different amplitudes of the AD field (|Φin| > |Φout|), the ratio of the µ-term is

estimated as

µ2 (|Φin|)
µ2 (|Φout|)

≃ M4
in

M4
out

(
1 +K log

|Φin|2

|Φout|2

)
, (3.115)

where Min and Mout are the flaton field values at |Φin| and |Φout|, and satisfy Min < Mout.

Precisely speaking, when the second term in the parenthesis is O(1), the perturbation

breaks down and one should solve renormalization group equations. For simplicity, we

assume that the one-loop correction factor is 2 at most7 and require

1

2
! M4

in

M4
out

< 1 (3.116)

to realize the condition of Eq. (3.113). Here, Min and Mout correspond to the flaton VEVs

inside and outside the Q-ball. Note that Min/Mout < 1 is always satisfied because of the

µ-term in Eq. (3.112).

Because the µ-term damps the flaton VEV inside the Q-ball, it should be smaller than

the higher dimensional terms in order for Min not to be highly damped compared with

Mout. Thus, the AD field value inside the Q-ball, φ0, should be small to suppress the

µ-term. φ0 is proportional to the oscillation amplitude in the case of the gauge-mediation

type Q-ball and the new type Q-ball. On the other hand, in order to produce huge baryon

number, φosc should be large. In the case of the delayed type Q-ball, φ0 is determined

7 Even if we assume that the correction factor is larger than 2, our result does not change significantly.
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only by φeq. Then, φ0 does not get larger even if we take φosc larger than φeq. Hence, we

focus on the delayed type Q-ball hereafter.

Let us rewrite the condition for Q-ball formation in terms of the model parameters.

In the case of the delayed type Q-ball, φ0 is determined by the field value, where the

gauge-mediation effect is comparable to the gravity-mediation effect, and is estimated as

φ0 ≃
1√
2
β1/4φeq ≃ 5.8× 1013 GeV

( m3/2

200 keV

)−1
(

MF

5× 104 GeV

)2

. (3.117)

Here we used Eq. (3.37). Substituting this estimated value into the flaton potential of

Eq. (3.112), the flaton VEV inside the Q-ball is obtained by solving the following equation:

−3
|αλX |
Mpl

M2
in + 2

|λµ|2φ2
0

M2
pl

M3
in + 3

|λX |2

M2
pl

M5
in = 0. (3.118)

In order to estimate the parameter α, we introduce a dimensionless parameter ζ as follows:

|α| ≡ ζ
|λX |M3

in

Mpl
. (3.119)

Note that ζ = 1 corresponds to the case without the µ-term (see Eq. (2.55)) and that

ζ > 1 is satisfied. Using Eqs. (2.55) and (3.119), one can find that the ratio of the flaton

VEV inside to outside the Q-ball is given by

Min

Mout
=

1

ζ1/3
, (3.120)

and the condition of Eq. (3.116) leads to 1 < ζ < 1.7. By solving the equation of

Eq. (3.118), one can obtain

M2
in =

2|λµ|2φ2
0

3(ζ − 1)|λX |2
(3.121)

in terms of ζ. Then, from Eq. (3.119), the parameter α can be estimated as

|α| = ζ

[
2

3 (ζ − 1)

]3/2 |λµ|3φ3
0

|λX |2Mpl
. (3.122)

By using the expression of the µ-term as Eq. (3.111) and 1 < ζ < 1.7, one can obtain the

following constraint on the parameter α:

|α| = ζ1/3
[

2

3(ζ − 1)

]1/2
µ (|Φout|)φ0

" 2.0× 1016 GeV2

(
µ (|Φout|)
300GeV

)(
φ0

5.8× 1013 GeV

)
. (3.123)

60



Hence, when the symmetry breaking parameter α satisfies the above constraint, the con-

dition of Eq. (3.113) can be realized including one-loop corrections. Hereafter, we assume

the Z4 symmetry breaking term of the order of |α| ≃ 2× 1016GeV2.

From Eq. (2.56), the energy of the thermal inflation is estimated as

V0 ≃ 4× 1032 GeV4

(
|α|

2× 1016 GeV2

)2

. (3.124)

The flaton and R-axion masses are estimated as

mχ ≃ maχ ≃ 600GeV

(
|α|

2× 1016 GeV2

)2/3( |λX |
5× 10−8

)1/3

, (3.125)

where the coupling constant |λX | is assumed to be small enough for the flaton mass to

be smaller than sparticle mass, which keeps it from decaying into sparticle pairs. From

Eq. (2.55), the flaton VEV at the true minimum is given by

Mout ≃ 1014 GeV

(
|α|

2× 1016 GeV2

)1/3( |λX |
5× 10−8

)−1/3

. (3.126)

Then, the µ-term outside the Q-ball is given by

µ(|Φout|) ≃ 330GeV

(
|λµ|

8× 10−8

)(
Mout

1014 GeV

)2

, (3.127)

where the coupling constant |λµ| is also assumed to be as small as 10−7 to obtain the

µ-term of the electroweak scale.

