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Abstract 

Lately, biomarker discovery has gained prominence as a significant research issue 

in the biomedical field. Owing to the presence of high-throughput technologies, 

genomic data, such as microarray data and RNA-seq, have become widely 

available. As biomarker discovery is typically modeled to determine the most 

discriminating features from the datasets, it can be described as a feature selection 

problem regarding class. Many kinds of feature selection techniques have been 

applied to retrieve significant biomarkers from these kinds of data. However, they 

tend to contain high-dimensional features with only a small number of samples; 

thus, conventional feature selection approaches may be problematic in terms of 

reproducibility. In addition, conventional studies mostly focus on genes that are 

differentially expressed in different states of cancer only; however, noise in gene 

expression datasets and insufficient information in limited datasets impede precise 

analysis of novel candidate biomarkers. 

In this thesis, I propose ensemble feature selection approaches for discovery of 

candidate cancer biomarkers. Ensemble feature selection involves integration of 

different kinds of feature selectors to obtain more robust results through instance 

perturbation and merging of multiple datasets. First, I propose an ensemble l1-norm 

support vector machine to efficiently reduce irrelevant features by considering the 

feature stability. I define the stability score for each feature by aggregating the 

ensemble results, and utilize backward feature elimination on a purified feature set 

based on this score; therefore, it is possible to acquire an optimal set of features for 

improved performance without the need to set a specific threshold. The proposed 



 

 

4 

methodology is evaluated by classifying the binary stage of renal clear cell 

carcinoma with RNA-seq data. A comparison with established algorithms enables 

me to prove the superior performance of my method in terms of classification as 

well as stability in general. It is also shown that the proposed approach performs 

moderately on high-dimensional datasets consisting of a very large number of 

features and a smaller number of samples. In addition, I propose an integrative 

analysis of gene expression and DNA methylation using normalization and 

unsupervised feature extractions to identify candidate cancer biomarkers. Gene 

expression and DNA methylation datasets are normalized through Box-Cox 

transformation and integrated into a one-dimensional dataset that retains the major 

characteristics of the original datasets through unsupervised feature extraction 

methods. Differentially expressed genes are then selected from the integrated 

dataset. Use of the integrated dataset yields improved performance as compared 

with conventional approaches that utilize gene expression or DNA methylation 

datasets alone. Validation based on literature shows that a considerable number of 

top-ranked genes from the integrated dataset have known relationships with cancer, 

implying that novel candidate biomarkers can also be acquired from the proposed 

analysis method. The proposed approaches are expected to be applicable to various 

research studies that aim at candidate cancer biomarker discovery. 
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Introduction 

At present, biomarker discovery is one of the most important research topics 

worldwide. In particular, detection of significant biomarker genes related to cancer 

is important for early diagnosis and treatment of cancer. With the prevalence of 

high-throughput technologies, genomic data such as RNA-seq have become widely 

available for studies targeting biomarker discovery. Generally, biomarker discovery 

is modeled as a feature selection process that determines the most discriminating 

features from datasets. However, because of the availability of a limited number of 

samples as compared to the number of features and the existence of a large amount 

of noise in genomic datasets, conventional feature selection techniques cannot be 

applied directly. 

In this study, I propose ensemble feature selection approaches for discovery of 

candidate cancer biomarkers. Ensemble feature selection can be defined as the use 

of different selectors through integration of feature selection methods, feature 

perturbation, instance perturbation, or dataset perturbation, as shown in Figure 1. 

Ensemble feature selection involves integration of different kinds of feature 

selectors to obtain more robust results through instance perturbation or merging of 

multiple datasets. Section 1 describes a novel ensemble feature selection method 

based on the l1-norm support vector machine (SVM) [1]. To be specific, l1-norm 

SVM, which efficiently reduces the number of irrelevant or redundant features and 

produces sparse feature sets, is applied over bootstrap samples produced by random 

sampling of the original dataset. Through this process, high stability as well as high 

classification performance can be achieved. Most of the research described in 
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section 1 has been referenced from [1]. Section 2 focuses on integrative analysis of 

gene expression and DNA methylation. It is known that DNA methylation is a key 

regulator of gene expression; thus, it is expected that better understanding of gene-

regulatory mechanisms can be acquired by integrating DNA methylation and gene 

expression datasets. I apply Box-Cox normalization and unsupervised feature 

extraction methods to merge DNA methylation and gene expression datasets into a 

one-dimensional dataset containing their main characteristics. Integrative analysis 

shows generally superior performance as compared to use of the gene expression or 

DNA methylation dataset only. I believe that the proposed method can be applied 

efficiently to several kinds of biomarker discovery task. 
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Figure 1 – Examples of ensemble feature selection methods 

The ensemble feature selection can be implemented through the integration of feature 

selection methods, feature perturbation, instance perturbation, and dataset perturbation. In 

this research, instance perturbation (Section 1) and dataset perturbation (Section 2) are 

utilized as ensemble selection methods. 
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Section 1: 

Stable feature selection based on the ensemble l1-norm 

support vector machine for biomarker discovery 
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Background 

Biomarker discovery has gained prominence as a significant research objective in 

recent years. Because biomarker discovery is typically modeled to determine the 

most discriminating features for classification, it can be described as a feature 

selection problem regarding class from the viewpoint of machine learning [2-4]. 

Feature selection is a step that involves identification of the most salient features 

for learning [5] and enables the performance of the classifier to be enhanced by 

eliminating irrelevant features that cause inaccurate prediction or over-fitting 

problems. In addition, the time required for learning is reduced as feature selection 

serves to lower the dimensionality. Although classification without a feature 

selection process may improve the classification performance, many features 

complicate result interpretation. In short, feature selection not only enhances the 

classification performance, but also improves understanding and analysis of the 

data. The emergence of new high-throughput technologies has made genomic data, 

such as microarray data and RNA-seq, widely available for biomarker discovery. 

However, the distinct characteristics of biomedical data, which often contain far 

more features than the number of samples, ensure that applying conventional 

feature selection approaches may be problematic, especially regarding 

reproducibility. That is, small changes in the dataset could induce large changes in 

the feature selection result, emphasizing some features that should not be 

considered as candidates for important biomarkers. Feature selection in the 

biomedical field should consider feature stability as well as influence on the 

classification performance. Some researchers suggested use of ensemble feature 

selection based on instance perturbation to address this problem [6-8]. Their 
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investigations proved that the stability of the selected features was significantly 

improved by performing feature selection on slightly different datasets and 

aggregating their results. Furthermore, research combining lasso regression with 

resampling was performed [9,10]. This showed that the l1-norm of lasso regression 

tends to force the solution to sparsity, and exhibits high efficiency for feature 

selection in regression problems. 

In this study, I propose a stable feature selection method based on the l1-norm 

support vector machine (SVM). The basic concept of the l1-norm SVM is similar to 

that of lasso regression, but the former is tailored for classification tasks, which is 

the model for many biomarker discoveries. In addition, as SVM tries to maximize 

the margin between the closest support vectors, the classification model becomes 

more robust. The l1-norm SVM efficiently reduces the number of irrelevant or 

redundant features to fewer than the number of samples; thus, it is appropriate for 

biomedical high-dimensional data. As the proposed method is applied over instance 

perturbation steps, the stability issue, which is one of the most critical problems of 

the l1-norm, can also be managed. Furthermore, the optimal subset of selected 

features is detected by applying backward feature elimination to the proposed own 

ranking criteria. By eliminating features one by one based on the ranking criteria as 

generated by the l1-norm SVM, a cross-validated classification score is calculated 

and a subset of features that maximizes classifier performance is acquired. 

Here, the proposed method is tested for renal clear cell carcinoma stage 

classification. I use an RNA-seq gene expression dataset of renal clear cell 

carcinoma samples from the Cancer Genome Atlas (TCGA) for my study. I 

compare my approach with three established feature selection methods, namely, a 
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fast correlation-based filter (FCBF) [11], random forest [12], and an ensemble 

version of SVM-based recursive feature elimination (SVM-RFE) [13], from the 

viewpoint of classification performance and stability of the selected features. This 

experiment shows that my method is capable of good classification performance 

and stability. 
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Methods 

Materials and pre-processing 

The RNA-seq gene expression dataset of renal clear cell carcinoma was obtained 

from Broad GDAC Firehose, one of the genome data analysis centers of the TCGA 

project [14]. Level-3 RNAseqV2 datasets of kidney renal clear cell carcinoma 

(KIRC) were used for the experiments. Several studies have used reads per 

kilobase million (RPKM) or fragments per kilobase million (FPKM) to measure 

gene expression levels from RNA-seq data. However, RPKM and FPKM are 

unsuitable for comparisons among different samples [15]; therefore, I selected 

transcripts per million (TPM) to measure gene expression. TPM allows 

comparisons among different samples, as the sums of all TPMs in each sample are 

the same. TPM can be calculated using FPKM by the following expression: 

 6

1

10i
i n

j
j

FPKM
TPM

FPKM


 


 (1) 

TPM vectors obtained through expectation maximization (RSEM) [16] and 

normalized by z-score were used as estimates for the gene expression level. I 

utilized only tumor samples and discarded genes and samples that contained 

invalid or null values. The pathogenic stage information of the renal clear cell 

carcinoma samples was retrieved from TCGA clinical dataset biotab files and set as 

the class labels of the gene expression data. Basically, the stage was divided into 

four stages, namely, stages I, II, III, and IV, based on the tumor-node-metastasis 

(TNM) stage groupings, which are decided by the size of the tumor, the lymph 

nodes involved, and distant metastasis [17]. I considered only two stages, i.e., 
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stages I and IV, as stage-I renal clear cell carcinoma involves local tumors that only 

exist in the kidney, whereas tumors at stage-IV have grown into other tissues 

outside the kidney or have spread widely to other lymph nodes. Thus, the use of 

these stages could provide significant clues regarding tumor advancement and 

tumor metastasis. Samples for which the stage information was unclear were 

excluded from the test. After the filtering steps, the dataset consisted of 352 

samples, of which 268 and 84 were stage-I and stage-IV samples, respectively. 

Each sample consisted of the TPM vector for 20199 genes. 
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Ensemble l1-norm SVM-RFE 

SVM is an effective and popular method in machine learning, and its usage 

includes applications of this method to biomedical problems [18]. Conventionally, 

SVM has been used for classification tasks, but it can be also applied to feature 

selection by considering the weights of the classifier [4]. In addition, instead of 

using the general l2-norm for SVM, application of the l1-norm, which tends to 

produce sparse solutions, makes it possible to considerably reduce the number of 

features of a large feature set [19,20]. The maximum number of features selected 

by the l1-norm SVM is bounded by the number of samples [21]. Thus, this method 

is particularly suitable for biomarker selection from the RNA-seq data considered 

in this study, which usually contain far more features than the number of samples. 

