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ABSTRACT 

The urgent concern about global warming from the emission of greenhouse gases has 

provided a strong impetus for engineers and scientists worldwide to research alternative 

renewable and clean energy. Wind power is one of the fastest growing renewable energy 

technologies. Onshore wind farms are, however, unsightly and they swallow up valuable 

land for agriculture and urban development. Already some countries, are considering 

constructing huge wind farms offshore to take advantage of the generally steadier and 

stronger winds found in the sea. Moreover, the wind turbines can be larger than those on 

land because they can be transported to the site by sea. In Japan, the offshore consist of 

a vast wind resource in deep water where use of conventional bottom-mounted wind 

turbines is not possible, and floating wind turbines are the most attractive. Thus, it is 

necessary to consider the effect of floater motion on the tower loading to check the 

serviceability of the wind turbines which are designed for the bottom-mounted systems. 

In this study, the theoretical formulae to predict the tower loading of floating offshore 

wind turbine systems in the extreme wind and wave conditions are proposed. Since the 

floating offshore wind turbine is affected significantly by floater motion, the conventional 

fixed-foundation model which is applicable to the onshore wind turbine can not be used 

theoretically to predict the tower loading of floating offshore wind turbine systems. In this 

study, SR (Sway-Rocking) model is proposed to consider the floater surge and pitch 

motions which have large influence on the tower loading of floating wind turbine, so that 

the tower loading can be estimated by the equivalent static method. In addition, the 

fluctuating wave load and fluctuating wind load become non-Gaussian processes with 

multiple peaks corresponding to different frequencies in their spectra, hence, a non-

Gaussian peak factor model is proposed in order to predict wave-induced load and wind-

induced load on the floating offshore wind turbine tower analytically. Furthermore, in the 

combination of wave-induced load and wind-induced load, the load reduction factor is 

proposed since the correlation between their maximum values can be neglected. The 

essentials of each chapter are as following:  

Chapter 1 is a review of current situation of offshore wind energy around the world and 

in Japan. It explains why it is essential to use floating wind turbine systems in Japan. The 

outline of this dissertation is also presented. 

In Chapter 2, a literature survey of research and development on floating wind turbines 

is presented. An overview of the research work that has been undertaken pertaining to 

floating wind turbine technology thus far is carried out, and based on its conclusions and 

limitations, objectives of this research are presented. 

In Chapter 3, two kinds of mooring systems: tension leg mooring and catenary mooring 

are considered. The methods of describing the behavior of the wind turbines installed with 

these two kinds of mooring systems are presented. Since surge and pitch are two main 

wave-induced motions, the equivalent stiffness and damping for these two modes are 
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identified. Thus SR model is proposed, which can be used to calculate the tower loading 

of floating offshore wind turbine systems. Meanwhile, the problems of using conventional 

fixed-foundation model have been clarified. 

In Chapter 4, the tower loading due to surge motion as well as pitch motion is 

investigated separately by locking the other mode. Then their combination is performed to 

get the wave-induced load on the floating offshore wind turbine tower. Under irregular 

wave, the fluctuating wave load on wind turbine tower is a non-Gaussian process with two 

main peaks in its spectrum corresponding to wave peak frequency and wind turbine tower 

natural frequency respectively, therefore, a non-Gaussian peak factor model is proposed, 

so that the maximum wave-induced load under irregular wave can be predicted by the 

equivalent static method. 

Chapter 5 gives the details of the prediction of wind-induced load. Equivalent static 

method is adopted to estimate the maximum wind load on floating offshore wind turbine 

towers. The analytical formulae are proposed to predict the mean wind load, standard 

deviation and peak factor of fluctuating wind load. The critical parameters in the standard 

deviation such as mode correction factor, aerodynamic damping ratio and size reduction 

factor are investigated to identify their dominant influence factors and their characteristics. 

A consistent non-Gaussian peak factor model which can be reduced to the standard 

Gaussian form for a Gaussian process is proposed to estimate the maximum wind load by 

equivalent static method. Finally, considering the wind response correlation between 

along-wind direction and across-wind direction, a combination formula for wind load on 

towers is proposed.  

Chapter 6 presents the combination of wave-induced load and wind-induced load. The 

reason why the assumption of perfect correlation between them causes overestimation 

has been clarified. It is shown that the combination without considering any correlation 

can predict the tower loading accurately. In addition, considering the correlation between 

wind and wave conditions, the load reduction factor of wave-induced load is proposed, 

which is found to be almost constant to the mean wind speed at hub height. For tension 

leg system, the load reduction factor is lower than that given in IEC 61400-3 used for 

bottom-mounted system, while for catenary system it is a little higher than that of IEC. 

Chapter 7 summarizes the conclusions of this study. An equivalent SR model which 

can consider the floater motion is proposed, so that the wave-induced load and wind-

induced load on the floating offshore wind turbine tower can be predicted analytically. In 

addition, the peak factor model considering the non-Gaussian characteristics of fluctuating 

wave load and fluctuating wind load is proposed in order to predict the maximum wave-

induced load and maximum wind-induced load on the floating offshore wind turbine tower 

analytically. Furthermore, the load reduction factor is proposed in the combination of 

wave-induced load and wind-induced load by clarifying their characteristics, considering 

the correlation between wind and wave conditions. 
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Chapter 1. INTRODUCTION 

1.1. Background 

The urgent concern about global warming from the emission of greenhouse gases has 

provided a strong impetus for engineers and scientists worldwide to research alternative 

renewable and clean energy. Mankind could be weaned from the ‘dirty’ burning of oil, gas 

and coal for the ever increasing energy demands to power development and modern 

living by switching to renewable and clean energy [1]. Wind power is one of the fastest 

growing renewable energy technologies.  

The total amount of available power from the wind is considerably more than present 

human power use from all sources. At the end of 2011, worldwide nameplate capacity of 

wind-powered generators was 238 gigawatts (GW), growing by 41 GW over the preceding 

year. 2010 data from the World Wind Energy Association, an industry organization states 

that wind power now has the capacity to generate 430 TWh annually, which is about 2.5% 

of worldwide electricity usage [2]. Over the past five years (2010 data) the average annual 

growth in new installations has been 27.6 percent. Wind power market penetration is 

expected to reach 3.35 percent by 2013 and 8 percent by 2018. Several countries have 

already achieved relatively high levels of wind power penetration, such as 28% of 

stationary (grid) electricity production in Denmark (2011), 19% in Portugal (2011), 16% in 

Spain (2011) [3], 14% in Ireland (2010) and 8% in Germany (2011). As of 2011, 83 

countries around the world are using wind power on a commercial basis [4]. The top 10 

countries by wind power electricity production are tabulated in Table 1.1. 
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Table 1.1 Top 10 countries by wind power electricity production (2010 totals) [4] 

Country 
Wind power production 

(TWh) 
% world total 

United States 95.2 27.6 

China 55.5 15.9 

Spain 43.7 12.7 

Germany 36.5 10.6 

India 20.6 6.0 

United Kingdom 10.2 3.0 

France 9.7 2.8 

Portugal 9.1 2.6 

Italy 8.4 2.5 

Canada 8.0 2.3 

(rest of world) (48.5) (14.1) 

World total 344.8 TWh 100% 

Figure 1.1 shows the figures from Global Wind Energy Council (GWEC). It indicates 

that 2007 recorded an increase of installed capacity of 20 GW, taking the total installed 

wind energy capacity to 94 GW, up from 74 GW in 2006. Despite constraints facing supply 

chains for wind turbines, the annual market for wind continued to increase at an estimated 

rate of 37%, following 32% growth in 2006. Over the past five years the average growth in 

new installations has been 27.6 percent each year. In the forecast to 2013 the expected 

average annual growth rate is 15.7 percent. More than 200 GW of new wind power 

capacity could come on line before the end of 2013. Wind power market penetration is 

expected to reach 3.35 percent by 2013 and 8 percent by 2018 [5], [6].  

 
 

Figure 1.1 Worldwide installed wind power capacity forecast [5] 
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Onshore wind farms are, however, unsightly and they swallow up valuable land for 

agriculture and urban development. Already some countries, are considering constructing 

huge wind farms offshore to take advantage of the generally steadier and stronger winds 

found in the sea. Moreover, the wind turbines can be larger than those on land because 

they can be transported to the site by sea, so offshore wind power’s contribution in terms 

of electricity supplied is higher.  

1.2. Offshore Wind Power 

Offshore wind power can help to reduce energy imports, reduce air pollution and 

greenhouse gases (by displacing fossil-fuel power generation), meet renewable electricity 

standards, and create jobs and local business opportunities. Figure 1.2 shows the 

Lillgrund Wind Farm in Sweden.  

 

Figure 1.2 Aerial view of Lillgrund Wind Farm, Sweden 

As of October 2010, 3.16 GW of offshore wind power capacity was operational, mainly 

in Northern Europe. According to BTM Consult, more than 16 GW of additional capacity 

will be installed before the end of 2014 and the UK and Germany will become the two 

leading markets. Offshore wind power capacity is expected to reach a total of 75 GW 

worldwide by 2020, with significant contributions from China and the US [7]. 

At the end of 2011, there were 53 European offshore wind farms in waters off Belgium, 

Denmark, Finland, Germany, Ireland, the Netherlands, Norway, Sweden and the United 

Kingdom, with an operating capacity of 3,813 MW [8], while 5,603 MW is under 

construction [9]. More than 100 GW (or 100, 000 MW) of offshore projects are proposed 

or under development in Europe. The European Wind Energy Association has set a target 

of 40 GW installed by 2020 and 150 GW by 2030 [10]. 
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Table 1.2 shows the world's largest offshore wind farms. As of February 2012, Walney 

Wind Farm in the United Kingdom is the largest offshore wind farm in the world at 367 

MW, followed by Thanet (300 MW), also in the United Kingdom. 

Table 1.2 World's largest offshore wind farms 

Wind farm Capacity (MW) Country Commissioned 

Walney 367 United Kingdom 2012 

Thanet 300 United Kingdom 2010 

Rødsand II 207 Denmark 2010 

Lynn and Inner Dowsing 194 United Kingdom 2008 

Horns Rev II 209 Denmark 2009 

 

1.3. Floating Offshore Wind Turbines 

As of 2003, existing offshore fixed-bottom wind turbine technology deployments had 

been limited to water depths of 30 m. Worldwide deep-water wind resources are 

extremely abundant in subsea areas with depths up to 600 m, which are thought to best 

facilitate transmission of the generated electric power to shore communities [11]. 

As of October 2010, new feasibility studies are supporting that floating turbines are 

becoming both technically and economically viable in the UK and global energy markets. 

"The higher up-front costs associated with developing floating wind turbines would be 

offset by the fact that they would be able to access areas of deep water off the coastline of 

the UK where winds are stronger and reliable" [12]. The recent Offshore Valuation study 

conducted in the UK has confirmed that using just one third of the UK's wind, wave and 

tidal resource could generate energy equivalent to 1 billion barrels of oil per year; the 

same as North Sea oil and gas production. 

Ishihara and Yamaguchi [13] showed that the annual wind speed offshore is over 7m/s 

in the Kanto area of Japan. As shown in Figure 1.1 considering economic and social 

criteria the available potential is estimated to be 94TWh per year, which is nearly 32% of 

the annual demand of Tokyo Electric Power Company. Of this amount, only 0.4TWh per 

year can be exploited in areas where water depth is less than 20m employing bottom-

mounted foundation. Almost, 60% of the total available potential is located in areas where 

water depth is between 20 and 200m. At such depths, the commonly used bottom 

mounted technology is not economically feasible. Figure 1.4 shows the progression of the 

offshore technology as the water depth increase. It is therefore essential in Japan to 

employ floating wind turbine technology to efficiently harvest the available offshore wind 

energy.  
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Figure 1.3 Offshore Wind Resource in Japan 

[13] 

Figure 1.4 Progression of offshore wind 

technology [14] 

All the existing floating wind turbines in the world are deployed in Europe. Blue H 

deployed the first 80 kW floating wind turbine 113 kilometers off the coast of Italy in 

December, 2007 (Figure 1.5 (a)). It was then decommissioned at the end of 2008 after 

completing a planned test year of gathering operational data. The wind turbine was 

neither grid connected nor operational during the trials. The first large-capacity, 2.3 

megawatt floating wind turbine is Hywind (Figure 1.5 (b)), which became operational in the 

North Sea off of Norway in September 2009, and is still operational as of October 2010. In 

October 2011, Principle Power's Wind Float Prototype was installed 4km offshore of 

Agucadoura, Portugal in approximately 45m of water. The Wind Float was fitted with a 

Vestas V80 2.0MW offshore wind turbine and grid connected. The installation was the first 

offshore wind turbine to be deployed without the use of any offshore heavy lift vessels as 

the turbine was fully commissioned onshore prior to the unit being towed offshore. 

Additionally this is the first offshore wind turbine installed in open Atlantic waters and 

make use of a semi-submersible type floating foundation. SeaTwirl deployed their first 

floating grid connected wind turbine off the coast of Sweden in August, 2011. It was tested 

and de-commissioned. This design intends to store energy in a flywheel. Thus, energy 

could be produced even after the wind has stopped blowing [15].  

The tower loading of floating wind turbine shall be much affected by significant floater 

motion due to wave, since wind turbines have large tower height and heavy nacelle and 

blades at tower top. Therefore, it is necessary to check whether the wind turbines 

designed for fixed foundation are suitable or not. This research will focus on two kinds of 

floating systems: tension-legged (TLP) mooring and catenary (CAT) mooring as shown in 

Figure 1.6. For TLP system, the surge motion is dominant, while the pitch motion is also 

critical and can’t be neglected for CAT system. The influence of each motion on tower 

loading will be clarified theoretically using sway-rocking model. 
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(a) Blue H Prototype (b) The world’s first full-scale floating wind 
turbine, Hywind 

Figure 1.5 Existing floating wind turbines 

                          

                    (a) TLP                                                                   (b) CAT 

Figure 1.6 Types of Floating systems analyzed in this study 

1.4. Thesis Outline 

A layout of the thesis is shown in Figure 1.7. 

Chapter 1 has given a general introduction to the current situation of development of 

wind energy and offshore wind power. It explains the necessity of using floating offshore 

wind turbines in Japan. 
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Chapter 2 reviews the research that has been undertaken pertaining to floating wind 

turbine technology thus far and gives the objectives of this research. 

Chapter 3 proposes an equivalent sway-rocking model to consider the influences of 

floater motions on the tower loading of floating wind turbine systems, and the reason why 

the conventional fixed-foundation model can not be used is presented.  

Chapter 4 proposes the theoretical formulae for wave-induced load with SR model and 

modal analysis. The influence of each floater motion is investigated separately and then 

their combination is performed. A non-Gaussian peak factor model is proposed to 

calculate the maximum wave-induced load under irregular wave. 

Chapter 5 proposes the theoretical formulae for wind-induced load. The critical 

parameters in the equivalent static method are investigated to identify the dominant 

influence factors and their characteristics. SR model should be employed due to its 

reasonable frequency and damping ratio. 

Chapter 6 presents the combination of wave-induced load and wind-induced load. By 

clarifying their characteristics, the load reduction factors are proposed for floating wind 

turbine systems.  

Chapter 7 summarizes the current work, conclusions that can be deduced and 

suggestions for future study. 

 

Figure 1.7 Layout of thesis 
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Chapter 2. LITERATURE REVIEW OF RESEARCH 

ON FLOATING WIND TURBINES 

2.1. Introduction 

In this chapter, a literature survey of research and development on floating wind 

turbines is presented. An overview of the research work that has been undertaken 

pertaining to floating wind turbine technology thus far is carried out, and based on its 

conclusions and limitations, objectives of this research are presented. 

2.1.1. Components of a Floating Wind Turbine System 

A floating support structure is recognized by the fact that the support comes from the 

water and not from the ground. Generally, the contact to the seabed is through anchor 

lines, also called mooring cables. All the different types of floating structures have their 

origin in the oil and gas industry, but modifications and hybrids are beginning to emerge in 

their use for wind turbines. 

As shown in Figure 2.1, floating offshore wind turbine system can be divided into two 

major components: wind turbine and sub-structure. The wind turbine can be further 

divided into tower, rotor-nacelle assembly (RNA), with generator and gearbox equipment 

housed within the nacelle. The sub-structure is divided into floater system and mooring 

system. The mooring system consists of chain/ tether connecting floater to the anchor 

fixed to the seabed. 
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Figure 2.1 Components of floating offshore wind turbine [1] 

2.1.2. Types of Floating Wind Turbines 

Drawing from the design classifications of floating offshore platforms for the offshore oil 

and gas industry, floating wind turbines can also be categorized into four main types. They 

are: 

• Spar-buoy type 

• Tension-leg platform (TLP) type 

• Semi-submersible type  

• Pontoon-type. 

Spar-buoy Type 

As shown in Figure 2.2, the basic structure of the spar floater is cylindrical. It is a large 

tube that floats due to large amounts of air in the top of the structure, and stays upright 

due to a large amount of ballast at the bottom. The spar floater is secured to the seabed 

with mooring lines. It tilts slightly as the water and wind affects the structure. This is the 

main disadvantage for all floating concepts, as wind turbines are designed for a stable 

base and an angle no more than 0.5 degrees out of vertical. The solution for this in the 

case of the spar floater is weight. The larger the ballast, the calmer the movements. The 

advantage of the spar floater in comparison with other floaters is the small cross-section 

at the surface. This way, the spar floater is not as sensitive to wave motions.  
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Figure 2.2 Spar-buoy type floating wind turbine (Hywind) [2] 

Tension Leg Platform Type (TLP) 

Also in actual use is the tension leg platform or TLP for short. The TLP type comprises 

a floating platform structure to carry the wind turbine as shown in Figure 2.3.The Dutch 

company Blue H has so far been the only one to produce a tension leg platform. At full 

scale it will be suited for waters with depth over 60 meters. The principle of the tension leg 

platform is to create an underwater platform with buoyancy instead of the large amount of 

ballast to keep the structure stable. The buoyancy exceeds the weight of the platform and 

hence causes a pretension in the vertical cables which keep the platform on location. The 

legs can either be secured to a template (i.e. a large concrete ring) at the seabed, by 

individual piles or by suction anchors. The platform is kept underwater to create a small 

cross-section at the waterline. This limits the amount of hydrodynamic loads from waves. 