After the thermal inflation, the flaton VEV violates the condition for the existence of

the Q-ball and Q-balls decay. Before the thermal inflation, the produced lepton asymme-

try is estimated as
∣∣∣∣
ñL

si

∣∣∣∣=
∣∣∣∣
ñL

ρη,BB

∣∣∣∣
ρη,BB

si
=

T inf
RH

4m3/2

(
φosc

Mpl

)2

, (3.128)

where we used Eqs. (2.32) and (3.108) assuming that Hosc ≃ m3/2. The released lepton

number is converted into baryon number through the sphaleron process. From Eqs. (2.60),

(3.24) and (3.128), the baryon asymmetry provided after the thermal inflation is estimated

as

nB

s
≃ 1.4× 10−10

(
T inf
RH

5× 107GeV

)( m3/2

200 keV

)−1
(

V0

4× 1032 GeV4

)−1

×
(

T χ
RH

10MeV

)(
Tend

20TeV

)3(φosc

Mpl

)2

. (3.129)
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One can find that the observed baryon asymmetry, nB/s ≃ 8× 10−11, could be explained

if the AD field begins to oscillate near the Planck scale. Q-balls collapse irrespective of

the oscillation amplitude of the AD field, which is contrary to the case of unstable Q-balls.

Next, we estimate the temperature at the end of the thermal inflation, Tend, and

the reheating temperature of the flaton decay, T χ
RH. The thermal inflation ends when

Tend ∼ c1/2T ⟨|X|⟩ because thermal particles which couple with the flaton become massive.

From Eq. (2.59), the temperature at the end of the thermal inflation is estimated as

Tend ≃ 20TeV

(
|α|

2× 1016 GeV2

)1/3 ( m3/2

200 keV

)1/3
, (3.130)

where we assume cT ≃ O(1). Note that the released lepton number is successfully con-

verted to baryon number through the sphaleron process since the thermal inflation ends

before the electroweak symmetry breaking.

As for the reheating temperature, T χ
RH is estimated from the decay rate of the flaton.

Since mχ > 2mh, the flaton mainly decays into two Higgs bosons at the tree level and

they decay into the standard model particles. The decay rate is estimated as

Γ(χ→ 2h) ≃ 1

16π

(
|λµ|M2

out

Mplmχ

)4 m3
χ

M2
out

=
1

16π

(
µ

mχ

)4 m3
χ

M2
out

, (3.131)

where µ ≡ |λµ|M2
out/Mpl. Note that the flaton can decay into two higgsino if it is kine-

matically allowed, which may lead to overproduction of the LSP. We therefore assume

that such a decay is kinematically forbidden, i.e., mχ ! 2µ. The reheating temperature,

T χ
RH is then expressed as

T χ
RH ≃

(
90

π2g∗

)1/4√
Γ(χ→ 2h)Mpl

≃ 7.8MeV

(
µ(|Φout|)
300GeV

)2 ( mχ

600GeV

)−1/2
(

Mout

1014 GeV

)−1

, (3.132)

where we use g∗ = 10.8. Hence, the reheating temperature can be higher thanO(1-10)MeV,

which can avoid spoiling the success of the BBN.

We turn to estimate the density parameter of the moduli. From Eqs. (2.60) and (2.61),

the density parameter of the Big-Bang moduli after the entropy dilution is given by

Ωη,BBh
2 ≃ 1.1× 10−5

(
T inf
RH

5× 107GeV

)(
V0

4× 1032 GeV4

)−1

×
(

T χ
RH

10MeV

)(
Tend

20TeV

)3( η0
Mpl

)2

. (3.133)
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Figure 3.3: The density parameters of the Big-Bang moduli (blue line) and the thermal
inflation moduli (red line) are plotted by taking T inf

RH = 5 × 107GeV, Tend = 20TeV,
T χ
RH = 10MeV and η0 = Mpl. The left (right) panel corresponds to the case where

mη = 200 keV (1MeV). In the green shaded region, the condition for Q-ball formation
is not violated (see Eq. (3.123)), and Q-balls do not disappear. In the orange shaded
region, the moduli field could not start to oscillate when the thermal inflation occurs
((V0/3M2

pl)
1/2 " mη). The dashed line shows the observed dark matter density parameter.

One can find that even when mη = 1MeV, the fine-tuning of η0/Mpl ≃ O(10−3) is needed
to suppress the thermal inflation moduli since it scales as η20.

It is found that the Big-Bang moduli is sufficiently diluted. On the other hand, the density

parameter of the thermal inflation moduli is given by

Ωη,THh
2 ≃ 1.9× 108c2H

(
V0

4× 1032 GeV4

)

×
( m3/2

200 keV

)−2
(

T χ
RH

10MeV

)(
η0
Mpl

)2

, (3.134)

where we used Eq. (2.63). We show the density parameters of these relic moduli in

Fig. 3.3. One can find that the density of the thermal inflation moduli is much larger

than the observed dark matter density. Therefore, in order for this scenario to work, the

separation between the local minimum determined by the Hubble induced term and the

true minimum should be of the order of η0 ∼ 10−4Mpl.

Although this may result from 0.01% fine-tuning of the moduli potential, we have

no motivation for the thermal inflation in that case since the moduli problem can be

solved when TRH ≃ 10MeV and η0/Mpl ≃ O(10−3) (see Eq. (2.32)). Furthermore, in
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the orange shaded region where (V0/3M2
pl)

1/2 " mη the moduli field could not start to

oscillate when the potential energy of the flaton dominate the energy of the universe.

This implies that the thermal inflation cannot work. Note that when mη = 200 keV, the

orange shaded region is overlapped with the green shaded region, where the condition for

Q-ball formation is not violated. Hence, it is found that this scenario does not work.

If the moduli field has no couplings with photons, the constraint from the X-ray

background spectra is irrelevant. In this case, the moduli field with mass of O(1)MeV,

which cannot decay into electrons, could be the dark matter and the fine-tuning can be

relaxed to 0.1%.