However, application of the l1-norm SVM to a single dataset may produce a result 

that is excessively dependent on the sample set, even causing reproducibility 

uncertainty for datasets that are only slightly different. Moreover, difficulties are 

known to arise when applying the l1-norm to select closely correlated factors, as it 

tends to select only a single feature from among them and ignore the rest [22]. 

These problems can be addressed by applying the l1-norm SVM to a perturbed 

dataset. Here, I propose ensemble l1-norm SVM feature selection combined with 

data perturbation to consider stability. The flow of the algorithm is illustrated in 

Figure 2. As the l1-norm SVM is recursively applied until the optimal subset of the 

features is found, the proposed methodology can be described as l1-norm SVM-

RFE. 
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Figure 2 - The flow of the proposed method 

(1) Generate n random bootstrap samples, X1, X2, …, Xn, containing i% of the data of the 

whole training dataset X. 

(2) Perform a cross-validation test on each bootstrap sample to set regularization 

parameter C. 

(3) Apply the l1-norm SVM to each bootstrap sample. Then, the weight vector w is 

calculated for each feature. 

(4) Eliminate features for which the coefficient w = 0 in each bootstrap sample. 

(5) Record the cross-validation score for each bootstrap sample for step (7). 

(6) Repeat steps (2)(5) until no more features with w = 0 are available for any bootstrap. 
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(7) Select optimal feature subsets for each bootstrap sample, which maximize the cross-

validation score recorded in step (5). 

(8) Produce the integrated feature set of size k by aggregating all the remaining features in 

the bootstrap samples. 

(9) Convert X to the reduced dataset X’ that consists of features in k. Here, the number of 

bootstrap samples that contain a given feature is considered the “stability score” S for 

that feature (1 ≤ S ≤ n). 

 

For stable feature selection, I use bagging to generate n bootstrap samples from the 

training dataset [23,24]. A simple example of the proposed bootstrap is shown in 

Figure 3. There is no solid rule for setting the optimal value of n, and a related 

study showed that adjusting n only marginally affects the classification 

performance or stability [7]. Hence, a moderate value of n can be set, although it is 

expected that a slightly more converged result can be acquired by using a larger 

value. After generating n bootstrap samples, the regularization parameter of the l1-

norm SVM is optimized for each of the samples. Unlike the l2-norm SVM, the 

number of features to be reduced is automatically selected by the regularization 

parameter. The differences between l1-norm and l2-norm are listed in Table 1.  
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Figure 3 – An example of bootstrap aggregation 

 

Table 1 – The difference between l1-norm and l2-norm SVM-RFE 

l
1
-norm SVM-RFE l

2
-norm SVM-RFE 

Uses l
1
-norm penalty Uses l

2
-norm penalty

w
i
 = 0 for less-important features

☞ remove features with w
i
 = 0 

w
i 
≥ 0 for less-important features 

☞ k features to remove per iteration 
Automatic stopping criteria
☞ no more features of w

i
 = 0 

    (the only parameter - C) 

Criteria for stopping iteration 
☞ n features to select finally 
    (multiple parameters – C, k, n) 

Leads to sparsity (p ≤ n) Maintains density
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The optimization problem of the l1-norm SVM can be described as follows. 

 
2

1
,

1

min || || max(0, 1 ( ))
n

T
i i

w b
i

w C y w x b


     (2) 

Here, parameter C reflects a regularization parameter that solves the trade-off 

problem between the training error and the complexity of the model, and ||w||1 

denotes the l1-norm of the weight vector w. I apply a linear kernel as a kernel 

function, which is defined as follows. 

 ( , ) Tk x y x y   (3) 

If the number of features is large, the linear kernel is efficient, because mapping 

data to high-dimensional space usually does not improve the performance [25]. 

Hence, it is possible to obtain a comparable result at much lower cost. In addition, 

the linear kernel is less prone to over-fitting than non-linear kernels, and the only 

parameter that requires optimization is C. I find the optimal value of C by applying 

a grid search using 10-fold cross-validation on the training dataset, as demonstrated 

in Figure 4. The number of selected features are automatically adjusted by C as 

described in Figure 5. 
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Figure 4 – An example of C optimization through grid search 

The X- and Y-axes denote the value of C and the 10-fold cross-validation score, respectively. 

Here, 10-2 is selected as the optimal C value as its classification performance is the best. 

 

 

Figure 5 – An example of the correlation between the number of features 

selected and the regularization parameter C 

The X- and Y-axes denote the value of C and the number of features remained after the 

application of l1-norm SVM, respectively. If the larger C is selected, the number of selected 

features increases, and vice versa. 
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Next, the l1-norm SVM is implemented on each bootstrap sample to derive the 

sparse feature sets. In this step, the ranking criterion of the SVM for each feature, 

i.e., the size of w, is not considered. Therefore, all the features for which the 

coefficients have w > 0 are considered, which means that features that are selected 

for at least one bootstrap sample are considered. After eliminating features having 

coefficients with w = 0, I calculate and record the cross-validation score for each 

bootstrap sample. Similar to SVM-RFE, the above-mentioned steps are repeated 

until no more features can be reduced by the l1-norm SVM. However, reducing 

features does not always yield improved classification performance; sometimes, the 

classification performance may decrease through excessive filtering of features. 

Thus, I select the feature subsets that maximize the cross-validation scores as 

optimal features for each bootstrap sample. 

Then, the features that remain in all the bootstrap samples are aggregated. In the 

aggregation step, I only consider the frequency of each feature among all the 

bootstrap samples. It is plausible that the features remaining in a greater number of 

bootstrap samples are more stable. Therefore, for each feature, I regard the number 

of bootstrap samples that contain that feature as its “stability score.” This score is 

valuable for regularization of the number of features, for e.g., to ignore the features 

selected from less than 10% of the bootstrap samples when there is a need to 

reduce the features to less than the number of samples; this scenario commonly 

arises in the biomedical field.  

In the present study, instead of setting a specific cutoff point, I applied backward 

feature elimination based on the stability score to select the optimal subset, which 

is described in the next section. Finally, the dimension of the training dataset was 
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reduced to the number of features that remained after the previous steps. 
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Backward feature elimination for optimal feature subset selection 

A stable l1-norm SVM provides an efficient solution for eliminating and selecting 

features. However, there might be a subset for which the performance exceeds the 

one achieved by using all the selected features. Therefore, an additional process 

capable of extracting the particular feature subset that can improve the 

classification performance is required. For this purpose, I utilize the stability score 

described in the previous section, which reflects the number of bootstrap samples 

that contain a given feature. The stability score is aggregated from multiple 

bootstrap samples, thereby managing the stability issue that can arise when only a 

single dataset is used. I apply backward feature elimination to find one optimal 

subset of features for which the classification performance is best.  

In the experiment conducted in this study, I used SVM as the classifier; however, 

other classifiers can also be applied. Here, as the number of features decreased 

considerably because of the previous feature selection step, I applied the radial 

basis function (RBF) kernel, which generally performs better than the linear kernel. 

 2( , ) exp( | | )k x y x y     (4) 

Again, a grid search approach using 10-fold cross-validation was applied to 

optimize the parameters of the RBF kernel, C, and γ. The classification score was 

calculated on each fold of the cross-validation test and then aggregated. By 

eliminating the features with the lowest stability scores one by one, the 

classification score was calculated on all progressively smaller subsets until the 

subset size reached 1. Finally, the one feature subset that succeeded in maximizing 

the classification performance over the cross-validation test was acquired.  
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Performance test 

Conventionally, the feature selection performance is evaluated by measuring the 

classification performance. However, recent studies have placed great importance 

on the stability of the selected features, which indicates the reliability and 

reproducibility of the features. Instability of feature selection is mainly caused by 

the association of many features with a small number of data samples, which 

complicates the proper reduction of features. These characteristics are common for 

biomedical data such as RNA-seq; thus, a biomarker discovery study should 

consider stability as well as classification performance. 

Therefore, I evaluated the performance of the proposed method by measuring the 

classification performance and feature stability. Because the proposed feature 

selection procedure contains a resampling step, I employed an independent training 

and test set in addition to the cross-validation test. I applied a well-known 

classification algorithm after feature selection to evaluate the classification 

performance. Statistical measures in the form of the accuracy, F1 score, Matthews 

correlation coefficient (MCC), and area under the curve (AUC) were measured 

together to evaluate the classification performance.  

 TP TN
Accuracy

TP TN FP FN




  
 (5) 

 2

2

TP
F1

TP FP FN


 
  (6) 

 ( ) ( )

( )( )( )( )

TP TN FP FN
MCC

TP FP TP FN TN FP TN FN

  


   
  (7) 

 
1

0
( )AUC ROC x dx    (8) 
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Here, TP, TN, FP, FN, and ROC represent true positive, true negative, false 

positive, false negative, and the receiver operating characteristic curve, respectively. 

Then, I tested the stability of the selected features by calculating the Tanimoto 

distance T, which has been applied in several previous studies [26,27]. T is a 

statistical measure for calculating overlaps between two sets of elements of 

arbitrary cardinality and is calculated as follows. 

 
| | | | 2 | |

( , ) 1
| | | | | |

i j i j
i j

i j i j

S S S S
T S S

S S S S

 
 

 




  (9) 

Here |Si| and |Sj| denote the number of elements in sets Si and Sj, respectively. The 

Tanimoto distance Tn was obtained over multiple n sets of samples by calculating 

the arithmetic mean of T for each set of pairs, as described below. 

  
1

1 1

2
( , ) ( , )

( 1)

n n

n i j i j
i j i

T S S T S S
n n



  


     (10) 

Tn takes values between 0 and 1, where 0 means there is no overlap between the 

two sets, and 1 indicates that the two sets have identical elements. 

  



 

 

25

Results 

Feature selection 

The RNA-seq dataset was obtained from the Broad GDAC Firehose and filtered as 

described in the Methods section. Although cross-validation is one of the most 

popular methods for classification tests on a biological dataset, it tends to produce a 

dataset-dependent result, especially with a small sample size [28]. Hence, the 

classification performance should be evaluated through not only a cross-validation 

test, but also an independent data test. In this study, I ensured that the test remained 

independent of the dataset by randomly dividing the original dataset into a training 

set (80%) and a test set (20%). As a result, the training set consisted of 214 and 67 

stage-I and stage-IV samples, respectively, whereas the test set contained 54 and 17 

samples, respectively. Only the training dataset was utilized for the cross-validation 

test. The stability test was performed by randomly generating 20 subsets from the 

original dataset, each of which contained 80% of the entire number of samples. The 

FCBF feature selection test was implemented using Weka 3.7.13 [29], and the other 

experiments were all implemented in Python, using the scikit-learn 0.17 library 

[30]. 

