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Abstract

This thesis concerns with large scale optimization methods for binary classification and
polynomial optimization. We develop efficient optimization algorithms based on the
accelerated proximal gradient (APG) method and appropriate formulations for the al-
gorithms.

First, we present a unified binary classification method. We develop a unified formula-
tion for various binary classification models (including support vector machines (SVMs),
logistic regression, and Fisher’s descriminant analisys) and a fast APG (FAPG) algo-
rithm for the formulation. Our FAPG is developed by devising various acceleration
techniques such as backtracking line search and adaptive restarting strategy. We also
give a theoretical convergence guarantee for the proposed FAPG method. Numerical ex-
periments show that our algorithm is stable and highly competitive to specialized algo-
rithms designed for specific models, e.g., sequential minimal optimization and stochastic
coordinate descent for SVM.

Next, we improve the doubly nonnegative (DNN) relaxation method for a class of
polynomial optimization problems (POPs) proposed by Kim, Kojima, and Toh. In order
to approximate the optimal value of a POP by its lower bound, they proposed a DNN
relaxation problem and solved it by the bisection and projection (BP) method. The BP
method reduces the problem to a dual optimization problem having a single variable and
applies the bisection method to the dual; The feasibility of a given point is determined by
the APG method. In this thesis, we propose new DNN relaxation problems which give
better lower bounds than theirs and can still be solved by the BP method efficiently. We
further improved the BP method by developing an adaptive restarting APG and a new
criterion for checking feasibility. Numerical experiments demonstrate the advantage of
our BP method over SDPNAL+ which is the state-of-the-art solver for DNN optimization
problems, especially for very large and sparse POPs.

Finally, by focusing on a class of combinatorial quadratic optimization problems
(QOPs), which are special cases of POPs, we examine how the difference in formu-
lations of QOPs can affect on the numerical computation of conic relaxation methods.
The binary and complementarity conditions of the combinatorial optimization problems
can be expressed in several ways, each of which results in different conic relaxations. For
the completely positive (CPP), DNN, and semidefinite programming (SDP) relaxations
of the combinatorial QOPs, we prove the equivalences and differences among the relax-
ations by investigating the feasible regions obtained from different representations of the
combinatorial condition. We also theoretically study the issue of the primal and dual
nondegeneracy, the existence of an interior solution and the size of the relaxations, as a
result of different representations of the combinatorial condition. These characteristics
of the conic relaxations affect the numerical efficiency and stability of the algorithms.
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1. Introduction

1.1. Background

An optimization problem is a problem of computing the infimum (or supremum) of
a real-valued objective function over a set which is typically defined by equality and
inequality constraints. The infimum is called the optimal value. A point in the set is
called feasible solution. If there exists a feasible solution at which the objective function
has the optimal value, then it is called an optimal solution.

A first-order method is an iterative method of searching the optimal value and an
optimal solution using the value of the function and its gradient information. Examples
include the steepest descent method [Cauchy, 1847], the gradient projection method
(e.g., [Goldstein, 1964; Levitin and Polyak, 1966]), the conditional gradient method
[Frank and Wolfe, 1956], and the proximal gradient method (e.g., [Bruck, 1975; Passty,
1979; Fukushima and Mine, 1981]). Compared to the second-order method such as
the Newton method and the interior point method (e.g., [Karmarkar, 1984; Tanabe,
1987; Kojima et al., 1989; Nesterov and Nemiroskii, 1994]) which also uses the Hessian
matrix information of the function, the first-order method tends to have less memory
requirement and computational burden per iteration. The recent growing importance of
big data optimization, e.g., in the fields of machine learning and image processing, has
motivated researchers to develop the first-order method.

A historical breakthrough in the development of the first-order method is the accelera-
tion technique for the steepest descent method proposed by Nesterov [1983]. It contains
a characteristic update rule which adds momentum to the sequence of solutions. The
convergence rate of the accelerated steepest descent method coincides with the lower
complexity bounds of the first-order method proven by Nemirovsky and Yudin [1983].
In that sense, the accelerated method is often called an optimal method. While Nes-
terov’s subsequent studies have also proposed various acceleration techniques, Beck and
Teboulle [2009] recently developed the accelerated proximal gradient (APG) method by
extending the idea of Nesterov in 1983. Through the application of the APG method to
image deblurring problem, the study proved the practical efficiency of the acceleration
techniques and triggered extensive studies on accelerated first-order methods.

Although the accelerated first-order methods have the optimal convergence rate in
theory, it is very important to design various techniques for further speeding up the
practical convergence. Backtracking line search [Beck and Teboulle, 2009; Scheinberg
et al., 2014] for adjusting stepsize and restarting strategies [O’Donoghue and Candès,
2015; Nesterov, 2013; Lin and Xiao, 2015; Su et al., 2014] for controlling the momentum
has been proposed for the purpose. The stepsize is an important parameter for first-
order methods. It is advantageous to take a large stepsize whenever possible. The

1



1. Introduction

backtracking proposed by Beck and Teboulle [2009] uses a large stepsize at first and
decrease the stepsize when a certain condition is violated. It is designed so that the
stepsize is non-increasing, which may be conservative, but later improved by Scheinberg
et al. [2014] so that the stepsize can be increase. The advantage of the backtracking line
search is that it can improve the practical performance while maintaining the optimal
convergence rate. The adaptive restarting technique O’Donoghue and Candès [2015] is
known as one of the most effective speed-up strategies. It prevents the overshooting of the
sequence of solutions which is caused by the momentum. Although Beck and Teboulle
[2009] provide a heuristic convergence analysis for their restarting method when the
objective function is a strongly convex quadratic function, the convergence for a general
convex objective function has been unknown. There are also several other restarting
schemes [Nesterov, 2013; Lin and Xiao, 2015; Su et al., 2014] which have guaranteed
convergence in the case that the objective function is strongly convex. To the best of
our knowledge, however, none of the restarting strategies have convergence guarantee
for a general non-strongly convex function.

1.2. Our Contributions

In this thesis, we develop a practically efficient algorithm based on the APG method for
large-scale optimization. Our basic idea is to employ and combine various acceleration
techniques such as backtracking line search [Beck and Teboulle, 2009; Scheinberg et al.,
2014] and adaptive restarting strategy [O’Donoghue and Candès, 2015]. One of the
theoretical contributions in this thesis is to show that in fact APG with the adaptive
restarting strategy [O’Donoghue and Candès, 2015] can have convergence guarantee for
general convex functions by a simple modificaiton. To the best of our knowledge, it is
the first convergence results of restarting APG for non-strongly convex functions.

In order to make use of the APG method, it is necessary to formulate a given problem
in an appropriate form. Moreover, depending on the structure of the problem formu-
lation, some speeding-up strategies may be invalid. Hence it is necessary to design an
algorithm according to the problem formulation. In this thesis, we focus on large-scale
optimization problems which appear in binary classification and polynomial optimiza-
tion, and develop new formulations and algorithms based on the APG method for them.
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1. Introduction

The contributions of this thesis are illustrated in Figure 1 and summarized in the
followings.

Unified Binary Classification Method based on APG: The first contribution is
to propose a unified binary classification method. Binary classification is the problem
of predicting the class a given sample belongs to and is one of the most important
problems in machine learning. To achieve a good prediction performance, it is important
to find a suitable model for a given dataset. However, it is often time consuming and
impractical for practitioners to try various classification models because each model
employs a different formulation and algorithm. For example, there has been proposed
several highly efficient algorithms [Platt, 1998; Hsieh et al., 2008] for the support vector
machines (SVMs) [Cortes and Vapnik, 1995; Schölkopf et al., 2000]. However, it would
be difficult to apply the algorithms to other models, and hence practitioners have to
implement another algorithm or even develop a new algorithm for the models. The
difficulty can be mitigated if we have a unified formulation and an efficient universal
algorithmic framework for various classification models to expedite the comparison of
performance of different models for a given dataset.

In this thesis, we present a unified formulation of various classification models (in-
cluding the support vector machines (SVMs) [Cortes and Vapnik, 1995; Schölkopf et al.,
2000], Fisher’s discriminant analysis [Fisher, 1936], minimax probability machine [Nath
and Bhattacharyya, 2007], logistic regression [Cox, 1958], distance weighted discrimina-
tion [Marron et al., 2007]) and develop a general optimization algorithm based on the
APG method for the formulation. We design various techniques based on backtracking
line search [Beck and Teboulle, 2009; Scheinberg et al., 2014] and adaptive restarting
strategy [O’Donoghue and Candès, 2015] in order to speed up the practical convergence
of our method. We also give a theoretical convergence guarantee for the proposed fast
APG algorithm. Numerical experiments show that our algorithm is stable and highly
competitive to specialized algorithms designed for specific models, e.g., sequential min-
imal optimization (SMO) [Platt, 1998; Chang and Lin, 2011] and stochastic coordinate
descent [Fan et al., 2008] for SVM.

Doubly Nonnegative Relaxation Method based on APG for Polynomial Op-
timization: The second contribution of this thesis is to develop a doubly nonnegative
(DNN) relaxation method for a class of polynomial optimization problems (POPs) over
the nonnegative orthant. POP is a problem of minimizing a polynomial objective func-
tion under polynomial equality and inequality constraints. It is known as NP-hard in
general and considered to be difficult to obtain the optimal value efficiently and accu-
rately by numerical optimization methods. In order to approximate the optimal value
by its lower bound, various convex conic relaxation methods have been proposed. The
semidefinite programming (SDP) relaxation has been studied extensively and proved to
be very successful in solving various POPs. Recently, the doubly nonnegative (DNN)
relaxation has attracted attention as it gives a better lower bound compared with the
SDP relaxation. The computational burden of the DNN problem, however, is expensive
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1. Introduction

since it consists of quadratic number of nonnegative inequality constraints with respect
to the size of the variable matrix. Numerical optimization methods to mitigate this diffi-
culty by exploiting the structure of the DNN problem have been proposed, for instance,
SDPNAL+ [Yang et al., 2015] and the bisection and projection (BP) method [Kim et al.,
2016a; Arima et al., 2017].

The BP method is a first-order method of solving a class of conic optimization problems
(COPs) with two simple cone constraints. It reduces the problem to a dual optimization
problem having a single variable and applies the bisection to the dual; the feasibility
of a given point is determined by the APG method. For binary and box constrained
POPs, Kim et al. [2016b] proposed a DNN relaxation formulation that fits in the frame-
work of the BP method. Their formulation is very simple, and hence there is still room
for improvement in the approximation accuracy of the DNN relaxation. In this thesis,
we propose a method to construct a tighter DNN relaxation problem which still fits in
the framework of the BP method. We also provide a method to compute a good up-
per bound of the trace of the matrix variable, which is important for stabilizing the BP
method. Furthermore, the APG method for checking feasibility is improved by the adap-
tive restarting strategy [O’Donoghue and Candès, 2015]. The theoretical convergence
of the restarting APG follows from the analysis of unified binary classification method.
This theoretical guarantee is very important in the application of checking feasibility
since it requires high solution reliability and accuracy.

Effects of Difference in Conic Relaxation Formulations on Algorithms: As a
third contribution, by focusing on a class of combinatorial quadratic optimization prob-
lems (QOPs), which are POPs with polynomials of degree 2, we examine how the differ-
ence in formulation of QOPs can affect on the numerical algorithm of a conic relaxation
method. Various conic relaxations of QOPs with nonnegative variables for combina-
torial optimization problems, such as the binary integer quadratic problem, quadratic
assignment problem (QAP), and maximum stable set problem have been proposed over
the years. The binary and complementarity conditions of the combinatorial optimiza-
tion problems can be expressed in several ways, each of which results in different conic
relaxations. For the completely positive (CPP), DNN, and SDP relaxations of the com-
binatorial optimization problems, we prove the equivalences and differences among the
relaxations by investigating the feasible regions obtained from different representations
of the combinatorial condition, a generalization of the binary and complementarity con-
dition. We also theoretically study the issue of the primal and dual nondegeneracy, the
existence of an interior solution and the size of the relaxations, as a result of different
representations of the combinatorial condition. These characteristics of the conic relax-
ations affect the numerical efficiency and stability of the solver used to solve them. We
demonstrate the theoretical results with numerical results on QAP instances solved by
SDPT3 [Tütüncü et al., 2003], SDPNAL+ [Yang et al., 2015], and the BP method based
on the APG method.

Finally, we mention the reason of using the APG method in this thesis rather than the

5



1. Introduction

stochastic gradient descent (SGD) methods which are developed in order to solve even
larger scale optimization problems, especially in the field of machine learning. SGD
approximates the gradient of an objective function by a computationally inexpensive
random variable whose expectation coincides with the gradient. In order to design an
efficient random variable, SGD in machine learning assumes that the objective function
is splittable, i.e., expressed by the sum of differentiable loss functions for each sample.
Our unified binary classification method, however, includes binary classification models
that do not satisfy this assumption. On the other hand, since APG can solve even
a problem whose objective function is unsplittable, it can be used for unified binary
classification method and also problems other than machine learning such as polynomial
optimization. In other words, the methods proposed in this thesis build on the extensive
generality of APG.

The rest of this thesis is organized as follows. In Chapter 2, we define notations
and symbols. We also introduce the APG method and existing techniques to improve
the practical performance. Chapter 3 presents our first main result: a unified binary
classification method. In Chapter 4, we provide a DNN relaxation method for a class of
POPs as the second main result. As the third main result, we examine how the difference
in formulation of QOPs can affect on the numerical computation of a conic relaxation
method in Chapter 5. Finally, Chapter 6 concludes this thesis.

Credit. Chapter 3 is based on the joint work [Ito et al., 2017b] with Akiko Takeda
and Kim-Chuan Toh. Chapters 4 and 5 are based on joint works with Sunyoung Kim,
Masakazu Kojima, Akiko Takeda, and Kim-Chuan Toh. An earlier version of Chapter 5
appears in the preprint [Ito et al., 2017a].
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2. Preliminaries

2.1. Notation and Symbols

Let Rn denote the n-dimensional Euclidean space. Let Zn ⊆ Rn be the set of n-
dimensional integer vectors. Let Zn+ be the set of nonnegative vectors in Zn. We assume
that each x ∈ Rn is a column vector of element xi (1 ≤ i ≤ n). e ∈ Rn denotes the
all-one vector, and ei ∈ Rn denotes the vector whose i-th element is 1 and all others are
0 (i = 1, 2, . . . , n). Let Rm×n be the linear space of m × n real matrices. The (i, j)-th
element of X ∈ Rm×n is denoted by Xij . For given X ∈ Rm×n and Y ∈ Rp×q, the
Kronecker product of them is defined by

X ⊗ Y =


X11Y X12Y · · · X1nY
X21Y X22Y · · · X2nY

...
... . . . ...

Xm1Y Xm2Y · · · XmnY

 ∈ Rmp×nq.

Let Sn ⊆ Rn×n denote the linear space of n×n real symmetric matrices. I ∈ Sn denotes
the identity matrix. E ∈ Sn denotes the square matrix whose elements are all one. xT
and XT denote the transpose of x ∈ Rn and X ∈ Rm×n, respectively.

We define the inner product 〈x, y〉 on Rn by xTy and the inner product 〈X, Y 〉 on
Sn by trace(XTY ) (=

∑n
i=1

∑n
j=1XijYij). ‖ ·‖ denotes the norm induced from the inner

product 〈·, ·〉, i.e., ‖x‖ =
√
〈x, x〉. ΠK(x) denotes a metric projection of a point x onto

a set K, i.e., ΠK(x) = argminz{‖x− z‖ | z ∈ K}. For p ≥ 1, we also introduce `p-norm
‖ · ‖p on Rn which is defined by

‖x‖p =
( n∑
i=1
|xi|p

)1/p
(x ∈ Rn).

In addition, the `∞-norm ‖x‖∞ is defined by max{|xi| | i = 1, 2, . . . , n}.
For a finite set S, |S| denotes its cardinality. For given sets S and T , S + T = {s+ t |

s ∈ S, t ∈ T} denotes the Minkowski sum of them.

2.2. The Accelerated Proximal Gradient (APG) Method

In this section, we introduce the accelerated proximal gradient (APG) method [Beck
and Teboulle, 2009] which is designed for the following problem:

F ∗ = min
α∈Rd

F (α) where F (α) = f(α) + g(α). (2.1)

7



2. Preliminaries

Note that one can express a minimization problem constrained over a set S in the form
of (2.1) by setting g(·) = δS(·), where

δS(α) =
{

0 (α ∈ S)
+∞ (α 6∈ S)

is the indicator function of the set S.
To apply the APG method to (2.1), we need to assume the following conditions:

1. g : Rd → R ∪ {+∞} is a proper, closed, and convex function which is possibly
nonsmooth. Its effective domain dom(g) = {α ∈ Rd | g(α) < +∞} is closed and
convex.

2. f : Rd → R is a proper, closed, convex, and continuously differentiable function,
and its gradient ∇f(·) is Lipschitz continuous on Rd,1 i.e., there exists a constant
L > 0 such that

‖∇f(α)−∇f(β)‖ ≤ L‖α− β‖ ∀α,β ∈ Rd. (2.2)

The minimum value of such L is referred to as the Lipschitz constant Lf of ∇f(·).

3. The problem (2.1) is solvable, i.e., the optimal value F ∗ is finite and an optimal
solution α∗ exists.

Let L ≥ Lf . We define an approximate function QL : Rd → R of f(α) around β and
a mapping TL(α) : Rd → Rd as follows:

QL(α;β) = f(β) + 〈∇f(β),α− β〉+ L

2 ‖α− β‖
2 + g(α)

TL(β) = argmin
α∈Rd

QL(α;β).

The basic proximal gradient (PG) method generates a sequence {αk}∞k=0 by

αk+1 = TL(αk) = argmin
α∈Rd

{
g(α) + L

2

∥∥∥α− (αk − 1
L
∇f(αk)

)∥∥∥2}
= proxg,L

(
αk − 1

L
∇f(αk)

)
,

where proxg,L(ᾱ) := argminα∈Rd
{
g(α) + L

2 ‖α− ᾱ‖
2
}

is the proximal operator of g(·).
If g(·) = δS(·), then proxg,Lk(·) = ΠS(·). In this case, the above PG method co-
incides with the gradient projection method. If g(·) = ‖ · ‖1, then

(
proxg,L(α)

)
i

=
sign(αi) max{0, |αi| − L} (i = 1, 2, . . . , d) which is known as the soft-thresholding op-
erator. Other analytical computations of the proximal operators of various g(·) can be
found in [Parikh and Boyd, 2014, Section 6].

1It is sufficient if ∇f(·) is Lipschitz continuous on a neighborhood of dom(g): the convex hull of
dom(g) ∪ {βk | k = 1, 2, . . .}, where βk (k = 1, 2, . . .) are points generated at Step 3 of the APG
method. Obviously, however, it is not possible to know the points a priori.
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2. Preliminaries

It is known that the PG method has the iteration complexity such that F (αk)−F ∗ ≤
O(1/k), where α∗ is an optimal solution of (2.1). The APG method [Beck and Teboulle,
2009], which is also known as FISTA, is an acceleration of the PG method. It generates
two sequences

{
βk
}∞
k=1 and

{
αk
}∞
k=0. For an arbitrary initial point β1 = α0 ∈ Rd and

t1 = 1, the APG method solves (2.1) through the following steps (k = 1, 2, . . .):

The Accelerated Proximal Gradient Method [Beck and Teboulle, 2009]

Step 1. Compute
αk ← TL(βk) = proxg,L

(
βk − 1

L
∇f(βk)

)
.

Step 2. Compute tk+1 ←
1+
√

1+4t2
k

2 .

Step 3. Compute βk+1 ← αk + tk−1
tk+1

(αk −αk−1).

For the APG method, the iteration complexity result such that

F (αk)− F ∗ ≤ 2Lf‖α0 −α∗‖2

(k + 1)2

is known (see [Beck and Teboulle, 2009, Theorem 4.4]). The second term tk−1
tk+1

(αk−αk−1)
in Step 3 can be seen as the momentum of the sequence {αk}∞k=0. It enlarges the moving
distance of the sequences {α}∞k=0, {β}∞k=1 which may lead them closer to the optimum
α∗ more quickly. While various other APG methods (e.g, [Nesterov, 2013; Monteiro
et al., 2016; Su et al., 2014]) are proposed, the above APG (namely, FISTA) is used in
many applications because it is simpler to implement.

It is known that α∗ is an optimal solution of (2.1) if and only if α∗ = TL(α∗). More
specifically, the necessary and sufficient optimality condition for α∗ to be an optimal
solution of (2.1) is

∃γα ∈ ∂g(α∗) s.t. 〈∇f(α∗) + γα, α−α∗〉 ≥ 0, ∀α ∈ Rd. (2.3)

On the other hand, from the definition of TL(β), we have

∃γβ ∈ ∂g(TL(β)) s.t. 〈∇f(TL(β)) + L
(
TL(β)− β

)
+ γβ, α− TL(β)〉 ≥ 0, ∀α ∈ Rd,

(2.4)
for any β ∈ Rd. The term L

(
TL(β) − β

)
in (2.4) can be seen as the residual of the

optimality condition (2.3). Thus it would be a natural criterion to terminate the APG
if L‖TL(αk)−αk‖ < ε with a small constant ε > 0.

Despite having a strong iteration complexity result, the APG method may still not be
efficient enough for practical purpose. In the following, we describe several well-known
strategies to make the APG method practically efficient.
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2.2.1. Backtracking Strategy

We assume that L is greater than or equals to the Lipschitz constant Lf of ∇f(α).
However it is advantageous to use a smaller value for L whenever possible since the
constant L plays the role of a step size as in a gradient descent method; fixing L to be
the Lipschitz constant Lf is usually too conservative (see Table 3.5 in Section 3.4). Thus
we adopt the following backtracking strategy [Beck and Teboulle, 2009] after Step 1 with
arbitrary given small constants ηu > 1 and L0 > 0:

‘bt’: While
F (αk) > QLk(αk;βk), (2.5)

update Lk ← ηuLk and αk ← TLk(βk). Set Lk+1 ← Lk.

We note that the inequality F (αk) ≤ QLk(αk;βk) is satisfied if Lk ≥ Lf , i.e., it is
a weaker condition than (2.2). ‘bt’ ensures that the complexity result F (αk) − F ∗ ≤
O(1/k2) of APG still holds.

2.2.2. Decreasing Strategy for the Estimates Lk of the Lipschitz
Constant Lf

Beck and Teboulle [2009] designed the backtracking strategy ‘bt’ so that the values of Lk
is non-decreasing. In fact, the convergence analysis of [Beck and Teboulle, 2009] requires
the value of Lk to be non-decreasing. However, it is advantageous to decrease the value
of Lk whenever possible since the constant 1

Lk
gives a larger step size.

To allow Lk to decrease, Scheinberg et al. [2014] modifies the APG method so that
{tk}∞k=1 satisfies tk/Lk ≥ tk+1(tk+1 − 1)/Lk+1 (∀k ≥ 1) and the sequences {αk}∞k=0 and
{βk}∞k=1 are generated along with {tk}∞k=1. To be specific, let us introduce the following
simple step to decrease the value of Lk, where ηd > 1 is a given constant.

‘dec’: Set Lk+1 ← Lk/ηd.

The modified APG of [Scheinberg et al., 2014] can be described as in Algorithm 2.1. It
differs from the original APG in that the updates of tk and βk are added to ‘bt’ and
Step 2 is modified. The convergence of Algorithm 2.1 is shown as follows.

Proposition 2.2.1 (from Scheinberg et al., 2014). Let S∗ be the set of optimal solutions
of (2.1). For any α∗ ∈ S∗, the sequence {αk}∞k=0 generated by Algorithm 2.1 satisfies
the following inequality:

F (αk)− F ∗ ≤ 2ηuLf‖α0 −α∗‖2

k2 , ∀k ≥ 1.
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Algorithm 2.1 An Accelerated Proximal Gradient Method with Non-Monotonic Step
Size

Input: f , ∇f , g, proxg,L, ε > 0, L1 = L0 > 0, ηu > 1, ηd > 1, kmax > 0, β1 = α0

Output: αk
Initialize: t1 ← 1, t0 ← 0
for k = 1, . . . , kmax do
αk ← TLk(βk) = proxg,Lk

(
βk − 1

Lk
∇f(βk)

)
# Step 1

while F (αk) > QLk(αk;βk) do
Lk ← ηuLk # ‘bt’
tk ←

1+
√

1+4(Lk/Lk−1)t2
k−1

2
βk ← αk−1 + tk−1−1

tk
(αk−1 −αk−2)

αk ← TLk(βk) = proxg,Lk
(
βk − 1

Lk
∇f(βk)

)
# ‘bt’

end while
if ‖Lk(TLk(αk)−αk)‖ < ε then

break
end if
Lk+1 ← Lk/ηd # ‘dec’
tk+1 ←

1+
√

1+4(Lk+1/Lk)t2
k

2 # Step 2’
βk+1 ← αk + tk−1

tk+1
(αk −αk−1) # Step 3

end for

2.2.3. Restarting Strategy

The value tk−1
tk+1

∈ [0, 1) in Step 3 determines the amount of momentum in tk−1
tk+1

(αk −
αk−1). When the value tk−1

tk+1
is close to 1, i.e., the momentum is high, the sequences

of solutions {αk}∞k=0 and {βk}∞k=1 would overshoot and oscillate around the optimal
solution α∗. In order to avoid the oscillation and further speed up the convergence,
O’Donoghue and Candès [2015] introduced an adaptive restarting strategy:

‘re’: If ∇f(βk)>(αk −αk−1) + g(αk)− g(αk−1) > 0,
then update tk+1 ← 1, tk ← 0, βk+1 ← αk−1, and αk ← αk−1.

Roughly, the APG method resets the momentum back to zero and restarts from the
previous point αk−1 if the direction of motion αk − αk−1 seems to cause the (approxi-
mated) objective value to increase, which may be a sign of overshooting. Note that the
computational cost of ‘re’ is inexpensive since ∇f(βk) has already been computed at
Step 1. O’Donoghue and Candès [2015] also provided a heuristic convergence analysis
for their restarting scheme (‘re’) when f is a strongly convex (i.e., there exists a constant
µ > 0 such that f(α)− µ

2‖α−α
∗‖22 is convex) quadratic function and g = 0. However,

the convergence of ‘re’ for a general convex objective function is unknown.
There are several other restarting schemes [Nesterov, 2013; Lin and Xiao, 2015; Su

et al., 2014]. They have guaranteed convergence in the case that f is strongly convex.
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k iter0

K1 K2 K3

restartrestartrestart

k̄1 k̄2 k̄3

Figure 2.1.: Illustration of Maintaining Top-Speed Strategy (‘mt’). A prohibition period
of restart for Ki iteration are imposed after the i-th restart occurs. If the
condition ∇f(βk)>(αk−αk−1) < 0 is satisfied after the period passed, then
the (i + 1)-th restart occurs. The next prohibition period is doubled, i.e.,
Ki+1 = 2Ki. k̄i(≥ Ki) denotes the number of iteration taken between the
(i − 1)-th and i-th restart, which will be used to convergence analysis in
Section 3.3.2.

