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Abstract

As railway is one of the most important part in the transportation system of Japan, it occupies

very high rate in the traffic mode selection of residents. Thus, monitoring railway passengers as

well as their living patterns is of great significance in building ’Mobility as a Service’ system,

which means provide useful information to passengers via mobile apps, based on their mobil-

ity. With the development of Location Based Services(LBS) and big data mining technology,

studying and analyzing the mobility of passengers via big mobile data becomes a popular issue

to research in recent days. Under this background, in this research a new source of mobile GPS

big data was utilized to detect the mobility and estimate the movement of railway passengers.

Meanwhile, the study also provides methodologies to process the large and heterogeneous raw

GPS big data and then make it available to extract information. In the end, a comparison with

real census data and the similar estimation results from former GPS data sources is also provided

in this research. With all of those mentioned works, this research will provide a multi-aspect

perspective to understand the mobility of railway passengers.
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Chapter 1

Research Background

Nowadays, study of rail transit of Tokyo becomes a very popular and interesting topic, as public

transportation, especially railway, occupies the highest rate in all of the traffic modes chosen by

Tokyo residents. According to statistic data from Ministry of Land, Infrastructure, Transport

and Tourism(MLIT), Figure1.1 shows that railway occupies 48 percent of traffic preference of

residents in Tokyo, and for those commuting time, it increases to 79 percent – a very high

percentage which shows people in Tokyo always prefer to choose railway to go to work. Hence,

it comes very meaningful to study the performance of public transportation in Tokyo and it is a

meaningful and even necessary work for traffic planning and building intelligent transportation

system in Tokyo.

FIGURE 1.1: Chart of traffic mode share of common time and commuting time in Tokyo

But at the same time, though both of those two charts can show the importance of railway

transportation in the whole traffic system in Tokyo, they are quite distinguishing for the different

rate of traffic modes. In that sense, detect the performance of traffic system in different situation
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Chapter 1. Research Background 2

should be a serious issue. On the one hand, there are always some accidents happening which

can influence the traffic system. Figure1.2 informs that the total trend of accidents is increasing

in Tokyo(Data Source: MLIT). Those accidents always cause delay of public transportation

service.

FIGURE 1.2: Annual traffic accident counts

On the other hand, the preference of different kinds and groups of people should also be con-

sidered in the research of evaluating performance of traffic system. For, example, people with

different gender and age always have different habit of moving. Figure1.3 shows the preference

of using railway in people of different gender and age is apparently different. At the same time,

there are also other conditions influencing the traffic preference such as occupation, finance

condition and distance between home and workplace. And the traffic flow will also change in

different time of one day. All in all, studying the traffic preference of different kinds of people

and the performance of traffic system in different time is also important to evaluate the perfor-

mance of railway transportation system.

Traditionally, statistics on how people use public transportation especially in larger cities are

generated by ’transportation census of major cities’ and Passenger Survey by individual trans-

portation services providers. But for the development of Location Based Services(LBS), the

traditional statistic data becomes not enough. Because this kind of data is with very low fre-

quency. In Japan, the transportation census was only a ’one-day’ survey in every five years, it is

definitely not enough to monitor the performance of the public transportation comprehensively.
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FIGURE 1.3: Share of railway usage in people with different gender and age

GPS data can solve this problem, as it can show the dynamic change of traffic flow [32]and even

detect the anomalies such as bad weather and accidents[18]. Thus, in recent days, detecting

human mobility and evaluating performance of transportation system via GPS big data become

a very popular topic. In this study, we focus on both observing the human mobility and the

performance of railway system in Japan via GPS big data. At the same time, there is a compar-

ison of estimation result between the two different kinds of data as in this research, to make a

all-direction discussion of monitoring passengers and their behaviour.

Under this background, the research have a specific purpose to monitor the human mobility and

public traffic system in Tokyo. In this thesis, I will put some related works in the second chapter

of past studies and research works. In the third chapter of framework and methodology, I will

introduce the methodologies used in this research, and then present my results of experiments

in the fourth chapter of data processing and experiment results. Finally, I will discuss and draw

a conclusion in the final chapter.





Chapter 2

Past Studies and Research Works

2.1 Research on Public Traffic System

Studies of public traffic systems is a very popular issue in past several decades. Some of the

research objects which focus on studying public traffic system use some statistic data like OD

statistic data and data of traffic volume. Generally, those kinds of data are collected by methods

as traffic census, questionnaires and even ticket counts in a period. Sanchez [28] paid atten-

tion to analyze the public transportation and its impact from the process of census data with

GIS technology. And Fielding et al. [7] analyzed the reported statistic data for evaluating the

performance of bus transit and identified seven performance indicators to assess the transit mon-

itoring. As well as the statistic data and census data, many researchers found that analyzing

the entrance-exit data of each station can improve the precise of the information of origin and

destination. Lehtonen et al. [17] proposed the idea and stated the feasibility on the utilization of

transportation smart card data in studies of transport planning. Chu and Chapleau [3] analyzed

and estimated arrival time of buses based on spatial-temporal methodology using the record of

smart card. As far as the development of data mining technology, more and more researchers

prefer to study not only simply using the statistic record data. Morency et al. [20] indicated the

performance of transit via card data mining methodology, and Kusakabe et al. [16] proposed

a method to estimate passengers’ behavior by using smart card data and proved the method is

adaptable for estimating patterns of passenger usage.

Meanwhile, many researchers chose to study public transportation via data obtained from the

sensors. Ishihara et al. [13] developed an algorithm to track the movement of pedestrians using

5
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laser scanner. Filip [8][9] focused on estimating the GNSS sensors’ performance on railway

transportation. Those researches showed potential and possibility to remotely detect the resi-

dents’ mobility utilizing different varieties of sensors.

2.2 Research on Traffic Monitoring and Evaluating Public Traffic

System via GPS big data

As far as the development of location based system(LBS), nowadays, GPS data is extensively

used in the researches of detecting and recognizing human behavior and monitoring public trans-

portation system. More and more researchers started utilizing GPS big data to analyze and even

predict traffic conditions.