 

Figure 2.3 TLP type floating wind turbine [3] 
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Semi-submersible Type  

The semi-submersible type comprises a few large column tubes connected to each 

other by tubular members. A wind turbine may sit on one of the column tubes or there 

could be wind turbines sitting in all the columns. Alternatively, the wind turbine may be 

positioned at the geometric centre of the column tubes and supported by lateral bracing 

members. The column tubes provide the ballast and they are partially filled with water. 

This design is good in providing stability to the wind turbine and its relatively shallow draft 

allows for site flexibility. The semi-submersible floating wind turbine is kept in position by 

mooring lines. This type of floating wind turbine may be constructed onshore. Until now, 

there is no semi-submersible floating wind turbine in operation. Principle Power Inc. is 

promoting the semi-submersible type which consists of three column tubes with patented 

horizontal water entrapment heave plates at the bases as shown in Figure 2.4 (a). Figure 

2.4 (b) shows another concept design of semi-submersible type as proposed by Ishihara 

et al. [4], [5]. It has three wind turbines seated on three tubular columns. 

       

              (a) Principle Power, Inc                               (b) Ishihara et al [4], [5] 

Figure 2.4 Semi-submersible type floating wind turbine 

Pontoon Type 

The pontoon-type has a very large pontoon structure to carry a group of wind turbines. 

The large pontoon structure achieves stability via distributed buoyancy and by taking 

advantage of the weighted water plane area for righting moment. The pontoon-type may 

be moored by conventional catenary anchor chains. The main advantage of this design 

would be the installation. It allows for complete installation in port, without any up-ending, 

lowering or other maneuvers that are needed for the other floating designs. However, the 

setback of the pontoon-type wind turbine is that the large surface makes it very receptive 

to hydrodynamic loads, and it is susceptible to the roll and pitch motions in waves 

experienced by ocean-going shipshaped vessels and may only be sited in calm seas, like 
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in a harbour, sheltered cove or lagoon. The National Maritime Research Institute (NMRI) 

in Tokyo has made some studies on such pontoon-type floating wind turbines, as shown 

in Figure 2.5.  

 

Figure 2.5 Pontoon type floating wind turbine (NMRI) [http://www.nmri.go.jp/4] 

2.1.3. Environmental Conditions 

Offshore wind turbines are subject to some environmental conditions [20], such as: 

• wind loads 

• hydrodynamic loads induced by waves and current, including drag forces and 

inertia forces 

• earthquake loads 

• current-induced loads 

• tidal effects 

• marine growth 

• snow and ice loads. 

Among these environmental conditions, wind and wave are the essential ones which 

have the significant effect on the tower loading. Hence, wind and wave shall be 

considered in this study. 

2.2. Previous Research 

2.2.1. Dynamic Response Analysis with FEM 

In order to properly explain the response characteristics of floating offshore wind 

turbine systems it is essential to understand their coupling behavior. Figure 2.6 shows the 

schematic representation this coupled behavior. The wind turbine is acted upon by 

inflowing wind producing aerodynamic loads that effect the Rotor, Nacelle and Tower 

while wave and currents results in hydrodynamic loads on floater and mooring system. In 
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addition mooring may also be affected by seabed contact. As shown, the dynamic 

behavior of each component of the system is codependent on one or more components. 

This indicates that the response of the system is mutually inter-dependent and 

linearization or simplification of a particular component, if done without considering the 

real situation might result is an inaccurate response prediction.  
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Figure 2.6 Schematic representation fully coupled floating wind turbine system [7] 

A lot of research has been done on the design of the floater. Sophisticated simulation 

tools capable of fully coupled, integrated dynamic response analysis in combined wind 

and wave loading have been developed. The dynamic response characteristics of floating 

offshore wind turbine systems depend upon its several structural attributes. The most 

significant are: 

• Aerodynamic effects from the rotor. 

• Effect of control system of wind turbines. 

• Hydrodynamic effects. 

• Restoring effects. 

• Resonance effect due to elastic deformations. 

• Mooring system effect. 

To have accurate and realistic prediction of dynamic response of floating wind turbine 

systems, all these attributes should be considered. Henderson [14] is one of the first to 

work on floating wind turbine systems. He investigated the contribution of floater motion to 

wind turbine tower and blade loads. He applied Morison’s equation to large floating 

systems ignoring hydrodynamic damping and elastic effects. Ishihara and Phuc ([15], [16]) 

investigated a multi-turbine floater with slender elements to discuss resonance effects due 
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to elastic deformation. They also investigated contributions of hydrodynamic and 

aerodynamic damping discussing importance of these factors through comparison with 

water tank experiment. These studies ([14], [15], [16]), however, used linear model for 

mooring system and employed linear model for restoring force that can have significant 

effect on small semi-submersible floater having large response. Jonkman [7] recently 

discussed dynamic response for a single turbine barge floater system using an analytical 

model for Catenary mooring system, but accuracy of the model is not validated through 

experiment. In view of these studies, it is observed that use of nonlinear models for 

estimation of all applied forces in a coupled simulation is still required. Waris [1], 

developed a fully nonlinear finite element model to investigate dynamic response of 

floating offshore wind turbine systems considering coupling between wind turbine, floater 

and mooring system, thus can give more accurate and realistic prediction of floater motion 

and tower loading due to wind and wave. This model can use beam, truss and spring type 

elements. The time domain analysis enables the model to efficiently capture nonlinear 

effects. Morison equation with Srinivasan’s Model is used for estimation of hydrodynamic 

force on the system, restoring force is investigated using a proposed non-hydrostatic 

model and mooring force is estimated using nonlinear model considering mooring contact 

with seabed for Catenary mooring and pre-tension for Tension Leg mooring [1]. This 

model has been verified by a water tank experiment. This study will employ Waris’s model 

to simulate the floater motion and verify the analytical solution of tower loading. 

Figure 2.7 shows the comparison of land-based wind turbine under the same wind 

conditions as considered for the offshore wind turbines. The loads for the two offshore 

cases is normalized w.r.t land based loads to represent the contribution of surge motion in 

case of tension legged mooring and surge and pitch motion for the Catenary mooring. It is 

obvious that floater motion increases the tower base moment. Waris [1] also discussed 

the contribution of the environmental loads. The wind turbine loads for Catenary mooring 

and Tension leg mooring are considered together. The two critical points for design of 

wind turbine is the tower base moment for support structure and the tower top moment for 

the yaw system. Figure 2.8 shows these two loads for the two types of mooring systems. 

The results show that both the wind and wave loads are critical for tower base, while wind 

loads govern the tower top for both types of mooring system. The pitch motion of floater 

increases the tower base and top moment, especially tower base moment. 

The problem is that all the previous research is based on numerical simulation, and the 

wave-induced load and wind-induced load are coupled together and the effects from 

different degrees of freedom of floater motion are also coupled, as a result the contribution 

of each motion is unclear yet. In most of the real designs of floating offshore wind turbine, 

the work of wind engineers and ocean engineers is separated. The ocean engineers can 

provide the floater response without considering the effect from the superstructure (wind 

turbine part), and the wind engineers usually only concern the wind load acting on wind 

turbine. Hence, the most important significance of this study is providing the connection 

work for wind engineers to calculate the wave-induced load using the floater motion 
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provided by the ocean engineers. Therefore, it would make sense for the wave-induced 

load and wind-induced load to be investigated independently, and then their combination 

can be performed to get the final design value. For each kind of load, the analytical 

formulae should be proposed to make the application more convenient and identify their 

dominant influence factors as well, which would be very useful for the optimization of 

floating wind turbine system. 

 
(a) Tower Base Moment 

 
(b) Tower Top Moment  

Figure 2.7 Comparison of tower load from Catenary and Tension Legged Mooring [1] 
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(b) Tower Top Moment 

Figure 2.8 Standard Deviation of Wind turbine Loads of Tension Leg mooring [1] 

2.2.2. Calculating Model 

The floater system has six degrees of freedom, three translational (Surge, Sway and 

Heave) and three rotational (Roll, Pitch and Yaw) as shown in Figure 2.9. The tension 

legged mooring and catenary mooring shown in Figure 2.10, will be used in this research 

to investigate the influence of floater motion on tower loading, respectively. 

Tension-Legged Mooring 

For the tension-legged mooring the floater is buoyant by 15–25%. Vertical tethers 

anchored to the seabed are used to support the buoyant floater. The buoyancy results in 

very high pre-tension in the tethers. The restoring force for wave-induced floater motions 

is provided by these pre-tensioned tethers. In such mooring system, the heave motion is 

almost completely restrained, and depending on configuration, sway, pitch, roll and yaw 

may also be restraint [1]. Hence, the floater with tension-legged mooring is statically 

stable, and only the surge motion will have significant effect on the tower loading. 

Catenary Mooring 

Catenary moorings are defined by standard Catenary equation, which relate 

submerged weight of suspended lines, horizontal mooring load, line tension and line slope 

at fairlead. The restoring force for wave-induced floater motions is ensured by geometrical 

change in catenary shape and partially through axial elasticity of lines. Large geometrical 

changes make catenary mooring systems subject to significant dynamic effects due to 

transverse drag load. The chain length is usually so adjusted that the anchor does not 

experience any uplift force, which leads to a large portion of the line always lying on the 

seabed. This leads to a very large foot area for the mooring system but it is economical 

and easy to design [1]. Unlike the tension-legged mooring, the pitch motion will also affect 

the tower loading as well as the surge motion. 
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Figure 2.9 Degrees of freedom of a floating wind turbine system [1] 

 

Figure 2.10  Types of Floating systems analyzed in this study 

Wind engineers always consider the wind turbine as fixed-foundation. Takahashi [17] 

used the fixed-foundation model with acceleration acting on tower base to consider the 

influence of floater motion on the fatigue load, as shown in Figure 2.11. However, this 

fixed-foundation model is not verified, and in most cases it can’t be used. Hence, in this 

study it is necessary to propose an equivalent sway-rocking model to consider the floater 

surge and pitch motions which have large influence on the tower loading of floating wind 

turbine, so that the tower loading can be estimated by the equivalent static method. 

Meanwhile, the problems of using conventional fixed-foundation model will be clarified. All 

these issues will be discussed in Chapter 3. 

In the sway-rocking model shown in Figure 2.12, sway (surge motion) can be 

represented with the lateral spring and rocking (pitch motion) with rotational spring. The 
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effects of floater motion will be considered by acting a wave force on the floater in the 

sway-rocking model. Different from earthquake engineering, the stiffness, damping and 

wave force will be determined by known tower base response. 

 

Figure 2.11 Fixed-foundation model 

 

Figure 2.12  Sway-rocking model 

2.2.3. Wave-induced Load 

With SR model, the effect of sway motion as well as rocking motion can be determined 

separately by locking the other mode. Since the maximum response of sway and rocking 

can’t occur simultaneously, the combination of them becomes important. Referring to the 

seismic loads specified in AIJ [18], square root of sum of squares (SRSS) and complete 

quadratic combination (CQC) are used for the combination. In Chapter 4, it will be 

determined which kind of combination can give good result for floating wind turbine 

system.  

In addition, the superstructure is not considered in the floater motion. Hence, in the 

connection work, the coupling between wind turbine and floater should be considered, 

which will cause the tower vibration. The resonance of tower vibration results in the non-

Gaussian feature and increases the tower loading. Therefore, a non-Gaussian peak factor 

model will be proposed, so that the maximum wave-induced load under irregular wave 

can be predicted by the equivalent static method. 
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2.2.4. Wind-induced Load 

Unlike high-rise buildings and chimneys, wind turbines are designed based on the IEC 

classes, which requires the assessment of structural integrity by load calculations with 

reference to site specific conditions [9]. The wind load on wind turbine can be evaluated 

by FEM, but it requires the detailed information of wind turbine which is not usually 

available from the manufacture, and moreover, FEM is time-consuming and costly. 

Therefore, the formulae for wind load estimation are in need instead of FEM simulation. 

Wind Energy Handbook [10] adopts equivalent static method to estimate the design wind 

load of wind turbine, which is taken as a Gaussian process and the non-linear part of wind 

pressure is neglected. Therefore, for wind turbines exposed to high wind turbulence in 

mountain areas, the design wind load may be underestimated, since contribution of the 

non-linear part of wind pressure is large and the response is non-Gaussian. Binh et al. [11] 

considers the non-linear part of wind pressure in the mean wind load and proposed a non-

Gaussian peak factor. This model gives a good performance for the prediction of design 

wind load compared with that in Wind Energy Handbook.  

Binh’s model is conducted for along-wind load which is maximum for stall-regulated 

wind turbine. IEC 61400-1 [9] specifies the abnormal case (loss of electrical network 

connection) in which the yaw control may fail at any wind direction. In some wind 

directions, the lift force on rotor may become significant, which is different from the 

conventional high-rise buildings and chimneys, and neglecting this across-wind load 

would underestimate the design load and cause the collapse of wind turbine [12], [13]. 

Therefore, the across-wind load should be considered and the combination with along- 

wind load is necessary as a matter of course. Waris [1] compared the wind loads between 

tension leg system and catenary system, which were found to be different, but no clear 

explanation was given yet. It also means that the fixed-foundation model can’t be used to 

calculate the wind load, too. However, SR model can solve these problems. All these 

issues will be discussed in Chapter 5.  

2.2.5. Combination of Wave-induced Load and Wind-induced 

Load 

IEC 61400-3 [19] has given the combination of wave-induced load and wind-induced 

load for bottom-mounted wind turbine, using reduced extreme wind speed or reduced 

wave height. There is no stipulation about the combination for floating wind turbine system 

in IEC yet. Hence, first the correlation between wave-induced load and wind-induced load 

needs to be clarified. Furthermore, it needs to be confirmed whether the constant value of 

load reduction factor given in IEC for bottom-mounted system can be used for the floating 

wind turbine system or not. These will be the targets of Chapter 6. 

2.3. Objectives of this Study 

In view of the earlier discussions, the current research sets the following objectives: 
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• Propose an equivalent SR model to consider the influences of floater motions on 

the tower loading of floating wind turbine systems.  

• Propose the evaluation formulae for wave-induced load with SR model, 

considering the non-Gaussian characteristics mainly due to the resonance of tower 

vibration.  

• Propose the evaluation formulae for wind-induced load, identifying the 

characteristics of critical parameters, and explain why SR model should be used. 

• Propose the load reduction factor for floating wind turbine systems in the 

combination of wave-induced load and wind-induced load, clarifying their 

correlation. 
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Chapter 3. EQUIVALENT SR MODEL FOR 
FLOATING WIND TURBINE SYSTEM 

3.1. Introduction 

In this chapter, two kinds of mooring systems: tension leg mooring and catenary 

mooring are considered. The methods of describing the behavior of the wind turbines 

installed with these two kinds of mooring systems are presented. Takahashi [1] used the 

fixed-foundation model with acceleration acting on tower base to consider the influence of 

floater motion on the fatigue load. However, this fixed-foundation model is not verified, 

and in most cases it can’t be used. Since surge and pitch are two main wave-induced 

motions, SR model is used as the equivalent calculating model to consider the influences 

of floater motions on the tower loading of floating wind turbine systems. The equivalent 

stiffness, damping and wave force (moment) for sway (surge) and rocking (pitch) modes 

are identified. The effect of each motion is investigated separately by locking the other 

mode. Meanwhile, a theoretical comparison between SR model and fixed-foundation 

model is performed with modal analysis and thus the problems of using the latter model 

have been clarified. 

3.2. Full Model of Floating Wind Turbine System 

This study will use a semi-submersible type floater installed with NREL 5-MW baseline 

wind turbine with catenary mooring and tension legged mooring to investigate the 

influence of floater motion to tower loading, respectively.  

3.2.1. Properties of Floating Wind Turbine System 

NREL 5-MW Baseline Wind Turbine 

The National Renewable Energy Laboratory’s (NREL) offshore 5-MW baseline wind 

turbine is used here. For detail regards the wind turbine reference made by Jonkman [2]. 
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As the developed CAsT program is not able to consider pitch control, wind turbine is 

considered as stall regulated. The basic properties of this wind turbine are summarized in 

Table 3.1.  

Table 3.1 Properties of NREL 5MW wind turbine [2] 

Rated Power 5 MW 

Rotor Orientation, Configuration Upwind, 3-blades 

Drivetrain High Speed, Multi-stage gearbox 

Rotor, Hub diameter 126, 3 m 

Hub Height 90 m 

Cut-In, Rated, Cut-Out wind speed 5.0, 11.4, 25 m/sec 

Cut-In, Rated Rotor Speed 6.9 rpm, 12.1 rpm 

OverHang, Tilt 5.0 m, 5.0° 

Rotor Mass 110,000 Kg 

Tower Mass 240,000 Kg 

Semi-submersible Type Floater  

The details of floater are available in Waris’s doctoral dissertation [3]. The salient 

features of the floater are listed in Table 3.2. 

Table 3.2 Details of semi-submersible floater [3] 

Description Detail Dimension 

Span  60.0 m 

Submerged Depth  20.0 m 

Overall Height  30.0 m 

Total Weight  5,638,760 Kg 

Peripheral Bracing  φ 2.5 m 

Top φ 1.8 m 

Inclined φ 1.8 m Inner Bracing 

Bottom φ 1.8 m 

Top φ 9.0 m 
Corner Column 

Bottom φ 10.0 m 

Central Column  φ 9.0 m 
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Mooring System 

The catenary mooring system is considered to consist on three mooring lines, each 

having span of 400 m. The mooring lines are separated at 120°, with front two lines 

having an angle of 60° with the incident wave and the third aligned in the wave direction. 

All the three lines have a common fairlead at the base of the central column of the floater 

that supports the wind turbine on top. The mooring arrangement is shown in Figure 3.1, 

where the circles denote nodes in the finite element model [3].  

The tension legged mooring arrangement is shown in Figure 3.2. Three tethers are 

considered, that are connected to each of the corner columns. The mooring arrangement 

is so considered to eliminate pitching motion of the floater [3]. 
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Figure 3.1 Catenary Mooring Arrangement [3] 
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(c) Side Elevation  

Figure 3.2 Tension Leg Mooring Arrangement [3] 

 

3.2.2. Finite Element Model  

A finite element model that can use beam, truss and spring type elements and can 

consider full coupled interaction between wind turbine, floater and mooring system has 

been developed by Waris [3]. The time domain analysis enables the model to efficiently 

capture nonlinear effects. Morison equation with Srinivasan’s Model is used for estimation 
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of hydrodynamic force on the system, restoring force is investigated using a proposed 

non-hydrostatic model and mooring force is estimated using nonlinear model considering 

mooring contact with seabed for catenary mooring and pre-tension for tension leg mooring. 