Data perturbation was achieved by producing 1000 bootstrap samples containing 

80% of the data from the training set. Then, feature selection was performed by 

first calculating the C of the l1-norm SVM through a grid search, using 10-fold 

cross-validation on each bootstrap sample of the training data. I determined the 

best value in the range of C ∈ {10-5, 10-4, …, 103, 104}. Because the dataset 

contained bias in class proportions, simply considering accuracy as a performance 
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estimator was inappropriate. Instead, I regarded the AUC as the main criterion for 

evaluating the experiments. Thus, the value of C resulting in the best AUC score 

was selected for each bootstrap sample. 

Then, the l1-norm SVM was applied to 1000 bootstrap samples to filter the genes 

for which the coefficients were 0. I calculated and recorded the 10-fold cross-

validation score of the reduced feature sets at this point, to choose optimal feature 

sets for each bootstrap in the later step. These steps were repeated several times 

until no further feature reduction was possible. The remaining genes were 

aggregated to one gene set and ranked by the number of bootstrap samples that 

finally remained. 

Subsequently, as a revising step, backward feature elimination was performed to 

find the optimal feature subset for which the classification performance was best. 

Again, I used the AUC score as the main criterion for the classification 

performance. The SVM was selected as a classifier and 10-fold cross-validation 

was applied for the test. The grid-search method was also applied to set C and γ in 

the range of C ∈ {10-5, 10-4, …, 109, 1010} and γ ∈ {10-9, 10-8, …, 102, 103}, 

respectively. 

Then, the mean AUC score obtained from the cross-validation test was calculated. 

The score was recursively calculated by reducing the genes one by one, starting 

from the full gene sets, until a subset consisting of only one gene was tested. Figure 

6 demonstrates the alteration of the mean AUC score by use of backward feature 

elimination. 
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Figure 6 - Backward feature elimination for optimal subset 

Backward feature elimination was performed based on the ranking criteria. SVM with an 

RBF kernel was used as a classifier for calculating the cross-validation score. The X- and Y-

axes denote the size of the feature subset and 10-fold cross-validation AUC score, 

respectively. The red circle indicates the number of features with the highest AUC score in 

the experiment, i.e., 177 features with AUC = 0.996. 
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The performance of the proposed model was compared with three well-known 

feature selection methods, namely, FCBF, random forest, and an ensemble version 

of SVM-RFE. FCBF is a feature selection method that is used to remove irrelevant 

features based on symmetric uncertainty. Although FCBF does not consider the 

correlations among features, I selected it as a comparison target because this 

feature selection algorithm was adapted from a previous study that classified stage 

progression of renal clear cell carcinoma based on the RNA-seq dataset [31]. 

Random forest is a method based on decision trees that has been frequently used 

for both feature selection and classification. Random forest handles the stability 

issue by bootstrap aggregation (bagging), which is included in the algorithm. 

SVM-RFE is a feature selection method that recursively eliminates features for 

which the weight magnitudes of the l2-norm SVM are smallest [13]; this method 

has been proven to deliver superior performance, however, SVM-RFE is 

problematic in terms of stability when applied to a single dataset. Some previous 

researchers used the ensemble version of SVM-RFE based on instance perturbation 

to address this problem [32]. For the ensemble SVM-RFE employed in the 

comparison experiment, the fraction ratio for elimination in each step was set to 

20%, and a linear aggregation method that sums the rank over all bootstraps was 

used, as detailed in Ref. [7]. The number of bootstraps was set to 1000, and C was 

optimized in the same way as for the proposed method. As random forest and 

SVM-RFE provide only the ranking list of all features, I applied the backward 

feature elimination method to find the optimal subset of features, in a manner 

similar to the proposed method. The 10-fold cross-validation score was calculated 

by the classifier while features were added one by one based on the feature 
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rankings. Then, the optimal feature set that maximized the cross-validation score 

was acquired. The random forest classifier and SVM classifier with the RBF kernel 

were used as classifiers for the random forest and ensemble SVM-RFE, 

respectively. 

 

  



 

 

30

Performance evaluation 

For evaluating the performance, I first performed a stability test by creating 20 

random subsamples from the original dataset, which was constructed with 80% of 

the data. The stability test was performed using the Tanimoto distance T. I also 

tested the proposed method without bagging for comparison. Figures 7 and 8 show 

the mean and standard deviations of T for each method, respectively. As is apparent 

from the figures, the proposed method generally demonstrated higher stability 

when compared to the examined methods. The performance of the ensemble SVM-

RFE was similar to that of the proposed method. However, the l1-norm SVM 

without instance perturbation exhibited remarkably lower scores than the other 

methods, which proves the significance of ensemble selection for l1-norm-based 

methods. FCBF also resulted in a lower stability score than the other methods as it 

basically does not consider the stability issue. However, it exhibited the least 

variance, as it selects almost the same number of features within subsamples. 
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Figure 7 - Mean Tanimoto distance 

The arithmetic mean of the Tanimoto distance on 20 random subsamples was calculated as 

the stability score. The X-axis denotes the arithmetic mean of the Tanimoto distance of each 

method. 

 

 

Figure 8 - Standard deviation of Tanimoto distance 

The standard deviation of the Tanimoto distance on 20 random subsamples was calculated. 

The X-axis denotes the standard deviation of the Tanimoto distance of each method. 
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Then, a cross-validation test as well as an independent dataset test were conducted 

for evaluating the classification performance. As described in the subsection on 

datasets, the data included in the independent test set were not used for the feature 

selection process. Only the training set was used for the cross-validation test. Four 

popular classification methods, adaptive boosting (AdaBoost), logistic regression, 

random forest, and SVM with an RBF kernel, were used for performance 

evaluation. To deal with the overfitting problem, l2-norm was applied to logistic 

regression and SVM. Gene selection was performed by FCBF, random forest, 

ensemble SVM-RFE, and the proposed method before executing the classification 

tests. Figure 9 demonstrates the number of genes selected by each method. As 

random forest selected far more genes than the other methods and the number of 

genes was larger than that of the samples, there was a possibility of overfitting. 

Thus, an additional test with 180 genes was also conducted. The value of 180 was 

similar to the number of genes I used for the ensemble SVM-RFE method and the 

proposed method, and it resulted in only a minute difference in classification 

performance when compared to that obtained using 766 genes. I assessed four 

performance measures, namely, the accuracy, f1 score, MCC, and AUC for each 

classifier. Tables 2 and 3 compare the classification performance of the examined 

approaches for the independent data test and cross-validation test, respectively. As 

is apparent from the tables, the proposed algorithm exhibited the overall best 

performance as compared to most classifiers in terms of the performance indices in 

both the cross-validation test and independent dataset test. In particular, the 

proposed method with the SVM classifier exhibited the best performance among 

all techniques. 
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Figure 9 - The number of genes selected by each method 

The chart shows the number of genes selected by each feature selection method, namely, 

FCBF, random forest, ensemble SVM-RFE, and the proposed method. 
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Table 2 - Classification performance test with the independent dataset 

The performance scores of different methods were calculated on the independent dataset. 

The items that yielded the best scores are highlighted in bold. (The numbers below the 

random forest classifier denote the number of genes selected for the performance test.) 

Classifier 
Performance 

Measure 
FCBF 

Random 
forest 
(766) 

Random 
forest 
(180) 

Ensemble 
SVM-RFE 

Proposed 
method 

AdaBoost 

Accuracy 0.789 0.845 0.859 0.887 0.901 

F1-score 0.545 0.593 0.667 0.75 0.774 

MCC 0.408 0.532 0.588 0.68 0.717 

AUC 0.7 0.717 0.766 0.825 0.834 

Logistic 
regression 

Accuracy 0.789 0.789 0.817 0.845 0.845 

F1-score 0.651 0.595 0.667 0.718 0.732 

MCC 0.533 0.456 0.552 0.623 0.646 

AUC 0.801 0.74 0.799 0.838 0.858 

Random 

forest 

Accuracy 0.817 0.817 0.803 0.831 0.845 

F1-score 0.48 0.48 0.462 0.5 0.56 

MCC 0.426 0.426 0.381 0.479 0.531 

AUC 0.658 0.658 0.649 0.667 0.697 

SVM 

Accuracy 0.803 0.831 0.859 0.831 0.901 

F1-score 0.632 0.571 0.583 0.684 0.811 

MCC 0.504 0.489 0.589 0.577 0.749 

AUC 0.77 0.708 0.706 0.808 0.895 
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Table 3 - Classification performance test with cross-validation 

The mean performance scores of different methods were calculated for the 10-fold cross-

validation test. The items that yielded the best scores are highlighted in bold. (The numbers 

below the random forest classifier denote the number of genes selected for the performance 

test.) 

Classifier 
Performance 

measure 
FCBF 

Random 
forest 
(766) 

Random 
forest 
(180) 

Ensemble 
SVM-RFE 

Proposed 
method 

AdaBoost 

Accuracy 0.872 0.882 0.85 0.886 0.889 

F1-score 0.737 0.749 0.647 0.738 0.735 

MCC 0.668 0.677 0.568 0.676 0.686 

AUC 0.902 0.923 0.868 0.936 0.944 

Logistic 
regression 

Accuracy 0.833 0.853 0.822 0.957 0.978 

F1-score 0.704 0.722 0.664 0.915 0.958 

MCC 0.609 0.636 0.566 0.894 0.947 

AUC 0.904 0.893 0.853 0.994 0.997 

Random 

forest 

Accuracy 0.871 0.84 0.844 0.83 0.833 

F1-score 0.614 0.553 0.625 0.459 0.45 

MCC 0.579 0.504 0.557 0.473 0.457 

AUC 0.918 0.869 0.851 0.924 0.928 

SVM 

Accuracy 0.879 0.854 0.84 0.95 0.968 

F1-score 0.762 0.659 0.589 0.895 0.933 

MCC 0.692 0.58 0.514 0.865 0.914 

AUC 0.915 0.885 0.871 0.992 0.996 
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As the numbers of samples included in the datasets were quite small, even the 

reduced number of genes obtained after feature selection could be excessive. Thus, 

