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Abstract 
For years, behavior understanding has been a hot topic in the field of computer vision.  

As an important part of human behavior understanding, skeleton estimation has 
attracted lots of interests. Recently, deep learning methods, such as Mask R-CNN, have 
achieved much better performance for computer vision tasks than that of traditional 
approaches, as deep neural network can find representative features efficiently. For 
skeleton estimation, most of the deep learning approaches mainly focus on the joint 
feature. However, this feature is not sufficient, especially when the pose is occluded or 
not intact. In fact, many features other than joint can also contribute to skeleton 
estimation, such as body boundary, body orientation and visibility condition. By 
adopting multi-task strategy, these features can be efficiently combined inside deep 
learning model for skeleton estimation.  

In this thesis, we present a multi-task skeleton estimation approach to deal with 
human behavior understanding combining different human information as new features. 
Our deep learning model is based on Mask R-CNN and extended to a multi-task 
network with three branches including five tasks. We first build our parallel proposed 
multi-task network with each task separately. Then we improve our proposed method 
into two serial multi-task models by connecting different branch in the training. Our 
proposed model is trained on the public dataset MS COCO, which is further augmented 
by ground truths of orientation mask and mutual-occlusion mask. Experiments show 
the learning accuracy of the proposed method. Comparisons further illustrate the 
performance improvement after combining more features by multi-task strategy. 
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Chapter 1.  

Introduction 
 
 

In this thesis, we studied how to build a self and mutual occlusion aware multi-person 
skeleton estimation model using multi-task deep learning network  

 

1.1. Background 

As the needs of big data analysis increases, behavior analysis and scene 
understanding have been highly-concerned topics in computer vision field, which can 
provide valuable information for other purpose such as marketing or security. For 
example, customer behavior information could be useful to improve customer 
experience, reduce daily operational costs, optimize shopping performance, and finally 
increase profit of store. In the related research of these topics, human behavior analysis 
has an irreplaceable position. In order to achieve this goal, information hidden in human 
behavior need to be extracted, especially the pose (the skeleton structure) and 
orientation information. To extract these information, we need to estimate human pose 
and orientation using image processing tasks.  

In order to estimate the human pose, there are many approaches using different kinds 
of information. One of the approaches is to apply human silhouette to estimate the pose 
or action. From silhouette, model-based methods are commonly employed for pose 
estimation [1]. There are also methods which analyze silhouettes from multiple views 
to generate 3D human pose [2].  

Another way for pose estimation is to cooperate the temporal information in image 
sequence. One kind of these methods is based on detection and tracking, which detects 
a rough pose in the initial frame and track it in every continuous frame [3]. Another 
way is to apply spatio-temporal Markov Random Field (MRF) models for pose 
estimation in image sequence [4]. These models are benefited from the position 
constraints of both intra-frame joints and inter-frame joints. Based on the spatio-
temporal MRF, Cherian et al. [5] split the pose into limbs and then recomposed them 
to pose after optimization.  

A more basic but more challenging topic is human pose estimation from a single 
image. It requires to detect human from variant backgrounds and estimate the pose in a 
large number of degrees of freedom. General techniques are using Pictoral Structures 
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[6] or Deformable Part Models (DPM) [7]. As another approach, Pishchulin et al. [8] 
proposed a more flexible Poselet model which is based on Pictorial Structure. In recent 
years, the Deep Neural Networks (DNN) [9] achieve high performance in different 
tasks of computer vision. New network structures like Alexnet [10], VGG [11], 
GoogLeNet [12] and ResNet [13] has achieved higher accuracy in image classification 
task. In pose estimation task, Toshev et al. [14] proposed the DeepPose to cascade DNN 
structure to estimate human pose from coarse to fine. However, there are some 
limitations of their method. Firstly, if the initial estimation is result is far from the true 
position, the system will not be able to correct the estimation in the cascade structure. 
Secondly, this method only gives one prediction per image, which means there is no 
candidate to improve the prediction. To address the first problem, Carreira et al. [15] 
and Haque et al. [16] applied feedback structures to optimize the pose estimation in 2D 
and depth image respectively. Their methods feed the estimated pose to the input end 
and gradually refine the result in iteration. And for the second problem, methods using 
probabilistic heatmaps were proposed as a solution. These heatmaps generated by 
Convolutional Neural Networks (CNN) turn the joint estimation problem in to a pixel-
wise classification problem.  
 

 
Figure 1.1 An example of input and output from multi-stage CNN pose estimation method [17] 

As the CNN structure is widely used in image processing tasks, more and more 
researchers noticed that the dense feature maps extracted by CNN can be very helpful 
to describe human pose information in pose estimation task. Wei et al. [17] build a 
Convolutional Pose Machine network for single person pose estimation. Each joint 
from the person of input image will be predicted at each stage and be printed out as 
confidence maps (heat maps) and intermediate supervision is introduced to solve the 
vanishing gradient problem. Figure 1.1 shows how multi-stage CNN corrects the output 
of joint prediction. Newell et al. [18] presents an hourglass module to capture 
information at every scale in order to combine features from different stage better. 

However, when it comes to multi-person pose estimation, the problem becomes more 
complex. Occlusion caused by overlapping between two people makes the detection 
much more difficult. In order to deal with multi-person pose estimation, the solutions 
are divided into two types: Top-down approaches and Bottom-up approaches. 
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In bottom-up approaches, firstly body part detection would be done, and then by 
person clustering and joint labeling we could make an accurate prediction of the number 
of people and their poses in the input image. Pishchulin et al. [19] propose a DeepCut 
method where Fast R-CNN[20] is used as body part detector. Then the goal of task 
becomes subset partitioning from a graph of all connections among each joint detected 
from the image, which turns the task into an Integer Linear Programming (ILP) problem 
(illustrated in Figure 1.2). They also developed this method into DeeperCut[21] which 
improves DeepCut by using deeper ResNet architectures[13] to enhance body part 
detectors and propose an image-conditioned pairwise terms that assemble the proposals 
into a variable number of consistent body part configurations. Furthermore, in order to 
achieve the goal of real-time pose estimation, Cao et al. present a new method using 
Part Affinity Fields (PAFs) [22], which is also known as OpenPose later. Part Affinity 
Fields is a set of 2D vector fields that represents both locations and orientations of limbs 
over the image domain. They build a deep CNN architecture which is similar to their 
former contribution [17], but in this paper they use two parallel branches in order to 
generate both confidence maps and PAFs at the same stage, which is shown in Figure 
1.3. 

 

 
Figure 1.2 Visualization of Deep Cut [19] 

 

 
Figure 1.3 Pipeline of OpenPose [11] 
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Although bottom-up approaches show general advantage in runtime analysis, it’s still 
a tough task when people in the image are in small scale where detecting body parts 
before detecting person itself becomes even difficult. At this case, top-down approaches 
could have better results by first do the person detection and then proceed single-person 
pose estimation in each bounding box. Papandreou et al. [23] propose a method using 
a two-stage network which first uses a person box detection system [24] as bounding 
box detector, then predict the pose of each single person in each bounding box. He et 
al. [25] also develop a multi-task method based on their former contribution [26] which 
can be implemented for pose estimation task. 

Furthermore, in order to handle the self-occlusion in pose estimation, Azizpour et al. 
[27] and Ghiasi et al. [28] learned templates for occluded versions of each body part. 
Rafi et al. [29] incorporated the context information of occluding objects to predict the 
locations of occluded joints. Haque et al. [30] implicitly learned the occlusion through 
a deep neural network and gave the output of visibility mask of joints. 

On the other hand, the orientation estimation is studied in many different scenes. 
Gandhi et al. [31] used Histogram of Oriented Gradients (HOG) [32] and Support 
Vector Machine (SVM) to recognize the body orientations of pedestrians. Goffredo et 
al. [33] proposed to recognize the gaits with different orientation by using in multi-
camera surveillance.  

 
 

1.2. Objective 

In our previous work [34], we build a system for single person customer pose 
estimation combined with orientation prediction. However, in habitual shopping scenes 
multi-person case is exceedingly common, where the occlusion between different 
customers become more intractable for the pose estimation task. In order to deal with 
this problem and build a more general model for multi-person pose estimation, we 
propose a multi-task skeleton estimation system using Deep Neural Network, which 
combines body orientation prediction task with a top-down skeleton estimation network 
to keep both relative estimation high accuracy. In fact, there is much more useful 
information that can contribute to pose estimation task such as body boundary, body 
part segmentation, and visibility condition. By adopting multi-task strategy, these 
features can be efficiently combined inside deep learning model for pose estimation. 
Therefore, we add body segmentation and mutual-occlusion as new information into 
our model to enhance the results of both pose estimation and orientation prediction. For 
the purpose to train orientation and occlusion recognition tasks, we build a subset with 
images from COCO keypoints challenge dataset by adding orientation and occlusion 
mask as new annotations.  
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1.3. Thesis Structure 

The Structure of this paper is listed as follows: 
In Chapter 2, basic concepts of the Deep Neural Network (DNN) are introduced. 
In Chapter 3, we will introduce several previous works about multi-task pose 

(skeleton) estimation. 
In Chapter 4, we will introduce our proposed multi-task skeleton estimation model 

and show the experiment results. 
In Chapter 5, we give the conclusions of this work and discuss the future work. 
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Chapter 2.  

Basic Concepts of  
Deep Neural Network 

 
 
In this chapter, we will explain some basic concepts about Deep Neural Network 

(DNN). DNN is a kind of multi-layer feed-forward network specialize for extracting 
features from input data. Section 2.1 first introduces some biological concepts of DNN. 
In Section 2.2, we introduce some basic layers used of DNN. Then a detailed 
introduction of non-linear activation functions will be given in Section 2.3. In Section 
2.4, we introduce several most used and important architectures, which are LeNet[42], 
AlexNet [10], VGGNet [11], GoogleNet [12], and ResNet [13], in chronological order. 
Section 2.5 gives a general introduction about how to train the neural networks. 

 

2.1. Introduction of Deep Neural Network 

Inspired by biological nervous systems, DNN aim at reaching their versatility 
through learning. DNN is commonly employed in artificial intelligence, machine 
learning, and pattern recognition. There has been substantial research into how the 
human brain’s structure achieves such a high level of versatility. This research has 
provided some important insights, however, the conclusions are far from completely 
explaining the complex functioning of the brain. Even though we have not been able to 
replicate the brain so far, the field of artificial intelligence offers very effective solutions 
to many problems by simulating the observations of biological research of various 
nervous systems. 

It is estimated, that the average human brain contains 86 billion neurons [35]. 
Together they form a huge network. Even if we knew the detailed inner structure of the 
human brain, we would still not be able to simulate it with current technology because 
of its robustness. Our efforts are therefore rather different. We want to build a neural 
network with a good ratio between its size and its effectiveness. 

Generally, DNN consists of a set of artificial neurons. Formally, an artificial neural 
has n inputs represented as a vector 𝑥⃗ ∈ ℝ%. Inputs in an artificial neuron correspond 
to the dendrites in a biological neuron, while a single output of an artificial neuron 
corresponds to the axon in a biological neuron, which is depicted in Figure 2.1. Each 
input 𝑖, 1 ≤ 𝑖 ≤ 𝑛, has an assigned weight 𝑤), 𝑤*, ..., 𝑤%, and bias 𝑏), 𝑏*, ..., 𝑏%. 
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Weighted input values are combined and followed by a non-linear activation (see in 
Section 2.3), as shown in Figure 2.2. 

 
Figure 2.1 Model of biological neuron [36] 

 

 
Figure 2.2 Model of an artificial neuron 

 

 
Figure 2.3 Brain structure explaining how human’s visual system works [37] 

 
DNN represents images using a multi-layered hierarchy of features and are inspired 

by the structure and functionality of the visual pathway of the human brain. Figure 2.3 
[37] shows human’s visual system. Visual information is collected by our eyes, and 
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project to the retina. Then the information will be transmitted in a stream way (layers 
by layers. Actually, different layers in our brain servers as different functionality, in 
Brain Sciences, we divide it into V1, V2, V3, V4 regions. DNN also mimics the 
information flow in layers by layers way. It works by feeding the data into the input 
neurons. The data flow in the direction of oriented edges and ends when the output 
neurons are hit. The result is interpreted from the values obtained in the output neurons. 
For the input neurons, they together represent an instance of the problem to be solved 
by DNN. All output neurons have exactly one output, and all outputs together represent 
a possible solution to the problem. Between input neurons and output neurons, there 
exist a layers by layers structure. Figure 2.4 shows a Multilayer perceptron [38] network 
consists of three layers. A set of hidden neurons consists of the neurons which are not 
input, nor output neurons. Their number and organization into layers may vary even for 
the same problem but is a key feature of the network vastly influencing its performance. 
The Multilayer perceptron (MLP) is a feed-forward neural network consisting of 
multiple mutually interconnected layers of neurons. The layers are stacked one onto 
each other. Every neuron in one layer is connected to every neuron in the following 
layer. The motivation behind designing multilayer networks is to be able to solve more 
complex tasks. The layers in MLP network is built of fully-connected layers defined in 
Section 2.2. 

 

 
Figure 2.4 A multilayer perceptron network with three layers [10] 

 
DNN uses the stacked layers structure to solve various problems in real world. For 

example, image classification, speech recognition, language transformation and so on. 
Based on my understanding, DNN can be thought as a huge black box for high-
dimensional approximator. The implementation of DNNs can be easily described by 
linear transformation followed by non-linear activation. By stacking this procedure 
again and again, DNNs are competent for a variety of tasks. 
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2.2. Layers 

Even though there are many different architectures for DNN in the literature, the 
majority of them can be built by stacking four main type of layers in different 
combinations. Namely, the fully connected layer, the convolutional layer, pooling layer 
and batch normalization layer. In this section, we will explain those layers. 