For details of this finite element model refers to Waris’s doctoral thesis [3], and here a 

summary of the numerical scheme and description of the FE-model are presented in 

Table 3.3 and Table 3.4. 

Table 3.3 Description of the finite element numerical scheme 

Dynamic Analysis Direct Implicit Integration (Newmark- β ) 

Formulation Total Lagrangian formulation 

Convergence Newton-Raphson Method 

Damping Estimation Caughey Series 

Element Type 

Ordinary Beam (12-DOF), 

Pre-stressed Beam (12-DOF), 

Truss (8-DOF), 

Aerodynamic force Quasi-static aerodynamic theory 

Hydrodynamic Force Morison Equation + Srinivasan Model 

Restoring Force Non-Hydrostatic Model 

Mooring Force Nonlinear 

Seabed contact Penalty Method 

Table 3.4 Description of FE-model used in the study 

Component Description No. of Element Type 

Tower 10 Beam 

Nacelle 4 Beam Wind Turbine 

Blades 24/ blade Beam 

Floater - 109 Beam 

Catenary 30 / line Truss 
Mooring System 

Tension leg 10 / tether Pre-stressed Beam 

3.3. Sway-Rocking Model 

In order to propose the analytical formulae for wave-induced tower loading, an 

equivalent calculating model of floating wind turbine system is in need. In this study, sway-

rocking model shown in Figure 3.3 is borrowed from earthquake engineering [4] to clarify 

the contribution of each motion to the tower loading. The complex mooring system of 
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floating wind turbine system is modeled as two kinds of springs and dampers. Sway 

(surge motion) can be represented with the lateral spring and rocking (pitch motion) with 

rotational spring. The effects of floater motion will be considered by acting a wave force on 

the floater. Different from earthquake engineering, the stiffness, damping and wave force 

should be determined by known tower base response.  

 

Figure 3.3 Sway-rocking model 

Table 3.5 Lumped mass of wind turbine 

 
Node number 

i  
Height from tower base ih  

(m) 

Lumped mass im   

(kg) 

floater, added 
mass 

1 0 4134403.52 

2 8.76 45861.86 

3 17.52 42825.06 

4 26.28 39891.40 

5 35.04 37060.89 

6 43.80 34333.51 

7 52.56 31709.23 

8 61.32 29188.10 

9 70.08 26770.12 

tower 

10 78.84 24455.25 

three blades, 
hub, nacelle 

11 87.60 361661.80 

In order to give a clear explanation about the tower loading, the wind turbine (three 

blades, hub, nacelle, and tower) and floater can be modeled as 11 lumped masses (Table 

3.5), since the aerodynamic force is not considered here. The mass of floater including the 
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added inertial mass is the base mass 1m . The added inertial mass is function of volume of 

half sphere under the floater base and will cause added inertia force [3]. The tower is 

divided into nine masses 2m ~ 10m . The three blades are regarded as rigid approximately 

and can be modeled as a large mass 11m  above the tower top with hub and nacelle 

together.  

3.3.1. Stiffness and Damping 

With the full model of floating wind turbine system, taking the superstructure (wind 

turbine and floater) as rigid body, the sway frequency Sω and rocking frequency Rω  can be 

obtained by eigenvalue analysis or free vibration simulation using FEM. Thus, the stiffness 

of the two springs can be calculated as follows: 

2

1

n

S i S

i

k m ω
=

 
=  
 
∑                                                                                                                3.1 

2 2

1

n

R i i R

i

k m h ω
=

 
=  
 
∑                                                                                                            3.2 

From the displacement time series of free vibration simulation, the sway damping 

ratio Sξ and rocking damping ratio Rξ  can be recognized. Thus, the damping of the two 

dampers can be calculated as follows: 

1

2
n

S i S S

i

c m ω ξ
=

 
=  

 
∑                                                                                                            3.3 

2

1

2
n

R i i R R

i

c m h ω ξ
=

 
=  

 
∑                                                                                                        3.4 

3.3.2. Equivalent Wave Force 

Since the tower base response can be known from the ocean engineer in the real 

project, which means the displacement 1[ ]x , velocity 1[ ]v  and acceleration 1[ ]a at the 

tower base are given. In this study, the tower base response can be obtained from 

simulation. With modal analysis, the equivalent wave force can be calculated. 

Sway Direction 

By locking the rocking motion as shown in Figure 3.4, the modal equation of motion of j 

th mode in sway direction is: 
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S

jM  is the generalized mass, 
S

jC  is the generalized damping and 
S

jω  is the modal natural 

frequency in radians per second,  
S

jf is the modal displacement, ( )1, ,S

kj k nφ = L is the 

normalized mode shape of the j th mode, and ( )waveF t is the equivalent wave force in 

sway direction. 

 

Figure 3.4 Sway model 

In modal analysis the excitations of the various different natural modes of vibration are 

computed separately and the results superposed. Thus the displacement 
S

kjx  of the j th 

mode at node k is given by:  

( ) ( )S S S

kj j kjx t f t φ= ⋅                                                                                                              3.6 

If the regular wave is used, the modal displacement ( )S

jf t  can be shown as: 
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S

jβ is the ratio between external wave frequency ω and structural natural frequency, and 
S

jξ is the damping ratio, which can be identified by free vibration simulation or Eq. (5.44) in 

Chapter 5 for the first mode and the same way is used for
R

jξ  in rocking direction. 

From Eqs. (3.6) and (3.7), the tower base displacement can be calculated as: 
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1 1
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Hence, the equivalent wave force in sway direction can be calculated as: 
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Rocking Direction 

By locking the sway motion as shown in Figure 3.5, the modal equation of motion in 

rocking direction is: 
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R

jM  is the generalized mass, 
R

jC  is the generalized damping and 
R

jω  is the modal natural 

frequency in radians per second,  
R

jf is the modal displacement, ( )1, ,R

kj k nφ = L is the 

normalized mode shape of the j th mode, and ( )waveM t is the equivalent wave moment in 

rocking direction. 



 

 - 34 - 

 

Figure 3.5 Rocking model 

Thus the angular displacement 
R

kjθ  of the j th mode at node k is given by:  

( ) ( )R R R

kj j kjt f tθ φ= ⋅                                                                                                            3.12 

The modal displacement ( )R

jf t  can be shown as: 
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From Eqs. (3.12) and (3.13), the tower base angular displacement can be calculated as: 
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Hence, the equivalent wave moment can be calculated as: 
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From Eqs. (3.10) and (3.16), the equivalent wave force or moment can be calculated 

with the tower base displacement, damping ratio, the ratio between external wave 

frequency and structural natural frequency, and the mode shape of tower base. 

3.4. Verification of Sway-Rocking Model 

The natural periods of the two kinds of floating wind turbine system are tabulated in 

Table 3.6. The first mode shape is shown in Figure 3.6. It is noticed that the sway-rocking 

model is able to give very close natural periods and mode shape to the full model.  

Figure 3.7 shows the comparison of the shear force on wind turbine tower. It is obvious 

that sway-rocking model shows good agreement with full model. Therefore, sway-rocking 

model is verified as the equivalent model to calculate the wave-induced tower loading for 

floating wind turbine system. 

Table 3.6 The first natural periods 

 
Tension leg  

Full model / SR model 

Catenary  

Full model / SR model 

Sway  31.3 s / 31.9s 26.8s / 26.2s 

Rocking - 14.3s / 15.0s 
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(b) Rocking of catenary system 

Figure 3.6 The first mode shape of wind turbine tower 
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(b) Top shear force 

Figure 3.7 The shear force on wind turbine tower of tension leg system  

3.5. Comparison between SR Model and Fixed-

foundation Model 

A theoretical comparison between sway-rocking model and fixed-foundation model is 

performed to make their difference clear. The shear force at different tower height is 

derived with modal analysis for the sway-rocking model and fixed-foundation model. For 

the two models, since the first mode is dominant, the shear force from the first mode is 

compared. 

3.5.1. Shear Force of Sway-Rocking Model 

Sway Direction 

From Eq. (3.6), the displacement at node k can be calculated as: 
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1

n
S S S

k j kj
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Then substituting (3.7), the acceleration at node k can be calculated as: 
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Then the shear force at node i can be calculated as: 
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Since the equivalent wave force ( )waveF t is calculated from the tower base response, 

the shear force due to sway motion can be obtained from the tower base response as well: 
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where ( )Sa t is the known sway acceleration at tower base. If only the first mode is 

considered, the shear force becomes 

( ) ( ) ( )1 1
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where 1 1 11

S S S

k kφ φ φ∆ = − . 1 11/S S

kφ φ∆  is defined as the elastic/solid ratio of mode shape at node 

k.       

Rocking Direction 

 From Eq. (3.12), the angular displacement at node k can be calculated as: 
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Then substituting (3.13), the angular acceleration at node k can be expressed as: 
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The linear displacement at node k can be expressed as:  
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Then substituting (3.23), the linear acceleration at node k can be calculated as: 
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Then the shear force at node i can be calculated as: 
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Like sway direction, since the equivalent wave moment ( )waveM t is calculated from the 

tower base response, the shear force due to rocking motion can be obtained from the 

tower base response as well: 
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where ( )Ra t is the known rocking acceleration at tower base. If only the first mode is 

considered, the shear force becomes 
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where 1 1 11

R R R

r rφ φ φ∆ = − . 1 11/R R

rφ φ∆  is defined as the elastic/solid ratio of mode shape at node 

r.       

3.5.2. Shear Force of Fixed-foundation Model 

The sway and rocking acceleration at tower base from the FEM simulation of floating 

wind turbine system will be used to a fixed-foundation wind turbine in each corresponding 

direction.  
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Sway Direction 

 

Figure 3.8 Fixed-foundation model with sway acceleration 

Figure 3.8 shows the fixed-foundation model with sway acceleration. The modal 

equation of motion is expressed as: 

( ) ( ) ( ) ( )2

1

n
s s s

j j j j j j j S k kj

k

M f t C f t M f t a t mω φ
=

+ + = − ∑&& &                                                        3.29 

where       
2

1

n

j k kj

k

M m φ
=

=∑ ,   

                 
2

1

n

j k kj

k

C c φ
=

=∑  

jM  is the generalized mass, jC is the generalized damping and jω  is the modal natural 

frequency in radians per second,  
s

jf is the modal displacement, kjφ is the normalized 

mode shape of the j th mode. 

Thus the displacement 
s

kjx  of the j th mode at node k is given by:  
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jf t  can be shown as: 
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( )jD ω is the dynamic magnification factor, jβ is the ratio between external wave 

frequency and structural frequency, and jξ is the damping ratio. 

Then the acceleration is expressed as: 
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where 
s

jγ is the well-known participation factor. Therefore, the shear force at node i of 

tower can be calculated as: 
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If only the first mode is considered, the shear force becomes 
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Rocking Direction 

 

Figure 3.9 Fixed-foundation model with rocking acceleration 

Figure 3.9 shows the fixed-foundation model with rocking acceleration. The modal 

equation of motion is expressed as: 
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The displacement 
r

kjx  of the j th mode at node k is given by:  
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The modal displacement ( )r
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Then the acceleration is expressed as: 
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where 
r

jγ is the participation factor for the rocking direction. Therefore, the shear force at 
node i of tower can be calculated as: 

( ) ( ) ( ) ( ) ( ) ( ),

1 1

,
n n n n n

F r r

i r k kj R k k j kj j j j R k R k

k i j k i j k i

Q t m x t a t h m A a t m a t hγ φ β ξ
= = = = =

 
= + = + 

 
∑ ∑ ∑ ∑ ∑&&    3.43 

If only the first mode is considered, the shear force becomes 

( ) ( ) ( )( ), 1 1 1 1 1,
n

F r

i r k R k k

k i

Q t m a t h Aγ φ β ξ
=

= +∑                                                                       3.44 

3.5.3. Comparison of Shear Force 

Taking the sway direction as example, from Eqs. (3.21) and (3.37) it is found that both 

the shear forces of the sway-rocking model and fixed-foundation model consist of solid 

part and elastic part, as shown in Figure 3.10. The solid parts are totally same, but the 

elastic parts are different. Therefore, the elastic parts of the shear force on the tower base 

are compared for the two models in this research. 

 

Figure 3.10 Solid part and elastic part of shear force 

SR Model 

From Figure 3.10, it can be seen that the elastic part of shear force for SR model is the 

function of elastic/solid ratio of mode shape 1 11/S S

kφ φ∆ . The mode shape will change with 

the stiffness Sk of sway spring, as shown in Figure 3.11. Take the elastic/solid ratio of 
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mode shape at tower top 1 11/S S

nφ φ∆  as indicator. It increases when the stiffness Sk  

increases. Since the solid parts of the two models are the same, the elastic part of shear 

force is normalized by the solid part, as shown in Figure 3.12. It is noticed that the elastic 

part increases with 1 11/S S

nφ φ∆  linearly, which means it increases when the stiffness Sk  

increases. 

 

Figure 3.11 Variation of mode shape of SR model with stiffness Sk  

 

Figure 3.12 Elastic part of shear force normalized by solid part for SR model 

Fixed-foundation Model 

For fixed-foundation model, from Figure 3.10 it can be seen that the elastic part of 

shear force is the function of 1β , the ratio between external wave frequency and structural 
natural frequency. It can be interpreted as that the elastic part of shear force only change 
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with 1/T T , the ratio between external wave period and tower natural period, as shown in 

Figure 3.13. If 1/T T  is larger than 1, the elastic part of shear force decreases when 1/T T  

increases, which means it decreases with the external wave period.  
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Figure 3.13 Elastic part of shear force normalized by solid part for fixed-foundation model 

In the real situation, since 1 11/S S

nφ φ∆  of floating wind turbine system is usually less than 

15%, the elastic/solid ratio of shear force will be less than 0.08, and doesn’t change with 

wave period.  

Figure 3.14 ( 1 11/ 0.1S S

nφ φ∆ =  for SR model) compares the elastic parts of shear force 

from the two models. It is noticed that when 1/T T > 4, the fixed-foundation model 

underestimates the shear force, while when 1/T T < 4, it may give significant 

overestimation, which can be larger than 15%. Especially when 1/T T  becomes close to 1, 

the resonance would happen, so in this case this model is not reasonable at all. Therefore, 

the fixed-foundation model can not be used as the calculating model for floating wind 

turbine system, but sway-rocking model is the equivalent model, which will be used to 

predict the wave-induced load in Chapter 4. 
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Figure 3.14 Comparison of elastic parts of shear force ( 1 11/ 0.1S S

nφ φ∆ = ) 

3.6. Conclusions 

The conclusions and findings of this chapter are summarized as follows: 

• An equivalent SR model is proposed to consider the influence of floater surge and 

pitch motions on the tower loading of floating wind turbine. The stiffness and 

damping of sway and rocking modes are recognized by eigenvalue analysis or free 

vibration simulation using FEM; the equivalent wave force and moment are 

obtained with the tower base displacements.  

• The evaluation formulae of tower loading due to sway as well as rocking motion of 

floater are investigated separately by locking the other mode with modal analysis.   

• Through the theoretical comparison between SR model and fixed-foundation 

model, it is found that in short wave period, the fixed-foundation model may give 

significant overestimation, which can be larger than 15%; while in long wave period, 

it underestimates the tower loading.  
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Chapter 4. PREDICTION OF WAVE-INDUCED 
LOAD 

4.1. Introduction 

This chapter uses SR model to predict the wave-induced load under regular and 

irregular wave respectively. The combination of sway motion effect and rocking motion 

effect is calculated with complete quadratic combination (CQC) rule, and their correlation 

only depends on the damping and natural frequency of the system. Under irregular wave, 

the fluctuating wave load on wind turbine tower is a non-Gaussian process with two main 

peaks in its spectrum corresponding to wave peak frequency and wind turbine tower 

natural frequency respectively, therefore, a non-Gaussian peak factor model is proposed, 

so that the maximum wave-induced load under irregular wave can be predicted by the 

equivalent static method. 

4.2. Wave Conditions 

4.2.1. Regular Wave 

In Chapter 3, the linear Airy wave is used to derive the shear force with modal analysis, 

since this kind of regular wave has single wave period and is easier to explain the effect of 

external frequency on the structural response. The extreme wave height 20extremeH m=  

and wave periods varying from 10s - 20s at intervals of 1s are used in regular wave case.  

4.2.2. Irregular Wave 

In the absence of information defining the long term joint probability distribution of 

extreme wind and waves, it shall be assumed that the extreme 10-min mean wind speed 

with a 50-year recurrence period occurs during the extreme 3-hour sea state with a 50-

year recurrence period [1]. The wave climate is represented by the significant wave height 

sH  and the spectral peak period pT . In the short term, i.e. over a 3-hour or 6-hour period, 
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stationary wave conditions with constant sH  and constant pT  are assumed to prevail. In 

this study the extreme 3-hour sea state with a 50-year recurrence period will be 

considered. 

The extreme wave height (EWH) of 3-hour reference period is taken as 20extremeH m= in 

this study. Assuming a Rayleigh distribution of wave heights, it may be assumed that: 

,3

20
10.75

1.86 1.86

extreme
s hour

H
H m= = =                                                                                     4.1 

The significant wave height for a 1-hour simulation period may be obtained from the 

value corresponding to a 3-hour reference period by the use of the conversion factor 

2 1.09k =  for deep water sites: 

,1 ,31.09 11.72s hour s hourH H m= × =                                                                                        4.2 

There are several models available for the estimation of spectrum for the wave time 

history. All these models consider a fully developed sea-state for the estimation of the 

spectrum. Some of the more renowned models are: 

• Neumann-Pierson Model 

• Pierson-Moskowitz 

• SMB (Sverdrup-Munk-Bretschneider) Method 

• JONSWAP 

The time history of wave elevation is generated using model developed by Chaplin [2] 

for JONSWAP spectrum. 

( )
2

2

15 4 exp 1
222. exp 1.25 .

2 2 2

PT

P P P
S

T T T
S H

ω
πτω ω

ω α γ
π π π

  − − − −  
  ∗  

    = −    
     

                                     4.3 

( )

0.0624

0.1850.230 0.0336
1.9

α
γ γ

∗ =
+ −

+

                                                                             4.4 

where ω  is the angular frequency of wave, SH  is significant wave height, PT  is peak wave 

period, γ  is peakedness parameter ( 3.3γ =  is used here) and τ  is the shape parameter 

( aτ τ=  for 2 / PTω π≤  and bτ τ=  for 2 / PTω π> ). The values used in this study are 

0.07aτ = , 0.09bτ =  according to Chakrabarti [3].  