Many studies focused on analyzing and estimating human mobility via GPS big data. Re-

searchers always establish different models to recognize the patterns of human mobility. Sudo

et al. [31] researched human behavior in disasters based on a methodology of real-time estima-

tion. Jiang et al. [14] used deep learning methodology and proposed a modeling approach based

on ROI to detect and predict human mobility with high efficiency. Song et al. [29] also utilized

a deep learning model for simulating human mobility as well as transportation mode when a

disaster happens in a citywide level.

Besides of researches on human mobility, traffic analysis and prediction is also a very important

and popular research field. Some of studies focus on researching the performance of public

traffic system using the taxi GPS data. Zhou et al. [39] proposed an online system to detect

anomalous trajectories of taxi for real-time monitoring. Qian and Ukkusuri [24] developed a

geographical regression model for monitoring spatial variation of taxi in New York City via

GPS big data. Luo et al. [19] put their concentration on the emission of taxis and analyzed their

spatial information in Shanghai. In many countries, taxi plays an very important role in traffic

system and it is always easier to have its tracking data than railway and bus, many researchers

prefer to do researches based on GPS trajectory data of taxi. But in Japan, as I mentioned in

the first chapter, railway occupies the highest rate of residents’ traffic modes and much higher

than any other modes. It seems more valuable to study the performance of railway system in

Japan. Wang et al. [33] detected the situations of train delays in Tokyo via records from Twitter.

And Xia et al. [35] established a deep learning model to forecast the railway traffic system in a

city-wide scale.
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In this research, we will deal with a new kind of mobile big data and process it with a fresh start.

There are two main purpose of this research, on the one hand, we can extract information from

a new variety of big mobile data just like the life patterns of residents and estimation result of

passengers. This work will provide some new aspects to understand human mobility because

not only the data source but also the date of data collection is different. It can help us to update

our cognition of those issues to a ’new version’. On the other hand, the pre-processing work will

hugely contribute to the research works of following researchers to study on Target Ads GPS

data, then make the work of data mining more smooth and efficient.





Chapter 3

Framework and Methodology

3.1 Framework

In this research, the objective is evaluating the performance of public transportation system, es-

pecially railway using GPS big data. To detect the performance of traffic system, at first, we

need to filter those data which have a mere handful of points or too much noise and generate

GPS trajectories by the GPS dataset. After that, it is necessary to collect training data for map

matching and traffic mode detection. And then process the data to detect and classify the life

patterns and cluster the residents with different varieties of life patterns. The work after life pat-

tern cluster is mobility analysis, including pre-process such as collecting training data and map

matching, transportation mode estimation, and estimation and analysis of railway passengers.

Finally, a comparison between the result of estimation from two different GPS datasets will be

proposed, and then make an assessment on the result.

For a specific user, the trajectory data can be defined as traj = {traj1, traj2, ..., trajn}. In

this dataset, traji represents each trajectories of this user. In this research, two kinds of GPS

data will be processed, navigation GPS data and Target Ad GPS data. For the raw data of navi-

gation GPS data, a trajectory can be indicated as uid, tid, pid, longitude, latitude, timestamp

in which uid means the id of a passenger, tid means the id code of a trajectory and pid refers

to the number of points which compose to this trajectory. In the dataset of Target Ad data, the

users’ OS types are also indicated.

From the theory of graph, from one node to another, the shortest path should be calculated by

shortest path algorithm. In our research, we calculate the path basing on Dijkstra Shortest Path

9
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Algorithm[5]. On the other hand, for a GPS point Pi and a link Li, the projection of Pi to Li

can be defined as a point pi on Li. The distance from Pi to pi needs to be the shortest one within

all of the points on Li. The distance from Pi to Li can be defined as the euclidean distance from

Pi to pi.

FIGURE 3.1: Framework:Estimate Human Mobility and Movement via big mobile GPS data

The framework of estimating human mobility is demonstrated in figure 3.1. including modules

of data filtering, trip segmentation and mode detection, interpolation and people movement re-

construction. Examples of GPS trajectory visualization and real population estimation are also

showed in this figure. Based on those modules, the technology of data filtering, life pattern clas-

sification, mobility analysis and passenger estimation will be introduced in following sections.

3.2 Life Pattern Classification

3.2.1 Data Filtering

For the preparation of life pattern classification and other following works, The work of data

filtering is necessary. It is mandatory to prepare long-term data for life pattern discovery, oth-

erwise the accuracy of the result will become contingency. The first step of data filtering is

to make a basic statistic on GPS data to know the main interval of data amount of each users.

Under the premise of reserving most of users, those data which have less points or valid dates

should be deleted. From this work, the data for processing will become more precise and dense.
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3.2.2 Life Pattern Clustering

For detecting human mobility, understanding the life pattern of residents is an essential work[?

]. In this research, life pattern clustering is a very important work in pre-processing and data

processing module. On the one hand, collecting training data from those different clusters can

make it possible to detect traffic mode preference in different groups of people with disparate

custom of activity. On the other hand, life pattern clustering itself is an effective methodology

to analyze human mobility. For indicating people’s activity at a specific period, the number of

GPS points can be regarded as a significant index. For instance, the points of people who are

commuting or travelling is always more than those who are inactive. The work of life pattern

clustering can be divided into three steps.

Step 1 (Point Calculating): To count number of points of each user in every hour period(24hours).

Step 2 (Normalization): For each feature, using max-min norm methodology for normalization.

Max-min normalization can be expressed as equation 3.1.

Xnorm =
X −Xmin

Xmax−Xmin
(3.1)

In this equation, Xnorm is normalized data, X is original data. Xmax and Xmin are data with

the maximum and minimum value.

Step 3 (Data Clustering): To detect and cluster people with different kinds of life patterns. In

our research, we use X-means algorithm for data clustering.

3.2.3 X-means Clustering

X-means is an efficient algorithm for estimating number of clusters proposed by Pelleg and

Moore [23]. It works behind every times run of K-means, to detect and select the better subset of

current centroids should be splitted for suiting the data by calculating the Bayesian Information

Criterion (BIC).

The first step of X-means algorithm is normally run K-means to convergence. The second step

is to iterate two means in each cluster, to know whether and where those fresh centroids occur.

Then make a decision of whether to do bisecting cluster according to the value of BIC score.
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For the dataD and different values ofK, a set of alternative modelsMj should combine with dif-

ferent cases of K. The score of those models can be defined by posterior probability Pr[Mj |D].