The situation does not get better even when the µ-term is generated in other ways,

e.g., in the case that µ(X) ∝ |X|2n. The thermal inflation moduli is overproduced because

of the high scale vacuum energy V0. In order to satisfy the condition of Eq. (3.116), V0

should be larger than the µ-term inside the Q-ball. This is because the flaton VEV inside

the Q-ball drastically changes when V0 ! µ2(Mout)φ2
0 (see Eqs. (3.111) and (3.112)). φ0 is

constrained from below since MF has the lower bound (see Eqs. (3.7) and (3.117)). The

µ parameter should be of the electroweak scale. Therefore, there always exists a lower

bound to V0 similar to Eq. (3.123).

In summary, we have considered the alternative scenario where the LHu direction plays

the role of producing the baryon asymmetry with destruction of Q-ball in this section. In

order to destroy Q-balls, the coupling term between the Higgs and the flaton should be

smaller than the vacuum energy V0 inside the Q-ball. The lower bound of V0 implies that

the thermal inflation begins before the moduli field starts to oscillate, or thermal inflation

moduli are always overproduced even when mη ≃ O(1)MeV. Hence, we conclude that

the observed baryon asymmetry cannot be explained with dilution of the moduli density

in these scenarios.

Finally, we comment on other possible baryogenesis scenario after dilution. In gravity-

mediation models with m3/2 ≃ O(1)TeV, the modified AD mechanism, which has been

proposed by Ref. [113], could explain the observed baryon asymmetry. In this model, the

soft mass of the LHu flat direction is negative (m2
L̃
+m2

Hu
< 0). The LHu flat direction

begins to roll down to the large VEV at the end of thermal inflation and receives the

angular kick when the flaton gets the large VEV. The LHu flat direction provides lepton

number after thermal inflation. The dynamics of the LHu direction is so complicated

that numerical simulations are necessary. Some works have revealed that this modified

AD mechanism can work in gravity-mediation models. In Refs. [114,115], the A-terms of

the flaton field are taken around the electroweak scale, but these terms are suppressed in
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gauge mediation models when the flaton field exceed the VEV larger than the messenger

scale. Therefore, it is unclear if it can also work well in gauge-mediation models.
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Chapter 4

Heavy moduli/Polonyi scenario

In the previous chapter, we found that the AD mechanism cannot produce baryon number

enough to survive after dilution even though it is one of the most promising candidates

for baryogenesis with such dilution. In this chapter, we consider a scenario that the

moduli/Polonyi field is heavy enough to decay before the onset of the BBN. As mentioned

in Sec. 2.5.2, if the moduli/Polonyi mass is about O(100)TeV, the density of LSPs with

mass of O(0.1-1)TeV often exceeds the dark matter density.

There are several ways to avoid the overproduction. One way is to make all SUSY par-

ticles to be as heavy as moduli field and to forbid the moduli decay into LSP particles. In

this case, however, successful electroweak symmetry breaking requires a somewhat severe

fine-tuning because all the soft mass parameters are about O(100)TeV. The other way is

to make the moduli decay temperature higher than O(1)GeV. This generically requires

that the moduli field is heavier than the 5PeV assuming that dη ≃ O(1). The R-parity

violation would also be a solution to the overproduction problem. If the overproduc-

tion problem is solved, the baryon asymmetry could be explained by the AD mechanism

though the produced B − L number density is diluted by the entropy production from

the moduli decay.

In this chapter, we focus on the scenario where the moduli mass is about O(100)TeV

and the LSP mass is about O(0.1-1)TeV.1 Since the non-thermal production of LSPs

leads to the cosmological problem, we need a dilution mechanism with some baryogenesis

mechanism. Actually, it is known that the AD mechanism faces a difficulty if the soft

mass is smaller than the gravitino mass. In the anomaly-mediation models, for example,

SUSY breaking effects are transmitted by the super-Weyl anomaly [116, 117]. The soft

masses of the observable sector are generated at the loop-suppressed order of the gravitino

1 This chapter is based on the work of Ref. [48].
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mass in these models. We firstly explain that the AD mechanism has a problem in these

cases and introduce one way to avoid the problem in the next section. We assume that

the soft mass of the AD field, mΦ, is smaller than the gravitino mass (mΦ ≪ m3/2) in this

chapter.

4.1 AD mechanism in high scale SUSY models

When the AD potential is lifted by the non-renormalizable superpotential, the AD field

potential is given by

V (Φ) =
(
m2

Φ − cHH
2
)
|Φ|2 +

m3/2

nMn−3
pl

(anλΦΦ
n + c.c.) +

|λΦ|2

M2n−6
pl

|Φ|2n−2 , (4.1)

where cH is a coefficient of the Hubble induced mass term. The origins of these terms

are mentioned in Chap. 3 except for the soft mass term. The soft mass is assumed to

be generated by loop-suppressed mediation effects (mΦ ≪ m3/2) as seen below. When

mΦ ≪ m3/2, the AD potential always has global minima as

|Φmin| ≃
[

|an|
(n− 1) |λΦ|

m3/2M
n−3
pl

]1/(n−2)

, (4.2)

because of the relatively large A-terms. At the global minima, masses of the phase

direction, mθ, is estimated as

mθ ≃
√

n

n− 1
|an|m3/2. (4.3)

As with the conventional AD mechanism explained in the previous chapter, the AD

field is trapped in the local minima determined by the negative Hubble induced mass and

the non-renormalizable operator before the AD field oscillation. When H ≃ m3/2, the

amplitude of the AD field is about Φmin, and the phase direction starts to roll down to

the global minima. This leads to the charge/color breaking universe [118–121].