In the simulation of this research, significant wave height ,1 11.72s hourH m=  and peak 

wave periods PT varying from 10 - 20 sec at intervals of 1s are used in irregular wave case. 
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4.3. Tower Loading Under Regular Wave 

The tower loading due to sway motion and rocking motion can be calculated from Eqs. 

(3.21) and (3.28) with the known tower base acceleration accordingly. Defining the tower 

base acceleration in sway direction as ( ) ( )0 sinS Sa t a tω= , and that in rocking direction as 

( ) ( )0 sinR Ra t a tω= , where 0Sa  and 0Ra are the acceleration amplitude, ω  is the angular 
frequency, the same as that of wave. Then the amplitude of shear force on tower can be 

calculated from the acceleration amplitude. 

1
0 0

11

1
Sn

S k
i k S S

k i

Q m a
φ
φ=

 ∆
= + 

 
∑                                                                                                   4.5 

( )
1

1
0 0 1

1 11

Rn k
R r
i k R k r rR

k i r

Q m a h h h
φ
φ

−

+
= =

 ∆
= + − 

 
∑ ∑                                                                            4.6 

where 0

S

iQ and 0

R

iQ  are the amplitude of shear force due to sway motion and rocking 

motion, respectively. 

4.3.1. Tension Leg System 

Figure 4.1 shows the comparison of shear force amplitude on tower base and top with 

FEM simulation. It is obvious that for tension leg system the rocking motion has no 

contribution to the shear force, and the sway motion can determine the total load.  

0 0

S

i iQ Q=                                                                                                                             4.7 
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(a) Base shear force 
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(b) Top shear force 

Figure 4.1 Comparison of shear force on wind turbine tower for tension leg system 

4.3.2. Catenary System 

Figure 4.2 shows the comparison of shear force for catenary system. It indicates that 

sway motion effect can’t reproduce the tower loading of catenary system, and so can’t 

rocking motion, because both the two motions have significant effect on tower loading of 

catenary system. Hence, the influence of the two motions should be combined together.  
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(a) Base shear force 
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(b) Top shear force 

Figure 4.2 Comparison of shear force on wind turbine tower for catenary system 

From the FEM simulation, it is recognized that the maximum response of sway and 

rocking don’t occur concurrently, but a certain correlation exists between them. Referring 

to the seismic loads specified in AIJ [4], complete quadratic combination (CQC) is used 

here for the combination.  

( ) ( )2 2

0 0 0 0 0

CQC S S R R

i i SR i i iQ Q Q Q Qρ= + +                                                                                  4.8 

where SRρ is the correlation factor between sway and rocking modes. 

( )
( ) ( ) ( )

3/2

2 2 2 2 2

8

1 4 1 4

S R S SR R SR

SR

SR S R SR SR S R SR

r r

r r r r

ξ ξ ξ ξ
ρ

ξ ξ ξ ξ

+
=

− + + + +
                                                           4.9 

where , S Rξ ξ are the damping ratios of sway and rocking, respectively. /SR S Rr ω ω=  is the 

ratio between the natural frequency of sway and rocking modes. Therefore, the correlation 

between sway and rocking modes doesn’t change with the external excitation, i.e., wave 

force, and it only depends on the damping and natural frequency of the system. Here, Sξ = 

0.20, Rξ = 0.21, Sω = 0.26, Rω = 0.37 have been obtained from the free vibration 

simulation. Thus, SRρ = 0.79 is calculated. 

Referring to AIJ [4], there is another method for sway-rocking combination: square root 

of sum of squares (SRSS), which is expressed as: 

( ) ( )2 2

0 0 0

SRSS S R

i i iQ Q Q= +                                                                                                  4.10 
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Figure 4.3 indicates that SRSS rule underestimates the shear force. As the sway and 

rocking modes have closer eigenvalues, CQC rule can give much better results. In 

addition, the catenary system has the larger shear force than tension leg system, since 

the rocking (pitch) motion of tension leg system is restrained. 
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(a) Base shear force 
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(b) Top shear force 

Figure 4.3 Comparison of shear force from CQC and SRSS 
 

4.4. Tower Loading Under Irregular Wave 

In real situation, the irregular wave should be used. For irregular wave, the tower 

loading is a random process. Hence, the standard deviation and peak factor is considered 

and their product is used to calculate the maximum load. 
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4.4.1. Standard Deviation  

Derived from Eqs. (3.21) and (3.28), Eq. (4.11) and Eq. (4.12) can be employed to 

calculate the shear force standard deviation due to the sway motion and rocking motion, 

respectively. 
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 
∑ ∑                                                                         4.12 

where aSσ and aRσ are the standard deviation of sway acceleration and rocking 

acceleration at the tower base, respectively.  

Tension Leg System 

For tension leg system, the sway motion can determine the total standard deviation: 

,i i Sσ σ=                                                                                                                           4.13 

Figure 4.4 shows that the proposed formula Eq. (4.13) agrees well with the simulation 

for the standard deviation of shear force at tower base and top. It is found that the 

standard deviation decreases with the peak period of wave. 
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Figure 4.4 Comparison of shear force standard deviation of tension leg system 
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Catenary System 

Based on the same idea for the calculation of shear force amplitude on tower under 

regular wave, the standard deviation of shear force under irregular wave can also be 

considered as the combination of sway effect and rocking effect using CQC rule: 

2 2

, , , ,i i S SR i S i R i Rσ σ ρ σ σ σ= + +                                                                                          4.14 

where iσ is the standard deviation of shear force at the ith node, ,i Sσ is the standard 

deviation due to the sway motion, ,i Rσ is that due to the rocking motion, and SRρ is the 

correlation factor between sway and rocking modes, which is the same as that of regular 

wave as shown in Eq. (4.9). 

Figure 4.5 shows that the proposed formula Eq. (4.14) agrees well with the simulation 

for the standard deviation of shear force at tower base and top. It is found that the 

standard deviation decreases with the peak period of wave as well. 
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Figure 4.5 Comparison of shear force standard deviation of catenary system 

4.4.2. Peak Factor 

Tension Leg System 

Before proposing the formulae of peak factor, power spectrum density of tower base 

shear force is investigated. Figure 4.6 shows the comparison of power spectrum density 

of tower base shear force for the wave periods: 10s, 15s and 20s. It is noted that the 

dynamic tower loading consists of three parts. Take the 10s case for example, the range 

around the first peak is the background motion part, which has the same peak frequency 

as the wave 0.1pn = , corresponding to the wave peak period 10s; The range around the 



 

 - 56 - 

second peak is due to the peak acceleration of the floater sway motion with the peak 

frequency 0.167sn = , corresponding to the peak period of sway acceleration 6s (shown in 

Figure 4.7); The range around the third peak is the resonant part due to the tower 

vibration with the peak frequency 0.289tn = , corresponding to the natural period of tower 

3.5s. The second and third peaks result in the non-Gaussian characteristics of the shear 

force, especially the third peak. From the comparison with 15s case and 20s case, it is 

found that when the wave period becomes longer, the two peaks will be reduced since the 

frequency difference from the wave becomes larger and external exciting effect becomes 

weaker, which means the non-Gaussianity will decrease when wave period increases. 

This feature is just the reason why the skewness of tower base shear force in Figure 4.8 is 

significant for 10s-15s, and can be neglected after 16s. Therefore, the tower loading is 

considered as a non-Gaussian process, and a non-Gaussian peak factor should be used 

for tension leg system.  

In this study, the skewness is obtained from the simulation results. Actually, the shear 

force is a bi-normal process with two main narrow normal peaks in the spectrum. It is a 

non-Gaussian process certainly, but can be decomposed into two Gaussian (normal) 

processes. The spectrum model of each Gaussian process can be easily proposed based 

on their standard deviation. With the spectra, the correlation between these two Gaussian 

processes can be calculated and the time series of shear force can be obtained by 

program. Then the skewness can be known from the time series. This numerical method 

can be used to determine the skewness. 

 

Figure 4.6 Comparison of power spectrum density of tower base shear force for tension 
leg system 
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Figure 4.7 Amplitude of sway acceleration at tower base for tension leg system 
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Figure 4.8 Skewness of tower base shear force of tension leg system 

Based on the model of Kareem et al. [5], the non-Gaussian peak factor for the tower 

shear force under irregular wave is proposed as: 

( )
( )

( )( )3
0 0

2
03

1 0.5772
2ln 2ln 1

62ln
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TLPg T T
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ν ν

να
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                                               4.15 

( )( )2 2
0 0 3 3/ 1 /18 1 / 9ν ν α α′ = + +                                                                                            4.16 

where 3α is the skewness of tower base shear force, 0ν ′  and 0ν are the zero up-crossing 

frequency of tower base shear force for non-Gaussian process and Gaussian process, 
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respectively. When 3 0α = , this non-Gaussian peak factor is reduced to Gaussian form. 

0ν can be calculated by:  

( )

( )

2

02
0

0
0

n S n dnm

m S n dn
ν

∞

∞= = ∫
∫

                                                                                            4.17 

where 2m and 0m are the second order spectral moment and the variance of the base 

shear force, respectively, n  is the frequency in Hertz, and ( )S n is the power spectrum 

density. Since the three parts of the spectrum in Figure 4.6 are all narrow band, the Eq. 

(4.17) can be expressed approximately by: 
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2

bσ  ,
2

sσ  and 
2

tσ  are the variance of background motion part, peak sway acceleration part 

and tower resonant part, respectively. Thus the zero up-crossing frequency of tower base 

shear force can also be written into three parts, then the contribution of each part is able 

to understood clearly. The proposed formula Eq. (4.18) shows good agreement with the 

simulation, as shown in Figure 4.9. The non-Gaussian peak factor shown in Figure 4.10 

decreases with the wave period, since the skewness and zero up-crossing frequency 

have the same tendency. 
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Figure 4.9 Zero up-crossing frequency of tower base shear force for tension leg system 
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Figure 4.10 Peak factor of tower base shear force for tension leg system 

Catenary System 

Figure 4.11 gives the comparison of the power spectrum density of tower base shear 

force for catenary system. Like the tension leg system, the dynamic tower loading consists 

of three parts as well. Take the 10s case for example, the first part is the background 

motion part; The second part is due to the peak acceleration of the sway and rocking 

motion of the floater; The third part is the resonant part due to the tower vibration. It is 

indicated that the second and third peaks are negligibly small compared to the 

background motion part, since the floater sway and rocking modes are much more 

dominant, and the tower resonance is only slightly excited. In 15s case and 20s case, the 

two peaks will not exist, and only the background motion part is left. As a result a 

Gaussian process can be assumed for the tower base shear force of catenary system. 

This feature is just the reason why the skewness of tower base shear force in Figure 4.12 

is close to zero for all wave periods. Therefore, a Gaussian peak factor could be used for 

the catenary system. 

With 3 0α = , the non-Gaussian peak factor of Eq. (4.15) is reduced to the Gaussian 

form: 

( )
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Figure 4.11 Comparison of power spectrum density of tower base shear force for catenary 
system 
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Figure 4.12 Comparison of skewness of tower base shear force between tension leg 
system and catenary system 

Since the background motion part is dominant in the spectrum of tower base shear 

force for catenary system, the variance ratios sR and tR  of standard deviation are 

negligibly small compared to those of tension leg system as shown in Figure 4.13. Hence, 

it can be assumed that 0sR ≈ , 0tR ≈ , then the zero up-crossing frequency in Eq. (4.18) 

will become: 
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0 pnν =                                                                                                                             4.20 

Eq. (4.19) can be used to calculate the peak factor approximately. Figure 4.14 

indicates that the Gaussian peak factor is enough for catenary system and it doesn’t 

change much with wave period. Compared to the non-Gaussian peak factor, the larger 

difference happens in the shorter wave periods 10s-15s. 
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Figure 4.13 Comparison of variance ratios of standard deviation 
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Figure 4.14 Comparison of peak factors between tension leg system and catenary system 

4.4.3. Maximum Shear Force 

With the standard deviation and peak factor, the maximum shear force for the two 

kinds of floating system can be calculated as: 

( )max,               i i TLP CATQ g g g or gσ= ⋅ =                                                                          4.21 
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Figure 4.15 and Figure 4.16 show the maximum shear force for the two kinds of 

floating system. The proposed formulae can predict the tower loading very well. 
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Figure 4.15 Comparison of maximum shear force for tension leg system 
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Figure 4.16 Comparison of maximum shear force for catenary system 

4.5. Conclusions 

The conclusions and findings of this chapter are summarized as follows: 

• For the shear force amplitude under regular wave and the standard deviation of 

shear force under irregular wave, the combination of sway motion effect and 

rocking motion effect can be determined by complete quadratic combination (CQC) 

rule. The correlation between them only depends on the damping and natural 

frequency of the system.  
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• For tension leg system, a non-Gaussian peak factor is necessary. This non-

Gaussian feature mainly results from the tower resonance. The non-Gaussianity 

will decrease with wave period, since the external exciting effect becomes weaker. 

• For catenary system, the shear force history can be regarded as a Gaussian 

process. The effect from tower resonance is negligibly small compared to the 

background motion part, since the floater sway and rocking modes are much more 

dominant. 
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Chapter 5. PREDICTION OF WIND-INDUCED 
LOAD  

5.1. Introduction 

This chapter gives details of the prediction of wind load. Equivalent static method is 

adopted to estimate the maximum wind load on wind turbine towers in this study. In both 

along-wind direction and across-wind direction, the theoretical formulae are proposed for 

mean wind load and gust loading factor which contains standard deviation and peak factor 

of fluctuating wind load. The critical parameters in the standard deviation such as mode 

correction factor, aerodynamic damping ratio and size reduction factor are investigated to 

identify the dominant influence factor and their characteristics. A consistent non-Gaussian 

peak factor which can be reduced to the standard Gaussian form for a Gaussian process 

is proposed. For floating wind turbine, SR model should be employed for the wind-induced 

load prediction, since the low natural frequency of floater increases the resonant standard 

deviation, while the large damping causes significant reduction. Considering the wind 

response correlation of along-wind direction and across-wind direction, a loads 

combination formula is proposed to calculate the final design wind load on towers.  

5.2. Wind Load Evaluation Method 

Wind load on wind turbine is usually evaluated either by FEM or by equivalent static 

method. While FEM simulation is commonly used in turbine design, equivalent static 

method is used widely in design of lower and other support structures. Equivalent static 

method is adopted in many design codes (AIJ [1]; DS472 [2]). This study will investigate 

the equivalent static method to estimate the wind load and use FEM simulation as 

validation.  

5.2.1. Equivalent Static Method 

Equivalent static method uses a coefficient called the peak factor proposed by 

Davenport [3] to account for fluctuating wind load. A study by Kareem and Zhou [4] proved 
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that the bending moment-based peak factor can yield more reliable results than 

displacement-based peak factor, because the mean value of displacement may be zero. 

Therefore, in this study, the bending moment-based peak factor is adopted. This means 

the term wind load should be interpreted as a bending moment. Then the maximum 

bending moment is estimated by Eq. (5.1).  

ff fM G M=                                                                                                                        5.1 

1
f Mf

f
f

g
G

M

σ⋅
= +                                                                                                                   5.2 

where fM is the mean bending moment, fG is the gust loading factor, fg is the peak 

factor, Mfσ is the standard deviation, the subscript f=D means along-wind and f=L means 

across-wind. The wind direction and wind load on wind turbine are defined as Figure 5.1.  

 

Figure 5.1 Wind direction and wind load 

The assumptions used in this study are listed below:  

1) The model of an elastic tower and a rigid rotor, shown in Figure 5.2 (b), is used to 

implement the theoretical formula of mean, standard deviation and the peak factor of wind 

load on a tower base. Since in wind load of wind turbine tower the effect of the first mode 

is dominant, only the first mode is considered. Referring to Ishihara [5], the first mode 

shape for rotor is assumed as ( )1 1rµ =  and ( ) ( ) ( )1 1 / s

hr z z H
βµ µ= =  is used for tower, 

where 2.0sβ = ;  

2) The tower height is assumed to be equal to the hub height; The rotor part of this 

study includes blades, hub and nacelle;  

3) Wind velocity and turbulence intensity at the hub of the wind turbine are used as 

representative for that of the whole rotor;  
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4) A uniform equivalent aerodynamic coefficient for the whole rotor is used instead of 

that varying with positions on the rotor;  

5) The bending moment due to the rotor gravity can be neglected, since the 

deformation of tower is very small; 

6) It is noted that this study is used for the commercial wind turbine with tubular tower.  

 

(a) Wind turbine                    (b) Simplified model with mode shape and wind profile 

Figure 5.2 Wind turbine and simplified model 

Considering a wind with longitudinal fluctuating component u and lateral fluctuating 

component v , the relation between wind velocity and a vibrated element in two-

dimensional direction under wind direction θ  is shown in Figure 5.3. Quasi-static method 

is used to calculate the wind force, in which after dropping the second order terms based 

on perturbation analysis and the terms caused by the across motion of the structure which 

cannot be obtained by the analytical method, and keeping the second order term 

( ) ( ) 2
1/ 2 fAC uρ θ , since the contribution of the non-linear part of wind pressure is large, 

especially for high wind turbulence (Binh et al. [6]) and the force ( )fAA Uvρ θ  due to the 

lateral wind fluctuation component v , the total wind force DF can be expressed as Eqs. (5.3) 

and (5.4), referring the Appendix A.2 for details.  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 21 1

2 2
D D D D D DF c r C U c r C u c r C Uu c r A Uv c r C Uxρ θ ρ θ ρ θ ρ θ ρ θ= + + + − &      5.3 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 21 1

2 2
L L L L L LF c r C U c r C u c r C Uu c r A Uv c r A Uyρ θ ρ θ ρ θ ρ θ ρ θ= + + + − &          5.4 

where ρ is the air density, ( )c r is the characteristic length of the element at position r ,U is 

the mean wind velocity, ( )DC θ and ( )LC θ  are the drag and lift aerodynamic coefficients 

respectively, ( ) ( ) ( )( )0.5 /D D LA C Cθ θ θ θ= ∂ ∂ − and ( ) ( ) ( )( )0.5 /L D LA C Cθ θ θ θ= + ∂ ∂ are the 

aerodynamic coefficient gradients in along-wind and across-wind directions respectively, 

x& and y& are the structural vibration velocity in these two directions, respectively. 
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Figure 5.3 Relative wind speed under element vibrations 

From Eqs. (5.3) and (5.4), the mean bending moment can be easily derived; The 

standard deviation of fluctuating wind load can be derived by means of modal analysis, 

which is illustrated in Eq. (5.5): 

( ) ( ) ( ) ( ) ( )2
,i i i i i i i im f t c f t m f t r q r t drω µ+ + = ∫&& &                                                                           5.5 

where im is the generalized mass, ic is the generalized damping and iω is the modal natural 

frequency in radians per second, ( )if t is the tip displacement, ( )i rµ is the normalized mode 

shape of the ith mode, and q(r,t) is the fluctuating wind load per unit length; The peak 

factors are obtained based on Kareem’s model [7]. All the derivation of integral forms is 

given in Appendix.  