 
2.2.1 Fully Connected Layer 
 

Mathematically, we can treat linear layers as functions which applies linear 
transformation on vector inputs of dimension I and output vectors of dimension 𝑂. 
Usually the layer has a bias parameter, and it can be expressed like: 

 
𝑦 = 𝑊 ∙ 𝑥 + 𝑏                          (2.1) 

 
Linear layer is motivated by the basic computational unit of the brain: neuron. 

Approximately 86 billion neurons can be found in the human nervous system and they 
are connected with approximately 10)4- 10)5 synapses [35]. Each neuron receives 
input signals from its dendrites and produces output signal along its axon. The linear 
layer is a simplification of a group of neuron having their dendrites connected to the 
same inputs. Usually an activation function, such as sigmoid, is used to mimic the 1 − 
0 impulse carried away from the cell body and also to add non-linearity (shown in 
Figure 2.5). 

 

 
Figure 2.5 An illustration of biological neuron (left), and its mathematical model(right) [11] 

 
2.2.2 Convolutional Layer 
 

The convolutional layer is the most important layer in a Dense CNN(DCNN). The 
purpose of convolutional layers is to extract dense features from the input images. It 
consists of multiple feature maps, each feature map can recognize certain specific 
feature. It contains a set of convolutional filters, whose parameters need to learn in the 
training. The filtering is essentially done through weight adjustments. These filters are 
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generally with a small size, but have the same channels number as the input. It means 
each pixel of input data share the same filter parameters. 

There are two reasons for sharing parameters. One is that, when the input has large 
channel number (e.g. the RGB image has 3), it is too time-consuming to calculate the 
connections to all of the neurons. The fully connected architecture cannot analyze the 
local spatial structure of the data. The second reason relies on an assumption that, if a 
local feature is important to calculate at certain positions, it should be also important at 
any other positions. Therefore, the convolutional layer enforces the local spatially 
correlation by limiting connection size and sharing the parameters. This small region 
can be also thought as the receptive field in this layer. This design makes sure that the 
learnable convolutional filters can generate the strong activation in any position for 
specific input pattern. 

Regular Neural Networks which are only made of linear and activation layers do not 
scale well when dealing with full images. However, convolution layers take advantage 
of the fact that their input exhibits many spatial relationships. In fact, neighboring pixels 
should not be affected by their location within the image. Thus, a convolutional layer 
learns a set of 𝑁8 filters 𝐹 = 𝑓), 𝑓*, ..., 𝑓;<  , which are convolved spatially with 
input image x, to produce a set of 𝑁8 2D features maps 𝑧: 

 
𝑧8 = 𝑓8 ⨂𝑥                           (2.2) 

 
where ⊗ is the convolution operator. When the filter correlates well with a region of 
the input image, the response in the corresponding feature map location is strong. 
Unlike conventional linear layer, weights are shared over the entire image reducing the 
number of parameters per response and equivariance is learned (𝑖. 𝑒. an object shifted 
in the input image will simply shift the corresponding responses in a similar way). 
Figure 2.6 shows 2×2 convolution. 

Also, a fully connected layer can be seen as a convolutional layer with a filter of sizes 
1×1×𝑚, where 𝑚 is the input size. In addition, in CNNs, each filter 𝑓C is replicated 
across the entire visual field. These replicated units share the same parameterization 
(weight vector and bias) and form a feature map. 

There are 3 hyper-parameters which determine the size of the output data. They are 
the number of filters, stride of sliding window and the size of zero-padding. The channel 
number of output data is determined by the filter number of this layer. These filters 
learn to give strong response for some certain patterns in the input. For example, a raw 
image is given into a convolutional layer. Then different filters may generate in different 
types of oriented edges or circles. 

The stride determines the sliding length of the filter. Because the filter size is 
generally much smaller than the input data, the filters need to scan the input area in 
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order to calculate the convolution across the input data. When the stride is 1 then the 
filters move 1 pixel per step. 

The zero-padding size determines the how many zeros will be padded on the border 
of the input in convolutions. Padding provides a method to adjust the size of output data. 
Specifically, the zero-padding can be applied to generate the exact same size of input 
data in the output. 

Therefore, the size of the output data can be determined by the above 3 hyper- 
parameters. Assume that the input data has size L, the filter size convolutional layer is 
F, the stride of filters is S, and the number of zero-padding is Z. Then the output size 
can be calculated as (𝐿 − 𝐹 + 2𝑍) ⁄ 𝑆 + 1. The output size may be not integer when the 
stride and the zero-padding number are not set correctly. Thus the filters cannot tightly 
fit the input data. Particularly, letting the number zero-padding 𝑍 = (𝐹 − 1) ⁄ 2 ensures 
that the output data have the same spatially size with the input data when 𝑆 = 1. 
Although it is generally not a requirement to keep the size of the previous layer, for 
example, one can use just a portion of padding. 
 

 
Figure 2.6 Convolution with 3×3 filter 
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2.2.3 Pooling Layer 
 

Pooling layer is another important layer of CNN. It was also named subsampling 
layer. In CNNs, a pooling layer is typically present to provide invariance to slightly 
different input images and to reduce the dimension of the feature maps:  

 
𝑃H = 𝑃C∈H(𝑧C)                           (2.3) 

 
where P is a pooling function over the region of pixels R. The pooling layer conducts a 
non-linear down sampling to the input data. There are serval non-linear functions to 
conduct the pooling. In details, the input data is scanned by a window, whose stride 
must be equal to the window size. Then for each window position, the maximum will 
be output in the max pooling. The essential thought of pooling layer is that the local 
feature in a specific location is less important than the spatial relationship with other 
features. Usually, there are multiple pooling layers in the DCNN to gradually make the 
size of the data smaller and smaller. It means the calculation time is also reduced. 
Moreover, this reduction can also control overfitting, because the pooling operation can 
be considered as another kind of geometry invariance. Generally, pooling layers are 
periodically inserted between two successive convolutional layers in a CNN 
architecture. 

There are several non-linear functions to implement pooling among which max 
pooling is the most common. Max pooling is preferred as it avoids cancellation of 
negative elements and prevents blurring of the activations and gradients throughout the 
network since the gradient is placed in a single location during backpropagation. Figure 
2.7 shows an example of max pooling. In addition to max pooling, the pooling units 
can use other functions, such as average pooling. 

The pooling layer operates independently on every channel of the input and down 
samples it spatially. The most common pooling size is 2×2. It means a 2×2 window 
scans with a stride of 2 along both width and height at every channel and down samples 
the input data. This pooling generates an output with 1/4 size of the input. The number 
of channels does not change through the pooling layer. Therefore, the pooling layer 
serves to progressively reduce the spatial size of the representation, to reduce the 
number of parameters and amount of computation in the network, and hence to control 
overfitting. It is common to periodically insert a pooling layer between successive 
convolutional layers in a CNN architecture. The spatial pooling layer is defined by its 
aggregation function, the high and width dimensions of the area where it is applied, and 
the properties of the convolution (such as padding or stride). 

Because of the rapid decrease of the data size, the convolution layers after the pooling 
layer actually involve a lagers area in the raw image scale. This allows the succeeding 
convolution layers to learn more complex pattern from a large spatial scale, even their 
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filters sizes do not increase. On the other hand, the pooling layer may result in the loss 
the detail information in the raw image. For example, if the target of network is to detect 
some small objects in the image, the pooling layers should avoid being used too much 
in the network. 
 

 
Figure 2.7 Max pooling with 2×2 filter 

 
2.2.4 Batch Normalization 
 

The batch normalization layer shifts the input data to a certain mean and variance. It 
is proposed by Ioffe and Szegedy [39]. The essential thought behind the batch 
normalization is to reduce the internal covariate shift. 

The normalization operation is often used as the pre-processing in the traditional 
machine learning, such as SIFT and HOG. As in the DCNN, the values are 
automatically adjusted in the network. However, sometimes it makes the data too big 
or too small again. This condition is called an internal covariate shift in [39]. By 
normalizing the data in each training mini-batch, this problem can be significantly 
avoided. 

The Batch Normalization (BN) layer quickly became very popular mostly because it 
helps to converge faster. It adds a normalization step (shifting inputs to zero-mean and 
unit variance) to make the inputs of each trainable layers comparable across features. 
By introducing the batch normalization layer, a higher learning rate can be applied to 
accelerate the training process. Generally, the learning rate for DCNN is set to a small 
value, so that only a small portion of gradients corrects the weights. The reason is that 
one does not want the outlier data to affect the whole network. By batch normalization, 
these outlier data are reduced. Therefore a higher learning rate can be adopted to 
improve the learning speeding. 
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2.2.5 Dropout Layer 
 

The dropout layer randomly sets a proportion of the input data to zero. The aim of 
dropout layer is to reduce overfitting. The DCNN is prone to overfitting when layers 
are too many or the number of parameters is too large. At each training batch, the 
dropout layers "drop out" the net with probability 1 - p, where the p is the dropout rate. 
The connections between the input data and output data are also deleted. Only the 
remained network is updated in one training mini-batch. Then the weights of deleted 
nodes are reset to their values. In every training mini-batch, the dropout nodes are 
randomly selected. In the prediction stage, the dropout layer does not dropout anything 
or can be directly removed. 

In the training stages, the drop rate is generally set as 0.5. However, for dropout 
layers which near to the first input layer, the drop rate may adjust to a lower value, in 
order to avoid losing too much information at the beginning. 

The dropout layers avoid overfitting in the training. They also significantly reduce 
the training time. Although the dropout layers seem to reduce node connections, they 
actually force the network to obtain more robust parameters that produce better results 
in new data. 
 
2.2.6 Loss Layer 
 

Loss layer determines the approach to measure the difference between the predictions 
and ground truths. It is commonly the output layer in the training step and could be 
removed in the trained network. There are many loss functions can be used for different 
tasks. For example, softmax loss is used for predicting a single class from K mutually 
exclusive classes. Sigmoid cross-entropy loss is used for predicting K independent 
probabilistic values from 0 to 1. Euclidean loss is used for regressing to real value labels 
(−∞,+∞). 

2.3. Activation Functions 

The capacity of the neural networks to approximate any functions, especially 
nonconvex, is directly the result of the non-linear activation functions. Every kind of 
activation function takes a vector and performs a certain fixed point-wise operation on 
it. Mainly, all the activation functions can be divided into two groups, which are free-
parametric activation function and parametric activation functions. In this section, we 
will introduce various kinds of non-linear activation function, and how they work. 
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2.3.1 Parameterized Activation Functions 
 

In this section, we will introduce some basic activation functions with no parameters 
needed to learn, which are Step function, Sigmoid function, Tanh function, ReLu 
function, and LeakyReLu function [40]. 
 
Step Function 

𝑦 = 	 L	1				𝑥 > 0
	0				𝑥 ≤ 0                           (2.4) 

 
Sigmoid Function 

𝑦 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) = 	 )
)STUV

                     (2.5) 

 
 
 
 
 

 
Figure 2.8 Step function 
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Figure 2.9 Sigmoid function 

 
 

Tanh Function 
𝑦 = 𝑡𝑎𝑛ℎ(𝑥) = 	 *

)STUZV
− 1 = 2𝑠𝑖𝑔𝑚𝑜𝑖𝑑(2𝑥) − 1           (2.6) 

ReLu Function 

𝑦 = 	 L	𝑥				𝑥 > 0
	0				𝑥 ≤ 0                           (2.7) 

 

 
Figure 2.10 Tanh function 



１７ 
 

 

 
Figure 2.11 ReLu function 

 
LeakyReLu Function 

𝑦 = 	 L	𝑥					𝑥 > 0
𝜆𝑥			𝑥 ≤ 0                           (2.8) 

where 	𝜆 is a small value which is usually set to 0.2. 
 
 

 
Figure 2.12 LeakyReLu function 
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2.3.2 Non-parametric Activation Function 
 
In this section, we will introduce another type of non-linear activation function: para- 

metric activation function. PReLu [41] (Parametric Rectified Linear Unit). 
 

PReLu Function 

𝑦C = 	 ]	
𝑥C							𝑥C > 0
	𝜆C𝑥C			𝑥C ≤ 0                           (2.9) 

As its name suggests, 	𝜆C  are parameter need to be learn. If we set 	𝜆C  to 0, then 
PReLu becomes ReLu. If we set 	𝜆C to a small fixed value, it becomes LeakyReLu. 
 

2.4. Network Architectures 

In this section, we will introduce several important modern DNNs architectures. 
LeNet [42] the first successful application of Convolutional neuron networks (CNNs) 
to digit recognition, developed by Yann LeCun in 1990. It consists of a sequence of 
Convolutional, Max Pooling layers followed by a Fully Connected layer. AlexNet [10] 
popularized CNNs in computer vision, did really well on the ImageNet ILSVRC [43] 
challenge in 2012, showing significant gains in performance. The network has similar 
architecture to LeNet but is deeper and bigger and features convolutional layers stacked 
on top of each other. DeConvNet [44] demonstrates how to visualize convolutional 
layer’s learning results. VGG16 [11] demonstrated the importance of depth as a critical 
component to good performance, it was a runner-up in ILSVRC 2014. The architecture 
consists of a stacked convolutional and max pooling layers, with increasing depth and 
it uses a large number of parameters due to the final fully connected layers. GoogLeNet 
[12] proposed from Google won the ILSVRC 2014 challenge. The architecture consists 
of inception modules that dramatically reduce the number of parameters, it uses multi-
scale 3×3, 5×5 convolutional filters including 1×1 convolutions for dimensionality 
reduction. ResNet [13] residual network was the winner of ILSVRC 2015, it introduces 
skip connections for easier training that enable very deep architectures and makes use 
of batch normalization. Each of those famous modern structure will be introduced in 
the following subsections.  