The formula proposed by Kass and Wasserman [15] can be used for approximating the proba-

bility until finish norm. The formula can be expressed as 3.2:

BIC(Mj) = l̂j(D)− pj
2
· logR (3.2)

For the jth model, l̂j(D) is the log-likelihood of data. The amount of parameters of Mj is

defined as pj .

Based on the identical spherical Gaussian assumption, the maximum likelihood estimation can

be expressed as equation 3.3:

σ̂2 =
1

R−K
∑
i

(xi − µ(i))2 (3.3)

For centroid n, we can only focus on its attached set Dn then plug in maximum likelihood

estimation yield as equation 3.4:

l̂(Dn) = −
Rn
2

log(2π)− Rn ·M
2

log(σ̂2)− Rn −K
2

+Rn logRn −Rn logR (3.4)

Iterating until n¿K, then finally choose the best model by X-means methodology.

3.3 Mobility Analysis

3.3.1 Map Matching

3.3.1.1 Introduction of Map Matching Methodologies

For mobility analysis, map matching is an essential part for detecting the information from users’

real life. At the same time, for studying the performance of public transportation system, map

matching is also important to know the information such as name of station or railway line. It is

a key issue to match GPS points or trajectories to road networks.
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There are four different kinds of traditional map matching methods based on a review from Qud-

dus et al. [26]: topological, geometric, probability method and other advanced methodologies.

Map matching based on topological is a methodology taking topological features for consider-

ing and this methodology performs well in detecting spatial patterns of region containment and

road network[37]. Map matching based on Geometric uses geometry data and information for

matching, but not use topological methodology[2]. probability map matching is a methodology

which consider the errors of GPS point and those points should be matched to road networks

with the maximum probability[22]. And other methodologies prefer to use some advanced the-

ories and approaches like Particle Filter[10], Fuzzy Theories[25] and Kalman Filter[36]. Those

map matching methodologies are developed and proposed to improve the precise and accuracy

positioning result.

As Target Ads GPS data is mainly used in this research, the GPS data is rather heterogeneous

than navigation GPS data. For instance, the time interval is very large, mainly about 5 minutes

to 30 minutes. Thus, traditional methodologies such topological based methods and geometric

based methods is no longer adaptable. In Tokyo, the railway network is very complex. It is a

common situation that the distance from a GPS point to another railway line is nearer than the

correct one as the precision of data is not very high and the time interval is quite large. For

those reasons, we need to choose a map matching methodology which is more advanced and

have higher accuracy. In our research, we use an advanced map matching methodology based

on Hidden Markov Model(HMM) which can decrease the influence of the heterogeneous GPS

dataset.

3.3.1.2 HMM Based Map Matching

Hidden Markov Model (HMM) is a statistical model to describe a Markov Process with unob-

servable or hidden states and extend the Markov Chain developed by Baum and Petrie [1]. The

Markov Chain is a model which shows the probabilities of a sequence of random events. Figure

3.2 shows a simple example of Hidden Markov Model. It is widely used in fields such as Signal

Processing, Pattern Recognition and Fault Diagnosis.

In Hidden Markov Model, there are two basic assumptions. Firstly, the observed data should

be assumed to be dependent on the unobserved stat at any stage with an output probability

distribution. Secondly, the unobserved state at a specific stage should be determined by the

former unobserved state by a transition probability. Thus, if we can know the initial probability
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and transition probability for any unobserved state, the probability distribution of all of the

observations can be calculated.

FIGURE 3.2: An example of Hidden Markov Model

Nowadays, Hidden Markov Model has been regarded as a efficient methodology for map match-

ing with heterogeneous GPS data in order to improve the accuracy[21]. For the HMM map

matching work, the objective that we want to output visibly is the trajectory points. In this

model, the unobserved state is which road or railway that the point belongs to. By the Hidden

Markov Model, the output probability can be calculated by the distance from the point to its

projection in road or railway and the transition probability can be calculated by the distance of

two neighbouring points. Based on the unobserved state sequence with maximum values of out-

put probabilities and transition probabilities, the most likely route can be calculated. An simple

example of HMM map maching is showed as figure 3.3.

The map matching work can be illustrated in following steps:

1. Search the railway network to discover the potential routes in a defined searching radius

for each GPS point.

2. Calculate the probability of each line.
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3. Calculate the transition probability of the unobserved stated between every two neigh-

bouring GPS points, then output the total probability and find out the best path.

The output probability can be calculated by a Gaussian distribution method in equation 3.5:

p(pi|Lj) =


1√
2πσ

e−0.5(
dpiLj
σ

)2 when 0 < dpiLj 6 r

0 when dpiLj > r

(3.5)

In this equation, pi is the GPS trajectory point and Li is the matched route. dpiLj is the distance

between the route and point, r is the searching radius and σ is the standard deviation in GPS

measurement.

At the same time, the transition probability from two unobserved states can be calculated by

following methodology:

1 The probability will be 1 between two states with the same route.

2 For the different routes, the probability can also be calculated as proportion to the times

of transfer and distance.

FIGURE 3.3: An simple example of HMM map matching: output a best line with highest
probability

For the definition of output probability and transition probability, the following rules proposed

by Newson and Krumm [21] should be considered:
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Rule 1:The output probability and the distance between the routes should be inversely propor-

tioned.

Rule 2: The transition Probability between two unobserved states and the accessibility of two

routes should be proportioned.

Based on above-mentioned methodologies and rules, those two kinds of probability can be cal-

culated and then make it possible to use Hidden Markov Model for map matching works.

3.3.2 Transportation Mode Estimation

In this research, an another core data processing work is transportation mode estimation. In

order to detect human mobility and evaluate the performance of traffic system, it is essential

and necessary to know the traffic mode of each GPS trajectories and then reconstruct the trip

trajectories of users. There are several different researches for traffic mode estimation or trip

reconstruction, based on tools or methodologies such as GIS information[30], GPS-based travel

surveys[4] and GPS data with web application[38]. Those researches of traffic mode detection

mainly concentrated on understanding human move pattern and then predict or estimate the

movement of human beings. All in all, traffic mode detection plays an important role in the field

of traffic planning.