5.2.2. Wind Turbine Model 

Seven stall-regulated wind turbine models of 100kW~2000kM are used in this study to 

investigate the tower wind load. The main information of each wind turbine is described in 

Table 5.1.  

Table 5.1 Wind turbine description 

Name Description 

Rated power 100kW 400kW 500kW 600kW 1000kW 1500kW 2000kW 

Rotor diameter 23.6m 31.0m 40.3m 51.6m 65.0m 76.5m 81.3m 

Hub height 24.0m 36.0m 44.0m 50.0m 70.0m 69.0m 76.5m 

The first 
frequency 

2.03Hz 0.81Hz 0.50Hz 0.53Hz 0.41Hz 0.43Hz 0.49Hz 
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5.3. Mean Bending Moment 

Since the integral forms of mean wind load, standard deviation and peak factor of 

fluctuating wind load derived from modal analysis are quite complex, it is necessary to 

propose formulae to make them easily applied for the estimation of wind load by 

engineers and get a clear understanding of the characteristics for each parameter as well.  

From Eqs. (5.3) and (5.4), the mean wind force DF , LF and mean bending 

moment DM , LM can be obtained: 

( ) ( )( ) ( ) ( ) ( )2 2 2 21 1
1

2 2
D D u D uF C c r U C c r U Iρ θ σ ρ θ= + = +                                                       5.6                                                   

( ) ( )( ) ( ) ( ) ( )2 2 2 21 1
1

2 2
L L u L uF C c r U C c r U Iρ θ σ ρ θ= + = +                                                         5.7 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2
, ,

1 1
, 1 1

2 2
D D u h uh h D r r D t hM C r c r U r I r rdr U I H C A C H Dρ θ ρ θ θ  ′ = + ≈ + +  ∫          5.8         

( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2
, ,

1 1
, 1 1

2 2
L L u h uh h L r r L t hM C r c r U r I r rdr U I H C A C H Dρ θ ρ θ θ  ′ = + ≈ + +  ∫            5.9          

where  

( ) ( ) ( ) ( ), , ,
0

3 , /
R

D r D n n D b rC C A C r c r dr Aθ θ θ 
= + 
 ∫ ,                                                     

( ) ( ) ( ) ( ), , ,
0

3 , /
R

L r L n n L b rC C A C r c r dr Aθ θ θ 
= + 
 ∫ ,   

( )
( )

( )( )
( )2

2

1.92 11

2 1 2 3 5.51

uh b tb t

uh

I D DD D
D

I

α

α α

 ++ +
′ = + 

+ + +  
.     

where hU is the mean wind velocity at hub height; 
uhI is the turbulence intensity at hub 

height in the along-wind direction; hH is the hub height; rA is the rotor area; nA is wind-acting 

area of nacelle and hub; bD and tD are the diameter of the bottom and top of tower; 

( ),D tC θ and ( ),L tC θ are the drag and lift aerodynamic coefficients of cylindrical tower, 

respectively, which are regarded to be constant. Referring to BSI code [8], ( ), 0.6D tC θ =  

and ( ), 0L tC θ = are used in this study (Figure 5.5); ( ),D rC θ and ( ),L rC θ are the equivalent 

drag and lift aerodynamic coefficients of rotor, calculated from those of 

nacelle ,D nC and ,L nC  (Figure 5.4 (a)) and those of blade ,D bC and ,L bC , which depend on the 

thickness ratio (thickness/chord) of the blade section. 2M wind turbine blade section 

(thickness ratio: 12%) by GH Bladed [9] and s809 (thickness ratio: 21%) by Somers [10], 

will be considered (Figure 5.4 (b)). Figure 5.5 illustrates the variation of equivalent drag 



 

 - 70 - 

and lift aerodynamic coefficients of rotor as well, which strongly correlates with those of 

blade, where ( ),D rC θ shows minimum near ±90° and maximum near 0° and ±180°, 

while ( ),L rC θ becomes 0 near ±180°, 0° and ±90°. 

From Eqs. (5.8) and (5.9), it is found that for along-wind direction, the mean bending 

moment is the summation of those from rotor and tower, while for across-wind direction, 

since ( ), 0L tC θ = , only rotor contributes to the mean bending moment, and becomes 0 at 

some yaw angles. Figure 5.6 shows how the proposed formulae strongly correlate with 

FEM. 
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(a) Aerodynamic coefficients of nacelle 
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(b) Aerodynamic coefficients of blade 

Figure 5.4 Aerodynamic coefficients for nacelle and blade 
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(a) Along-wind direction 
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 (b) Across-wind direction 

Figure 5.5 Aerodynamic coefficients for rotor and tower (400kW) 
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(a) Along-wind direction 
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(b) Across-wind direction 

Figure 5.6 Comparison of mean bending moment (400kW, 0.158uhI = ) 

5.4. Gust Loading Factor 

In Eq. (5.2), the gust loading factor is calculated from the mean bending moment, the 

standard deviation and peak factor of fluctuating bending moment. It is noted that this 

bending moment-based peak factor can be used for the calculation of shear force on the 

wind turbine tower.   

5.4.1. Standard Deviation 

Standard deviation of fluctuating wind load consists of a background part MBfσ and a 

resonant part MRfσ :  

2 2
Mf MBf MRfσ σ σ= +                                                                                                           5.10                  

For wind turbine, the across-wind mean bending moment becomes close to zero at 

some yaw angles. In this study the along-wind mean bending moment DM is employed to 

calculate both along-wind and across-wind standard deviation of bending moment. The 

background standard deviation should include two components: MBfuσ and MBfvσ , which 

depend on the fluctuation component u and v , respectively, as well as resonant standard 

deviation which consists of MRfuσ and MRfvσ . By FEM simulation, it is found that for along-

wind direction the standard deviation due to lateral wind fluctuation v  can be neglected 

compared to that due to longitudinal wind fluctuation u , as shown in Figure 5.7 (a).  

2 2
MBD MBDu MBDvσ σ σ= +                                                                                                      5.11                             

2 2
MRD MRDu MRDvσ σ σ= +                                                                                                      5.12                         
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where 

2
2

1

D

MBDu uh MBDu MBDu

uh

M
I K

I
σ γ= ⋅

+
,                      

2
2 0

1

D
MBDv vh MBDv MBDv

uh

M
I K

I
σ γ= ⋅ ≈

+
, 

( ) ( )1 12
2

1 4

D D
MRDu uh uh MRDu MRDu

uh D

M
I R n K n

I

πφ
σ γ

πξ
= ⋅

+
, 

( ) ( )1 12
2 0

1 4

D D
MRDv vh vh MRDv MRDv

uh D

M
I R n K n

I

πφ
σ γ

πξ
= ⋅ ≈

+
. 

While for across-wind direction in both background and resonant standard deviation 

MBLσ and MRLσ , neither part caused by the two wind fluctuation components can be 

neglected, sinceu contributes a lot to the standard deviation as well, although around the 

0° and ±90° most of the standard deviation comes form v ,as shown Figure 5.7 (b). 

2 2 2
MBL MBLu MBLvσ σ σ= +                                                                                                        5.13                         

2 2   MRL MRLu MRLvσ σ σ= +                                                                                                     5.14                          

where 

2
2

1

D

MBLu uh MBLu MBLu

uh

M
I K

I
σ γ= ⋅

+
,                    

2
2

1

D

MBLv vh MBLv MBLv

uh

M
I K

I
σ γ= ⋅

+
, 

( ) ( )1 12

2

1 4

D uh L
MRLu uh MRLu MRLu

uh L

IM
R n K n

I

πφ
σ γ

πξ
= ⋅

+
, 

( ) ( )1 12

2

1 4

D vh L
MRLv vh MRLv MRLv

uh L

IM
R n K n

I

πφ
σ γ

πξ
= ⋅

+
. 

Dφ , Lφ are the mode correction factor, Dξ and Lξ are the damping ratio, MBDuK , MBDvK and 

( )1MRDuK n , ( )1MRDvK n are denoted the background and resonant size reduction factors of 

along-wind direction owing to the lack of correlation of longitudinal and lateral wind 

fluctuations, MBLuK , MBLvK  and ( )1MRLuK n , ( )1MRLvK n are the background and resonant size 

reduction factors of across-wind direction, 1n is the first modal frequency of the tower, 

0.8vh uhI I= is the turbulence intensity at hub height in the across-wind direction, ( )1uhR n and 

( )1vhR n are the normalized power spectral density of longitudinal and lateral wind 

fluctuation, MBDuγ , MBDvγ MRDuγ , MRDvγ , MBLuγ MBLvγ MRLuγ MRLvγ are the wind load ratios, which 
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can be considered as the correction factors to the size reduction factors, resulted from the 

employing of along-wind mean bending moment DM to calculate the standard deviation of 

bending moment.  

The formulae of wind load ratios are proposed as Table 5.2, employing ,B Ra a as rotor-

tower ratios of area for background and resonant response, respectively and the average 

diameter of tower ( ) / 2a b tD D D= + . MBDvγ  and MRDvγ are negligibly small, which is the reason 

why MBDvσ and MRDvσ can be ignored compared to MBDuσ and MRDuσ . Refers to Appendix 

A.4.1 for the detailed derivation. 

Table 5.2 Wind load ratios 

Name Along-wind Across-wind 

Background 

wind load ratio 

1MBDuγ =  

( )
( )

2

,

,1

L r B
MBLu

D r B

C a

C a

θ
γ

θ

 ⋅
=   + ⋅ 

, 

( )
( )

2

,

,1

L r B
MBLv

D r B

A a

C a

θ
γ

θ

 ⋅
=   + ⋅ 

, 

( ),

 
0.47

r
B

D t a h

A
a

C D Hθ
=

⋅
 

Resonant 

wind load ratio 

1MRDuγ =  

( )
( )

2

,

,1

L r R
MRLu

D r R

C a

C a

θ
γ

θ

 ⋅
=   + ⋅ 

, 

( )
( )

2

,

,1

L r R
MRLv

D r R

A a

C a

θ
γ

θ

 ⋅
=   + ⋅ 

, 

( ), 0.3

r
R

D t a h

A
a

C D Hθ
=

⋅
 

From Figure 5.7, it is noticed that in across-wind direction the standard deviation 

becomes maximum near ±90° resulted in the large gradient of aerodynamic coefficient 

( )LA θ of rotor and show minimum value near 0° and ±180°, just opposite to the situation of 

along-wind direction. This is why the across-wind load should be considered when the 

inflow angle increases, and can be neglected compared to the along-wind load around 0° 

and ±180°. Analytical formulae will be proposed for the complex integral form of mode 

correction factor, aerodynamic damping ratio and size reduction factors in the following.    
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(a) Along-wind direction 
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 (b) Across-wind direction 

Figure 5.7 Comparison of standard deviation from u and v  (400kW, 0.158uhI = ) 
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(a) Along-wind direction 
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(b) Across-wind direction 

Figure 5.8 Comparison of standard deviation (400kW, 0.158uhI = )    

Mode Correction Factor  

Resulted from the employing of along-wind mean bending moment DM to calculate the 

standard deviation of bending moment, the same mode correction factor can be used for 

along-wind and across-wind direction (Eq. 5.15). In the mode correction factor, the rotor 

part and tower part are first considered separately and then introduce the factors aλ , bλ to 

consider the rotor effect by the rotor-tower mass ratio mγ and load ratio Fγ  on the base of 

that for tower, i.e., a′ and b′ . Finally, the integral form of mode correction factor Dφ can be 

derived as the product of five non-dimensional parameters, as shown in Eq. (5.16): 
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( ) ( ) ( )

( ) ( )

( ) ( )1 1

1

,

,

D

D L

D

C r r c r dr m r r rdr

mC r c r rdr

θ µ µ
φ φ

θ
= =

∫ ∫
∫

                                                                  5.15                                                                               

( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( )

1 , 1
0 0

1
,

0

/ 1 / 1

1 1

h h

h

H H

D t
s m F

D L M a bH
m t h F

D t
h

m z z zdz C d z z dz
m a b

a b
zm m H

C d z dz
H

µ θ µγ γ
φ φ γ λ λ

γ γ θ

  
  ′ ′+ +  ′ ′= ≈ ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅ 
 + +       

∫ ∫
∫

                                                                                                                                        5.16                        

where ( )m r is the mass per length of the element at position r , sm is the total mass of wind 

turbine, 1m is the generalized mass of the whole wind turbine for the first mode, 

rm and tm are the mass of rotor and tower, respectively, ( ) ( ) /b b t hd z D D D z H= − − is the 

diameter of tower. 1/M sm mγ = changes very little for different wind turbines with an 

average of 1.96. ( / 1) / ( 1)a m maλ γ γ′= + + , where /m r tm mγ = is rotor-tower ratio of mass, also 

changing very little for different wind turbines with an average of 0.79. 1/ (2 )sa β′ = + is 

derived theoretically, the same as that given by AIJ [1]. 

( / 1) / ( 1) 1.2 0.07cos 2b F Fbλ γ γ θ′= + + = +  is obtained by fitting the results of integral form, 

where , ,( ) / ( ( ) 0.42 )F D r r D t a hC A C D Hγ θ θ= ⋅  is rotor-tower ratio of load. b′ = 0.714 is derived 

theoretically and very close to 1 0.4ln sβ− which is given by AIJ [1]. Appendix A.4.1 gives 

the details of mode correction factor. 

A unified mode correction factor is obtained for different wind turbines. Figure 5.9 

shows good agreement between the proposed formula and the integral form. Due to the 

existence of rotor, Dφ and Lφ varie with yaw angle in a range larger than that of tower. It is 

noticed that if the rotor is removed, like tower or high-rise building, 

i.e., 0m Fγ γ= = , aλ and bλ will be 1.0, which will make the mode correction factor the same 

as that given in AIJ [1].  
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Figure 5.9 Comparison of mode correction factor 
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Damping Ratio 

Due to the existence of rotor, the aerodynamic damping may become much larger than 

the structural one at some wind direction and cannot be neglected, which is different from 

the high-rise buildings and chimneys. Therefore, the total damping ratio should be the 

summation of structural damping ratio sξ (Ishihara et al. [11] indicates 0.8%sξ =  for wind 

turbine with gear box) and aerodynamic damping ratio. It should be noted that for across-

wind direction, since the aerodynamic damping ratio aLξ may become negative at some 

yaw angle, ( )max ,L s aL sξ ξ ξ ξ= + is used to limit the total damping ratio Lξ not less than the 

structural one in order to avert aero-elastic instability. 

For along-wind direction, the aerodynamic damping ratio aDξ  contains two parts: the 

aerodynamic damping ratio for the rotor and the tower, as expressed in Eq. (5.17). It is 

found that most of the aerodynamic damping of wind turbine comes from the rotor, which 

results in nearly 9 times of that from the tower at most. While for across-wind direction, 

since the aerodynamic coefficient gradient ( ), 0L tA θ = for tower, the aerodynamic damping 

ratio aLξ  is totally caused by rotor, as expressed in Eq. (5.18). Refers to Appendix A.4.1 for 

the detailed derivation of aerodynamic damping ratio. 

( ) ( ) ( ) ( )
( ) ( )( )

2
1

, ,
1 1 1 1

,

4 4

D
h

aD D r r D t h

C r U r c r r dr U
C A C H D

m n m n

ρ θ µ ρ
ξ θ θ

π π
′′= = +∫
                               5.17                          

( ) ( ) ( ) ( ) ( )
2

,

1 1 1 1

,

4 4

L h r L r
aL

A r U r c r r dr U A A

m n m n

ρ θ µ ρ θ
ξ

π π
= =
∫

                                                              5.18                                    

where 

( )
( )( )

5

5 6

b tD D
D

α

α α

+ +
′′ =

+ +
,       

( ) ( ) ( ) ( ),
, ,

0

1
3 , , /

2

R
L b

L r D b r

C
A C r r c r dr Aθ θ θ

θ

∂ 
= + 

∂ 
∫ .                                                                                                                                                           

( ),L rA θ is the equivalent aerodynamic coefficient gradient of rotor, showing significant 

peaks near ±90° in Figure 5.10. From Eqs. (5.17) and (5.18), it is obvious that the 

variation of aerodynamic damping ratio with wind direction depends on the aerodynamic 

coefficients.  
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Figure 5.10 Equivalent aerodynamic coefficient gradient (400kW) 

Size Reduction Factor 

Appendix A.4.1 gives the integral form of each size reduction factor. From the integral 

calculation, it is found that the background and resonant size reduction factors are almost 

constant with different yaw angles. Hence, it can be assumed that they don’t vary with 

yaw angle. In addition, it can be observed from the integral form that the background size 

reduction factor should be a function of the turbulence integral length scale uL or vL  

( 0.33v uL L=  is for the across-wind direction) and the rotor radius R  which is taken as the 

characteristic size of the whole wind turbine in this study. Referring to AIJ [1], the formula 

format for lattice structures, ( )1/ 1 / 0.3B uR Lβ+ ⋅  or ( )1/ 1 / 0.3B vR Lβ+ ⋅   is adopted here. 