 
2.4.1 LeNet 
 

The LeNet architecture is an excellent “first architecture” for CNN (especially when 
trained on the MNIST dataset, an image dataset for handwritten digit recognition). 

LeNet is small and easy to understand, but the parameters it consists are enough to 
provide interesting results. Furthermore, the combination of LeNet + MNIST is able to 
run on the CPU, making it easy for beginners to take their first step in Deep Learning 
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and Convolutional Neural Networks. Figure 2.13 shows the architecture of LeNet. The 
LeNet architecture consists of the following layers which are convolutional layer, 
pooling layer, and fully-connected layer. 
 

 
  Figure 2.13 Architecture of LeNet 
 
2.4.2 AlexNet 
 

The one that started it all (Though some may say that Yann LeCun’s paper in 1998 
was the real pioneering publication). This paper, titled “ImageNet Classification with 
Deep Convolutional Networks” [10], has been cited a total of 17,955 times and is 
widely regarded as one of the most influential publications in the field. Alex Krizhevsky, 
Ilya Sutskever, and Geoffrey Hinton created a “large, deep convolutional neural 
network” that was used to win the 2012 ILSVRC (ImageNet Large-Scale Visual 
Recognition Challenge). For those that aren’t familiar, this competition can be thought 
of as the annual Olympics of computer vision, where teams from across the world 
compete to see who has the best computer vision model for tasks such as classification, 
localization, detection, and more. 2012 marked the first year where a CNN was used to 
achieve a top 5 test error rate of 15.4% (Top 5 error is the rate at which, given an image, 
the model does not output the correct label with its top 5 predictions). The next best 
entry achieved an error of 26.2%, which was an astounding improvement that pretty 
much shocked the computer vision community. Safe to say, CNNs became household 
names in the competition from then on out. 

In the paper, the group discussed the architecture of the network (which was called 
AlexNet). They used a relatively simple layout, compared to modern architectures. The 
network was made up of 5 conv layers, max-pooling layers, dropout layers, and 3 fully 
connected layers. The network they designed was used for classification with 1000 
possible categories. Figure 2.14 shows the architecture of AlexNet. The Main points of 
AlexNet includes: (1) Trained the network on ImageNet data, which contained over 15 
million annotated images from a total of over 22,000 categories. (2) Used data 
augmentation techniques that consisted of image translations, horizontal reflections, 
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and patch extractions. (3) Implemented dropout layers in order to combat the problem 
of overfitting to the training data. (4) Trained the model using batch stochastic gradient 
descent, with specific values for momentum and weight decay. 

The neural network developed by Krizhevsky, Sutskever, and Hinton in 2012 was 
the coming out party for CNNs in the computer vision community. This was the first 
time a model performed so well on a historically difficult ImageNet dataset. Utilizing 
techniques that are still used today, such as data augmentation and dropout, this paper 
really illustrated the benefits of CNNs and backed them up with record breaking 
performance in the competition. 

 

 
  Figure 2.14 Architecture of AlexNet [10] 
 

 
Figure 2.15 Visualizations of layer 1 and layer 2. Each layer illustrated 2 pictures, one which 
shows the filters themselves and that shows what part of the image are most strongly activated 
by the given filter. For example, in the space labeled layer 2, we have representation of the 16 
different filters (on the left) [45] 
 
2.4.3 DeConvNet 
 

  The basic idea behind how this works is that at every layer of the trained CNN, you 
attach a “DeConvNet” which has a path back to the image pixels. An input image is fed 
into the CNN and activations are computed at each level. This is the forward pass. Now, 
let’s say we want to examine the activations of a certain feature in the 4th conv layer. 
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We would store the activations of this one feature map, but set all of the other 
activations in the layer to 0, and then pass this feature map as the input into the 
deconvnet. This deconvnet has the same filters as the original CNN. This input then 
goes through a series of unpooling (reverse maxpooling), rectify, and filter operations 
for each preceding layer until the input space is reached. The reasoning behind this 
whole process is that we want to examine what type of structures excite a given feature 
map. Figure 2.15 shows the visualizations of the first and second layers.  
  The first layer of the ConvNet is always a low level feature detector that will detect 
simple edges or colors in this particular case. Figure 2.16 gives the more visualization 
on 3,4,5 layers. These layers show a lot more of the higher level features such as dogs’ 
faces or flowers. This means the proceeding layer try to learn more high-level features. 
 
 

 
Figure 2.16 More visualization on layer 3,4,5 [45] 
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2.4.4 VGGNet 
 
  Figure 2.17 shows 6 different architectures of VGGNet. The keypoints in VGGNet 
includes: (1) The use of only 3x3 sized filters is quite different from AlexNet’s 11x11 
filters in the first layer and ZF Net’s 7x7 filters. The authors’ reasoning is that the 
combination of two 3x3 conv layers has an effective receptive field of 5x5. This in turn 
simulates a larger filter while keeping the benefits of smaller filter sizes. One of the 
benefits is a decrease in the number of parameters. Also, with two conv layers, we’re 
able to use two ReLU layers instead of one. (2) 3 conv layers back to back have an 
effective receptive field of 7x7. (3) As the spatial size of the input volumes at each layer 
decrease (result of the conv and pool layers), the depth of the volumes increases due to 
the increased number of filters as you go down the network. (4) Interesting to notice 
that the number of filters doubles after each max-pooling layer. This reinforces the idea 
of shrinking spatial dimensions, but growing depth. 
 

 
Figure 2.17 The 6 different architectures of VGGNet in original paper [11] 
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  VGGNet is one of the most influential papers in my mind because it reinforced the 
notion that convolutional neural networks have to have a deep network of layers in 
order for this hierarchical representation of visual data to work. Keep it deep. Keep it 
simple. 
 
2.4.5 GoogLeNet 
 

The Inception module has been proposed by GoogLeNet [12]. Figure 2.18 shows the 
architecture of a full Inception. GoogLeNet is a 22-layer CNN and was the winner of 
ILSVRC 2014 with a top 5 error rate of 6.7%. To my knowledge, this was one of the 
first CNN architectures that really strayed from the general approach of simply stacking 
convolution and pooling layers on top of each other in a sequential structure. The 
authors of the paper emphasized that this new model places notable consideration on 
memory and power usage. 

In Figure 2.18, the bottom green box is our input and the top one is the output of the 
model (Turning this picture right 90 degrees would let you visualize the model in 
relation to the last picture which shows the full network). Basically, at each layer of a 
traditional ConvNet, you have to make a choice of whether to have a pooling operation 
or a conv operation (there is also the choice of filter size). What an Inception module 
allows you to do is perform all of these operations in parallel. In an Inception module, 
we have a medium sized filter convolution, a large-sized filter convolution, and a 
pooling operation. The network in network convolution is able to extract information 
about the very fine grain details in the volume, while the 5x5 filter is able to cover a 
large receptive field of the input, and thus able to extract its information as well. It also 
has a pooling operation that helps to reduce spatial sizes and combat overfitting. On top 
of all of that, it has a ReLu layer after each conv layer, which helps improve the 
nonlinearity of the network. Basically, the network is able to perform the functions of 
these different operations while still remaining computationally considerate. 
 

2.4.6 ResNet 

 
Imagine a deep CNN architecture. Take that, double the number of layers, add a 

couple more, and it still probably isn’t as deep as the ResNet architecture that Microsoft 
Research Asia came up with in late 2015. ResNet is a new 152-layer (the deepest 
version) network architecture that set new records in classification, detection, and 
localization through one incredible architecture. Aside from the new record in terms of 
the number of layers, ResNet won ILSVRC 2015 with an incredible error rate of 3.6% 
(Depending on their skill and expertise, humans generally hover around a 5-10% error 
rate). 
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Figure 2.18 Full inception module architecture [12] 

 
Except its depth, ResNet introduce a new module called Residual Block [13] see in 

Figure 2.19. The idea behind a Residual Block is that you have your input x go through 
conv-relu-conv series. This will give you some 𝐹(𝑥). That result is then added to the 
original input x. Let’s call that 𝐻(𝑥) = 𝐹(𝑥) + 𝑥. In traditional CNNs, your 𝐻(𝑥) 
would just be equal to 𝐹(𝑥). So, instead of just computing that transformation (straight 
from 𝑥 to	𝐹(𝑥), we’re computing the term that you have to add 𝐹(𝑥) to your input, 
𝑥. Basically, the mini module shown below is computing a “delta” or a slight change to 
the original input x to get a slightly altered representation (When we think of traditional 
CNNs, we go from 𝑥. to 𝐹(𝑥). which is a completely new representation that doesn’t 
keep any information about the original 𝑥). The authors believe that it is easier to 
optimize the residual mapping than to optimize the original, unreferenced mapping [13]. 

 

 
Figure 2.19 Illustration of a Residual Block [13] 
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2.5. Training 

Training is an important concept of neural networks. The purpose of training process 
is to find the most optimal parameters of the network for solving the certain task. Before 
the training process starts, network parameters need to be initialized. Initial values are 
often chosen randomly, however using some heuristics may lead to a faster parameter 
adjustment towards the optimal values. By feeding the training data through the 
network, neural networks can learn feature information hidden in the training set. This 
is an iterative process, where the outputs produced on each input from the training set 
are analyzed and the network is repeatedly being adjusted to produce better results. The 
network is considered to be well trained after reaching the target performance on the 
training data. 

The training of neural networks is based on gradient back propagation [46]. Namely, 
by computing the difference between the output of a neural network and the expected 
output, the error between these two outputs will be propagated back through the whole 
network, which can guide the parameters updating. Section 2.5.1 will give more details 
on back propagation algorithm. The loss functions that define the differences between 
network outputs and ground truths will be introduced in Section 2.5.2. Also, there are 
various strategies used for updating network parameters, which will be introduced s In 
Section 2.5.3. 

 
2.5.1 Back Propagation 
 

Back propagation is a method used in artificial neural networks to calculate the error 
contribution of each neuron after a batch of data (in image recognition, multiple images) 
is processed. It is a special case of an older and more general technique called automatic 
differentiation. In the context of learning, back propagation is commonly used by the 
gradient descent optimization algorithm to adjust the weight of neurons by calculating 
the gradient of the loss function. This technique is also sometimes called backward 
propagation of error, because the error is calculated at the output and distributed back 
through the network layers. 

The back propagation algorithm has been repeatedly rediscovered and is equivalent 
to automatic differentiation in reverse accumulation mode. Back propagation requires 
an expected output for each input value. It is therefore considered to be a supervised 
training strategy. Back propagation is also a generalization of the delta rule to multi- 
layered feedforward networks, which becomes possible by using the chain rule to 
iteratively compute gradients for each layer. It is closely related to the Gauss-Newton 
algorithm, and also a part of continuing research in neural backpropagation. 

To understand the mathematical derivation of the backpropagation algorithm, it helps 
to first develop some intuition about the relationship between the actual output of a 
neuron and the correct output for a particular training example. Consider a simple 
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neural network with two input units, one output unit and no hidden units. Each neuron 
uses a linear output that is the weighted sum of its input. 

Initially, before training, the weights will be set randomly. Then the neuron learns 
from training examples, which in this case consist of a sets of tuples (𝑥), 𝑥*, 𝐺) where 
𝑥) and 𝑥* are the inputs to the network and 𝐺 is the correct output (the output the 
network should produce given those inputs, when it has been trained). The initial 
network which is given 𝑥) and 𝑥* will compute an output 𝑦 that likely differs from 
𝐺 (given random weights). A common method for measuring the discrepancy between 
the expected output 𝑡 and the actual output 𝑦 is the squared error measure: 

 
𝐸 = (𝐺	 − 	𝑦)*                         (2.10) 

 
where 𝐸 is the discrepancy or error. 
  As an example, consider the network on a single training case: (1,1,0), thus the input 

) and 𝑥* are 1 and 1 respectively and the correct output 𝐺 is 0. Now if the actual 
output y is plotted on the horizontal axis against the error 𝐸 on the vertical axis, the 
result is a parabola. The minimum of the parabola corresponds to the output y which 
minimizes the error 𝐸 . For a single training case, the minimum also touches the 
horizontal axis, which means the error will be zero and the network can produce an 
output 𝑦  that exactly matches the expected output 𝐺 . Therefore, the problem of 
mapping inputs to outputs can be reduced to an optimization problem of finding a 
function that will produce the minimal error. 
 

 
Figure 2.20 A simple neural network with two input units and one output unit 

 
  However, the output of a neuron depends on the weighted sum of all its inputs (shown 
in Figure 2.20): 

	𝑦 = 	 𝑥)𝑤) +	𝑥*𝑤*																																																					(2.11) 
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where 𝑤) and 𝑤* are the weights on the connection from the input units to the output 
unit. Therefore, the error also depends on the incoming weights to the neuron, which is 
ultimately what needs to be changed in the network to enable learning. If each weight 
is plotted on a separate horizontal axis and the error on the vertical axis, the result is a 
parabolic bowl. For a neuron with 𝑘 weights, the same plot would require an elliptic 
paraboloid of 𝑘 + 1 dimensions. 
  One commonly used algorithm to find the set of weights that minimizes the error is 
gradient descent. Backpropagation is then used to calculate the steepest descent 
direction. The gradient descent method involves calculating the derivative of the 
squared error function with respect to the weights of the network. This is normally done 
using backpropagation. Assuming one output neuron, the squared error function is: 
 

𝐸 = )
*
(𝐺 − 	𝑦)*																																																							(2.12) 

 
where 𝐸 is the squared error, 𝐺 is the target output for a training sample, and 𝑦 is 
the actual output of the output neuron. 
  The factor of 1/2 is included to cancel the exponent when differentiating. Later, the 
expression will be multiplied with an arbitrary learning rate. 