Nesterov [2013] proposed a restarting method, which has asymptotic linear convergence
if g is strongly convex. Lin and Xiao [2015] showed that a similar restart technique
can achieve the same convergence rate as Nesterov’s scheme if f is strongly convex. Su
et al. [2014] modeled the APG method as a second-order ordinary differential equation
(ODE). They provided a speed restarting framework that ensures a linear convergence
of the ODE with respect to time in the case that f is strongly convex and g = 0. To
the best of our knowledge, however, none of the restarting schemes have convergence
guarantees for a general non-strongly convex function.

2.2.4. Maintaining Top-Speed Strategy

The restarting strategy cancels out high momentum and prevents overshooting. In the
neighborhood of an optimum, however, maintaining high momentum may be effective
rather than restarting APG (see Figures 3.5 and 3.7 in Section 3.4), because large over-
shooting may not occur. Thus we put a prohibition period of restart for Ki iteration
after the i-th restart occurs, where Ki increases as Ki = 2Ki−1 (i = 2, 3, . . .) and K1 ≥ 2.
See Figure 2.1 for illustration. Precisely, letting k = kre be the iteration count at which
the last restart occurs, we introduce the following step:

‘mt’: If k ≤ kre+Ki, then skip ‘re’. If restart occurs, then update kre ← k, Ki+1 ← 2Ki,
and i← i+ 1.

While a similar strategy is taken in the experiment of [Monteiro et al., 2016], its conver-
gence analysis is not provided. One of our contributions is to show that in fact the mod-
ification ‘mt’ of the restarting strategy can ensure the convergence rate of O

(
(log k/k)2)

under a mild assumption. We will elaborate it in Section 3.3.2.

12



3. A Unified Optimization Method for
Binary Classification

3.1. Overview

Binary classification is one of the most important problems in machine learning. Among
the wide variety of binary classification models which have been proposed to date, the
most popular ones include support vector machines (SVMs) [Cortes and Vapnik, 1995;
Schölkopf et al., 2000] and logistic regression [Cox, 1958]. To achieve a good prediction
performance, it is often important for the user to find a suitable model for a given dataset.
However, the task of finding a suitable model is often time consuming and tedious as
different classification models generally employ different formulations and algorithms.
Moreover, the user might have to change not only the optimization algorithms but also
solvers/software in order to solve different models. The goal of this chapter is to present
a unified formulation for various classification models and also to design a fast universal
algorithmic framework for solving different models. By doing so, one can simplify and
speed up the process of finding the best classification model for a given dataset. We can
also compare various classification methods in terms of computation time and prediction
performance in the same platform.

In this chapter, we first propose a unified classification model which can express various
models including C-SVM [Cortes and Vapnik, 1995], ν-SVM [Schölkopf et al., 2000], `2-
SVM, logistic regression [Cox, 1958], MM-FDA, MM-MPM [Nath and Bhattacharyya,
2007], distance weighted discrimination [Marron et al., 2007]. The unified model is
first formulated as an unconstrained `2-regularized loss minimization problem, which is
further transformed into the problem of minimizing a convex objective function over
a simple feasible region such as the intersection of a box and a hyperplane, truncated
simplex, unit ball, and so on. Taking different loss functions (correspondingly different
feasible regions in the transformed problem) will lead to different classification models.
For example, when the feasible region is given by the intersection of the unit hypercube
and a hyperplane, the unified formulation coincides with the well-known C-SVM or
logistic regression, and when the region is given by a truncated simplex, the problem is
the same as the ν-SVM.

It is commonly acknowledged that there is “no free lunch” in supervised learning
in the sense that no single algorithm can outperform all other algorithms in all cases.
Therefore, there can be no single “best” software for binary classification. However, by
taking advantage of the above-mentioned unified formulation, we can design an efficient
algorithm which is applicable to the various existing models mentioned in the last para-
graph. Our proposed algorithm is based on the accelerated proximal gradient (APG)
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method [Beck and Teboulle, 2009; Nesterov, 2005] and during the algorithm, only the
procedure for computing the projection onto the associated feasible region differs for
different models. In other words, by changing the computation of the projection, our
algorithm can be applied to arbitrary classification models (i.e., arbitrary feasible re-
gion) without changing the optimization algorithmic framework. The great advantage
of our algorithm is that most existing models have simple feasible regions, which make
the computation of the projection easy and efficient.

The APG method is known to be one of the most efficient first-order methods theoret-
ically. In order to make our APG based method practically efficient, we further employ
various techniques such as backtracking line search [Beck and Teboulle, 2009; Scheinberg
et al., 2014] and adaptive restarting strategies [O’Donoghue and Candès, 2015] to speed
up the convergence of the algorithm. Our method incorporates several speed-up strate-
gies while guaranteeing its convergence even for a general non-strongly convex function.
Since our method is a further improvement of the standard APG method, we will call
it as fast accelerated proximal gradient (FAPG) method. Our FAPG method improves
several other restarting schemes [Nesterov, 2013; Lin and Xiao, 2015; Su et al., 2014]
which have guaranteed convergence in the case when the objective function is strongly
convex. To make our method even more efficient in practice, we simplify some steps in
the implementation of our FAPG algorithm, though we can no longer ensure its theoret-
ical convergence. To summarize, while our method has extensive generality, numerical
experiments show that it performs stably and is highly competitive to specialized al-
gorithms designed for specific classification models. Indeed, our method solved SVMs
with a linear kernel substantially faster than LIBSVM [Chang and Lin, 2011] which
implemented the SMO [Platt, 1998] and SeDuMi [Sturm, 1999] which implemented an
interior-point method. Moreover, our FAPG method often run faster than the highly
optimized LIBLINEAR [Fan et al., 2008] especially for large-scale datasets with feature
dimension n > 2000. The FAPG method can be applied not only to the unified classi-
fication model but also to the general convex composite optimization problem such as
`1-regularized classification models, which are solved faster than LIBLINEAR in most
cases. It may be better to think of a stochastic variant of our method for further im-
provement and we leave it as a future research topic. We focus here on the deterministic
one as the first trial to provide an efficient unified algorithm which is applicable to all
well-known existing classification models.

The rest of this chapter is organized as follows. Section 3.2 presents a unified for-
mulation of binary classification models. In Section 3.3, we provide solution methods
for the unified formulation. We develop efficient algorithms for computing projections
which are used in the APG method. Then we design our FAPG method combined
with various techniques to speed-up its practical convergence. The iteration complexity
of O

(
(log k/k)2) of our algorithm is also established, where k is the iteration counter.

Numerical experiments are presented in Section 3.4.
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3.2. A Unified Binary Classification Model

3.2.1. The Primal and Dual Formulations

Let X ⊂ Rn be the input domain and {+1,−1} be the set of the binary labels. Suppose
that we have samples,

(x1, y1), . . . , (xm, ym) ∈ X × {+1,−1}.

Define M := {1, . . . ,m}, M+ := {i ∈M | yi = +1}, and M− := {i ∈M | yi = −1}. Let
m+ = |M+| and m− = |M−|.

We compute (w, b) for a decision function h(x) = w>x − b using these samples and
use h(x) to predict the label for a new input point x̂ ∈ X . If h(x̂) is positive (resp.
negative), then the label of x̂ is predicted to be +1 (resp. −1). Here we focus on linear
learning models by using linear functions h(x), but the discussions in this paper can be
directly applied to non-linear kernel models [Schölkopf and Smola, 2002] using nonlinear
maps φ(x) mapping x from the original space to a high dimensional space.

There are various binary classification models to compute (w, b) such as the support
vector machines (SVMs), e.g. [Cortes and Vapnik, 1995; Schölkopf et al., 2000; Schölkopf
and Smola, 2002], the margin maximized minimax probability machine (MM-MPM)
[Nath and Bhattacharyya, 2007], the model based on Fisher’s discriminant analysis (MM-
FDA) [Bhattacharyya, 2004; Takeda et al., 2013], and the logistic regression [Cox, 1958].

Many binary classification models have the following formulation which consists of the
sum of loss of each sample and a regularization term:

min
w,b

m∑
i=1

`
(
yi(w>xi − b)

)
+ 1
C
‖w‖pp, (3.1)

where ` : R → R is a proper, closed, and convex function; C > 0 is a parameter; and
‖·‖p is the p-norm with p ∈ [1,∞].

In this chapter, we focus on the following `2-regularized loss minimization problem:

min
w,b
L(Ã>w − ab) + 1

2C ‖w‖
2
2, (3.2)

where L : Rm → R is a proper, closed, and convex function; Ã ∈ Rn×l, a ∈ Rl, and
C > 0 is a parameter. We will later show examples such that

• l = m, Ã = X̃ := [y1x1, y2x2, . . . , ymxm], a = y, and

• l = n, Ã = I, a = 0.

Our algorithm to be described later can also be applied to a more general loss-
regularized model with p ∈ (1,∞):

min
w,b

{
L(Ã>w − ab) | ‖w‖p ≤ λ

}
, (3.3)
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where λ > 0 is a parameter. We note that the condition p ∈ (1,∞) is required for our
unified classification algorithm because it requires the smoothness of the dual norm of
‖ · ‖p. However, if p ∈ {1,∞} and L is smooth, the APG method can be applied directly
to the primal problem (3.3). See Appendix A.2 for `1-regularized problems, i.e., the case
of p = 1.

The dual problems of (3.2) is given by

min
α

{
L∗(−α) + C

2 ‖Ãα‖
2
2 | α>a = 0

}
, (3.4)

where L∗(α) = supz{α>z − L(z)} is the convex conjugate of L.
Since the problem (3.3) can be transformed as follows:

min
w,b
{L(Ã>w − ba) | ‖w‖p ≤ λ}

= min
w,b,z
{L(z) | ‖w‖p ≤ λ, z = Ã>w − ba}

= min
‖w‖p≤λ,b,z

max
α
{L(z) +α>(z − Ã>w + ba)},

its dual problem is derived as follows:

max
α

min
‖w‖p≤λ,b,z

{L(z) +α>(z − Ã>w + ba)}

= −min
α

{
max
z

{
−α>z − L(z)

}
+ max
‖w‖p≤λ

{
α>Ã>w

}
+ max

b

{
α>ab

}}
= −min

α
{L∗(−α) + λ‖Ãα‖∗p | α>a = 0}. (3.5)

where ‖z‖∗p = sup‖w‖p≤1{z>w} is the dual norm of ‖ · ‖p. It is known that ‖ · ‖∗p = ‖ · ‖q,
where q = p/(p− 1). We note that the norms ‖ · ‖p and ‖ · ‖∗q are smooth for p ∈ (1,∞).
The problem (3.5) can be seen as the Fenchel dual of (3.3).

As shown later, in all classification models, L∗ is the sum of a smooth function and
an indicator function of a simple set S for which the projection ΠS can be computed
efficiently. Thus we can apply the APG method as an acceleration of the gradient
projection method to the dual problems (3.4) and (3.5). By this construction, we can
ensure the fast convergence rate of F (αk) − F (α∗) ≤ O(1/k2) for various classification
models in a unified way. In other word, the APG method can obtain a solution with
desired accuracy ε > 0 in O(1/

√
ε) iteration.

There is an existing work [Zhou et al., 2010] which applies the APG method to the
primal C-SVM, i.e., (3.2) with the hinge loss function. However, their method requires
O(1/ε) iteration to obtain a solution with the desired accuracy ε > 0 because it approx-
imates the hinge loss by a smoothed function and making the approximation tighter
requires extra iterations [Nesterov, 2005].

3.2.2. Relation to Existing Binary Classification Models

In this section, we show some specific examples of L and L∗.
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3.2.2.1. C-SVM

Let Ã = X̃ and a = y in (3.2). Let `(z) = max{0, 1 − z} be the hinge loss and
L(z) =

∑m
i=1 `(zi). Then the primal problem (3.2) is known as the standard C-SVM

[Cortes and Vapnik, 1995]. Since

L∗(−α) =
m∑
i=1

`∗(−αi), where `∗(−α) =
{
−α if α ∈ [0, 1]
+∞ otherwise,

the dual problem (3.4) can be reduced to

min
α

C

2 ‖X̃α‖
2
2 −α>e+ δSC (α), (3.6)

where SC = {α ∈ Rm | α>y = 0, 0 ≤ α ≤ e}.

3.2.2.2. `2-SVM

Let Ã = X̃ and a = y in (3.2). Let `(z) = (max{0, 1 − z})2 be the truncated squared
loss and L(z) =

∑m
i=1 `(zi). Then the primal problem (3.2) is known as the `2-SVM.

Since

L∗(−α) =
m∑
i=1

`∗(−αi), where `∗(−α) =
{
α2

4 if α ≥ 0
+∞ otherwise,

the dual problem (3.4) can be reduced to

min
α

C

2 ‖X̃α‖
2
2 + ‖α‖

2
2

4 + δS`2 (α), (3.7)

where S`2 = {α ∈ Rm | α>y = 0, α ≥ 0}.

3.2.2.3. Logistic regression

Let Ã = X̃ and a = y in (3.2). Let `(z) = log(1 + exp(−z)) be the logistic loss and
L(z) =

∑m
i=1 `(zi). Then the primal problem (3.2) is the logistic regression [Cox, 1958].

Since

L∗(−α) =
m∑
i=1

`∗(−αi), where `∗(−α) =


α log(α) + (1− α) log(1− α) (0 < α < 1)
0 (α = 0, 1)
+∞ otherwise,

the dual problem (3.4) can be reduced to

min
α

C

2 ‖X̃α‖
2
2 +

∑
i:αi>0

αi log(αi) +
∑
i:αi<1

(1− αi) log(1− αi) + δSLR(α), (3.8)

where SLR = {α ∈ Rm | α>y = 0, 0 ≤ α ≤ e}.
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We should note that the gradient of the second and third terms in (3.8) is not Lipschitz
continuous on SLR and not defined at αi = 0, 1 (i ∈ M). However, since it is known
that its optimal solution α∗ satisfies 0 < α∗ < e [Yu et al., 2011], we can instead solve
(3.8) by replacing SLR by SLR(ξ) := {α ∈ Rm | α>y = 0, ξe ≤ α ≤ (1 − ξ)e}, where
ξ > 0 is a small constant. The second and third terms in (3.8) are differentiable over
SLR(ξ). We will later show numerically that the resulting decision hyperplane is robust
to a small deviation of ξ (see Table 3.6 in Section 3.4).

3.2.2.4. ν-SVM

Let Ã = X̃ and a = y in (3.2). Let

L(z) = min
ρ

{
− ρ+ 1

mν

m∑
i=1

max{ρ− zi, 0}
}
,

where ν ∈ (0, 1] is a given parameter. The function L(z) is the expected value of the
upper ν-tail distribution, which is known as the conditional value-at-risk (CVaR) [Rock-
afellar and Uryasev, 2000]. Gotoh and Takeda [2005] pointed out that minimizing CVaR
is equivalent to ν-SVM [Schölkopf et al., 2000], which is also known to be equivalent to
C-SVM.

Since

L∗(−α) =

0
(
e>α = 1 and α ∈

[
0, 1

mν

]m)
+∞ otherwise,

the dual problem is given by

min
α

C

2 ‖X̃α‖
2
2 + δSν (α), (3.9)

where Sν = {α ∈ Rm | α>y = 0, α>e = 1, 0 ≤ α ≤ 1
mνe}. Note that any positive

value for C does not change the optimal solution of (3.9), and therefore, we can set
C = 1. There exists a valid range (νmin, νmax] ⊆ (0, 1] for ν, where νmin is the infimum
of ν > 0 such that X̃α∗ 6= 0, and νmax := 2 max{m+,m−}

m is the maximum of ν ≤ 1
for which Sν 6= φ. Since the parameter ν takes a value in the finite range (νmin, νmax],
choosing the parameter value for ν-SVM is often easier than that for C-SVM.

3.2.2.5. Distance Weighted Discrimination (DWD)

Let Ã = X̃, a = y, λ = 1, and p = 2 in (3.3). For a positive parameter ν, let `(z) be
the function defined by

`(z) = min
ρ

{1
ρ

+ 1
mν

(ρ− z) | ρ ≥ z, ρ ≥
√
mν
}

=


1
z if z ≥

√
mν

2
√
mν−z
mν otherwise

.
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3. A Unified Optimization Method for Binary Classification

Consider L(z) =
∑m
i=1 `(zi). This loss function is used in the distance weighted discrimi-

nation (DWD) [Marron et al., 2007] which is proposed as an alternative to ν-SVM. Since
we have

L∗(−α) =
m∑
i=1

`∗(−αi), where `∗(−α) =
{
−2
√
α

(
0 ≤ α ≤ 1

mν

)
+∞ otherwise,

the dual problem (3.4) can be equivalently reduced to

min
α

{
‖X̃α‖2 − 2

m∑
i=1

√
αi + δSDWD(α)

}
, (3.10)

where SDWD =
{
α ∈ Rm | α>y = 0, 0 ≤ α ≤ 1

mνe
}
.

As in the case of the logistic regression, the second term in (3.10) is not differentiable
at αi = 0 (i ∈ M). However, since it is known that there exists an optimal solution α∗
such that α∗i > 0 (i ∈ M), we can solve (3.10) by replacing SDWD by SDWD(ξ) =

{
α ∈

Rm | α>y = 0, ξe ≤ α ≤ 1
mνe

}
where ξ > 0 is a small constant. The second term in

(3.10) is differentiable over SDWD(ξ).

3.2.2.6. Extended Fisher’s discriminant analysis (MM-FDA)

The well-known Fisher’s discriminant analysis (FDA) uses a decision function to max-
imize the ratio of the variance between the classes to the variance within the classes.
Let x̄o and Σo, o ∈ {+,−}, be the mean vectors and the positive definite covariance
matrices of xi, i ∈Mo, respectively. Then FDA is formulated as follows:

max
w

(
w>(x̄+ − x̄−)

)2
w>(Σ+ + Σ−)w .

Its optimal solution is given by

w∗ = (Σ+ + Σ−)−1(x̄+ − x̄−).

Let Ã = I and a = 0 in (3.2). Here we consider the mean-standard deviation type of
risk corresponding to FDA:

L(w) = −w>(x̄+ − x̄−) + κ
√
w>(Σ+ + Σ−)w,

where κ > 0 is a parameter. Since

L∗(−α) = sup
w

{
−α>w +w>(x̄+ − x̄−)− κ

√
w>(Σ+ + Σ−)w

)}
= sup

w
min
‖µ‖2≤κ

{
−α>w +w>(x̄+ − x̄−) +w>(Σ+ + Σ−)1/2µ

}
= min

µ

{
δSFDA(µ) | α = (x̄+ − x̄−) + (Σ+ + Σ−)1/2µ

}
,
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3. A Unified Optimization Method for Binary Classification

where SFDA =
{
µ ∈ Rn | ‖µ‖2 ≤ κ

}
, the dual problem (3.4) can be reduced to

min
α,µ

{
δSFDA(µ) + C

2 ‖α‖
2
2 | α = (x̄+ − x̄−) + (Σ+ + Σ−)1/2µ

}
,

which is equivalent to

min
µ

{
δSFDA(µ) +

∥∥(x̄+ − x̄−) + (Σ+ + Σ−)1/2µ
∥∥2

2
}
. (3.11)

Takeda et al. [2013] showed that

κmax :=
∣∣∣∣∣ infµ,κ κ

s.t. minµ
{∥∥(x̄+ − x̄−) + (Σ+ + Σ−)1/2µ

∥∥
2 + δSFDA(µ)

}
= 0

is equivalent to FDA. Hence (3.11) can be seen as an extension of FDA. We will refer it
as MM-FDA in this thesis.

3.2.2.7. Maximum Margin Minimax Probability Machine (MM-MPM)

Let Ã = I and a = 0 in (3.2). We consider a class-wise mean-standard deviation type
of risk:

L(w) =
(
−w>x̄+ + κ

√
w>Σ+w

)
−
(
−w>x̄− + κ

√
w>Σ−w

)
.

Similar to MM-FDA, we have

L∗(w) = sup
w

{
−α>w +

(
w>x̄+ − κ

√
w>Σ+w

)
−
(
w>x̄− − κ

√
w>Σ−w

)}
= sup

w
min

‖µ+‖2≤κ
‖µ−‖2≤κ

{
−α>w +

(
w>x̄+ +w>Σ1/2

+ µ+
)
−
(
w>x̄− +w>Σ1/2

− µ−
)}

= min
µ+,µ−

{
δSMPM(µ+,µ−) | α =

(
x̄+ + Σ1/2

+ µ+
)
−
(
x̄− + Σ1/2

− µ−
)}
,

where SMPM =
{
(µ+,µ−) ∈ Rn×Rn | ‖µ+‖2 ≤ κ, ‖µ−‖2 ≤ κ

}
. Thus the dual problem

(3.4) can be reduced to

min
α,µ+,µ−

{
δSMPM(µ+,µ−) + C

2 ‖α‖
2
2 | α =

(
x̄+ + Σ1/2

+ µ+
)
−
(
x̄− + Σ1/2

− µ−
)}
,

which is equivalent to

min
µ+,µ−

{
δSMPM(µ+,µ−) +

∥∥(x̄+ + Σ1/2
+ µ+

)
−
(
x̄− + Σ1/2

− µ−
)∥∥2

2
}
. (3.12)

The last problem (3.12) is equivalent to the dual of the maximum margin minimax
probability machine (MM-MPM) [Nath and Bhattacharyya, 2007].
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3. A Unified Optimization Method for Binary Classification

3.3. Algorithms for Unified Binary Classification

In this section, we first provide an efficient vector projection computation in order to
apply the APG method to the unified formulation of the binary classification models.
After that, we develop a fast APG (FAPG) method and show its convergence.

3.3.1. Vector Projection Computation

When applying the APG method to a constrained optimization problem over S, the
projection ΠS onto S appears at Step 1. We need to change the computation of the
projection ΠS depending on the definition of S. In this section, we provide efficient
projection computations for SC , S`2 , SLR(ξ), Sν , SDWD(ξ), SMPM, and SFDA.

3.3.1.1. A Bisection Method for Projection

Many models shown in Section 3.2 have a linear equality and box constraints. Here we
consider the set S = {α ∈ Rm | α>e = r, l ≤ αi ≤ u (∀i ∈M)} and provide an efficient
algorithm for computing the projection ΠS(ᾱ):

min
α

{1
2‖α− ᾱ‖

2
2 | α>e = r, l ≤ αi ≤ u (i ∈M)

}
. (3.13)

We assume that (3.13) is feasible. One way to solve (3.13) is to use breakpoint search
algorithms (e.g., [Helgason et al., 1980; Kiwiel, 2008; Duchi et al., 2008]). They are
exact algorithms and have linear time complexity of O(m). Helgason et al. [1980] and
Kiwiel [2008] developed the breakpoint search algorithms for the continuous quadratic
knapsack problem (CQKP) which involves the projection (3.13) as a special case. By
integrating the breakpoint search algorithm and the red-black tree data structure, Duchi
et al. [2008] developed an efficient update algorithm of the gradient projection method
when the gradient is sparse.

In this section, we provide a numerical algorithm for (3.13). Although its worst
case complexity is O

(
m log

( ᾱmax−ᾱmin
ε′

))
, where ᾱmax = max{ᾱi | i ∈ M} and ᾱmin =

min{ᾱi | i ∈M}, it often requires less time to compute a solution α̂ such that ‖α̂−ΠS(ᾱ)‖∞ <
ε′ = u in practice, where u ≈ 2.22× 10−16 is the IEEE 754 double precision. Note that
the error u can occur even when using the breakpoint search algorithm because u is the
supremum of the relative error due to rounding in the floating point number system.
Thus, it is sufficient to choose ε′ = u as the stopping tolerance for our algorithm in
practice. 1

It is known that the projection (3.13) can be reduced to finding the root of an one
dimensional monotone function.

1Another practical way is to decrease ε′, i.e., to improve the accuracy of the projection progressively,
as APG iterates. The APG method with the inexact computation [Jiang et al., 2012] also share the
same iteration complexity O(1/k2) as the exact counterpart.
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Figure 3.1.: Illustration of the function h(θ) :=
∑
i∈M αi(θ). The function h is piecewise

linear.

Lemma 3.3.1 (e.g. [Helgason et al., 1980]). Suppose that the problem (3.13) is feasible.
Let

αi(θ) = min
{

max{l, ᾱi − θ}, u
}
, i ∈M

and let
h(θ) =

∑
i∈M

αi(θ).

The following statements hold:

1. h(θ) is a continuous, non-increasing, and piecewise linear function which has break-
points at ᾱi − u and ᾱi − l (i ∈M).

2. There exists θ∗ ∈ (ᾱmin − r
m , ᾱmax − r

m) such that h(θ∗) = r.

3. Let α̂i = αi(θ∗), i ∈M . Then α̂ is an optimal solution of (3.13).

An example of h(θ) is illustrated in Figure 3.1. To solve h(θ) = r, the breakpoint
search uses the binary search to find two adjacent breakpoints that contain a solution
θ∗ between them. Then the exact solution θ∗ can be obtained by linear interpolation of
the two breakpoints.

Instead of binary search, we employ the bisection method to solve the equation h(θ) =
r.

The Bisection Algorithm for Projection

Step 0. Set θu ← ᾱmax − r
m and θl ← ᾱmin − r

m .

Step 1. Set θ̂ ← (θu + θl)/2

Step 2. Compute h(θ̂).

Step 3. If h(θ̂) = r, then output α with αi ← αi(θ̂). Else if h(θ̂) < r, then set θu ← θ̂.
Else if h(θ̂) > r, then set θl ← θ̂.
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3. A Unified Optimization Method for Binary Classification

Step 4. If |θu − θl| < ε′, then output α with αi ← αi(θ̂). Else, go to Step 1.

All steps require at most O(m) operations and the maximum number of iteration is⌈
log( ᾱmax−ᾱmin

ε′ )
⌉
. Thus, the computational complexity of the bisection algorithm is at

most O
(
m log( ᾱmax−ᾱmin

ε′ )
)
.

As the bisection method narrows the interval (θl, θu), some of the terms αi(θ), i ∈M ,
can be set to l, ᾱi − θ, or u for θ ∈ (θl, θu). By exploiting the property of αi(θ), we
can refine the computation of h(θ̂) in Step 3 by avoiding recalculation of certain sums.
Moreover, we can often obtain an exact solution. Let us divide M into the following
three disjoint sets for given θl and θu satisfying θl < θu:

U := {i ∈M | ᾱi − θu ≥ u (i.e., αi(θ) = u, ∀θ ∈ [θl, θu])}
L := {i ∈M | ᾱi − θl ≤ l (i.e., αi(θ) = l, ∀θ ∈ [θl, θu])}
I := M\(U ∪ L).