In order to finish this work, there are several procedures need to be accomplished before traffic

mode estimation. At first, we need to distinguish the status of a GPS trajectory in each period

with the condition of stay and move. In one trajectory, it may have different status as some points

shows the user is moving as well as other points keep staying in one or several areas. After the

stay and move detection work, we can pick up those points with a status of moving and divide

the points with walking and not-walking. For this detection work, we need to calculate the

speed and find out those points which are taking some traffic tools. After this, the traffic mode

detection work begins. The procedure before traffic mode detection can be showed as a figure

3.4.

3.3.2.1 Stay Point Recognition

For the first step of distinguishing stay points and move points, we utilize an algorithm based

on spatio-temporal values of each point. The detecting is based on a rule that the distance of
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several neighbouring points is less than a default value which is considered to be a reasonable

range of staying. And the time interval from the first point to the last one is longer than another

default value which users spend in a stationary place.

This rule can be expressed in following inequalities 3.6:


D(pstart, pend) < Dmax

T (pstart, pend) > Tmin

(3.6)

Where D(pstart, pend) and T (pstart, pend) are the distance and time interval between the start

point and the end point, Dmax is the maximum default value of staying distance as well as Tmin

is the minimum default value of staying time. S

FIGURE 3.4: An flowchart of procedures before traffic mode detection

The set of detected stay points for one user can be defined as p1, p2, ..., pn, which includes

information of latitude, longitude, start-time and end-time. The centroid of the latitude and

longitude of all those stay points can be regarded as the coordinate of the stay point of the user
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in this stay period. Moreover, it is also necessary to detect and delete those noise points. There

are there types of noise points:

1. A latter point which is recognized a the first point of stay.

2. A point which is the start point but recognized as a latter point.

3. A point with a much farther distance with neighbouring points than others

In order to recognize those noise points, we calculate the mean value and standard deviation of

the dataset. Then move those points with abnormally high value of standard deviation.

3.3.2.2 Transport Point Recognition

To detect the transition mode of one user, there are several tasks. At first, it is necessary to

detect trip segments from each trajectories. The segment means that the user uses the same

transportation mode in one continuous period. On the other hand, the change point, which

means the user changes his transportation status or mode should also be detected. In addition,

for those segments of ’non-walk’, we are going to classify the transportation mode of those

segments.

In our research, we calculate the speed so as to define the traffic mode of each segment. The

acceleration is another important index to detect the traffic mode. But because the data is quite

heterogeneous, acceleration might be hard to calculate because the time interval is too large

(sometimes over tens of minutes). Thus, we use velocity change rate(V CR) instead of accel-

eration for another index to recognize the traffic mode of a segment. It can be calculated as

following equation 3.7:

V CR =
|vaverage − vcurrent|

vaverage
(3.7)

In this equation, vaverage means the average speed of the segment and vcurrent means the speed

of current point. If the value of VCR is over or less than a threshold, the point will be defined as

a change point.
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3.3.2.3 Transportation Mode Classification

After those above-mentioned procedures, we finally achieved the step of transportation mode

classification. In our research, we utilize a supervised learning methodology to classify trans-

portation mode of each segment. Thus, we need to collect training data. The tool of data

collection is developed by Dr.Witayangkurn[34], an assistant professor in Center of Spatial In-

formation Science, the University of Tokyo. It is a web-based activity analysis and labeling tool

with Google Map, and can make it possible to use ground truth data to support us to classify.

We can label the transportation modes of each segments and make them to be our training data,

the screen of this tool is shown as figure 3.5:

FIGURE 3.5: Screen of the web-based labeling tool

After collecting the training data, we can start the classification work. In this stage, we choose

to use a Random Forest based methodology. Based on some former researches, it is showed

that Decision Tree is a efficient and accurate model for mode detection[27]. But Stenneth et al.

[30] urged that Random Forest model has even a better performance than Decision Tree. Ran-

dom forest is formed by a variety of Decision Trees and export the output from those Decision

Trees[6]. We input some features extracted from those segments to the model and estimate the

transportation mode of each segment. The features includes:

Time Duration(min): The time duration is calculated by the difference between the start point

and the last point.

Total Distance(m): The distance is calculated by summing all of the distances of each neigh-

bouring points in a segment.
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Velocity: The speed features including maximum and minimum speed, average speed, overall

average speed and velocity change rate(VCR). As we have introduced VCR and we don’t need

to calculate the maximum and minimum speed, we only introduce those two types of average

speed. The average speed is the average speed of each points in a segment as well as the overall

average speed all over the segment.

Occupation percentage of points in road and train network: This feature will contribute to

the classification of traffic modes such as train, bus and car. We use a methodology of spatial

query to detect whether the point is in the network and combine with GIS buffers to finally

define the percentage that we need to calculate.

After the classification work finished, we can achieve our aim to detect and estimate the traffic

mode of users and continue our research work of analysis of passengers.

3.3.3 Analysis of Passengers

FIGURE 3.6: Methodology of Extracting Information of Railway Passengers

In order to estimate the movement of railway passengers after all of the preliminary work fin-

ished, we have two steps to complete[12]. On the one hand, map matching is applied to recog-

nize the trajectories of rail transit, which has been introduced in former sections. On the other

hand, it is necessary to aggregate the data to recognize the passengers of each station and the
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status of transfer(get-on, get-off and exchange). For each trajectories, we can extract the infor-

mation of its origin and destination. Based on the OD information, it is possible to count the

passengers of each station in a time period. Then combining the OD information with the result

of map matching, the status of transfer as well as the time distribution of each railway users can

also be identified. The methodology can be described in figure 3.6.

Based on this methodology, we can reconstruct the railway trajectories and analysis the move-

ment of passengers.





Chapter 4

Data Process and Experiment

4.1 Introduction of data sources

In this research, we mainly use Target Ads GPS data for analysis. As Target Ads GPS data is

a new data source, many former researches focused on using navigation GPS data for studying

human mobility as well as transportation system. Thus, we will use the navigation GPS data for

comparison and provide another aspect to evaluate our result. Moreover, some collected GIS

data will also be utilized to support this research.

GPS data is anonymised for the analysis. In addition, all data processing was conducted in the

premise of an Ad Tech company who has the original data by using the software I developed.

4.1.1 Navigation GPS Data

Navigation GPS data is collected by a private company and a mobile operator. The total data size

is over 1.5TB with over 30 billions GPS records. The row GPS data had been fully processed to

generate trajectories and the traffic mode has been detected by the work of Witayangkurn et al.