For each neuron 𝑗, its output 𝑂e is defined as (shown in Figure 2.21): 
 

𝑂e = 𝜑g𝑁eh = 	𝜑g𝑁e ∑ 𝑤8e𝑂8%
8j) h																																				(2.13) 

 
where input 𝑁e to a neuron is the weighted sum of outputs 𝑂8 of previous neurons. 
If the neuron is in the first layer after the input layer, the 𝑂8 of the input layer are 
simply the inputs 𝑥8 to the network. The number of input units to the neuron is 𝑛. The 
variable 𝑤8e  denotes the weight between neurons 𝑘 and 𝑗. 
 The activation function 𝜑  is non-linear and differentiable. A commonly used 
activation function is the logistic function: 
 

𝜑(𝑧) = )
)STUk

																																																(2.14) 
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Figure 2.21 Calculation between two layers 

 
 
which has a convenient derivative of: 

lm
ln
(𝑧) = 	𝜑(𝑧)(1 − 	𝜑(𝑧))																																					(2.15) 

Calculating the partial derivative of the error with respect to a weight 𝑤Ce  is done 
using the chain rule twice: 

op
oqrs

= 	 op
ots

ots
o;s

	 o;s
oqrs

																																														(2.16) 

In the last factor of the right-hand side of the above, only one term in the sum 𝑁e 

depends on 𝑤Ce, so that 
o;s
oqrs

= 	 o
oqrs

g∑ 𝑤8e𝑂8%
8j) h = o

oqrs
𝑤Ce𝑂C																								(2.17) 

If the neuron is in the first layer after the input layer, 𝑂C is just 𝑥C. 
The derivative of the output of neuron 𝑗 with respect to its input is simply the partial 

derivative of the activation function (assuming here that the logistic function is used): 
 

ots
o;s

= 	 o
o;s

𝜑g𝑁eh = 𝜑g𝑁eh(1	 − 	𝜑g𝑁eh)																						(2.18) 

The first factor is straightforward to evaluate if the neuron is in the output layer, 
because then 𝑂e = 𝑦 and 

op
ots

= 	 op
ou
= o

ou
)
*
	(𝑦 − 𝐺)* 	= 𝑦 − 𝐺																									(2.19) 

However, if 𝑗 is in an arbitrary inner layer of the network, finding the derivative 𝐸 
with respect to 𝑂e is less obvious. Considering 𝐸 as a function of the inputs of all 
neurons 𝐿 = 𝑢, 𝑣, … ,𝑤	 receiving input from neuron 𝑗, 
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op(ts)
ots

= 	∑ ( op
o;ℓ

o;ℓ
ots
)ℓ∈z = ∑ ( op

otℓ

otℓ
o;s

𝑤eℓ)ℓ∈z 																	(2.20) 

Therefore, the derivative with respect to 𝑂e can be calculated if all the derivatives 
with respect to the outputs 𝑂ℓ of the next layer are known. Putting it all together we 
will get: 

op
oqrs

= 	 𝛿e𝑂e																																																		(2.21) 

Finally, we can summarize the parameter adjustment applicable to all the layers in a 
given network: 

∆𝑤Ce = 	−𝜂
op
oqrs

	= 	−𝜂𝛿e𝑂e																																				(2.22) 

  The above explanation is based on a fully-connected layer with no bias added. It is 
the same case in the other types of layers. The idea is that we compute the error between 
the output of network and our expected value. Then, the gradient is back propagated  
from behind to the head of the neuron network for updating the weights. 
 
2.5.2 Loss Function 
 
  Loss function is an important part when training DNNs, which is used for measuring 
the inconsistency between predicted value 𝑦~ and actual label 𝑦. It is a non-negative 
value, where the robustness of model increases along with the decrease of the value of 
loss function.  
 
Mean Squared Error 
  Mean Squared Error (MSE), or quadratic, loss function is widely used in linear 
regression as the performance measure, and the method of minimizing MSE is called 
Ordinary Least Squares (OSL), the basic principle of OSL is that the optimized fitting 
line should be a line which minimizes the sum of distance of each point to the regression 
line, i.e., minimizes the quadratic sum. The standard form of MSE loss function is 
defined as: 
 

ℒ = )
%
∑ (𝑦C −	𝑦~C)*%
Cj) 																																																(2.23) 

 
where (𝑦C −	𝑦~C) is named as residual, and the target of MSE loss function is to 
minimize the residual sum of squares. It is worthing to mention that if using sigmoid 
function as the non-linear activation function, the quadratic loss function would suffer 
the problem of slow convergence (learning speed), for other activation functions, it 
would not have such problem. 
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Mean Squared Logarithmic Error 
 Based on our understanding, Mean Squared Logarithmic Error (MSLE) loss function 
is a variant of MSE, which is defined as: 
 

ℒ = )
%
∑ 𝑛(log	(𝑦C + 1) − 	log	(𝑦~C + 1))*%
Cj) 																												(2.24) 

 
  MSLE is also used to measure the difference between actual and predicted. By taking 
the log of the predictions and actual values, what changes is the variance that you are 
measuring. It is usually used when you do not want to penalize huge differences in the 
predicted and the actual values when both predicted and true values are huge numbers. 
Another thing is that MSLE penalizes under-estimates more than over-estimates. 
 
L2 norm 
 L2 norm loss function is the square of the L2 norm of the difference between actual 
value and predicted value. It is mathematically similar to MSE, only do not have 
division by n, it is computed by the following: 
 

ℒ = ∑ (𝑦C −	𝑦~C)*%
Cj) 																																																			(2.25) 

 
Mean Absolute Error 
 Mean Absolute Error (MAE) is a quantity used to measure how close forecasts or 
predictions are to the eventual outcomes, which is computed by the following: 
 

ℒ = )
%
∑ �𝑦C −	𝑦~C�		%
Cj) 																																																	(2.26) 

 
where | · | denotes the absolute value. Albeit, both MSE and MAE are used in predictive 
modeling, there are several differences between them. MSE has nice mathematical 
properties which make it easier to compute the gradient. However, MAE requires more 
complicated tools such as linear programming to compute the gradient. Because of the 
square, large errors have a relatively greater influence on MSE than do the smaller error. 
Therefore, MAE is more robust to outliers since it does not make use of square. On the 
other hand, MSE is more useful if concerning about large errors whose consequences 
are much bigger than equivalent smaller ones. MSE also corresponds to maximizing 
the likelihood of Gaussian random variables. 
 
L1 norm 
 The L1 loss function is sum of absolute errors of the difference between actual value 
and the predicted value. Similar to the relation between MSE and L2 norm, L1 norm is 
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mathematically similar to MAE, only do not have division by n, and it is defined as the 
following: 
 

ℒ = ∑ �𝑦C −	𝑦~C�		%
Cj) 																																																	(2.26) 

 
Cross Entropy 
 Cross Entropy is commonly-used in binary classification (labels are assumed to take 
values 0 or 1) as a loss function (For multi-classification, use Multi-class Cross 
Entropy), which is computed by the following: 
 

ℒ = − )
%
∑ [𝑦C logg𝑦~Ch 	+ 	 (1 − 𝑦C)log	(1 −	𝑦~C)]		%
Cj) 								    (2.27) 

 
Cross entropy measures the divergence between two probability distribution, if the 

cross entropy is large, which means that the difference between two distribution is 
large, while if the cross entropy is small, which means that two distribution is similar 
to each other. As we have mentioned in MSE that it suffers slow divergence when 
using sigmoid as activation function, here the cross entropy does not have such 
problem. Similarly, 𝑦~C = 	𝜎g𝑧Ch = 	𝜎g𝜃�𝑥Ch , and we only consider one training 

sample, by using sigmoid, we have ℒ = 𝑦 logg𝜎(𝑧)h 	+	 (1 − 𝑦)log	(1 − 𝜎(𝑧)), and 
compute it derivative as the following: 

 
oℒ
o�
	= g𝑦 − 𝜎(𝑧)h ∙ 𝑥					                  (2.28) 

 
compare to the derivative in MSE, it eliminates the term 𝜎(𝑧)�, where the learning 
speed is only controlled by (𝑦 − 𝜎(𝑧)). In this case, when the difference between 
predicted value and actual value is large, the convergence is fast. Generally, comparing 
to quadratic cost function, cross entropy cost function has the advantages that fast 
convergence and is more likely to reach the global optimization. 
 
Hinge 
  Hinge Loss, also known as max-margin objective, is a loss function used for training 
classifiers. The hinge loss is used for “maximum-margin” classification, most notably 
for support vector machines (SVMs) [47]. For an intended output 𝑦(𝑖) = 	±1, i.e., 
binary classification and a classifier score 𝑦~C, the hinge loss of the prediction 𝑦 is 
defined as: 
 

ℒ = )
%
∑ max	(0,1 − 𝑦(𝑖), 𝑦~C)	%
Cj) 								             (2.29) 
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Note that 𝑦~C	should be the “raw” output of the classifier’s decision function, not the 
predicted class label. It can be seen that when yi and yˆi have the same sign (meaning 
𝑦~C	predicts the right class) and |𝑦~C| > 1, the hinge loss equals to zero, but when they 
have opposite sign, hinge loss increases linearly with 𝑦~C (one-sided error). However, 
there is a more general expression as the following: 
 

ℒ = )
%
∑ max	(0,𝑚 − 𝑦(𝑖), 𝑦~C)	%
Cj) 								            (2.30) 

 
where 𝑚  margin is a customized value. More details about extending to multi- 
classification. 
 
2.5.3 Optimization Algorithms 
 
  In this section, we will introduce some basic algorithms for finding the optimal 
weights when training DNNs. This section focuses on one particular case of 
optimization: finding the parameters of a neural network that significantly reduce a cost 
function 𝐽(θ), which typically includes a performance measure evaluated on the entire 
training set. We will start with introducing the most fundamental algorithm Gradient 
Decent, then some more advanced algorithm will be introduced. 
 

 
Figure 2.22 Illustration of gradient descent algorithm on a series of level sets 
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Gradient Descent 
  Gradient Descent (GD) is a first-order iterative optimization algorithm for finding 
the minimum of a function. To find a local minimum of a function using gradient 
descent, one takes steps proportional to the negative of the gradient (or of the 
approximate gradient) of the function at the current point. Gradient descent is one of 
the most popular algorithms to perform optimization and by far the most common way 
to optimize neural networks. At the same time, every state-of-the-art Deep Learning 
library contains implementations of various algorithms to optimize gradient descent 
(e.g. tensorflow’s [48], [49], and caffe’s [49] documentation). Figure 2.22 illustrates the 
GD algorithm on a series of level sets.  

Gradient descent is based on the observation that if the multi-variable function 𝐹(𝑥) 
is defined and differentiable in a neighborhood of a point 𝐚 , then 𝐹(𝑥) decreases 
fastest if one goes from a in the direction of the negative gradient of 𝐹 at (𝐚, −𝛻𝐹(𝑥)). 
It follows that, if: 

 
𝐚𝒏S𝟏 = 	𝐚𝒏 − 𝛾𝛻𝐹(𝐚𝒏)                     (2.31) 

 
  for 𝛾 small enough, then 𝐹(𝐚𝒏) ≥ 𝐹(𝐚𝒏S𝟏). In other words, the term 𝛾𝛻𝐹(𝐚)  
is subtracted from 𝐚 because we want to move against the gradient, toward the 
minimum. With this observation in mind, one starts with a guess x0 for a local 
minimum of 𝐹, and considers the sequence 𝐱𝟎, 𝐱𝟏, 𝐱𝟐, …, such that: 
 

𝐱𝒏S𝟏 = 	𝐱𝒏 − 𝛾𝒏𝛻𝐹(𝐱𝒏)	, 𝑛 ≥ 0                (2.32) 
 
we have: 
 

𝐹(𝐱𝟎) 	≥ 	𝐹(𝐱𝟏) 	≥ 	𝐹(𝐱𝟐) 	≥ ⋯                (2.33) 
 

  So hopefully the sequence (𝐱𝒏) converges to the desired local minimum. Note that 
the value of the step size 𝛾 is allowed to change at every iteration. With certain 
assumptions on the function 𝐹 and particular choices of 𝛾. The following term: 

 

𝛾𝒏 =
(𝐱𝒏�𝐱𝒏U𝟏)𝑻[��(𝐱𝒏)���(𝐱𝒏U𝟏)]

‖��(𝐱𝒏)���(𝐱𝒏U𝟏)]‖𝟐
                (2.34) 

 
convergence to a local minimum can be guaranteed. When the function 𝐹 is convex, 
all local minima are also global minima, so in this case, gradient descent can converge 
to the global solution.  

This process is illustrated in the adjacent picture (Figure 2.22). Here 𝐹 is assumed 
to be defined on the plane, and that its graph has a bowl shape. The blue curves are 
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the contour lines, that is, the regions on which the value of 𝐹 is constant. A red arrow 
originating at a point shows the direction of the negative gradient at that point. Note 
that the (negative) gradient at a point is orthogonal to the contour line going through 
that point. We see that gradient descent leads us to the bottom of the bowl, that is, to 
the point where the value of the function 𝐹 is minimal. 
 