If ᾱi − θu ≥ l and ᾱi − θl ≤ u for all i ∈ I, then

θ =
(
|U |u+ |L|l +

∑
i∈I

αi − r
)
/|I| (3.14)

is an exact solution. If I 6= φ, then we also divide I into the following three disjoint sets
for given θ̂ ∈ (θl, θu):

IU = {i ∈ I | ᾱi − θ̂ ≥ u, (i.e., αi(θ) = u ∀θ ∈ [θl, θ̂])}

IL = {i ∈ I | ᾱi − θ̂ ≤ l, (i.e., αi(θ) = l ∀θ ∈ [θ̂, θu])}
IC = I\(IU ∪ IL)

Then we have

h(θ̂) =
∑
i∈M

αi(θ̂) = |U |u︸ ︷︷ ︸
su

+ |IU |u︸ ︷︷ ︸
∆su

+ |L|l︸︷︷︸
sl

+ |IL|l︸ ︷︷ ︸
∆sl

+
∑
i∈IC

αi︸ ︷︷ ︸
sc

−|IC |θ̂.

By storing the value of each terms, we can reduce the number of additions. The resulting
algorithm can be described as Algorithm 3.1.

Compared to the existing breakpoint search algorithms, our bisection method is advan-
tageous since it can avoid the computation of breakpoints and the comparison between
them. It is often faster than the breakpoint search algorithms in practice (see Table 3.2
in Section 3.4). In many cases, our algorithm can obtain the exact solution by (3.14).

Remark 3.3.1. Mimicking [Kiwiel, 2008], we can divide the set M more finely and re-
duce the recalculation of certain sums as shown in Appendix A.1. However, Algorithm 3.1
allows for simpler implementation and runs faster on our computer systems.

In the followings, we use Algorithm 3.1 to compute the projection onto SC , S`2 , SLR(ξ), SDWD(ξ),
and Sν .
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Algorithm 3.1 The bisection algorithm for (3.13).
INPUT: ᾱ, r, l, u, ε′ > 0 OUTPUT: α
INITIALIZE: I ←M, su ← sl ← sc ← 0,

θu ← ᾱmax − r
m , θ

l ← ᾱmin − r
m # Step 1

while |θu − θl| > ε′ do
θ̂ ← θu+θl

2 # Step 2
û← u+ θ̂, l̂← l + θ̂
IU ← {i ∈ I | ᾱi ≥ û}, IL ← {i ∈ I | ᾱi ≤ l̂} # Step 3
IC ← I\(IU ∪ IL)
∆su ← |IU |u, ∆sl ← |IL|l, sc ←

∑
i∈IC αi

val← su + ∆su + sl + ∆sl + sc − |IC |θ̂
if val < r then # Step 4
θu ← θ̂, I ← IC ∪ IL
su ← su + ∆su

else if val > r then
θl ← θ̂, I ← IC ∪ IU
sl ← sl + ∆sl

else
break

end if
if ᾱi − θu ≥ l and ᾱi − θl ≤ u ∀i ∈ I then
θ̂ ← (su + sl + sc − r)/|I|
break

end if
end while
αi ← αi(θ̂), ∀i ∈M # Step 5
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3. A Unified Optimization Method for Binary Classification

3.3.1.2. Projection for C-SVM, Logistic Regression, `2-SVM, DWD

The projection for C-SVM, logistic regression, `2-SVM, and DWD can be formulated as
follows:

min
α

{1
2‖α− ᾱ‖

2
2 | y>α = 0, l ≤ αi ≤ u (i ∈M)

}
, (3.15)

where (l, u) = (0, 1) for C-SVM, (l, u) = (0,∞) for `2-SVM, (l, u) = (ξ, 1− ξ) for logistic
regression, and (l, u) =

(
ξ, 1

mν

)
for DWD. By transforming the variable α and the vector

ᾱ to

βi =
{
αi if yi = 1
−αi + l + u otherwise

and β̄i =
{
ᾱi if yi = 1
−ᾱi + l + u otherwise,

respectively, the problem (3.15) can be reduced to

min
β

{1
2‖β − β̄‖

2
2 | β>e = (l + u)m−, l ≤ βi ≤ u (i ∈M)

}
.

The last problem can be solved by Algorithm 3.1.

3.3.1.3. Projection for ν-SVM

In applying the APG method to ν-SVM, we shall be concerned with the projection
ΠSν (ᾱ):

min
α

{1
2‖α− ᾱ‖

2
2
∣∣ α>y = 0, α>e = 1, 0 ≤ α ≤ 1

mν
e
}
. (3.16)

Let α+ and α− be the subvectors of α corresponding to the label +1 and −1, respec-
tively. Let e+ and e− be subvectors of e with size m+ and m−. From the fact that the
conditions α>y = 0 and α>e = 1 are equivalent to α>o eo = 1

2 (o ∈ {+,−}), the problem
(3.16) can be decomposed into the following two problems:

min
αo

{1
2‖αo − ᾱo‖

2
2
∣∣ α>eo = 1

2 , 0 ≤ αo ≤
1
mν

eo
}
, o ∈ {+,−}. (3.17)

Algorithm 3.1 can be applied to solve (3.17).

3.3.1.4. Projection for MM-MPM and MM-FDA

The projection ΠSFDA(ᾱ) of ᾱ onto SFDA =
{
α ∈ Rn | ‖α‖2 ≤ κ

}
is easy to compute;

We have
ΠSFDA(ᾱ) = min

{
1, κ

‖ᾱ‖2

}
ᾱ.

Similarly, the projection ΠSMPM(ᾱ+, ᾱ−) for MM-MPM can be computed as follows:

ΠSMPM(ᾱ+, ᾱ−) =
(

min
{

1, κ

‖ᾱ+‖2

}
ᾱ+, min

{
1, κ

‖ᾱ−‖2

}
ᾱ−
)
.
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Figure 3.2.: Effects of the value of Lk to the momentum tk−1
tk+1

(αk − αk−1) (left: Lk is
large, right: Lk is small). A smaller value of Lk gives a larger step size at
Step 1 as illustrated by the solid lines. This results in high momentum at
Step 3 as illustrated by the dashed lines.

3.3.2. A Fast APG (FAPG) Method with Convergence Guarantee

We have shown several strategies to speed-up the APG method in Section 2.2. While
the convergence proof has been shown for the backtracking ‘bt’ and decreasing ‘dec’
strategy, the convergence for the restart ‘re’ and maintaining top-speed ‘mt’ strategy
is unknown. In this section, we further propose a practical stabilization strategy and
develop a fast APG (FAPG) method by combining all these techniques. We then show
its convergence.

3.3.2.1. A Fast APG with Stabilization

Decreasing L (‘dec’) and restarting strategies (‘re’) shown in Section 2.2 are effective
to speed-up the practical convergence of the APG method, especially in early iterations
and near the optimal solution, respectively (see Figures 3.5 and 3.9 in Section 3.4).
However, they have opposing effects. Decreasing Lk enlarges the stepsize 1

Lk
, which

extendsαk−αk−1. This inherently induces high momentum (as illustrated in Figure 3.2).
On the other hand, the restarting strategy cancels out high momentum. Hence combining
them triggers the restart frequently and makes the APG method unstable. In order to
avoid the instability, it would be necessary to reduce the ηd (rate of decreasing Lk) near
the optimum. Considering that the restart would occur when the sequences approach
the optimum, we take the following strategy to reduce the value of ηd with a constant
δ ∈ (0, 1):

‘st’: Update ηd ← δ · ηd + (1− δ) · 1 when the restart occurs.

Algorithm 3.2 is our FAPG method which combines these strategies. The difference
from Algorithm 2.1 is the “if block” after Step 3.
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Algorithm 3.2 A fast APG (FAPG) method with speeding-up strategies.
Input: f , ∇f , g, proxg,L, ε > 0, L1 = L0 > 0, ηu > 1, ηd > 1, kmax > 0, β1 = α0 =
α−1, K1 ≥ 2, δ ∈ (0, 1)
Output: αk
Initialize: t1 ← 1, t0 ← 0, i← 1, kre ← 0
for k = 1, . . . , kmax do
αk ← TLk(βk) = proxg,Lk

(
βk − 1

Lk
∇f(βk)

)
# Step 1

while F (αk) > QLk(αk;βk) do
Lk ← ηuLk # ‘bt’
tk ←

1+
√

1+4(Lk/Lk−1)t2
k−1

2
βk ← αk−1 + tk−1−1

tk
(αk−1 −αk−2)

αk ← TLk(βk) = proxg,Lk
(
βk − 1

Lk
∇f(βk)

)
# ‘bt’

end while
if ‖Lk(TLk(αk)−αk)‖ < ε then

break
end if
Lk+1 ← Lk/ηd # ‘dec’
tk+1 ←

1+
√

1+4(Lk+1/Lk)t2
k

2 # Step 2’
βk+1 ← αk + tk−1

tk+1
(αk −αk−1) # Step 3

if k > kre +Ki and 〈∇f(βk), αk −αk−1〉+ g(αk)− g(αk−1) > 0 then
kre ← k, Ki+1 ← 2Ki, i← i+ 1 # ‘mt’
ηd ← δ · ηd + (1− δ) · 1 # ‘st’
tk+1 ← 1, tk ← 0, βk+1 ← αk−1, αk ← αk−1 # ‘re’

end if
end for

27



3. A Unified Optimization Method for Binary Classification

3.3.2.2. Convergence Analysis

Now we analyse the convergence rate of Algorithm 3.2. Let k̄i denotes the number of
iteration taken between the (i−1)-th and the i-th restart (see Figure 2.1 for illustration).
In the followings, we denote αk as α(j,kj+1) if k =

∑j
i=1 k̄i + kj+1 (k̄j+1 ≥ kj+1 ≥ 0).

In other word, α(i,ki+1) denotes a point obtained at the ki+1-th iteration counting from
the i-th restart. Note that α(i+1,0) = α(i,k̄i+1−1) (∀i ≥ 0). We will frequently switch the
notations αk and α(i,ki+1) for notational convenience.

The following lemma is useful to evaluate the function F .

Lemma 3.3.2 (from [Beck and Teboulle, 2009]). If F (TL(β)) ≤ QL(TL(β);β), then

F (TL(β))− F (α) ≤ L

2
{
‖β −α‖22 − ‖TL(β)−α‖22

}
, ∀α ∈ Rd.

Using Lemma 3.3.2, we obtain the following key lemma.

Lemma 3.3.3. Let the sequence {αk}∞k=1(≡ {α(i,ki+1)}) be generated by Algorithm 3.2.
The following inequality holds:

F (αk) ≤ F (α0), ∀k ≥ 1.

Moreover,

F (α(i,ki+1)) ≤ F (α(i,0)), ∀i ≥ 0 and ∀ki+1 ∈ {0, 1, 2, . . . , k̄i+1},

and
F (α(i+1,0)) ≤ F (α(i,0)), ∀i ≥ 0.

Proof. First, assume that the restart does not occur (i.e., the steps ‘re’, ‘st’, and ‘mt’
are not executed) until the k-th iteration. From Lemma 3.3.2, we have

F (α1)− F (α0) ≤ L1
2
{
‖β1 −α0‖22 − ‖α1 −α0‖22

}
= −L1

2 ‖α
1 −α0‖22 ≤ 0. (3.18)

For all n = 1, 2, . . ., we also have

F (αn+1)− F (αn) ≤ Ln+1
2

{
‖βn+1 −αn‖22 − ‖αn+1 −αn‖22

}
= Ln+1

2
{( tn − 1

tn+1

)2
‖αn −αn−1‖22 − ‖αn+1 −αn‖22

}
.

Summing over n = 1, 2, . . . , k − 1, we obtain

F (αk)− F (α1)

≤ 1
2

{
L2
( t1 − 1

t2

)2
‖α1 −α0‖22 +

k−1∑
n=2

(
Ln+1

( tn − 1
tn+1

)2
− Ln

)
‖αn −αn−1‖22 − Lk‖αk −αk−1‖22

}
.
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Figure 3.3.: Illustration of the sequence {F (αk)}∞k=0 generated by Algorithm 3.2.
Lemma 3.3.3 ensures that the function values F (α(i,0)) at restarted points
are non-increasing and gives upper bounds of the subsequent function values.

Note that t1 − 1 = 0 and
(
Ln+1

(
tn−1
tn+1

)2
− Ln

)
≤ 0 for all n ≥ 1 because

tn − 1
tn+1

= 2(tn − 1)
1 +

√
1 + 4(Ln+1/Ln)t2n

≤ 2(tn − 1)√
4(Ln+1/Ln)t2n

=
√

Ln
Ln+1

tn − 1
tn

.

Thus we have
F (αk)− F (α1) ≤ 0.

Similarly, since the restart does not occur from α(i,0) to α(i,k̄i+1) (∀i ≥ 0), we have

F (α(i,ki+1)) ≤ F (α(i,0)), ∀ki+1 ∈ {0, 1, . . . , k̄i+1},

and hence by definition,

F (α(i+1,0)) = F (α(i,k̄i+1−1)) ≤ F (α(i,0)).

Lemma 3.3.3 states that the initial function value F (α(i,0)) of each outer iteration gives
an upper bound of the subsequent function values and hence the sequence {F (α(i,0))}∞i=1
is non-increasing as illustrated in Figure 3.3.

Now we are ready to show the convergence result of Algorithm 3.2.

Theorem 3.3.1. Consider the sequence {αk}∞k=0(≡ {α(i,ki+1)}) generated by Algo-
rithm 3.2. Let S∗ be the set of optimal solutions and B := {α | F (α) ≤ F (α0)} be
the level set. Assume that there exists a finite R such that

R ≥ sup
α∈B

inf
α∗∈S∗

‖α−α∗‖2.

Then we have

F (αk)− F ∗ ≤ 2ηuLfR2
( log2(k + 2)
k − log2(k + 2)

)2
, ∀k ≥ 3.
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Proof. From Lemma 3.3.3, we have αk ∈ B for all k ≥ 1. Let αk = α(j,kj+1). We assume
kj+1 ≥ 1 without loss of generality. From Proposition 2.2.1, we have

F (α(j,kj+1))− F ∗ ≤ 2ηuLf‖α(j,0) −α∗‖22
k2
j+1

∀α∗ ∈ S∗.

Moreover, for all 1 ≤ i ≤ j, Lemma 3.3.3 leads to

F (α(j,kj+1))− F ∗ ≤ F (α(j,0))− F ∗

≤ F (α(i,0))− F ∗

= F (α(i−1,k̄i−1))− F ∗.

From the assumption, there exists α∗(i) ∈ S∗ such that ‖α(i−1,0) −α∗(i)‖2 ≤ R. Hence,
we have

F (α(i−1,k̄i−1))− F ∗ ≤ 2ηuLf‖α(i−1,0) −α∗(i)‖22
(k̄i − 1)2

≤ 2ηuLfR2

(k̄i − 1)2 .

Note that k̄i ≥ Ki ≥ 2. Thus we obtain

F (α(j,kj+1))− F ∗ ≤ 2ηuLfR2

(max{k̄1 − 1, k̄2 − 1, . . . , k̄j − 1, kj+1})2

≤ 2ηuLfR2

(max{k̄1, k̄2, . . . , k̄j , kj+1} − 1)2

From

k ≥
j∑
i=1

Ki = K1(2j − 1)
2− 1 ≥ 2j+1 − 2,

the number of restart j is at most log2(k + 2)− 1. Hence we have

max{k̄1, k̄2, . . . , k̄j , kj+1} ≥
k

j + 1 ≥
k

log2(k + 2) , (3.19)

which leads to

F (α(j,kj+1))− F ∗ ≤ 2ηuLfR2
( log2 k

k − log2(k + 2)
)2
, ∀k ≥ 3.

The above theorem ensures the convergence of Algorithm 3.2 for C-SVM, ν-SVM,
MM-MPM, MM-FDA, and `2-SVM because the level set B is bounded for any initial
point α0 ∈ dom(g). (Note that SC , Sν , SFDA, and SMPM are bounded, and the objective
function of `2-SVM is strongly convex.) Similarly, the algorithm is convergent for the
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3. A Unified Optimization Method for Binary Classification

logistic regression problem (3.8) if SLR is replaced by {α ∈ Rm | α>y = 0, ξe ≤
α ≤ e} for some small constant ξ > 0. To guarantee the convergence of Algorithm 3.2
for the distance weighted discrimination problem (3.10), we need to replace SDWD by
SDWD(ξ) :=

{
α ∈ Rm | α>y = 0, ξe ≤ α ≤ 1

mνe
}

for some small constant ξ > 0 and
make the assumption that ‖X̃α‖2 > 0 for all α ∈ SDWD(ξ).

The iteration complexity O
(
(log(k)/k)2) shown in Theorem 3.3.1 can be improved

to O
(
(W (k)/k)2) by finding a better lower bound of (3.19), where W (·) is the inverse

function of f(x) = x exp(x). W (·) is known as Lambert’s W function [Corless et al.,
1996], and its properties have been studied. W (·) is single-valued for z ≥ 0, but multi-
valued for z < 0. For z ≥ 0, W (z) is monotonically increasing, but diverges slower than
log(z). It is known that W (z) cannot be expressed in terms of elementary functions.

Theorem 3.3.2. Consider the sequence {αk}∞k=0(≡ {α(i,ki+1)}) generated by Algo-
rithm 3.2. Let S∗ be the set of optimal solutions and B := {α | F (α) ≤ F (α0)} be
the level set. Assume that there exists a finite R such that

R ≥ sup
α∈B

inf
α∗∈S∗

‖α−α∗‖2.

Then we have

F (αk)− F ∗ ≤ 2ηuLfR2
( W (2k ln 2)
k ln 2−W (2k ln 2)

)2
, ∀k ≥ 3.

Proof. Here we improve the lower bound (3.19) of

max{k̄1, k̄2, . . . , k̄j , kj+1}.

Since k̄i ≥ Ki ≥ 2i for all i ∈ {1, 2, . . . , j}, we have

max{k̄1, k̄2, . . . , k̄j , kj+1} ≥ max
{ k

j + 1 , 2
j
}
.

k
j+1 is monotonically decreasing and 2j is monotonically increasing with respect to j.
Thus the right-hand side is minimized at j = ĵ such that

k

ĵ + 1
= 2ĵ .

The above equation implies that

2k
ĵ + 1

= exp
(
(ĵ + 1) ln 2

)
⇒ 2k ln 2 = (ĵ + 1) ln 2 exp

(
(ĵ + 1) ln 2

)
⇒W (2k ln 2) = (ĵ + 1) ln 2

⇒ ĵ = W (2k ln 2)
ln 2 − 1,
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which yields
max

{ k

j + 1 , 2
j
}
≥ k ln 2
W (2k ln 2) .

This leads to

F (α(j,kj+1))− F (α∗) ≤ 2ηuLfR2
( W (2k ln 2)
k ln 2−W (2k ln 2)

)2
, ∀k ≥ 3.

3.3.3. A Practical FAPG

In this section, we develop a practical version of the FAPG method which reduces the
computation cost of FAPG at each iterations.

3.3.3.1. Heuristic Backtracking Procedure

Although the APG method of [Scheinberg et al., 2014], which is employed in Algo-
rithm 2.1 and modified in Algorithm 3.2, can guarantee the convergence, its principal
drawback is the extra computational cost at the backtracking step. Recall that

QLk(αk;βk) = f(βk) + 〈∇f(βk), αk − βk〉+ Lk
2 ‖α

k − βk‖22 + g(αk).

To check the condition F (αk) ≤ QLk(αk;βk), we need to recompute f(βk) and ∇f(βk)
since βk is updated at each loop of the backtracking.

On the other hand, since the original APG of [Beck and Teboulle, 2009] does not up-
date βk during the backtracking step, we can reduce the computation cost by storing the
value of f(βk) and ∇f(βk). Hence we follow the strategy of [Beck and Teboulle, 2009],
i.e., we remove the steps for updating tk and βk subsequent to ‘bt’ from Algorithm 3.2
and restore Step 2 as tk+1 ←

1+
√

1+4t2
k

2 .

3.3.3.2. Skipping Extra Computations

The backtracking step (‘bt’) involves extra computation of the function value F (αk).
Checking the termination criteria Lk‖TLk(αk) − αk‖2 < ε also involves the extra com-
putation of ∇f(αk) which is needed for TLk(αk). These computation costs can be
significant (see Tables 3.3 and 3.9 in Section 3.4). Thus we compute the ‘bt’ and
Lk‖TLk(αk)−αk‖2 in every 10 and 100 iterations, respectively.

Instead of checking the condition Lk‖TLk(αk)−αk‖2 < ε, we check whether Lk‖αk−
βk‖2 < ε at each iteration. The reason for doing so is that computing Lk‖αk − βk‖2 is
much cheaper than computing TLk(αk). It follows from (2.3) and (2.4) that if αk = βk,
then αk is an optimal solution. Moreover, Lk(αk−βk) represents a residual of a sufficient
optimality condition for αk (and necessary and sufficient optimality condition for βk).

Finally, our practical FAPG is described as in Algorithm 3.3. We note that FAPG
can be applied not only to the unified formulation shown in Section 3.2, but also to the
optimization problem of the form (2.1). See Appendix A.2 in which we demonstrate the
performance of FAPG for `1-regularized classification models.
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Algorithm 3.3 A practical FAPG method.
Input: f , ∇f , g, proxg,L, ε > 0, L1 > 0, ηu > 1, ηd > 1 δ ∈ (0, 1), kmax > 0, K1 ≥ 2,
β1 = α0

Output: αk
Initialize: t1 ← 1, i← 1, kre ← 0
for k = 1, . . . , kmax do
αk ← TLk(βk) = proxg,Lk

(
βk − 1

Lk
∇f(βk)

)
# Step 1

if k mod 10 == 1 then
while F (αk) > QLk(αk;βk) do
Lk ← ηLk
αk ← TLk(βk) = proxg,Lk

(
βk − 1

Lk
∇f(βk)

)
# ‘bt’

end while
end if
if ‖Lk(αk − βk)‖ < ε or ( (k mod 100 == 1) and (‖Lk(TLk(αk) − αk)‖ < ε) )
then

break
end if
Lk+1 ← Lk/ηd # ‘dec’
tk+1 ←

1+
√

1+4t2
k

2 # Step 2
βk+1 ← αk + tk−1

tk+1
(αk −αk−1) # Step 3

if k > kre +Ki and 〈∇f(βk), αk −αk−1〉+ g(αk)− g(αk−1) > 0 then
kre ← k, Ki+1 ← 2Ki, i← i+ 1. # ‘mt’
ηd ← δ · ηd + (1− δ) · 1. # ‘st’
tk+1 ← 1, βk+1 ← αk−1, αk ← αk−1 # ‘re’

end if
end for
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3.3.4. Computation of a Primal Solution from a Dual Solution

Various classification models can be solved in a unified way by applying the vector
projection method and the FAPG method to the dual formulation (9) or (10). However,
a primal solution (w, b) of (7) or (8) is still required to do classification tasks. In this
section, we provide a method to compute the primal solution (ŵ, b̂) which corresponds
to the dual solution α̂.

3.3.4.1. Computation of the primal vector w

The primal vector ŵ in (3.3) corresponding to the dual solution α̂ (and µ̂ for MM-FDA
and MM-MPM) can be obtained as

ŵ = argmax
‖w‖p≤1

w>z, with ŵi = sign(zi)|zi|q−1

‖z‖q−1
q

∀ i ∈M, (3.20)

where q = p/(p − 1) and z = Ãα̂ (i.e., z = X̃α̂ for C-SVM, `2-SVM, ν-SVM, logistic
regression, and DWD; z = α̂ = (x̄+− x̄−)+ (Σ+ +Σ−)1/2µ̂ for MM-FDA; and z = α̂ =
(x̄+ + Σ1/2

+ µ̂+)− (x̄− + Σ1/2
− µ̂−) for MM-MPM).

3.3.4.2. Computation of the bias term b

There are some issues on computing an optimal bias term b. For C-SVM, `2-SVM,
ν-SVM, DWD, and logistic regression, the bias term b is derived from the Lagrange
multiplier corresponding to the constraint α>y = 0. However, it is often difficult to
compute the corresponding Lagrange multiplier. In addition, MM-FDA and MM-MPM
does not provide a specific way to compute the bias term. Thus we need to estimate an
appropriate value of b.

One of the efficient ways is to estimate b as the minimum solution of training error
under a given ŵ, i.e.,

b̂ ∈ argmin
b

ρ(b) :=
m∑
i=1

`
(
yi(x>i ŵ − b)

)
, where `(z) =

{
1 (z < 0)
0 (otherwise).

(3.21)

Let ζi = x>i ŵ (i = 1, 2, . . . ,m). Let σ be the permutation such that ζσ(1) ≤ ζσ(2) ≤
. . . ≤ ζσ(m). If b < ζσ(1), then x>i ŵ − b > 0 (∀i ∈ M), i.e., all samples are predicted
as positive ŷ = +1. Then we have m− misclassified samples and thus ρ(b) = m−.
If b ∈ (ζσ(1), ζσ(2)), then only xσ(1) is predicted as negative ŷ = −1. Thus we have
ρ(b) = m−+yσ(1). Similarly, if b ∈ (ζσ(k), ζσ(k+1)), then we have ρ(b) = m−+

∑k
i=1 yσ(i).

Thus, by letting k∗ ∈ argmink
∑k
i=1 yσ(i), an arbitrary constant b̂ ∈ (ζσ(k∗), ζσ(k∗+1)) is

an optimal solution of the problem (3.21). The minimization algorithm is as follows:

Step 1. Compute ζi = ŵ>xi (i = 1, 2, . . . ,m).

Step 2. Sort ζi as ζσ(1) ≤ ζσ(2) ≤ . . . ≤ ζσ(m).
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Step 3. Find k∗ = argmink
∑k
i=1 yσ(i).

Step 4. Compute b̂ = (ζ(k∗) + ζ(k∗+1))/2.

Its computational complexity is O
(
m(n+ logm)

)
.

3.3.4.3. Duality Gap

The component b obtained above is not necessarily the primal optimal solution. More-
over, although α̂ and µ̂ are close to optimal, they may not be exactly optimal due to
numerical error. However, we still obtain a primal solution (ŵ, b̂) with some optimality
gap guarantee. Since (ŵ, b̂) and α̂ are the primal and dual feasible solutions, respectively,
we can obtain the duality gap by{

L(Ã>ŵ − ab̂) + 1
2C ‖ŵ‖

2
2)
}
−
{
L∗(−α̂) + C

2 ‖Ãα̂‖
2
2

}
for the formulations of (3.2) and (3.4); and

L(Ã>ŵ − ab̂)−
{
L∗(−α̂) + λ‖Ãα̂‖∗p

}
for the formulations of (3.3) and (3.5). Therefore, the obtained primal solution (ŵ, b̂)
has a guarantee that the gap between its objective value and the optimal value is at
most the duality gap.

3.4. Numerical Experiments

In this section, we demonstrate the performance of our proposed FAPG algorithm. We
ran the numerical experiments on a Red Hat Enterprise Linux Server release 6.4 (Santi-
ago) with Intel Xeon Processor E5-2680 (2.7GHz) and 64 GB of physical memory. We
implemented the practical FAPG method (Algorithm 3.3) in MATLAB R2013a and the
bisection method (Algorithm 3.1) in C++. The C++ code was called from MATLAB
via MEX files.