In order to avoid the problem, we assume that SUSY breaking effects including the

A-terms are provided by the Kähler potential. To obtain the large field value, we assume

that the AD field does not appear in the superpotential.2 In supergravity Lagrangian, we

2 For example, U(1)R symmetry can prohibit appearance of the AD field in the superpotential.
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consider the following terms in the Kähler potential:3

LΦ =

∫
d2θd2θ̄

[
−3M2

pl exp

(
− K

3M2
pl

)]

⊃
∫

d2θd2θ̄

[
f1 |Φ|2 +

(
f2

Φn

nMn−2
pl

+ c.c.

)
+ f3

|Φ|4

M2
pl

+ · · ·
]
, (4.4)

where fi (i = 1, 2, 3) is an arbitrary real function of SUSY breaking fields, which satisfies

fi = f †
i for i = 1, 3. From these terms, the potential for the AD field Φ is given by

V (Φ) = m2
Φ |Φ|2 −

m2
3/2

nMn−2
pl

(anΦ
n + c.c.) + c4m

2
3/2

|Φ|4

M2
pl

+ · · · , (4.5)

where we assume that c4 is a positive dimensionless parameter. The quartic term pro-

portional to m2
3/2 is originated from the quartic term in Eq. (4.4). Note that the quartic

term in Eq. (4.4) is generically present since any symmetry cannot forbid such terms.

Because of the positive quartic term of the AD field, the amplitude of the global minima

is estimated to be about the Planck scale in this case. In supergravity, a scalar potential

is lifted around the Planck scale by the exponential factor of the Kähler potential (see

Eq. (3.9)). Therefore, the global minima are expected to disappear when c4 is positive.

Let us focus on the dynamics of the AD field in this potential. Due to the negative

Hubble induced mass term, the AD field takes its field value of the order of the Planck

scale until H ≃ m3/2. When H ! m3/2, the position of the local minimum of the AD

field, that is determined by a balance between the negative Hubble induced mass term

and the positive quartic term, becomes smaller than the Planck scale. Since the position

is quickly driven towards the origin of the potential, the AD field cannot track the local

minimum and starts to roll down to the origin when H ≃ m3/2 [21, 122].

We will explain the evolution of the AD field when H ≃ m3/2 in more detail. When

mΦ ! H ! m3/2, the AD potential for the radial component is given by

V (Φ) ≃ −cHH
2|Φ|2 + c4m

2
3/2

|Φ|4

M2
pl

+ · · · . (4.6)

Here, we omit the soft SUSY breaking mass term assuming that H " mΦ. The amplitude

of the local minimum determined by the potential is given by

|Φlocal| ≃
√

cH
2c4

MplH

m3/2
. (4.7)

3 The second term in the second line is equivalent to a superpotential term suppressed by the gravitino
mass.

68



One can find that |Φlocal| decreases as a−3/2 from the Planck scale after the Hubble scale

becomes about the gravitino mass scale, H ≃ m3/2.

We can write down the equation of motion for φ ≡ |Φ|/
√
2 as

d2φ

dt2
+ 3H

dφ

dt
− cHH

2φ+ c4m
2
3/2

φ3

M2
pl

= 0. (4.8)

Using the number of e-folding N ≡ ln(a/ai) as a time variable, this is rewritten as

d2φ

dN2
+

3

2

dφ

dN
− cHφ+

c4m2
3/2

M2
plH

2
φ3 = 0, (4.9)

where we take ai as the scale factor when Hi ≃ m3/2. Rescaling the AD field value φ as

ψ ≡ φ

φlocal,i
e

3N
2 , φlocal,i =

√
cH
c4

MplHi

m3/2
, (4.10)

we can eliminate the dependence on the time variable in the coefficients. In terms of ψ,

the equation of motion is rewritten as

d2ψ

dN2
− 3

2

dψ

dN
− cHψ + cHψ

3 = 0. (4.11)

Note that the coefficient of the friction term is negative. This implies that the AD field

cannot track the local minimum and starts to oscillate around the origin4 when H ≃ m3/2.

B − L asymmetry is effectively produced at the onset of the oscillation. After that, the

asymmetry is conserved since the amplitude of the AD field decreases, and the U(1)B−L

symmetry breaking terms become ineffective.

As with Eq. (3.21), the produced B − L asymmetry is estimated as

nB−L(tosc) ≃ 2β|an| sin [nθi + arg(an)]
m2

3/2

Hosc

|Φosc|n

Mn−2
pl

, (4.12)

and the ellipticity parameter ϵ is given by

ϵ ≃ 2β|an| sin [nθi + arg(an)]
m2

3/2

H2
osc

|Φosc|n−2

Mn−2
pl

. (4.13)

The AD field starts to roll down to the origin from the field value of O(Mpl) when

Hosc ≃ m3/2. Therefore, the B − L asymmetry is estimated as nB−L(tosc) ≃ ϵm3/2|Φosc|2,
where ϵ ≃ O(1) and |Φosc| ≃ Mpl, if the potential for the AD field is given as Eq. (4.5).

4 Reference [122] numerically confirms this behavior in the context of the evolution of the PQ field.
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4.2 Baryon asymmetry and dark matter abundance

In this section, we show that the baryon to dark matter ratio is simply given by the

LSP mass and a branching fraction of the moduli/Polonyi decay into superparticles in

this scenario. Before calculation, let us summarize our scenario. When H ≃ mη ≃
m3/2 ≃ O(100)TeV, both the moduli and the AD fields roll down to their origins with

the amplitudes of the order of the Planck scale. At that time, the AD field generates

the B − L asymmetry which is later converted to the baryon asymmetry through the

sphaleron process. Then, entropy production occurs by some mechanism and dilutes

both the moduli density and the baryon asymmetry. After the dilution, the moduli field

decays into superparticles which consequently decay into LSPs before the epoch of the

BBN. Thus, the dark matter density is determined by the abundance of the non-thermally

produced LSPs, assuming that the thermal relic density of LSPs is negligible.