I conducted an additional classification performance test using only the top 20 

genes selected by each feature selection method. Figure 10 demonstrates the AUC 

scores of each feature selection method for these top 20 genes. The results show 

that the proposed method demonstrated the best performance with limited number 

of features. Then, I subjected the top 20 genes selected by the proposed method, 

specifically, C2orf55, CTAGE4, CPZ, ASAP1IT1, OASL, FABP7, NEGR1, SH2D1B, 

GARNL3, PLIN1, ZNF382, THEM220, SPATA7, LOC285733, CXCL11, KIR2DL4, 

LOC100134868, CENPBD1, KLRF1, and GLB1L3, to further analysis. By 

searching the literature, databases, and gene annotations, I found that 14 of the 20 

genes, namely, C2orf55, CTAGE4, CPZ, OASL, FABP7, NEGR1, SH2D1B, 

GARNL3, PLIN1, ZNF382, THEM220, CXCL11, KIR2DL4, and KLRF1, have 

known relationships with tumors. Further, 8 genes among those 14, OASL, FABP7, 

NEGR1, GARNL3, PLIN1, ZNF382, THEM220, and CXCL11, have known 

relationships with tumor progression and metastasis, which are directly related to 

the cancer stage. Thus, the other 6 genes that have no known relationships with 

tumors may also be considered as candidate genes for tumor or tumor progression 

and metastasis. 
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Figure 10 - Classification performance test using top 20 genes 

The AUC scores for the top 20 genes selected by each feature selection method were 

calculated for the independent dataset and 10-fold cross-validation test. 
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Section 2: 

Integrative analysis of gene expression and DNA 

methylation using unsupervised feature extraction for 

detecting candidate cancer biomarkers 
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Background 

In recent decades, detection of candidate biomarkers has been the focus of cancer 

research to support timely and accurate diagnosis and prognosis of the disease 

[33,34]. In particular, detection of diagnostic biomarkers is essential to help 

prevent cancer progression [35]. Conventionally, gene expression analysis using 

microarray or RNA-seq data has been an effective method for cancer biomarker 

discovery, and several studies have focused on identifying genes that are 

differentially expressed in different cancer states [36-39]. However, gene 

expression profiles do not contain a sufficient number of samples, and large 

quantities of noise exist in the datasets. Therefore, common strategies based solely 

on gene expression datasets hold limited potential for identifying novel candidate 

biomarkers. Recently, genome-wide variations in DNA methylation levels were 

shown to contribute significantly to cancer development [40,41]. Because DNA 

methylation is a key regulator of gene expression, it is expected that better 

understanding of gene-regulatory mechanisms can be acquired by integrating gene 

expression and DNA methylation datasets. Therefore, while several recent studies 

have focused on integrative analysis of gene expression and DNA methylation, 

most of them have separately analyzed gene expression and DNA methylation, or 

focused solely on genes that exhibited high levels of both expression and 

methylation [42-44]. 

In this part of the study, I propose an integrative analysis of gene expression and 

DNA methylation using normalization and unsupervised feature extraction. Feature 

extraction is a method that derives a set of features that efficiently represent 

significant portions of the original multi-dimensional data. Hence, a reduced one-
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dimensional dataset is obtained following application of feature extraction to gene 

expression and DNA methylation data, while retaining the main characteristics of 

the original datasets. This approach enables discovery of relationships between 

gene expression and DNA methylation for each gene that cannot be observed using 

single datasets. Therefore, analysis of differentially expressed genes in an 

integrated dataset enables discovery of novel, previously undetectable, candidate 

biomarkers. 
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Methods 

The overall methodology followed in this section is illustrated in Figure 11. 

 

 

Figure 11 - Overall process 

The process flowchart for the proposed method. Here, n and p denote the number of 

samples and genes in the datasets, respectively. 
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Materials and pre-processing 

The dataset used for the experiments conducted in this part of the study included 

gene expression and DNA methylation datasets, as well as clinical datasets, 

acquired from the pan-kidney cohort (KIPAN) of the Broad GDAC Firehose, a 

genome data analysis center associated with The Cancer Genome Atlas (TCGA) 

project [14]. The KIPAN dataset comprises three major types of renal cell 

carcinomas (RCCs): clear cell, papillary, and chromophobe RCCs, each of which 

can be distinguished microscopically by their cancer-cell morphology [45]. The 

pathogenic stages of the RCCs are divided into stages I, II, III, and IV based on 

tumor-node-metastasis (TNM) grouping according to tumor size, involvement of 

lymph nodes, and distant metastasis [16]. RCCs in stages I and II are local tumors 

that exist in the kidneys and differ in size only, whereas stages III and IV 

metastasize to tissues and lymph nodes outside the kidney. Therefore, stage 

information can be converted into binary stages of early (stages I and II) and late 

(stages III and IV), which are set as the class labels. The goal of this part of the 

study was to identify genes highly correlated with a specific cancer stage, to 

present them as significant candidate biomarkers of cancer and its progression. 

For pre-processing, normal samples were removed from each dataset, and genes 

and samples existing in only one dataset were discarded. Additionally, genes 

lacking variance between samples and samples without clinical information were 

removed from the datasets. After the pre-processing step, each dataset contained 

18,981 genes and 633 samples, which consisted of 417 early stage samples and 216 

late-stage samples, respectively. Descriptions of the datasets after pre-processing 

are provided in Table 4. 
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Table 4 - Details of the datasets after pre-processing 

Category Description 

Data source The Broad GDAC Firehose (TCGA) 

Data type 
Gene expression - Level 3 RNAseqV2 (TPM) 

DNA methylation - HumanMethylation450K (β value) 

Number of genes 18981 

 

Transcripts per million (TPM) was used to measure gene expression level. To 

represent the DNA methylation level of the genes, the β value from 1500 bp 

upstream of the transcription start site to the end of the gene was used. The β value 

describes the ratio of the methylated array intensity to the total array intensity: 

 / ( )M M U      (11) 

where M and U denote the methylated and unmethylated intensities, respectively, 

and α denotes a constant offset, usually set to 100. 

  



 

 

44

Normalization and rescaling 

In the pre-processing step, only genes and samples present in both the gene 

expression and DNA methylation datasets were selected. Consequently, the sizes of 

the gene expression and DNA methylation datasets were identical. As the units 

denoting gene expression and DNA methylation levels differed (TPM and β values, 

respectively), standardization of the two datasets was essential. First, the Box-Cox 

transformation was applied to normalize the datasets as follows [46]: 

 ,
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 (12) 

where λ denotes the regularization parameter, which maximizes the log-likelihood 

function. Additionally, as the scale, λ, was set differently for each gene, the datasets 

were rescaled into the range of [0, 1], as follows: 
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x x
f x

x x





 (13) 

As a result, the gene expression and DNA methylation levels were converted into 

normalized forms of the TPM and β values in the range of [0, 1]. 
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Feature extraction and selection 

After data normalization and rescaling, unsupervised feature extraction was applied 

to the gene expression and DNA methylation datasets to produce the integrated 

dataset. This was based on the hypothesis that the gene expression and DNA 

methylation status for each gene are correlated to a certain extent. Well-known 

algorithms, namely, principal component analysis (PCA) and an autoencoder, were 

applied as unsupervised feature extraction methods. PCA is a popular feature 

extraction method used to decompose a multivariate dataset into a set of 

components that express maximum variance [47]. Dimension reduction to one-

dimensional data is achieved by deriving a 1st principal component, which can be 

described as follows: 

 1

( )
argmax

T T

T

v X X v
v

v v

 
  

 
,  (14) 

where X and v denote the input data matrix and its eigenvectors, respectively. PCA 

is usually applied for linear feature extraction, although kernel functions can be 

applied to identify nonlinear relationships between features [48]. Therefore, a 

kernel PCA using a radial basis function was applied for the test in addition to 

linear PCA. 

An autoencoder is an unsupervised learning algorithm based on a neural network 

that equalizes the output values to the inputs [49]. By setting the number of the 

intermediate nodes to 1, a one-dimensional integrated dataset can be acquired 

similar to that in PCA. Figure 12 demonstrates the schematic structure of the 

autoencoder. The goal of the proposed autoencoder was to acquire a one-

dimensional representation of the intermediate hidden layer while preserving the 
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same amount of information as in the original two-dimensional data. To achieve 

this, the neural network was trained to minimize the mean square error between the 

input and output data. Here, a rectified linear unit was utilized as the activation 

function to determine nonlinear relationships. 

 

 

Figure 12 - Schematic structure of the proposed autoencoder 

The schematic structure of the autoencoder applied for feature extraction is shown. By 

setting the number of intermediate nodes to 1 (the red node), a one-dimensional feature set 

containing the major characteristics of both gene expression and DNA methylation datasets 

can be acquired. 

 

For feature selection from the integrated dataset, Welch’s t-test was applied to 

derive top-ranked genes exhibiting high degrees of differential expression between 

two classes (the early and late stages) and to identify genes potentially highly 

correlated with cancer progression and metastasis. Welch’s t-test is one of the most 

common methods for differentially expressed genes. Unlike Student’s t-test, 
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Welch’s t-test does not assume equal variance; therefore, it was suitable for 

application to the datasets, which had non-uniform sample sizes and variances. 

 1 2

2 2
1 2

1 2

t
s s
N N

 




 (15) 

Here, N, s, and μ denote the size, standard deviation, and mean of the samples, 

respectively. 
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Performance test 

The performance of the proposed method was measured based on the classification 

performance according to the RCC stage, using a limited number of top-ranked 

genes derived from the previous feature selection process. As determining the 

optimal number of genes required for obtaining the best prediction results is 

difficult, I applied forward feature selection in the proposed system. By adding 

genes one by one in rank order, I calculated an AUC score through 10-fold cross-

validation testing for the performance evaluation. In addition, I considered the top 

20 genes from each dataset and calculated four performance measures, the accuracy, 

f1 score, Matthews correlation coefficient (MCC), and area under the curve (AUC) 

using four classifiers, logistic regression, naïve Bayes, random forest, and support 

vector machine (SVM). This was followed by a literature evaluation in which the 

selected top-ranked genes were subject to analysis based on the expectation that 

genes with higher t-values are more highly correlated with cancer progression and 

metastasis. 
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Results 

Normalization and feature extraction 

The RNA-seq and DNA methylation datasets for the various RCCs types were 

obtained from the Broad GDAC Firehose, as described above. The datasets were 

normalized through a Box-Cox transformation and then rescaled to the range of [0, 

1] for data integration. After normalization, both the gene expression and DNA 

methylation datasets showed identical value ranges with similar variance. Feature 

extraction was then applied to these two normalized datasets. Because each gene 

showed different correlations between the expression and methylation levels, 

feature extraction was applied to each gene; the number of features was two (gene 

expression and DNA methylation), with a sample size of 633 (the total number of 

samples) for each gene. Well-known feature extraction methods (linear PCA, 

kernel PCA, and an autoencoder) were used as the feature extraction methods. I 

derived only the 1st principal component after feature extraction for dimension 

reduction, resulting in the acquisition of an integrated one-dimensional dataset 

containing combinations of variables with relevant information from both gene 

expression and DNA methylation results. Here, the average percentage of variance 

that could be explained by the 1st principal component was 71.3%, which was 

calculated using the following expression. 