While the resonant size reduction factor should be a function of the non-dimensional 

decay factorC ( Cramer [12] indicated values of C  ranging from 7 to 50, soC = 8.0 is used 

here), the first modal natural frequency 1n , rotor radius R , and mean wind speed at hub 

height hU , then the formula format becomes ( )2

11/ 1 /R hCn R Uβ+ ⋅ . The unknown 

factors Bβ and Rβ  can be identified by fitting the results from the integral form of seven 

different sizes of wind turbines. For each wind turbine, the mean value of different yaw 

angles is taken as the result of the integral form. Finally, the formulae of background and 

resonant size reduction factors for along-wind direction are proposed as  

1

1 0.69
0.3

MBDu

u

K
R

L

=
+

                                                                                                        5.19                                              

( )1 2

1

1

1 0.26

MRDu

h

K n

Cn R

U

=
 

+ 
 

                                                                                              5.20                                               
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And the formulae of background and resonant size reduction factors for across-wind 

direction are proposed as       

1
=

1 0.5
0.3

MBLu

u

K
R

L
+

                                                                                                           5.21 

1

1 0.5
0.3

MBLv

v

K
R

L

=
+

                                                                                                          5.22                                                           

( ) ( )1 1 2

1

1
=

1 0.21

MRLu MRLv

h

K n K n

Cn R

U

=
 

+ 
 

                                                                               5.23                                                                      

Figure 5.11 shows good agreement between the proposed formula and the integral 

form for each size reduction factor. Both background and resonant size reduction factors 

vary in the range of 0 ~ 1.0, and the background one decreases when the wind turbine 

size increases. However, the resonant one doesn’t have this feature, since it is also 

related to the natural frequency of wind turbine. It is noticed that the size reduction factors 

are close to those of tower and rotor, since the effect from rotor and tower cancel each 

other. The size reduction factors of across-wind direction totally come from the rotor, 

hence close to those of along-wind direction. Since vL  is smaller than uL , MBLvK  is smaller 

than MBLuK , which indicates that the smaller turbulence integral length scale results in the 

more lack of correlation of the fluctuating wind velocity and the size effect becomes more 

significant. 
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(a) Background one of along-wind direction 
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(b) Resonant one of along-wind direction 
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(d) Resonant one of across-wind direction 

Figure 5.11 Comparison of size reduction factors 
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5.4.2. Peak Factor 

In order to take the non-linear component of wind load into account, Kareem et al. [7] 

evaluated the peak factor for the non-Gaussian process by employing the moment-based 

Hermite transformation which has been shown to be accurate and robust in representing 

the tail regions of the PDF in a non-Gaussian process. It is a function of kurtosis 4α and 

skewness 3α . Binh et al. [6] proved that the effect of kurtosis 4α  can be neglected since it 

is negligibly small compared to that of the second and third order from the order analysis 

of turbulence intensity
uI . 4α is then assumed to be equal to the value of a Gaussian 

process (i.e., 3.0). Then the formula of the peak factor is simplified to a function of 

skewness 3α , as shown in Eq. (5.24). Refers to Appendix A.4.2 for details. 

( )
( )

( )( )3

2
3

1 0.5772
2ln 2ln 1

62ln
1

18

D D D

D

g T T
T

α
ν ν

να

    ′ ′= + + −  ′   +

                                                5.24 

where ( )( )2 2
3 3/ 1 /18 1 / 9D Dν ν α α′ = + + is the zero up-crossing number in the estimated time 

interval T (normally 600s) of non-Gaussian process. Binh et al. [6] proposed a formula of 

skewness 3α for wind turbines, considering both significant resonant response and spatial 

correlation of wind velocity using a correlation coefficient ( ), exp 0.3 ur r r r Lρ ′ ′ = − −  .
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                                                                                                   5.25                                                                      

where   

2

MRD
D

MBD

R
σ
σ

 
=  
 

, 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( )
1 3

1

, , , , , 1

1,
0.3

D D D

r D

DD
u

r r r r C r C r C r c r c r c r rr r drdr dr
a

R
C r c r rdr

L

ρ ρ θ θ θ

βθ

′ ′ ′′ ′ ′′ ′ ′′ ′ ′′ ′ ′′
= ≈

+

∫ ∫ ∫
∫  

. 

where DR is denoted the resonance-background ratio of along-wind standard deviation, 

and 1r Da is a size reduction factor, considering the lack of correlation of the fluctuating 

wind velocity. Since 1r Da  is related to the background response, it can be formulated with 

the same analysis and approach as those of MBDuK or MBLuK , and the unknown 

factor 1 1.67Dβ = is proposed, which agrees well with its integral form, as shown in Figure 

5.12. 
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Figure 5.12 Size reduction factor 1r Da  

It is noticed from the FEM simulation that for the across-wind response, since the 

skewness and kurtosis of fluctuating wind load are close to 0 and 3.0, respectively, the 

non-Gaussian peak factor of Eq. (5.26) can be reduced to the standard Gaussian form: 

( )
( )

0.5772
2ln

2ln
L L

L

g T
T

ν
ν

= +

                                                                                              

5.26

                                

where Lν is the zero up-crossing number in the estimated time interval T (normally 600s) of 

Gaussian process of across-wind load. The peak factors change very little with the wind 

direction. Figure 5.13 shows the peak factor for 0θ = o , and it is noticed that the non-

Gaussian peak factor increases when the turbulence intensity increases, while Gaussian 

peak factor keeps constant and lower value, which means an Gaussian peak factor will 

underestimate the wind load of along-wind direction, especially in the high turbulence 

intensity.  
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(b) Across-wind direction 

Figure 5.13 Comparison of peak factor (400kW, 0θ = o ) 

5.5. Maximum Bending Moment  

The maximum bending moments on tower base from proposed formulae have been 

verified by FEM simulation, as shown in Figure 5.14.  
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(b) Across-wind direction 

Figure 5.14 Comparison of maximum bending moment (400kW, 0.158uhI = ) 

5.6. Comparison between SR Model and Fixed-

foundation Model 

For floating wind turbine systems, it has to be judged whether the fixed-foundation 

model can be used to calculate the wind-induced load or not. The comparison between 

SR model and fixed-foundation model will be carried out in this section to explain why SR 

model should be employed for the wind-induced load prediction. 

All the formulae proposed in the earlier sections are applicable to these two models. 

The differences between them are the values of the parameters in the formulae. 

Comparing the formulae of mean wind load, standard deviation and peak factor, it is easily 

found that the mean wind loads for these two models are the same; in the standard 

deviation, the background parts are the same, since it only depends on the wind itself, 

however, the resonant parts are different due to the difference of mode correction factor, 

damping ratio, wind spectrum and size reduction factor between these two models; the 

peak factor is the function of skewness and zero up-crossing frequency, which also 

change with models.  

5.6.1. Standard Deviation 

The resonant standard deviation is as follows: 

( ) ( )1 12
2

1 4
FR uh uh FR

uh

F
I R n K n

I

πφ
σ

πξ
=

+
                                                                             5.27 
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Since the wind spectrum ( )1uhR n and size reduction factor ( )1FRK n are the function of 

the first natural frequency, before comparison the first natural frequency of the two models 

should be determined. And their damping ratios are also in need. 

Referring to AIJ [1], the equivalent single degree of freedom model (SDOF) of the 

MDOF model of a superstructure is often applied considering sway and rocking motions 

and is called condensed SR model (Figure 5.15). The mass, stiffness and damping ratio 

of the SDOF model are em , ek and ec , respectively. The force F acting on the SDOF model 

is  

/t t e e s s r eF k x k x k x k hθ= = = =                                                                                               

 

5.28 

 

Figure 5.15 Condensed SR model 

Hence, the total displacement is as follows. 

t e s r e s ex x x x x x hθ= + + = + +                                                                                                                    5.29 

e
e

t e s r

FhF F F
h

k k k k
= + +                                                                                                              5.30 

The total stiffness tk is related to the stiffness of each element in Figure 5.15 as follows. 

2
1 1 1 e

t e s r

h

k k k k
= + +                                                                                                                  5.31 

Multiplying 24 emπ and using 2 24 /t e tT m kπ= , 2 24 /  e e eT m kπ= , 2 24 /s e sT m kπ= , 

2 2 2 4 /r e e rT m h kπ= , Eq. (5.31) is transformed as follows.  

2 2 2 2
t e s rT T T T= + +                                                                                                       5.32              

As tT is the first natural period 1T of the model in Figure 5.15, and eT is equal to fT  which 

is the first natural period of fixed-foundation model, Eq. (5.33) in the text is obtained. 
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2 2 2
1 f s rT T T T= + +                                                                                                                5.33 

In order to obtain the damping ratio of the condensed SR model, let us consider the 

strain and absorbed energy E and E∆ during a cycle vibrating in the period 1T . The 

absorbed energy E∆ is expressed as: 

( )2
E cxdx cx xdt c x dt∆ = = ⋅ =∫ ∫ ∫& & & &                                                                                         5.34 

With 0cosx X tω= , Eq. (5.34) becomes 
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                                          5.35 

2
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E
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Xπω

∆
=                                                                                                                         5.36 

The strain energy is 21

2
E kX= , so the damping ratio is expressed as follows. 

02
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0
02 2
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1

22 2 4
2 2

E

c Xc c E

k Em k E

X

ω
ω πω

ξ
ω πω

ω

∆

∆
= = = = =                                                                    5.37 

The absorbed energy is as follows. 

( )2 2 2 2
1 1t t e e s s rE c x c x c x cπω πω θ∆ = = + +                                                                                   5.38 

The strain energy is as follows. 

( )2 2 2 21 1

2 2
t t e e s s rE k x k x k x k θ= = + +                                                                                         5.39 

Substituting Eq. (5.38) and Eq. (5.39) into Eq. (5.37), the total damping ratio tξ becomes 
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t t

c x c x c c x c x cE
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From Eq. (5.28), the following relationship can be obtained 

2

               e t s t t er

t e t s t r

x k x k k hx

x k x k x k
= = =                                                                                      5.41 

Using 2 24 /t e tT m kπ= , 2 24 /e e eT m kπ= , 2 24 /s e sT m kπ= , 2 2 2 4 /r e e rT m h kπ= , the following 

relationship can be obtained: 

2 2 2 2 2/t t e e s s r r eT k T k T k T k h= = =                                                                                               5.42 

Hence, 
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Using Eq. (5.43) and / 2e e e ec m kξ = ,  / 2s s e sc m kξ = , 2/ 2r r e e rc m h kξ =  the damping 

ratio 1ξ for the first mode in the SR model is calculated as Eq. (5.44) in the text as follows. 
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Hence, the first natural period and damping ratio of SR model can be calculated by Eqs. 

(5.33) and (5.44), respectively. The necessary variables and 1T , 1ξ  are tabulated in Table 

5.3.  

With the first natural frequency 1n  calculated from 1T , the wind spectrum and size 

reduction factor can be obtained. Figure 5.16 and Figure 5.17 show the variation of wind 

spectrum ( )1uhR n and size reduction factor ( )1FRK n  with the first natural frequency, 

respectively. It can be seen that the fixed-foundation shows much lower value than SR 

model due to its high frequency. That would reduce the resonant standard deviation in Eq. 

(5.27).  

Table 5.3 The periods and damping ratios 

 fT  (s) sT  (s) rT  (s) 1T  (s) fξ  
sξ  rξ  1ξ  

fix-foundation 2.86 0 0 2.86 0.005 AV AV 0.005 

tension leg 2.86 31.30 0 31.43 0.005 0.20 AV 0.20 

catenary 2.86 26.80 14.30 30.51 0.005 0.40 0.38 0.31 

AV: Arbitrary value 

 

Figure 5.16 Comparison of wind spectrum 

 

Figure 5.17 Comparison of size reduction factor 
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The large difference of the system damping ratio 1ξ  between fixed-foundation model 

and SR model results in the large difference of total damping ratioξ , as shown in Figure 

5.18. It can be seen that the fixed-foundation also shows much lower value than SR 

model. That would increase the resonant standard deviation in Eq. (5.27). 

From Figure 5.19, the fixed-foundation shows a little lower mode correction factor φ  

than SR model but not so significant. Therefore, the dominant influence factor is the first 

natural frequency and systerm damping ratio. The fixed-foundation model and SR model 

have much different value in these two factors, so it can not be used to calculate the wind-

induced load of floating wind turbine system, while SR model can give good result as 

shown in Figure 5.20. That is why the fixed-foundation model underestimates the standard 

deviation of tension leg system and overestimates that of catenary system. The standard 

deviation of catenary system is lower than that of tension leg system due to its larger 

damping ratio. 

 

Figure 5.18 Comparison of total damping ratioξ  

 

Figure 5.19 Comparison of mode correction factorφ  
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Figure 5.20 Comparison of standard deviation 

5.6.2. Peak Factor 

Due to the low turbulence intensity of offshore, the skewness becomes close to zero. 

Therefore, Gaussian peak factor can be assumed, which only depends on zero up-

crossing frequency. Zero up-crossing frequency is much affected by the first natural 

frequency, so it changes a lot between fixed-foundation model and SR model. However, in 

Figure 5.21 which gives the variation of peak factor with zero up-crossing frequency, it is 

noticed that the peak factor is not sensitive to zero up-crossing frequency. Hence, the two 

models have close peak factor.  

 

Figure 5.21 Comparison of peak factor 

5.7. Combination of Wind Loads 

Since the lift force on rotor becomes significant due to the increase of inflow angle, the 

combination of along-wind and across-wind loads is necessary for the estimation of 
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design wind load on wind turbine towers. Coupled vibration can result from the small 

anisotropy of the tower, as shown in Figure 5.22. It is noticed that the maximum values of 

along-wind and across-wind loads cannot appear simultaneously. Hence, the correlation 

coefficient of wind responses in the two directions should be considered.  

Asami [13] proposed a formula of wind loads combination for high-rise buildings, in 

which the across-wind bending moment combined with the maximum along-wind bending 

moment can be express as ( )( )2 2 1L LLC DL LM M M Mρ= + + − − , where DLρ is the correlation 

coefficient between along wind and across wind responses. For the uncorrelated case 

( 0DLρ = ), the coefficient multiplied to the maximum fluctuating component ( )LLM M− is 0.4 

approximately, while for the completely correlated case ( 1DLρ = ), this coefficient becomes 

1. In the same way, the along-wind bending moment combined with the maximum across-

wind bending moment can be express as ( )( )2 2 1D DDC DL DM M M Mρ= + + − − . Finally, 

therefore, the maximum wind bending moment acting on the tower can be estimated as 

( ) ( )2 22 2max ( ) , ( )DL L D DL D D D L DL L LM M M M M M M M Mγ γ
 

= + + − + + − 
 

                                5.45              

where 2 2 1DL DLγ ρ= + − . DLρ can be determined by fitting the results of FEM simulation. It 

varies with wind direction, as shown in Table 5.4. Figure 5.23 shows the comparison of 

combined maximum bending moment on the tower base. It is obvious that for arbitrary 

wind direction, the correlation coefficients shown in Table 5.4 give good agreement with 

FEM simulation. It is also noticed that the uncorrelated approximation ( 0DLρ = ) 

underestimates the maximum bending moment, while completely correlated 

approximation ( 1DLρ = ) gives a conservative result. Therefore, 2 2
DL D LM M M= + is 

acceptable as a more simple alternative in the design.  

Table 5.4 Correlation coefficients DLρ for stall-regulated wind turbines 

  (deg)θ  DLρ  

(1) 

-180 ~ -110 

-80 ~ 70 

100 ~ 180 

1.0 

(2) -90, 80 0.0 

(3) 

-110 ~ -90 

-90 ~ -80 

70 ~ 80 

80 ~ 100 

linear interpolation between (1) and (2) 
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Figure 5.22 Tower bending moments plotted in X-Y plane 
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Figure 5.23 Comparison of combined maximum bending moment (400kW, 0.158uhI = ) 

5.8. Conclusions 

The conclusions and findings of this chapter are summarized as follows: 

• A unified mode correction factor is proposed. Due to the existence of rotor, the 

mode correction factor varies with yaw angle in a range larger than that of tower.  

• The background size reduction factor decreases when the wind turbine size 

increases, while the resonant one doesn’t have this feature, since it is also related 

to the natural frequency of wind turbine. It is noticed that the size reduction factors 

are close to those of tower and rotor, since the effect from rotor and tower cancel 

each other. The size reduction factors of across-wind direction totally come from 

the rotor, hence close to those of along-wind direction. 

• A non-Gaussian peak factor model is proposed for along-wind direction. When the 

skewness and kurtosis of fluctuating wind load are close to 0 and 3.0, respectively, 
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like across-wind direction, this peak factor can be reduced to the standard 

Gaussian form for a Gaussian process.  

• SR model should be employed for the wind-induced load prediction, since the low 

natural frequency of floater increases the resonant standard deviation, while the 

large damping causes significant reduction.   

• In the combination of along-wind and across-wind loads, the correlation coefficient 

of wind responses in the two directions is considered. It is noticed that the 

uncorrelated coefficient underestimates the maximum bending moment, while 

completely correlated one gives a conservative and acceptable result.  
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Chapter 6. COMBINATION OF WAVE-INDUCED 
LOAD AND WIND-INDUCED LOAD  

6.1. Introduction 

This chapter presents the combination of wave-induced load and wind-induced load. 

The reason why the assumption of perfect correlation between them causes 

overestimation has been clarified. It is shown that the combination without considering any 

correlation can predict the tower loading accurately.  

Figure 6.1 compares the maximum tower loading of the case that wave and wind act 

simultaneously and the simple summation of the maximum wave load and maximum wind 

load. It is obvious that the simple summation overestimates the tower loading a lot. 

Therefore, the load reduction factor should be introduced into the combination. IEC 

61400-3 [1] specifies a constant load reduction factor 0.7 to reduce the maximum wave 

load in the combination for bottom-mounted system. Whether this value is appropriate to 

floating wind turbine system or not should be investigated in this chapter.  

Considering the correlation between wind and wave conditions, the load reduction 

factor for floating wind turbine system is proposed. It is found that the load reduction factor 

is almost constant to the mean wind speed at hub height. For tension leg system, the load 

reduction factor is lower than that given in IEC 61400-3 [1] used for bottom-mounted 

system, while for catenary system it is a little higher than that of IEC. 
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(b) Catenary system 

Figure 6.1 Comparison of ‘wave+wind’ simulation and simple summation of the maximum 
wave and wind loads  

6.2. Correlated Wind and Wave Conditions 

Accurate and realistic modeling of the wind conditions is extremely essential for proper 

prediction of aerodynamic characteristics of the wind turbine and the power generation. 

Wind velocity and turbulence, are the most important characteristics used to define the 

wind conditions at a particular site.  

For DLC 6.1a [1], the turbulent extreme wind model shall be taken together with the 

extreme sea state (ESS) conditions. The response shall be estimated using full dynamic 

simulation based on at least six 1-hour realizations for each combination of extreme wind 

speed and extreme sea state. In this case, the hub height mean wind speed, turbulence 

standard deviation and significant wave height shall be taken as 50-year recurrence 
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values each referenced to a 1-hour simulation period. The hub height mean wind speed of 

10 min value with a 50-year recurrence is considered as 40~50 m/s.  