[34]. The data dictionary is shown as table 4.1:

4.1.2 Collected GIS Data

In this research, though big mobile GPS data is mainly utilized, many sources of GIS data are

collected to support this research. On the one hand, some data such as railway network and

23
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TABLE 4.1: Dictionary of Navigation GPS Trajectory Data

Name Specification
user id The code to identify different users.

trajectory id The trajectory id of different users.
date The date of the trajectory.

traffic mode The traffic mode of each segments.
trajectory The GPS points in a trajectory.

railway stations is necessary in this research. It functions in many parts such as map matching,

traffic mode detection and visualization. Those data are indispensable part to support this re-

search. On the other hand, some of the open GIS data such as Traffic flow census data is also

utilized, this kind of data can be visualized by maps to intuitively show some status such as

traffic mode preference of residents.

The railway network data is collected and adapted by Kanasugi et.al[11], from National Land

Numerical Information(NLNI). The railway network data had been simplified and some topo-

logical information had also been added to this data. The basic information of railway informa-

tion data is shown as table 4.2.

The railway stations data is also collected in this research. The data can show the information

of each stations, the dictionary is also shown as table 4.3.

The traffic flow open GIS data are collected from NLNI, the same as railway network data and

railway stations data. This data is produced by traffic survey, and collected from three different

main Metropolitan area: Tokyo Metropolitan Area (including the area around Tokyo), Chukyo

Metropolitan Area (including the area around Nagoya) and Kinki Metropolitan Area (including

the area around Osaka and Kyoto). In this research, as we chiefly discuss the transit performance

in Tokyo in the part of evaluating the traffic performance, so we just choose the data of Tokyo

Metropolitan Area for visualization, and adapted the data that deleted some unused information.

Thus, the dictionary of traffic flow data is shown as table 4.4:

4.1.3 Target Ads GPS Data

As the backbone of all of the data used in this research, Target Ads GPS Data is a data collected

by Location Based Services (LBS) from a private company. The data aims to track daily activi-

ties of each user, analyze their behavior and feedback some useful information (advertisements)
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TABLE 4.2: Dictionary of Railway Lines Data

Name Specification
linkid The unique code to identify the railway network table .

comp code The company code of the railway lines.
comp name The name of railway companies.
line code The code of different railway lines.
line name The name of different railway lines.

source station code The origin station of each link.
target station code The target station of each link.

length The length of each link.
geom The geometry information of railway lines .

TABLE 4.3: Dictionary of Railway Stations Data

Name Specification
station code The unique code to identify the railway stations.
comp code The company code of railway stations.
line code The code of the railway line.

station name The name of the railway station.
station group The column created for storing topology information.

geom The geometry information of railway stations.

TABLE 4.4: Dictionary of Traffic Flow GIS Data

Name Specification
Metropolitan id The code of Metropolitan Area.

survey year The Year of survey.
zone code The code of zones in the Metropolitan Area.

railway trip The amount of railway trip happened(origin and Destination).
bus trip The amount of bus trip happened(origin and Destination).
car trip The amount of car trip happened(origin and Destination).
bike trip The amount of bike trip happened(origin and Destination).

TABLE 4.5: Dictionary of Target Ads GPS Data

Name Specification
user id The code to identify different users

timestamp The time information of the GPS point.
longitude The longitude of the GPS point.
latitude The latitude of the GPS point.

accuracy The accuracy of GPS point.
OS type The OS type of user’s smartphone.
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for them. The location information is collected by users’ smartphone, and it is utilized to satisfy

the ’Mobility as a Service’ requirement from diverse users.

Comparing with Navigation GPS Data, Target Ads GPS Data is a new data with much bigger

users, which reaches over 20 millions. However, the quality is quite limited and the time interval

is averagely bigger than Navigation GPS Data. In our research, as the Target Ads GPS Data was

a completely raw data, it is necessary to process the data from the first step. As the total size of

Target Ads GPS Data is extremely large, we chose one-month-data of Aug.2018 for processing

and experiment. The size of chosen data is approximately 1TB in csv files. The attributes of

the data is shown as Table 4.5. In Target Ads GPS data, the OS type of users is also collected,

which is not included in the data attributes of Navigation GPS Data.

An example of visualization of Target Ads GPS Data is shown in figure 4.1. It is clearly dis-

played that the dynamic population flow change in different point-in-time of one day.

FIGURE 4.1: An Example of Visualization of Target Ads GPS Data in Different Time of One
Day

4.2 Data Filtering

As Target Ads GPS data is a raw GPS data with tremendous amounts of points, data filtering is

an indispensable step to delete those data with unsatisfactory accuracy and decrease the noise.

In order to define the standard of filtering, it is necessary to make a basic statistic of the data

previously. In this statistic work, we calculated the total amounts of IDs, total records of GPS
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TABLE 4.6: Basic Statistics of Raw Data

Attribute Amounts
Total IDs Over 5 million IDs

Total Records 7.7 billions
Average Records Per ID 45/Day

Maximum Points 1.7 millions
Minmum Points 1

Data Period 2018/08/01-2018/08/31

points, Average records of each Ids per day, maximum and minimum points of each IDs. The

result of basic statistics is shown as table 4.6.

For the data amount distribution of each days, we also made a statistic. The result is shown in

figure 4.2. The distribution of total days of each users is polarized to both ends of x-axis, this

result shows that many IDs have large amount of data covering most of days in the month, but

there are also considerable amounts of IDs which just have data with very limited period. And

the distribution of total points shows that IDs with less points occupies a high rate in all of the

IDs. In this research, the life pattern analysis requires IDs with long-term data and relatively

high quality, otherwise the results will become contingency. Thus, the IDs with below ten days

period or below 100 total points are removed in this research.