1

i
n
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





 (16) 

Here, λi denotes the eigenvalue of ith principal component. 
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For the autoencoder, dimensional reduction was achieved by setting the number of 

intermediate nodes to 1, as described previously. Tensorflow 1.2 was utilized for 

implementing the autoencoder [50], and all other feature extraction algorithms 

were implemented using Python and scikit-learn 0.18.1 [30]. 
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Feature selection 

As the structure of the integrated dataset was identical to those of the gene 

expression and DNA methylation datasets, conventional feature selection methods 

for differentially expressed gene analysis could be applied directly. I utilized 

Welch’s t-test for each integrated dataset to calculate the feature importance and 

obtained a list of genes ordered by t-values. Here, I considered only the top 200 

genes, a number smaller than the number of late-stage samples, to avoid overfitting. 

Figure 13 presents Venn diagrams showing the overlap in the genes selected from 

each dataset. Only three genes exhibited both differential expression and 

methylation, whereas the integrated datasets shared at least 126 and 25 genes with 

the gene expression and DNA methylation datasets, respectively. This implied that 

the integrated dataset successfully reflected the characteristics of the two original 

datasets. All three integrated datasets shared similar gene sets with 191 genes 

among all three datasets, because unsupervised feature extractions were applied for 

only two types of datasets, thereby enabling relatively simple determination of the 

principal variables. A list of the top 200 genes from each dataset, with their p-

values, is given in Table 5. 
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Figure 13 - Venn diagrams of the overlapped features 

The Venn diagrams demonstrate the number of genes that overlap between the gene 

expression, DNA methylation, and three integrated datasets. 
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Table 5 - List of the top 200 genes from each dataset 

Gene_Expression DNA_Methylation PCA_Linear PCA_Kernel Autoencoder 
Gene P-value Gene P-value Gene P-value Gene P-value Gene P-value 

KIF20A 1.53E-28 NKX6-2 4.89E-44 NKX6-2 6.77E-43 NKX6-2 1.88E-43 NKX6-2 6.77E-43
UBE2C 2.01E-28 BARHL2 3.12E-42 FERD3L 5.94E-40 FERD3L 2.27E-40 FERD3L 5.94E-40
PTTG1 8.08E-27 TLX3 6.58E-42 BHLHE23 2.36E-33 BHLHE23 1.14E-33 ONECUT3 1.08E-31
HJURP 2.33E-26 SOX1 4.93E-42 ONECUT3 1.08E-31 SIX6 4.71E-33 SOX14 5.33E-31
CENPA 3.28E-26 POU4F2 2.74E-41 SOX14 5.33E-31 ONECUT3 4.52E-32 NKX2-6 7.78E-29
GTSE1 3.57E-26 FERD3L 5.53E-40 NKX2-6 7.78E-29 SOX14 5.43E-31 RRM2 8.61E-29
NCAPG 5.24E-26 PCDH8 2.68E-40 RRM2 8.61E-29 RRM2 1.63E-29 NCAPG 7.96E-29
CDC25C 1.47E-25 TBX20 1.06E-39 NCAPG 7.96E-29 ZNF177 6.48E-29 KIF20A 1.78E-28
NEIL3 2.56E-25 DLX6AS 1.16E-39 KIF20A 1.78E-28 NKX2-6 9.40E-29 BHLHE23 5.25E-28
BIRC5 2.25E-25 NPBWR1 1.74E-38 SIX6 1.48E-27 NCAPG 6.21E-29 SIX6 1.48E-27
SKA1 3.25E-25 ZIC4 1.30E-37 FEZF2 2.26E-27 KIF20A 1.17E-28 FEZF2 2.26E-27
TPX2 6.12E-25 UTF1 1.93E-37 ZNF132 3.11E-27 FEZF2 1.14E-27 ZNF132 3.11E-27
BUB1 1.28E-24 DLX5 3.87E-37 PTTG1 2.07E-27 ZNF132 2.00E-27 PTTG1 2.07E-27
ASPM 1.66E-24 KCNQ1DN 3.82E-37 UBE2C 3.72E-27 PTTG1 8.91E-28 UBE2C 3.72E-27

KIF18B 5.90E-24 POU4F3 9.78E-37 ZNF177 9.85E-27 CSDAP1 2.47E-27 ZNF177 9.85E-27
CEP55 9.14E-24 DIO3 1.90E-36 CSDAP1 1.03E-26 UBE2C 1.07E-27 CSDAP1 1.04E-26
TROAP 2.50E-23 HTR1A 2.57E-36 NEIL3 3.63E-26 RAX 7.66E-27 NEIL3 3.63E-26
CCNB2 2.32E-23 PRLHR 9.57E-37 CENPA 3.06E-26 NEIL3 7.33E-27 CENPA 3.06E-26

OIP5 2.79E-23 INSM1 1.65E-35 NEUROG1 4.94E-26 LBX1 1.66E-26 NEUROG1 4.94E-26
CENPF 9.21E-23 TWIST1 9.33E-36 HJURP 4.65E-26 HJURP 1.80E-26 HJURP 4.64E-26
SKA3 9.66E-23 SPAG6 1.30E-35 GTSE1 3.56E-26 NEUROG1 2.71E-26 GTSE1 3.56E-26
NUF2 1.49E-22 GBX2 6.18E-35 LBX1 1.39E-25 CENPA 2.01E-26 LBX1 1.36E-25
KIF14 2.57E-22 HMX3 3.83E-34 CDC25C 9.36E-26 GTSE1 2.89E-26 CDC25C 9.36E-26

DEPDC1 2.53E-22 BHLHE23 3.93E-33 WDR8 3.81E-25 WDR8 8.63E-26 WDR8 3.81E-25
CDC20 3.58E-22 SIX6 4.55E-34 BIRC5 4.16E-25 CDC25C 7.38E-26 BIRC5 4.16E-25
KIF2C 5.09E-22 ZIC1 4.19E-34 SKA1 5.29E-25 BIRC5 2.00E-25 SKA1 5.30E-25
CDCA5 9.95E-22 CACNG8 5.19E-34 TPX2 8.05E-25 SKA1 3.19E-25 TPX2 8.05E-25
NDC80 7.86E-22 SLC32A1 1.81E-33 PUS3 1.33E-24 TPX2 5.03E-25 PUS3 1.33E-24
AURKB 1.55E-21 DSC3 2.09E-33 ASPM 1.72E-24 PUS3 7.95E-25 BUB1 1.76E-24

CDC42BPG 2.07E-21 CBLN1 1.94E-33 BUB1 1.76E-24 ASPM 1.08E-24 KIF18B 3.11E-24
DLGAP5 3.09E-21 HAND2 2.19E-33 KIF18B 3.11E-24 KIF18B 2.59E-24 CEP55 7.15E-24

KIFC1 3.36E-21 PENK 1.71E-33 CEP55 7.22E-24 CEP55 1.92E-24 TROAP 1.03E-23
FOXM1 4.99E-21 SLC18A3 4.13E-33 TROAP 1.03E-23 BUB1 1.83E-24 KIFC1 8.68E-24
CDK1 3.99E-21 DMRTA2 1.06E-32 KIFC1 8.68E-24 TROAP 5.14E-24 OIP5 9.58E-24

BUB1B 4.51E-21 TLX2 1.23E-32 OIP5 9.58E-24 KIFC1 4.46E-24 CDC20 5.29E-23
NEK2 6.49E-21 GDF6 1.13E-32 CDC20 5.29E-23 FGF4 1.13E-23 SHOX2 2.08E-22
RRM2 9.30E-21 INA 3.81E-32 SHOX2 2.08E-22 GPR149 1.62E-23 CDK1 6.31E-23
MKI67 7.85E-21 ONECUT3 5.84E-32 CDK1 6.31E-23 OIP5 7.92E-24 CENPF 8.69E-23
TTK 1.46E-20 RIPPLY2 1.09E-31 CENPF 8.69E-23 CDC20 1.93E-23 SCGB3A1 1.24E-22

KIF18A 1.42E-20 TBX5 1.24E-31 SCGB3A1 1.23E-22 CDK1 3.50E-23 NUF2 1.28E-22
PBK 1.45E-20 DLX6 1.35E-31 NUF2 1.28E-22 SHOX2 1.58E-22 SKA3 1.13E-22

TOP2A 2.06E-20 NBLA00301 1.53E-31 SKA3 1.12E-22 SCGB3A1 6.09E-23 CCNB2 1.49E-22
KIF11 2.31E-20 PTF1A 2.29E-31 CCNB2 1.49E-22 CENPF 7.20E-23 KIF14 2.59E-22

CKAP2L 4.96E-20 LHX5 4.31E-31 KIF14 2.59E-22 SKA3 7.56E-23 KIF2C 3.63E-22
CDCA8 7.32E-20 DBX1 3.22E-31 KIF2C 3.63E-22 NUF2 1.09E-22 KRT7 1.78E-22
PLK1 1.02E-19 TRH 5.65E-31 KRT7 1.78E-22 CCNB2 1.41E-22 DEPDC1 5.57E-22

CCNA2 8.64E-20 GSC 4.59E-31 DEPDC1 5.57E-22 KIF14 2.28E-22 CDCA5 9.45E-22
HMMR 1.29E-19 SOX14 5.17E-31 CDCA5 9.45E-22 DEPDC1 2.48E-22 AURKB 1.91E-21
PRC1 1.50E-19 PRDM13 4.15E-31 AURKB 1.91E-21 KIF2C 2.62E-22 ASPM 3.10E-21

SHOX2 6.79E-19 PCSK1 3.18E-30 AIF1L 9.83E-22 KRT7 1.30E-22 C16orf86 2.44E-21
POLQ 5.39E-19 FOXD3 3.26E-30 C16orf86 2.44E-21 C16orf86 4.57E-22 CDC42BPG 1.75E-21
GPR19 5.27E-19 CDX2 4.17E-30 CDC42BPG 1.75E-21 CDCA5 5.77E-22 DLGAP5 3.66E-21
CDKN3 6.43E-19 CIDEA 3.91E-30 DLGAP5 3.66E-21 AURKB 1.25E-21 BUB1B 4.76E-21
MACC1 3.55E-19 gg 4.60E-30 BUB1B 4.76E-21 AIF1L 6.71E-22 FOXM1 5.96E-21
MYBL2 9.16E-19 FBLL1 4.32E-30 FOXM1 5.96E-21 CDC42BPG 1.25E-21 NEK2 7.10E-21
C15orf42 1.63E-18 PAX1 8.34E-30 NEK2 7.10E-21 TRIM58 1.35E-21 MKI67 7.60E-21
NUSAP1 9.97E-19 NHLH2 2.98E-29 MKI67 7.60E-21 DLGAP5 2.43E-21 MYBL2 1.56E-20
C1orf210 1.33E-18 LOC100192379 1.96E-29 MYBL2 1.56E-20 TMEM25 4.81E-21 CDCA8 1.22E-20