We conducted the experiments using artificial datasets and benchmark datasets from
LIBSVM Data [Chang and Lin, 2011]. The artificial datasets were generated as fol-
lows. Positive samples {xi ∈ Rn | i ∈ M+} and negative samples {xi ∈ Rn | i ∈
M−} were distributed with n-dimensional standard normal distributions Nn(0, In) and
Nn( 10√

n
e, SS>), respectively, where the elements of the n×n matrix S are i.i.d. random

variables following the standard normal distribution N (0, 1). The marginal probability
of the label was assumed to be same, i.e. P (y = +1) = P (y = −1) = 1

2 . After generating
the samples, we scaled them so that each input vector xi (∀i ∈ M) was in [−1, 1]n for
the purpose of computational stability, following LIBSVM [Chang and Lin, 2011]. On
the other hand, we scaled the benchmark datasets, that are not scaled by Chang and
Lin [2011], so that xi ∈ [0, 1]n, (∀i ∈ [m]) in order to leverage their sparsity. The details
of benchmark datasets are shown in Table 3.1.
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Table 3.1.: Details of datasets. We have scaled the datasets that are highlighted in
boldface type.

data m ( m+, m−) n range density source
a8a 22,696 ( 5,506, 17,190) 123 [0, 1]n 0.113 [Bache and Lichman, 2013]
a9a 32,561 ( 7,841, 24,720) 123 [0, 1]n 0.113 [Bache and Lichman, 2013]

australian 690 ( 307, 383) 14 [−1, 1]n 0.874 [Bache and Lichman, 2013]
breast-cancer 683 ( 444, 239) 10 [−1, 1]n 1.000 [Bache and Lichman, 2013]

cod-rna 59,535 ( 39,690, 19,845) 8 [0, 1]n 0.999 [Uzilov et al., 2006]
colon-cancer 62 ( 40, 22) 2,000 [0, 1]n 0.984 [Alon et al., 1999]

covtype 581,012 ( 297,711, 283,301) 54 [0, 1]n 0.221 [Bache and Lichman, 2013]
diabetes 768 ( 500, 268) 8 [−1, 1]n 0.999 [Bache and Lichman, 2013]
duke 44 ( 21, 23) 7,129 [0, 1]n 0.977 [West et al., 2001]

epsilon 400,000 ( 199,823, 200,177) 2,000 [−0.15, 0.16]n 1.000 [Sonnenburg et al., 2008]
fourclass 862 ( 307, 555) 2 [−1, 1]n 0.996 [Ho and Kleinberg, 1996]

german.numer 1,000 ( 300, 700) 24 [−1, 1]n 0.958 [Bache and Lichman, 2013]
gisette 6,000 ( 3,000, 3,000) 5,000 [−1, 1]n 0.991 [Guyon et al., 2005]
heart 270 ( 120, 150) 13 [−1, 1]n 0.962 [Bache and Lichman, 2013]
ijcnn1 35,000 ( 3,415, 31,585) 22 [−0.93, 1]n 0.591 [Prokhorov, 2001]

ionosphere 351 ( 225, 126) 34 [−1, 1]n 0.884 [Bache and Lichman, 2013]
leu 38 ( 11, 27) 7,129 [0, 1]n 0.974 [Golub et al., 1999]

liver-disorders 345 ( 145, 200) 6 [−1, 1]n 0.991 [Bache and Lichman, 2013]
madelon 2,000 ( 1,000, 1,000) 500 [0, 1]n 0.999 [Guyon et al., 2005]

mushrooms 8,124 ( 3,916, 4,208) 112 [0, 1]n 0.188 [Bache and Lichman, 2013]
news20.binary 19,996 ( 9,999, 9,997) 1,355,191 [0, 1]n 3.36e-4 [Keerthi and DeCoste, 2005]

rcv1-origin 20,242 ( 10,491, 9,751) 47,236 [0, 0.87]n 0.002 [Lewis et al., 2004]
real-sim 72,309 ( 22,238, 50,071) 20,958 [0, 1]n 0.002 [McCallum]

skin-nonskin 245,057 ( 50,859, 194,198) 3 [0, 1]n 0.983 [Bache and Lichman, 2013]
sonar 208 ( 97, 111) 60 [−1, 1]n 1.000 [Bache and Lichman, 2013]
splice 1,000 ( 517, 483) 60 [−1, 1]n 1.000 [Bache and Lichman, 2013]

svmguide1 3,089 ( 1,089, 2,000) 4 [0, 1]n 0.997 [Hsu et al., 2003]
svmguide3 1,243 ( 947, 296) 22 [0, 1]n 0.805 [Hsu et al., 2003]

url 2,396,130 (1,603,985, 792,145) 3,231,961 [0, 1]n 3.54e-5 [Ma et al., 2009]
w7a 24,692 ( 740, 23,952) 300 [0, 1]n 0.039 [Platt, 1998]
w8a 49,749 ( 1,479, 48,270) 300 [0, 1]n 0.039 [Platt, 1998]
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3.4.1. Projection Algorithms

Before presenting the performance of our practical FAPG algorithm, we compared
the performance of our bisection algorithm (Algorithm 3.1) against the breakpoint
search algorithm [Kiwiel, 2008, Algorithm 3.1] with random pivoting. Both algorithms
were implemented in C++. We generated Rn-valued random vectors α̃ with uni-
formly distributed elements and computed the projections PSν (α̃) of α̃ onto Sν , where
Sν :=

{
α | e>o αo = 1

2 , o ∈ {+,−}, 0 ≤ α ≤ 1
mνe

}
with ν = 0.5. The bisection algo-

rithm used the accuracy of ε′ ≈ 2.22×10−16 (i.e., IEEE 754 double precision). Table 3.2

Table 3.2.: Runtime of projection algorithms.
msec.(#iter.)

Breakpoint Bisection
dim. n range ave. std. ave. std.

100,000 [0,10]n 8.3 (25.7) 2.0 (5.4) 4.9 (31.1) 0.6 (4.7)
100,000 [0,1000]n 9.0 (27.3) 1.4 (4.1) 5.5 (27.1) 1.2 (3.2)

1,000,000 [0,10]n 94.2 (22.6) 16.2 (4.3) 49.9 (32.0) 3.4 (3.1)
1,000,000 [0,1000]n 99.1 (26.5) 15.6 (3.2) 53.4 (30.0) 4.4 (1.5)

reports the average and standard deviation of the computation times and the number of
iterations of 20 trials. As we can see from Table 3.2, the bisection method was faster and
more stable (in the sense that the deviations are smaller) than the breakpoint search al-
gorithm. This explains why we have chosen to use the bisection methods in Section 3.3.1
to perform the projection steps in Algorithm 3.3.

3.4.2. ν-SVM

As mentioned in Section 3.2.2, the standard C-SVM (3.6) and ν-SVM (3.9) are equiva-
lent. Here we chose ν-SVM to solve because choosing the parameter of ν-SVM is easier
than that of C-SVM. We solved the ν-SVM (3.9) via our FAPG method, SeDuMi [Sturm,
1999], and LIBSVM [Chang and Lin, 2011]. SeDuMi is a general purpose optimization
solver implementing an interior point method for large-scale second-order cone prob-
lems such as (3.9). LIBSVM implements the sequential minimal optimization (SMO)
[Platt, 1998] which is specialized for learning ν-SVM. For reference, we also compared
the FAPG method with LIBLINEAR [Fan et al., 2008] which implements a highly opti-
mized stochastic dual coordinate descent method [Hsieh et al., 2008] for C-SVM2 [Cortes
and Vapnik, 1995] and is known to be quite an efficient method; we note that it may
not be a fair comparison because LIBLINEAR omits the bias term b of C-SVM from
the calculations, 3 i.e., it solves a less complex model than the ν-SVM (3.9) in order to

2C-SVM (with the bias term b) is known to lead to the same decision function as ν-SVM if ν and C
are set properly [Schölkopf et al., 2000]. The value of C corresponding to ν can be computed by
LIBSVM.

3Although LIBLINEAR can virtually deal with the bias term b by augmenting the dimension of the
samples, the best performance of the resulting model tends to be lower than the one of ν-SVM as
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Figure 3.4.: Computation time for ν-SVM.

speed up the computation.
We terminate the algorithms if the violation of the KKT optimality condition is less

than ε = 10−6. The heuristic option in LIBSVM was set to “off” in order to speed up its
convergence for large datasets. In the FAPG method, (ηu, ηd, δ) were set to (1.1, 1.1, 0.8).
L0 was set to the maximum value in the diagonal elements of X̃>X̃ (i.e., the coefficient
matrix of the quadratic form). The initial point α0 was set to the center αc of Sν , i.e.
αci = 1

2mo , i ∈Mo, o ∈ {+,−}.

3.4.2.1. Scalability

First, we compare the computation time with respect to the size of the datasets and
parameters using artificial datasets. The results are shown in Figure 3.4. The left
panel shows the computation time with respect to the dimension n of the features for
m = 10000 and ν = 0.5. The FAPG method has a clear advantage when the dimension n
is high, say n ≥ 103. The middle panel shows the computation time with respect to the
number m of the samples for n = 1000 and ν = 0.5. LIBSVM did not converge within
a week for m = 63000. SeDuMi, LIBLINEAR, and the APG method were scalable for
the increased number of samples m. The right panel illustrates the computation time
with respect to the parameter ν for m = 10000 and n = 100. We may observe that the
FAPG method (and LIBLINEAR) is very efficient when ν is larger than 0.1. This can
be attributed to the fact that larger ν shrinks the feasible region Sν and shorten the
distance between the initial point α0 = αc and the optimal solution α∗.

3.4.2.2. Runtime Breakdown

Table 3.3 shows the runtime breakdown of the FAPG method for the artificial dataset
with (m,n, ν) = (10000, 1000, 0.5). The computation of the gradient ∇f(α) and the
function f(α) was the most time-consuming parts in the FAPG method. Since the com-
putations of ‘bt’ (and ‖Lk(TLk(αk)−αk)‖) involve the extra evaluation of f(αk) (and/or
∇f(αk)), computing them only every 100 iteration (and 10 iteration, respectively) as in
Algorithm 3.3 would be effective to reduce the total runtime. Our projection algorithm

reported in [Kitamura et al., 2014].
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3. A Unified Optimization Method for Binary Classification

Table 3.3.: Runtime breakdown of the FAPG method (sec.).
Function % Time Time # Evals. Time/Eval.
∇f(α) 78.1% 14.909 1375 0.0108
f(α) 10.8% 2.053 369 0.0056
PSν

(α) 6.9% 1.307 1453 0.0009
Total Runtime: 19.080
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Figure 3.5.: Effect of various acceleration strategies for the APG Method.

was efficient enough in the sense that its runtime was marginal compared to the runtime
of the other parts.

3.4.2.3. Effect of Each Acceleration Strategy

Figure 3.5 shows the running history of the FAPG method with various acceleration
strategies for the artificial dataset with (m,n, ν) = (10000, 1000, 0.5).

The left panel depicts the violations of the optimality, i.e. the values of ‖Lk(TLk(αk)−
αk)‖. The FAPG method with ‘bt+re’ restarted at k = 2594, where the sharp decrease
occurred. ‘dec’ was effective to reduce Lk‖TLk(αk) − αk‖ in the early iterations. The
FAPG method with ‘bt+re+dec’ seems to be unstable near the optimum (say k ≥
103), but the one with ‘bt+re+dec+st’ converged stably. Moreover, ‘bt+re+dec+st+mt’
obtained much more accurate solution than others. We note that several spikes of the
values occurred when using ‘dec’ because it sometimes leads a small value of Lk that
violates the condition (2.5). However, the violation was swiftly recovered in every 10
iterations by ‘bt’ and did not affect the speed of convergence so much.

The middle panel illustrated the gap in objective value f(αk)−f(α̂) where we regarded
α̂ = α10000 of ‘bt+re+dec+st+mt’ as an optimal solution. The gap behaved similar to
the violations of the optimality ‖Lk(TLk(αk) − αk)‖. At k = 1000, the objective value
f(αk) reached f(α̂) within a relative error 0.0003% though the violation of optimality
was greater than ε = 10−6. Thus, a larger tolerance, say ε = 10−5, may also lead to a
reasonable solution in practice.

The right panel illustrated the value of constant Lk of the FAPG at each iteration and
the value of Lipschitz constant Lf ; Lf is known to be the largest eigenvalue of X̃>X̃.
While Lf = 3.61 × 104, the FAPG method with ‘bt+re+dec+st+mt’ leads to a much
smaller average value of 3.68×102 for Lk, while the maximum value for Lk is 1.95×103.
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3. A Unified Optimization Method for Binary Classification

Table 3.4.: Computation time for benchmark datasets (sec.). ‘–’ means that the algo-
rithm did not converge with in 36000 seconds. ‘**’ means that it had run
out of memory. The best results except for LIBLINEAR are indicated by
boldface. The underlined results are better than LIBLINEAR.

Linear RBF
data m n ν SeDuMi LIBSVM FAPG ( iter) LIBLIN SeDuMi LIBSVM FAPG( iter)
a8a 22,696 123 0.368 16.82 32.31 1.70 ( 563) 0.06 – 68.24 72.88( 343)
a9a 32,561 123 0.365 25.42 66.11 4.84 ( 665) 0.07 – 138.89 170.63( 390)

australian 690 14 0.348 0.34 0.12 0.86 (4056) 0.003 8.03 0.049 0.076( 243)
breast-cancer 683 10 0.128 0.21 0.004 0.05 ( 253) 0.001 6.72 0.015 0.050( 144)

cod-rna 59,535 8 0.223 6.71 53.73 3.39 ( 588) 0.17 ** 267.56 **( **)
colon-cancer 62 2,000 0.078 0.18 0.01 0.09 ( 210) 0.15 0.17 0.013 0.013( 109)

covtype 581,012 54 0.620 288.71 16164.88 60.75 ( 701) 1.55 ** – **( **)
diabetes 768 8 0.533 0.14 0.02 0.06 ( 306) 0.003 8.53 0.060 0.093( 296)

duke 44 7,129 0.106 0.38 0.04 0.11 ( 317) 0.30 0.09 0.041 0.017( 120)
epsilon 400,000 2,000 0.500 – – 1685.33 (2643) – ** – **( **)

fourclass 862 2 0.543 0.12 0.01 0.07 ( 356) 0.0004 12.34 0.069 0.068( 150)
german.numer 1,000 24 0.525 0.26 0.26 0.29 (1107) 0.04 17.13 0.14 0.10( 236)

gisette 6,000 5,000 0.100 4572.24 57.48 9.31 ( 590) 0.41 5586.74 59.07 4.93( 235)
heart 270 13 0.388 0.14 0.005 0.04 ( 232) 0.001 0.47 0.008 0.040( 196)
ijcnn1 35,000 22 0.186 7.31 53.57 5.67 (2000) 0.29 – 73.83 236.15( 511)

ionosphere 351 34 0.202 0.25 0.02 0.22 (1064) 0.34 0.85 0.012 0.051( 234)
leu 38 7,129 0.070 0.40 0.03 0.13 ( 175) 0.17 0.08 0.034 0.013( 103)

liver-disorders 345 6 0.731 0.11 0.01 0.11 ( 736) 0.007 0.81 0.015 0.037( 168)
madelon 2,000 500 0.603 29.15 11.57 0.32 ( 510) 87.43 133.85 3.77 0.24( 108)

mushrooms 8,124 112 0.096 8.74 1.34 0.56 ( 435) 0.06 28505.46 5.74 19.02( 661)
news20.binary 19,996 1,355,191 0.100 – 1333.26 22.29 ( 321) 1.57 – 929.85 51.86( 11)

rcv1-origin 20,242 47,236 0.097 – 587.10 7.82 ( 485) 8.96 – 192.16 97.68( 189)
real-sim 72,309 20,958 0.065 – 6351.62 12.71 ( 384) 4.33 ** 1879.90 **( **)

skin-nonskin 245,057 3 0.233 62.70 726.20 8.02 ( 609) 0.09 ** 4425.59 **( **)
sonar 208 60 0.117 0.29 0.12 0.33 (1922) 3.81 0.27 0.009 0.060( 279)
splice 1,000 60 0.432 0.56 0.25 0.11 ( 331) 0.02 15.27 0.18 0.067( 120)

svmguide1 3,089 4 0.180 0.35 0.08 0.15 ( 394) 0.003 1188.65 0.42 1.45( 323)
svmguide3 1,243 22 0.408 0.36 1.07 0.93 (3248) 1.70 30.17 0.23 0.21( 430)

url 2,396,130 3,231,961 0.500 – – 4853.91 (2521) – ** ** **( **)
w7a 24,692 300 0.031 69.90 135.91 14.13 (4280) 0.81 – 17.89 286.27(1208)
w8a 49,749 300 0.031 189.40 143.42 38.69 (5960) 0.47 – 124.55 1423.42(2100)

3.4.2.4. Benchmark Results

We also conducted experiments using the benchmark datasets. C was set to 10. The
computation time is shown in Table 3.4. When using linear kernel, the FAPG method
outperformed LIBSVM and SeDuMi for large datasets where m ≥ 50000. We indicated
the smallest computation time among the three methods except for LIBLINEAR by
boldface because the optimal solutions of LIBLINEAR are different from those of the
other three methods (note that LIBLINEAR solves a simpler type of SVM, i.e., C-
SVM without the bias term b). However, the FAPG method had an advantage over
LIBLINEAR for many datasets where n ≥ 2000.

When using the RBF kernel, SeDuMi broke down for datasets with m ≥ 10000 as in
the case of the artificial datasets. The FAPG method run out of memory for m ≥ 50000
since it requires the m×m dense kernel matrix K to compute the gradient ∇f(α). The
FAPG can avoid the memory shortage by computing the elements of K on demand as
LIBSVM does for large datasets. Although the current implementation has room for
improvement, our practical FAPG method was still competitive with LIBSVM and had
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3. A Unified Optimization Method for Binary Classification

Table 3.5.: Constants for benchmark datasets.
Linear RBF

Lk(FAPG) Lk(FAPG)
ave. max. Lf ave. max. Lf

a8a 2.99e3 1.54e4 1.43e5 7.00e1 2.27e2 2.00e4
a9a 5.59e3 3.38e4 2.05e5 1.37e2 4.99e2 2.88e4

australian 1.97e2 1.21e3 2.91e3 1.92e1 4.69e1 3.56e2
breast-cancer 9.05e1 2.27e2 1.68e4 1.21e1 2.13e1 4.52e2

cod-rna 1.05e3 5.65e3 1.24e5 – – –
colon-cancer 4.02e2 6.60e2 3.80e4 5.91e-1 9.09e-1 5.65e1

covtype 3.71e4 2.37e5 4.58e6 – – –
diabetes 5.21e1 1.53e2 1.76e3 1.64e1 4.69e1 6.34e2

duke 2.82e3 4.55e3 6.00e4 6.89e-1 9.09e-1 4.09e1
epsilon 2.09e4 1.85e5 1.40e5 – – –

fourclass 5.61e1 1.87e2 2.80e2 5.72e1 1.03e2 5.36e2
german.numer 2.16e2 1.03e3 8.44e3 1.95e1 4.69e1 4.50e2

gisette 1.84e4 5.71e4 2.02e7 9.17e0 2.13e1 3.61e3
heart 1.07e2 2.53e2 7.49e2 1.01e1 2.13e1 1.19e2
ijcnn1 1.20e3 1.05e4 5.89e3 1.93e2 8.84e2 3.12e4

ionosphere 2.46e2 9.83e2 2.14e3 1.19e1 2.83e1 2.24e2
leu 1.70e3 2.75e3 6.05e4 6.07e-1 9.09e-1 3.46e1

liver-disorders 1.27e1 3.85e1 1.84e3 5.04e0 9.68e0 8.23e2
madelon 9.54e1 2.87e2 2.44e5 6.54e-1 1.00e0 1.92e3

mushrooms 1.84e3 6.34e3 2.30e5 2.31e1 1.03e2 1.74e4
news20.binary 4.63e1 1.03e2 1.17e3 9.09e-1 9.09e-1 2.00e4

rcv1-origin 3.20e1 8.30e1 4.49e2 4.42e-1 9.09e-1 2.02e4
real-sim 6.75e1 2.27e2 9.21e2 – – –

skin-nonskin 5.08e3 2.82e4 2.19e5 – – –
sonar 2.27e2 1.12e3 2.68e3 4.88e0 9.68e0 1.51e2
splice 3.59e2 1.11e3 1.74e3 6.63e0 1.06e1 3.57e2

svmguide1 3.07e1 1.13e2 2.47e3 1.52e1 4.69e1 2.92e3
svmguide3 1.53e2 6.68e2 4.92e3 1.22e1 4.69e1 1.15e3

url 9.94e5 1.10e7 1.57e8 – – –
w7a 5.53e3 4.62e4 6.52e4 4.80e1 1.83e2 2.31e4
w8a 1.04e4 1.06e5 1.32e5 1.14e2 4.51e2 4.65e4

stable and good performance for datasets with large n.
We should remark that the number of iterations taken by the FAPG method with the

RBF kernel tends to be smaller than the one with the linear kernel. However, when
using the RBF kernel, the computational complexity of ∇f(α) changes from O(mn) to
O(m2). Hence the total runtime tended to increase except for “gisette” whose n and m
have the same order of magnitude.

In summary, the FAPG method showed better performance than specialized algo-
rithms designed for learning SVM, such as LIBSVM and LIBLINEAR, in many datasets.
Taking into account of the generality (i.e., applicability to other models) of FAPG, one
could argue that it is a very efficient method.

Table 3.5 shows the values taken by the parameter Lk. We can see that our practical
FAPG method (with backtracking strategy and decreasing strategy for Lk) keep the
values of Lk to be much smaller than the Lipschitz constant Lf .
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3. A Unified Optimization Method for Binary Classification

Table 3.6.: Classification accuracies with varied ξ from 10−2 to 10−5.
Artificial svmguide1 mushrooms a8a

ξ = 10−2 99.8% 95.5% 99.4% 84.7%
ξ = 10−3 100.0% 95.5% 100.0% 84.8%
ξ = 10−4 100.0% 95.5% 100.0% 84.8%
ξ = 10−5 100.0% 95.5% 100.0% 84.8%

LIBLINEAR 85.2% 90.7% 100.0% 84.7%
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Figure 3.6.: Computation time for logistic regression.

3.4.3. Logistic Regression

We solved the dual logistic regression (3.8) via the FAPG method and LIBLINEAR [Fan
et al., 2008]. LIBLINEAR implements a highly optimized stochastic dual coordinate de-
scent method [Yu et al., 2011] whose subproblems are solved by the Newton method.
Note that, as in the case of SVM, LIBLINEAR omits the bias term b from the calcu-
lations, i.e., it solves a less complex model than (3.8). We terminate both algorithms
if the violation of the KKT optimality condition is less than ε = 10−6. In the FAPG
method, (ηu, ηd, δ) were set to (1.1, 1.1, 0.8). L0 was set to 1. The initial point α0 was
set to ξe.

3.4.3.1. Sensitivity to the parameter ξ

Since the gradient ∇f is not defined at αi = 0, 1 (i ∈ M), we approximately solve the
problem by using the constraints ξ ≤ αi ≤ 1 − ξ (i ∈ M), where ξ > 0. Table 3.6
shows the classification accuracy for ξ = 10−2, 10−3, 10−4, and 10−5. For all cases, the
approximated logistic regression performed better than LIBLINEAR. The classification
accuracy of FAPG was identical for ξ ≤ 10−3, and better than the accuracy with ξ =
10−2. We employ ξ = 10−4 in the following experiments.

3.4.3.2. Scalability

First, we compare the computation time with respect to the size of the datasets and
parameter using artificial datasets. The results (for the linear kernel) are shown in
Figure 3.6. The left panel shows the computation time with respect to the dimension n
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3. A Unified Optimization Method for Binary Classification

Table 3.7.: Runtime breakdown of the FAPG method (sec.).
Function % Time Time # Evals. Time/Eval.
∇f(α) 85.4% 10.005 1452 6.89.e-3
f(α) 12.3% 1.443 340 4.24.e-3

PSLR(α) 0.5% 0.058 1473 3.94.e-5
Total Runtime: 11.720
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Figure 3.7.: Effect of various acceleration strategies for the FAPG Method.

of the features for m = 10000 and C = 10. The FAPG method has a clear advantage
when the dimension n is high, say n ≥ 102. The middle panel shows the computation
time with respect to the number m of the samples for n = 1000 and C = 10. The
computation time of FAPG grew slower than the one of LIBLINEAR. The right panel
illustrates the computation time with respect to the parameter C for m = 10000 and
n = 100. Unlike ν-SVM, the computation time of the FAPG did not change so much
depending on the parameter C because it does not affect the area of feasible region. We
can observe that the FAPG method is numerically more stable than LIBLINEAR with
respect to the changes of the parameter C.

3.4.3.3. Runtime Breakdown

Table 3.7 shows the runtime breakdown of the FAPG method for the artificial dataset
with (m,n,C) = (10000, 1000, 10). The computation of the gradient ∇f(α) and the
function f(α) was the most time-consuming parts as in the case of ν-SVM. Thus skip-
ping backtracking step and evaluation of the optimality ‖Lk(αk −TLk(αk))‖ reduce the
computation time significantly because it can avoid the extra computation of f and ∇f .

3.4.3.4. Effect of Each Acceleration Strategy

Figure 3.7 shows the running history of the FAPG method with various acceleration
strategies for the dataset ‘a8a’. C was set to 10.