( )
0.11

10min,hub

hub

z
U z U

z

 
=  

 
                                                                                                 6.1                                                                  

Further, for representation of turbulent wind speeds, the turbulent extreme wind model 

makes use of a characteristic turbulence intensity 10min, 0.11hubI = [2], [3]. The turbulence 

models [4] may be calculated as:                                                               

( )
0.11 0.05

10min,hub

hub

z
I z I

z

− −
 

=  
 

                                                                                            6.2                                                                  

In this study the method developed in [5] has been used for the generation of wind time 

history. The method [5] uses the von-Karman model to generate the frequency content of 

the wind history. The method can develop three dimensional wind time histories at several 

points considering auto spectral and cross-spectral functions. The details about the model 

are out of scope of the current discussion and reader is requested to refer to [5] for further 

details. Using this method, the wind histories are generated at each node of the tower, 

nacelle, and blades. 

In this study, the SMB method [6], [7], [8] is used to consider the correlation between 

the mean wind speed 10U at 10m height from the sea level and the significant wave height 

sH and wave peak period pT : 

( )

( )( )

( )

0, 0,

1

10

2
1 2

2

10
0, 2

10

10

0,

1

max 0.4 tan 0.34 1.88 0.39,0

0.3
      1 1 0.004

2.46 1.31
1.31

12

s SMB swell

SMB

swell

H H H

U

U Fg
H

g U

U
H

α α

α −

−

= + −


 = − +

       = − +          
 −

= +

                                                           6.3                                                                  
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T T T
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T

α α
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π

−

−
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 = − +

    ⋅   = − +          

=


                                                       6.4     

where 235000F = m. Figure 6.2 shows the variation of significant wave height sH and 

wave peak period pT  with the mean wind speed at hub height. 
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Figure 6.2 Significant wave height sH and wave peak period pT  
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6.3. Combination of Wave and Wind Loads  

6.3.1. Contributions of Wave and Wind  

The environmental loads (wind and wave) are considered independently to understand 

their respective contributions. Using the wind and wave conditions discussed in Section 

6.2, simulations with full model are carried out in two sets considering ‘wave only’ and 

‘wind only’. The wind is set to act in the same direction as wave, as shown in Figure 2.9, 

which will cause the most unfavourable load effect. The mean value, standard deviation 

and maximum value of the shear force at tower base are compared for the two sets of 

environmental conditions, as shown in Figure 6.3 for tension leg system and in Figure 6.4 

for catenary system, respectively. 

From the comparison of mean value, it is indicated that the mean shear force depends 

on the wind, and the wave doesn’t cause any mean loading. It is also noticed that the two 

kinds of mooring systems have the same mean wind shear force, and the reason can be 

known from Section 5.6.  

From the comparison of standard deviation and maximum value, it is found that wave 

contributes more than wind to the dynamic loading for the two kinds of mooring systems. 

That is why the wave-induced load has to be taken into account for floating wind turbine 

system, and the combination of wind and wave loads are needed. The catenary system 

has the larger value than the tension leg system due to the influence of rocking (pitch) 

motion.  
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(c) Maximum 

Figure 6.3 Shear force on tower base for tension leg system 
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(b) Standard deviation 
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Figure 6.4 Shear force on tower base for catenary system 

6.3.2. Correlation between Wave Load and Wind Load 

Since the mean shear force in the ‘wave+wind’ case depends on the wind, and the 

wave doesn’t cause any mean loading, the combination of wave-induced load and wind-

induced load can also be performed by equivalent static method using mean wind load 

windQ , combined standard deviation cbσ  and combined peak factor cbg : 

cb wind cb cbQ Q g σ= + ⋅                                                                                                          6.5                                                                  

  In the ‘wave+wind’ case, the general equation of motion can be expressed as: 



 

 - 103 - 

( )

( )

( )

2

2 2 2

2

1

2

1
                     2 2 2

2

1
                        2 2 2

2

wave d

wave d

d

Mx Cx Kx F C A U u s x

F C A U u x Uu Ux ux

C A s Us us sx

ρ

ρ

ρ
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                                   6.6                                                                  

where waveF is the wave force, dC is the drag aerodynamic coefficient, ρ is the air density, 

A  is the wind acting area,  x s x′= +  is the total displacement, s is the displacement due 

to wave and x′ is the displacement due to wind,U is the mean wind speed, u is the 

fluctuating wind speed. In the right hand side of Eq. (6.6), the second term is the wind 

force which is totally same as discussed in Chapter 5; the third term is the coupling 

aerodynamic force which causes the correlation between wave-induced load and wind-

induced load. Since the wave-induced vibration velocity s&  is negligibly small compared to 

the mean wind speed in the extreme condition, the second order terms with
2s& , us&  and 

sx′&& can be neglected in the third term. Therefore, Eq. (6.6) can be decomposed into two 

equations of motion under wave and wind, respectively: 

wave dMs Cs Ks F C AUsρ+ + = −&& & &                                                                                         6.7                                               

windMx Cx Kx F′ ′ ′+ + =&& &                                                                                                       6.8                                                                  

The aerodynamic damping force dC AUsρ− &  in Eq. (6.7) will reduce the wave-induced 

response in Chapter 4. This reduction can be considered by aerodynamic damping. 

However, the aerodynamic damping ratio is just 1/10~1/20 of the system damping  ratio in 

SR model for floating wind turbine, hence can be neglected. Thus, all the coupling 

aerodynamic forces in the third term of Eq. (6.6) are ignored, which means the correlation 

between wave-induced load and wind-induced load is neglected as a matter of course. 

Therefore, the combined standard deviation cbσ  is calculated as: 

2 2

cb wave windσ σ σ= +                                                                                                           6.9 

where waveσ  and windσ are the standard deviations due to wave and wind that are calculated 

independently in Chapter 4 and Chapter 5, respectively. 

It is shown in Figure 6.5 that the combination without considering any correlation 

between wave-induced load and wind-induced load can predict the standard deviation of 

‘wave+wind’ case accurately. 
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(b) Catenary system 

Figure 6.5 Comparison of combined standard deviation 

The combined peak factor cbg  is able to be calculated using Eqs. (4.15) ~ (4.17) of the 

non-Gaussian peak factor model in the same method as ‘wave only’ case in Section 4.4.2.  

The difference is the calculation of zero up-crossing frequency of base shear force. As 

shown in Figure 6.6, the wind part is added to the power spectrum: 

2 2 2 2 2 2 2 2

0 2 2 2 2

wind wind p b s s t t

wind b s t

n n n nσ σ σ σ
ν

σ σ σ σ

+ + +
=

+ + +
                                                                           6.10 

where 

           
2 2 2 2 2 2

, , 1 ,wind wind wind b wind b wind rn n nσ σ σ= +  



 

 - 105 - 

          
2 2 2

, , , ,          0.3 h
wind wind b wind r wind b

u wt

U
n

L A
σ σ σ= + =  

2

windσ ,
2

bσ , 
2

sσ  and 
2

tσ  are the variance of fluctuating wind load, background motion part 

due to wave, peak sway or rocking acceleration part and tower resonant part, respectively; 

,wind bσ and ,wind rσ are the background part and resonant part of wind load standard 

deviation, respectively;  pn , sn , tn and 1n are the wave peak frequency,  the peak 

frequency of sway or rocking acceleration, tower natural frequency and the first natural 

frequency of the floating system, respectively;  hU is the mean wind velocity at hub height; 

uL is the turbulence integral length scale; wtA is the wind acting area of the whole wind 

turbine. Figure 6.7 shows the comparison of combined peak factor. It can be seen that the 

non-Gaussian peak factor model can predict the peak factor well. 

 

(a) Tension leg system 

 

(b) Catenary system 

Figure 6.6 Power spectrum density of tower base shear force in ‘wave+wind’ case  
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(a) Tension leg system 
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(b) Catenary system 

Figure 6.7 Comparison of combined peak factor  

6.3.3. Load Reduction Factor 

In IEC 61400-3 [1], the occurrences of the extreme wind speed averaged over three 

seconds and the extreme wave height are assumed to be uncorrelated and their 

combination is conservative. The following reduced wave height shall therefore be used in 

combination with the extreme wind speed:  

50 501.3red sH H=                                                                                                                6.11 

Since the extreme wave height 50 501.86 sH H= , where 50sH is the significant wave 

height with a recurrence period of 50 years. It indicates that IEC reduces the extreme 

wave height by 1.3 / 1.86 0.7= .  From Figure 6.8, it is found that the maximum shear force 
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increases with the extreme wave height linearly approximately, so it can be considered 

that the load reduction factor of wave-induced load is 0.7. It should be noted that this 

value is used for bottom-mounted system. 
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(a) Tension leg system 
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(b) Catenary system 

Figure 6.8 Linear relation between extreme wave height and maximum shear force 

In order to use the same way as IEC 61400-3, the load reduction factor is introduced 

into the combination for floating wind turbine systems. The wind-induced load is not 

reduced, only the maximum value of wave-induced load is reduced: 

max, max,+ cb wind wave waveQ Q Qγ= ⋅                                                                                          6.12                                                                  

where max,windQ and max,waveQ  are the maximum values of wind-induced shear force and 

wave-induced shear force, respectively; waveγ is the load reduction factor. 
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The load reduction factors can be obtained by fitting the simulation results of the case 

that wave and wind act simultaneously, and the values are found to be almost constant to 

the mean wind speed at hub height, as shown in Figure 6.9 (a) for tension leg system and 

Figure 6.9 (b) for catenary system. For tension leg system, the load reduction factor is 

around 0.49, lower than 0.7 specified for bottom-mounted wind turbine in IEC 61400-3 [1], 

while for catenary system it is around 0.73, a little higher than that of IEC. Hence, 0.7 

used for bottom-mounted system will overestimate the combined load of tension leg 

system significantly, however, it will give a little underestimation for catenary system. 
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(b) Catenary system 

Figure 6.9 Load reduction factors 

6.4. Conclusions 

The conclusions and findings of this chapter are summarized as follows: 
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• The mean tower loading depends on the wind and the wave doesn’t cause any 

mean loading. Wave contributes more than wind to the dynamic loading for the two 

kinds of mooring systems. 

• The assumption of perfect correlation between wave-induced load and wind-

induced load causes overestimation. It is shown that the combination without 

considering any correlation can predict the tower loading accurately.  

• Considering the correlation between wind and wave conditions, the load reduction 

factor for floating wind turbine system is proposed. It is found that the load 

reduction factor is almost constant to the mean wind speed at hub height. For 

tension leg system, the load reduction factor is lower than that given in IEC 61400-

3 used for bottom-mounted system, while for catenary system it is a little higher 

than that of IEC. 
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Chapter 7. CONCLUSIONS AND FUTURE WORK 

7.1. Summary 

The urgent concern about global warming from the emission of greenhouse gases has 

provided a strong impetus for engineers and scientists worldwide to research alternative 

renewable and clean energy. Wind power is one of the fastest growing renewable energy 

technologies. Onshore wind farms are, however, unsightly and they swallow up valuable 

land for agriculture and urban development. Already some countries, are considering 

constructing huge wind farms offshore to take advantage of the generally steadier and 

stronger winds found in the sea. Moreover, the wind turbines can be larger than those on 

land because they can be transported to the site by sea. In Japan, the offshore consist of 

a vast wind resource in deep water where use of conventional bottom-mounted wind 

turbines is not possible, and floating wind turbines are the most attractive. Thus, it is 

necessary to consider the effect of floater motion on the tower loading to check the 

serviceability of the wind turbines which are designed for the bottom-mounted systems. 

In the current study, the theoretical formulae to predict the tower loading of floating 

offshore wind turbine systems in the extreme wind and wave conditions are proposed. 

Since the floating offshore wind turbine is affected significantly by floater motion, the 

conventional fixed-foundation model which is applicable to the onshore wind turbine can 

not be used theoretically to predict the tower loading of floating offshore wind turbine 

systems. In this study, SR model is proposed to consider the floater surge and pitch 

motions which have large influence on the tower loading of floating wind turbine, so that 

the tower loading can be estimated by the equivalent static method. Meanwhile, the 

problems of using conventional fixed-foundation model have been clarified. In SR model 

for wave-induced load, the influence of each floater motion is investigated separately by 

locking the other mode, and their combination is carried out. Both regular wave and 

irregular wave are considered for two kinds of floating systems: tension leg mooring and 
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catenary mooring. In addition, the fluctuating wave load and fluctuating wind load become 

non-Gaussian processes with multiple peaks corresponding to different frequencies in 

their spectra, hence, a non-Gaussian peak factor model is proposed in order to predict 

wave-induced load and wind-induced load on the floating offshore wind turbine tower by 

equivalent static method analytically. Furthermore, in the combination of wave-induced 

load and wind-induced load, the load reduction factor is proposed since the correlation 

between their maximum values can be neglected. All the results have been verified by the 

dynamic response analysis of a fully coupled finite element model. 

7.2. Conclusions 

The conclusions and findings of this study are summarized as follows: 

(1) In the equivalent SR model for floating wind turbine system, the following 

conclusions are obtained: 

• An equivalent SR model is proposed to consider the influence of floater surge and 

pitch motions on the tower loading of floating wind turbine. The stiffness and 

damping of sway and rocking modes are recognized by eigenvalue analysis or free 

vibration simulation using FEM; the equivalent wave force and moment are 

obtained with the tower base displacements.  

• The evaluation formulae of tower loading due to sway as well as rocking motion of 

floater are investigated separately by locking the other mode with modal analysis.   

• Through the theoretical comparison between SR model and fixed-foundation 

model, it is found that in short wave period, the fixed-foundation model may give 

significant overestimation, which can be larger than 15%; while in long wave period, 

it underestimates the tower loading.  

 (2) In the prediction of wave-induced load, the following conclusions are obtained: 

• For the shear force amplitude under regular wave and the standard deviation of 

shear force under irregular wave, the combination of sway motion effect and 

rocking motion effect can be determined by complete quadratic combination (CQC) 

rule. The correlation between them only depends on the damping and natural 

frequency of the system.  

• For tension leg system, a non-Gaussian peak factor is necessary. This non-

Gaussian feature mainly results from the tower resonance. The non-Gaussianity 

will decrease with wave period, since the external exciting effect becomes weaker. 

• For catenary system, the shear force history can be regarded as a Gaussian 

process. The effect from tower resonance is negligibly small compared to the 
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background motion part, since the floater sway and rocking modes are much more 

dominant. 

(3) The evaluation formulae of both along-wind load and across-wind load are 

proposed for arbitrary wind direction, and the following conclusions are obtained: 

• A unified mode correction factor is proposed. Due to the existence of rotor, the 

mode correction factor varies with yaw angle in a range larger than that of tower.  

• The background size reduction factor decreases when the wind turbine size 

increases, while the resonant one doesn’t have this feature, since it is also related 

to the natural frequency of wind turbine. It is noticed that the size reduction factors 

are close to those of tower and rotor, since the effect from rotor and tower cancel 

each other. The size reduction factors of across-wind direction totally come from 

the rotor, hence close to those of along-wind direction. 

• A non-Gaussian peak factor model is proposed for along-wind direction. When the 

skewness and kurtosis of fluctuating wind load are close to 0 and 3.0, respectively, 

like across-wind direction, this peak factor can be reduced to the standard 

Gaussian form for a Gaussian process.  

• SR model should be employed for the wind-induced load prediction, since the low 

natural frequency of floater increases the resonant standard deviation, while the 

large damping causes significant reduction.   

• In the combination of along-wind and across-wind loads, the correlation coefficient 

of wind responses in the two directions is considered. It is noticed that the 

uncorrelated coefficient underestimates the maximum bending moment, while 

completely correlated one gives a conservative and acceptable result.  

(4) In the combination of wave-induced load and wind-induced load, the following 

conclusions are obtained: 

• The mean tower loading depends on the wind and the wave doesn’t cause any 

mean loading. Wave contributes more than wind to the dynamic loading for the two 

kinds of mooring systems. 

• The assumption of perfect correlation between wave-induced load and wind-

induced load causes overestimation. It is shown that the combination without 

considering any correlation can predict the tower loading accurately.  

• Considering the correlation between wind and wave conditions, the load reduction 

factor for floating wind turbine system is proposed. It is found that the load 

reduction factor is almost constant to the mean wind speed at hub height. For 

tension leg system, the load reduction factor is lower than that given in IEC 61400-
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3 used for bottom-mounted system, while for catenary system it is a little higher 

than that of IEC. 

7.3. Future Work 

In the combination of wave-induced load and wind-induced load of this study, the wind 

and wave are assumed to be aligned (co-directional) and acting from a single, worst case 

direction (uni-directional), since it is the most unfavorable load case. In real situation, the 

wind and wave may be misaligned and act from multi-direction. Then the combination of 

wave-induced load and wind-induced load will be different from this study. The correlation 

between them should be investigated and the load reduction factor should be proposed 

accordingly in the future. 
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Appendix A. DYNAMIC RESPONSE IN 

TURBULENT WIND 

A.1. Introduction 

This appendix describes how the aerodynamic force acting on the wind turbine is 

analyzed in both along-wind and across-wind directions. Then for each direction, the 

derivation of integral forms and analytical formulae of mean, standard deviation and peak 

factor of bending moments is presented. In the standard deviation, the details how the 

estimation formulae of mode correction factor, aerodynamic damping ratio and size 

reduction factor are proposed from their integral forms are given as well. 

A.2. Aerodynamic Force 

From Figure 5.3, the total relative wind velocity can be written as follows: 

( )
cos

U u x
V θ θ

θ
+ −

′+ =
′

&
                                                                                                            A.1                                                        

Quasi-static method is employed to calculate the aerodynamic force acting on the 

element. The drag force D and the lift force L per unit length can be calculated as 

( ) ( ) ( )21

2
DD c r V Cρ θ θ θ θ′ ′= + + , ( ) ( ) ( )21

2
LL c r V Cρ θ θ θ θ′ ′= + +                                              A.2                                                        

Based on Eqs (A.1) and (A.2) the wind force in along-wind direction is obtained as the 

following equation: 

( ) ( )( ) ( ) ( )( )21
cos sin sec sec tan

2
D D LF D L c r U u x C Cθ θ θ θ ρ θ θ θ θ θ θ θ′ ′ ′ ′ ′ ′ ′ ′+ = − = + − + − +&          A.3                                                        
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By using Taylor expansion around 0θ ′ = , and noting ( ) ( )tan /v y U u xθ θ′ ′≈ = − + −& &  since 

θ ′ is very small, Eq. (A.3) can be written as 

( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

2

2 2

2

1

2

1 1
         

2 2

1
         

2

         

D
D D L

D D D D D

D D D D D D

D

C
F c r U u x C C

c r C U c r C u c r C Uu c r A Uv c r C Ux

c r C x c r C ux c r A uv c r A uy c r A vx c r A xy

c r A Uy

θ ρ θ θ θ θ
θ

ρ θ ρ θ ρ θ ρ θ ρ θ

ρ θ ρ θ ρ θ ρ θ ρ θ ρ θ

ρ θ

 ∂  ′= + − + − ⋅  ∂  

= + + + −

+ − + − − +

−

&

&

& & & & &&

&

                                                                                                                                          A.4                                                        

In Eq. (A.4), the second order terms from the 6th term to 11th term, can be dropped 

based on perturbation analysis. The last term ( )DAA Uyρ θ− & caused by the across motion 

y& of the structure which cannot be obtained by the analytical method is removed as well. 