Firstly, we estimate the produced baryon asymmetry. Assuming that the inflaton

decays after the onset of the oscillation of the AD field, the baryon to entropy density

ratio is estimated as

nB

s
=

8

23

1

∆

3T inf
RHnB−L

4ρinf

∣∣∣∣
osc

≃ 2

23

ϵ

∆

T inf
RH

m3/2

(
|Φosc|
Mpl

)2

, (4.14)

where ρinf denotes the energy density of the oscillating inflaton, and ∆ is the dilution

factor defined in Eq. (2.60). TRH is the reheating temperature after the inflaton decays.

Note that the baryon number density is comparable to the density of the moduli field

because both the AD field and moduli field simultaneously begin their oscillation with

the same amplitude of the order of the Planck scale.

Let us make a comment on Q-ball formation. In our scenario, the AD field value at

the onset of the oscillation is as large as the Planck scale. Thus, the formed Q-balls may

be too large to decay before the BBN if Q-ball formation occurs, which renders the AD

mechanism ineffective. Hence, the beta function for the soft mass of the AD field may

need to be positive in order to prohibit the Q-ball formation. This requires the AD field

to involve scalar fields which have large Yukawa couplings.

Next, we estimate the dark matter abundance. From Eq. (2.32), the LSP-to-entropy

ratio is estimated as

ρLSP
s

= mLSP
2BrSUSY

∆

nη

si
≃ BrSUSY

∆

T inf
RHmLSP

4mη

(
η0
Mpl

)2

, (4.15)

where BrSUSY denotes a branching fraction for the moduli/Polonyi decay into two super-
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particles,5 and mLSP denotes the LSP mass. The number of the produced superparticles is

almost equal to that of the LSPs due to the R-parity conservation. Here we assume that

the moduli field decays after the dilution and that the pair annihilation between LSPs is

not efficient. This assumption depends on the annihilation cross section (see Eq. (2.66)).

When the neutral wino with a mass of O(1)TeV is the LSP and the moduli decay tem-

perature Tη is about O(10)MeV, the first term of Eq. (2.66) exceeds the observed dark

matter abundance as explained in Sec. 2.5.2. Therefore, if the LSP abundance estimated

in Eq. (4.15) does not exceed the dark matter abundance, the pair annihilation is not

efficient. Moreover, we assume that the decay products other than the LSPs do not con-

tribute to the dark matter abundance. Hence, the dark matter abundance is explained

by the non-thermally produced LSPs in this scenario.

Let us compare the dark matter abundance with the baryon asymmetry created by

the AD mechanism. The ratio of moduli to B − L number density remains the same

after they begin their oscillations since the densities of both components decreases as a−3.

From Eqs. (4.14) and (4.15), we obtain the following relation:

ΩB

ΩLSP
=

8

23

ϵ

BrSUSY

mpmη

mLSPm3/2

(
|Φosc|
η0

)2

≃ 0.33ϵ

(
BrSUSY

10−3

)−1 (mLSP

1TeV

)−1
(
|Φosc|
η0

)2

, (4.16)

where mp represents the proton mass (mp ≃ 0.938GeV). Here, we assume mη ≃ m3/2.

Note that η0 and |Φosc| are of the order of the Planck scale and that ϵ is of O(1). One

can find that the baryon to dark matter ratio is determined by the LSP mass and the

branching fraction of the moduli decay into superparticles. Assuming that the LSP mass

is of O(1)TeV, BrSUSY is required to be of O(10−3) in order to realize the observed value,

ΩB/ΩDM ≃ 0.18 [2].

This scenario needs the entropy production, e.g., the thermal inflation. Let us estimate

the required amount of the entropy production. The observed dark matter to entropy

density ratio is given by [2]

ρ(obs)DM

s0
≃ 4.4× 10−10 GeV, (4.17)

where ρ(obs)DM denotes the observed dark matter energy density. Comparing Eq. (4.15) with

5 Gravitinos are not produced from the Polonyi decay assuming that the decay is kinematically for-
bidden (mZ < 2m3/2). The abundance of gravitinos produced during the reheating becomes negligible
after the dilution.
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Eq. (4.17), the dilution factor of the required entropy production is estimated as

∆ ≃ 1.9× 1012
(

T inf
RH

109 GeV

)(mLSP

1TeV

)(BrSUSY

10−3

)( mη

300TeV

)−1
(
η0
Mpl

)2

, (4.18)

where we assume that the inflaton decays after the moduli and the AD field start to oscil-

late. This is the case for T inf
RH ! 1012 GeV(mη/300TeV)1/2. mη should be of O(100)TeV

in order to relax the constraint from the BBN. Note that the dilution factor is estimated

assuming that the entropy production occurs before the moduli decays.

When the moduli field decays through dimension 5 operators suppressed by the Planck

scale, the branching fraction of the decay into SUSY particles is generally comparable to

that into the standard model particles (BrSUSY ≃ O(1)). Moreover, the AD mechanism

discussed in the previous section works the most efficiently since ϵ ≃ O(1) and |Φosc| ≃
Mpl. Therefore, it is found that the AD mechanism cannot explain the observed baryon

asymmetry even if the moduli mass is as heavy as O(100)TeV (see Eq. (4.16)).

4.3 Sequestering model and decay process of Polonyi
field

In the previous section, we concluded that the AD mechanism cannot explain the baryon

asymmetry assuming that the branching fraction of the moduli decay into SUSY particles

is O(1). In this section, we focus on the Polonyi field and study a way to suppress

the branching fraction into SUSY particles (BrSUSY ≃ O(10−3)). Here, we consider the

so-called sequestering model [116, 123],6 in which the SUSY breaking (Polonyi) sector is

sequestered from the visible sector.