The left panel depicts the violations of the optimality, i.e. the values of ‖Lk(TLk(αk)−
αk)‖. ‘re’ had effect on decreasing the values after k = 762 at which the first restart
occur. ‘bt+re+dec’ just became unstable compared to ‘bt+re’ because the gradient of
the logistic regression is intrinsically large near the boundary of the feasible region SLR.
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Table 3.8.: Computation time for benchmark datasets (sec.). ‘–’ means that the algo-
rithm did not converge with in 36000 seconds. ‘**’ means that it had run out
of memory. The results indicated by underline are better than LIBLINEAR.

m n C FAPG ( iter) LIBLIN
a8a 22696 123 10 19.82 ( 4939) 9.82
a9a 32561 123 10 35.32 ( 6155) 57.62

australian 690 14 10 0.45 ( 1738) 0.01
breast-cancer 683 10 10 0.49 ( 1904) 0.004

cod-rna 59535 8 10 31.40 ( 3718) 2.03
colon-cancer 62 2000 10 0.11 ( 269) 0.16

covtype 581012 54 10 2039.19 (20143) 73.74
diabetes 768 8 10 0.20 ( 794) 0.01

duke 44 7129 10 0.27 ( 327) 0.31
epsilon 400000 2000 10 27791.25 (10873) 5225.43

fourclass 862 2 10 0.21 ( 851) 0.001
german.numer 1000 24 10 0.56 ( 1741) 0.31

gisette 6000 5000 10 20.30 ( 1289) 0.54
heart 270 13 10 0.15 ( 817) 0.02
ijcnn1 35000 22 10 14.57 ( 2478) 0.51

ionosphere 351 34 10 0.39 ( 1639) 0.31
leu 38 7129 10 0.11 ( 148) 0.19

liver-disorders 345 6 10 0.16 ( 828) 0.01
madelon 2000 500 10 2.23 ( 910) 1035.26

mushrooms 8124 112 10 2.26 ( 1224) 0.09
news20.binary 19996 1355191 10 96.24 ( 1263) 22.15

rcv1-origin 20242 47236 10 14.41 ( 1293) 11.41
real-sim 72309 20958 10 142.79 ( 5630) 7.80

skin-nonskin 245057 3 10 247.11 ( 8373) 3.59
sonar 208 60 10 0.22 ( 1150) 0.10
splice 1000 60 10 0.66 ( 1689) 6.02

svmguide1 3089 4 10 0.91 ( 1313) 0.16
svmguide3 1243 22 10 0.49 ( 1263) 0.29

url 2396130 3231961 10 – ( –) –
w7a 24692 300 10 17.00 ( 3400) 10.69
w8a 49749 300 10 51.13 ( 5279) 42.77

However, ‘bt+re+dec+st’ could recover from the instability. It is remarkable that only
‘bt+re+dec+st+mt’ fell below 10−6 in 10000 iterations. Thus, one could argue that ‘mt’
had a significant effect on reducing the violation. The middle panel illustrated the gap in
the objective value f(αk)− f(α̂) where we regarded α̂ = α10000 of ‘bt+re+dec+st+mt’
as an optimal solution. ‘bt+re+dec+st+mt’ decreased the function value faster than
others and found the minimum solution while oscillation occurred at the end of iteration.
The right panel illustrated the value of constant Lk of the FAPG at each iteration.

3.4.3.5. Benchmark Results

We measured computation time for the benchmark datasets. The parameter C was
set to 10 throughout this experiment. The experimental results are shown in Table 3.8.
LIBLINEAR was efficient because it solves a less complex model (without the bias term)
than (3.8). In some cases, however, FAPG solved (3.8) faster than LIBLINEAR. The
computation time and iteration count of FAPG was nearly proportional to the number
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Figure 3.8.: Computation time for MM-MPM.

of samples m. On the other hand, LIBLINEAR took much longer time for ‘madeon’ and
‘splice’ although they are relatively small datasets.

Taking these results and Figure 3.6 into account, one could argue that the FAPG
method exhibits stable convergence empirically.

3.4.4. MM-MPM

Next, we conducted experiments on MM-MPM (3.12). To the best of our knowledge,
there are no specialized methods for MM-MPM. Thus, we compared the FAPG method
only to SeDuMi [Sturm, 1999] which implements an interior point method for the large-
scale second-order cone problems such as (3.12). We terminated the computations
if the violation of KKT optimality is less than ε = 10−6. In the FAPG method,
(ηu, ηd, δ) were set to (1.1, 1.1, 0.8). The value of L0 was set to the maximum value in
the diagonal elements of Σ̃>Σ̃ (i.e., the coefficient matrix of the quadratic form), where
Σ̃ = [Σ1/2

+ ,−Σ1/2
− ]. The initial point µ0 = (µ0

+,µ
0
−) was set to the origin 0.

3.4.4.1. Scalability

The computation time for the artificial datasets are shown in Figure 3.8. The left
panel shows the results with respect to the number n of features for m = 10000 and
κ = 1. The FAPG method has a clear advantage over SeDuMi for large n, say n ≥ 103.
The middle panel illustrates the computation time with respect to the number m of
samples for n = 2000 and κ = 1. The computation time is nearly independent of the
number m of samples because the sizes of matrices Σ1/2

o (o ∈ {+,−}), which are used for
computing the function f(µ) and the gradient ∇f(µ), are n×n. The right panel shows
the computation time with respect to the parameter κ for m = 10000 and n = 2000.
We can observe that a larger value of κ leads to more computation time for the FAPG
method although it is still far more efficient than SeDuMi. The effect of a larger κ on the
FAPG method could be because it gives a larger feasible region SMPM, which in turns
leads to a larger distance between the initial point µ0 and the optimal solution µ∗ as in
the case of ν-SVM (the right panel of Figure 3.4).
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Table 3.9.: Runtime breakdown of FAPG method for MM-MPM (sec.).
Function % Time Time # Evals. Time/Eval.
∇f(µ) 75.9% 0.836 339 2.47e-3
f(µ) 14.2% 0.157 119 1.32e-3

PSMPM(µ) 3.1% 0.034 383 8.88e-5
Total Runtime: 1.102
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Figure 3.9.: Effect of each strategy for the APG method.

3.4.4.2. Runtime Breakdown

Table 3.9 shows the runtime breakdown of the FAPG method for the artificial dataset
with (m,n, κ) = (10000, 1000, 1). As in the case of ν-SVM (Table 3.3), the computations
of the gradient ∇f(µ) and the function value f(µ) are the most time-consuming parts.
Thus, computing ‘bt’ and Lk‖TLk(µk) − µk‖ periodically, which involves the computa-
tions of f(µk) and/or ∇f(µk), is effective to reduce the total runtime. The projection
PSMPM(µ) for MM-MPM shown in Section 3.3.1.4 can be computed highly efficiently.

3.4.4.3. Effect of Each Strategy

Figure 3.9 illustrates the running history of FAPG with various practical strategies for
the artificial dataset with (m,n, κ) = (10000, 1000, 1). As in the case of ν-SVM, ‘re’
is effective in reducing the violation of optimality Lk‖TLk(µk) − µk‖ and the value of
f(µk) − f(α̂). ‘dec’ seems to make the FAPG method to be unstable, but ‘st’ can
stabilize it. ‘bt+re+dec+st’ and ‘bt+re+dec+st+mt’ decreased L‖TL(µk) − µk‖ and
f(µk)− f(α̂) slightly faster than ‘bt+re’.

In the right panel, we can see that the APG method uses values smaller than Lf
for Lk in most iterations, where the Lipschitz constant Lf of the gradient ∇f(µ) =
Σ̃>(x̄+− x̄−+ Σ̃µ) is known to be the largest eigenvalue of the matrix Σ̃>Σ̃ (recall that
Σ̃ = [Σ1/2

+ ,−Σ1/2
− ] and µ = (µ+,µ−)).

3.4.4.4. Benchmark Results

Table 3.10 shows the computational results for the benchmark datasets. We did the
experiments by setting κ = κmax/2, but MM-MPM could not be solved for n ≥ 20000
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Table 3.10.: Computational results for MM-MPM with the linear kernel. The best re-
sults are indicated by boldface. ‘**’ means that the algorithm could not be
computed due to out of memory.

Computation Time Values
L(FAPG)

data m n κmax κ SeDuMi FAPG ( iter) ave. max. Lf
a8a 22,696 123 9.52e-1 4.76e-1 0.664 0.034 ( 25) 1.12e0 1.21e0 1.34e0
a9a 32,561 123 9.60e-1 4.80e-1 0.166 0.010 ( 25) 1.12e0 1.21e0 1.34e0

australian 690 14 1.23e0 6.17e-1 0.054 0.006 ( 25) 1.85e0 2.00e0 2.06e0
breast-cancer 683 10 2.32e0 1.16e0 0.038 0.005 ( 30) 1.01e0 1.10e0 1.17e0

cod-rna 59,535 8 1.41e0 7.05e-1 0.068 0.015 ( 115) 1.69e-1 2.29e-1 2.34e-1
colon-cancer 62 2,000 1.85e0 9.24e-1 311.329 0.178 ( 157) 2.56e1 4.22e1 2.81e1

covtype 581,012 54 6.59e-1 3.29e-1 0.086 0.016 ( 107) 8.31e-1 1.10e0 1.07e0
diabetes 768 8 6.88e-1 3.44e-1 0.061 0.003 ( 18) 3.70e-1 3.86e-1 4.79e-1

duke 44 7,129 1.98e0 9.89e-1 13459.0 0.660 ( 291) 1.55e2 2.15e2 1.97e2
epsilon 400,000 2,000 1.16e0 5.82e-1 361.0 1.186 ( 217) 3.64e-1 6.07e-1 4.77e-1

fourclass 862 2 7.22e-1 3.61e-1 0.069 0.003 ( 12) 4.68e-1 5.47e-1 6.04e-1
german.numer 1,000 24 6.52e-1 3.26e-1 0.063 0.005 ( 33) 2.45e0 2.84e0 2.89e0

gisette 6,000 5,000 8.53e0 4.27e0 5438.2 56.292 (1640) 9.40e1 2.29e2 1.14e2
heart 270 13 1.10e0 5.48e-1 0.049 0.004 ( 24) 1.85e0 1.98e0 2.08e0
ijcnn1 35,000 22 9.00e-1 4.50e-1 0.068 0.013 ( 114) 4.06e-1 6.52e-1 3.04e-1

ionosphere 351 34 1.30e0 6.48e-1 0.084 0.016 ( 110) 3.49e0 4.49e0 5.15e0
leu 38 7,129 2.11e0 1.05e0 12971.377 0.514 ( 220) 1.37e2 2.68e2 1.46e2

liver-disorders 345 6 4.09e-1 2.04e-1 0.075 0.009 ( 71) 3.05e-1 4.08e-1 3.78e-1
madelon 2,000 500 6.50e-1 3.25e-1 1.964 0.017 ( 43) 2.81e-1 3.28e-1 3.31e-1

mushrooms 8,124 112 1.53e1 7.66e0 0.170 0.166 ( 840) 2.38e0 3.63e0 2.92e0
news20.binary 19,996 1,355,191 ** ** ** ** ( **) ** ** **

rcv1-origin 20,242 47,236 ** ** ** ** ( **) ** ** **
real-sim 72,309 20,958 ** ** ** ** ( **) ** ** **

skin-nonskin 245,057 3 1.63e0 8.14e-1 0.066 0.006 ( 50) 1.65e-1 1.98e-1 2.25e-1
sonar 208 60 1.29e0 6.44e-1 0.096 0.020 ( 116) 3.47e0 4.60e0 5.07e0
splice 1,000 60 1.02e0 5.09e-1 0.071 0.009 ( 39) 2.39e0 2.84e0 2.92e0

svmguide1 3,089 4 1.26e0 6.29e-1 0.070 0.003 ( 28) 1.06e-1 1.15e-1 8.61e-2
svmguide3 1,243 21 6.24e-1 3.12e-1 0.083 0.012 ( 105) 5.90e-1 8.91e-1 5.82e-1

url 2,396,130 3,231,961 ** ** ** ** ( **) ** ** **
w7a 24,692 300 1.41e0 7.03e-1 0.588 0.036 ( 112) 1.42e0 2.21e0 1.82e0
w8a 49,749 300 1.39e0 6.97e-1 0.592 0.031 ( 108) 1.45e0 2.21e0 1.88e0
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Table 3.11.: Average performance of each classification model. The best results are in-
dicated by boldface. ‘–’ means that the cross-validation could not be done
within 36000 sec. ‘**’ means that it had run out of memory.
dataset ν-SVM ( ν) Logistic ( C) MM-MPM ( κ) MM-FDA ( κ)

a8a 84.4% (0.37) 84.6% ( 0.5) 80.7% (0.94) 84.4% (1.32)
a9a 84.7% (0.36) 84.8% ( 0.1) 80.7% (0.95) 84.7% (1.33)

australian 85.7% (0.83) 87.7% ( 0.1) 86.1% (0.25) 87.5% (1.39)
breast-cancer 97.1% (0.07) 97.4% ( 0.5) 97.5% (2.08) 97.4% (0.31)

cod-rna 93.9% (0.28) 93.9% ( 4.5) 93.5% (0.42) 93.7% (0.40)
colon-cancer 88.8% (0.29) 87.1% ( 6.0) 87.1% (0.18) 87.1% (1.22)

covtype 76.3% (0.59) 75.6% ( 1.0) 75.6% (0.65) 75.5% (0.92)
diabetes 77.3% (0.54) 77.3% ( 3.5) 74.9% (0.61) 76.8% (0.88)

duke 88.5% (0.02) 86.0% ( 5.5) 88.5% (0.98) 88.5% (1.36)
epsilon – – 89.6% (1.04) 89.7% (1.48)

fourclass 77.7% (0.68) 78.5% ( 0.1) 72.7% (0.57) 78.6% (0.10)
german.numer 76.7% (0.54) 77.4% ( 0.1) 71.9% (0.39) 77.3% (0.55)

gisette 97.4% (0.11) 97.4% ( 1.0) 97.9% (3.41) 97.9% (4.83)
heart 84.1% (0.40) 84.4% ( 0.1) 84.1% (0.76) 84.1% (0.15)
ijcnn1 74.7% (0.19) 91.8% (20.0) 85.9% (0.89) 91.0% (0.64)

ionosphere 88.3% (0.21) 90.0% ( 5.0) 86.9% (0.39) 87.8% (0.85)
leu 94.2% (0.02) 94.2% ( 5.0) 94.2% (2.10) 94.2% (0.21)

liver-disorders 68.1% (0.76) 67.9% ( 6.0) 63.8% (0.20) 66.4% (0.52)
madelon 59.3% (0.91) 57.7% ( 0.1) 59.7% (0.13) 60.0% (0.09)

mushrooms 100.0% (0.01) 100.0% ( 6.0) 100.0% (9.19) 100.0% (6.21)
news20.binary 97.1% (0.21) 96.5% (20.0) ** **

rcv1-origin 97.0% (0.11) 97.1% (20.0) ** **
real-sim 97.5% (0.13) 97.6% (15.0) ** **

skin-nonskin 93.7% (0.32) 92.4% ( 6.0) 93.5% (1.61) 93.8% (2.10)
sonar 79.8% (0.40) 78.8% ( 0.5) 79.8% (0.64) 77.9% (0.91)
splice 80.9% (0.50) 80.2% ( 3.0) 80.6% (0.61) 81.0% (0.20)

svmguide1 95.4% (0.13) 95.4% (20.0) 94.4% (1.12) 91.6% (1.56)
svmguide3 82.5% (0.41) 82.1% (15.0) 74.3% (0.55) 81.9% (0.69)

url – – ** **
w7a 98.5% (0.04) 98.5% ( 4.0) 96.0% (1.26) 98.2% (1.76)
w8a 98.6% (0.04) 98.7% (17.5) 96.1% (1.25) 98.3% (1.73)

because the sizes of the n× n matrices Σ1/2
o (o ∈ {+,−}) are extremely large.

The FAPG method was much faster than SeDuMi especially when the dimension is
high, say n ≥ 2000. Unlike for ν-SVM (Table 3.5), the FAPG method for MM-MPM
sometimes led to larger values of Lk than the Lipschitz constant Lf . However, the
average of the values of Lk is still smaller than Lf .

3.4.5. Classification Ability

Using the benchmark datasets, we compared the classification ability of classification
models: ν-SVM, logistic regression, MM-MPM, and MM-FDA. Each dataset was ran-
domly partitioned into 10 disjoint sets. We investigated the averages of the test accuracy
using cross-validation over the 10 disjoint sets. We found the best parameter of the each
classification model using grid search with cross-validation. The results are reported
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in Table 3.11. The model that shows the best performance varies with datasets. This
implies the importance of finding a suitable classification model to a dataset in order
to achieve a high prediction performance. Our algorithm is useful for the purpose; it
provides a unified and efficient framework for solving various classification models.
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4. Conic Relaxation Methods for
Polynomial Optimization Problems

4.1. Overview

Polynomial optimization problem (POP) is a problem of minimizing a polynomial ob-
jective function under polynomial equality and inequality constraints. Quadratic op-
timization problem (QOP) is a special case of POP where the objective function and
constraints are given by quadratic functions. Since many combinatorial constraints such
as binary and complementarity constraints can be expressed by using quadratic func-
tions, various combinatorial optimization problems such as the maximum cut problem,
maximum stable set problem, and quadratic assignment problem (QAP) can be formu-
lated as QOPs. Examples of POP with higher degree polynomials include the optimal
power flow problem and the sensor network localization problem. POP (and QOP) is
known as NP-hard in general, and it is considered difficult to obtain the optimum value
efficiently and accurately by computation methods. In order to approximate the op-
timum value by its lower bound, various convex conic relaxation methods have been
proposed.

A conic relaxation problem is formulated as a problem of minimizing a linear func-
tion in symmetric matrix variables subject to linear equalities, linear inequalities, and a
(convex) cone constraint. Important examples of cones include the positive semidefinite
(PSD) cone, the doubly nonnegative (DNN) cone that is the intersection of the PSD cone
and the nonnegative matrix cone, and the completely positive (CPP) cone that is the
convex hull of symmetric rank-1 nonnegative matrices. The conic relaxation problems
with the PSD, DNN, and CPP cone constraints are called semidefinite programming
(SDP) relaxation, DNN relaxation, and CPP relaxation, respectively. The SDP relax-
ation has been studied extensively and proved to be very successful in solving various
QOPs.

The recent theoretical findings on CPP relaxation methods for QOPs have given rise
to a considerable attention in the development of the numerical method of the DNN
relaxation problems; It has been revealed that for a very wide class of QOPs with non-
negative variables (for example, QOPs over a probabilistic simplex, or binary variables),
there exist CPP relaxations that give the exact optimum value of QOPs [Bomze et al.,
2000; Bomze and de Klerk, 2002.; de Klerk and Pasechnik, 2002; Povh and Rendl, 2007,
2009; Burer, 2009; Arima et al., 2014a]. Such CPP relaxation is often referred as ‘CPP
reformulation’ of QOP because of the equivalence in terms of the optimum value. Al-
though the CPP reformulation is the convex optimization problem, it is still numerically
intractable since the problem of checking feasibility is NP-hard [Murty and Kabadi,
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1987]. The computationally tractable DNN relaxation problem has attracted attention
as a natural relaxation of the CPP reformulation. In fact, the DNN relaxation problem
often gives much better lower bounds than the SDP relaxation problem.

Although the DNN problem can be naturally reduced to the standard form of the
SDP problem in polynomial size, algorithms for the standard SDP such as the interior
point method (IPM) suffer numerical inefficiency because that SDP consists of quadratic
number of nonnegative inequality constraints with respect to the size of the variable
matrix. Numerical methods to mitigate this difficulty have been proposed, for instance,
SDPNAL+ [Yang et al., 2015] and the bisection and projection (BP) method [Kim et al.,
2016a; Arima et al., 2017]. SDPNAL+ is based on the 2-phase augmented Lagrangian
method for general DNN optimization problems; In Phase I, a reasonable initial solution
is generated by a first-order method, and in Phase II, an accurate solution is obtained
by the semismooth Newton method, which uses second-order derivative information. On
the other hand, BP is an algorithm for a special class of conic optimization problems
(COPs) including the DNN relaxation of QOPs and can be regarded as a first-order
method. It reformulates the COPs to a dual problem with a single variable, and then
applies the bisection method to the dual; the feasibility of a given point is checked by
the accelerated proximal gradient (APG) method numerically. Both SDPNAL+ and BP
use the structure of the DNN cone that it is the intersection of two simple cones, the
SDP and nonnegative cones, where the metric projection onto them can be computed
easily.

For general POPs beyond QOPs, there has been known theoretically powerful re-
laxation tool: Lasserre’s hierarchy of SDP relaxations [Lasserre, 2001a,b] and its dual
variant: the sum-of-square relaxation method [Parrilo, 2003], which generate a sequence
of SDP relaxation problems of a given POP. The index of sequence is called relaxation-
order. The sequence of the optimum values of the SDP relaxations monotonically con-
verges to the optimum value of the POP under mild assumptions. As the relaxation-
order increases, however, the size of SDP relaxation grows exponentially. An approach
to mitigate this difficulty is exploiting the sparsity in POPs as proposed in [Waki et al.,
2006]. However, solving very large scale SDP relaxations still remains very challenging
problem.

For a given POP with nonnegative variables, we can think of a sequence of DNN relax-
ation problems by adding a nonnegative cone constraint to the (sparse) SDP relaxations
of the hierarchy. However, it makes the large scale SDPs even larger. As an alternative,
Kim et al. [2016b] introduced a simplified DNN relaxation problem for box and binary
constrained POPs, which fits in the framework of the BP method. If all the variables
in the POP are binary, their DNN relaxation is consistent with the SDP relaxations of
Lasserre and Waki et al. except for the existence of the nonnegative constraints. If there
is a box constrained variable, it is possibly weaker than the SDP relaxations due to the
absence of the PSD constraints derived from the box constraint.1 However, thanks to
this simplification, we can solve it efficiently with the BP method. To further tighten the
simplified DNN relaxation problem, they also add valid inequalities into the nonnegative

1That is the PSD constraints for the localizing moment matrices [Lasserre, 2001a].
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cone, which results the nonnegative polyhedral cone constraints. The valid inequalities
are carefully chosen not to increase the computational complexity of the metric pro-
jection onto the resulting nonnegative polyhedral cone. However, the number of valid
inequalities added by their method are very limited. In particular, if all the variables
are binary, no valid inequalities are added with their method. Thus, there is still room
to improve their DNN relaxation formulation.

In this chapter, we provide a method for constructing a tight DNN relaxation prob-
lem, and also improves the BP method. We show that the computation of the metric
projection onto the nonnegative polyhedral cone can be reduced to a problem called
isotonic regression which has been studied extensively. There have been known efficient
algorithms for cases where the polyhedral cone and isotonic regression problem have spe-
cial structures as summarized in [Stout, 2014]. In order to make use of the algorithms,
we propose a method to add as many valid constraints as possible into the cone while
maintaining its special structure. In addition, we also propose methods to compute a
good upper bound of the trace of the variable matrix over the feasible region, which
is necessary for stabilizing the BP method. It is based on approximation algorithms
[Iwata and Nagano, 2009; Wan et al., 2010] for submodular function minimization under
a set cover constraint. Finally, based on the FAPG proposed in the previous chapter,
we accelerate the process of checking feasibility in the BP method.

Furthermore, the framework of the DNN relaxation [Kim et al., 2016b] for POPs with
binary and box constraints can be naturally extended to that for POPs subject to binary,
box, complementarity, and polynomial equality constraints. Therefore, we first gives the
generalized framework of the DNN relaxation, and then develop the methods mentioned
above. The new framework is advantageous because the complementarity constraints
can be handled within the nonnegative polyhedral cone constraint without changing the
computational complexity of the metric projection.

This chapter is organized as follows. First, we review the BP method in Section 4.2.
In Section 4.3, we provide the new framework of the DNN relaxation for POPs subject
to binary, box, complementarity, and polynomial equality constraints. Then, we propose
a method to add as many valid inequalities as possible while keeping the resulting DNN
relaxation problem within the framework of the BP method. We also develop a method
to estimate a good upper bound of the trace of the variable matrix over the feasible
region, which is necessary for stabilizing the BP method. In Section 4.4, we improve the
APG method used in BP by using the adaptive restarting strategy, a good initial solution,
and a new termination criterion. Numerical experiments in Section 4.5 demonstrate the
efficiency of the proposed method.

4.2. The Bisection and Projection Method for Conic
Optimization Problems

In this section, we describe the bisection and projection (BP) method [Kim et al., 2016a;
Arima et al., 2017] designed to solve a class of conic optimization problem.
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4.2.1. A Class of Conic Optimization Problems (COPs)

Let X be a finite dimensional vector space endowed with an inner product 〈·, ·〉 and its
induced norm ‖ · ‖ defined by ‖Z‖ =

√
〈Z, Z〉 for all Z ∈ X . For a cone K ⊆ X , let

K∗ = {Y ∈ X | 〈Z, Y 〉 ≥ 0 for all Z ∈ K} denote the dual cone of K. Let ri(K) denote
the relative interior of K.

Let K1 and K2 be closed convex cones in X such that ri(K1) ∩ ri(K2) = φ. Then
(K1 ∩K2)∗ = K∗1 + K∗2 holds. For given Q0 ∈ X , O 6= H0 ∈ K∗1 + K∗2 and Qi ∈ K∗1 + K∗2
(i = 1, 2, . . . ,m), we introduce the following conic optimization problem (COP):

η∗ = min{〈Q0, Z〉 | 〈H0, Z〉 = 1, 〈Qi, Z〉 = 0 (i = 1, 2, . . . ,m), Z ∈ K1 ∩K2}. (4.1)

Under the condition Z ∈ K1 ∩K2, it holds that 〈Qi, Z〉 ≥ 0 (i ∈ {1, 2, . . . ,m}). Hence,
by letting H1 =

∑m
i=1Qi ∈ K∗1 + K∗2, the COP (4.1) can be simplified as follows:

η∗ = min{〈Q0, Z〉 | 〈H0, Z〉 = 1, 〈H1, Z〉 = 0, Z ∈ K1 ∩K2}. (4.2)

Applying the Lagrangian relaxation to the simplified COP (4.2), we obtain the following
COP:

η∗(λ) = min
{〈
Q0 + λ

‖Q0‖
‖H1‖

H1, Z
〉 ∣∣∣ 〈H0, Z〉 = 1, Z ∈ K1 ∩K2

}
(4.3)

which has a single linear equality constraint. Arima et al. [2014b, Lemma 2.2] showed
that η∗(λ) ↑ η∗ as λ ↑ ∞. Let G(y0) = Q0 + λ ‖Q0‖

‖H1‖H1 − y0H0. Then, the dual of (4.3)
can be described as

y∗0(λ) = sup{y0 | Gλ(y0) ∈ K∗1 + K∗2}. (4.4)

Arima et al. [2014b, Lemma 2.3] showed the strong duality between (4.3) and (4.4) for
every λ ∈ R, i.e., η∗(λ) = y∗0(λ).

As shown in [Kim et al., 2016a], it holds for (4.4) that

Gλ(y0) ∈ K∗1 + K∗2 if y0 ≤ y∗0(λ), Gλ(y0) 6∈ K∗1 + K∗2 otherwise (4.5)

since H0 ∈ K∗1 + K∗2. Using the property (4.5), the approximate value of y∗0(λ) can be
computed by the bisection method if we can check the feasibility of a given y0. The
recently proposed bisection and projection (BP) method [Kim et al., 2016a] judges the
feasibility of y0 by a numerical algorithm based on the APG method. However, since
the numerical algorithm can sometimes misjudge the feasibility, there is no theoretical
guarantee as to the property of the output of their BP method. To address this issue,
Arima et al. [2017] improved the BP method so that it gives a valid lower bound of y∗0(λ)
under mild conditions. In the next section, we present a numerical algorithm to check
the feasibility of y0 based on the APG method. We then introduce the BP method of
[Arima et al., 2017] in Section 4.2.3.
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4.2.2. The Accelerated Proximal Gradient Method for Checking
Feasibility

We consider the problem to decide whether a given element G ∈ X is in K∗1 + K∗2. If
we set G = Gλ(y0), then it is the problem to check the feasibility of y0 in (4.4). Let us
consider the following regression problem:

f∗ = min
{1

2‖G− Y ‖
2
∣∣∣ Y ∈ K∗1 + K∗2

}
(4.6)

= min
{1

2‖G− (Y1 + Y2)‖2
∣∣∣ Y1 ∈ K∗1, Y2 ∈ K∗2

}
(4.7)

= min
{
f(Y1) := 1

2‖ΠK2(Y1 −G)‖2
∣∣∣ Y1 ∈ K∗1

}
, (4.8)

where Y2 = ΠK∗2(G−Y1). The last equality holds from Moreau’s decomposition theorem
[Moreau, 1962; Combettes and Reyes, 2013]: Z = ΠK(Z) − ΠK∗(−Z). Obviously, G ∈
K∗1 + K∗2 if and only if f∗ = 0.