 
Figure 2.23 Illustration of SGD fluctuation 

 
Stochastic Gradient Descent 

Stochastic gradient descent (SGD) in contrast performs a parameter update for each 
training example 𝑥C and label 𝑦C:  
 

𝜃 = 	𝜃 − 	𝜂 ∙ ∇�	𝐽(𝜃; 𝑥C; 𝑦C)                  (2.35) 
 

batch gradient descent performs redundant computations for large datasets, as it 
recomputes gradients for similar examples before each parameter update. SGD does 
away with this redundancy by performing one update at a time. It is therefore usually 
much faster and can also be used to learn online. SGD performs frequent updates with 
a high variance that cause the objective function to fluctuate heavily as in Figure 2.23. 
While batch gradient descent converges to the minimum of the basin the parameters are 
placed in, SGD’s fluctuation, on the one hand, enables it to jump to new and potentially 
better local minima. On the other hand, this ultimately complicates convergence to the 
exact minimum, as SGD will keep overshooting. However, it has been shown that when 
we slowly decrease the learning rate, SGD shows the same convergence behavior as 
batch gradient descent (use a batch of samples in one iteration), almost certainly 
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converging to a local or the global minimum for non-convex and convex optimization 
respectively. 
 
Momentum 

Further proposals include the momentum method, which appeared in Rumelhart, 
Hinton and Williams’ seminal paper on backpropagation learning [46]. Stochastic 
gradient descent with momentum remembers the update ∆w at each iteration, and 
determines the next update as a linear combination of the gradient and the previous 
update [50]: 

 
∆𝑤:	 = 	𝛼∆𝑤 − 	𝜂∇𝑄C(𝑤)𝑤:	 = 𝑤 +	∆𝑤𝑤:	 = 𝑤 +	∆𝑤	      (2.36) 

 
which leads to: 
 

𝑤:	 = 	𝑤 − 	𝜂∇𝑄C(𝑤) 	+ 	𝛼∆𝑤               (2.37) 
 
where the parameter w which minimizes 𝑄(𝑤) is to be estimated, and 𝜂 is a step size 
(sometimes called the learning rate in machine learning). 
  The name momentum stems from an analogy to momentum in physics: the weight 
vec- tor w, thought of as a particle traveling through parameter space [19], incurs 
acceleration from the gradient of the loss (”force”). Unlike in classical stochastic 
gradient descent, it tends to keep traveling in the same direction, preventing oscillations. 
Momentum has been used successfully in various cases. Figure 3.23 describe the 
training process between SGD and SGD with momentum. 
 

 
Figure 2.24 Trainging process between SGD (left), and SGD with momentum (right) [46] 

 
SGD performs frequent updates with a high variance that cause the objective function 

to fluctuate heavily as in Figure 2.23. While batch gradient descent converges to the 
minimum of the basin the parameters are placed in, SGD’s fluctuation, on the one hand, 
enables it to jump to new and potentially better local minima. On the other hand, this 
ultimately complicates convergence to the exact minimum, as SGD will keep 
overshooting. However, it has been shown that when we slowly decrease the learning 
rate, SGD shows the same convergence behavior as batch gradient descent (use a batch 
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of samples in one iteration), almost certainly converging to a local or the global 
minimum for non-convex and convex optimization respectively. 
 
AdaGrad 

AdaGrad (for adaptive gradient algorithm) is a modified stochastic gradient descent 
with per-parameter learning rate, first published in 2011 [51]. Informally, this in- 
creases the learning rate for more sparse parameters and decreases the learning rate for 
less sparse ones. This strategy often improves convergence performance over standard 
stochastic gradient descent in settings where data is sparse and sparse parameters are 
more informative. Examples of such applications include natural language processing 
and image recognition. It still has a base learning rate 𝜂, but this is multiplied with the 
elements of a vector 𝐺e,e which is the diagonal of the outer product matrix. 
 

𝐺	 = ∑ 𝑔¥𝑔¥�¦
¥j) 	                       (2.38) 

 
where 𝑔¥ = 	∇𝑄C(𝑤). 𝑔¥	is the gradient at iteration 𝜏. The diagonal is given by the 
following:  
 

𝐺e,e 	= ∑ 𝑔¥,e*¦
¥j) 	                       (2.39) 

 
This vector is updated after every iteration. The formula for an update is now become: 
 

𝑤:	 = 𝑤 − 	𝜂diag(𝐺)�
ª
Z 	∘ 𝑔                  (2.40) 

 
or, can be written as per-parameter updates: 
 

𝑤e :	= 𝑤e − 	
¬

­®s,s
𝑔e                     (2.41) 

 
Each 𝐺C,C gives rise to a scaling factor for the learning rate that applies to a single 

parameter 𝑤C. Since the denominator in this factor, ­𝐺C = 	­∑ 𝑔¥*¦
¥j)  is the L2 norm 

of previous derivatives, extreme parameter updates get dampened, while parameters 
that get few or small updates receive higher learning rates [52]. 
 
RMSProp 

RMSProp (for Root Mean Square Propagation) is also a method in which the learning 
rate is adapted for each of the parameters. The idea is to divide the learning rate for a 
weight by a running average of the magnitudes of recent gradients for that weight [53]. 
So, first the running average is calculated in terms of means square : 
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𝑣(𝑤, 𝑡) 	= 	𝛾𝜐(𝑤, 𝑡 − 1) + (1 − 𝛾)(∇𝑄C(𝑤))*           (2.42) 
 

where, 𝛾 is the forgetting factor. And the parameters are updated as the following: 
 

𝑤:	 = 	𝑤 − ¬
­°(q,¦)

∇𝑄C(𝑤)                 (2.43) 

RMSProp has shown excellent adaptation of learning rate in different applications. 
 
Adam 

Adam (short for Adaptive Moment Estimation) [54] is an improved RMSProp 
optimizer. In this optimization algorithm, running averages of both the gradients and 
the second moments of the gradients are used. Given parameters w(t) and a loss function 
L(t), where t indexes the current training iteration (indexed at 1). 
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Chapter 3.  

Pose Estimation using  
Multi-Task Deep Learning Network 

 
 
In this chapter, we introduce several pose (skeleton) estimation models using 

multi-task deep learning network. Section 3.1 first introduces our previous work on 
single-person image using in-store cameras [34]. In Section 3.2, we introduce Mask R-
CNN [24], the basic idea of our proposed model, and the former method used for object 
detection and classification [25]. 

 

3.1. Single-Person Pose Estimation using In-Store Cameras 

In our previous work, we built a pose estimation network for customer behavior 
analysis using in-store cameras. The customer pose, which includes the positions of 
joints, can provide rich information about the customer interest level to the merchandise. 
For example, the hand position could tell whether the customer is taking an item. The 
foot position can reveal the distance between the customer and merchandise shelf. Some 
special pose configurations can also represent the squatting and bending over behaviors. 
These are the reason of that this dissertation treats the customer pose estimation is an 
indispensable part of customer interest level assessment system. 

However, the 2D human pose estimation is not an easy task in computer vision. One 
of the difficulties is the occlusion problem, including both self-occlusion and mutual- 
occlusion by other objects. The main reason of self-occlusion is the body orientation. 
For example, if a standing person is facing the right in the camera, his or her left body 
is probably occluded. On the other hand, the mutual-occlusions may happen due to 
arbitrary objects. In retail store environment, the mutual-occlusions are typically caused 
by the shopping baskets. Figure 3.1 shows the examples of the self-occlusion and the 
mutual-occlusion by shopping basket. Another difficulty of pose estimation is the left-
right similarity problem because of the symmetry of human body. For example, the left 
shoulder of a person in the back view is very similar to the right shoulder in front view. 
Therefore, in order to solve these problems, this dissertation proposes to incorporate 



３９ 
 

the pose estimation with body orientation, joint connections and joint visibility mask. 
These elements are tightly related no matter in physics or in the image. 

 

         
(a)             (b) 

 
Figure 3.1 The examples of occlusions in the retail store. (a) The left body part is self-

occluded. (b) The right wrist, left hip and right hip are occluded by the shopping basket 
 

3.1.1 Body Orientation 

The body orientation is a kind of global information of pose configuration. The body 
orientation is defined in 8 directions as Figure 3.2. The body orientation is useful for 
solving both self-occlusion problem and left-right similarity problem. For example, if 
one knows a person is facing to right, the body orientation indicates the occlusion of 
his or her left body. Similarly, if a person is facing the camera, his or her right shoulder 
is probably at the left side of image. Note that the orientation defined in Figure 2.3 is 
only applicable for some simple pose in the store, such as standing, walking, bending 
over or squatting down. For more complex poses, it is difficult to give a body 
orientation in the definition of 8 directions, such as the dancing, park over or doing 
gymnastics. 

 

         
 

Figure 3.2 The representations of body orientations 
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3.1.2 Visibility Mask 

The visibility mask is a binary vector where its element indicates the visibility of 
each joint. The term of visibility mask is introduced by Haque et al [55]. However, they 
only applied the visibility mask in the top view images for self-occlusions. This thesis 
extends the application of visibility mask for more flexible view angles and for both 
self-occlusion and the mutual-occlusion by objects. Other approaches also used a binary 
vector to represent the occlusion. Although these approaches modeled the occlusions in 
different ways, they did not consider the relationship between the joint occlusion and 
body orientation. This thesis argues that the body orientation is an indispensable part of 
the occlusion model. Additionally, we combines the occluding object detection in the 
system. It is an apparent clue of mutual-occlusion for visibility mask prediction. 
 

3.1.3 Deep Joint Position Learning 

In recent year, some outstanding deep neural networks are proposed for classification 
tasks. For pose estimation, a trivial method is applying these networks to directly 
produce the output of joint positions and visibility mask. The framework of this method 
is shown as Figure 3.3. The ResNet is modified to adapt the output of joint positions 
and visibility mask. Firstly, the original softmax layer at the output end of ResNet is 
removed. Secondly, the last FC layer is modified to output a vector with length 56. This 
vector contains two parts of information. One is the x, y coordinates of 14 joints, whose 
length is 14 × 2 = 28. Another is the [visibility, invisibility] scores of each joint, whose 
length is also 14 × 2 = 28. The [visibility, invisibility] scores are given into an additional 
softmax layer to produce the probabilities of visibility and invisibility. For the ground 
truth visibility mask, the pair of [visibility, invisibility] is [1, 0] for visible joints and [0, 
1] for occluded joints. Therefore, the filter size of last FC layer is modified t from 1 × 
1 × 2048 × 1000 to 1 × 1 × 2048 × 56. 

After constructing the network, the inputs and ground truth can be defined. Assume 
the input image is I and the pose vector is ℎ = (. . . , ℎC, . . . )i ∈ {1, . . . ,14}, where ℎC 
contains the 𝑥  and 𝑦  coordinates (𝑥C, 𝑦C ) of the ith joints. Because the ResNet 
requires the input image should be a square with a smallest size of size s = 224, the 
input image and pose are resized as follows, where 𝐼µ	is the resized image, 𝑝�	is the 
normalized the pose vector, 𝑏q  and 𝑏·  are the width and height of original input 
image, 𝑏¸ ∈ ℝ*	  is the center position of original input image, 𝑝�  is the label in 
learning process. 

𝐼µ = 𝑟𝑒𝑠𝑖𝑧𝑒(𝐼, 𝑠)                       (3.1) 

	𝑝� = º »/¼½				)		
						)					»/¼¾

¿ (ℎ	 −	𝑏¸)	                  (3.2) 
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Assuming p is the predicted pose of network, the final predicted pose in original 
image size is calculated as below. 

	

	𝑝ÀC%ÁÂ = º ¼½/»				)		
						)					¼¾/»

¿ (𝑝	 +	𝑏¸)	                 (3.3) 

 
Then the loss of prediction can be calculated. The pose loss and gradient are 

calculated by Mean Square Error (MSE) between predicted pose 𝑝 and the normalized 
true pose 𝑝�. The loss and its gradient are shown as below, where 𝐿Ã is loss of pose 
and 𝑒Ã is the gradient of loss, 𝑁 is the number of keypoints (14 in this method). 

 

𝐿Ã 	= 	
)
*;
∑ ‖𝑝C − 𝑝C�‖**;
Cj)                     (3.4) 

𝑒	 = 	𝑝 −	𝑝�                         (3.5) 
 

The loss of visibility mask is calculated by the Cross Entropy. The loss and its 
gradient are shown as below, where 𝐿° and 𝑒° is visibility loss and its gradient, 𝑣 
and 𝑣� is the predicted and true visibility vector respectively. 

 
𝐿° 	= 	−∑ 𝑣Clog𝑣C�*;

Cj)                      (3.6) 
𝑒° 	= 	𝑣 −	𝑣�                        (3.7) 

 

 
Figure 3.3 The framework of joint position estimation based on ResNet 

 



４２ 
 

This network can be also improved by introducing the body orientation as Figure 3.4. 
In Figure 3.4, the last FC layer not only receives the output of previous layer, but also 
the body orientation vector. The filter size of the last FC layer also becomes 1 × 1 × 
2048 × 56 × 8. 
 

 
Figure 3.4 The framework of joint position estimation based on ResNet combining body 

orientation 
 

3.1.4 Deep Joint Heatmap Learning 

In Section 3.1.3, we introduce a method directly predicts joint position. However, 
there is a limitation in these trivial deep learning method: they only give one pose 
prediction per image. Even though the elbow positions are relatively accurate, it is 
difficult to correct the hand positions based on elbow positions, because the single 
prediction without any confidence information or candidates could not provide any 
extra information. One solution is to generate joint probabilistic heatmaps. Therefore, 
this Section will propose a joint heatmap estimation using deep learning. 