KIAA0101 1.32E-18 HMX2 2.48E-29 CDCA8 1.22E-20 FOXM1 4.38E-21 PBK 1.11E-20
ZNF132 2.13E-18 EVX2 1.73E-29 PBK 1.11E-20 BUB1B 3.97E-21 TMEM25 2.45E-20
FAM83D 1.52E-18 HBM 6.99E-29 TMEM25 2.45E-20 PAX6 5.83E-21 PLK1 2.41E-20
CDCA3 3.07E-18 ADCYAP1 3.31E-29 PLK1 2.41E-20 NEK2 5.36E-21 RAX 4.35E-20
KIF15 2.40E-18 NEFH 3.02E-29 RAX 4.35E-20 CDCA8 7.09E-21 TWIST1 1.32E-20

IQGAP3 2.80E-18 ALX1 4.55E-29 TWIST1 1.32E-20 MYBL2 1.25E-20 KIF18A 1.90E-20
CYB5D2 1.72E-18 PITX1 5.05E-29 KIF18A 1.90E-20 MKI67 7.53E-21 TOP2A 1.71E-20
ASF1B 3.28E-18 LBXCOR1 8.37E-29 TOP2A 1.71E-20 PBK 8.95E-21 CCNA2 1.96E-20

C16orf86 2.88E-18 NKX2-6 1.19E-28 CCNA2 1.96E-20 PLK1 2.09E-20 TTK 3.09E-20
EXO1 5.24E-18 MKX 2.34E-28 TTK 3.09E-20 KIF18A 1.45E-20 TRIM58 3.01E-20

TRIP13 1.23E-17 GPR83 1.74E-28 TRIM58 3.01E-20 TOP2A 1.27E-20 PAX6 4.41E-20
TMEM25 1.59E-17 CSDAP1 1.55E-28 PAX6 4.41E-20 TNFSF13 1.36E-20 TNFSF13 3.41E-20

KRT7 9.04E-18 LHX8 2.04E-28 ATOH1 3.80E-20 CCNA2 1.49E-20 MACC1 5.36E-20
IGF2BP3 4.02E-17 IRF4 5.97E-28 TNFSF13 3.41E-20 ATOH1 2.86E-20 SNRPF 1.38E-19

DEPDC1B 1.94E-17 FZD10 2.64E-28 MACC1 5.37E-20 PLCD1 1.91E-20 CPD 1.24E-19
SPC25 2.29E-17 RAX 3.66E-28 SNRPF 1.38E-19 TTK 3.40E-20 GPR19 2.02E-19
CCNB1 3.22E-17 NKX2-4 3.18E-28 CPD 1.24E-19 TWIST1 2.67E-20 ZNF582 2.74E-19
PRR15L 2.21E-17 EVX1 5.54E-28 GPR19 2.02E-19 SNRPF 1.02E-19 HMMR 3.03E-19
PLCD1 2.90E-17 ADRA1D 4.83E-28 ZNF582 2.74E-19 MACC1 6.33E-20 PLCD1 2.09E-19

DNAJC28 3.87E-17 GPR149 6.34E-28 HMMR 3.03E-19 ZNF582 1.52E-19 PRC1 2.74E-19
ANLN 6.30E-17 ZNF132 4.18E-28 PLCD1 2.09E-19 GPR19 1.58E-19 POLQ 5.68E-19
IL20RB 1.21E-16 OTP 4.83E-28 PRC1 2.74E-19 CPD 1.29E-19 BSX 7.75E-19

E2F2 2.20E-16 POU3F1 9.86E-28 POLQ 5.68E-19 HMMR 2.21E-19 NUSAP1 9.82E-19
NUDT6 2.17E-16 IRX2 5.18E-28 BSX 7.75E-19 PRC1 1.83E-19 PRR15L 8.12E-19
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Table 5 - List of the top 200 genes from each dataset (Continued) 

Gene_Expression DNA_Methylation PCA_Linear PCA_Kernel Autoencoder 
Gene P-value Gene P-value Gene P-value Gene P-value Gene P-value 

FAM47E 2.71E-16 FOXE1 9.04E-28 NUSAP1 9.82E-19 POLQ 3.69E-19 KIAA0101 1.25E-18
NOP16 3.24E-16 MYOD1 1.34E-27 PRR15L 8.12E-19 RAB6C 1.05E-18 RAB6C 2.44E-18
SGOL1 5.93E-16 PRDM12 1.23E-27 KIAA0101 1.25E-18 NUSAP1 4.40E-19 CDCA3 2.13E-18
AMT 5.17E-16 FEZF2 1.30E-27 RAB6C 2.44E-18 KIAA0101 6.05E-19 FAM83D 1.47E-18

C1orf172 4.40E-16 GHSR 7.49E-28 CDCA3 2.13E-18 SLC6A5 1.20E-18 IQGAP3 2.53E-18
ZIC2 1.99E-15 PITX2 1.28E-27 FAM83D 1.48E-18 CDCA3 1.39E-18 GAS5 1.23E-18

NCAPH 7.81E-16 IRX4 1.06E-27 IQGAP3 2.53E-18 BSX 1.14E-18 ASF1B 2.93E-18
ESCO2 1.07E-15 USP44 6.90E-28 GAS5 1.23E-18 GAS5 6.24E-19 C15orf42 3.37E-18

FAM64A 1.18E-15 NKAPL 8.70E-28 ASF1B 2.93E-18 IQGAP3 1.85E-18 ZIC2 1.47E-17
NMNAT1 9.09E-16 ACTA1 2.12E-27 C15orf42 3.37E-18 FAM83D 1.17E-18 CYB5D2 2.17E-18
UHRF1 1.13E-15 ZNF177 2.23E-27 ZIC2 1.47E-17 CYB5D2 1.19E-18 PHB 3.59E-18

ZSCAN18 1.21E-15 SOX17 3.78E-27 CYB5D2 2.17E-18 PRR15L 1.25E-18 EXO1 5.30E-18
CENPE 1.83E-15 CCDC140 2.11E-27 PHB 3.59E-18 ASF1B 2.17E-18 MIAT 8.87E-18
MCM10 2.25E-15 ALX4 4.61E-27 EXO1 5.30E-18 ZIC2 1.06E-17 ZNF471 5.64E-18

E2F7 2.36E-15 CPXM1 5.64E-27 MIAT 8.88E-18 MIAT 3.83E-18 C1orf210 7.08E-18
MELK 2.33E-15 ADAMTS20 6.52E-27 ZNF471 5.64E-18 PHB 2.66E-18 KIF15 9.10E-18

CXCL13 2.42E-15 TLX1 7.15E-27 C1orf210 7.08E-18 C15orf42 3.48E-18 FAM64A 1.25E-17
LMNB1 2.77E-15 POU4F1 9.18E-27 KIF15 9.10E-18 CENPM 3.12E-18 SLC6A5 1.73E-17
C19orf46 1.83E-15 COMP 1.01E-26 FAM64A 1.25E-17 EXO1 4.24E-18 ZSCAN18 8.26E-18
PDCD5 2.91E-15 VSX1 1.12E-26 SLC6A5 1.73E-17 C1orf210 5.10E-18 ZNF542 1.41E-17
MYL3 2.00E-15 LBX1 1.27E-26 ANLN 1.11E-17 CDKN3 5.12E-18 CENPM 1.22E-17
FGF5 6.32E-15 C1QL2 1.30E-26 ZSCAN18 8.26E-18 ZSCAN18 4.37E-18 CDKN3 1.57E-17

KCNG1 4.83E-15 FOXE3 8.70E-27 ZNF542 1.41E-17 ZNF542 7.99E-18 KIAA1755 1.68E-17
PKMYT1 4.88E-15 C5orf38 6.94E-27 CENPM 1.23E-17 KIF15 8.83E-18 SPC25 1.68E-17
TNFSF13 2.94E-15 EOMES 8.26E-27 CDKN3 1.57E-17 ZNF471 8.23E-18 CCNB1 2.32E-17
PLEKHA7 4.50E-15 TBX1 5.80E-27 KIAA1755 1.68E-17 FAM64A 1.38E-17 EMX2 3.08E-17

ESPL1 5.35E-15 ISL1 1.49E-26 SPC25 1.68E-17 ANLN 9.82E-18 DEPDC1B 2.94E-17
FAM72B 6.37E-15 C14orf23 8.94E-27 CCNB1 2.32E-17 EMX2 1.35E-17 NDC80 2.83E-17
MMP15 4.40E-15 C20orf56 1.36E-26 EMX2 3.08E-17 CCNB1 1.54E-17 IGF2BP3 8.30E-17
NICN1 4.85E-15 CR1 2.05E-26 DEPDC1B 2.94E-17 SPC25 1.47E-17 OR56A3 5.98E-17
PRRG2 4.26E-15 SHOX2 2.28E-26 NDC80 2.83E-17 NDC80 1.66E-17 SMC4 4.78E-17

FAM54A 6.88E-15 ZNF560 1.85E-26 IGF2BP3 8.30E-17 DEPDC1B 1.96E-17 HBA1 6.34E-17
HSD17B8 8.32E-15 PRDM8 2.56E-26 OR56A3 6.00E-17 SMC4 2.38E-17 CKAP2L 4.33E-17
FAM54B 7.97E-15 FOXL2 5.60E-26 SMC4 4.78E-17 HBA1 3.66E-17 NKX1-2 1.64E-16
C10orf81 1.33E-14 SLITRK1 3.73E-26 HBA1 6.34E-17 IGF2BP3 8.36E-17 NCAPH 1.25E-16

CAMK2N2 9.75E-15 NEUROG1 4.71E-26 CKAP2L 4.33E-17 OR56A3 4.99E-17 CASC4 8.82E-17
C9orf117 5.35E-15 C17orf104 3.99E-26 NKX1-2 1.64E-16 KIAA1755 4.96E-17 FGF5 4.11E-16