The Kähler potential and the superpotential are given by

K = −3M2
pl log

[
1− fvis + fhid

3M2
pl

]
, (4.19)

and

W = Wvis +Whid, (4.20)

respectively. The subscripts of vis and hid denote the visible and the hidden sectors (SUSY

breaking sector), respectively. We also assume that the standard model sector does not

6 The sequestering model has been introduced in the context of extra dimension [116]. It is also
realized in a four dimensional strongly coupled CFT [124–127].
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directly couple to the hidden sector:

Lgauge =

∫
d2θ

[
1

4
τvisŴ

aŴa + h.c.

]
, (4.21)

where Ŵ a denotes field strength supermultiplets of the visible standard model gauge

sector, and τvis is a holomorphic function which depends only on visible sector fields.

In this setup, gaugino masses vanish at tree levels because the Polonyi field does not

appear in the gauge sector. The quantum corrections to the gaugino masses arise only at

loop-suppressed levels, which mainly come from the anomaly mediation [116,117]. Then,

the lightest gaugino is the neutral wino with a mass ofO(1) TeV whenm3/2 ≃ O(100)TeV.

This is compatible with our scenario with the neutral wino LSP.

Soft scalar masses also vanish at tree levels when the Kähler potential is given by

Eq. (4.19). They acquire loop-suppressed contribution from the anomaly mediation [116,

117], Planck-suppressed interactions [128] and so on. If the MSSM scalars acquire their

masses only from the anomaly mediation, slepton masses would become negative. This is

problematic in terms of the phenomenology. Thus, there should be other sources to give

them positive masses. One of such candidates is one-loop corrections from the Planck

suppressed interactions [116,128]. When a cut-off scale is taken around the gravitational

scale, one-loop correction can exceed the anomaly-mediated masses which appear at the

two-loop level.7 In this case, sfermion masses are of O(10)TeV whenm3/2 ≃ O(100)TeV.8

When the soft masses and the supersymmetric masses (µ-term) of the Higgs fields are

of O(10)TeV and of O(1)TeV, respectively, the B-term (∼ µm3/2) is comparable to the

scalar masses, which leads to the successful electroweak symmetry breaking. The higgsino

with mass of µ ∼ O(1)TeV could be the LSP instead of the neutral wino. When the soft

masses are of O(1)TeV, the B-term is generally too large to realize the electroweak

symmetry breaking. In the Next-to-MSSM,9 however, the supersymmetric Higgs mass

term is generated as the breaking term of the scale invariance, and the (effective) B-term

appears at loop-suppressed levels.

Since the SUSY breaking sector is now sequestered from the AD field, the functions fi
(i = 1, 2, 3) in Eq. (4.4) do not contain the Polonyi field.10 Even in this case, the potential

7 When the one-loop correction determines scalar masses, the mass spectra of MSSM scalar particles
become UV sensitive, which is contrary to the anomaly-mediated masses. Thus, we lose a solution to
the SUSY FCNC problem unless the universality condition is imposed at the UV scale. There also exists
other UV insensitive models which solve the negative slepton mass problem [129–133].

8 The lightest Higgs boson mass acquires radiative corrections from stop one-loop diagrams [134–138].
Stop mass of O(10)TeV is compatible with the relatively heavy observed Higgs boson mass of 125GeV.

9 For a review, see Ref. [139].
10 In the early universe, the inflaton sector breaks the SUSY, which generates the Hubble induced mass
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for the AD field involves the holomorphic A-terms and the quartic term of O(m2
3/2) due

to the explicit breaking of the conformal symmetry. By requiring that the vacuum energy

vanishes, the coefficients in Eq. (4.5), an and c4, are estimated as an ≃ −f2(n − 1) and

c4 ≃ f3 when f1 = 1. Note that the estimated values contain uncertainties of O(1).

Let us consider the decay process of the Polonyi field, Z (for details, see [140, 141]).

Firstly, the Polonyi field generally decays into 2 gravitinos at tree levels whenmZ > 2m3/2,

where mZ denotes the mass of the Polonyi field. This decay process is incompatible with

our scenario since the branching fraction of the decay of the Polonyi into SUSY particles

is required to be of O(10−3). Hence, we assume that the decay into 2 gravitinos is

kinematically forbidden (mZ < 2m3/2).

The decay into matter scalars comes from the kinetic terms for the sequestered po-

tential:

LK = gij∗∂µφ
i∂µφ∗j, (4.22)

where φi denotes the matter scalar fields, and gij∗ = ∂2K
∂φi∂φ∗j . The kinetic terms are

converted into the following form up to a total derivative:

LK ∼ Z

Mpl
φi∂2φ∗j + h.c.. (4.23)

Using the equation of motion, interaction terms from the kinetic terms are proportional

to the scalar mass squared. Thus, the branching fraction of the decay mode Z → φiφ∗j

is suppressed by a factor of O(m4
φ/m

4
Z) ∼ O(10−4-10−5) when the scalar mass is smaller

than the Polonyi mass. The Polonyi field also decays into matter scalar fields through

one-loop diagrams by Planck-suppressed interactions, but the rates of these decays are

the same order with that of the tree-level decay. Similarly, the branching fraction into

matter fermions is proportional to fermion mass squared and is negligible. The decay

rate into higgsinos with masses of µ ∼ O(1) TeV is the same order with that into matter

scalar fields since it is suppressed by a factor of O(µ2/m2
Z) ∼ O(10−4).