The main idea behind the joint heatmap is to increase the prediction candidates. 
Based on the heatmap, many flexible correction methods could be applied. For example, 
a set of message-passing layer can correct the joint heatmap by modeling the 
relationship between neighboring joints. There are many methods to generate the 
heatmaps. One kind of methods is to trained the CNN with local image patches and 
tested by sliding window to generate the joint heatmaps [56] [57]. That means these 
methods convert the joint estimation problem to a pixel-wise classification problem. In 
these pixel-wise classification methods, the training and testing are time consuming. 
Besides, the negative patches are far more than the positive patches in the image, the 
number of negative patches usually need to be manually controlled. To cover this 
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shortage, another kind of methods is to extend the popular CNN, such as GoogLeNet 
or VGG, to a Full Convolutional Network (FCN). The mainly different between FCN 
and conventional CNN is that FCN replaces the Fully Connected (FC) layer in CNN to 
a 1 × 1 size convolution layer. Therefore, FCN can receive the whole image as input, 
rather than the local image patch, to directly generate a feature map. According to 
different applications, the FCN could be trained to generate different semantic heatmaps. 

Considering the good performance of FCN-8s in [58], this chapter will propose the 
joint heatmap learning based on FCN-8s. The overall framework is shown as Figure 
3.5. 

 

 
Figure 3.5 The framework of deep joint heatmap learning 

 
The customer image is given into a Fully Convolutional Networks (FCN) to generate 

initial joint heatmaps, which is shown in Figure 3.6. Based on these heatmaps and body 
orientation input, a set of Orientational Message Passing (OMP) layers are constructed. 
These layers model the global pose configuration from orientation and the local 
neighboring joint connections from the generated heatmaps. Finally, a softmax layer is 
used to normalize the heatmaps to probabilistic distribution. The output joint position 
is the centroid of each joint heatmap.  

 

 
Figure 3.6 The structure of modified FCN-8s for pose estimation [58] 
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3.2. Mask R-CNN 

In this Section, we will introduce the details of Mask R-CNN, which is the basic 
method of our proposed method. Mask R-CNN is a famous multi-task deep learning 
network improved on the Faster R-CNN. Section 3.2.1 first introduces the concepts of 
Faster R-CNN. Then the improvement of Mask R-CNN will be discussed in Section 
3.2.2. 

3.2.1 Faster R-CNN 

Faster R-CNN starts with R-CNN [59] proposed by R.Girshick et al. for the puropose 
to bypass the problem of selecting a huge number of regions in object detection task. 
Fig 3.7 shows the object detection process of R-CNN. They first used selective search 
algorithm [60] to extract around 2000 bottom-up region proposals from each input 
image. Then each region proposal is warped into the same size and pass a deep CNN. 
And then using CNN fully connected layer output as the features to classify each region. 
They used linear SVMs as the classifier. In the end, using bounding-box regression on 
classified regions to get a better bounding-box. 

 

 
Figure 3.7 R-CNN object detection system overview [59] 

 
R-CNN achieves a mean average precision (mAP) of 66.0 percent in PASCAL VOC 

object detection [61], it improves mAP by more than 50 percent relative to the previous 
best result. However, there are many problems with the R-CNN framework: 1. Training 
of R-CNN is divided into multiple stages, training process is very tedious. 2. The 
training process is time-consuming and need a lot of processing memory. 3. The speed 
object detection is not satisfying. 

The main reason why R-CNN is time-consuming is that it uses a large CNN network 
to process every proposed region, without sharing computation. It means when there 
are 2000 region proposals, it has to repeat 2000 times forward pass, which wastes lots 
of time. In fact, many region proposals overlap each other, and those overlapped parts 
are fed into the CNN for many times. In order to solve this problem by sharing the 
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computation between proposals, Fast R-CNN [20] was proposed. Fig 3.8 shows the 
illustration of Fast R-CNN. 

 

 
Figure 3.8 The architecture of Fast R-CNN [20] 

 
In Fast R-CNN, instead of feeding the region proposals to the CNN, they feed the 

input images to the CNN to generate a set of convolutional feature maps. From the 
convolutional feature maps, they identify the region of proposals and warp them into 
squares and by using an RoI pooling layer that reshapes them into a fixed size so that 
they can be fed into a fully connected layer. From the RoI feature vector, they use a 
softmax layer to predict the class of the proposed region and also the offset values for 
the bounding box. The network has two output vectors per RoI: softmax probabilities 
and per-class bounding-box regression offsets. 

Fast R-CNN achieves the top result on VOC2012 with a mAP of 65.7% (and 68.4% 
with extra data). And it is much faster than R-CNN, when using VGG16 as backbone 
feature extraction network, Fast-RCNN can process an image in 3 seconds. 

However, Fast R-CNN is still not fast enough for the real-time application. Both of 
the above algorithms (R-CNN and Fast R-CNN) use selective search to find out the 
region proposals, where selective search is a slow and time-consuming process 
affecting the performance of the network. It takes up 90% of the processing time. 
Therefore, Ren et al. proposed Faster-RCNN, an object detection algorithm that 
eliminates the selective search algorithm and lets the network learn the region proposals. 
In Faster R-CNN, they replace selective search algorithm with a Region Proposal 
Network (RPN) to proposes regions. As shown in Fig. 3.9, the entire system is a single, 
unified network for object detection. 

Faster R-CNN is composed of two modules. The first module is RPN, which is a 
deep fully convolutional network for region proposal, and the second module is the Fast 
R-CNN detector that uses the proposed regions. Using the recently popular terminology 
of neural networks with attention [62] mechanisms, the RPN module tells the Fast R-
CNN module where to look. As shown in Fig 3.10, an RPN takes an image feature map 
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as input and outputs a set of rectangular object proposals (coordinates), each with an 
object score (objects or background). 𝑘 denotes the number of anchor boxes. So the 
regression layer has 4𝑘 outputs encoding the coordinates of 𝑘 boxes, and the cls 
layer outputs 2𝑘 scores that estimate the probability of object or not object for each 
proposal. 

 
 

Figure 3.9 An illustration of the concepts in Faster R-CNN 
 
For training RPN, they used an objective function following the multi-task loss in 

Fast R-CNN. The loss function for an image is defined as: 
 

ℒ({𝑝C}, {𝑡C}) 	= 	
)

;ÄÅÆ
∑ ℒ¸Â»(𝑝C, 𝑝C∗)C 	+ 	𝜆	 )

;ÈÉÊ
∑ 𝑝C∗ℒµTË(𝑡C, 𝑡C∗)C      (3.8) 

 
where 𝑖 is the index of an anchor in a mini-batch and 𝑝C is the predicted probability 

of anchor 𝑖 being an object. 𝑝C∗  denotes the ground-truth label. 𝑝C∗  is 1 when the 
anchor is positive, otherwise it is 0. 𝑡C denotes the the 4 parameterized coordinates of 
the predicted bounding box, and 𝑡C∗ is the ground-truth box associated with a positive 
anchor. ℒ¸Â» is classification loss over two classes(object and background). For the 
regression loss ℒµTË, they used ℒµTË(𝑡C, 𝑡C∗) = 𝑅(𝑡C −	𝑡C∗) where R is the robust loss 
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function (smooth ℒ)). The term 𝑝C∗ℒµTË means the regression loss is activated only 
for positive anchors (𝑝C∗ = 1) and is disabled otherwise. 

Faster-RCNN proposed RPN for efficient and accurate region proposal generation. 
Using this method, region proposal step became nearly cost-free. At the same time, the 
learned RPN also improves region proposal quality and thus the overall object detection 
accuracy. 

 

 
 

Figure 3.10 A illustration shows how Region Proposal Network (RPN) generate anchors 
 

3.2.2 RoI Align Layer in Mask R-CNN 

As we discussed in Section 3.2.2, Faster R-CNN achieves faster objection detection 
and classification by changing selective search algorithm into Region Proposal 
Network (RPN). This method was later developed into Mask R-CNN, which is a multi-
task network used for semantic segmentation (shown in Figure 3.12). 

 

 
Figure 3.11 Examples of instance level segmentation in COCO dataset [63] 
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In Section 3.2.2, we also mentioned that Faster R-CNN uses an RoI pooling layer to 
reshape the features extracted from backbone network into a fixed size so that they can 
be fed into a fully connected layer. In this reshape transformation, the feature maps are 
scaling into a smaller size, which means some information in original scale may be 
collapsed during the pooling. This did not become a problem when dealing with 
objection detection and classification tasks because the fully connected layer can be 
seen as an encoder, where the input will be further compressed to output vector 
prediction. However, when it comes to segmentation task, the situation becomes 
different. In order to generate segmentation results from small size feature maps, an up-
sampling layer that recovers the features into larger size is necessary. This process can 
be seen as a decoder. If we use the features reshaped by the RoI pooling layer, because 
the information in original scale is partly cropped, the segmentation output will be very 
rough. This mis-alignment problem might decrease the segmentation accuracy. 

 

 
Figure 3.12 An illustration of the misalignment problem of RoI pooling 

 
Figure 3.13 shows an example of the misalignment problem in RoI pooling layer. In 

this Faster R-CNN detection framework, the input is an 800*800 image with a 665*665 
bounding box of dog. After passing the feature extraction backbone network, the feature 
maps are cropped with a stride of 32. As a result, the size of input image and bounding 
box are reshaped into the 1/32 of original size. In this example, the input image size 
800 can be exact divided by 32 into 25, while the bounding box size 665 turns into 
20.78 when divided by 32, which will be rounded down to 20. Then the feature maps 
are input into the RoI pooling layer, where they are further reshaped into size 7*7. This 
means the bounding box will be divided averagely into 49 square areas. Then each 
square area has a size of 2.86, which will be rounded down to 2. At this step, the error 
of candidate area has been very obvious (shown with the green part in Figure 3.13). 
More importantly, the pixel error in feature map scale will be zoomed out 32 times in 
original scale, which means the 0.86 pixel error in this case will lead to a 30 pixel error 
in the original image. 
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Figure 3.13 Description of RoI Align layer using bilinear interpolation [25] 

 
In order to make accuracy pixel-wise segmentation, the RoI pooling layer need to be 

changed. In Mask R-CNN, they propose a new architecture called RoI Align layer to 
solve this problem. RoI Align layer canceled the quantization in RoI pooling layer and 
uses bilinear interpolation instead of maxpooling. Figure 3.14 roughly describes the 
main concept of RoI Align layer, the dashed grid represents a feature map, the solid 
lines an RoI (with 2×2 bins in this example), and the dots the 4 sampling points in each 
bin. RoIAlign computes the value of each sampling point by bilinear interpolation from 
the nearby grid points on the feature map. No quantization is performed on any 
coordinates involved in the RoI, its bins, or the sampling points. 

 

 
Figure 3.14 How RoI Align layer solves the misalignment problem 

 
Figure 3.15 shows how RoI Align layer solves the misalignment problem using the 

same example as Figure 3.11. In feature map level, the bounding box with size of 
665*665 reshaped into size 20.78*20.78 without quantization. When it comes to RoI 
features, the size becomes 20.78/7 = 2.97. And by using bilinear interpolation, the value 
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of each pxiel in the 7*7 RoI feature is computed. As a result, the misalignment problem 
of RoI pooling layer was solved. Figure 3.16 shows how Mask R-CNN predicts 
accurate segmentation using RoI Align layer. 

 

 
Figure 3.15 Overview of Mask R-CNN using RoI Align [25] 

 

3.2.3 Feature Pyramid Network (RPN) in Mask R-CNN 

Besides the RoI Align layer, Mask R-CNN also improves the backbone network and 
feature processing architecture of Faster R-CNN. In Mask R-CNN, the backbone 
network was changed into ResNet [13]. And for feature processing at the end of 
backbone network, they explore another more effective backbone proposed by Lin et 
al. [64], called Feature Pyramid Network (FPN). FPN uses a top-down architecture with 
lateral connections to build an in-network feature pyramid from a single-scale input. 

The forward passing of CNN is a top-down pathway, usually the feature map 
becomes smaller during the computation of convolutional kernel. However, there are 
some feature layer outputs the same size features as the input features, which is defined 
as same network stage. In the method of Feature Pyramid Network, they defined each 
same network stage in the backbone architecture as one level of the feature pyramid, 
then select the output of the last layer of each stage as the reference of feature maps, 
which is reasonable because the deepest layer of each stage should have the most 
activated features. In the paper, they choose ResNet as backbone network and build a 
feature pyramid consists of {𝐶*, 𝐶Î, 𝐶4, 𝐶5}, which are the output of conv2, conv3, 
conv4, conv5 layer of the ResNet and have strides of {4,8,16,32} on the input image. 
The conv1 layer is not included in the pyramid because of the capacity of GPU memory. 

In order to combine features with different resolution in the top-down pathway, FPN 
first uses up-sampling on the high-level feature maps which has stronger semantic 
information and are more abstract, and then lateral connects these features with the 
former level features to reinforce the high level features. Figure 3.17 shows details of 
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the lateral connections of FPN. High level features are 2x up-sampled using nearest up-
sampling. And the features from former layer pass a convolutional layer with kernel 
size 1 for changing feature depth into the same size as high level features (in this paper, 
the depth 𝑑 = 256). These two set of features are combined together using pixel-wise 
add operation. This operation is repeated until all levels of the feature pyramid 
{𝐶*, 𝐶Î, 𝐶4, 𝐶5} are added to generate the most detailed feature map {𝑃*, 𝑃Î, 𝑃4, 𝑃5}. 
Before these features are input into next network, {𝑃*, 𝑃Î, 𝑃4, 𝑃5}  will pass a 
convolutional network with kernel size 3 to erase the aliasing effect caused by up-
sampling. 

 
Figure 3.16 A building block illustrating the lateral connection and top-down pathway [64] 

 

3.2.4 Mask R-CNN for Human Pose Estimation 

As RoI Align layer makes pixel-wise segmentation possible, Mask R-CNN can be 
also extended for the human pose estimation task. They model a keypoint’s location as 
a one-hot mask, and adopt Mask R-CNN to predict K masks, one for each of K keypoint 
types. 

We borrow the idea of this task to build our proposed model, the detail of the 
implementation will be discussed in Section 4 together with other tasks. 
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Chapter 4.  
 