FIGURE 4.2: Total Days and Points Distribution of Target Ads GPS Raw Data

After the data filtering, the total days distribution and total points distribution is shown in figure

4.3. And the comparison of the data amounts before and after filtering is shown in table 4.7. The

variation of mean point of each ID per each hour in one day is shown in figure 4.4. It clearly

displays that the amounts of total IDs become much less meanwhile the total records does not

have large change. At the same time the average records per ID obviously increases after filtering

work. In other words, the data become more dense and homogeneous. It is foreseeable that the

quality of following data analysis will be much better thanks to the data filtering work.
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TABLE 4.7: Data Amounts Before and After Filtering

Attribute Before Filtering After Filtering
Total IDs Over 5 million IDs About 4 million IDs

Total Records 7.7 billions 7.5 billions
Average Records Per ID 45/Day 67/Day (+49%)

FIGURE 4.3: Hourly Statistics of Mean Points

FIGURE 4.4: Total Days and Points Distribution After Filtering

4.3 Mobility Analysis

4.3.1 Life Pattern Observation

Understanding life patterns of residents is an important task to reflect an aspect of the life situ-

ation of residents. In this research, on the one hand, this work is regarded as a part of mobility

analysis to show the life pattern of Target Ads GPS users. We will cluster and classify several

kinds of main sorts of life mode of users to help us to recognize and understand the behavior
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of users. On the other hand, it is also an important part in pre-processing work of Target Ads

GPS data processing and analysis. For instance, if we detect the preferred transportation mode

of different groups of users with various types of daily life, it will benefit not only researchers to

have a more comprehensive analysis but also the company to know the different requirement of

each user, and then provide more targeted information to users and improve the quality of their

products.

To classify the life pattern, at first we need to know how many groups should we divide. In order

to define optimum number of clusters, we introduced Bayesian Information Criterion (BIC) for

evaluation and identification. The output of life pattern observation includes the result of BIC,

cluster result of active periods and clusters of life patterns.

Figure 4.5 shows the result of BIC evaluation. It is shown that when the amounts of clusters is

15, the value of BIC reaches the highest record, which indicates this amount of cluster is the

most appropriate. Thus, we cluster 15 groups of life patterns in this research based on the result

of BIC evaluation.

FIGURE 4.5: BIC variation of each amount of clusters

After defining the most adaptable amount of clusters, we use X-means methodology to estimate.

The result is shown in figure 4.6 and figure 4.7. In figure 4.6, the mobility modes of 15 groups

of residents are detected and visualized. Meanwhile the user amount of each patterns has been

also estimated in figure 4.7. Those results are clearly shown that the most preferred life pattern

of residents is the pattern of cluster one, about 13.3%, much more larger than other clusters.
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This is a very common lifestyle that the person become active before 10am and have a rest after

8pm. There are some other similar life patterns such as cluster seven, cluster ten and cluster six

which indicates this kind of lifestyle with a little difference in the time of activity or rest and also

occupies a high rate in all of the life patterns. Those clusters mainly replace those jobholders or

students with mainstream timetable.

FIGURE 4.6: Groups of Activity Patterns

FIGURE 4.7: User Number of Each Clusters During Active Periods

On the other hand, there are also some other life patterns which is also popular. Cluster nine

indicates a completely reverse life style, rest in the daytime but active at night. This kind of
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clusters always indicate those people who stay up late at night. And cluster eleven replaces

those residents who become active in the afternoon, this result may mostly reflex the lifestyle of

elders, based on our common sense. There are some other clusters such as cluster four, cluster

eight, cluster thirteen, cluster fourteen just have one or two peaks in the commuting time, one of

the possible cause of those clusters might be the limited and heterogeneous quality of the data.

This result might be an important issue to be considered and solved in the future.

4.3.2 Preliminary of Railway Passenger Estimation

4.3.2.1 Map Matching

As the function of life pattern detecting is not only providing a result to help us understanding

the residents behaviour, it also makes sense in improving the accuracy of map matching. As we

imported a web-based system to collect training data and evaluate the validity, the classification

of a variety of life patterns can support us to recognize those trajectories which are difficult to

identify its OD information as well as traffic mode. In this research, the output of map matching

model includes:

1 The route of railway network.

2 The origin, destination and transfer information.

3 The new GPS coordinate matched to the railway network.

There are also some failures and noises in map matching. The main reason which causes those

failures is the average time interval of Target Ads GPS data is larger than Navigation GPS data,

thus the GPS points are easily far from each other, then decrease the accuracy. Besides of this

reason, the confusion of different railway system and the error of topology information can also

bring failures in the map matching work.

4.3.2.2 Data Interpolation

Linear interpolation is regarded as an another essential pre-processing work of GPS data mining.

For there are always some signal loss in GPS dataset, to improve the accuracy of trajectory data,

data interpolation is a methodology conducted to supplement and estimate the lost data. On
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the other hand, data interpolation can help us to arrange the data more regular and make it

convenient to extract the points in a specified point-in-time.

We chose 5 minutes as the fixed time interval. After data interpolation, the dataset become more

dense and precise.

4.3.3 Analysis of Rail Transit Passengers

In this research, mobile big data is the principle data source for rail transit passenger analysis.

However, a brief analysis via GIS Open Data can support us to understand the overall transfer

preference of residents. We choose Tokyo city area as the study region, and try to analyze the

preference the usage of rail transit in Tokyo.

FIGURE 4.8: The Rate of Rail Transit Usage in Different Districts of Tokyo Metropolitan Area

4.3.3.1 Preference Analysis via GIS Open Data

For the analysis by GIS methodology, the data is collected from National Land Numerical Infor-

mation. Figure 4.8 shows the various rate of train usage in different areas of Tokyo metropolitan

area. It is obvious that people who live in the center part of Tokyo have higher preference

to choose railway for their trip. In the meantime, most of those districts which are located in
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outer regions of Tokyo metropolitan area have low preference of railway usage. The different

development of railway lines may lead to this discrepancy.

On the contrary, figure 4.9 shows the usage rate of other transit mode including bus, car, bike and

walk. The result of the usage of car is completely opposite from the result of train, and those

maps can intuitively express the preference of each traffic mode in different districts. Figure

4.10 shows that people who live in the center region of Tokyo metropolitan area prefer to trip by

train as well as those residents who live in the outer places prefer to trip by car. There are also

a small amount of districts where people prefer to go out by bike or on foot, but with no district

whose residents prefer to trip by bus than other traffic modes. In this research, we mainly focus

on detecting human mobility and rail transit usage and performance via big mobile data, so we

won’t deeply explore the reason of those phenomenons.

FIGURE 4.9: The Rate of Other Transit Mode Usage in Different Districts of Tokyo Metropoli-
tan Area

4.3.4 Railway Passenger Estimation via Mobile Big Data

As it is shown in last section, the residents of center part of Tokyo prefer to trip by train. Under

this background, the analysis of railway passengers in this research will focus on the center part

of Tokyo Metropolitan Area.