The objective function f(Y1) of (4.8) has the gradient ∇f(Y1) = ΠK2(Y1−G). Since
the projection operator ΠK onto a convex set K is nonexpansive [Bertsekas et al., 2003,
Proposition 2.2.1], we have

‖∇f(Y1)−∇f(Y ′1 )‖ ≤ ‖(Y1 −G)− (Y ′1 −G)‖ = ‖Y1 − Y ′1‖ (Y1,Y
′

1 ∈ X ).

Therefore, the gradient ∇f(Y1) is Lipschitz continuous with the Lipschitz constant Lf =
1. The KKT conditions for (4.8) are

X = G− Y1 − Y2, 〈X, Y1〉 = 0, 〈X, Y2〉 = 0,
X ∈ K1 ∩K2, Y1 ∈ K∗1, Y2 ∈ K∗2.

Assuming that the metric projections ΠK1 and ΠK2 onto the cones K1 and K2 can be
computed easily, Kim et al. [2016a] solve (4.8) by the APG method [Beck and Teboulle,
2009] and checks whether f∗ = 0 numerically. More precisely, they use Algorithm 4.1 to
solve (4.8), where

g(X,Y1,Y2) = max
{ 〈X, Y1〉

1 + ‖X‖+ ‖Y1‖
,

〈X, Y2〉
1 + ‖X‖+ ‖Y2‖

,
ΠK∗1(−X)
1 + ‖X‖ ,

ΠK∗2(−X)
1 + ‖X‖

}
measures the violation of the KKT conditions, and judge as G ∈ (K∗1 + K∗2) if ‖X‖ < ε,
G 6∈ (K∗1 +K∗2) otherwise. Note that f(Y k

1 ) = 1
2‖X

k‖2. From [Beck and Teboulle, 2009,
Theorem 4.4], the sublinear convergence of Algorithm 4.1

f(Y k
1 )− f∗ ≤ 2Lf‖Y init

1 − Y ∗1 ‖2

(k + 1)2 (4.9)

is ensured for any optimal solution Y ∗1 of (4.8).
In order to save computation time, it is important to terminate the algorithm early

and judge as G 6∈ K∗1 + K∗2 if it encounters stagnation. For the purpose, Kim et al.
[2016a] employed various heuristic stopping criteria2 for Algorithm 4.1. We omit the
details here.

2These criteria are not presented in their paper, but implemented in their codes. We would like to
thank the authors for sharing the codes.

54



4. Conic Relaxation Methods for Polynomial Optimization Problems

Algorithm 4.1 The APG method for checking feasiblity.
Input: G ∈ X , Y 0

1 ∈ X , ΠK1 , ΠK2 , ε > 0, δ > 0, kmax > 0,
Output: (X,Y1,Y2) = (Xk,Y k

1 ,Y
k

2 )
Initialize: t1 ← 1, L← 1, Y 1

1 ← Y 0
1

for k = 1, . . . , kmax do
Y k

1 ← ΠK∗1

(
Y
k
1 − 1

LΠK2(Y k
1 −G)

)
# Step 1

Y k+1
2 ← ΠK∗2(G− Y k

1 ), Xk ← G− Y k
1 − Y k

2 # KKT conditions
if ‖Xk‖ < ε or g(Xk,Y k

1 ,Y
k

2 ) < δ then
break

end if
tk+1 ←

1+
√

1+4t2
k

2 # Step 2
Y
k+1
1 ← Y k

1 + (tk)−1
tk+1

(Y k
1 − Y k−1

1 ) # Step 3
end for

4.2.3. The Bisection and Projection Method for the COP

From the property (4.5), the approximate value of y∗0(λ) can be computed by the bisec-
tion method if we can check the feasibility of a given y0. Kim et al. [2016a] proposed the
bisection and projection (BP) method which uses Algorithm 4.1 to check the feasibility.
Algorithm 4.1, however, sometimes misjudges an infeasible point as feasible due to ε > 0.
Conversely, it also can misjudge a feasible point as infeasible due to δ > 0. Hence, there
was no theoretical guarantee as to the property of the output of their BP method.

Arima et al. [2017] improved the BP method so that it generates a valid lower bound
yv`0 of the optimal value y∗0(λ) while it also uses Algorithm 4.1 for checking the feasibility
of a given y0. Their method assumes the following two conditions for a given interior
point I of K∗1:

(A1) We have a large enough positive number ρ > 0 such that 〈I, Z〉 ≤ ρ for every
feasible solution Z of (4.3).

(A2) It is easy to compute λmin(Z) = sup{λ | Z − λI ∈ K∗1} for all Z ∈ X .

If K1 = K∗1 = Sn+ and I is the identity matrix, then 〈I, Z〉 is the trace of Z and λmin(Z)
is the minimum eigenvalue of Z. Under the first assumption (A1), the problem (4.3) is
equivalent to

min
{〈
Q0 + λ

‖Q0‖
‖H1‖

H1, Z
〉 ∣∣∣ 〈H0, Z〉 = 1, 〈I, Z〉 ≤ ρ, Z ∈ K1 ∩K2

}
. (4.10)

Its dual problem

sup
y0,Y2,µ

{y0 + ρµ | Gλ(y0)− Y2 − µI ∈ K∗1, Y2 ∈ K∗2, µ ≤ 0} (4.11)

is equivalent to (4.4) and has the optimal value y∗0(λ). Suppose that ȳ0 ∈ R and Ȳ2 ∈ K∗2
is given. Let µ̄ = min{0, λmin(Gλ(ȳ0)− Ȳ2)}. Then (y0,Y1, µ) = (ȳ0, Ȳ2, µ̄) is a feasible
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solution of (4.11), and yv`0 = ȳ0 + ρµ̄ gives a valid lower bound of y∗0(λ). If (ȳ0, Ȳ2) is
an optimal solution of (4.4), then yv`0 = y∗0(λ) because µ̄ = 0. By incorporating the
computation of the valid lower bound yv`0 , Arima et al. [2017] proposed the improved
BP method described in Algorithm 4.2.

Algorithm 4.2 The bisection and projection (BP) method of [Arima et al., 2017].
Input: y`0 ≤ yu0 , tol > 0, ρ > 0, ε > 0, δ > 0,ΠK1 ,ΠK2 , kmax.
Output: yv`0

Initialize: Ŷ1 ← ΠK∗1
(
Gλ(y

`
0+yu0

2 )
)
.

while yu0 − y`0 > tol do
ym0 ← (y`0 + yu0 )/2, Ŷ init

1 ← Ŷ1
(X̂, Ŷ1, Ŷ2)← The output of Algorithm 4.1 with inputs

(
Gλ(ym0 ),Ŷ init

1 ,ΠK1 ,ΠK2 ,ε,δ,kmax
)
.

yv`0 ← min
{
yv`0 , y

m
0 + ρmin{0, λmin(Gλ(ym0 )− Ŷ2)}

}
if ‖X̂‖ < ε then
y`0 ← max{ym0 , yv`0 }

else
yu0 ← ym0 , y`0 ← max{y`0, yv`0 }

end if
end while

The performance of Algorithm 4.2 highly depends on the value of ρ; using small ρ that
satisfies the condition (A1) can improve the stability and efficiency (see [Arima et al.,
2017]).

Remark 4.2.1. Suppose that ρ > 0 is too small not to satisfy the condition (A1).
Then, (4.4) and (4.11) may not be equivalent. Even in the case, yv`0 in Algorithm 4.2
still gives a valid lower bound of (4.11) while y`0 and yu0 search the solution of (4.4). This
property of Algorithm 4.2 can be advantage if both (4.4) and (4.11) are the dual of conic
relaxations of an optimization problem, where (4.11) is known to be tighter than (4.4).
In fact, Arima et al. [2017] applied Algorithm 4.2 to a DNN relaxation of the quadratic
assignment problems under such settings.

4.3. Efficient Conic Relaxations of the POPs

4.3.1. A Conic Relaxation of Polynomial Optimization Problems

In this section, we introduce a class of polynomial optimization problems (POPs) and
its conic relaxation that fits into the form of (4.1). The POPs dealt in this chapter
generalize the binary and box constrained POPs handled in [Kim et al., 2016b].

4.3.1.1. Polynomial Optimization Problems (POPs)

For a vector of variables x = (x1, x2, . . . , xn)T and a vector of nonnegative integers
α = (α1, α2, . . . , αn)T ∈ Zn+, xα denotes the monomial xα1

1 xα2
2 . . . xαnn . We regard every
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monomial xα as a function with respect to x. We call deg(xα) =
∑n
i=1 αi the degree of

the monomial xα. For a finite subset F ∈ Zn+ with cardinality |F|, let RF denote the
linear space of |F|-dimensional real vector whose elements are indexed by the elements
of F . Each polynomial f : Rn → R is represented as f(x) =

∑
α∈F cαx

α for some
nonempty finite subset F ∈ Zn+ and c ∈ RF . We call supp(f) = {α ∈ F | cα 6= 0} the
support of f and deg(f) = max{deg(xα) | α ∈ supp(f)} the degree of f .

Let fi : Rn → R (i ∈ {0, 1, 2, . . . ,m}) be polynomial functions. Let

H = {x ∈ Rn | xi ∈ [0, 1] (i ∈ Ibox), xj ∈ {0, 1} (j ∈ Ibin), xγ = 0 (γ ∈ C)}, (4.12)

where C ⊆ {0, 1}n, Ibox ∪ Ibin = {1, 2, . . . , n} and Ibox ∩ Ibin = φ. We consider the
following polynomial optimization problem (POP):

min
x∈Rn

{
f0(x)

∣∣∣ (fi(x))2 = 0 (i = 1, 2, . . . ,m), x ∈ H
}
. (4.13)

We mention that the POPs handled in [Kim et al., 2016b] are the special cases of (4.13)
with C = φ and m = 0. It is obvious that the constraint (fi(x))2 = 0 is equivalent to
fi(x) = 0. However, it is necessary to formulate the POP using the squared constraint
(fi(x))2 = 0 in order to generate a DNN relaxation problem that fits into the form of
(4.1). Note that any polynomial inequality g(x) ≤ 0 can be reduced to the equality
(g(x) − sM)2 = 0 by introducing a slack variable s ∈ [0, 1], where M ≥ inf{g(x) | x ∈
H}.

Let us define r : Zn+ → Zn+ by

(r(α))i =
{

min{αi, 1} if i ∈ Ibin

αi otherwise (i.e., i ∈ Ibox)
(4.14)

If x ∈ H, then xα = xr(α) holds for all α ∈ Zn+. In the succeeding discussion, we assume
that supp(fi) = r(supp(fi)) (i = 0, 1, 2, . . . ,m) without loss of generality.

4.3.1.2. Lifting the POP with Moment Matrix

Now we lift the POP (4.13) to a problem over the space of symmetric matrix. Let

d = max
{

max{deg(fi) | i = 1, 2, . . . ,m}, max{deg(xγ) | γ ∈ C}
}
.

Suppose that we have V k ⊆ Zn+ (k = 1, 2, . . . , `) such that Akω :=
{
α ∈ Zn+ | αi = 0 (i 6∈

V k),
∑
i∈V k αi ≤ ω

}
satisfies the following conditions for any ω ≥ dd2e:

C ⊆
⋃̀
k=1

(Akω +Akω), supp(f0) ⊆
⋃̀
k=1

(Akω +Akω),

and ∀i ∈ {1, 2, . . . ,m}, ∃k ∈ {1, 2, . . . , `} s.t. supp(fi) ⊆ Akω. (4.15)

We call the parameter ω relaxation order. Taking ` = 1 and V 1 = {1, 2, . . . , n} is
an obvious example which satisfies the condition (4.15). However, taking V k (k =
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1, 2, . . . , `) as their cardinality |V k| to be small can improve the computational efficiency
of the conic relaxation problem shown later. We can use the method of [Waki et al., 2006]
to find such V k (k = 1, 2, . . . , `) from the sparsity pattern of the Hessian of polynomials
fi (i = 0, 1, . . . ,m).

Let SAkω denote the linear space of |Akω| × |Akω| real symmetric matrices whose rows
and columns are indexed by the elements of Akω. For each k ∈ {1, 2, . . . , `}, we define the
vector of monomials xAkω ∈ RAkω by (xAkω)α = xα (α ∈ Akω) and the moment matrix
x�Akω ∈ SAkω by

x�Akω = xA
k
ω(xAkω)T , i.e., (x�Akω)αβ = xα+β (α,β ∈ Akω).

From the assumption (4.15) on V k, x�Akω (k ∈ {1, 2, . . . , `}) contain all monomials in fi
for i ∈ {0, 1, . . . ,m}. Hence, there exists Fi = (F 1

i ,F
2
i , . . . ,F

`
i ) ∈ SA1 × SA2 × . . .× SA`

such that fi(x) =
∑`
k=1〈F k

i , x
�Akω〉. Furthermore, for i ∈ {1, 2, . . . ,m}, there exists

fi ∈ RAkω such that fi(x) = 〈fi, xA
k
ω〉. Hence, (fi(x))2 = 〈F k, x�Akω〉 for some k,

where F k
i = fif

T
i is positive semidefinite. As a consequence, the POP (4.13) can be

reformulated as follows:

min
Z

{
〈F0, Z〉

∣∣∣ 〈Fi, Z〉 = 0 (i = 1, 2, . . . ,m), Z = (Z1,Z2, . . . ,Z`) ∈M
}
, (4.16)

where the inner product 〈·, ·〉 on SA1×SA2×. . .×SA` is defined by 〈A, B〉 =
∑`
k=1〈Ak, Bk〉

(A,B ∈ SA1 × SA2 × . . .× SA`), and

M = {(x�A1
ω ,x�A2

ω , . . . ,x�A`ω) ∈ SA
1
ω × SA

2
ω × . . .× SA

`
ω | x ∈ H}.

Example 4.3.1. Let us consider the following POP such that n = 3, m = 1, C = {( 1
2 )},

Ibox = {1}, and Ibin = {2, 3}:

min
x∈R3

{
f0(x) = −x1x2 − x2x3

∣∣∣∣∣ (f1(x))2 = (x2 + x3 − 1)2 = 0,
x1x2 = 0, x1 ∈ [0, 1], x2, x3 ∈ {0, 1}.

}
. (4.17)

We give two examples of V k and Akω.

Case I. Let ` = 1, V k = {1, 2, 3}, and ω = 1. Then A1
ω =

{( 0
0
0

)
,
( 1

0
0

)
,
( 0

1
0

)
,
( 0

0
1

)}
.

We have

xA
1
ω =


1
x1
x2
x3

 and x�A1
ω =


1 x1 x2 x3
x1 x2

1 x1x2 x1x3
x2 x1x2 x2

2 x2x3
x3 x1x3 x2x3 x2

3

 .
If we define

F 1
0 =


0 0 0 0
0 0 −0.5 −0.5
0 −0.5 0 0
0 −0.5 0 0

 , and F 1
1 =


−1
0
1
1



−1
0
1
1


T

,

then fi = 〈F 1
i , x

�A1
ω〉 holds for i ∈ {0, 1}.
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Case II. Let ` = 2, V 1 = {1, 2}, V 2 = {2, 3}, and ω = 1. Then A1
ω =

{( 0
0
0

)
,
( 1

0
0

)
,
( 0

1
0

)}
and A2

ω =
{( 0

0
0

)
,
( 0

1
0

)
,
( 0

0
1

)}
. We have

xA
1
ω =

 1
x1
x2

 xA
2
ω =

 1
x2
x3


x�A1

ω =

 1 x1 x2
x1 x2

1 x1x2
x2 x1x2 x2

2

 x�A2
ω =

 1 x2 x3
x2 x2

2 x2x3
x3 x2x3 x2

3

 .
If we define

F0 = (F 1
0 ,F

2
0 ) =


0 0 0

0 0 −0.5
0 −0.5 0

 ,
0 0 0

0 0 −0.5
0 −0.5 0


 ,

F1 = (F 1
1 ,F

2
1 ) =

O,
−1

1
1


−1

1
1


T ,

then fi(x) =
∑2
k=1〈F k

i , x
�Akω〉 holds for i ∈ {0, 1}.

Taking |V k| small as in Case II is advantageous in reducing the size of each block of
Fi and speeding up the matrix computation.

4.3.1.3. Valid Constraints and Conic Relaxation of POP

The POP (4.16) is numerically intractable in general due to the nonconvex constraint
Z ∈M . Therefore, we will apply the convex relaxation to M in order to obtain a lower
bound of the optimal value of (4.16). More precisely, we investigate valid conditions for
x�Akω over x ∈ H and translate them to convex constraints on Zk ignoring nonconvex
conditions. The most important example is that, since x�Akω is a rank-1 and positive
semidefinite matrix, we translate the condition to the positive semidefinite constraints
on Zk:

(V1) Zk ∈ SA
k
ω

+ (k = 1, 2, . . . , `)

but ignore the rank-1 condition which is nonconvex.
Next we consider linear identities and inequalities which hold for the elements of x�Akω

(k = 1, 2, . . . , `). For illustration purpose, let x1 ∈ [0, 1] and x2, x3 ∈ {0, 1}. Then, for
example, x1x2 = x1x

2
2 and x1 ≥ x1x3 ≥ x2

1x3 hold while x1 and x2x3 are not comparable
in general. To describe such relations formally, we introduce an equivalence relation ∼
and a partial order �f on sets of the supports of monomials.

Recall the definition (4.14) of the function r : Zn+ → Zn+. Let the binary relation ∼
on
⋃`
k=1(Akω +Akω) be defined by σ ∼ σ′ iff r(σ) = r(σ′). We see that σ ∼ σ′ implies
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xσ = xσ
′ for all x ∈ H. Then, ∼ is an equivalent relation since it satisfies reflexivity,

symmetry, and transitivity. By letting

R = r(
⋃̀
k=1

(Akω +Akω)) (4.18)

be the set of representative, the equivalence classes of σ ∈ R with respect to ∼ can be
described as

[σ] =
{
α ∈

⋃̀
k=1

(Akω +Akω)
∣∣∣ r(α) = σ

}
.

For all k, k′ ∈ {1, 2, . . . , `}, we have

(x�Akω)αβ = xα+β = xα
′+β′ = (x�Ak′ω )α′β′

if α+ β ∈ [σ] and α′ + β′ ∈ [σ] for some σ ∈ R. (4.19)

The relation (4.19) can be simply represented by (x�A1
ω ,x�A2

ω , . . . ,x�A`ω) =
∑
σ∈RBσx

σ,
where Bσ = (B1

σ,B
2
σ, . . . ,B

`
σ) ∈ SA1

ω × SA2
ω × . . .× SA`ω (σ ∈ R) is defined by

(Bk
σ)αβ =

{
1 if (α,β) ∈ [σ]
0 otherwise

(k = 1, . . . , `).

Note that {Bσ | σ ∈ R} is an orthogonal (but not orthonormal) basis of linear hull of
M . We translate the condition (4.19) to the constraint

(V2) Z =
∑
σ∈RBσξσ

by introducing new variables ξ ∈ RR.
Let the binary relation �f on R be defined by σ �f σ

′ iff σ ≤ σ′. 3 Then, �f is
the partial order since it satisfies reflexivity, antisymmetry, and transitivity. (R,�f) is a
partially ordered set. We see that σ �f σ

′ implies xσ ≥ xσ′ for all x ∈ H. We translate
it to the constraints on ξ ∈ RR:

(V3) ξσ ≥ ξσ′ if σ �f σ
′.

We also have xγ̄ = 0 for all γ̄ ∈ C̄, where C̄ = {γ̄ ∈ R | ∃γ ∈ C such that γ �f γ̄}. We
can translate it to

(V4) ξγ̄ = 0 (γ̄ ∈ C̄)

or, more simply, replace the condition (V2) by

(V2)’ Z =
∑
σ∈R\C̄Bσξσ.

3�f is used for constructing the ‘full DNN relaxation’ in [Kim et al., 2016b]. The subscript ‘f’ of �f
stands for ‘full’.
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In the followings, we employ (V2)’ instead of (V2) and (V4) and restrict our attention
to the sub-partially ordered set (R\C̄,�f). The notion of the partially ordered set plays
a crucial role on constructing efficient conic relaxations of (4.16) in Section 4.3.2.

Besides the above conditions, we also know that x�Akω (k = 1, 2, . . . , `) are nonnegative
matrices for all x ∈ H, and (x�Akω)00 = 1 for all k ∈ {1, . . . , `}. We translate them to

(V5) ξσ ≥ 0 (σ ∈ R\C̄).

and

(V6) 〈H0, Z〉 = 1,

where H0 = (H1
0 ,H

2
0 , . . . ,H

`
0) ∈ SA1

ω × SA2
ω × . . .× SA`ω is defined by

(Hk
0 )αβ =

{
1/` if α = β = 0

0 otherwise.

In consideration of the constraints (V1), (V2)’, (V3), (V5), and (V6), we construct
the conic relaxation problem of (4.16):

ζ�f = min
Z

{
〈F0, Z〉

∣∣∣∣∣ 〈Fi, Z〉 = 0 (i = 1, 2, . . . ,m), 〈H0, Z〉 = 1
Z ∈ K1 ∩K�f

2

}
, (COP�f )

where K1 = SA
1
ω

+ × SA
2
ω

+ × . . .× SA
`
ω

+ is the Cartesian product of the positive semidefinite
cones and

K�f
2 =

{ ∑
σ∈R\C̄

Bσξσ
∣∣∣ ξσ ≥ ξσ′ (σ �f σ

′), ξσ ≥ 0 (σ ∈ R\C̄)
}

is a nonnegative polyhedral cone.

Example 4.3.2. We show examples of R, C̄, [σ], and Bσ. For Case II in Example 4.3.1,
we have

R = r
( 2⋃
k=1
Akω +Akω

)
=
{( 0

0
0

)
,
( 1

0
0

)
,
( 0

1
0

)
,
( 0

0
1

)
,
( 2

0
0

)
,
( 1

1
0

)
,
( 0

1
1

)}

and C̄ =
{( 1

1
0

)}
. Let σ =

( 0
1
0

)
∈ R\C̄. Note that xσ = x2. We have [σ] =

{( 0
1
0

)
,
( 0

2
0

)}
which implies x2 = x2

2 derived from x2 ∈ {0, 1}. We also have

(B1
σ,B

2
σ) =


0 0 1

0 0 0
1 0 1

 ,
0 1 0

1 1 0
0 0 0


 .

Note that 1 is in the place where the moment matrices have x2 or x2
2.
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The conic relaxation problem COP�f fits into the form of (4.1). However, applying the
BP method to COP�f may not efficient since the computation of the metric projection
ΠK�f

2
is not obvious. The interior point method (IPM) can be applied to solving COP�f

by reformulating it to the standard form of the semidefinite programming problem.
However, it would be computationally expensive since K�f

2 consists of large number of
inequality constraints. To cope with this difficulty, Kim et al. [2016b] proposed a further
relaxation of COP�f by partially reducing the inequality constraints ξσ ≥ ξσ′ (σ �f σ

′).
To describe it formally, let us introduce a sub-partial order � of �f , that is, a partial
order such that σ � σ implies σ �f σ

′ for σ,σ′ ∈ R\C̄. For a given �, we define

K�2 =
{ ∑
σ∈R\C̄

Bσξσ
∣∣∣ ξσ ≥ ξσ′ (σ � σ′), ξσ ≥ 0 (σ ∈ R\C̄)

}
.

Let COP� be the problem in which K�f
2 of COP�f is replaced by K�2 . Let ζ� be the

optimal value of COP�. It is obvious that ζ� ≤ ζ�f ≤ η∗. Kim et al. [2016b] define �
by �k, where

γ �k γ
′ iff ∀i ∈ Ibin, γi = γ′i

∀j ∈ Ibox, ∃c ≥ 1, such that cγj = γ′j .
(4.20)

Since the structure of K�k
2 is considerably simpler than the one of K�f

2 , the metric pro-
jection ΠK�k

2
can be computed by the simple algorithm of [Kim et al., 2016b, Algorithm

3.3]. As a result, the conic relaxation problem COP�k can be solved by the BP method
efficiently. Note that the IPM for COP�k is still computationally expensive since K�k

2
consists of large number of inequality such as nonnegative constraints. We mention that
if m = 0 and Ibox = φ, then COP�k is equivalent to Lasserre’s hierarchy of SDP re-
laxations [Lasserre, 2001b] (and its dual variant: the sum-of-square relaxation method
[Parrilo, 2003]) of (4.13) except for the existence of nonnegative constraints.

The definition of the sub-partial order � determines the tightness of the relaxation
COP� and the computational complexity of ΠK�2

. In Section 4.3.2, we propose several
methods to construct sub-partial order � which leads to a stronger relaxation than �k
keeping the computational complexity of ΠK�2

moderate.

4.3.2. Sub-Partial Orders and Metric Projection Computations

As we described in the previous section, it is important to find an appropriate sub-
partial order � of �f such that the computational complexity of ΠK�2

is moderate in
the application of the BP method. For the following discussion, we introduce the Hasse
diagram to display the structure of a partially ordered set. For a given partial order �
on a set S, the Hasse diagram of (S,�) is a directed graph D = (V,A) with V = S and

A = {(σ,σ′) ∈ S × S | σ � σ′, 6∃δ ∈ S\{σ,σ′} s.t. σ � δ � σ′}.

See Figure 4.1 for example which shows the Hasse diagrams of (R\C̄,�f) and (R\C̄,�k),

62



4. Conic Relaxation Methods for Polynomial Optimization Problems

(0,0,0)

(1,0,0) (0,1,0) (0,0,1)

(2,0,0) (0,1,1)
(R\C̄,�f)

(0,0,0)

(1,0,0) (0,1,0) (0,0,1)

(2,0,0) (0,1,1)
(R\C̄,�k)

Figure 4.1.: The Hasse diagrams of (R\C̄,�f) and (R\C̄,�k), whereR\C̄ is the one given
in Example 4.3.2. The Hasse diagram of (R\C̄,�k) has only one edge.

where R\C̄ is the one given in Example 4.3.2. Roughly, the number of edges in the Hasse
diagram correlates with the number of inequalities and tightness of the conic relaxation
problem.