Decay into three-body final states is suppressed for the sequestered potential. In

general, the decay of Z → φiχjχk, where χi denotes the matter fermions, occurs through

the following interaction:

Lthree = −1

2
e

K
2M2

pl

(
KZ

M2
pl

Wijk − 3Γl
ZiWjkl

)
Zφiχjχk + h.c., (4.24)

term. In order to generate the negative Hubble induced mass term for the AD field, the inflaton sector
should not be sequestered from the visible sector.
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where the subscripts represent the derivative by the scalar fields, and Γi
jk = gil

∗
gjl∗k. One

can find that this term vanishes if the Kähler potential is given by the form of Eq. (4.19).

For the same reason, the decay of Z → φiφjφk does not occur, either.

Since the Polonyi field is not directly coupled with the gauge sector, it does not decay

into gauge bosons and gauginos at tree levels. However, it can decay into them through

the anomaly-mediated effects. When the mass of the Polonyi field is dominated by a

supersymmetric mass term, the interaction term between Z and the gaugino λ are given

by [142]

Lanomaly =
αb0mZ

24πMpl

KZ

Mpl
Z∗λλ+ h.c., (4.25)

where α = g2/4π represents a gauge coupling constant, and b0 = 3TG − TR is the coef-

ficient of the beta function. Since the SUSY breaking mass term is comparable to the

supersymmetric mass term, the interaction terms are deviated from Eq. (4.25) by O(1).

From Eq. (4.25), the decay rate is estimated as [142]

Γ(Z → 2λ) ≃ Ngα2b20
4608π3

|KZ |2

M2
pl

m3
Z

M2
pl

, (4.26)

where Ng is the number of gauginos. The decay rate of Z into 2 gauge bosons is also the

same as Eq. (4.26). The most important process is the decay into gluons and gluinos. We

can estimate its rate by using Ng = 8 and b0 = 3.

In summary, the Polonyi field mainly decays into gluinos and gluons through the

anomaly-mediated effects for the sequestered Kähler potential. If it is the leading pro-

cess, however, the Polonyi field becomes long-lived, and the constraint from the BBN is

again severe even with mZ ≃ O(100)TeV. We need some other efficient decay processes.

Note that those decay processes should not yield large dark matter abundance. As a

suitable decay process, we consider the decay of the Polonyi field into a (pseudo-)Nambu

Goldstone Boson (NGB). To be specific, we introduce the QCD axion [143–146]. The ax-

ion is a pseudo-NGB associated with the spontaneous breaking of the Peccei-Quinn (PQ)

symmetry and appears as a phase direction of the PQ field. Here we assume that the

PQ field also belongs to the visible sector, which is natural as the PQ field must directly

couple to standard model charged particles.

Let us consider the following supersymmetric axion model [133,147]:

WPQ = κY
(
PP̄ − v2PQ

)
+ λPXX̄, (4.27)

where Y is a gauge singlet superfield with no PQ charge. P and P̄ are PQ fields with

PQ charge of +1 and −1. X and X̄ are superfields that have the standard model gauge
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charge and global PQ charge of −1/2. κ and λ are dimensionless coupling constants. vP
denotes the scale of the PQ symmetry breaking. The F -term scalar potential is given by

VPQ,F = |κ|2
∣∣PP̄ − v2PQ

∣∣2 + |κY |2
(
|P |2 +

∣∣P̄
∣∣2
)
, (4.28)

where we omitted the contribution from the second term in Eq. (4.27) assuming that

the scalar fields of X and X̄ are stabilized at the origin. From the first term, one can

find that ⟨PP̄ ⟩ = v2PQ at the global minimum. On the other hand, the scalar field of Y

acquires the VEV of ⟨|κY |⟩ ≃ m3/2 considering linear terms from the supergravity effects,

V ≃ aY κY v2PQ + h.c., where aY is a dimensional parameter of the order the gravitino

mass. Therefore, P and P̄ acquires equal masses of the order of m3/2. In this case, the

VEVs of P and P̄ are almost the same, and they are expanded as

P = vPQ exp

(
s+ ia

2v2PQ

)
, (4.29)

P̄ = vPQ exp

(
−s+ ia

2v2PQ

)
, (4.30)

where s and a denote the saxion field and the axion field, respectively.

As is the same with Eq. (4.23), the PQ fields interact with the Polonyi field through

the kinetic terms as follows:

LK =

(
c
Z

Mpl
P∂2P ∗ + h.c.

)
+

(
c̄
Z

Mpl
P̄∂2P̄ ∗ + h.c.

)
, (4.31)

where c and c̄ are dimensionless constants assumed to be complex. Substituting Eqs. (4.29)

and (4.30) for Eq. (4.31), one can find that there exists kinetic mixing terms between the

Polonyi field and (s)axion. In other words, Eq. (4.31) contains the following terms:

Lmixing = −ϵR∂µzR∂µs− ϵR∂µzI∂
µa− ϵI∂µzR∂

µa+ ϵI∂µzI∂
µs, (4.32)

where ϵR and ϵI are given by

ϵR =
(cR − c̄R)vPQ√

2Mpl

, ϵI =
(cI − c̄I)vPQ√

2Mpl

. (4.33)

Here, zR and zI denote a real and an imaginary component of the Polonyi field (Z =
1√
2
(zR + izI)), respectively. cR (c̄R) and cI (c̄I) also represent a real and imaginary part

of c (c̄), respectively. Note that ϵR ≪ 1 and ϵI ≪ 1 when the PQ breaking scale is much
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smaller than the Planck scale. On the other hand, these fields are considered to have the

following mass terms:

Vmass =
1

2
m2

ss
2 +

1

2
m2

zR
z2R +

1

2
m2

zI
z2I , (4.34)

where ms, mzR and mzI represent the saxion mass, and the Polonyi masses of the order

of the gravitino mass. This term is obtained from the second term in Eq. (4.28). In order

to estimate the rate of the Polonyi decay into axions, we need to diagonalize the kinetic

mixing terms and transform the bases into mass eigenstates.11 From Eq. (4.31) in these

bases, we obtain the following interactions:

L = −ξR
ẑR√
2Mpl

∂µâ∂
µâ+ ξI

ẑI√
2Mpl

∂µâ∂
µâ, (4.35)

where ξR and ξI are given by

ξR ≃ cR + c̄R
2

, ξI ≃
cI + c̄I

2
, (4.36)

at the leading order of ϵR and ϵI . Here, we used â to show the mass eigenstate of the

massless direction. ẑR and ẑI also denote the mass eigenstates of the Polonyi field.

The rate of the Polonyi decay into axions12 is estimated as

Γ(zi → 2â) =
ξ2i
64π

m3
zi

M2
pl

, (4.37)

where the subscript of i represents R or I. Assuming that ξi is of O(1), the Polonyi decay

temperature TZ is estimated as

TZ ≃ 7.1MeV
( mZ

300TeV

)3/2
. (4.38)

Note that the Polonyi density does not dominate the universe at its decay since we assume

that the dilution occurs before the decay. Even when the Polonyi field is a subdominant

component of the universe, it must decay before the BBN in order not to destroy synthe-

sized light elements. Hence, the Polonyi should be as heavy as O(100)TeV.

11 Diagonalizing the kinetic mixing terms leads to the non-diagonal mass matrix of the canonical scalar
fields. After that, the mass matrix is diagonalized by the rotation matrix.

12 The decay products of the Polonyi field could contain the saxion and the axino that is a superpartner
of the axion. Since the decay into them could lead to the overproduction of LSPs, we assume that such a
decay process is kinematically forbidden, in other words, 2ms > mZ and 2mã > mZ , where mã represents
the axino mass.
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The rate of the loop-suppressed decay (Eq. (4.26)) is much smaller than that of the

tree-level decay (Eq. (4.37)), and we obtain the branching fraction of the Polonyi decay

into superparticles as

BrSUSY =
Γ(Z → 2 superparticles)

Γ(Z → 2 axions)
∼ 1× 10−3. (4.39)

Since the axion mass is typically much smaller than the LSP mass, the abundance of

axions produced from the Polonyi decay is negligible compared with the LSP abundance.13

Therefore, the dark matter abundance is determined by the abundance of the decay

products of the suppressed decay into superparticles. The axion also gives a negligible

contribution to the dark radiation. From Eqs. (4.16) and (4.39), it is found that the

observed baryon-to-dark matter ratio of ΩB/ΩDM ≃ 0.18 is explained in the sequestering

model with the (pseudo-)NGB.

In summary, we have considered the cosmologically consistent scenario in the pres-

ence of a heavy moduli/Polonyi field. When the moduli/Polonyi field is as heavy as

O(100)TeV, it can decay before the onset of the BBN, but the abundance of LSPs pro-

duced by the decay is often overproduced. In the case of the moduli field, even the AD

mechanism cannot explain the observed baryon asymmetry when some mechanisms di-

lute the moduli abundance in order to avoid the LSP overproduction. In the case of the

Polonyi field, the baryon asymmetry can be explained by the AD mechanism if the visi-

ble sector and the SUSY breaking sector is sequestered and the visible sector contains a

(pseudo-) NGB, which can be identified with the QCD axion. In this model, the Polonyi

field decays into NGBs at the tree level, which do not contribute to the dark matter abun-

dance. On the other hand, it decays into superparticles mainly through anomaly-induced

interactions and hence is suppressed compared with the decay into NGBs.

13 We also assume that the density of the coherent oscillation of the axion field does not exceed the
observed dark matter density, which implies vPQ/NDW ∼ 109-13 GeV.
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Chapter 5

Conclusion

In this thesis, we considered the cosmological consistent scenarios explaining the observed

baryon asymmetry in the presence of the moduli/Polonyi field. As mentioned in Chap. 2,

although the thermal inflation can dilute the moduli abundance sufficiently, well-known

baryogenesis scenarios such as the leptogenesis cannot produce baryon number enough to

survive after dilution.

In particular, the AD mechanism is the most promising baryogenesis with such huge

dilution. In Sec. 3.3 and 3.4, we reviewed that the AD mechanism cannot explain the

baryon asymmetry in both gravity-mediation and gauge-mediation models for the moduli

mass of mη ! O(1)TeV. It has been pointed out that Q-ball formation makes it difficult

to explain the baryon asymmetry in Ref. [112]. We refined the estimated baryon number

using the new lower bound of the SUSY breaking scale (Eq. (3.7)), and show that this

scenario is more unlikely to work. In Sec. 3.5, we considered alternative scenario without

Q-ball formation using the LHu direction, which has not been considered in Ref. [112].

However, it was found that the thermal inflation moduli are overproduced in this scenario.

In Chap. 4, we considered the case of the heavy moduli/Polonyi field with mη ≃
O(100)TeV. We introduced one simple way for the AD mechanism to work the most

efficiently in high scale SUSY models. However, we showed that the AD mechanism

cannot explain the baryon asymmetry when the moduli abundance is diluted in order to

avoid the LSP overproduction. In the case of the Polonyi field, we showed that the correct

baryon-to-dark matter ratio can be achieved in sequestering models with a (pseudo-) NGB.
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