Self and Mutual Occlusion Aware  
Multi-Person Skeleton Estimation using 
Multi-Task Deep Learning Network  

 
 
In this section, we will introduce our proposed multi-task skeleton estimation 

network. In section 4.1, we will introduce the whole system framework of our proposed 
model, and in section 4.2, we will discuss how we design our basic parallel multi-task 
model. Section 4.3 shows two architectures of our further-designed serial model. And 
the experiment results are illustrated in section 4.4. 
 

4.1. System Framework 

As we discussed in Section1 and Section3. For pose (skeleton) estimation, most of 
the deep learning approaches mainly focus on the joint feature. However, this feature is 
not sufficient, especially when the joint is occluded or not intact. In fact, many features 
other than joint can also contribute to skeleton estimation, such as body boundary, body 
orientation and occlusion condition. By adopting multi-task strategy, these features can 
be efficiently combined inside deep learning model for skeleton estimation. 

When we begin to build our multi-task skeleton estimation model, we choose Mask 
R-CNN as a basic model because the top-down RPN network makes it feasible to 
implement new task into the multi-task and the pose estimation task of Mask R-CNN 
also has a lot of space to improve. 

We add body boundary, body orientation and occlusion condition in order to solve 
the occlusion problem, which is a general problem in multi-person pose (skeleton) 
estimation. The occlusion in multi-person case can be separated into two classes: self-
occlusion and mutual-occlusion (shown in Figure 4.1). The self-occlusion is discussed 
in Section 3.1, where some joints disappear from the image when the person does not 
face the camera straight. Self-occlusion is general in single-person cases, however when 
it comes to multi-person situations, mutual-occlusion also happens frequently, where 
joints disappear when two people overlap each other or partly cropped by the image 
boundary. 
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In our proposed model, we introduce body orientation to deal with self-occlusion, 
(mutual) occlusion mask and body segmentation to deal with mutual-occlusion, and 
joint visibility mask to deal with both of them. 

 

 
Figure 4.1 Illustration of occlusion problems in multi-person pose (skeleton) estimation 
 
The system framework of our proposed method is illustrated in Figure 4.2. The input 

image will first be resized to 1024*1024 in the preprocessing step, then input into a 
Mask R-CNN layer heads for feature extraction, which consists of Feature Pyramid 
Network, Region Proposal Network and an RoI Align layer at last to generate RoI 
features. Notice that the two-stage object detection and classification branch in original 
Mask R-CNN is also done in this layer heads, which is not illustrated in Figure 4.2. The 
RoI features are then fed into our multi-task training network. We will show the details 
of this part in the next section. 

 

 
Figure 4.2 The framework of our multi-task skeleton estimation model 
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4.2. Proposed Parallel Multi-Task Skeleton Estimation Network 

We first tried a general architecture of multi-task network that trains each task 
paralleled, which has been proved to work well in the paper of Mask R-CNN. The 
architecture is illustrated in Figure 4.3, the network has three branches (body 
segmentation branch, joint position estimation branch and occlusion-orientation branch) 
to output five multi-task results:  
{𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛, 𝐽𝑜𝑖𝑛𝑡	𝐻𝑒𝑎𝑡𝑚𝑎𝑝,𝑂𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛, 𝐽𝑜𝑖𝑛𝑡	𝑉𝑖𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦,𝑀𝑢𝑡𝑢𝑎𝑙	𝑂𝑐𝑐𝑙𝑢𝑠𝑖𝑜𝑛} 

In the training step, each output of the multi-task results will be fed into a loss layer 
with corresponding ground truth label using different loss function specialized for each 
task. The multi-task loss 𝐿 is defined as the sum of the loss from each task: 

 
𝐿 = 	𝐿»TËÕ + 𝐿eÖC%¦ + 	𝐿ÖµC +	𝐿°C» +	𝐿Ö¸¸		              (4.1) 

 
From the next section, we will introduce the structure of each branch in our proposed 

method and how we define the loss function.  
 

 
Figure 4.3 Architecture of our parallel multi-task training network 

 

4.2.1 Body Segmentation Branch 

In the body segmentation branch of our proposed method, we borrow the 
segmentation part of Mask R-CNN and change the detection classes into 2 (person and 
background). The architecture of this branch is illustrated in Figure 4.4. We predict an 
𝑚 ×𝑚 mask from each RoI using an FCN [58], where the 14*14 size RoI features first 
pass a segmentation head consists of a stack of four convolutional layers with kernel 
size 3 and depth 256, followed by a 2× deconv layer and a final convolutional layer 
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with kernel size 3, producing an output resolution of 28×28 with depth 2. This FCN 
structure allows each layer in the mask branch to maintain the explicit 𝑚 ×𝑚 object 
spatial layout without collapsing it into a vector representation that lacks spatial 
dimensions. This process can be simply expressed as: 

 
𝑆𝑒𝑔𝑚 = conv8Tµ%TÂjÎ

lTÃ¦·j* {deconv8Tµ%TÂj*
lTÃ¦·j*5Ü[conv8Tµ%TÂjÎ

lTÃ¦·j*5Ü(𝐹)	]4}	       (4.2) 
 

where 𝐹  is the RoI features, 𝑐𝑜𝑛𝑣  and 𝑑𝑒𝑐𝑜𝑛𝑣  represent the convolution and 
deconvolution operations. 
  The segmentation loss 𝐿»TË is calculated between ground truth and network output 
with the right class given for each RoI using cross entropy: 
 

𝐿»TËÕ	 = − )
;ÝÞß

∑ (𝑆𝑒𝑔𝑚C ∗ 𝑐𝑙𝑎𝑠𝑠) ∗ log𝑆𝑒𝑔𝑚C
�;ÝÞß

Cj)            (4.3) 

 
where 𝑖 is the index of RoIs, 𝑐𝑙𝑎𝑠𝑠 is the predicted class of the object in each RoI 
(person or background). 
 

 
Figure 4.4 Architecture of the body segmentation branch  

 

4.2.2 Joint Position Estimation Branch 

In the joint position estimation branch we model the joint position as a one-hot mask, 
and use the architecture similar to the body segmentation branch to predict 𝐾 masks, 
one for each of 𝐾 joint types (e.g., left shoulder, right elbow). The architecture is 
shown in Figure 4.5, similar to the body segmentation task, we use FCN structure to 
output these 𝐾 masks of each joint. For the reason that joint is much smaller in each 
RoI, the output joint mask size is set twice as the segmentation mask in order to give 
accurate results. The 14*14 RoI features first pass a stack of eight convolutional layers 
with kernel size 3 and depth 256, followed by a deconvolutional layer with kernel size 
2 and a 2x bilinear interpolation up-scaling layer, producing an output resolution of 
56×56 with depth 	𝐾 (𝐾 = 17). The expression of this branch is: 
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Figure 4.5 Architecture of the joint position estimation branch  

 
𝐽 = 𝐽𝑜𝑖𝑛𝑡ÃÖ» = upscaling{deconv8Tµ%TÂj*

lTÃ¦·j)å[conv8Tµ%TÂjÎ
lTÃ¦·j*5Ü(𝐹)	]æ}	    (4.4) 

 
The joint position loss 𝐿eÖC%¦ is calculated between ground truth and network output 

with each joint for the person in each RoI. Instead of the pixel-wise cross entropy used 
in body segmentation branch, we use one-hot label ground truth where only one correct 
joint position is true, turning the loss into a classification loss over 𝑚 ×𝑚 ways: 
 

𝐿eÖC%¦	 = − )
)å;Ýçß

∑ ∑ Softmax(𝐽Ce) ∗ OneHot(log𝐽Ce�
;sÞríîj)å
ej) );Ýçß

Cj)      (4.5) 

 
where the number of joint 𝑁eÖC%¦ is set to 17. This loss function can force the network 
to output a probability contribution where only one pixel in the mask give the peak 
value after softmax operation, which shows better converge speed than the regression 
loss and heatmap MSE loss. 
 

4.2.3 Occlusion and Orientation Branch 

In the occlusion and orientation branch, information related to the self-occlusion and 
mutual-occlusion problem is predicted as vector outputs. Similar to the classification 
and detection network of Mask R-CNN, we also use fully connected network to 
generate vector. Considering the estimation of joint visibility is related to the joint 
position estimation, we change the size of RoI features from 7 into 14 (same as joint 
position estimation). The architecture of this branch is shown in Figure 4.6, which can 
be expressed as:  
 

𝑂𝑐𝑐𝑙𝑢𝑠𝑖𝑜𝑛&𝑂𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 = FullyConnection)ó*4[conv8Tµ%TÂj)4
lTÃ¦·j)ó*4(𝐹)	]} (4.6) 

 
where 𝑂𝑐𝑐𝑙𝑢𝑠𝑖𝑜𝑛&𝑂𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 includes the joint visibility mask (length 17 vector), 
body orientation (length 9 vector) and mutual-occlusion mask (length 2 vector). 
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Figure 4.6 Architecture of the orientation-occlusion branch  

 
The loss of these 3 outputs are calculated separately with cross entropy with softmax:  
 

 

𝐿ÖµC	 = − )
;Ýçß

∑ Softmax(𝑂𝑟𝑖C) ∗ log𝑂𝑟𝑖C�
;Ýçß
Cj)             (4.7) 

 

𝐿°C»	 = − )
;Ýçß

∑ Softmax(𝑉𝑖𝑠C) ∗ log𝑉𝑖𝑠C�
;Ýçß
Cj) 												       (4.8) 

 

𝐿Ö¸¸	 = − )
;Ýçß

∑ Softmax(𝑂𝑐𝑐C) ∗ log𝑂𝑐𝑐C�
;Ýçß
Cj)             (4.9) 

 
where the terms with ′ is the ground truth labels. 
 

4.3. Proposed Serial Multi-Task Skeleton Estimation Network 

In Section 4.2, we introduce our proposed multi-task skeleton estimation model 
training each task paralleled. However, when we treat these tasks paralleled, the 
information that can be shared between different tasks is the RoI features extracted from 
FPN and RoI Align layer. Especially for the body segmentation task and joint position 
estimation task, we use deep convolutional networks which makes the activation of 
ground truth label can hardly affect the RoI features during back propagation. Actually, 
the information added in our model are strongly related with each other. Figure 4.7 
shows an example of the relationship among our training targets. The body 
segmentation describes the boundary of human skeleton, so it can be a limitation for 
the joint position estimation. Also, joint positions are helpful to model the structure of 
human pose, which can be a strong reference for body orientation estimation. Of course 
this is not the only way that these information are related, there are more combinations 
that our training targets can benefit from each other. In order to take advantage of these 
relationship and share the gradient of multi-task label in training, we improve our 
parallel model into a serial model by connecting different task at the convolutional 
branch.  
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Figure 4.7 An example of the relationship our training targets  

 
Figure 4.8 shows the of forward passing architecture of our proposed serial multi-

task training network. For the reason that the orientation and occlusion outputs are 
vectors which is highly collapsed, we set this branch as the last output layer. For the left 
two branches, we build two models, of which one set body segmentation branch at first 
and feed its output into the joint position branch (shown in the left), and the other one 
directly input joint position results into the left two branches (shown in the right). We 
keep the connection between joint position branch and orientation and occlusion branch 
unchanged because the joint position is obviously a better reference for the prediction 
of body orientation than the body segmentation.  

 

 
Figure 4.8 Proposed two serial multi-task training network  

 
 

The new architecture of joint position estimation branch combined with body 
segmentation input is shown in Figure 4.9, where we add body segmentation output 
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(resized to 14*14) into the RoI features to make the body segmentation be referred into 
convolutional process as a texture. 

 

 
Figure 4.9 Joint position estimation branch combined with segmentation  

 
For the body segmentation branch combined with joint position results, we add the 

output of the layer in joint position estimation branch before the last up-scaling layer 
(size 28*28), which is illustrated in Figure 4.10. 

 

 
Figure 4.10 Body segmentation branch combined with joint position  

 

 
Figure 4.11 Orientation and occlusion branch combined with joint position  
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In the last connection between joint position estimation branch and orientation and 
occlusion branch, we clip the joint position results to fix the RoI features size and input 
it into the fully connected network together with RoI features (shown in Figure 4.11). 

 

4.4. Experiment 

In this section, we will show the details of the training dataset and the results of our 
proposed model. The evaluation and comparison will also be demonstrated in this part.  
 

4.4.1 COCO Keypoint Detection Dataset 

We use COCO Keypoint Challenge Dataset [63] for the training of body 
segmentation, skeleton estimation, joint visibility mask in our proposed model. COCO 
(Common Objects in Context) Dataset is an open dataset build by Microsoft and 
facebook etc., which has a large volume of images for general object detection and 
segmentation tasks. Keypoint detection is one of the tasks in COCO Dataset, which 
requires localization of person keypoints in challenging, uncontrolled conditions. 
Figure 4.12 gives a demonstration of this task, each person in the image has a set of 
annotations including segmentation, class name (in this task it is person), bounding box 
position, the number of labeled keypoints and a list of body joint information (labeled 
in the format (𝑥, 𝑦, 𝑣) with 17 joints, where 𝑥, 𝑦 is the location of joint, 𝑣 is the 
visibility of joint that 𝑣 = 0 means not labeled, 𝑣 = 1 means labeled but not visible, 
𝑣 = 2 means labeled and visible). 

 

 
Figure 4.12 Demonstrations of COCO Keypoint Detection Dataset from their homepage  
 
We trained our model on the COCO Keypoint Detection Dataset 2017 for the body 

segmentation, joint position estimation and joint visibility mask tasks, which includes 
56599 images for taining and 2346 images for validation. We filtered the instances with 
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less than 3 joints in order to teach our model to learn the whole body structure better 
and accelerate the converge of our model.  
 