4.3.2.1. Isotonic Regression

The metric projection ΠK�2
(G) ofG onto K�2 is the solution of the following optimization

problem:
ΠK�2

(G) = argmin
X

{
‖X −G‖2 |X ∈ K�2

}
. (4.21)

Let wσ = 〈Bσ, Bσ〉 and gσ = 1
wσ
〈G, Bσ〉. For X ∈ K�2 , it holds that

‖X −G‖2 =
∥∥∥ ∑
σ∈R\C̄

Bσξσ −G
∥∥∥2

=
∑

σ∈R\C̄

(
wσξ

2
σ − 2〈G, Bσ〉ξσ

)
+ ‖G‖2

=
∑

σ∈R\C̄

wσ(ξσ − gσ)2 + ‖G‖2 −
∑

σ∈R\C̄

wσg
2
σ.

Hence, the problem (4.21) is equivalent to

min
ξ∈RR\C̄

{ ∑
σ∈R\C̄

wσ(ξσ − gσ)2
∣∣∣ ξσ ≥ ξσ′ (σ � σ′), ξσ ≥ 0 (σ ∈ R\C̄)

}
. (4.22)

Suppose that the Hasse diagram of (R\C̄,�) has p-connected components P1, P2, . . . , Pp.
For x ∈ RR\C̄ , let us define xi ∈ RP1 by xiσ = xσ for all σ ∈ Pi (i ∈ {1, 2, . . . , p}). Then,
the problem (4.22) can be devided into the following subproblems:

min
ξi∈RPi

{ ∑
σ∈Pi

wiσ(ξiσ − giσ)2
∣∣∣ ξiσ ≥ ξiσ′ (σ � σ′), ξiσ ≥ 0 (σ ∈ Pi)

}
(i = 1, 2, . . . , p).

(4.23)
The following Lemma gives a strategy to solve (4.23).
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Lemma 4.3.1. Let P ⊆ R\C̄ and the sub-partial order � of �f be given. Let

ξ0 = argmin
ξ∈RP

{ ∑
σ∈P

wσ(ξσ − gσ)2
∣∣∣ ξσ ≥ ξσ′ (σ � σ′), ξσ ≥ 0 (σ ∈ P )

}
, (4.24)

ξ−∞ = argmin
ξ∈RP

{ ∑
σ∈P

wσ(ξσ − gσ)2
∣∣∣ ξσ ≥ ξσ′ (σ � σ′)

}
. (4.25)

Then ξ0
σ = max{0, ξ−∞σ } (σ ∈ P ).

Proof. Both (4.24) and (4.25) satisfy the Slater condition; there exists an interior feasible
solution ξσ = xσ, where x1 = . . . = xn = 0.1. Hence, the KKT condition is a necessary
and sufficient condition for optimality. Since ξ−∞ is the optimal solution of (4.25), there
exists the Lagrange multipliers λ−∞ ∈ R(P×P ) such that (ξ,λ) = (ξ−∞,λ−∞) satisfies
the KKT conditions for (4.25):

2wσ(ξσ − gσ)−
∑
σ′∈P

λ(σ,σ′) = 0 (σ ∈ P )

ξσ ≥ ξσ′ , λ(σ,σ′) ≥ 0, λ(σ,σ′)(ξσ′ − ξσ) = 0 (σ � σ′)

On the other hand, the KKT conditions for (4.24) are:
2wσ(ξσ − gσ)−

∑
σ′∈P

λ(σ,σ′) − µσ = 0 (σ ∈ P )

ξσ ≥ ξσ′ , λ(σ,σ′) ≥ 0, λ(σ,σ′)(ξσ′ − ξσ) = 0 (σ � σ′)
µσ ≥ 0, µσξσ = 0 (σ ∈ P )

Let ξ0
σ = max{0, ξ−∞σ }, µ0

σ = 2wσ max{0,−ξ−∞σ }, and λ0
(σ,σ′) = λ−∞(σ,σ′). Since (ξ,λ,µ) =

(ξ0,λ0,µ0) satisfies the KKT conditions for (4.23), ξ0 is the optimal solution of (4.23).

From Lemma 4.3.1, the projection onto K�2 can be constructed from the optimal
solution of (4.25) with P = Pi. The problem (4.25) is a special case of the isotonic
regression problem which has been studied extensively. See [Best and Chakravarti, 1990;
Pardalos and Xue, 1999; Luss et al., 2010] and references there in. The fastest known
exact algorithms for the isotonic regression are summarized in [Stout, 2014]. If the partial
order � of (4.23) is given by �f , which is naturally defined on n-dimensional integer
grid Zn+, the fastest algorithm takes O(|R\C̄|3 log |R\C̄|) time to solve (4.23). Note that
the Hasse diagram of (R\C̄,�f) is connected since every element is comparable to the
origin 0. The computational complexity O(|R\C̄|3 log |R\C̄|) of ΠK�f

2
is much larger than

the one of ΠK1 , which requires eigenvalue decomposition, and would be a bottleneck of
APG. In order to improve the computational efficiency of APG, it is necessary to choose
an appropriate sub-partial order � of �f .

Here we consider two types of the partial order � such that the Hasse diagram of
(Pi,�) (and (R\C̄,�)) has special structure. Assume that the Hasse diagram of (Pi,�)
consists of a single path, i.e., every pair of elements in Pi is comparable. Such Pi is called

64



4. Conic Relaxation Methods for Polynomial Optimization Problems

(0,0,0)

(1,0,0) (0,1,0) (0,0,1)

(2,0,0) (0,1,1)
(R\C̄,�c)

P1

P2

P3

(0,0,0)

(1,0,0) (0,1,0) (0,0,1)

(2,0,0) (0,1,1)
(R\C̄,�t)

S0

S1

S2

Figure 4.2.: Examples of the Hasse diagrams of (R\C̄,�c) and (R\C̄,�t). The graph of
(R\C̄,�c) consists of the three vertex disjoint paths. {P1, P2, P3} is a chain
decomposition of (R\C̄,�c) with the minimum number of chains. The graph
of (R\C̄,�c) is a spanning arborescence.

a chain in (R\C̄,�). The isotonic regression (4.25) with a chain P = Pi can be solved
by the pool-adjacent-violators algorithm [Ayer et al., 1955] in linear time O(|Pi|). Next,
assume that the Hasse diagram of (Pi,�) is a directed rooted tree in which all edges
point away from the root, namely, arborescence. Then the isotonic regression (4.25)
with P = Pi can be solved in O(|Pi| log |Pi|) time by the algorithm [Pardalos and Xue,
1999] using binomial heap data structure. Since these computational complexities are
less than the one of ΠK1 , it does not deteriorate the computational efficiency of each
iteration of APG. Thus, we aim to find the sub-partial order � where the Hasse diagram
on (Pi,�) forms a path or arborescence, or equivalently, the Hasse diagram of (R\C̄,�)
forms a set of vertex disjoint paths or arborescences.
�k is the one of the examples whose Hasse diagram is a set of vertex disjoint paths

(see [Kim et al., 2016b, Lemma 4.1]). We mention that the idea of [Kim et al., 2016b,
Algorithm 3.3] for computing ΠK�k

2
is equivalent to the one of the PAV algorithm. In

(R\C̄,�k), however, there is a few number of comparable elements, i.e., there are a few
edges in the Hasse diagram of (R\C̄,�k) (see Figure 4.1). In particular, if Ibox = φ,
then every pair of distinct elements in R\C̄ are incomparable, i.e., there are no edges
in the Hasse diagram, by the definition (4.20) of �k. Since the number of edges in the
Hasse diagram correlates with the tightness of the conic relaxation problem, there is a
possibility that COP�k gives much worse lower bound than COP�f .

In the next section, we provide methods to construct sub-partial orders whose Hasse
diagrams have more edges than �k while they maintain the special structures discussed
above. By using such sub-pertial orders, we can improve the tightness of the relaxation
problem without increasing the computational complexity of ΠK�2

so much compared to
ΠK�k

2
.

4.3.2.2. Chain Decomposition

Recall that P ⊆ R\C̄ is called a chain in (R\C̄,�f) iff every pair of elements in P is
comparable with respect to �f . A family of chains {P1, P2, . . . , Pp} is called a chain
decomposition of (R\C̄,�f) if it is a partition of R\C̄. For a given chain decomposition
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{P1, P2, . . . , Pp}, let a sub-partial order �c of �f be defined by σ �c σ
′ for every pair

(σ,σ′) in each Pi (i = 1, 2, . . . , p). Then, the Hasse diagram of (R\C̄,�c) has the
connected components Pi (i = 1, 2, . . . , p) such that each Pi consists of a directed path
(see Figure 4.2 for example). Then, the each subproblem (4.23) with �c can be solved
in linear time O(|Pi|). The number of edges in the Hasse diagram of (R\C̄,�c) is

p∑
i=1

(|Pi| − 1) = |R\C̄| − p.

Hence, to maximize the number of edges, it is sufficient to find the chain decomposition
that minimizes p.

Fulkerson [1956] showed, in his elegant proof of Dilworth’s theorem4 [Dilworth, 1950],
a method to construct such chain decomposition from a maximum matching in the
bipartite graph G = (R\C̄,R\C̄, E), where E = {(u, v) ∈ (R\C̄) × (R\C̄) | u �f v}.
There has been known several polynomial time algorithms for finding maximum bipartite
matching (see [Ahuja et al., 1993, Section 12]). For example, using the Hopcroft-Karp
algorithm [Hopcroft and Karp, 1973], we can find a maximum bipartite matching in
O(
√
|R\C̄| · |E|) time.

4.3.2.3. Spanning Arborescence

Consider the Hasse diagram D = (R\C̄, A) of (R\C̄,�f). Suppose that we have A′ ⊆ E
such that D′ = (R\C̄, A′) forms a set of arborescences. Let us define �t by σ �t σ

′ iff
there exists a directed path from σ to σ′ in D′. Then, the Hasse diagram of (R\C̄,�t)
matchesD′. Let P1, P2, . . . , Pp be the connected components inD′. The each subproblem
(4.23) with �t can be solved in O(|Pi| log |Pi|) time. The number of edges in the Hasse
diagram D′ of (R\C̄,�t) is

p∑
i=1

(|Pi| − 1) = |R\C̄| − p.

Hence, to maximize the number of edges, it is sufficient to minimize the number of p.
Observe that, there exists a path from 0 for any node in D since every element in
R\C̄ is comparable with 0. Hence, fortunately, there exists a spanning arborescence in
D, i.e., there exists D′ such that p = 1. The following lemma reveals the structure of
(R\C̄,�f) which is useful for finding a spanning arborescence in D = (R\C̄, A).

Lemma 4.3.2. Let D = (R\C̄, A) be the Hasse diagram of (R\C̄,�f). Let dmax =
max{‖σ‖1 | σ ∈ R\C̄}. Let Si = {σ ∈ R\C̄ | ‖σ‖1 = i} (i = 0, 1, . . . , dmax). For
any d ∈ {1, 2, . . . , dmax} and σ ∈ Sd, there exists σ′ ∈ Sd−1 such that σ′ �f σ, i.e.,
(σ,σ′) ∈ A.

4Consider a subset of R\C̄ such that any pair of elements in the subset is not comparable with respect
to �f . Such subset is called an antichain of (R\C̄,�f). Dilworth’s theorem states that the minimum
number of chains in any chain decomposition coincides with the maximum number of elements in any
antichain. Fulkerson also showed that a method to construct an antichain with the largest number
of elements.
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Proof. First, observe that {S0, S1, . . . , Sdmax} is a partition ofR\C̄. Fix d ∈ {1, 2, . . . , dmax}.
By the definition 4.18 of R, we have

∀σ ∈ Sd, ∃α,β ∈ Akω such that σ = r(α+ β).

Take i ∈ {1, 2, . . . , n} such that σi ≥ 1. Then σ′ := σ − ei satisfies ‖σ′‖1 = d − 1 and
σ′ �f σ. To prove σ′ ∈ Sd−1, it is sufficient to show σ′ ∈ R\C̄. Assume that βi ≥ 1
without loss of generality. If i ∈ Ibox, then σ′ = r(α + (β − ei)). If i ∈ Ibin, then
σ′ = r

(
(α − αiei) + (β − βiei)

)
. Since α, (β − ei), (α − αiei), and (β − βiei) are

elements of Akω, it holds that σ′ ∈ R. Since σ 6∈ C̄, we have σ′ 6∈ C̄ by the definition of
C̄. As a consequence, we have σ′ ∈ Sd−1.

Based on Lemma 4.3.2, we propose Algorithm 4.3 for finding a spanning arborescence.
In the output D′ = (R\C̄, A′) of Algorithm 4.3, indegree of any vertex is at most 1. For

Algorithm 4.3 A greedy algorithm for finding a spanning arborescence.
Input: R\C̄
Output: D′ = (R\C̄, A′)
Initialization: Compute Si. d← dmax. A′ ← φ.

Step 1. For each σ ∈ Sd, find an element σ′ ∈ Sd−1 such that σ′ �f σ and add (σ′,σ)
into A′.

Step 2. If d = 1, then output D′ = (R\C̄, A′). Else, d← d− 1 and go to Step 1.

all d ∈ {1, 2, . . . , dmax}, any vertex in Sd is connected with one of Sd−1. Since S0 has a
single element 0, D′ is an arborescence whose root is 0.

4.3.3. An Upper Bound of the Trace of the Moment Matrix

Let Ik be the identity matrix in SA
k
ω

+ (k ∈ {1, 2, . . . , `}) and I = (I1, I2, . . . , I`) ∈
SA

1
ω

+ ×SA
2
ω

+ × . . .×SA
`
ω

+ . As we described in Section 4.2, estimating a tight upper bound
ρ of sup{〈I, Z〉 | Z ∈ U} for a certain set U is important for improving the performance
of the BP method (Algorithm 4.2). In this section, we assumed U to be the feasible
region of (4.16) and propose computation methods for ρ. Then 〈I, Z〉 ≤ ρ works as a
valid constraint which can possibly tighten the conic relaxation COP�. As mentioned
in Remark 4.2.1, using such ρ is advantageous for Algorithm 4.2 although it may not
satisfy the condition (A1).

Our ultimate purpose is to compute the optimal value of

max
Z
{〈I, Z〉 | 〈Fi, Z〉 (i = 1, 2, . . . ,m), Z ∈M}.
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Algorithm 4.4 The greedy algorithm for [Wan et al., 2010].
Initialize: S ← φ
while ∃e ∈ Ω\S such that f(S ∪ {e})− f(S) > 0 do
s← argmaxe∈Ω\S

f(S∪{e})−f(S)
c({e})

S ← S ∪ {s}
end while
Output: S

Here, we instead consider the following problem:

max
Z
{〈I, Z〉 | Z ∈M} = max

x

{ ∑̀
k=1
〈Ik, x�Akω〉 | x ∈ H

}

= max
x

{ ∑̀
k=1

∑
α∈Akω

xα+α | x ∈ H
}
. (4.26)

Although the problem (4.26) is still numerically intractable in general, it can be reduced
to submodular function minimization under a set cover constraints for which there has
been known efficient approximation algorithms. By using the approximation algorithms,
we can obtain the upper bound of (4.26). In Section 4.3.3.1, we introduce the framework
of the submodular function minimization and approximation algorithms briefly. Then
we reduce the problem (4.26) to the framework in Section 4.3.3.2.

4.3.3.1. Minimizing Submodular Function under a Set Cover

Consider a ground set Ω and a set function f : 2Ω → R. f(·) is called non-decreasing if
f(S) ≤ f(T ) for all S ⊆ T ∈ 2Ω. f(·) is called submodular if

f(S ∪ {e})− f(S) ≥ f(T ∪ {e})− f(T ), ∀S ⊆ T ∈ 2Ω, ∀e ∈ Ω\T,

and modular if

f(S ∪ {e})− f(S) = f(T ∪ {e})− f(T ), ∀S ⊆ T ∈ 2Ω, ∀e ∈ Ω\T.

A set function f : 2Ω → R+ is called polymatroid if it is submodular, non-decreasing,
and f(φ) = 0. For given subsets Ei (i ∈ Ω) of some ground set Θ, the function of the
form g(S) = |

⋃
i∈S Ei| for S ⊆ Ω is called a coverage function. The coverage function is

a typical example of the (integer-valued) polymatroid function.
For given non-decreasing submodular functions f(·) and c(·), consider the following

problem
min
S⊆Ω
{c(S) | f(S) = f(Ω)}. (4.27)

Let S∗ be an optimal solution of (4.27). If f(·) and c(·) are given by integer-valued poly-
matroid functions, then the greedy algorithm [Wan et al., 2010] (shown in Algorithm 4.4)
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produces vh(η)-approximation solution S̃ of (4.27) (i.e., vh(η)c(S∗) ≥ c(S̃) ≥ c(S∗)),
where

v = min
S∗:opt. sol.

∑
e∈S∗ c({e})
c(S∗)

is the curvature of the submodular cost c(·), h(k) =
∑k
i=1

1
i is the k-th Harmonic number,

and η = maxe∈Ω f({e}). Note that a lower bound of c(S∗) can be given by c(S̃)/(vh(η))
while c(S̃) is an upper bound.

Let c(·) and f(·) of (4.27) be given by a non-decreasing submodular function and a
coverage function, respectively. For such problem, Iwata and Nagano [2009] proposed
an η-approximation primal-dual method based on a linear programming relaxation tech-
nique. Since their method searches not only an upper bound but also a lower bound
explicitly, it would result a better lower bound than the greedy method. Each iteration
of their method uses Dinkelbach’s discrete Newton method whose each iteration requires
to solve

min
S∈Ω

c(S)−m(S), (4.28)

where m(·) is a modular function given in the iteration. Computation time for minimiz-
ing the submodular function c(·)−m(·) in the nested double loop can be tremendous in
general. However, if c(·) is also given by a coverage function, then the problem (4.28) can
be reduced to a maximum flow problem using the techninque of [Rhys, 1970]. There has
been known various practically efficient polynomial time algorithms for solving maximum
flow problems (see [Ahuja et al., 1993, Figure 7.19]). Hence, the primal-dual algorithm
can be implemented efficiently.

4.3.3.2. Reducing (4.26) to (4.27)

Let us start from giving an obvious upper bound of (4.26). Fix α ∈ Akω for some
k ∈ {1, 2, . . . , `}. For x ∈ H, we have xα+α ≤ 1. If α + α ∈ C̄ (i.e., there exists γ ∈ C
such that α + α ≥ γ), then xα+α = 0. Thus, by letting Bkω = {α ∈ Akω | α + α 6∈ C̄},
we have

∑̀
k=1

∑
α∈Akω

xα+α =
∑̀
k=1

∑
α∈Bkω

xα+α ≤
∑̀
k=1
|Bkω|, (4.29)

for all x ∈ H. In order to improve the upper bound (4.29), we shall be concerned with
the following problem:

max
x

{ ∑̀
k=1

∑
α∈Bkω

xα+α | x ∈ H
}

(4.30)

Our purpose is to obtain an upper bound (or the optimal value, if possible) of (4.30)
better than

∑`
k=1 |Bkω|.

It is obvious that there exists an optimal solution x∗ of (4.30) such that x∗ ∈ {0, 1}n.
Thus, we can restrict our attention to H ∩ {0, 1}n instead of H. We introduce a set
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variable S0 ⊆ Ω := {1, 2, . . . , n} which determines xi to be 0 if i ∈ S0 and 1 otherwise.
Let us define

Ei = {(k,α,α) | α ∈ Bkω, αi ≥ 1, k ∈ {1, 2, . . . , `}},
Fi = {γ | γ ∈ C, γi ≥ 1},

and the coverage functions

c(S0) =
∣∣∣ ⋃
i∈S0

Ei
∣∣∣ and f(S0) =

∣∣∣ ⋃
i∈S0

Fi
∣∣∣.

Then, the function c(·) counts the number of zero elements in the diagonal of the mo-
ment matrices, and the function f(·) counts the number of satisfied complementarity
constraints. Using c(·) and f(·), the problem (4.30) can be equivalently written as fol-
lows:

min
S0⊆Ω

{c(S0) | f(S0) = |C|}. (4.31)

The problem (4.31) has the form of (4.27) since f(Ω) = |C|. If c∗ is the optimal value of
(4.31), then

∑`
k=1 |Bkω| − c∗ is the optimal value of (4.30). If c ≥ 0 is a lower bound of

(4.31), then
∑`
k=1 |Bkω| − c gives an upper bound of (4.30). Note that the upper bound

bound
∑`
k=1 |Bkω| − c is better than or equals to

∑`
k=1 |Bkω|.

Using the greedy algorithm (Algorithm 4.4), we obtain a vh(η)-approximation solution
S̃0 of (4.31). By the definition of f(·), we have

η = max
i∈Ω

f({i}) = max
i∈Ω
|Fi| = max

i∈Ω

∑
γ∈C

γi.

Let d = max{‖α‖0 | α ∈ Akω, k ∈ {1, 2, . . . , `}}. For any S0 ⊆ Ω, we have
∑
i∈S0 c({i}) ≤

d · c(S0). This implies

v = min
S∗0 :opt. sol.

∑
i∈S∗0

c({i})
c(S∗0) ≤ d.

As a consequence, c = c(S̃0)/(dh(η)) gives a lower bound of (4.31). If we use the primal-
dual algorithm [Iwata and Nagano, 2009], then we can get not only a η-approximation
solution S̃0 of (4.31), but also a lower bound c directly.

4.4. Improvement of the BP method

In this section, we introduce the restarting strategy into the APG method and propose a
new stopping criterion for the restarting APG assuming that we know the positive value
R such that ‖Y ∗1 − Y 0

1 ‖ ≤ R. We also provide a heuristic method for estimating R in
the BP method.
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4.4.1. A Restarting APG for Checking Feasibility

In Section 3.3.2, we proposed the FAPG method (Algorithm 3.2) combining various
practical technique. If we apply it to (4.8), then we obtain the convergence guarantee

f(Y k
1 )− f∗ ≤ 2ηuR2Lf

( W (2k ln 2)
k ln 2−W (2k ln 2)

)2
, ∀k ≥ 3. (4.32)

from Theorem 3.3.2.
Using this convergence guarantee, we propose a new criterion for checking whether

f∗ = 0. If f∗ = 0, then we have

f(Y k
1 ) ≤ 2ηuR2Lf

( W (2k ln 2)
k ln 2−W (2k ln 2)

)2
(4.33)

for all k ≥ 3. Conversely, if we observe

f(Y k
1 ) > 2ηuR2Lf

( W (2k ln 2)
k ln 2−W (2k ln 2)

)2
, (4.34)

for some k ≥ 3, then it is an evidence of f∗ > 0. Moreover, if f∗ > 0, then there
exists k ≥ 3 such that (4.34) holds because f(Y k

1 ) ≥ f∗ > 0 while the right hand side
converges to 0. Hence, we can use (4.34) as a criterion to detect the case f∗ > 0 in the
APG method.

When implementing FAPG, we use the stopping criterion g(Xk,Y k
1 ,Y

k
2 ) < δ as Al-

gorithm 4.1 and (4.34). We checks the condition g(X,Y1,Y2) < δ periodically, say in
every 10 iteration, since it is time consuming due to the eigenvalue decomposition for
computing ΠK∗1 . In addition, we have found that ‘bt’, ‘dec’, and ‘st’ of FAPG were not
effective for the problem (4.7) since they usually set L to Lf (= 1). Hence, we eliminate
these procedures. Note that the convergence guarantee (4.32) still holds with ηu = 1 if
we set L← Lf . In order to make the algorithm more practical, we set the initial value
of L to less than 1 and increase the value of L as L← ηrL (ηr > 1) if restart occurs. We
have found setting L to 0.8 provides good performance for many instances. Although
this modification collapses the convergence analysis of (4.32), we have observed that
(4.34) still detects the case f∗ > 0 correctly for many instances.

To summarize, we use Algorithm 4.5 for checking feasibility.

4.4.2. The BP Method with the Restarting APG

Here we consider a method for estimating R in order to use Algorithm 4.5 in the BP
method. Let y`0 ≤ y∗0 ≤ yu0 and ym0 = (y`0 + yu0 )/2. Let (Y `

1 ,Y
`

2 ), (Y m
1 ,Y m

2 ), and
(Y u

1 ,Y
u

2 ) be the optimal solutions of (4.7) (and (4.8)) with G = Gλ(y`0), Gλ(ym0 ), and
Gλ(yu0 ), respectively. Then

Y ` = Y `
1 + Y `

2 , Y m = Y m
1 + Y m

2 , and Y u = Y u
1 + Y u

2

are the optimal solutions of (4.6) with G = Gλ(y`0), Gλ(ym0 ), and Gλ(yu0 ), respectively.
Note that Gλ(y`0) = Y ` holds.
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Algorithm 4.5 A practical restarting APG for checking feasibility.
Input: G ∈ X , Y 0

1 ∈ X , ΠK1 , ΠK2 , ε > 0, δ > 0, kmax > 0, ηr > 1
Output: (Xk,Y k

1 ,Y
k

2 )
Initialize: t1 ← 1, L1 ← 0.8, Y 0

1 ← Y 0
1 , K1 = 2, i = 1, kre = 0

for k = 1, . . . , kmax do
Y k

1 ← ΠK∗1

(
Y
k
1 − 1

Lk
ΠK2(Y k

1 −G)
)

# Step 1
Y k

2 ← ΠK∗2(G− Y k
1 ), Xk ← G− Y k

1 − Y k
2 # KKT conditions

if ‖Xk‖ < ε or(
(k mod 10) == 0 and g(Xk,Y k

1 ,Y
k

2 ) < δ
)

or(
f(Y k

1 ) > 2R2L
(

W (2k ln 2)
k ln 2−W (2k ln 2)

)2
and k ≥ 3

)
then

break
end if
tk+1 ←

1+
√

1+4t2
k

2 # Step 2
Y
k+1
1 ← Y k

1 + (tk)−1
tk+1

(Y k
1 − Y k−1

1 ) # Step 3
if ‖Xk‖ − ‖Xk−1‖ > 0 and k > Ki + kre then
tk+1 ← 1, Y k+1

1 ← Y k
1 , kre ← k

Ki+1 ← 2Ki, i← i+ 1
Lk+1 ← ηrLk

else
Lk+1 ← Lk

end if
end for
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Y u

Gλ(y`0)=Y ` Gλ(ym0 )=Y m Gλ(yu0 )

BK∗1 + K∗2

Figure 4.3.: Illustration of the optimal solutions Y `, Y m, and Y u.

Assume that y`0 ≤ ym0 ≤ y∗0. Then, Gλ(ym0 ) = Y m and f∗ = 0 holds for (4.6) with
G = Gλ(ym0 ). Let

B =
{
Y ∈ X | ‖Y −Gλ(yu0 )‖ ≤ ‖Y m −Gλ(yu0 )‖

}
be a sphere centered at Gλ(yu0 ). Since Y u is the optimal solution of (4.6) with Gλ(yu0 ),
it is closer to Gλ(yu0 ) than the feasible solution Y m, i.e., Y u ∈ B. Since Y m lies on the
line segment from Y ` to Gλ(yu0 ) and at the boundary of B, Y m is the closest point in
B from Y ` (see Figure 4.3). Thus, we have

‖Y m − Y `‖ ≤ ‖Y u − Y `‖.