Thus, we chose seven main stations for this study: Shinjuku, Shibuya, Ikebukuro, Ueno, Tokyo,

Shimbashi and Kita-senju. All of those stations are important transportation junctions in Tokyo.
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FIGURE 4.10: The Favourite Transit Mode in Different Districts of Tokyo Metropolitan Area

At first, a basic statistic was made to show the passenger flow of each time distribution in those

station which is shown in figure 4.11.

FIGURE 4.11: The Hourly Estimation of Passenger Flow by Stations

In this graph, we can see that the hourly variation tendency of passenger flow is similar in

different stations. The peaks of passenger amounts occur in the time period of 8:00-9:00 and

the time period of 18:00-19:00, which replaces the rush hour’ of commute to work place and
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home place. In the period from 10:00 to 17:00, the line is steady, for people don’t assemble for

commuting during this period.

Then, it is important to extract further information from those stations. As the transfer status

has been recognized, the distribution of different transfer modes includes get-on, get-off and

exchange can be shown in figure 4.12.

FIGURE 4.12: The Transfer Status of passengers in each stations

This result indicates the different transfer status distribution of each stations, as all of those

stations are main transportation junctions in Tokyo, Shinjuku station and Ikebukuro station have

the largest passenger volume. But on the other hand, most of the passengers use these two

stations as an interchange station. The amount of passengers who get-on or get-off in these two

stations is not such larger than Tokyo station and Ueno station, whose interchange passenger

volume is much smaller than those station. Kita-Senju station, Shibuya Station and Shimbashi

station are in similar situation. Passengers mostly utilize those stations to exchange rather than

regard them as origin and destination. By contrast, the rate of exchange in Tokyo station and

Ueno station is much lower, which indicates that passengers always get-on and get-off in those

stations rather than exchange to other places.

To understand the performance of each station, an analysis of stations’ utilization in commuting

time is important and even essential, as about 80 percent of Japanese residents use train for

commuting. Figure 4.13 and table 4.8 shows the utilization of passengers in commuting time

and common time of each station. Ikebukuro station and Ueno station has relatively higher rate

of passenger volume in commuting time, while the rate of kita-Senju station is prominently high,
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TABLE 4.8: Table of Passenger Share in Commuting Time

Station Occupation of passengers in Commuting time
Ikebukuro 68.0%

Kita-Senju 74.6%
Shibuya 62.3%

Shimbashi 59.8%
Shinjuku 63.3%

Tokyo 63.7%
ueno 67.1%

reaches 74.6%. Meanwhile, the occupation of passenger volume in commuting time is similar in

remain stations, values around 60%. This results indicates that Kita-Senju station plays a more

important role in commuting time rather than common time, the passenger flow of Kita-Senju

station in common time is much lower than other stations. That might because Kita-Senju is a

huge interchange station but located remoter than other stations from the downtown of Tokyo,

so that the utilization of common time is not as high as those stations located in downtown of

Tokyo.

FIGURE 4.13: The Passengers of Commuting Time and Common Time in Each Stations

Based on those analysis, we can have a direct-viewing impression of the result of railway trans-

portation monitoring in Tokyo. In the next section, we will make a comparison between the

estimation from Target Ads GPS data with the result of real census data and Navigation GPS

data, to provide an another view of railway transportation monitoring as well as assess the accu-

racy.
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TABLE 4.9: A Comparison with Real Census Data

Census Data GPS Passenger Counts Predicted Passenger Count
Ikebukuro 3156867 4528 4519641
Kita-Senju 1399698 1842 1838698

Shibuya 3576364 2994 2988539
Shimbashi 1144719 1892 1888604
Shinjuku 4663466 4762 4753200

Tokyo 3098325 3491 3484593
Ueno 1073411 2848 2842754

4.3.5 Comparison and Accuracy Assessment of Passenger Estimation

4.3.5.1 Comparison with Census Data

In this research, the utilized census data is collected from NLNI with the format of shapefile.

The passenger volume in this data is counted by each station of a variety of companies.

First of all, in order to assess the accuracy of estimation, a least squares methodology can be

imported to make a regression analysis between GPS estimation result and census data. In this

research, we listed the result of the seven stations we selected, and make a comparison between

the predicted real passenger volume via GPS passenger estimation and the real data. The result

is shown in table 4.9:

In the regression analysis, the R2 equals to 0.653 with the regression coefficient equals to

998.117. From table 4.9, we can see that the estimation result in Shibuya Station, Shinjuku

Station and Tokyo Station is close to the real data, meanwhile the result of Ikebukuro Station,

Kita-Senju Station and Shimbashi Station is larger than the census data. Moreover, the result of

Ueno station is much larger – about three times than the real census data. One of the possible

reason of this error is, there are many other stations is located very closed to Ueno Station, in-

cluding Keisei-Ueno, Inaricho, Uguisudani, Ueno-Hirokoji, Okachimachi, Naka-Okachimachi,

Shin-Okachimachi and Yushima, those stations are all within 500 meters from Ueno station.

Thus, as the data is heterogeneous, the probability of detection failure is increased.

As the census data from NLNI also provides a classification of total passengers and commuting

passengers. we will also provide a comparison of the commuting passenger rate between GPS

data estimation and real data.

Table 4.10 shows the result, in general, the estimation result is quite close to the real data in most

of the stations. The only error still happens in Ueno station, whose value of GPS estimation is
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TABLE 4.10: Table of Comparison of Passenger Occupation in Commuting Time

Station Rate of GPS Estimation(commuting) Rate of census data(commuting)
Ikebukuro 68.0% 70.1%
Kita-Senju 74.6% 73.9%

Shibuya 62.3% 63.7%
Shimbashi 59.8% 61.6%
Shinjuku 63.3% 65.5%

Tokyo 63.7% 61.0%
Ueno 67.1% 57.4%

much larger than the real rate. The reason of the error might be similar to the error of passenger

estimation. Thus, in the future, it will have a important topic on improving the estimation

accuracy in the stations with complex networks and located in a area with multiple different

stations.