ARHGAP11A 9.25E-15 ALX3 4.72E-26 NCAPH 1.25E-16 CKAP2L 4.17E-17 E2F2 2.40E-16
C1QL1 1.06E-14 NKX2-5 1.10E-25 CASC4 8.82E-17 NKX1-2 1.13E-16 C19orf46 1.61E-16
EMX2 1.33E-14 ZAR1 7.12E-26 FGF5 4.11E-16 EPHA5 1.08E-16 IL20RB 4.05E-16
TCTA 1.08E-14 SCGB3A1 1.28E-25 E2F2 2.40E-16 IL20RB 1.07E-16 RPS6 1.91E-16

SHCBP1 1.29E-14 PHOX2B 8.25E-26 C19orf46 1.61E-16 CASC4 6.46E-17 NUDT6 2.74E-16
SPRYD3 1.34E-14 VSTM2B 2.04E-25 IL20RB 4.05E-16 NCAPH 1.30E-16 MED1 3.47E-16
FAM72D 1.95E-14 WDR8 1.26E-25 RPS6 1.91E-16 HSD17B8 1.79E-16 HSD17B8 3.83E-16
TRIOBP 1.34E-14 ASCL2 1.22E-25 NUDT6 2.74E-16 NUDT6 1.40E-16 TBX18 4.40E-16
SPC24 2.25E-14 NKX2-1 2.67E-25 MED1 3.47E-16 E2F2 1.97E-16 SGOL1 6.00E-16
RAD51 1.88E-14 PHOX2A 1.71E-25 HSD17B8 3.83E-16 FGF5 4.89E-16 CAMK2N2 6.05E-16

HDAC11 1.69E-14 VAX1 2.80E-25 TBX18 4.48E-16 RPS6 1.40E-16 C1orf172 4.17E-16
CLDN7 2.04E-14 PUS3 2.61E-25 SGOL1 6.00E-16 C19orf46 1.53E-16 ZNF586 7.63E-16

PHYHD1 3.03E-14 RSPO2 2.76E-25 CAMK2N2 6.05E-16 MED1 3.55E-16 MYO5B 9.01E-16
PAEP 6.77E-14 EN2 2.51E-25 C1orf172 4.17E-16 CAMK2N2 4.62E-16 CXCL13 9.57E-16
TTC9 2.86E-14 ICAM5 3.76E-25 ZNF586 7.63E-16 ZNF586 4.80E-16 NICN1 7.11E-16

FKBP10 4.11E-14 CYP26A1 3.58E-25 MYO5B 9.01E-16 TBX18 6.07E-16 FAM72B 1.02E-15
PRELID1 4.99E-14 NEUROD1 3.13E-25 CXCL13 9.57E-16 C1orf172 4.27E-16 LMNB1 9.79E-16

GNG7 5.29E-14 SLFN12L 3.63E-25 NICN1 7.11E-16 LMNB1 5.83E-16 FOXA1 2.24E-15
ICA1 4.96E-14 VENTX 4.36E-25 FAM72B 1.02E-15 SGOL1 7.68E-16 ZSCAN21 9.39E-16
EPR1 6.92E-14 ZIC5 4.42E-25 LMNB1 9.79E-16 NICN1 5.29E-16 ESCO2 1.16E-15

EIF4EBP1 5.70E-14 ISLR2 4.15E-25 FOXA1 2.24E-15 ZSCAN21 6.19E-16 MELK 1.58E-15
KIF1C 4.50E-14 NXPH1 1.07E-24 ZSCAN21 9.39E-16 NMNAT1 7.51E-16 OVOL1 1.17E-15
CCNF 8.20E-14 KCNA7 1.10E-24 ESCO2 1.16E-15 TRIP13 9.97E-16 PLEKHA7 1.44E-15

WDR62 7.83E-14 ERN2 6.52E-25 MELK 1.58E-15 CCDC71 6.59E-16 DUT 1.31E-15
ATAD2 7.33E-14 EN1 1.17E-24 OVOL1 1.17E-15 MAL 8.54E-16 UHRF1 1.71E-15

DTL 6.89E-14 GPR6 5.09E-25 PLEKHA7 1.44E-15 MYO5B 1.03E-15 MAL 1.70E-15
C17orf108 7.09E-14 FOXA2 9.51E-25 DUT 1.31E-15 MELK 1.16E-15 E2F7 2.08E-15

BAG1 1.08E-13 psiTPTE22 1.13E-24 UHRF1 1.71E-15 PHYHD1 1.07E-15 RAB20 1.69E-15
CENPM 9.16E-14 ALDH1A3 7.00E-25 MAL 1.70E-15 FAM72B 1.25E-15 CENPE 1.99E-15

FLJ32063 5.42E-14 WNT1 1.47E-24 E2F7 2.08E-15 DUT 9.96E-16 NMNAT1 1.79E-15
PMCH 1.14E-13 STAG3 1.25E-24 RAB20 1.69E-15 C16orf48 1.30E-15 KCNG1 2.79E-15
FOXA1 2.32E-13 ZNF542 1.31E-24 CENPE 1.99E-15 RAB20 1.19E-15 CCDC71 1.65E-15
PRRX2 1.28E-13 HOXD13 1.85E-24 NMNAT1 1.79E-15 UHRF1 1.46E-15 NOP16 1.80E-15

KIAA1324 1.54E-13 GALR1 2.64E-24 KCNG1 2.79E-15 ESCO2 1.54E-15 PHYHD1 2.27E-15
SLC44A4 1.09E-13 SHE 2.15E-24 CCDC71 1.65E-15 PLEKHA7 1.39E-15 OTOL1 2.32E-15
HMGCL 1.42E-13 HOXC13 1.57E-24 NOP16 1.80E-15 NOP16 1.22E-15 MCM10 2.60E-15
WISP2 1.88E-13 PPP1R14A 3.16E-24 PHYHD1 2.27E-15 KCNG1 2.04E-15 TRIP13 2.83E-15

PAFAH2 1.55E-13 FOXF1 1.24E-24 OTOL1 2.32E-15 FOXA1 3.71E-15 NCRNA00175 1.50E-15
TRIB3 1.87E-13 BARX1 2.15E-24 MCM10 2.60E-15 CXCL13 1.86E-15 C1QL1 3.04E-15

RAD54L 2.02E-13 LOC100128811 3.24E-24 TRIP13 2.83E-15 CENPE 1.83E-15 ICA1 3.19E-15
C1orf190 1.80E-13 CHAT 4.76E-24 NCRNA00175 1.50E-15 OVOL1 1.63E-15 PRRG2 2.12E-15
GAPDH 2.04E-13 KRT7 2.87E-24 C1QL1 3.04E-15 E2F7 2.52E-15 TOX3 2.33E-15
OVOL1 1.72E-13 NKX3-2 3.90E-24 ICA1 3.19E-15 ICA1 2.36E-15 MMP15 2.67E-15

OLFML2B 2.03E-13 GALR2 5.91E-24 PRRG2 2.12E-15 MMP15 1.84E-15 PRDM8 4.60E-15
E2F8 2.58E-13 EYA4 6.37E-24 TOX3 2.33E-15 PTH2 3.77E-15 FAM54A 4.00E-15
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Table 5 - List of the top 200 genes from each dataset (continued) 

Gene_Expression DNA_Methylation PCA_Linear PCA_Kernel Autoencoder 
Gene P-value Gene P-value Gene P-value Gene P-value Gene P-value 

EMX2OS 3.00E-13 NKX6-1 8.00E-24 MMP15 2.67E-15 CD47 3.20E-15 PTH2 5.56E-15 
FBXO43 3.56E-13 TMEM155 8.44E-24 PRDM8 4.59E-15 TOX3 2.14E-15 KIAA1024 4.49E-15 
CCNE2 2.84E-13 HAND1 7.86E-24 FAM54A 4.00E-15 NCRNA00175 1.85E-15 PITX2 6.55E-15 
SPAG7 2.32E-13 FOXB2 6.98E-24 PTH2 5.56E-15 C1QL1 3.12E-15 C16orf48 5.00E-15 
MLF1IP 3.32E-13 TCF15 1.10E-23 KIAA1024 4.49E-15 ESPL1 3.31E-15 CD47 5.28E-15 
LMO7 3.09E-13 SOX8 1.26E-23 PITX2 6.47E-15 RPL12 2.53E-15 KRTAP25-1 5.14E-15 

MTHFD2 3.68E-13 RXFP3 6.19E-24 C16orf48 5.00E-15 MCM10 4.09E-15 C19orf71 4.16E-15 
ZNF433 3.67E-13 LOC440040 8.09E-24 CD47 5.28E-15 FAM54A 4.14E-15 OR51B6 5.81E-15 
AIF1L 3.91E-13 PAX3 1.03E-23 KRTAP25-1 5.14E-15 CENPJ 4.83E-15 ESPL1 5.74E-15 
PRRX1 4.06E-13 SCRT1 1.74E-23 C19orf71 4.16E-15 PRRG2 2.92E-15 PAEP 1.34E-14 
ZNF629 4.22E-13 ISL2 1.24E-23 OR51B6 5.82E-15 C7orf41 4.69E-15 TRIM36 6.94E-15 
GLS2 4.95E-13 OLIG2 2.51E-23 ESPL1 5.74E-15 KIAA1024 5.44E-15 LOC643387 8.76E-15 

TBX18 5.48E-13 ONECUT1 2.47E-23 PAEP 1.34E-14 KRTAP25-1 5.43E-15 ZIC5 2.07E-14 
CDC6 5.24E-13 S1PR5 2.68E-23 TRIM36 6.95E-15 PRDM8 6.51E-15 EEF1B2 7.90E-15 

FAM128A 5.50E-13 PDX1 2.94E-23 LOC643387 8.76E-15 C19orf71 4.43E-15 RPL12 6.13E-15 
LOC388955 5.63E-13 DLL3 4.55E-23 ZIC5 2.08E-14 EEF1B2 5.52E-15 ARHGAP11A 8.31E-15 

TJP2 4.71E-13 LHX6 4.20E-23 EEF1B2 7.91E-15 TRIM36 6.81E-15 ZNF577 8.19E-15 
C5orf46 6.20E-13 SLC12A5 3.97E-23 RPL12 6.13E-15 OTOL1 5.85E-15 KIAA1324 1.06E-14 
OXSM 5.64E-13 ECEL1 6.45E-23 ARHGAP11A 8.31E-15 PITX2 9.02E-15 MFSD4 9.80E-15 
IGSF22 5.95E-13 CENPV 3.61E-23 ZNF577 8.19E-15 PAEP 1.53E-14 CENPJ 1.28E-14 
CHL1 4.97E-13 GJD2 8.82E-23 KIAA1324 1.06E-14 ZFP28 7.92E-15 CMA1 6.73E-15 