Binh et al. [1] considered the second order term ( ) ( ) 21/ 2 DAC uρ θ , since the contribution of 

the non-linear part of wind pressure is large, especially for high wind turbulence. In this 

study, the force ( )DAA Uvρ θ  due to the lateral wind fluctuation component v is also picked 

up. Finally, the first five terms are taken as the total wind force DF as shown in Eq. (A.5). 

Mean wind force DF and fluctuating wind force Dq in along-wind direction becomes Eqs. 

(A.6) and (A.7). 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 21 1

2 2
D D D D D DF c r C U c r C u c r C Uu c r A Uv c r C Uxρ θ ρ θ ρ θ ρ θ ρ θ= + + + − &     A.5                                                        

( ) ( )( ) ( ) ( ) ( )2 2 2 21 1
1

2 2
D D u D uF C c r U C c r U Iρ θ σ ρ θ= + = +                                                       A.6                                                                                                        

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 21 1

2 2
D D D D D D u
q c r C Uu c r A Uv c r C Ux c r C u c r C U Iρ θ ρ θ ρ θ ρ θ ρ θ= + − + −&  

                                                                                                                                          A.7                                                                                                                                     

The wind force in across-wind direction can be derived as 

( ) ( )( ) ( ) ( )( )21
sin cos sec tan sec

2
L D LF D L c r U u x C Cθ θ θ ρ θ θ θ θ θ θ θ′ ′ ′ ′ ′ ′ ′= + = + − + + +&               A.8                                                                                                                                     

By using Taylor expansion around 0θ ′ = , and noting ( ) ( )tan /v y U u xθ θ′ ′≈ = − + −& &  since 

θ ′ is very small, Eq. (A.8) can be written as 
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( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
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ρ θ ρ θ ρ θ ρ θ ρ θ ρ θ
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 ∂  ′= + − + + ⋅  ∂  
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                                                                                                                                          A.9                                                                                                                                     

Based on the same analysis as along-wind direction, the total, mean and fluctuating 

wind force in across-wind direction can be written as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 21 1

2 2
L L L L L LF c r C U c r C u c r C Uu c r A Uv c r A Uyρ θ ρ θ ρ θ ρ θ ρ θ= + + + − &       A.10                                                                                                          

( ) ( )( ) ( ) ( ) ( )2 2 2 21 1
1

2 2
L L u L uF C c r U C c r U Iρ θ σ ρ θ= + = +                                                      A.11                                                                                                                           

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 21 1

2 2
L L L L L L uq c r C Uu c r A Uv c r A Uy c r C u c r C U Iρ θ ρ θ ρ θ ρ θ ρ θ= + − + −&    A.12                                                                                                                                     

A.3. Mean Bending Moment 

From Eqs. (A.6) and (A.11), the mean bending moment at the tower base can be 

expressed as Eq. (A.13) in general, taking the mean wind velocity and turbulence intensity 

at the hub as representative for that of the whole wind turbine.  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )( )

2 2

2 2 0.1

2 2 2 2
, ,

0

2 2
, ,

1
, 1

2

1
      1 1

2

1
      1

2

h

f f u

H

f r h uh r h f t h uh
h h

h uh h f r r f t h

M C r c r U r I r rdr

z z
C U I A H C U I d z zdr

H H

U I H C A C H D

α α

ρ θ

ρ θ θ

ρ θ θ

− −

 = + 

       ≈ + + +          

′= + +

∫

∫           A.13                                                                                                                                     

where 

( )
( )

( )( )
( )2

2

1.92 11

2 1 2 3 5.51

uh b tb t

uh

I D DD D
D

I

α

α α

 ++ +
′ = + 

+ + +  
.  

The subscript f=D means along-wind and f=L means across-wind. The wind-acting 

area of nacelle and hub ( )/ 4n N N N NA L H R Hπ= +  is illustrated in Figure A.1. 
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Figure A.1 Configuration of nacelle and hub 

A.4. Gust Loading Factor 

A.4.1. Standard Deviation 

Since the non-linear parts in Eqs. (A.7) and (A.12) contribute very little to the standard 

deviation of tower base bending moment compared to linear parts, in this paper only linear 

parts are used in the following derivation. Therefore, the fluctuating loading per unit length 

on wind turbine in along-wind and across-wind directions is finally determined as: 

( ) ( ) ( ) ( ) ( ) ( ) ( ),D D D Dq r t c r C Uu c r A Uv c r C Uxρ θ ρ θ ρ θ = + −  & ,                                              

( ) ( ) ( ) ( ) ( ) ( ) ( ),L L L Lq r t c r C Uu c r A Uv c r A Uyρ θ ρ θ ρ θ = + −  &                                                  A.14                                                                                                                                     

• Background Response of Base Bending Moment 

From Eq. (A.14), the background response of base bending moment can be expressed 

as Eq. (A.15) in general.  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) , , , , ,Bf f f fM t q r t rdr c r C r U r u r t rdr c r A r U r v r t rdrρ θ ρ θ= = +∫ ∫ ∫             A.15                                                                                                                                     

Assuming that the cross correlation function of u, v components is zero, the standard 

deviation of background base bending moment can be derived as the summation of two 

independent parts due to longitudinal and lateral wind component (u and v) as well. Here, 

the mean wind velocity and turbulence intensity at the hub are also taken as 

representative for that of the whole wind turbine.  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2
,MBf u u u f fr r r r C r C r U r U r c r c r rr drdrσ ρ ρ σ σ′ ′ ′ ′ ′ ′ ′= ∫∫  

          ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2
,v v v f fr r r r A r A r U r U r c r c r rr drdrρ ρ σ σ′ ′ ′ ′ ′ ′ ′+ ∫∫  

        ( ) ( ) ( ) ( ) ( )2 2 4
,uh h u f fI U r r C r C r c r c r rr drdrρ ρ ′ ′ ′ ′ ′= ∫∫  

          ( ) ( ) ( ) ( ) ( )2 2 4
,vh h v f fI U r r A r A r c r c r rr drdrρ ρ ′ ′ ′ ′ ′+ ∫∫   

        2 2
MBfu MBfvσ σ= +                                                                                                           A.16                                                                                              
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where ( ),u r rρ ′ , ( ),v r rρ ′  are the normalized cross correlation function between 

simultaneous wind fluctuation at r, r’, and measurements indicate that the normalized 

cross correlation function decays exponentially, so it can be expressed as 

( ), exp 0.3u ur r r r Lρ ′ ′ = − −   and ( ), exp 0.3v vr r r r Lρ ′ ′ = − −  . For design purpose, the 

background standard deviation can be expressed with mean bending moment, size 

reduction factor and wind load ratio. For wind turbine, the across-wind mean bending 

moment becomes close to zero at some yaw angles. And it is well known that the lateral 

turbulence intensity is defined as the ratio of standard deviation of lateral fluctuation 

component to the longitudinal mean wind speed. Based on the same idea, therefore, in 

this study the along-wind mean bending moment is employed to calculate both along-wind 

and across-wind standard deviation of bending moment. Therefore, the background 

standard deviation can be expressed as: 

2
2

1

D
MBfu uh MBfu MBfu

uh

M
I K

I
σ γ= ⋅

+
,     

2
2

1

D
MBfv vh MBfv MBfv

uh

M
I K

I
σ γ= ⋅

+
         A.17                                                                                                                                     

where MBfuK and MBfvK are the background size reduction factors for the base bending 

moment due to longitudinal and lateral wind fluctuations, respectively, and MBfuγ and MBfvγ  

are wind load ratios.  

• Resonant Response of Base Bending Moment 

Substituting Eq. (A.14) to Eq. (5.5), the modal equations of motion for the two 

directions become  

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )2 2
i i i D i i i i i D D im f t c C Uc r r dr f t m f t C c r Uu A c r Uv r drρ µ ω ρ ρ µ + + + = + ∫ ∫&& & , 

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )2 2
i i i L i i i i i L L im f t c A Uc r r dr f t m f t C c r Uu A c r Uv r drρ µ ω ρ ρ µ + + + = + ∫ ∫&& &       A.18                                                                                                                                     

The generalized loading of the right hand side of Eq. (A.18) can be expressed as Eq. 

(A.19) in general with respect to the first mode. 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1, , , ,f fQ t U r C r u r t c r r dr U r A r v r t c r r drρ θ µ ρ θ µ= +∫ ∫                       A.19                                                                                                                                     

Assuming that the cross correlation function of u,v components is zero, the standard 

deviation 1Qσ of ( )1Q t is given by   
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( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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T
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T

f f

Q t dt
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u r t u r t dt U r U r C r C r c r c r r r drdr
T

σ

ρ θ θ µ µ

=

 ′ ′ ′ ′ ′ ′=   

∫

∫∫ ∫
 

        ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2
1 1

0

1
, , , ,

T

f fv r t v r t dt U r U r A r A r c r c r r r drdr
T

ρ θ θ µ µ ′ ′ ′ ′ ′ ′+   ∫∫ ∫   

        ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2
1 1

0

1
2 , , , ,

T

f fu r t v r t dt U r U r C r A r c r c r r r drdr
T

ρ θ θ µ µ ′ ′ ′ ′ ′ ′+   ∫∫ ∫  

      ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2
1 1

0
, , , ,uu f fS r r n dn U r U r C r C r c r c r r r drdrρ θ θ µ µ

∞ ′ ′ ′ ′ ′ ′=   ∫∫ ∫  

        ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2
1 1

0
, , , ,vv f fS r r n dn U r U r A r A r c r c r r r drdrρ θ θ µ µ

∞ ′ ′ ′ ′ ′ ′+   ∫∫ ∫        A.20                                                                                                                     

where Suu, Svv is the cross spectrum of wind fluctuating component u,v respectively, which 

is defined by normalized co-spectrum ( ), ,N
uu r r nψ ′ , ( ), ,N

vv r r nψ ′ and power spectrum density 

of its wind fluctuations ( )uS n , ( )vS n . 

( ) ( ) ( ) ( ) ( ) ( ), , , , ,    , , , ,N N
uu uu u vv vv vS r r n r r n S n S r r n r r n S nψ ψ′ ′ ′ ′= =       

Therefore, the power spectrum of generalized load with respect to the first mode is 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2
1 1 1, , , ,

N
Q uu u f fS n r r n S n U r U r C r C r c r c r r r drdrρ ψ θ θ µ µ′ ′ ′ ′ ′ ′= ∫∫  

  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2
1 1, , , ,

N
vv v f fr r n S n U r U r A r A r c r c r r r drdrρ ψ θ θ µ µ′ ′ ′ ′ ′ ′+ ∫∫        A.21                                                                                                                                     

As derived by Wind Energy Handbook [2], in the case of the dominant first mode, the 

power spectrum of the tip deflection is ( ) ( ) ( )
1

2

1 1x QS n S n H n= , where ( )
1Q

S n  is assumed 

constant over the narrow band of frequencies straddling the resonant frequency, ( )1H n is 

the modulus of the complex frequency response function, and can be used to transform 

the power spectrum of the wind incident into the power spectrum of the displacement. It 

has been shown by Newland [3] that
0

∞

∫ ( ) ( )( )2 2 2
1 1 1/ 2 /fH n dn n kπ δ= . Then the standard 

deviation of resonant response becomes which can be written in two independence parts 

of longitude and lateral wind component (u and v). 
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( ) ( ) ( ) ( ) ( ) ( )
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∞ ∞ ∞
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 
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π ρ
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δ

 
′ ′ ′ ′ ′ ′+  

  
∫∫  

     2 2
1 1x u x vσ σ= +                                                                                                                  A.22                                                                                                                                     

where fδ is the logarithmic decrement of damping, which is 2π times the damping ratio fξ , 

( ) ( ) 2
1 1 1 /uh u uhR n n S n σ= and ( ) ( ) 2

1 1 1 /vh v vhR n n S n σ= are the normalized power spectral density of 

longitudinal and lateral wind fluctuation. 

The standard deviation of the first mode resonant base bending moment is derived 

below. Defining MRf (t) as the fluctuating base bending moment due to wind excitation of 

the first mode 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2
1 1 1 1 1 1, ,RfM t m r x t r rdr m r x t r rdr f t m r r rdrω ω µ= = =∫ ∫ ∫&&                                A.23                                                                                                                                     

Hence, based on Eqs. (A.22) and (A.23) the standard deviation of resonant base 

bending moment fluctuation can be derived as the summation of two independent parts 

resulted from longitudinal and lateral wind component (u and v) as well. Here, the mean 

wind velocity ( )U r and ( )U r′ in the integrals are assumed constant as hU at the hub.  

( ) ( ) ( )( )2
2 4 2 2 2 2

1 1 1 1MRf x u x v MRfu MRfvm r r rdrσ ω σ σ µ σ σ= + = +∫ ,   
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On an empirical basis, Davenport [4] has proposed an exponential expression for the 

normalized co-spectrum as ( ) ( ), , , , exp
N N
uu vv hr r n r r n C r r n Uψ ψ′ ′ ′ = ≈ − −  . Based on the 

same analysis, the resonant standard deviation can be expressed with along-wind mean 

bending moment, mode correction factor, size reduction factor and wind load ratio: 

( ) ( )1 12
2

1 4

fD
MRfu uh uh MRfu MRfu

uh f

M
I R n K n

I

πφ
σ γ

πξ
= ⋅

+
,                                                                 

( ) ( )1 12
2

1 4

fD
MRfv vh vh MRfv MRfv

uh f

M
I R n K n

I

πφ
σ γ

πξ
= ⋅

+
                       A.25

   

where fφ is the mode correction factor, fξ is the damping ratio, ( )1MRfuK n and ( )1MRfvK n are 

denoted the resonant size reduction factors for the base bending moment due to 

longitudinal and lateral wind fluctuations, respectively, which result from the lack of 

correlation of the fluctuating wind velocity, and MRfuγ and MRfvγ  are wind load ratios. All 

these parameters will be discussed in follows.  

Mode Correction Factor  

The five non-dimensional parameters in the mode correction factor are determined as 

follows. During the derivation of a′ , mass distribution is assumed to be uniform of m per 

unit length along the tower. Although bλ  can be determined from Fγ , a more simple 

formula 1.2 0.07 cos 2θ+  obtained by fitting the results of integral form is used instead here. 

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 1

1

1 , , 1
0 0

1
, ,

0

1 , 1
0 0

1

,

,

     =

/ 1 / 1
    

1 1

h h

h

h

D

f

D

H H

r h D r r D t
s

H
t h r h

D r r D t
h

H

D t
s m F

m t h F

C r r c r dr m r r rdr

mC r c r rdr

m z z zdz m H C A C d z z dz
m

zm m H m H
C A C d z dz

H

m z z zdz C d z z dz
m a b

m m H

θ µ µ
φ

θ

µ θ θ µ

θ θ

µ θ µγ γ
γ γ

=

+ +
⋅ ⋅

+ +

 
 ′ ′+ +

= ⋅ ⋅ ⋅ ⋅ 
+ +  

 

∫ ∫
∫
∫ ∫

∫

∫
( ) ( )

( ) ( )

,
0

    

h

h

H

H

D t
h

M a b

z
C d z dz

H

a b

θ

γ λ λ

 
 
 
 
 
 

′ ′= ⋅ ⋅

∫
∫

                       A.26                                                                                                  
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1.2 0.07cos 2

1

F
b

F

bγ
λ θ

γ
′ +

= = +
+

 

( ( ) ( ) ( ) ( ) ( )( ), , , ,
0

/ / 0.42
hH

F D r r D t D r r D t a h
h

z
C A C d z dz C A C D H

H
γ θ θ θ θ= = ⋅∫ ),                              

( ) ( ) ( ) ( ) ( ) ( )
( )

,
, 1 ,

0 0
,

0.3
/ 0.714

0.42

h hH H
D t a h

D t D t
h D t a h

C D Hz
b C d z z dz C d z dz

H C D H

θ
θ µ θ

θ

⋅
′ = ≈ =

⋅∫ ∫ .                                                   

Damping Ratio 

From Eq. (A.18), in the case of the dominant first mode, damping ratio in along-wind 

and across-wind should consist of two components, structural 1 1 1/ 4s c m nξ π= and 

aerodynamic aDξ and aLξ as shown in Eqs. (A.27) and (A.28). 
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                                                             A.28                                                                                              

where
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α

α α

+ +
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+ +
.                        

Size Reduction Factor 

The integral forms of background and resonant size reduction factors are as Eqs. (A.29) 

~ (A.32):  
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 The formulae of background and resonant wind load ratios are derived as Eqs. (A.33) 

~ (A.36) from their integral forms: 
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A.4.2. Peak Factor   

Kareem et al.  [5] evaluated the peak factor for the non-Gaussian process as Eq. (A.37). 
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where 0.5772γ = (Euler’s constant), ( )2ln DTβ ν ′= ,
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Dν ′  and Dν are the zero up-crossing number in the estimated time interval T (normally 

600s) of non-Gaussian process and Gaussian process of along-wind load, respectively, 

wtA is the wind acting area of the whole wind turbine, and κ , 3h , 4h  are functions of 

skewness 3α and kurtosis 4α of fluctuating wind load. Binh et al. [1] proved that the effect of 

kurtosis 4α  can be neglected since it is negligibly small compared to that of the second 

and third order from the order analysis of turbulence intensity
uI . 4α is then assumed to be 

equal to the value of a Gaussian process (i.e., 3.0). Then the formula of the peak factor is 

simplified to a function of skewness, as shown in Eq. (A.38). 
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                                               A.38                                                                                           

For the across-wind response, since the skewness and kurtosis of fluctuating wind load 

are close to 0 and 3.0, respectively, the non-Gaussian peak factor of Eq. (A.38) can be 

reduced to the standard Gaussian form: 
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