4.4.2 Extended Sub Dataset with Mutual-Occlusion and Body Orientation 

For the reason that we add mutual-occlusion mask and orientation recognition task 
in our proposed model, which requires the annotations that do not exist in the COCO 
Keypoint Detection Dataset, we build a sub dataset with our team for the training on 
these tasks. In Table 1 we shows the scale of our sub dataset. We labeled about 2600 
images from COCO Keypoint Detection Dataset 2017 with over 8000 human instances 
in different size and situations, where we use 90% of the whole dataset as our training 
dataset, and the left images are used for validation.. 

 
Table 1 Dataset for mutual-occlusion mask and orientation recognition 

 Training Validation Total 
Number of images 2306 260 2566 

 
The label system for orientation recognition that we followed is shown in Figure 4.13, 

which refers the label system of our previous work in in Section 3.1 that we divides the 
horizontal space into 8 parts with each part of 45 degrees to label different body 
orientations. However, the image in COCO Dataset is much more complex than the 
customer dataset, where some instances is hard to be categorized into certain orientation. 
For this reason, we add a label 9 to deal with those instance orientations that are hard 
to distinguish. 
 

 
Figure 4.13 The label system for orientation recognition in our sub dataset  
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The label system for mutual-occlusion mask is shown in Figure 4.14. Unlike joint 
visibility mask that is a binary mask for each joint of each instance, we define mutual-
occlusion mask as a binary mask for the whole instance in one bounding box. It is 
somehow similar to the classification class label that categorize the person in each 
bounding box into 2 classes: occluded and not occluded. In order to distinguish this  
mutual-occlusion label from self-occlusion, we only label the instances which are 
cropped by the edge of image or occluded by other person (or object) with Label 1 
(occluded). For the instance that has self-occlusion due to its orientation, we label it as 
Label 0 (not occluded).  

 

 
Figure 4.14 The label system for mutual-occlusion mask in our sub dataset  

 

4.4.3 Experiment and Comparison 

We first train our model on the COCO Keypoint Detection Dataset 2017 for the body 
segmentation task, joint position estimation task and joint visibility mask task. After 
200k iterations with a batch size of 1, we keep the weights of the network of these three 
tasks and then train all the branches of our model on the sub dataset built by our own 
for 30k iterations. 

To evaluate the performance of our model, we use Percentage of Correct Keypoints 
(PCK), which is a widely used evaluation metric. The correct keypoint is defined as the 
predicted joint whose distance from the true joint is less than a given threshold. In this 
evaluation step, we calculate the PCK of the joints with visibility > 0 with a threshold 
of 0.1*bounding box height. The evaluation results and comparisons between our 
different proposed models is shown in Table 2, where we test our models on a test set 
of 1000 images picked from COCO Keypoint Detection Dataset 2014 validation set. In 
this table, “Joint+Segm” represents our parallel multi-task model before training on the 
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occlusion and orientation sub dataset, “Segm→Joint” represents our serial multi-task 
model that input joint position estimation results into the body segmentation branch, 
“Joint→Segm” represents our serial multi-task model that input body segmentation 
results into the joint position estimation branch, and “with Occ&Ori” represents models 
trained on the occlusion and orientation subset. 
 

Table 2 Evaluation results of proposed models using PCK (%) 
 Nose Eye Ear Shoulder Elbow Wrist Hip Knee Ankle Overall 
Joint+Segm 89.3 90.8 90.0 82.6 77.1 73.4 76.7 74.2 72.9 80.8 
Joint+Segm 
withOcc&Ori 

90.3 91.6 90.0 84.1 78.4 75.6 75.9 75.8 73.4 82.7 

Segm→Joint 89.6 89.9 88.6 84.4 81.8 77.0 79.0 78.2 73.7 82.4 

Segm→Joint 
withOcc&Ori 

94.1 94.1 93.3 85.5 82.0 75.2 78.4 77.5 73.9 83.7 

Joint→Segm 93.5 93.7 92.8 85.5 81.4 76.1 78.2 76.6 73.6 83.5 

Joint→Segm 
withOcc&Ori 

93.7 93.8 93.2 86.9 82.6 77.8 80.5 78.9 74.1 84.6 

 
The evaluation results show that after training on our occlusion and orientation sub 

dataset, the accuracy of each model has an overall increase on each joint. And our serial 
multi-task models get higher accuracy than the parallel multi-task model. As a result, 
the serial model starts from joint position estimation branch gives the best performance, 
which we think is because the joint position estimation branch takes more advantage of 
the label from other branches in the back propagation. Some results of this model on 
multi-person images are shown in Figure 4.15. And the examples of wrong joint 
position estimation results are shown in Figure 4.16, where the image on the left top is 
a bad example that our model does not separate the two ankles but activate them at the 
same time, which leads to the low accuracy of ankle. And for the human instances with 
uncommon pose (image on the right top), our model also cannot make right estimation. 
The two images on the bottom show examples where the body segmentation and joint 
position estimation give wrong results together, which is a problem of multi-task 
network that we need to solve in the future.  

We also test the orientation recognition task of our model on a test set labeled on 
images from the LSP dataset [65], which was also a widely used benchmark for human 
pose estimation. The details of orientation test dataset are shown in Table 3, we did not 
only focus on the normal orientations in the horizontal space but also labeled those 
images with instance which is hard to distinguish, thus the test data becomes balanced. 

 
Table 3 Test dataset for orientation recognition 

 8 orientations Other orientation  Overall 
Number of images 873 137 1000 
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Figure 4.15 Body segmentation and joint position estimation results on COCO dataset  
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Figure 4.16 Some wrong joint position estimation results of our model  

 
Table 4 Accuracy of orientation recognition in a strict principle (%) 

Label 1 2 3 4 5 6 7 8 9 
Degree 0 45 90 135 180 225 270 315 - 

Joint+Segm with Occ&Ori 40.2 47.4 58.7 38.6 34.5 38.1 63.1 38.6 48.1 
Segm→Joint with Occ&Ori 79.2 50.0 67.7 46.4 80.1 62.3 79.0 42.3 49.4 

Joint→Segm with Occ&Ori 88.6 47.2 58.8 50.0 85.9 54.7 75.6 47.1 77.1 

 
Table 4 shows the accuracy of the orientation recognition task of our proposed 

models when we only permit one orientation is to be correct. The results are not so good 
because we treat the orientation label very carefully when building the training dataset 
in order to make the model more sensitive to the orientations that are not at right angles. 
However, we still can see the benefit after we input joint positions estimation results 
into the occlusion and orientation branch. The serial model starts with joint position 
estimation gets the best overall accuracy, where we think this model benefits from the 
increase of joint position accuracy. 

Then we use a compatible principle that allows a neighboring error. Our models show 
more satisfying performance on the orientation prediction (shown in Table 5). For the 
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normal 8 orientations, our two serial models get similar high accuracy. But for the other 
orientation (label 9), the serial model starts with joint estimation branch has a complete 
good recognition rate than the other models, which means this model learned a general 
recognition ability for body orientation. Figure 4.17 and Figure 4.18 visualize several 
results of the whole multi-task outputs of our proposed model on LSP Dataset and 
COCO Dataset, where the red arrow in the center of each bounding box shows the body 
orientation recognition result, and the number with blue background on the left top of 
bounding box represents the mutual-occlusion condition of each person (1 is mutual-
occluded and 0 is not mutual-occluded). 
 

Table 5 Accuracy of orientation recognition when a neighbour error allowed (%) 
Label 1 2 3 4 5 6 7 8 9 

Degree 0 45 90 135 180 225 270 315 - 
Joint+Segm with Occ&Ori 91.7 95.8 93.6 86.7 79.0 89.2 93.7 88.7 48.1 
Segm→Joint with Occ&Ori 98.2 98.4 100 90.9 83.6 94.4 93.3 94.7 49.4 

Joint→Segm with Occ&Ori 98.1 98.5 99.2 90.9 94.7 92.0 93.2 93.8 77.1 

 

 
Figure 4.17 Examples of the results on LSP dataset with orientation recognition  

 
We also compare our multi-task model with other pose estimation methods. The 

comparison among our model, OpenPose [22] and MultiPoseNet [66] is shown in Table 
6, where we use the same test dataset and evaluation configuration as Table 2. Our serial 
model starts with joint position estimation gets higher overall PCK than MultiPoseNet, 
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which benefits from the higher accuracy of the face parts. For the whole body joints 
without face parts, our model gives similar PCK as MultiPoseNet. The OpenPose 
performs higher PCKs taking the advantage of its bottom-up architecture and Part 
Affinity Filed network. But we found that OpenPose has an obvious over detection 
tendency on the “not joint” objects because it does not use bounding box to limit the 
area of convolution.  

 
Table 6 Comparison between proposed models and other methods using PCK (%) 

 Nose Eye Ear Shoulder Elbow Wrist Hip Knee Ankle Overall 
OpenPose [22] 92.2 92.1 92.3 89.5 83.9 74.2 83.3 83.5 80.8 85.7 
MultiPoseNet[66] 88.9 88.5 88.9 84.5 82.0 79.6 78.6 79.7 78.0 83.2 
Joint→Segm 
with Occ&Ori 

93.7 93.8 93.2 86.9 82.6 77.8 80.5 78.9 74.1 84.6 

 

 
Figure 4.18 Examples of the results on COCO Dataset with all multi-task outputs  
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  In order to evaluate the ability to make right joint detections, we defined a Correct 
Detection Rate (CDR) to deal with the over detection tendency, which can be expressed 
as: 
 

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑅𝑎𝑡𝑒 = (∑öÖC%¦÷ÉîÉÄîÉ÷)∩göÖC%¦ÊÈÞùí÷îÈùî¾h|ûrÆüý
∑ öÖC%¦÷ÉîÉÄîÉ÷

 (4.2) 

 
where 𝐽𝑜𝑖𝑛𝑡lT¦T¸¦Tl  is the joints detected by the network, 𝐽𝑜𝑖𝑛𝑡ËµÖþ%l¦µþ¦·  is the 
joints labeled in the ground truth annotations. Only the joints which are labeled with 
location annotation contribute to the Correct Detection Rate when they are detected. 
When a joint out of annotation is detected, it will be counted as an over-detection. 
  The comparison between our proposed method with other methods using Correct 
Detection Rate are shown in Table 7. As a trade-off of higher accuracy of joint position 
estimation, OpenPose gets a low overall Correct Detection Rate, which means its over-
detection is more than other methods. While our method gets higher Correct Detection 
Rate by using joint visibility mask to penalize the joint that does not exist in the image. 
 

Table 7 Comparison between proposed models and other methods using CDR (%) 
 Nose Eye Ear Shoulder Elbow Wrist Hip Knee Ankle Overall 
OpenPose [22] 72.2 70.5 66.2 74.8 69.3 72.8 72.7 74.8 66.5 71.2 
MultiPoseNet[66] 85.6 81.1 77.6 88.3 82.4 80.5 83.7 80.3 71.0 81.2 
Joint+Segm  
with Occ&Ori 

82.7 80.4 75.2 86.0 80.0 78.4 88.4 87.7 82.9 82.4 

Segm→Joint 
with Occ&Ori 

89.3 86.6 79.2 85.2 77.7 77.8 77.8 85.3 82.7 82.4 

Joint→Segm 
with Occ&Ori 

84.7 86.6 80.6 85.2 82.3 81.4 85.8 87.8 79.3 83.7 
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Chapter 5.  

Conclusion 
 
 

In this chapter, we will give the conclusion of this research and future work. 
 

5.1. Summary 

In this research, we present a multi-person skeleton estimation method using multi-
task deep learning network. Our proposed network model is an extend multi-task 
training network based on a Mask R-CNN layer heads, and it consists of five tasks: (1) 
skeleton estimation, (2) body segmentation, (3) joint visibility mask, (4) body 
orientation recognition, (5) mutual-occlusion mask, and they are seperated into 3 
branches: body segmentation branch, joint position estimation branch, orientation and 
occlusion branch. We first build our parallel proposed multi-task network with each 
task separately in training steps. In order to strengthen the gradient from labels of each 
multi-task ground truth, we then improve our proposed method into 2 serial multi-task 
models by connecting different branch in the training. In evaluation step, we first 
evaluate the accuracy of the joint position estimation of our model using Percentage of 
Correct Keypoints. We also test the orientation recognition ability of our proposed 
model on a test dataset based on LSP dataset. In comparison step, we first compare our 
different proposed models. It shows that by adding body orientation and mutual-
occlusion mask into the training, our proposed model performance better on both joint 
position estimation and orientation recognition. In the two serial multi-task models, the 
model starts from joint position estimation gives better performance benefiting from 
the ground truth of other branches in back propagation. We also compare our model 
with other skeleton estimation methods. Besides PCK to evaluate the accuracy of 
detected joints in ground truth labels, we also define a Correct Detection Rate to deal 
with the over-detection problem. Considering both these two evaluation metrics, our 
proposed model can give a satisfying results compared with other methods.  

For the training of joint position estimation, body segmentation and joint visibility 
mask, we use COCO Keypoint Detection Dataset. And for further training for 
orientation recognition and mutual-occlusion mask, we build a new sub dataset which 
includes about 2600 images from COCO Keypoint Detection Dataset with their original 
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annotations and extended with body orientation and mutual-occlusion labels as new 
annotation. 

5.2. Future Work 

There are still some problems need to be solved in our proposed models such as the 
low accuracy of ankle joints and the segmentation sometimes cannot help the joint 
position estimation task. In the future, we would like to continue improving this model 
by using more valuable information (e.g. body parsing annotations instead of body 
segmentation) or using more complex architecture to define the connections hidden in 
human skeleton.  
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