4.3.5.2 Comparison with the Result of Navigation GPS Data

In the part of comparison with the navigation GPS data estimation, we imported the result from

former researchers who research on navigation GPS data. At first, it is important to compare

the accuracy of estimation by each data. According to the papers and thesis from former re-

searchers, the correlation coefficient of navigation GPS data is 0.832, with the rank correlation

coefficient is 0.908 and both of the p-values. But in our research with Target Ads GPS data, the

correlation coefficient is 0.808, which is similar than the result of navigation GPS data, but the

rank correlation coefficient is 0.661, which is obviously lower. Both of the p-values are less than

0.01, which shows the correlation is significant in Target Ads GPS data. From the comparison,

we can find that the accuracy of Target Ads GPS data is slightly lower than the result of Nav-

igation GPS data. As the quality of Target Ads GPS data is rather limited and heterogeneous

than navigation GPS data, in the future, there is also a significant work to optimize the data

processing methodology to make if more suitable for the Target Ads GPS data.

On the other hand, we provide another comparison of the passenger estimation in a specific

station via two kinds of data. Ikezawa et al. [12] also chose Shinjuku station to estimate the

passengers, which was included in our research. 4.14 is the comparison of both two results. The

trend is similar in both results. The peaks, which replaces the ’rush hour’ of commuting all occur

in 8:00-9:00 and 18:00-19:00. But by contrast, the amounts of passengers counted by Target Ads

GPS data is smaller than Navigation GPS data. According to my introduction, the users of Target

Ads app is larger than the users of Navigation GPS app. There are several possible reasons to
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explain the anomaly. One is the map matching methodology is not so applicable to the Target

Ads GPS data so that the recognized train trajectories become fewer. The another is that the

lower quality of Target Ads GPS data itself causes the abnormality. Anyway, this result urges

latter researchers to improve the accuracy and make the quality of estimation higher and higher.

FIGURE 4.14: Passenger Estimation of Shinjuku Station with Target Ads GPS data and Navi-
gation GPS data

4.4 Review and Discussion

In this research, we mainly utilized Target Ads GPS data. At first, we need to filter those IDs

with low density of records to make the data become more dense, then improve the accuracy.

After that, we classified the life patterns of residents. This work has double significance, firstly it

is a part of pre-process which help us to have a better result of traffic mode detection. Secondly,

as a part of mobility analysis, it indicates that the most common crowd of Japanese is those

people who have a job or students, those people need to commute. As railway transportation

is the most common method for commuting in Japan, the result expresses the significance of

studying on monitoring railway passenger in Japan. Then we utilized traditional GIS method-

ology and found that the residents of center part of Tokyo Metropolitan Area have a preference

to travel by train, thus we defined seven main stations in Tokyo for researching. After the work

of passenger estimation, we found that some stations are mainly used as a interchange station

while others are always regards as a destination. And the occupation of passenger volume in

commuting time is also different, Kita-Senju is a station which is mostly used for commuting
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and exchange. Finally, we compared the result with real census data and the result of navigation

GPS data, then we found that the estimation result of Ueno is shown bad in both passenger vol-

ume estimation and passenger occupation estimation of commuting time. This result indicates

that the recent data processing methodology needs to be optimized as the Target Ads GPS data

is rather heterogeneous. When the traffic system network and layout is complex, the error will

become large. Then based on the comparison with the result of navigation GPS data, though

the users of Target Ads GPS data is much more than those of navigation GPS data, the counted

railway passenger via Target Ads GPS data is lower than the former. This result shows that the

map-matching methodology also needs to be updated, to decrease the failure of distinguishing

the travel mode of train. So far, we monitored railway passenger in multi-aspects and indicated

some possible directions of future work.





Chapter 5

Conclusions and Future Work

5.1 Conclusions

The conclusions of this research can be summarized as follows:

1 The most common life patterns of residents in Japan is performing active in the daytime,

which indicates those people with a job or students. As Japan is a country with complex

and convenient railway transportation system and about 80 percents of people prefer to

utilize trains for commuting. Thus, studies on monitoring railway passengers have a great

significance in Japan.

2 Within the selected stations in our research, according to the result of passenger estima-

tion, some stations are mostly utilized by passengers as a interchange station. Moreover,

the percentage of passengers utilization in commuting time is different in each station.

Kita-Senju station is a typical example, most of passengers utilize it for commuting and

exchange.

3 According to the comparison with real census data, the accuracy of estimation on each

station via Target Ads GPS data is also various. The stations such as Tokyo and Shinjuku

have results with high quality, but the noise in Ueno station is quite large. It may be caused

by the extremely complex placement of railway transportation stations in Ueno area, and

it is important to find ways to increase the accuracy in this kind of stations in the future.

4 According to the comparison with the result of Navigation GPS data, the total accuracy of

Target Ads GPS data is similar but slightly lower. And the estimated passenger counts of

41
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Target Ads GPS data in smaller, contrary to its larger amounts of users. This phenomenon

points out that the map matching methodology is necessary to be optimized in the future.

Based on those conclusions, we can find an orientation of future works on Target Ads GPS data

processing, which will be introduced in next section.

5.2 Future Works

As there are still some limitations and shortage in Target Ads Data in this stage, Initially, the

following researches should focus on those problems. At first, as I mentioned in former chapters,

the quality of Target Ads Data is rather heterogeneous than other GPS data source which have

been fully processed such as Navigation GPS Data. But in this research, the methodology of

pre-processing works such as interpolation and map matching is the same as the method of

other GPS data. Thus, an optimized methodology of pre-processing should be developed in the

following researches on Target Ads Data to create a better precision. On the other hand, only a

short-term data was selected for this research due to the limitation from time cost of processing

such a large-sized data. In the future, it is necessary to analysis the data with larger time-scale.

Besides of the deficiencies to be solved, some extensions of this research are also valuable to be

considered. In this research we mainly focus on monitoring the life patterns of passengers and

mobility of railway passengers. But we just considered those ’normal situation’. In the following

works, some anomalies such as big event, accident and bad weathers should also be considered.

Using some deep learning algorithms can make a valuable discussion of those issue. An another

potential topic to be studied is other transportation methods in public transportation system,

such as bus or taxi. For the limitation of technology, it is hard to distinguish the trajectories of

bus or taxi from which of cars. To solve this problem, multiple types of data which focus on

tracking bus or taxi should also be joined. Perhaps only in this way, we can make an all-around

evaluation of the public transportation system in Tokyo or Japan, not only railway.
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