C17orf53 7.30E-13 PAX6 4.73E-23 MFSD4 9.80E-15 KIAA1949 7.13E-15 KIAA1949 1.22E-14 
ST7OT1 6.90E-13 DDX25 5.35E-23 CENPJ 1.28E-14 ARHGAP11A 6.37E-15 ZFP28 1.49E-14 

FN1 6.66E-13 FEZF1 5.09E-23 CMA1 6.73E-15 LOC643387 8.84E-15 C7orf41 1.31E-14 
MARVELD2 8.15E-13 VGLL2 8.28E-23 KIAA1949 1.22E-14 MFSD4 8.06E-15 CDS1 1.34E-14 

FUCA1 8.65E-13 SLC8A2 9.71E-23 ZFP28 1.49E-14 FAM54B 9.50E-15 TACSTD2 1.14E-14 
ACAD8 9.02E-13 CYP26C1 4.56E-23 C7orf41 1.31E-14 KIAA1324 9.25E-15 PMCH 1.60E-14 
SMCR7 7.04E-13 FGF4 1.25E-22 CDS1 1.34E-14 OR51B6 9.85E-15 ITPKA 1.87E-14 

KIAA0649 8.91E-13 SLC2A14 7.33E-23 TACSTD2 1.14E-14 ZIC5 2.52E-14 FAM72D 1.92E-14 
RAET1K 1.15E-12 LYPD5 6.71E-23 PMCH 1.60E-14 MYL3 7.62E-15 AMT 1.70E-14 
TYRO3 9.39E-13 SLC22A16 7.43E-23 ITPKA 1.86E-14 CDS1 9.27E-15 FAM54B 2.01E-14 
GLOD4 7.22E-13 IGF2 1.13E-22 FAM72D 1.92E-14 CMA1 7.22E-15 SPC24 2.29E-14 
DNAJA4 1.02E-12 HS3ST3B1 7.30E-23 AMT 1.69E-14 ZNF577 1.12E-14 RAD51 1.99E-14 

DYNC2LI1 7.67E-13 KCNC2 2.62E-22 FAM54B 2.02E-14 SHCBP1 1.30E-14 SHCBP1 2.09E-14 
MAL 1.03E-12 PRDM6 1.30E-22 SPC24 2.29E-14 FNDC3A 1.54E-14 GNB2L1 1.83E-14 

CTHRC1 1.11E-12 SPTBN4 1.47E-22 RAD51 1.99E-14 PMCH 1.51E-14 C9orf117 1.29E-14 
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Performance evaluation 

After feature selection, a 10-fold cross-validation test was conducted for 

performance evaluation. First, I applied a forward feature selection approach for 

the test, as classification performance can differ according to the number of genes 

used. Starting from one gene, I continuously conducted 10-fold cross-validation by 

successively adding genes in the rank order acquired from the Welch’s t-test results. 

Here, SVM was used as a classifier and the AUC was taken as the measurement for 

the cross-validation score. The test results are presented in Figure 14. Integrative 

analysis using feature extraction generally exhibited superior performance over the 

approach using gene expression or DNA methylation data alone regardless of the 

number of selected genes. This implies that additional genes of interest can be 

obtained from integrated datasets. In particular, use of gene expression data only 

for the analysis, as is the case for most conventional methods, resulted in 

considerably lower classification performance than the other approaches. In 

addition, I considered the top 20 genes from each dataset for the test. I utilized four 

classifiers to calculate four performance measures, as described in the previous 

section. The detailed results of the performance evaluation are listed in Table 6. As 

is apparent from the table, the integrated datasets showed an overall better 

performance as compared to the single dataset for all four classifiers and most 

performance indices. Further, use of the gene expression or DNA methylation 

dataset alone failed to yield cancer stage classification when logistic regression and 

SVM were employed, whereas the integrated datasets demonstrated overall 

consistency in their scores regardless of classifier. The differences among the 

integrated datasets were minute, as the genes included in each dataset were very 
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similar and differed only slightly in their ranking orders. These findings imply that 

the proposed integrative analysis can be utilized for better discovery of candidate 

cancer biomarkers. 

 

 

Figure 14 - Classification performance according to 10-fold cross-validation 

The results of 10-fold cross-validation using an SVM. The X- and Y-axes denote the number 

of genes selected through forward feature selection and 10-fold cross-validation 

classification score (AUC), respectively. The overall best classification score was achieved 

by the autoencoder using the top 12 genes, with an AUC of 0.866. 
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Table 6 – Result of 10-fold cross-validation using top 20 genes 

The results of performance tests using the top 20 genes only. The items yielding the best 

scores are highlighted in bold. 

Classifier 
Performance

Measure 
Gene Expression

DNA 
Methylation 

Linear 
PCA 

Kernel PCA Autoencoder

Logistic 
Regression 

Accuracy 0.341 0.341 0.786 0.789 0.781 

F1-score 0.59 0.509 0.707 0.712 0.702 

MCC 0 0 0.568 0.573 0.56 

AUC 0.776 0.853 0.864 0.867 0.864 

Naïve 
Bayes 

Accuracy 0.692 0.784 0.79 0.786 0.792 

F1-score 0.588 0.701 0.696 0.687 0.7 

MCC 0.373 0.552 0.559 0.545 0.563 

AUC 0.774 0.852 0.86 0.859 0.857 

Random 
Forest 

Accuracy 0.72 0.773 0.787 0.783 0.784 

F1-score 0.5 0.637 0.653 0.658 0.662 

MCC 0.346 0.486 0.523 0.513 0.512 

AUC 0.737 0.829 0.846 0.841 0.845 

SVM 

Accuracy 0.562 0.562 0.797 0.789 0.803 

F1-score 0.152 0.152 0.709 0.708 0.72 

MCC 0 0 0.576 0.571 0.588 

AUC 0.776 0.852 0.864 0.865 0.864 
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The top-ranked genes selected by Welch’s t-test in the original gene expression 

(KIF20A), DNA methylation, and integrated datasets (NKX6-2) showed high 

likelihoods of being cancer biomarkers [51,52]. Similarly, the three genes that were 

differentially expressed (SHOX2, ZNF132, and KRT7) were also previously 

reported as cancer biomarkers [53-55]. Further, low-ranked genes in the gene 

expression and DNA methylation datasets that were highly ranked in the integrated 

dataset should be considered as potential novel candidate biomarkers. For example, 

LBX1 (ranked 200+ in the gene expression dataset, 103 in the DNA methylation 

dataset, and 21 in the integrated datasets) was previously identified as a biomarker 

highly related to cancer progression [56]. Therefore, I focused on the top 100 genes 

from the integrated datasets with ranks of 200+ in both the gene expression and 

DNA methylation datasets, finding that their ranks improved in the integrated 

datasets [TRIM58 (64), SNRPF (74), CPD (76), ZNF582 (77), BSX (84), RAB6C 

(85), GAS5 (89), PHB (95), MIAT (96), SLC6A5 (96), and ZNF471 (100); the 

numbers in parentheses denote the average ranks in the three integrated datasets]. 

Among these 11 genes, TRIM58, ZNF582, RAB6C, GAS5, PHB, and MIAT were 

previously reported as cancer-related genes [57-62]. These findings support the 

efficacy of the proposed method by utilizing integrative analysis of gene expression 

and DNA methylation data. Further, these results imply that differentially 

expressed genes found in the integrated dataset and not previously reported as 

being related to cancer progression (SNRPF, CPD, BSX, SLC6A5, ZNF471, and 

other top genes in the integrated datasets) may constitute strong potential 

candidates as cancer-progression biomarkers. 
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Conclusion 

In this thesis, I first presented a novel feature selection method based on the 

application of the l1-norm SVM over data perturbation, which was shown to be 

efficient for biomarker discovery. The nature of the l1-norm, which generates a 

sparse solution, renders it a reasonably efficient method of feature selection for 

high-dimensional data. The l1-norm SVM is also suitable for biomarker selection, 

as it delivers high performance in terms of classification and is applicable to 

diverse situations. However, application of the l1-norm SVM to a single dataset 

generates difficulty with regard to the detection of closely correlated factors, which 

commonly appear in biomarker detection. In addition, a result that is subordinate to 

a certain dataset may be produced. In the experiments, the feature stability was 

successfully improved because the l1-norm SVM was applied to several bootstrap 

samples considering instance perturbation. Instead of using the general SVM 

ranking criteria, I considered only the number of bootstrap samples that contained a 

given selected feature as the stability measure of that feature. By applying 

backward feature elimination based on the proposed stability score, I could then 

determine the optimal subset of features for which good classification performance 

was obtained. I applied the approach to RNA-seq data of renal clear cell carcinoma 

to find candidate biomarkers related to stage progress, which may be closely 

associated with tumor advancement and the metastasis issue. Through comparison 

with established feature selection methods, the good performance of the proposed 

algorithm in terms of classification performance and stability was established. The 

stability of feature selection is a significant issue and its importance has been 

underestimated for a long time; indeed, many research efforts aimed at feature 
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selection have focused solely on the performance of the examined methods. 

However, as is apparent from the non-ensemble methods examined in the 

experiment, feature selection algorithms designed without considering stability 

may yield many different subsets of features if the data changes even slightly. This 

causes low reproducibility for high-dimensional datasets such as microarray data or 

RNA-seq, and renders the analysis result less meaningful. Thus, stable feature 

selection is an essential issue in biomarker discovery. Of course, the feature 

performance should not be neglected because feature stability does not guarantee 

true biomarker detection. Although, based on a simple idea, the proposed approach 

was shown to be moderately successful when applied to datasets consisting of a 

very large number of features and much smaller samples.  

Since a general process for resolution of binary classification problems on high-

dimensional data was proposed in this study, I expect the proposed method to be 

applicable to many other kinds of biomarker discovery. However, although the 

proposed method generally demonstrated improved performance compared to 

conventional techniques, it depends on gene expression data only. Therefore, it is 

necessary to integrate other datasets, such as the DNA methylation dataset. Thus, I 

also proposed an integrative-analysis method combining gene expression and DNA 

methylation data for cancer biomarker discovery. Gene expression analysis has 

been widely used for cancer analysis; however, use of a single dataset has limited 

effectiveness because of the amount of information and noise included. Here, 

simple integrative analysis with an additional dataset, i.e., DNA methylation 

dataset, along with implementation of normalization and unsupervised feature 

extraction, yielded improvement over the results obtained using a single gene 
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expression or DNA methylation dataset. Additionally, I showed that candidate 

biomarkers related to cancer progression can be acquired by analysis of integrated 

datasets. The proposed approaches are expected to be applied to various research 

studies aimed at candidate cancer biomarker discovery. 
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