We also have
‖Y m − Y u‖ ≤ ‖Y m −Gλ(yu0 )‖ = ‖Y m − Y `‖, (4.35)

where the inequality holds from the nonexpasiveness of the projection onto a convex
cone, and the equality holds by the definition of Gλ(·). Hence, for both Y = Y ` and
Y = Y u, we have

‖Y − Y m‖ ≤ ‖Y ` − Y u‖.

From the observation, it can also be expected that

‖Y init
1 − Y m

1 ‖ ≤ ‖Y `
1 − Y u

1 ‖

by setting Y init
1 to Y `

1 or Y u
1 . In practice, we have approximate solutions (Ŷ `

1 , Ŷ
`

2 ) of
(Y `

1 ,Y
`

2 ) and (Ŷ u
1 , Ŷ

u
2 ) of (Y u

1 ,Y
u

2 ) computed by Algorithm 4.5. Therefore, we use
R = γ‖Ŷ `

1 − Ŷ u
1 ‖ for the stopping criteria (4.34), where γ ≥ 1 is a parameter.

As a consequence, our BP method is described as Algorithm 4.6.

4.5. Numerical Experiments

In this section, we demonstrate the efficiency of the methods proposed in Sections 4.3 and 4.4.
Specifically, we show the following results through numerical experiments.
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Algorithm 4.6 The BP method with the practical restarting APG.
Input: y`0 ≤ yu0 , tol > 0, ρ > 0, γ > 1, ε > 0, δ > 0,ΠK1 ,ΠK2 , kmax, ηr
Output: yv`0

Initialize: Ŷ init
1 ← ΠK∗1

(
G(y

`
0+yu0

2 )
)
, R←∞, yv`0 ← −∞.

(X̂, Ŷ u
1 , Ŷ2)← The outputs of Algorithm 4.5

with the inputs
(
Gλ(yu0 ), Ŷ init

1 ,ΠK1 ,ΠK2 , ε, δ, kmax, ηr, R
)
.

yv`0 ← min{yv`0 , y
m
0 + ρmin{0, λmin(Gλ(ym0 )− Ŷ2)}}

y`0 ← max{y`0, yv`0 }
(X̂, Ŷ `

1 , Ŷ2)← The outputs of Algorithm 4.5
with the inputs

(
Gλ(y`0), Ŷ u

1 ,ΠK1 ,ΠK2 , ε, δ, kmax, ηr, R
)
.

while yu0 − y`0 > tol do
ym0 ← (y`0 + yu0 )/2, Ŷ init

1 ← Ŷ u
1 , R← γ‖Ŷ `

1 − Ŷ u
1 ‖2F .

(X̂, Ŷ1, Ŷ2)← The outputs of Algorithm 4.5
with the inputs

(
Gλ(ym0 ), Ŷ init

1 ,ΠK1 ,ΠK2 , ε, δ, kmax, ηr, R
)

yv`0 ← min{yv`0 , y
m
0 + ρmin{0, λmin(Gλ(ym0 )− Ŷ2)}}

if ‖X̂‖ < ε then
y`0 ← min{ym0 , yv`0 }

else
yu0 ← ym0 , y`0 ← max{y`0, yv`0 }

end if
end while
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• COP�c proposed in Section 4.3.2 gave better lower bounds of POPs than COP�k

for some instances. COP�t gave the same lower bounds as COP�c .

• The approximation methods presentsed in Section 4.3.3 could find much better
upper bounds ρ of the trace of the moment matrix than the obvious one (4.29). In
addition, we illustrates how the better upper bound could improve the valid lower
bound yv`0 .

• Our BP method (Algorithm 4.6) solved the conic relaxation COP�c of randomly
generated POPs much faster than the original BP method of Arima et al. [2017]
(Algorithm 4.2). We also compared our BP method to SDPNAL+ [Yang et al.,
2015] which is a state-of-art solver for very large scale SDP problems with nonneg-
ative constraints. Our BP method could compute solutions of COP�c faster than
SDPNAL+, especially for large scale and sparse POPs.

All the computations were performed in MATLAB on a Mac Pro with Intel Xeon E5
CPU (2.7 GHZ) and 64 GB memory.

4.5.1. Effect of Sub-Partial Order

In this section, we demonstrate the efficiency of conic relaxations COP�c and COP�t .Let
us consider the following two instances:

min
z

{ ∑
‖α‖1≤d

zα | z ∈ {−1, 1}n
}
, (4.36)

min
z
{zTEz | z ∈ {−1, 1}n}. (4.37)

These instances are known to be difficult to approximate by Lasserre’s hierarchy of SDP
relaxations (and its dual variant: the sum-of-square (SOS) relaxation). More precisely,
Sakaue et al. [2017] numerically showed that there exists n and d such that the exact
optimal value of the problem (4.36) cannot be obtained by solving Lasserre’s hierarchy
with relaxation order ω < dn+d−1

2 e. Kim and Kojima [2017] showed that if d is an odd
number, then Lasserre’s hierarchy of (4.37) with ω < n/2 gives a trivial lower bound 0
although the optimal value is 1.

We applied the affine transformation xi = (zi + 1)/2 to these problems so that xi ∈
{0, 1}, and constructed their conic relaxations COP�k , COP�c , and COP�t . Note that
since m = 0 and Ibox = φ, COP�k is equivalent to Lasserre’s hierarchy of (4.36) and
(4.37) except for the existence of the nonnegative constraints. The purpose here is to
check whether COP�c and COP�t can improve the lower bound obtained by COP�k . We
tested (4.36) for n ∈ {3, 4, . . . , 10}, d ∈ {2, 3, . . . , n}, and ω ∈ {dd2e, d

d
2e+1, . . . , dn+d−1

2 e−
1}; and (4.37) for n ∈ {3, 4, . . . , 10} and ω ∈ {dd2e, d

d
2e + 1, . . . , dn2 e − 1}. In order to

obtain very accurate optimal values, we translated the relaxation problems of very small
instances into the standard form of SDP and solved them by SDPT3 [Tütüncü et al.,
2003], which is a software implementing an interior point method, rather than by BP.
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Table 4.1.: Valid lower bounds of (4.36) and (4.37).
opt. val. COP�k COP�c COP�t

(4.36) (n = 4, d = 2, ω = 2) -1 -1.3109 -1.1664 -1.1664
(4.36) (n = 6, d = 2, ω = 3) -2 -2.3809 -2.2899 -2.2899
(4.36) (n = 8, d = 2, ω = 3) -3 -3.4803 -3.4396 -3.4396
(4.36) (n = 10, d = 2, ω = 4) -4 -4.4941 -4.4739 -4.4739
(4.36) (n = 10, d = 2, ω = 5) -4 -4.4855 -4.4613 -4.4613
(4.36) (n = 8, d = 4, ω = 4) -5 -5.8977 -5.7185 -5.7185
(4.37) (n = 7, ω = 3) 1 0.0632 0.1446 0.1446
(4.37) (n = 9, ω = 4) 1 0.0197 0.0651 0.0651

There were several instances that COP�c gave better lower bounds than COP�k .
Table 4.1 shows the results of the instances. The lower bound obtained by COP�c

improved the relative error opt.val.−lower bound
opt. val. from 4% to 46% compared to COP�k for

these instances. On the other hand, COP�t gave the same lower bounds as COP�c for
all instances. Hence, COP�c would be advantageous over COP�t as it gives the same
lower bound with less computational burden.

4.5.2. Computation of ρ and Its Effect to the BP method

4.5.2.1. Quadratic Assignment Problem (QAP)

The quadratic assignment problem (QAP) is the one of the problem such that the exact
value of the trace of the moment matrix is known. Let A and B be given r×r matrices.
The QAP is described as

ζ∗QAP = min
{
〈X, AXBT 〉 |X is a permutation matrix

}
= min

{
〈X, AXBT 〉

∣∣∣∣∣ Xe = XTe = e, E ≥X ≥ O
XtiXtj = XitXjt = 0 (i, j, t ∈ {1, 2, . . . , r}, i 6= j)

}
,

(4.38)

where the formulation (4.38) follows [Kim et al., 2016a]. We transform the problem
(4.38) in the matrix variable X ∈ Rr×r to a problem in an n-dimensional column vector
variable x, where n = r2. For every X = (x1,x2, . . . ,xr) ∈ Rr×r, where xp denotes the
p-th column vector of X, we consider the n-dimensional vector x = [x1;x2; . . . ;xr] by
arranging xp (1 ≤ p ≤ r) vertically. Let

Jp = {(p− 1)r + 1, (p− 1)r + 2, . . . , (p− 1) + r} (1 ≤ p ≤ r),
Jr+q = {q, q + r, . . . , q + (r − 1)r} (1 ≤ q ≤ r),

and E =
{
(i, j) | i ∈ Jt, j ∈ Jt, i 6= j, t ∈ {1, 2, . . . , r}

}
. Then, QAP (4.38) is

equivalently formulated as follows:

ζ∗QAP = min
{
xT (B ⊗A)x

∣∣∣∣∣ (eT ⊗ I)x = (I ⊗ e)x = e, x ∈ [0, 1]n
xixj = 0 (i, j) ∈ E

}
.
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Table 4.2.: Upper bounds of 〈I, x�A1〉 for QAP. The approximation methods shown in
Section 4.3.3 could compute much better upper bounds of 1 + r than the
obvious value 1 + r2 without prior knowledge that x�A1 is generated from a
permutation matrix.
instance Best (1 + r) Primal-dual Greedy Obvious (1 + r2)
tai10a 11 51 74 101
chr12a 13 73 108 145

1.345 1.35 1.355

105

1.3

1.31

1.32

1.33

1.34

1.35

105 tai10a

Best ( =1+n)
Primal-dual
Greedy

Obvious ( =1+n2)

9520 9540 9560 9580

9100

9200

9300

9400

9500

chr12a

Best ( =1+n)
Primal-dual
Greedy

Obvious ( =1+n2)

Figure 4.4.: Relation between the value of y0 and the valid lower bound yv`0 . Using a
better upper bound ρ could improve the valid lower bound yv`0 . The dashed
line indicates the optimal value of QAP.

Let ` = 1, V 1 = {1, 2, . . . , n}, and ω = 1. Then, xA1 = (1, x1, x2, . . . , xn)T and x�A1 =
xA1(xA1)T . Since X is a permutation matrix, X and x have exactly r nonzero elements
with value 1. Hence, we have 〈I, x�A1〉 = 1 + r while the obvious upper bound given
by (4.29) is 1 + r2.

We also can compute the upper bound of 〈I, x�A1〉 by the approximation methods
presented in Section 4.3.3 without prior knowledge that X is a permutation matrix.
Table 4.2 compares the computed upper bounds with the best value 1+r and the obvious
value 1 + r2 for instances from QAPLIB [Burkard et al., 1997]. We can see that the
primal-dual method [Iwata and Nagano, 2009] outperformed the greedy method [Wan
et al., 2010] while they both could compute considerably better upper bounds than the
obvious bounds 1 + r2.

In each iteration of the BP method, it fixes a value of y0 and computes the valid lower
bound yv`0 by using ρ. We regard this procedure as a function which maps a value y0
to a valid lower bound yv`0 . The function varies depending on the value of ρ. Figure 4.4
illustrates the graph of the functions y0 7→ yv`0 by using each ρ shown in Table 4.2. We
can see that the valid lower bounds were improved significantly by using smaller value
for ρ. Especially, when ρ = 1 + r, a very tight valid lower bound was obtained for
y0 ≥ y∗0(λ). From the observations, we can conclude that estimating the tight upper
bound ρ of 〈I, x�A1〉 is very important in order to improve the performance of the BP
method. The approximation methods can be used for the purpose.
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Table 4.3.: Upper bounds of 〈I, x�A1〉 for MISP. The approximation methods shown
in Section 4.3.3 could compute much better upper bounds than the obvious
value 1 + |V |.

Primal-Dual Greedy 1 + |V |
1dc.256 129 203 257
1et.256 130 203 257
1tc.256 130 202 257
1zc.256 129 205 257

4.5.2.2. Maximum Independent Set Problem

Let a graph G = (V,E) be given, where V = {1, 2, . . . , n}. The maximum independent
set problem (MISP) is a problem to find the maximum subset V ′ of V such that every
pair in V ′ is not in E (i.e., not adjacent). It can be formulated as follows:

min
x∈RV

{
−
∑
i∈V

xi
∣∣∣ xixj = 0 (i, j) ∈ E, x ∈ {0, 1}V

}
.

Let ` = 1, V 1 = {1, 2, . . . , n}, and ω = 1. Then, xA1 = (1, x1, x2, . . . , xn)T and x�A1 =
xA1(xA1)T . The obvious upper bound of 〈I, x�A1〉 is given by 1 + |V |. We also can
compute the upper bound by the approximation methods presented in Section 4.3.3.
Table 4.3 compares the computed upper bounds with the obvious value 1 + |V | for
instances from [Sloane]. We can see that the primal-dual method [Iwata and Nagano,
2009] outperformed the greedy method [Wan et al., 2010] while they both could compute
considerably better upper bounds than the obvious bounds 1 + |V |.

4.5.3. Performance of the BP methods and SDPNAL+

In this section, we compare the performance of our BP (Algorithm 4.6) with the original
BP (Algorithm 4.2) and SDPNAL+ [Yang et al., 2015] which is a state-of-the-art solver
for very large scale semidefinite optimization problem with nonnegative constraints. All
test problems are of the following form:

min
x∈Rn

{f(x) | x ∈ D ∪ C}.

The objective function f =
∑
α∈F cαx

α were generated as follows. For given V k ⊆
{1, 2, . . . , n} (k = 1, 2, . . . , `) and d ≥ 1, we defined the set of supports of f by

F =
{
α ∈ Zn+

∣∣∣ n∑
i=1

αi ≤ d, αi = 0 if i 6∈ V k ∀k ∈ {1, 2, . . . , `}
}
.

Each cα was taken from the uniform distribution over [−1, 1]. We conducted the exper-
iments on the following 3 types of V k:

Dense: ` = 1 and V 1 = {1, 2, . . . , n}.
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Figure 4.5.: Examples of sparsity pattern of the Hessian of f with n = 13.

Arrow: For given ` ≥ 2, a ≥ 3, b ≥ 1, and c ≥ 1, we set

V k = ({(k − 1)(a− b)}+ {1, 2, . . . a}) ∪ ({(`− 1)(a− b) + a}+ {1, 2, . . . , c}).

Chordal: Let the number n of variables and the radio range r > 0 be given. For n
points v1,v2, . . . ,vn taken from a uniform distribution over [0, 1]2, we constructed
a graph G = (V,E), where V = {v1,v2, . . . ,vn} and E = {(vi,vj) | ‖vi−vj‖ ≤ r}.
We define V k (k = 1, 2, . . . , `) by the maximal cliques in a chordal extension of
G = (V,E). The chordal extension and its maximal cliques were found by using
the technique [Blair and Peyton, 1993] that is based on Choresky decomposition
of the adjacency matrix of G.

Figure 4.5 illustrates the sparsity pattern of the Hessian of each f . D was set to {0, 1}n
and [0, 1]n, and C was set to Rn and {x | xixj = 0, (i, j) ∈ E}. E was generated uniform
randomly so that

E ⊆
⋃̀
k=1

(V k × V k)

and |E| = 2n. For all computation, the relaxation order ω was set to dd2e.
For BPs, the parameters (tol, γ, ε, δ, kmax, ηr) were set to (10−5, 10, 10−13, 10−6, 20000, 1.1).

For SDPNAL+, the parameter ‘tol’ was set to 10−6 and ‘stopoptions’ to 2 so that the
solver continues to run even if it encounters some stagnations. SDPNAL+ was termi-
nated in 20000 iterations even if the stopping criteria were not satisfied.
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4. Conic Relaxation Methods for Polynomial Optimization Problems
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4. Conic Relaxation Methods for Polynomial Optimization Problems

Table 4.4 shows the results of our proposed BP (Algorithm 4.6) and the original
BP (Algorithm 4.2). Compared to the original BP method, our BP could compute
the valid lower bounds within 0.1% difference in less computation time. Our proposed
techniques certainly improved the performance of the BP method. Next, we compared
the performances of SDPNAL+ and our BP method. The results for D = {0, 1}n and
[0, 1]n are shown in Tables 4.5 and 4.6, respectively. When D = [0, 1]n, there were some
instances such that the lower bounds obtained by SDPNAL+ were 10 percent better
than BP. On the other hand, when D = {0, 1}n, the lower bounds obtained by BP were
comparable to and sometimes better than SDPNAL+. In both cases ofD, we can see that
the computation time of BP was much faster than SDPNAL+, especially for large scale
and sparse polynomial optimization problems. We mention that SDPNAL+ is based on
semismooth Newton method which uses second-order derivative of functions, and hence it
is expected produce an accurate solution in a moderate number of iterations. Although
the BP method uses only first-order derivative information, it could compute lower
bounds comparable to SDPNAL+ in less computation time. We therefore conclude that
the BP method is a very efficient method for solving the conic relaxation of polynomial
optimization problems.
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5. Equivalences and Differences in Conic
Relaxations of Combinatorial
Quadratic Optimization Problems

The contents in this chapter is submitted to Journal of Global Optimization and is in
peer review process. By the copyright policy of the journal, it is restricted to deposit
the contents in any web repository for a year from the official publication date. This
chapter is supposed to be released within five years from March 22, 2017. We refer the
readers to the earlier version [Ito et al., 2017a] of this chapter until the period passes.
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6. Conclusion

In this thesis, based on the APG method, we developed new formulations and optimiza-
tion algorithms for binary classification and the DNN relaxation of polynomial optimiza-
tion problems.

In Chapter 3, we presented a unified classification model and provided a general algo-
rithm for the model. We designed a fast accelerated proximal gradient (FAPG) method
based on the original APG method in [Beck and Teboulle, 2009] to the model by devis-
ing efficient projection computations and effective heuristic acceleration strategies. Our
unified algorithm makes it easy to compare various models, because we can use the same
algorithmic framework for the models by only changing the computation of projections.
Thus, it provides a practical and useful tool for practitioners who are looking for the
best model for a given dataset. Numerical experiments demonstrate the efficiency of
our algorithm for large datasets. Indeed, our method often run faster than LIBLINEAR
[Fan et al., 2008] especially for large-scale datasets such that n > 2000.

In Chapter 4, we proposed a doubly nonnegative (DNN) relaxation method for poly-
nomial optimization problems (POPs) subject to polynomial equalities, binary and box
constraints, and complementarity conditions. We first proposed a framework of DNN re-
laxation problems of the POPs using the notion of equivalent relation and partial order.
Then we desined sub-partial orders in order to derive simple DNN relaxation problems.
With this simplification, the DNN relaxation problems fall into a framework of COPs
that can be solved by the BP method [Kim et al., 2016a; Arima et al., 2017] efficiently.
Moreover, we developed a method to compute a good upper bound of trace of matrix
variable, which is an important parameter for stabilizing the BP method, based on the
greedy approximation algorithm for the minimizing submodular cost submodular cover
problem. In the BP method, feasibility of a given point is determined by the APG
method. We improved the APG method by employing the adaptive restarting strategy
and new stopping criteion. Numerical experiments showed that our DNN relaxation
problem provided better lower bounds than the one of [Kim et al., 2016b], and the BP
method with our restarting APG outperformed the original BP method and SDPNAL+.

In Chapter 5, we showed that many conic relaxations proposed for a combinatorial
optimization problem are equivalent in the quality of the optimal values they provide.
However, they differ in the size of the matrix variable, the number of linear equality and
inequality constraints, the existence of an interior feasible solution, and the primal/dual
degeneracy, which are crucial issues for the performance of a numerical method. We
have proved the equivalences and differences in the SDP, DNN, and CPP relaxations
of combinatorial optimization problems by examining several ways of representing the
combinatorial condition. This approach has revealed the connections among the exist-
ing relaxations, and also provided new conic relaxations for the QAP. We have tested
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6. Conclusion

the theoretical results with QAP instances and obtained consistent numerical results
using SDPT3, SDPNAL+ and BP. For the combinatorial optimization problems that
are not dealt with in this thesis, for instance, the quadratic multiple knapsack problem,
maximum stable set problem and graph partitioning problem, the same approach pre-
sented in this paper can be applied to show the equivalence and difference in their conic
relaxations.

We conclude this thesis by remarking a future direction of the research. Recently,
large scale machine learning has motivated researchers to develop stochastic gradient
descent (SGD) methods. SGD approximates the gradient ∇L(·) of a loss function L(·)
by a computationally inexpensive random variable whose expectation coincides with
∇L(·). More precisely, it assumes that the loss function is defined as the sum of loss
of each sample, i.e., L(X̃>w − yb) =

∑m
i=1 `(yi(w>xi − b)), and approximates the full

gradient ∇L(X̃>w−yb) by the gradient ∇`(yi(w>xi− b)) of loss of a randomly chosen
sample. PG and APG methods can be adapted in SGD, e.g., as [Nitanda, 2014; Defazio
et al., 2014] and references there in. In particular, the stochastic dual coordinate ascent
(SDCA) method [Shalev-Shwartz and Zhang, 2013, 2016] is a stochastic APG applied to
the dual formulation, which is closely related to our unified classification model. While
its framework would be useful to develop a stochastic variant of our FAPG presented in
this paper, it cannot be directly applied to the unified classification model because ν-
SVM, MM-MPM, and MM-FDA do not satisfy the assumption on L(·): the loss function
is defined as the sum of loss of each sample. The objective function of the DNN relaxation
problem does not have such structure, either. It is an important future work to relax
the assumption for stochastic methods and extend our APG methods to stochastic ones
in order to solve even larger scale problems.
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A. Appendix

A.1. A Refined Bisection Algorithm

The computational cost of h(θ̂) in Algorithm 3.1 can be reduced by dividing the indices
set M more finely as in [Kiwiel, 2008]. Here we divide M into the following four disjoint
sets for given θl and θu satisfying θl < θu:

U := {i ∈M | ᾱi − θu ≥ u (i.e., αi(θ) = u, ∀θ ∈ [θl, θu])}
L := {i ∈M | ᾱi − θl ≤ l (i.e., αi(θ) = l, ∀θ ∈ [θl, θu])}
C := {i ∈M | ᾱi − θl < u, ᾱi − θu > l (i.e., αi(θ) = ᾱi − θ, ∀θ ∈ [θl, θu])}
I := M\(U ∪ C ∪ L) ([θl, θu] contains a breakpoint of αi(θ)) .

If I = φ, then solving
θ =

(
|U |u+ |L|l +

∑
i∈C

ᾱi − r
)
/|C|

obtains an exact solution. If I 6= φ, then we also divide I into the following five disjoint
sets for given θ̂ ∈ (θl, θu):

IU = {i ∈ I | ᾱi − θ̂ ≥ u, (i.e., αi(θ) = u ∀θ ∈ [θl, θ̂])}

IL = {i ∈ I | ᾱi − θ̂ ≤ l, (i.e., αi(θ) = l ∀θ ∈ [θ̂, θu])}

ICu = {i ∈ I | ᾱi − θl < u, ᾱi − θ̂ > l, (i.e., αi(θ) = ᾱi − θ ∀θ ∈ [θl, θ̂])}

ICl = {i ∈ I | ᾱi − θ̂ < u, ᾱi − θu > l, (i.e., αi(θ) = ᾱi − θ ∀θ ∈ [θ̂, θu])}
II = I\(IU ∪ ICu ∪ ICl ∪ IL)

Then we have

h(θ̂) =
∑
i∈M

αi(θ̂) = |U |u︸ ︷︷ ︸
su

+ |IU |u︸ ︷︷ ︸
∆su

+ |L|l︸︷︷︸
sl

+ |IL|l︸ ︷︷ ︸
∆sl

+
∑
i∈IC

αi︸ ︷︷ ︸
sc

+
∑
i∈ICu

αi︸ ︷︷ ︸
∆scu

+
∑
i∈ICl

αi︸ ︷︷ ︸
∆scl

+
∑
i∈II

αi − |C ∪ ICu ∪ ICl ∪ II |θ̂.

By leveraging on the structure of h, the refined bisection method for (3.13) can be
described as Algorithm 1.1.
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Algorithm 1.1 Refined Bisection Algorithm for (3.13)
INPUT: ᾱ, r, l, u, ε′ > 0 OUTPUT: α
INITIALIZE: I ←M, su ← sl ← sc ← 0, θu ← ᾱmax − r

m , θ
l ← ᾱmin − r

m #
Step 1
while |θu − θl| > ε′ do
θ̂ ← θu+θl

2 # Step 2
û← u+ θ̂, l̂← l + θ̂
IU ← {i ∈ I | ᾱi ≥ û}, IL ← {i ∈ I | ᾱi ≤ l̂} # Step 3
uu ← u+ θu, ll ← l + θl

ICu ← {i ∈ I | ᾱi > ll, ᾱi < û}, ICl ← {i ∈ I | ᾱi < uu, ᾱi > l̂}
II ← I\(IU ∪ ICu ∪ ICl ∪ IL)
∆su ← |IU |u, ∆sl ← |IL|l
∆scu ←

∑
i∈ICu αi, ∆scl ←

∑
i∈ICl αi

val← su + ∆su + sl + ∆sl + sc + ∆scu + ∆scl +
∑
i∈II αi − |C ∪ ICu ∪ ICl ∪ II |θ̂

if val < r then # Step 4
θu ← θ̂, I ← II ∪ ICl ∪ IL
su ← su + ∆su, sc ← sc + ∆scu

else if val > r then
θl ← θ̂, I ← II ∪ ICu ∪ IU
sl ← sl + ∆sl, sc ← sc + ∆scl

else
break

end if
if I == φ then
θ̂ ← (su + sl + sc − r)/|C|
break

end if
end while
αi ← αi(θ̂), ∀i ∈M # Step 5
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Figure A.1.: Computation Time for `1-regularized Logistic Regression (A.1).
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Figure A.2.: Computation Time for `1-regularized `2-loss SVM (A.2).

A.2. Applications of the FAPG to `1-Regularized Models

The `1-regularized logistic regression:

min
w

C
m∑
i=1

log(1 + exp(−yiw>xi)) + ‖w‖1 (A.1)

and the `1-regularized `2-loss SVM:

min
w

C
m∑
i=1

(
max{0, 1− yiw>xi}

)2 + ‖w‖1 (A.2)

have the form of (2.1), where C > 0 is a hyperparameter. Letting g(·) = ‖ · ‖1, we
have

(
proxg,L(w)

)
i

= sign(wi) max{0, |wi| − L} (i = 1, 2, . . . ,m) which is known as the
soft-thresholding operator.

We applied the practical FAPG (Algorithm 3.3) and LIBLINEAR [Fan et al., 2008]
to (A.1) and (A.2) using the artificial datasets which is generated as described in Sec-
tion 3.4. We set the initial point w0 to the origin 0 and the tolerance ε to 10−6. For
all datasets, FAPG found solutions with better objective value than LIBLINEAR does.

Figures A.1 and A.2 show the computation time of FAPG and LIBLINEAR. FAPG
was highly competitive to and numerically more stable than LIBLINEAR with respect
to the changes of the hyperparameter C.
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